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Abstract
The Collatz conjecture is a deceptively simply problem that straddles the line between
number theory and dynamical systems. It asks: if we iterate the function that sends
some even n to n

2 and odd n to 3n+ 1, will this converge to 1 for every natural number?
This problem has long stood unsolved despite attempts in many mathematical disciplines
– in large part due to the difficulty of predicting the multiplicative structure of a number
under addition. In this project, we provide a derivation of the most standard algebraic
reformulation of the non-trivial cycles subproblem. This results in an infinite family of
exponential Diophantine equations which correspond to k-special 3-smooth representa-
tions of integers. By imposing conditions on the exponents in these representations, we
rewrite it in a multiplicative form that admits iterative solving for parameters of the
representation. Doing so while enforcing a maximum value on the largest power of 2
in the representation, we derive a sufficient condition for no non-trivial cycles existing
in this process. We show that a self-contained number, w, is exactly one which has an
odd element of its orbit modularly equivalent to −3−1 mod w. We then show that non-
cyclicity of any self-contained number greater than 5 is sufficient to show that no cycles
exist in the Collatz process. This differs from previous modularity-based results, and
experimental results suggest that self-contained numbers are relatively rare. We show
that exactly 7 such numbers exist less than 1015 – improving on the previously known
bound of 1011.

Keywords: Collatz conjecture; self-contained numbers; k-special 3-smooth represen-
tations; computational number theory; exponential Diophantine equations
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Chapter 1

Introduction

The Collatz conjecture is a problem that teases you. In working through this problem,
one unravels, layer by layer, subproblem after subproblem, all along the way feeling
the excitement of progress - with the idea in mind that this is all going somewhere.
Almost universally and unwaveringly, this progress and unravelling eventually ends in
the realization that some condition derived or equation formulated is, in essence, the
conjecture in its entirety. Sometimes, if you are particularly unlucky, you actually find
yourself something harder than what you started with. The Collatz conjecture shields
itself fiercely from any elementary attack you may throw at it - and when you have
exhausted all that you can, it sits smugly back, revelling in the knowledge that you
have come away knowing little more than you went in with. It is for this reason that
mathematicians are enchanted by it. It is a problem so simple to state that a child
could understand it; so basic in the computation that, given a classroom of sufficiently
motivated fifth-graders, one could begin to verify this case-by-case, with little effort. But
to say anything about the process in generality is a distinctly difficult task that boils
down to one long-standing open question: what happens to the multiplicative structure
of an integer under addition?

In this thesis, we specifically focus on the subproblem of determining the existence of
non-trivial cycles in the Collatz process. We approach this from an algebraic perspective,
reproducing an algebraic reformulation first proposed by Böhm and Santacchi [6]. This
reformulation consists of an infinite family of exponential Diophantine equations that
amount to representing a particular difference of powers by a special integer representa-
tion, referred to as a k-special 3-smooth representation. We investigate some elementary
properties of these representations, and numbers for which such a representation exists.
We present a method by which a representation (and its existence) can be determined
iteratively, and use this to derive a necessary condition for cyclicity. By examining a re-
laxation of this condition, we characterize a conjecturally sparse set of numbers, termed
self-contained numbers, that are shown to be candidates for cyclic numbers. In fact,
any cyclic number must be self-contained. Only 7 such numbers are known. By employ-
ing distributed computing strategies, we improve the known upper-bound for which no
further self-contained numbers exist from 1011 to 1015, and propose further refinements
to the search strategy such that a greater proportion of numbers may be sieved. We
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present several properties of self-contained numbers, and partially characterize their re-
lationship to the Collatz process and possible cycles. In each of the last two sections,
we take a brief foray into some empirical and experimental results related to k-special
representations and self-contained numbers.

We begin with a short literature review on some large results on the conjecture in
general - including Tao’s recent breakthrough on bounding the maximum element of an
orbit [24] - and then some more specific results on the non-trivial cycles subproblem.
The totality of literature on k-special 3-smooth numbers is reviewed, and we go on
to present the first known results on self-contained numbers outside of OEIS (Online
Encyclopedia of Integer Sequences) entry A005184 [12]. Aside from the general review,
the literature for particular topics are presented in their relevant sections. For the rest
of this section, we will formally present the Collatz conjecture, denote some commonly
used notation, explain certain conventions, and introduce some basic concepts that will
be broadly applicable throughout the paper. Topic-specific nomenclature and notation
will be introduced when it becomes pertinent.

1.1 The Collatz conjecture
The Collatz Conjecture was originally formulated for the Collatz map, C, given

C(n) =


3x+ 1 : x ≡ 1 (mod 2)
x

2 : x ≡ 0 (mod 2)
(1.1)

It asks: will the repeated self-composition of C reach 1 for every positive natural number?
The problem can be equivalently stated in terms of two subproblems. First, SP1, is to
show that for all natural numbers, the Collatz orbit will not have a cycle other than the
trivial. We also refer to this as the non-trivial cycles subproblem. The second, SP2, is
to show that no orbit tends to infinity with continued iteration. Formally,

SP1 := ∀n ∈ N+, n ≥ 5: ∀m ∈ N+ : C(m)(n) 6= n

SP2 := ∀n ∈ N+, n ≥ 2: ∃M ∈ N+ : ∀m ∈ N+ : C(m)(n) < M

Resolutions to SP1 and SP2 would resolve the conjecture entirely. Unfortunately, both
of these remain undetermined.

Although the conjecture was originally formulated for the map C as given above, we
generally use alternate but equivalent maps in actual study of the problem. These are:

T (n) =


3x+ 1

2 : x ≡ 1 (mod 2)
x

2 : x ≡ 0 (mod 2)
(1.2)

2
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and

P (n) =


3x+ 1

2ν2(3x+1) : x ≡ 1 (mod 2)
x

2ν2(x) : x ≡ 0 (mod 2)
(1.3)

for ν2 the 2-adic valuation function. That is,

ν2(n) =
{

maxm∈N {2m|n} : n 6= 0
∞ : n = 0

These are referred to as accelerated maps (given they reduce the orbit length), and
principally, they allow us to ignore steps in the Collatz sequences that do not mat-
ter. Specifically, P is called the Syracuse map. According to Lagarias [16], the use of
‘Syracuse’ in the context of this problem was proposed by mathematician Helmut Hasse
during a visit to Syracuse University. It is not known to the author whether this visit
was also the inception of the Syracuse map.

1.2 Some Terminology
In the study of this problem, various authors have used a fair bit of different standard
notation and nomenclature, and sometimes even come up with their own. Here, we
outline some of the relevant terms and notation we use that is not specific to a particular
section. Also note that throughout this paper, we use the convention that the natural
numbers are the non-negative integers, notated N, and write the positive natural numbers
as N+.

We notate the m-th application of some Collatz map, M , to the starting value of x
by M (m)(x). Note, this obeys the following equivalence:

M (m)(x) = M (m−k)(M (k)(x)) (1.4)

An orbit is the sequence of numbers arising from the repeated iteration of a Collatz
map from some starting point, either terminating in 1 or having infinite length. We
denote the orbit of n under some Collatz map, M , by orbM (n) For example, the orbit
of 5 under C is orbC(5) = (5, 16, 8, 4, 2, 1). Orbits are map-dependent, as exemplified
by the previous starting value under T , which is orbT (5) = (5, 8, 4, 2, 1). Under P it is
the shortest, given by orbP (5) = (5, 1). The number of elements in an orbit under M is
given by the height function, hM (n). If an orbit is non-finite we say that hm(n) = ∞.
Since an orbit terminates at the first occurrence of 1, an orbit is infinite only if it does
not contain 1. Thus, both non-trivial cycles and diverging sequences are infinite orbits.

The stopping time of some n ∈ N+ is the smallest k ∈ N+ such that for some Collatz
map, M , we have M (k)(n) < n. We write this σ(n) = k. The total stopping time,
written σ∞(n) is the smallest k ∈ N such that M (k)(n) = 1. Clearly, σ(n) ≤ σ∞(n),

3
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with equality only if n ≤ 2. Similarly to orbits, these are dependent on the choice of
Collatz map.

4
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Chapter 2

A Short Literature Review

2.1 Some General Results
First, we start by discussing some of the more general results on the conjecture. These
are neither specific to SP1 or SP2. So far, there have only been results that suggest the
truth of the conjecture, with little in the way of concrete proofs of significant portions
of the problem.

2.1.1 Computation and Established Bounds on Cycle Length

With the abundance of computational power available to us, it is natural to exploit these
resources to search for potential counter-examples to the conjecture. Unfortunately, but
perhaps unsurprisingly, we still have yet to find one. As of this review being written,
all natural numbers up to 268 have been tested [3]. This computation is more useful,
however, than just identifying which values hold for the conjecture. It can also tell us
something about the minimum length of a cycle, if one exists. Recall σ(n) is the smallest
k such that T (k)(n) < n for n ∈ N+. Terras [26] introduced the coefficient stopping time,
κ(n), for κ(n) the least k with T (k)(n) = α(n)n+ β(n) with α(n) < 1 for α(n) = 3a(n)

2n ,
where a(n) is the number of odd iterates up to k-th in the orbit. Evidently, the upper
bound on κ(n) gives us a lower bound on the cycle length. Terras conjectured that
κ(n) = σ(n) for all n ≥ 2 - a statement that can be proved up to some bound using the
convergents of log2(3) and the upper bound on known converging starting points for the
Collatz sequence. He proved that this conjecture holds for κ(n) < 2593. Later, Garner
[9] used the improved known bound on tested numbers of 2 · 109 to show that this holds
for κ(n) < 106.

The importance of this method is in showing that no short cycles exist. Since Garner
in 1981, with the bound of 268 being tested, we can show that κ(n) < 6586818670.
Another interesting result on the lengths of cycles was given by Eliahou [8] - which gave
an explicit form of the period for a cycle. Specifically, considering the map T , we have
that the period p = (301994)A + (17087915)B + (85137581)C for A,B,C ∈ N, B ≥ 1,
and one of A,C equal to 0. This was done by use of the continued fraction expansion
of log2(3) and the truth of the conjecture for n < 240. Halbeisen and Hungerbühler
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[11] later improved on Eliahou by showing that a lower bound on the truth of Collatz is
required for the derived bound on cycle length.

Beyond these facts, not terribly much is known about constraints on cycle length.
While unfortunate, this seems partially due to the non-constructive nature of arguments
about cycle length, as they are unlikely to resolve in a proof of the conjecture. Much
like further verification of the truth of the conjecture for all n < N , these only act as
heuristic and probabilistic arguments for the conjecture, rather than proof. As a result
of these methods, we know that any cycle must be quite large, and as our computations
continue to grow, we can easily use further convergents of log2(3) to refine our lower
bound on cycle length. Having an explicit form for cycle period is also quite interesting,
although it has yet to be used for any other purpose than bounding cycle length.

