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Lay Abstract 
 

People diagnosed with major depressive disorder experience low mood, loss of pleasure 

and interest in rewarding activities, sleep changes, weight changes and other 

psychological and physical symptoms. There are many combinations of symptoms that 

can be considered depression, and many different kinds of treatments that act on the brain 

in different ways, not everyone responds to treatment in the same way. Clinical judgment 

is currently the main decision criteria for deciding which medications to prescribe to 

individuals. However, this is largely a process of trial-and-error, so we need additional 

biological indicators of which treatment might work the best. MRI scans can display brain 

structure in detail, such that we can compare the brains of individuals diagnosed with 

depression against those with no psychiatric disorder. We found that individuals with 

depression displayed a loss of brain mass in certain regions of the brain that are 

associated with mood processes. Hypothalamus volume, the brain region responsible for 

basic physiological processes such as sleep, appetite and stress response (also affected in 

depression), was more strongly related to certain genetic modifications in those diagnosed 

with depression as well. Although there are certain biological differences we can detect in 

the brain and blood of individuals diagnosed with depression, these differences were not 

associated with how people responded to first-line antidepressant treatments.   
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Abstract 
 

Introduction: There is an ongoing interdisciplinary effort to identify objective biomarkers 

that could improve clinical treatment outcomes in major depressive disorder (MDD). 

MDD encompasses symptoms ranging from the affective and vegetative to the cognitive 

and executive domains, mainly marked by depressed mood and loss of interest/pleasure. 

With MDD prevalence rates on the rise, there is an increasing need to investigate the 

biological correlates of symptoms and response to antidepressants, which can vary widely 

between patients. In this thesis, we investigated the structural neuroimaging correlates of 

MDD and antidepressant response in living human participants using non-invasive 

magnetic resonance imaging (MRI). We endeavoured to describe structural brain features 

related to depressive symptoms and treatment response using both cross-sectional and 

longitudinal designs. We additionally investigated neuroimaging findings within the 

greater biological context of MDD by incorporating stress variables and molecular data 

pertaining to gene expression and epigenetics.   

Results: Analyses of baseline differences in brain structure between MDD and healthy 

control (HC) participants revealed that the cerebral cortex tends to be thinner in frontal 

and temporoparietal regions in MDD, including the middle rostral frontal cortex, 

orbitofrontal cortex, pars opercularis and lingual gyrus with a general emphasis on the left 

hemisphere. Although hypothalamus volume was not shown to be significantly different 

between MDD and HC groups, we observed a greater extent of epigenetic functional 

relevance and a stronger relationship between hypothalamus volume and DNA 

methylation of key genes controlling the physiological stress response (CRHBP, FKBP5 
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and NR3C1). Generally, with the exception of a weak correlation between left 

hypothalamus volume and current episode duration, we did not observe any reliable 

associations between structural neuroimaging features and symptom severity, 

antidepressant response or childhood maltreatment. Short courses of antidepressant 

treatment ranging from weeks to a few months did not seem to affect brain structure to an 

extent detectable with 3T MRI. 

Conclusion: The results suggest that there are certain structural features associated with 

major depressive disorder in the unmedicated state, most reliably thinner cerebral cortex 

in anterior frontal regions. Hypothalamus volume may additionally be linked to 

epigenetic characteristics to a greater extent in the disease state. We did not observe any 

structural features at 3T at baseline related to short-term antidepressant response.  

 

Keywords 

 

major depressive disorder, structural neuroimaging, cortical thickness, hypothalamus 

volume, epigenetics 
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Chapter 1: Introduction 
 

1.1 Major depressive disorder   

Major depressive disorder (MDD) is a psychiatric diagnosis comprising episodes 

of persistent depressed mood and anhedonia that may last from weeks to months. These 

cardinal symptoms are often additionally accompanied by cognitive, somatic, vegetative, 

and dysphoric symptoms such as changes in weight or sleep, fatigue, psychomotor 

changes, feelings of worthlessness or guilt, difficulties concentrating or making decisions 

and in the extreme, suicidal thoughts and/or attempts (American Psychiatric Association, 

2013). A diagnosis per the Diagnostic and Statistical Manual of Mental Disorders (DSM) 

requires any combination of 5 of the above symptoms, including the first two of 

depressed mood and anhedonia. The additional presence of specifiers in the DSM-5 

including anxious distress, mixed features, peripartum onset and suicidality reflect the 

wide range of experiences and symptoms that are associated with the umbrella diagnosis 

of MDD. Clinical neuroimaging has sought to characterize MDD using non-invasive 

magnetic resonance imaging (MRI) for approximately 25 years and has made several 

advancements in pinning down general neural correlates of depression (Castanheira et al., 

2019; Zhuo et al., 2019). However, progress has thus far been hindered by MR resolution, 

methodological variability, and the difficulty of validating neuroimaging findings in vitro 

(Falcone et al., 2013). 

There is undoubtedly a need for this research; as of 2012, the annual and lifetime 

prevalence rates for MDD in Canada were around 4% and 10%, respectively (Patten et 
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al., 2015). In addition to being a profoundly negative subjective experience for the 

sufferer, it is also associated with impaired functioning and decreased quality of life 

(Greer et al., 2010; Habert et al., 2016). On the societal level, it is associated with a 

considerable level of economic burden due to loss of productivity and absenteeism, 

among other factors (Evans-Lacko & Knapp, 2016). As of 2021, the prevalence of MDD 

has risen significantly with the advent of the COVID-19 pandemic, which was associated 

with increased health risk and social isolation for a vast majority (COVID-19 Mental 

Disorders Collaborators, 2021).  

Therefore, it has become more relevant than ever to discover non-invasive brain 

biomarkers of MDD symptoms and more importantly, response to antidepressants. MDD 

is associated with protracted medication trials, wherein up to 50% of people do not 

respond to initial first line treatment but must undergo additional courses of medication 

until they respond favourably (O’Leary et al., 2015). This process may take anywhere 

between 6 weeks up to several months and can be a period of great suffering for 

individuals who are already depressed. As this process is primarily guided by clinical 

judgment, being able to rely on neuroimaging to obtain reasonably accurate predictions of 

whether or not a given individual will respond to a given treatment might substantially 

improve outcomes. However, this pursuit is still in relatively early stages. 

 

1.2 Neurobiology of depression: a brief overview 

 The biological basis of not only MDD but the normal functions that are affected in 

the disease state has been conjectured and debated for at least 25 years. Subcortical 
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regions such as the hippocampus (Sheline et al., 2019) and amygdala (Hamilton et al., 

2008; Roddy et al., 2021) have been reliably implicated in volumetric and functional 

studies, but the exact cortical regions involved in depressive pathophysiology have yet to 

be identified with the same degree of certainty. Given the high likelihood that MDD is a 

circuit disorder (Chaudhury et al., 2015; Gold et al., 2022; Yao et al., 2022), relevant 

cortical regions are likely to be highly distributed.  

Basic research suggests that subcortical regions such as the ventral tegmental area, 

nucleus accumbens, lateral habenula, hippocampus and amygdala play substantial roles in 

the induction and persistence of depressed mood and behaviour (Chaudhury et al., 2015; 

Y. Yang et al., 2018). In turn, components of the default mode network (DMN) such as 

the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), posterior cingulate 

cortex (PCC) and precuneus are linked anatomically and functionally to the 

aforementioned subcortical regions and are likely to be involved with MDD 

pathophysiology (Vitkauskas & Mathuru, 2020). Notably, fMRI abnormalities within and 

between the DMN and other resting state networks have been well-replicated across 

independent studies (Li et al., 2022).  

Emergent affective and cognitive functions are thought to be mediated by linkages 

between brain regions rather than arising from any single region. For instance, 

connections between various subregions of the PFC and the ventral tegmental area, 

ventral hippocampus and basolateral amygdala are hypothesized to mediate and influence 

aversive stimuli processing (Gunaydin et al., 2014), social memory (M. L. Phillips et al., 

2019) and motivated behaviours (Sharp, 2017), respectively. The mPFC in general has 
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been identified as a hub structure from functional connectivity studies, further supported 

by structural findings (Bittar & Labonté, 2021). A decrease in synapse number has been 

observed in a postmortem analysis of the dorsolateral PFC (dlPFC) in subjects diagnosed 

with MDD (Kang et al., 2012). Overall, animal studies suggest that complex and 

overlapping circuitry extending throughout the brain gives rise to the affective and 

cognitive functions that go awry in MDD. The question is whether these basic research 

findings translate to detectable structural changes in vivo.  

 In living humans, MRI is often used as a non-invasive and well-tolerated method 

to interrogate the structural and functional basis of emotion and cognition, albeit at a 

much lower resolution and with limited experimental latitude. The study of resting state 

networks affected in MDD has identified the cerebellum, lingual gyrus, ACC, middle 

frontal gyrus, dlPFC, insula, and the amygdala as regions of interest (Dutta et al., 2014). 

Observational voxel-based morphometry (VBM) studies have suggested that gray matter 

volumes generally tend to be decreased in MDD (Zhang et al., 2018). In one study, the 

volume of the mPFC and ACC in the left hemisphere and various frontal and temporal 

regions on the right side were decreased in MDD after accounting for age, sex, and 

education (Kandilarova et al., 2019). Thinning of prefrontal cortical areas is thought to be 

associated with poorer clinical outcomes, specifically in the orbitofrontal cortex (Zhao et 

al., 2017), ACC (J. L. Phillips et al., 2015), left middle frontal gyrus and dlPFC (Kong et 

al., 2014). Interestingly, parietal regions involved in the DMN tend to exhibit increased 

cortical thickness rather than thinning in MDD (Chen et al., 2016; X. Yang et al., 2015). 

