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ABSTRACT 

Reinforced concrete block shear walls (RCBSWs) are used as seismic force 

resisting systems in low- and medium-rise buildings. However, attributed to their 

nonlinear behavior and composite material nature, accurate prediction of their 

seismic performance relying only on mechanics is challenging. This study 

introduces multi-gene genetic programming (MGGP)— a class of bio-inspired 

artificial intelligence, to uncover the complexity of RCBSW behaviors and 

develop simplified procedures for predicting the full backbone curve of flexure-

dominated fully grouted RCBSWs under cyclic loading. A piecewise linear 

backbone curve was developed using five secant stiffness expressions associated 

with cracking, yielding, 80% ultimate, ultimate, and 20% strength degradation 

(i.e., post-peak stage) derived through controlled MGGP. Based on the 

experimental results of large-scale cyclically loaded RCBSWs, compiled from 

previously reported studies, a variable selection procedure was performed to 

identify the most influential variable subset governing wall behaviors. Utilizing 

individual wall results, the MGGP stiffness expressions were first trained and 

tested, and their accuracy was subsequently compared to that of existing models 

employing various statistical measures. In addition, the predictability of the 

developed backbone model was assessed at the system-level against experimental 

results of two two-story buildings available in the literature. The outcomes 

obtained from this study demonstrate the power of MGGP approach in addressing 

the complexity of the cyclic behavior of RCBSWs at both component- and 

system-level—offering an efficient prediction tool that can be adopted by relevant 

seismic design standards pertaining to RCBSW buildings.  
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1. INTRODUCTION 

Considering the proliferation of low- and mid-rise buildings, the use of 

reinforced concrete block shear walls (RCBSWs) as a seismic force-resisting 

system has been receiving great attention. In the past, RCBSW buildings were 

constructed without adequate reinforcement detailing accounting for seismic 

demands [1-2]. For example, field surveys in the aftermath of severe earthquakes 

such as the 2010 Maule and the 2014 Iquique earthquakes, demonstrated that a 

significant number of RCBSWs were severely damaged and even completely 

collapsed [2-4]. Subsequently, new design and prescriptive detailing requirements 

have been introduced by relevant design standards (e.g., ASCE/SEI 41-17 [5], 

CSA S304-14 [6], and TMS 402-11 [7]) to realize improved RCBSWs seismic 

performance. In parallel, extensive research studies have been performed to 

evaluate the seismic response of RCBSWs, which was found to be highly 

influenced by their shear-span ratios, the magnitude of the applied axial loads, and 

the horizontal and vertical reinforcements [8-9]. However, the complexity of 

RCBSWs as a composite structural component (i.e., made up of different 

interacting nonlinear materials) remains a challenge for accurate prediction of 

wall behavior under seismic loading. A few researchers attempted to address this 

issue by modeling the load-displacement backbone curve of RCBSWs under 

cyclic loading through analytical and empirical approaches.  



M.A.Sc. Thesis – H. Elgamel McMaster University – Civil Engineering 

 

2 

 

Ashour and El-Dakhakhni [10] proposed a trilinear backbone curve for 

fully grouted RCBSWs using three secant stiffness expressions (Eqs. 1a-1c) for 

yielding (Ky), ultimate (Ku), and 20% strength degradation (K0.8u) (as shown in 

Fig. 1a). The backbone curve was developed based on the experimental results of 

four individual RCBSWs tested under lateral cyclic loads. 

 𝐾𝑦  =   1 (
ℎ𝑤

3

3𝐸𝑚𝐼𝑒
+

1.2ℎ𝑤

𝐺𝑚𝐴𝑒
)⁄ , 𝐾𝑢 = 0.6 × 𝐾𝑦 , 𝐾𝑢 = 0.2 × 𝐾𝑦       (1a) 

𝐺𝑚  =  0.4 𝐸𝑚,      𝐼𝑒  = 𝛼  𝐼𝑔, 𝐴𝑒  = 𝛼  𝐴𝑔, 𝛼 =  (
100

 𝑓𝑦
 +  

 𝑃𝑢

𝑓𝑚
, 𝐴𝑔

)       (1b) 

∆𝑦=
𝑄𝑦

𝐾𝑦
, ∆𝑢=

𝑄𝑢

𝐾𝑢
, ∆0.8𝑢=

𝑄0.8𝑢

𝐾0.8𝑢
                      (1c) 

where hw is the wall height, Ig is the wall gross moment of inertia, 𝐼𝑒 is the 

wall effective moment of inertia, Ae is the wall effective area,  Ag is the wall gross 

area, Em is the masonry elastic modulus, Gm is the masonry shear modulus, 𝑓𝑚
,
 is 

the masonry compressive strength,  𝑓𝑦 is the reinforcement yielding strength, 

∆𝑦, ∆𝑢, and  ∆0.8𝑢 are the displacements corresponding to yielding strength 

(𝑄𝑦), ultimate strength (𝑄𝑢), and 20% strength degradation (𝑄0.8𝑢), respectively.  

Ashour and Galal in 2017 [11], proposed a modification to Ky, Ku, and 

K0.8u (presented in Eqs. 2a-2b) originally developed by Ashour and El-Dakhakhni 

[10]. In addition, a new secant stiffness expression was introduced to the 

backbone curve defining the stiffness up to cracking (Kcr). Figure 1b shows the 
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quad-linear modified backbone curve that was developed by Ashour and Galal in 

2017 [11] based on a dataset consisted of 25 RCBSWs.   

𝐾𝑐𝑟  =  𝐾𝑔 =  1 (
ℎ𝑤

3

3𝐸𝑚𝐼𝑔
+

1.2ℎ𝑤

𝐺𝑚𝐴𝑔
)⁄ ,  𝐾𝑃 = 𝛼 𝐾𝑔                    (2a) 

𝐾𝑦  =  − 0.00096 𝐾𝑃
2  +  0.89801  𝐾𝑃, 𝐾𝑢 = 0.2875 × 𝐾𝑦 , 𝐾0.8𝑢 =

0.5479 × 𝐾𝑢                                                                                                       (2b) 

Ezzeldin et al. [12] also proposed a trilinear moment-rotation backbone 

model for RCBSWs (Fig. 1c) based on the ASCE/SEI 41-17 [5] originally 

proposed for reinforced concrete shear walls. The proposed model was validated 

at the system level against the results of eight RCBSWs with and without 

boundary elements. As shown in Fig. 1c, Ezzeldin et al. [12] model defined the 

elastic zone up to point B by the elastic rotation (θy), whereas parameter a and b 

were used to represent the plastic rotation up to the ultimate strength (θu) and 

failure (θr) at point C and E, respectively. The parameter c is also suggested to 

quantify the residual moment (Mr) at point D. In their study [12], Ezzeldin et al. 

evaluated the yielding, ultimate, and residual strengths (𝑄𝑦, 𝑄𝑢, and 𝑄𝑟, 

respectively) by dividing the corresponding moments by the wall heights, whereas 

the displacements at yield, ultimate, and residual strengths (Δy, Δu and Δr, 

respectively) are calculated according to Eqs. 3a-3c.  