2.1.2 Density of Convergence on an Interval

Given some interval of natural numbers, [1, x] for x ∈ N+, we wonder what proportion
of of n ∈ [1, x] hold under the Collatz conjecture? We denote by π1(x) the number of
starting values n < x such that n converges to 1 under the Collatz map. Here, the
principal study is of the inequality π1(x) > xγ , and finding lower bounds for γ ∈ (0, 1].
Of course, ideally we could show γ = 1. This was first investigated by Crandall [7],
who pioneered some methods that would be later employed by Applegate, Krasikov,
Lagarias, and Sander. Crandall, using Stirling’s formula and an asymptotic expansion
of certain error functions, shows that, for sufficiently large x, we have π1(x) > xγ for
some γ ∈ (0, 1]. While he does not compute γ, his proof implies γ ≥ 0.05. While quite
a small bound, his methods were quickly extended. Sander [20] improves this bound by
directly building on Crandall’s argument, achieving a bound of γ ≥ 3

10 .

Krasikov further improved on this bound, though using an new argument involving
(what are now called) Krasikov inequalities. These are a parameterized set of recurrence
inequalities on functions of the cardinality of induced subgraphs of an infinite graph
representing the Collatz process. The vertices of this graph are the natural numbers,
and edges are between each node and where it is sent by the Collatz map. These
subgraphs consist of all nodes that eventually map to some node v, and stay under some
bound x. This set of inequalities is parameterized by k ≥ 2, and Krasikov shows the case
where k = 2, leading to a bound of γ > 3

7 . For larger k, the lower bound for γ will be
improved. This is exactly what Applegate and Lagarias show, and is later improved upon
by Krasikov and Lagarias. Applegate and Lagarias [1] show that Krasikov inequalities
can be used to construct a non-linear programming problem of about 2000 variables
which yields lower bounds for γ. Using a computer-intensive proof, they show that
γ ≥ 0.81. This proof was for the case k = 9. Using a similar method, Krasikov and
Lagarias [14] prove the case for k = 11, giving the best known bound of γ ≥ 0.84.

Since the bound of 0.84, there haven’t been further refinements along this line of
reasoning. Much like the results in section 2.1.1, these facts provide a body of evidence
in support of the conjecture, but they are approximate solutions, and only give us an
idea of what to expect in general. That is not to say these are unimpressive or useless by

6
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any means, and these conclusions are the accumulation of years of progress from many
authors. But in the case of Crandall’s original method, one would need to prove the
case for the limit of k → ∞ to ensure that the density of convergent starting points
approaches 1. Given the difficulty of proving this for any given k, and the steeply
increasing difficulty as k increases, this appears to be a currently intractable method.
However, nearly two decades later, Tao went on to prove a much stronger property of
the density of convergence using a completely different approach.

2.1.3 Tao’s Result on Boundedness of Orbits

Without a doubt, the most significant result of the past few decades was synthesized by
Tao in 2019. The following explanation uses both Tao’s original paper [24] and a blog
post he wrote on the topic [25]. Although his result is not a proof of the conjecture,
it comes tantalisingly close - and makes the possibility that it is not true seem less
probable than ever. Denote by Cmin(n) the minimum element of the collatz orbit of n.
His result is essentially, given any function f : N+ → R with limn→∞ f(n) = +∞, we
have Cmin(n) < f(n) for almost all n ∈ N+. We know that if every natural number’s
orbit contains a number less than itself, then the Collatz conjecture is true, since we can
recursively show that every number must converge. Thus, if we could remove that almost,
we would have the whole conjecture. As such, this result is enormously impressive, and
the machinery behind its proof perhaps even more so.

To speak to the significance of this result, we note that one could take, for example,
f(n) = log log log logn; a function which would require n on the order of 101656520 to
reach a value more than 1. And in fact, for any large bound you desire, one could devise
a function that ensures its orbit contains an element that is arbitrarily small. The crux of
the problem is then this qualification of almost, which is used in the sense of logarithmic
density. What principally differentiates the result of Tao from previous results is the
idea of local vs global control on the dynamics of the Collatz system. Korec [13] showed
that the set M = {n ∈ N+ : Cmin(n) < nθ} has asymptotic density 1 for θ = log 3

log 4 .
What this means is that, if one is to choose some n ∈ [1, x], then in most cases, it will
eventually be mapped by C into [1, xθ]. What this does not assure us, however, is that
it will eventually be mapped further into [1, xθ2 ] - the reason being that the uniform
measure on [1, x] required for this result is not preserved under the Collatz map.

Thus, Tao improves the result by coming up with a measure that is more invariant
under C than the uniform measure. Without getting into the details of how this is
done, Tao devises the Syracuse random variable (so named for the accelerated map
P ), upon which a measure can be constructed. This measure is only constructible
if the geometric random variables of the Syracuse random variable stabilize as their
parameter tends to infinity - which Tao shows that they do. By manipulating the
explicit formulation of the Syracuse variable, it can be written as a conditional sum of
independent random variables, allowing its characteristic function to be expressed as an
averaged Riesz product. This lets him establish an upper bound on the expected value
of a function of the Syracuse random variable, which completes the proof.

7

http://www.mcmaster.ca/
https://www.science.mcmaster.ca/sis/
https://www.science.mcmaster.ca/sis/


Bachelor of Integrated Sciences– Alun Stokes; McMaster University– School of
Interdisciplinary Science

It is difficult to believe that there are more useful proofs that say something about
most numbers than this one. Given the astounding degree of control one has with their
choice of f , with the only restriction of tending to infinity, one could ask for little more.
That said, Tao himself conceded that his is a problem where the difference between
almost and all is far from easily surmountable [25] - and given the nature of this proof,
the potential for it to be extended to a stronger result seems unlikely.

2.2 On the Existence of Cycles
Here, we discuss a few results on the existence and size of cycles, should they exist. We
only discuss this through the lens of k-cycles, as these methods have been some of the
most fruitful in their study.

2.2.1 Background and Some (More) Terminology

Before getting into results, we first introduce some concepts and terminology used in the
study of cycles. In the traditional Collatz conjecture, using the map C over the positive
natural numbers, we are only aware of 1 cycle. This is referred to as the 1, 4, 2 or 4, 2, 1-
cycle, or the trivial cycle. The central problem of SP1 is determining if there exist any
cycles besides the trivial cycle. This is the cycle that all tested starting numbers are
known to terminate in. When the problem is attacked using another map, such as T or
P , this becomes the 1, 2-cycle or 1-cycle, respectively. These are all equivalent in their
respective formulations, and for simplicity, it is referred to as the trivial cycle almost
universally.

The k-cycle is a way of characterizing cycles originally used by Steiner [23]. A cycle
is assigned a k given by half the number of contiguous subsequences when a cycle is
partitioned into increasing sequences of odd numbers and decreasing sequences of even
numbers. For example, supposing the partial orbit (5, 10, 20, 14, 7, 5) existed, it would
be a 1-cycle. Any cycle in the Collatz must be a k-cycle for some k, and this can just
be thought of as the number of “ups and downs” in a cycle.

2.2.2 Some Heuristics

Before getting into specific results on cycles and their existence, we will speak to a few
proposed heuristics that gives us a general idea of what we may expect to be true. These
are non-rigorous, and only speak to what it seems may be the case, given some simplified
way of approaching the problem. This problem in particular is rife with these sorts of
propositions, perhaps given the difficulty of determining meaningful properties in a more
rigorous manner.

One of the simplest pieces of evidence in favour of the conjecture is that we haven’t
yet found a non-terminating starting point through extensive calculation. Though far
from a proof, in several of the variants of the conjecture - including 3n + 1 over the
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integers [15], 5n + 1 [19], and a ceiling function based bn + 1 [18] - there do exist non-
trivial cycles. In all of these problems, the non-trivial cycles occur for quite small values
of starting points, which may suggest that we are unlikely to find cycles for very large
values. As well, no large cycles (in these variants) are known, and we do know that any
cycle in the Collatz process must be quite large given currently computed lower bounds
on cycle length. One interesting observation respecting the 5n + 1 problem (which has
several non-trivial cycles) is that any proof of Collatz must distinguish some difference
between 3 and 5, given that the change in scalar in the odd step changes the problem.

Next, we go back to the original results of Crandall [7]. Though he goes on to prove the
result discussed earlier, he begins his paper with probabilistic heuristic on why iterates
of C should decrease at an exponential rate. This was a random-walk argument, based
on the assumption that log C(n)

n behaves as a pseudo-random variable for sufficiently
large n. Then, we have that log C(n)

n is approximated by log 3− k log 2 with probability
2−k, giving us the expected value:

E log C(n)
n

= − log 4
3 (2.1)

This then indicates that C(m) tends to be less than m. Imagining the iteration of C
induces a random walk along the real line, an estimate of hC(n) is given

hC(n) ∼
logn
log 4

3
(2.2)

Crandall contends that this suggests that the number of cycles are strongly likely to be
finite, and most starting points will converge eventually.

One must of course be careful of becoming too convinced by these arguments. What is
true for almost all integers is not necessarily true for all, and only a single counterexample
is needed for the conjecture to fail. We have no assurance that a counterexample should
occur for a small integer either, so knowing that the first 268 natural numbers converge
may not be terribly convincing evidence. Still, these types of informal arguments are a
good place to find a footing on what results we may expect, and in what directions we
should try to find more concrete results.

2.2.3 Results on k-Cycles

Many of the results on cycles come through the perspective of k-cycles, as this has
been the most fruitful method of framing the problem by which results can be derived.
Unfortunately, as with so many things, as k increases, the complexity of these cycles (and
proving things about them) increases non-linearly. As was mentioned, these were first
formally studied by Steiner [23], who managed to prove that there is no 1-cycle, other
than the trivial cycle. His proof went by showing that the ratio between the number of
even and odd numbers in a 1-cycle must be a convergent to log2(3), and using a theorem
of Baker (not Baker’s theorem) on linear forms in 2 logarithms, was able to derive an
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upper bound for odd steps. He similarly devised a lower bound for the partial quotient
of the convergent of any possible solution, and then concluded that the trivial cycle was
the only such cycle satisfying these conditions. Lagarias later commented that this result
was quite weak, considering the invocation of Baker’s results in transcendental number
theory [16].

Nearly 3 decades later, Simons [21] directly extended Steiner’s methods to prove that
no 2-cycles exist. His derivation is thus remarkably similar, and only differs in that the
ratio is between the sums of odd steps and even steps for all 2k subsequences, and he
invokes a theorem from Laurent et al. [17] on linear forms in 2 logarithms to put an
upper bound on the number of odd steps. Amusingly, Simons remarked that Lagarias’s
comments on the weakness of the result still apply here - but he also proves that this
method fails for any k > 2. Thus, stronger methods need to be devised to show larger
k-cycles cannot exist.

