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Lay Abstract

The intention of this research is to be able to improve on existing size interval task-

based assignment policies. We try to improve by turning servers off at key times to

save energy costs, while not sacrificing too greatly in terms of mean response time

of the servers, and in some cases even improving the mean response time through an

intelligent re-balancing of the server loads.
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Abstract

In this thesis we consider the impacts of energy costs as they relate to Size Interval

Task Assignment Equally–loaded (SITA-E) systems. We find that given systems

which have small and large jobs being processed (high variance systems) we could in

some cases find savings in terms of energy costs and in terms of lowering the mean

response times of the system. How we achieve this is by first working from SITA-E,

wherein servers are always on to Electrically Aware SITA-E (EA-SITA-E) by seeing

if it is beneficial to make any of our servers rotate between being on and being off

as needed. When most beneficial to do so we will turn off some of the servers in

question, after this is completed we reallocate some of the jobs that are on the servers

that we decide will be cycling to servers that will remain on indefinitely to better use

their idle time. This also lowers the mean response time below what we originally

saw with SITA-E, by lowering the variance in the sizes of jobs seen by the servers

with the longest jobs. These long–job servers are by far the most impacted by the

variance of the sizes of the jobs, so it is very desirable to lower this variance. The

algorithm contained here can provide benefits in terms of both energy costs and mean

response time under some specific conditions. Later we discuss the effect of errors

in our assumed knowledge of task sizes. This research contributes methodology that

may be used to expand on EA-SITA-E system design and analysis in the future.
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Notation and Abbreviations

Notation

j Number of servers in the system, |M |.

M M is the set of all servers, static or non-static.

N N is a subset of M containing only the non-static servers.

S S is a subset of M containing only the static servers.

λ λ is the arrival rate to the entire system, λi is the arrival rate to

server i.

t t is a per-queue decision variable describing the allowable length of

queue before the server will go from an OFF state to a SETUP state.

This is irrelevant for static servers.

γ γ is the rate at which servers move from SETUP to BUSY. This is

irrelevant for static servers.

k k is the lower limit on the bounded Pareto distribution.

p p is the upper limit on the bounded Pareto distribution.
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α The shape parameter for the bounded Pareto distribution. Lower α

implies a higher variance – as α approaches one, the variance becomes

infinitely large.

ρ ρi is the utilization of a server i, ρ is the average utilization of a

server in the system.

β1 β1 describes the scaling factor of electrical costs against response

time.

β2 β2 describes the scaling factor of cycling costs against response time.

Estate this describes the electricity costs associated with each state: BUSY,

OFF, IDLE, and SETUP.

rstate this describes the ratio between the costs in a state (one of OFF,

SETUP, or IDLE) and the cost of state BUSY .

φ This is the rate at which a server begins to shut down when it has no

jobs, typically ∞ or 0 for non-static and static servers respectively.

Abbreviations

BP bounded Pareto

SITA Size Interval Task-Based Assignment

EA-SITA-E Electrically Aware Size Interval Task-Based Assignment with Equal

loads

PDF Probability Distribution Function
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Chapter 1

Introduction

1.1 Background

In recent years we have seen both a rise in energy costs and an increase in the amount

of electricity used by data centers. Further, the amount of media attention as well as

the amount of research funds for climate change have been trending upward. This has

created an area of research focused on how to minimize energy costs while still hoping

to see only small sacrifices made in terms of the systems that are being altered and

their original goals. This research seeks to find ways to lower the energy impacts of

data centers both monetarily and in terms of climate impact while still maintaining

certain integral metrics of the system, in our case mean response time.

To study the effects of different control strategies we perform a multi–step process.

The first step will be constructing a method by which to mathematically represent

these complex systems. In this process we will be leveraging a combination of queueing

theory and probability, as well as some key findings from previous works which are

discussed in more detail in the literature review in Chapter 3.

The second step will be to ensure we are properly comparing and considering
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different cost metrics when measured against each other, so that we will not dispro-

portionately favour savings for any single cost metric, such as energy costs, which

will help us to analyze and compare these systems. For this purpose we create a cost

function. Here it will be some linear combination of electricity costs, mean response

time – the costs of unsatisfactory system performance – and cycling costs. Cycling

costs are a measure of the impact of physically turning devices on and off – especially

many times. This has been shown to impact the lifetime of a server, see Chen et

al. [22], making it an important metric to consider when working with data centers

and servers. At many times we consider cycling costs to be negligible and observe

the amount of electricity savings created while only raising our mean response time

by an acceptable amount. (What is considered an acceptable mean response time is

described in more detail in Section 2.4).

The third step will help us to alter the system in order to reduce the overall costs.

Firstly we will explain how we move from a Size Interval Task Assignment Equally-

loaded (SITA-E) method to an Electrically Aware Size Interval Task Assignment

Equally-loaded (EA-SITA-E) method. At a high level the only difference between

EA-SITA-E and SITA-E is that we consider that some of the previously equally

loaded always on servers should be cycled on and off under certain conditions to save

on energy costs. At this point we will consider if we can further benefit by creating

two separate classes of server which are equally loaded within their own class. One

class will be the servers that always remain on, and the other will be the class of

servers that will turn off when needed. Within these two classes we will still maintain

an equal load between the individual servers, but not necessarily between the two

classes of servers. Our goal with this method is to see if we can shift some of the

weight from the systems that we decided would be turning off at times to the servers

which will always remain on to better utilize the idle time of the servers which are

always on.

2
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We will see that for a wide range of systems we can see some level of energy

savings, with only small sacrifices to mean response time; and in some specific cases

we can actually see an improvement in both energy costs and mean response time.

Finally we will briefly examine the effects of error in our a priori knowledge, and

see that with intelligent foresight they can be largely mitigated so long as an accurate

error model is developed for the system in question.

3



Chapter 2

Preliminary Knowledge

In this chapter we will be discussing information that we feel is pertinent that the

reader should be aware of before trying to understand the remainder of the thesis.

This is intended as a ground level foundation for individuals who might not be well

versed in the processes/methodology we use.

2.1 Queueing Theory

Queueing theory is an approach that mathematically captures real-world phenomena

of queues of tasks. This can model a wide range of applications anywhere from wait

times in a store where there is queueing to purchase groceries, to the amount of time

it will take a process to complete all necessary sub-processes on different parts of a

computer. All of these may be described in terms of which resources are being used by

other processes when the process in question ‘arrives’ or more accurately is placed in

the queue. Queueing theory is used heavily throughout the remainder of this thesis.

The notion of a random variable is the basic tool from probability theory that is

used to describe quantities of interests in queueing systems. A random variable has

a corresponding Probability Distribution Function (PDF) relating to the likelihood

4
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of certain outcomes. In our case it is typically the probability of a task finishing at

a given time. Random variables go hand-in-hand with queueing theory and will also

be heavily utilized throughout this thesis. That is to say: we will be referring to the

task size or task size distribution throughout this thesis as a random variable. This

particular random variable is an attempt to mathematically capture the performance

of a single task that arrives to our system with a probability of taking different lengths

of time using a server to finish. Random variables are a convenient means to model

the statistical variation that can occur in a phenomenon. They are useful as a means

to perform analysis. Of course when considering a queue it is important to be able to

assess the response time of an individual task, or the average response time for a class

of tasks given certain conditions. Basic knowledge of random variables is assumed at

this point, but in the next section we discuss some specific concepts from queueing

theory that inform our work.

2.2 Motivation

What we are trying to work towards for the majority of this thesis is a routing

strategy. A routing strategy is a method by which to decide where a task arriving to

a set of possible queues (or servers) will be routed to. These routing strategies are

often used to try to lower the response time seen by a task, increase the fairness in

how long a task might be delayed or even attempt to lower electrical costs incurred by

the servers handling the task in question. When the size of a task is known a priori

the Shortest Remaining Processing Time (SRPT) policy is an attractive strategy

for scheduling [21]. In terms of response time this method has been shown to be

optimal for a queue with a single server. SRPT dynamically allocates the task with

the lowest amount of work to be done to the (usually single) server in question. This

optimizes response time but at the potential cost of fairness, because large tasks can
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get stuck behind smaller ones. For modern computer systems, it has been shown that

workloads do have the feature that they are a mixture of (very) large tasks and (very)

small tasks. The Bounded Pareto distribution is often used as a model for task sizes

and with this in mind, we focus on this model [6,23]. As a result the tendency for

SRPT to be unfair is amplified greatly by the fact that we have such large variance

in the tasks that arrive to the system, or even individual servers. Because long tasks

tend to be very long it could be the case that many smaller tasks would interrupt

a single large task repeatedly over a long period of time. In addition we wanted to

consider a system that did not rely heavily on perfect preemption, which often is

not possible in real world applications. If we were to consider SRPT without perfect

preemption there could be significant performance degradation wherein larger tasks

being preempted repeatedly by smaller tasks could result in a significant reduction

in a server’s useful capacity. With this reasoning in mind we decided to consider a

basic M/G/1 model, with first come first served tasks that are never preempted. We

now proceed to provide further details about the notion of an M/G/1 queue.

