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Abstract

Most supervised learning methods assume that the training and test data points are

generated from the same distribution. Therefore, they face major challenges when this

assumption does not hold. Domain adaptation techniques aim to address this issue

by adapting the learned models to new distributions. Covariate shift is a common

assumption in domain adaptation, where the training and test distributions only differ

in the marginal distributions. A common idea to tackle covariate shift is estimating

the importance weights of the training data points using unlabeled data from the

source and target distributions and then training the classifier using importance-

weighted risk minimization. Existing methods for estimating the importance weights

are kernel-based which scale poorly with dataset size and underperform on high-

dimensional data. This work proposes a novel method for estimating the importance

weights using generative adversarial networks. There are two neural networks used

in this framework which we call them the weighting and the discriminator networks.

These networks are jointly trained using an adversarial learning scheme. We designed

a benchmark for assessing the performance of classification under various forms of

distribution shift and evaluated our method in this framework. We observe that while

our method is effective in estimating the importance weights, the improvements we

get in the domain adaptation task depends on the discrepancy of the domains.
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Chapter 1

Introduction

1.1 Motivation

Supervised Machine Learning algorithms have been highly successful recently, how-

ever their success relies on the fact that training and test data comes from the same

distribution. A big challenge of machine learning algorithms is distribution shift

(or dataset shift), where training and test data come from different distributions.

Therefore, many Domain Adaptation methods have been proposed in the literature

to reduce the harmful effect of distribution shift. An example of distribution shift is

shown in figure 1.1.

1.2 Concrete Examples of Domain Adaptation

The distribution shift that we discussed above can have several forms. We study

various types of distribution shifts that can be present in a classification problem. In

this section we give concrete examples of the main types of shifts that we consider in
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Figure 1.1: Distribution shift [52]

this thesis.

Assume that we have trained a machine learning algorithm which is a cancer

predictor. The input of this predictor is a medical image (denoted by x) and the

output is a binary label (denoted by y ∈ {0, 1}) which predicts whether a physician

diagnoses the patient with cancer (y = 1) or not (y = 0). Assume that the model

works well in practice. However, If we deploy this model in a different country with

lower quality of life (e.g., more air pollution) we may notice a significant drop in the

performance of the cancer predictor. This is due to the fact that the probability of

having cancer is higher in the latter country (i.e., p(y = 1) is higher in the latter

country). However, the distribution of the healthy p(x|y = 0) and cancerous p(x|y =

1) images may be the same across the countries. We call this type of shift as Label

Shift.

As an another form of the distribution shift, assume that we have trained a neural

network for handwritten digit recognition using black and white images. Can we also

use this model on colorful images of digits? In this case p(x|y) is not fixed anymore

unlike the previous setting. For instance, in figure 1.2, an example of this kind of

shift is shown. The upper row contains instances from the MNIST data set [38] and

the lower row instances are from the MNIST-M data set [18] which are obtained from

2



M.Sc. Thesis - Nima Mashayekhi McMaster University - Computer Science

the BSDS500 data set [1]. There are many techniques for adapting our model to the

a new domain which we call them Manifestation Shift.

Figure 1.2: An example of manifestation shift [18]

There are also some other forms of distribution shift. Consider a convolutional

neural network which is supposed to classify pictures of cats versus dogs. Assume

there are two datasets for this model and both of them have the same ratio of cats to

dogs. Therefore, there is no “label shift” between the two datasets. Also, assume the

pictures of the two datasets “look alike”, hence we do not have manifestation shift.

However, different breeds of cats and dogs are significantly over/under-represented

across these two datasets. This shift which we call subpopulation shift can also de-

crease the accuracy of the classifier.

1.3 A theoretical view on Domain Adaptation

In order to have a better understanding of domain adaptation, it is useful to know

how the target error is bounded. Ben-David et al. [7] have developed the following

bound on the target domain performance of a classifier which is trained on the source

3
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domain.

εT (h) ≤ εS(h) + d(p, q) +min(Ep[|fS(x)− fT (x)|],Eq[|fS(x)− fT (x)|]) (1.3.1)

In equation 1.3.1, p and q are the source and target distributions, respectively.

εS(h) and εT (h) are source and target errors. Also, fS(x) and fT (x) denote source

and target labelling functions.

In this equation, the third term is the difference of labelling functions between

the source and target domains and it is expected to be small. However, the problem

is the second term which is the divergence between source and target domain. The

difference between distributions is usually measured by variation divergence (equa-

tion 1.3.2). But the use of variation divergence has two disadvantages. First, when

we are given finite samples of some arbitrary distributions, this measure cannot be

accurately estimated[35, 6]. Second, it unnecessarily inflated the bound. Therefore,

other measures are used such as H-divergence [7], which addresses these issues.

d(p, q) = 2 sup
B∈B
|Prp[B]− Prq[B]| (1.3.2)

1.4 Domain Adaptation and other related research

areas

There are several research fields closely related to domain adaptation, which will be

introduced in this section.