Just a year later, Simons and de Weger do so [22]. This method is still heavily based
on the original method by Steiner, but generalized in a few ways. Instead of looking at
the ratio between the total number of odd steps, M , and even steps, L, they examine
(M +L) log 2−K log 3, and look for upper and lower bounds for this in terms of M and
L. The upper bound is shown to be exponential in M and the lower subexponential in
L. Then, using similar methods as in [21], and some amount of brute-force computation
on the lower bound, they show that no k-cycles exist for k ≤ 68. This is a good bit
stronger than previous results, although it is of course still limited to a small subset of
all possible cycles. What’s interesting about this approach is that, for any k > 68, it
provides upper bounds for which some element in a k-cycle must be less than. What
this allows for is the increasing removal of possible k as larger starting points are tested.
In fact, it is now known that this is true for k ≤ 75, since the starting points we have
checked have surpassed the minimum elements for k-cycles with k up to 75.
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Chapter 3

An Algebraic Formulation of
Non-Trivial Cycles Subproblem

Böhm and Sontacchi [6] were the first to come up with an algebraic formulation of
SP1. They start by generally considering a function that evaluates on one of two linear
functions based on some condition as a function of the input. This is a pretty general
form of an iterative linear function, of which the Collatz maps are examples. They derive
an expression for the output of such a map after b iterations. This is of course entirely
dependant on the truth value of the condition that determines which linear function is
evaluated at each step. In the case of Collatz, this condition is the parity of the input.
Then, restricting to the specific case of the map T , they derive a general form after b
iterates:

T (b)(n) =
3an+

∑a
k=1 3a−k · 2vk

2b (3.1)

where

vi = (i− 1) +
i∑

j=1
mj

for (m1,m2, . . . ,ma) ⊂ N.

Unfortunately, this is where Böhm and Sontacchi leave us. The above can easily
be turned into a Diophantine equation whose solutions represent cycles, as well as one
whose solutions determine convergence to 1. Before taking a look at these, we will take
a step back, and provide a derivation for the above - which was taken for granted in
their original paper - and give a little bit more insight into the meaning of the sequence
of integers, v.

3.1 Deriving the Explicit Map
The proof of the aforementioned explicitization of T (b)(n) was skipped for good reason:
it is quite simple. That said, the result on its own is not particularly elucidative for
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understanding the structure of the summation that appears, and how this relates to our
choices of b and n. With that in mind, consider the following theorem.

Theorem 3.1.1. Let n, b ∈ N+. Let v(b, n) = (k : T (k)(n) ≡ 1 (mod 2), 0 ≤ k < b) be
the sequence denoting the zero-indexed indices of the iterates for which T (k)(n) is odd.
Denote by a the length of v(b, n), and denote by vi the i-th element of v(b, n). Then,

T (b)(n) = 3an+
∑a−1
k=0 3a−k−1 · 2vk

2b

Proof. For b iterates, we express T (b)(n):

T (b)(n) =
3 ·

3 · . . . ·
3 ·

3 ·
n

2v1
+ 1

2v2−v1
+ 1

...
+ . . .+ 1

2va−va−1
+ 1

2b−va

Notice that we must have va ≤ b − 1 given that 2b−va ≥ 2 in our lowest denominator.
Simplifying, we get

T (b)(n) = 3an
2b + 3a−1

2b−v1
+ 3a−2

2b−v2
+ . . .+ 30

2b−va

T (b)(n) = 3an+ 2v1 · 3a−1 + 2v2 · 3a−2 + . . .+ 2va · 30

2b

T (b)(n) = 3an+
∑a
k=1 3a−k2vk

2b

What we see is that our sequence, v(b, n), encodes the steps at which our input into
T is odd. This is perhaps unsurprising, as this clearly characterizes the entire sequence;
we take all other steps to be acting on even inputs, and we have the whole thing. We
also see that v(b, n) must be a strictly increasing sequence, with a minimum difference
of 1 between adjacent elements. Thus, we can equivalently encode this by the sequence
of differences, (m1,m2, . . . ,ma) ⊂ N, where v(b, a) is then given

vi = (i− 1) +
i∑

j=1
mj

as we see above.
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3.2 An Equation for Cycles
Now, we want to use this fact to generate our Diophantine equation whose solutions
determine cycles.

Theorem 3.2.1. Let w ∈ N+. Then, w is in a cycle under the Collatz process if there
exist a, b ∈ N+, (mi)1≤i≤a ⊂ N such that

w(2b − 3a) =
a∑
k=1

3a−k2vk (3.2)

for vi = (i− 1) +
∑i
j=1mj and va ≤ b− 1.

Proof. Consider w = T (b)(w) for some b ∈ N+. Then

w = 3aw +
∑a
k=1 3a−k2vk

2b

2bw − 3aw =
a∑
k=1

3a−k2vk

w(2b − 3a) =
a∑
k=1

3a−k2vk

simply by rearrangement. By Theorem 3.1.1, when we have that when va ≤ b− 1, this
represents a partial orbit in the Collatz process. Thus, such a solution gives us an orbit
that contains the same element twice - and thus a cycle.

3.2.1 Known Solutions

We will now present the two known solutions to Equation 3.2, and an example of how
we can use this to filter out some non-solutions in special cases.

Lemma 3.2.1. Let w = 1, a ∈ N+, and b = 2a. Then Equation 3.2 is satisfied by
v(b, w) = (0, 2, 4, . . . , b − 2). Further, this corresponds to the 1, 2-cycle, with 1 being
mapped to 1.

Lemma 3.2.2. Let w = 2, a ∈ N+, and b = 2a. Then Equation 3.2 is satisfied by
v(b, w) = (1, 3, 5, . . . , b − 1). Further, this corresponds to the 1, 2-cycle, with 2 being
mapped to 2.

For the time being, we will not provide a derivation of these solutions, as that will
hinge upon a different form of Equation 3.2 we introduce in the next chapter. Of course,
it suffices to substitute these solutions into the equation to convince ourselves that they
truly do represent cycles. A very trivial fact, though one that perhaps bears mentioning,
is the following.
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Lemma 3.2.3. Let w = 2m for m ≥ 1. Then there is no solution, a, b, v(b, w) satisfying
Equation 3.2.

Proof. Considering that all powers of 2 trivially converge to 1, and thus are not in a cycle
(outside of 1 and 2), this holds. However, we can show this in terms of our equation.
We know that for w = 1, v(b, 1) = (0, 2, . . . , b − 2). Under multiplication by 2m, it is
clear simply by the form of our summation that v(b, 2m) = (m,m + 2, . . . , b − 2 + m).
Since we require that the largest element of v(b, n) does not exceed b− 1, we must have
that m ≤ 1.

In general, we would like to make arguments similar to this for multiplication under
arbitrary integers - that is, to transform v(b, n) into v(b,mn) for somem ∈ N+. However,
little is known about how these sequences behave under multiplication or even addition
for arbitrary elements. Later, we will see some empirical examples of this.

3.3 An Equation for Convergence
As we have formulated Equation 3.2, its solutions tell us about cycles in the Collatz
process. We can also very easily use Theorem 3.1.1 to derive an equation of a similar
form that tells us which numbers converge under T .

Theorem 3.3.1. Let w ∈ N+. Then, w converges to 1 under the Collatz process if there
exist a, b ∈ N+, (mi)1≤i≤a ⊂ N+ such that

2b − 3aw =
a∑
k=1

3a−k2vk (3.3)

for vi = (i− 1) +
∑i
j=1mj and va ≤ b− 1.

Proof. The proof follows exactly that of Theorem 3.2.1, except we set T (b)(w) = 1.

This is clearly a very similar problem to our cyclic equation in the previous section,
except that we are no longer scaling the difference of the powers of 2 and 3 - just the
power of 3. Whether this makes the problem more or less difficult is hard to say. For
now, we will discuss integers of the form given by our summation of products of powers
of 2 and 3.
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Chapter 4

On k-special 3-smooth
Representations of Integers

A p-smooth number, for p (generally) a prime, is a number whose prime factors do not
exceed p. Smooth numbers have been an object of study for hundreds of years - though
they have only been known by the term since the 20th century. Thus, a number, n is
said to be 3-smooth if it can be written

n = 2p · 3q

for p, q ∈ N. We say that a number has a 3-smooth representation if it can be written
as the sum of 3-smooth numbers. Such a number, n, can then be written

n =
k∑
j=1

2pj · 3qj

for pj , qj ∈ N. Such a representation is called primitive if no summand divides another.
This can only happen if p1 > p2 > . . . > pk ≥ 0 and 0 ≤ q1 < q2 < . . . < qj [4].
Further, such a representation is called k-special if it consists of k summands, and
q1 = 0, q2 = 1,..., qk = k − 1. It is known that every positive natural number has a
primitive 3-smooth representation [5, 4], but not every number has a k-special primitive
3-smooth representation [4, 10, 2]. For the simplest case, just notice that any number
divisible by 3 cannot have such a representation. Of course, we see that the sum of
interest in Equation 3.2 is an a-special representation of some integer.

4.1 A Bit of Notation
We begin by defining a few sets that will be useful to have a shorthand for, followed by
some functions that associate k-special representations and the numbers they represent.

15



Bachelor of Integrated Sciences– Alun Stokes; McMaster University– School of
Interdisciplinary Science

Notation 4.1.1. Let A denote the set of all strictly monotone increasing sequences of
finitely-many elements with entries in N. That is

A = {(Ai)1≤i≤n : n ∈ N+, Ai < Ai+1}

Notation 4.1.2. Let An denote the subset of A with sequences of length n.

An = {A ∈ A : |A| = n}

Definition 4.1.1. Let R : A → N be the function that maps sequences of monotone
increasing natural numbers to the (|A|)-special number they represent. Explicitly,

R : A 7→
|A|∑
k=1

3|A|−k · 2Aj

Definition 4.1.2. Let Rn : An → N be the function that maps sequences of mono-
tone increasing natural numbers of length n to the n-special number they represent.
Explicitly,

Rn : A 7→
n∑
k=1

3n−k · 2Aj

Remark 4.1.1. Often throughout this paper, we will refer to a number having a k-
special representation, or simply having a representation. In any case except those
where it is made clear, we are referring to k-special primitive 3-smooth representations.
The full descriptor is dropped for the sake of brevity.

4.2 What is Known?
In general, a good bit more is known about 3-smooth representations than k-special 3-
smooth representations - and even then, only a few paper exist that present results about
them. For example, it has been shown that every n ∈ N+ has a 3-smooth representation
- and in fact, most of them have quite a few [5, 2]. In fact, for sufficiently large n,
we can construct representations that do not include arbitrarily large small terms [4].
Conversely, many numbers do not have a k-special representation for any k, and for
those that do, the representation is unique for a given k [10, 4]. We also prove this
later. It is also relatively obvious that every number has a representation for at most
finitely-many k. As we have seen, there are also parameterized expressions that have
a representation for every k. While we do know some facts about these numbers in
general, it is much more difficult to speak about them with specificity. For example, it
is not well-characterised what happens to a representation of n under multiplication. It
is also not known what the density of numbers with a k-special representation is. Given
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such (seemingly) basic facts about these numbers are unknown, there is a great deal of
potential for further research on these representations.

4.3 Some Basic Facts
Here we prove some cursory facts pertaining to R and Rn. We first derive upper and
lower bounds on the images of R and Rn, given some maximum on the elements of A.