Given that each of the aforementioned prefrontal regions is part of distinct and 
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overlapping cortical-subcortical circuits, there may be some regions that are common to 

depression in general and other regions whose characteristics may vary more between 

individuals based on which circuit is most affected, likely correlating with differential 

symptom profiles. Results tend to differ between studies, especially with smaller sample 

sizes (<50 per group), so there is a need to study greater numbers in aggregate analyses to 

confirm disorder-specific neural correlates. 

1.3 Environmental factors that influence MDD neurobiology 
 

 Stress is a major environmental risk factor for MDD; a prolonged and/or 

dysfunctional physiological stress response has been hypothesized to negatively influence 

neural circuits important for affective regulation, memory consolidation, motivation, and 

reward (Chaudhury et al., 2015; Dirven et al., 2017). This response is mainly mediated 

through the hypothalamic-pituitary-adrenal (HPA) axis from the hypothalamus, which 

releases corticotropin-releasing hormone (CRH) onto the anterior pituitary leading to 

release of adrenocorticotropic hormone (ACTH), with cortisol release being the endpoint 

of the hormonal cascade. In situations where stress is adaptive, cortisol acts to exert 

negative feedback on its own release by binding to glucocorticoid receptor (GR). In 

MDD, HPA dysfunction has been well-documented (Athira et al., 2020). Increased stress 

hormone levels such as cortisol have been observed in the blood, CSF and the brain 

(Chang et al., 2015; Holsboer, 2000). Plasma levels of CRH were observed to be 

increased in MDD (Lu et al., 2018) and administration of ACTH decreased hippocampal 

neurotrophic levels, which is linked to the depressive phenotype (Antunes et al., 2015).  
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Early life stress (ELS) or childhood maltreatment, in particular, have been 

conjectured to ‘prime’ an individual for developing MDD in adulthood (Athira et al., 

2020; Seo et al., 2016). However, most people who experience ELS do not necessarily go 

on to develop MDD; in fact, it has been suggested that HPA dysfunction may have more 

to do with ELS than MDD (Ceruso et al., 2020). ELS can also interact with trauma in 

adulthood to influence stress axis responsivity and therefore susceptibility to mood 

disorders (Heim et al., 2002). NR3C1 (encoding GR) and FKBP5 (encoding FK506 

binding protein 51, chaperone to GR), two genes directly related to glucocorticoid 

signalling, were found to exhibit stress-associated epigenetic changes (Park et al., 2019). 

For instance, the association between ELS and increased methylation at exon 1F on the 

NR3C1 gene is a relatively consistent finding in both central and peripheral tissues 

(Turecki & Meaney, 2016). However, the relationship between epigenetic profiles and 

brain measures in MDD is understudied; this may partly be due to the complexity of 

epigenetic data, where we quickly encounter the problem of multidimensionality.   

The HPA axis additionally interacts with a number of other systems relevant in 

depression, such as the serotonergic, noradrenergic, and dopaminergic systems, to 

influence brain structure (Bao & Swaab, 2019). Per the principle of adaptive plasticity, 

chronic stress can influence dendritic density in a differential manner, where synaptic loss 

can occur in “stress-sensitive” areas such as the hippocampus and mPFC whereas 

dendritic expansion can occur in others such as the basolateral amygdala and OFC 

(Lupien et al., 2018; McEwen & Akil, 2020). Although the link between dysfunctional 
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HPA axis activity and hippocampal atrophy is relatively strong (Kim et al., 2015), 

changes in other brain regions associated with stress are less well-established. 

One of these regions is the hypothalamus itself, where the physiological stress 

signal originates. CRH expression in the hypothalamus has been observed to exhibit a sex 

difference (Bao & Swaab, 2007), which, in conjunction with the action of sex hormones 

on various hypothalamic functions (Lund et al., 2004; Phumsatitpong et al., 2021), may 

partly explain the basis for the sex difference in the prevalence and experience of mood 

disorders between males and females. Interactions among the multiplicity of hormones 

and nuclei present in the hypothalamus have also been conjectured to be involved in 

producing dysphoric symptoms (Griffiths et al., 2000). In vivo studies on the 

hypothalamus are still in preliminary stages due to the difficulties associated with 

segmentation and the number of functionally distinct but morphologically indistinct sub-

nuclei (Neudorfer et al., 2020; Schindler et al., 2012). 

1.4 Structural neuroimaging as a tool for clinical translation 

Given the uncertainty and complexity associated with the many overlapping 

theories of MDD pathophysiology, it is not yet feasible to predict antidepressant response 

from first principles. Considering the state of the field thus far, the ideal scenario utilizing 

neuroimaging might resemble the following, in simple terms: 1) perform an imaging scan 

of a patient as soon as their MDD diagnosis is clinically ascertained, 2) extract brain 

features via an automatic image processing pipeline, 3) insert the features into an 

algorithm trained on a representative population and 4) obtain a probabilistic prediction of 

response to a given treatment or get an estimate of the treatment type (medication, ECT, 
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TMS, etc.) most likely to result in a positive clinical response. If we can obtain a 

reasonable success rate, we could bypass what may have been an unhelpful or even 

harmful course of multiple treatment trials for the patient.  

Structural MRI (sMRI) remains an appealing tool for discovering biomarkers for 

treatment outcomes in MDD, as it is non-invasive, well-tolerated with short scan times 

(~10 minutes for a standard 3T image) and no task is involved. Furthermore, participant 

motion presents less of a problem for sMRI compared to functional MRI (fMRI) 

paradigms. For the cortex, thickness is thought to be more sensitive/specific of neural 

changes than volume measures (Hogstrom et al., 2013) and there are several open-source 

automatic processing pipelines that are available to characterize and analyze cortical 

thickness, including but not limited to FreeSurfer (Dale et al., 1999; Fischl, 2012), CIVET 

(Zijdenbos et al., 2002), CAT in SPM 12 (Dahnke et al., 2013) and ANTS (Tustison et 

al., 2013). 

Preliminary studies have suggested that hippocampal volume is most predictive of 

antidepressant response (MacQueen, 2009), followed by volume of the cingulate cortex 

(Chi et al., 2015), although most early studies were generally underpowered. Resting-

state fMRI additionally suggests that activity in the ACC, as the hub in the DMN, was 

significant in predicting treatment response to escitalopram (Tian et al., 2019). The ACC 

was also highlighted in an EEG study, where stronger theta band connectivity between 

the rostral ACC and anterior insula was associated with greater response (Whitton et al., 

2019). With respect to structural measures, it was observed that neither cortical thickness 

nor volume at baseline of any regions were predictive of SSRI response, although cortical 
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thickening in the rostral ACC in the first week was associated with a positive 8-week 

response (Bartlett et al., 2018). As the literature is still relatively sparse in this area, 

analyses employing larger sample sizes (>100 per group) are needed to investigate these 

claims further. 

1.5 Aims and objectives  

 Our general aim was to use structural imaging measures to 1) identify brain 

features associated with the unmedicated state in MDD compared to HC and 2) test 

whether there is a structural signature prior to treatment that is associated with response to 

antidepressant treatment in individuals diagnosed with MDD. More specifically: 

1. In Chapter 2, we perform a systematic review of existing literature on cortical 

thickness in MDD and quantify common neuroimaging findings via meta-

analysis, including a critical appraisal to highlight limitations and 

recommendations for future work. 

2. In Chapters 3 and 4, in two independent samples, we investigate whether cortical 

thickness at baseline is associated with the MDD diagnosis and/or clinical 

response to first-line antidepressant treatments. 

3. In Chapter 5, we test whether hypothalamus volume and/or its relationship with 

methylation profiles of 3 HPA axis genes (CRHBP, FKBP5, NR3C1) are 

significantly altered in MDD. 

1.6 Hypotheses 

1. We expected to observe a general trend of cortical thinning in MDD across 

published findings, mostly in the frontal, cingulate and temporal regions.  
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2. For cortical thickness studies, we predicted that MDD would exhibit cortical 

thinning compared to HC and that antidepressant response would be associated 

with a distributed cortical thickness signature at baseline. Specifically, thicker 

cortex would be associated with future positive response, whereas thinner cortex 

would be associated with non-response. 

3. We predicted that hypothalamus volume would differ in MDD compared to HC 

(in no particular direction, as previous literature was equivocal) and approached 

the brain-epigenetic relationship in an exploratory manner due to lack of priors. 
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Abstract 

Neuroimaging studies assessing neurobiological differences between patients with major 

depressive disorder (MDD) and healthy controls (HC) are often hindered by small sample 

sizes and heterogeneity of the patient sample. We performed a comprehensive literature 

search for studies assessing cortical thickness between patient and control groups, 

including studies investigating treatment effects on cortical thickness. We identified 34 

studies meeting criteria for the systematic review and used Seed-based d Mapping to 

meta-analyze 24 of those that met additional criteria. Analysis of the full sample of 

subjects (MDD=1073; HC=936) revealed significant thinning in the MDD group in the 

bilateral orbitofrontal gyrus (BA 11), left pars opercularis (BA 45) and left calcarine 

fissure/lingual gyrus (BA 17), as well as an area of significant thickening in the left 

supramarginal gyrus (BA 40). These results support other imaging modalities that report 

disruptions in various frontal and temporal areas in MDD and identify additional areas in 

all major cerebral lobes likely to be significant when parsing for biomarkers of treatment 

or relapse.  

