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Lay Abstract

In a wireless sensor network (WSN), sensor nodes monitor the physical environment

and forward the collected data to a data sink for further processing. Sensors are

battery powered and, therefore, prolonging the lifetime of their batteries is criti-

cally important. In a rechargeable WSN (RWSN), prolonging the battery lifetime of

sensors is achieved through reducing communication energy and recharging the bat-

teries periodically. Reducing the communication energy consumption is done through

choosing the best forwarding sensors (i.e., routing) for data collected by each sensor

and deciding the transmission power of each sensor (i.e., power allocation). Recharg-

ing the batteries is achieved through harvesting energy from external sources. In this

thesis, we consider a RWSN that uses wireless power transfer as the energy harvesting

technology and jointly optimizes charging and communications in order to minimize

the power consumption of the RWSN.
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Abstract

Prolonging the battery lifetime of sensors has been one of the most important issues in

wireless sensor networks (WSNs). With the development of Wireless Power Transfer

(WPT) technology, sensors can be recharged and possibly have infinite lifetime. One

common approach to achieving this is having a wireless charging vehicle (WCV) move

in the system coverage area and charge sensors nearby when it stops. The duration

that the WCV stays at each charging location, the amount of traffic that each sensor

carries, and the transmission power of individual sensors are closely related, and

their joint optimization affects not only the data transmissions in the WSN but also

energy consumption of the system. This problem is formulated as a mixed integer

and non-convex optimization problem. Different from existing work that either solves

similar problems using genetic algorithms or considers charging sensors based on

clusters, we consider the optimum charging time for each sensor, and solve the joint

communication and charging problem optimally. Numerical results demonstrate that

our solution can significantly reduce the average power consumption of the system,

compared to the cluster-based charging solution.
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Chapter 1

Introduction

In a Wireless Sensor Network (WSN), sensor devices distributed in a given geograph-

ical area are used to sense the physical measurements, such as temperature, humidity,

pressure, etc. and send the data to the data sink or sinks [21]. As a network, some

sensors are also responsible for relaying data for other sensors. With the increasingly

wide applications of WSNs, such as environmental monitoring, military surveillance,

and industry automation [27], the battery energy problem of the sensors has become

an important issue [20]. As the sensors are battery powered, the lifetime of the bat-

tery of a sensor is often the lifetime of the sensor in many cases [19] [8]. This is

especially true in harsh environments or areas where humans cannot easily reach [6],

such as in nuclear stations [13], since it is practically impossible to replace the “dead”

sensors.

Using energy harvesting techniques to power WSNs helps prolong the battery life-

time of sensor nodes [12]. This kind of energy harvesting techniques utilizes energy

collecting equipment, e.g., solar panels [25] or wind turbines [10], to absorb ambient

energy from natural sources, and stores the collected energy into an energy storage
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device (e.g., a battery). Extensive research work has been done to improve the nat-

ural energy harvesting efficiency and resolve the mismatch between the amounts of

harvested and demanded energy, e.g., [24][23][1]. However, the amount of harvested

energy using this type of techniques is sensitive to the environment, e.g., the amount

of sunshine time, and the device used for collecting energy often has much larger size

than the sensor itself. This can cause difficulties in sensor deployment in practical

applications [33].

Sensor batteries can also be charged through wireless power transfer (WPT).

Compared with harvesting energy from the natural sources, WPT provides a more

stable and reliable approach to charge batteries in the near fields. As an alternative to

harvesting energy from natural sources, WPT is a technology that is able to transfer

power between two copper coils [15]. Recently, the newWPT technology has attracted

researchers and engineers to investigate different algorithms to improve the lifetime

and energy consumption of WSNs or even to keep the WSNs always alive.

1.1 Wireless Power Transfer

The history of WPT can be dated back to 1914 when Nikola Tesla created his patent

to transfer power wirelessly in the United State [28]. However, it did not work as

expected due to unexpected electrical fields when transferring energy between the

transmitter and the receiver. In the early 1990s, a new wireless power supply system

was designed by Albert and Hans-Christopher by having a rotatable transformer

transfer energy to a robot at a frequency of around 25 kHz [7]. The charging efficiency

for this technique is 95% at 100 µm of charging distance. Installing the entire energy

transfer system is not feasible in WSNs due to the short charging distance and the

2
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size of the transformer.

A patent for contactless battery charger with wireless control link was published

in 2001 [9], where an inductive coupler is used to transfer energy from its primary side

(i.e., the energy source) to the secondary side (i.e., devices being charged). In addition

to charging devices on the secondary side, this system also provides a control signal

that can be used to improve the charging efficiency. Although the charging efficiency

dropped to 60%, the charging distance can reach 3 mm, which is much longer than

that in [7]. However, the charging distance is still relatively short in the ecosystem

of WSNs.

A radio frequency (RF) radiation method was invented in 2006 that uses a con-

verter circuit to convert energy in a range of RF frequencies and charges batteries [29].

Compared to the previous methods, this technique adds an additional feature that

allows simultaneous wireless information and power transfer. Due to the nature of

RF signal transmissions, the charging distance is longer than in the previous meth-

ods, but the overall charging efficiency is much lower, e.g., below 1% [4], especially

when the radiation is omnidirectional. In addition, it requires the direct line of sight

between the charging and charged devices.

In 2007, a theory of midrange power transfer was proposed in [11], which proves

that strongly coupled resonant coils can be used to transfer power with high efficiency.

With strongly coupled resonant, the high coherent coupling rate at the surface of the

resonator results in highly efficient wireless energy transfer [2]. Setting up WPT in

such a way is a prominent technology that can be used in extending the lifetime of

WSNs, because it can be operated in an omnidirectional way without the line of sight

requirement. Based on this theory, a breakthrough WPT technology was proposed
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in [15] that uses strongly coupled magnetic resonances to transfer power wirelessly

and efficiently. This WPT technique is suitable for daily applications, because the

magnetic fields do not interact with common materials. The same technique can also

be used to transfer energy from a single source to multiple devices [16].

1.1.1 One-to-one Wireless Power Transfer

As shown in figure 1.1, the one-to-one WPT system consists of one sender and one

receiver, which are made by strongly coupled magnetic copper coils, and the coils are

resonant [15]. The main reason for using resonance in this WPT system is that it

helps improve the energy transfer efficiency significantly compared with the scenario

using non-resonant materials. Let f0 be the resonant frequency at which the WPT

system is operating, then [15]

f0 =
1

2π(LC)
1
2

, (1.1.1)

where L and C, respectively are the effective inductance and effective capacitance

for each coil. The sender circuit is a cooper loop which is supplied by an AC power

source. In order to maximize the WPT efficiency, the input frequency must be within

the range of 1 MHz to 50 MHz. In the experiment performed in [15], the frequency

is set to be 9.9 MHz. The receiver circuit is also a loop of wire with a load attached

to it. The coupling coefficient is given by

κ =
ωM

2(LC)
1
2

(1.1.2)
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where ω is the resonant angular frequency and M is the effective mutual inductance

between the coupling devices. The efficiency of WPT decreases as the charging dis-

tance increases. Curve fitting is used in [15] to find the relationship between the

charging efficiency and charging distance as follows:

µ =

 −0.0958D2 − 0.0377D + 1.0, if D ≤ Rc

0, otherwise,
(1.1.3)

where µ is the charging efficiency, D is the charging distance, and Rc ≈ 3.04 m is

the maximum charging range. Notice that µ ∈ [0, 1]. As special cases, µ = 1 when

D = 0; and µ = 0 when D > Rc.