∆𝑦=
𝑄𝑦

𝐾𝑦
,  𝐾𝑦  =   𝛼 𝐾𝑔                                   (3a) 
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∆𝑚𝑎𝑥=  ∆𝑦 + 𝑎(ℎ − 𝑙𝑝)                       (3b) 

∆𝑟=  ∆𝑦 + 𝑏(ℎ − 𝑙𝑝)                        (3c) 

where, a = 0.006 rad, b = 0.015 rad, c = 60%, and 𝑙𝑝 is the plastic hinge 

length of the wall that was assumed to be 50% of the wall flexural depth but less 

than the wall height and less than 50% of the wall length, according to ASCE/SEI 

41-17 [5]. 
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Figure 1. Proposed backbone models for RCBSWs by (a) Ashour and El-Dakhakhni [10], (b) Ashour and Galal [11], 

and (c) Ezzeldin et al. [12] 
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The predictability of the available backbone models can be restricted by 

the fact that a limited number of RCBSW test results were used in their 

development and validation (i.e., a maximum of 25 walls). In addition, these 

models were produced employing basic mechanics, simplified regression 

analyses, and without performing variables selection procedures to determine the 

key parameters controlling the seismic performance of RCBSWs. As such, the 

methodologies adopted for the development of current models may not be able to 

accurately uncover the non-linear interactions between the influencing (input) 

parameters and their relationships with the resulting wall behavior (output). 

Available models were also not assessed using new datasets, not used in their 

development—posing challenges to model generalizability. Subsequently, 

developing more efficient procedures to accurately predict the response of 

RCBSWs remains essential for efficient seismic design.  

Recently, several studies employed artificial techniques (AI) to interpret 

complex, multivariant behaviors in structural engineering (such as predicting the 

lateral drifts of reinforced masonry shear walls [13]) due to their ability to capture 

nonlinear input-output relationships. Genetic programming (GP) is one of the AI 

techniques that follows Darwinian principles [14] to find the near-optimal 

mathematical model relating the system input variables to the sought-after target 

(output) [15-16]. In recent studies, GP and its more powerful variant (i.e., multi-

gene genetic programming (MGGP)) have been utilized to predict the creep of 
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concrete [17], the shear strength of short rectangular reinforced concrete columns 

[18], the compressive strength of geopolymer concrete [19], the bond strength of 

composite bars in concrete [20], the degree of steel corrosion damage in 

reinforced concrete [21], the shear-strength of squat reinforced concrete walls 

with boundary elements [22], the shear strength of steel fibers reinforced concrete 

beams [23-24].  

The capabilities of MGGP were thus utilized in this study to develop the 

necessary expressions to generate the backbone curve of fully grouted RCBSWs. 

A variable selection procedure was performed to identify the key parameters 

affecting the seismic response of RCBSWs. The MGGP-based model was 

developed, trained, and tested using the results of 74 RCBSWs compiled from 

literature. The prediction performance of the developed MGGP-based backbone 

model was assessed at the component- and system-levels and was also compared 

against existing available models. Finally, sensitivity analyses were conducted to 

provide further insights into the extents of the influences of each input parameter 

on the prediction performance of the developed MGGP model. 

2. RESEARCH SIGNIFICANCE AND METHODOLOGY  

Achieving accurate load-displacement backbone curve for cyclically 

loaded RCBSWs is key to define various response characteristics such as initial 

stiffness, cracking, yielding and ultimate strengths, ductility, energy dissipation 

https://www.emerald.com/insight/content/doi/10.1108/EC-05-2020-0258/full/html?casa_token=goA_cun_EZMAAAAA:NMeva4HXB7D5xYrpXDJH4ZEcX-9L62DQiC4w-arBITBBtTIaUOSpYEiencs07aZQTWkK0M0NVFFVAOIyrykaDvR1tOFsXdij0lM6cP1E9fgzJGVU05WrlQ
https://www.emerald.com/insight/content/doi/10.1108/EC-05-2020-0258/full/html?casa_token=goA_cun_EZMAAAAA:NMeva4HXB7D5xYrpXDJH4ZEcX-9L62DQiC4w-arBITBBtTIaUOSpYEiencs07aZQTWkK0M0NVFFVAOIyrykaDvR1tOFsXdij0lM6cP1E9fgzJGVU05WrlQ
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00500-021-06704-2&casa_token=d1GIjC3n4cMAAAAA:_WqjUoaCOCwxC7rd-Lmg4cKxts24D__fuC6dB80_piH9_xavR5rFQbrskanxfXEKfFlx87UUhkgWbRShScc
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s00500-021-06704-2&casa_token=d1GIjC3n4cMAAAAA:_WqjUoaCOCwxC7rd-Lmg4cKxts24D__fuC6dB80_piH9_xavR5rFQbrskanxfXEKfFlx87UUhkgWbRShScc
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capacity, and post-peak behavior. The MGGP approach was employed herein to 

capture the complex nonlinearity controlling the relationships between the 

different design parameters and the walls’ response. The developed MGGP-based 

backbone curve model empowers practicing engineers and designers with an 

essential tool to quantify RCBSW building response and subsequently pertinent 

seismic risk. 

For this purpose, the current study starts by briefly describing the proposed 

MGGP backbone model architecture and experimental dataset. Subsequently, a 

variable selection procedure was performed to identify the most influential 

parameters among a list of potential candidates selected based on previous 

research findings and existing models. Using the considered dataset, the MGGP 

searched for the best fit expression considering the selected influential parameters 

for each specified point (i.e., cracking, yielding, 80% of the ultimate strength, 

ultimate strength, 20% strength degradation). After that, the MGGP-based 

backbone model was assessed against existing models available in the literature 

using various statistical measures. The predictability of the developed model was 

also evaluated at the system-level using further available experimental results. 