 

Keywords 

 

“major depressive disorder”; “cortical thickness”; “magnetic resonance imaging” 
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2.1 Introduction 

Major depressive disorder (MDD) is a heterogeneous condition, as illustrated by 

the various combinations of affective, cognitive and psychomotor deficits and varying 

levels of symptom severity that affect patients. Rates of remission with first-line 

treatments are problematic, estimated to be in the range of 30%-40% (Fava, 2003; 

Williams, 2017). Patients must often undergo multiple subsequent courses of 

antidepressants or augmentation strategies, which can prolong distress and functional 

impairment (Rush et al., 2008; Schulberg et al., 1997). MDD presents a formidable public 

health challenge, both for front-line clinicians as well as researchers, and justifies the 

current investment in identification of reliable and accurate biomarkers of the disease 

state that correlate to clinical measures such as symptom severity, antidepressant response 

and risk of treatment resistance.  

In order to approach diagnosis and treatment effectively, there is a need to discern 

subtypes of illness (Kapur et al., 2012; Strawbridge et al., 2017) in terms of etiology, 

neurobiology, surrogate biomarkers or any combination of these (Arnow et al., 2015). 

Biomarkers could also inform risk for treatment resistance (Bennabi et al., 2015) or 

treatment response (Gallagher et al., 2007; Hashimoto et al., 2015), as discernable 

neurobiological indicators may precede symptom presentation (Aizenstein et al., 2014). 

With current magnetic resonance imaging (MRI) techniques, we can measure whole-brain 

volume (Bora et al., 2012), and further parcellate the brain into subcortical (Campbell et 

al., 2004) and cortical volumes (Lai et al., 2013). Cortical thickness, which is the distance 

between corresponding points on the pial and white matter boundaries of the neocortex, 
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contributes to cortical volume, along with cortical surface area and degree of gyrification 

(Hogstrom et al., 2013). Measured using T1-weighted structural images, it provides a 

better measure of the integrity of the cortical mantle in disease states (Abé et al., 2016), 

complementary to brain volume.  

Generally, cortical thickness is determined by the number of cell bodies (neuronal 

and glial), extent of arborization of dendritic trees, neuronal size, their arrangement, as 

well as the extent of intracortical myelination (Narr et al., 2007; Seldon, 2007). Average 

brain thickness is 2.5-3mm but can range from 1.5-4.5mm depending on the region. 

Group comparisons of cortical thickness between MDD patients and healthy controls 

(HC) suggest important neurobiological differences, which may ultimately inform 

treatment targets. Work in this area has been aided by the proliferation of powerful open-

source algorithms for cortical segmentation, such as FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/), which uses a surface-based tessellation method and 

infers cortical thickness by measuring the distance between white matter and pial surfaces 

at every vertex (Dale et al., 1999; Fischl, 2012), enabling whole-brain and region-of-

interest (ROI) analyses between groups. The Enhancing Neuroimaging Genetics through 

Meta-Analysis (ENIGMA) neuroimaging consortium recently investigated group 

differences in cortical thickness between MDD and controls. They applied a meta-

analytic technique to synthesize results across participating sites (Schmaal et al., 2017) 

with a resulting sample size of over 10 000 subjects. However, we are not aware of any 

systematic and quantitative comparison of the published literature outside of the 

consortium on the topic. Our review is differentiated from the above reference by the 

http://surfer.nmr.mgh.harvard.edu/)
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sources of data as well as the results, which highlight areas of interest not identified in the 

ENIGMA study.    

The objectives of the current study are to: 1) quantitatively meta-analyze 

neuroimaging findings to highlight brain regions implicated in cortical thickness changes 

in MDD, including patterns of significant correlation to clinical variables; 2) discuss the 

potential utility of cortical thickness as a biomarker in MDD, including a critical appraisal 

of major limitations within previous studies and make recommendations for future 

approaches. 

 

2.2 Methods and Materials 

Standard guidelines for systematic reviews and meta-analyses such as the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher 

et al., 2010) and Guidelines for Meta-analysis of Observational Studies in Epidemiology 

(MOOSE) (Stroup et al., 2000) were followed. The protocol for this study was registered 

with the International Prospective Register of Systematic Reviews (PROSPERO; 

www.crd.york.ac.uk/) under the registration number CRD42017073427. 

 

2.2.1 Literature search and study selection 

Two researchers (JS and MS) independently consulted with an institution librarian 

to conduct the search strategy used for the literature search. The databases MEDLINE, 

Embase and Web of Science were searched, from time to conception to October 2017, for 

any original journal article, written in English, with a search strategy combining MeSH 

http://www.crd.york.ac.uk/)
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terms and keywords. The following strategy was conceived in MEDLINE and adapted for 

the other databases: depression OR depressive disorder, major OR depressive disorder, 

treatment-resistant OR depress* AND (exp cerebral cortex AND organ size) OR cortical 

thickness/thickening/thinning AND brain mapping OR image processing, computer-

assisted OR neuroimaging OR MRI OR magnetic resonance imaging NOT animals. 

RefWorks was used to export all articles retrieved by this search strategy and to de-

duplicate the list. 

 

2.2.2 Inclusion and exclusion criteria 

Inclusion criteria for articles were as follows: 1) an original, peer-reviewed journal 

article, 2) adult human participants, 3) investigated changes in cortical thickness using 

neuroimaging, 4) used a clinically depressed sample confirmed through diagnostic 

interview, 5) was in English and 6) was a case-control or longitudinal cohort study. 

Additional inclusion criteria for being included in the meta-analysis was a) the reporting 

of standard space coordinates for maxima of significant voxel clusters and b) employing a 

whole-brain between-group analysis. Studies that did not meet the above criteria or met 

the following exclusion criteria were not included in the review: 1) any subjects in the 

primary depressed sample with a principal psychiatric diagnosis other than MDD (e.g. 

bipolar disorder, schizophrenia, etc.), 2) any subjects in the primary depressed sample had 

a concurrent neurological condition, 3) assessment of gray matter volume only, 4) the 

study was a case report, retrospective, or a case-series, or 5) did not have an available 
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version in English. Where authors met these criteria but had not reported stereotactic 

coordinates, they were contacted and asked to provide this information. 

 

2.2.3 Screening and data extraction 

 Following de-duplication, the two researchers performed independent screens of 

the lists based on the above criteria: first by title, followed by abstract and then by full 

text. Any disputes that could not be reconciled by discussion were resolved by an 

objective third party (BNF). Data extracted from the final list of papers were as follows: 

medication status, sample size, mean age of MDD sample, clinical severity score, the 

statistical approach (whole brain or region-of-interest), method of statistical analysis, 

scanner strength (Tesla), software used to process images, method of multiple comparison 

correction, indication of manual editing for quality assurance, direction of effect in MDD 

group (cortical thickening, thinning, or no difference), brain regions implicated in 

significant results, any correlations to clinical variables and when available, standard 

space coordinates (Montreal Neurological Institute [MNI] or Talairach) for maximal 

voxels within significant clusters.  

  

2.2.4 Protocol for meta-analysis 

Coordinates of maximum value voxels of significant clusters were extracted from 

each study (whole-brain analyses only) indicating direction of effect as well as 

corresponding t-statistic values, when reported. Coordinate extraction for all studies was 

manually carried out and checked independently by two researchers (JS and MS) to 
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minimize error. Text files in the required format were created for each study, with the 

standard space specified for the software to read, as well as a table indicating group 

sample sizes which specified whether the results were corrected or uncorrected. Studies 

with null results, comprised of empty text files, were also included. Seed-based d 

Mapping (SDM) was used to perform a meta-analysis by calculating the mean of the peak 

values across all the studies; details of this automated procedure have been described 

elsewhere (Radua et al., 2012). Although the software has been advertised for the use of 

meta-analyzing voxel-based structural studies, we justified the use of SDM for surface-

based morphometric (SBM) studies given that the meta-analytic statistics are purely 

based on standard space coordinates, which most SBM studies provide, and an 

appropriate gray matter mask. Briefly, SDM first converts all coordinates to the same 

standard space (MNI). A gray matter mask is created for the peak values in each study by 

generating the corresponding clusters using a specialized Gaussian kernel. SDM then 

calculates the meta-analytic mean of the peak values of the generated clusters, ultimately 

producing a mean SDM map. The recommended threshold for significance (p=0.005) was 

used, based on the results of a previous study that tested various thresholds and found that 

p=0.005 acceptably balanced the specificity and sensitivity of the results when compared 

to the results of a gold standard analysis (Radua et al., 2012). The extent threshold was set 

at a minimum cluster size of 50 voxels to reduce noise in the final results. The software 

generates the peak MNI coordinates of significant clusters from the meta-analysis as well 

as corresponding Broadmann areas (BA). Standard space coordinates were used to find 
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corresponding labels in the FreeSurfer Desikan-Killiany atlas, facilitating comparison 

across other surface-based results in the literature.  

Using SDM tools, Egger test statistics and funnel plots were generated for each 

significant peak to examine potential publication bias, and a visual inspection of 

heterogeneity was conducted using Q-H maps of inter-study heterogeneity generated for 

each analysis. A jackknife sensitivity analysis was then completed, which involves 

repeating the mean calculation while leaving out one study each time; these results for 

each cluster were assessed for replicability. This protocol was applied to the entire set of 

studies extracted for the analysis, and again for a subgroup analysis examining first-

episode medication-naïve samples to isolate cortical thickness effects in the early course 

of MDD without the potential influence of medications. 

