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Lay Abstract

To address the critical issue of climate change, it is necessary to replace fossil-fuel

vehicles with battery-powered electric vehicles. Despite the benefits of electric vehi-

cles, their popularity is still limited by the range anxiety and the cost determined by

the battery pack. The range of an electric vehicle is determined by the amount of

charge in its battery pack. This is comparable to the amount of gasoline in a gasoline

vehicle’s tank. In consideration of the need for methods to address range anxiety, it is

necessary to develop advanced algorithms for continuous monitoring and control of a

battery pack to maximize its performance. However, the amount of charge and health

of a battery pack cannot be measured directly and must be inferred from measurable

variables including current, voltage and temperature. This research presents several

algorithms for detecting the range and health of a battery pack under a variety of op-

erating conditions. With a more accurate algorithm, a battery pack can be monitored

closely, resulting in lower long-term costs.

Adaptive methods for determining a battery’s state of charge and health in un-

certain and noisy conditions have been developed to provide an accurate measure of

available charge and capacity. Methods are then extended to improve the determina-

tion of state of charge and health for a battery module.
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Abstract

Lithium-ion (Li-ion) batteries are amongst the most commonly used types in Electric

(EVs) and Hybrid Electric (HEVs) Vehicles due to their high energy and power den-

sities, as well as long lifetime. A battery is one of the most important components of

an EV and hence it needs to be monitored and controlled accurately. The safety, and

reliability of battery packs must then, be ensured by accurate management, control,

and monitoring functions by using a Battery Management System (BMS).

A BMS is also responsible for accurate real-time estimation of the State of Charge

(SoC), State of Health (SoH) and State of Power (SoP) of the battery. The battery

SoC provides information on the amount of energy left in the battery. The SoH

determines the remaining capacity and health of a pack, and the SoP represents the

maximum available power. These critical battery states cannot be directly measured.

Therefore, they have to be inferred from measurable parameters such as the current

delivered by the battery as well as its terminal voltage. Consequently, in order to offer

accurate monitoring of SoC, SoH and SoP, advanced numerical estimation methods

need to be deployed.

In the estimation process, the states and parameters of a system are extracted

from measurements. The objective is to reduce the estimation errors in the presence

of uncertainties and noise under different operating conditions. This thesis uses and
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provides different enhancements to a robust estimation strategy referred to as the

Smooth Variable Structure Filter (SVSF) for condition monitoring of batteries. The

SVSF is a predictor-corrector method based on sliding mode control that enhances the

robustness in the presence of noise and uncertainties. The methods are proposed to

provide accurate estimates of the battery states of operation and can be implemented

in real-time in BMS.

To improve the performance of battery condition monitoring, a measurement-

based SoC estimation method called coulomb counting is paired with model-based

state estimation strategy. Important considerations in parameter and state estimation

are model formulation and observability. In this research a new model formulation

that treats coulomb counting as an added measurement is proposed. It is shown that

this formulation enhanced information extraction, leading to a more accurate state

estimation, as well as an increase in the number of parameters and variables that

can be estimated while maintaining observability. This model formulation is used for

characterizing the battery in a range of operating conditions. In turn, the models

are integral to a proposed adaptive filter that is a combination of the Interacting

Multiple Model (IMM) concept and the SVSF. It is shown that this combined strategy

is an efficient estimation approach that can effectively deal with battery aging. The

proposed method provides accurate estimation for various SoH of a battery.

Further to battery aging adaptation, measurement errors such as sensor noise,

drift, and bias that affect estimation performance, are considered. To improve the ac-

curacy of battery state estimation, a noise covariance adaptation scheme is developed

for the SVSF method. This strategy further improves the robustness of the SVSF in

the presence of unknown physical disturbances, noise, and initial conditions.
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The proposed estimation strategies are also considered for their implementation

on battery packs. An important consideration in pack level battery management is

cell-to-cell variations that impact battery safety. This study considers online battery

parametrization to update the pack’s model over time and to detect cell-to-cell vari-

ability in parallel-connected battery cells configurations. Experimental data are used

to validate and test the efficacy of the proposed methods in this thesis.

Keywords: Lithium-ion Batteries, Battery Pack, State of Charge, State of Health,

State of Power, Parameter Identification, Smooth Variable Structure Filter, Adaptive

Filtering.
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Chapter 1: Introduction
Global warming poses a threat to humanity, and no one is immune to its consequences.

Environmental degradation, natural disasters, extreme weather conditions, food and

water shortages, and economic disruption are all symptoms of climate change. Envi-

ronmental changes adversely affect competition for resources such as land, food, and

water, increasing the likelihood of conflicts and forced migrations. As a result, the

continuation of Greenhouse Gas (GHG) emissions with our current lifestyles is not

sustainable. Given the irreversible costs of climate change, it is imperative to take

concerted effort to fight it.

Massive amounts of carbon dioxide are released into the atmosphere every year as

a result of coal, oil, and gas production and consumption. The transportation sector

is a major source of air pollution. In urban areas, the air pollution caused by vehicles

is increasing due to an increased population density. Driving less, combining trips to

make them more efficient, or taking public transport are ways that could help reduce

the GHG emissions. However, this by no means, is enough. Although, climate change

has been impacted by advances in technology such as the discovery of fossil fuels, new

and efficient technologies can also contribute to the reduction of GHG emissions and

creation of a cleaner economy.

Switching to clean, regenerative energy is a necessary first step towards ending

our reliance on fossil fuels. The goal of combating climate change is to minimize GHG

emissions, and Electric Vehicles (EVs) play a vital part in achieving this global goal.

Consumers are becoming more interested in EVs even though public transport has

been piloting them for a while. Automobile manufacturers intend to introduce more
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EVs in the future as EVs become more popular.

Batteries are the main form of energy storage system in EVs. A battery pack in

an EV contains hundreds of battery cells that are connected in parallel and series to

generate the power that the vehicle requires. These batteries must be monitored and

controlled continuously to ensure safety and reliability. A battery pack is controlled

by a Battery Management System (BMS). In general, a BMS ensures that the battery

cells are in a safe operating region and prevents them from being overly-charged or

discharged. As a result, the BMS’ role is to protect the battery from conditions

that may damage or shorten its lifespan. The BMS also performs cell balancing and

temperature regulation. In order to monitor the battery pack more accurately, a BMS

must be able to estimate the battery pack’s critical parameters, such as its State of

Charge (SoC), State of Health (SoH), and State of Power (SoP). Monitoring and

controlling these parameters impact the battery’s longevity, safety and operational

range.

By combining a robust and adaptive estimation strategy with an accurate, reli-

able battery model, the BMS will be able to estimate the battery’s SoC, SoH, and

SoP, at various levels of state of life, power demand, and temperature. It is also vital

to establish an algorithm that can function in a range of circumstances. This thesis

considers the use of state estimation for monitoring of EV batteries under a range of

operating conditions. It specifically contributes to improved state estimation of bat-

tery cells and packs by introducing different adaptive strategies. In this chapter, the

background material is covered in Sections 1.1 through 1.7, including introductions

to battery management system, Lithium-ion batteries, battery testing, battery mod-

eling, estimation theory, and system observability. Section 1.8 describes a technical
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introduction to this thesis, the research hypotheses and contributions. Section 1.9

provides the outline of this thesis.

1.1 Battery Management System

In recent years, as concern about climate change has grown, extensive research and

development on Electric Vehicles (EVs) has been conducted. One of the main com-

ponent of an EV, is the battery pack, that is critical to the EV’s performance, and

initial and operating costs. To meet the power and energy requirements of EVs, a

battery pack typically has hundreds of battery cells connected in series and parallel.

An effective Battery Management System (BMS) is responsible for ensuring a safe

and reliable operation by continuously monitoring and controlling the battery pack.

Although a BMS can be used on any portable electronic device, as the number of

cells increases, it becomes more complicated. In batteries, temperatures that are too

high or too low, as well as over-charging and over-discharging, may accelerate the

rate of degradation and cause safety issues. Cell protection, thermal management,

cell balancing, modeling, state and parameter estimation, and fault detection are all

functions of a BMS, as presented in Figure 1.1 [1].

With an accurate BMS, safety concerns can be addressed, performance maximized,

and longevity increased. To achieve high battery pack performance, the state of

a battery pack including State of Charge (SoC), State of Health (SoH), State of

Power (SoP), State of Function (SoF), and Remaining Useful Life (RUL) must be

constantly monitored. Temperature can affect the capacity and power of a battery

pack. Temperatures above a certain threshold can result in accelerated degradation

or thermal runaways, both of which can be very dangerous to users. Therefore,
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Figure 1.1: Battery management system key functionalities.

temperature should be considered and emphasized in modeling and state estimation.

The BMS is also responsible for detecting cell-to-cell variations, as they may differ

in their states while operating. Cell balancing is provided by a BMS to equalize the

charge in cells. A BMS should provide safety features for all types of batteries [1, 2].

A BMS is made up of numerous circuits, components, power electronics, sensors, and

safety devices that are all controlled by sophisticated algorithms. It is necessary to

create efficient algorithms in a BMS [3].

1.2 Lithium-ion Batteries

The utilization of Lithium-ion (Li-ion) batteries has been increasing steadily in dif-

ferent applications due to their energy and power densities, and longevity. Li-ion
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batteries solve a variety of design challenges in EVs due to their high energy and

power densities in comparison to other types of batteries. Despite their numerous

advantages, the cost of the Li-ion battery technology remains high when compared

to other internal combustion engines [4, 5].

Li-ion batteries employ oxidation-reduction reactions to convert chemical and elec-

trical energies in a reversible manner. All batteries have four major components in-

cluding a positive (cathode) and a negative (anode) electrode, an electrolyte, and

a separator as shown in Figure 1.2. The positive and negative electrodes are sepa-

rated by the electrolyte and separator. As ions move from the cathode to the anode,

the electrolyte acts as a catalyst, charging and vice versa discharging the battery.

A layered structure in the electrode allows lithium atoms to move between layers.

However, this movement inside a battery has no effect on the battery’s degradation.

In a Li-ion battery cell, graphite is the dominant material for the anode and a form

of lithium transition metal oxide is used for the cathode. Electrons move from the

cathode to the anode when a battery cell is charged. When the battery is charged,

the lithium containing graphite and the lithium transition metal oxide with missing

lithium become extremely reactive. As a result, they react with the electrolyte solu-

tion by which they come into contact. Fortunately, these reactions are stable, and a

passivating film forms to prevent further electrolyte decomposition. This passivating

surface allows the battery to function for a long time [6, 7].

Despite the presence of passivating film formation, parasitic reactions continue to

occur slowly during normal operation and storage, leading to battery degradation.

The formed passivation layer on electrode surface is called the Solid Electrolyte In-

terphase (SEI). Figure 1.3 represents the formation of SEI in the negative electrolyte
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surface over time which leads to battery degradation [8].

Figure 1.2: Illustration of lithium-ion battery cell [9].

Figure 1.3: SEI formation [10].

1.2.1 Aging Factors

Battery degradation and capacity loss are caused by various reactions inside the Li-

ion battery, such as SEI formation. Although a battery’s internal reactions cannot be

controlled while it is in use, the external factors can be monitored and controlled to

extend its lifetime. These factors include operating temperature, charge or discharge

rate (C-rate), operating voltage range, and Depth of Discharge (DoD) [11]. This

section explains these factors and their impact on the aging process.
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Charge/discharge C-rate

The C-rate is the rate at which a battery is charged or discharged in relation to

its capacity. A battery’s capacity is commonly expressed as 1C, which means that

a battery takes one hour to fully charge. When a battery operates at a high C-

rate, different reactions happen inside the battery such as uneven lithium deposition,

irreversible loss of Li-ions, and increase of SEI formation resulting in capacity loss.

When a Li-ion battery is operated at a high C-rate, it reaches its critical point or

the end of life in a faster rate than when it is functioned at a low C-rate. Although

accelerated aging is used in research facilities to reach the battery’s end of life faster,

it should be restricted in real-time applications to enhance the performance of the

battery [11].

Depth of Discharge

The battery’s Depth of Discharge (DoD) indicates how much of the battery has been

discharged compared to its overall capacity. The DoD is the complement of the bat-

tery’s SoC which means as one increases, the other decreases. This factor has a major

impact on the battery’s lifetime, however, this varies a lot depending on the cathode

materials [11]. When DoD is limited to 20%–80%, batteries degrade at a slower rate

than when DoD is set to 0%–100%. To slow the rate of battery degradation caused by

DoD, battery manufacturers suggest an optimal value to improve the battery’s per-

formance. In order to extend the battery pack’s longevity, car manufacturers limit

the battery’s usable range based on the battery’s optimal DoD [12].
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Operating Temperature

Temperature has the most significant impact on battery aging. The standard oper-

ating temperature for a battery is at room temperature (25◦C), however, this is not

always the case in realistic conditions. The operating range of temperature for EVs

and HEVs can change between −30◦C to +50◦C. The effect of low and high temper-

ature is different as it relates to battery aging. The capacity degradation caused by

cathode degradation increases at high temperatures. Lithium plating, on the other

hand, at low temperatures has a negative impact on battery safety. Therefore, it is

critical to provide an accurate thermal management system for the battery pack in

order to keep it within an acceptable range of temperature and prevent accelerated

aging [11, 12].

Operating Voltage Range

A battery should be used within its optimal voltage range. Over-charging or discharg-

ing a battery may cause a significant increase in temperature and pressure inside the

battery, which can lead to fire, cell damage and short circuits. As a consequence, the

battery life is reduced. The range of operation in a battery should be limited by a

BMS to avoid battery aging caused by over-charging or discharging [12].

1.3 Battery Testing

Laboratory tests are needed in order to assess the performance of battery cells, mod-

ules, and packs under different operating conditions [13]. The data collected from
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these tests can be used to validate battery models, which are required for state esti-

mation. Standard tests are performed to provide a common foundation for battery

manufacturers [13, 14, 15]. Battery test procedures are categorized in different groups

including: characterization, aging, and reference performance tests, [15].

1.3.1 Characterization Tests

Characterization tests provides information about the performance of a battery cell

such as its internal resistance, capacity, and time constants. Static capacity, pulse

charge/discharge, Open Circuit Voltage (OCV) characterization, self-discharge, cold

cranking, thermal performance, and efficiency tests are categorized in this group

[15, 16]. Some of these tests that have been considered in this study are as follows,

1. Static capacity test determines the capacity of a battery cell. A standard

capacity test can be defined as follows,

(a) The battery is charged in a Constant Current Constant Voltage (CCCV)

mode at a standard C-rate (usually 1C, provided in the datasheet). The

battery is fully charged when it reaches the maximum voltage and the end

point current (usually about 0.02C, provided in the datasheet).

(b) The battery is left to rest for one hour to reach its steady state condition.

(c) The battery is discharged in a standard Constant Current (CC) mode using

a standard C-rate (usually 1C) until it reaches the minimum voltage.

(d) The battery is left to rest for one hour to reach its steady state condition.

2. OCV characterization test is performed to identify the nonlinear relationship

between the OCV and the battery SoC. A standard OCV characterization test
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can be defined as follows,

(a) The battery is discharged in a CC mode with a standard C-rate (usually

1C) to its minimum voltage.

(b) The current accumulator is reset to zero to provide zero SoC.

(c) The battery is charged in a CCCV mode using a very small C-rate (usually

C/15 or C/20) until the battery is fully charged.

(d) The battery is left to rest for one hour.

(e) The battery is discharged in a CC mode using the same C-rate (usually

C/15 or C/20) until the battery hits the minimum voltage.

(f) The battery is left to rest for one hour.

The relationship between the OCV and SoC can be achieved using an average

of the charge and discharge curve. The obtained OCV-SoC curve could change

for a battery at different temperatures and states of life.

3. Pulse charge/discharge tests are used to characterize the parameters of an

equivalent circuit model for a range of SoCs. The pulse discharge test can be

defined as follows,

(a) The battery is charged in a CCCV mode using a standard C-rate (usually

1C) until it is fully charge.

(b) The battery is left to rest for one hour.

(c) For the SoC in the range of 100% to 90%, the battery is discharged at 1C

with pulses of 1% capacity of the battery.
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(d) For the SoC in the range of 90% to 10%, the battery is discharged at 1C

with pulses of 5% capacity of the battery.

(e) For the SoC in the range of 10% to 0%, the battery is discharged at 1C

with pulses of 1% capacity of the battery.

(f) The battery is left to rest for 2 hours between pulses for the whole range

of SoC.

Similar steps should be followed for pulse charge test [16].

1.3.2 Aging Test

Aging tests demonstrate the effect of aging on a battery. There are two ways in

which a battery can age; the first being that a battery ages after multiple charges and

discharges, known as cycle life, the second being that it is possible to cause by storing

a battery, known as calendar aging. The study of battery characteristics necessitates

the consideration of various types of aging [15, 17]. A battery’s performance can be

quickly evaluated with accelerated aging. The aging study considered in this study

is based on the cycle life which can be divided into two groups as follows,

1. Standard charge/discharge cycling

This method performs continuous charging and discharging usually at a high

C-rate and an elevated temperature. This method is relatively fast; however, it

cannot provide the realistic conditions that exists in EVs. The following steps

are considered for this test,

(a) The battery is charged in CCCV mode until the battery is fully charged.
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(b) The battery is discharged in CC mode with its maximum discharge C-rate

(provided in the datasheet) until it reaches the minimum voltage of the

battery.

(c) The battery is left to rest for 5 minutes.

(d) The battery is charged in CCCV mode with its maximum charge C-rate

(provided in the datasheet) until the battery is fully charged.

(e) Steps b to d are repeated until capacity hits the expected value (usually

80%).

Characterization tests are considered at about every 50 cycles to investigate

the behavior of the battery at different states of life.

2. Drive cycle aging

Standardized drive cycles can be used to simulate battery aging more realisti-

cally. The US Environmental Protection Agency (EPA) provides standard drive

cycles for different driving scenarios [18]. The drive cycles considered in this

study include an Urban Dynamometer Driving Schedule (UDDS), a light duty

drive cycle for high speed and high load (US06), and a Highway Fuel Economy

Test (HWFET). The UDDS cycle can depict the driving habits of a typical

city driver. The US06 simulates aggressive driving habits, while the HWFET

simulates highway driving conditions. The speed vs. time data, provided by

EPA, should be converted to the current demand of a battery pack. A simulated

EV model can be used to determine the current consumed by a battery pack.

This can be scaled down based on the number of batteries connected in parallel

and series in a battery pack to determine the amount of current for a cell or a
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module [16].

1.3.3 Reference Performance Test

Reference performance tests (RPTs) are usually performed after a certain number of

cycle life tests to measure the capacity and investigate battery degradation. These

tests include static capacity tests at different C-rates, OCV characterizations, pulse

charge/discharge and driving cycles for a whole range of SoC [13]. These tests are

useful to provide ECM model for different SoHs as explained in Chapter 3.

1.4 Key States of a Battery

The most important operating variables and states of a battery are introduced in

this section. The estimation of these states is critical in order to perform better

management of the battery pack.

1.4.1 State of Charge

State of Charge (SoC) is an important consideration for a battery that should be

estimated accurately in a BMS. As the name implies, SoC indicates the amount

of charge remaining in the battery pack, which can be influenced by a variety of

factors such as charge/discharge rate, temperature, and battery age. It is necessary

to employ a robust and adaptive strategy for its estimation in order to develop an

effective solution for energy management of EVs. Since there is no sensor that can

directly measure the battery’s SoC, it must be estimated by using measurements

such as terminal voltage, temperature, and current. There are various strategies for
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estimating the SoC of a battery. These methods are classified into two types including

measurement-based methods and indirect methods [12, 19].

Measurement-based methods use direct measurements from a battery including

terminal voltage, impedance, and current for its SoC estimation. These methods are

commonly based on open circuit voltage, terminal voltage, internal resistance and

conventional coulomb counting. Coulomb counting is the most common technique

for SoC estimation and it is popular in the automotive industry as a baseline for

SoC estimation. The coulomb counting method calculates the SoC by integrating the

current consumed by the battery and is defined as follows,

SOC(t) = SOC0 −
1

Cn

∫ t

0

ηi(τ)dτ (1.1)

where SOC0 is the initial value of the battery SoC, η is the cell Coulombic Ef-

ficiency (CE) and Cn is the nominal capacity. This method is impacted by sensor

noise, uncertainty in the initial value of SoC, and the battery’s SoH over time. The

strategy can be adjusted to achieve a balance of simplicity and accuracy. The SoC

of a battery can also simply be calculated by considering the relationship between

the OCV and the battery SoC as shown in Figure 1.4. However, the method cannot

provide an accurate estimation as it only applies to a battery that is in a state of rest

as well as being affected by the SoH, and temperature. The long rest time required for

relaxation of the battery before using the OCV for SoC estimation make this method

impractical to be used onboard of a BMS [12].

Although indirect methods are more complex, they are more reliable for real-time

use. The indirect methods can be divided into two categories: model-driven and
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Figure 1.4: Example of OCV-SOC curve for a Li-ion battery.

data-driven. The data-driven methods use advanced machine learning techniques to

predict the battery SoC from the provided data. However, a large volume of data

is required for initial training. Further, their accuracy depends on diversity, quality

and amount of data that is available [20, 21]. In cases where the internal dynamics of

the system are easily characterized, such as in batteries, it is more practical to use a

model-based strategy. More details on different model-based approaches are provided

throughout this research. This thesis looks for advanced model-based estimation

strategies to be used on a battery under different operating conditions.

1.4.2 State of Health

During the life cycle of a battery, its dynamic behavior changes. State of Health (SoH)

of a battery provides a gauge for its life span. It is important to provide an indicator

for estimating this key element, as it can affect the accuracy of SoC estimation. The
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battery SoH can be obtained through estimating the change in different parameters

of the battery including its internal resistance, capacity, impedance, cycle count,

or self-discharge. A combination of these different factors should be considered to

provide an accurate estimate of the SoH. Similarly to the battery SoC, SoH can be

obtained by using different algorithms categorized into two groups: measurement-

based and indirect methods. Measurement-based algorithms include but are not

limited to Electrochemical Impedance Spectroscopy (EIS), current pulses, discharge

test to obtain the impedance, internal resistance, and the capacity of the battery,

respectively. The SoH can also be found by comparing the battery’s cycling history

to previous data. Although, these methods require low computational efforts and

could be easy to implement, their accuracy is not enough [12, 22].

By determining the internal resistance (Rin) and the available capacity (C) of the

battery cells, the SoH of a battery can be investigated. These two variables reflect

the energy and power potential of a battery, respectively. The SoH, based on the

internal resistance and the available capacity, can be determined as follows,

SOHC =
C

Cn

× 100% (1.2)

SOHR =
REOL −Rin

REOL −Rnew

× 100% (1.3)

where Cn is the nominal capacity of the battery, REOL is the internal resistance

at the end of battery life, Rnew is the internal resistance of a new battery.

Adaptive filters are developed to estimate SoH using parameter estimation tech-

niques [22]. The accuracy of SoH estimation can be affected by the robustness and
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adaptability of the estimation algorithm or filter and the SoC. The research presented

here provides advanced strategies for state and parameter estimation that are appli-

cable to different modes of operation.

1.4.3 State of Power

The State of Power (SoP) indicates the power capability of a battery. It is essen-

tial that a battery’s SoP be accurately estimated in order to operate in a safe region.

This along with the current limitation could protect a battery pack from over-charging

and over-discharging. In a similar manner to the SoC and SoH of a battery, this key

element cannot be measured directly. Hybrid Pulse Power characterization method

(HPPC) is commonly used to calculate the peak charge/discharge power based on the

provided range of the battery’s terminal voltage and current. Despite the simplicity of

this method, however, it is not suitable for real-time applications. Different method-

ologies have been presented within the literature for calculating SoP by considering

the terminal voltage, SoC, current limitation, and internal resistance of a battery. The

SoP can be calculated by taking into account the available current at a given voltage,

as well as the limiting factors for current supply that are typically determined by the

BMS [23, 24, 25]. The accuracy of estimation for the states and parameters is imper-

ative for SoP estimation using this method. The estimation accuracy could affect the

performance of the battery pack and can be mitigated by providing improved state

estimation for the battery’s parameters. The maximum available charge/discharge

power of a battery, by us ing this method, can be determined as,

17



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

P cha
max = Ichamax(Vocv + IchamaxRin) (1.4)

P dch
max = Idchmax(Vocv − IdchmaxRin) (1.5)

where Ichamax,cur and Idchmax,cur are the charge and discharge current thresholds, re-

spectively, which can be calculated as follows,

Ichamax = min(Ichamax,vol, I
cha
max,cur) (1.6)

Idchmax = min(Idchmax,vol, I
dch
max,cur) (1.7)

where Ichamax,vol and Idchmax,vol are the maximum available charge and discharge current

under the terminal voltage limits and can be calculated as follows,

Ichamax,vol =
Vmax − Vocv

Rin

(1.8)

Idchmax,vol =
Vocv − Vmin

Rin

(1.9)

The Vmax and Vmin denote the voltage limits, and Vocv is obtained by the SoC

estimation results using a look-up table. The formulation shows that accurate esti-

mation of the internal resistance and the SoC could lead to an accurate estimate of

the battery’s SoP.
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1.5 Battery Modeling

To estimate the states of a battery, a suitable model is needed. The model should

be able to capture the key characteristics of both steady-state and transient reac-

tions, under different operating conditions. Battery models can be categorized into

three groups including Electrochemical Model, empirical model and Equivalent Cir-

cuit Models (ECMs). An electrochemical model can represent the interior chemistry

and physics of a battery cell. However, using them with estimation algorithms and in

real-time is difficult due to their high computational complexity. ECMs, on the other

hand, may be easily parameterized using system identification techniques and exper-

imental data. Despite the fact that the parameters of ECM models do not match

the actual reaction within a battery cell, the accuracy of estimated SoC is adequate

to be used onboard of a BMS within restricted working region. Empirical models

use mathematical expressions to represent the characteristics of a battery. Similar to

ECMs, they can be easily implemented and be used in real-time. To provide an ac-

curate model for a battery cell, the number of parameters in empirical models should

be increased [12, 26, 27].

