
COMPUTATIONAL SOLUTIONS TO

TRADITIONAL PROBLEMS

COMPUTATIONAL APPROACHES TO STATE ESTIMATION OF

PERIODIC SIGNALS AND CONTROL OF SWITCHED SYSTEMS

BY

HASSAN ELAGHOURY, B.Eng.

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Hassan Elaghoury, April 2022

All Rights Reserved

Master of Applied Science (2022) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Computational Approaches to State Estimation of Peri-

odic Signals and Control of Switched Systems

AUTHOR: Hassan Elaghoury

B.Eng. (Mechatronics),

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Martin von Mohrenschildt

NUMBER OF PAGES: x, 103

ii

To My Family

iii

Acknowledgements

First and foremost I would like to thank my family for their support and patience

throughout my studies. I would not be where I am without them. I would also like to

thank my supervisor, Dr. von Mohrenschildt, for his guidance throughout this degree

and for his patience and mentorship.

iv

Contents

Acknowledgements iv

I State Estimation of Sinusoidal Signals using the Ex-

tended Kalman Filter 3

1 Introduction 5

2 Background 7

2.1 Problem Setting . 7

2.2 Regression . 8

2.3 DFT . 10

2.4 Linear Prediction . 12

3 Kalman Filter 16

3.1 Kalman Filter . 16

3.2 Extended Kalman Filter . 20

4 Estimation Using the EKF 22

4.1 Real Numbers Approach . 22

v

4.2 Complex Numbers Approach . 25

5 Evaluation 29

5.1 Experimental Setup . 29

5.2 Implementation . 31

5.3 Convergence . 32

5.4 Estimation Error . 38

5.5 Real Data . 41

5.6 Summary . 43

6 Conclusion 45

6.1 Concluding Remarks . 45

6.2 Future Work . 46

II Synthesis of Switched System Controllers using Dy-

namic Programming 51

1 Introduction 53

2 Hybrid Systems 55

2.1 Background . 55

2.2 State Dynamics . 57

2.3 Mode Dynamics . 59

2.4 General Hybrid Systems . 60

3 Switched Systems 61

3.1 Switched Systems . 61

vi

3.2 Controllers . 63

3.3 The TDSS Optimal Control Problem 64

3.4 Switched System Control Schemes . 65

4 Dynamic Programming 67

4.1 Principle of Optimality . 67

4.2 The cost-to-go function . 68

5 Computational Approximation of the Optimal Policy 71

5.1 Problems with Practical Implementation of DP for Control 71

5.2 Discretization of the State Space . 72

6 Implementation 74

6.1 Modules . 75

6.2 Algorithm . 75

7 Examples 82

7.1 Pendulum . 82

7.2 Single Valve Tank . 88

7.3 Holonomic Robot . 92

8 Conclusion 97

8.1 Concluding Remarks . 97

8.2 Future Work . 98

vii

List of Figures

5.1 Example signals . 31

5.2 Convergence of the complex EKF for noiseless data with perfect initial

guess . 32

5.3 Convergence of the real EKF for noiseless data with perfect initial guess 33

5.4 Convergence of the complex EKF for noiseless data with imperfect

initial guess . 34

5.5 Convergence of the real EKF for noiseless data with imperfect initial

guess . 34

5.6 Convergence of the complex EKF for noisy data with perfect initial guess 35

5.7 Convergence of the real EKF for noisy data with perfect initial guess 36

5.8 Convergence of the complex EKF for noisy data with imperfect initial

guess . 37

5.9 Convergence of the real EKF for noisy data with imperfect initial guess 37

5.10 Performance of the EKF and FT compared for noiseless data with

perfect initial guess . 38

5.11 Performance of the EKF and FT compared for noiseless data with

imperfect initial guess . 39

viii

5.12 Performance of the EKF and FT compared for noisy data with perfect

initial guess . 40

5.13 Performance of the EKF and FT compared for noisy data with imper-

fect initial guess . 41

5.14 Real data acquired from industry partners 42

5.15 Complex EKF estimate of real data 43

4.16 (a): Optimal path from a to c (b) Two possible paths from b to c . . 68

6.17 The procedure to initialize the map 76

6.18 The procedure to refine the map V 78

6.19 The procedure to synthesize the approximated optimal control policy 80

7.20 Uncontrolled behaviour of the pendulum control system 84

7.21 Cost-to-go function for the pendulum control system 85

7.22 Policy for the pendulum control system 86

7.23 Trajectory of the pendulum control system with the synthesized con-

troller . 87

7.24 Diagram of the single valve tank control system 88

7.25 Visualization of the cost-to-go function and the policy for the tank

control system . 91

7.26 Trajectory of the tank control system with the synthesized controller 92

7.27 Robot environment . 95

7.28 Trajectory of the Robot Control System with the Synthesized Controller 96

ix

List of Tables

5.1 Summary of Results for EKF Performance. 44

x

Thesis Introduction

Computational power nowadays is available in abundance. In the age of cheap sen-

sors and big data, this marked increase in computational power has brought greater

interest in solving traditional problems by computational means.

Often these computational solutions are placed under the umbrella term of Artifi-

cial Intelligence, and approached with this mindset. The term “Artificial Intelligence”

has been around for decades. In fact, its origins date as far back as 1956, when it was

first used at the Dartmouth Workshop. Since then, interest in AI has fluctuated, and

many ideas and intelligent approaches have been researched. Research from these

years is considered “traditional AI”. However, as computational capabilities have

boomed, so has a new generation of AI. This generation is aptly referred to as “mod-

ern AI”. Modern AI approaches harness big data and immense computational power

to solve problems computationally. However, a large downside to the application of

modern AI methods is that they are often considered a blackbox, sometimes called

“Blackbox AI”. This means that for many of these methods, the reasoning behind

their decision-making or precisely how they achieve the results they do is unknown.

For example, Neural Networks are quite effective for many applications and conse-

quently are widely used today. However, the true reasoning behind their ability to

work so effectively is still unknown. Another reason that blackbox AI methods may

1

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

be undesirable is that the design parameters of these methods do not necessarily have

a physical meaning for systems in question. This makes improvement of physical

systems based on these methods quite difficult. Thus, we are interested in utiliz-

ing increased computational capacity to explore methods that maintain the physical

meaning of the system and that can be analyzed in depth. In this thesis, we examine

two traditional problems from this modern lens.

The first problem of interest is real-time parameter estimation from a data stream.

Specifically, we are interested in estimating the parameters of a sinusoidal signal in

the presence of additive Gaussian noise. For this purpose, an innovative Kalman

Filter solution utilizing complex numbers is proposed and evaluated.

Second, a computational method for the approximation of optimal control policies

of switched systems is studied. A dynamic programming approach is chosen in order

to estimate the “cost-to-go” function of a switched system, leading to the synthesis

of a control policy.

2

Part I

State Estimation of Sinusoidal

Signals using the Extended

Kalman Filter

3

Abstract

Sinusoidal signals are quite prevalent in practical applications. For example, any

machine driven by a rotary shaft will exhibit periodic behaviour. For this reason,

the estimation of sinusoidal parameters is studied extensively in the literature. Often

in practical applications, there are unmodeled disturbances to the system, and the

incoming measurements are noisy. Thus, estimation of the parameters of a sinusoidal

signal in real-time for these conditions is of interest, calling for the use of a filter-based

approach such as the Extended Kalman Filter. Considering the sinusoidal signal in

its complex form, a novel approach is proposed resulting in a complex-valued filter.

The resulting complex Extended Kalman Filter’s performance is evaluated in various

test environments and is compared to standard approaches to the estimation problem

using a Discrete Fourier Transform and standard Extended Kalman Filter. Results

show that the complex Extended Kalman Filter outperforms the standard approaches

in some cases in both accuracy and convergence rate.

4

Chapter 1

Introduction

Sinusoidal signals are quite prevalent in the industry today. Such signals are found in

many systems such as mechanical (eġṗendulums), electrical (eġȧlternating current), or

even biological (eġL̇otka-Volterra equation). Thus, it is common to analyze sinusoidal

signals to extract parameters such as amplitude, frequency, phase shift and damping

[30].

This problem also arises in industrial applications where the sinusoidal parame-

ters are used to diagnose, tune, and make design decisions regarding machinery with

periodic motion. For example, a vibrating screen that separates differently-sized con-

struction aggregate would operate with sinusoidal motion, and we may be interested

in identifying the operating conditions of such a machine and tracking these condi-

tions over time. However, practical systems often contain disturbances within the

operating environment, as well as noise within the measurement tools used. Often-

times the noise in the system can be modelled using a Gaussian distribution. Thus,

we wish to estimate the frequency, amplitude and phase of sinusoidal signals in the

presence of additive Gaussian noise using a real-time filter.

5

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Many approaches exist in the literature to tackle this problem. This includes time-

domain approaches as shown in [7], frequency domain approaches [21,23], smoothing

[26], and filtering [18,20,28]. A common theme of these methods is that they require

the collection of a sufficient number of measurements from the system before an

estimate may be found, and if we wish to update the estimate we need to continuously

re-apply the methods to newly acquired data. Moreover, their performance under

noisy conditions varies. In some applications we may be interested in finding and

tracking the parameter in real-time as soon as new data is ready, improving the

estimate over time as more data is acquired. A widely used method of real-time

estimation that has proven to be quite effective is the Kalman Filter [27]. For example,

[25] presents a standard application of the Extended Kalman Filter to estimate the

parameters of a noisy sinusoidal signal.

In this thesis, we present what is, to our knowledge, a novel approach to this

estimation problem using the Extended Kalman Filter. We use a complex model of

the standard sinusoidal signal as the model in the Extended Kalman Filter (EKF).

Following this, we apply the novel EKF model to simulated datasets as well as real

datasets to evaluate its performance compared to the standard EKF model of si-

nusoidal signals as well as the Discrete Fourier Transform. We also investigate its

performance using real data acquired from industrial partners.

6

Chapter 2

Background

A vast amount of literature exists on the problem of estimating the parameters of

a sinusoidal signal. These methods are typically window-based, meaning they are

performed on a window of N data points. In this section, we will discuss some of

these methods.

2.1 Problem Setting

In this thesis, we assume that we are estimating a general noisy sinusoidal signal

s(t) = e−ζtA sin(ωt+ φ) + v(t)

where ζ is the damping coefficient, A is the signal amplitude, ω (rad/s) is the fre-

quency, φ (rad) is the phase angle, and v(t) is Gaussian noise. We assume these

parameters are constant over sufficiently small intervals, which allows us to model

the signal in discrete time.

7

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Let n be a step for the discrete system, and let ∆t be the sampling period. There-

fore, the signal is sampled at times t = n∆t, n = 1, 2, Also let

ω̄ = ω∆t

It then follows that the signal can be described in discrete time as

s(n) = eζn∆tA sin(ω̄n+ φ) + w(n), (2.1.1)

where w(n) is noise sampled from a Gaussian distribution at every step n.

2.2 Regression

Direct model fitting methods rely on the use of measurements taken directly from the

system to fit a model and come up with an estimate. These measurements are used

within a cost function, which is then minimized to produce an estimate.

2.2.1 Time Domain

In the time domain, the goal is to minimize a cost function defined as [21]:

J =
N−1∑
n=0

(yn − eζn∆tA sin(ω̄n+ φ))2

where yn is the nth signal measurement. This is a window-based method that requires

N sample points. Since the cost function is nonlinear in the parameters ω, φ, there

may be local minima present. This causes a significant challenge for the minimization

8

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

of the function, as methods such as least squares or gradient descent do not guarantee

the extraction of a global minimum. These methods may get “stuck” on a local

minimum, which could lead to a large error in the estimation of the parameters.

Moreover, this estimation technique does not lend itself well to noisy signals, since

the noise cannot be modelled anywhere. The presence of noise is the case for most

practical applications of estimation methods, so this presents a serious challenge.