 

2.3 Results 

In total, 34 studies met criteria to be reviewed, with an inter-rater reliability score 

of 92% during screening (Figure 1). 30 of the 34 were cross-sectional designs, and 4 were 

longitudinal studies that assessed cortical thickness change following treatment. A 

summary of demographic information of the samples in each study can be found in Table 

1, and details pertaining to neuroimaging acquisition parameters and data analysis are 

presented in Table 2. For the purpose of comparability, the cross-sectional studies have 

been further divided into whole-brain and ROI-based analyses for descriptive review. 
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2.3.1 Meta-analysis results for whole-brain, cross-section studies 

A total of 24 whole-brain studies were included for meta-analysis using SDM (10 

from the full list were not able to be used as a result of either lacking coordinates or not 

employing a whole-brain approach), 5 of which were included to account for null results 

(Han et al., 2014, Lan et al., 2015, Pirnia et al., 2016, Taylor et al., 2015, van Eijndhoven 

et al., 2016). The sample size for the overall analysis contained 1073 MDD patients and 

936 healthy controls. There was cortical thinning in participants with MDD in the 

bilateral medial orbitofrontal cortex (OFC) (BA 11; p=0.00020), left pars opercularis (BA 

45; p=0.00065) and left calcarine fissure/lingual gyrus (BA 17; p=0.00037). The left 

supramarginal gyrus (BA 40; p=0.0015) was thicker in MDD as compared to controls 

(Figure 2, Table 3).  

There were 6 studies of first-episode medication-naïve MDD comprising 186 

MDD patients and 193 healthy controls. There was cortical thinning in the left fusiform 

gyrus (BA 20; p=0.00049), bilateral orbitofrontal gyri (BA 47; left hem. p= 0.00071; right 

hem. p=0.00049) and right middle temporal gyrus (BA 21; p=0.00069) in the MDD 

group. Cortical thickening was seen in the right supramarginal gyrus (BA 40; p=0.00016), 

right medial OFC (BA 11; p=0.0030) and left inferior parietal gyrus (BA 19; p=0.0018) 

(Figure 3, Table 4). 

 

2.3.2 Descriptive results for whole-brain studies 

 Four whole-brain studies did not report coordinates, which we were not able to 

obtain through correspondence, and were not included in the meta-analysis (Fonseka et 
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al., 2016; Han et al., 2017; Jaworska et al., 2014; Lener et al., 2016). In general, 

significant results in both directions were localized to midline regions of the frontal and 

temporal lobes and to a lesser extent in parietal lobes. Cortical thickening was found in 

the left pars opercularis (Fonseka et al., 2016) and frontal poles (Jaworska et al., 2014). 

However, Lener et al. (2016) found cortical thinning in the right rostral anterior cingulate 

cortex and a trend that did not reach significance was observed in this same area in 

another study (Han et al., 2017). 

 

2.3.3 Descriptive results for region-of-interest studies 

 

Five studies investigated a priori hypotheses for changes in cortical thickness in 

specific brain regions, generally focused on frontal and temporal areas associated with 

emotional regulation. Meier et al. (2016) investigated Broadmann areas 9, 10 and 11 

corresponding to prefrontal areas and 24, 25 and 32 corresponding to the anterior 

cingulate cortex. Among these, they observed cortical thinning in the right rostral and 

dorsal anterior cingulate (BA 24, 32). In another study, Won and colleagues (2016) found 

cortical thinning in bilateral medial OFC and in the right lateral OFC. Papmeyer et al. 

(2015) investigated several areas in the temporal and frontal lobes as well as the anterior 

cingulate and found thinning in the right fusiform gyrus and right parahippocampal gyrus. 

Additionally, in their sample of MDD patients who had previously been high risk for the 

disease and had developed it upon follow up, they found a significant group-by-time 

interaction in the left inferior frontal gyrus and left precentral gyrus (decreased cortical 

thickness in that group over time). In ROIs selected on the basis of response to 
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electroconvulsive therapy (ECT) in a study by Pirnia and colleagues (2016), patients 

displayed thinning in the fusiform gyrus and superior temporal cortex at baseline 

compared to HC. One study found no significant differences between groups in the 

following a priori selected ROIs: inferior temporal gyrus, dorsolateral prefrontal, 

orbitofrontal and anterior cingulate cortices (Phillips et al., 2015). 

 

 

2.3.4 Descriptive results for longitudinal studies 

 

Four studies included a longitudinal design to examine treatment effects in MDD; 

treatments were electroconvulsive therapy (ECT) (Pirnia et al. 2016; Sartorius et al., 

2016; van Eijndhoven et al. 2016) and pharmacotherapy (Phillips et al. 2015), with three 

of them including a healthy control group for comparison.  

Phillips et al. (2015) performed an ROI study examining changes in the 

dorsolateral prefrontal, orbitofrontal, anterior cingulate and inferior temporal cortices 

before and after treatment with varying antidepressant medications. They reported that the 

course of longitudinal change in cortical thickness was associated with remitter status in 

the rostral middle frontal gyrus, OFC and inferior temporal gyrus. The effects of ECT in 

MDD were assessed in three studies: Pirnia et al. (2016) observed cortical thickening in 

the anterior cingulate cortex bilaterally, superior temporal gyrus, temporal pole and 

parahippocampal gyrus. Similar results were found in van Eijndhoven et al. (2016), in 

particular bilateral thickening of the temporal pole, middle temporal gyrus, left insula and 

the left inferior temporal cortex, with responders exhibiting significantly larger thickness 

increases in bilateral insula than non-responders. Sartorius and colleagues (2016) also 
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found thickening of the right temporal pole and bilateral insula following ECT, although 

they did not report a correlation to remission status. 

 

 

2.3.5 Descriptive results of correlations with clinical variables 

 

24 studies investigated correlations between cortical thickness and clinical 

variables. Broadly, five categories of correlations with cortical thickness emerged: scores 

of general clinical presentation, scores of symptom dimensions, measures pertaining to 

vulnerability and risk, physiological/genotypical measures and measures of clinical 

response following treatment (Table 6), although in 8 studies there were no significant 

findings (Fonseka et al., 2016; Grieve et al., 2013; Meier et al., 2016; Niu et al., 2017; 

Papmeyer et al., 2015; van Tol et al., 2014; Wagner et al., 2012; Won et al., 2016). 

General clinical severity measures displayed the most associations with thickness 

in areas of the parietal lobe, and to a lesser extent with areas in frontal and temporal 

lobes. Thickness values in orbitofrontal and other rostral frontal areas were associated 

mainly with various symptom dimensions. Factors of vulnerability and risk were related 

to thickness in parietal and frontal areas, while thickness indicators of longitudinal 

clinical response were located more medially in the anterior cingulate cortex and insula.  

 

2.3.6 Assessment of bias in the meta-analysis 

 

Egger tests were performed for each significant cluster identified in the meta-

analysis and visualized using funnel plots to test for publication bias. Based on low bias 

indicators and corresponding non-significant p-values (p > 0.05 for all clusters), there was 

no evidence of publication bias among the studies included in either the overall group 
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analysis or the subgroup analysis (Figure 4, Table 5)—however, these funnel plots may 

not properly take into account variability in effect size across the studies unseen in the 

current analysis.  

 Heterogeneity between studies was assessed using heterogeneity maps produced 

by SDM, which were then thresholded with the same parameters as the statistical maps 

generated for mean analyses. On visual inspection, significant heterogeneity was 

exhibited by 3 distinct regions in the full group analysis, two of which were in close 

proximity to significant clusters of mean difference in this sample of studies, specifically 

in BA 40 and BA 11. For the subgroup analysis, between-study heterogeneity was 

identified in 5 clusters, although only one of these (BA 11) was located in close proximity 

to any clusters significant in the subgroup mean analysis.  

A jackknife analysis for the overall group revealed high replicability of findings; 

statistical significance of all 4 clusters were retained in 23 out of 24 studies. For the 

subgroup analysis consisting of medication-naïve groups only, thinning of the left 

fusiform gyrus (BA 20) and left lateral orbitofrontal gyrus (BA 47) proved the most 

replicable, remaining significant in 5 of 6 studies. Two of the clusters were replicated in 3 

of the 6 studies (thickening in right medial OFC, thinning in right lateral orbitofrontal 

gyrus in MDD), and 3 clusters were replicated only in 1 out of 6 (thickening in right 

supramarginal gyrus and left inferior parietal gyrus, thinning in right middle temporal 

gyrus in MDD) (Table 6). 
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2.4 Discussion 

We performed a systematic review and meta-analysis of studies investigating 

differences in cortical thickness between MDD subjects and healthy controls, as well as 

changes in cortical thickness following treatment. We summarized our findings in a side-

by-side comparison with those of the ENIGMA consortium (Schmaal et al., 2017) to 

facilitate discussion of the significant results (Table 7).  