An M/G/1 queue relies on three concepts. The first is Markovian arrivals (the

M), which means that for the server in question the system sees tasks arrive such

that the time between arrivals follows a probability distribution that is exponential.

The second portion the G (or general) means that the processing times probability

distribution is any general distribution. Throughout this thesis we will be working

with a bounded Pareto distribution as it exemplifies a high-variance distribution quite

well. However the methodology outlined in this thesis still holds under any general

distribution. Finally the most important piece is also the simplest. The “1” states

that we are considering a single server without any other contributing servers. We will

see that the systems that we study can be modelled as multiple independent M/G/1

queues. The associated formula for an M/G/1 queue’s expected response time E[R]

is as follows:

6
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E[R] =
1

µ
+
ρ2 + λ2σ2

S

2λ(1− ρ)
(2.2.1)

where λ is the arrival rate, µ is the service rate, ρ = λ/µ is the utilization and σ2
S is

the variance of the task size distribution.

As can be seen clearly in (2.2.1) variance is a significant contributor to the response

time of a server, meaning that if we could find a way to lower it significantly we could

see a non-negligible decrease in response time. For a system of parallel queues with

single servers, Harchol-Balter et al.’s findings [6] show that the variance seen by an

individual server can be lowered considerably by selectively sending tasks of certain

sizes to specific servers; this is in contrast with other routing algorithms that base

their decisions on quantities other than the size of the task in question, for example

the queue lengths. Improving on this approach is the inspiration for this thesis. This

class of routing strategies is called Size Interval Task-based Assignment (SITA) and

will be explained in more detail in the literature review. We saw an opportunity

where we would be able to produce possible system benefits, not to mention that we

felt this coupled nicely with the idea of selectively increasing and decreasing the load

on specific servers, another strategy to lower response time and/or electrical costs

without significant costs to the system designer. In Section 4 we will explain the

implementation.

When we bring all of this together we see a system of individual servers, each of

which has had their variance lowered considerably when compared to methods that

do not consider task size when making the decision for where tasks should be routed.

This means they will have faster response times and lower overall costs. This also

implies the possibility for more electrical savings by cycling servers off during down-

times, and back on when needed. From here onward we will describe the servers

we decide should be turned off and on as needed as ‘non-static’ and any servers

that we decide to leave on permanently as ‘static’. This method is already used for
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individual servers by Maccio and Down [1], and will be discussed in greater detail

later in Chapter 3. Finally we see that in some cases this leads to the ability to save a

great deal of electrical costs while managing to lower mean response time, a win-win

situation.

2.3 Problem Formulation

The model that this thesis addresses is a set, M , of parallel servers with size j. Each

of these servers can be in one of four states: BUSY, OFF, IDLE, or SETUP. These

servers will fall into either a subset of M called N containing non-static servers, or S

containing static servers. Between these two sets of servers all of the servers must be

included, but either of these sets could be empty. Of course no server can belong to

both N and S. Formally:

N ⊆M,S ⊆M, (S ∪N) ≡M, (S ∩N) ≡ ∅ (2.3.1)

Static servers will always remain on, while non-static servers will switch off as

soon as they have no tasks en-queued and are not working on a task, and back on

as soon as a threshold number of waiting tasks denoted t is reached (there may be a

different threshold for each server in N). The justification for the choice of this policy

for switching non-static servers on and off is discussed in more depth in Section 3.2.

The problem at hand is that the non-static servers will be turning on and off

to conserve energy, however, they will use extra energy during the time it takes for

them to turn on. To capture this effect we will be adapting a model from Maccio

and Down [1]. A server moves from OFF to SETUP instantly. This will happen

when the number of waiting tasks at server i exceeds a threshold value ti – which

we will discuss how to determine in more detail in Section 4.1. It will then move to

BUSY after an amount of time that is exponentially distributed with known rate γ.

8
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Note that a server does not enter SETUP without having a task queued, and as such

cannot move from SETUP to IDLE. A server moves from BUSY to IDLE if it clears

all of the tasks that it is processing. Finally, a server instantaneously moves from

IDLE to BUSY if a task arrives or from IDLE to OFF if we wish to shut it down

(this is assumed to happen instantly). Each of the states has an associated energy

cost represented with Estate. It is useful to define the ratio between a given state and

EBUSY , denoted as rstate.

Tasks arrive to the system according to a Poisson process with a known arrival

rate λ. Each server uses its own first in first out (FIFO) queue, and task sizes follow

a known bounded Pareto distribution which is characterized by a probability density

function given by:

f(x) =
αkα

1− (k
p
)α
x−α−1 k ≤ x ≤ p, and 0 otherwise (2.3.2)

As with the Pareto distribution the bounded Pareto (BP) distribution has a single

shape parameter, α, but has been modified to have a lower and upper bound, here

representing the smallest and largest size of a task, k, and p respectively. This restricts

what was originally an unbounded distribution.

To examine the efficacy of Size Interval Task-based Assignment (SITA) algorithms

in the above situation, three problems must be solved to be able to fully describe the

situation at hand. First we must decide on a set of intervals so that each server can

have an upper and lower bound on the size of task it will serve. Any given server Mi

will be assigned tasks from size xi to xi+1. For the BP distribution, these xi satisfy

the following:

xi > xi−1, x1 = k, xj+1 = p (2.3.3)

Secondly we must decide on which servers from M will have static behaviours and

9
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which will have non-static behaviours, in other words which will belong to set S and

which will belong to set N .

For servers belonging to S we must decide on the threshold, the number of tasks

that are allowed to queue before entering the SETUP state from the OFF state.

Maccio and Down [1] provided a method to find the optimal t for any server given

the system parameters.

Finally we must assess the efficacy of a given solution. For this reason we must

formulate a metric or set of metrics. Maccio and Down [1] proposed a suitable set

of metrics in the form of a set of cost functions tailored such that they can usefully

show the impact of a solution in terms of the following metrics:

• Expected response time: denoted E[R]. This metric is meant to capture the

level of customer satisfaction.

• Expected Normalized Energy Costs: denoted E[EN ]. This metric is meant to

capture the typical running costs of a solution so we can attempt to optimize

in terms of electrically aware servers.

• Expected Cycling Rate: denoted E[C]. This is a (typically optional) metric,

denoting the rate at which servers turn on and off. The inclusion of a term

involving E[C] in the cost function can be used to model the physical wear and

tear a system could experience in being turned ON and OFF repeatedly.

The cost function that Maccio and Down [1] proposed is a weighted sum of these

three metrics, formally:

E[R] + β1E[EN ] + β2E[C] (2.3.4)

This cost function allows for the relative importance of the three metrics to be

weighed against each other using the β scaling factors.

10



Chapter 3

Literature Review

In this chapter we will be reviewing relevant research that will help the reader to

understand the research sphere in which this research is grounded. It will also pro-

vide some reasoning and insight as to why we made particular choices in terms of

presentation, process, or topic.

3.1 Task Size Aware Routing

An important assumption has been made in this research that the size of the task

is known upon arrival, allowing different decisions to be made about which server

it will be routed to within the system. This area has been explored by researchers

quite thoroughly. In the case where task processing times are not known upon ar-

rival, it is well known as referenced by Aalto [5] and originally found by Winston [8]

and Weber [9] that a Join the Shortest Queue (JSQ) policy is optimal for response

times in homogeneous server systems. However, this only holds true if the tasks’

processing times are exponentially distributed [8] or have a non-decreasing hazard

rate in general [9]. Harchol-Balter et al. [6] claim that heavy-tailed distributions such

as the Pareto distribution model computer applications with much better accuracy

11
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than the exponential distribution, the latter being an assumption that is made for

its mathematical convenience (analysis is much simpler). These claims are backed by

studies on UNIX processes [10,11], I/O processes in general [12], and even file transfer

speeds over the Internet [13]. Another feature of these types of tasks is that they can

often be estimated quite well in terms of time or number of operations needed. This

line of thought lends to the importance of studying situations in which solutions like

JSQ – though eloquent – might perform far from optimally.