1.5.1 Electrochemical Models

Partial differential equations are used to explain both the electrochemical reaction

between the electrodes and the electrolyte in this type of model. In comparison

to equivalent-circuit based models, electrochemical models are more sophisticated

and need more computing resources. Despite their complexity, these models are

preferred due to their physical significance. Previous research has looked at two
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types of electrochemical models: Pseudo Two-Dimensional (P2D) and Single Particle

Models (SPM). To improve the accuracy of SPM in high C-rate, a few Extended SPM

(E-SPM) have been reported. According to the structure of electrochemical models

in a battery management system, model reduction is required to lower the model’s

complexity. Furthermore, electrochemical models necessitate the measurement of

multiple parameters, making modeling more complex. With one input called cell

current and one output called terminal voltage, full-order electrochemical models

should be defined which includes four partial differential equations that represent

the internal interactions within a battery cell. As a result, in order to estimate SoC

and SoH in a BMS, a reduced-order form of electrochemical model can be considered

[28, 29].

1.5.2 Empirical Models

Empirical battery models use various mathematical formulation to define the rela-

tionship between the terminal voltage of the battery with its current, and SoC. The

parameters of these model can be found by using experimental data. Empirical mod-

els include the Shepherd model, the Nernst model, the enhanced self-correcting model,

the zero-state hysteresis model, and black-box models [12, 30]. Although these mod-

els employ simple expressions and efficient computation, they have some limitations

in terms of describing the terminal voltage. Empirical models can be simple while

still delivering a reliable model, however, they are limited to a specific range of con-

ditions. This can be improved by increasing the number of parameters in the model

or by providing larger data-set [26].
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1.5.3 Equivalent Circuit Models

Equivalent Circuit Models (ECMs) replicate the charging and discharging behavior

of Li-ion batteries using simple elements, including resistors and capacitors. These

models have a basic structure as shown in Figure 1.5, making them simple to imple-

ment and computationally efficient. The relationship between the terminal voltage

and the input is defined as follows,

Figure 1.5: ECM battery model of order n.

Vj,k+1 = (1− ∆T

RjCj

)Vj,k +
∆T

Cj

ik, j = 1, ..., n (1.10)

SOCk+1 = SOCk −
η∆T

Cn

ik (1.11)

VT,k = Vocv(SOCk)−
n∑

j=1

Vj,k −Rinik (1.12)

where VT is the cell terminal voltage, Vj is the voltage across the jth RC branch,

Vocv is the OCV (nonlinear function of SoC), Cn is the cell’s nominal capacity, η is

the cell Coulombic Efficiency (CE), and i is the current flowing across the cell.
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There is no physical meaning to ECMs, even though they reflect the electrical rela-

tionship between the battery’s terminal voltage, current, SoC, and temperature. This

could restrict the model for SoH and SoP estimation [28, 31]. Different techniques,

such as parameter estimation and model selection, can be used to modify these mod-

els and change the model parameters for different operational circumstances. This

study proposes a number of changes to ECMs in order to achieve a balance between

complexity and accuracy. Further, these changes can offer indicators for SoH and

SoP in order to estimate the entire key states of a battery.

1.5.4 Model Parameters Identification

Battery models differ not only in their structure, but also in the methods for estimat-

ing their parameters. The model’s parameters, which include physical and electrical

quantities, determine the battery’s characteristics. To estimate the parameters of the

battery models, different techniques are used. Parameters identification methods are

divided into two categories: offline and online. This section presents an overview of

these methods [12, 32].

Offline Parameter Identification

Parameters of a battery model can be identified by using different test procedures

such as continuous and pulse charging/discharging, and Electrochemical Impedance

Spectroscopy (EIS). Since the parameters of a battery model are affected by temper-

ature, current, SoH, and SoC, the tests should be repeated under different conditions

to provide a more accurate model. The provided data are then used to identify

the parameters of the battery model by optimizing an objective function such as the
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mean square error. Model fitting methods include Genetic Algorithms (GAs), Particle

Swarm Optimizations (PSOs), and Levenberg-Marquardt. Offline parameter identi-

fication methods provide accurate battery models through laboratory tests, ensuring

a reliable battery state estimate. However, these methods are highly dependent on a

large number of tests [32, 33].

Online Parameter Identification

The objective of online parameter identification is to identify the model’s parame-

ters based on real-time observations, resulting in an accurate battery model under a

wide range of operating conditions. An accurate battery model indicates the internal

characteristics of the battery and is essential for improved state estimate. Filtering

methods such has Kalman Filter (KF), and Least Square (LS) methods are commonly

used for online parameter identification. Although these methods provide an accurate

model for real-time applications, they can be affected by measurement errors such as

sensor noise, and bias in the measured current and terminal voltage. This can lead

to inaccurate identification. Advancements of these strategies such as the Recursive

Least Square (RLS) with forgetting factor can be used to address this issue [34, 35].

Recursive Least Square with Forgetting Factor

A Recursive Least Square (RLS) is a real-time parameter estimation method. RLS

with a forgetting factor helps to capture the slow variations of the parameters of a

system in real-time. A linear regression, conducted from the system model equations,

is used for this method.
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Vk = θTΦk (1.13)

where Φk is the regressor of the known signals and θ is the parameter vector. The

loss function of the RLS method can be defined as follows [36],

V (θ̂, k) =
1

2

k∑
i=1

λk−i(yi − θ̂Tk Φi) (1.14)

Here, λ is called the forgetting factor and can be chosen as 0 < λ < 1. This loss

functions is used to obtain, the parametric vector (θ) as follows,

θ̂k = θ̂k−1 + Lk(yk − θ̂Tk−1Φk) (1.15)

L(k) and P (k) are the gain and covariance matrix, that are updated as follows,

Lk = Pk−1Φk(λ+ ΦT
kPk−1Φk)

−1 (1.16)

Pk = (I − LkΦ
T
k )Pk−1

1

λ
(1.17)

Equations 1.13 through 1.17 summarize the RLS process, and is repeated iteratively.
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1.6 Estimation Theory

Physical modeling of a system is used for capturing its dynamic behavior. Prior knowl-

edge and empirical characterization are two sources of information for constructing

a system model. Once model is obtained, model-based estimation is the process of

extracting the dynamic states and on a more limited basis some parameters associ-

ated with the model from measurements. The goal of the estimating process is to

reduce state and parameter estimation errors in the presence of uncertainties and

noise under different operating conditions. Filtering, smoothing, and prediction are

the three types of estimation processes. Filtering is used to extract an accurate value

of the states at a current time from prior measurements, including the current point.

An estimation process can be model-based; the form taken into consideration in this

study [37, 38, 39].

Since the fifteenth century, there have been numerous contributions to estima-

tion theory. As the field’s first important contributor, Thomas Bayes proposed the

Bayesian rule which provided the bases of the Bayesian estimator [40]. Later, Gauss

introduced the least square estimation approach for nonlinear problems [41]. Based

on statistics and probability methodologies, the Markov process and Markov chain

theories were introduced in [42]. Many studies have been conducted using the method-

ologies described [43]. Norbert Wiener invented the Wiener filter, which can be uti-

lized in signal processing applications to solve estimation challenges [29]. Based on

previous research, Rudolf Kalman introduced a new estimation approach for linear

systems called the Kalman Filter (KF). The KF, has been one of the most power-

ful and popular approaches in estimation theory [39]. Numerous improvements have
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been made on the KF.

Furthermore, other types of optimal filters have been introduced based on sliding

mode control and variable structure control called Sliding Mode Observers (SMO).

Because of their robustness in the presence of uncertainties and disturbances, these

filters can be employed in fault detection and signal reconstruction [43]. This section

briefly describes different type of filters considered in this research.

1.6.1 Kalman-Based filtering

The KF is an optimal Bayesian filter. This method is reliant on a few assumptions,

including the availability of a known linear system model and presence of only white

noise, both of which are not guaranteed in real-time applications. The KF’s precision,

on the other hand, is quite appropriate for a linear system. A KF works in a predictor-

corrector way, meaning each cycle of the KF consists of two steps: prediction and

correction. In the prediction step, the KF finds the state estimates of the current time

step by using the state estimates from the previous time step. In the correction step,

the current measurement is combined with a-priori prediction to find an updated a-

posteriori state estimate. A continuous version of the KF, known as the Kalman-Bucy

filter was later introduced by Kalman and Bucy. Enhancements such as the Extended

Kalman filter (EKF) was also presented to deal with nonlinear system [39, 44, 45].

Although there are some drawbacks to employing the KF, it does have certain

advantages, such as giving a real-time unbiased and low variance state estimates.

However, when both the process and the measurement have very small noise covari-

ance matrices, the error covariance drops quickly, which can lead to instability. To

solve the numerical instability problem of KF, enhancements have been presented
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based on the KF such as the Robust Kalman Filter (RKF). Other enhancements pre-

senting a trade-off between performance, robustness and computational complexity

include the Unscented Kalman filter (UKF), Mixture Kalman filter (MKF), Quadra-

ture Kalman filter (QKF), Cubature Kalman filter (CKF), Sigma Point Kalman Filter

(SPKF), Monte Carlo Kalman filter (MCKF), and Adaptive Kalman Filter (AKF).

These can improve the capability of estimation for different applications in presence

of non-linearity, uncertainties and noise [39, 43, 46]. Furthermore, to deal with frac-

tional order models, an extension of the KF filter is presented in [47, 48].

1.6.2 Sliding Mode Based Filtering

In 1940, variable structure theory was introduced for systems with discontinuities in

their differential equations. The discontinuity hyperplane divides the state space into

regions with continuous dynamic equations. These systems are known as variable

structure systems. Variable Structure Control (VSC) is a technique that changes the

control gain based on the state space region in which the state trajectory is located.

As a consequence, the control input is discontinuous. The Sliding Mode Control

(SMC) is a special form of VSC where it uses the discontinuous control input to

force the state trajectory to converge and remain close to a sliding hyperplane. In

1985, the discrete forms of the VSC and SMC were presented. The discrete SMC’s

stability conditions were then provided, and it is now widely used in the design of

discrete controllers [37]. While SMC is generally robust in terms of uncertainties, it

suffers from high frequency chattering. This effect can be mitigated by employing a

Smoothing Boundary Layer (SBL), which calculates the control signal based on the

distance of the states from the sliding hyperplane. The duality of control and observer
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theories have led to the development of estimation techniques based on the VSC and

the SMC [37, 49]. This section briefly introduces these techniques.

Sliding Mode Observer

Sliding Mode Observers (SMOs) were created in 1980 as a robust way to dealing

with uncertainties and nonlinearities. VSC and SMC are used by these observers

to perform their tasks. In the face of uncertainties and disturbances, the SMC is

remarkably resilient. The SMO has been presented based on SMC due to the duality

of observers and controllers. The SMO defines a hyperplane, known as the sliding

surface, and performs a discontinuous force to the estimates in terms of reaching to

the sliding surface. The estimates are brought to the sliding surface by the SMO

from their initial conditions in a phase known as the reachability. Later in the sliding

phase, the estimates are forced to remain on the sliding surface. The SMO is affected

by the gain that is chosen. A small gain leads to a slow response and the estimates

may not converge to the sliding surface. A large gain provides more robustness,

however, the observer is more sensitive to the measurement noise [37, 50]. Because the

SMO is robust to nonlinearities, disturbances, and uncertainties, it may be applied

to a variety of applications including fault detection, signal processing, and state

estimation. Observers can be employed to estimate system parameters as well as

states [43].
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The Variable Structure Filter

In 2003, a new estimation method so-called the Variable Structure Filter (VSF) was

proposed for state estimation of linear systems. Although this method defines a slid-

ing surface to force the estimates to go back and forth across their actual value, it has

a different structure than the SMO. This method has a predictor-corrector form [51].

The VSF filter is able to increase stability and convergence when there are higher

degrees of modeling or parametric uncertainties. The performance of other filters

such as Kalman-based filters degrade or may lead to instability in these situations.

However, the stability of VSF can be guaranteed in the presence of bounded uncer-

tainties using the variable structure system’s concept. The control input in sliding

mode control involves a discontinuous term, which is defined as a function of the state

variables in the following manner [43, 52],

u(x, t) =

 u+(x, t) s(x) > 0

u−(x, t) s(x) < 0
(1.18)

where u+(x, t) and u−(x, t) are continuous functions. Using this theory, the VSF

gain is defined based on the upper bounds of uncertainties and noise. This method

can only be used for observable linear systems. Lyapunov’s second law of stability

is used to demonstrate the VSF’s stability. In [53], an Extended Variable Structure

Filter (EVSF) with the same structure and the capacity to be used for nonlinear

systems was presented.
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The Smooth Variable Structure Filter

The Smooth Variable Structure Filter (SVSF), a more flexible version of the VSF,

was introduced in 2007 [54]. The SVSF is a robust model-based prediction-corrector

filter that works with both linear and nonlinear systems that are differentiable and

observable. The Smoothing Boundary Layer (SBL) and the existence boundary layer

are the two separate boundary layers connected to the SVSF idea. The SBL is a

function of the upper bound of uncertainties and disturbances and could be different

from the existence boundary layer. The existence boundary layer’s width is unknown,

as it is a function of disturbances and uncertainties. The SBL width has to be greater

than the existence subspace for the smoothing action to eliminate chattering. The

SVSF’s switching action ensures that the estimates converge to the vicinity of their

actual values. The switching features enable stability in the face of unknowns and

disturbances. Further to an initial guess based on a-priori information, the estimated

state trajectory is pushed to a neighborhood of the system’s true trajectory referred

to as the existence subspace. Once they enter this subspace, the corrective switching

action forces the estimated state trajectory to stay within it. Modeling uncertainties,

measurement noise, and disturbances all influence the width of the existence subspace

[54]. The concept of the SVSF state estimation is shown in Figure 1.6. Assuming the

following typical model,

xk+1 = f(xk, uk, wk),

zk = h(xk, uk, vk) (1.19)
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Figure 1.6: An overview of the SVSF estimation concept [54].

where vk is the measurement noise and wk is the system noise and they are uncorre-

lated white noise with the following mean and covariance,

E[wk] = 0, E[wkw
T
k ] = Qk (1.20)

E[υk] = 0, E[υkυ
T
k ] = Rk (1.21)

The SVSF method can be described as follows [51],
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• Prediction: The a-priori state estimate is obtained by using an estimated model.

x̂k+1|k = f(x̂k|k, uk), (1.22)

ẑk+1|k = Ĥx̂k+1|k (1.23)

ezk+1|k = zk+1 − ẑk+1|k (1.24)

where ezk+1|k is the a-priori measurement error vector.

• Correction: The updated state is obtained by using a gain to refine the a-priori

estimate into its a-posteriori form.

x̂k+1|k+1 = x̂k+1|k +KSV SF
k ezk+1|k ,

ẑk+1|k+1 = Ĥx̂k+1|k+1 (1.25)

ezk+1|k+1
= zk+1 − ẑk+1|k+1 (1.26)

where ezk+1|k+1
is the a-posteriori measurement error vector.

The SVSF’s gain KSV SFk
is a function of the a-priori and a-posteriori mea-

surement error vectors ezk+1|k and ezk+1|k+1
, the SBL widths (ψ), and the SVSF

memory or convergence (γ) with elements 0 < γii ≤ 1, defined as follows,

KSV SF
k = Ĥ+

[
diag

(
|ezk|k−1

|+ γ|ezk−1|k−1
|
)
.sat(

ezk|k−1

ψ
)
]
[diag(ezk|k−1

)]−1 (1.27)

Equations 1.22 through 1.27 summarize the SVSF process, and is repeated iteratively.

The estimation process is proven to be stable and converges to the existence subspace

if the following condition is satisfied [54],
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|ek|k|Abs
> |ek+1|k+1|Abs

(1.28)

The |e|Abs is the absolute value of the vector e, and is equal to |e|Abs = e.sign(e).

Theorem 1 (see [54]). On the stability of the SVSF strategy, if the system is stable,

consecutive bijective (or completely observable and completely controllable in the case

of linear systems), then the SVSF corrective gain Kk that would satisfy the stability

condition of Equation 1.28 is subject to the following conditions,

|ek+1|k|Abs
⩽ |Kk+1|Abs < |ek+1|k|Abs

+ |ek|k|Abs
(1.29)

The corrective gain Kk of the SVSF as Equation 1.27 satisfies this condition [54].

A great deal of research have been done to improve the SVSF’s performance [52]. A

revised form of the SVSF with a covariance derivation was presented in [55, 56] where

the a-priori (Pk+1|k) and a-posteriori (Pk+1|k+1) error covariance matrices are defined

as follows,

Pk+1|k = ÂPk|kÂ
T +Qk (1.30)

Pk+1|k+1 = (I −KSV SF
k+1 Ĥ)Pk+1|k(I −KSV SF

k+1 Ĥ)
T
+KSV SF

k+1 Rk+1K
SV SF,T
k+1 (1.31)

Using a covariance, which is a function of state estimation error, can provide a

derivation for an optimal gain. An optimal form of the SVSF referred to as the SVSF

with Variable Boundary Layer (SVSF-VBL) was presented by considering an optimal

time-varying SBL [57] defined as follows,
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Sk+1 = ĤPk+1|kĤ
T +Rk+1 (1.32)

Ek+1 = |ezk+1|k |+ γ|ezk|k | (1.33)

ψk+1 = (Ē−1
k+1ĤPk+1|kĤ

TST
k+1)

−1
(1.34)

where Sk+1 is the innovation covariance matrix, Ek+1 is the combination of measure-

ment error vectors, and ψk+1 is the SBL width.

Therefore, the optimal SVSF gain for the case when ψk+1 ⩾ ψlim is defined as

follows,

KSV SF
k+1 = Ĥ−1Ēk+1sat(ezk+1|kψ

−1
k+1)ē

−1
zk+1|k

(1.35)

where ψlim is the upper limit for the boundary layer. For the case with ψk+1 < ψlim,

the method uses the standard SVSF gain as obtained in Equation 1.27.

In [58], the SVSF’s covariance formulation was modified to a general form. Fur-

thermore, a generalized form of VBL was presented in [58]. Figure 1.7 provides an

overview of the research on SVSF over the past decade. This research provides some

improvements on SVSF including IMM-SVSF-VBL, Dual estimation strategy based

on SVSF-VBL, and Adaptive SVSF-VBL for battery applications.

1.6.3 Adaptive Filtering

All prior methods assume that the input and measurement noise statistics, as well

as system characteristics, are known; this is not the case in real-world situations.
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Figure 1.7: A general overview of VSF-based filters.

Physical parameters, noise characteristics, and initial conditions all have some un-

certainties or inaccuracies. Estimating the unclear factors and conditions throughout

the estimation process is one answer to these challenging scenarios. This mechanism

is referred to as adaptation and, the associated methods are called adaptive filtering.

Adaptive filters come in a variety of forms, including multiple model filters and filter

tuning [43].

Multiple Model Methods

Multiple Model (MM) approaches are well-known adaptive filters that use a finite

number of models to characterize a system’s behavior [39]. The MM methods work

based on a Bayesian framework. In these methods, the prior probability and likeli-

hood functions of the models are used. The static MM method and the dynamic MM

methods are two commonly used types of MM methods. In the static MM algorithm,

the closest model is chosen at the start of the process, and the system follows a single
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fixed model during the filtering phase. As a result, there is no need to switch between

models. Conversely, the dynamic MM filters automatically switch between many

models to determine the best accurate approximation depending on the operating

conditions [39]. The Generalized Pseudo-Bayesian (GPB) and Interacting Multiple

Model (IMM) are considered in this group because of their moderate computational

complexity. This research proposes a method using the IMM concept for state esti-

mation of EV batteries. A finite number of models based on the SoH of a battery are

considered. Chapter 3 provides more details on this algorithm.

Interacting Multiple Model Concept

The Interacting Multiple Model (IMM) approach assumes that a system’s behavior

can be represented using a finite number of models. These models can capture various

system structures and parameters. Therefore, the IMM method uses r number of

models associated with filters to operate in parallel. A mixed initial condition based

on the previous step is used to initialize the individual filters. The output of each

filter includes its state estimate, error covariance matrix, and likelihood function.

The likelihood function of each filter, which is a function of the a-priori measurement

error and innovation covariance, quantifies its estimation error as well as the model’s

applicability. The mode probabilities, which represent how close the filter model is

to the true system model, are then evaluated using likelihood functions of the filters.

The mode probabilities represent the best model for capturing the system’s dynamics

at time k. In comparison to other dynamic MM methods, it is shown that the

IMM method is more effective and computationally efficient at capturing a system’s

changing dynamics [39, 59].

The IMM concept consists of five main steps: calculation of mixing probabilities;
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mixing stage; mode-matched filtering; mode probability update; and calculation of

the a-posteriori state estimate and covariance matrix. Figure 1.8 shows an overview of

the IMM concept using two parallel filters. The algorithm is demonstrated as follows,

Figure 1.8: An overview of the IMM concept[59].

1. Calculation of the mixing probabilities (i, j = 1, ..., r). The mixing probably

(µi|j) is the probability of the system that was in mode i given that it is now in

mode j. This can be calculated as follows,

µi|j(k|k)=
1

c̄j
pijµi|j i, j=1, ..., r (1.36)
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where the probability mass function prediction (c̄j) and the transition proba-

bility matrix (pij) are defined as follows,

c̄j=
r∑

i=1

pijµi j=1, ..., r (1.37)

pij =
∆ P{Mi(k)|Mj(k), Z

k} (1.38)

2. Mixing (j = 1, ..., r). The Mixing step determines the mixed initial conditions

of the state vectors (x̂0j) and state error covariance matrices (P 0j) for the filters

by using the calculated mixing probabilities, the previous mode-matched states

(x̂i(k|k)), and covariances (P i(k|k)) as follows,

x̂0j(k|k)=
r∑

i=1

x̂i(k|k)µi|j(k|k) j=1, ..., r (1.39)

P 0j(k|k)=
r∑

i=1

µi|j(k|k){P i(k|k)+[x̂i(k|k)−x̂0j(k|k)][x̂i(k|k)−x̂0j(k|k)]T}

j=1, ..., r (1.40)

3. Mode-matched filtering (j = 1, ..., r). In this step, one iteration of the filter

evaluates in mode j to produce a new state estimate based on the state and

covariance values obtained by the mixing step. Following that, the likelihood
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functions of filters (Λj) in mode j are calculated as follows,

Λj(k + 1)=N [z(k + 1); ẑj[k + 1|k; x̂0j(k|k)], Sj[k + 1; P̂ 0j(k|k)]] j=1, ..., r

(1.41)

The likelihood function of each filter, provided in Equation 1.41, can be solved

as follows,

Λj(k + 1) =
1√

|2πSj,k+1|Abs

exp(
−1

2
eTj,k+1|kej,k+1|k

Sj,k+1

) (1.42)

where Sj is the innovation covariance matrix, and ej,k+1|k is the a-priori mea-

surement error vector of filter j.

4. Mode probability update (j = 1, ..., r). Mode probability (µj) takes into account

the likelihoods of all the models and can be updated as follows,

µj(k + 1)=
1

c
Λj(k + 1)c̄j j=1, ..., r (1.43)

where the normalizing constant (c) is defined as,

c=
r∑

j=1

Λj(k + 1)c̄j (1.44)
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5. Estimate and covariance combination. The algorithm outputs are then com-

puted by combining the a-posteriori estimated states (x̂j(k + 1|k + 1)) and co-

variances (P j(k+1|k+1)) from each filter by their mode probability (µj(k+1)).

x̂(k + 1|k + 1)=
r∑

j=1

x̂j(k + 1|k + 1)µj(k + 1) (1.45)

P (k + 1|k + 1)=
r∑

j=1

µj(k + 1){P j(k + 1|k + 1)+[x̂j(k + 1|k + 1)

− x̂(k + 1|k + 1)][x̂j(k + 1|k + 1)−x̂(k|k)]T} (1.46)

Equations 1.36 through 1.46 summarize the steps for the IMM method. It should

be noted that Equations 1.45 and 1.46 are only used to obtain the algorithm outputs

and do not take part in its recursions. Different filters can be paired with the IMM

strategy to be used for different applications. This thesis provides an IMM technique

paired with SVSF-VBL for state estimation of batteries under different operating

conditions. Chapter 3 provides more details on this algorithm.

Filter Tuning

Filter tuning methods can be categorized into two groups including noise adaptation,

and parameter tuning. In parameter tuning methods, the parameters are tuned based

on measurements. Recent research has proposed dual and joint filtering strategies

for estimating both the parameters and the states of a system at the same time.

These strategies are useful for applications when parameters are changing in time

such as in the case of batteries. In joint filtering, a model-based filter is applied to an

augmented system created by combining the states and parameters dynamics [60, 61].
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Although, these techniques are widely used for parameter tuning, the observability

of the system cannot be ensured. Dual strategies, on the other hand, estimate the

parameters and the states using separate filters [62]. This study proposes a dual and

combined estimation strategy across a wide range of battery operations. Chapter 2

presents a dual estimation strategy to update the battery model as the battery ages.

Joint estimation methods are also included in this thesis to estimate the parameters

and measurement biases including SoC bias, current sensor bias, and voltage sensor

bias.