Transfer learning is a quite similar area to domain adaptation. In transfer

4
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learning the goal is to improve the performance of a trained model on a different

but related domain or task [59]. The key difference between domain adaptation and

transfer learning is that in transfer learning the target labels may be different from

source labels (in a classification setting), but in domain adaptation the labels are the

same and only the distributions differ. A common approach for transfer learning is

reweighting some data of the source domain for use in the target domain [62, 48, 29, 8].

There is another approach for transfer learning which is also used similarly in domain

adaptation and it is finding a good feature representation such that it reduces the

discrepancy between the source and target [49, 2, 3, 41, 33].

Multi-task learning is another related field which optimizes a model on several

related tasks. This will also make the model generalize better on the original task,

however multi-task learning’s goal is not improving the generalization to new tasks

ot unseen data [12]. Multi-domain learning is similar to multi-task learning and

it trains a model on various related domains [66].

Meta learning, aims to observe how different machine learning models perform

on various learning tasks, and then learn from this experiences, in order to learn

new tasks much faster and more efficient. [57, 27, 56]. There is an application of

meta learning in domain adaptation which tries to meta-learn the initial conditions

of existing DA algorithms [42].

Lifelong learning aims to learn from multiple sequential tasks or domains. In

this approach, the model learns over time by gaining new knowledge while retraining

previously learned experiences. [9, 47]

Zero-shot learning is another related research area and it aims at learning

models from seen classes and classify samples whose categories are unseen in training

5
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[60, 34].

1.5 Domain Adaptation using Importance Sam-

pling

In Domain Adaptation, when source and target data share support, a common idea

is to use importance-weighted empirical risk minimization(IW-ERM)[11]. The idea is

to correct the loss function by assigning proper weights to target data, or equivalently

upweighting/downweighting the data regarding their “importance” to the target do-

main. Existing methods for IW-ERM are mostly kernel-based which scale poorly

with dataset size and underperform on high-dimensional data [22]. The goal of this

work is to use neural networks to estimate these weights. Neural networks have shown

promising results in many applications and the use of neural networks to estimate

weights in IW-ERM is not studied before. Training the neural network used in this

work is inspired by Generative Adversarial Networks (GANs) and is explained in

detail in the next chapters.

1.6 Contributions

In this thesis, we make the following contributions:

• The problems in Domain Adaptation are usually divided into two groups: Label

Shift and Covariate Shift. The assumptions used in each of these group are

different to each other and they require different methods to tackle them. We

further define two separate groups in Covariate Shift problems: Manifestation

6
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Shift and Population shift. The methods used in each of these groups are also

different to one another. In the next chapter we introduce some techniques used

to solve the problems in each group.

• We have designed a benchmark using the CIFAR-10 dataset to simulate dis-

tribution shifts. These shifts can be in the shape of label shift, subpopulation

shift, etc. Having these shifts in our training and test datasets, we can then try

various methods including importance weighting techniques and evaluate them.

• We have proposed a new framework based on importance-weighted empirical

risk minimization. The core of the framework is weight learning and the goal

is to assign proper weights to the instances from the source domain. For exam-

ple, the instances that are underrepresented in the source domain (compared to

the target domain) should get relatively higher weights. There is an adversar-

ial learning scheme in our framework using neural networks and it is inspired

from Generative Adversarial Networks. The use of neural networks for learning

weights was not studied in previous works.

• The proposed framework is implemented in Python using the PyTorch library.

We have done several experiments in different scenarios in order to evaluate

our framework. There are two main settings of source and target domains. In

the first setting, the domains are relatively separable, and in the second setting

they are not separable. We can also adjust the intensity of the shift between

domains, using our benchmark. At the end, we compare three cases where is no

weighting used, our weighting method is used, and where “ideal weights” are

used.

7
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1.7 Organization

The rest of this thesis is organized as follows: The second chapter will be focused on

the related work. The third chapter will present the problem formulation and our

approach. The fourth will discuss the experimental settings, implementation details

and hyperparameter choices. The last chapter will be dedicated to the conclusion

and the directions for future work.