Figure 1.1: One-to-one WPT system [15]: A and B, respectively, represent the the
driving circuit (sender circuit) and device circuit (receiver circuit), S and D,

respectively, are the sender and receiver coil, and κS and κD, respectively, are the
A-S and B-D coupling coefficients.

1.1.2 One-to-multiple Wireless Power Transfer

Similar to one-to-one charging, one-to-multiple charging uses the same base theory

that the source should be strongly coupled with the receivers [16]. The overall effi-

ciency is determined by the ratio of the total power delivered to all the loads over the

power fed into the system. The overall power transfer efficiency in one-to-multiple
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charging is higher than that in one-to-one charging [16]. In order to achieve the opti-

mal efficiency, the entire system needs to be tuned into the same frequency, which is

the resonant frequency. Each resonant device must apply smaller loop-and-capacitor

technique to match the predefined resonant frequency. Besides tuning the coils to

couple with the sender at the resonant frequency, the location of the receivers is also

an important factor for strong coupling [16].

In the experiment reported in [16], 25 watts of power was supplied to each receiving

device over a 2 meter distance. The results also show that the measured overall

efficiency is higher than the efficiency of the one-to-one charging by at least 10%.

Similar to the one-to-one charging, the measured efficiency in the one-to-multiple

charging also decreases with the charging distance, and the difference between the

one-to-multiple and one-to-one charging efficiency becomes more significant as the

charging distance increases.

1.2 Rechargeable Wireless Sensor Networks

The above mentioned WPT technology is a promising way to extend the lifetime of

WSNs. Compared to other existing charging options, this method is less affected by

the surrounding environment. However, since the geographical coverage of a WSN

is usually much larger than the charging range of the WPT, the charger should be

moved to different locations of the network coverage area. This can be achieved

by having a vehicle carry the charger, and the charger together with the vehicle is

referred to as a wireless charging vehicle (WCV) [3, 31, 26, 33, 34]. In this case, the

WCV should periodically recharge itself, and this is usually done at a fixed home

station. The WCV moves along a certain charging trajectory, stops at a number of
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charging locations (also referred to as anchor locations) to charge the sensors within

the charging range, and returns to the home station before it runs out of energy. A

full charging cycle includes the travel time during which the WCV is moving along

the path, multiple charging intervals during which the charger stops at individual

anchor locations, and the time when the charger is at the home station to recharge

itself or at “rest”.

Given the moving trajectory of the WCV, [31] has proved that, if the network

flow follows a periodical cycle, the charging behaviour is also periodical, i.e., charging

can be done periodically. The concept of “charging cycle” has been used in other

work, e.g., [26, 3]. Within each charging cycle, the energy consumption of the system

includes that for driving the charging vehicle and for charging the sensors. The former

is directly related to the length of the moving trajectory, while the latter is determined

by the communication loads of the sensors, which is further related to flow routing in

the WSN.

The WPT technology makes is possible to keep the sensors in a WSN recharged. In

this scenario, it is important to ensure that the battery energy of the sensors is always

sufficient for the communication requirements. Meanwhile, the energy consumed by

the WCV should be minimized. The charging decisions are also related to the data

sensing rate, data flow routing, transmission power and rate of the sensors in the

WSNs. This is the problem studied in this thesis.

1.3 Organization of The Thesis

The rest of the thesis is organized as follows. Section 2 summarizes the related work

on charging decisions in rechargeble WSNs. Section 3 describes the system model that

7
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our research work is based on and formulates the problem of optimum charging, flow

routing, power and rate allocations. A special case with all sensors in the charging

rang of the same anchor node charged with the same amount of time is solved in

Section 4. Section 5 solves the optimum charging problem for the general case when

individual sensors may be charged with a different amount of time. Section 6 presents

the simulation results to demonstrate performance of the proposed charging solutions.

Finally, the conclusions are drawn in Section 7.
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Chapter 2

Literature Review

This chapter first introduces related work on joint charging and traffic routing in

RWSNs, based on which the motivations and main contributions of the thesis work

are summarized.

2.1 One-to-one Charging

In the one-to-one charging, the charger is usually moved to be as close to the sensor

to be charged as possible in order to maximize the charging efficiency. Since the

charger has to visit individual sensors one by one, the energy consumed for the WCV

to travel can be significant. In order to minimize the travel energy, the shortest

charging trajectory should be followed. It is proved in [26] that the shortest path is

a Hamiltonian cycle, which is in general not unique.

The charging performance is closely related to other aspects in a WSN. Specifically,

the amount of energy charged to each sensor should be sufficient for the sensor to

carry all the data communications, which is further related to data routing in the

9
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network. By taking these factors into consideration, an optimization problem is

formulated in [26] for a single WCV to charge all sensors in a WSN while maximizing

the fraction of the vacation time in a charging cycle. When solving the problem,

the quadratic terms are approximated by piece-wise linear terms, which results a

near-optimal solution.

Due to the high complexity of the system, methods based on the genetic algorithm

(GA) have been used to solve the joint charging and routing problem. In [34], a similar

system as in [26] is studied, and the objective is to minimize the total cycle time of the

WCV. The problem is divided into several relatively independent sub-problems. First,

the shortest travel path is calculated based on the traveling salesman problem. Given

the charging trajectory, minimizing the total cycle time is equivalent to minimizing

the total charging time, which is further equivalent to minimizing the total consumed

energy of the sensors. The optimal communication flow routing is then found by

using a restart artificial bee colony (RABC) method in order to minimize the total

energy consumption of the sensors.

In the previous work, the WCV should charge all the sensors before it can return to

the home station for recharging itself. The one-to-one charging scheme in [33] allows

theWCV to charge only a portion of the sensor nodes in each charging cycle. The work

completely decouples the routing and charging problems. First, communication flow

routing is performed with an objective of minimizing the total power consumption of

all sensor nodes without considering the charging conditions. After this, an algorithm

is designed to group the sensors so that the WCV charges only one group of the sensors

during each charging cycle. The objective of the grouping is to minimize the traveling

distance of the WCV. Similar decoupling methods are also used in [17] and [32] to

10



M.A.Sc. Thesis – C. Guo; McMaster University - ECE.

solve the charging problem in RWSNs.