For model-based filters, noise statistics are needed. Most filters assume that the

noise is white, Gaussian, and has a zero mean. The filter’s performance diminishes

if this assumption is not met. Noise characterization have sparked ample amounts

of interest in a range of applications as a result of this. A wide range of studies

have been conducted on the features, benefits, and drawbacks of noise adaptation

techniques. Feedback methods and feedback-free methods are two types of noise

covariance estimation approaches. Feedback approaches allow for simultaneous esti-

mation of states and noise covariance matrices. Covariance matching and Bayesian

procedures are examples of these techniques. In contrast, estimated noise covariances

are not necessary for state estimation with feedback-free approaches. Correlation and

maximum-likelihood approaches are two examples of statistical procedures [63, 64].

Chapter 4 presents an adaptive version of the SVSF-VBL strategy to tune the level

of noise measurement and modeling uncertainties (R and Q) to improve the perfor-

mance of the filter for noisy conditions. The proposed strategy is used to improve the

state estimate of a battery.
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1.7 System Observability

An observable system is one in which its states can be determined from knowledge of

its outputs. The observability of a system model should be assessed before employing

an estimation method. For a linear time-invariant system defined by a state-space

representation, an observability matrix with a full rank can ensure the global observ-

ability. However, determining whether a nonlinear system is observable can be more

challenging. The state-space form of a nonlinear system can be defined as follows,

xk+1 = f(xk) + g(xk)uk, (1.47)

yk = h(xk, uk) (1.48)

For a nonlinear system, the local observability can be analyzed. Several concepts

must be introduced for analyzing the observability of a nonlinear system.

Definition 1 ( see [65]). For a system represented by equations 1.47 and 1.48, x0

and x1 are declared to be distinguishable states if there exists an input function u(.)

such that

y(k, x0, u) ̸= y(k, x1, u) (1.49)

for a finite time. The system is locally observable at x0 ∈ X if there exists a neighbor-

hood N of x0 such that every x ∈ N excluding x0 is distinguishable from x0. Therefore,

the system is called locally observable if it is locally observable at each x ∈ X.
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A system is globally observable if every pair of states (x0, x1) with x0 ̸= x1 is dis-

tinguishable. It can be demonstrated that two states are distinguishable for a linear

system if y(k, x0, u) ̸= y(k, x1, u) condition holds for any u. Furthermore, it can be

proven that for a linear system, local observability leads to global observability. How-

ever, this is not guaranteed for a nonlinear system. The observability of a nonlinear

system can be illustrated using extended Lie-derivative.

Definition 2 ( see [66]). Suppose the output h(x, u) =

[
h1 h2 ... hm

]T

is a m-

dimensional vector function on x and u. The gradient of hj, j = 1, ...,m denoted by

dhj is a form of,

dhj =

[
∂hj

∂x1

∂hj

∂x2
...

∂hj

∂xn

]
(1.50)

Then the extended Lie-derivative of h with respect to f is,

Lfh(x, u)=dh(x, u)f(x) +
i=∞∑
i=0

∂h(x, u)

∂ui
ui+1 (1.51)

The Lie-derivatives for higher order than one are obtained as,

Lj
fh(x, u)=dL

j−1
f h(x, u)f(x) +

i=∞∑
i=0

∂Lj−1
f h(x, u)

∂ui
ui+1 (1.52)

The following theorem provides a sufficient condition for a nonlinear system’s local

observability based on the given definitions.

Theorem 1 ( see [65]). For a system described by Equation 1.47 and 1.48 with the
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assumption of given x0 ∈ X. Consider the form,

(dLzsLzs−1 ...Lz1hj), s ⩾ 0, zi ∈ {f, g1, ..., gp} (1.53)

evaluated at x0 where i = 1, ..., s, j = 1, ...,m and for s = 0 the expression is equal to

dhj(x0). Suppose there are n linearly independent row vectors in this set. Then the

system is locally observable around x0.

Theorem 1 can also be used to derive the observability condition for a linear

system. Based on theorem 1, the observability matrix for a general nonlinear system

can be defined as,

OI(x, u) =



dh(x, u)

Lfh(x, u)

Lgh(x, u)

L2
fh(x, u)

L2
gh(x, u)

.

.

.



(1.54)

Therefore, the model described by equations 1.47 and 1.48 is locally observable if

the observability matrix (OI(x, u)) has n linearly independent row vectors. In Chapter

3, the observability of the battery model is demonstrated prior to implementing the

proposed estimation method.
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1.8 Research Contributions

Estimation of the battery’s State of Charge (SoC), State of Health (SoH), and State of

Power (SoP), which cannot be measured directly, is critical for its energy management

system. This thesis focuses on improving the estimation accuracy of a battery’s states

of operation under different operating conditions. Despite the fact that battery state

estimation continues to be a frequently debated topic of research, there are still gaps

in the literature. This thesis proposes advanced estimation strategies for battery cells

and packs to address the existing issues.

The first challenge with estimation strategies is their reliance on an accurate math-

ematical battery model. A proper model should describe the behavior of a battery

under a variety of conditions such as temperature, and current level. Furthermore,

the impact of battery degradation and SoH should be considered. Different strategies

have been introduced for model adjustment of a system. Adaptive techniques such

as online parameter estimation are widely used to improve the battery performance

by adjusting the model to changing conditions. A dual estimation method using two

cooperating filters is firstly introduced in this thesis. To mitigate the impact of mod-

eling errors and uncertainties, a robust filter is required. The robustness of the filter

is critical since the parameters of the battery model are changing with SoC and SoH.

These changes could lead to instability or divergence of the filter. Therefore, the

SVSF method is used for state estimation of the battery. A Recursive Least Square

with a Forgetting factor is also considered to capture the changes in parameters of a

third-order ECM. The RLS strategy is numerically stable and its computational effi-

ciency is well known. Furthermore, the dual estimation of RLS with the SVSF-VBL
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provides higher accuracy in comparison to the well known EKF method. However,

the full dual estimation strategy (RLS-SVSF) considering a third-order battery model

is computationally intensive. The RLS method uses a regression model to obtain the

parametric vector. The parameters of the battery model are then calculated by solv-

ing a system of nonlinear equations which is computationally heavy for the third-order

ECM.

Model selection strategy is therefore proposed in this thesis to ensure adaptation

stability and computation efficiency. Three predefined models, each for a different

state of life of the battery cell, are considered in the concept of IMM as shown in

Figure 1.8, to effectively deal with battery aging. The IMM strategy is combined

with the SVSF-VBL method to reduce the effect of modeling errors and uncertainties.

The SVSF-VBL provides an accurate estimate while ensuring that the estimate is

stable. The SVSF-VBL filters’ error covariance represents the estimation error and

thus the applicability of each of these parallel filters in the IMM concept. The error

covariances are used to determine the mode probabilities as defined in Equation 1.43.

This demonstrates how close the filter model for a specific SoH is to the true age

of the battery. The mode probability indicates the suitable model that captures the

SoH of the battery.

The coulomb counting method, defined in Equation 1.1, is commonly regarded

as the base technology for obtaining the actual SoC, which is then compared to the

model-based state estimation strategy such as the IMM-SVSF-VBL. However, due

to the inaccurate initial value of the battery SoC, current sensor bias, and the avail-

able capacity limited by age, a bias in the calculated SoC may exist. To address

this problem, the coulomb counting method is used in conjunction with the proposed

46



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

model-based state estimation strategy (IMM-SVSF-VBL). Coulomb counting is re-

garded as an additional measurement in the formulation of the predefined ECMs,

described in Equation 1.12, to improve the performance of the battery state estima-

tion. Furthermore, the number of parameters that can be estimated while remaining

observable is increased. As a result, the SoC bias and the internal resistance of the

battery cell are estimated in addition to its states. The internal resistance is an indi-

cator for the SoH of the battery as defined in Equation 1.3 which is then combined

with the SoH obtained from the mode probability to provide an accurate measure

of the battery’s SoH. The estimated internal resistance and SoC are then used to

quantify the battery’s SoP, which provides a complete estimation of the battery’s

operating states.

Although the proposed strategy provides accuracy for estimating the states of a

battery cell, obtaining the same result in a battery pack is limited due to cell-to-

cell variations. Variations in the SoC and SoH of batteries over time can accelerate

the degradation of the battery pack, and should therefore be taken into account.

In series-connected cells, balancing methods are used to detect cell inconsistencies.

In parallel-connected battery cells, however, it is impractical and costly to measure

the current of individual cells. Therefore, a robust strategy is required to estimate

the states of the module with respect to the existing sensors. Parallel-connected

battery cells are commonly modelled as a single cell, with all cells consuming the

same amount of current which may not be the case in presence of an aged cell in

the module. A RLS is considered for real-time parameterization of parallel-connected

battery cells. A first-order model is used and considered to provide a computationally

effective method for use on a BMS for a module. The effect of the weakest cell in the
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battery module model is determined using the online parameter identification. To

improve the performance of the state estimation, the proposed strategy of combining

the coulomb counting method with the model-based state estimation strategy (SVSF-

VBL) is therefore implemented for the parallel-connected battery module. The new

ECM formulation is then used to estimate the terminal voltage bias in order to provide

a more accurate result in terms of cell inconsistencies for state estimation. The

proposed dual estimation strategy provides robustness in presence of a faulty cell in

a parallel-connected battery module.

Model-based filters proposed for state and parameter estimation assume that the

input functions and the noise statistics (Equations 1.20 and 1.21), are largely known.

However, this may not be the case in all applications and may need to be remedied

through noise adaptation. In battery applications, measurement errors such as sensor

noise, drift, and bias affect the performance of the state estimation and therefore the

BMS. Noise covariance adaption approaches help estimation algorithms to perform

more accurately. In addition, a more effective approach should also consider sensor

bias estimation, as well as noise. To mitigate this issue, this thesis proposes a noise

covariance adaptation method for the SVSF-VBL algorithm to improve its robustness

for state estimation of a battery in presence of unknown physical disturbances, noise,

and initial conditions.

The rest of this section summarizes the main hypotheses and contributions of this

thesis.

1.8.1 Hypotheses

The hypotheses that formed the foundation for this thesis are as follows:
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Hypothesis 1. The accuracy of SoC estimation can be improved by combining state

estimation and coulomb counting.

Coulomb counting method needs regular calibration as a result of measurement

errors and noise. It also requires knowledge of the initial SoC as well as the capacity

of the battery. Treating coulomb counting as an extra measurement with a revised

battery model provides a new formulation for state estimation. The updated formu-

lation ensures the model’s observability for estimating added parameters that lead to

higher accuracy for SoC estimation at the cell and pack levels.

Hypothesis 2. The IMM strategy can be used to improve SoC and SoH estimation

by considering a number of predefined models each for a different SoH.

The IMM strategy employs a finite number of independent models to capture the

changing dynamics of a system. An ECM accurately represents the characteristics

of a battery model when the battery is at its early stage. However, as a battery

ages, the parameters of the ECM should be updated. In addition, a higher order

model should be considered to simulate the characteristics of the battery. Hence, a

single ECM structure is insufficient for all stages of a battery’s life cycle, necessitating

the real-time updating of the model’s parameters. The MM strategy with different

battery models, each assigned to a specific SoH, can improve the performance of state

estimation significantly.

Hypothesis 3. Adjusting the system and measurement noise covariances enhances

the performance of the SVSF for state estimation of a battery.

For accurate state and parameter estimation, knowledge of the system model is

required. A stable filter requires the characterization of noise statistics in addition to
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the dynamic model. If this information is incorrect, the designed filter may perform

significantly worse and result in divergence. It is especially important for batteries

that operate over a wide range of conditions, such as different C-rates and temper-

atures. The SVSF algorithm can use noise covariance adaptation to update these

parameters during the estimation process.

1.8.2 Contributions

An overview of the contributions of this thesis is shown in Figure 1.9. The contri-

butions of this research are published as journal and conference papers. The main

contributions of the work, which are published as journal papers, are marked with

red in Figure 1.9. Conference papers are highlighted green. This work’s primary and

secondary contributions are summarized below.

Battery Model/State  
Estimation 

Battery Cell Estimation 

Dual State Estimation 
Online Parameter 
Identification with 

SVSF-VBL 

New and Aged Battery 
Cell

IMM with Modified Model SoC Bias Estimation 

2 Indicators for SoH 
Estimation

SoC/SoP Estimation

Adaptive SVSF-VBL 
Noise Covariance 

Adjustment for SVSF
Indicator for SoH and 

Current Bias Estimation

Battery Pack Estimation
Robust Strategy for 
Parallel-connected 

Battery Module

Online Parameter 
Identification of the Pack 

Model

Roubstness for Faulty 
Pack

Comparison with EKF 
and SVSF

Indicator for SoH and 
Measurements bias 

Estimation

Figure 1.9: Research Contributions Flowchart.
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Primary Contributions

The primary contributions of this research are:

1. Development of a new SoC estimation strategy by combining state estimation

with coulomb counting (Chapters 3 and 5).

Battery state estimation should aim to strike a balance between accuracy and

complexity. The proposed strategies in Chapters 3 and 5 significantly reduce

estimation error rates without overly increasing complexity.

2. Development of an adaptive method for state estimation of a battery based on

the IMM concept using SVSF-VBL filters (Chapter 3).

The second contribution is based on research into combining different models

to be able to provide an accurate estimation for SoC as well as SoH. This

contribution is further to Hypothesis 2 and can determine SoC within an error

of 2%. Chapter 3 proposes a method for real-time capture of the SoC, SoH, and

SoP of a battery.

3. Development of an adaptive method based on the SVSF to adjust the process

and noise covariances (Chapter 4).

Battery SoC estimation shows higher errors in presence of noise and bias in

measurements. The performance could worsen at higher C-rates. The goal of

Chapter 4 is to demonstrate the effect of noise on estimation methods and to

develop an adaptive strategy for compensating changes in noise statistics.

4. Development of a robust strategy for state estimation of parallel-connected bat-

tery cells (Chapter 5).
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As part of this research, the proposed estimation methods are extended from the

cell level to module level. Chapter 5 introduces a robust strategy for estimating

the states of parallel-connected battery cells in the absence of balancing without

any additional sensors.

Secondary Contributions

The secondary contributions of this research are:

1. Online parameter estimation of a third-order ECM along with a robust strategy

for state estimation of a battery at different SoH (Chapter 2).

Online parameter estimation provides a higher accuracy for state estimation.

An updated battery model according to the battery’s SoH enhances the perfor-

mance of estimation. Chapter 2 provides a dual state and parameter estimation

strategy for a battery using a SVSF.

2. An investigation into the observability of a modified battery model with addi-

tional measurement is undertaken (Chapter 3).

System observability must be considered in state estimation. Chapter 3 looks

into the observability of a battery model when there are extra states to be

estimated. The specific conditions that must be met for filter stability and

performance are investigated.

3. Identification of the current bias to provide adaption for a filter for state esti-

mation of a battery (Chapter 4).

The estimation of the SoC and SoH must be robust and reliable despite noise,

uncertainty and sensor biases. Chapter 4 provides an adaptation scheme for
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estimating the sensor bias in current measurements. This could increase the

performance of the state estimation especially at higher C-rates.

4. Identification of the terminal voltage bias to improve state estimation of parallel-

connected battery module in presence of a faulty cell (Chapter 5).

Identification of the terminal voltage bias is an important consideration. Chap-

ter 5 investigates how the terminal voltage bias estimation could improve the

state estimation of a parallel-connected battery module in presence of a faulty

cell. A significant improvement is shown on SoC estimation in comparison to

other strategies.

5. Online parameter estimation of a battery module’s model along with its state

estimation (Chapter 5).

Parallel-connected battery cells can be regarded as a single cell with higher ca-

pacity. Online parameter estimation of an ECM for a battery pack enhances the

performance of state estimation significantly. Combination of online parameter

identification with a robust method shows a higher accuracy in comparison to

other methods in Chapter 5.

1.9 Thesis Outline

Chapter 2 provides a review of the literature on the effect of online parameter iden-

tification, with a focus on the battery SoH. To estimate the battery SoC using an

updated model, a dual estimation method is proposed. The results show how model

parameters can change for batteries with varying SoH.
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Chapter 3 provides a literature review of estimation strategies with applications

to batteries. A novel estimation strategy is proposed by combining a measurement-

based strategy with a model-based method. The IMM strategy with SVSF-VBL

is presented to obtain an accurate estimation for SoC, SoH and SoP. Finally, the

results are presented to demonstrate how the filter performs under various operating

conditions.

Chapter 4 provides a literature review on the use of the noise covariance adap-

tation for state estimation. In this chapter, an adaptive version of the SVSF-VBL

is proposed, which is combined with online current bias estimation. Along with the

SoC estimation, an indicator of SoH is also presented. The results show how the filter

reacts in the presence of noise and uncertainties in the measurements and battery

model.

Chapter 5 provides an overview of SoC estimation techniques with a particular

emphasis on parallel-connected battery cells. To improve the accuracy of state es-

timation at the module level, a robust strategy is considered. A dual strategy for

state estimation of a parallel-connected battery module is introduced. The results

are presented showing the significant improvement of the proposed method for SoC

and SoH estimation of a battery module.

Chapter 6 contains the conclusions and summary of this work. This chapter also

includes a discussion of future work.
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Abstract: The use of Hybrid (HEVs) and Electric (EVs) Vehicles has become

more prevalent around the world in the last decade. These vehicles commonly use

lithium-ion (Li-ion) batteries due to their high energy density. They also utilize

Battery Management Systems (BMSs), which rely on continuous real-time monitoring

and control, to ensure safe operation. The BMS acquires accurate State of Charge

(SoC) and State of Health (SoH) estimates. For these, battery models that are

identified and updated at various states of life from new to aged are required. In

this paper, a dual strategy for both parameters and SoC estimation is proposed using

a third-order equivalent circuit-based battery model (OCV-R-3RC). The strategy
1In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of McMaster’s products or services. Internal or personal use of
this material is permitted. If interested in reprinting/republishing IEEE copyrighted material
for advertising or promotional purposes or for creating new collective works for resale or redis-
tribution, please go to http://www.ieee.org/publications_standards/publications/rights/
rights_link.html to learn how to obtain a License from RightsLink.
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employs a Recursive Least Squares (RLS) method with a forgetting factor to identify

the parameters related to SoC. The Smooth Variable Structure Filter (SVSF) is then

used as an estimation strategy for obtaining the battery’s SoC. The efficacy of the

proposed algorithm is verified by applying it to experimental data from an extensive

aging test.

2.1 Introduction

Batteries are a particularly important component in Electric Vehicles (EVs) requiring

accurate control and monitoring. All the challenges faced in the production of elec-

tric vehicles such as cost, range anxiety, safety and reliability originate in batteries.

Therefore, accurate management, control and monitoring are essential to guarantee

safety, and reliability of battery packs [23]. The BMS is responsible for providing a

real-time estimate of the SoC and SoH of the battery. The battery SoC is a critical

indicator for the driver on the amount of energy left in the battery. Since SoC and

SoH are not directly measurable, a reliable and accurate estimation strategy is needed

for the BMS [67].

Different methods proposed in the past to calculate the battery SoC have included

strategies using coulomb counting, impedance measurement, fuzzy logic, artificial

neural network and model-based estimation methods. One of the popular approaches

used to estimate the battery SoC, even with an unknown initial SoC, is the Kalman

Filter (KF) and its Extended version (EKF) [68]. However, in practice, the use of EKF

has some shortcomings related to the characterization of noise and uncertainties that

could result in instability [69]. More robust strategies include the Variable Structure

Filter (VSF) [51] and Smooth Variable Structure Filter (SVSF) [54]. A comparison
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of robustness between the performance of the EKF, the Particle Filter (PF), the

Quadrature KF (QKF), and the SVSF shows the better robustness of the SVSF in

the estimation of the SoC of lithium-ion (Li-ion) batteries [70].

The above methods rely on having a mathematical model for the battery. In

[71], a comparison between different battery model is provided. However, a proper

battery model should describe the behavior of the battery in a wide range of circum-

stances and also consider the effects of aging and degradation [16, 23]. In [28, 29], a

reduced-order electrochemical model is proposed for aged batteries and used for SoC

estimation. In [62], Plett proposed two approaches to estimate both parameters and

states simultaneously: I) Joint estimation II) Dual estimation. The joint estimation

method augments the state vector with model parameters and estimates these using

an EKF. The dual estimation method employs two cooperating EKFs where one es-

timates the states and the other estimates the parameters.

In [72], a parameter identification strategy using Least Square (LS) is applied to an

equivalent circuit-based model for estimating the parameters of the model and SoC.

A genetic-algorithm-based multi-objective optimization is proposed in [73] to identify

the parameters of an equivalent circuit-based battery model. In [68], an Adaptive

Unscented KF (AUKF) is considered for battery model parameters identification. A

dual estimation of an EKF for parameter estimation and a PF for SoC estimation

is proposed in [74]. A Recursive Least Square (RLS) and an EKF are proposed for

parameters and state estimation in [75, 76].

This paper considers a RLS with a forgetting factor to estimate the model param-

eters of a battery. The SVSF, is combined with online parameter identification to

create an accurate SoC estimation. The proposed strategy demonstrates robustness
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to model uncertainties, sensor noise and unknown initial SoC. Its performance has

been verified using an extensive aging test with real-world driving cycle. These tests

were conducted over a 12-month period and involved accelerated testing of a battery

lifetime [16, 77]. A third-order equivalent circuit-based battery model (OCV-R-3RC)

is used for this study as it provides an accurate model for real-time implementation

on a BMS, especially as the battery ages.

The outline of the paper is as follows: Section II presents the battery model,

and the proposed online parameter estimation method. The estimation of SoC and

experimental results are presented in Section III. Section IV contains the conclusions

of the work.

2.2 Battery Modeling and Parameter Estimation

A third-order equivalent circuit model is considered in this study as shown in Figure

2.1 and according to the following equations.

V1,k = a1V1,k−1 + b1IL,k−1 (2.1)

V2,k = a2V2,k−1 + b2IL,k−1 (2.2)

V3,k = a3V3,k−1 + b3IL,k−1 (2.3)

VT,k = Voc + cIL,k + V1,k + V2,k + V3,k (2.4)

where the parameters ai = e−Ts/τi , bi = Ri(1 − e−Ts/τi), c = R0 and τi = RiCi, i =

1, 2, 3.

To estimate the battery model parameters, a suitable model needs to be developed

for the battery that can describe the salient features of both steady-state and transient
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Figure 2.1: OCV-R-3RC Model [78].

responses. The following equation relates the load current (IL) to the battery terminal

voltage (VT ) in the z-domain.

VT (z) = (
b1

z − a1
+

b3
z − a3

+
b3

z − a3
)IL(z) + cIL(z) + Vocv (2.5)

Since the open circuit voltage (Vocv) is just a function of SoC, it can be considered

as a parameter and a linear regression model can be constructed based on the OCV-

R-3RC model. The linear regression model can be compactly written as the inner

product as follows from the inverse z-transform of (2.5) [79, 80],

VT,k = θTΦk (2.6)

where,

Φk = [IL,k−3 ... IL,k VT,k−3 VT,k−2 VT,k−1 1]
T

is a regressor consisting of known signals and θ = [θ1 ... θ8]
T

is the parameter vector
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which is defined as follows:

θ1 = −ca1a2a3 + b1a2a3 + b2a1a3 + b3a2a3

θ2 = c(a1a2 + a2a3 + a1a3)− b1(a2 + a3)

− b2(a1 + a3)− b3(a1 + a2)

θ3 = b1 + b2 + b3 − c(a1 + a2 + a3)

θ4 = c

θ5 = a1a2a3

θ6 = −(a1a2 + a2a3 + a1a3)

θ7 = a1 + a2 + a3

θ8 = (1− (θ5 + θ6 + θ7))Vocv (2.7)

A RLS algorithm with a forgetting factor is then employed to the regression model

[36]. The RLS algorithm is known for its computational efficiency and stability.

Since the RLS algorithm guarantees a positive-definite and symmetric covariance

matrix, it is numerically stable [36]. In order to track the variation of parameters, a

forgetting factor is considered in the RLS. The battery electrical parameters are then

generated from the output of this algorithm. The parameters c, ai, bi, i = 1, 2, 3 can

be calculated from the estimated θ by solving eq.2.7 . Then, the battery electrical

parameters R0, Ri, Ci, i = 1, 2, 3 and Vocv can be obtained from these parameters. In

the next section, the obtained parameters are employed to estimate the SoC with the

SVSF strategy.
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2.3 SoC Estimation And Experimental Results

2.3.1 SoC Estimation Using SVSF

This section presents the combination of the RLS method for parameter estimation

with the SVSF strategy for SoC estimation. The SVSF approach is a predictor-

corrector method [54]. The SVSF can be utilized for observable and differentiable

systems for the following class of systems:

xk+1 = f(xk, uk, wk),

zk = Hxk + vk (2.8)

The SVSF method can be described as follows [51]:

• Prediction: The a-priori state estimate is obtained by using an estimated model.

x̂k+1|k = f(x̂k|k, uk),

ẑk+1|k = Ĥx̂k+1|k (2.9)

ezk+1|k = zk+1 − ẑk+1|k (2.10)

• Correction: The updated state is obtained by using a gain to refine the a-priori

estimate into its a-posteriori form.
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x̂k+1|k+1 = x̂k+1|k +KSV SFk
ezk+1|k ,

ẑk+1|k+1 = Ĥx̂k+1|k+1 (2.11)

ezk+1|k+1
= zk+1 − ẑk+1|k+1 (2.12)

The SVSF’s gain KSV SFk
is defined as follows [54]:

KSV SFk
= Ĥ+diag

[
|ezk|k−1

|+ γ|ezk−1|k−1
|
)
.sat(

ezk|k−1

ψ
)]diag(ezk|k−1

), (2.13)

The RLS online parameter identification method is combined with SVSF to cal-

culate the battery parameters and SoC over time. Figure 2.2 shows an overview of

the proposed algorithm. The RLS method provides updated parameters to the SVSF

at each time step. The SVSF is then used to estimate the battery SoC.