Harchol-Balter et al. [6] was instrumental in providing context and a base from

which to start working towards a solution for this problem. They had multiple im-

portant insights that guided our problem formulation.

The first important insight made in [6] was that SITA-based policies worked very

well in high variance situations. The intuition underlying this finding is that if one

is to limit the variance seen by a single server by limiting the size of tasks that can

possibly be seen by that server it will be highly beneficial in systems that see variance

as a dominating term. It was shown as beneficial to limit task size variance in single

server (M/G/1) systems as early as the 1930’s by Pollaczek [19], who showed that

the length of the queue of a server (positively linked with wait time, mean response

time) was given by the expression (2.2.1). As one can clearly see from this expression,

if everything else remains the same and the variance of the task-size distribution is

limited, as is intended with SITA policies, we can achieve lower mean response times.

When compared against Random, and Round Robin routing policies they found that

SITA-E frequently performed better in a variety of situations [6]. Anselmi et al.

[7] went on to prove that SITA-E is asymptotically optimal for mean wait time as

the number of (homogeneous) servers grows infinitely large. This suggests that in

situations with a large number of servers an equally loaded SITA system performs

near-optimally. It is also shown in [7] that finding a SITA policy that minimizes

wait time in applications with a finite number of servers is an intractable problem

12
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in that a specific algorithm cannot hold to be optimal across a generalized setting,

meaning that if we take an arbitrary set of servers no one SITA policy can be shown

to be best across all cases [7]. This means that equally loaded SITA can be sub-

optimal, and a method with which to balance the load between servers unequally that

necessarily provides better performance metrics, or even regularly improves individual

non-nominal metrics such as mean response time is difficult to provide [7]. Despite

all of this Mor–Harchol–Balter et al. [6] show that when compared against similar

dynamic methods like Least-remaining Processing Time (LRT), which was previously

thought to be optimal in many cases, SITA-E can still outperform LRT by significant

margins in situations where the variance is sufficiently high. Each of these insights

is individually useful. First, it is important that SITA-E is asymptotically optimal

because the intent of this research is to work in situations with large numbers of

relatively consistent (in our case homogeneous) servers. In these types of situations

we expect our solutions to be near optimal. Second, it is important to note that

equally loading these servers is often not the best case [6,20], which is what led us to

use a sort of modified binary-search/descent method with respect to the loads on the

two sets of servers – N for non static and S for static – which are amongst themselves,

equally balanced to find a load that improves the overall costs seen by our servers.

Harchol-Balter et al. [6] showed that a set of servers following a SITA policy re-

duces to independent FIFO M/G/1 queues, which helps us to mathematically manip-

ulate them in a few interesting ways. Finally they also gave closed-form expressions

which are relied upon heavily to develop subsequent findings, including:

• Equations to determine the correct boundaries to produce an equally utilized

set of servers

• Equations to determine the functional attributes of a given server – variance,

wait time, expected response time, etc.

13
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• Equations to solve the proportion of tasks seen by a server

3.2 Electrically Aware Servers

Our research involves the incorporation of electrically aware servers. Many studies

approach a similar set of questions as we do discussing the trade-off in performance

with the energy costs of a system. Many of these works posit that instant-off servers

are optimal under any task size distribution [1,2,3,4] and a wide variety of cost func-

tions [1], meaning that under any task size distribution it is optimal to turn a server

off as soon as it has become idle if the server in question is a non-static (on-off)

server. As with our research these works approach the problem from a perspective

that any server can be turned off instantly, but it would take time to turn any server

back on. This helps to ground this area of study in reality, as most computer systems

face some sort of startup time, lending to the reasoning that an instant-on system

would not be as applicable (in which case analysis would be much simpler). There

are some key differences between works of this type and our contributions to this

research. Aalto and Lassila [5] discuss the same energy versus performance trade-off

problem under similar conditions/assumptions. However they assume that the size

of an individual task is unknown upon arrival, meaning that Size Interval Task-based

Assignment (SITA) policies are not applicable. Other works such as Anselmi and

Doncel [7] inform us that though some policies can be near–optimal or even optimal

in cases where task sizes are not known upon arrival they can still perform much

worse than SITA policies in cases where the task size is known, which implies that

the knowledge of the size of jobs arriving to the system is a non-negligible piece of

information, which we will manipulate to our benefit. Many works in the research

sphere simply discuss optimal timing for turning individual servers off in M/X/1*

(* means that it could be a processor sharing situation) situations such as Maccio
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and Down [1], and several works by Gebrehiwot et al. [2,3,4]. Some of these are in

contexts of processor sharing, shortest remaining processing time (task size known

dynamic applications) or other single queue assumptions. We present findings above

and beyond these in multi-queue applications to show further optimizations based

on the additional aspect of deciding between static servers and non-static servers.

These are called InstantOff and NeverOff respectively to better communicate the

optimality of instantly turning servers off when they are in the IDLE state. Having

said all of this, as far as we are aware there has been little research done on multiple

homogeneous queues of electrically aware servers where the task size (or a reasonable

approximation thereof) is known upon arrival, as in this thesis.

Maccio and Down [1] had many findings that are useful for the results in this thesis.

In particular, this thesis adopts the model that they used for single servers that are

electrically aware, with four energy states IDLE, OFF, BUSY, and SETUP. Each of

the states has separate associated energy levels meant to capture the different amounts

of electricity that would be used by servers in different states. This is discussed in

more detail in Section 2.4.

Maccio and Down [1] found in a single server case what threshold value t is optimal

for the queue length before servers move from the OFF state to the SETUP state.

This optimal value of t is a function of the underlying parameters. After t is found it

is a simple matter of calculating whether it is more effective to leave a server static

(in the set S) or have it be non static (in the set N).

Maccio and Down [1] provided a set of metrics that were appropriate for measuring

the efficacy of a proposed solution in the form of a set of cost functions described in

detail in Section 2.4.

Finally Maccio and Down [1] provided a set of observations about the behaviour of

energy-aware servers. This includes proving that it is optimal in a single server setting

for a non-static server to move to the OFF state from the BUSY state instead of ever
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entering the IDLE state because no tasks are present in the system. This observation

helped to simplify some of the state-based mathematics because it implies that a

non-static server will spend time in only three states: OFF, SETUP, and BUSY – it

is important to note it will never enter the IDLE state. A server will be in the BUSY

state for the same proportion of time as the utilization, ρ. This fact coupled with

the total law of probability implies that the portions of time which the server is in

the states OFF and SETUP must sum to (1 − ρ). Since static servers only exist in

the two states BUSY and IDLE they are in those two states for a proportion of time

equal to ρ and (1− ρ), respectively.

3.3 Errors in a priori Task Size Estimation

For the bulk of this thesis some key assumptions are made. These assumptions include

that we are aware of the distribution of task sizes a priori. We also know the size

(processing time) of any individual task when it arrives to the system. This allows

for us to make intelligent size-based decisions as to where the task will be routed in

our system, as discussed in Section 3.1. However, with this extra information that we

can leverage for improved performance there comes some additional complications.

For an array of reasons it is problematic to assume that exact processing times are

known. Firstly even in favourable cases such as web server systems where the size

of file downloads, etc. may be known exactly (and their distributions estimated rea-

sonably well based upon metadata information) it becomes problematic to model the

processing time from this knowledge due to inherent latency of the data network-

ing, and overhead such as sending and receiving acknowledgments [14,15]. This issue

arises with even suitably conditioned systems, other systems can suffer from this same

class of problems in even more dramatic ways.

This has led to an area of research that is based around whether or not partial
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information about a task size can be helpful. A way of representing this is as task

processing times being given a priori with a certain error. Scheduling with process-

ing times with error was first studied by Lu et al. [16], examining the performance of

Shortest Remaining Processing Time (SRPT) – which has been shown to be optimal

for a single server system by Schrage [17]. They also consider the Fair Sojourn Proto-

col, which is a modification of the processor sharing discipline. These are considered

in single-server contexts, with the goal being to find out how severely these – in some

aspects optimal – policies are affected by varying levels of error in estimation. Many

works have attempted to lessen the affects of error in a priori task size estimation.