2.2.2 Frequency Domain

Similar to the time domain, the goal for direct model-fitting is to minimize a cost

function defined in the frequency domain of Discrete Fourier Transform (DFT) coef-

ficients as [21]

J =
N−1∑
n=0

[Vn − V (ejωn)]2

Vn is the DFT spectrum of the measured signal, and V (ejωn) is the theoretical spec-

trum of the undamped signal. The damped signal may also be estimated by replacing

V (ejωn) with ¯V (ejωn), the theoretical spectrum of the damped signal. Since the am-

plitude, frequency, and damping coefficient of a sinusoidal signal directly impact the

shape and magnitude of the signal’s DFT spectrum, an optimizer can find the op-

timal parameters to minimize the aforementioned cost function. The phase angle

of the signal, however, may not be extracted, since a DFT contains only frequency

information. Thus, to extract phase angle information for a sinusoidal signal using

this method, an additional step must be done. Least Squares may be used to find the

9

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

phase angle through the minimization

min
φ

N−1∑
n=0

‖yn − eζn∆tA sin(ω̄n+ φ)‖

where ζ, A, ω̄ are known from the estimation procedure. The signals are typically

analyzed with a window w before finding the DFT spectrum [30]. The minimization

process of the cost function is similar to the time domain approach to direct model-

fitting. This also means that the issue of not being able to guarantee a global minimum

persists. On the other hand, this approach is better at dealing with noisy signals due

to the DFT calculation.

2.3 DFT

For an infinite signal with 2π periodicity, the Discrete-Time Fourier Transform (DTFT)

is a frequency domain transform that is greatly beneficial in signal analysis. Mathe-

matically, the DTFT is defined as

X(ω) =
∞∑

n=−∞

x(n)e−iωn.

There are two important things to note about the DTFT: 1) it transforms an infinite

signal, and 2) it is a continuous function of frequency. In general, the signals we wish

to analyze are finite in discrete time. Also, when we wish to implement such analysis

techniques on embedded systems such as computers, continuous functions cannot be

directly represented and must be sampled by the machine. Thus, for finite sequences,

the Discrete Fourier Transform (DFT) is used. The DFT uses equally-spaced samples

10

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

of a signal to find a sequence of equally-spaced samples of the DTFT of the given

signal of the same length, and is defined as

Xk =
N−1∑
n=0

xne
−i 2π

N
kn, k = 0, 1, ..., N − 1.

As we can see, the DFT is a finite frequency domain representation of a signal, de-

fined only over the length of the original signal. The DFT has numerous practical

applications [24] which make it a subject of great interest in literature. Particularly,

a vast amount of literature exists on the implementation of the DFT in embedded

systems. One well-known method is the Fast Fourier Transform (FFT) and is the

method usually employed to calculate the DFT efficiently [3]. FFTW is an exam-

ple of a computer library that uses the FFT algorithm for incredibly efficient DFT

calculation [6]. In [4, 11], other methods for calculating the DFT are presented.

Since the DFT is derived for signals with an integer number of cycles [19], estimat-

ing the frequency directly from its coefficients is only accurate for signals containing

an integer number of cycles in the measured sequence (with ζ = 0). In this case, the

frequency of the signal is equal to the DFT bin with the highest magnitude (magni-

tude specifically is considered since the DFT is comprised of complex values). If there

is no noise present in the signal, there will only be one bin with a non-zero value in

the DFT, which is the bin belonging to the frequency of the signal. Further, for ζ = 0

Xk = A
N

2
eiφ.

Thus,

A = 2|Xk|/N and φ = ∠Xk.

11

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

However, in practical applications, we rarely have such an ideal case. First, there is

the issue of estimating the damping coefficient ζ for the non-zero case, and then there

is the issue of having a non-integer number of cycles of the signal. In the latter case,

the DFT suffers from what is called “spectral leakage” [10]. In the cases of spectral

leakage and damped signals, interpolation must be used using the DFT bin with the

highest magnitude as well as surrounding bins. In [5], various interpolation methods

for these cases are discussed. The Bertocco algorithm [2] and Yoshida algorithm [29]

are also examples of these interpolation methods. Simpler interpolation methods may

also be used such as quadratic interpolation with k surrounding DFT bins.

2.4 Linear Prediction

Another approach to estimating a discrete-time signal such as (2.1.1) is to find a

parametric model for the signal that can be used to estimate future samples. One

such method is Linear Prediction (LP).

The idea behind LP is to consider a signal s(n) as the output of some system with

an unknown input u(n) such that s(n) may be expressed as a linear combination

of the system’s past inputs and outputs. Mathematically, this is expressed by the

relationship

s(n) = −
p∑

k=1

aks(n− k) +

q∑
l=0

blu(n− l)

where ak, 1 ≤ k ≤ p and bk, 0 ≤ l ≤ q are the parameters of the model. If the signal

of interest may be correctly expressed using this model, then we say that the signal

is predictable from its past inputs and outputs. A thorough background on LP is

provided in [15], and readers are encouraged to read this work for more background

12

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

on LP.

Going back to our signal of interest s(n) (2.1.1), it is shown in [30] that this signal

is the impulse response h(n) of the digital filter

v(n) = b1u(n− 1)− a1v(n− 1)− a2v(n− 2) (2.4.1)

where u(n) is an unknown system input, v(n) is the system output, b1 = Ae−ζ sin(ω),

a1 = −2e−ζ cos(ω), a2 = e−2ζ . Following from this,

s(n) = −a1s(n− 1)− a2s(n− 2)

is a valid model for linear prediction, where a1 and a2 are parameters of the model

that must be optimized, s(−1) = 0 and s(−2) = −Ae−ζ sin(ω). There are plenty

of methods discussed in literature to best optimize the parameters of the model.

However, we will only discuss the simplest approach which is to simply solve a linear

system using collected datapoints. Further approaches to finding these parameters

are presented in [1, 13,22] to name a few.

Given N noisy measurements of the signal s(n), labelled y(n), n = 0, ..., N −1, we

wish to find a1, a2 such that



y(−1) y(−2)

y(0) y(−1)

...
...

y(N − 2) y(N − 3)


a1

a2

 = −



y(0)

y(1)

...

y(N − 1)


, Ya = −y.

To solve this system for N 6= 4, the pseudo inverse of Y is used. Solving for a, we

13

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

find that

a = −(YTY)−1YTy.

Once the LP model is established, it is not immediately clear how the parameters of

interest may be derived. To do so, first we note that the transfer function of the filter

(2.4.1) is

H(z) =
b1z
−1

1 + a1z−1 + a2z−2
=

b1z
−1

(1− z1z−1)(1− z∗1z−1)

where z1 = e−ζeiω and z∗1 is its complex conjugate. From this we see that once the

prediction coefficients a1 and a2 are found, we find the complex poles of the polynomial

1 + a1z
−1 + a2z

−2 and use them to calculate ζ and ω. To be precise,

ω = ∠(z1), ζ = − ln(|z1|)

or

ω = |Im(ln(z1))|, ζ = −Re(ln(z1)).

To find the amplitude A and phase shift φ, the signal is first rewritten in its complex

form:

s(n) = Ae−ζncos(ωn+ φ) = cEn,1 + c∗En,2

where c = A
2
eiφ, c∗ is its complex conjugate, En,1 = eiωn−ζn and En,2 = e−iωn−ζn. Thus,

using the estimated frequency ω, the damping coefficient ζ and the N measurements

14

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

of the system, c can be found by solving



E0,1 E0,2

E1,1 E1,2

...
...

EN−1,1 EN−1,2


 c
c∗

 =



y(0)

y(1)

...

y(N − 1)


, Ec = y.

From there,

A = 2|c|, φ = ∠c.

A more detailed analysis of this method as well as simulations is available in [30].

15

Chapter 3

Kalman Filter

The Kalman Filter was first introduced by R. E. Kalman in his seminal work [12].

In this work, he introduced an optimal estimator that was recursive, allowing new

measurements to be incorporated into estimations as they are acquired. Since this

paper was published, and in tandem with fast advancements in digital computing,

the Kalman Filter has been the subject of a vast amount of research and application.

This is largely due to its simplicity in implementation [17]. In this section, we aim to

provide a brief introduction to the Kalman Filter and the Extended Kalman Filter

(EKF), which is an extension of the Kalman Filter for non-linear stochastic dynamic

systems. Many resources exist in the literature that provide more detailed discussions

of the Kalman Filter and its variations such as found in [8, 14,16].

3.1 Kalman Filter

First, the systems to which the Kalman Filter applies must be established. In general,

the Kalman Filter estimates the state x ∈ Rn of a linear stochastic dynamic system

16

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

defined by the equations

xk+1 = Akxk + wk

with output y ∈ Rm described by equation

yk = Ckxk + vk.

wk is the process noise of the system, vk is the measurement noise of the system and

k is a discrete step of the system. The noise variables are assumed to be independent

zero-mean stochastic variables belonging to a normal distribution as in

w ∼ N (0, Q)

v ∼ N (0, R).

Process noise may be present in the system due to several factors such as uncertainty

in modelling, disturbances that cannot be modelled, modelling approximations, etc.

Measurement noise is simply noise in the incoming measurements of the system.

The goal of the Kalman Filter is the following: given an uncertain model of a

system and incoming noisy measurements of the system, we want to find a posterior

state estimate x̂ that is a linear combination of a prior estimate x̂+ of the system

and the difference between the measurement of the system z and the predicted mea-

surement of the system Cx̂+ weighted by some gain K, often called the Kalman gain.

Mathematically, this is written as

x̂ = x̂+ +K(z − Cx̂+). (3.1.1)

17

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

To find the gain K, we aim to minimize the posterior estimate error covariance of the

system. The prior and posterior estimate error are defined as

e+ = x− x̂+

e = x− x̂

and the prior and posterior estimate error covariance are

P+ = E[e+eT]

P = E[eeT].

Thus, by substituting (3.1.1) into the definition for estimate error e, substituting into

(3.1.2) and minimizing with respect to K, we find that the gain K that minimizes

this error covariance is

K = P+CT (CP+CT +R)−1

where R is the covariance of the measurement noise. We can see from this that the

measurement covariance R plays a pivotal role in finding the estimated state. As R

approaches zero, the estimation equation favours the incoming measurement more.

On the other hand, as R becomes larger in magnitude relative to the prior estimate

error covariance P+, the prior state estimate is favoured more heavily. To think of

this in another way, we can say that the covariance R tells us how uncertain we are

of our incoming measurement z.

The full Kalman Filter algorithm is an iterative algorithm with two distinct

“steps”. First, the prediction step is performed to estimate the system state solely

18

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

based on the system model. The prior estimate error covariance is also calculated at

this step. The equations used in the prediction step are

x̂+
k = Akx̂k−1 (3.1.2)

P+
k = AkPk−1A

T
k +Qk. (3.1.3)

Second, the measurement step is taken once a new measurement is available. In this

step, the Kalman gain is calculated, the posterior state estimate is found and the

posterior estimate error covariance is calculated. The measurement step is as follows:

Kk = P+
k C

T
k (CkP

+
k C

T
k +Rk)

−1 (3.1.4)

x̂k = x̂+
k +Kk(zk − Ckx̂+

k) (3.1.5)

Pk = (I −KkCk)P
+
k . (3.1.6)

The recursive nature of this algorithm is very appealing, as it is a fairly lightweight

approach to the continuous, online estimation of a system’s state.

Going back to the discussion regarding the role of the covariance matrix Rk in

determining the impact of incoming measurements, we can also see from equation

(3.2.4) that the other important factor is the prior estimate error covariance P+
k .

Referring to equation (3.1.3), P+
k heavily relies on the process noise covariance Qk.