2.3.2 Experimental Results

This study used a mixture of the following three driving schedules: an Urban Dy-

namometer Driving Schedule (UDDS), a light duty drive cycle for high speed and

high load (US06) and a Highway Fuel Economy Test (HWFET) driving cycle. The

driving schedule includes currents of up to 10 C across the entire SoC range of 20%

to 90%. The aging data is experimental and has been collected for both new and

aged battery cells [16]. Figure 2.3 shows the current, the measured terminal voltage

and the battery SoC for new and aged battery cells. The difference SoC estimates
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Figure 2.2: The proposed dual estimation algorithm.

for the aged versus new battery cells shows the importance of updating the model

parameters as the battery ages. The proposed algorithm remedies this problem.

Figures 2.4 and 2.5 depict the estimated R0 and open circuit voltage (Vocv) for

new and aged battery cells using RLS. The results show that the model parameters

change over the entire driving cycle at different SoC level as well as the battery age.

Table 2.1 shows the identified value of model parameters over the entire driving

cycle for new and aged battery cells. C2 and C3 were almost constant for a range of

SoC. The results show that the resistance increases and the capacity decreases as the

battery ages as expected. Parameter estimation improves the accuracy of terminal

voltage and SoC estimation using the SVSF approach as shown in Figures 2.6 to

2.9. The SVSF parameters used for the simulation are given in Table 2.2 for new
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Figure 2.3: Current, Voltage, and SoC for new and aged battery with experienced
driving cycle.

and aged battery cells. The Root Mean Square Error (RMSE) between the actual

terminal voltage and SoC and the estimated ones are provided in Table 2.3.

2.4 Conclusion and Future Works

In this paper, an online parameter estimation strategy using RLS with a forgetting

factor is combined with a state estimation strategy using the Smooth Variable Struc-

ture Filter (SVSF) for obtaining the battery SoC and the terminal voltage. The

proposed dual estimation approach was then validated using experimental data for

new and aged battery cells. A third order equivalent circuit-based battery model
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Figure 2.4: Identification result of R0 by RLS.

(OCV-R-3RC) was considered in this study. The results showed that the identified

parameters change with changing SoC as well as SoH. The resistance and capacity

of the model change as expected when the battery ages. It was also shown that the

online parameter estimation results in more accurate SoC and terminal voltage esti-

mation. Future research involves considering other factors such as temperature and

cell-balancing, which can affect the battery parameters, in battery model.
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Figure 2.5: Identification result of Vocv by RLS.

Table 2.1: Identification results of 3RC model parameters at different SoC levels.

SOC(%) 20 30 40 50 60 70 80 90

R1(mΩ)
New cell 0.917 1.14 0.89 0.93 0.41 0.61 1.29 0.724
Aged cell 1.02 0.85 1.1 0.49 1.57 1.12 1.7 0.975

R2(mΩ)
New cell 1.02 0.85 0.68 0.49 1.57 1.11 0.68 0.98
Aged cell 1.2 1.2 0.89 0.93 0.41 1.2 1.29 2.21

R3(mΩ)
New cell 1.02 0.853 0.69 0.71 0.35 1.2 0.681 0.687
Aged cell 1.12 6.1 0.69 0.71 0.35 1.2 0.681 1.498

C1(F )
New cell 33168 37344 27534 14417 19682 29433 26311 16231
Aged cell 33165 37244 27530 14415 19682 29341 26305 16244

Table 2.2: SVSF Parameters for New and Aged battery.

SVSF Parameters γ ψ
New cell 0.807 1.44
Aged cell 0.6241 2.7167

Table 2.3: RMSE of estimated states by SVSF.

State New Cell Aged Cell
VT RMSE .003325 0.0179
SOC(%) RMSE 1.817 3.489
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Figure 2.6: Estimated vs. actual terminal voltage by SVSF for new battery
[Capacity = 100%].

Figure 2.7: Estimated vs. actual terminal voltage by SVSF for aged battery
[Capacity = 80%].

67



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

Figure 2.8: Estimated vs. actual SoC by SVSF for new battery [Capacity = 100%].

Figure 2.9: Estimated vs. actual SoC by SVSF for aged battery [Capacity = 80%].
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Abstract: States estimation of Lithium-ion (Li-ion) batteries is an essential el-

ement of Battery Management Systems (BMSs) to meet the safety and performance

requirements of electric and hybrid vehicles. Accurate estimations of the battery’s

State of Charge (SoC), State of Health (SoH), and State of Power (SoP) are essential

for safe and effective operation of the vehicle. They need to remain accurate despite

the changing characteristics of the battery as it ages. This paper proposes an online

adaptive strategy for high accuracy estimation of SoC, SoH and SoP to be imple-

mented onboard of a BMS. A third-order Equivalent Circuit Model (ECM) structure
1In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of McMaster’s products or services. Internal or personal use of
this material is permitted. If interested in reprinting/republishing IEEE copyrighted material
for advertising or promotional purposes or for creating new collective works for resale or redis-
tribution, please go to http://www.ieee.org/publications_standards/publications/rights/
rights_link.html to learn how to obtain a License from RightsLink.
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is considered with its state vector augmented with two more variables for estima-

tion including the internal resistance and SoC bias. An Interacting Multiple Model

(IMM) strategy with a Smooth Variable Structure Filter (SVSF) is then employed to

determine the SoC, internal resistance, and SoC bias of a battery. The IMM strat-

egy results in the generation of a mode probability that is related to battery aging.

This mode probability is then combined with an estimation of the battery’s internal

resistance to determine the SoH. The estimated internal resistance and the SoC are

then used to determine the battery SoP which provides a complete estimation of the

battery states of operation and condition. The efficacy of the proposed condition-

monitoring strategy is tested and validated using experimental data obtained from

accelerated aging tests conducted on Lithium Polymer automotive battery cells.

3.1 Introduction

Electric (EVs) and Hybrid Electric (HEVs) Vehicles are creating a disruptive change

in the automotive industry as they present a sustainable alternative to their fossil-fuel

based counterparts. The EVs energy storage system consists of a battery pack which

is the key to commercial success of such vehicles [12].

Although battery technology is thriving, Lithium-ion (Li-ion) batteries remain

the most common in EV and HEV applications due to their high energy and power

densities, and long lifetime. Along with the growth of battery technology, the per-

formance of a Battery Management System (BMS) is critically important to ensure

safety, and reliability of the battery pack [81]. A comprehensive review of different

energy management methods has been presented in [82] for EV and HEV applica-

tions. These methods can be used to optimize the performance of a battery. Included
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in its functionality, the BMS must also provide an accurate estimation of the State

of Charge (SoC), State of Health (SoH), and the State of Power (SoP) of a battery

pack [12, 28].

The SoC is an indicator of charge remaining in the battery pack, similar concep-

tually to the gas gauge in fossil-fuel vehicles. Since there is no sensor available to

directly measure the battery SoC, it needs to be estimated from measurements such

as terminal voltage, temperature and current. Therefore, an accurate and reliable

estimation strategy is critical for maintaining and optimizing battery operations. It

also impacts safety as an accurate estimation of SoC in the BMS can prevent the

battery from being over-charged or limit the rate of current in terms of charge or

discharge to maintain a safe operating temperature [67].

SoC estimation techniques can generally be classified into conventional coulomb

counting, direct methods and indirect methods. The direct methods are based on

direct measurements such as terminal voltage, impedance or Open Circuit Voltage

(OCV) to calculate the battery SoC [23, 31, 83].

Coulomb counting method is the simplest and most common technique used to

calculate the battery SoC. This method can be implemented irrespective of battery

chemistry and is usually employed as the base technology for SoC estimation onboard

of a BMS. However, this approach requires regular calibration due to measurement

errors and noise. It also needs a knowledge of the initial SoC [84].

Several enhancements on this method have been proposed in [84, 85, 86, 87]. In

[84], a piece wise linear approximation of the functional relation between the OCV

and SoC is used to re-calibrate the battery capacity for the SoC calculation. In

[85], a least-square based coulomb counting method is provided combined with the
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measurement of the open circuit voltage of a battery at rest for finding the initial

value of the battery SoC. In [86], Peukert’s law is expanded for the discharging process

combined with the coulomb counting technique for the charging process to provide a

SoC estimation.

Despite the proposed improvements, coulomb counting suffers from being inaccu-

rate due to the uncertainties of measurements and determination of the initial SoC.

Furthermore, a regular re-calibration is needed as the battery ages to ensure the

accuracy of the SoC with respect to battery capacity [88]. Therefore, closed-loop

estimation methods have been of great interest. The so-called indirect strategies are

very practical for EV and HEV applications including, but not limited to, fuzzy logic-

based estimation, artificial neural networks and filter/observer-based techniques. A

robust and stable estimation method along with a reliable battery model must be em-

ployed to estimate the battery SoC using filter-based techniques [89]. Fusion-based

methods with Machine Learning (ML) can also be used to estimate the states of a

battery. However, in most ML applications, large volume of data is needed for initial

training. In applications where a model is establish or readily identifiable, it is more

convenient to use model-based strategies such as in the case of batteries where the

model can provide additional insight into the internal dynamics of the system [20, 90].

Battery models can be categorized into electrochemical and Equivalent Circuit

Models (ECMs). An electrochemical model represents the internal reactions and

physics of a battery cell. However, due to their high computational complexity, it is

quite challenging to use them with estimation algorithms and in real-time. On the

other hand, ECMs can be easily parameterized by experimental data using system

identification techniques. Although the identified parameters of ECM models do not
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reflect the physical reaction within a battery cell, the accuracy of SoC estimation is

sufficient for a BMS within bounded operating regions [91, 92]. However, the battery

model considered onboard of a BMS, can not represent the inevitable degradation

happening inside the battery over time. The BMS should therefore be able to indicate

the battery SoH and determine its capacity to store energy. An indicator for SoH is

the internal resistance or the capacity of the battery. The aging affects the battery’s

characteristics and in turn its model. Therefore, the BMS must be able to update

the parameters of the model as the battery ages.

Modifications to model parameters can be performed by different techniques such

as parameter estimation and model selection [93, 94]. Parameter estimation tech-

niques take available measurements of a battery to estimate model parameters over

time as presented in [95, 96, 97]. However, adaptation based on the measurements

suffer from the problem of observability and usually entails optimization. Adapta-

tion on its own is therefore not sufficient to guarantee adaptation stability and avoid

overparameterization [94]. A model selection and updating strategy would be also

required to switch between predefined models usually contained within a library of

models with parameters that are accessible through a look-up table. These models

can be optimized to capture the changing dynamics of the battery while aging or

operating at different regions. This method of model selection not only guarantees

stability, but also provides information on the SoH concurrently with SoC. A post-

processing method is presented in [93] to estimate parameter values of a reduced-order

physics-based model for different states of a battery life.

The performance of a BMS depends as much on the accuracy of states as on

the estimation of model parameters. The states of a system can be estimated using
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a filter, based on a dynamic model along with sensor measurements. One of the

most common estimators is the Kalman Filter (KF); it has been applied to problems

including state and parameter estimation, target tracking, signal processing, fault

detection and diagnosis. However, this filter can be applied only when the system

model is largely and known, the system and measurement noise are white, and the

states have initial conditions with known means and variances. For nonlinear systems,

the Extended KF (EKF) is one of the most common estimation strategies and has

been widely used for management of li-ion batteries [98]. Other methods considered in

BMS include the Particle Filter (PF), the Quadrature KF (QKF), and the Unscented

KF (UKF) [59, 99].

Robust strategies have been also proposed to decrease the effect of modeling error

and uncertainties such as the Variable Structure Filter (VSF) [51] and the Smooth

VSF (SVSF) [54]. The SVSF is a method based on sliding mode theory which uses

discontinuous gain and a smoothing boundary layer. This method enhances robust-

ness for the SoC estimation. An improved version of SVSF is proposed in [57] using

a Variable Boundary Layer (SVSF-VBL) which is more accurate in the presence of

varying noise and modeling uncertainties. However, system observability has to be

guaranteed in order to use these algorithms [91].

Multiple Model (MM) strategies exploit a finite number of models to provide ro-

bustness and adaptability against uncertainties. The MM methods can be considered

as being adaptive techniques including renditions as static MM, dynamic MM, Gen-

eralized Pseudo-Bayesian (GPB), and the Interacting MM (IMM) [100, 101, 102]. In

[103], the combination of IMM with the SVSF was proposed to address fault detection

and diagnosis problems. The result reported from IMM-SVSF showed a significant
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improvement in estimation accuracy.

This paper includes the following contributions:

1. A modified equivalent circuit model formulation is presented that considers

observability in the context of estimating not only the states but also parameters

related to the SoH of the battery including the internal resistance, the SoC,

and its bias. In the proposed model, the estimated SoC from the conventional

coulomb counting method is considered as a measurement for the system. The

bias resulting from coulomb counting is then defined as a state to be estimated.

2. An associated estimation strategy is employed which is a combination of IMM

with SVSF-VBL approach (IMM-SVSF-VBL). It involves use of multiple mod-

els, each for a different state of life of the battery. The proposed approach

provides an accurate and robust estimation for the battery states including its

SoC and the internal resistance. The battery’s SoH is estimated by fusing the

results from two approaches: the estimated internal resistance and the model

selection probabilities obtained from the IMM-SVSF-VBL strategy.

3. A combined strategy is proposed for estimating the battery SoP by using the

estimated internal resistance along with the battery’s SoC.

The outline of this paper is as follows: Section 3.2 presents the proposed battery

estimation model. Section 3.3 investigates the observability of the new model. The

proposed estimation strategy for SoC is presented in Section 3.4 and the co-estimation

technique is introduced in Section 3.5. The experimental and validation results are

demonstrated in Section 3.6. Section 3.7 contains the conclusions of the work.
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3.2 Modeling

ECMs are commonly utilized to model li-ion batteries as shown in Figure 3.1. An

ECM model links the OCV of the battery to its SoC. Its multiple Resistance-Capacitance

(RC) branches are used to capture the transients and a series resistance defined as

internal resistance (Rin) relates the terminal voltage to the input. A proper model

structure is required to describe the behavior of a battery especially when it ages. As

batteries age, higher order models are better suited to capture their dynamic char-

acteristics at the risk of overparametrization. In this article, a third-order model is

chosen so as to minimize the possibility of overparametrization as well as providing a

trade-off between complexity and accuracy for real-time BMS implementations [104].

1R 2R

2C1C

inR

ocvV TVI

3R

3C

Figure 3.1: Third-order equivalent circuit battery model.

The discrete-time state equations of the battery model in Figure 3.1 are as follows,

V1,k+1 = (1− ∆T

R1C1

)V1,k +
∆T

C1

ik,

V2,k+1 = (1− ∆T

R2C2

)V2,k +
∆T

C2

ik,

V3,k+1 = (1− ∆T

R3C3

)V3,k +
∆T

C3

ik,

SOCk+1 = SOCk −
η∆T

Cn

ik (3.1)
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The terminal voltage is the output of the model and is obtained as,

VT,k = Vocv(SOCk)− V1,k − V2,k − V3,k −Rinik (3.2)

In an electrochemical battery, the parameters vary with SoC and temperature.

Therefore, model parameters can be considered constant only within a small oper-

ating range of SoC, temperature and current level [16]. Switching between models

according to the operating region of the battery can be used as a mean for parameter

estimation [77, 105]. If the observability condition is satisfied, model switching can be

complemented by direct parameter estimation including the internal resistance (Rin).

Here, the internal resistance is considered as a state described with the following

equation,

Rin,k+1 = Rin,k + wrk (3.3)

where wrk is white noise. The internal resistance of a li-ion battery reflects its aging

and power capability [106].

Coulomb counting method is a common technique for SoC estimation for a BMS,

defined with the following Equation [12],

SOC(t) = SOC0 −
1

Cn

∫ t

0

ηi(τ)dτ (3.4)

where SOC0 is the initial value of the battery SoC. A bias may exist on the calculated

SoC with this method, due to the inaccurate SOC0 and the current sensor. In

addition, the nominal capacity of the battery decreases as the battery ages. To
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overcome the issue, coulomb counting can be combined with model-based estimation

by considering the calculated SoC as being a measurement as an extension of i(t). As

such if SoC is a measurement according to Equation 3.4 (as derived from the current),

then the proposed strategy is to treat the SoC bias as a state with slow dynamics to

be estimated as follows,

bk+1 = bk + wbk (3.5)

where wbk is white noise. Then SoC measure includes this bias such that,

SOCm,k = SOCk + bk (3.6)

The state-space form of the proposed model can be described as,

xk+1 = f(xk) + g(xk)uk, (3.7)

yk = h(xk, uk) (3.8)

where x∈X, u∈R, y∈Rm, f :X→Rn, g :X→Rn and h :X→Rm are all differentiable

functions.

The state and measurement vectors are xk =

[
V1,k V2,k V3,k SOCk Rin,k bk

]T

and yk =
[
VT,k SOCm,k

]T

, respectively. Note that in this model f(xk) is linear and

f(xk) = Axk and g(xk) = B are given as,
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A=

G3 03

03 I3

 B=∆T



1
C1

1
C2

1
C3

−η
Cn

0

0


(3.9)

where G3 ∈ R3×3 is defined as,

G3 =


1− ∆T

R1C1
0 0

0 1− ∆T
R2C2

0

0 0 1− ∆T
R3C3

 (3.10)

The output equations are nonlinear functions as defined by Equations 3.2 and 3.6.

3.3 Nonlinear Observability

An estimation method cannot be employed unless the system observability is guar-

anteed. This section investigates the observability of the proposed battery model.

3.3.1 Distinguishability and Observability

A full rank observability matrix can guarantee the global observability of a linear

time-invariant system defined by a state-space representation. Determining observ-

ability of a nonlinear system is more challenging than a linear one. Thus, only local
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observability can be analyzed. To illustrate the observability of a nonlinear system a

few concepts are required to be introduced.

Definition 3 ( see [65]). For a system represented by Equations 3.7 and 3.8, x0 and

x1 are declared to be distinguishable states if there exists an input function u(.) such

that

y(k, x0, u) ̸= y(k, x1, u) (3.11)

for a finite time. The system is locally observable at x0 ∈ X if there exists a neighbor-

hood N of x0 such that every x ∈ N excluding x0 is distinguishable from x0. Therefore,

the system is called locally observable if it is locally observable at each x ∈ X.

A system is globally observable if every pair of states (x0, x1) with x0 ̸= x1 is

distinguishable. It can be demonstrated that two states are distinguishable for a

linear system if y(k, x0, u) ̸= y(k, x1, u) condition holds for any u. Furthermore, it

can be proven that for a linear system, local observability leads to global observability.

However, this is not guaranteed for a nonlinear system.

The observability of a nonlinear system can be illustrated using extended Lie-

derivative.

Definition 4 ( see [66]). Suppose the output h(x, u) =

[
h1 h2 ... hm

]T

is a m

dimensional vector function on x and u. The gradient of hj, j = 1, ...,m denoted by

dhj is a form of,

dhj =

[
∂hj

∂x1

∂hj

∂x2
...

∂hj

∂xn

]
(3.12)
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Then the extended Lie-derivative of h with respect to f is,

Lfh(x, u)=dh(x, u)f(x) +
i=∞∑
i=0

∂h(x, u)

∂ui
ui+1 (3.13)

The Lie-derivatives for higher order than one are obtained as,

Lj
fh(x, u)=dL

j−1
f h(x, u)f(x) +

i=∞∑
i=0

∂Lj−1
f h(x, u)

∂ui
ui+1 (3.14)

The following theorem gives the sufficient condition for local observability based

on the given definitions. The condition should be guaranteed for a nonlinear system

to show observability.

Theorem 2 ( see [65]). For a system described by Equation 3.7 and 3.8 with the

assumption of given x0 ∈ X. Consider the form,

(dLzsLzs−1 ...Lz1hj), s ⩾ 0, zi ∈ {f, g1, ..., gp} (3.15)

evaluated at x0 where i = 1, ..., s, j = 1, ...,m and for s = 0 the expression is equal to

dhj(x0). Suppose there are n linearly independent row vectors in this set. Then the

system is locally observable around x0.

The observability condition for a linear system can also be derived from theorem
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2. Based on the theorem, OI(x, u) for a general nonlinear system is defined as,

OI(x, u) =



dh(x, u)

Lfh(x, u)

Lgh(x, u)

L2
fh(x, u)

L2
gh(x, u)

.

.

.



(3.16)

Therefore, the model described by Equations 3.7 and 3.8 is locally observable if

OI(x, u) has n linearly independent row vectors.

3.3.2 Observability Analysis of the Battery Model

Based on the notation on Section 3.3.1, dh(x, u) for the proposed battery model in

Section 3.2 is,

dh =

−1 −1 −1 ∂Vocv

∂SOC
−u 0

0 0 0 1 0 1

 (3.17)
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The Lie-derivative of dLfh with respect to f and g can be found as,

Lfh = −

(1− ∆T
R1C1

) (1− ∆T
R2C2

) (1− ∆T
R3C3

) − ∂Vocv

∂SOC
u 0

0 0 0 −1 0 −1

 (3.18)

Lgh= −

( 1
C1
) ( 1

C2
) ( 1

C3
) η

Cn

∂Vocv

∂SOC
0 0

0 0 0 η
Cn

0 0

 (3.19)

Based on the observability matrix defined in Equation 3.16, the battery model

represented in Section 3.2 is locally observable if there is n = 5 independent row

vectors. This condition is satisfied if R1C1 ̸= R2C2 ̸= R3C3. In a physical sense,

if two RC pairs are equal, they can be combined into one and therefore the voltage

across them are not distinctive. Since each RC pairs can be determined uniquely,

then if there exists a k ∈ Z such that ∂V k
ocv

∂SOCk ̸= 0 the local observability of the battery

model can be guaranteed.

3.4 SVSF-based Interacting Multiple Model

The IMM-SVSF-VBL strategy is an adaptive method that relies on a finite number

of models instead of a single one. The approach can be utilized for SoC/SoH and SoP

estimation since use of multiple models (each for a different age or operating point)

achieves better accuracy and robustness in estimation. With battery degradation,

the procedure can adjust to any changes in battery dynamics such as capacity fade or

changes in internal resistance. The use of ECM with the proposed technique makes

the strategy feasible for real-time application in a BMS.
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3.4.1 SVSF-VBL

The SVSF approach is a predictor-corrector method based on Sliding Mode Control

(SMC) and it was presented in [54]. The stability and robustness of the SVSF method

has been demonstrated against uncertainties and noise in relation to the filter model.

The SVSF employs a smoothing boundary layer ψ and a discontinuous gain which is

similar to the SMC. The SVSF gain forces the states to converge to a neighborhood

of the true value. The SVSF is applicable to any observable and differentiable system

with the following class of nonlinear equations,

xk+1 = f(xk, uk, wk),

zk = h(xk, uk, vk) (3.20)

The SVSF was later improved with several advancements, including the covariance

formulation, time-varying smoothing boundary layer (SVSF-VBL) and combinations

with different filters such as KF, EKF, UKF, Particle Filter (PF) and more [43, 55, 57,

107]. This paper employs the SVSF-VBL with a time-varying smoothing boundary

layer to enhance estimation accuracy. The width of the boundary layer depends on

the uncertainty of the filter model, as well as the system and measurement noise.

The SVSF-VBL algorithm uses a time-varying boundary layer with saturated limits

to guarantee stability and estimation convergence of the method [57]. Figure 3.2

provides an overview of the SVSF-VBL strategy.
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if ψvbl < ψlim

if ψvbl ≥ ψlim

1

Figure 3.2: Summary of SVSF-VBL procedure [57].

The SVSF-VBL estimation process and equations are as follows, [57]:

• Prediction: The a-priori state estimate is obtained by using an estimated filter

model.

x̂k+1|k = Âx̂k|k + B̂uk, (3.21)

ẑk+1|k = Ĥx̂k+1|k (3.22)

Pk+1|k = ÂPk|kÂ
T +Qk (3.23)

ezk+1|k = zk+1 − ẑk+1|k (3.24)

• Correction: The updated state is acquired using a gain to refine the a-priori

estimate into its a-posteriori form.

Sk+1 = ĤPk+1|kĤ
T +Rk+1 (3.25)

Ek+1 = |ezk+1|k |+ γ|ezk|k | (3.26)

ψk+1 = (Ē−1
k+1ĤPk+1|kĤ

TST
k+1)

−1
(3.27)
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The SVSF gain applied to update the states for the case when ψk+1 ⩾ ψlim is

then evaluated as follows,

Kk+1 = Ĥ−1Ēk+1sat(ezk+1|kψ
−1
k+1)ē

−1
zk+1|k

(3.28)

And for the case with ψk+1 < ψlim the SVSF gain is,

Kk+1 = Ĥ−1Ēk+1ψ
−1
k+1 (3.29)

Finally, the a-posteriori parameters are calculated as,

x̂k+1|k+1 = x̂k+1|k +Kk+1ezk+1|k (3.30)

Pk+1|k+1 = (I −Kk+1Ĥ)Pk+1|k(I −Kk+1Ĥ)
T
+Kk+1Rk+1K

T
k+1 (3.31)

ẑk+1|k+1 = Ĥx̂k+1|k+1 (3.32)

ezk+1|k+1
= zk+1 − ẑk+1|k+1 (3.33)

Equations 3.21 to 3.33 summarize the SVSF-VBL strategy.

3.4.2 IMM Procedure

The IMM approach employs multiple models to capture the changing dynamics of

a system. Since a battery cell ages over time, a new model is needed to describe

changes in its dynamics over time. The IMM uses a library of predefined models

which in this case are used in SVSF-VBL estimation filters running in parallel. The

error covariance matrix quantifies the estimation error for each of these parallel filters

and quantifies the applicability of the model. The error covariance matrix is used to
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evaluate the mode probabilities, which represents how close the filter model is to the

true characteristics of the battery [57, 108]. In this paper, multiple models are used

to characterize the aging of the battery. The mode probability indicates the suitable

model that captures the aging of the battery and by extension SoH of the battery

[23, 57, 108].