Proposition 4.3.1. Let A ∈ A with maxA < b. Then,

1 ≤ R(A) ≤ 3b − 2b

Proof. Since no term of the sum in R(A) can be negative, and the shortest sequence
is of length 1, it is clear that the minimum value is 1, given by R((0)) = 1. Similarly,
it is apparent that the maximum value is given by the longest A with final entry not
exceeding b− 1, which is A = (0, 1, . . . , b− 1). Then the sum is written

b∑
k=1

3b−k · 2k−1 = 3b − 2b

Proposition 4.3.2. Let n ∈ N+, A ∈ An with maxA < b. Then,

3n − 2n ≤ Rn(A) ≤ 2b−n(3n − 2n)

Proof. Given the length of A is known, it is clear that the smallest value for Rn(A) is
achieved when A has the smallest elements it can. This is given by A = (0, 1, . . . , n−1).
Then, the sum is written

n∑
k=1

3n−k · 2k−1 = 3n − 2n

Similarly, we can find the maximum value by considering the A with the maximal ele-
ments, A = (b− n, b− n+ 1, . . . , b− 2, b− 1) Then the sum is written

n∑
k=1

3n−k · 2b−n+k−1 = 2b−n(3n − 2n)

Remark 4.3.1. Due to how we could represent the exponents in our sum in Equation
3.2 by either v(b, n) or (mi)1≤i≤a, we can represent our sum as a telescoping product.
Given some A ∈ An for n ∈ N+, let m = (mi)1≤i≤n such that Ai = (i − 1) +

∑i
j=1mj .
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Then, we have
a∑
k=1

3a−k2Ak = 2m1(2m2(. . . (2ma + 3) + 32) + . . .+ 3a−1)

This is easily observed by repeatedly factoring out the largest possible power of 2 that
divides all terms, and iterating until we are left with only 2ma + 3.

It is very clear that R is not surjective. Any multiple of 3, for example, does not have
a k-special representation for any k ∈ N+. The next natural question is whether R is
injective. Perhaps unfortunately, it is not. However, Rn is injective for every n ∈ N+.

Lemma 4.3.1. Rn is injective for all n ∈ N+.

Proof. Let w ∈ N+ such that there exists n ∈ N+, A ∈ An with w = Rn(A). Let
p = (pi)1≤i≤n such that Ai = (i − 1) +

∑i
j=1 pj . Suppose there exists B ∈ An with

Rn(A) = Rn(B), and similarly let q = (qi)1≤i≤n such that Bi = (i− 1) +
∑i
j=1 qj . Then,

we have

R(A) = R(B)
n∑
k=1

3n−k2Ak =
n∑
k=1

3n−k2Bk

2p1(2p2(. . . (2pn + 3) + 32) + . . .+ 3n−1) = 2q1(2q2(. . . (2qn + 3) + 32) + . . .+ 3n−1)

Suppose pi 6= qi for some 1 ≤ i ≤ n. Then, we have

2pi(2pi+1(. . . (2pn + 3) + 32) + . . .+ 3n−i) = 2qi(2qi+1(. . . (2qn + 3) + 32) + . . .+ 3n−i)

Without loss of generality, assume pi > qi. Then, dividing both sides by 2qi , we get

2pi−qi(2pi+1(. . . (2pn + 3) + 32) + . . .+ 3n−i) = 2qi+1(. . . (2qn + 3) + 32) + . . .+ 3n−i−1) + 3n−i

But clearly the left hand side is even, and the right hand side odd, since qk ≥ 1 for all
1 ≤ k ≤ n - so this is a contradiction. Thus, pi = qi for all i, and thus Ai = Bi, so
A = B.

Remark 4.3.2. An alternative proof of Lemma 4.3.1 is given by Lagarias [15] in Corol-
lary 2.1a.

Remark 4.3.3. Since Rn is injective, it has a left inverse. This will prove useful later,
and we define it explicitly using a similar process as in the proof of the injectivity of Rn.
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Proposition 4.3.3. Given w ∈ N+ for which w has an a-special representation, m =
(m1, . . . ,ma) ⊂ N+, that representation is given by

mi = ν2(w −
i−1∑
j=1

3a−j2mj )

for each 1 ≤ i ≤ a,

Proof. This is stated without proof, as it is determined to be self-evident.

Lemma 4.3.2. Given a, b ∈ N+. Then 2b − 3a has an a-special representation if and
only if b = 2a.

Proof. The backward direction is obvious, since we have previously derived the represen-
tation for w(2b − 3a) for w = 1, b = 2a. Suppose 2b − 3a has a k-special representation,
and assume that b 6= 2a. We show this cannot happen by iteratively solving for the
representation. If b < 2a, then eventually we derive

2b−
∑l

k=1 mk − 3a−l = 2ml+1(. . . (2ma + 3) + . . .+ 3a−l−1)

with b−
∑l
k=1mk < 2. Then, we get that

2b−
∑l

k=1 mk − 3a−l < 0

which is impossible, so we get a contradiction. If b > 2a, then similarly we derive

2b−
∑a−1

k=1 mk − 3 = 2ma

so we need that b −
∑a−1
k=1mk = 2, since this is the only solution to 2p − 3 = 2q. Since

mk = 2 for all k 6= 1, we have b −
∑a−1
k=1mk = b − (2a − 2) > 2 since b > 2a. This is a

contradiction. Thus, b = 2a.

Unfortunately, the picture is not so simple when b 6= 2a, or w 6= 1. As we will see in the
next section, the k-special representation of w(2b−3a) depends mostly on the behaviour
of w under P . This means that certain w will have a predictable representation, and
others will not. In particular - and perhaps predictably - we will see that the w that
converge very quickly under P can be assuredly excluded from candidacy for cyclicity.
Take the following, for example:

Proposition 4.3.4. Suppose w ∈ N+ not equal to 1 with 3w + 1 = 2n for n ∈ N+.
Then, if w(2b − 3a) has an a-special representation, we have va > b − 1. That is, w is
not cyclic.
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Proof. This is immediately true given any power of 2 trivially converges to 1, and w
maps to 2n under C. However, consider the following argument in terms of Equation
3.2, and the telescoping product from earlier.

Since 3w + 1 = 2n, we have that w = 4k−1
3 for some k ∈ N+. Consider

w · 2b − w · 3a = 2m1(· . . . · (2ma + 3) + . . .+ 3a−1)

We have m1 = 0 since w and 2b − 3a are odd. Then,

w · 2b − w · 3a − 3a−1 = 2m2(· . . . · (2ma + 3) + . . .+ 3a−2)
w · 2b − 3a−1(3w + 1) = 2m2(· . . . · (2ma + 3) + . . .+ 3a−2)

Clearly, ν2(3w + 1) = k, so if k ≥ b, we are done. So, assume k < b. Then m2 = k. We
get

w · 2b−k − 3a−2(3 + 1) = 2m3(· . . . · (2ma + 3) + . . .+ 3a−3)

Which clearly gives m3 = 2 if b − k > 2. If we get that b − k ≤ 2, then we are done.
Repeating this process, we get mj = 2 for all j < a while b− k −

∑j−1
i=1 mi > 2. Thus, if

b < k + 2m for some m < a− 1, get that va ≥ b. We assume b− k −
∑a−1
i=1 mi > 2, and

denote this quantity by l. We eventually get

w · 2l − 3(3 + 1) = 2ma

We get ma = 2+ν2(w ·2l−2−3), and of course have that w ·2l−2−3 is a power of 2 since
w(2b − 3a) has an a-special representation. The only solutions to this are for w = 1 or
w = 5, and l = 4 or l = 2. In the first case, get that ma = 2, so va = b− l+ma = b− 2.
In the second case, ma = 3, so va = b + 1. Thus, for any w such that 3w + 1 = 2n, we
get that va > b− 1 unless w = 1.

Much like the above proposition, a good deal of what we will show is not novel in
terms of the result - that is, it has been argued before through different means - but it
is more an examination of how these facts present in light of this algebraic formulation
and k-special representations. Ultimately, it is hoped that by better understanding these
integer representations, more deep results can be determined - but for now we will splash
around the surface a bit for the sake of familiarizing ourselves these equations.

4.4 k-special Representations and Collatz
With this in mind, we can now recontextualize our discussion of Equation 3.2.

Lemma 4.4.1. Given w ∈ N+, we have that w is cyclic if and only if there exist a, b ∈ N+

such that w(2b − 3a) has an a-special representation with va ≤ b− 1.

Proof. This follows directly from Theorem 3.2.1
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This motivates the discussion of what k-special representations act like under mul-
tiplication and addition. Unfortunately, this is far from a simple question to answer
for arbitrary multiplication and addition. For example, we know that image(Rn) is not
closed under either operation. Further, the coefficients in the representation are unpre-
dictable under these operations. We are truly only interested in the largest power of 2
in the representation of a given integer, and specifically integers of the form w(2b − 3a).
While one would hope this makes the situation easier, this is only vaguely true. That
said, we can exploit the form of the expression, along with our iterative method of solv-
ing for a k-special representation, to derive the conditions under which the largest power
of 2 does not exceed b− 1. We get the following.

Lemma 4.4.2. Let w ∈ N+ such that w(2b − 3a) has an a-special representation, for
a, b ∈ N+. Then, the exponent on the largest power of 2 in the a-special representation,
v, does not exceed b− 1 if and only if there exists n ∈ N+ such that

2nw = 1 + 3P (a)(w)

Further, va = b− n.

Proof. In some ways, this is almost self-evident when one considers that for a number,
w, to be mapped to itself by C, it must first be mapped to some power of 2 times w. A
number may only be mapped to a number larger than itself under C by an odd operation,
and the value of every element in orbP (w) is odd. Thus, for w to be cyclic, its P -orbit
must have an element that, when multiplied by 3 and having 1 added to it, becomes
2nw. We also provide a computational derivation using our telescoping product form of
a k-special representation.

Consider the process of finding R−1
a (w(2b − 3a)) as follows:

2bw − 3aw = 2m1(2m2(. . . (2ma + 3) + 32) + . . .+ 3a−1)

Immediately, we getm1 = ν2(2bw−3aw). We assumem1 ≤ b−1. Let w1 = w
2m1 = P (w).

Then, rearranging, we get

2bw − 3aw1 − 3a−1 = 2m2(2m3(. . . (2ma + 3) + 32) + . . .+ 3a−2)
2bw − 3a−1(3w1 + 1) = 2m2(2m3(. . . (2ma + 3) + 32) + . . .+ 3a−2)

Clearly, m2 is bounded below by min {b− 1, ν2(3w1 + 1)}, with equality to ν2(3w2 + 1)
if ν2(3w2 + 1) < b. If m1 + ν2(3w + 1) ≥ b − 1, then we have that this solution isn’t of
interest to us. Thus, we assume m1 + ν2(3w1 + 1) < b− 1. We have m2 = ν2(3w1 + 1).
Let w2 = 3w1+1

2m2 = P (3w1 +1). We continue the procedure as above, each time assuming
that 1+

∑q
k=1mk < b, as otherwise, we would have that this solution could be discarded.