From this, we can say that the ratio of Qk : Rk greatly affects the performance of the

filter. In theory, calibrating Rk is possible. This can be done using specifications of the

physical measurement devices used or by collecting a measurement set of the system

and calculating the variance of that set. Due to the nature of uncertainties that Qk

encapsulates, many of which are very difficult to accurately quantify, calibration of

19

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Qk is much more difficult. Thus, a good estimate of Qk and especially Rk may be

established in the analytical phase of the Kalman Filter design, but tuning of the

values in Qk and Rk is usually required to maximize filter performance for every

application.

3.2 Extended Kalman Filter

As mentioned in the previous section, the Kalman Filter is a state estimator for linear

stochastic dynamic systems. In reality, many systems that are of interest to us are

modelled by non-linear dynamics. For such systems, directly applying the equations

of the Kalman Filter is not possible.

One way that is often used to tackle issues of non-linearity is linearization, and

it is the same approach used in this case by defining the Extended Kalman Filter

(EKF). In the case of non-linear stochastic dynamic systems, the EKF linearizes the

estimation around the current state estimate to establish an estimate of a non-linear

system.

First, we will revisit the dynamics of the system of interest. In general, a non-

linear stochastic dynamic system is defined by the equations

xk+1 = f(xk) + wk

yk = h(xk) + vk

with x ∈ Rn, y ∈ Rm, wk is a zero-mean Gaussian process noise and vk is a zero-mean

Gaussian measurement noise as defined for the standard Kalman Filter. The issue

of linearization of these dynamics and their specifics is discussed in great detail in

20

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

the literature. However, for the sake of brevity, these details will be omitted in this

work and readers are encouraged to read [27] for details regarding the linearization

process. In short, the Jacobian of the respective non-linear processes may be used to

linearize them around the current state estimate.

The EKF algorithm contains the same two distinct steps as the linear Kalman

Filter. First, the equations belonging to the prediction step are

x̂+
k = f(x̂k−1) (3.2.1)

P+
k = Jf (x̂k−1)Pk−1J

T
f (x̂k−1) +Qk, (3.2.2)

where P , P+ and Qk are as defined for the linear Kalman Filter, and Jf (·) is the Jaco-

bian of the process equation f with respect to x. The equations in the measurement

step are

Kk = P+
k J

T
h (x̂+

k)[Jh(x̂
+
k)P+

k J
T
h (x̂+

k) +Rk]
−1 (3.2.3)

x̂k = x̂+
k +Kk[zk − h(x̂+

k)] (3.2.4)

Pk = [I −KkJh(x̂
+
k)]P+

k , (3.2.5)

where similarly zk and Rk are as defined for the linear Kalman Filter, and Jh(·) is

the Jacobian of the measurement equation with respect to x.

One important thing to note about the EKF is that due to the approximations

used to linearize the processes, there is no guarantee that the EKF is the optimal

estimator for a non-linear system. On the other hand, the linear Kalman Filter is

shown to be the optimal estimator for linear systems.

21

Chapter 4

Estimation Using the EKF

In this section, the estimation methods used in this thesis will be presented. In

general, we wish to estimate a system described by the equation

sn = A sin(ω̄n+ φ) (4.0.1)

using the EKF. We choose to focus on undamped periodic signals in this case. This

is still a reasonable assumption, since often in industry the main interest lies in

estimating the state of a machine in steady-state motion and monitoring the deviation

of the states from the expected operational state. First, an EKF using real numbers

will be presented. Following that, an EKF using complex numbers will be presented.

4.1 Real Numbers Approach

The first approach is to formulate the EKF directly using equation (4.0.1). This

approach is outlined in more detail in [25].

22

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

First, we define the phase of the signal, θn as

θn = ω̄n

This helps us in defining the filter. Using θn, equation (4.0.1) may be written as

sn = A sin(θn + φ) (4.1.1)

The parameters of interest are the amplitude, A, frequency, ω̄, and phase shift, φ.

However, in order to formulate the filter, we will also consider the phase, θn, as a

state variable. From this, we can establish a state vector, xn, in order to estimate the

parameters as

xn =



θn

A

ω̄

φ


Next, the update equations of the signal of interest need to be specified. Equation

(4.1.1) assumes the parameters A, ω̄, and φ are constant. This assumption may be

extended to practical systems of interest as long as we assume that these parameters

are constant over a sufficiently small interval of time which is greater than or equal

23

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

to the sampling period Ts. Thus, with this established, the update equations are:

x̂n+1 = f(x̂n) =



θ̂n + ˆ̄ωn

Ân

ˆ̄ωn

φ̂n


Due to the introduction of the phase θ, the update equations are linear in the state

variables, as shown by the Jacobian:

Jf (x̂n) =
∂f(x̂n)

∂x

=



1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1


With the state dynamics of the signal formulated, we must also establish the mea-

surement, or output, equations. The measurement equation, h(x), is the same as

equation (4.1.1)

h(xn) = A sin(θn + φ).

However, unlike the update equations h is non-linear in nature, so the Jacobian Jh

linearizes this equation:

Jh(x̂n) =
∂h(x̂n)

∂x

=

[
Ân cos(θ̂n + φ̂n) sin(θ̂n + φ̂n) 0 Ân cos(θ̂n + φ̂n)

]

24

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

With the state update and measurement equations established, the remaining ele-

ments of the EKF, namely the noise covariance matrices Q and R must be defined.

Through the testing conducted, which will be discussed in a later section, it was dis-

covered that there is no single ideal way of defining the covariance matrices. As such,

they are left as tuning parameters that must be calibrated when applying the filter.

4.2 Complex Numbers Approach

The novel approach introduced in this thesis for formulating the EKF for noisy sinu-

soidal signals is the complex numbers approach. First, we will return to the original

equation of interest, equation (4.0.1). In general, we may use Euler’s formula to write

sinusoidals as complex exponentials:

e±iθ = cos(θ)± i sin(θ)

cos(θ) =
1

2
(eiθ + e−iθ)

sin(θ) =
1

2i
(eiθ − e−iθ)

Also, note that

cos(θ) = sin(θ +
π

2
)

Thus, in terms of our parameters of interest A, ω̄, and φ, we may consider the signal

sn = A cos(ω̄n+ φ) (4.2.1)

instead of equation (4.0.1), and only the phase shift φ needs to be augmented by

adding π
2

to the cosinusoidal phase shift. Therefore, due to its ease of computation

25

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

relative to the complex exponential form of the sine equation, we will formulate the

EKF using the cosine complex exponential equation (4.2.1), leading to the signal of

interest taking the form

sn = A cos(ω̄n+ φ) =
A

2
eiω̄neiφ +

A

2
e−iω̄ne−iφ (4.2.2)

To aid in setting up the EKF for this system, we introduce two state variables, Cn

and C̄n, defined as follows

Cn =
A

2
eiω̄n and C̄n =

A

2
e−iω̄n

This allows us to rewrite equation (4.2.2) as

sn = Cne
iφ + C̄ne

−iφ (4.2.3)

Given these new state variables, we can write the state vector for the filter as

xn =



ω̄

φ

Cn

C̄n


The amplitude, A, of the signal remains a parameter of interest, but does not need

to be present as a state variable in the filter. This is because it can be obtained from

C and C̄ using

A = |C|+ |C̄|

26

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Since C̄ is simply the complex conjugate of C, we may also say that

A = 2|C| = 2|C̄|

With the state variables of the filter established, we may define the update equations.

Similar to the real numbers approach, the frequency ω̄ and phase shift φ are constant,

so their update equations are unchanged. By definition,

Cn+1 =
A

2
eiω̄(n+1)

=
A

2
eiω̄neiω̄

= Cne
iω̄

The update equation for C̄ follows the same logic. Therefore, the update equations

for the system are established as

x̂n+1 = f(x̂n) =



ˆ̄ωn

φ̂n

Ĉne
i ˆ̄ωn

ˆ̄Cne
−i ˆ̄ωn



27

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

To linearize the update equations for the EKF, their Jacobian is calculated as

Jf (x̂n) =
∂f(x̂n)

∂x

=



1 0 0 0

0 1 0 0

iei ˆ̄ωnĈn 0 ei ˆ̄ωn 0

−ie−i ˆ̄ωn ˆ̄Cn 0 0 e−i ˆ̄ωn


With this, we establish the dynamics matrix of the signal of interest. The next

consideration is the measurement equations of the signal. There is one measurement

equation for this signal, and it takes advantage of C and C̄. In this case, measurement

equation h is defined as

h(xn) = Cne
iφ + C̄ne

−iφ

Once again, the Jacobian Jh is used to linearize a non-linear measurement equation,

and is given by

Jh(x̂n) =
∂h(x̂n)

∂x

=

[
0 iĈne

iφ̂n − i ˆ̄Cne
−iφ̂n eiφ̂n e−iφ̂n

]

Similar to the real numbers approach, the noise covariance matrices are left as tuning

parameters.

28

Chapter 5

Evaluation

The goal of this chapter is to evaluate the performance of the proposed complex EKF.

To do so, a few simulation cases are considered to encapsulate various conditions of

signal noise content and EKF calibration. The performance is evaluated relative to

the real EKF as well as the Fourier Transform, which is the standard method used by

industry partners. Finally, the complex EKF is applied to real data to demonstrate

its effectiveness.

5.1 Experimental Setup

Evaluation of the EKF reduces to two criteria: convergence and estimation error.

Both can be assessed by measuring the error in the parameter estimate. The filter

converges if it reaches an estimate and remains within a sufficiently small range of that

estimate. The estimation error is the final error between the state estimate and the

true value of the state. To generate testing scenarios that can exhibit these criteria,

data was generated according to the previously introduced model (4.0.1). Real-world

29

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

data was also used to evaluate the filter’s performance in a practical application.

To gain a full picture of how the filter fulfils the above criteria, five main test classes

were examined. The incoming measurements of the model may be noisy or noiseless.

Another important part of the EKF is the initialization of the filter. Namely, the

initial estimate of the state, x̂+
0 , and the initial estimate of the error variance, P0.

To capture that, the test cases also take into account a perfect initial guess for each

data scenario and an imperfect initial guess for each data scenario. Thus, the five

test classes are:

1. Noisy data with perfect initialization

2. Noisy data with imperfect initialization

3. Noiseless data with perfect initialization

4. Noiseless data with imperfect initialization

5. Real data

In the data sets with noise, the noise is Gaussian with a mean of 0 and a variance

equal to the amplitude of the signal, σ2 = A. Examples of noiseless and noisy signals

with the mentioned noise content are shown in Figure 5.1 for reference.

30

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

(a) Simulated data with no noise (b) Simulated data with added noise

Figure 5.1: Example signals

In cases with an imperfect initial guess, the initial guess for frequency, amplitude

and phase shift of the signal are altered. For all tests, the sampling frequency is held

constant and the frequency of the actual signal is used to manipulate the ratio f
fs

.

This ratio is significant for two reasons: 1) to be able to distinguish between sine

waves and cosine waves, f
fs
≤ 0.25 and 2) it dictates how many cycles of the signals

we see, in that cycles = N ·f
fs

, where N is the number of points observed. Not seeing

enough cycles of a signal affects convergence and performance.

5.2 Implementation

C++ was used to generate all the data for the experiments, as well as the implemen-

tation of the estimation methods. The C++ library Eigen [14] was used to perform

the linear algebra manipulations required.

31

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

5.3 Convergence

In this section, the convergence of the filter will be presented for the test classes

previously mentioned. For all classes, the error is expressed in decibels (dB), where

errordB = 10 log(|error|). This is because the filter converges quite quickly and to

small magnitudes of error, and using dB makes distinguishing between the conver-

gence of the different f
fs

ratios easier. We only present the plots for the frequency

estimate for two reasons: 1) we found that the frequency and amplitude plots followed

extremely similar patterns, so for the sake of brevity only the frequency is discussed in

this section, and 2) as noted in [30], once the frequency is found, it is straightforward

to find the amplitude and phase shift of the signal directly from the data.