8



Chapter 2

Related Work

In the previous chapter we briefly discussed the problem of Domain Adaptation. In

this chapter, we will explain some relevant methods to solve this problem. Domain

Adaptation is almost impossible to solve unless we make some assumptions which

will be explained in the following. We denote the distribution of the data on which

the model is trained (source distribution) as p, and the distribution of the data of

interest (target distribution) as q. We consider the task of classification where the

input variable is denoted by x and output variable is denoted by y. It is also assumed

that we have labeled data from the source distribution and unlabeled data from the

target distribution. These are the two main settings that we consider for domain

adaptation:

• label shift (also known as target shift): it is assumed that the conditional

input distribution is invariant (i.e,. p(x|y) = q(x|y)), and p(y) changes from

source to target (i.e,. p(y) 6= q(y)) [5].

• covariate shift (also known as sample selection bias): in this setting it is

9
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assumed that the conditional output distribution is invariant between source

and target distributions (p(y|x) = q(y|x)), but the marginal distributions differ

(p(x) 6= q(x)) [5].

Table 2.1: Two settings of Domain Adaptation

Covariate Shift Label Shift
p(x) 6= q(x) p(y) 6= q(y)

p(y|x) = q(y|x) p(x|y) = q(x|y)

2.1 Handling Label Shift

When facing label shift in classification, the most common approach is to estimate the

weights w(y) = q(y)/p(y) for every class y ∈ Y with training data, and then using the

importance-weighted ERM (Empirical Risk Minimization) framework, which solves

minΘ

∑n
i=1wi`(yi, xi) where Θ is the set of parameters of the model and ` is the

loss function. Moreover, the weight of the i-th data point is wi = q(xi, yi)/p(xi, yi).

Note that because of the label shift assumption, it is equal to define wi = q(yi)/p(yi)

[5, 16, 45].

In [45], authors have proposed Black Box Shift Estimation (BBSE) which can

detect and quantify the shift, and correct the classifiers without test set labels, us-

ing the inverse of the confusion matrix. One issue with this approach is that it is

not promising in the low sample setting, because when there are very few samples

available, the weight estimation will have a high variance which is not desirable.

Later, the authors of [5] proposed an efficient weight estimator which can yield

good statictical guarantees without a requirement on minimum sample complexity

10
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as necessaery for BBSL. Moreover, a novel method is proposed by Sugiyama et al.

[16] to estimate the class ratio in the test dataset using Expectation Maximization

algorithm and f-divergence–approximation. While most of the papers of this are of

research are focused on classification, Guo et al. [23] have introduced methods for

continuous target shift adaptation in regression and conditional density estimation

using importance weight estimator for continuous targets.

2.2 Handling Covariate Shift

We can identify two types of covariate shifts which have distinct natures and it is

reasonable to use different approaches for handling them.

2.2.1 Manifestation Shift

Sometimes an instance of the data in one domain may have a different representation

in other domains. For example, consider a situation where the source domain consists

of colorful images but the target domain has black-and-white images. Intuitively, in

this example it makes sense to try make the source images black-and-white so that

they are consistent with the target domain.

More generally, in manifestation shift we assume that there is a shared repre-

sentation over which the source and the target domains have similar distributions.

Therefore, the main task becomes finding the appropriate shared representation.

11



M.Sc. Thesis - Nima Mashayekhi McMaster University - Computer Science

2.2.2 Population Shift

In this case, the marginal distribution of source and target are different. More specif-

ically, the source distribution overrepresents or underrepresents some parts of the

target distribution. For example, it may be the case that the images of women are

more frequent in the source domain, whereas men are more common in the target

domain. Intuitively, one could try to tackle this type of shift by reweigting the source

samples and then train a classifier on the weighted source samples.

2.3 Techniques used for Domain Adaptation

In this part, we introduce general methods which are used for tackling various forms

of distribution shift.

2.3.1 Handling Manifestation Shift

The main challenge in manifestation shift is fining a shared representation between

the source and the target distribution. To achieve this goal, we can either find a

mapping from one domain to another [26, 67], or extract domain-invariant features

over which the distributions of the source and target are similar [18].

But how can we find such a mapping (or mappings)? Intuitively the distribution

of source and target samples should be similar over the shared space. One of the

most promising approaches to find a shared representation is adversarial learning.

On a high level, we find a space over which the samples of the source and target

are “indistinguishable”. More specifically, an adversary (a classifier) tries distinguish

between source and target samples. If the adversary is unsuccessful, then we have a

12
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domain-invariant representation.

One of the simplest yet promising methods in this area is Adversarial Discrimina-

tive Domain Adaptation (ADDA) [54] which is inspired from Generative Adversarial

Networks (GAN) [21] and consists of two steps: first learning a discriminative rep-

resentation using the labels in the source domain and then a separate encoding that

maps the target data to the same space using an asymmetric mapping learned through

a domain-adversarial loss.

