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ABSTRACT

Viscoelastic properties of polymer melts are particularly challenging to compute due to the intrinsic stress fluctuations in molecular
dynamics (MD). We compared equilibrium and non-equilibrium MD approaches for extracting the storage (G’) and loss moduli (G”) over a
wide frequency range from a bead-spring chain model in both unentangled and entangled regimes. We found that, with properly chosen
data processing and noise reduction procedures, different methods render quantitatively equivalent results. In equilibrium MD (EMD),
applying the Green—Kubo relation with a multi-tau correlator method for noise filtering generates smooth stress relaxation modulus profiles
from which accurate G’ and G” can be obtained. For unentangled chains, combining the Rouse model with a short-time correction provides
a convenient option that circumvents the stress fluctuation challenge altogether. For non-equilibrium MD (NEMD), we found that combin-
ing a stress pre-averaging treatment with discrete Fourier transform analysis reliably computes G' and G” with a much shorter simulation
length than previously reported. Comparing the efficiency and statistical accuracy of these methods, we concluded that EMD is both reliable
and efficient, and is suitable when the whole spectrum of linear viscoelastic properties is desired, whereas NEMD offers flexibility only when
some frequency ranges are of interest.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090540

I. INTRODUCTION

The linear viscoelastic (LVE) properties of polymers provide
unique insight into their structure and also govern the flow behavior
during processing. These properties are usually measured by a small

coarse-grained models, accurate determination of viscoelastic proper-
ties in MD must still overcome the challenges of long relaxation times
and strong stress fluctuations. In particular, for highly entangled poly-
mers, MD must be combined with high-level polymer dynamics mod-

displacement of the polymer molecules from their equilibrium posi-
tions, thereby ensuring that the response is still in the linear regime.
Experimentally, LVE properties are determined by a small-amplitude
oscillatory shear (SAOS) experiment,”” which provides the storage
(G) and loss (G”) moduli of the material over a frequency spectrum.
The accessible frequency ranges are limited by either the equipment
capabilities or the degradation of the polymers at high-shear rates or
temperatures. The high-shear rate challenge is typically mitigated by
the temperature superposition technique.

Owing to the range of time and length scales involved, computing
the viscoelastic properties of polymers in molecular dynamics (MD)
simulations still remains a formidable task. Indeed, for long-chain pol-
ymers, it remains unrealistic to capture the whole spectrum of linear
viscoelasticity using fully atomistic molecular models. Even for highly

els for quantitative prediction.’

Regardless of the model being used, extraction of viscoelastic
properties from MD simulations is an essential step. This can be
achieved with either equilibrium or non-equilibrium MD (EMD or
NEMD) simulation. The EMD approach samples the spontaneous
stress fluctuations in the thermodynamic ensemble of the system. The
shear stress relaxation modulus G(f), from which linear viscoelastic
material functions are calculated, is related to the time autocorrelation
function (TACEF) of the stress tensor through the Green—Kubo (GK)
relation.” The NEMD approach, on the other hand, models the flow
condition of rheological measurement from which the corresponding
material function is directly computed.”

Take shear viscosity that is the most computed rheological prop-
erty in the literature for example. Since the EMD approach simulates
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equilibrium conditions, it can only provide the zero-shear viscosity as
a temporal integral of the relaxation modulus

(o8}
Ny = }ir?) n= [ G(t)dt (1)
= Jo

(where 7 is the shear rate). By contrast, the NEMD approach simulates
the steady shear flow condition and calculates the viscosity by dividing
the steady-state shear stress by the shear rate. For simple liquids such
as the Lennard—Jones (L]) fluid, shear viscosity values from EMD and
NEMD approaches agree well.”” Although there was a general percep-
tion that the EMD approach is prone to large statistical uncertainty
due to intense stress fluctuations in molecular systems and difficult
convergence of the integral in Eq. (1), it has been shown that reliable
results are attainable with careful selection of the integration limits
and data processing procedure.”* For polymers, viscosity is in general
a function of shear rate, but a Newtonian plateau exists at the small
limit. Extrapolation of the 5(7) profile from NEMD to the 7 = 0 limit
again agrees well with the EMD value from Eq. (1).” "

The focus of this study is on the full spectrum of linear viscoelas-
tic properties as reflected in the frequency (w)-dependent G'(®w) and
G’(w) profiles. Compared with shear viscosity, the computational
cost for obtaining G’ and G” is significantly higher (in both EMD and
NEMD) as viscoelastic responses at a wide range of frequencies are
now required. The EMD approach again relies on the GK relation and
was first reported by Sen et al.,'” followed by a number of later devel-
opments.*'” Many more studies reported the EMD results of G(t) but
did not convert it to G'(w) and G"(w)."® ** The NEMD approach
simulates the sinusoidal oscillatory shear flow (modeling the SAOS
condition) and obtains G' and G” from the time-dependent shear
stress signal. Those efforts date back to earlier studies by Cifre et al.”’
and Vladkov and Barrat,"” and NEMD results of G and G” were also
reported more recently by Karim et al.”*

Information on the comparison between these two approaches is
rather limited. For the bead-spring chain or Kremer—Grest (KG)
model” of very short-chain length (N=10 and 20), Vladkov and
Barrat'’ conducted a comparative study between EMD and NEMD
approaches for polymer viscoelasticity. Direct comparison between the
GK and NEMD approaches, however, was only reported for the zero-
shear viscosity. The study did not report the G’ and G” results from
the GK relation because it was not able to extract statistically meaning-
ful results buried under strong noises. It instead proposed a corrected
Rouse mode analysis ((RMA) approach that brings in MD data to fill
in the short-time dynamics missing in the Rouse model. The method
is fundamentally still an EMD approach, but its viability relies on the
accuracy of the Rouse model that is designed only for unentangled
polymers. For the short chains studied, good agreement was found
between G’ and G” results from cRMA and NEMD. More recently,
Karim et al”>”* compared NEMD results of G’ and G”, for N=20
and 80, from several sources with the GK results of Sen et al."> Good
agreement is generally found in the frequency range tested by NEMD
(typically fewer than three decades) with discrepancy sometimes
observed at the low-frequency (long-time) limit where statistical
uncertainty is highest in both methods.

The purpose of this study is to determine which method is better
for the accurate calculation of G’ and G” over a wide frequency range.
Many researchers seem to prefer NEMD because of the general belief
that EMD is more affected by strong stress fluctuations. Indeed, the

scitation.org/journal/phf

large noise-to-signal ratio in the long-time tail of G(f) obtained from
the GK relation has sometimes caused erroneous conclusions in
previous studies.” It takes extremely long EMD simulations to effec-
tively reduce the statistical uncertainty in G(t). For shear viscosity
calculation, it is widely accepted that NEMD requires substantially
less computational cost for satisfactory accuracy.”®”*” We note
that this advantage does not straightforwardly translate to G'(w)
and G’(w) calculation because NEMD must be separately per-
formed for each frequency level of interest, while the EMD
approach allows the calculation of the whole spectrum with one
long simulation run.