Finally, sensitivity analyses were performed to evaluate the influences of each 

parameter on the prediction performance of the developed expressions. Figure 2 

displays the organization and methodology of the current study.   
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Figure 2. Study organization and methodology 
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3. MODEL’S ARCHITECTURE 

Figure 3 shows the proposed load-displacement backbone model, which 

was defined by five key points, as follows:  

▪ The first point refers to the cracking initiation. The cracking load (𝑄𝑐𝑟) is 

computed by enforcing equilibrium, assuming a fixed masonry flexure 

tensile strength of 0.65 MPa, as recommended by the CSA [6]. 

▪ The second point refers to the initiation of yielding in the outermost 

reinforcement bar. The corresponding yielding load (𝑄𝑦) is calculated 

using mechanics principles (i.e., force equilibrium and strain compatibility 

conditions).  

▪ By examining the backbone curves of the tested RCBSWs included in the 

dataset, no significant reduction in the wall stiffness was observed 

corresponding to the second point, although the outermost reinforcement 

bar reached its yielding stress. The curves descend at an average load 

value of 80% of the ultimate load (𝑄0.8𝑢
′ ) [25-26]. Therefore, the point 

corresponding to 80% of the ultimate load was defined as the third point 

on the proposed backbone model to represent the yielding of the wall 

element. The value of 𝑄0.8𝑢
′ is simply calculated by multiplying the 

ultimate load by 0.8. 
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▪ The fourth point refers to ultimate strength of RCBSWs. At this point, the 

ultimate load (𝑄𝑢) is calculated using force equilibrium and strain 

compatibility, assuming masonry reached its ultimate compression strain 

of 0.0025. 

▪ The fifth point refers to a 20% degradation in the strength (𝑄0.8𝑢= 

0.8*𝑄𝑢).   

▪ The 𝛥cr, 𝛥y, 𝛥0.8𝑢
′ , 𝛥u, and 𝛥0.8u are the displacement values corresponding 

to the loads 𝑄𝑐𝑟, 𝑄𝑦, 𝑄0.8𝑢
′ , 𝑄𝑢, and 𝑄0.8𝑢, respectively.  

▪ Then, the stiffnesses of the five key points (Kcr, Ky, 𝐾0.8𝑢
′ , Ku, and K0.8u) 

can be expressed as shown in Eq. 4 next: 

Kcr = 𝑄𝑐𝑟/ 𝛥cr, Ky = 𝑄𝑦 / 𝛥y, 𝐾0.8𝑢
′ = 𝑄0.8𝑢

′  / 𝛥0.8𝑢
′ , Ku = 𝑄𝑢/ 𝛥u, K0.8u = 𝑄0.8𝑢/ 𝛥0.8u   

                                                                                                                               (4)  
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Figure 3. Proposed Backbone model 

4. DATASET DESCRIPTION 

The dataset utilized in the current study includes the design parameters 

and experimental backbone curves of 74 cyclically loaded RCBSWs collected 

from previous studies including: Eikanas (6 walls) [26], Priestley & Elder (2 

walls) [27], Shing (11 walls) [28], Shedid et al.(6 walls) [29], Shedid et al. (2 

walls) [30], Sherman  (8 walls) [31], Hernandez (3 walls) [32],Siam et al. (4 

walls) [33],  Kapoi (8 walls) [34], and Ahmadi et al. (24 walls) [35]. It is worth 

noting that all walls considered within the dataset were:  i) fully grouted, ii) 
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vertically and transversally reinforced, iii) tested under displacement controlled, 

in-plane quasi-static, reversed cyclic lateral loading, and iv) failed in flexure. 

The design parameters included in the collected dataset are: wall length 

(𝑙𝑤), wall thickness (𝑡𝑤), wall height (ℎ𝑤), horizontal reinforcement ratio (𝜌ℎ), 

vertical reinforcement ratio (𝜌𝑣), yield and ultimate strength of vertical 

reinforcement steel bars (𝑓𝑦𝑣, 𝑓𝑢𝑣, respectively), yield and ultimate strength of 

horizontal reinforcement steel bars (𝑓𝑦ℎ , 𝑓𝑢ℎ, respectively), compressive strength 

of grouted masonry units (𝑓′
𝑚

), and the axial compressive load (𝑃). The 

distribution of the wall design parameters is illustrated in Fig. 4. The figure shows 

the minimum, first quartile, median, third quartile, and maximum values of each 

design parameter. As an example, the wall height (hw) had a minimum, first 

quartile, median, third quartile, and maximum values of 1321 mm, 1830 mm, 

2032 mm, 2845 mm, and 3990, respectively.  
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Figure 4. Distribution of the RCBSWs design parameters 

5. DATA PREPROCESSING 

Although the power of MGGP stems from its capacity to consider a very 

large number (search space) of possible combinations of system variables and 

mathematical relationships, MGGP does not specifically consider the variable 

units or dimensions. Therefore, a key data pre-processing step was performed to 

ensure that the parameters extracted from the experimental dataset are presented 

to the MGGP algorithm in a way that facilitate mechanics-supported 

understanding of the relationships between the input and output variables.  
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5.1 Input Variables Preprocessing 

Wall design parameters (i.e., input parameters) have different units; for 

example, wall’s length 𝑙𝑤 has a unit of length, yield strength of reinforcement 

steel bars 𝑓𝑦𝑣  has a unit of stress, and axial compressive load 𝑃 has a unit of force. 

To avoid generating dimensionally inconsistent prediction expressions, all input 

variables were normalized, forming dimensionless candidates, in order to control 

the shape/combination of the variables included in the MGGP resulting 

expressions. The design parameters were presented through six dimensionless 

candidates, namely the wall aspect ratio (ℎ𝑤 𝑙𝑤⁄ ), axial load ratio (𝑃
𝐴𝑤. 𝑓′𝑚

⁄ ), 

vertical reinforcement ratio (𝜌𝑣  %), horizontal reinforcement ratio (𝜌ℎ %), 

𝜌𝑣 . 𝑓𝑦

 𝑓′𝑚
⁄ , 

𝜌ℎ . 𝑓𝑦

 𝑓′𝑚
⁄ . These candidates were chosen based on previous research 

findings and engineering understanding for the mechanics of RCBSWs. 