One of the most well known methods for handling manifestation shift is domain-

adversarial training of neural networks [16] and its overall sketch is depicted in figure

2.1. This approach promotes the emergence of the features that are (i) discriminative

for the main learning task on the source domain (blue part of the figure 2.1) and (ii)

indiscriminative with respect to the shift between the domains.

Figure 2.1: domain-adversarial training [16]
The objective of this method is to learn features which are not only discriminative
enough to classify the data but also are indiscriminative across various domains.

Most of the authors in this area assume the only shift they are faced with is

the manifestation shift, but the authors of [43] consider the case when we are faced

13
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with both manifestation shift and label shift. They have proposed the method called

Domain Adversarial nets for Target Shift (DATS) to address label shift while learning

a domain invariant representation. As we can see in figure 2.2, except the bottom red

part, the rest of the framework resembles the previous method.

Figure 2.2: DATS framework [43]
This method is similar to the previous method (domain-adversarial training). The
first part of the model (Label predictor) is to extract disciminative features. The
second part (Domain Adapter) tries to make the features more indiscriminative

across domains, and the last part (Label Proportion Estimator) assigns appropriate
weights to each class in order to deal with label shift.

2.3.2 Handling Population Shift

We can tackle this issue by reweigting the source samples. One of the most famous

reweighting schemes is kernel mean-matching [22] which tries to re-weight the source

data such that its distribution more closely matches the distribution of the target

14
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data. Another well-known approach is importance sampling and some examples of

this method are importance-weighted risk minimization [51] and KL importance esti-

mation [53]. However, reweighting and importance sampling methods can be generally

unsuccessful if the source and target distributions are far apart. Also, kernel methods

do not work well for high dimensional data, reweighting using kernels may not be

ideal.

2.3.3 Reweighting using neural networks

Importance-weighed risk minimization is a key part in many machine learning al-

gorithm including deep learning. In [11] the effect of importance weighting in deep

neural networks has been studied and it is shown that it can be helpful while facing

distribution shift. In [50] a meta-learning algorithm is proposed that learns to assign

weights to training examples based on their gradient direction, but the drawback of

this approach is that it requires a clean and unbiased validation dataset.

A technique often used when handling distribution shift is first weight estimation,

and second weighted classification. In [17] this technique is used and weights are

calculated by kernel mean matching [22]. Actually, there is no methods for reweighting

using neural networks in the literature and it is a motivation to propose an algorithm

using these tools.

2.3.4 Bayesian Priors and Fine Tuning

A popular heuristic for domain adaptation and more generally transfer learning is

finding a solution with respect to the source only, and then using this solution to

narrow down the search for the solution of the target domain. One example of this

15
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approach is training a neural network with the data from the source domain, and then

”fine tuning” the weights of this network using the samples from the target domain

[64, 31]. A related Bayesian approach is using the source solution (posterior) as a

prior for the target task [15, 19]. A drawback of these approaches is that in order

to succeed, they require the solution to the first phase to be close to the solution

for the target domain. Moreover, these methods need labeled data from the target

distribution which can be considered as a limitation.

2.3.5 Data Augmentation

Data augmentation is a heuristic for domain adaptation which is also used in order to

increase the robustness of learning systems. The main idea is to augment the source

data set with new instances that are often generated by adding structured noise to

the source instances. For example, when the source domain of a natural language

processing task is a news data set and the target is the social media, it would make

sense to inject the type of noise common in social media to the source instances [55].

However, unlike previous methods, these methods rely highly on domain knowledge

(i.e,. images, text, ...) and they are not intented for adapting to a specific domain.

2.4 Generative Adversarial Networks

Most of the Machine Learning models can be classified into discriminative or gener-

ative models. Recently, with the use of neural networks, there is a new research area

called Generative Adversarial Networks (GANs)[21]. Theoretically, a GAN does an

unsupervised task of observing some data and trying to produce synthetic data as

16



M.Sc. Thesis - Nima Mashayekhi McMaster University - Computer Science

similar as possible to them. There are two neural networks in GANs. One of them is

called the generator network, and the other one is called the discriminator network.

The discriminator is a binary classifier which tries to distinguish real data from the

synthetic (or fake) data. On the contrary, the generator tries to confuse discrimi-

nator by generating realistic data. These two networks are trained simultaneously

and they challenge each other. At the end, if trained properly, generator generates

realistic data which resembles the original data, and discriminator becomes good at

predicting the fake ones.

Practically, GANs have been successful in various applications including but not

limited to character generation [36, 24], image blending [61, 13], speech synthesis

[44, 28] and music generation [65].