In [3] the optimum charging problem in RWSNs is formulated as a multi-objective

problem, which considers maximizing fairness in terms of energy consumption of the

sensors, maximizing routing efficiency, and maximizing vacation time of the WCV

over a charging cycle. Reinforcement leaning is used to train the sensor nodes for

self-organizing data relaying routes in order to achieve fair energy consumption. An

algorithm is designed to find the optimal path for the WCV based on the residue

energy of the sensors. The energy consumption for driving the WCV to travel along

the charging path is ignored in this formulation.

When the geographical area of the WSN is wide or the number of sensors is large,

the charging problem may become infeasible since the amount of energy charged to

the WCV in one charging cycle may be insufficient for it to charge all the sensors

and travel back to the home station. For this reason, reference [14] considers having

multiple WCVs in a RWSN. This brings more flexibility in charging the sensors but

increases the complexity in optimizing the overall energy efficiency of the system. An

enhanced k-mean clustering algorithm is used to separate the sensors into clusters,

each of which is charged by one WCV, and the charging trajectory of the WCV is

determined based on the locations of the sensors to be charged. Meanwhile, the work

also minimizes the percentage of energy spent by the WCVs for traveling over the

total energy consumption of the system.

2.2 One-to-multiple Charging

Instead of charging the sensors one after another, multiple sensors can be charged

simultaneously. This not only improves the charging efficiency but also helps reduce
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the travel distance of the WCV and reduce the energy consumption of the WCV.

Sensors within the charging range of a given anchor location can be considered

as a cluster or bundle and charged at the same time. Given the charging range (or

maximum charging distance) of the WCV, finding the optimum charging bundles is

equivalent to finding the optimum anchor locations of the WCV. It is proved in [30]

that the optimum bundling and optimum trajectory problems are both NP-hard.

Therefore, some simplifications are often needed to achieve practical solutions. The

problem of minimizing the total energy consumption in a densely deployed RWSN is

considered in [30]. Two steps are used to solve the problem. The first step is to assign

all sensors into the smallest number of bundles, since a smaller number of bundles in

general means a shorter charging tour. The second step is to minimize the energy of

both charging the sensors and driving the WCV to travel. The effect of the data flow

routing on the overall energy consumption and charging efficiency is not considered

in this work.

In [18], sensors are first clustered based on distances, and the genetic algorithm is

then used to find the best charging location (anchor point) for each cluster in order to

minimize the cycle duration. Once the anchor nodes are found, the entire trajectory

of the WCV can be found based on Travelling Salesman Problem (TSP), and the

total cycle time is also known.

The work in [31] is to minimize the WCN energy consumption while taking into

consideration the flow routing problem in the WSN. The problem is translated into

two problems, one is to maximize the vacancy time of the WCV in a charging cycle,

while keeping the sensors charged to satisfying the communication requirements; and

another is to decide the anchor locations, since it is directly related to which sensors

12
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can be charged at each location and how long a charging cycle should last.

2.3 Joint Charging Trajectory and Data Flow

In RWSNs, charging-related parameters are strongly coupled with traffic flow routing,

since the latter affects the amount of energy needed by individual sensors. Therefore,

the charger trajectory and flow routing problems are often jointly studied, which leads

to some complicated optimization problems, e.g., [31, 26, 3, 33, 34].

In one-to-one charging, the optimum amount of charging time for each sensor is

to ensure that the amount of energy charged to the sensor is equal to the amount

of consumed energy during each charging cycle [26, 33]. In one-to-multiple charging,

the charging duration at a given anchor location is determined by the energy needed

by all the sensor nodes charged in the same location and the relative distances of the

sensors to the anchor location. Therefore, the joint optimization of charging time and

flow routing in the one-to-multiple charging case is much more complicated than in

the one-to-one case. For this reason, existing work tried to decouple charging and

routing, e.g., [33, 34], which simplifies the solution at a price of reduced performance.

Furthermore, existing work that studies joint traffic routing and charging time/path

problems assumes that the transmission power of a sensor node is a function of the

transmission distance. In a practical system, sensor nodes should adapt their trans-

mission power and the data transmission rates based on the channel conditions, and

this consideration affects the charging solution.

In addition, in one-to-multiple charging, the charger outputs power to all the

sensors to be charged from a given anchor location for the same amount of time. This

normally results in overcharging some sensor nodes and wasting the energy of the
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charger in order to satisfy the energy requirements of the sensors that have longer

distance to the anchor nodes or/and higher communication loads.

2.4 Overview of the Thesis Work

In this thesis, the joint charging and flow routing problem for RWSNs is studied. The

main differences of this work and the previous work are summarized below together

with the main contributions of this thesis.

• Instead of considering constant data transmission rate for each sensor for the

entire duration of a charging cycle, sensors adapt their transmission rates, time,

and power based on their channel conditions.

• Instead of considering the same amount of charging time to all the sensors

within the charging range of a given anchor location, we consider that indi-

vidual sensors can be charged for a different amount of time based on their

charging distances and communication requirements. This helps greatly to save

the energy consumption of the charger.

• An optimization problem is formulated that jointly considers the communication

and charging parameters, where the former includes transmission power, data

rate, and transmission time of each sensor, and the latter includes the duration

of a charging cycle, the amount of time at each charging location, and the

amount of charging time for each sensor. The objective is to minimize the

average power consumption of the system, while satisfying the communication

energy requirements of the sensors and keeping the sensors always alive.
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• A special case of the optimization is solved by assuming that all sensors within

the charging duration of a given anchor node are charged with the same amount

of time.

• The general case of the optimization problem is non-convex, which is then trans-

formed and decomposed into an outer sub-problem and an inner sub-problem.

The outer sub-problem includes a single continuous variable, which is the charg-

ing cycle duration. Given the cycle duration, the inner sub-problem is trans-

ferred into a mixed integer and convex programming and solved using com-

mercial software such as MATLAB. The outer problem is then solved through

binary search.

• Extensive simulation results show that our solution outperforms the existing

one-to-one and one-to-multiple charging solutions.
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Chapter 3

System Model and Problem

Formulations

In this chapter, we first describe the system model that this research is based on. Dif-

ferent constraints related to wireless charging in a RWSN are defined, based on which

an optimization problem is formulated at the end with an objective of minimizing the

average power consumption of the wireless charging system.

3.1 System model

We consider a WSN that consists of I sensor nodes, indexed by i = 1, 2, . . . , I. The

sensor nodes are distributed in a certain geographical area. All the data collected by

the sensor nodes should be transmitted directly or forwarded through other sensor

nodes to a sink node.