In this study, we directly compare the accuracy and efficiency of
EMD and NEMD approaches for computing G'(®) and G”(w) pro-
files. This is the first time these two approaches are compared with
identical molecular models, which will allow us to identify the discrep-
ancies, if any, that are attributed solely to the difference in the method-
ology for computing viscoelastic properties. In addition to evaluating
the quantitative equivalence between their results, efficiency, in terms
of which method provides statistically more accurate results with lim-
ited computational resources, is also a key consideration. For EMD,
our primary focus is on the GK approach, but we also include the
cRMA approach for completeness. Methods are evaluated in monodis-
perse melts of KG chains with N=25 to 350, covering both unen-
tangled and (moderately) entangled regimes. To our knowledge,
NEMD calculation of G’ and G” has not been previously reported for
entangled polymers. Both categories of methods are strongly influ-
enced by statistical errors due to stress fluctuations in MD simulation.
We have experimented with various noise reduction techniques and
present the best procedure that we find for each method. This allows
us to compare the methods on an equal footing, that is, each method
is evaluated at its optimal settings. Therefore, in addition to guiding
the choice of method for computing viscoelastic properties, the study
also aims to demonstrate the best practice in each approach.

Il. METHODS
A. Simulation details

We model the polymer chains using the classical Kremer—Grest
(KG) bead-spring chain model.”” Consecutive beads in a polymer
chain interact with the finitely extensible non-linear elastic (FENE)

spring potential
AR
\r r 4

2

where r represents the distance between the beads, and ¢ and € are the
LJ length and energy parameters, respectively. The first term of the
equation models an attractive potential due to the entropic interaction
between the polymer segments, which diverges at a maximum bond
length Ry = 1.50. The second term represents the repulsive force
between beads and is only included at distances 7 < 2ia. The spring
force K = 30¢/g? allows the use of a large integration time step and
also prevents the bonds from cutting through each other. The interac-
tion potential between the non-bonded beads is modeled by the stan-
dard Lennard-Jones (LJ) potential

k]

1 2 r\?
U}:ENE(T) = _EKRO Inf1— (R7>

0
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o)) o

for which a cutoff of 2.5¢ is used and a vertical offset is added to
ensure continuity at the cutoff. All the results are reported in reduced
L] units, and length, energy, time, and temperature values are scaled
by o, €, 1 = \/ma?/e, and €/kp (kg is the Boltzmann constant),
respectively.

The chain lengths studied range from the unentangled N=25
and 50 to marginally entangled N=100 and moderately entangled
N =350 cases.”’ The N= 350 case contains a total of 56 000 beads in
the simulation box, while all other cases contain 50 000 beads in each
simulation box. All simulations were performed at a constant bead
density of 0.85 3. The corresponding simulation box size, measured
by the length of each edge, ranges from 38.90¢ (for 50 000 beads) to
40.38¢ (for 56000 beads). In Adeyemi et al,”’ we have reported
Flory’s characteristic ratio C, = 1.75 for the KG polymer melt used
in our study. The mean end-to-end distance R of the chains can be cal-
culated using R*=C, mf, where n = N — 1 is the number of bonds
and 1, = 0.97¢ is the equilibrium FENE bond length. Even for
N =350, that is, the longest chains studied, the estimated R = 23.900,
which is still sufficiently short, in comparison with the box dimension,
to prevent interaction between periodic images of the same chain. The
temperature of the simulations was maintained at le/kg with
Nosé-Hoover chains.

All the simulations were carried out using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) pack-
age.”” The equation of motion was integrated using the velocity
Verlet algorithm with a time step of At = 0.01 (in L] time units or
TUs). For selected cases, we have repeated the simulation with
At = 0.005 and confirmed that the results do not depend on the
time step size.

Initial configurations were generated by randomly placing the
specified number and types of chains in a cell following a self-avoiding
walk conformation statistics. The structures were further equilibrated
using a modified dissipative particle dynamics (DPD) push-off step””
during which a soft repulsive potential

A r
%n(l ——> (r<re),

Uppp(r) = Te (4)

0 (r>r)

was used to replace the L] potential [Eq. (3)] between the non-bonded
beads. DPD equilibration was performed at 7= 1.0 and used a cutoff
distance r. = 1.0. The DPD potential was initially kept low at
Appp = 25. At the beginning, we restricted the maximum distance
that each bead can move in a single time step and gradually increased
it from 0.001 to 0.1 over 15TUs. After the restriction was removed, we
further ran the DPD simulation for another 100TUs, following which
Appp was gradually ramped up to 100 over 5TUs. Finally, we replaced
the DPD potential with the standard LJ potential [Eq. (3)] and per-
formed MD simulation in an NVT ensemble for another 500TUs dur-
ing which a random velocity distribution was assigned to all the beads
every 0.5TUs. Mean square internal displacement of the chains, which
is a sensitive indicator of unrelaxed chain conformations,”® was exam-
ined to ensure the convergence of the equilibration procedure—see
Adeyemi et al.”’

scitation.org/journal/phf

B. Equilibrium molecular dynamics (EMD)
or Green-Kubo (GK) Approach

The GK relation relates the shear stress relaxation modulus G(t)
to the TACF of shear stress fluctuations

- % (00 ()55 (0)), (5)

where V is the volume of the system, T is the temperature, and o, is
an off-diagonal stress component. The major challenge in using this
approach is the intense fluctuations of the stress TACF, which is par-
ticularly severe at the terminal (large #) regime. One strategy for the
reduction of fluctuation is by pre-filtering the stress signal with a mov-
ing average before the TACF is calculated.**” Alternatively, a moving
average may be applied directly to the G(¢) profile.'” The window size
for a moving average must be carefully selected to prevent the data
from being overly smeared. Lee and Kremer'” found that G(f) calcu-
lated from the filtered o,,(t) signal is artificially reduced at the short-
time end, but argued that, with properly chosen window size, the long-
time behavior of G(¢) is unaffected. Nevertheless, using a fixed window
size in the moving average approach is intrinsically limited because
not only are the fluctuations coming from various frequencies, but the
uncertainty in G(t) also grows with the time lag t due to the diminish-
ing number of independent segments for averaging in a fixed-length
time series. For this reason, strong fluctuations at the long-time limit
of G(f) cannot be effectively tamed with a moving average,'”*"*’
which is often a cause of erroneous results.”

A more delicate multi-tau correlator method, proposed by
Ramirez et al.,”" was used in this study. From our practical experience,
the method generates an adequately smooth G(t) profile across nearly
the whole range of time lag except at the very long time end where the
relaxation modulus has nearly vanished. The idea is to filter the stress
signal gy, (t) and calculate its TACF on the fly with a multi-level hier-
archical data structure. Each level contains p data points. Level 0 stores
the most recent p points from the time series, from which TACF for
time at t = 0At, 1At, ..., (p — 1)At, is calculated and also stored. At
level I (I > 1), each data entry is the average between m data points
from level I — 1 and the most recent p block averages (each covers '
data points in the original time series) are stored. Correspondingly, the
TACE stored at each level also covers a longer time lag than the previ-
ous one. Effectively, this method filters o, (t) with progressively larger
window size for the TACF calculation at longer time lags. We used
m=2 and p= 16 as recommended by Ramirez et al.’’

The equivalence between shear stress components of different
directions in an isotropic fluid is also leveraged to reduce statistical
error. Average over TACFs of those equivalent components is

expected to have lower uncertainty than that of a single component
32

G(t)
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0. The particular form used in this study
\%4
G(t) ~5%T (62 ()3 (0)) + (0,2 (£)3,2(0)) + (62 (1) 52 (0)) ]
\%4
T 30ksT [(Niy (£)Niy (0)) + (N (£) Nz (0)) + (N, (£)N,.2(0)) ],
(6)
where
Naﬂ = Oyy — O‘/gﬂ. (7)
(o, p = x,y,z) is the same as that used in Ramirez et al”!
34,053107-3
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Combining these measures allowed us to produce an adequately
smooth G(#) for the computation of the dynamic moduli G’ and G”
through

G=ow ro G(t)sin(wt)dt (8)
0

and

(o0}
G' = wJ G(t)cos(mt)dt. 9)
0

Numerical evaluation of Egs. (8) and (9) is not as straightforward as it
may appear, because the multi-tau correlator method returns G(f) on
a non-uniform grid: the spacing between consecutive points increases
with time lag ¢. Likhtman et al™ fitted the G(¢) profile to a series of
Maxwell modes, from which the integrals were evaluated analytically.
The Maxwell modes approximate G(f) with the superposition of expo-
nential decay functions, which thus cannot capture oscillations in the
profile. We used a different approach in which we approximated G(f)
with piecewise linear functions and integrated each piece analytically.
With sufficient resolution, this treatment retains all the variations in
the G(f) profile while also avoiding non-linear regression. Details of
our method are given in Appendix A.