Thus, we get

2b−
∑q

k=1 mkw − 3a−qwq+1 = 2mq+2(. . .) + 3a−q−1
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for wq+1 = P q+1(w). Since the sum of mk is less than b − 1 for all 1 ≤ q ≤ a, we
eventually derive

2b−
∑a

k=1 mkw − 3wa = 1

Let n := b−
∑a
k=1mk. The above is then rewritten:

2nw = 1 + 3wa (4.1)

We now have that any number of the form w(2b − 3a) with an a-special representation
with the exponent on the largest power of 2 not exceeding b, there must exist a solution
to Equation 4.1 for which n ∈ N+, and wa = P a(w).

The immediate question is then: which w satisfy Equation 4.1? The unfortunate
answer is that this is difficult to determine. We haven’t exactly stepped outside of the
Collatz process, as we still need to predict the elements of orbP (w). If we relax the
condition that wa = P (a)(w), and just check for odd wa that satisfy this, we get an
infinite family of solutions, Sw, of the form:

Sw =


4kw − 1

3 : w ≡ 1 (mod 3)
4kw − 2

6 : w ≡ 2 (mod 3)

for some k ∈ N+. We use the parameter k here, transformed from n by k = 2n if n is
even and k = 2n−1 if n is odd. Notice that we do not consider any w which is a multiple
of 3, as these cause w(2b − 3a) to never have an a-special representation trivially. What
we then want is the set of w for which orbP (w) ∩ Sw 6= ∅.

In order to reduce the set of possible such w, we notice that s ≡ −3−1 (mod w) for
any s ∈ Sw. Clearly, there are x ∈ N+ with x ≡ −3−1 (mod w) and x /∈ Sw, but for
now we will investigate the set of w whose P -orbit contains such an element. For any w
that is cyclic, it is a necessary condition that some element of its orbit is equivalent to
−3−1 mod w. So what is this set? We consider w ≥ 5, as we trivially have that 1, 2,
and 4 are cyclic, and 3 converges. Then, we get that the set of such w is given

{31, 62, 83, 166, 293, 586, 347, 694, 671, 1342, 2684, 19151, 38302, 2025797, 4051594}

for w ≤ 107. Note that every number in this set is either odd, or a power of 2 times an
odd element of the set. The question remains: what is this set of numbers, and how are
they related? As we will see later on, these are the self-contained numbers.
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4.5 A Foray into Empiricism
In this section, we present some empirical results, and make less rigorous observations
about some properties that we tend to notice in the study of k-special integer represen-
tations. Much of what is written here is conjectural, and derived from observation of
a limited set of data. That said, we contend that there may be use in including this
section so as to give more insight into the stalled directions research took, and get a
better look at some of the problems we would otherwise have little to say about.

4.5.1 Behaviour under multiplication

Here we investigate when the property of having a k-special representation is preserved
under multiplication - and what it looks like when it is preserved. In particular, we
look at this for numbers of the form 2b − 3a, and further try to characterize when some
multiple of a number of this form has a representation - even when 2b − 3a does not.
From Lemma 4.3.2 we know that 2b−3a only has a k-special representation when b = 2a,
but there are w ∈ N+ such that w(2b − 3a) has a representation for b 6= 2a. First, we
will investigate the w such that w(22a − 3a) has a representation, then more generally,
such that w(2b − 3a) has one.

The case when b = 2a

Denote byW (a, b) the set of w ∈ N+ such that w(2b−3a) has an a-special representation,
for w odd. Note that we only need to consider odd w, as any power of 2 times such a w will
also ensure this has a representation. See Table 4.1 for some values ofW (a, 2a). Clearly,
W (a, 2a) is dependent on our choice of a - and the size of the set increases with a. We
also notice an approximate sequential inclusion betweenW (a, 2a) andW (a+1, 2(a+1)).
For small a, this is true inclusion - but as a increases, the number of elements inW (a, 2a)
not inW (a+1, 2(a+1)) increases. However, if we place an upper bound on the elements
inW (a, 2a), we notice that as a increases, the inclusion approaches being complete. That
is, if we take the elements of W (a, 2a) and W (a + 1, 2(a + 1)) no greater than M , as
a gets larger, more elements of W (a, 2a) tend to appear in W (a + 1, 2(a + 1)). As an
example of a number that does not follow this inclusion, take 547, which first appears
for a = 6 - but then is not there for a = 7. What is interesting is that 547 goes on to be
in W (a, 2a) for any a ≥ 11. So, sometimes numbers appear and then continue to appear
for all subsequent a, and other times the will appear once, skip a few a, and then always
appear after some other a. This begs the question: do any only show up once, and then
never again? Do some show up only a finite number of times? The answer seems to be
yes to both of these. For example, both 725 and 821 appear when a = 7, do not appear
again for any tested a, up to a = 104. An example for the second point is 8945, which
shows up only for a = 10 and a = 12, and not again (at least up to 104). All this paints
a bit of a messy picture of the situation, so we will observe this from another perspective
to try to understand what is going on.
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Table 4.1: The sets W (a, 2a) for 1 ≤ a ≤ 7, for w < 3a.

a W (a, 2a)

1 { 1 }
2 { 1, 5 }
3 { 1, 5 }
4 { 1, 5, 53 }
5 { 1, 5, 11, 53, 85 }
6 { 1, 5, 11, 53, 85, 151, 341, 547, 565 }
7 { 1, 5, 11, 19, 53, 85, 151, 325, 341, 565, 725, 821, 2071, 2161 }
8 { 1, 5, 11, 19, 53, 85, 149, 151, 341, 397, 565, 1477, 1613, 2285, 2801 }

The following may seem a bit unorthodox at first blush, but we end up seeing some-
thing interesting. What we do is, for some x ∈W (a, 2a) such that x ∈W (a+k, 2(a+k))
for all k ≥ 1, we calculate the representation, v(2a,w), of w(22a − 3a) for increasing a,
as well as the representation, v(2a, 1), for 22a − 3a. Then, we take the component-wise
difference of these as vectors, denoted v(2a,w)− v(2a, 1). See Table 4.2 for an example
of this with w = 5. For an example with w = 341, see Table 4.3. Looking at the dif-
ference sequences, we see a clear pattern in the examples presented here. For the first
a for which some w causes w(22a − 3a) to have a representation, we get some difference
sequence that doesn’t look like the following ones. Then, for every a after that, there
is a clear pattern that can be partitioned by a leading sequence, trailing sequence, and
repeating digit between them. In the case of a = 5, the leading sequence is (0), the
trailing is (3), and the repeating digit is 2. For w = 341, these are (0), (10, 9, 8, 7), and 8
respectively. Immediately, there are several questions: how do we predict the parameters
of this pattern? How do we come up with the term proceeding the first, given the first
term? What about the w for which the a such that w(22a − 3a) has a representation
are not sequential? For now, we can only give observational answers to these most of
questions - but we can actually formalize some of these patterns on a case-by-case basis.

We try to generalize what was observed above with respect to a leading sequence,
trailing sequence, and repeating digit. Consider the case when w = 85. Then, we want
v(2a, 85(22a−3a)), the a-special representation of 85(22a−3a). We will work backwards
from the known representation, which is given (vk)1≤k≤a = (0, 8, 10, . . . , 2a − 2, 2a +
1, 2a + 3, 2a + 4). In terms of the difference sequences, this has leading sequence (0),
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trailing sequence (7, 7, 6), and repeating digit 6. We then have

a∑
k=1

3a−k · 2vk = 3a−1 · 20 + 32 · 22a+1 + 31 · 22a+3 + 30 · 22a+4 +
a−2∑
k=3

3k22(a−k)+4

a∑
k=1

3a−k · 2vk = 3a−1 · 20 + 32 · 22a+1 + 31 · 22a+3 + 30 · 22a+4 + 22(a+2) ·
a−2∑
k=3

(3
4)k

a∑
k=1

3a−k · 2vk = 3a−1 · 20 + 32 · 22a+1 + 31 · 22a+3 + 30 · 22a+4 + 22(a+2) · (33

42 −
3a−1

4a−2 )

a∑
k=1

3a−k · 2vk = 3a−120 + 32 · 22a+1 + 31 · 22a+3 + 30 · 22a+4 + 33 · 22a − 3a−1 · 28

a∑
k=1

3a−k · 2vk = 4a(24 + 3 · 23 + 32 · 2 + 33)− 3a−1(28 − 1)

a∑
k=1

3a−k · 2vk = 4a · 81− 3a · 81

a∑
k=1

3a−k · 2vk = 81(4a − 3a·)

Denote the length of the leading sequence by l, the length of the trailing sequence by t,
and the repeating digit by s. We can generalize a few things from this example. In the
new sum we get once we break out the non-repeating terms, the bounds now go from
k = t to a − (l + 1). The power of 2 we pull out from this sum is 22(a−1)+s. Using
this, when we factor into a difference of a multiple of 4a and 3a−l, we have that the
coefficient on 4a, which we denote r1, has the form of a (t+ 1)-special number. Further,
the coefficient on 3a−l is 2s+2l − r2, for r2 a l-special number. Finally, the power of 2
on the largest power of 3 in r1 is 2s−2t. All of this can be shown to generalize for any
sequence with this leading, trailing, and repeating form - except for r1 being (t + 1)-
special. In many cases it is, but note that s − 2t can be bigger than the exponent on
the power of 2 preceding the largest power of 3 term in the representation. Take, for
example, when w = 4835. Here, r1 = 211 + 3 · 29 + 32 · 26 + 33 · 22 + 34 + 35 · 2. Of course,
r1 = 4835 - but this is not the (t + 1)-special representation of 4835; that is given by
(0, 4, 5, 7, 8, 9). What is not clear then is whether we need that r1 have a (t+ 1)-special
representation, even though r1 is not necessarily of that form. In every tested case, it
has been the case that such a representation exists - but this is not known in general.
This is unfortunate, as this is the part of this process that is critically important to us
- that is, the largest power of 2 in r1 tells us how much more than 2a the largest power
of 2 in the a-special representation of w(2b − 3a) is. In the case where r1 matches its
(t + 1)-special representation, this allows us to say definitively that va > 2a − 2, but
when it does not, the picture is a bit fuzzier. Without dwelling too long here, we will
now discuss some of the other patterns observed when the a for which w(22a − 3a) had
an a-special representation are not sequential.
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Table 4.2: The a-special representations of 22a− 3a and w(22a− 3a), as
well as their difference, for 2 ≤ a ≤ 8 and w = 5.

a v(2a, 1) v(2a, 5) v(2a, 5)− v(2a, 1)