The sensor nodes are periodically charged by a wireless charging vehicle (WCV),

which includes a charger carried by a vehicle. Within the coverage area of the WSN,
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there are M charging locations, referred to as anchor locations, where the WCV

can stop and charge the sensors nearby. The anchor locations are indexed by m =

1, 2, . . . ,M . We consider that the anchor locations are along a predefined path within

the coverage area of the WSN. Finding the optimum trajectory is mainly to find the

shortest path in order to minimize the energy consumed for the WCV to travel within

a charging cycle. The problem is relatively independent of the traffic conditions and

has been studied in [26, 18].

Define ttot as the duration of one charging cycle that includes 1) tpath, which is the

time needed for the WCV to travel along the entire charging path without stopping;

2) tam, m = 1, 2, . . . ,M , which is the amount of time that the WCV stays at the mth

anchor location; and 3) t0, which is the time that the WCV stays in its home location

for either recharging itself or being idle, and it is also referred to as vacation time.

Note that the charger does not charge any sensors when it is traveling or at vacation.

We have

ttot = t0 + tpath +
M∑

m=1

tam. (3.1.1)

The power consumption of the WCV is different during the three types of time

intervals. We assume that the power consumption of the WCV is approximately

zero when it is not moving nor charging. Let ppath be the power consumption of the

WCV when it is moving (and not charging), and Pc be the power consumption of the

WCV when it is charging (and not moving) a given sensor node. At a given anchor

location, the MCV may charge multiple sensors within its charging range. Let Dmi

be the distance between the ith sensor node and the mth anchor location, then the

charging efficiency µmi can be calculated from (1.1.3).
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At a given anchor location m, let tmi be the amount of time that the ith sensor is

charged for. We then have

tmi ≤ tam (3.1.2)

for all i = 1, 2, . . . , I.

Each sensor may be located in the charging range of multiple anchor locations

and charged multiple times in a charging cycle. Let Ei be the total amount of energy

charged to sensor i in one charging cycle. We have the following relationship

Ei ≤ Pc

M∑
m=1

µmitmi. (3.1.3)

Each sensor node has a maximum battery capacity Emax and should maintain a

minimum energy level Emin to keep its battery alive in the network (3.1.4). Therefore,

the amount of energy that can be charged to a sensor node is limited by Emax−Emin.

That is,

Ei ≤ Emax − Emin. (3.1.4)

Given this, the average power consumption of the WSN is given as

Pavg =
Pc

∑M
m=1

∑I
i=1 tmi + ppathtpath
ttot

(3.1.5)

where the numerator on the right-hand side is the total energy consumption of the

WCV during one charging cycle with the first term equal to the total energy consumed

for charging and the second term equal to the total energy consumed for traveling.

For sensor node i, let Ri represent the data generation rate of its locally sensed
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data. The sensors form a meshed topology for routing the sensed data to the sink.

We use τij to represent the amount of transmission time from sensor i to sensor j

during one charging cycle, and fij to represent the physical data transmission rate

from node i to node j during this time period. All the sensors transmit data to the

data sink. For the sensors that are not within the communication range of the data

sink, another sensor nearby may act as a relay to help transmit the data to the sink.

Overall, the WSN can be considered as having a mesh topology. The following flow

balance equation then should hold for each node i,

I∑
k=1,k ̸=i

τkifki +Rittot ≤
I∑

j=1,j ̸=i

τijfij (3.1.6)

for all i = 1, 2, . . . , I.

For each sensor, its power or energy consumption consists of three sources, sensing

local data, receiving from other sensors, and transmitting to other sensors. Let pij ∈

[0, pmax] be the power consumption of sensor i when it is transmitting to sensor j with

pmax the maximum transmission power of sensor node i, ρi be the energy consumed

per received bit when it is receiving from another sensor, and ηi the energy consumed

by sensing each bit of data. The total energy consumption of sensor i during one

charging cycle is given by

ρi

I∑
k=1,k ̸=i

τkifki +
I∑

j=1,j ̸=i

τijpij + ηiRittot ≤ Ei, (3.1.7)

for all i = 1, 2, . . . , I. On the left-hand side of (3.1.7), the first term represents

the energy consumption of receiving data, the second term is the energy cost for

transmitting data, and the third term is the sensing energy consumption during one
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charging cycle.

We use the Shannon’s formula to model the relationship between the physical

transmission rate and transmission power of a sensor. That is, for each sensor node

i,

fij ≤ B log2

(
1 +

pijgij
pnoise

)
, (3.1.8)

where B is the bandwidth of the wireless channel, pnoise is the noise power, and gij is

the channel gain between nodes i and j.

3.2 Problem Formulation

We assume that in the initial setup, all the sensor nodes are charged with full battery

capacity Emax. The objective is to minimize Pavg by finding the optimum tam, tmi,

fij, pij, and ttot, while allowing all the sensed data transmitted to the sink, given

Ri and Dmi for all i, j = 1, 2, . . . , I and m = 1, 2, . . . ,M . Define ta = [tam,∀m =

1, 2, . . . ,M ], t = [tmi,∀m = 1, 2, . . . ,M, i = 1, 2, . . . , I], p = [pij,∀i, j = 1, 2, . . . , I],

τ = [τij,∀i, j = 1, 2, . . . , I], and f = [fij,∀i, j = 1, 2, . . . , I]. As a special case, when
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i = j, fij = pij = τij = 0. The optimization problem is given as

OPT.1 min
ta,t,p,τ ,f ,ttot

Pavg =
Pc

∑M
m=1

∑I
i=1 tmi + ppathtpath
ttot

(3.2.1)

s.t.
I∑

k=1,k ̸=i

τkifki +Rittot ≤
I∑

j=1,j ̸=i

τijfij, i = 1, 2, . . . , I (3.2.2)

ρi

I∑
k=1,k ̸=i

τkifki +
I∑

j=1,j ̸=i

τijpij + ηiRittot ≤ Ei, i = 1, 2, . . . , I (3.2.3)

fij ≤ B log2

(
1 +

pijgij
pnoise

)
, i, j = 1, 2, . . . , I (3.2.4)

Ei ≤ Pc

M∑
m=1

µmitmi, i = 1, 2, . . . , I (3.2.5)

Ei ≤ Emax − Emin, i = 1, 2, . . . , I (3.2.6)

tmi ≤ tam, i = 1, 2, . . . , I, m = 1, 2, . . . ,M (3.2.7)

M∑
m=1

tam + tpath < ttot (3.2.8)

fij > 0, i, j = 1, 2, . . . , I (3.2.9)

0 ≤ pij ≤ pmax, i, j = 1, 2, . . . , I (3.2.10)

0 ≤ τij ≤ ttot, i, j = 1, 2, . . . , I (3.2.11)

Constraint (3.2.8) is equivalent to (3.1.1) since t0 is non-negative.
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Chapter 4

Equal Time Charging and

Proposed Solution

In this chapter we consider a special case when tmi = tam for all i with µmi > 0

and tmi = 0 otherwise. That is, all sensors within the charging range of the an-

chor node m are charged with the same amount of time. With this, the problem

OPT.1 formulated in Chapter 3 can be transformed into a geometric programming

(GP) problem and solved optimally using commercial software, such as matlab. How-

ever, this approach requires high computation complexity because Successive Convex