The meta-analysis found significant thinning in bilateral medial OFC (BA 11), left 

pars opercularis (BA 45), left calcarine fissure/lingual gyrus (BA 17) and significant 

cortical thickening in the left supramarginal gyrus (BA 40) in the MDD group. These 

results were somewhat unexpected, given the heavy emphasis in recent studies on frontal 

and paralimbic cortical areas such as the anterior cingulate cortex and insula as being 

implicated in MDD. In contrast, the analysis of medication-naïve MDD subjects revealed 

cortical thinning in bilateral orbitofrontal gyrus (BA 47), left fusiform gyrus (BA 20) and 

right middle temporal cortex (BA 21), and cortical thickening in the right supramarginal 

gyrus (BA 40), left inferior parietal gyrus (BA 19) and right medial OFC (BA 11), this 

last finding directly opposing the result of thinner bilateral medial OFC from the full-

group analysis. These contrasting findings may indicate (1) a phenomenon of initial 

cortical thickening in the early manifestation of the disorder, counter to the suggestion 

that the cortical thinning observed primarily in chronic MDD may be due to the 

cumulative effects of neurotoxic and/or gliotoxic processes over time (Rajkowska, 2000), 

and/or (2) medication effects. Alternatively, cortical thickening could be associated with 

neurocompensatory processes in the first episode, such as via glial hypertrophy in an 
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attempt to combat glutamatergic neurotoxicity (Dowlati et al., 2010; Rajkowska et al., 

2013; Yang et al., 2015). Another possibility is that this phenomenon may reflect an 

attempt to compensate for the dysregulation of limbic areas related to abnormal mood, 

resulting in the recruitment of other brain regions and thereby upregulating their activity 

(van Eijndhoven et al., 2013). In adolescents, for instance, functional hyperconnectivity 

was observed in several regions in the early course of illness, which may have some 

bearing on the observed increase in cortical thickness via increased metabolism and blood 

flow (Zhu et al., 2018a). This dynamic process of initial thickening followed by chronic, 

long-term thinning could explain our results of increased thickness of the right medial 

OFC in the medication-naïve, first-episode sub-analysis and of bilateral thinning in this 

region in the full analysis, the majority of which contain samples of patients with 

recurrent, chronic MDD. However, these results should be interpreted with caution, given 

the cross-sectional design, the minimal overlap with the overall group results, and the 

suboptimal replicability of 5 out of the 7 clusters. It is worth noting, however, that 

thinning in left fusiform gyrus and left orbitofrontal gyrus were well-replicated in this 

subgroup analysis, partly reflecting similar results in the analysis using the full sample of 

studies.  

Thinning of frontal areas, particularly in the bilateral medial OFC, was a common 

result between ours and the ENIGMA study (Table 7) and was one of the most robust and 

statistically significant clusters within the overall analysis. This adds to the abundant 

evidence implicating frontal areas available in the literature identified using various 

imaging modalities. In a large meta-analysis examining general structural findings in 
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MDD in 143 studies, reduced volume of the OFC and gyrus rectus, which is directly 

adjacent to (and sometimes considered part of) the OFC, were identified (Kempton et al., 

2011). Histologically, cortical thinning was reported in the rostral, middle and caudal 

orbitofrontal areas (BA 10, 47) in post-mortem brains of patients who had died by 

suicide, which was hypothesized to be related to reduced numbers and size of neurons as 

well as decreased glial density (Rajkowska et al., 1999). Bremner and colleagues (2002) 

corroborated these results by finding reduced density of neurons and glia in the gyri 

rectus of remitted MDD patients. The pars opercularis, which is located on the lateral 

surface of the frontal cortex, was implicated in our analysis as being significantly thinner 

in MDD and was found to exhibit volume reductions in another meta-analysis of volume 

morphometry in MDD (Arnone et al., 2012). The area has also been previously 

implicated in emotion processing, negative attention bias (Hu and Dolcos, 2017). In a 

recent preliminary deep brain stimulation (DBS) study, a dramatic clinical response was 

observed in a patient after DBS of the bilateral posterior gyrus rectus, which was 

correlated to strong pre-surgery connectivity between this area and the medial prefrontal 

cortex; they did not observe clinical response in the patients who did not display this 

connectivity, suggesting a neurophenotype for successful DBS treatment (Accolla et al., 

2016). In addition, the medial OFC has been implicated in other functional, genetic and 

network studies of MDD (Kautzky et al., 2017; Long et al., 2015; Qin et al., 2014; 

Shimizu et al., 2015; Singh et al., 2013; Zhu et al., 2018b), suggesting abnormal function, 

development and/or structure of this particular region in MDD. 
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Recent evidence has accumulated to highlight the involvement of the occipital 

cortex in MDD pathophysiology. For instance, neurochemical changes in this brain 

region have been reported in treatment-resistant depression (Price et al., 2009), as was a 

negative correlation between severity of childhood maltreatment (a common risk factor 

for mood abnormalities in adulthood, discussed below) and inferior occipital volume 

(Yang et al., 2017). Abnormal tissue integrity in this region was indicated by a reduced 

magnetization transfer ratio in the middle occipital cortex in treatment resistant 

depression (Chen et al., 2016; Jia et al., 2017), corroborating graph theory results from 

resting state functional data showing decreased nodal centrality (connectedness) in the 

occipital network (Luo et al., 2015). Reductions of both functional connectivity and 5HT-

1 binding in occipital cortex have also been observed (Wang et al., 2016a; Zou et al., 

2016). Interestingly, Maller et al. (2014) found evidence of a phenomenon called 

“occipital bending,” which occurs when one occipital lobe wraps around other brain 

regions. This was 3 times more prevalent in the MDD group than HC and was 

hypothesized as being due to incomplete neuronal pruning. 

There is emerging evidence for an altered structural network involving the left 

OFC, left gyrus rectus, insula and middle occipital gyrus among other subcortical areas in 

treatment-naïve depressed patients (Long et al., 2015; Qin et al., 2014). More recently, a 

study examining genetic polymorphisms of the 5HT-1 receptor gene found binding 

potential differences in the gyrus rectus, inferior frontal occipital gyrus and lingual gyrus 

among other areas specifically in MDD patients who were GG allele carriers of the 

rs6295 single-nucleotide polymorphism (Kautzky et al., 2017). Taken together, our 
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cortical thickness results are consistent with these studies, suggesting that patterns are 

emerging in neuroimaging data pointing to the role of brain areas that were not commonly 

discussed in the classic literature as being key players in the MDD pathophysiology, 

suggesting new avenues for future investigation. 

Our results of cortical thinning in the left fusiform gyrus in medication-naïve 

subjects is also consistent with the report from the ENIGMA consortium, which identified 

thinning of bilateral fusiform gyri in first-episode MDD (Schmaal et al., 2017). In 

addition, thickening of the temporal cortices were particularly found to be affected by 

ECT (Pirnia et al., 2016), but not always related to response status (van Eijndhoven et al., 

2016). Functionally, a recent preliminary study found that treatment of refractory 

depression with psilocybin resulted in a decrease in cerebral blood flow in this region 

(Carhart-Harris et al., 2017). Other ECT studies have found normalization of lower 

oxygenated hemoglobin values in the frontal and temporal cortices (Hirano et al., 2017). 

While these results converge towards changes in temporal cortical thickness as a neural 

correlate in MDD and possibly treatment response, there is ambiguity in its correlation 

with symptom severity (Table 6). 

In general, our results of significant thickness changes in the left hemisphere align 

with evidence suggesting its role not only in general emotion processing but more 

specifically with respect to MDD pathophysiology. A recent resting state study found 

left-sided abnormalities in spontaneous neural activity of the cortico-limbic-striatal 

system (implicating the prefrontal cortex, temporal cortex and limbic areas) in MDD 

compared to bipolar patients (Jiang et al., 2017); similarly, another functional study that 
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found a greater left hemispheric response to positive stimuli during general emotion 

processing (Balconi et al., 2015). Significant gray matter and functional changes were 

found exclusively in the left hemisphere in MDD patients compared to HC, including 

decreased gray matter in the left lingual gyrus, one of the areas of thinning identified by 

our analysis (Yang et al., 2015a). An effect of lateralization was also seen with respect to 

antidepressant response in the amygdala, where the left and right exhibited differing 

extents of activation as symptom severity decreased (Chen et al., 2014). Altogether, these 

results suggest that the left hemisphere may exhibit particular features that are affected by 

the pathophysiology of MDD, or perhaps that those who exhibit these irregularities of 

lateralization are more susceptible to developing the disorder.   

To date, only 4 out of 34 studies used a longitudinal study design to examine post-

treatment effects; successful treatment seems to be related to increased cortical thickness 

in regions generally corresponding well with between-group results of cortical differences 

in MDD found in the literature. In a recent transcranial magnetic stimulation (TMS) 

study, gray matter in the dorsolateral prefrontal cortex (PFC), left ACC, left insula, left 

superior temporal gyrus and right angular gyrus increased following TMS, although only 

ACC volume increase was correlated to clinical improvement (Lan et al., 2016). In 

several other studies, structural changes following various antidepressant treatments 

particularly have been identified in prefrontal and anterior cingulate regions, which are 

preserved during remission (Dusi et al., 2015). However, only one study looked at the 

effects of pharmacotherapy on cortical thickness in an adult population (Phillips et al., 

2015) and could not isolate the effects of each different type of medication. In addition, 
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all of these 4 treatment studies had modest sample sizes (range: 45 – 58). In this sense, 

cortical thickness studies examining treatment effects are still preliminary and lack 

consensus. There is a need for larger, well-controlled treatment studies, ideally with a 

placebo/control arm. Studies currently pursuing this aim with large, multi-site designs 

include CAN-BIND (Lam et al., 2016), EMBARC (Trivedi et al., 2016) and ELECT-

TDCS (Brunoni et al., 2015). 

Our meta-analysis found increased thickness of the supramarginal gyrus in MDD 

in both the overall and subgroup analyses. Notably, two studies (Na et al, 2016; Yang et 

al., 2015) found a positive correlation between supramarginal gyrus thickness and 

symptom severity scores, whereas the correlation for this measure was negative for the 

left lingual gyrus (Na et al., 2016), left superior temporal and left precentral gyrus (Zorlu 

et al., 2016), as might be expected given overall cortical thinning in the disorder. 