The IMM-SVSF-VBL consists of five main steps: 1) calculation of mixing prob-

abilities; 2) mixing stage; 3) mode-matched filtering with the SVSF-VBL; 4) mode

probability determination; 5) calculation of the a-posteriori estimate and error co-

variance matrix. Figure 3.3 shows the strategy employed to estimate the states of a

battery using 3 different models at various states of life, namely: new battery (100%

capacity), mid-aged battery (90% capacity) and aged battery (80% capacity). The

algorithm is demonstrated by the following equation.
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Figure 3.3: IMM-SVSF-VBL strategy for battery states estimation.
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• Calculation of mixing probabilities: The mixing probability can be written as,

µi|j(k−1|k−1)=
1

c̄j
pijµi|j(k−1) i, j=1, ..., r (3.34)

where the probability mass function prediction is,

c̄j=
r∑

i=1

pijµi(k−1) j=1, ..., r (3.35)

The transition probability matrix is defined as,

pij=P{Mi(k−1)|Mj(k), Z
k−1} (3.36)

• The Mixing step computes the mixed initial condition for the filters as,

x̂0j(k−1|k−1)=
r∑

i=1

x̂i(k−1|k−1)µi|j(k−1|k−1) j=1, ..., r (3.37)

P 0j(k−1|k−1)=
r∑

i=1

µi|j(k−1|k−1){P i(k−1|k−1) +[x̂i(k−1|k−1)−x̂0j(k−1|k−1)]

[x̂i(k−1|k−1)−x̂0j(k−1|k−1)]T} j=1, ..., r (3.38)

• This step involves mode-matched filtering where one iteration of the SVSF-VBL

evaluates in mode j to produce a new state estimate by the provided values of

the state and covariance from the mixing step. The likelihood functions of filters
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in mode j are then calculated as,

Λj(k)=N [z(k); ẑj[k|k−1; x̂0j(k−1|k−1)], Sj[k; P̂ 0j(k−1|k−1)]] j=1, ..., r

(3.39)

• Mode probability is updated as follows,

µj(k)=
1

c
Λj(k)c̄j j=1, ..., r (3.40)

where the normalizing constant is defined as,

c=
r∑

j=1

Λj(k)c̄j (3.41)

• The a-posteriori estimated states and covariances from each filter are then com-

bined by their mode probability to compute the outputs of the algorithm,

x̂(k|k)=
r∑

j=1

x̂j(k|k)µj(k) (3.42)

P (k|k)=
r∑

j=1

µj(k){P j(k|k)+[x̂j(k|k)−x̂(k|k)][x̂j(k|k)−x̂(k|k)]T} (3.43)

3.5 Battery States Co-estimation Algorithm

This section presents the co-estimation procedure proposed in this paper to estimate

the SoC, SoH and SoP of a battery. The battery SoC is estimated by the IMM-SVSF-

VBL presented in Section 3.4 along with its bias and the internal resistance of the

battery. The SoH and SoP of the battery are then evaluated by the estimated states
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of the system and measurements. Figure 3.4 illustrates the proposed strategy.

OCV-SOC test Aging test Capacity test

IMM-SVSF-VBL

SOP estimation SOH estimation

OCV-SOC curve
Model parameters

Cn

Current

VT

Rin

µk+1ˆSOC

1

Figure 3.4: Battery states co-estimation.

3.5.1 SoH Estimation

The SoH is a measure of battery aging. It is related to battery capacity that is 100%

for a new battery and for automotive application can drop to 80%. The SoH is the

ratio of a full charge capacity of a battery to its nominal capacity.

SOHC =
C

Cn

× 100% (3.44)

SoH has been linked to different battery parameters including its impedance,
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Coulombic Efficiency (CE), internal resistance and self-discharge rate [109]. The SoH

is commonly measured through battery capacity and internal resistance which reflect

the energy and power potential of a battery, respectively. The proposed method in

this paper estimates the internal resistance of a battery in real-time as a measure of

SoH. This can be stated as,

SOHR =
REOL −Rin

REOL −Rnew

× 100% (3.45)

where REOL is the internal resistance at the end of battery life, Rnew is the internal

resistance for a new battery provided by the manufacture and Rin is the estimated

internal resistance using the IMM-SVSF-VBL technique.

An accurate estimation of the SoH can help to prevent a sudden degradation of the

battery and any potential failures. Additional information can lead to a more precise

prediction of the SoH. As it was mentioned in Section 3.4, the mode probability

indicates the closeness of the battery dynamics to a specific filter model. Since each

model reflects a battery state of life, the mode probability can be employed as another

indicator of the SoH. Based on the SoH of the predefined models, a weighting vector

is specified to determine the SoH of the battery.

SOHµ ≜

[
SOH1 . . . SOHr

]


µ1

.

.

.

µr


× 100% (3.46)

where 0 < SOHi < 1, i = 1, ..., r presents the SoH for mode i and can be defined based
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on the models described for the IMM-SVSF-VBL method. In the proposed strategy

and further to Equation 3.45 and 3.46, the SOHR and SOHµ are combined to provide

a measure of the battery SoH onboard of a BMS. An adaptive weighted average is

introduced to present a better and smoother outcome for the SoH estimation in the

presence of noise or uncertainties.

SOH ≜ αSOHR + (1− α)SOHµ (3.47)

The parameter α is found adaptively through the following optimization problem.

min
α

(α− 0.5)2

s.t. 0 < α < 1

| SOH(k)− SOH(k − 1) |< ϵ

(3.48)

where ϵ ∈ R is a small positive number. The second constraint of the optimization

problem can be followed from Equation 3.47.

3.5.2 SoP Estimation

The SoP is determined as the ratio of peak power to nominal power. The peak power

is determined as the maximum power that a battery can persistently provide over a

period of time. The SoP describes the power demands of a battery. The maximum

available power for a battery is limited because the battery terminal voltage and

current are always restricted within a range for battery safety. These limitations are to

avoid any over-discharge or over-charge [110]. Different methods have been presented

for SoP estimation considering the terminal voltage, SoC and current limitation of
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a battery [24, 25, 111]. This paper considers the available current under a specific

voltage and in conjunction with limiting factors for current supply usually imposed by

the BMS to estimate the SoP. The maximum available charge and discharge current

under the terminal voltage limits are computed as follows,

Ichamax,vol =
Vmax − Vocv

Rin

(3.49)

Idchmax,vol =
Vocv − Vmin

Rin

(3.50)

where Vmax and Vmin denote the voltage limits and Vocv is obtained by the SoC

estimation results using a look-up table. The maximum available charge/discharge

currents can be evaluated as follows, taking the current limits into consideration,

Ichamax = min(Ichamax,vol, I
cha
max,cur) (3.51)

Idchmax = min(Idchmax,vol, I
dch
max,cur) (3.52)

where Ichamax,cur and Idchmax,cur are the charge and discharge current thresholds, respec-

tively. Therefore, the maximum available charge/discharge power can be determined

as,

P cha
max = Ichamax(Vocv + IchamaxRin) (3.53)

P dch
max = Idchmax(Vocv − IdchmaxRin) (3.54)
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3.6 Experiments

An aging study was conducted over 12 months and used to evaluate the proposed

methodology for battery SoC, SoH and SoP estimation. The experimental setup con-

sisted of three-channel Arbin BT2000 cycler, three NMC Lithium Polymer battery

cells, three environmental chambers namely Espec and Thermotron, an AVL Lynx

data acquisition system, and AVL Lynx user surface software as shown in Figure 3.6.

AVL Lynx software was used for data acquisition and setting up of the test proce-

dures. Three battery cells were tested separately in this study in an environmental

chamber [16]. Three categories of tests were conducted, namely: characterization,

aging, and reference tests. The characterization tests include static capacity, Hybrid

Pulse Power Characterization (HPPC), and efficiency tests. Aging tests, including

cycle life and calendar life, are utilized to predict battery performance. Cycle life

aging tests perform accelerated aging in a short period of time.

A mid-sized EV model as derived in [16] and as shown in Figure 3.5 is used to

generate the current profile from the velocity profile of a combined driving cycle. The

profile is a mixture of three common driving cycles including an Urban Dynamome-

ter Driving Schedule (UDDS); a light duty drive cycle for high speed and high load

(US06); and, a Highway Fuel Economy Test (HWFET) drive cycle. These simulate

different driving habits as presented in [16]. The UDDS cycle can present the driv-

ing habits of an average driver in the city. The US06 provides a high acceleration

associated with an aggressive driving habit, and the HWFET presents highway driv-

ing conditions. The pack current profile is then scaled down to obtain the cell-level

current profile. The aging data was collected for battery cells over time at elevated
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temperatures ranging from 35◦ to 40◦ scanning the entire range of SoC from 90% to

20% [12, 16].

Figure 3.5: All-Electric mid-size sedan simulation model [16].

Figure 3.6: Experimental setup including cyclers, environmental chambers, and
Data Acquisition systems [16].

Reference Performance Tests (RPTs), track changes in battery characteristics, is

considered in this study for various states of life. Associated characterization tests

conducted in series to cycling included static capacity test, OCV-SoC test, pulse
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charge/discharge test, and driving cycle tests [16, 28, 29]. Figure 3.7 depicts the

OCV-SoC curve of the battery obtained for different SoH. The figure illustrates that

the OCV curve is correlated with SoH.

0 0.2 0.4 0.6 0.8 1

3

3.2
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3.8
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4.2

Figure 3.7: Open circuit voltage for new (100% capacity) and aged (90% and 80%
capacity) battery from OCV-SoC test.

The driving profile considered in this paper is shown in Figure3.8. The driving

profile is applied at different states of life including 100%, 90%, and 80% to explore the

degradation behavior of the battery. Figure 3.9 demonstrates the measured terminal

voltage and SoC at different SoH. It is evident from Figure 3.9a that the terminal

voltage is dropping as the battery ages and therefore the battery depletes faster (as

shown in Figure 3.9b). The measured SoC is evaluated from the cycler using the

coulomb counting method.
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Figure 3.8: Current, voltage, and SoC of the driving schedule.
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Figure 3.9: a) Terminal voltage and b) SoC for new (100% capacity) and aged (90%
and 80% capacity) battery using the driving Schedule.

An important element of the estimation is the determination of the filter model.
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For better performance, battery model parameters are required to change with SoC as

well as SoH. A Least-Square (LS) optimization methodology is used with the collected

data to identify the parameters of the battery in a range of SoC at different SoH. Table

3.1 shows the bounds of time constants (τi =RiCi, i= 1, 2, 3) and resistances of the

equivalent circuit model described in Section 3.2.

Table 3.1: Model Parameters bound of a third-order ECM. Example given for 60%
SoC and 90% SOH.

Parameters R1(Ω) R2(Ω) R3(Ω) τ1(s) τ2(s) τ3(s)
Upper Bound 0.025 0.0079 0.089 1 27 355
Lower Bound 0.00117 0.000038 0.0012 0.1 8 74

Example 0.00565 0.00377 0.00908 0.162 13.34 250

In this paper, three models corresponding to 100%, 90% and 80% capacity of SoH

are used and the associated bound of parameters in Table 3.1 define the three models

of the IMM-SVSF-VBL approach as explained in Section 3.4. The IMM-SVSF-VBL

strategy estimates the states of a battery including the internal resistance, the SoC

and the SoC bias. The tuned parameters for the SVSF-VBL filters are as follows:

the initial noise covariance matrix and the initial system error covariance matrix

are selected as R = diag[5, 0.095] and Q = diag[10−8, 10−8, 10−8, 10−10, 10−10, 10−10],

respectively. The initial value of the state error covariance matrix is set to P = I6.

The SVSF-VBL convergence and the initial boundary layer are chosen as γ = 0.38

and ψ = 3.2I2, respectively. A Genetic Algorithm (GA) is used to tune the noise

covariance matrices of the Kalman. The same noise covariance matrices are used for

the SVSF-VBL filters for providing a direct comparison between the performance of

the two filters. For the IMM settings, the mode transition matrix and the initial

mode probability are required to be initialized. The initial pertinent filter model is
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unknown at the start of the estimation process and, therefore the mode probabilities

are initially selected to be equal for each mode. The time-invariant mode transition

probabilities provide a mechanism for adjusting the speed at which the IMM can

switch between different modes. The selected values present a moderate speed to

allow a smooth mode transition and switching behavior for the IMM.

p =


0.998 0.001 0.001

0.001 0.998 0.001

0.001 0.001 0.998

 , µ =


1/3

1/3

1/3

 (3.55)

Figure 3.10 shows the terminal voltage error and the percentage of SoC estimation

error for the proposed strategy using the experimental data at different SoH. Two

different initial conditions are considered for the battery SoC as SOC0 = 75%, 85%

to verify the proposed methodology. It can be seen from Figure 3.10b that the

proposed strategy can keep the percentage of SoC error to less than 1% with the

terminal voltage error of less than 0.03 with various initial conditions over an entire

range of SoC.

A comparison of the proposed procedure and the IMM-EKF method is then con-

ducted. A simple third-order ECM structure has been considered for the IMM-EKF

method. The proposed IMM-SVSF-VBL strategy uses the same initial parameters

as the IMM-EKF except for the additional parameters specific to the SVSF-VBL

method, namely γ and ψ. The Root Mean Square Error (RMSE) of the results

are presented in Figure 3.11. The results indicate that the proposed algorithm us-

ing IMM-SVSF-VBL provides a more reliable performance. Figure 3.12 also shows

the mode probability of the proposed strategy in contrast with the IMM-EKF. It is
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demonstrated that the proposed strategy is superior in identifying the correct model

compared to the IMM-EKF method.
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Figure 3.10: a) Estimated terminal voltage and b) percentage of SoC estimation
error for new (100% capacity) and aged (90% and 80% capacity) battery using the

driving Schedule.
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Figure 3.11: Root mean square errors with the proposed IMM-SVSF-VBL algorithm
and the IMM-EKF for different SoH.

The estimated internal resistance is displayed in Figure 3.13 which is used to

estimate the SoH of the battery along with the mode probability of the IMM-SVSF-

VBL demonstrated in Figure 3.12. Figure 3.13 illustrates that the internal resistance

increases as the battery ages. Reference points are provided in Figure 3.13, based

on the characterization tests for various SoH, to verify the estimated values of the

internal resistance. The internal resistance is not always a constant value which affects

the estimation of the SoH. The mode probability is also considered to enhance the

performance of the SoH estimation as it can identify the operating mode of the battery

using Equation 3.46 where
[
SOH1 SOH2 SOH3

]
=

[
1 0.9 0.8

]
. The estimated SoH

obtained by the proposed method in Section. 3.5.1 is shown in Figure 3.14. Figure

3.15 shows the estimated SoC bias which is in turn used to refine the measure of
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SoC obtained by coulomb counting according to Equation 3.4. A larger SoC bias

will increase the SoC estimation error which is compensated by the estimated SoC

bias. The existing bias could affect the real-time estimation of the states. However,

the proposed strategy is able to provide an accurate estimation of the states of the

battery by refining the measured value of SoC.
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Figure 3.12: Mode probability of the proposed IMM-SVSF-VBL and IMM-EKF
algorithms for new ( a) 100% capacity) and aged (b) 90% and c) 80% capacity)

battery using the driving schedule.
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Figure 3.13: Estimated internal resistance by the IMM-SVSF-VBL strategy for new
(100% capacity) and aged (90% and 80% capacity) battery using the driving

Schedule.
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Figure 3.14: Estimated SoH by the proposed algorithm using the driving Schedule.
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Figure 3.15: Estimated SoC bias for new (100% capacity) and aged (90% and 80%
capacity) battery using the driving schedule.

Since the internal resistance and the SoC of the battery are estimated accurately,

the SoP can be calculated as described in Section 3.5.2. Figure 3.16 shows the maxi-

mum power for charge and discharge at different SoH of the battery.
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Figure 3.16: Maximum output charge and discharge power for new (100% capacity)
and aged (90% and 80% capacity) using the driving schedule.

A subset of driving profile is also considered to assess the efficacy of the proposed

strategy to recognize the battery SoC, and SoH for unknown cases as shown in Figure

3.17. Figure 3.18 indicates the mode probability when the battery SoH is in between

the level associated with the filter models.
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Figure 3.17: a) Current, b) terminal voltage, and c) SoC of the validation schedule
for new (100% capacity) and aged (95%, 90%, 95% and 80% capacity) battery.
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Figure 3.18: IMM-SVSF-VBL mode probability for a) 95% and b) 85% capacity
using the validation data.

Figure 3.18a provides the mode probability for the battery with actual SoH of

109



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

approximately 95%. Figure 3.18b displays the mode probability where the actual SoH

is about 85%. Figure 3.19 confirms the changes in the estimated internal resistance

as the battery ages. The estimated SoH using the mode probability and the internal

resistance is demonstrated in Figure 3.20 for the test profile presented in Figure 3.17.
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Figure 3.19: Estimated internal resistance for new (100% capacity) and aged (95%,
90%, 85% and 80% capacity) battery using the validation data.
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Figure 3.20: Estimated SoH using the validation data.

The efficacy of the proposed strategy has been presented for a single battery cell.

However, this algorithm can be expanded to a pack level as voltage and current

measurements are readily available in Battery Management Systems and given that

with the proposed method, no additional measurements are needed. The estimated

SoC bias is used here to refine a measure of the SoC obtained by coulomb counting.

Moreover, the battery’s SoH has a slow dynamic and is not required to be estimated

continuously if there are constraints associated with the availability of computational

resources.

3.7 Conclusion

This paper proposed an interacting multiple model framework to estimate the SoC,

SoH, and SoP of a battery. A modified third-order ECM model is proposed to enable
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the combined estimation of the internal resistance, the SoC, and the SoC bias. The

observability of the proposed model is investigated and guaranteed. The observabil-

ity ensures that states of the system can be uniquely extracted from measurements.

Since the characteristics of a battery changes over time, an Interacting Multiple Model

(IMM) strategy with the Smooth Variable Structure Filter with Variable Boundary

Layer (SVSF-VBL) is used to track and adjust to the aging of the battery. The esti-

mated SoC bias is used to update the measure of SoC obtained by coulomb counting

which leads to a more accurate SoC estimation. Moreover, the estimated internal re-

sistance and the mode probability of the IMM-SVSF-VBL are utilized to present an

accurate estimation of the battery SoH. The estimated states of the battery are then

used for obtaining the battery SoP. The proposed combined method for SoC/SoH/SoP

estimation is validated with experimental data.

Nomenclature

VT Cell terminal voltage.
Vj Voltage across RC branch, j = 1, 2, 3.
Vocv Open Circuit Voltage (nonlinear function of SoC).
SOC State of Charge.
SOH State of Health.
SOP State of Power.
Cn Cell nominal capacity.
Rin Cell internal resistance.
Rj Resistance of RC branch, j = 1, 2, 3.
Cj Capacitor of RC branch, j = 1, 2, 3.
η Cell Coulombic Efficiency.
∆T Sampling period.
k Time step.
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i Current flowing across the cell.
b SoC bias.
x State vector or values.
u Input to the system.
y Measurement vector or values.
f Nonlinear system function.
g Input gain function.
h Nonlinear measurement function.
X An open subset of Rn.
A State matrix.
B Input matrix.
Ij Identity matrix (Ij ∈ Rj×j).
0j Zero matrix (0j ∈ Rj×j).
k + 1 | k A-priori time step (i.e., before applied gain).
k + 1 | k + 1 A-posteriori time step (i.e., after update).
Q System noise covariance matrix.
R Measurement noise covariance matrix.
Diag(a) or ā diagonal matrix of some vector a.
γ SVSF “convergence” or memory parameter.
ψ SVSF smoothing boundary layer width.
K SVSF gain matrix.
P State error covariance matrix.
ˆ Estimated vector or values.
S Innovation covariance matrix.
| a | Absolute value of some parameter a.
T Transpose of some vector or matrix.
e Measurement (output) error vector.
E Combination of measurement error vectors.
sat(a) Defines a saturation of the term a.
H Jacobian matrix of h.
m Number of measurements.
n Number of states.
w System noise vector.
v Measurement noise vector.
dh Gradient of h.
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Lfh(.) Lie-derivative of h with respect to f.
OI(.) Observability matrix.
Ichamax,vol Maximum cell charge current limited by terminal voltage.
Idchmax,vol Maximum cell discharge current limited by terminal voltage.
Ichamax Maximum cell charge current.
Idchmax Maximum cell discharge current.
P cha
max Maximum cell available charge power.
P dch
max Maximum cell available discharge current.

Λ Likelihood function.
c Normalizing constant.
r Number of models in IMM.
µi|j Mixing probabilities of i and j.
µj Mode probability of j.
p Transition probability matrix.
c̄ Probability mass function prediction.
α Adaptive weighted average of the SoH estimation.
τj Time constant of RC branch, j = 1, 2, 3.
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Abstract: Battery Management Systems (BMSs) are used to manage the uti-

lization of batteries and their operation in Electric (EVs) and Hybrid Electric (HEVs)

Vehicles. It is imperative for reliable and safe operation of batteries to be able to ac-

curately estimate the State of Charge (SoC), State of Health (SoH) and State of

Power (SoP). The SoC and SoH estimation must remain robust and accurate despite

aging and in presence of noise, uncertainties and sensor biases. This paper introduces

a robust adaptive filter referred to as the Adaptive Smooth Variable Structure Filter

with a time-Varying Boundary Layer (ASVSF-VBL) for the estimation of the SoC

and SoH in electrified vehicles. The internal model of the filter is a third-order Equiv-

alent Circuit Model (ECM) and its state vector is augmented to enable estimation of

the internal resistance and current bias. It is shown that system and measurement

noise covariance adaptation for the SVSF-VBL approach improves the performance
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in state estimation of a battery. The estimated internal resistance is then utilized to

improve determination of the battery’s SoH. The effectiveness of the proposed method

is validated using experimental data from tests on Lithium Polymer automotive bat-

teries. The results indicate that the SoC estimation error can remain within less than

2% over the full operating range of SoC along with an accurate estimation of SoH.

4.1 Introduction

Lithium-ion (Li-ion) Batteries are extensively used for energy storage in Electric (EVs)

and Hybrid Electric (HEVs) Vehicles due to their high energy and high power densi-

ties. The performance of EVs and HEVs are largely affected by their Battery Man-

agement Systems (BMSs) that need to ensure a safe, stable and reliable operation for

the battery pack. State of Charge (SoC), State of Health (SoH), and State of Power

(SoP) are key operational parameters of the battery that need to be estimated and

managed. These elements together provide a comprehensive view of the battery and

the pack’s capabilities [28, 112, 113].

The battery SoC represents remaining charge in a battery which is similar to the

gas-gauge in fossil-fuel vehicles. The SoC is a short-term indicator of the battery

ability, however, it cannot provide valuable information about the health of the bat-

tery. The battery SoH is an indicator of the remaining battery capacity and life. The

battery SoC and SoH need to be estimated as there are no sensors for their direct

measurement. Accurate estimation of SoC and SoH are required to ensure an equal

distribution of load among cells in the pack and to determine where a cell is in its life

cycle. A wide range of strategies have been presented for both SoC and SoH estima-

tion. The SoC estimation methods are categorized into direct and indirect methods
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[29, 84].

Measurements of the terminal voltage, current and impedance are commonly em-

ployed in direct methods to calculate the battery SoC. Methods based on the open

circuit voltage, terminal voltage, internal resistance and coulomb counting are com-

monly used. However, these methods require regular calibration due to error propa-

gation related to changes in the internal characteristics of the battery due to aging,

inaccuracies in the assumed initial conditions, and measurement biases [114]. Temper-

ature and mechanical measurements of a cell have also been taken into consideration

to improve the battery management and therefore states estimation [115]. However,

indirect methods have been proven to be highly beneficial especially in uncertain

conditions. Indirect methods include fuzzy logic-based estimation, artificial neural

networks, and filter/observer-based techniques. Model-based strategies provide an

insight into the internal dynamics of a battery and therefore could be more practical

to use onboard of a BMS [23, 67, 83].

The battery SoH estimation has to take into account the battery capacity fade

and impedance changes. SoH estimation methods are generally categorized into ex-

perimental or model-based techniques. Experimental-based techniques rely on char-

acterization of batteries using cycling data. These methods involve measurement of

internal resistance, impedance measurement, coulomb counting and regression anal-

ysis. Model-based strategies use filters and observers in conjunction with battery

models to provide a real-time indicator for SoH estimation [22, 116].

Battery models used in BMSs have included electrochemical and Equivalent Cir-

cuit Models (ECMs). Electrochemical models are structured to represent the physical
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reactions inside a battery and therefore are suitable for degradation analysis. How-

ever, they have not been proven to be more accurate in SoC and SoH estimation

and due to their complexity, are not commonly used onboard of a BMS. ECMs,

on the other hand, provide a simple model which can be easily parameterized us-

ing experimental data, and provide sufficient accuracy for real-time parameter and

state estimation. Additionally, in their modified forms provide thermal modeling or a

measure of SoH [117]. For better accuracy, the parameters of ECMs require to be ad-

justed according to the battery’s SoH, temperature, and current (or C-rate). Different

strategies have been reported for model adjustment including look-up tables as well

as parameter estimation and multiple model strategies. Online parameter estimation

is commonly considered to improve the performance by adapting the model for dif-

ferent conditions [118]. Multiple model strategies can also increase the adaptation of

a battery by considering a range of scenarios [119, 120]. Once a model is chosen to

determine the dynamics of the battery, a robust filter is needed to estimate the states

of the battery [89, 93, 121].