As listed in Table I, multiple separate EMD simulation runs were
performed for each case and the average of those independent runs
was reported. The duration of each independent simulation run
matches that of the corresponding chain length in Likhtman et al."*

The EMD approach is particularly appealing because one simula-
tion run contains the information for the whole LVE profile.
Meanwhile, if information is desired outside the linear regime, NEMD
would be the only viable approach.

C. Non-equilibrium molecular dynamics (NEMD)
approach

The NEMD technique measures the system’s unsteady response
to an induced perturbation. Unlike the EMD method, this approach
mimics a real experimental setup by imposing the corresponding flow
condition on the simulation box. In the determination of G’ and G”,
the deformation is SAOS. The SLLOD equations of motion were used,
which imposes a time-dependent velocity profile across the domain.”
The imposed velocity corresponds to a sinusoidal strain of

(@) = yosin (1), (10)

where 7, is the amplitude of the oscillation and w is the angular fre-
quency. At the start of the simulation, an initial mean velocity profile

TABLE I. EMD simulation parameters, including the duration of each independent
simulation and number of independent simulations used. The maximum stress
relaxatéon time tma is defined as the time when the obtained G(t) (Fig. 1) decays
to 1077,

Simulation duration

N (TUs) Num. runs Tmax (TUS)
25 5% 10° 5 1.065 x 10°
50 5% 10° 5 2.949 x 10°
100 1 x 10° 5 1.835 x 10*
350 3 x 10° 3 4.614 x 10°

scitation.org/journal/phf

that matches the instantaneous box deformation rate of the moment is
imposed on all beads for the quick convergence of the flow condition.
In general, for a viscoelastic sample, the stress response o (t) oscillates
with the same frequency as the strain input

a(t) = ag sin(wt + 9). (11)

There is, however, a phase angle shift ¢ that varies between 0 and 7/2
(purely elastic and purely viscous limits, respectively). The stress can
be further decomposed into two orthogonal functions

a(t) = 7,[G (w) sin (wt) + G (w) cos (wt)], (12)

such that one of them is in sync with the imposed strain [Eq. (10)] and
the other has a /2 phase lead. Equation (12) above is easily seen from
the trigonometric expansion of Eq. (11) using

sin (@t + 0) = cos J sin(wt) + sin J cos(wt). (13)

Comparing Egs. (11) and (12) and Eq. (13) we get

G = ?cos S, (14)
0

G = f;isin(s. (15)
0

Data processing for the NEMD method can also present significant
challenges as the obtained () time series is again loaded with strong
noises. Previous studies often used the least-square fitting of the NEMD
stress output to obtain G’ and G” in Eq. (12).”""" In Appendix B, we
show that, in the absence of noise, a simple discrete Fourier transform
(DFT) of the sinusoidal time series

s(t) = , (16)
only has two non-zero modes
1
§tk(,, = 5 (GH + iG/), (17)

where * denotes Fourier modes and k,, is the wavenumber correspond-
ing to the imposed frequency w: that is,

k(/) = Ncycle (18)

is the number of complete oscillatory cycles in the simulation run.
Stress fluctuations from simulation will show up in a wide range of
frequencies, but the signal at the =k, modes will still be the domi-
nant ones and their imaginary and real parts are related to G’ and
G", respectively. In practice, we additionally performed a noise-
filtering step by pre-averaging the o(t) signal before the DFT analy-
sis. The o(t) time series was divided into small blocks, each of
which covers 1/100 of an oscillatory cycle. The average of each
block was used to compute s(t)—the input of DFT. Since the block
size and oscillatory cycle differ by two orders of magnitude, this
step is designed to smoothen the signal without interfering with the
primary Fourier modes. Applying DFT directly on the NEMD
stress output without pre-averaging, according to our tests, will give
nearly identical G’ and G” at high frequencies. At low frequencies,
however, its results contain strong, seemingly random, statistical
errors.
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Published under an exclusive license by AIP Publishing

34, 053107-4


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

We performed NEMD for 50 frequency levels spanning four dec-
ades of @ (from 10~* to 1). Simulation at each frequency level contains
Ngde = 25 complete cycles. In total, 9.16 x 108 MD time steps were
used for the entire spectrum. The number of time steps spent at each
frequency level increases oc 1/w. For comparison, Neyqe = 100 to 200
was often used in previous studies.”’”* As we will show in this study,
with the noise reduction procedure described above, Neye = 25 was
sufficient to generate statistically robust results. Shortening of individ-
ual NEMD runs partially contributed to our ability to cover a wider
frequency range and longer chains than previous studies (which did
not go over three decades and did not attempt entangled chains).

Finally, as shown in Table I, each EMD run of the N = 350 long-
chain case costs 3 x 10% time steps. The total cost of three indepen-
dent EMD runs at N =350, which were used in obtaining its G(f), is
comparable to the combined cost of all NEMD runs at different fre-
quencies (one run at each frequency). This arrangement allows us to
directly compare these two methods at the same computational cost
for this particular chain length.

D. Corrected Rouse mode analysis (CRMA)

The Rouse model describes the dynamics of an unentangled
polymer melt without the topological constraints imposed by other
surrounding chains. It describes the relaxation of the polymer melt
with a mean-field approach in which effects of surrounding chains on
the dynamics of the probe chain are coarse grained as a continuous
viscous medium. The equations of motions for the chain beads can be
simplified by projecting the original bead coordinates to a set of mutu-
ally orthogonal coordinates known as the Rouse modes”*°

\/gggi;?xt)
\/%;N;a(t) cos (%) (P=12..),

where 7; denotes the original bead position in Cartesian coordinates
and i and p are the indices for the beads and Rouse modes, respec-
tively. The p =0 mode is proportional to the center of mass coordi-
nates of the chain. Higher modes, 1 < p < N —1, describe the
internal relaxation of sub-chain segments of the size of N/p beads.
Orthogonality of Rouse modes means that their relaxation dynamics
are independent from one another. Specifically, the TACF of the p-th
mode

(p=0),

<L
s
Il

(19)

B 0%0) = (%) exp( ) (0)
does not depend on any other mode. Its relaxation timescale 7, is
related to the relaxation time of the first mode 7, (same as the Rouse
time 7z) through 7, = 7, /p*. In practice, 7, can be obtained by fitting
the TACF of the corresponding Rouse mode from EMD to Eq. (20).
Once 7, is known, the G(t) can be calculated by

N
GRouse(t) _ V’;\;;TZ CXP(_ ?) (21)

p=1 p

where v is the number density of the beads.

scitation.org/journal/phf

Computation of Rouse modes from Eq. (19) only requires bead
positions 7; whose fluctuations during an EMD simulation are negligi-
bly small when compared with stress fluctuations. As such, obtaining
G(t) from the Rouse modes using Eq. (21) is expected to produce
much lower statistical uncertainty, implying that accurate results can
be obtained with shorter runs. In this study, the same EMD data set
from Sec. 11 B was used for computing Rouse modes.