Approximation (SCA) [22] is needed in order to transform the posynomials in the con-

straint functions into monomials to fit the general format of the GP. The complexity

becomes prohibitively high when the number of sensor nodes is large. A heuristic al-

gorithm with lower complexity is then proposed to solve the problem by decomposing

the problem into two sub-problems. The first sub-problem finds the optimal power

consumption for each sensor, and the second sub-problem finds the required charging

time at each anchor location.
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4.1 Equal time charging problem

Define a set of binary variables Bmi’s as

Bmi =

 1, if µmi > 0;

0, otherwise
(4.1.1)

then problem OPT.1 in Chapter 3 is reduced to

OPT.2 min
ta,p,τ ,f ,ttot

Pavg =
Pc

∑I
i=1Bmi

∑M
m=1 t

a
m + ppathtpath

ttot
(4.1.2)

s.t.
I∑

k=1,k ̸=i

τkifki +Rittot ≤
I∑

j=1,j ̸=i

τijfij, i = 1, 2, . . . , I (4.1.3)

ρi

I∑
k=1,k ̸=i

τkifki +
I∑

j=1,j ̸=i

τijpij + ηiRittot ≤ Ei, i = 1, 2, . . . , I (4.1.4)

fij ≤ B log2

(
1 +

pijgij
pnoise

)
, i, j = 1, 2, . . . , I (4.1.5)

Ei ≤ Pc

M∑
m=1

µmit
a
m, i = 1, 2, . . . , I (4.1.6)

Ei ≤ Emax − Emin, i = 1, 2, . . . , I (4.1.7)

M∑
m=1

tam + tpath < ttot (4.1.8)

fij > 0, i, j = 1, 2, . . . , I (4.1.9)

0 ≤ pij ≤ pmax, i, j = 1, 2, . . . , I (4.1.10)

0 ≤ τij ≤ ttot, i, j = 1, 2, . . . , I (4.1.11)

All the constraints except (4.1.5) are linear. Therefore, we first consider con-

straint (4.1.5), which includes a logarithm function that is difficult to handle. When

23



M.A.Sc. Thesis – C. Guo; McMaster University - ECE.

the signal-to-noise ratio (SNR) of the link from sensor i to sensor j is sufficiently high,

i.e.,
pijgij
pnoise

≫ 1, we have

B log2

(
1 +

pijgij
pnoise

)
≈ B log2

(
pijgij
pnoise

)
=

1

ln 2
ln

(
pijgij
pnoise

)
. (4.1.12)

The high SNR assumption holds in a practical system in order to support a reasonably

high data transmission rate between the two sensors.

Next, consider two large numbers u ≫ 1 and a ≫ 1 with u1/a ≈ 1, we have

u1/a > 1 and u1/a − 1 ≈ 0. In this case,

lnu1/a = ln[1 + (u1/a − 1)] ≈ u1/a − 1. (4.1.13)

Therefore

ln(u) ≈ a(u1/a − 1). (4.1.14)

Thus, (4.1.12) can be further approximated as

B log2

(
1 +

pijgij
pnoise

)
≈ Ba

ln 2

[(
pijgij
pnoise

)1/a

− 1

]
≥ fij. (4.1.15)

We then consider the objective function (4.1.2), which is equivalent to minimizing

pavg with the following constraint

Pc

∑I
i=1Bmi

∑M
m=1 t

a
m + ppathtpath

ttot
≤ Pavg, (4.1.16)
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and can be further rewritten as

Pc

∑I
i=1Bmi

∑M
m=1 t

a
m + ppathtpath

Pavgttot
≤ 1. (4.1.17)

It can be further simplified by substituting all the ttot’s with tpath +
∑

m tm assuming

the sensor communication time is less than the total charging and traveling time.

Problem OPT.2 is then transformed to the following problem:

OPT.3 min
ta,p,τ ,f

Pavg (4.1.18)

s.t.
Pc

∑I
i=1 Bmi

∑M
m=1 t

a
m + ppathtpath

Pavgttot
≤ 1 (4.1.19)∑I

k=1,k ̸=i fkiτki +Ri(tpath +
∑M

m=1 t
a
m)∑I

j=1,j ̸=i τijfij
≤ 1, i = 1, 2, . . . , I (4.1.20)(

pijgij
pnoise

)−1/a(
ln 2

Ba
fij + 1

)
≤ 1, i, j = 1, 2, . . . , I (4.1.21)

τij

tpath +
∑M

m=1 t
a
m

≤ 1, i, j = 1, 2, . . . , I (4.1.22)

ρi
∑I

k=1,k ̸=i τkifki +
∑I

j=1,j ̸=i τijpij + ηi(tpath +
∑M

m=1 t
a
m)Ri∑M

m=1 t
a
mUmi

≤ 1,

i = 1, 2, . . . , I (4.1.23)

Emin + ρi
∑I

k=1,k ̸=i τkifki +
∑I

j=1,j ̸=i τijpijt + ηi(tpath +
∑M

m=1 tm)Ri

Emax

≤ 1,

i = 1, 2, . . . , I (4.1.24)

0 ≤ pij
pmax

≤ 1, i, j = 1, 2, . . . , I (4.1.25)

fij > 0, i, j = 1, 2, . . . , I (4.1.26)

τij ≥ 0, ∀i, j = 1, 2, . . . , I (4.1.27)
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where constraint (4.1.23) is obtained by combining (4.1.4) and (4.1.6), and constraint

(4.1.24) is obtained by combining (4.1.4) and (4.1.7).

With this, left-hand side of all the constraints are posynomials except (4.1.20),

(4.1.22), and (4.1.23). To solve this problem, we apply SCA and transform the

polynomials in the denominator on the LHS of these constraints into a monomial so

that the LHS of each of these constraints become a posynomial. The GP problem is

then solved using the commercial software such as MATLAB.