The Extended Kalman Filter (EKF) is the most commonly used filter for pa-

rameter estimation. Other methods include the Unscented KF (UKF), Quadrature

KF (QKF), Sigma Point KF (SPKF), Cubature KF (CKF) and Particle Filter (PF)

[43, 100, 122]. These strategies have been applied to li-ion batteries for state and

parameter estimation [71, 98, 112, 123]. Robust filtering strategies such as the Ro-

bust Kalman Filters, H∞ Filtering and the Smooth Variable Structure Filter (SVSF)

have also been employed to deal with uncertainties [43, 51, 54]. In [55], SVSF with a

Variable Boundary Layer (SVSF-VBL) is introduced to improve the performance of

SVSF in presence of noise and uncertainties. More advancements on SVSF strategy
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have also been presented to boost the efficiency of the SVSF including the second-

order SVSF, square-root SVSF, its combination with different filters such as KF,

EKF, UKF, CKF, PF and more [108, 124, 125]. Although these methods enhance

the accuracy of state estimation, they do not consider adaptability. Additionally,

these algorithms can only be employed if the system is observable [91].

In the above filters, knowledge of the system’s model is an essential requirement

for reliable state and parameter estimation. Characterization of noise statistics is

needed as well as the dynamic model and affect the filter’s stability and performance.

When this information is not correct, the performance of the designed filter may

worsen significantly and could lead to divergence. Model-based filters such as the

EKF assume that the system model is largely known together with the input functions

and the noise statistics. However, this may not be the case in all applications and

may need to be remedied through adaptive filters [68, 126].

Two types of adaptation are considered in this paper, including filter tuning and

Multiple Model (MM) methods. MM methods consider switching between a finite

number of models to provide adaptability against changes and uncertainties. Differ-

ent forms of multiple model methods have been proposed for state and parameter

estimation of batteries [94, 119, 120]. Filter tuning methods, on the other hands,

are used to adjust filter and model parameters as the system changes. Filter tuning

methods can be categorized into noise adaptation, parameter tuning and joint filter-

ing of parameters and states. Dual and joint estimation methods have been proposed

in recent research for estimating both parameters and states of a battery simultane-

ously [62, 74].

Noise statistics need to be captured for model-based filters. However, most filters
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usually assume that the noise is white, Gaussian and zero mean. If this assumption

is not satisfied, the filter performance degrades. This has generated a great deal of

interest in noise adjustments in a variety of applications. A wide range of studies have

been performed concerning the properties, advantages, and disadvantages of different

methods. In [64] different approaches for noise adaptations have been proposed for

a KF. In [127], the maximum likelihood method is used in an Adaptive KF (AKF)

for an INS/GPS integration algorithm. A comparison of different strategies for noise

covariance adaptation is presented in [63]. In [128], noise covariance adaptation is

employed to a KF. Zhang proposed an adaptive KF for joint polarization tracking

[126]. In [129], a comparison between different adaptive strategies for EKF is pre-

sented. In [130], sufficient conditions for noise covariance identification of a KF have

been introduced.

Noise covariance estimation techniques can be broadly divided into two groups

including feedback methods and feedback-free methods [63]. Simultaneous estima-

tion of the states as well as the noise covariance matrices is performed in feedback

methods. These methods include the covariance matching and the Bayesian meth-

ods. For feedback-free methods, on the other hand, estimated noise covariances are

not required for state estimation. Examples are the correlation and the maximum-

likelihood methods [63, 64].

In battery states estimation, the current supplied by the battery and the terminal

voltage are measured. Measurement uncertainties include sensor noise, drift, and bias.

The disturbances in current and voltage sensors affect the performance of a BMS, so

they need to be taken into account. Adaptive methods boost the performance of the

estimation methods in presence of noise, sensor drift and bias. However, sensor drift
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and bias should still be identified, as well as noise, for calibration purposes and to

ensure a reliable and safe operation [89]. Different strategies are employed for sensor

calibration which often require operation of specific instruments irregularly. Online

estimation of sensor bias is a widely used technique in real-time applications. In [91],

the observability of a battery model is investigated in the presence of sensor bias.

The effect of sensor bias and drift estimation on SoC estimation is considered in [89].

This work considers adaptation for both sensor bias as well as modeling uncertain-

ties. An adaptive SVSF-VBL based strategy is proposed to reduce state estimation

errors of a battery. The contributions of this paper are as follows:

• An equivalent circuit model formulation augmented with internal resistance and

sensor bias is used as the model. The estimated internal resistance is employed

as an indicator of SoH while the estimated bias is to improve estimation accu-

racy.

• The Adaptive Smooth Variable Structure Filter with Variable Boundary Layer

(ASVSF-VBL) strategy is introduced for state estimation (SoC and SoH) in

presence of changing statics of noise and uncertainties. The proposed strategy

provides noise adaptation which improves estimation robustness and accuracy.

• The performance of the ASVSF-VBL is then compared to conventional SVSF-

VBL and EKF using experimental data.

Section 4.2 of this paper presents the model of the battery. The proposed ASVSF-

VBL estimation strategy is introduced in Section 4.3. In Section 4.4, the proposed

method is tested and validated using experimental data and its performance is com-

paratively analyzed. Section 4.5 concludes the paper.
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4.2 Modeling

Equivalent Circuit Model (ECM) provides a simple and effective approach for bat-

tery characterization. Although, higher order models can be used to improve the

battery model’s performance, a trade-off between complexity and accuracy should be

considered to avoid over-parametrization that could affect estimation of the internal

resistance. This study employs a third-order ECM to provide enough accuracy for

a battery model especially when the battery ages while retaining the influence of

aging on the internal resistance. Figure 4.1 shows a circuit diagram of a third-order

ECM. The model contains different elements including a series resistance defined as

internal resistance (Rin) and the Open Circuit Voltage (OCV) of the battery which

relates to its SoC. The battery model also has multiple Resistance-Capacitance (RC)

branches that describe the transients of the battery including the diffusion, the Solid

Electrolyte Interface (SEI) dynamics and the charge transfer kinetics. The structure

of the model should reflects the dynamic complexity of the battery as it ages [104].

1R 2R

2C1C

inR

ocvV TVI

3R

3C

Figure 4.1: Third-order equivalent circuit battery model.

The battery model in Figure 4.1 is formulated with discrete-time state equations

122



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

as follows,

V1,k+1 = (1− ∆T

R1C1

)V1,k +
∆T

C1

ik,

V2,k+1 = (1− ∆T

R2C2

)V2,k +
∆T

C2

ik,

V3,k+1 = (1− ∆T

R3C3

)V3,k +
∆T

C3

ik,

SOCk+1 = SOCk −
η∆T

Cn

ik (4.1)

where Vj, j = 1, 2, 3 are voltage across the RC branches, Cj, j = 1, 2, 3 are capacitor

and Rj, j = 1, 2, 3 are resistance of the RC branches, i is the actual current flowing

across the cell, Cn is nominal capacity of the battery, η is the cell Coulombic Efficiency

(CE), ∆T is the sampling period, and k is a time sample.

The output of the model is terminal voltage of the battery and is described as,

VT,k = Vocv(SOCk)− V1,k − V2,k − V3,k −Rinik (4.2)

where VT is the cell terminal voltage, Vocv is the open circuit voltage (nonlinear

function of SoC), and Rin is the cell internal resistance.

The parameters of the model change with SoC and temperature. Therefore, pa-

rameters are constant within a small range of SoC, temperature and current level [16].

Updates of the model parameters or possibly its structure are needed for determining

the battery SoH. The model can be modified using two approaches including model

switching or parameter updating or estimation [105, 119]. Parameter estimation can

be employed if observability condition is satisfied. Here, the internal resistance is
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considered as a state that indicates the battery SoH and power capability [106].

Rin,k+1 = Rin,k + wrk (4.3)

where wrk is white noise.

A bias may exist in the measured current of the battery due to sensor error [89, 91].

Here, the current sensor bias is considered as an augmented state to the battery model

to be estimated. This modification could optimize the estimation performance. The

sensor bias is defined as follows,

Ib,k+1 = Ib,k + wbk (4.4)

where ib is the bias from the current sensor and wbk is white noise. The measured

current flowing across the cell (im) includes this bias and is defined as follows,

Im,k = Ik + Ib,k (4.5)

The modification is then applied to the model. Therefore, the state-space form of

the proposed model is described as,

xk+1 = f(xk) + g(xk)uk, (4.6)

yk = h(xk, uk) (4.7)

where x ∈ X is the state vector, u ∈ R is the input to the system, y ∈ Rm is the

measurement vector, f : X → Rn is the nonlinear system function, g : X → Rn

is the input gain and h : X → Rm is the nonlinear measurement function where
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they are all differentiable functions. The state and measurement vectors are xk =[
V1,k V2,k V3,k SOCk Ib,k Rin,k

]T

and yk = VT,k, respectively. Note that in this

model f(xk) is linear and f(xk) = Axk and g(xk) = B are given as,

A=



1− ∆T
R1C1

0 0 0 −∆T
C1

0

0 1− ∆T
R2C2

0 0 −∆T
C2

0

0 0 1− ∆T
R3C3

0 −∆T
C3

0

0 0 0 1 η∆T
Cn

0

0 0 0 0 1 0

0 0 0 0 0 1


, B=∆T



1
C1

1
C2

1
C3

−η
Cn

0

0


(4.8)

The output equation is a nonlinear function that can be specified as follows,

VT,k = Vocv(SOCk)− V1,k − V2,k − V3,k +Rinib,k −Rinim,k (4.9)

The observability of this battery model can be guaranteed if R1C1 ̸= R2C2 ̸= R3C3

and there exists a k ∈ Z such that ∂V k
ocv

∂SOCk ̸= 0 [119]. Therefore, estimation strategies

can be used here for state and parameter estimation.

4.3 Adaptive Smooth Variable Structure Filter with

Variable Boundary Layer

The Adaptive Smooth Variable Structure Filter with Variable Boundary Layer (ASVSF-

VBL) strategy is a method that adapt to the changes in the noise statistics. The
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approach improves the performance of the original SVSF-VBL and provides better

accuracy and robustness in presence of noise and uncertainties. It is particularly

applicable to battery SoC estimation as current bias is estimated and this increases

the speed of noise statistic estimation. This section provides details on the proposed

approach for state estimation.

4.3.1 Smooth Variable Structure Filter with Variable Bound-

ary Layer

The Variable Structure filter (VSF) approach was first presented in [51]. A revised

version of it named SVSF was then introduced in [54] that is a predictor-corrector

strategy based on the sliding mode concept. The method is applicable to linear

and nonlinear systems with the assumption that the system under consideration is

observable. The method provides stability and robustness to modeling uncertainties

and noise with a given upper bound for the level of noise and unmodeled dynamics.

Assuming a typical model is represented as follows,

xk+1 = f(xk, uk, wk), (4.10)

zk = h(xk, uk, υk) (4.11)

where υk is the measurement noise and wk is the system noise and they are uncorre-

lated white noise with the following mean and covariance,

E[wk] = 0, E[wkw
T
k ] = Qk (4.12)

E[υk] = 0, E[υkυ
T
k ] = Rk (4.13)
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The discontinuous corrective action of the SVSF method leads to chattering as

shown in Figure 4.2. This chattering can be removed by using a smoothing boundary

layer. The smoothing boundary layer will be inefficient if the disturbance exceeds

the assumed upper bound [54]. A time-varying smoothing boundary layer eliminates

chattering and excessive switching as presented in [57]. More advancement to the

SVSF have also been proposed, including but not limited to covariance formulation,

second-order SVSF, and combination of SVSF with other filters such as KF, EKF,

UKF, PF, Square-Root SVSF and Two-pass SVSF [43, 55, 103, 124]. The SVSF-VBL

estimation is formulated as follows,

Figure 4.2: Effect of smoothing boundary layer (a) ψ > β, (b) ψ < β ( β is the
upper boundary of existence subspace).
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• Prediction: An estimated filter model is used to obtain the a-priori state esti-

mates.

x̂k+1|k = Âx̂k|k + B̂uk, (4.14)

ẑk+1|k = Ĥx̂k+1|k (4.15)

ek+1|k = zk+1 − ẑk+1|k (4.16)

Pk+1|k = ÂPk|kÂ
T +Qk (4.17)

where P is the state vector covariance matrix, H is the jacobian matrix of H,

and ek+1|k is called the filter innovation measurement sequence.

• Correction: The correction gain is obtained and, the estimated states are then

updated from their a-priori into their a-posteriori by using this gain.

Sk+1 = ĤPk+1|kĤ
T +Rk+1 (4.18)

Ek+1 = |ek+1|k|+ γ|ek|k| (4.19)

ψk+1 = (Ē−1
k+1ĤPk+1|kĤ

TST
k+1)

−1
(4.20)

where S is the innovation covariance matrix, E is the combination of measure-

ment error vector, γ is the SVSF convergence parameter and ψk+1 is the SVSF

smoothing boundary layer width.

The SVSF is a predictor-corrector method and its gain is employed to update

the a-priori estimated states. The gain ψk+1 < ψlim is as follows,

Kk+1 = Ĥ−1Ēk+1ψ
−1
k+1 (4.21)
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where ψlim is upper limit for the boundary layer. For the case when ψk+1 ⩾ ψlim

the SVSF gain is:

Kk+1 = Ĥ−1Ēk+1sat(ek+1|kψ
−1
k+1)ē

−1
k+1|k (4.22)

Finally, the a posteriori parameters are calculated as:

x̂k+1|k+1 = x̂k+1|k +Kk+1ek+1|k (4.23)

Pk+1|k+1 = (I −Kk+1Ĥ)Pk+1|k(I −Kk+1Ĥ)
T
+Kk+1Rk+1K

T
k+1 (4.24)

ẑk+1|k+1 = Ĥx̂k+1|k+1 (4.25)

ek+1|k+1 = zk+1 − ẑk+1|k+1 (4.26)

where ek+1|k+1 is called the filter measurement residual sequence. Equations

(4.14) to (4.26) summarize the SVSF-VBL strategy.

4.3.2 Noise Adaptation for Smooth Variable Structure Filter

This paper proposes a novel form of SVSF-VBL that incorporates adaptation to

noise statistics. Although the stability and estimation convergence of the SVSF-

VBL method is proven with the time-varying boundary layer, its performance is

significantly enhanced with adaptation to noise statistics variation and by including

bias estimation in measurements. Figure 4.3 offers a brief overview of the ASVSF-

VBL strategy that is explained on this section.
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Time-Varying smoothing boundary 
layer calculation 

Standard SVSF gain

ASVSF-VBL

Update 
Stage

Prediction 
Stage

lim vblif  

lim vblif  

Figure 4.3: Overview of ASVSF-VBL strategy.

Different strategies have been proposed for noise adaptation including covariance

matching, Bayesian, Maximum likelihood and correlation method. These methods

have been tested in different applications to improve estimation performance. In the

ASVSF-VBL, the system and measurement noise covariance matrices (Q and R) are

adapted in time using the covariance matching method. The covariance matching

technique employs the innovation and the residual defined in Equations (4.16) and

(4.26) to adapt the estimated value of the system and measurement noise covariance

matrices. Maximization of likelihood functions is used here to derive innovation-based

adaptation for the measurement noise covariance matrix (R) using the SVSF-VBL

method. The likelihood maximization estimation provides a unique and consistent

value for measurement noise covariance matrix (R) estimation. The system noise

covariance matrix (Q) is then estimated using the difference between a-posteriori

and a-priori states. The optimization is performed in real-time for each time instant

[128, 129, 130, 131]. The assumptions for the ASVSF-VBL are as follows,

• The states are independent of the adaptive parameters.

• The system and measurement matrices are time variant within a piece-wise limit

and independent of adaptive parameters.
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• The innovation sequence is white and ergodic within the estimation window.

For Gaussian distribution, the probability density function of the measurements

conditioned on an adaptive parameter at a specific epoch of k + 1 is defined as,

P (z|α)k+1 =
1√

(2π)m|Cϵk+1
|
e−

1
2
ϵTk+1C

−1
ϵk+1

ϵk+1 (4.27)

where ϵk+1 = zk+1−zk+1|k is the innovation sequence, Cvk+1
is the innovation sequence

covariance matrix, m is the number of measurements, and α is the adaptive parameter.

The zk+1|k is obtained from Equation (4.15). The logarithmic form of the above

equation is

ln (P (z|α)k+1) = −1

2
{m ln (2π) + ln (|Cϵk+1

|) + ln (ϵTk+1C
−1
ϵk+1

ϵk+1)} (4.28)

For a fixed-length memory filter, the innovation matrix will only be considered

inside a window of size N. Therefore, the ML optimization problem is defined as

follows,

min
α

k+1∑
i=i0

ln |Cϵi |+
k+1∑
i=i0

(ϵTi C
−1
ϵi
ϵi) (4.29)

where i0 = k − N + 2 is the first epoch inside the estimation. The above formula

defines the best estimate as it has the maximum likelihood based on the adaptive

parameters. This optimization problem can be simplified using matrix differential

131



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

calculus as,

k+1∑
i=i0

[
tr
{
C−1

ϵi

∂Cϵi

∂αk+1

}
− ϵTi C

−1
ϵi

∂Cϵi

∂αk+1

C−1
ϵi
ϵi
]
= 0 (4.30)

The partial derivative of Equation (4.18) with respect to α is,

∂Cϵk

∂αk+1

=
∂Rk+1

∂αk+1

+H
∂Pk+1|k

∂αk+1

HT (4.31)

And taking partial derivative from Equation (4.17) with respect to α gives,

∂Pk+1|k

∂αk+1

= A
∂Pk|k

∂αk+1

AT +
∂Qk

∂αk+1

(4.32)

Assuming that the process inside the estimation window is in steady state, Equa-

tion (4.32) can be written as,

∂Pk+1|k

∂αk+1

=
∂Qk

∂αk+1

(4.33)

By substituting Equation (4.33) into (4.31) and applying it into (4.30) the maxi-

mum likelihood equation for the adaptive SVSF-VBL is as follows,

k+1∑
i=i0

tr
{[
C−1

ϵi
− C−1

ϵi
ϵiϵ

T
i C

−1
ϵi

][ ∂Ri

∂αk+1

+H
∂Qi−1

∂αk+1

HT
]}

= 0 (4.34)

Both system and measurement noise covariance matrices (Q andR) can be adapted

based on α from the computed equation. To achieve an expression for R, αii = Rii is
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considered where the adaptive parameters are the variance of the updated measure-

ment. Therefore, Equation (4.34) is modified as follows,

k+1∑
i=i0

tr
{
C−1

ϵi

[
Cϵi − ϵiϵ

T
i

]
C−1

ϵi

}
= 0 (4.35)

This equation is solved by defining the innovation sequence as,

Cϵk+1
=

1

N

k+1∑
i=i0

ϵiϵ
T
i (4.36)

Replacing Equation (4.36) into (4.18),

Rk+1 = Cϵk+1
− ĤPk+1|kĤ

T (4.37)

Since the measurement noise covariance should be positive definite, a more stable

expression is required. For the case with ψk+1 < ψlim, it can be shown that the

adaptation rule for R is,

Rk+1 = Ĉεk+1
+ ĤPk+1|k+1Ĥ

T (4.38)

where the residual sequence is ε = zk+1 − zk+1|k+1 and residual covariance matrix

Ĉεk+1
can be calculated as,

Ĉεk+1
=

1

N

k+1∑
i=i0

εiε
T
i (4.39)
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A forgetting factor is then employed to provide a smoother estimation of R,

Rk+1 = λRRk + (1− λR)(Ĉεk+1
+ ĤPk+1|k+1Ĥ

T ) (4.40)

where 0 ≤ λR ≤ 1.

The process noise covariance (Q) can be achieved using the SVSF-VBL formula-

tion. Considering the system Equation (4.10) as,

wk = xk+1 − f(xk, uk) (4.41)

From Equations (4.41) and (4.14), the estimated system noise can be obtained as,

ŵk = xk+1|k+1 − f(xk|k, uk) = xk+1|k+1 − xk+1|k = Kek+1|k (4.42)

Covariance of ŵk can be written as,

E[ŵkŵ
T
k ] = E[Kek+1|k[Kek+1|k]

T ] = KCϵk+1
KT (4.43)

Qk = KCϵk+1
KT (4.44)

A forgetting factor is also considered for Q to update it gradually [128],

Qk+1 = λQQk + (1− λQ)(KĈϵk+1
KT ) (4.45)

where 0 ≤ λR ≤ 1.

Figure 4.4 illustrates an overview of the proposed ASVSF-VBL method specified

for state estimation of electric vehicle batteries. The SVSF filter guarantees stability
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using a Lyapunov function. Based on Lyapunov theory, if a Lyapunov function (V) is

locally positive definite and the time derivative of it is locally negative semi-definite,

the filter is stable [54]. The following Lyapunov function is considered based on the

a-posteriori estimation error (residual error),

V = eTk+1|k+1ek+1|k+1 > 0 (4.46)

Therefore, the estimation process is stable if the following condition is satisfied,

∆V ⩽ 0 (4.47)

where ∆V is defined as follows,

∆V = eTk+1|k+1ek+1|k+1 − eTk+1|kek+1|k (4.48)

Therefore, the following condition which is equal to Equation (4.46) satisfies the

stability condition of the estimation process [54].

|ek|k|Abs
> |ek+1|k+1|Abs

(4.49)

Theorem 2 ([54]). On the stability of the SVSF strategy, if the system is stable,

consecutive bijective (or completely observable and completely controllable in the case

of linear systems), then the SVSF corrective gain Kk+1 that would satisfy the stability
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condition of (4.49) is subject to the following conditions,

|ek+1|k|Abs
⩽ |Kk+1|Abs < |ek+1|k|Abs

+ |ek|k|Abs
(4.50)

The corrective gain Kk+1 of the SVSF as Equation (4.22) satisfies this condition

[54]. The SVSF gain is not affected by the adaptive scheme outside the boundary

layer and hence BIBO stability of the ASVSF-VBL remains unaffected.

Predicted output and 
innovation sequance, 

Eq 4.15 & 4.16.

A-posteriori states, 
Eq 4.23.

Estimated output and 
residual sequence, Eq 

4.25 & 4.26.

Innovation covariance 
matrix and combined 
error vectors, Eq 4.18 

& 4.19. 

Filter Gain 
Calculation, Eq 

4.20, 4.21 & 4.22.

Battery 
Model Estimated SoC
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Current
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Estimated SoC

Estimated SoC
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A-priori state and 
covariance matrix,                

Eq 4.14 &4.17.

Current Bias

Terminal 
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Model Re-Calibration ASVSF-VBL

Prediction
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SoH

SoC

SoH Estimation,
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for            , Eq 4.24 & 4.45.

Figure 4.4: An overview of the proposed strategy for battery state estimation.
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4.4 Experimental Results

The ASVSF-VBL was validated and comparatively studied further to experiments

conducted on NMC Lithium Polymer battery cells. Battery cells specifications are

presented in Table 4.1. The experiments were conducted by using an experimental

setup consisting of an Arbin BT2000 cycler, environmental chambers , an AVL Lynx

data acquisition system, and AVL Lynx software [16]. The characterization tests

included static capacity, internal resistance, OCV-SOC and efficiency tests; these

were conducted to obtain a baseline for the battery cell performance. In addition,

cycling tests were done to investigate the impact of aging on the battery’s performance

and dynamics.

Table 4.1: Battery cells specifications.

Manufacture Batterist

Type NMC Li-ion Polymer

Nominal Capacity (mAh) 5400

Nominal Voltage (V) 3.7

Minimum Voltage (V) 2.8

Maximum Voltage (V) 4.2

Different driving cycles including an Urban Dynamometer Driving Schedule (UDDS);

a light duty drive cycle for high speed and high load (US06); and, a Highway Fuel

Economy Test (HWFET) drive cycle were used in this study. Figure 4.5 presents the

standard driving cycles considered in this article. These drive cycles simulate common

driving patterns. The driving patterns of an average driver in the city are illustrated
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in Figure 4.5 and were assumed to be the UDDS cycle. High acceleration driving

conditions with aggressive driving patterns are performed by US06 drive cycle. The

HWFET drive cycle represents highway driving. A mixture of these velocity profiles

was used to generate a current profile for the battery cell as presented in Figure 4.6.

The experimental data was collected for battery cells over time at elevated tempera-

tures ranging from 35◦ to 40◦ to accelerate aging for a full range of SoCs from 90%

to 20% [12, 16].

Figure 4.5: Velocity profiles for the UDDS, US06, and HWFET driving cycles (Data
set from [18]).
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Figure 4.6: Voltage , current, and SoC for a cell using a mixed drive cycle.

The battery model should be determined as an essential part of estimation. Bat-

tery model parameters are first identified for different levels of SoC (Figure 4.6) as

well as SoH [16]. Table 4.2 provides the parametric bound of the equivalent circuit

model presented in Section 4.2. The internal resistance of the battery is considered

as a parameter to be estimated in real time. The internal resistance is one of the

key factors for determining the battery’s SoH and reflects the power capability of a

battery. The battery’s SoH is estimated using an indicator as follows,

SOHR =
REOL −Rin

REOL −Rnew

× 100% (4.51)

where REOL is the internal resistance of a fully aged battery, Rnew is the internal
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resistance of a fresh battery where it can be estimated based on experimental charac-

terization or obtained from manufacturer’s specifications. The Rin is the estimated

internal resistance provided by the ASVSF-VBL strategy. The end of life for a battery

in electric applications is usually where the nominal capacity is about 80% compared

to its value when the battery is new. Equation 4.51 indicates a value in range of

0 ⩽ SoHR ⩽ 1 which means that the battery reached its end of life and should be

replaced. The presented value should be redefined in the range of 0.8 ⩽ SoHR ⩽ 1

which means that Cn,old = 0.8Cn,new [116, 132].