2 (0, 2) (0, 5) (0, 3)
3 (0, 2, 4) (0, 4, 7) (0, 2, 3)
4 (0, 2, 4, 6) (0, 4, 6, 9) (0, 2, 2, 3)
5 (0, 2, 4, 6, 8) (0, 4, 6, 8, 11) (0, 2, 2, 2, 3)
6 (0, 2, 4, 6, 8, 10) (0, 4, 6, 8, 10, 13) (0, 2, 2, 2, 2, 3)
7 (0, 2, 4, 6, 8, 10, 12) (0, 4, 6, 8, 10, 12, 15) (0, 2, 2, 2, 2, 2, 3)
8 (0, 2, 4, 6, 8, 10, 12, 14) (0, 4, 6, 8, 10, 12, 14, 17) (0, 2, 2, 2, 2, 2, 2, 3)

Table 4.3: The a-special representations of 22a− 3a and w(22a− 3a), as
well as their difference, for 4 ≤ a ≤ 8 and w = 341.

a v(2a, 1) v(2a, 341) v(2a, 341)− v(2a, 1)

4 (0, 2, 4, 6) (0, 8, 13, 15) (0, 6, 9, 9)
5 (0, 2, 4, 6, 8) (0, 12, 13, 14, 15) (0, 10, 9, 8, 7)
6 (0, 2, 4, 6, 8, 10) (0, 10, 14, 15, 16, 17) (0, 8, 10, 9, 8, 7)
7 (0, 2, 4, 6, 8, 10, 12) (0, 10, 12, 16, 17, 18, 19) (0, 8, 8, 10, 9, 8, 7)
8 (0, 2, 4, 6, 8, 10, 12, 14) (0, 10, 12, 14, 18, 19, 20, 21) (0, 8, 8, 8, 10, 9, 8, 7)

Suppose we have that w ∈ W (a, 2a) for a ∈ N+, w /∈ W (a + 1, 2(a + 1)), and
w ∈W (a+k, 2(a+k)) for all k ≥ 2. That is, w appears for some a, skips a number, and
then appears for every a after that skip. There are 4 such numbers less than 103, and they
are {325, 397, 545, 547}. See Tables 4.4, 4.5 for w = 325 and w = 397. Similarly to the w
with no skips, these seem to present in a parametric pattern; a leading sequence, trailing
sequence, a sequence the length of the skip, and repeating term that splits the sequence
the length of the skip. For example, for w = 325, these are (0, 2, 3, 2, 1), (7, 10), (4, 7),
and 6. So does this hold up for arbitrary w? No. Unfortunately, and as in so many cases
with this problem, while there are patterns to be found, they rarely generalize in a clean
way. Many w do hold up to this pattern, and for w for which there is a skip of a different
length, we can find similar patterns. In fact, as the size of the w we check increases, we
see sequences of increasing a for which there are several skips, of different lengths - and
each (often) follows one of the patterns we see for a sequence with a single skip of the
given length. That said, and while there may be some phenomenology of interest here,
this is perhaps not where time is best spent. Ultimately, what we are interested in with
these difference sequences is the last digit - and in particular, that it is greater than 1
when w ≥ 3. This condition would ensure that no a-special representation of w(22a−3a)
meets the requirement of its largest power of 2 having an exponent less than 2a− 1. We
will look a bit more at predicting the largest power of 2 in a representation in a later
section.
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Table 4.4: The component-wise difference between the a-special repre-
sentations of 22a − 3a and w(22a − 3a) for 7 ≤ a ≤ 14 and w = 325.

a v(2a, 325)− v(2a, 1)

7 (0, 2, 3, 2, 1, 7, 10)
9 (0, 2, 3, 2, 1, 4, 7, 7, 10)
10 (0, 2, 3, 2, 1, 4, 6, 7, 7, 10)
11 (0, 2, 3, 2, 1, 4, 6, 6, 7, 7, 10)
12 (0, 2, 3, 2, 1, 4, 6, 6, 6, 7, 7, 10)
13 (0, 2, 3, 2, 1, 4, 6, 6, 6, 6, 7, 7, 10)
14 (0, 2, 3, 2, 1, 4, 6, 6, 6, 6, 6, 7, 7, 10)

Table 4.5: The component-wise difference between the a-special repre-
sentations of 22a − 3a and w(22a − 3a) for 8 ≤ a ≤ 15 and w = 397.

a v(2a, 397)− v(2a, 1)

8 (0, 1, 5, 4, 3, 3, 9, 10)
10 (0, 1, 5, 4, 3, 3, 4, 7, 9, 10)
11 (0, 1, 5, 4, 3, 3, 4, 6, 7, 9, 10)
12 (0, 1, 5, 4, 3, 3, 4, 6, 6, 7, 9, 10)
13 (0, 1, 5, 4, 3, 3, 4, 6, 6, 6, 7, 9, 10)
14 (0, 1, 5, 4, 3, 3, 4, 6, 6, 6, 6, 7, 9, 10)
15 (0, 1, 5, 4, 3, 3, 4, 6, 6, 6, 6, 6, 7, 9, 10)

The case when b 6= 2a...

is not a topic worth discussing here. Primarily, we would need to pull a bit of a trick
to get this to work, as 2b − 3a never has an a-special representation when b 6= 2a. But
as we saw in the previous section, these sequences - while curiously interesting in the
few apparent patterns - are unlikely to sire much information of interest to us. There is
perhaps a good deal of extraneous information we are attempting to understand when
we try to characterize the evolution of the entire difference sequence as a increases,
when we truly only care about the last element. As such, we soon move on to what
we hope are greener pastures. However, there is one point of interest that we will
simply observe, without digging into. Recall that in the previous section there was an
approximate sequential inclusion between the setsW (a, 2a) andW (a+1, 2(a+1)). Such
an approximate inclusion is also seen between W (a, 2a+ k) and W (a+ 1, 2(a+ 1) + k)).
For different k ∈ Z, we see vastly different w included - but there are often several
overlapping elements. See Table 4.6 for an example of this. Similarly to the previous
section, these inclusions will tend to being complete given some upper bound on their
elements, as a gets larger. Beyond what has already been said, little is known about the
mechanics of these sets - and with that, we move onward.
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Table 4.6: The sets W (a, 2a+ k) for k ∈ {−1, 0, 1}, and 6 ≤ a ≤ 11, for
elements less than 100.

a W (a, 2a− 1) W (a, 2a) W (a, 2a+ 1)

6 {7, 23, 85} {1, 5, 11, 53, 85} {53, 85}
7 {7, 23, 29, 85} {1, 5, 11, 19, 53, 85} {53, 85}
8 {7, 23, 29, 37, 85} {1, 5, 11, 19, 53, 85} {53, 85}
9 {7, 23, 29, 37, 49, 85} {1, 5, 11, 19, 53, 85} {53, 67, 85}
10 {7, 23, 29, 37, 49, 65, 85} {1, 5, 11, 19, 53, 85} {53, 67, 85}
11 {7, 23, 29, 37, 49, 65, 85, 89} {1, 5, 11, 19, 53, 85} {53, 67, 85}

4.5.2 On the largest power of 2 in a k-special representation

The fundamental problem we find ourselves with is that we wish to show that for any
w ≥ 3 such that w(2b − 3a) has an a-special representation, the largest power of 2 in
that representation has an exponent greater than b− 1. In the context of this problem,
the following phrase carries very little weight, but: for every known w such that our
expression has a representation, the largest power of 2 is larger than b − 1. As we saw
earlier, when b = 2a, the largest power of 2 had a significantly larger exponent than
b − 1. In general, we know of many cases where the largest power of 2 is 2b, but only
the trivial w = 1, 2 gives us a power of 2 with exponent less than b. See Figure 4.1 for
the distribution of the difference between the exponent on the largest power of 2 in the
representation of w(2b − 3a) and b − 1, as a function of w. Notice the single red point
sitting below 0. This represents the trivial solution to Equation 3.2. There is a clear
trend towards a larger difference between the largest power of 2 and b−1 with increasing
w, but this is far from conclusive.

What complicates the picture a bit is that we know there are numbers with an a-
special representation who have a multiple whose a-special representation has a smaller
largest power of 2. For example, 27973 has the 7-special representation (1, 3, 6, 8, 9, 10, 15),
while 139865(= 5 · 27973) has the 7-special representation (1, 8, 10, 11, 12, 13, 14). This
fact is a bit disturbing, as it indicates that we do not get this property we are interested
in for all k-special representations. Rather, we have to show there is something special
about the form w(2b − 3a) that forces the largest power of 2 to be larger than b − 1
when w ≥ 3 - if this is even true. It is then a bit of a shame that we cannot offer any
insight into how this may be done. As we saw in the previous section, attempting to
derive conditions which bound the largest power of 2 in a representation just leads us
to a question about when some element appears in a Collatz orbit - almost exactly as
hard a question as we started with. On that note, we will now return to the further
investigation of the previously alluded to self-contained numbers.
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(a) Linear (b) Logarithmic w.r.t. w

Figure 4.1: Difference between the exponent on the largest power of 2
in the a-special representation of w(2b− 3a) and b− 1, as a function of w,
for 1 ≤ w ≤ 105, w odd, and 1 ≤ a, b,≤ 20. Red points represent integers
where b = 2a.
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Chapter 5

Self-Contained Numbers

As was mentioned previously, the numbers whose P -orbit contains an element equivalent
to −3−1 mod w are called the self-contained numbers. This name was taken from the
OEIS entry that lists them (A005184) [12], seemingly named by OEIS founder N.A.
Sloane when he created the entry for the sequence. They can be thought of as the
‘near-misses’ for cyclicity in the Collatz process; the numbers whose orbit contains a
multiple of itself. Clearly, the cyclic numbers are a subset of the self-contained numbers
- in particular, those whose orbit contains a multiple that is a power of 2 times itself.
Central questions relating to these numbers are then: how may we predict the quotient
of w by the multiple in its orbit? How many self-contained numbers are there, and
how rare are they? How might we predict whether a number is self-contained without
computing its orbit?

Disappointingly, this document does not contain the answers to any of these, though
we do prove a few facts about these numbers, and propose several conditions necessary for
self-containedness. We present the totality of the known literature on these numbers, and
come up with formulations for the Collatz conjecture and non-trivial cycles subproblem
in terms of self-contained numbers. Our main contribution is a distributed computing
effort that improves the upper bound on checked numbers to 1015.

5.1 The Totality of Known Literature
The OEIS entry A005184 is the only known source discussing these numbers. It simply
lists the numbers, and until now, the upper bound on numbers checked of 1011.

5.2 Some Notation
We will introduce a bit of notation that is relevant to this section.

Notation 5.2.1. We say some w ∈ N+ isM -self contained for a Collatz mapM if there
exists a ∈ N+ such that M (a)(w) ≡ 0 (mod w).
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Remark 5.2.1. The set of odd self-contained numbers at the end of the last chapter is
then the P -self-contained numbers, and the set of odd and even is the C-self-contained
numbers.

Notation 5.2.2. Let w an M -self-contained number. By multM (w) denote the largest
element x ∈ orbM (w) with x ≡ 0 (mod w) for M a Collatz map. That is, multM (w) is
the largest multiple of w in its orbit.

Notation 5.2.3. Let w a M -self-contained number. By contM (w) denote multM (w)
w .

That is, contM (w) is the quotient of the largest multiple of w in its orbit and w.