A common approach to this is through a set of policies called Comparison Splitting,

originally proposed by Jelenkovic et al. [18]. This is a class-based approximation to

SRPT, which has multiple positive effects. Firstly it helps to lower the administrative

storage overhead of the system, but more applicably it helps to make the system more

robust to estimation error by having it be less likely for the error itself to be impact-

ful. Mailach and Down [14] study the effects of multiplying the processing time by a

random value to simulate some level of error. They also experimented with modifying

the error distribution to represent mostly under or over-estimating. We use a similar

method to generate errors but consider it in a different multi-server context in which

we can hopefully modify our boundaries for the SITA policies to compensate for the

errors in estimation found at the server level. Combining the idea of SRPT classes

with the natural class-based SITA policies one can imagine that if the bounds were

chosen intelligently one could heavily mitigate the negative effects of error in a priori

estimation, which is what this research aims to show.
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Chapter 4

Main Results

In this chapter we discuss the analytic findings based on our previously described

systems, and cost metrics, and why some of those findings might be relevant to real–

world decisions.

4.1 Electrically-Aware SITA and Rebalancing.

Electrically Aware Size Interval Task Assignment with Equal loads (EA-SITA-E)

is an algorithm that combines the variance lowering aspects of Size Interval Task

Assignment (SITA) policies (specifically here SITA-E) with the energy efficiency of

the electrically-aware servers proposed in a single server environment by Maccio and

Down [1]. We will describe the algorithm in the following paragraphs.

Firstly SITA-E will be implemented in the regular fashion. This will be achieved

by splitting the task size probability density function f(x) into a number of sections

equal to the number of servers, j. For this to happen there must be j + 1 boundaries

decided upon using f(x). For our purposes we use the bounded Pareto function

discussed in Section 2.3. In the remainder of the thesis, we assume that the parameter

α for the bounded Pareto distribution is strictly greater than one.
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Harchol-Balter [6] provided a means to find this set of cutoffs, which we adopt for

our algorithm:

xi =

(
j − i
j

k1−α +
i

j
p1−α

)( 1
1−α )

(4.1.1)

These xi are chosen such that all servers have utilizations equal to the utilization

of the system as a whole – or, formally:

ρk = ρi = ρ ∀ k, i (4.1.2)

What this guarantees is that in steady–state, all servers will be equally loaded. Next

we find the proportion of arrivals that are assigned to each server, Pi. Note that while

any two servers i and k have equivalent loads they in general do not see the same

proportions of arrivals. The intuition behind this is that since they are split by size

into larger jobs and smaller jobs to ensure an equal load, one must ensure that the

servers which handle smaller jobs handle a proportionally larger number of jobs.

We adapted this method for a generalized task size density f(x) by using an

iterative method in which we would find the first segment by leveraging knowledge of

the lower bound of f(x) and ensuring the integral of f(x) from the lower limit k = x0

to the first limit x1 is equal to the value of ρ for the system, which is known ahead of

time. Formally solving the following function for x1 where X is the random variable

representing the task size distribution:∫ x1

k

f(x)x dx =
ρ

λ
=
E[X]

j
(4.1.3)

After this we can use the second bound x1 to find the next bound x2, and so on

as follows:

∫ xi+1

xi

f(x)x dx =
ρ

λ
=
E[X]

j
(4.1.4)
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Now that we have the boundaries we can try to study if it makes sense for any

of these servers as they stand to be non static, so that we will cycle them off and on

or if it is still better overall to leave them as static servers. To do so we must first

finish fully describing our system by determining the variable ti, which is in general

different for each server. This was shown by Maccio and Down [1] to provide the

optimal outcome based upon the cost functions outlined in Section 2.3; recall that

the cost function is:

E[R] + β1E[EN ] + β2E[C] (4.1.5)

The relation that provides the ti value is:

0 = t2i
γ

2λ2
i

+ ti
1

λi
−
[

1

2λi
+ (1− ρ)(β1rSetup + β2γ)

]
(4.1.6)

From here if ti is not between zero and one both the floor and ceiling of ti must

be tested for the lowest cost in the later steps. If it is between zero and one then one

will be used as zero does not make sense in this context. From here we will discuss

what one would do with only one case, either floor or ceiling. It is assumed that the

valuations are taken with every combination of floor and ceiling between each ti for

a total of 2|j| different combinations to be evaluated in the end.

After the value of ti has been found one must substitute all of the values in question

for the server into the following expression, also given in [1]:

β1(1−ρ)λiγridle(tiγ+λi) ≤ λi(λi+tiγ)+γti(ti−1)+β1(1−ρ)λ2
i γrsetup+β2(1−ρ)λ2

i γ
2

(4.1.7)

If the inequality holds a server will be static, and if it does not hold the server

in question will be non-static. One can see that if the idle costs were 0 it would

necessarily be the case that the server would be static. This makes sense because
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idling of the server would cost nothing. Conversely if setup costs were sufficiently

large the same would hold because it would cost the system too much in terms of

startup costs.

One can start seeing the nuance with which this method aims to save costs, taking

all energy costs into account, as well as the mean response time and how the mean

response time might be harmed by different server policies.

This decision rule on making servers non-static is myopic in that it looks at each

server in isolation and as such is suboptimal in the case of our parallel server system.

Looking at the system as a whole can yield further adjustments that move closer to

(system) optimality. We do so by directly applying the findings in [1] to consider

further optimizations to fully realize EA-SITA-E. This form of optimization can only

take place if it is the case that some of the servers are static, and some of the servers

are not static, or formally :

S 6= ∅, N 6= ∅ (4.1.8)

From here one has the intuition that since these servers are operating under dif-

ferent circumstances we should try to shift the balance of the workload to potentially

improve overall performance. We do this by creating two new load variables ρN and

ρS for the non-static servers and the static servers, respectively. Of course it must

still hold that j ∗ ρ = |N | ∗ ρN + |S| ∗ ρS, that is to say that we have to assign all of

the arriving jobs, and that we are simply shifting xi to the left or right to increase

or decrease the utilitization of the servers, while still holding the loads on static and

non-static servers constant within their own class. We maintain the loads within

the different classes of servers to preserve some of the benefits of SITA-E’s ability

to provide equal loads between servers while still leveraging the different behaviours

between classes of servers.

To realize this method we choose a step size ∆ρ which will represent the total
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amount of load that we want to shift from static servers to non-static servers, which

must be small enough to maintain that each ρi must be less than one and greater

than zero. There are two methods that we consider.

Method One “Post Check”

Recall that ρS is the utilization of a static server and ρN is the utilization of a

non-static server. In this method we will initially pick a value that will satisfy our

best case scenario, that is a ∆ρ such that if we were to take load evenly from j − 1

servers (as would be the case if there were only a single static server) and spread it

across j − 1 servers (as would be the case if there were only one non-static server).

Of course both of these are unlikely to simultaneously be the case, but it provides

a rough choice for the highest value that ∆ρ can be without invalidating one of the

constraints of the value of any ρi. In summary, ∆ρ must be chosen to satisfy:

∆ρ

j − 1
+ ρS < 1,− ∆ρ

j − 1
+ ρN ≥ 0,∆ρ > 0 (4.1.9)

For every iteration done with this method the ρi values must be considered, and

if any of them are outside of the zone defined by (4.1.9), one must repeat the process

and choose a smaller ∆ρ.

Method Two “Pre–Guarantee”

The motivation for this method is that it will guarantee that neither ρN nor ρS will

become greater than one. For this guarantee to hold we must consider the worst case

scenario from the perspective of both non-static and static servers. This means we

consider what would happen if we put all of this additional load on a single standalone

static server, and what would happen in the case where all of this load is taken off of

a single standalone non-static server. Formally the choice must be made as follows:
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∆ρ + ρS < 1,−∆ρ + ρN > 0,∆ρ > 0 (4.1.10)

Since this method guarantees that even if all of the load is distributed in the most

problematic way there are still no issues, the servers cannot be made unstable or

have negative utilization. This means that this can be used as a general method for

guaranteeing ∆ρ’s validity.

After this the method is relatively simple to complete the rest of the algorithm. We

simply shift the desired amount of load based upon the step size from the non-static

servers to the static servers, and each set, static or non-static, works with their own

independent SITA-E policies. After each balancing we consider the full cost equation

again, if the cost has improved then we take another step of size ∆ρ, if not we revert

to the previous iteration of ρN and ρS, and we decrease ∆ρ by a factor of 0 < b < 1,

and retry. Recall, however that one must consider the cost of every combination of

t
+/−
i (both the floor and ceiling for each ti) and choose the lowest. The terminating

conditions can be based on minimum or maximum loads on servers, a limitation on

how small ∆ρ can be, a maximum number of iterations, or any combination thereof.

By using this method we work in a methodical way through possible load values

in terms of ρN (and ρS) and attempt to find a local minimum in terms of our cost

function that is an improvement on the original solution. In our tests there were no

instances in which we reached a local minimum that was not the global minimum.