5.2 Output Variables Preprocessing 

The output variables were the stiffness of the specified five key points: 

Kcr, Ky, 𝐾0.8𝑢
′ , Ku, and K0.8, which were first calculated according to Eq. 4 by 

dividing the load at each point (analytically obtained from mechanics principles) 

by the corresponding displacement (graphically obtained from the experimental 

backbone curves of the tested RCBSWs). Then, the Kcr, Ky, 𝐾0.8𝑢
′ , Ku, and K0.8 

values were normalized by the theoretical gross stiffness of RCBSWs, 𝐾𝑔 =
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 1 (
ℎ𝑤

3

3𝐸𝑚𝐼𝑔
+

1.2ℎ𝑤

𝐺𝑚𝐴𝑔
)⁄  that was proposed by Paulay and Priestley  [25] , where Em = 

900 𝑓′𝑚 and Gm = 0.4 Em. Table 1 shows the list of potential inputs and output 

variables. 

Table 1. Potential candidate input variables and outputs used in the 

development of the backbone model 

Input variable ID Physical formulation 

x1 ℎ𝑤 𝑙𝑤⁄  

x2 𝑃
𝐴𝑤 . 𝑓′𝑚

⁄  

x3 𝜌ℎ % 

x4 𝜌𝑣  % 

 

x5 𝜌𝑣 . 𝑓𝑦

 𝑓′𝑚
⁄  

 x6 𝜌ℎ . 𝑓𝑦

 𝑓′𝑚
⁄  

 
Output variable ID Physical formulation 

y1 Kcr/Kg 

y2 Ky/Kg 

y3 𝐾0.8𝑢
′ /Kg 

y4 Ku/Kg 

y5 K0.8u/Kg 
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6. VARIABLE SELECTION 

The inclusion of too many or too few input variables in the modeling 

usually leads to unnecessarily complexity or inaccurate prediction expressions. As 

such, the identification of the most relevant input variables is key to achieve 

efficient and elegant expressions for practicing engineers. Subsequently, in this 

study, the best subset selection procedure (BSS) was adopted to select the most 

influential subset of independent variables on the cyclic behavior of RCBSWs.  

For k independent variables, the BSS procedure begins by considering all 

possible expressions with size 1, size 2, …, size k (i.e., consist of 1 variable, 2 

variables, …, k variables, respectively). Subsequently, the best expression for 

each size is identified, and, eventually, the best overall expression was selected 

from these finalists. This procedure is known to be computationally demanding 

unlike the forward and backward stepwise procedures which are more efficient 

[36]; however; the BSS was selected in the current study since the number of 

independent variables is not very large. The method used to evaluate the 

performance of the expressions generated at each step of the BSS technique is also 

important [36]. The use of R2 and RMSE measures, for example, are insufficient 

for assessing the performance of various expressions with different number of 

variables. This is attributed to the fact that, when additional variables are added to 

the expression in each step, the former increases (i.e., R2) while the latter 

decreases (i.e., RMSE), resulting in a highly complex expression.  Due to the 
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biased nature of such measures—based only on the training set performance, 

expression’s poor testing set performance is not unexpected [36].  

Based on the above-mentioned factors, the Bayesian information criterion 

(BIC) was selected as the expression performance evaluation measure. The BIC 

value for a prediction expression is computed as in Eq. 5: 

𝐵𝐼𝐶 =
1

𝑛𝜎2
(∑ (𝑦𝑖 − 𝑦𝑖

∗)2 + log(𝑛)𝑑𝜎2𝑛
𝑖=1 )            (5) 

where σ2 is the variance of residual errors between expression predictions 

and experimental observations; n is the number of observations; ∑ (𝑦𝑖 − 𝑦𝑖
∗)2𝑛

𝑖=1  is 

the total sum of squares; and d is the number of variables included within the 

expression in a certain step [36-38]. The BIC applies a penalty on the RMSE that 

is only computed considering the expression performance on the training set. 

Hence, the penalty incorporates any bias in the training set due to overfitting, and 

in turn, implicitly accounts for the fact that the expression's performance on the 

training set is not representative of its performance on the testing set [37-38]—

improving expression generalizability. Furthermore, BIC penalizes unnecessarily 

complexity by increasing penalties for expressions with more variables through 

the factor (log(𝑛)𝑑𝜎2) presented in Eq. 5. [36]. This penalty explains the 

possibility of multicollinearity of variables and prevents the inclusion of two 

variables that represent the contribution of the same wall’s design characteristic. 

Finally, and similar to RMSE, lower BIC values are an indication of better 

expression predictions.  
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Figure 5 Selection procedure for subsets of potential input variables for (a) 

𝑲𝒄𝒓

𝑲𝒈
,  (b)  

𝑲𝒚

𝑲𝒈
,  (c) 

𝑲𝟎.𝟖𝒖
′

𝑲𝒈
,  (d) 

𝑲𝒖

𝑲𝒈
,  and (e) 

𝑲𝟎.𝟖𝒖

𝑲𝒈
 

Prior to performing the BSS procedure, the variable x1= 
ℎ𝑤

𝑙𝑤
⁄  was 

removed to eliminate any complexity or duplications, since the equation of Kg 

(which was used in normalizing the output variables) considers the influence of   



M.A.Sc. Thesis – H. Elgamel McMaster University – Civil Engineering 

 

20 

 

ℎ𝑤
𝑙𝑤

⁄ . Subsequently, the BSS procedures were performed on only five input 

parameters (x2, x3, x4, x5, and x6) (listed in Table 1) against each output variable 

(
𝐾𝑐𝑟

𝐾𝑔
, 

𝐾𝑦

𝐾𝑔
, 

𝐾′0.8𝑢

𝐾𝑔
, 

𝐾𝑢

𝐾𝑔
, 

𝐾𝑜.8𝑢

𝐾𝑔
). Figure 5 indicates that the best subset includes two 

variables since this number of variables provides the lowest BIC value out of all 

possible subsets. The inclusion of additional variables provides no further 

enhancement to the expression performance. Figure 6 also demonstrates that the 

best subset (i.e., corresponding to the darkest shade) is a combination of the 

variables x2 and x4 (𝑃
𝐴𝑤. 𝑓′𝑚

⁄ and 𝜌𝑣, respectively), ranked according to their 

influence on each stiffness ratio. Therefore, these two variables were only utilized 

to develop the MGGP-based expressions.  
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Figure 6. Variable selection procedure for combinations of potential input 

variables for (a) 
𝑲𝒄𝒓

𝑲𝒈
,  (b)  