Vladkov and Barrat'’ tested this idea and noted that, for their
very short (N =10 and 20) chains, G’ from RMA is very close to the
NEMD results, while G’ from RMA is substantially lower than
NEMD. This deficit was attributed to the non-bonded interactions
between beads, which are mostly excluded in the mean-field approxi-
mation of the surrounding chains. Effects of those interactions are felt
at timescales shorter than the internal relaxation times of the polymer
conformation t,. It is thus possible to extract their contributions
directly from the short-time limit of the stress TACF, where statistical
accuracy is the highest. Vladkov and Barrat'® proposed to fit the
short-time part of the G(f) profile from the GK relation Eq. (5) using

G™M(t) = Aexp (— i) cos (Qt) + Bexp (— L) o (22)
TA B

where A, B, T, T, and Q are fitting parameters.
The full G(¢) expression for the cRMA approach is then

G(t) = { o

GRouse ( t)

t<t*
t> 1"

with G (£) and GR°"¢(¢) given by Eqs. (22) and (21), respectively.
The cutoff time 7* = 0.44 was empirically chosen in this study so that
G () and GRO"¢(¢) connect continuously. It also sets the upper
bound of the GK G(#) data used for parameterizing Eq. (22). To obtain
G’ and G”, the integrals of Egs. (8) and (9) were correspondingly eval-
uated as summations of two segments. The first segment integrates
from t =0 to t* using GV (¢). For both unentangled (N = 25 and 50)
cases, the obtained 74 ~ 13 ~ 0.1 is much smaller than t*. Therefore,
G=(t) is vanishingly small at t > 7*. We thus approximately used
integration from 0 to oo instead, which can be evaluated analytically
to give'”

w?t5?
1+ w?tp?’

(29

Gﬂearly _
2\ 14 (0+ Q)12

Al olo+Q)ty?
1+ (0 —Q)’142

o(w—Q)14? >

Gy _ Awty 1 1
' - i, 2
2 U+ (0+9) 142 14 (w—Q)142
w71

B———.
+ 1+ w?tg?

(25)
The second segment integrates from t* to oo using GR°*¢(¢), which is
evaluated numerically using the procedure of Appendix A.

lll. RESULTS AND DISCUSSION

In this section, we first present the simulation outputs and data
processing for each of the EMD (GK), NEMD, and cRMA approaches
(Secs. I A-II1C). G' and G” from these approaches are then com-
pared in Sec. 111 D. Uncertainty and computational cost considerations
are discussed in Sec. 11 E.
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A. EMD results

The G(f) profiles from EMD using the GK relation are shown in
Fig. 1. It can be seen that the hierarchical averaging in the multi-tau
correlator method has effectively erased noise in the G(#) for nearly the
whole time range of interest. At early times, the curves collapse on one
another. The wild oscillations at early times come from bond fluctua-
tions, and the curves appear broken because negative values are not
shown in the logarithmic scale. This is followed in all cases by a t~1/2
scaling regime. The ¢~/2 scaling is predicted from the Rouse model
for the stress relaxation of unentangled polymer chains. For entangled
chains, the scaling is expected in sub-entanglement scales.
Interestingly, the same ¢~/ scaling was also recently reported for sim-
ple random bead-spring networks by Milkus and Zaccone,” which
may suggest its more general origin in disordered materials.

The curves separate at later times. The shorter chains (N=25
and 50) decay exponentially after their respective Rouse times. For
longer chains, however, the relaxation is prolonged as a result of
entanglement. Departure from the Rouse relaxation is most visible for
the longest N= 350 case (departure from the t~'/2 Rouse scaling for
the N=350 case was confirmed in our earlier studyl')). At N= 350,
the chains are not yet deeply entangled and thus G(#) does not develop
a full-fledged stress plateau, which is not expected until N > N,.'**

B. NEMD results

For a sinusoidal strain deformation that is small enough to still
be in the linear regime, it is expected that the resulting stress is equally
sinusoidal and oscillates with the same frequency as the strain but with
a phase shift reflecting the viscoelasticity of the material. The first thing
to check is thus whether the resulting stress is indeed oscillating with
the same frequency. Figures 2(a)-2(d) show the stress and strain time
series for different frequencies for the longest chain N = 350. It can be
seen that the stress indeed oscillates at the same frequency as the strain
with a notable phase lead. Despite the pre-averaging treatment men-
tioned in Sec. II C, the resulting stress signal still contains substantial
noise. As frequency decreases, the stress magnitude is lower and the
noise-to-stress ratio is higher.

To demonstrate the effectiveness of DFT in extracting the domi-
nant mode for G and G’, we take the lowest frequency (w
= 1.2068 x 107%) case in Fig. 2(d) as an example, where the noise
level appears comparable to the amplitude of the primary oscillation.

102
—— N=25 - N=100
10! —-- N=50 --- N=350
—~ 10°
el
'
U 10—1
1072 sl
\ '\\,\
10-3 N

102 107! 10° 10 10> 10°® 104 10° 10°
t

FIG. 1. Shear stress relaxation modulus G(f) of varying chain length using EMD
results and the GK relation.
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Figure 3 shows the power spectrum of its stress time series (all 25
cycles included in the statistics), as defined by

Pe = [l (26)

for the leading wavenumbers. Here, Py is the power associated with the
k-th mode and ¢y is its complex Fourier coefficient. Since the whole
time series contains 25 cycles, the primary mode is expected at k = 25.
The power magnitude at k=25 is indeed distinctly higher than the
rest of the spectrum [despite the large noise shown in Fig. 2(d)].
Its real and imaginary parts are used to calculate G” and G/, respec-
tively, according to Eq. (17). An equally high peak is expected at
the (N; — 25)-th mode (N, is the total number of points in the time
series). Its Fourier coefficient is simply the complex conjugate of the
k=25 mode.

Data in Fig. 3 come from 25 cycles with a maximum strain
amplitude y, = 0.1. The 7, value was chosen based on previous stud-
ies, which reported that 0.1 falls well within the linear regime where
the complex moduli do not depend on the strain magnitude."”" Our
chosen Neyde = 25 is, however, substantially lower than those same
previous studies (which used 100-200 cycles). To justify this choice,
we divide the whole time series into individual cycles. Applying DFT
to each cycle renders its own G’ and G” values. Figure 4 shows these
single-cycle G’ and G” values for extended 100-cycle simulation runs.
For 7, = 0.1, at low frequency [Fig. 4(a)], results from all cycles fluctu-
ate around common mean values, but at high frequency [Fig. 4(b)],
the results do not converge statistically until a transient period is
passed. The transient period seems to depend on both frequency and
chain length. The particular case in Fig. 4(b) shows a transient period
lasting for ~ 20 cycles, but transient periods as long as ~ 40 cycles
were observed in other cases. As such, when reporting data from these
high-frequency cases, the transient period must be discarded and the
following 25 cycles in the converged regime should be used.

The computational overhead introduced by those extra transient
cycles is small since they only affect the least expensive, high-
frequency regime. However, the fact that, starting from the equilib-
rium state, it requires a number of cycles for the system to converge to
steady oscillation suggests that perturbation to the equilibrium is sub-
stantial; that is, the oscillatory shear may no longer belong to the linear
regime. Since the linear and non-linear regimes are separated based on
the Weissenberg number Wi = Tyelax )o@ (Trelax is the polymer relaxa-
tion time), transition to the non-linear regime occurs at lower 7y, for
higher . Indeed, for the same frequency and chain length, if we
reduce 7, to 0.01 [Fig. 4(c)], the transient period is no longer observed.
This effect of strain magnitude will be further discussed below when
we compare G’ and G” results.