This leads us to conclude that the time-savings and simplicity of this method coupled

with the unlikelihood of missed savings make it a desirable approach.
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EA-SITA-E w/ Rebalancing Summary:

1. Find cutoffs xi such that ρi for each server is equal, see (4.1.2)

2. Find Pi the proportion of arrivals seen by each server, i

3. Find ti, the threshold queue length to turn on each server, i

4. if ti ≤ 1, set ti = 1

5. else if ti > 1 record t−i ,t+i , the floor and ceiling of ti respectively

6. Repeat the following with every combination of floor/ceiling ti

possible:

7. if (4.1.7) holds for i assign server i to S

8. if (4.1.7) does not hold for i assign server i to N

9. choose arbitrary ∆ρ such that (4.1.10) is satisfied

10. subtract ∆ρ

j
from ρi where i ∈ S and add it where i ∈ N

11. evaluate all cost equations per step 5

12. if any cost is lower, repeat from step 2

13. if all cost are higher, lower ∆ρ by a factor between 0 and 1, if

∆ρ < ε,(a predefined stopping criteria) terminate, otherwise repeat

from step 2
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4.2 Analysis

To find the full cost of our system we need to be able to find the energy costs, mean

response times and cycle rate, which we will detail in the following paragraphs.

Energy Costs

Maccio and Down [1] provided a method by which to assess the cost of our system

in terms of energy with the caveat that there was only a single M/G/1 server.We are

already familiar with most of these different variables with one exception, φ, which is

the shutdown rate of servers, and will be zero in the case of static servers (who will

never shutdown, and as such have a zero shutdown rate) and will be infinity in the case

of non-static servers, which will shut down instantly given an empty queue/server.

The cost that they gave is as follows:

ρ(EBUSY ) + (1− ρ)
φλγ

tφγ + φλ+ λγ

1

φ
(EIDLE) + (1− ρ)

φλγ

tφγ + φλ+ λγ

1

t
(ESETUP )

(4.2.1)

For our purposes for a given static server the expected cost would be:

ρ(EBUSY ) + (1− ρ)(EIDLE) (4.2.2)

and for a given non-static server the expected cost would be:

ρ(EBUSY ) + (1− ρ)
λγ

tγ + λ

1

t
(ESETUP ) (4.2.3)

The above equations match our initial assumptions about the server. A static

server only incurs busy and idle costs, at a rate of ρ and 1−ρ respectively. Non-static

servers are slightly more complex, with the same busy cost but a setup cost that is

determined by the proportion of time that a server is in setup.
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Since for our policy we simply have individual FIFO queues we can simply add

the costs of each individual server together, so the final total energy cost is as follows:

j∑
i=1

ρi(EBUSY )+(1−ρi)
φiλiγ

tiφiγ + φiλi + λiγ
∗ 1

φi
(EIDLE)+(1−ρi)

φiλiγ

tiφiγ + φiλi + λiγ
∗ 1

ti
(ESETUP )

(4.2.4)

The thresholds are found by solving (4.1.6) and φi by substituting ti into (4.1.7),

and examining the inequality as described at the beginning of this section. The

utilization of server i, ρi is easily determined with some algebra, if all of the rules

have been followed in the setup of the servers in EA-SITA-E fashion then server(s)

n ⊆ N will have ρi ≡ ρN and server(s) s ⊆ S will have ρi ≡ ρS. The constants γ,

EBUSY , EIDLE, and ESETUP are known and j is simply the number of servers in the

system. Given this expression and the process of the algorithm EA-SITA-E itself as

a road map one can fully define the (relative) energy costs seen by the system.

Response Times

The expected number of tasks at server i, E[Ni], was given by Maccio and Down

[1] as follows:

E[Ni] = E[N
M/G/1
i ] + φi

φi+λi
(ρi

(ti−1)γ+λi
γ

1
2
τ)

+φi
(ti−1)γ+λi

tiφiγ+φiλi+λiγ
(1

2
− ρi − ρi φi

φi+λi
( (ti−1)γ+λi

γ
)− 1

2
φi

φi+λi
τ)

(4.2.5)

τ = (ti − 1)2 + (2ti − 1)
λi
γ

+ λ2
iσ

2
i (4.2.6)

where σ2
i is the variance of the processing times at server i.

Here, E[NM/G/1]i refers to the typical formulation for the expected number of

users in the system for an M/G/1 queue. From here an application of Little’s Law

provides E[Ri] by multiplying E[Ni] by 1
λi

of course after this similar to (4.2.4) you
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need to sum over every server. Here, each term in the sum must be weighted by the

proportion of arrivals that are sent to the corresponding server.

Cycling Costs

The cycling costs can be found easily through a variable meant to capture the rate

of cycling as given in [1]. This takes the form of wrate, a measurement for a single

M/G/1 server’s rate of cycling. This can be found with the following formula:

wrate = (1− ρ)
φiλiγ

tiφiγ + φiλi + λiγ
(4.2.7)

Formally this is equivalent to the work-cycle rate i.e., the rate at which a server

turns off and then back on. Later we will see that there are two interesting cases

here, where φ is zero, and as such wrate is zero, and where φ = ∞, in which case it

will simplify to (4.2.13) below.

Observation 1

There is a nonlinear trade-off in energy savings with respect to the change of load

from static to non-static servers even as the number of servers grows to infinity, so

long as the change in λi is non-zero. However, for our tests this always appeared to

be close to linear. This assumes that there is no changes to N or S, i.e, static servers

remain static and non-static remain non-static.

define x = (|S| ∗ ρS)− (|N | ∗ ρN)

define f(x) = E[EN ] given x

λi 6= λ′i

f(x) 6∝ x

In this setting, we additionally assume only non-zero service rates and a constant

t. Consider the initial cost and we will derive savings based on the change in ρS, ρN ,
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There are two sets of costs, those incurred by static servers and those incurred by

non-static servers, formally:

E[EN ] = (|S|∗ρS)∗(EBusy)+(|N |∗ρN)∗(EBusy)+(|S|∗(1−ρS))∗(EIDLE)+ (4.2.8)

(|N |) ∗ (a ∗ (EOFF ) + b ∗ (ESETUP ))

Here a + b must be equal to (1 − ρN) by the law of total probability. So where

are there possible savings and where are there added costs? As ρS increases and ρN

decreases proportionately there is no change in the amount of ‘busyness’ (server time

a task needs) in the system - that is to say every task still has to be served, whether

by a static server or a non-static one. As such we can ignore these terms, knowing

that there will be no net-change between them. This leaves us with only three terms.

(|S|) ∗ (1− ρs) ∗ (EIDLEs) + (|N |) ∗ (a ∗ (EOFFn) + b ∗ (ESETUPn)) (4.2.9)

Note that since each different non-static server will have a different proportion of

time spent off or in setup - meaning each non-static server has a different value for a

and b we cannot simply drop |N | and |S|. We see that as we increase the load on the

static servers (as x increases) we linearly decrease the amount of idle electricity costs

seen by that server set. Maccio and Down [1]. provided a method for finding a and

b through wrate

a =
twrate
λ

(4.2.10)

b =
wrate
γ

(4.2.11)

wrate = (1− ρN)
φiλiγ

tiφiγ + φiλi + λiγ
(4.2.12)
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As the servers in N are non-static, φi =∞ and wrate simplifies to:

wrate,i = (1− ρN)
λiγ

tγ + λi
(4.2.13)

and substituting this we can find:

ai = (1− ρN)
tλiγ

(tγ + λi)λi
(4.2.14)

bi = (1− ρN)
λiγ

(tγ + λi)γ
(4.2.15)

Simplifying:

ai = (1− ρN)
tγ

tγ + λi
(4.2.16)

bi = (1− ρN)
λi

tγ + λi
(4.2.17)

This makes a great deal of sense – they are the two pieces of a whole that add up

to (1 − ρN) which is what we were looking for. If we consider only the static server

side it seems like we would end up with a linear trade-off, however we have to consider

the fact that as we lower the number of jobs seen by the non-static servers there will

be an increase or decrease in the number of times we see it switch from OFF to ON,

and thus a disproportionate increase in the amount of time spent in OFF, conversely

for some servers we may see a disproportionate decrease in OFF time versus SETUP

time, this depends on whether λi is increasing or decreasing for server i. This will

result in either super-linear or sub-linear benefits depending on the situation. Since

λi in (4.2.16) appears only in the denominator, versus (4.2.17) where it appears in the

numerator and the denominator, if λi is increasing for server i we will see that ai lowers

proportionally more than bi will, leaving us with sub-linear profits as we see a larger

proportion of SETUP time on server i, all other things held constant. Conversely if
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λi is decreasing we see super linear profits as the non-static servers spend a smaller

portion in the SETUP state versus the OFF state. Later we will see that in our tests

the tradeoff is very close to linear. This indicates to us that this nonlinear effect is

not overly pronounced. The only case wherein the tradeoff is actually linear is if λi

does not change - the small change in λi that we see in the experiments supports the

change being near linear. In this case we would see a perfectly proportional lowering

of both a and b, with a linear trade off in terms of change in ρN versus energy savings.