The SCA is an iterative method and the basic method is given as follows. Given

a polynomial

g(x) =
K∑
k=1

akx
k. (4.1.28)

Let x(j) be the feasible solution in the jth iteration. g(x) can be approximated as

g(x) ≈ g̃(x)|x=x(j) ≜
K∏
k=0

(
akx

k

αk

)αk

|x=x(j) (4.1.29)

where

αk =
akx

k

g(x)
(4.1.30)

Although OPT.3 can be solved using commercial software such as matlab, solv-

ing the problem is time consuming due to the high computational load caused by

SCA. In the next section, we design a heuristic method that can solve the problem

approximately with much lower complexity.
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4.2 Heuristic Algorithm

The optimization problem OPT.2 consists of two sets of constraints, one set for com-

munications and the other set for charging. Our basic idea of designing the heuristic

method is to separate OPT.2 into a communication-based problem and a charging-

based problem. In the communication-based problem, the following optimization

problem is formulated that uses the constraints (4.1.3)-(4.1.5) and (4.1.9)-(4.1.11) in

OPT.2:

OPT.4min
p,τ ,f

I∑
i=1

Pi (4.2.1)

s.t.
∑
k,k ̸=i

fkiτ
′
ki +Ri ≤

∑
j,j ̸=i

fijτ
′
ij, i = 1, 2, . . . , I (4.2.2)

Pi = ρi
∑
k,k ̸=i

fkiτ
′
ki +

∑
j,j ̸=i

pij + ηiRi, i = 1, 2, . . . , I (4.2.3)

fij ≤ B log2

(
1 +

pijgij
pnoise

)
, i, j = 1, 2, . . . , I (4.2.4)

fij > 0, i, j = 1, 2, . . . , I (4.2.5)

0 ≤ pij ≤ pmax, i, j = 1, 2, . . . , I (4.2.6)

0 ≤ τ ′ij ≤ 1, i, j = 1, 2, . . . , I (4.2.7)

where Pi is the power consumption of sensor i, and τ ′ij =
τij
ttot

for all i, j = 1, 2, . . . , I.

Problem OPT.4 does not take into consideration any effects caused by charging.

The objective of minimizing the total power consumption of all the sensors in the

problem is a heuristic way toward reducing the power consumption of the entire

system. Problem OPT.4 can be transformed into a GP problem and solved using the

same method as solving OPT.2. Since the size of OPT.4 is usually much smaller than
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that of OPT.2, solving it is much less time consuming.

In problem OPT.4, the objective function (4.2.1) minimizes the total power con-

sumption of all the sensor nodes. This objective treats all the sensors equally without

considering their charging conditions. As a more practical consideration, the power

consumption of individual sensors should be related to their charging conditions.

More specifically, sensors with poor charging conditions should carry less communi-

cation loads and consume less average power. Since larger umi represents a better

charging condition of sensor i with respect to the anchor location m, we define a

charging weight wi for sensor i as wi =
∑M

m=1 1/Umi and modify OPT.4 as

OPT.5 min
pijt ,fij ,τ

′
ij ,P

∑
i

wiPi (4.2.8)

s.t.
∑
k,k ̸=i

fkiτ
′
ki +Ri ≤

∑
j,j ̸=i

fijτ
′
ij, i = 1, 2, . . . , I (4.2.9)

Pi = ρi
∑
k,k ̸=i

fkiτ
′
ki +

∑
j,j ̸=i

pij + ηiRi, i = 1, 2, . . . , I (4.2.10)

fij ≤ B log2

(
1 +

pijgij
pnoise

)
, ∀i, j = 1, 2, . . . , I (4.2.11)

fij > 0, i, j = 1, 2, . . . , I (4.2.12)

0 ≤ pij ≤ pmax, i, j = 1, 2, . . . , I (4.2.13)

0 ≤ τ ′ij ≤ 1, i, j = 1, 2, . . . , I (4.2.14)

In this case, sensors with poor charging conditions are given larger weights in (4.2.8)

so that OPT.5 will result in smaller power for the sensors.

After OPT.4 or OPT.5 is solved, the transmission power for each sensor is ob-

tained, based on which the charging time can be found by solving the following
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problem:

OPT.6 min
ta,t0,ttot

Pavg =
Pc

∑I
i=1 Bmi

∑M
m=1 t

a
m + tpathppath

ttot
(4.2.15)

s.t. Pi(
M∑

m=1

tam + tpath + t0) ≤
M∑

m=1

Umit
a
m, i = 1, 2, . . . , I (4.2.16)

Pi(
M∑

m=1

tam + tpath + t0) ≤ Emax − Emin, i = 1, 2, . . . , I (4.2.17)

0 ≤ tam ≤ ttot, m = 1, 2, . . . ,M (4.2.18)

0 ≤ t0 ≤ ttot. (4.2.19)

In OPT.6, only t0 and tam’s are unknown. This is a linear-fractional programming

problem and can be transformed into a linear programming problem.

The general format of a linear-fractional programming problem is given as

min
cTx+ d

eTx+ f
(4.2.20)

s.t. Gx ≤ h (4.2.21)

Ax = b (4.2.22)
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For problem OPT.6, we have

x = [ta1 ta2 ... taM t0]
T (4.2.23)

c = [Pc Pc ... Pc 0]
T , (4.2.24)

d = tpathppath, (4.2.25)

e = [1 1 ... 1]T , (4.2.26)

f = tpath (4.2.27)

G =

PeT − U0

PeT

 (4.2.28)

h =

 −ppathtpath

Emax − Emin − ppathtpath

 (4.2.29)

A = 0 (4.2.30)

b = 0. (4.2.31)

In (4.2.28)

P = [P1 P2 ... PI ]
T , (4.2.32)

U0 =

(
UT |0

)
(4.2.33)

and U = [Umi,m = 1, 2, . . . ,M, i = 1, 2, . . . , I] is a M × I matrix.

When eTx + f > 0, the problem can be transformed into a linear programming
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problem as follows [5]

OPT.7 min
y,z

cTy + dz (4.2.34)

s.t. Gy − hz ⪯ 0 (4.2.35)

Ay − bz = 0 (4.2.36)

eTy + fz = 1 (4.2.37)

z ≥ 0 (4.2.38)

where

y =
x

eTx+ f
(4.2.39)

z =
1

eTx+ f
. (4.2.40)
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Chapter 5

Unequal Charging Time and

Proposed Solution

In this chapter, we solve the general case for problem OPT.1 formulated in Chapter 3.

Problem OPT.1 is not convex. To solve it, we first decompose it into an outer problem

and an inner problem, where the outer problem is to solve the charging cycle length

when all the other variables are known and the inner problem is to solve all the

variables except the charging cycle length. Next, we prove a theorem that helps

greatly simplify the inner problem, which is then transformed into a mixed linear and

convex problem and can be solved using commercial software such as matlab.

5.1 Decomposition

To solve OPT.1, we divide all the variables in this system into two sets with one set

related to charging and another set related to communications. The charging-related

variables include tam’s, tmi’s, and Ei’s, the communication related variables include
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fij’s, pij’s, τij’s, and Ei’s. Note that Ei’s are the variables that connect the charging-

related variables and the communication-related variables, while all other variables

belong to either the charging-set or the communication-set but not both. From the

communication point of view, a sufficient power should be supplied to each sensor

in order to satisfy the need for data sensing and communications. Meanwhile, the

supplied power is dependent on the charging distance and time of each sensor at each

anchor location.

Problem OPT.1 is not convex and should be reformulated in order to find the

optimum solution efficiently. First, we decompose OPT.1 into two sub-problems, an

outer problem for solving ttot and an inner problem to solve the remaining variables

when ttot is given. That is,

OPT.1d max
ttot

min
ta,t,p,τ ,f

Pc

∑M
m=1

∑I
i=1 tmi + ppathtpath
ttot

(5.1.1)

(3.2.2)− (3.2.11).