5.3.1 Noiseless Data With Perfect Initial Guess

Convergence of the complex EKF is demonstrated for this test class in Figure 5.2.

Figure 5.2: Convergence of the complex EKF for noiseless data with perfect initial
guess

32

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 5.3: Convergence of the real EKF for noiseless data with perfect initial guess

There is a clear pattern that can be seen which is dependent on the ratio f
fs

. A

colour gradient is used to demonstrate this. The colours of the plot lines range from

blue to red, with blue being a signal with f
fs

= 0.01, and red being a signal with

frequency equal to f
fs

= 0.25. Lower ratios of f
fs

lead to a smaller convergence error

but have a slower convergence rate. Higher ratios lead to a larger convergence error

but converge quicker. The same can be said for the real EKF, which is demonstrated

in Figure 5.3. The higher ratio signals still converge quicker. Finally, both the

complex and real approaches converge for this test class.

5.3.2 Noiseless Data With Imperfect Initial Guess

Convergence of the complex EKF is demonstrated in Figure 5.4.

33

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 5.4: Convergence of the complex EKF for noiseless data with imperfect
initial guess

Figure 5.5: Convergence of the real EKF for noiseless data with imperfect initial
guess

A similar pattern emerges for this test class compared to the test class with a

perfect initial guess, shown in Figures 5.2, 5.3. All the frequency ratios converge, but

34

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

the convergence rate varies greatly. Also, the smallest error is generated somewhere

in the middle of the range 0.01 ≤ f
fs
≤ 0.25, rather than occurring at the lowest

frequency ratio. The real EKF also converges as seen in Figure 5.5, and displays a

large amount of oscillation. This is due to the choice of uncertainty parameters in

the filter, as well as numerical errors.

5.3.3 Noisy Data With Perfect Initial Guess

In this test class Gaussian noise is inserted into the signal as described earlier. The

result for the complex EKF is shown in Figure 5.6.

Figure 5.6: Convergence of the complex EKF for noisy data with perfect initial guess

35

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 5.7: Convergence of the real EKF for noisy data with perfect initial guess

The pattern across the various ratios of f
fs

is similar to the test class with noiseless

data, seen in Figure 5.2. The difference between the classes is the addition of noise,

which causes noise in the estimate of the filter, but does not stop it from converging

for all ratios. The same cannot be said for the real EKF, as shown in Figure 5.7. The

filter generally does not converge for the various ratios of f
fs

, which can be seen by

the extreme amounts of variation in the estimated error.

5.3.4 Noisy Data With Imperfect Initial Guess

Once again, a similar pattern occurs for this test class for the complex EKF as its

noiseless counterpart, as shown in Figure 5.8.

36

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 5.8: Convergence of the complex EKF for noisy data with imperfect initial
guess

Figure 5.9: Convergence of the real EKF for noisy data with imperfect initial guess

The complex filter still converges for all ratios, but also has the addition of noise

affecting the estimation errors. In the case of the real EKF shown in Figure 5.9, the

37

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

EKF does not converge. Thus, it is clear that the addition of noise causes the real

EKF to diverge.

5.4 Estimation Error

With convergence results established, the estimation error is examined to determine

the f
fs

ratios that minimize it. As previously mentioned, the benchmark for this error

is the Fourier Transform (FT) method. As noted in [30], amplitude tracking follows

a similar error pattern to frequency, so only frequency tracking will be presented. All

plots show the final error in estimation after 5000 samples.

5.4.1 Noiseless Data With Perfect Initial Guess

Figure 5.10: Performance of the EKF and FT compared for noiseless data with
perfect initial guess

38

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

As shown in Figure 5.10, the real EKF outperforms both the complex EKF and the

FT. However, it should be noted that at f
fs

= 0.25, the FT method yields an error

so small that the error is undefined when converted to dB and cannot be represented

on the plot. It is also significant to note that the complex EKF is comparable in

performance to the FT.

5.4.2 Noiseless Data With Imperfect Initial Guess

Figure 5.11: Performance of the EKF and FT compared for noiseless data with
imperfect initial guess

With an imperfect initialization demonstrated in Figure 5.11, the real EKF signif-

icantly outperforms both the complex EKF and the FT, apart from at f
fs

= 0.25,

where the FT is perfect. Thus, we can say that the systematic error in the real EKF

when there is no noise in the signal is the smallest.

39

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

5.4.3 Noisy Data With Perfect Initial Guess

Figure 5.12: Performance of the EKF and FT compared for noisy data with perfect
initial guess

With noise added to the signal, the results are different as displayed in Figure 5.12.

As pointed out in the convergence section, the real EKF does not converge, so the

final errors are not considered. On the other hand, the complex EKF maintains an

error comparable to the FT method across most ratios of f
fs

. The FT method does

outperform the complex EKF more for larger ratios, culminating in a very small error

at f
fs

= 0.25 as before.

40

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

5.4.4 Noisy Data With Imperfect Initial Guess

Figure 5.13: Performance of the EKF and FT compared for noisy data with
imperfect initial guess

Imperfect initialization produces comparable results to the perfect initial guess case

seen in Figure 5.12, especially at lower ratios of f
fs

. This can be seen in Figure 5.13.

For appropriate ratios, the complex EKF is once again comparable to the FT method,

but the FT method outperforms it across all frequencies.

5.5 Real Data

Fortunately, we have access to real data acquired from periodic machinery in the field.

Figure 5.14 shows an example of such signal.

41

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 5.14: Real data acquired from industry partners

Since the performance of the filter has already been established in simulated cases

shown in previous sections, only an analysis of the filter’s accuracy is necessary at

this stage to show that it is also effective in practical applications. Figure 5.15 shows

the complex EKF’s estimate of frequency for two signals, where their true frequency

is already known. These plots made clear the effectiveness of the filter in a practical

context.

42

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

(a) Complex EKF estimate of a signal with a
true frequency of 12.37 Hz

(b) Complex EKF estimate of a signal with a
true frequency of 19.89 Hz

Figure 5.15: Complex EKF estimate of real data

5.6 Summary

Summary table 5.1 concisely shows the performance of the three methods evaluated

for each case presented above.

43

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Test class Real EKF Complex EKF FFT

Noiseless with per-

fect initial guess

Converges Converges -

Best estimation error Good estimation er-

ror

Good estimation er-

ror

Noiseless with imper-

fect initial guess

Converges Converges -

Best estimation error Good estimation er-

ror

Good estimation er-

ror

Noisy with perfect

initial guess

Diverges Converges -

Good estimation er-

ror

Best estimation error

Noisy with imperfect

initial guess

Diverges Converges -

Good estimation er-

ror

Best estimation error

Table 5.1: Summary of Results for EKF Performance.

44

Chapter 6

Conclusion

6.1 Concluding Remarks

The Extended Kalman Filter provides a proven and efficient way of estimating the

parameters of a sinusoidal signal with additive Gaussian noise in real-time. As shown

in this thesis, there are various ways to model the same signal for use in the EKF.

Specifically, we presented two models of sinusoidal signals for state estimation. The

first model uses real variables to represent a sinusoidal signal and has been previously

discussed in the literature. The second model presented is, to our knowledge, a novel

approach that uses complex variables in the EKF model. These models were evaluated

for 5 different test classes, and evaluations were based on 2 factors: convergence and

final estimation error. For each case, the ratio of signal frequency to the sampling

frequency, or f
fs

, proved to be of great importance. Signals ranging from f
fs

= 0.01 to

f
fs

= 0.25 were evaluated. In general, for signals with no measurement noise, the real

EKF outperformed the complex EKF, though both showed good performance with

very low error. An interesting structure appeared in the convergence of the complex

45

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

EKF: lower ratios of f
fs

showed slower convergence but smaller estimation error, while

higher ratios of f
fs

converged much quicker with a larger estimation error. When the

estimation error of the EKF methods was compared to using the Discrete Fourier

Transform for these test classes, the real EKF outperformed both the complex EKF

and the DFT, which were comparable over the range of f
fs

. A significant amount of

noise was present in test classes with noise in the measurement signal. In these test

classes, the complex EKF still converged and displayed the same structure present in

the noiseless test classes. However, the real EKF could not converge. When compared

to the DFT for estimation error, the complex EKF had comparable performance and

even outperformed the DFT in some cases. Evaluation of the complex EKF on real

data also showed its effectiveness for practical use.

6.2 Future Work

This novel approach to using the EKF for state estimation of sinusoidal signals could

benefit from further research. Some recommendations for areas of further research

are listed below:

• Analysis of the numerical stability of the proposed model,

• Further investigation of error propagation in complex EKF,

• Possible redundancies or structures in the EKF equations that can improve the

computational efficiency of the algorithm.

46

References

[1] Gopi Krishna Allu. Estimating the parameters of exponentially damped sinusoids

in noise. University of Rhode Island, Kingston, RU, Tech. Rep, 2003.

[2] Matteo Bertocco, Carlo Offelli, and Dario Petri. Analysis of damped sinusoidal

signals via a frequency-domain interpolation algorithm. IEEE Transactions on

Instrumentation and measurement, 43(2):245–250, 1994.

[3] JW Cooley, P Lewis, and P Welch. The finite fourier transform. IEEE Transac-

tions on audio and electroacoustics, 17(2):77–85, 1969.

[4] Krzysztof Duda. Accurate, guaranteed stable, sliding discrete fourier transform

[dsp tips & tricks]. IEEE Signal Processing Magazine, 27(6):124–127, 2010.

[5] Krzysztof Duda, Leszek B Magalas, Mariusz Majewski, and Tomasz P Zielin-

ski. Dft-based estimation of damped oscillation parameters in low-frequency me-

chanical spectroscopy. IEEE Transactions on Instrumentation and Measurement,

60(11):3608–3618, 2011.

[6] Matteo Frigo and Steven G Johnson. The design and implementation of fftw3.

Proceedings of the IEEE, 93(2):216–231, 2005.

47

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

[7] Hua Fu and Pooi-Yuen Kam. Phase-based, time-domain estimation of the fre-

quency and phase of a single sinusoid in awgn—the role and applications of the

additive observation phase noise model. IEEE transactions on information theory,

59(5):3175–3188, 2013.

[8] Arthur Gelb et al. Applied optimal estimation. MIT press, 1974.

[9] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[10] Fredric J Harris. On the use of windows for harmonic analysis with the discrete

fourier transform. Proceedings of the IEEE, 66(1):51–83, 1978.

[11] Eric Jacobsen and Richard Lyons. The sliding DFT. IEEE Signal Processing

Magazine, 20(2):74–80, 2003.

[12] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–

45, 1960.

[13] Norman Levinson. The Wiener (root mean square) error criterion in filter design

and prediction. Journal of Mathematics and Physics, 25(1-4):261–278, 1946.

[14] Frank L Lewis. Optimal estimation: with an introduction to stochastic control

theory. Wiley New York, 1986.

[15] John Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE,

63(4):561–580, 1975.

48

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

[16] Peter S Maybeck. Stochastic models, estimation, and control. Academic press,

1982.

[17] Richard J Meinhold and Nozer D Singpurwalla. Understanding the Kalman filter.

The American Statistician, 37(2):123–127, 1983.

[18] Mohsen Mojiri, Masoud Karimi-Ghartemani, and Alireza Bakhshai. Time-

domain signal analysis using adaptive notch filter. IEEE Transactions on Signal

Processing, 55(1):85–93, 2006.

[19] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India,

1999.

[20] Soo-Chang Pei and Chien-Cheng Tseng. Real time cascade adaptive notch filter

scheme for sinusoidal parameter estimation. Signal processing, 39(1-2):117–130,

1994.

[21] R Pintelon and J Schoukens. System identification: A frequency domain ap-

proach ieee press. Piscataway, NJ, 2001.

[22] John G Proakis. Digital signal processing: principles algorithms and applications.