Figure 5 shows the effects of Ny on the normalized uncertainty
in the results. The uncertainty of, for example, Nyq. = 10 was esti-
mated by the standard error of the 10 individual measurements com-
ing from each cycle, which was then normalized by the overall
measurement from all 10 cycles combined. There is an initial rapid
decrease in uncertainty at the small Ny end, but as more cycles are
included in the statistics, the marginal gain of increasing the simula-
tion length diminishes. Figure 5 only shows the N= 350 case, but the
observation is similar for other chain lengths. In all cases, the uncer-
tainty becomes reasonably small for Neyge > 25. We have repeated the
analysis with larger block size; that is, instead of using single cycles,

Phys. Fluids 34, 053107 (2022); doi: 10.1063/5.0090540
Published under an exclusive license by AIP Publishing

34, 053107-6


https://scitation.org/journal/phf

Physics of Fluids

x10~1
3.0 L 0.10
, jx E7 —-— shear stress o
L0 —— shearstrainy ,
I 10.05
1.0
b 0.0 0.00 >
-1.0
-0.05
-2.0
[w=1.0472] 0.10
380 1.5 3.0 4.5 6.0
t
-2
4.0%10
0.10
3.0 —— shear stress o
—— shear strain y
2.0 i 0.0
1.0{; i N"i \
i
! S
5 o. AL st A -00 >
0.0 YO 1"y 0.00
-1.0 i '\A, \[\
2.0 -0.05
=30 [4=1.9333x10"2] 0.10

480 06 12 18 24 3.0
t x102

ARTICLE scitation.org/journal/phf

x1072
| 0.10
7.5 al A —— shear stress o
v —— shear strainy /
3.0 I 10.05
! ,.r\_l.j
2.5 ;W
A
. Wi\ . >
5 0.0 Wy 0.00
-2.5 Ulf
" -0.05
-5.0 WA .
vl ’rl" EWN
-7.5 [w=1.5325x 1071 {j| W [b]
-0.10
0.0 0.8 1.6 2.4 3.2 4.0
t x10%
x1073
3.0 0.10
—-— shear stress ¢
2.0 ! —— shear strain y
.!~.-,| - 10.05
1.0/}
5 0.0{iji 0.00 >
-1.0/
-0.05
-2.0
=1.2068 x 10~ [d]
-3.0 @ ! -0.10

0.0 1.0 2.0 3.0 4.0 5.0
t x10%

FIG. 2. Stress—strain time series of a typical converged cycle at each frequency for N=2350: (a) w = 1.0472, (b) w = 1.5325 x 107", (c) o = 1.9333 x 1072, and (d)
® = 1.2068 x 10~ (all using y, = 0.1). The stress signal at each frequency has been pre-averaged over a window size of 1/100 of the cycle.

we used every two or every five cycles as an individual measurement
and still arrived at the same conclusion.

C. cRMA results

The cRMA approach is only applicable to shorter unentangled
chains. Figure 6 shows the TACFs of the first 3 modes for N= 25 and
50 calculated using Eq. (20) from EMD runs. The profiles are normal-
ized with (X7), and thus, all start at 1 at the £ =0 limit, which is not

3.0 [w=1.2068 x 10~%]
+ 2,0
()]
3
[«
-
1.0
0.0 f'n - - ry - . .
0 5 10 15 20 25 30 35 40
k

FIG. 3. Power spectrum of the stress signal for input frequency w = 1.2068
x10~*. The first 40 modes are shown.

shown in Fig. 6 due to the logarithmic scale used. Smooth exponential
decay can be readily seen in all profiles. One may note that the p=1
mode of N= 25 nearly overlaps with the p =2 mode of N=50. This
is because the p =2 mode describes the relaxation of a sub-chain seg-
ment with half of the total chain length, which, in the case of N= 50,
happens to be 25 monomers. Fitting the TACF profiles to Eq. (20)
yields the relaxation times for the modes 7). For the same chain
length, the Rouse model prediction of 1, = 1;/p* is approximately
held: for example, for N=50, 7; = 2906.25, 7, = 761.03, and
73 = 325.78.

The obtained 7, values were used to compute the Rouse model
prediction GR%¢(¢) per Eq. (21), which is then plotted in Fig. 7 along
with the GK result. It is clear that the Rouse model accurately captures
the GK result for over three decades. Discrepancy is noted at
t = O(10*) where the stress has nearly vanished and the GK result is
laden with noise. At the short-time end [t < O(1)], GR™(¢) is signifi-
cantly lower than the GK G(¢) profile. This deficit is attributed to the
bead-bead non-bonded interactions not fully captured by the Rouse
model and will result in an underestimate of G” especially at the high-
frequency regime.” A correction is introduced by fitting the
short-time part of G(t) to Eq. (22). The resulting G (t) captures the
short-time G(f) profile well [Fig. 7(b)] but decays quickly after t ~ 0.4.
Calculation of G’ and G” in the cRMA approach combines G=%(¢)
and GR"¢(¢) according to the procedure in Sec. 11 D.
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ple exponential relaxation function of Eq. (20).

D. Comparison of methods

We turn now to the comparison of the computed G’ and G” pro-
files. We first show the results of the shorter chains N= 25 and 50 in
Figs. 8(a) and 8(b). Since both types of chains are well within the unen-
tangled regime,” a rubbery plateau does not exist in the G’ profile. We
further observe the Rouse scaling—G’ o ? and G” at the termi-
nal (low ) frequencies for both chains. The G” values are greater
than the G’ values at all frequencies. For N=25 in Fig. 8(a), all three
methods (EMD/GK, NEMD, and cRMA) give nearly equivalent
results for intermediate and high frequencies (10> and above) for
both G’ and G”. The agreement is equally good at the low-frequency
end for G”, but for G, strong fluctuations are found in both the EMD/
GK and NEMD results. The high noise-to-signal ratio is most likely
due to the low magnitude of G’ in that regime, which reflects the quick
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FIG. 7. Relaxation modulus from the Rouse model GR°“*¢(t) compared with that from the Green—Kubo relation G(f) (both using EMD data for N = 50); G*™ (t) is a fit to the
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FIG. 8. G’ and G” using EMD/GK, NEMD, and cRMA methods for (a) N =25 and (b) N =50 (y, = 0.01 is used for &» > 7.2222 x 1072 and y, = 0.1 used for lower ).

relaxation of the N =25 chains. For N=50 in Fig. 8(b), the results are
very similar to N =25 except that fluctuations in G’ at the low-w end
appear smaller especially in the NEMD case.

Of the three methods, cRMA is least affected by simulation noise
and uncertainty. This does not come as much of a surprise because the
cRMA method is based on particle coordinates from the EMD simula-
tion and avoids the intrinsically noisy stress calculation, with the only
exception of the short-time stress correlation used in the correction
term. Comparison with the EMD/GK and NEMD results shows that
cRMA also produces reliable results for linear viscoelastic properties.
However, its usage is limited to strictly unentangled polymers.

Unless otherwise noted, NEMD results here and below used a
standard strain amplitude of y, = 0.1, except in the high-frequency
regime (w > 7.2222 x 1072) where y, = 0.01 was used. This is
because the standard y, = 0.1 would yield unreliable results at higher
frequencies. Figure 9 shows the comparison between these two strain
amplitudes in the N= 50 case as an example. The standard y, = 0.1 is
accurate for frequency up to w = 0.2244, after which unnatural kinks
are found in both profiles, with G’ and G” being, respectively, over-
and under-estimated compared with EMD results. Similar behaviors
are found in all other chain lengths studied. Reducing 7y, to 0.01 pro-
duces results that not only extend smoothly from the y, = 0.1 results
of lower frequency, but also agree well with EMD results. This corrob-
orates our earlier discussion that for y, = 0.1, the flow is no longer in
the linear regime at high frequency.