The next result shows that in a two-server system with high task size variance,

significant savings can be achieved by our method.

Lemma 1

Let σ2
i be the variance of the task size distribution at server i, and f =

σ2
2

σ2
1
. Con-

sider a two server system following SITA-E where server one is static and server two

is non-static. Also, let E[R′] be the expected response time after EA-SITA-E trans-

forms SITA-E andE[R] be the expected response time before the transformation takes

place. We then have for some 0 ≤ r < 1

lim
f→∞

E[R′] = r ∗ E[R], 0 ≤ r ≤ 1 (4.2.18)

Proof:

E[R1] =
1

µ1

+
ρ1 + λ2

1σ
2
1

2λ1(1− ρ1)
(4.2.19)
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E[R2] =
λ2

2σ
2
2

2λ2(1− ρ2)
+ ∆

Computing the overall mean response time where ∆ groups together terms that are

independent of σ2
2:

E[R] = p2 ∗ E[R2] + (1− p2) ∗ E[R1] (4.2.20)

Again, gathering terms that are independent of σ2
2 in ∆, we can conclude that for

some r < 1, The expression (4.2.20) can then be rewritten as:

E[R] =
p2λ

2
2σ

2
2

2λ2(1− ρ2)
+ ∆

Cancel λ2 in the denominator:

E[R] =
p2λ2σ

2
2

2(1− ρ2)
+ ∆

A similar expression can be derived after rebalancing:

E[R′] = σ2
2 ∗

p′2λ
′
2

2(1− ρ′2)
+ ∆ (4.2.21)

Note that we have:

0 ≤ p′2 ≤ p2, 0 ≤ λ′2 ≤ λ2, 0 ≤ ρ′2 ≤ ρ2,

From these relations it follows that: 0 ≤ p′2λ
′
2

2(1−ρ′2)
≤ p2λ2

2(1−ρ2)

which allows us to write

E[R′] = σ2
2r

p2λ2

2(1− ρ2)
+ ∆, 0 ≤ r ≤ 1 (4.2.22)

We then have:

limf→∞
E[R′]

E[R]
= r, 0 ≤ r ≤ 1
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When the service time variance is dominant in the expected response time of a

system the equations that describe the system become inherently much more simple,

and we can see that under certain circumstances ‘re-balancing’ a system can be very

worthwhile. Consider what happens to the above equations when a re-balancing takes

place. Since the variance is still normalized in these equations both σ2
1 and σ2

2 can

increase by some amount.The arrival rate λ1 will rise, and λ2 will lower. The service

rates µ1 and µ2 may raise or lower, but again are not dominant terms here; similarly

with ρ1 and ρ2. So the important terms here are λ2
2σ

2
2 and λ2

1σ
2
1 when λ2 is lowered

the expected response time is lowered by some factor, while raising σ2
1, σ2

2 and λ1 each

result in small increases in the expected response time, resulting in a large decrease

in mean response time. Of course this result is only for two servers, but having said

that it shows under which circumstances this type of re-balancing could possibly be

beneficial both in terms of energy costs and mean response time, such as with very

heavy-tailed systems like the bounded Pareto system. Lemma 1 demonstrates that

there is nearly linear energy savings if a re-balancing takes place. This suggests that

not only will our algorithm lower energy costs it also implies that it can simultaneously

lower mean response times. Note that while one would think that this proof could

be extended to an arbitrary number of servers it cannot, because when considering

an arbitrary number of servers both the endpoints of the intervals defining the jobs

that a server will see can move, where as in this particular example only the lower or

upper bound can be shifted. This guarantees that when the utilization of a server is

lowered or raised it is necessarily because it sees more or less jobs respectively (the

jobs from the other server), as opposed to the possibility that perhaps they are seeing

less job arrivals overall, and just larger jobs – making their utilization higher, as can
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be the case when both xi−1 and xi can vary.
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Chapter 5

Numerical Results

In this chapter we will be discussing the findings in a numerical sense, where we will

try to draw meaning from several sets of example systems. We will be including both

systems with a negligible error in the expected time for a task to complete, and some

amount of error that we add to the a priori approximations.

5.1 Systems with Negligible Error

Here we provide insights by studying a range of specific instances of our problem.

The series of systems was constructed with the intention of producing certain effects

to demonstrate the ways in which the system is capable of saving energy, or cost

overall. For these experiments a range of values was produced for each of the separate

variables, that while demonstrating the benefits of our research keep us grounded in

reality. These values are listed in the following table:
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Variable

Name
Values in tests

β1

Low ( β1 < 0.05), Medium (0.05 < β1 < 1),

high(1 < β1)

γ 0.01,0.0666667, 0.2,1,100

ρ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

j 8

k 0.0001

p 106

α 1.2

β2 0

The value β2 was chosen to be zero so that the cycling of the system and the wear

associated with that would not be a focus of the results, and to simplify the trade-offs

that were being examined. Note also that here the β1 values are split into categories,

low, medium and high. The reasoning behind this is that since E[R] and E[EN ] can

have varying units associated with them they lose tangible meaning when compared

to each other. For this reason we modify β1 to be a value such that their relative cost

contributions are similar by performing a modified search over β1 while holding the

other experimental values constant until a valuation of β1 is found such that:

| (E[R]− (β1 ∗ E[EN ])) |< εβ1 , εβ1 = 10−8 (5.1.1)

It should be noted that the values of β1 are calculated using regular SITA-E – how

one would envision a system before it has been modified by any of the contributions

in this thesis. This gives us a reasonable starting point, picking a β1 that scales the

E[EN ] so that the weighted contribution is equivalent to E[R]. From here β1 is scaled

by a factor of 16 and 1/16 to create “high” and “low” valuations. Thus this splits the
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system into categories of “relatively high”, “relatively equal”, and “relatively low”

energy costs.

5.2 Impact of Increasing System Utilization

When ρ is small we see an increased ability to save electricity by making energy–

aware decisions, as such the trend of using energy–aware servers shows higher savings

at lower ρ. This stands to reason because the costs that we are decreasing are IDLE

costs of the static servers when we decide to make them non-static, of course the

IDLE costs are greatest when there are the fewest tasks and the servers are idling for

the longest periods of time. This couples with another fact that when the utilization

of a specific server is lower it typically sees lower setup costs due to the fact that it

cycles less frequently, and as such spends less time in that state, and more time in

the OFF state (as we know that the same amount of time must be spent in the busy

state, and no time will be spent idling). This leads to the near linear trade–off in

electrical costs that were discussed in Observation 1:

wrate = (1− ρ)
φiλiγ

tiφiγ + φiλi + λiγ
(5.2.1)

If we are comparing two non–static servers we set φi =∞ – as we know shutdown

rate being infinite is optimal in non-static servers. In this case wrate is once again

simplified as follows:

wrate =
(1− ρ)λiγ

tiγ + λi
(5.2.2)

Since ρ decreasing to zero implies λi will do the same and ti is one or above then

wrate necessarily approaches 0 as ρ approaches zero, meaning that we would expect

to see smaller increases in time spent in setup for lesser loaded servers than we would

see in moderately loaded servers. What this means for our system is that the cost
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of making a server non-static is somewhat mitigated, making the benefits even more

obvious in this case.

Figure 5.1: Electrical Savings with Low Electrical Costs
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Figure 5.2: Electrical Savings with Medium Electrical Costs

Many trends can be seen in the adjacent graphs. Firstly and most clearly one can

see that there is more idle time present in the lower ρ values and by this same token

more energy savings to be had by eliminating this idle time. One can also see that

typically higher energy valuations come with more energy savings, unsurprisingly so.

Finally, and perhaps most interestingly we see that even low energy valuations can

still see savings, and high energy valuations with low ρ can still see no savings. This

is due to the effect of γ. This means that in the case where γ is 100 the startup rate

is fast enough for most of the systems that we considered, and as such we will see

savings even in such circumstances. Conversely speaking when γ is 1
100

our startup

rate is so slow that we will never see savings, even in cases where there appear to be

such opportunities.