Notation 5.2.4. We denote

LM (k,N) = {w ∈ N+ : 5 ≤ w ≤ 10N , ∃x ∈ orbM (w) : x ≡ −k−1 (mod w)}

When the second parameter of LM is not given (eg. LP (3)) we take this to denote the
unbounded set of such numbers.

Remark 5.2.2. The C-self-contained numbers are thus denoted by LC(3), and the
P -self-contained by LP (3).

5.3 Some Facts
Now, we present a few propositions relating to self-contained numbers. These are not
terribly deep, and reflect the state of our knowledge about this set of numbers.

Lemma 5.3.1. Let w ∈ N+. Then, w is C-self-contained if and only if there exists
x ∈ orbP (w) with x ≡ −3−1 (mod w).

Proof. Suppose w is C-self contained. Then, multC(w) = 2naw for some a ∈ N+. Since
this is the largest multiple of w in the C-orbit, we must have that it was produced by
an odd step of the C map (as otherwise there would be a larger multiple. Let x be
the element preceding multC(w) in orbC(w). We have that 3x + 1 ≡ 0 (mod w), so
x ≡ −3−1 (mod w). Since x must be odd, x is also in orbP (w).

Suppose there exists x ∈ orbP (w) with x ≡ −3−1 (mod w). Then clearly, C(x) ≡ 0
(mod w), so the C-orbit contains a multiple of w.

Proposition 5.3.1. Let w ∈ N+ a P -self-contained number. Then, there exists n ∈ N+

such that 2n+1w is not C-self-contained, and 2kw is C-self-contained for all 1 ≤ k ≤ n.

Proof. Since w is P -self-contained, we have that multP (w) = aw for some a ∈ N+

with 2 - a. Then, multC(w) = 2naw for n = ν2(3r + 1) for r the element in orbP (w)
immediately preceding multP (w). Clearly, since w maps to 2naw under C, 2kw also does
for any k ≥ 1. For 2naw to be a multiple of 2kw, we must have k ≤ n. Since 2naw was
the maximum multiple of w in the C-orbit, it is not a multiple of 2kw when k > n.
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Proposition 5.3.2. Let w ∈ N+ with w 6≡ 0 (mod 3). Then

−3−1 mod w = d · w − 1
3

for d := w mod 3.

Proof. The proof is self-evident.

Proposition 5.3.3. For any w ∈ N+ with w P -self-contained, contC(w) 6≡ 0 (mod 3).

Proof. Let x be the element immediately preceding multP (w) in the orbit of w. We
have x = qw + dw−1

3 for q ∈ N and d := w mod 3. Then, C(x) = 3qw + dw. So,
contC(w) = C(x)

w = 3q + d, and thus contC(w) ≡ w (mod 3). Since w ≡ w−1 (mod 3),
we get w · contC(w) ≡ 1 (mod 3), and so contC(w) 6≡ 0 (mod 3) as w 6≡ 0 (mod 3).

Proposition 5.3.4. For any w ∈ N+ with w C-self-contained, w is not a multiple of 3.

Proof. Since w is self-contained, there is some odd element of its orbit, x, such that
3x+ 1 ≡ 0 (mod w). Then, 3x+ 1 = aw for some a ∈ Z. Suppose w is a multiple of 3.
Clearly, 3 | aw, but 3 - 3x+ 1, so we have a contradiction.

5.4 Computationally Improving the Upper Bound
As noted, it is difficult to say much about which numbers will contain a certain element
in their orbit without actually calculating its orbit. Thus, in order to investigate which
numbers are actually self-contained, we must simply perform a (semi-)naive search. In
our case, we immediately sieved even numbers - as if an even number is self contained,
then so is that number with all factors of 2 removed. While we did not sieve all multiples
of 3, this is also a valid method that would improve efficiency non-trivially. Recall that
a self-contained number cannot be a multiple of 3 by Lemma 5.3.4.

Previously, the positive integers up to 1011 had been checked for self-containedness.
This resulted in the set of odd self-contained numbers:

LP (3, 11) = {31, 83, 293, 347, 671, 19151, 2025797}

Notice that the largest element of LP (3, 11) is on the order of 106. It appears that there
is a drought of such numbers after this point, as even searching 5 orders of magnitude
higher has not recovered any more self-contained numbers. We have further improved
this bound to 1015, and still not found any more. Before getting too excited by the
idea that there only may be finitely-many self-contained numbers, note that we have
no assurance that such numbers would necessarily be small, or close together. Still,
it is interesting that they simply stop showing up at a point. In this section, we will

32

http://www.mcmaster.ca/
https://www.science.mcmaster.ca/sis/
https://www.science.mcmaster.ca/sis/


Bachelor of Integrated Sciences– Alun Stokes; McMaster University– School of
Interdisciplinary Science

discuss the computational methods used to improve this bound, and where these may
be improved upon in the future.

5.4.1 Computational methods

Initially, computations were performed rather naively in Python, with no multiprocess-
ing. This is sufficient for checking up to about 106 within a few seconds. Clearly, to
push further, improvements were needed. First was to parallelise the computation, as
this problem lends itself very easily to such a speedup. This of course speeds up the
computation by a factor of the number of threads on which it is run, but there is still the
underlying slowness of a language like Python. For this reason, we chose to implement
the computation in Julia. This implementation ended up being faster than our C++
implementation - though that may be down to shoddy C++ code for large integers on
our part. For reference, running the computation in Julia gave an increase of about 20
times over Python. Still, our desired bound would not be doable on a single machine
in a reasonable amount of time. For every order of magnitude increase in the upper
bound, there was about an 11 times increase in the computation time. This is quite
good actually - as it appears to be linear in time-complexity - but still increases the
required resources reasonably quickly when we are trying to push 1015. So, we ended up
employing a distributed computing strategy, making use of Compute Canada resources
to perform the computations.

In total, checking the numbers between 1014 and 1015 took 2400 48-core computers
an average of 7 hours each, for a total compute time of about 90 years. Together with
the calculations for integers between 1011 and 1014, we used about 100 years of compute
time. We estimate then that checking up to 1016 would take about 1000 compute years,
and it was thus out of reach for us, given our resource allocations. In order to further
improve speed, we wrote a GPU implementation using Nvidia’s CUDA library. This
provided a further 20 or so times speedup over the Julia implementation - although
getting our hands on sufficient GPU nodes to push 1016 was not something we were able
to do in time for it to be included in this report.

5.4.2 Further improvements

As was mentioned, the use of GPUs can significantly improve the speed at which the
calculations occur, due to their inherent parallelised structure. However, the computa-
tions for large integers will be noticeably slower due to the necessity of using 64-bit types
which cannot take advantage of special operations, such as fused-multiply-accumulate.
Regardless, this is made up for by the large number of cores over a CPU. We also believe
that further improvements can be made in the parallelisation for a GPU over our 20 times
speedup, as we use a naive strategy and are not terribly familiar with programming for
GPUs.

In terms of sieving, the primary methods are to remove any multiples of 2 or 3, as
these either are degenerate self-contained numbers or cannot be self-contained in any
case. Further sieves that assure self-contained numbers are not removed are not known.
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This comes down primarily to a lack of knowledge on what such a number may or may
not look like. Beyond this, it may also be prudent to sieve numbers that are equivalent
to 1 mod 3. This comes purely from the observation that only 31 is not modularly
equivalent to 2 mod 3, which may suggest it is the only such self-contained number.
That said, this observation comes from a very small set of numbers, so it is only a
tentative suggestion. If anything, it may speed up the search for the next self-contained
number equivalent to 2 mod 3, if it exists.

5.5 A Spot of Empiricism
Unfortunately, the few propositions above represent much of what we can say about self-
contained numbers. A good bit of the work on this project sought to use computational
and experimental methods to identify patterns that are candidates for formalization,
but very often these patterns were not clear enough to elucidate such a generalization.
Nonetheless, we will discuss here several of the directions in which this experimentation
went, and some of the more major observations that can be made from them. Principally,
we are interested in being able to deduce a priori whether the P -orbit of some w ∈ N+

contains an element equivalent to −3−1 mod w. Most interestingly, we observe an
increasing rarity to the set of such numbers - which is ideally (but far from necessarily)
indicative of their finiteness. We also expand our search beyond self-contained numbers
to any whose C-orbit contains our element of interest. We see that the same pattern
of sparsity, and seeming finiteness is exhibited here. First, we start by noting some
elementary properties of the self-contained numbers we know.

5.5.1 The self-contained numbers we know

Recall our P -self-contained numbers:

LP (3, 15) = {31, 83, 293, 347, 671, 19151, 2025797}

Each of our C-self-contained numbers is either in LP (3), or a power of 2 times some
element of LP (3). We have 7 known P -self-contained numbers, but 15 C-self-contained
numbers since both 2·671 and 22·671 are C-self-contained. Of the self-contained numbers
we know, 671 is the only one with a larger multiple of a power of 2 than 21 also C-self-
contained. We do not know how to predict when this may happen - nor if we should
expect that any other self-contained numbers would have this property.

The only P -self-contained number not equivalent to 2 mod 3 is 31, which is equiv-
alent to 1. Again, we do not know whether to expect all subsequent P -self-contained
numbers to be equivalent to 2.

The set of contP (w) for w ∈ LP (3) is given (in the same order as above):

{5, 13, 7, 7, 11, 37, 79}

The no non-trivial cycles subproblem can equivalently be stated in terms of contP (w).
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Proposition 5.5.1. The Collatz conjecture has no non-trivial cycles if and only if
contP (w) 6= 1 for all w ∈ LP (3).

Evidently, contP (w) is prime for all known P -self-contained numbers - however it
is unlikely that trying to prove anything about these numbers in terms of primality
would be particularly elucidative. It is unknown if contP (w) can be composite - though
determining this would not necessarily say anything interesting about the conjecture.
Being able to say that it is always prime, however, would solve the conjecture.

5.5.2 Some almost self-contained numbers

If we take off the restriction that the element equivalent to −3−1 mod w must occur in
the P -orbit (and thus be odd), and instead check for such elements in C-orbits, we see
something interesting. First, there are quite a few more such numbers. Clearly, these
are a superset of the self-contained numbers. The full set is too numerous to reasonably
include here, but the first 10 element of the set are

LC(3, 12) = {5, 7, 11, 13, 19, 25, 31, 43, 47, 49, . . .}

There are 89 such numbers less than 1012 - including even numbers. What is perhaps
interesting then is that the only even numbers in this set are C-self-contained . That is,
there are no even w ∈ N+ that have an even element of their C-orbit equivalent to −3−1

mod w. In fact, we can prove this.

Proposition 5.5.2. If w ∈ LC(3) and w 6∈ LP (3), then w is odd.

Proof. We give an outline of the proof. This is relatively obvious by arguing that the
element x ∈ orbC(w) with x ≡ −3−1 (mod w) and x even must have a different parity
than x′ ∈ orbC(2w) with x′ ≡ −3−1 (mod 2w). Note that we need x even since w 6∈
LP (3). Splitting by the residue class of w mod 3, we can verify in each case that such
an x being in orbC(w) implies no such x′ can be in orbC(2w). Further, since we have
that 2w ∈ LC(3) implies w ∈ LC(3), we cannot have that w is even.