Moreover, image-to-image translation is an active line of research which is highly

related to our problem. Here, the aim of the networks is to learn a mapping from one

domain to another domains [58, 63, 14, 46, 30, 39, 40].

Despite all the successes of the GANs, it is worth to mention that training GANs

is a relatively difficult task. The most common challenges are mode collapse [4],

vanishing gradient [20], internal covariate shift [32] and lack of proper evaluation

metrics [10].

17



Chapter 3

Approach

In this chapter, we first focus on the formal definition of the problem and then present

the approach for solving the problem. Our goal is to introduce a reweighting method

using neural networks which can be used in settings including label shift and popu-

lation shift.

3.1 Problem Formulation

Suppose we want to perform a task of classification and we are facing distribution shift

between the source and target distributions. Note that we have access to labelled data

from source, and unlabelled data from target distribution and the goal is to classify

the target data. We denote the distribution of source as p and the distribution of

target as q.

As discussed in the previous chapter, a common approach is to use Weighted ERM

(Empirical Risk Minimization), instead of the ERM, which solves minΘ

∑n
i=1wi`(yi, fΘ(xi))

where f is the predictor (e.g. a neural network) parameterized by θ and ` is the loss

18
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function.

If the distribution shift which we are dealing with is label shift, then the ideal

weights (i.e. wi s) are w(y) = q(y)/p(y) for every class y ∈ Y with training data.

However, the challenge is that it is assumed that the target data are without labels

and it is not straightforward to calculate the weights. A more general and harder

case is population shift, where the instances with the same label does not necessarily

share the same weight.

Generally, the goal of our method is to provide proper weight for each instance

in the source dataset. In order to adapt the model to the target domain, instances

that are underrepresented in the source domain (comparing to the target domain)

should get relatively higher weights. Similarly, instances that are overrepresented in

the source domain should get lower weights.

After learning the weights, they are used for for weighted classification.

3.2 Overall Approach

Inspired by the idea of Generative Adversarial Networks (GAN), we use two neural

networks. We call them weighting and discriminator network. (The role of former is

similar to the generator in the GANs, and the latter resembles the GAN’s discrimi-

nator.) The main idea in GANs is to learn to create high quality fake images out of

noise to the point that the discriminator cannot distinguish fake and real images and

is “fooled”.

Similar to the main idea of the GANs, we aim to feed the discriminator with

the data from source and target and upweight/downweight the source data by the

weighting network in order to “fool” the discriminator. This is equivalent to say that
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the weighted source distribution is relatively similar to the target distribution.

Concretely, assume fθd is the discriminator network parameterized by θd, its inputs

are the data (e.g. images of the dataset) and its outputs are labels of a binary

classification. Also gθg is the weighting network parameterized by θg (We have denoted

the weighting network as g to not confuse it with the weights, also its role is similar

to the generator in GANs). gθg ’s inputs are the source data, and its output are the

corresponding weights which are explained in the following. We also denote the input

variables as x.

Assume B = (xi)
b
i=1 is a batch of unlabelled data from the source. We aim to

assign suitable weight to each of the instances. The weighting network does so and

W = gθg(B) where:

• W = (wi)
b
i=1

• wi > 0

•
∑b

i=1 wi = b

Let Cat(B,W) be a categorical distribution over the samples in the batch (B), where

the probability for the outcome xi is wi

b
. We then generate b samples independently

from the Cat(B,W) distribution and denote it as B′ =
(
x′j
)b
j=1

. We call B′ as

a reweighted source batch and it is supposed to look like a batch from the target.

Finally, the discriminator, fθd , is a binary classifier and it is supposed to differentiate

target samples from “reweighted” source samples.

However, one challenge is that if we use sampling, it would not be easy to compute

the gradient. Therefore, instead of sampling, we multiply each sample’s weight to its

corresponding loss which is theoretically equivalent with sampling, according to the
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equation 3.2.1. A high-level overview of the framework is shown in figure 3.3.

Ex∼Cat(B,W )∇θgLD(x) = ∇θgEx∼Cat(B,W )LD(x) = ∇
n∑
i=1

wi`D(xi) (3.2.1)

Figure 3.3: An overview of the proposed framework

3.3 Training

In this section we explain the training of the proposed method. Our domain adap-

tation method is comprised of two parts. First, we compute the suitable weight of

each of the instances in the source domain, using the discriminator and weighting

networks. Secondly, these weights are used in a weighted ERM learning algorithm

(e.g. a convolutional neural network).