In short there is more opportunity provided for energy savings by shifting from
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Figure 5.3: Electrical Savings with High Electrical Costs

SITA-E to EA-SITA-E policies in lower loaded systems, and in systems where we more

heavily value energy savings. However there is always a dependence on the startup

rate of the system, which should likely be a primary consideration when approaching

this type of system.

Of course if we look only at the energy costs we are only being told half the story

the mean response time is important too, and here is where we see the inherent trade-

off in our approach.
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Figure 5.4: Mean Response time Savings with Low Electrical Costs
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Figure 5.5: Mean Response time Savings with Medium Electrical Costs
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Figure 5.6: Mean Response time Savings with High Electrical Costs

As seen in the graphs above the response time can be hurt quite badly. Note that

when the value is -30 this means that the expected response time became 30 times

worse. At first glance this might not seem like a promising result but one needs to

contextualize the losses in mean response time with the gains in energy savings. For

instance the occurrence that is 30 times worse in Figure 5.4 corresponds to a savings

of nearly 85 percent of our energy costs, as seen in Figure 5.1. Of course if you are

considering the cost benefit analysis between the two cost metrics the lower that you

weigh energy costs the less likely you are to see marginal energy savings paired with

huge expected response time costs. One can see this validated as with low energy costs

there are still savings at low ρ despite there being almost no difference in expected

response times. The expected response times in these cases and some others are

similar to such a degree that the values are hard to see in the above graphs, and as
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such any values with an increase in expected response times below a factor of 1 of

the previous mean response time have been summarized below.

The Mean Response

Time Increase as a

Proportion of the

Mean Response Time

Energy Reduction in

Terms of Proportion

of the Original Energy

Costs

Energy Valuation

(Low, Medium, or

High)

0.02027 0.38792 Low

0.00192 0.25334 Low

0.00012 0.14442 Low

0.85107 0.38699 Medium

0.52284 0.29999 Medium

0.32131 0.22198 Medium

0.18788 0.15402 Medium

0.09741 0.094526 Medium

0.035792 0.04260 Medium

0.00040 0.08600 High

0.00024 0.07016 High

0.00015 0.05625 High

0.00009 0.04397 High

0.00006 0.03308 High

0.00004 0.19127 High

0.40198 0.12089 High

0.14876 0.05709 High

The above table shows the response time costs associated with the energy savings

we see as in the above graphs in Figure 5.1, noting the energy cost (β1) valuations.
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Figure 5.7: Rebalanced Electrical Savings with Low Electrical Costs
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Figure 5.8: Rebalanced Electrical Savings with High Electrical Costs

Above we see the amount of savings that we can further achieve by switching

from EA-SITA-E to re-balanced EA-SITA-E in terms of energy costs. Here we see

that as one might expect there are actually energy costs to re–balancing given a low

energy valuation, as opposed to savings. We see in Figure 5.9 this is because of an

opportunity to gain in terms of expected response time, a trade–off that can be seen

to be worthwhile because of the relatively high expected response time valuation.

However the more interesting case is in Figures 5.8 and 5.11 where there are high

energy valuations. One can see that we have saved both in terms of energy costs as

well as in terms of mean response time. This stands to reason as given such high

energy valuations we will see many non-static servers, and as such the benefit of off–

loading tasks from the non-static servers to the static servers and the correspondingly

less time spent in the SETUP state is greatly exaggerated. Note here as well that the
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higher start–up rate system does not experience any of these same benefits, because

the start–up rate was not negatively impacting our system enough in the first place for

the re–balancing to have been worthwhile. Not only this but that same reasoning has

an effect on the expected response time of the system too, so we can simultaneously

see positive results in terms of both. As the system utilization approaches one one

can see that this reasoning ceases to be relevant, as in all likelihood increasing the

load on some static servers begins to outweigh the importance of lowering the number

of start–ups seen by the non–static servers.

Figure 5.9: Rebalanced Mean Response time Savings with Low Electrical Costs
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Figure 5.10: Rebalanced Mean Response time Savings with Medium Electrical Costs

As we can see particularly in Figure 5.11, where re-balancing is really effective is

in its ability to lower the mean response times a great deal when dealing with high

electrical costs from the start (especially at higher ρ). All of this takes place while still

maintaining that energy costs are lowered overall. Once again we see how pronounced

the unlikeliness of re-balancing being possible is in the first place, but for the first

time we see large savings, in at least some forms. As one can see these savings increase

super-linearly with increasing ρ, the reason for this is of course that the system sees

such high variance for servers assigned longer tasks, which we are decreasing the load

on and comparatively negligible variance on short-task servers, which we increase the

load on to compensate for, we would expect to see this case because of our findings

in Observation 1. Of course this is coupled with the aforementioned decrease in

start–ups.
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Figure 5.11: Rebalanced Mean Response time Savings with High Electrical Costs

These findings are crucial to our studies because they show that if one wants to

assign a very high level of importance to energy costs, and as such use many non-static

servers that they should also consider re–balancing especially if none of the servers in

question are too heavily loaded. Also important from these findings is that it is key

to note that there is no one–size–fits–all solution to these sorts of problems, because

γ is so crucial to our system meaning that in–depth analysis and considerations must

be made for the re–balancing algorithm to be worthwhile, and one must be careful in

its application.
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5.3 Incorporating estimation errors

5.3.1 Modified Policy

We began with the assumption that we have perfect knowledge of the sizes of arriving

tasks. For the next section we will be introducing some level of uniformly distributed

error into the size estimates. That means for an arriving task of size x, we will now

equally likely see any value between (1− n)x and (1 + n)x, where n is the maximum

(proportional) error. It is the equivalent of multiplying a random value drawn from a

bounded Pareto distribution by a random value from a uniform distribution to create a

third random value that would follow another PDF entirely: Ŝ = SU where S follows

BP (k, p, α) and U follows U [1−n, 1+n], or bounded Pareto distribution with uniform

error. Note that findings here are presented from n = 0.005 to 0.40. Uniform error

was chosen for a few reasons. First, its simplicity in implementation. As will be seen

later, the analysis is tractable albeit non-trivial. Second, we felt that uniform error

showed the least bias between under-estimation and over-estimation. Finally we felt

that this was an accurate representation of a system that had been simply estimated,

as there was an equal likelihood of over and underestimation and the over and under

estimation both tend to be larger given larger initial values. Though this is a solid

foundation we acknowledge different strategies could be taken in the future, as will

be discussed in the future work section of the thesis.

Next we will discuss the methodology for SITA-E despite the uncertainty of the

estimates. That is to say, how can one determine a set of x boundaries that will yield

equally-loaded servers despite the fact there is inherent error in task size estimates.

The intention here is to see how gracefully the system degrades when there are these

uniformly distributed estimation errors, and a detailed solution on how to compensate

for a known error distribution.

There are two separate methods to compensate for errors, the first is to calculate
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the new with-error probability distribution function of the system, that is to calculate

the distribution of Ŝ (call its associated density g) and use this as the basis for all of

the calculations described in the first part of the thesis. Recall (4.1.3) describes the

process with which one can find a single boundary x1 from k and successively find all

future boundaries by finding each xi using xi−1 with (5.3.1) here we can replace f(x)

with the distribution of Ŝ and use (5.3.1) after which one can use (5.3.2) successively

until all the boundaries are calculated.

∫ x1

k

g(x) ∗ x dx = ρ =
E[X]

j
(5.3.1)

∫ xi+1

xi

g(x) ∗ x dx =
ρ

λ
=
E[X]

j
(5.3.2)

With all of these boundaries set we have created a new fully defined system fol-

lowing the rules of SITA-E, where even given the error we guarantee that the load on

each server will be equal. This is a very powerful statement, we have taken a system

which has some amount of known error, and which has a very high possible amount

of variance and made a guarantee that loads will still be equal. Having said that,

this method comes with its own points of difficulty. Firstly the implementation is not

simple: the distribution of Ŝ is difficult to calculate. There are ways to determine the

distribution representing this multiplication’s different outcomes and their likelihoods

however it is a non-continuous piecewise combination of three disparate sections of

the underlying distributions that must all be calculated separately. Secondly sys-

tem limitations can quickly lead to problems when trying to use the aforementioned

construction. In early tests with this methodology Matlab’s symbolic library was

processing for so long we simply decided to terminate the process. For this reason we

came up with a second method, which came with its own issues.