The ASVSF-VBL strategy as illustrated in Figure 4.4 is then employed to es-

timates the states of a battery including the internal resistance, the SoC and the

current bias. Figure 4.7 demonstrates the validation data used to investigate the

performance of the proposed method. Data was collected during experiments for a

smaller range of SoC based on a US06 drive cycle for validation. Through the val-

idation cycle, the battery cell’s voltage is measured and recorded as fast as 10 Hz.

These measurements are then employed to evaluate the proposed strategy. A com-

parison of the ASVSF-VBL versus the SVSF-VBL and the EKF methods is provided

to investigate the performance of the proposed strategy under different conditions.

All filters use the same models with the same initial parameters for providing a direct

comparison between the performance of the three filters. Optimal and non-optimal

initial parameters are considered to show the effect of Q and R on the filters as listed

in Table 4.3. In a non-ideal scenario a current bias of Ib = 1A has been added to the

current measurement. In addition, extra noise has been added to measurements to

simulate changing statistics of noise under controlled conditions.
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Figure 4.7: Current and voltage of the validation data.

Table 4.2: Model Parameters bound of a third-order ECM. Example given for 80%
SoC and 100% SOH.

Parameters R1(Ω) R2(Ω) R3(Ω) τ1(s) τ2(s) τ3(s)

Upper Bound 0.025 0.0079 0.089 1 27 355

Lower Bound 0.00117 0.000038 0.0012 0.1 8 74

Example 0.0018 0.0028 0.0082 0.5543 11.929 111.57

Table 4.3: Initial parameters used for the filters.

Parameters R Q P Ib0 ψ γ

Optimal Value 5 0.1I6 I6 0 6 0.23

Non-Optimal Value 50 I6 I6 1 6 0.23

Table 4.4 provides the Root Mean Square Error (RMSE) of the results for two
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different scenarios. Firstly, an ideal scenario is considered where there are no added

measurement bias and noise. Secondly, the filters have been tested in the presence of

added noise and bias to the measurements. The results indicate that the proposed

method using ASVSF-VBL provides a more accurate performance especially in the

presence of added noise and bias disturbances. To illustrate the sensitivity of other

methods to unknown noise statistics, Q and R are incorrectly specified as in Table

4.3. Figure 4.8a,b show the estimated SoC for both scenarios. The actual SoCs in

these figures are evaluated using coulomb counting method from the cycler’s data.

This is because the initial value of SoC and nominal capacity of a battery are both

known during a laboratory experiment. It can be seen from Figure 4.8b that after

1500 s the EKF error increases when the drive cycle C-rate is high as illustrated in

Figure 4.7. Figure 4.9a,b display the percentage of SoC estimation error for both

scenarios. It can be observed that the proposed strategy can keep the percentage of

SoC error to less than 2%. It is also shown in Figures 4.10 and 4.11 that the proposed

strategy is superior in identifying the current bias and internal resistance compared

to the EKF and SVSF-VBL methods.
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Table 4.4: Root mean square errors of ASVSF-VBL in comparison with SVSF-VBL
and EKF for different scenarios..

Different Scenarios Ideal Scenario In Presence of Noise and Current Bias

Initial Conditions
Optimal Initial

Noise Covariance

Non-Optimal Initial

Noise Covariance

Optimal Initial

Noise Covariance

Non-Optimal Initial

Noise Covariance

RMSESOC

EKF 0.5033 1.9735 1.2640 2.5416

SVSF-VBL 0.3776 0.3776 0.5207 0.6462

ASVSF-VBL 0.4304 0.4304 0.5386 0.5386

RMSEVT

EKF 0.000499 0.000695 0.0005477 0.000441

SVSF-VBL 0.000276 0.000276 0.000241 0.000241

ASVSF-VBL 0.00014 0.00014 0.00032 0.00032

(a) (b)

Figure 4.8: (a) Estimated SoC for an ideal scenario, (b) Estimated SoC in presence
of noise and current bias.
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(a) (b)

Figure 4.9: (a) Percentage of estimated SoC error for an ideal scenario, (b)
Percentage of estimated SoC error in presence of noise and current bias.

(a) (b)

Figure 4.10: (a) Estimated current bias for an ideal scenario, (b) Estimated current
bias in presence of noise and current bias.
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(a) (b)

Figure 4.11: (a) Estimated internal resistance for an ideal scenario, (b) Estimated
internal resistance in presence of noise and current bias.

4.5 Conclusions

An adaptive strategy referred to as the Adaptive Smooth Variable Structure Fil-

ter with Variable Boundary Layer (ASVSF-VBL) is proposed to estimate the SoC

and SoH of a battery. The ASVSF-VBL is model-based and, in this study, a third-

order Equivalent Circuit Model (ECM) was used as the filter model. In addition to

the SoC and SoH, the state vector was augmented to estimate the bias in current

measurement and the battery’s internal resistance. The ASVSF-VBL adjusts the

unknown system and measurement noise covariance matrices to provide a better per-

formance under conditions involving noise with changing statistics. The adaptation

scheme does not affect the stability of the estimation process. The estimated internal

resistance of the ASVSF-VBL is used as an indicator of the battery SoH in addi-

tion to SoC. The proposed strategy was comparatively validated using experimental

data and demonstrated a considerable improvement in performance. The proposed
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ASVSF-VBL reduced the estimated error of voltage to about 0.14 mV compared to

the SVSF-VBL and EKF. The presented strategy showed the lowest SoC estimation

error that remains within 2% with an RMSE of approximately 0.4.

List of Notations

The following notations have been used within the body of this article.

VT Cell terminal voltage.
Vj Voltage across RC branch, j = 1, 2, 3.
Vocv Open circuit voltage (nonlinear function of SoC).
SOC State of Charge.
SOH State of Health.
SOP State of Power.
Cn Cell nominal capacity.
Rin Cell internal resistance.
Rj Resistance of RC branch, j = 1, 2, 3.
Cj Capacitor of RC branch, j = 1, 2, 3.
η Cell Coulombic Efficiency.
∆T Sampling period.
k Time sample.
i Actual current flowing across the cell.
im Measured current flowing across the cell.
ib Bias from the current sensor.
x State vector or values.
u Input to the system.
y Measurement vector or values.
f Nonlinear system function.
g Input gain function.
h Nonlinear measurement function.
X An open subset of Rn.
A State matrix.
B Input matrix.
w System noise vector.
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υ Measurement noise vector.
k + 1 | k A-priori time step (i.e., before applied gain).
k + 1 | k + 1 A-posteriori time step (i.e., after update).
Q System noise covariance matrix.
R Measurement noise covariance matrix.
Diag(a) or ā diagonal matrix of some vector a.
γ SVSF “convergence” or memory parameter.
ψ SVSF smoothing boundary layer width.
K SVSF gain matrix.
P State error covariance matrix.
ˆ Estimated vector or values.
S Innovation covariance matrix.
| a | Absolute value of some vector a.
T Transpose of some vector or matrix.
e Measurement (output) error vector.
E Combination of measurement error vectors.
sat(a) Defines a saturation of the term a.
H Jacobian matrix of h.
m Number of measurements.
n Number of states.
ln(a) Defines a natural logarithm of a.
P (z | a) Probability density function of z conditioned to a.
α Adaptive parameter.
tr(A) Trace of matrix A.
λR Forgetting factor of estimated measurement noise covariance.
λQ Forgetting factor of estimated system noise covariance.
ϵ Innovation Sequence.
ε Residual Sequence.
Ij Identity matrix (Ij ∈ Rj×j).
0j Zero matrix (0j ∈ Rj×j).
V Lyapunov function.
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Abstract: State of Charge (SoC) and State of Health (SoH) estimation play

a significant role in Battery Management Systems (BMSs) of Electric Vehicles (EVs)

as the battery’s safe and reliable operation heavily relies on them. Cell-to-cell vari-

ations in a battery pack can affect the performance of the BMS, resulting in the

battery degradation and safety concerns. Although inconsistencies between parallel-

connected cells are unpredictable, it is important to consider the influence of these

changes in the BMS. A robust and adaptive estimation technique is required to pro-

vide a higher accuracy for SoC and SoH estimation when cell differences exist. This

paper investigates the impact of the occurrence and existence of a faulty cell amongst

a set of parallel-connected battery cells in a module. An estimation algorithm is

proposed using a Smooth Variable Structure Filter with a Variable Boundary Layer

(SVSF-VBL) to determine the SoC, SoC bias, and terminal voltage bias. In addi-

tion, online parametrization is considered to find the parameters of the pack and

provide an indicator for SoH. In order to show the effectiveness of the proposed es-

timation algorithm, experimental data is collected from a parallel-connected battery

cells configuration. The results show that the proposed methodology provides a highly
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accurate estimation of the battery SoC and SoH for parallel-connected cells in the

presence of faulty cells.

5.1 Introduction

The climate crisis is continuing to be a major problem and Greenhouse Gas (GHG)

emissions are reaching new high records each year. Therefore, the transition to a

cleaner and green economy needs to be a priority. Consequently, vehicle manufactur-

ers are planning to introduce millions of Electric (EVs) and Hybrid Electric (HEVs)

Vehicles in the near future. Lithium-ion (Li-ion) batteries are currently the preferred

choice to produce the EVs and HEVs battery packs. Hundreds of Li-ion battery cells

need to be connected in parallel and series to meet the required power and energy of

an EV or HEV [133, 134].

To maximize a battery pack’s performance and life expectancy, a robust strategy

should be developed to adaptively estimate the states of operation of a battery pack

considering the complexity of the connections. The key states for providing accurate

indicators to the driver include State of Health (SoH), State of Charge (SoC), and

State of Power (SoP). Where the SoC is an indicator of the remaining charge in a

battery pack and SoH determines its capacity and remaining life. The SoP is also

defined as the maximum available power that can be obtained subject to operational

limits on battery voltage, current and SoC [135].

An ideal battery pack would provide an equal performance from each individual

cell. There are, however, inconsistencies between cells stemming from battery man-

ufacturing and packaging. In conditions where cells are produced under the same
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conditions, even cells of the same chemistry display small variations [136]. In addi-

tion, while the battery pack is in operation, battery cells could differ in their SoC and

SoH over time. These factors could have an impact on the performance of the bat-

tery pack and lead to uneven and faster aging of the cells [137]. For series connected

cells, balancing must be used to equalize cell inconsistencies. The current of individ-

ual battery cells connected in series remains the same, but this configuration could

lead to different SoC and voltage for each cells. Generally, balancing strategies for

series-connected cells could be divided into two groups, including passive balancing

and active balancing [138]. It is possible to increase the overall power and capacity

of a battery pack by using these strategies, as well as preventing individual cells from

getting overly charged or discharged [133, 139].

Passive balancing methods employ shunting resistors to remove the extra charge

from a cell with a higher voltage until its charge matches those cells with lower

voltages in the pack. These methods can only be used during battery charging [140].

On the other hand, active balancing methods use capacitors or inductors to balance

the energy transferred among the cells. These methods transfer energy from cells

with higher SoC to cells with lower SoCs until all the cells are balanced [135, 141].

Despite the variety of balancing methods offered for series-connected cells, it is

quite challenging to diagnose cell inconsistencies in parallel-connected battery cells

configurations. In [142], the characteristics of parallel-connected battery cells have

been investigated. The study shows how cell inconsistencies could lead to accelerated

degradation of a pack. A simplified battery pack model is also presented for a battery

pack in [143]. The paper combines the Equivalent Circuit Model (ECM) of individ-

ual cells into a single equivalent model. However, the parameters of each ECM are
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required to provide the pack model. Although, variations between parallel-connected

cells can be investigated experimentally, it is impractical and costly to measure the

current of individual cells connected in parallel. Therefore, parallel-connected cells

are commonly modelled as a single cell where all the cells consume the same amount

of current. The robustness of the energy management strategy is crucial to detect-

ing cell differences with respect to the existing sensors [142]. The literature presents

different energy management strategies that can be implemented to improve the per-

formance of a battery pack [119, 135].

An important feature of the Battery Management System (BMS) is providing an

accurate estimation of the battery pack SoC and SoH. These states can be estimated

using existing measurements such as terminal voltage, current and temperature. The

SoC of a battery can be estimated using different strategies which can be categorized

into different groups including measurement-based methods, model-based methods,

and data-driven methods. In a BMS, a combination of different estimators are usually

considered to provide a better performance. Measurement-based methods are com-

monly used in industry as the base technology to estimate the SoC. These methods use

measurements such as terminal voltage, impedance, or Open Circuit Voltage (OCV)

to calculate the SoC. Coulomb counting is a most commonly used method where the

SoC is estimated by integrating current. However, regular calibration is required over

time due to inaccurate initial value of SoC, measurement bias and changing capacity

[23, 31, 83].

Compared to measurement-based methods, model-based approaches provide a bet-

ter insight into the battery’s internal dynamics, therefore they are more practical to

be implemented onboard of a BMS. For these methods, a proper model should be
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provided for the battery that can represent the cell characteristics under different

operating conditions. Battery models commonly used in BMSs are categorized into

two groups including electrochemical and ECM. Electrochemical models are quite

complicated to use with estimation algorithms onboard of a BMS. Although, ECMs

do not model electrochemical effects within a battery, they can provide an accurate

temporal model within the bounded operating range of a battery for real-time appli-

cations [91, 92].

In addition to a battery model, an estimation strategy is required to be imple-

mented. These methods include but are not limited to the Extended Kalman Filter

(EKF), Particle Filter (PF), Least Square Filter (LSF), Unscented KF (UKF) or the

more robust strategies such as the Adaptive EKF (AEKF), H∞ Filtering and Smooth

Variable Structure Filter (SVSF) [71, 98, 112].

Different algorithms can be employed for adaptability to different operating con-

ditions and battery degradation. Common approaches include adaptive filter and

Multiple Model (MM) strategies where the battery model parameters can be up-

dated as they change [74, 94]. Noise tuning and parameter tuning can be considered

as adaptive filter adjustment. Noise tuning method such as AEKF and Adaptive

SVSF could provide a more robust estimate in presence of changing measurement

noises [144]. Parameter tuning strategies include joint and dual estimation methods

where they take available measurements of a battery to estimate model parameters

in real-time [62, 75]. These methods provide an updated battery model over time

which leads to a more accurate estimate. MM methods, on the other hand, employ a

finite number of pre-defined models to work with different operating conditions of a

battery such as temperature, current rate, and SoH [93, 119, 120].
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Although, different methods are presented in literature that can provide robust-

ness and accuracy for state estimation of a battery cell, it is quite challenging to get

the same result in a pack. Cell-to-cell variations should be considered for battery pack

states estimation. Additionally, the method should not place an excessive amount of

computational burden on the BMS. Battery pack state estimation strategies, there-

fore, can be categorized into two groups. The first group considers the entire battery

pack to be one single large cell to estimate the state of the battery pack as a func-

tion of its voltage and current, where the pack ECM model parameters are typically

determined offline [137, 145]. These approaches can be implemented easily, but cell

inconsistencies can not be considered and therefore accurate estimation can not be

provided [146].

Battery pack states can also be estimated by considering the states of individual

cells. These methods can also be simplified by selecting a reference cell or a mean cell.

The reference cell is usually the weakest cell in a pack, where the cell has maximum

voltage during charging or minimum voltage during discharging [134, 147, 148]. The

individual state estimation can also be estimated by comparing to a mean cell defined

by all voltages [149, 150, 151]. These strategies along with an estimator such as EKF,

AEKF, Sigma Point KF (SPKF) and UKF are typically considered onboard of a BMS

[135]. It is imperative to use a more robust approach not only to improve the state

estimation, but also to detect cell inconsistencies to enhance battery pack safety.

SVSF-VBL and EKF methods are compared in this paper in terms of accuracy

and robustness to cell inconsistencies for state estimation of a parallel-connected

battery module. A new formulation for the ECM is presented with this method

where the states are augmented with two more variables including the SoC bias and
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voltage sensor bias to provide a better performance. A Recursive Least Square (RLS)

method is also considered to adaptively estimate the parameters of the ECM for a

parallel-connected module over time.

This paper includes the following contributions:

1. SoC bias and terminal voltage bias are considered as states of the ECM to

provide a more accurate result for SoC in presence of a faulty cell in a parallel-

connected battery module.

2. Online parametrization is employed to update the model of a battery module

over time.

3. The Smooth Variable Structure Filter with Variable Boundary Layer (SVSF-

VBL) and Extended Kalman Filter (EKF) strategies are compared in terms of

their accuracy of SoC estimation in presence of cell inconsistencies.

4. The proposed methods are validated using experimental data.

The outline of this paper is as follows: Section 5.2 presents the battery pack

model. The proposed estimation technique for SoC and SoH is introduced in Section

5.3. Section 5.4 demonstrates the experimental procedure and validation results. The

conclusions are presented in Section 5.5.

5.2 System Modeling

This section describes the modified ECM to be used for state estimation of parallel-

connected battery cells. ECMs are typically used to model a single Li-ion battery
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cell. The transient response of a battery can be captured by multiple Resistance-

Capacitance (RC) branches in an ECM. A first order model is considered in this paper

to provide a balance between complexity and accuracy with online parametrization.

Figure 5.1 shows the ECM considered for a single battery cell. The series internal

resistance (Rin) is used to relate the battery’s terminal voltage to its current. The

terminal voltage of a battery can be obtained from discrete-time state equations as

follows, [104, 152].

Figure 5.1: First-order equivalent circuit battery model.

V1,k+1 = (1− ∆T

τ1
)V1,k +

R1∆T

τ1
ik (5.1)

SOCk+1 = SOCk −
η∆T

Cn

ik (5.2)

VT,k = Vocv(SOCk)− V1,k −Rinik (5.3)

where VT is the Cell terminal voltage, V1 is the voltage across the RC branch, Vocv

is the OCV (nonlinear function of SoC), Cn is the cell nominal capacity, Rin is the

cell internal resistance, R1 is the resistance of RC branch, τ1 is the time constant of
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RC branch, η is the cell Coulombic Efficiency (CE), ∆T is the sampling period, i is

the current flowing across the cell, and k is the time step.

In a BMS, coulomb counting is commonly used as one of the SoC estimation

methods through the following Equation [29],

SOC(t) = SOC0 −
1

Cn

∫ t

0

ηi(τ)dτ (5.4)

where SOC0 is the battery SoC’s initial value. This method may lead to a bias in the

SoC calculation due to an inaccurate SOC0, bias in current sensor, and changes in the

nominal capacity over time. In [119], the coulomb counting method is combined with

model-based estimation as an extra measure to overcome this issue. Therefore, the

so-called SoC bias can be considered as a state with slow dynamics to be estimated

as follows,

SOCb,k+1 = SOCb,k + wbk (5.5)

where SOCb is the SoC bias and wbk is white noise. The measured SoC includes this

bias such that,

SOCm,k = SOCk + SOCb,k (5.6)

where SOCm is the measured SoC from coulomb counting method and SOC is

the actual SoC. Since there are not enough sensors in parallel-connected cells, the

voltage drop due to cell inconsistencies can not be detected easily. Therefore, a bias
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may exist in the measured voltage of the battery. Here, the voltage sensor bias is

considered as a state augmented with the ECM model to be estimated. This could

improve the estimation performance and can be used to detect voltage drop in a pack.

The voltage sensor bias is defined as follows,

Vb,k+1 = Vb,k + wvk (5.7)

where Vb is the bias from the voltage sensor and wvk is white noise. The measured

terminal voltage across the cell includes this bias and is defined as follows,

Vm,k = VT,k + Vb,k (5.8)

where Vm is the measured terminal voltage, and VT is the actual terminal voltage

of a battery cell.

The state-space form of the modified model can be described as,

xk+1 = f(xk) + g(xk)uk, (5.9)

yk = h(xk, uk) (5.10)

where x∈X is state vector, u∈R is input to the system, y∈Rm is measurement

vector. Here, f :X→Rn is nonlinear system function, g :X→Rn is input gain function

and h :X→Rm is nonlinear measurement function where all are differentiable func-

tions. The state and measurement vectors are xk =

[
V1,k SOCk SOCb,k Vbk

]T

and yk =
[
Vm,k SOCm,k

]T

, respectively. Note that in this model f(xk) is linear and

f(xk) = Axk and g(xk) = B are given as,
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A=

 1−∆T
τ1

01×3

03×1 I3

 , B=∆T



R1

τ1

−η
Cn

0

0


(5.11)

Here, A is the state matrix and B is the input matrix, Ij is an identity matrix

(Ij ∈ Rj×j), and 0i×j is a Zero matrix (0i×j ∈ Ri×j). The output equations can be

defined by substituting Equation 5.3 into 5.8 along with Equation 5.6.

Parallel-connected battery cells can be regarded as a single cell with a higher ca-

pacity. The battery module can be described with an ECM as presented in Figure 5.2

where the parameters of the module’s model are different than a single cell. However,

the battery module’s model can be described using the same equations presented for

a single cell. The following equations should be considered for the battery model of

the parallel-connected module.

Figure 5.2: ECM for parallel-connected battery cells.
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ip =

Np∑
j=1

ij (5.12)

Cn,p = NpCn =

Np∑
j=1

Cn,j (5.13)

where ij is the current flowing through the jth battery cell, ip presents the current

flowing through the battery module (input to the model for the module), Np is the

number of cells connected in parallel, Cn,j is the nominal capacity of the jth battery

cell, and Cn,p is the nominal capacity of the module.

5.3 The Proposed Estimation Approach

This section proposes a robust strategy for state estimation of a parallel-connected

battery module. The RLS strategy used for online parameter identification of the

module is defined in this section. EKF and SVSF-VBL for state estimation are later

expressed in details.

5.3.1 Dual Estimation Strategy

This section describes the dual estimation strategy considered for parallel-connected

battery cells. Figure 5.3 provides the key points of the proposed strategy. First, the

terminal voltage and current of the parallel-connected module are measured. Given

the number of parallel connected cells, the battery module can be considered as a

single cell. If there is no variation amongst the cells, the current flow through each

cell can be defined as follows,
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Figure 5.3: Estimation Strategy for Parallel-Connected Cells.

icell =
ip
Np

(5.14)

However, in real-time applications, some cell variations cannot be avoided, and

cell-to-cell inconsistencies can become worse over time. Therefore, the current con-

sumed by each cell is not the same and Equation 5.14 cannot be applied. Therefore,

an estimation algorithm based on the pack current (ip) is more reliable.

An online parameter identification method (Section 5.3.2) is used to re-define

the internal resistance (Rin), the time constant and OCV of the parallel-connected

battery module. Although standard tests are defined for estimating parameters of a

single cell, parameters of a battery module are more difficult to identify. Therefore,

online parametrization is considered to provide a more accurate model for the battery

module over time. The obtained parameters are then employed along with the SVSF-

VBL to estimate the states of the battery including its SoC and measurement biases.
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The estimated SoC bias and voltage sensor bias are then utilized to re-calibrate

the measurements to provide an optimized model identification along with a more

accurate estimate of the states. The estimated internal resistance (Rin) from the RLS

strategy is considered as an indicator for SoH of the battery pack to be calculated as

follows,

SOH =
REOL,p −Rin

REOL,p −Rnew,p

× 100% (5.15)

where REOL,p is the internal resistance at the end of life of the battery module, and

Rnew,p is the internal resistance of the battery pack with new batteries. The Rnew,p

of a parallel-connected battery module can approximately be calculated as follows,

Rnew,p =
Rnew,cell

Np

(5.16)

where Rnew,cell is the internal resistance of a new battery cell that is usually pro-

vided by its manufacturer. REOL,p can similarly be obtained, knowing the internal

resistance of a battery cell in its end of life. The methods used in this algorithm are

described in the remainder of this section.

5.3.2 Online Parameters Estimation

This section provides a description of a real-time parameter estimation method, in-

strumental to more accurate state estimation for parallel-connected battery cells.
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Battery model parameters can be affected by different factors including SoC, tem-

perature, and SoH. It is critical to update the parameters of a battery model to

provide an accurate estimation of its states. In addition, model parameters of a

parallel-connected battery module cannot be identified offline and it is costly to de-

termine the parameters of every single cell. Online parameter estimation is effective

for parallel-connected cells to determine the effect of the weakest cell in the module’s

model [36, 105]. Recursive Least Square (RLS) with a forgetting factor is considered

here to capture the changes in parameters of the battery module to diagnose slow

variations in the ECM. This strategy is used to refine parameters including the inter-

nal resistance (Rin,p), the resistor (R1,p) and time constant (τ1,p) of the RC branch,

and the open circuit voltage (Vocv,p) of the ECM for the battery module.

VT,pk = Vocv,p − (1− ∆T

τp,1
)V1,k −Rin,pip,k (5.17)

where VT,pk is the actual terminal voltage of the battery module. Using Laplace

transformation, the following equation can be obtained that relates the load current

(ik) to the known voltage.

VT,p(s) = Vocv,p − (Rin,p +
R1,p

τ1,ps+ 1
)Ip(s) (5.18)

Using the inverse laplace transform of Equation 5.18, a linear regression model

can be constructed based on the ECM as follows [79, 80],
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Vk = θTΦk (5.19)

where Φk = [ip,k−1 ip,k Vk−1 1]
T is the regressor of known signals and θ = [θ1 ... θ4]

T

is the parametric vector defined as,

θ1 = R1,p(1− e
− Ts

τ1,p )−Rin,pe
− Ts

τ1,p

θ2 = Rin,p

θ3 = e
− Ts

τ1,p

θ4 = (1− θ3)Vocv,p (5.20)

The loss function of the RLS method can be defined as follows [36],

V (θ̂, k) =
1

2

k∑
i=1

λk−i(yi − θ̂Tk Φi) (5.21)

Here, λ is called the forgetting factor and 0 < λ < 1. This loss functions is used to

obtain, the parametric vector (θ) as follows,

θ̂k = θ̂k−1 + Lk(yk − θ̂Tk−1Φk) (5.22)

L(k) and P (k) are the gain and covariance matrix, that are updated as follows,
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Lk = Pk−1Φk(λ+ ΦT
kPk−1Φk)

−1 (5.23)

Pk = (I − LkΦ
T
k )Pk−1

1

λ
(5.24)

The online parameter identification is used to update parameters of the model for

the battery module as shown in Figure 5.3.