Figure 10 shows G’ and G” for the longest chain species N =350
studied. Different from the shorter unentangled chains in Fig. 8, the

entangled chains display crossovers between the G’ and G” profiles.
Two crossovers are observed in the frequency range studied. The first
crossover at @ ~ O(107°) is at the same order of magnitude as
1/t4—the disentanglement time 74 = 1.74 x 10° was determined
from the monomer mean square displacement (MSD) curve for the
same N =350 chains in Adeyemi et al” Crossover at @ ~ 1 /7a was
also commonly found in experimental systems.”’ The second cross-
over, as also expected from experiments, should appear at w ~ 1/z.
In our simulation, the corresponding crossover is found at
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FIG. 9. Effects of strain amplitudes on the NEMD results in the high-frequency
regime (N = 50).

Phys. Fluids 34, 053107 (2022); doi: 10.1063/5.0090540
Published under an exclusive license by AIP Publishing

34, 053107-9


https://scitation.org/journal/phf

Physics of Fluids

10°] — G- EMD
--- G’-EMD
10-1/ © G- NEMD

G"- NEMD

© 102
- =~ G” < W/
O 103 .-,
o
104 G x “;2
103

107 10°¢ 1075 107* 10~3 1072 10! 10°
w

FIG. 10. G’ and G” using EMD/GK and NEMD for N = 350.

 ~ 2 x 1073, whereas . is 3.43 x 10 as determined, again, from
MSD,” that is, 1/7, ~ 3 x 10~*, The two values differ by a factor of 6
to 7. We note that the difference of this magnitude is not uncommon
even between . values measured from different experimental techni-
ques.” In addition, since N= 350 is not long enough for the chains to
be fully entangled—as reflected by the lack of a fully developed stress
plateau, quantitative discrepancies with characteristics of fully
entangled polymers in experiments are expected.

Likhtman et al'* also reported the first crossover between
® = 107% and 10~°. Their G’ and G” profiles appear smoother than
ours in the terminal regime. This can be attributed to their use of
Maxwell modes for fitting the G(t) profile, which inherently cannot
capture the oscillations in the G(f) profile—either the short-time oscil-
lation caused by bond fluctuations or the long-time oscillation caused
by statistical uncertainty. Our fitting used piecewise linear functions
(Appendix A), which preserves all oscillations in the relaxation modu-
lus. We may as well obtain smooth terminal regime profiles if we filter
the G(t) profile at the long-time limit before its conversion to G’ and
G’. Likhtman et al,'* however, were not able to identify the second
crossover, the one corresponding to 1/7., unless the system density is
significantly raised. Finally, we again note the excellent agreement
between EMD and NEMD results in Fig. 10. Both methods predict the
second crossover at the same position, although our NEMD did not
cover sufficiently low frequency to reach the first crossover.

Figures 11 and 12 show the G’ and G” results for all chain lengths.
For G, the curves collapse on themselves at higher frequencies.
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FIG. 11. G’ for N= 25, 50, 100, and 350 chains using EMD/GK and NEMD.
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FIG. 12. G” for N=25, 50, 100, and 350 chains using EMD/GK and NEMD.

At lower frequencies, the magnitude of G’ increases with increasing
chain length. Entanglement effects are clearly noticeable in the
N=350 case, where the profile decays with a lower slope at
o < O(1073). It, however, falls short of developing a fully flat plateau.
The slower decay allows the G’ profile to intersect the G” profile in
that frequency range (Fig. 10). In comparison, the unentangled species
(N=25 and 50) decays at faster rates as they approach the terminal
regime. Signs for entanglement cannot be clearly identified from the
G profiles (Fig. 12).

In all cases, NEMD and EMD/GK results are in excellent agree-
ment for the frequency range covered by our NEMD simulations,
which provides mutual validation between these two methods. For
NEMD, it is clear that, with a proper data processing procedure, one
can obtain reliable results with much fewer cycles (25 in this study)
than previous reports. For EMD, its application using the GK relation
has been plagued by the strong statistical noise. Likhtman et al."* have
showed that the multi-tau correlator method can effectively suppress
the noise and render smooth G(¢) profiles. Its success, however, builds
on the aggressive filtering, using extended averaging windows, at the
long-time end of the TACF. The effects of such filtering on the quanti-
tative accuracy of the results were not known, until our direct compar-
ison with NEMD establishes its validity.

With G’ and G”, we can calculate the complex modulus

G = VG2 + G”z, (27)

and then the complex viscosity

LG
w

to test the validity of the Cox—Merz rule. The steady shear viscosity 7
was obtained by running the NEMD simulation of steady shear flow at
different shear rates 7. For each 7}, the first 10° TUs of the shear stress
time series was discarded and the following 1.5 x 10° TUs was aver-
aged to be used in the shear viscosity calculation. Uncertainty was esti-
mated by dividing the retained part into three blocks of equal length,
and the standard error of viscosity values from those blocks is reported.

Figure 13 plots the steady shear viscosity 1(}) in comparison
with #7*(w) for the unentangled chain species. Only EMD/GK and
cRMA results are plotted for #*. The NEMD/SAOS results are very
close to EMD/GK (as reflected in their numerically equivalent G’ and
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FIG. 13. Comparison of the complex viscosity #* (), from EMD/CK and cRMA
approaches, with the shear viscosity #(7), from NEMD of steady shear flow condi-
tions (N=25 and N =50). Error bars are shown for the latter but only when they
are larger than the marker size.

" results) and thus omitted for clarity. The viscosity profiles show
typical behaviors of polymer melts, including a Newtonian plateau at
the low shear end and shear-thinning at higher shear rates. It is clear
that () stays close to * () for the entire range tested, indicating the
general applicability of the Cox—Merz rule to the KG model chains.
Both EMD/GK and NEMD/steady shear are subject to larger statistical
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uncertainty at the low w or y end, while the cRMA approach gives
smooth and accurate results for unentangled chains.

E. Discussion: Accuracy and cost

Results presented so far have established that, with proper noise
reduction and data processing procedures, both EMD and NEMD
give quantitatively reliable results for G’ and G”. The question now
becomes which method should one choose for obtaining the most
accurate results with limited computational resources.

Figure 14 shows the statistical uncertainty in the G’ and G” values
calculated from all three methods using our standard simulation
lengths reported in Sec. II. For EMD/GK and cRMA, uncertainty is
straightforwardly estimated from the standard error of results from
independent trajectories. As shown in Table I, three to five indepen-
dent EMD runs were performed for each case. For NEMD/SAOS, the
25-cycle time series used for each frequency was divided into five equal
blocks (with five cycles in each). Each block of time series undergoes
the DFT analysis to obtain its own G’ and G” values, and the uncer-
tainty is reported as the standard error between single-block results.
The reported uncertainty magnitudes in Fig. 14 are all normalized by
the corresponding G’ or G” values; that is, they are reported as relative
errors.