We want to train the discriminator and weighting networks using the min-max

problem in equation 3.3.1. Note that Bs and Bt represent batches of source and target
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respectively. Also D is the binary classification network (discriminator).

max
θg

min
θd

∑
Bt

(
− 1

|Bt|
∑
x∈Bt

log(D(x))

)
−
∑
Bs

(
1

|Bs|
∑
x∈Bs

w(x) log(1−D(x))

)
(3.3.1)

However, this approach does not work well in practice and a better solution is

to define different loss functions for discriminator and weighting networks which are

given in the following. We then update the parameters iteratively using stochastic

gradient descent.

LD(Bs, Bt) =
∑
Bt

(
− 1

|Bt|
∑
x∈Bt

log(D(x))

)
−
∑
Bs

(
1

|Bs|
∑
x∈Bs

w(x) log(1−D(x))

)
(3.3.2)

LW (Bs) = −
∑
Bs

(
1

|Bs|
∑
x∈Bs

w(x) log(1−D(x))

)
(3.3.3)

An overview of the training of these two networks are shown in the algorithm 1.

3.3.1 Training the discriminator

The aim of training the discriminator is to maximize the probability of correctly

classifying the domain in which the instances belong to. This is done in two steps.

First, a batch of target data is forward passed through the discriminator, then the

first term of loss in eq. 3.3.2 is calculated and then the gradients in backward pass

are calculated. Secondly a batch of source data is given to the weighting network to

obtain the corresponding weights. Then it is passed through the discriminator and

the second term in eq. 3.3.2 is calculated. Finally, after accumulating the gradients
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with a backward pass, the discriminator’s optimizer is called.

3.3.2 Training the weighting network

We aim to train the weighing network in an effort to match the weighted source

distribution with the target distribution. Intuitively, the weighting network assigns

higher weights to the instances which are more likely to appear in the target domain,

and similarly lower weights for those which are unlikely to be in the target domain.

Note that when a batch of source data is passed through the weighting network,

a normalization is done on the weights, therefore the mean of weights in each batch

is equal to 1.

3.3.3 Using the weights in a class-weighted classification

After learning the weights, we use them for weighted classification. Suppose there

are N samples in each batch (equation 3.3.4), the loss of each sample is calculated

by equation 3.3.5. C is the number of classes, and wc is the corresponding weight of

each class.

`(x, y) =

∑N
n=1 ln
N

(3.3.4)

ln = −
C∑
c=1

wclog
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c (3.3.5)
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Algorithm 1 Joint training of weighting and discriminator networks

Input:
Bs: batches from source domain
Bt: batches from target domain
T : number of iterations
ηg, ηd: Step sizes

Output:
W : estimated importance weights
for t = 1, ..., T do

Pass Bs to the discriminator.
W ← Pass Bs to the weighting network.
Compute first part of LD(Bs, Bt) by equation 3.3.2.
Pass Bt to the discriminator.
Compute second part of LD(Bs, Bt) by equation 3.3.2.
θtd ← θt−1

d − ηg∇LD(Bs, Bt).
Compute LW (Bs) by equation 3.3.3.
θtg ← θt−1

g − ηg∇LW (Bs).
end for
use W for weighted classification by equations 3.3.4 and 3.3.5
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Chapter 4

Experiments

In the experiments, we consider several scenarios, explain them and see the results.

4.1 The setup

As discussed in the previous chapter, our proposed method can be able to handle

label shift. In order to simulate the label shift, we have created a custom dataset

based on the CIFAR-10 dataset [37]. The shift which we encounter in label shift is

the case where the proportions of the number of instances for given classes is different

in the source and target domains (e.g. same number of cats and dogs in the source,

but more pictures of cats in the target). We can enter the number of instances in

each class as an input to the custom dataset and thus the resulted dataset can be

used for checking the label shift. We aim to compare the use of ideal weights and the

usual case (no weighting) in different situations, form the case where there is minor

shift between the domains to the case where the shift is extreme. To do so, we use

the variable alpha, which has a value from 0 to 1. In this experiment, we choose a
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group of classes in the source. For each class, we only keep alpha times the size of

class number of instances and remove the rest (using the custom dataset). Also, we

choose the rest of classes in the source and do the same with the given alpha. For

example, if there are 5000 pictures in each class of the training set (or the source

domain) and 1000 pictures in each class of the test set (or the target domain), We

may have 5000× alpha pictures of cats and 5000 pictures of dogs in the training set.

While, there are 1000 pictures of cats and 1000 × alpha pictures of dogs in the test

set..