If the inner problem can be solved, a binary searching method can be used to

solve the outer problem and find the optimum ttot. For the inner problem, since ttot,

Pc, ppath, and tpath in the objective function are all given, the objective function is

equivalent to minimizing
∑M

m=1

∑I
i=1 tmi.

Therefore, the remaining part of this chapter is to solve the a reduced version of

the inner problem as follows:

OPT.8 min
t,p,τ ,f

M∑
m=1

I∑
i=1

tmi (5.1.2)

s.t. (3.2.2)− (3.2.11)
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5.2 Theorem

Theorem 1 In problem OPT.8, given any feasible charging time tmi’s, the optimum

τij is either 0 or ttot, for all i, j = 1, 2, . . . , I.

Proof: Based on (3.1.3), when tmi’s are given, the upper bound of Ei is given

for all i’s. The objective in OPT.8 is not affected by the communication parameters,

namely τij’s, fij’s, and pij’s, as long as the problem is feasible. This statement is true

when tmi’s are optimum. In this case, one feasible solution to the communication

parameters is to minimize the total energy consumption of all sensor nodes.

Based on (3.2.4), the relationship between transmission power and data rate for

a given sensor does not depend on any parameters related to other sensors.

Consider sensor i, its total energy consumption given in the left-hand side of (3.2.3)

can be divided into three types:

• Ei,s = ηiRittot is the energy consumption for sensing local data, and is deter-

mined once ttot is given;

• Eki,r = ρiτkifki, for all k ̸= i, is the energy consumed for receiving from node k;

and

• Eij,t = τijpij = τij
2fij/Bpnoise

gij
, for all j ̸= i, is the energy consumed for transmit-

ting to node j.

For each link from sensors i to j, given the amount of data to be transmitted, pij

increases exponentially and τij decreases proportionally with fij. This means that,

Eij,t is minimized when fij is minimized and τij is maximized, while keeping fijτij

equal to the amount of data to be delivered in one charging cycle. Note that adjusting

fij does not affect the receiving energy consumed by sensor j.
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The above argument is true for any feasible tmi’s, and therefore, true for the

optimum tmi’s. Since the maximum τij is ttot, we have proved theorem 1.

5.3 Reduced inner problem

Theorem 1 helps reduce the complexity in solving OPT.8. Define a set of binary

variables Aij with Aij = 1 indicating that sensor i forwards some or all its traffic to

sensor j and Aij = 0 otherwise. Define A = [Aij,∀i, j = 1, 2, . . . , I]. We can remove

τij’s from the optimization problem, and problem OPT.8 is then reduced to

OPT.9 min
t,p,f ,A

M∑
m=1

I∑
i=1

tmi (5.3.1)

s.t.
I∑

k=1,k ̸=i

Akifki −
I∑

j=1,j ̸=i

Aijfij ≤ −Ri, i = 1, 2, . . . , I (5.3.2)

ρi

I∑
k=1,k ̸=i

Akifki +
I∑

j=1,j ̸=i

Aijpij + ηiRi ≤ Ei/ttot, i = 1, 2, . . . , I (5.3.3)

pij ≥

(
2

fij
B − 1

)
pnoise

gij
, ∀i, j = 1, 2, . . . , I (5.3.4)

(3.2.5)− (3.2.11)

where the relationship between pij and fij in (3.2.4) is replaced with the equivalent

convex format in (5.3.4).

In OPT.9, constraints (5.3.2) and (5.3.3) include products of the binary variables

and continuous variables. The product format can be linearized by defining Yij =

Aijfij and Zij = Aijpij for all i, j = 1, 2, . . . , I and having additional constraints. The

equivalent problem OPT.10 is given below, followed by the explanations.
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OPT.10 min
t,p,f ,A,Y,Z

M∑
m=1

I∑
i=1

tmi (5.3.5)

s.t.
I∑

k=1,k ̸=i

Yki −
I∑

j=1,j ̸=i

Yij ≤ −Ri, i = 1, 2, . . . , I (5.3.6)

ρi
∑
k,k ̸=i

Yki +
∑
j,j ̸=i

Zij + ηiRi ≤ Ei/ttot, i = 1, 2, . . . , I (5.3.7)

fij − (1− Aij)fmax ≤ Yij ≤ Aijfmax, i, j = 1, 2, . . . , I (5.3.8)

0 ≤ Yij ≤ fij, i, j = 1, 2, . . . , I (5.3.9)

pij − (1− Aij)pmax ≤ Zij ≤ Aijpmax, i, j = 1, 2, . . . , I (5.3.10)

0 ≤ Zij ≤ pij, i, j = 1, 2, . . . , I (5.3.11)

(5.3.4), (3.2.5)− (3.2.11)

where fmax is any number larger than the maximum value that fij may take. With (5.3.8)-

(5.3.9), Yij = fij when Aij = 1, and Yij = 0 when Aij = 0. Similarly, with (5.3.10)-

(5.3.11), Zij = pij when Aij = 1, and Zij = 0 when Aij = 0. Problem OPT.10 is a

mixed integer and convex programming problem and can be solved using commercial

software such as matlab.
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Chapter 6

Simulation Setup and Results

In this chapter, we provide the simulation setup and corresponding simulation results

based on the original and alternative problem formulation introduced in Chapter 4

and Chapter 5. The simulation setup and corresponding results are separated in to

two sections below. In the first section, the setup and result are presented for the

original formulation. In addition, the alternative simulation results are discussed in

the second section.

6.1 Simulation Setup

In this section, We consider a RWSN that consists of I sensors uniformly distributed

in a circular geographical service area of radius 2Rc and the sink node is located at

the center of this area with a coordinate (0, 0). A WCV follows a circular path that

is centered at (0,0) and has a radius of Rc. There are 6 anchor locations equally

distanced along the circular charging path. The sensor locations are uniformly dis-

tributed within charging range of all the anchor locations.

37



M.A.Sc. Thesis – C. Guo; McMaster University - ECE.

Table 6.1: Default parameters

Parameter Value
Number of anchor locations M 6
Number of sensor nodes I 10
Local data sensing rate Ri 1 Mbps
WCV travel time tpath 60 s
WCV charging range Rc 2.7 m
WCV power when moving ppath 10 W
WCV power when charging Pc 5 W
Sensor receiving energy ρ 50 nJ/bit
Sensing energy η 25 nJ/bit
Sensor transmission power limit pmax 1 W
Bandwidth B 1MHz
Noise power pnoise 0.5 nW
Full battery capacity Emax 10.8 kJ
Minimum energy level Emin 5%Emax

Normalized link gain κ 1
Pathloss exponent α 2.5

We use pathloss-based link gains with gij = κl−α
ij , where κ is a normalized constant

and α is the pathloss exponent depending on the propagation environment. Default

parameters are listed in Table 6.1.