Elsewhere, baseline degree centrality of the supramarginal gyrus was highly correlated 

with 2-week clinical response to antidepressants, suggesting that activity of the posterior 

default mode network, of which this region is a part, may have potential as a biomarker 

for treatment response as well as a promising target for therapeutic action (Shen et al., 

2015). Another resting state functional study identified altered spontaneous activity in this 

region in a sample of college students displaying non-clinical depressive symptoms, 

which may be a risk factor for MDD later in life (Wei et al., 2015). These results indicate 

that increased thickness and activity of the supramarginal gyrus could show potential as 

an early indicator of disease risk and treatment response. However, this is contentious, as 

other authors have reported thinning in this area in MDD cohorts (Lener et al., 2016; Tu 
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et al., 2012), although it must be noted that the samples in these two studies were largely 

composed of recurrent MDD patients. In these cases, thinning may be observed as part of 

an overall neurobiological signature of the transition toward recurrent, chronic MDD. 

Surprisingly, only one study formally assessed the relationship between cortical 

thickness and previous history of childhood trauma (Fonseka et al., 2014), despite the 

well-established role of early trauma in a wide range of mental health outcomes in 

adulthood (Gilbert et al., 2009; Jansen et al., 2016; Mesquita et al., 2017; Widom et al., 

2007; Whittle et al., 2017). Neurobiologically, MDD subjects with a history of childhood 

abuse were found to exhibit reduced gray matter density in the right OFC (Ahn et al., 

2016) and a meta-analysis using voxel-based morphometry identified an association 

between childhood maltreatment and smaller volumes in the right OFC, superior temporal 

gyrus, amygdala, insula and medial temporal regions (Lim et al., 2014). A large study 

testing gray matter volume between 84 MDD and 84 HC subjects found a childhood 

maltreatment-by-diagnosis effect in bilateral prefrontal cortex (Yang et al., 2017). 

Considering these data, the study of the role of trauma in future cortical thickness studies 

is encouraged, including the type (physical, emotional, sexual, neglect), duration and 

possible interaction with family history (Jansen et al, 2016). 

As indicated by the Q-H maps in Figure 5, there was a significant amount of inter-

study heterogeneity in several regions although only three of these regions overlapped 

with the significant clusters identified by the meta-analysis. Another indication of 

heterogeneity is the fact that we were not able to replicate the commonly seen result of 

thinning in the insula and the ACC, as also identified by the ENIGMA group. In one 
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sense, some degree of heterogeneity is to be expected, given the nature of MDD itself and 

how results from the original studies varied by sign and location, many of which had 

relatively small sample sizes. SDM lends more statistical weight to studies with larger 

samples but likely did not overcome this limitation. Additionally, the MDD samples 

included here were variable not only in terms of illness progression but also by mean age, 

treatment resistance, medication load, depression severity and likely the number of 

previous major depressive episodes, in addition to other hidden variables that were not 

explored or reported by the original studies.  

Another significant source of heterogeneity may stem from the putative existence 

of ‘biotypes’ in MDD, characterized by differing symptom combinations and patterns of 

functional dysconnectivity in several brain regions (Drysdale et al., 2017). This study 

identified two major connectivity components, one comprising of frontostriatal and 

orbitofrontal features correlated with anhedonia and psychomotor retardation, and the 

other comprising subcortical limbic features, the cingulate cortex and lateral prefrontal 

areas that correlated with anxiety and insomnia. Along these two dimensions, patients 

were distributed relatively evenly among 4 clusters based on fMRI data. This suggests 

that among the general MDD population, there exists heterogeneity not only in 

combinations of symptoms but also in the brain features that are correlated to these 

combinations, and such heterogeneity may potentially influence the variability in the 

current analysis if these functional changes extend also to anatomical alterations between 

subtypes.  
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In interpreting the results of this meta-analysis, age-related changes in cortical 

thickness throughout the lifespan must be considered. In the context of normal 

development, the cortex undergoes thinning during adolescence and young adulthood, 

which is likely associated with region-dependent neuronal pruning and reorganization 

required for network optimization (Amlien et al., 2016; Shaw et al., 2008). Alterations in 

the developmental trajectory of cortical thickness other than MDD may influence these 

results. To date, the only way to infer the cellular substrates of these changes is to use 

single-timepoint post-mortem methods (Rajkowska et al., 1999; Schnack et al., 2015), 

from which we cannot infer developmental trajectories. The role of intracortical myelin 

has also been speculated upon, as it may contribute to cortical “stretching,” a 

developmental process hypothesized to optimize functional specialization resulting in 

cortical thinning and simultaneous increase in cortical area (Hill et al., 2010; Hogstrom et 

al., 2013; Seldon, 2007). In this context, cortical thinning in the absence of surface area 

increase could be indicative of pathophysiological processes. For instance, a finding of 

the ENIGMA consortium was cortical thinning in adults without change in surface area, 

with the opposite effect in the adolescent sample, that is, a decrease in surface area 

without change in thickness (Schmaal et al., 2017). Ontogenetically independent of 

cortical thickness (Panizzon et al., 2009), cortical area has been found to better represent 

cognitive measures of intelligence than thickness (Schnack et al., 2015) and it has also 

been shown that individuals with larger cortical areas tend to have thinner cortices 

(Hogstrom et al., 2013), which may influence thickness results from group comparisons. 

These data serve to highlight the potential utility of including cortical surface area as a 
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component in the MDD biomarker panel, as a complimentary physiological marker (Liu 

et al., 2015).  

 

2.4.1 Strengths and limitations 

 

Strengths of the current systematic review and meta-analysis include the fact that 

this is the first to quantitatively compile results across disparate studies of cortical 

thickness in MDD, and the resulting meta-analysis is reasonably well-powered. Although 

the sample of medication-naïve studies was smaller, meta-analyzing these studies 

precluded the common confounding factor of past medication exposure. Another strength 

was the use of SDM, which allows for the inclusion of both significant and null results, 

the ability to incorporate opposite-sign clusters in the same parametric map, as well as 

provision of tools for subgroup analyses and various quality control analyses. Moreover, 

we performed jackknife analyses, assessment of publication bias and analysis of between-

study heterogeneity to test thoroughly the robustness of the results.  

The summary in Table 2 indicates that there is some ambiguity around reporting 

quality assurance methods, particularly information regarding quality control methods 

such as manual correction of FreeSurfer pre-processing output, and whether or not 

researchers were blind to diagnostic group when editing images. In addition, it has been 

suggested that FreeSurfer (which was used by all studies discussed here with the 

exception of 4) may be better suited for whole-brain analyses rather than ROI-based 

comparisons compared to other surface mapping algorithms (Zhong et al., 2010), 

although it is still one of the most powerful and accurate surface-based analysis tools 
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when compared to newer algorithms (Tustison et al., 2014). The importance of manual 

editing was highlighted in a recent study that validated FreeSurfer output with post-

mortem measurements, which found that only the analysis performed with manually 

edited images produced a significant correlation between generated values and 

histological measurements, whereas the completely automated pipeline did not (Popescu 

et al., 2016). In addition, Han et al. (2006) found a slight bias for thicker cortices in 

scanners with a field strength of 3T as compared to 1.5T; this may have had some effect 

on our results given that several studies used 1.5T scanners. 

In terms of limitations, we only included published data, which may not 

encompass all data currently available on this topic. Second, due to the relatively small 

number of longitudinal studies and lack of readily available stereotactic coordinates, we 

were unable to meta-analyze changes in cortical thickness following treatment. Third, as 

addressed earlier, the majority of studies included had relatively modest sample sizes, 

which may increase uncertainty and error in meta-analytic calculations. Fourth, although 

SDM allows for the inclusion of statistical parametric maps which increases sensitivity of 

the analysis (Radua et al., 2012), they were not utilized in this analysis as per data 

availability, and since SDM must infer the voxel distribution centered on published 

coordinates, it will not be as accurate as using the raw data (Radua and Mataix-Cols, 

2009). However, this is a limitation that all neuroimaging meta-analyses of this nature 

must contend with. Fifth, many studies did not confirm the absence of a family history of 

depression in the healthy controls who were compared to the MDD patients; those with a 

family history of MDD can be considered at risk for the disorder, and this has been 
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associated with a neurobiological signature (Peterson et al., 2009). In addition, MDD is 

associated with structural and functional deficits encompassing various regions in all four 

major lobes, indicating that one individual's overall neuroimaging signature in the disease 

state may look very different from another's when accounting for multiple regions, 

various brain imaging modalities and the variability in disease state/symptom 

presentations. 

 

2.5 Future directions 
 

Given the numerous interacting factors that likely contribute to MDD, 

multivariate approaches are becoming increasingly more common; recent and ongoing 

studies are employing combinations of genetic, metabolomic, proteomic, neuroimaging 

and clinical markers in their analyses with the hope of developing a more sensitive 

biomarker panel (Lam et al., 2016; Petkova et al., 2017). For instance, associating 

specific genotypes with neural changes has greater potential to parse out precise 

etiological and pathophysiological trajectories (Kostic et al., 2016; Legge et al., 2015), 

and as mentioned above, several multi-site studies are now underway with the aim of 

increasing statistical power and incorporating multiple complementary brain measures. 