Therefore, we can compare the accuracies of classification using the ideal weights

and the usual case at different values of alpha. An important result is that the

gaps between the accuracy of weighted classification using ideal weights and usual

classification highly depends on how we group the classes into source and target

and then apply the alpha. We have studied two cases: (1) the classes which alpha

is applied on them in the source domain, are the first five classes, and the rest of

classes are customized in the target. (2) The first group (for source) are the animals

(consisting of the labels of bird, cat, deer, dog, frog and horse), and the target group

is the machines (consisting of airplane, automobile, ship and truck).

After learning the weights, we have used them for weighted classification and the

classifier is ResNet-18[25].
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4.2 Experimental results

4.2.1 Learning the Weights

In this section, we study how the learned weights converge to the ideal weights during

training. To do so, we compute the Euclidean norm of the difference of the learned

weight and ideal weight and plot it. There are two set of experiments which will be

explained in the following.

Animals vs. Machines

In this experiment, the source domain consists of a majority of animals pictures,

while the target domain has a majority of machine pictures. To be more precise,

alpha = 0.1. As we can see, the learned weights have converged to the ideal weight
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Figure 4.4: Results of learning the weights for the Animals vs. Machines
In this experiment, the learned weights by the proposed algorithm converged well to

the ideal weights and there is no overfitting.

fairly well. We have also plotted the weights of both train and test sets and it shows

that there is no overfitting.

First five vs. Last five

In this part, we have repeated the experiment with different domains. Here, the source

domain has a majority of pictures of the first five classes (airplane, automobile, bird,

cat, deer), and the target domain has a majority of pictures of the last five classes

(dog, frog, horse, ship, truck). We have kept all the parameters of the neural network

(including number of epoches, learning rate, etc.) fixed. As we can see the model has

poorer performance.

These experiments show that our model is dependent on the data. In order to

have a better understanding of this problem, we have done another set of experiments

which will be explained in the next section.
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Figure 4.5: Results of learning the weights for the First five classes vs. Last five
classes

In this experiment, the proposed algorithm performs poorer with a different set of
domains, although all the parameters of the network are fixed.

After learning the weights, they are used for for weighted classification.

4.2.2 Binary Classification

In this section, we have modified the labels of the dataset. We have assigned the label

of 1 to the source data points, and 0 to the target points. By source and target we

mean the two formations of the previous section. We also try two values for alpha,

which are 0.1 and 1. Hence, we can understand how hard is it to classify the points

when we have a shift. The accuracy of the classifications are summarized in the

following table.

The results show that the classification of first five vs. last five classes are much

harder when there is an extreme shift. Note that an extreme shift means higher dif-

ference between the source and target domains. The results also indicate that Animal
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Table 4.2: Classification of domains for two values of alpha

alpha Animal vs. Machine First five vs. Last five
0.1 92.91 45.63
1 97.18 89.31

vs. Machine case is easier to classify (or equivalently more separable). Therefore, our

hypothesis is that in order to learn the weights properly, the model should be able to

separate the data points at the first place.

4.2.3 Ideal Weights and Classification

In order to study the effect of our learned weights on the label shift, we should first

compare the usual case with the case where “ideal weights” are used in a weighted

classification scenario. By ideal weights (i.e. wi s) we mean w(y) = q(y)/p(y) for

every class y ∈ Y . Here p and q are denoted as the number of instances in the source

and target respectively. Similar to previous experiments, we do this experiment in

two different settings:

First five vs. Last five

In the figure 4.6, alpha shows the amount of shift between the source and target.

Low value of alpha corresponds to more extreme shift between the domains. Full

explanation of this variable is available in Section 4.1. The accuracies shown as ”nor-

mal” indicate how the neural network performs without any weighting, and accuracies

shown as ”ideal weights” are for the case when ideal weights are used as a weighting

in the loss function. As we expected, using ideal weights improves the performance

of the neural network when there is an extreme shift (lower values of alpha) and this
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improvement diminishes as we increase alpha. Because when the source and target

are almost identical, the values of ideal weights converges to 1, and weighting doesn’t

have much effect on the performance of the network.

Figure 4.6: Results of using ideal weights for the First five classes vs. Last five
classes

Animal vs. Machine

In this part, we have repeated the experiment on a different setting (Animal vs.

Machine) and the results are shown in figure 4.7. As we see, using ideal weights

results in a different situation here. When the shift is extreme, using ideal weights

not only doesn’t improve the accuracy, but also it decreases it. Also, similar to

previous experiment, using ideal weights doesn’t have much effect in higher values of
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alpha.

Figure 4.7: Results of using ideal weights for Animals vs. Machines

In order to justify this phenomenon, our hypothesis is that the effect of impor-

tance weighting depends on how separable are the domains. In the section 4.2.2, we

showed that in a binary classification scenario, the “Animal vs. Machine” problem is

considerably easier to classify comparing to “First five classes vs. Last five classes”.