Accuracy of G' and G” results must be discussed in the frequency
range of relevance, which varies with chain length. We define the max-
imum stress relaxation time T,y as the time for G(f) to first drop to

103
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FIG. 14. Uncertainty of G’ and G” from EMD/GK, NEMD, and (for unentangled chains only) cRMA normalized by the estimated G’ and G” values: (a) N= 25, (b) N=50, (c)

N= 100, and (d) N = 350.
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1073 (see Fig. 1) and listed the timescale in Table I for different chain
lengths. We note that for N= 350, Tpay is much longer than its Rouse
time Tr = 1.66 x 10° (as determined from MSD”’) due to entangle-
ment effects, whereas for N=25 and 50, Tn.y is very close to their
respective Tz (which can be estimated from the 7 of the N= 350 case
using tr o< N?). The standard EMD simulation length chosen for
each independent run is one to two orders of magnitude longer than
Tmax to ensure that the stress TACF has multiple independent seg-
ments to average over for the longest timescale of interest. We then
mark Wpyin = 1/ T as the minimum frequency of interest for each
chain length in Fig. 14.

For unentangled cases (N=25 and 50), cRMA is clearly more
accurate than both other methods, especially at the low-frequency end,
where both EMD/GK and NEMD suffer from strong fluctuations, and
the statistical error from cRMA is well below 1%.

Between EMD/GK and NEMD, there is notable difference in the
frequency dependence of uncertainty. The GK relation relies on the
stress TACF to calculate G(¢). For EMD simulation of a given dura-
tion, there are more shorter independent segments to average over
than longer ones. As a result, at 21072, its error is rather low—no
more than a few percent, while each EMD case sees its largest error at
the low-frequency end. Uncertainty from NEMD is less dependent on
frequency and fluctuates more or less in the 1072 to 107! range. In
Figs. 14(a) and 14(b), the error does seem to grow above 10% at the
low-frequency end, but that is likely due to the frequency dropping
below mpin, where the complex modulus magnitudes are vanishingly
small and no longer of significant interest. It appears that for NEMD,
the uncertainty depends mostly on the number of cycles included in
the statistics, which was set to be the same at different frequencies.

To compare the efficiency between EMD and NEMD, we first
look at the N=350 case [Fig. 14(d)], where the simulation cost, mea-
sured in terms of the total number of MD time steps used in the statis-
tics (all three independent runs for EMD and 25 cycles at all
frequencies for NEMD), is controlled to be nearly the same. From Fig.
14(d), the statistical errors from both methods are comparable in a
wide frequency range of 107% < w <1071, The advantage of EMD is
clear at w > 107!, where its error drops below 1%, but NEMD remains
acceptable at below 10%. The higher error from NEMD at high fre-
quency is attributed to the declining effectiveness of the pre-averaging
step applied to the stress signal. To avoid contamination of stress
signal at the imposed frequency, we set the pre-averaging block size to
1/100 of the oscillation period. As the imposed frequency increases,
the block size diminishes and becomes less effective at noise removal.
One may easily improve the accuracy at high frequencies by running
more cycles, which would not introduce substantial extra cost due to
the shorter periods there. Per Fig. 5, increasing to 100 cycles is esti-
mated to reduce the error in G’ by half. (Although Fig. 5 used a block
size of 1 cycle for error estimation vs 5 cycles used in Fig. 14, we have
confirmed that the dependence of error on Ny is not sensitive to the
block size.)

Limitation of NEMD is more obvious at the low-frequency end.
The frequency range swept by NEMD in this study goes down to
107, which leaves nearly two decades of lower frequencies that are
still of interest (i.e., > Wmin) uncovered. By contrast, the same set of
EMD data can be used to generate G’ and G” of any frequency without
additional computational cost. Of course, for limited EMD simulation
length, statistical uncertainty increases with decreasing frequency, but

ARTICLE scitation.org/journal/phf

as far as results in Fig. 14(d) are concerned, the error remains at
~ 10% for most of the w ~ O(107>) decade. To capture the same
decade using NEMD, the computational cost would be 10 times as
high as that of the O(10~*) decade; that is, the overall NEMD simula-
tion cost must increase by an order of magnitude. Based on Fig. 5, one
may propose to accept slightly higher uncertainty and run the lowest
frequencies with fewer cycles, which nonetheless would still require
significantly higher computational cost.

The conclusion is similar at N=100 [Fig. 14(c)], where the low-
est frequency swept by NEMD is closer to twpmin. NEMD also shows
similar uncertainty level as EMD except at @ 2 10! where the advan-
tage of EMD is clear. Note that this equivalence in performance
between these two methods is built on substantially higher computa-
tional cost in NEMD. Recall that the total computational cost of
NEMD in this study does not change with chain length. For N= 100,
the cost of EMD (Table I) is only one third that of NEMD. This, how-
ever, does not mean that EMD is three times better—everything else
the same, increasing the data size by a factor of three would lead to a
factor of v/3 reduction in the uncertainty, which is not big compared
with fluctuations between data points in Fig. 14(c). The advantage of
EMD is smaller for shorter chains [N=25 and 50 in Figs. 14(a) and
14(b)]. In both cases, NEMD offers similar statistical accuracy as EMD
except, again, at the high-frequency end. The total cost of NEMD is
higher by nearly one order of magnitude, but part of the low-
frequency data fall below @p,. If we only count NEMD runs at
@ > Omin, the total computational cost would be comparable to EMD
at N=25.

Our analysis shows that, contrary to many’s belief, EMD using
the GK relation and multi-tau correlator method not only provides
accurate results for linear viscoelastic properties, but also appears to be
more efficient in some cases, especially for longer chains where the
need of covering lower frequencies puts higher burden on NEMD. For
EMD, in theory, meaningful results at all frequencies can be generated
with a single run that covers the longest relaxation time. In practice,
EMD is equally constrained by the limited simulation duration in
the long-time (low-frequency) end of the spectrum. Figure 15 shows the
variation of the normalized statistical error of EMD if we shorten the
duration of each independent run to 1/10, 1/3, and 2/3 of the standard
duration (Table I). It is clear that as the simulation gets shorter, accu-
racy at lower frequencies is first affected. For example, with a 10-fold
increase in simulation length, the error in G’ reduces by a factor of 3 to 5
[Fig. 15(a)], which is comparable to the factor of v/10 expected.

The advantage of EMD is that information on different frequen-
cies is contained in the same time series, whereas NEMD would
require a new simulation even for a slightly different frequency.
Although EMD seems more susceptible to statistical noise, which is
easier to remove in NEMD because the frequency of the primary sig-
nal is known a priori, this weakness is partially lessened by the success
of the multi-tau correlator method. The net outcome is thus an advan-
tage in favor of EMD when computing the complete spectrum of
linear viscoelasticity is the goal. The real advantage of NEMD lies in its
flexibility. For example, one may easily save half of the computational
cost by dropping every other frequency level covered. It would also be
preferred when only a certain frequency range is of interest or lower
accuracy is permissible at certain frequencies. The latter is because it
allows the user to independently adjust the accuracy at different levels
by changing the number of cycles used.
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FIG. 15. Dependence of normalized uncertainty in EMD/GK results on the duration of each independent simulation run (out of three used in the statistics of N = 350): (a) G’
and (b) G”. The longest run shown in the figure (with 3 x 108 TUs) is the standard duration used in the study.