𝑲𝒚

𝑲𝒈
,  (c) 

𝑲𝟎.𝟖𝒖
′

𝑲𝒈
,  (d) 

𝑲𝒖

𝑲𝒈
,  and (e) 

𝑲𝟎.𝟖𝒖

𝑲𝒈
 

Figure 7 shows the correlation matrices between the input variables (x2 

and x4) and each stiffness ratio (output variable). The diagonal boxes in the 

figures display the distribution of each variable, the boxes in the upper-right 

region demonstrate the Pearson product correlation coefficient (R) that quantifies 

the strength of the relationship between every pair of variables, and the boxes in 

the lower-left region present the fitted lines of the scatter plots between every pair 

of variables. As can be seen, each stiffness ratio appeared to have a positive direct 
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relationship in general with both variables (x2 and x4).  

 

Figure 7. Correlation matrix for the selected variables when y equals to: a) 

𝑲𝒄𝒓

𝑲𝒈
,   b)  

𝑲𝒚

𝑲𝒈
,  c) 

𝑲𝟎.𝟖𝒖
′

𝑲𝒈
,   d) 

𝑲𝒖

𝑲𝒈
,   and e) 

𝑲𝟎.𝟖𝒖

𝑲𝒈
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7. DEVELOPMENT OF THE MGGP BACKBONE MODEL  

In order to form the backbone model, the MGGP, through the MATLAB© 

toolbox GPTIPS [39], was employed to develop the early identified five secant 

stiffness expressions, in a form of 
𝐾𝑖

𝐾𝑔
 =  𝑓 (

𝑃

𝐴𝑤.𝑓′𝑚
, 𝜌𝑣), where Ki refers to the Kcr, 

Ky, 𝐾0.8𝑢
′ , Ku, and K0.8u. 

The dataset was divided into a training subset (70% of the total data set) 

and a testing subset (30% of the total data set) in a stratified manner, where both 

sets have similar statistical properties, as recommended by Ahangar-Asr et al. 

[40]. The training subset is first used to develop and validate the MGGP-based 

stiffness expressions, and the testing subset is successively used to evaluate the 

predictability of the developed expressions for unseen dataset that has not been 

use in their development. 

7.1 MGGP procedures 

The GP algorithm is based on the Darwinian theory of “Survival of the 

fittest”, it finds the optimal solution by simulating the process of evolution in 

nature on populations of hundreds or thousands of computer programs. In other 

words, GP can reach the near-optimal solution for complex systems by 

extensively searching for the best fit expression between all potential expressions 

[41]. GP evolves a population of trees through implementing symbolic regression, 
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where the evolved expressions predict output vectors (y) equal to the number of 

observations of the response variables using corresponding matrix of inputs (x) 

equal to the number of observations of the response variables multiplied by the 

number of input variables. Building on GP, in MGGP each symbolic model, or 

each member of the GP population, is a weighted linear combination of the 

outputs from several GP trees “genes” [42].  

The MGGP procedure starts with the user specifying several preparatory 

selections such as: 1) the terminal set; 2) the set of primitive functions; 3) the 

fitness measure; 4) certain parameters for controlling the run; and 5) the 

termination criterion and method for designating the result of the run [43]. Users 

specify the maximum allowable number of genes, Gmax, and the maximum tree 

depth for a model, therefore—controlling the model complexity. Furthermore, to 

attain a relatively compact model, the maximum tree depth could be restricted to 4 

or 5 nodes for instance [42].  

The set of primitive functions could be basic mathematics operations (+, -, 

x, /, etc.), non-linear functions (sin, cos, tan, exp, tanh, log), Boolean logic 

functions (AND, OR, NOT, etc.), or any other mathematical functions; while the 

terminal set comprises the arguments for these functions and could consist of 

numerical constants, logical constants, variables etc. [44]. The fourth selection 

entails the control parameters specification such as the population size, and the 

fifth selection includes the specification of the maximum number of generations 
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to be run [44]. After completing the five selections steps, the MGGP run can be 

launched. The procedure of a MGGP run could be summarized in four major steps 

as presented by [42].  

 

Figure 8. An example of MGGP process 

  



M.A.Sc. Thesis – H. Elgamel McMaster University – Civil Engineering 

 

26 

 

First, the initial population is formed by randomly creating individuals 

containing GP trees with different genes (between 1 and Gmax), each individual 

represents a potential expression for predicting the RCBSW stiffness. Second, a 

fitness value is assigned to each individual indicating its accuracy to predict the 

output. Third, based on this fitness value, genetic operations (elitism, crossover, 

mutation) are performed on the models to evolve a new population. Individuals 

with high fitness values are directly reproduced to a new population (elitism), 

while mutation and crossover operations are performed on the remaining 

individuals. Two-point high-level crossover is performed in addition to the 

traditional crossover as it allows the exchange of genes between individuals and 

even the removal of genes. The mutation operation is replacing a branch of the 

model with another randomly generated model. An example of a typical 

evolutionary process for an MGGP model is presented in Fig. 8. Fourth, the 

genetic operations are continuously performed on the populations’ individuals as 

long as the termination criterion is not met, and once it is met, the model is finally 

selected based on the minimum fitness value and its performance is assessed on 

testing data [41]. Figure 9 shows the MGGP modeling procedures. 
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Figure 9. Flowchart representation of MGGP procedure 
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7.2 MGGP Parameters  

In this study, several combinations of MGGP parameter configurations 

were selected to perform multiple runs. Subsequently, the performance of 

developed expressions in each run was evaluated based on their accuracy and 

simplicity, until the near-optimal MGGP-based expressions were chosen. Table 2 

presents the final MGGP parameters used to develop the best performing 

expressions. A population size of 1000 individuals was selected to provide a wide 

enough search space for the MGGP procedure. The number of generations was set 

to 1000 as it led to the best fitness values on both training and testing subsets, and 

also the termination criterion was set to reach either this number of generations or 

fitness function equal to 1. The maximum number of genes and tree depth were 

set to a value of 2 and 3, respectively, to achieve accurate yet simple enough 

expressions. In addition, only the basic functional relationships of addition, 

subtraction, multiplication, and power were used. The probability rates of 

crossover, mutation, and elitism were set at 85%, 10%, and 5%, respectively, for 

maximum model efficiency [45-46].  
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Table 2.  Main parameters of the developed MGGP-based expressions 