5.3.3 Extended Kalman Filter

This section summarizes the EKF formulation. The EKF is a common strategy for

battery state estimation as it can easily be applied in a BMS. It is used here to provide

a fair comparison. Further to the following nonlinear model of a system,

xk+1 = f(xk, uk, wk),

yk = h(xk, uk, vk) (5.25)

w and v are the system and measurement noise vectors that are white with co-

variance matrices Qk and Rk, respectively. Linearization is required for the presented

ECM in Section 5.2 to employ the EKF. The matrix form of the system equation

is presented in Equation 5.11 and the jacobian matrix derived from the nonlinear

measurement function (h(xk, uk)) is as follows,

164



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

H =

−1 ∂Vocv,p

∂SOCp
0 1

0 1 1 0

 (5.26)

The EKF uses the following steps in an iterative fashion:

• Prediction: The a-priori state estimate are first obtained from Equation 5.27.

The error covariance is then calculated as in Equation 5.28. Substituting Equa-

tion 5.27 into the system measurement equation provides the predicated output.

x̂k+1|k = Ax̂k|k +Buk (5.27)

Pk+1|k = APk|kA
T +Qk (5.28)

ŷk+1|k = Ĥx̂k+1|k (5.29)

• Correction: The EKF gain as presented in Equation 5.30 is used to refine the a-

priori state estimate and error covariance into its a-posteriori form as presented

in Equations 5.31 and 5.33.

Kk = Pk+1|kH
T
k [ĤkPk+1|kĤ

T
k +Rk]

−1 (5.30)

x̂k+1|k+1 = x̂k+1|k +Kk[zk − ẑk+1|k] (5.31)

Pk+1|k = [I −KkĤk]Pk+1|k (5.32)

ŷk+1|k+1 = Ĥx̂k+1|k+1 (5.33)

Equations 5.27 through 5.33 summarize the EKF algorithm [100].
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5.3.4 Smooth Variable Structure Filter

The SVSF is a state and parameter estimation approach that was first introduced in

2007. The strategy works based on the sliding-mode concept in a predictor-corrector

framework where a discontinuous gain and a smoothing boundary layer is employed.

The smoothing boundary layer reduces chattering caused by using a discontinuous

corrective action. In the SVSF, the discontinuous corrective action forces the esti-

mated states to converge to a neighbourhood of the actual value. It has been shown

that the SVSF method is stable and robust against uncertainties and noise [153]. The

strategy can be applied to any observable and differentiable system with a nonlinear

equation as presented in Equation 5.25.

The SVSF has been enhanced with modifications such as its optimal formulation

with a time-varying smooth boundary layer (SVSF-VBL), and its combinations with

other filters such as PF, KF, EKF, and UKF [55, 103, 108]. It is also shown that

SVSF based strategies could provide a better performance for EV applications [70].

Similar to EKF, the SVSF contains two main steps called prediction and correction

as presented in Section 5.3.3. The differences between these two strategies are the

SVSF gain applied in the correction step and the a-posteriori covariance error where

it can be defined as follows,

Pk+1|k+1 = (I −Kk+1Ĥ)Pk+1|k(I −Kk+1Ĥ)
T
+Kk+1Rk+1K

T
k+1 (5.34)

The SVSF smoothing boundary layer width (ψk+1) can be obtained from Equation
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5.37,

Sk+1 = ĤPk+1|kĤ
T +Rk+1 (5.35)

Ek+1 = |ek+1|k|+ γ|ek|k| (5.36)

ψk+1 = (Ē−1
k+1ĤPk+1|kĤ

TST
k+1)

−1
(5.37)

where S is the innovation covariance matrix, E is the combination of the a-priori

and a-posteriori measurement error vector, γ is the SVSF convergence parameter,

ek+1|k = zk+1 − ẑk+1|k is the a-priori measurement error, and ek|k = zk − ẑk|k is the

a-posteriori measurement error from previous correction iteration.

The SVSF-VBL gain for ψk+1 < ψlim is calculated as follows,

Kk+1 = Ĥ−1Ēk+1ψ
−1
k+1 (5.38)

where ψlim is upper limit for the boundary layer. The SVSF-VBL gain when ψk+1 ⩾

ψlim is obtained as,

Kk+1 = Ĥ−1Ēk+1sat(ek+1|kψ
−1
k+1)ē

−1
k+1|k (5.39)

The SVSF-VBl is used for state estimation of the battery module. The prediction

and correction steps are shown in Figure 5.3.
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5.4 Experimental Validation

This section describes the experiments and experimental setup used in this study to

validate the proposed strategy. The results are then presented and discussed in this

section.

5.4.1 Testbed

Laboratory tests are conducted on a parallel-connected battery module to evaluate

the performance of the proposed approach. The experimental setup consisted of a

D&V Electronics Ltd battery cycler (BCT-150), an environmental chamber namely

Associated Environmental Systems, and Four Samsung INR18650-35E Li-ion battery

cells. Batteries purchased on the same date are used to minimize the cell-to-cell

variations. Tables 5.1 and 5.2 provide a summary of the specifications of the test

equipment and battery cells, respectively. Figure 5.4 depicts the equipment used.

Three cells were connected in parallel into a module and housed in a thermal chamber

to provide a controlled environmental condition. The terminal voltage and current

flowing through the module are measured. A thermocouple is attached to the cells

for the measurement and monitoring of the surface temperature of the cells during

the test. The tests have been performed at room temperature (25◦C).

Table 5.1: A summary of specifications for BCT-150 Battery Cell Testing.

Cycler EIS Coulombic
Voltage Range 1-6 V 1-6 V 1-6 V
Maximum Current 100 A 5 A 2 A
Current Range 5 A / 25 A / 100 A 5 A 2 A / 5 A
Band Width - 0-50 kHz -
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Table 5.2: Battery Cells Specifications.

Manufacture Samsung
Type Lithium-ion
Model Name INR18650-35E
Nominal Capacity (mAh) 3400
Nominal Voltage (V) 3.6
Minimum Voltage (V) 2.65
Maximum Voltage (V) 4.2

Figure 5.4: Experimental Setup.

To introduce a faulty cell among the parallel-connected battery cells, an aging

study was conducted for one of the Li-ion cells. Standard charge and discharge cycles

were used in the aging procedure. During cycling, a constant current (CC) charge

was applied until the cell reached its maximum voltage (4.2V ), followed by a constant

voltage (CV) charge at 4.2V with a current cut-off of 0.02C = 0.068A as recommended

by the manufacturer. Then a CC discharge was applied until the minimum voltage

(2.65V ) was reached. The discharge current was set to the maximum discharge current
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(2.35C = 8A) recommended by manufacturer. The cell was cycled to reach 90%

capacity of a new cell to establish a clear difference in age.

Reference Performance Tests (RPTs) were conducted for the new and aged (90%

capacity) battery cells to capture their characteristics including capacity, internal

resistance, and OCV. Pulse charge/discharge tests were considered in this study for

offline parameter identification. Offline parameter identification was used as a baseline

for comparison.

Velocity profiles of different drive cycles were used to generate current profiles,

which were then applied to the battery module. The Urban Dynamometer Driving

Schedule (UDDS), shown in Figure 5.5a, was applied to provide baseline results for

the estimation method. A mixture of different drive cycles, consisting of the driving

schedule called the UDDS, US06, and HWFET, was then implemented on the battery

module as shown in Figure 5.5b to obtain the voltage profiles from the battery pack

for a range of SoCs. The mixed drive cycle was used to validate the proposed strategy.

(a) (b)

Figure 5.5: Current profile applied to the battery pack for the a) UDDS, b) mixed
drive cycle.
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Two testing scenarios were conducted. First, three new cells were considered for

the parallel-connected battery module to represent the healthy condition. The aged

battery cell was then connected in parallel to two new battery cells to test the proposed

method under a defective condition where one cell is different from others. Figure

5.6 displays the measured voltage of the battery module for the healthy and faulty

conditions using the mixed drive cycle as shown in Figure 5.5b. A small voltage drop

is shown when there is variation among cells in a parallel-connected battery module.

It is important to update the estimation strategy to be able to capture any changes

in the battery cells and provide better performance in state estimation of the module.

Figure 5.6: Measured terminal voltage of the parallel-connected pack using
validation data.
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5.4.2 Filter Initialization

The parameters of the filters must be tuned properly to provide a fair comparison. The

tuned parameters for the EKF and SVSF-VBL are as follows: the measurement noise

and process noise covariance matrices of the SVSF-VBL and EKF with a simple first-

order ECM were selected as R = 5 and Q = 10−8I2, respectively where I2 is an 2-by-2

identity matrix. A small value of Q implies some trust in the model. The measurement

noise covariance (R) represents the degree of uncertainty. The initial value of the state

error covariance matrix is set to P = 10−2I2. The same initial parameters were used

for the EKF and SVSF-VBL filters to provide a direct comparison. The SVSF-VBL

requires two additional parameters including its convergence parameter and upper

limit of its boundary layer to be specified. These were chosen as γ = 0.54 and

ψ = 0.05, respectively. The battery model used in the proposed algorithm includes

two measurements as well as two additional states referring to the SoC bias and sensor

voltage bias. Therefore, the measurement and process noise covariance were set to

R = diag[5, 5] and Q = 10−8I4, respectively as the size of the matrices were different.

The state error covariance matrix was set to P = 10−2I4. For the RLS filter, the

covariance matrix is set to P = 102 and the forgetting factor is set to λ = 0.95. The

initial battery SoC is considered as SOC0 = 75% to verify the performance of the

proposed strategy. Table 5.3 provides a summary of the initial parameters.

5.4.3 Results

The EKF and SVSF are first applied to the measured data from the UDDS cycle

current profile as depicted in Figure 5.5a. This profile was used to tune the parameters

172



Ph.D. Thesis – S. Rahimifard McMaster University – Mechanical Engineering

Table 5.3: Filters Initialization Parameters.

Parameters Symbol Value

RLS forgetting Factor λ 0.95
RLS Covariance Matrix P 102

SVSF Convergence Parameter γ 0.54
SVSF Upper Limit of the Boundary Layer ψ 0.05

of the SVSF-VBL and EKF. The performance of these filters is later compared to

the proposed strategy for a fair comparison. To evaluate the EKF and SVSF, the

ECM should be parameterized. A first-order model is considered for the EKF and

SVSF to provide a decent comparison to the proposed method. The conducted pulse

discharge test is used along with an automated battery model parameter identification

to provide offline parameters of the first-order ECM [16]. Lookup tables are provided

for the parameters for a full range of SoCs. Table 5.4a presents a summary of the

parameters of the first-order ECM. Equation 5.14 is used to obtain the approximate

current flowing across a single cell. The SoC of a single battery cell is estimated by

the SVSF and EKF filters using the current of a single cell. The estimated SoC is

then considered as the SoC of the parallel-connected battery module.

Figure 5.7a displays the estimated terminal voltage using EKF and SVSF-VBL

for a healthy condition where all the cells have the same SoH. Figure 5.7b displays the

estimated terminal voltage using EKF and SVSF-VBL for a faulty condition where

cell-to-cell variation exists. The EKF and SVSF-VBL are both using the same ECM

model of a new battery cell. Therefore, the amount of current consumed by each

parallel-connected cell is the same as shown in Equation 5.14. EKF and SVSF-VBL

are expected to perform similarly in the healthy condition as shown in Figure 5.7a.

However, if there is a faulty cell amongst the parallel-connected cells, the ECM is no
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longer able to describe the exact behavior of the battery and therefore may not be

suitable for an accurate state estimation. The parameters of the ECM (presented in

Table 5.4a) should be updated when a battery ages. Further, Equation 5.14 is no

longer applicable as the aged cell has a higher resistance but with the same terminal

voltage, and has less current in comparison to the new cells connected to it in parallel.

Since the capacity of the module decreases due to the existence of an aged cell, the

terminal voltage of the module is expected to drop. This inconsistency provides

uncertainty and bias in state estimation which should be taken into consideration.

Slight differences can be seen between the EKF and SVSF-VBL in the estimated

terminal voltages demonstrated in Figure 5.7b. This is because the performance of the

EKF is compromised by the uncertainty caused by the faulty condition. In contrast,

the robustness of the SVSF-VBL to the model uncertainty and drift improves the

estimation in comparison to the EKF. Therefore, the SVSF-VBL was able to identify

the voltage decrease, resulting in increased estimation accuracy. The terminal voltage

errors of the EKF versus the SVSF-VBL for healthy and faulty conditions are shown

in Figure 5.8. It is shown that a more robust filter is significantly more effective in

detecting any voltage decrease in parallel-connected battery cells due to cell-to-cell

variability.

To implement the proposed strategy, the parallel-connected battery module is

considered as one cell and its parameters are estimated using the RLS filter described

in Section 5.3.2. The parameters of a battery model change with SoH and SoC.

Online parameter detection is effective in state estimation. Figure 5.9 shows the

online predicted parameters for healthy and faulty conditions as they change with the

battery module’s SoC and SoH. The parameters are influenced by the malfunctioning
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Table 5.4: Model Parameters bound of a) the first-order and b) the second-order
ECMs for a single battery cell. Example given for 50% SoC.

(a)

Parameters Rin R1(Ω) τ1(s)
Upper Bound 0.0766 0.0594 176.97
Lower Bound 0.0595 0.0115 29.281
Example 1st Order 0.0631 0.024461 59.011

(b)

Parameters Rin R1(Ω) R2(Ω) τ1(s) τ2(s)
Upper Bound 0.0979 0.0099 0.0078 89.3900 106.7200
Lower Bound 0.0657 0.00047630 0.00049631 20.4130 48.0590
Example 0.0780 0.0027 0.00049631 63.5050 96.8920

cell in the module, which leads to module degradation. The presence of an aged

cell alters the module’s capacity and resistance. As a result, the parameters of the

ECM model provided for the module must be updated. The internal resistance of

an aged cell increases and therefore, the internal resistance of the battery module

should increase as well, as shown in Figure 5.9b. The terminal voltage and the OCV

of an aged cell is lowers in compared to a new cell. Similarly, the OCV of the battery

module should decrease in the presence of an aged cell as presented in Figure 5.9a.

Figure 5.9c and 5.9d show the parameters of the RC branch for the healthy and faulty

conditions. Resistance and time constant are altered with SoC and SoH, similar to

other parameters.

To validate the proposed strategy, the SVSF-VBL with online parametrization

using the augmented form of ECM is implemented to investigate the effect of real-

time parameter identification in state estimation of the parallel-connected battery

module. The validation data displayed in Figure 5.5b and its measured terminal volt-

age for the healthy and faulty conditions presented in Figure 5.6 are considered to
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(a) (b)

Figure 5.7: Estimated terminal voltage using EKF and SVSF for a) healthy and b)
faulty parallel-connected cells.

evaluate the performance of different filters. To provide a better performance while

using offline parameter identification, a second-order model is also considered for the

EKF and SVSF to be compared to the first-order one and the proposed algorithm.

The parameters of the second-order model are presented in Table 5.4b. Figure 5.10a

exhibits the estimated terminal voltage for the healthy condition where all three cells

are new. As there is no uncertainty or bias in the battery module, it is demonstrated

that all filters provide the same performance. Figure 5.10b displays the estimated

terminal voltage for the faulty condition where an aged cell is placed in the battery

module. The SVSF-VBL based filters are able to capture the voltage drop and a bet-

ter estimate for the terminal voltage is obtained. Figure 5.11a shows the estimated

SoC for a healthy condition. To take a closer loop into the SoC estimation, a smaller

range is displayed. Despite the fact that EKF and SVSF-VBL with offline parameter

identification were able to estimate the terminal voltage accurately, the SVSF-VBL

method with a second-order ECM improved the estimated SoC. The parameters of
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Figure 5.8: Terminal voltage error using EKF and SVSF-VBL for healthy and faulty
condition.

ECMs for EKF and SVSF-VBL are identified using specific test. However, the param-

eters of a model could change when a battery cell placed in a pack. Online parameter

estimation enhances state estimation by identifying the parameters of the ECM in

real-time. Although, SoC estimation is improved by using online parametrization, the

estimated SoC using the proposed method changed significantly as it also considers

measurement biases and the biases change significantly as shown in Figure 5.12. This

could affect the results of the faulty condition even more. Figure 5.11b presents the

estimated SoC for a faulty condition. The figure displays that the proposed method

provides a higher accuracy for the SoC estimation even when there is cell-to-cell

variation. The estimation errors increase for the faulty condition using EKF and

SVSF-VBL even with online parametrization. Although, the SVSF-VBL with the

modified model employs a first-order ECM, the accuracy of the SoC estimation is
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(a) (b)

(c) (d)

Figure 5.9: Estimated Parameters of the parallel-connected pack, a)Vocv,p, b) Rin,p,
c) R1,p, d) C11, p.

greatly enhanced and the convergence time to the actual value of SoC is also reduced.

The estimated voltage sensor bias and the SoC bias using the introduced algorithm

are shown in Figure 5.12. Measurement biases are increased for the faulty condition.

These estimated values improve the performance of the filter extensively. Estimated

measurement biases provided adaptability against uncertainties and changes in the

battery module. With the help of the proposed method, loss of SoC accuracy in a

BMS can be avoided over time. Table 5.5 summarizes the performance of each filter

using the Root Mean Square Error (RMSE) for the healthy and faulty cases. The

proposed estimation has the best performance compared to other filters especially
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when there is cell variability. The method can easily be implemented on a BMS as

no additional measurements are required.

(a) (b)

Figure 5.10: Estimated terminal voltage for a) healthy and b) faulty pack using
validation data.

(a) (b)

Figure 5.11: Estimated SoC for a) healthy and b) faulty pack using validation data.
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(a) (b)

Figure 5.12: Estimated a) voltage bias, b) SoC bias.

Table 5.5: RMSE for comparison using validation data.

VT RMSE SoC RMSE
Method Order of ECM Parameters Identification Estimation Level Healthy Faulty Healthy Faulty

EKF 1 Offline Cell 0.0443 0.0162 4.9942 7.1041
2 Offline Cell 0.0477 0.0328 4.5633 6.2362

SVSF-VBL
1 Offline Cell 0.0200 0.0102 4.9361 6.5778
2 Offline Cell 0.0224 0.0179 2.3662 5.0505
1 Online Pack 0.0077 0.0078 1.9354 1.1341

Proposed algorithm 1 Online Pack 0.0084 0.0090 0.2643 0.6638

5.5 Conclusions

This paper proposes a framework for estimating the SoC, and SoH of a parallel-

connected battery pack. A modified first-order ECM model is considered to combine

estimation of the SoC, and measurement biases of the SoC and terminal voltage. Us-

ing the Recursive Least Square (RLS) with a forgetting factor for online parameter

estimation, the parameters of the parallel-connected battery module are tracked and

adjusted as the cells age. The estimated internal resistance of the battery module’s

model is considered as an indicator of its SoH. A robust strategy called the Smooth

Variable Structure Filter with Variable Boundary Layer (SVSF-VBL) is then utilized
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to estimate the states of the parallel-connected battery cells. The estimated mea-

surement biases are employed to update the measure of SoC obtained by coulomb

counting and terminal voltage which lead to a more accurate parameter and SoC

estimation. The proposed approach for SoC and SoH estimation is validated with ex-

perimental data. Different scenarios are considered to verify the performance of the

algorithm. The proposed algorithm reduces the percentage of SoC error significantly

compare to previous filters.
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Chapter 6: Conclusions
The main findings of this thesis are highlighted in this chapter, and recommendations

for future works based on the findings are made.

6.1 Summary of Research

This thesis presents several advances in the field of battery state estimation by de-

veloping methods based on the combined use of coulomb counting, Smooth Variable

Structure Filter (SVSF), and adaptive filters such as noise adjustment and the Inter-

acting Multiple Model (IMM) concept. Estimating battery State of Charge (SoC),

State of Health (SoH), and State of Power (SoP) is critical to Battery Management

Systems (BMSs) for Electric Vehicles (EVs). There are numerous methods proposed

in the literature, each with its own set of advantages and disadvantages. The main

purpose of this thesis is to investigate and develop state estimation techniques by

identifying battery dynamic behavior under various operating conditions, as well as

to overcome the limitations of existing methods.

In Chapter 2, an online parameter estimation strategy based on the Recursive

Least Square (RLS) with a forgetting factor is combined with a robust state estimation

strategy based on the SVSF to determine the battery’s SoC and terminal voltage. The

validation of the proposed strategy revealed that the identified parameters change as

SoC and SoH vary. It was demonstrated that online parameter estimation produces

more accurate SOC and terminal voltage estimates. Although parameter estimation

of a third order model improves the accuracy of state estimation and provides a more
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suitable method for BMS, it is computationally intensive. As a result, multiple model

strategies should be investigated in order to track changes in dynamic characterization

of a battery under various operating conditions. The goal of the technique developed

in Chapter 3 is to accomplish this.

Chapter 3 proposes an interacting multiple modeling strategy for estimating a

battery’s SoC, SoH, and SoP. A proposed third-order ECM model is introduced and

used in conjunction with the conventional coulomb counting method. The latter, is

commonly used for SoC calculation onboard a BMS due to its simplicity. In this

research coulomb counting is treated as an additional measurement for the battery

model. This model formulation improves estimation accuracy and enables the estima-

tion of internal resistance, SoC, and SoC bias all at the same time. Chapter 3 further

investigates and ensures the model’s observability. The observability condition must

be met to ensure that system states can be uniquely extracted from measurements. To

track and adjust to changes in a battery’s characteristics over time, an IMM strategy

associated with SVSF with Variable Boundary Layer (SVSF-VBL) is proposed. The

estimated SoC bias is used to update the coulomb counting SoC measure, resulting

in a more accurate SoC. The proposed technique has the lowest SoC estimation error,

which is less than 2% compared to all other published methods.

In addition to multiple model strategies, filter tuning methods such as noise ad-

justment should be considered in a battery to improve the performance of a BMS.

In Chapter 4, an adaptive strategy referred to as the Adaptive SVSF-VBL (ASVSF-

VBL) is proposed to estimate the SoC and SoH of a battery. In addition to the SoC

and SoH, the state vector was augmented to estimate the bias in current measurement

and the battery’s internal resistance. Under scenarios involving noise with changing
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statistics, the ASVSF-VBL modifies the unknown system and measurement noise co-

variance matrices to deliver higher performance. The estimation process’ stability

is still ensured by the adaptation method. The ASVSF-VBL provides an indicator

for the battery SoH in addition to its SoC. The proposed methodology is tested on

experimental data and performance enhancement is shown. In comparison to the

SVSF-VBL and EKF, the proposed ASVSF-VBL reduced the percentage of SoC er-

ror to 2%.

For estimating the status of a battery cell, several methods have been presented.

These strategies, however, should be expanded to a pack level for use onboard of

a BMS. Estimating the states of a battery pack is extremely challenging as cell-to-

cell variations must be taken into account. In Chapter 5, different strategies are

applied to battery cells connected in parallel where the number of sensors are limited.

To estimate the battery SoC, the robust SVSF estimation strategy is used. When

compared to the EKF, the technique provides greater robustness and accuracy in the

presence of cell-to-cell differences. To improve the performance of state estimation

in parallel-connected battery cells, a novel strategy is proposed in Chapter 5 and

compared to previous methods. A modified first-order ECM model is considered

to combine estimation of the SoC, and measurements bias of the SoC and terminal

voltage. The parameters of a parallel-connected battery pack are tracked and adjusted

as the cells age using online parameter estimation, which eliminates the need for

additional sensors. The terminal voltages and the SoC derived from coulomb counting

method can be updated with the estimated biases, thereby providing a more accurate

estimate of the state. The estimated voltage bias estimation aims to detect voltage

drops caused by aging or cell differences. To validate the algorithm’s performance,
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various operating scenarios were considered. When compared to previous filters, the

proposed algorithm reduces the percentage of SoC error of the parallel-connected

battery cells to 2%.

6.2 Future Work Recommendations

There are a number of areas of potential avenues for future research that can improve

the performance of a BMS for EVs. This study presented methods for estimating

operational states of a battery cell and a battery pack. The methods were validated

by using experimental data obtained from tests. The proposed methods are compu-

tationally efficient and can be applied in real-time. As a next step, they should be

implemented in BMS hardware and operated in real-time.

The IMM-SVSF-VBL can be expanded to a pack level and implemented in a BMS

as voltage and current measurements are readily available in a BMS and given that

with the proposed method, no additional measurements are needed. The battery’s

SoH has a slow dynamic and is not required to be estimated continuously if there are

constraints associated with the availability of computational resources.

The proposed IMM-SVSF-VBL strategy for estimating a battery’s states improves

performance across different SoH values. The number of models, however, can be

increased to cover a broader range of operation, including different SoH, temperature,

and C-rates. More experiments are required to develop models that account for a

wide range of functionality which can be an area of research. Furthermore, to ensure

the filter’s stability, more research is required to develop a switching strategy between

these models. Each factor should be evaluated in terms of its impact on the estimation

method and its effectiveness in terms of BMS performance.
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The proposed strategy for estimating the states of a battery module takes into

account parallel-connected cells. Another suggestion for future work is to extend these

methods to a pack level with cells connected in parallel and series. As more sensors

become available, the number of filters operating in parallel should be increased for

series-connected cells.
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