The second approach involves determining the proportion of tasks that are mis-

classified into another interval due to the error. For example we might have considered
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a task that utilized a server for nine seconds originally as a task that would utilize

the server for 11 seconds. This is not problematic if the bounds involved are above

and below both those numbers, but it will cause issue if some bound exists such that

9 ≤ xi ≤ 11. The reason that this causes issues is because of the misclassification of

tasks, we will have accounted for a task that takes nine seconds to be handled by a

resource intended for greater than xi seconds. Here we will consider where those edge

cases will be causing problems and deal with that problem specifically, thus avoiding

needing to construct the distribution for Ŝ. We do this by taking the integral in

points of interest as the probability that the specified x lands within our given region

multiplied by the value of the probability density function at that location. That is

to say, in general we replace (5.3.2) with:

(A)

∫ xi/(1−n)

xi/(1+n)

([BP (k, p, α)(x)] ∗ x ∗ (P [U >
xi
x

])) dx + (5.3.3)

(B)

∫ xi+1/(1+n)

xi/(1−n)

([BP (k, p, α)(x)] ∗ x) dx + (5.3.4)

(C)

∫ xi+1/(1−n)

xi+1/(1+n)

([BP (k, p, α)(x)] ∗ x ∗ (P [U <
xi+1

x
])) dx = (5.3.5)

ρ =
E[X]

j
(5.3.6)

So the three cases are described as the following: (A) is the leftmost portion of the

integral, where the task is included in our current server based upon the probability

that it will land in the server after being multiplied by U . (C) is similar but on the

right side. Part (B) are the tasks that remain within the interval, even after the error

is included.

We examine a specific example’s upper bound to explain the idea in a little more

detail.
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Figure 5.12: Boundary Case example

In the above example we see a case where our first bound happens to fall at

x1 = 100. In blue we see a typical slice of the bounded Pareto density function. Since

we are concerned with the server that runs tasks whose estimates fall on the left side

of x1 we will be treating this as a “right bound” and use (5.3.5) for compensating

on the right bounds. To the left of x1
1+n

there is no chance that a task of length less

than x1 falls outside of our boundaries, so in this range we can use the unmodified

bounded Pareto density. Since there is now error in our system there is a chance that

we will be dealing with sizes greater than our intended bound because of estimation

error. Overall this has a relatively small effect on our system mainly for two reasons.

First, in a typical system these boundaries are far apart and the edge-cases affect only

(relatively) small portions of the overall system. Second, as you can see in the above

image there is a portion discounted on the left side of x1 (above the red line, but

below the blue line), but to countermand this there is a new section included on the

right (below the red line but above zero). This means that as our system degrades in

accuracy so long as we have a method to understand the amount of inaccuracy in the

system our expected results do not degrade too quickly. Without these adjustments
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one can see how for heavily loaded systems “misplacing” a few tasks could lead to

catastrophic results by making what was a stable – though highly loaded – server into

an unstable server.

In summary we have a method that is simple to understand and easily imple-

mented; it requires much less computer algebra, and as such runs in a fraction of

the time. This method manages to compensate for given errors in a manner that

gracefully degrades the intended outcome of savings through our original methods,

which assumed precise knowledge of task sizes.

5.3.2 Trends and Numerical Findings

Here we will discuss the numerical findings for the savings in a transition from a non-

energy aware set of SITA servers to a SITA-EA server set. This section will begin

with an unfortunate disclaimer. We have erroneous findings wherein the system

has performed better on occasion with added errors. It would make sense that the

addition of errors would result in increasing the variance seen by the system as such

we do not believe that this would be possible. We believe that since there are so many

cascading calculations including ones with values that are quite close to each other

that we are likely seeing a manifestation of the ‘catastrophic cancellation’ phenomena

due to arithmetic underflow in Matlab. Catastrophic cancellation has been studied

in great detail but is also well outside of the scope of the discussion at hand. We see

this phenomena exaggerated at lower values of ρ, which makes sense as catastrophic

cancellation appears to have greater impact in such scenarios.

Having said all of this we do not feel that the findings are entirely without use

or merit, and as such we will discuss some trends that might be possible to be seen

when error is accounted for within our system.
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Figure 5.13: Impact of Errors as a Function of Utilization

Figure 5.14: Total cost Decreases with Error, and Medium Electrical Costs
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Figure 5.15: Total cost Decreases with Error, and Low Electrical Costs

The most significant finding is that the value of the error seems to be mostly

ineffectual to the final product – that is savings over the original system. We see

tightly grouped results for 0 error all the way up to 40 percent error, a quite high

value of error considering this means a value could be over or underestimated by as

much as half its original value. Overall, the portion of savings seen by the system is

not largely altered, this is a promising insight because it means that if we were to

actively correct for error we see in real life systems it stands to reason that at least

eventually we could implement an effective SITA-E or EA-SITA-E system. Second,

this shows that as the utilization seen by a server increases generally the error will

affect those servers less in terms of the proportion that they will be able to save.

This makes sense because we would expect the few task allocation decisions we make

in a lightly loaded system to be more impactful than any one of the many decisions

we make in a more heavily loaded system. This too is a promising finding because

it means that the systems we tend to target more frequently with optimisations like
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the ones presented here are heavily loaded systems due to the fact they will have a

more significant impact on our costs at the bottom line. An interesting finding is that

within the 27 systems we tested, regardless of the amount of error there was never a

switch in whether or not there was savings. This indicates that if previously we had

seen an entirely static set of servers we would continue to see that after any amount

of error, and likewise if there were servers that were not static there still will be.

This means reinforces the notion that estimation errors only make a small amount of

difference to the results that we see given proper mitigation techniques.

To summarize: the effects of error can be mitigated rather effectively by the above

discussed methods, and they are even less significant in the systems we tend to care

about the most – heavily loaded systems.
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Chapter 6

Conclusion

6.1 Summary and Possible Applications

Throughout this thesis we have discussed different tools and algorithms to reduce

energy costs while avoiding significant increases in mean response times. This is

mainly in response to growing concerns about the environment, and growing energy

costs for data centers – both of which are important.

We proposed a new assignment policy called EA-SITA-E which modifies the exist-

ing SITA-E policy to be electrically aware. This allows the inclusion of energy costs in

decisions in operating a set of servers. We provided a new algorithm that is intended

to re-balance the utilizations seen by servers across our system. This is done in such a

way that we can still maintain the benefits of lowering variance seen by a server pro-

vided by SITA-E. We also include contributions assessing the aforementioned policies

when estimation errors are present. Finally we provide an algorithmic approach to

lowering the effects of error given that we understand what level and type of error we

will be seeing in our system.

In our studies we found that in cases we can have better results than SITA-E in

terms of mean response time and also in terms of energy costs after applying the
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algorithm discussed above. This is an interesting finding because it means that there

is potential for a “win-win” solution. Even if in cases where mean response times and

energy costs cannot simultaneously be decreased we found that in a large set of cases

– or at least a large set of cases in which we consider energy costs a significant enough

portion of the total costs – we can see significant energy savings. This is coupled with

increased mean response times and a designer may want to determine whether the

tradeoff is acceptable or not.

Of course these findings have a wide range of applications, but mainly these should

be applied in areas where there is large variance in task sizes. As noted we see this

commonly in computing, whether it be in small-scale examples like on a CPU of a

PC, or in larger scale examples such as on web servers where some downloads or

tasks might be orders of magnitude larger than others. Of course the most applicable

problem for this algorithm or set of algorithms to be applied to is in the case of a set

of servers as commonly seen in data centers.

6.2 Future Work

In the future we would like to see whether the results we presented hold for systems

that have lower task size variance. Though most of our findings were presented in

such a way that they are applicable in general, we developed our insights through the

lens of the task sizes following a bounded Pareto distribution, which is well known

for its high variance and as such lends itself to performing well in the conditions that

we are presenting in this thesis.

In a similar fashion we would like to expand the error distributions we presented

to beyond that of the uniform distribution, which is limited in terms of how well it

models practical situations. Some relevant things to consider would be a distribution

that does not have an error PDF with a mean value of one (a mean value of one
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means there is no bias towards under or over estimation). Does it impact a system

more if we underestimate or overestimate job sizes, on average?

Again while the thesis does discuss the possibility, cycling costs were largely ig-

nored in favour of more coherently examining the trade-off between energy cost and

mean response time, it is also worth noting that the static servers we are attempting

to favour would not suffer from cycling costs, and as such in future studies we may

see the cycling costs lowered as well. In the future this could be considered more

directly through a lens of how seriously cycling costs could be affected, which might

be important to certain data centers depending on the specific hardware issues that

they could be facing in terms of wear and tear from frequent server shutdowns.

Finally something that could be developed further is the specific reasoning be-

hind the erroneous behaviour in the numerical analysis of the portion of the thesis

discussing error in the a priori approximation of job sizes. This would help to make

the tentative findings that we have discussed more trustworthy.
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