Parameter Setting 

Population size (P)  1000 

Number of generations (N)  1000 

Termination criterion  Number of generations 

Fitness function  
1

𝑅2 + 𝑁𝑅𝑀𝑆𝐸  

Number of genes  2 

Maximum tree depth  3 

Function set (+), (−), (×), and power 

Elitism fraction  0.05 

Individual selection method                  

for crossover and mutation 
Tournament selection 

Tournament size  2 

Crossover rate  0.80 

Mutation rate  0.15 

 

The MGGP expression accuracies were evaluated using the fitness 

function which combines both the squared correlation coefficient (R2) and the 

normalized root-mean-square error (NRMSE) (Eq. 6a-c). This fitness function 

qualifies the evaluation of both the linear correlation and the aggregated residual 

error between the MGGP-based predictions and experimental observations. The 

optimum value of the fitness function is equal to 1.0 (ideally when R2 = 1 and 

NRMSE = 0), as such, the higher the R2 and the lower the NRMSE values, the 

more the expression is accurate. 

𝑅2 = (
∑ (𝑦𝑖−�̅�)(𝑦𝑖

∗−𝑦∗̅̅̅̅ )𝑛
𝑖=1

√∑ (𝑦𝑖−�̅�)2(𝑦𝑖
∗−𝑦∗̅̅̅̅ )

2𝑛
𝑖=1

)

2

                                                                             (6a) 
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𝑁𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑦𝑖−𝑦𝑖

∗)
2𝑛

𝑖=1

𝑦�̅�
                                                                                    (6b) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

𝑅2 + 𝑁𝑅𝑀𝑆𝐸                                                                                              (6c) 

8. FINAL MGGP-BASED EXPRESSIONS 

The final MGGP-generated expressions are summarized in Eqs. 7a-7e: 

𝐾𝑐𝑟  =  [2 (
𝑃

𝑓𝑚𝐴𝑔
) + 1.18 𝜌𝑣

0.2  −   0.71] 𝐾𝑔          (7a) 

𝐾𝑦 =  [1.1 (
𝑃

𝑓𝑚𝐴𝑔
)

0.85

 + 0.75 𝜌𝑣
0.15  −   0.53] 𝐾𝑔         (7b) 

𝐾′0.8𝑢 =  [7.64 (
𝑃

𝑓𝑚𝐴𝑔
)

1.78

 + 0.5 𝜌𝑣
0.2 − 0.32] 𝐾𝑔;  where𝐾′0.8𝑢 ≤ 0.7𝐾𝑦     (7c) 

𝐾𝑢  =  [0.13 (
𝑃

𝑓𝑚𝐴𝑔
)

0.55

 + 0.1 𝜌𝑣
1.25  ]  𝐾𝑔                     (7d) 

𝐾0.8𝑢  =  [ 0.16 (
𝑃

𝑓𝑚𝐴𝑔
) + 0.05 𝜌𝑣

1.2 ]  𝐾𝑔;  where 𝐾0.8𝑢 ≤ 0.5𝐾𝑢       (7e) 

It should be noted that in Eq. 7c, the stiffness values corresponding to the 

yielding of wall element should not exceed 0.7 of the stiffness values 

corresponding to the yielding of the outermost reinforcement bar. Also, in Eq. 7e, 

the stiffness values corresponding to 20% strength degradation should not exceed 
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0.5 of the stiffness values corresponding to the ultimate strength.  

Using the developed expressions, the five specified stiffnesses can be 

calculated. Subsequently, by enforcing equilibrium and compatibility strain 

conditions, the crack, yield, and ultimate strengths can be obtained. The ultimate 

strength is multiplied by 0.8 to be reduced by 20% in order to obtain Q’0.8u and 

Q0.8u. Then, the five strength values are divided by the five stiffness values to 

obtain the five corresponding displacement values. Finally, using the strengths 

and corresponding displacements, the penta-linear backbone curve can be plotted. 

Although the developed expressions are generalizable to other RCBSWs not used 

in training, they may only be valid for walls with design parameters that fall 

within the examined ranges. The flowchart in Fig. 10 summarizes the procedures 

of generating the backbone model.  
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Figure 10. Procedures to generate the proposed backbone model 
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9. COMPONENT-LEVEL MODEL PERFORMANCE ASSESSMENT  

The prediction performance of the developed MGGP-based backbone 

model was evaluated against that of existing backbone models that were 

specifically proposed for fully grouted RCBSWs. The trilinear backbone model 

proposed by Ashour and El-Dakhakhni [10], the quad-liner backbone model 

proposed by Ashour and Galal [11], and the trilinear backbone model proposed by 

Ezzeldin et al. [12] were used for comparison. 

Figure 11 shows the comparison between the experimental backbone 

models of 22 RCBSWs (i.e., the testing subset) against those proposed by the 

MGGP model and the other existing models. As can be seen, among all the 

backbone models examined, the MGGP-based model showed the best ability to 

predict the cyclic response of RCBSWs in pre-cracking stage and up to the 

yielding, ultimate, and 20% strength degradation. The higher accuracy of the 

MGGP model compared to other existing models is attributed to (a) the relative 

larger dataset used in the development, which has never been utilized to develop 

any of the existing models, and (b) the use of robust variables selection and 

MGGP techniques, unlike the classic regression techniques used for developing 

existing models, to identify the most influential parameters and capture nonlinear 

relationships governing the cyclic response of RCBSWs.  
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Figure 11. Predictability of the MGGP model compared to other existing 

models
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The accuracy of the investigated models was further examined in each 

stage of loading. Since the strengths in all investigated models are derived using 

basic mechanics (i.e., force equilibrium and strain compatibility conditions), the 

comparison was performed based on the model capability of predicting different 

wall displacements. The accuracy of the predicted displacements against the 

experimental values was evaluated by calculating R2, the root of mean squared 

error (RMSE), and the mean absolute error (MAE). The mean (𝝻) and coefficient 

of variance (CV) of the experimental-to-predicted displacement ratios were also 

obtained to evaluate the consistency of predictions. Subsequently, the models 

were ranked based on the measured statistical indicators, in which the first rank 