Pearson Education India, 2001.

[23] Fengyong Qian, Shuhung Leung, Yuesheng Zhu, Waiki Wong, Derek Pao, and

Winghong Lau. Damped sinusoidal signals parameter estimation in frequency

domain. Signal Processing, 92(2):381–391, 2012.

[24] Julius Orion Smith. Mathematics of the discrete Fourier transform (DFT): with

audio applications. Julius Smith, 2007.

49

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

[25] Muhittin Uener. Frequency, amplitude, and phase tracking of nonsinusoidal

signal in noise with extended Kalman filter. Technical report, Naval Postgraduate

School Monterey CA, 1991.

[26] Paul F Velleman. Definition and comparison of robust nonlinear data smoothing

algorithms. Journal of the American Statistical Association, 75(371):609–615,

1980.

[27] Greg Welch, Gary Bishop, et al. An introduction to the Kalman filter. 1995.

[28] Yegui Xiao and Yoshiaki Tadokoro. LMS-based notch filter for the estimation of

sinusoidal signals in noise. Signal Processing, 46(2):223–231, 1995.

[29] I Yoshida, T Sugai, S Tani, M Motegi, K Minamida, and H Hayakawa. Automa-

tion of internal friction measurement apparatus of inverted torsion pendulum type.

Journal of Physics E: Scientific Instruments, 14(10):1201, 1981.

[30] Tomasz Piotr Zieliński and Krzysztof Duda. Frequency and damping estimation

methods - an overview. Metrology and Measurement Systems, 18(4):505–528, 2011.

50

Part II

Synthesis of Switched System

Controllers using Dynamic

Programming

51

Abstract

Research on hybrid systems has seen a large growth in interest in recent years. This is

largely due to the increase of natural systems where discrete mode dynamics interact

with continuous state dynamics. Switched systems are a subclass of hybrid systems

that restrict their definition to continuous dynamic systems that interact with dis-

crete switching events. Controller synthesis for such systems is no trivial task. Given

the current trend in Artificial Intelligence and Machine Learning approaches, Dy-

namic Programming is explored as a means to approximate optimal control policies

for switched systems. Discussions of discretization of the system’s state space are

presented, followed by a high-level overview of an algorithm that leverages Dynamic

Programming to find the approximated optimal control policies. Finally, the algo-

rithm is applied to several examples to demonstrate its effectiveness.

52

Chapter 1

Introduction

Research on hybrid control systems has had considerable growth in recent times. This

is largely because control systems have become much more complex, often consist-

ing of many smaller subsystems, modes, and computational devices [21]. Thus, in

many cases, it is natural to represent a control system using a hybrid model where

interactions between continuous state dynamics and discrete mode dynamics can be

accurately captured. For example, it is shown in [3] that classical models of a four-

stroke gasoline engine often rely on approximations to represent the system as an

entirely continuous one, and that a hybrid model is a much more natural represen-

tation of the engine. Due to their general nature, hybrid models can also be used

to break down complex systems into smaller subsystems, making the overall control

design problem simpler for each subsystem.

Owing to this increased interest in hybrid systems, establishing control schemes is

an important topic discussed today in literature. Realizing control schemes for hybrid

systems is much more complicated than traditional control approaches where we only

consider the state dynamics or the mode dynamics. This is because frameworks that

53

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

describe hybrid systems are quite general and finding a control strategy that applies

to any system that can be described by a hybrid model is quite difficult. For this

reason, we choose to focus on specific subclasses of hybrid systems called switched

systems, where discrete events that occur within the system cause transitions in the

system mode. Specifically, we are interested in the optimal control problem for such

systems. Despite the relative novelty of switched systems within the area of control

theory, there exists plenty of literature regarding optimal control of switched systems.

For example, [22–24,26] discuss the extension of the well-known Maximum Principle

to switched systems to achieve optimal control.

Given the growing interest in Artificial Intelligence and machine learning, we are

particularly interested in using Dynamic Programming approaches to achieve optimal

control of switched systems. Specifically, we are interested in producing an algorithm

to approximate an optimal control policy for a switched system. Hence, the main con-

tributions of this work are two-fold: 1) experiments into an approximation of optimal

control policies for switched systems using dynamic programming approaches, and 2)

validation of the aforementioned experiments through simulation using classical ex-

amples from the literature. An inline literature review is incorporated throughout.

54

Chapter 2

Hybrid Systems

Hybrid systems involve interaction between both continuous-valued and discrete vari-

ables. The evolution of such systems typically depends on the interaction between

all variables. This means that the equations of motion that govern the evolution

contain a mixture of discrete-variable or mode dynamics, and continuous-variable or

state dynamics. The mode and state dynamics interact at “event” times, often when

the continuous state reaches a prescribed set in the continuous state space [7].

2.1 Background

Studies in hybrid systems are generally broken down into four categories:

• Modeling: How to precisely model the behaviour of hybrid systems.

• Analysis: Development of tools to simulate, analyze, and verify hybrid sys-

tems. Issues such as well-posedness, simulation, and correctness are consid-

ered [11]. HyTech is a well-known software for checking such properties of

55

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

hybrid systems [1].

• Control: Synthesis of hybrid controllers to achieve given performance goals for

a hybrid system.

• Design: Researching new high-level frameworks to improve modelling, analysis

and control of hybrid systems.

[7, 27] give a comprehensive overview of these categories, and we would recommend

reading them to gain a deeper background. In this thesis, we are only interested in

the control of a subclass of hybrid systems. The goal is to synthesize controllers that

use both discrete and continuous control inputs to control a given hybrid system.

Approaches to such control established in the literature will be presented later in this

section.

There are many examples of hybrid systems in the real world that are studied

extensively in the literature. The following are a few:

• computer disk drives [13],

• robotic systems [18],

• transmissions and stepper motors [9],

• modern flight control systems [20],

• systems with hysteresis, relays or switches [29],

• automotive control applications [10]

These systems are quite widespread and diverse. Due to the diversity of settings

relating to hybrid systems, there are generally four different approaches used in the

literature to study them, summarized in [7]:

56

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

• Aggregation focuses on the mode dynamics of the system while ignoring the

state dynamics [2],

• Continuation ignores the mode dynamics by augmenting the state dynamics

to simulate the behaviour of the mode dynamics [8],

• Automata approach views the hybrid system as a network of interfacing

automata. This approach was fully established by Nerode and Kohn in [17],

• Systems approach views the hybrid system as a set of interacting dynamical

systems [7].

The different approaches listed above allow researchers to study different aspects,

properties, and behaviours of hybrid systems. The choice of approach depends heavily

on the overall goal of the research or application. In our research, we take the systems

approach of study.

To establish a general framework for describing hybrid systems, a few concepts

must be discussed. Namely, the state dynamics and mode dynamics must be formally

defined. This is examined in the next sections.

2.2 State Dynamics

To provide the setup for hybrid systems, we must first define the state dynamics. A

continuous state-space system is comprised of a set of state variables x ∈ X ⊆ Rn,

and a set of external inputs u ∈ U ⊆ Rm. These are related to each other by a set of

57

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

differential equations taking the form

ẋ = f(x, u) (2.2.1)

y = h(x) (2.2.2)

where y is the system output.

The state dynamics of the system may also be approximated by a discrete-time

set of difference equations using a variety of methods, including exact discretization

and Runge-Kutta Methods. The most basic method for solving ordinary differential

equations with a given initial value which belongs to the Runge-Kutta family is the

Euler Method [4]. In this thesis, we will not deal with complex differential equations,

so the Euler Method is sufficient for our purposes. Given an ODE

y′(t) = f(t, y(t)), y(0) = y0

the one-step solution to the ODE is

yn+1 = yn + hf(tn, yn)

where h is a sufficiently small step size and

tn = t0 + nh.

58

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Once discretized, the state dynamics of the system take the form

x(n+ 1) = f(x(n), u(n)) (2.2.3)

y(n) = h(x(n)). (2.2.4)

2.3 Mode Dynamics

Mode dynamics are often described using finite automaton. Finite automaton are

described by the triple

(Q,A, δ)

where Q = {q0, q1, ..., qK} is a finite set of K modes, A is a finite set of symbols, and

δ : (Q × A) → Q is a transition function describing the next state given a symbol.

FSMs are often visualized using graphs, where the discrete states described by Q are

the vertices, and the edges given by δ. For example, this FSM

q0 q1

q2

a

b

c a

c

describes a triple

(Q,A, δ) (2.3.1)

where Q = {q0, q1, q2}, A = {a, b, c} and, for example, δ(q0, a) = q1.

59

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

2.4 General Hybrid Systems

Given the generality of the dynamics defined by (2.2.4) and (2.3.1), as well as the

relative novelty of hybrid systems in the literature, there are many different ways a

hybrid system may be defined. However, one definition is widely used in literature

such as [7, 27, 28]. This definition is also one used by well-known hybrid systems

analysis tools such as HyTech [1].

A hybrid system may be described by a tuple

H = (Q,X , Y, F, δ, I, G,A)

where Q = {q1, ..., qK} is the set of system modes, X is the set of allowable states

that satisfy the system constraints, Y is the set of continuous system outputs, F =

{fq1 , ..., fqK} is the set of differential equations that describe the state dynamics of

the system, δ is a transition function describing the discrete dynamics of the system,

I = {iq1 , ..., iqK} is a set of invariants that must remain true while the system is in a

given mode, G is a guard function that must be true for a discrete transition to occur

and A is a transition action that describes the continuous state of a hybrid system

after a mode switch.

60

Chapter 3

Switched Systems

By construction, hybrid control systems are very general. Therefore, obtaining practi-

cal algorithms to synthesize controllers for them, or proving the existence of solutions

for any system that can be described using the general hybrid system framework in

the first place has proven to be difficult [27]. Therefore, we must restrict the definition

to a meaningful but computationally tractable subclass.

3.1 Switched Systems

Switched systems are a class of hybrid systems with dynamic systems representing the

state dynamics and discrete switching events representing the mode dynamics [16].

Switching events are represented using a switching signal σ which specifies the mode

of the system at a given time or state. Switched systems are classified in many

ways, but the most important classifications that pertain to this thesis are as follows:

controlled switched systems choose the mode q at any given time based on a

“higher process”, such as a supervisor or human operator, while switching events

61

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

in autonomous switched systems may be a function of time or state [7]. The

definition of the switching signal for autonomous systems depends on the type of

autonomous switched system in question, as it may be a function of state or time.

This is discussed below.

In state-dependent autonomous switched systems, switching signals are a

function of the system state and occur when the system state reaches a switching

surface, which is a surface that exists in Rn. The switching signal σs(x) for such

systems maps the system state to a mode of the system, and is defined as

σs : Rn → Q.

Switching signals of time-dependent autonomous switched systems are a

function of time for systems with continuous state dynamics and step for systems

with discrete state dynamics. The switching signal σn(n) for time-dependent switched

systems in discrete-time defines the mode of the system at all steps n in the system

evolution. Thus, it is defined as

σn : N→ Q.

Assumption: In this thesis, we will focus on autonomous switched systems

with time-dependent switching, henceforth referred to as TDSS. State

dynamics for TDSS are modelled by

x(n+ 1) = fq(x(n)) (3.1.1)

y(n) = hq(x(n)). (3.1.2)

62

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

The triple

H = (Q,X , F) (3.1.3)

fully defines the TDSS, with parameters previously established in Section 2.4. As we

can see, switched system models are much simpler and focus mainly on the system’s

state dynamics.

3.2 Controllers

In order to discuss controllers for switched systems of interest, we must define the

notion of a solution for a TDSS. Given an initial state x0, a solution of a TDSS with

discrete state equations is a time-dependent switching signal σ(n). For a solution to

be proper, it must also satisfy the following:

• x(0) = x0,

• x(n+ 1) = fσ(n)(x(n)),

• System constraints must be satisfied.