Furthermore, despite current challenges (Kim and Na, 2018) machine learning methods 

nevertheless show great promise in the pursuit of developing objective diagnostic tools 

for personalized treatment approaches based objectively on an individual's unique 

neurobiological signature (Haller et al., 2014; Kambeitz et al., 2017). 
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2.10 Figures and Tables 
 

 

Figure 1. Flowchart as per PRISMA guidelines. The process of screening records for 

eligibility in meta-analysis and descriptive review is displayed. 
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Figure 2. Brain regions exhibiting significantly different cortical thickness values meta-analyzed between MDD and 

control groups. Coronal (A), horizontal (B) and sagittal (C) cross-sectional views illustrate regions of significance identified 

between groups. Cooler regions indicate regions significantly thinner in the MDD group, namely in bilateral medial OFC (BA 

11), left pars opercularis (BA 45) and left calcarine fissure/lingual gyrus (BA17). The warmer-coloured region indicates the 

region significantly thicker in the MDD group, the left supramarginal gyrus (BA 40) (p < 0.005, extent threshold = cluster size 

≥ 50 voxels). The scale refers to SDM-Z scores. The asterisk (*) indicates the same cluster across cross-sectional views.  
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Figure 3. Brain regions exhibiting significantly different cortical thickness values meta-analyzed between medication-

naïve, first-episode MDD patients and controls. Coronal (A), horizontal (B) and sagittal (C) cross-sectional views illustrate 

regions of significance identified between groups. Cooler regions indicate regions significantly thinner in the medication naïve 

first-episode MDD group, in left fusiform gyrus (BA 20), bilateral lateral OFC (BA 47), and right middle temporal gyrus (BA 

21). The warmer colour indicates regions significantly thicker in the MDD group, specifically the right supramarginal gyrus 

(BA 40), right medial OFC (BA 11) and left inferior parietal gyrus (BA 19) (p < 0.005, extent threshold = cluster size ≥ 50 

voxels). The scale refers to SDM-Z scores. The asterisk (*) indicates the same cluster across cross-sectional views. 
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Figure 4. Funnel plots for significant clusters identified in each analysis. Egger regression tests corresponding to 

each plot produced a p-value > 0.05 in all cases. 
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Figure 5. Heterogeneity maps displaying regions exhibiting significant study heterogeneity in the full group and 

subgroup samples of studies. The following areas were identified as having significantly variable values across the indicated 

sample of studies, indicated by the warmer colours. (A) In the full sample of studies, the following regions were identified as 

being heterogenous: left supramarginal gyrus (BA 40), left posterior cingulate (BA 23), and left orbitofrontal gyrus (BA 11). 

(B) In the subgroup sample, the following regions were implicated: right pars triangularis (BA 48), right inferior parietal gyrus 

(BA 2) and left lateral occipital gyrus (BA 19) (p < 0.005, extent threshold = cluster size ≥ 50 voxels). The scale refers to 

SDM-Z scores. 
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Table 1. Summary of demographic information and results from included studies 

 

Study Name 
Authors, 

PubYear 

Sample sizes 

(F/M) 

MDD age in 

years ± SD 

Medication 

status 

Mean clinical 

severity score 

Cross-sectional results 

(MDD vs. HC) 

**Brain structural 

abnormalities in patients with 

major depression with or 

without generalized anxiety 

disorder comorbidity  

Canu et al., 

2015 

MDD (42/8) 

HC (57/14) 

45.6 ± 10.2 (22-

63) 

All medicated  HAM-D(ns): 22.9 ± 

4.7 (11-36) 

BDI: 32.4 ± 12.6 (7-

59) 

Thinning in right rostral 

middle frontal cortex 

Cortical thickness and emotion 

processing in young adults with 

mild to moderate depression: a 

preliminary study 

Fonseka et 

al., 2016 

MDD (6/7) 

HC (7/7) 

21.5 ± 1.5 >1 month 

medication 

washout 

HAM-D(17): 15.3 ± 

5.0 

Thickening in left pars 

opercularis 

**Distinguishing bipolar and 

major depressive disorders by 

brain structural morphometry: a 

pilot study 

Fung et al., 

2015 

MDD (11/8) 

HC (18/11) 

30.0 (sd 8.9) 8/19 

unmedicated 

HAM-D(17): 11.1 (sd 

4.3) 

Thinning in left medial OFC, 

left pars opercularis, left 

middle frontal gyri 

**Widespread reductions in 

gray matter volume in 

depression 

Grieve et al., 

2013 

MDD (54/38) 

HC (16/18) 

33.8 ± 13.1 Not described HAM-D(17): 21.0 ± 

3.9 

Thickening in left superior 

frontal gyrus, lateral OFC 

(BA 11);  

Thinning in left medial 

frontal/medial OFC (BA 25) 

**Cortical thickness, cortical 

and subcortical volume, and 

white matter integrity in 

patients with their first episode 

of major depression 

Han et al., 

2014 

MDD (15/5) 

HC (15/7) 

42.70 ± 12.43 Medication-

naïve 

HAM-D(17): 19.05 ± 

6.74 

No significant differences 

Influence of FKBP5 

polymorphism and DNA 

methylation on structural 

changes of the brain in major 

depressive disorder 

Han et al., 

2017 

MDD (90/24) 

HC (61/27) 

43.51 ± 12.0 53/61 

unmedicated 

HAM-D(17): 14.81 ± 

8.02 

No significant differences 

(trend for thinner right ACC) 

**Longitudinal MRI study of 

cortical thickness, perfusion, 

and metabolite levels in major 

depressive disorder 

Jarnum et al., 

2011 

MDD (16/7) 

HC(13/13) 

43.2 (sd 9.9) 8/15 

unmedicated 

HAM-D(17): 22.3 (sd 

3.6) 

Thinning in OFC, superior 

temporal lobe, insular cortex 

A preliminary study of the 

influence of age of onset and 

childhood trauma on cortical 

Jaworska et 

al., 2014 

MDD (22/14) 

HC (10/8) 

37.1 ± 11.2 3-week 

medication 

washout 

HAM-D(17): 22.1 ± 

4.1 

Thinning in frontal pole 
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thickness in major depressive 

disorder 

**Cortical thickness 

differences between bipolar 

depression and major 

depressive disorder 

Lan et al., 

2014 

MDD (32/24) 

HC (26/28) 

36.9 (sd 12.2) Varied lifetime 

medication hx 

HAM-D(17): 23.8 (sd 

6.0) 

No significant differences 

Cortical abnormalities and 

association with symptom 

dimensions across the 

depressive spectrum 

Lener et al., 

2016 

MDD (29/28) 

HC (16/13) 

40.27 ± 12.28 1-week 

medication 

washout 

MADRS: 28.07 ± 

6.09 

Thinning in right rostral 

ACC 

**Relationship between the 

cortical thickness and serum 

cortisol levels in drug-naive, 

first-episode patients with 

major depressive disorder: a 

surface-based morphometric 

study 

Liu et al., 

2015 

MDD (13/17) 

HC (13/28) 

44.9 ± 13.0 (20-

67) 

Medication-

naïve 

HAM-D(17): 21.0 ± 

6.0 

Thinning in left lateral OFC 

Relationship between 

neurotoxic kynurenine 

metabolites and reductions in 

right medial prefrontal cortical 

thickness in major depressive 

disorder 

Meier et al., 

2016 

MDD (57/16) 

HC (55/36) 

34.2 ± 9.3 4-week 

medication 

washout 

MADRS: 27.6 ± 8.8 Thinning in BA 24 and BA 

32 

**Brain-derived neurotrophic 

factor promoter methylation 

and cortical thickness in 

recurrent major depressive 

disorder. 

Na et al., 

2016 

MDD (54/11) 

HC (50/15) 

42.52 ± 11.42 33/65 medicated HAM-D(17): 16.00 ± 

8.2 

Thinning in right medial 

OFC, right lingual, right 

lateral occipital, left lateral 

OFC, left pars triangularis, 

left lingual cortex 

**Common and specific 

abnormalities in cortical 

thickness in patients with major 

depressive and bipolar 

disorders 

Niu et al., 

2017 

MDD (19/17) 

HC (13/17) 

29.08 ± 7.16 17/36 medicated HAM-D(24): 26.67 ± 

4.73 

Thinning in left inferior 

temporal cortex 

Cortical thickness in 

individuals at high familial risk 

of mood disorders as they 

develop major depressive 

disorder 

Papmeyer et 

al., 2015 

MDD (13/7) 

HC (41/21) 

23.33 (2.98) 4/20 medicated HAM-D (ns): 5 (sd 

12) 

Thinning in right 

parahippocampal gyrus, 

right fusiform gyrus 

**Surface vulnerability of 

cerebral cortex to major 

depressive disorder 

Peng et al., 

2015 

MDD (9/7) 

HC (9/7) 

34.43 ± 6.72 4-week 

medication 

washout 

HAM-D(24): 30.88 ± 

7.69 

Thickening in right inferior 

parietal region, right 

paracentral gyrus, right 



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 78 

transverse temporal gyrus, 

right posterior cingulate 

cortex, left superior parietal 

gyrus, left inferior parietal 

gyrus, left lateral occipital 

cortex; 

Thinning in right middle 

temporal gyrus, right pars 

opercularis, left pars 

opercularis, left rostral-

middle frontal region, left 

precentral gyrus 

**Cortical thickness is not 

associated with current 

depression in a clinical 

treatment study 

Perlman et 

al., 2017 

MDD (102/68) 

HC (29/23) 