(i.e., best performance) was assigned to the model having the closest 𝝻 to 1, the 

highest R2, and the lowest RMSE, MAE, and CV. All statistical indicators are 

presented in Fig. 12. As can be inferred from the figure, the MGGP-model ranked 

as the best performing model, showing the 𝝻 in a range of 1~1.06, the R2 in a 

range of 0.88~0.93, and the RMSE, MAE, and CV in a range of 2.81~16 mm, 

1.51~11.2 mm, and 26~36%, respectively. On the other hand, all other models 

appeared to underestimate the 𝛥y, 𝛥u, and 𝛥0.8u (i.e., 𝝻 > 1) with higher 

inconsistent predictions (i.e., higher RMSE, MAE, and CV). The least performing 

model was that proposed by Ashour and El-Dakhakhni [10] due to the very 

limited data used in the development, even compared to other existing models. 

With the increase in training dataset, the accuracy of the model improved as 

shown by Ashour and Galal’s model—developed through updating Ashour and 
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El-Dakhakhni’s model using larger dataset. This indicates that the size and 

diversity of the training dataset is a key factor in developing data-driven models. 

In the future, the availability of further relevant results of RCBSWs (i.e., a larger 

training dataset) is expected to result in improving the developed MGGP model. 
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Figure 12. Statistical indicators of displacement predictions at (a) yielding, (b) ultimate, and (c) 20% strength 

degradation
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10. SYSTEM-LEVEL MODEL PERFORMANCE ASSESSMENT  

In this section, the performance of the MGGP model (proposed based on 

component-level experimental data) to predict the cyclic response of full RCBSW 

buildings (i.e., system-level) was evaluated. Two two-story RCBSW buildings 

constructed and tested by Heerema et al. [47-48] (Building II) and Ashour and El-

Dakhakhni [10] (Building III) were used for comparison. Both buildings were 

identical in terms of RCBSWs’ geometry, materials, reinforcement, and 

distribution, whereas they differed in their floor diaphragms. In Building II, hinge 

lines were introduced within the floor slab (i.e., a reduction in the floor slab 

thickness) to eliminate the out-of-plane diaphragm’s coupling influences on the 

RCBSWs aligned along the loading direction. As a result, the RCBSWs in 

Building II are more likely to behave as cantilever walls. On the other hand, in 

Building III, the RCBSWs along the loading direction were restrained by the 

diaphragm’s coupling influences induced by the floor slab and orthogonal walls. 

In both buildings II and III, the load was applied at the top slab level. In 

predicting the cyclic response of both buildings, the proposed MGGP model was 

used to generate the load-displacement backbone curves of all RCBSWs aligned 

along the loading direction (W1, W2, W5, and W8), individually (as shown in Fig. 

13), while the contribution of the walls perpendicular to the load direction were 

neglected due to their minimal out-of-plane stiffness. Then, the developed 

backbone curves were superimposed at each displacement demand level (i.e., at a 
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given displacement (𝛥i), the walls’ strength were algebraically summed as given 

in Eq. 8 and presented in Fig. 13), to quantify the overall building response. Due 

to the asymmetry of the buildings' geometry, the twist measures obtained from the 

experiments were considered in the calculations.  

𝑄𝑡𝑖 = 𝑄1𝑖  +  𝑄2𝑖  +  𝑄5𝑖  +  𝑄8𝑖                        (8) 

In the MGGP model, the boundary condition of RCBSWs was simply 

modeled by taking the Kg similar to that stated in Eq. 2a for Building II, 

simulating the boundary condition of RCBSWs as fixed at the foundation and free 

to rotate at the roof level. In Building III, the Kg was taken similar to Eq. 9 

according to Paulay and Priestley [25], assuming the boundary condition of the 

RCBSWs as restrained at both the foundation and the roof level. However, 

according to Ashour and El-Dakhakhni [10] and Ezzeldin et al. [12], in the post-

peak stage, the diaphragm coupling degrades gradually as the drift level increases 

due to the formation of cracks within the diaphragm, until the diaphragm became 

incapable of preventing the RCBSWs from rotation and then they respond almost 

as cantilevers at large drifts. In their analysis, Ashour and El-Dakhakhni [10] 

assumed that beyond the ultimate load, the walls in Building III can be analyzed 

as a cantilever, neglecting the diaphragm coupling at the roof level. After reaching 

the ultimate load, the wall-foundation restraining levels further deteriorate, and 

subsequently, the assumption adopted by Ashour and El-Dakhakhni [10] (i.e., 

cantilever wall) may result inaccurate estimations. The analysis performed by 
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Ezzeldin et al. [12] assume a gradual decrease in the diaphragm’s coupling 

accompanied with strength degradation, which was mostly eliminated at a drift 

level corresponding to around 40% strength reduction. By taking this analysis into 

consideration and assuming a linear gradual degradation in the diaphragm’s 

coupling, the stiffness of the fifth point corresponding to the 20% strength 

degradation (K0.8u) was reduced by 50%.        

𝐾𝑔 =  1 (
ℎ𝑤

3

12𝐸𝑚𝐼𝑔
+

1.2ℎ𝑤

𝐺𝑚𝐴𝑔
)⁄                                     (9) 
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Figure 13. The predicted backbone curves of individual RCBSWs in 

Buildings II tested by Heerema et al. [47] and III tested by Ashour and El-

Dakhakhni [10] 
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Figure 14 compares the predicted superimposed backbone curves with 

that experimentally measured for Building II and III [10, 48]. As seen, the 

proposed model demonstrates excellent predictability up to the yielding point. 

Beyond this level and up to 20% strength degradation, a slight deviation between 

the lateral load predictions and the experimental results was observed. This might 

be attributed to the significant damages that are typically induced to diaphragms 

and walls at such high level of loadings, which in turn affect the system-level 

prediction accuracy of the proposed model. However, the maximum deviations 

observed in Building II are 7.5% at yielding strength, 2% at 80 % of the ultimate 

strength, 10.3% at the ultimate strength, and 7% in the descending branch of the 

backbone curve up to reaching a 20% strength degradation (post-peak stage). 