Using a proper solution to the system means the system state evolves as follows:

x(0) −−→
fσ(0)

x(1) −−→
fσ(1)

x(2) −−→
fσ(2)

...

Given the above definition of a proper solution, controllers are defined as strategies

that generate proper solutions to a system to achieve prescribed control objectives.

Given any allowable initial state x0, a controller C : X → Q will produce a unique

proper solution to the system. In the case of a TDSS, this is a switching signal σ(n).

63

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

3.3 The TDSS Optimal Control Problem

In order to describe the optimal control problem for a TDSS, a performance measure

J must be defined. J , also called the cost function, is described as a sum representing

the cumulative cost over a trajectory, and a term representing the terminal penalty.

Given a switching signal σ(n), the cost function over a a prediction horizon N is

JN =
N−1∑
n=0

lσ(n)(x(n)− xf) + φ(x(N)− xf) (3.3.1)

where xf is the desired final state of the system, and constraints may be present on

the system state. Thus, the TDSS Optimal Control Problem is defined as follows:

Given a TDSS H, initial state x0 and a prediction horizon N, find a controller C(x)

such that

1. The state constraints are satisfied

2. The performance measure JN is minimized over switching signal σopt(·)

If these conditions are satisfied, C(x(n)) = σopt(n) is the optimal controller for this

system.

Mathematically,

argmin
σopt(·)

JN s.t. TDSS model H and initial state x0

64

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

3.4 Switched System Control Schemes

While switched systems are a relatively new field of study in control theory, various

control schemes have already been established for them in literature. In [16], the au-

thor presents two common control schemes for switched systems: sliding mode control

and hysteresis switching. In a sliding mode control scheme, the goal is to control the

switched system by “sliding” along a switching surface S which is chosen to meet

control objectives. However, as discussed by the author, this control scheme often

leads to chattering, a phenomenon where the system successively switches between

modes infinitely. Such behaviour is often undesirable in real-world systems, as it leads

to excessive physical device wear. Hysteresis switching aims to solve this problem by

adding a hysteresis band around the switching surface, such that the controller simply

keeps the system within the hysteresis band, greatly decreasing instances of chatter-

ing. Other well-known control schemes that may be applied to switched systems

such as relay control (sometimes known as on-off control), gain scheduling and fuzzy

control, are discussed in more detail in [27].

More modern approaches to switched control systems have also been used in lit-

erature. The authors of [15] examine the use of Model Predictive Control (MPC) to

solve the switched system. In general, MPC is considered an optimization problem,

where the optimal control sequence is found over a sliding horizon. This makes it a

good candidate for controlling switched systems since the mode switching is included

in the optimization problem in addition to the optimization of the continuous control

input. For background on MPC, readers are encouraged to review [12].

Another approach is discussed in [30] which adapts the Linear Quadratic Reg-

ulator for systems with discrete state dynamics to switched systems, named the

65

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

“Discrete-time Switched Linear Quadratic Regulator” (DSLQR). As in the standard

LQR controller, the DSLQR only applies to Linear Time-Invariant (LTI) systems with

quadratic cost functions. The key concept introduced in the DSLQR is the Switched

Riccati Set (SRS), which is a set of matrices describing the Discrete Riccati Equations

of the switched system for all possible trajectories of the mode dynamics over a finite

time horizon. As noted in the paper, the SRS allows us to use Dynamic Programming

principles to find the optimal controller. Issues of stability and implementation are

also discussed.

In [21], the author proposes an optimal controller for switched systems. The

proposed approach is not limited to LTI systems or specific cost functions. Multi-

ple possible cost functions are proposed. The proposed approach is also based on

Dynamic Programming principles, where the “Hybrid Bellman Equation” is the re-

cursive relation introduced in this work to numerically approximate the solution of

the optimal control problem for switched systems. This relation is directly based on

the Bellman Equation introduced in [5], but adapted to switched systems. Through

optimization of the Hybrid Bellman Equation, as well as a discretization of parts of

the continuous state space where switches occur, a controller is found.

66

Chapter 4

Dynamic Programming

Dynamic Programming (DP) has long been established as a key concept for solving

optimal control problems. While we will present DP to derive the solution for the

TDSS Optimal Control Problem, it has wide-ranging applications for solving multi-

stage decision problems [19], where sequential decisions must be made to determine

a solution for the overall problem.

4.1 Principle of Optimality

The key concept behind DP is the Principle of Optimality, presented by Bellman in

his work [5] as follows:

An optimal policy has the property that whatever the initial state and initial deci-

sions are, the remaining decisions must constitute an optimal policy with regards to

the state resulting from the first decision.

Disregarding the exact definition of a policy and optimal policy, for now, this

67

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

concept is quite intuitive, and can be demonstrated through a simple example of a

multi-stage process.

a

b

c a

b

c

d

Figure 4.16: (a): Optimal path from a to c (b) Two possible paths from b to c

Suppose that the first decision made in the system described by Figure 4.16 results

in the segment a− b, with cost Jab. Now assume that the rest of the decision making

results in the segment b − c, with cost Jbc. The optimal path from a to c is then

a − b − c, with overall cost J∗ac = Jab + Jbc. This means that the optimal path from

b to c is the segment b − c. If there exists a segment, for example, b − d − c with

Jbdc < Jbc, then Jab + Jbdc < Jab + Jbc = J∗ac. This cannot be true, since we know that

the optimal path from a to c is the segment a− b− c.

4.2 The cost-to-go function

Drawing on the principle of optimality, we derive a recurrence relation to solve the

TDSS Optimal Control problem. First, we introduce the cost-to-go function V . The

cost-to-go function describes the cost of going from one state x(n) to the next state

x(n+ 1) while satisfying the system dynamics and the state constraints. To be more

precise, the cost-to-go function V π(x) is given by

V π(x) = lπ(x)(x) + V π(fπ(x)(x)). (4.2.1)

68

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

The policy π : Rn → Q is a function that maps any system state x to a mode q.

This recurrence relation is derived from the Bellman Equation [5], and allows us to

numerically solve the optimal control problem.

We define Π as the set of all possible policies for a given system. The performance

of different policies π ∈ Π relative to each other may be evaluated based on the

resultant cost-to-go function. For example, given two policies π1, π2 ∈ Π, π1 is better

for some state x if

V π1(x) < V π2(x).

The optimal policy π∗ ∈ Π is one where

V π∗
(x) ≤ V π(x) ∀x ∈ X , π ∈ Π.

There are several methods established in the literature refine the cost-to-go function

(4.2.1). Here, we choose to use the Value Iteration algorithm to do the refinement,

which is well-established as an approach to DP in the context of Optimal Control [6].

First, V is initialized using the terminal cost defined in cost function J as

V 0(x) = φ(x) ∀x ∈ X .

Following this,

V n+1(x) = min
q

(lq(x) + V n(fq(x))) ∀x ∈ X ,

where q ∈ Q, and n ∈ {0, 1, ..., N − 1}. Once a point is reached where the cost-to-go

function cannot be improved for any state, it has converged. We can then use a

“greedy scheme” to find the optimal policy π∗. A greedy scheme is one where we

69

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

only minimize the cost-to-go value of the immediate state evolution according to the

given mode. This scheme is applied by

π∗(x) = argmin
q

V (fq(x)).

Relating the optimal policy back to controllers defined in Section 3, the optimal

controller will generate a switching signal σopt(n) such that

σopt(n) = π∗(x(n)).

70

Chapter 5

Computational Approximation of

the Optimal Policy

This section aims to tackle the issue of computing an approximation of the optimal

control policy using dynamic programming. First, issues relating to the direct appli-

cation of dynamic programming will be discussed. Next, we will address the problem

of discretizing the state space. Finally, we will present the implementation of the

proposed method.

5.1 Problems with Practical Implementation of DP

for Control

In the previous section, we introduced equation (4.2.1) and stated that it can be used

to define an optimal policy π∗. Switched systems such as the ones used in this thesis

lend themselves nicely to dynamic programming. The discrete controls inputs can

71

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

be seen as discrete actions, and finding the optimal policy simply involves finding

the best mode, or action, for the system at any given state. In practice, this is

not straightforward. For example, in [25] dynamic programming is used to solve the

optimal control problem, and numerical issues relating to the boundary lines created

by system constraints are discussed. The following are two problems that make the

implementation challenging:

• State explosion: The implementation becomes computationally intractable

with increasing states and state spaces, as the problem grows exponentially.

• State space discretization: The Bellman Equation is based on discrete pro-

cesses, so the state space for continuous systems must be segmented such that

discrete approaches can be applied.

5.2 Discretization of the State Space

To discretize the state space for the purpose of approximating the cost-to-go function

V , we segment the space into a map. By doing so, every state is mapped to a specific

cell. Many system states may be mapped to the same cell in this setup, but the same

state may not be mapped to multiple different cells. As an example, assume x1 is a

state variable constrained to the interval [0, 10). If we chose to segment the state space

for x1 into 2 even segments, all states x1 ∈ [0, 5) would map to the first segment, and

x1 ∈ [5, 10) would map to the second segment. Notice that the number of segments

each state variable’s state space is split into may not be uniform, which can be of

great use. For example, different coordinate systems such as Cartesian, radial, and

polar coordinates may each be used for different state variables. This means that an

72

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

independent analysis of each state variables’s limits and the appropriate number of

segments can be performed, which is greatly beneficial.

A key aspect of this approach that must be examined is the state variable constraints.

Since the state space must be constrained to a finite number of segments to use

dynamic programming approaches, the state variables’ state space is limited to a

bounded box.

The limits of the bounded box heavily depend on the problem and directly affect the

number of segments the state space is split into. Having too few segments results

in too coarse of a discretization of the system dynamics, as jumps between segments

happen less frequently. On the other hand, making the segments too fine means

computations become computationally intractable.

73

Chapter 6

Implementation

In this section, the computation of the approximated optimal policy π∗ will be dis-

cussed. Only an approximation of π∗ can be found due to the discretization of the

state space. To find the exact optimal policy, the cost-to-go function V (x) would have

to converge for every possible state x in the state space, which is computationally

intractable. By creating a map of the state space with a finite number of segments,

and choosing a representative state for each segment, we approximate the function

V (x) which in turn leads to an approximated optimal policy π∗. The representative

state of a cell is used in computations to represent all states contained in the cell.

First, the implementation modules will be discussed. Following that, the most impor-

tant parts of the implementation algorithm will be presented. The implementation of

the controller synthesis algorithm was programmed in C++, with the linear algebra

operations handled by the Eigen library [14].

74

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

6.1 Modules

There are several modules necessary for the implementation of the proposed controller

synthesis algorithm:

• Model: This module contains the system model, which consists of the set F ,

cost functions l and φ, and the set Q as defined in the switched system tuple

in Section 3. In some examples, such as the holonomic robot example provided

later, this module also contains information about the system’s environment,

such as walls that must be avoided or other obstacles.

• Model Solver: This module performs the prediction of the future system state

by solving the system’s dynamic equations contained in the Model module,

which aids in the exploration of the state space.

• Approximated Map: This module contains the discretized system state space

and has helper functions that convert the representative states of the system to

discrete cell indices and vice versa.

• DP: This is the key module in the implementation. It contains functions to

apply equation (4.2.1) and to create the final policy, as well as the cost-to-go

function V and the policy π.

6.2 Algorithm

While all modules are important to the implementation of the algorithm, only the

DP module will be expanded on in this section. Going forward, the discretized state

space will be referred to as the map.

75

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

The first step of the proposed algorithm is to initialize the map V . The variable

s is a discrete index in the discretized state space, and srep is the representative state

for the cell s in the map. Procedure Φ(srep) is external to the module, and calculates

the terminal cost Φ of srep according to the cost function J as defined in Section 3.

MAX COST is a constant value global to all modules and is a value large enough

relative to the largest cost-to-go in the system that it may be considered an infinite

value.