This then distinguishes actual self-contained numbers from these pseudo-self-contained
numbers by the fact that odd self-contained numbers have 2 times themselves also self-
contained, if not also higher powers of 2. What is perhaps more interesting is that
the pseudo-self-contained numbers also seem to stop appearing eventually; the largest
such number less than 1012 is 4051594 - which is a our largest C-self-contained number.
While we haven’t checked as large a bound as for self-contained numbers, we see a similar
distribution between these and the self-contained numbers. The fact that the pseudo-
self-contained numbers also run into a drought seems to suggest that, as w gets large, it
becomes quite rare that some element of your orbit is equivalent to −3−1 mod w.
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5.5.3 How common is −3−1?

This all raises the question: are such elements more rare than any other? That is, are
we less likely to see some element in the residue class of −3−1 mod w than any other
of the residue classes of w? As it turns out, yes; this appears to be the case. Consider
the following: For all w less than some bound, M , we find the proportion of w whose
C-orbit contains the element −k−1 out of how many have gcd(w, k) = 1. Essentially, we
count how often it occurs as a fraction of how often it could possibly occur. As we let
M tend off to infinity, the proportion of orbits in which each −k−1 appears should tend
towards its true density. Of course, since each time M is increased we introduce new k
(eg. there is no −7−1 when M < 8), each k is converging independently of every other.
We thus only look at 1 ≤ k ≤ M

10 for any given M , to give the newly present k some
time to converge. A factor of 10 was chosen empirically, given the rate of convergence
of newly-added k. See Figure 5.1 for an example of what this looks like. Notice that for
every M , −3−1 is the residue class least often included in orbits. Now, if we look up to
k ≤M , we will find that there is some other residue class which is in a smaller proportion
of orbits - but in all observed circumstances, this only happens for finitely-many M , as
with increasing M , the given residue class converges to a larger proportion than that of
−3−1.

In Figure 5.1, multiplicity within an orbit is not taken into account. If the residue
class of two different elements in an orbit is −k−1 more than once, this is still only
counted as a single occurrence for the calculation of proportion. Thus, this measures
the rarity of w for which a given element exists in orbC(w) (as a fraction of the w for
which such an element could possibly exist). In order to measure the frequency of a
particular residue class appearing in an orbit, we must consider multiplicity. In Figure
5.2, multiplicity is considered. With multiplicity, not much is changed - to the extent
that you may not be able to tell the two figures apart without careful examination.
Evidently, −3−1 is not very common - either in terms of the number of w in whose
orbits it appears, or the number of times it does so across w. In both cases, the most
common residue class is −14−1. Currently, we are unsure as to how to interpret this in
any meaningful way.

5.5.4 A closing conjecture

If we repeat the experiment we ran in an earlier section of finding all w for which there is
some element of orbC(w) modularly equivalent to −k−1 mod w for k with gcd(k,w) = 1,
we see a similar pattern to what we saw with k = 3. That is, it appears that for most k
we choose, the C-orbit of w will eventually stop containing elements in the residue class
of −k−1, as w gets sufficiently large. Recall that in the case of k = 3, we checked up to
1012 and saw that there were 89 numbers with such an element in their C-orbit - the
largest of which was on the order of 106. See Table 5.1 for a collection of these values
for other k, again checked up to 1012. Most important to note are the last two columns
- in particular, the difference between the largest element and the upper bound we have
checked, and the relatively tiny proportion of candidate w that contain a particular
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(a) M = 1000 (b) M = 2000

(c) M = 5000 (d) M = 15000

Figure 5.1: Plots of the proportion of w ≤M whose C-orbit contains an
element equivalent to −k−1 mod w for gcd(w, k) = 1. Values are shown
for several M . The red point corresponds to k = 3.

residue class in their orbit. Much like k = 3, in most cases, there comes some bound
(much less than our upper bound) at which point we cease to see any more w with orbits
intersecting the residue class of −k−1. It is our suspicion that in the cases where we do
not see this (1009, 1019, 10009, 10037, 10039), this is simply due to not checking a large
enough bound. Of course, an immediate further step would to be to check to a higher
bound, as we have for the k = 3 case. Along these lines, we will end off with a couple
conjectures related to these numbers.

Conjecture 5.5.1. For every k ∈ N+ with k ≥ 3, the natural density of LC(k) is 0.
That is,

lim
n→∞

|LC(k, n)|
10n = 0
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(a) M = 1000 (b) M = 2000

(c) M = 5000 (d) M = 15000

Figure 5.2: Plots of the proportion of w ≤ M whose C-orbit contains
an element equivalent to −k−1 mod w for gcd(w, k) = 1. Multiplicity
within an orbit is taken into account. Values are shown for several M .
The red point corresponds to k = 3.

This seems probable simply based on the growth rate of LC(k) we see for small
numbers. Of course, this is also not so strict a condition, as we could still have LC(k)
infinite - but it is certainly an inoffensive conjecture. Of course, we have only check
this for relatively small k, and only up to a bound of 1012 - but the results are pretty
uniform across the board of tested values. A much stricter, and likely much more difficult
conjecture to say anything about is the following:

Conjecture 5.5.2. For every k ∈ N+ with k ≥ 3, |LC(k)| is finite.

Again, this conjecture follows from our relatively small collection of empirical obser-
vations. To say anything convincing of its truth is quite difficult - and in fact may be
more difficult than the Collatz conjecture itself. If true, it could potentially be helpful
in saying something about the Collatz process - and in particular, if we knew that LC(3)
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was finite, this could be very useful. Of course, even if we did know that, it may prove
to be entirely useless (at least in terms of an exhaustive proof) if it is still very large, or
the bound on its size was unknown. One must remember than finite things can still be
enormous.

With that, we have reached the end of what we can say about self-contained numbers.
This stopping point is not one indicative of a lack of further directions to look in,
but of the time available to do so. This part of the project especially has a penchant
for devouring one’s time, all the while giving little in return. Ultimately, we do not
believe that this is a particularly fruitful area of research on this conjecture. Without
knowing more elucidative properties of self-contained numbers there is little that can be
done to analyze them theoretically. Experimentally, there is a deep well of fun to be
had investigating the patterns that are just random enough to be bewildering, but just
regular enough to convince you that something is going on. The fact that only 7 odd self-
contained numbers are known significantly hinders our ability to make generalizations
about what properties they share, or even guess at what these might be. As such, it is
clear why the literature on this strange little set of numbers is so scant.
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Table 5.1: The number of 5 ≤ w ≤ 1012 for which there exists x ∈
orbC(w) with x ≡ −k−1 (mod w) for various prime k. The largest known
w for each k is given, as well as the number of such w found, and the
proportion of such w relative to the number of integers coprime to k, less
than 1012.

k |LC(k, 12)| maxLC(k, 12) Proportion of possible w ≤ 1012

2 72 696255 ≈ 105 ≤ 10−8

3 89 4051594 ≈ 106 ≤ 10−8

5 176 139329 ≈ 105 ≤ 10−8

7 493 13545617 ≈ 107 ≤ 10−9

11 327 19756327 ≈ 107 ≤ 10−9

13 256 40114101 ≈ 107 ≤ 10−9

17 273 776595 ≈ 105 ≤ 10−9

19 1263 36816597 ≈ 107 ≤ 10−8

23 391 14785947 ≈ 107 ≤ 10−9

29 355 2355789 ≈ 106 ≤ 10−9

31 362 6413202 ≈ 106 ≤ 10−9

37 323 235114039 ≈ 108 ≤ 10−9

41 597 141512421 ≈ 108 ≤ 10−9

43 300 477605 ≈ 105 ≤ 10−9

47 387 15476475 ≈ 107 ≤ 10−9

53 588 37311790 ≈ 107 ≤ 10−9

103 548 403378601 ≈ 108 ≤ 10−7

1009 3394 234416142900 ≈ 1011 ≤ 10−8

1013 496 9352017 ≈ 106 ≤ 10−9

1019 806 104257576728 ≈ 1011 ≤ 10−9

10007 1055 626301280 ≈ 108 ≤ 10−8

10009 1121 607406350119 ≈ 1011 ≤ 10−8

10037 17223 16266406485 ≈ 1010 ≤ 10−7

10039 4614 490352236013 ≈ 1011 ≤ 10−8
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Chapter 6

Conclusion

The motivation for starting this project was to investigate some of the properties of
solutions to an algebraic formulation of the non-trivial cycles subproblem of the Collatz
conjecture. In the course of this, we principally focused on the representation of integers
by a k-special 3-smooth representation - which is in an of itself a deeply complex and
interesting problem. While we were not able to say much more than other authors on
the matter, we formalized a derivation of the self-contained numbers from a particular
form of k-special representation. We also present some of the first elementary results on
the self-contained numbers. Our main contribution is the increased bound of numbers
checked for self-containedness to 1015. To end out, we generalized the concept of self-
containedness, and presented some conjectures on what seems to be a very sparse class of
numbers, which we denoted LC(k). The empirical results presented here represent only
a small portion of the amount generated throughout the course of this project. What has
been stated amounts to that which we could say much of anything concrete about; the
rest was often too complex to make generalizable observations - though this is also part
of what made it so fascinating. In whole, the project has been a wonderful exercise in
the use of computation to discover interesting patterns and results to investigate further,
and with (hopefully) more analytic methods.

One doesn’t decide to set aside some time to work on the Collatz conjecture with the
idea in mind that they will actually solve it. One hopes, of course - but anyone short of
a professional crank knows better than to imagine, with any degree of seriousness, the
prospect of cracking it. Ultimately, working at a problem like this is more an exercise in
masochism than anything else; a test of how little respect you have for your own time.
And still, I think it is something that every young aspiring mathematician should try.
With the knowledge in mind that you aren’t going to solve it, or very likely even come
up with anything novel, you should find some time to anguish yourself with questions far
bigger than you have any right to expect to answer. Despite how disappointing it is when
every ‘breakthrough’ you come up with was found decades ago and leads nowhere, there
is near infinite intrigue to be found in delving into the inner workings of this problem.
The hope then is that your curiosity is sated regularly enough that you can stick with it
for at least a short while. But at the same time, you hope that you’re able to let go when
it’s time. This is all too easy a problem to become obsessed with - and I’ve had my fair
share of obsession with it. Perhaps more than anything, the experience of undertaking
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this project has given me an appreciation for the scale of even the seemingly simple
questions in number theory. What so many questions come back to is the problem of
understanding the interaction between the multiplicative and additive structure of the
integers. It is a problem that it seems we are currently not able to answer - and may
not be able to anytime soon. In my case, it took struggling against an insurmountable
question for 8 months to have the sheer difficulty of this impressed upon me. For now,
I will take solace in the upcoming absence of this conjecture from my life, at least for
a little while. My only hope is that someone may find some utility, curiosity, or simply
interest in something I’ve included here - but even if not, I’m just as happy.
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