6.2 Results with Equal Time Charging

In this section, we discuss the simulation results based on the equal time charging.

That is, the results in this section assume that all sensors within the charging range

of a given anchor location are charged with an equal amount of time when the WCV

is at the anchor location. Fig. 6.1 - 6.3 show the simulation results. Three different

solutions are compared: the “Optimal solution” is based on OPT.3 and solved using

SCP and GP as described in Chapter 4, “heuristic with equal weight” is based on
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solving OPT.5 and OPT.6, and “heuristic with unequal weights” is based on solving

OPT.5w and OPT.6.
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Figure 6.1: Average power consumption versus sensing data rate for equal time
charging

Fig. 6.1 shows the average power consumption as the data sensing rate of individ-

ual sensors increases. The average power consumption increases exponentially as the

data rate increases. The optimum solution achieves much lower power consumption,

which is at the price of significantly higher computation complexity. For the proposed

heuristic solutions, the weighted solution helps reduce the average power consump-

tion, compared with the equal weight solution. However, such improvement is not
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obvious due to the decoupling between the charging and communication problems in

the heuristic solution.

Fig. 6.2 presents the average power consumption versus charging power Pc. Based

on the results, we can state that the charging power does not affect the average

power consumption of the system in an obvious way. However, as mentioned earlier,

Pc must be sufficiently large in order to make the system to be feasible because it

directly affects the minimum amount of energy that a sensor can be charged in a

given time interval.

Fig. 6.3 shows that average power consumption increases as the number of sensors

in the network increases. Furthermore, the gap between the heuristic and the opti-

mum solutions increases with the number of sensors. By decoupling the charging and

communication variables, the heuristic solutions cause more performance drop when

there are more sensors in the network.

6.3 Results with Unequal Time Charging

The results in this section are obtained by solving OPT.1 using the method proposed

in chapter 5. Figs. 6.4 - 6.6 show the results. Two charging methods, “sensor-based

charging” and “cluster-based charging”, are simulated. The “sensor-based charging”

results are obtained by solving OPT.1 directly using the method proposed in chap-

ter 5. The “cluster-based charging” results are obtained by solving the same outer

and inner problems in chapter 5 except that in the inner problem tmi = tam for all

i = 1, 2, . . . , I and Dmi < Rc. Note that the “cluster-based charging” does not result

in the same results as the “equal time charging” in the previous section, because the

inner problem in chapter 5 assumes that the charging time of all sensors in a cluster
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Figure 6.2: Equal time charging, average power consumption versus charging power

are either ttot or 0. This in general is not the optimum, given that all sensors in a

cluster are charged with an equal amount of time.

Fig. 6.4 shows the optimum average power consumption as the data sensing rate

of individual sensors increases. The figure shows that as the data rate increases, the

average power consumption increases linearly. Notice that the relationship between

transmission power and data rate of individual sensors is exponential. However, the

overall power consumption of a RWSN only increases linearly with the average data

rate of individual sensors. This is due to the effect of one-to-multiple charging. Mean-

while, the figure also shows that the average power consumption using the proposed
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Figure 6.3: Equal time charging, average power consumption versus number of
sensors

sensor-based charging solution is significantly lower than that using the cluster-based

charging solution, since the sensor-based solution provides more flexibility for the

charger to output power based on the charging efficiency to individual sensor nodes.

Fig. 6.5 shows the average power consumption of the system as Pc changes. It

is seen that the average power consumption is not affected much by Pc. Provided

Pc is sufficiently large to keep the optimization problem feasible, the average power

consumption is determined mainly by the communication load of the network, so that

amount of energy charged to each sensor is sufficient for it to complete required data
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Figure 6.4: Sensor-based charging, average power consumption versus sensing data
rate

sensing, transmissions and receiving.

Fig. 6.6 shows that as the number of sensor nodes increases, the average power

consumption increases. This is due to the higher traffic load of the WSN that requires

more total energy for data sensing and transmissions. The figure also shows that

using the proposed solution can significantly reduce the average power consumption

of the system, compared to using the cluster-based charging; and the increase of the

average power is much slower using the sensor-based charging solution as the number

of sensors increases.
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Figure 6.5: Sensor-based charging, average power consumption versus charging
power

6.4 Comparison between Equal and Unequal Time

Charging

Finally, figs. 6.7-6.9 compare the average power consumption between equal and un-

equal time charging. The results show that the solution of unequal time charging

helps greatly reduce the average power consumption of the system, and such an effect

is especially significant when the sensing data rate is high or number of sensor nodes

is large.
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Figure 6.6: Sensor-based charging, average power consumption versus number of
sensors

It should be clarified that the “equal time charging” and the “cluster-based charg-

ing” are based on the same assumption that all sensors within the charging range of

the same anchor location are charged with the same amount of time. However, they

use different methods to solve the charging time and therefore result in different

performance.
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Figure 6.7: Equal vs. unequal charging, average power consumption versus sensing
data rate
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Figure 6.8: Equal vs. unequal charging, average power consumption versus charging
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Figure 6.9: Equal vs. unequal charging, average power consumption versus number
of sensors
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Figure 6.10: Equal vs. cluster charging, average power consumption versus sensing
data rate
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have studied the joint optimization of charging time, flow routing,

and transmission rate, time, and power allocations in a RWSN. The system includes

a wireless charging vehicle that travels along a given trajectory and stops at prede-

fined anchor locations to charge the sensors with its charging range. The objective

is to minimize the average power consumption of the system while satisfying the

sensing rate and communication requirements of the network. The problem has been

formulated as a non-convex optimization problem. A special case is first solved by

considering that all sensors within the charging range of a given anchor location are

charged with the same amount of time. The general problem is then solved by consid-

ering that the charging time of individual sensors may be different, even when they

are charged from the same anchor location. Different decomposition methods are

used to solve the problem. Our numerical results have shown that compared to the

cluster-based charging, the proposed sensor-based charging solution can significantly
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reduce the average power consumption of the system. The cluster-based charging

assigns the same charging time to all sensors in one cluster, which makes it difficult

to take advantage of the different charging conditions of the sensors and results in

much higher power consumption.

7.2 Future Work

Our solutions assume that the communications of different sensors use orthogonal

channels. When this is not the case, co-channel interference is an important factor

that affects the data transmission rate, time and transmission power, which further

affects the energy consumption of sensors and their required charging time. In addi-

tion, the system studied in this work considers only one WCV. When the traffic load

of the sensor network is high, the system may become infeasible, since the amount of

charged energy to the WCV may be insufficient for it to charge all sensors and return

to the home station. In this case, multiple WCVs can be used to jointly charge the

sensors. How to coordinate the charging time of the WCVs for each sensor is another

issue that should be studied in order to optimize the average power consumption of

the multi-WCV RWSN.
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