Also, Lipton et al. [11] have shown that when the classes of data are separable, the

effect of importance weighting diminishes over epoches in deep neural networks. In

figure 4.8, there is an experiment with a synthetic two-dimensional linearly-separable

dataset. Points are colored according to their true labels. The background shades

show the decision surface of an multi-layer perceptron with a hidden layer of size

32



M.Sc. Thesis - Nima Mashayekhi McMaster University - Computer Science

64. The red line shows a decision boundary by a logistic regression classifier and the

dotted black line shows the max-margin separator. There are different weightings in

each row and as we can see, after sufficient epoches, the final decision boundary is

almost similar regardless of the weighting.

Figure 4.8: Convergence of decision boundaries over epochs of training with
different importance weights [11]

Therefore, we believe when the classes are almost separable, using importance

weighting may not help the classifier.

4.2.4 Learned Weights and Classification

In this part, we study the effect of the learned weights on the accuracy of classification.

In this experiment, we have set the value of alpha equal to 0.1, which means that

the shift between the source and target domains are at the highest level. Having an

extreme shift between the domains helps us better to see the effect of using weight in
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classification. In the following table, the first row shows the accuracy when the usual

classifier is used. The second row is for the case when we use the learned weights of

our method weighted classification. And the last row shows the use of ideal weights

in weighted classification.

Table 4.3: Comparison of different methods of weighting

Accuracy Animal vs. Machine First five vs. Last five
without weights 57.96 62.01
learned weights 56.85 67.25
ideal weights 45.62 66.83

As we see, using the learned weights has improved the classification accuracy in

the First five vs. Last five case. However, learned weights are not effective in the

other case (Animal vs. Machine). This result of this experiment is similar to the last

section’s result and it seems importance weighting does not necessarily improve the

classifier.

A similar phenomenon is observed by Lipton et al.[11] and they believe weighting

the loss function of deep networks fails to correct distribution shift. They suggest

rethinking the standard application of importance weighting in combination with

deep learning.

4.3 Summary

The experiments done in this part show that the ability of our proposed method on

learning the weight relies on the separability of the domains. When the domains

are relatively separable, learning the weights is done properly. However, when the

domains are not separable, learning the weights becomes challenging.
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Our experiments show that the effect of learned weights also depends on the

separability of the domains. When the difference between the domains is less, learned

weights can improve the classification accuracy but they fail to improve the accuracy

when the domains are relatively separable.
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Chapter 5

Conclusion

This work presents a novel idea for importance weighting which is a common ap-

proach for domain adaptation. Previous methods of importance weighting are mostly

kernel-based and their downside is that they scale poorly and underperform on high-

dimensional data.

The main contribution of this thesis is proposing a new framework for learning

weights used in importance weighting. After estimating these weights, they are used

for weighted classification. Unlike existing approaches for this problem, our approach

is based on neural networks. Two neural networks are used in this framework and

they are jointly trained using an adversarial learning scheme. We also designed a

benchmark which can simulate distribution shift and the intensity of the shift can be

controlled. We explored different choices of parameters and their effects on perfor-

mance. We empirically evaluated our framework and showed the weighted learned by

our method can converge to the desired weights. However, we also noticed the chal-

lenges in learning the weights. Our experiments show when the domains are relatively

separable, learning the weights is an easier task. But in this case using importance
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weighting may not help the classifier. On the other hand, when the domains are not

separable at all, learning the weights becomes challenging and the learned weights

improve the classification accuracy.

5.1 Future Work

In this part, we have introduced possible directions for future work.

5.1.1 Extension of this work

As discussed earlier, the ability of our proposed method of learning the weights relies

on the separability of the domains. Therefore, an important question is how we can

modify this method to work efficiently even when the domains are not much separable.

One other important issue is to examine the effect of weighting in deep neural

networks. Our experiments show that when the domains are separable, weighting

fails to improve the classifier. This problem needs to be addresses in future works.

5.1.2 Manifestation shift

We worked on a certain type of shift in this thesis which is population shift. There

are other types of shift in domain adaptation problems such as manifestation shift.

There are some works which assume these two types of shift are present in the data,

but they have used both domain-adversarial neural networks and kernel methods in

their approach. Hence, a potential future work is to examine whether it is possible

to solve this problem using solely neural networks or not.
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5.1.3 Subpopulation shift

The focus of this thesis is on population shift which is a from of covariate shift. The

problem of population shift can be extended to subpoulation shift. In subpopulation

shift, the difference of source and target domains is how each subpopulation is repre-

sented. Therefore, it will be interesting to investigate if importance weighting using

neural networks can help this problem.
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