Inputs : V

Outputs : V

FUNCTION i n i t i a l i z e m a p

FOR each s in V

IF s s a t i s f i e s c o n s t r a i n t THEN

V [s] = Φ(srep)

ELSE

V [s] = MAX COST

END IF

END FOR

END FUNCTION

Figure 6.17: The procedure to initialize the map

There are a few things to note about this procedure. The initial cost-to-go of

any given cell depends on whether the cell satisfies the constraints or not. As shown

above, if the cell does not satisfy the state constraints of the system, the cost-to-go

of the cell is set to MAX COST. Analytically, these cells would have infinite cost.

By doing so, the system constraints are encoded directly in the cost-to-go function.

76

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

If the given cell does satisfy the system constraints, its value is set to the terminal

cost of the cell according to the function J . Since the state space is discretized, the

representative state of the cell is used to calculate the cost of the cell.

The next step is to use value iteration to refine the cost-to-go function. The

procedures step model(srep, q) and cost(srep, q) are imported from the Model Solver

module and the Model module, respectively. step model(srep, q) solves a single step

of the dynamic model with the given mode using the set F and returns the new

representative state the system is in, while cost(srep, q) returns the cost of performing

the step according to l in the cost function J . The refine map procedure takes the

current V function as input and returns a new function V ′ as output which is the

updated cost-to-go function. Variable s is a representative state of a cell as described

earlier, and the variable q is a mode in the set Q.

77

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Inputs : V

Outputs : V ′

FUNCTION re f ine map

FOR a l l s in V

IF V [s] ≥ MAX COST THEN

V ′[s] = MAX COST

ELSE

q = some mode in Q

s′rep = step model (srep , q)

minimum value = V [s′]

FOR a l l remaining q in Q

s′rep = step model (srep , q)

va lue = cos t (srep , q) + V [s′]

IF value < minimum value THEN

minimum value = value

END IF

END FOR

V ′[s] = minimum value

END IF

END FOR

END FUNCTION

Figure 6.18: The procedure to refine the map V

In this function, the single-step update using equation (4.2.1) is performed. First,

we must check whether the current cell already has a value that is greater than or

78

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

equal to MAX COST. A cell that has such a value breaks the system’s constraints

and should not be refined. The rest of the function is straightforward: the future cost

is evaluated for every possible mode the controller can choose, and the lowest future

cost the system may incur is assigned as the value of the current cell. The procedure

must choose one of the modes as the most viable. This is why the minimum value is

initialized to the value of some arbitrary mode in the set Q, as all modes are ultimately

evaluated. This procedure is iterated for N iterations, where N is the prediction

horizon for the system. If an infinite prediction horizon is used, the procedure is

repeated until convergence of V .

Finally, once the cost-to-go function has been repeated for N iterations a control

policy may be synthesized by computing the optimal policy based on the refined

function as follows.

79

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

FUNCTION make pol icy

FOR a l l s in V

IF V [s] ≥ MAX COST

π[s] = −1

ELSE

q = some mode in Q

best mode = q

s′rep = step model (srep , q)

minimum value = V [s′]

FOR a l l remaining q in Q

s′rep = step model (srep , q)

c u r r e n t v a l u e = V [s′]

IF c u r r e n t v a l u e < minimum value

minimum value = c u r r e n t v a l u e

best mode = q

END IF

END FOR

IF minimum value ≥ MAX COST THEN

π[s] = −1

ELSE

π[s] = best mode

END IF

END IF

END FOR

END FUNCTION

Figure 6.19: The procedure to synthesize the approximated optimal control policy

80

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Assigning a value of -1 to the policy is a simple way to mark cells that break the

system constraints directly, as well as cells where the system has no choice but to

take an action that leads to breaking the constraints.

81

Chapter 7

Examples

In this chapter, several examples are presented to show the effectiveness of the synthe-

sized controller. First, a pendulum is used as an example of an exponentially stable

system to demonstrate the effectiveness of the controller and how its behaviour is

directly affected by the control objectives. The second example is a single-valve tank.

This control system is a more complex system with physical constraints, so the point

of the example is to show the behaviour of the synthesized controller for such systems.

Finally, an example is presented to show a possible practical use for such a controller

in the context of autonomous motion planning.

All the simulations in this section were done using the framework presented in the

previous chapter and implemented using C++ and the Eigen library.

7.1 Pendulum

In this example, a simple pendulum with piecewise-constant discrete-valued control

inputs is considered. The continuous state dynamics are defined by the following

82

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

equations:

fq(x1, x2, t) =

ẋ1

ẋ2

 =

 x2(t)

−x1(t)− 1.2x2(t) + uq(t)


Using the Euler approximation, the discretized state dynamics are:

fq(x1, x2, n) =

x1(n+ 1)

x2(n+ 1)

 =

 x1(n) + hx2(n)

−hx1(n)− (1− 1.2h)x2(n) + huq(n)


where h = 0.01 is the discrete step size. To define the complete TDSS model Hp of

the system, Q, F , and X must be established. This control system has three modes,

thus the set of system modes is

Q = {1, 2, 3}.

The set of allowable control input values corresponding to the system modes are

U = {0, 20,−20}. F is the set

F = {f1(x1, x2, n), f2(x1, x2, n), f3(x1, x2, n)}

where

f1(x1, x2, n) =

 x1(n) + 0.01x2(n)

−0.01x1(n)− 0.012x2(n)



f2(x1, x2, n) =

 x1(n) + 0.01x2(n)

−0.01x1(n)− 0.012x2(n) + 0.2



83

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

f3(x1, x2, n) =

 x1(n) + 0.01x2(n)

−0.01x1(n)− 0.012x2(n)− 0.2


The allowable state space for the system is defined by the set X , where

X = {x ∈ R2 | − 10 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 10}.

The control objective is to reach the desired final state xf = [0.0 0.0]T . Thus, the

cost function JN is

JN =
N−1∑
n=0

x1(n)2 + 0.6x2(n)2 ∀q ∈ Q.

Choosing an arbitrary allowable initial state x0 = [5.0 0.0]T , the system was simu-

lated without any control input to establish a baseline reference for its state dynamics.

Figure 7.20 shows how the system behaves naturally. Since it is a stable system, it

converges without the need for control input.

Figure 7.20: Uncontrolled behaviour of the pendulum control system

84

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

As mentioned in Section 5, since the state space must also be partitioned into

discrete cells, a choice must be made regarding the size of the cells. In this case, the

state space was partitioned into a 1024× 1024 grid.

Having established all the definitions needed to solve the optimal control problem

for the system, it was simulated using the synthesized controller. The fact that this

system is a 2-dimensional system allows us to visualize the cost-to-go function and

the resultant synthesized controller in a plot. First, the Bellman module previously

discussed was used to learn the cost-to-go function V . Figure 7.21 shows the function

V over the state space of the system.

Figure 7.21: Cost-to-go function for the pendulum control system

This clearly shows the effect of the cost function used on the cost-to-go function

for the system. In this case, the equal weighting in the cost function means there is

a circle pattern in the cost-to-go function, where the closer the system gets to the

desired final state, the lower the cost is. The resultant policy can also be visualized

this way, as seen in Figure 7.22.

85

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 7.22: Policy for the pendulum control system

The black cells in the policy represent “bad states”. These are states that either

directly break the system constraints or where it is impossible for the system to take

any action which does not eventually lead to breaking the system constraints. Figure

7.22 also shows the phase portrait of the system overlaid on the policy. This shows

that the controller does take actions that take the system to the desired cell. Finally,

Figure 7.23 shows the system’s trajectory and control history.

86

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

(a) State trajectory (b) State trajectory and control history

Figure 7.23: Trajectory of the pendulum control system with the synthesized
controller

For clarity, there are two subfigures in Figure 7.23. Figure 7.23a only shows the

trajectory of the control system, whereas Figure 7.23b shows the trajectory of the

control system as well as the control history. These plots show that the system does

converge with the synthesized controller, but they also show that there is significant

chattering due to the discretization of the system’s state space.

87

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

7.2 Single Valve Tank

Figure 7.24: Diagram of the single valve tank control system

In the next example, a single-valve tank control system is simulated. The system,

shown in Figure 7.24, consists of a tank with an inflow, which is controlled by a

continuous valve, and an outflow. Continuous state dynamics for such a system are

described by the following equations:

fq(x1, x2, t) =

ẋ1

ẋ2

 =

−ax1(t) + x2(t)

uq(t)


Where x1 is the height of the liquid in the tank, and x2 is the rate of inflow into

the tank. Once again, we are interested in the discrete state dynamics, so the Euler

88

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

approximation is used to discretize the continuous dynamics as shown below:

fq(x1, x2, n) =

x1(n+ 1)

x2(n+ 1)

 =

(1− ha)x1(n) + hx2(n)

x2(n) + huq(n)


We choose h = 0.01, and a = 0.95. To define the TDSS model Ht for the system, Q,

F and X are defined. This control system has three modes, making the set of modes

as follows:

Q = {1, 2, 3}

These modes correspond to the set of allowable inputs into the system U = {0, 12,−12}.

This means that the set F is described as:

F = {f1(x1, x2, n), f2(x1, x2, n), f3(x1, x2, n)}

where

f1(x1, x2, n) =

0.9905x1(n) + 0.01x2(n)

x2(n)



f2(x1, x2, n) =

0.9905x1(n) + 0.01x2(n)

x2(n) + 0.12



f3(x1, x2, n) =

0.9905x1(n) + 0.01x2(n)

x2(n)− 0.12


There are physical constraints for the system that must be satisfied, governed by the

tank’s characteristics and the valve. The tank may not overflow or underflow, and the

size of the inflow valve affects the maximum amount of inflow there may be. Thus,

89

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

the constrained allowable state space is the set

X = {x ∈ R2 |0 < x1 < H, 0 ≤ x2 < 9},

where H = 8 is the height of the tank.

The objective of the synthesized controller for this control system was to reach

and maintain a desired liquid height r in the tank. In this case the desired height

r = 4. The cost function JN to represent this objective is

JN =
N−1∑
n=0

(x1(n)− r)2 ∀q ∈ Q.

Choosing an allowable initial state x0 = [7.0 0.5]T , a controller was synthesized

to solve the optimal control problem for the system. The system’s state space was

partitioned into a 256×128 grid.Similar to the pendulum example, this control system

is a 2-dimensional one. This means that the cost-to-go function and the policy may

be visualized with a 2D plot, as shown in Figure 7.25. This Figure shows the final

values of V and π when the algorithm was run until the convergence of V .

90

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

(a) Cost-to-go function (b) Policy

Figure 7.25: Visualization of the cost-to-go function and the policy for the tank
control system

These figures demonstrate two important features of the synthesized controller.

First, it clearly shows the effect of the chosen cost function on the cost-to-go function.

Due to the chosen desired height, the lowest costs are associated with the cells around

that target. This in turn affects the policy and the resultant controller. Second, it

shows the controller’s predictive nature. Rather than constantly changing the amount

of inflow into the tank in the direction of the target height, the controller finds the

path to a state where the inflow matches the outflow at the target height.

This is also made clear by the simulation of the system with the synthesized

controller, shown in Figure 7.26. This plot exhibits how the system behaves from the

initial conditions previously mentioned. The control input is normalized to make the

plot more readable.

91

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 7.26: Trajectory of the tank control system with the synthesized controller

7.3 Holonomic Robot

This example demonstrates a more complex application of the proposed algorithm.

The system considered is a constant-velocity holonomic mobile robot with non-linear

dynamics. Put simply, the term holonomic means that the number of controllable

degrees of freedom in the system is equal to the total degrees of freedom. For example,

this means that the robot can rotate without requiring translational movement. This

robot is defined by the following state variables:

• px: the x coordinate of the robot

• py: the y coordinate of the robot

• θ: the bearing of the robot

92

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

These state variables may be relative to the robot, the robot frame, or they may be

considered relative to the environment in which the robot operates, the world frame.