These deviations are 3.4%, 6.1%, 9.4%, and 9.1%, respectively, for Building III.  

This excellent prediction accuracy, even at high levels of loading, indicates that 

the MGGP model proposed in this study has a promising capability to predict the 

cyclic response of RCBSW buildings considering the diaphragm coupling 

influences through the term of Kg. Subsequently, the MGGP model can be an 

efficient system-level prediction tool for practicing engineers and designers to 

help in quantifying the seismic response of RCBSW buildings. However, further 

validations are necessary to ensure the reliability of the proposed model for 

system-level predictions, especially when other wall design characteristics are 

considered.  
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Figure 14. Superimposition of RCBSW components backbone model 

generated using MGGP model compared to experimental backbone model 

obtained from (a) Building II tested by Heerema et al. [47], and (b) Building 

III tested by Ashour and El-Dakhakhni [10] 

11. SENSITIVITY ANALYSES 

Further analysis was conducted in this study to examine the behavior of 

the prediction expressions to the different input parameters. Figure 15 presents 

the relationship between the MGGP-based expressions (Kcr, Ky, K’0.8u, Ku, K0.8u) 

and the input parameters used in the modelling. These relationships were 

investigated by changing one parameter within its range, while the other 

parameters were set at their mean values. The results of the parametric analysis in 

Fig. 15 show that all wall design parameters (i.e., P, lw, tw, f’m, ρv) have direct 

relationships with the corresponding Kcr, Ky, K’0.8u, Ku,  K0.8u as increasing these 

parameters subsequently increases the stiffnesses values. On the other hand, 
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increasing the wall height (hw) has a negative influence. These results agree with 

the basic mechanics of RCBSW systems, and therefore considered robust. To 

further understand the extents of the influences of each input design parameter on 

the developed expressions, sensitivity analysis was performed. The stiffness 

expressions’ sensitivity to each design parameter was investigated using Eqs. 10a 

-10b [49]:  

𝑁𝑖 =  𝐾𝑀𝐺𝐺𝑃 𝑚𝑎𝑥 (𝑥𝑖) −  𝐾𝑀𝐺𝐺𝑃 𝑚𝑖𝑛 (𝑥𝑖)                   (10a) 

𝑆𝑖 =  
𝑁𝑖

∑ 𝑁𝑖
𝑛
𝑖=1

 × 100          (10b) 

where, 𝐾𝑀𝐺𝐺𝑃 𝑚𝑎𝑥 (𝑥𝑖)  and  𝐾𝑀𝐺𝐺𝑃 𝑚𝑖𝑛 (𝑥𝑖) are, respectively, the 

maximum and minimum stiffness predictions for each developed expression (Kcr 

Ky, K’0.8u, Ku, and K0.8u), obtained from investigating the entire range of the ith 

design parameter while all other parameters were kept constant at their mean 

values.  
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Figure 15. Effect of parameters on the performance stiffness expressions, 

where V refers to any independent variable from Eqs. 7a-7e 

Figure 16 presents the results of the sensitivity analysis. The figure 

indicates that expression predictions are most sensitive to some of the walls’ 
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geometric parameters, hw, lw, and P and hw, whereas the masonry compressive 

strength f’m, and the wall thickness tw have the lowest effect on all prediction 

expressions. These findings conform with those reported by other researchers 

(e.g., Shedid et al. [30]; Ahmadi et al. [35])—further asserting robustness of the 

MGGP-based stiffness prediction expressions for engineering practice. 

 

Figure 16. Sensitivity analysis of input design parameters in developed 

MGGP-based expressions 

12. CONCLUSIONS 

The current paper employed MGGP, a bio-inspired artificial intelligence 

technique, to efficiently develop a piecewise-linear backbone model for flexure-

dominated fully grouted RCBSWs. An experimental dataset of 74 RCBSW was 
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collected from previous studies and utilized to train and test the MGGP 

expressions employed to generate the wall response backbone. A variable 

selection procedure was performed on the collected dataset first to identify the 

variables most influencing wall behavior, for each of the developed expressions. 

The accuracy of the MGGP-based backbone model was assessed at component- 

and system-level and compared to other existing models available in the literature. 

The main findings obtained from this study are: 

▪ The subset selection procedure is an efficient tool for identifying the most 

influential input parameter and excluding the least relevant ones—

avoiding unnecessary complexity in the resulting prediction expressions. 

The variable selection analysis showed that the axial load ratio 

(𝑃
𝐴𝑤 . 𝑓′𝑚

⁄ ) and the vertical reinforcement ratio (ρv) have a direct 

significant influence on the stiffness ratios, and subsequently, both 

variables were considered in developing the expressions.  

▪ Compared to other existing backbone models, the developed MGGP-based 

model demonstrated higher accuracy in predicting the full response of 

RCBSWs (up to 20% strength degradation). The model can thus facilitate 

seismic design of new buildings and assessment of existing ones. 

▪ The developed MGGP model was integrated with a procedure that 

considers the floor slab stiffness (i.e., diaphragm) influences on the cyclic 

response of RCBSWs at system-level, yielding a useful prediction tool for 
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practicing engineers and building designers.  

▪ Further analysis showed that the expressions’ stiffness predictions are 

positively influenced by the axial load (P), vertical reinforcement ratio 

(ρv), masonry compressive strength (f’m), and wall thickness (tw), whereas 

the increase of wall height (hw) has an adverse influence. 

▪ The sensitivity analysis indicated that the expressions’ stiffness 

predictions are most sensitive to the change of wall height and length (hw 

and lw, respectively) followed by axial load (P) and vertical reinforcement 

ratio (ρv), whereas the masonry compressive strength (f’m) and wall 

thickness (tw) have the lowest effect. 

In general, the study outcomes indicate promising capabilities of artificial 

intelligence techniques, specifically MGGP, in reasonably capturing nonlinear 

input-output relationships controlling complex behavior such as the cyclic 

behavior of RCBSWs at the component- and system-levels. This can in turn 

extend the application of MGGP in the interpretation of ill-defined problems in 

structural engineering. In closure, and similar to all data-driven models, the 

expressions developed here, although generalizable to other RCBSWs not used in 

training, they may only be valid for walls with design parameters that fall within 

the ranges examined. Pending the emergence of further relevant results for 

RCBSWs (i.e., a larger training dataset), future expression updates may be 

warranted.   
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