The comparison between these two approaches is determined by
the balance of cost between prolonging EMD simulation for reduced
statistical uncertainty and repeating NEMD simulation at different fre-
quency levels. This balance may shift for a different system or a differ-
ent model. We have already observed that the advantage of EMD
vanishes as the chain length decreases. For non-polymeric simple
liquids, NEMD may as well be the more efficient approach given the
much shorter frequency range that needs to be covered. In this study,
we have only tested the KG model. Chemically realistic atomistic
molecular models are likely to produce much stronger stress fluctua-
tions, posing extra challenges for noise reduction in both approaches.
In particular, whether the multi-tau correlator method can still suffi-
ciently reduce the noise in EMD to keep its relative advantage remains
to be tested. Over the past two decades, there has been a growing trend
of developing coarse-grained molecular models that map reversibly to
atomistic models.”*' Such models often map one or more polymer
repeating units into a single superatom, and the effective interactions
between such superatoms are generally softer than those in both atom-
istic models and the KG model. It is thus possible that such models are
less susceptible to stress fluctuations. Meanwhile, coarse-graining is
known to cause the artificial acceleration of the system dynamics in
MD, which obviously alters the calculated viscoelastic properties. The
problem can be countered by explicitly introducing friction drag and
random forces to the model. The effects of this treatment on stress
fluctuations, which remain unknown, introduce another variable in
the balance of cost between EMD and NEMD. The reader is referred
to Xi® for detailed discussion on the application of coarse-graining in
the molecular simulation of polymer rheological properties.

IV. CONCLUSIONS

In this study, we compared equilibrium and non-equilibrium
MD approaches for computing the linear viscoelastic properties of
polymer melts, using a KG bead-spring chain model with chain
lengths that range from the unentangled (N =25 and 50) to the mar-
ginally and moderately entangled (N=100 and 350) regimes. For
EMD, the primary focus was on the Green—Kubo (GK) approach, but
for unentangled chains, we also tested a corrected Rouse mode analysis
approach in which short-time GK results were introduced to supple-
ment the stress relaxation modulus calculation from the Rouse model.
We showed that with proper data processing and noise reduction pro-
cedures, all these approaches produced quantitatively equivalent
results for G’ and G”. For EMD with the GK relation, the multi-tau

correlator method effectively removes the noise while preserving the
quantitatively accurate relaxation dynamics. Numerical integration of
the Fourier integrals with the relaxation modulus G(f) approxi-
mated by a piecewise linear function faithfully converts the results
to complex moduli. For NEMD, we applied DFT to extract G’ and
G" from the pre-averaged stress signal and showed that 25 cycles
at each frequency are sufficient to obtain statistically meaningful
results. The simulation length is much shorter than previously
reported in the literature, which significantly reduces the computa-
tional expense needed to obtain a representative spectrum. In addi-
tion, we found that the strain amplitude of the imposed oscillatory
shear must be carefully chosen for different frequency levels to
avoid non-linear effects.

Comparing the statistical uncertainty of these methods, we found
that, despite the common perception that the EMD/GK approach is
more strongly influenced by stress fluctuations, it offers at least equally
accurate and, sometimes, more accurate results than NEMD when the
same total simulation time is used. The advantage of NEMD is its flex-
ibility, especially when only a limited frequency range is of interest.
The cRMA method relies on the accuracy of the Rouse model, but, at
least for the KG model in the unentangled regime, it offers highly
accurate results.
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APPENDIX A: NUMERICAL EVALUATION
OF THE FOURIER INTEGRAL

Assume we are given G(f) values at a series of discrete points:
Gi, Gy, ..., and Gy, where Gy represents the value of G(t) at the k-th
temporal grid point t;. The data points do not have to be equally
spaced apart. Indeed, in this study, the discretized G(f) points came
from the multi-tau correlator method, which by construction uses a
non-uniform temporal grid and its spacing increases with t. We
used the multi-tau correlator output series of Gy without
modification.

Note that evaluating Egs. (8) and (9) is equivalent to perform-
ing the Fourier integral

I= JOO G(t) exp(—iwt)dt. (A1)
0

For its numerical evaluation, we follow the method in Luyben*” and
divide the integral into sub-integrals of individual grid intervals,
that is, Aty =ty — ty—;. Equation (A1) is then written as the sum-
mation of sub-integrals I},

I= Z(r G(t) exp(—iwt)di ) ZIk (A2)

k=1 tg—1

We now approximate G(¢) in each interval #;_; to t; with a linear
function (higher order polynomials can be used to improve the
accuracy)

G(t) ~ ¢y (t) = o + ok (t — tg—q) for

where oy is the slope of the line over the k-th interval

te—p < t <y, (A3)

Gk — Gr—1
= A4
%1k Al ) (A4)
and oy is the value of ¢, at the beginning of the interval
ook = Gr—1- (A5)

The constants o, and oy change with each interval. Inserting Eq.
(A3) into Eq. (A2) gives

Tk
I~ J [0k + a1k (£ — te_y)] exp (—icot)dt, (A6)

te1

which can be evaluated analytically. Integrating Eq. (A6) by parts
and substituting oo and oy, by Eqs. (A4) and (A5) give

G
11;) (exp(—iwty_1) — exp(—iwty))

_ Mﬂexp(—zwtk)
Aty iw
Gk — Gg1
Atro?
_ G (_ exp(—imty) N exp(—iwty) — exp(—iwtk,l))
i w? Aty

G (exp(f'iwtk,l) _exp(—ioty) — exp(fiwtk,l))_ (A7)

Ik%

(exp(—iwty) — exp(—imii_1))

iw WAty

Extracting exp(—iwt,_; ) and noting that Aty = fx — t;_;, we obtain
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—ioAty) — 1 —imAt
Ik%exp(—iwtk,l){Gk(exp( iwAl) =1 exp(—io k)>

w? Aty i
B exp(—iwAt) —1 1
Gt ( ? Aty in) ]’ (A8)

Finally, the full integral is given as
J G(t) exp(—iwt)dt
N . )
—iwAt) — —iwA
Ze (—iooty ) {Gk(exp( ioAty) =1 exp(—io tk))

— w? At i
exp(—iwAty) — 1
- A Wl VA A
Gt ( @2 Aty iw) } (A9)

APPENDIX B: DATA PROCESSING FOR THE STRESS
OUTPUT FROM SMALL-AMPLITUDE OSCILLATORY
SHEAR (SAOS) IN NEMD

The SAOS output [Eq. (12)] can be rewritten as

G"(w) cos(wt). (B1)

= G (o) sin(wt) +
Yo

Assume that the total NEMD run covers Ny whole oscillatory

cycles with a combined temporal duration of T,,,, and s(t) is stored

on N, grid points with equal spacing At. The time mark at each grid

point is

] run
N, (B2)

iT, iT,
sj = s(t)) =G sin ((UJT:un> + G" cos (%:u")

(G=0,1,....N;,—1). (B3)

(Note: the j = N, point is not included because we assign sy, = sp to
enforce the periodicity of the time series.) The discrete Fourier
transform (DFT) of the series is

t = jAt =

and

Phys. Fluids 34, 053107 (2022); doi: 10.1063/5.0090540
Published under an exclusive license by AIP Publishing

34, 053107-14


https://scitation.org/journal/phf

Physics of Fluids

1 (N2, (2nk,j 27kj
= I\Tt ZG sin (T,)COS <7W)

N—1 .

- ” 21k
+ZG” os( )]) os(— ;\T]])
t

N‘ZIG/ w] sin _ 2mkj
N,
Ni—1 .
+ ZG” cos ( w]) sin (f Z%kj> , (B4)
t

where

T, T,
@ == cycles (BS)

k
¢ 2n Tcycle

that is, the total number of oscillatory cycles in the run (note that
/27 equals the frequency of oscillation, i.e., the reciprocal of the
cycle period Teye). Due to the orthogonality of sine and cosine
functions, for the typical situation of 0 < k,, < Ny, Eq. (B4) is non-
zero only for k =k, and k = N, — k. The latter is equivalent to
k = —k,, due to the 27-periodicity of these functions. The non-zero
modes are complex conjugates

1
§+k“ = z (GH + l‘G,)7 (B6)
containing G’ and G” in their imaginary and real parts, respectively.
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