The discretized state dynamics for this system are considered in the context of the

world frame, allowing the state updates to be directly mapped to the discrete cells

that partition the robot’s state space. These dynamics are defined by the equations

below:

fq(px, py, n) =


px(n+ 1)

py(n+ 1)

θ(n+ 1)

 =


px(n) + hv cos(θ(n) + huq(n))

py(n) + hv sin(θ(n) + huq(n))

θ(n) + huq(n)


In the model above, h = 0.01 and v = 0.1. This is a slightly simplified model in that

the robot can move forward at a constant speed v but cannot stop or reverse. The

only input in the system, u, controls the turning angle of the robot at every step.

Once again, the TDSS model for this system, Hr is defined by defining the sets Q,

F , and X . The set Q, as well as the associated set of control inputs, is as follows:

Q = {1, 2, 3} U = {0, π

0.04
,
π

0.04
}

The set F can then be defined as

F = {f1(px, py, θ, n), f2(px, py, θ, n), f3(px, py, θ, n)}

93

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

where

f1(px, py, θ, n) =


px(n) + 0.001 cos(θ(n))

py(n) + 0.001 sin(θ(n))

θ(n)



f2(px, py, θ, n) =


px(n) + 0.001 cos(θ(n) + π/4)

py(n) + 0.001 sin(θ(n) + π/4)

θ(n) + π/4



f3(px, py, θ, n) =


px(n) + 0.001 cos(θ(n)− π/4)

py(n) + 0.001 sin(θ(n)− π/4)

θ(n)− π/4


The robot’s state space is the environment in which it operates. Physically, it can be

thought of as an environment where the robot can move freely, with obstacles being

state constraints on the system. Figure 7.27 shows the environment considered in

this example. The lines represent the walls of the room that the robot must avoid,

and the markers represent the start position and goal position. The state space for

the state variable θ is more difficult to visually represent but is simply the direction

in which the robot is allowed to point. Thus, the allowable state space X is the set

X = {x ∈ R3 |1 < px < 9, 1 < py < 9, (3 ≤ px ≤ 7)→ 3 < py < 9, −π ≤ θ < π}.

With Hr clearly defined, the final pieces of information necessary to for the optimal

control problem are the control objectibe described by JN and the initial state x0. In

this case, as the objective is to find the shortest allowable path from an initial state,

chosen as x0 = [2.0 2.0 π/2]T , and a desired final position, chosen as rx = 8.0 and

94

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

Figure 7.27: Robot environment

ry = 2.0. JN is then defined as

JN =
N−1∑
n=0

(px(n)− rx)2 + (py(n)− ry)2 ∀q ∈ Q.

To discretize the state space to synthesize a controller, the px and py spaces were

partitioned into 256 cells each. The θ state space could not be split into an equally

fine grid to keep the algorithm computationally tractable. However, when considering

the robot’s bearing, one can see that the cells do not need to be as fine. It is enough

to know the general direction that the robot points. Thus, the θ state space is split

into 8 distinct cells, each representing a π/4 portion of the space. This also improves

the computational resources required to synthesize the controller compared to having

a uniformly-sized grid for all state variables. Therefore, the map is partitioned into

256× 256× 8 cells.

95

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

The controller was synthesized using this control objective, and the system tra-

jectory was simulated. The results of the simulation are included in Figure 7.28 As

Figure 7.28: Trajectory of the Robot Control System with the Synthesized
Controller

we can see, the controller can find a path to the desired final target while avoiding

obstacles. It is important to note that this simulation considers the robot as a point

mass, without additional constraints for its physical body.

96

Chapter 8

Conclusion

8.1 Concluding Remarks

This portion of the thesis examined the use of Dynamic Programming as a computa-

tional tool to approximate optimal control policies for switched systems. It was shown

that due to the reliance of Dynamic Programming on discrete transitions, the contin-

uous state space of switched systems of interest must be discretized to use a Dynamic

Programming approach. Discretization of the state space means that the synthesized

control policies are only approximations of the optimal control policies, but it was

also discussed that the state space for different state variables may be discretized

into a unique number of segments. This provides opportunities for improvement of

the discretization for various systems, thus improving the performance of synthesized

controllers. A high-level overview of the controller synthesis implementation was also

discussed, which provided a framework for synthesizing the approximate controllers

computationally. Using this implementation, three classic examples were studied to

evaluate the effectiveness of the proposed algorithm. First, the pendulum example

97

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

demonstrated the effectiveness of the approximated controller for a stable system, al-

lowing for a thorough evaluation of the effect of the control objectives chosen on the

resultant controller. The single-valve tank example was used to study the synthesis

process for a more complex system with hard physical constraints. It was shown that

the algorithm produced a predictive controller that also satisfied the control objec-

tives. Finally, a holonomic mobile robot control system showed off more subtle, but

equally attractive, features of the algorithm. For one, it showed the synthesis process’

compatibility with non-linear dynamic systems. This example also demonstrated how

non-uniform discretization of the state variables’ state space would be beneficial for

some systems.

8.2 Future Work

There are various parts of this work that call for further investigation. Proposed areas

for future work are as follows:

• The use of continuous controllers to correspond to the modes of the switched

system, rather than constant control inputs,

• Improvements to the implementation of the controller synthesis algorithm to

improve numerical performance and computational effort,

• Studies into the stability of the resultant controllers,

• Studies into the robustness of the resultant controllers.

98

References

[1] R. Alur, T.A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verification of

embedded systems. IEEE Transactions on Software Engineering, 22(3):181–201,

1996.

[2] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hy-

brid automata: An algorithmic approach to the specification and verification of

hybrid systems. In Hybrid systems, pages 209–229. Springer, 1992.

[3] Panos J Antsaklis, Xenofon D Koutsoukos, and N Dame. Hybrid systems control.

Encyclopedia of Physical Science and Technology, 7:445–458, 2002.

[4] Kendall E Atkinson. An introduction to numerical analysis. John Wiley and

sons, 1989.

[5] Richard Bellman. On the theory of dynamic programming. Proceedings of the

National Academy of Sciences of the United States of America, 38(8):716, 1952.

[6] Dimitri P Bertsekas. Value and policy iterations in optimal control and adap-

tive dynamic programming. IEEE transactions on neural networks and learning

systems, 28(3):500–509, 2015.

99

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

[7] Michael S Branicky. Studies in hybrid systems: Modeling, analysis, and control.

PhD thesis, Massachusetts Inst. of Tech. Cambridge Lab for Information and

Decision Systems, 1995.

[8] Roger W Brockett. Smooth dynamical systems which realize arithmetical and

logical operations. In Three decades of mathematical system theory, pages 19–30.

Springer, 1989.

[9] Roger W Brockett. Hybrid models for motion control systems. In Essays on

Control, pages 29–53. Springer, 1993.

[10] Ken Butts, Ilya Kolmanovsky, N Sivashankar, and Jing Sun. Hybrid systems in

automotive control applications. In Control using logic-based switching, pages

173–189. Springer, 1997.

[11] Elena De Santis, Maria Domenica Di Benedetto, et al. Observability of hybrid

dynamical systems. Foundations and Trends in Systems and Control, 3(4):363–

540, 2016.

[12] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:

Theory and practice - a survey. Automatica, 25(3):335–348, 1989.

[13] Aleks Gollu and Pravin Varaiya. Hybrid dynamical systems. In Proceedings of

the 28th IEEE Conference on Decision and Control, pages 2708–2712. IEEE,

1989.

[14] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

100

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

[15] WPMH Heemels, B De Schutter, J Lunze, and M Lazar. Stability analysis

and controller synthesis for hybrid dynamical systems. Philosophical Transac-

tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

368(1930):4937–4960, 2010.

[16] Daniel Liberzon. Switching in systems and control, volume 190. Springer, 2003.

[17] Anil Nerode and Wolf Kohn. Models for hybrid systems: Automata, topologies,

controllability, observability. In Hybrid systems, pages 317–356. Springer, 1992.

[18] Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, To-

bias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas

Heess, and Martin Riedmiller. Continuous-discrete reinforcement learning for

hybrid control in robotics. In Conference on Robot Learning, pages 735–751.

PMLR, 2020.

[19] Singiresu S Rao. Engineering optimization: theory and practice. John Wiley &

Sons, 2019.

[20] Shankar Sastry, George Meyer, Claire Tomlin, John Lygeros, Datta Godbole, and

George Pappas. Hybrid control in air traffic management systems. In Proceedings

of 1995 34th IEEE Conference on Decision and Control, volume 2, pages 1478–

1483. IEEE, 1995.

[21] Angela Schöllig. Optimal control of hybrid systems with regional dynamics. PhD

thesis, Georgia Institute of Technology, 2007.

[22] M Shahid Shaikh and Peter E Caines. On trajectory optimization for hybrid

systems: Theory and algorithms for fixed schedules. In Proceedings of the 41st

101

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

IEEE Conference on Decision and Control, 2002., volume 2, pages 1997–1998.

IEEE, 2002.

[23] M Shahid Shaikh and Peter E Caines. On the optimal control of hybrid sys-

tems: Optimization of switching times and combinatoric location schedules. In

Proceedings of the 2003 American Control Conference, 2003., volume 4, pages

2773–2778. IEEE, 2003.

[24] M Shahid Shaikh and Peter E Caines. Optimality zone algorithms for hybrid

systems computation and control: From exponential to linear complexity. In

Proceedings of the 44th IEEE Conference on Decision and Control, pages 1403–

1408. IEEE, 2005.

[25] Olle Sundström, Daniel Ambühl, and Lino Guzzella. On implementation of dy-

namic programming for optimal control problems with final state constraints. Oil

& Gas Science and Technology–Revue de l’Institut Français du Pétrole, 65(1):91–

102, 2010.

[26] Héctor J Sussmann. Set-valued differentials and the hybrid maximum principle.

In Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.

00CH37187), volume 1, pages 558–563. IEEE, 2000.

[27] Arjan J Van Der Schaft and Johannes Maria Schumacher. An introduction to

hybrid dynamical systems, volume 251. Springer, 2000.

[28] Martin von Mohrenschildt. A hybrid controller for a nonholonomic car-like robot.

In ICINCO, pages 282–288, 2005.

102

M.A.Sc. Thesis – H. Elaghoury McMaster University – Software Engineering

[29] Hans Witsenhausen. A class of hybrid-state continuous-time dynamic systems.

IEEE Transactions on Automatic Control, 11(2):161–167, 1966.

[30] Wei Zhang, Jianghai Hu, and Alessandro Abate. A study of the discrete-time

switched LQR problem. 2009.

103

	Acknowledgements
	I State Estimation of Sinusoidal Signals using the Extended Kalman Filter
	Introduction
	Background
	Problem Setting
	Regression
	DFT
	Linear Prediction
	Kalman Filter
	Kalman Filter
	Extended Kalman Filter
	Estimation Using the EKF
	Real Numbers Approach
	Complex Numbers Approach
	Evaluation
	Experimental Setup
	Implementation
	Convergence
	Estimation Error
	Real Data
	Summary
	Conclusion
	Concluding Remarks
	Future Work
	II Synthesis of Switched System Controllers using Dynamic Programming
	Introduction
	Hybrid Systems
	Background
	State Dynamics
	Mode Dynamics
	General Hybrid Systems
	Switched Systems
	Switched Systems
	Controllers
	The TDSS Optimal Control Problem
	Switched System Control Schemes
	Dynamic Programming
	Principle of Optimality
	The cost-to-go function
	Computational Approximation of the Optimal Policy
	Problems with Practical Implementation of DP for Control
	Discretization of the State Space
	Implementation
	Modules
	Algorithm
	Examples
	Pendulum
	Single Valve Tank
	Holonomic Robot

	Conclusion
	Concluding Remarks
	Future Work