36.41 ± 12.43 All medicated QIDS: 18.15 ± 2.89 Thickening in left 

supramarginal gyrus 

A prospective, longitudinal 

study of the effect of remission 

on cortical thickness and 

hippocampal volume in patients 

with treatment-resistant 

depression 

Phillips et al., 

2015 

MDD (18/8) 

HC (18/10) 

46.0 (sd 10.4) All medicated MADRS: 34.6 (sd 

7.0) 

No significant differences at 

baseline 

**A prospective, longitudinal 

study of the effect of remission 

on cortical thickness and 

hippocampal volume in patients 

with treatment-resistant 

depression 

Pirnia et al., 

2016 

MDD (18/11) 

HC (16/13) 

41.0 (sd 13.5) 24-48h 

medication 

washout 

HAM-D(17): 26.3 (sd 

4.93) 

No significant differences 

using whole-brain analysis, 

thinning in the fusiform and 

superior temporal cortex 

(ROI only) 

**Regional increases of cortical 

thickness in untreated, first-

episode major depressive 

disorder 

Qiu et al., 

2014a 

MDD (33/13) 

HC (33/13) 

34.9 (sd 10.8) Medication-

naïve 

HAM-D(17): 23.3 ± 

5.0 

Thickening in right 

frontoparietal regions (BA 9, 

10), pars opercularis (BA 

44), rostral middle frontal 

gyrus (BA 46), 

supramarginal gyrus (BA 

40) 

Electroconvulsive therapy 

increases temporal gray matter 

volume and cortical thickness 

Sartorius et 

al., 2016 

MDD (9/9) 

HC (18/18) 

51.72 ± 13.4 All medicated HAM-D(21): 31.8 ± 

8.2 

[Longitudinal analysis only] 

**Prefrontal thinning affects 

functional connectivity and 

regional homogeneity of the 

Spati et al., 

2015 

MDD (10/11) 

HC (20/15) 

36.6 ± 12.3 16/21 

medication-

naïve 

BDI: 26.4 ± 9.3 Thinning in right rostral 

middle frontal cortex 
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anterior cingulate cortex in 

depression. 

**Widespread white matter but 

focal gray matter alterations in 

depressed individuals with 

thoughts of death 

Taylor et al., 

2015 

MDD-SI 

(11/10) 

MDD-no SI 

(41/12) 

HC (56/35) 

SI: 33.5 ± 9.1 

No SI: 37.5 ± 

8.9 

No medication 

in last month 

MADRS: 24.7 ± 4.2 

(SI), 23.3 ± 4.5 (no 

SI) 

No significant differences 

**Changes in cortical thickness 

across adulthood in major 

depressive disorder 

Truong et al., 

2013 

MDD-EO 

(20/8) 

MDD-LO 

(10/11) 

HC (60/4) 

MDD-EO: 

24.47 ± 9.34 

MDD-LO: 

39.52 ± 8.50 

Not described HAM-D(ns): 23.36 ± 

11.57 (EO), 13.29 ± 

5.70 (LO) 

Thinning in left dorsolateral 

PFC 

**Regional cortical thinning in 

patients with major depressive 

disorder: A surface-based 

morphometry study 

Tu et al., 

2012 

MDD (24/12) 

HC (22/14) 

41.64 ± 12.04 All medicated HAM-D(17): 13.25 ± 

9.2 

Thickening in left lateral 

OFC, left insula; 

Thinning in left superior 

frontal, precentral, rostral 

middle frontal, superior 

frontal, caudal middle frontal 

cortices; left entorhinal, 

middle temporal cortices; 

left inferior parietal cortex, 

left lateral occipital, left 

lingual cortices; right 

precentral, rostral middle 

frontal, superior frontal, 

caudal middle frontal 

cortices, lateral OFC, pars 

opercularis; right 

postcentral, supramarginal, 

inferior parietal cortices 

**Bilateral ECT induces 

bilateral increases in regional 

cortical thickness 

Van 

Eijndhoven et 

al., 2016 

MDD (15/8) 

HC (14/8) 

50.7 ± 8.5 1 week washout 

of medications 

HAM-D(17): 21.9 ± 

5.3 

No significant differences 

**Paralimbic cortical thickness 

in first-episode depression: 

evidence for trait-related 

differences in mood regulation 

Van 

Eijndhoven et 

al., 2013 

MDD (27/13) 

HC (19/12) 

34.95 ± 11.65 Half 

medication-

naïve, during 

first episode 

HAM-D(17): 21.8 ± 

4.0 (acutely ill), 3.4 ± 

2.0 (recovered) 

Thickening in left posterior 

cingulate cortex (BA 23), 

left caudal ACC (BA 33), 

left temporal pole (BA 38) 

Thinning in left medial OFC 

(BA 11); 
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**Local cortical thinning links 

to resting-state disconnectivity 

in major depressive disorder 

Van Tol et 

al., 2014 

MDD (8/12) 

HC (3/17) 

38.25 ± 11.63 19/20 medicated HAM-D(17): 15.5 ± 

5.9 

Thinning in right posterior 

cingulate cortex, right 

dorsolateral PFC, right 

superior temporal gyrus, 

right dorsomedial PFC 

**Prefrontal cortical thickness 

in depressed patients with high-

risk for suicidal behavior 

Wagner et al., 

2012 

MDD-HR 

(11/4) 

MDD-nHR 

(14/1) 

HC (25/5) 

HR: 41.0 ± 12.5 

nHR: 34.1 ± 

10.5 

23/30 medicated 

(double half-life 

washout) 

HAMD-D(21): 23.9 ± 

5.3 (HR), 25.7 ± 5.4 

(nHR) 

Thinning in left 

parahippocampal gyrus, left 

ACC, left OFC, right middle 

frontal gyrus, right middle 

temporal gyrus, right 

superior frontal gyrus, right 

insula 

Regional cortical thinning of 

the orbitofrontal cortex in 

medication-naive female 

patients with major depressive 

disorder is not associated with 

MAOA-uVNTR polymorphism 

Won et al., 

2016 

MDD (31/0) 

HC (43/0) 

40.83 ± 9.69 Medication-

naïve  

HAM-D(17): 20.96 ± 

5.09 

Thinning in bilateral OFC 

**Increased prefrontal and 

parietal cortical thickness does 

not correlate with anhedonia in 

patients with untreated first-

episode major depressive 

disorders 

Yang et al., 

2015 

MDD (13/14) 

HC (13/14) 

28.59 ± 6.82 Medication-

naive 

HAM-D(24): Thickening in right medial 

OFC and left inferior parietal 

gyrus 

**Cortical thickness and 

subcortical structure volume 

abnormalities in patients with 

major depression with and 

without anxious symptoms. 

Zhao et al., 

2017a 

MDD (20/25) 

HC (21/22) 

32.69 ± 7.85 20/25 medicated 

or with 

medication 

history 

HAM-D(17): 24.89 ± 

5.51 

Thinning in left inferior 

temporal cortex, right 

superior temporal cortex, 

right pars orbitalis 

Altered patterns of association 

between cortical thickness and 

subcortical volume in patients 

with first episode major 

depressive disorder: A 

structural MRI study 

Zhao et al., 

2017b 

MDD (16/20) 

HC (18/23) 

32.8 ± 8.0 Medication-

naïve  

HAM-D(17): 25.5 ± 

5.3 

Thinning in right medial 

OFC, right inferior temporal 

cortex, right insula, right 

inferior parietal region 

**Effects of cigarette smoking 

on cortical thickness in major 

depressive disorder 

Zorlu et al., 

2016 

MDD-smokers 

(13/12) 

MDD-

nonsmokers 

(15/10) 

HC (14/8) 

MDD-smokers: 

34.6 ± 10.1 

MDD-

nonsmokers: 

36.7 ± 10.1 

Medication-free 

for 2 months 

HAM-D(17): 28.4 ± 

4.1 (smokers), 25.9 ± 

5.0 (nonsmokers)  

Thickening in left middle 

temporal cortex (extending 

to superior/inferior gyri), left 

postcentral gyrus, right 

insula (in non-smoker MDD 

compared to HC) 
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ACC = anterior cingulate cortex; BA = Brodmann area; BDI = Beck Depression Inventory; HAM-D(n) = Hamilton Rating 

Scale for Depression (number of items); MADRS = Montgomery-Asberg Depression Scale; MDE = major depressive episode; 

OFC = orbitofrontal cortex; PFC = prefrontal cortex; SI = suicidal ideation; EO = early onset; LO = late onset; HR = high risk; 

nHR = non-high risk; ns = not specified. 

(**) – included in meta-analysis 
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Table 2. Summary of neuroimaging parameters and data analysis performed by included studies 

 
Study MRI Tesla Software Cross-sectional 

analysis 

Multiple comparison 

correction 

Manual edits (Y/N) 

Canu et al., 2015 1.5T Philips FreeSurfer 5.0 Whole-brain, GLM Monte Carlo N 

 

Fonseka et al., 2016 3T GE FreeSurfer (ns) ROI, SPSS  Not described N 

Fung et al., 2015 3T Siemens FreeSurfer 5.1.0 Whole-brain, GLM 

(qdec) 

None Inspection only 

Grieve et al., 2013 3T Signa FreeSurfer 4.3 Whole-brain, 
Independent sample t-

test 

FDR  Inspection only 

Han et al., 2014 3T Siemens FreeSurfer 5.0 Whole brain, GLM Monte Carlo Inspection only 

Han et al., 2017 3T Siemens FreeSurfer 5.3 Whole brain, Two-way 

analysis of covariance 

FDR Inspection only 

Jarnum et al., 2011 3T Signa FACE Whole-brain, One-sided 

unpaired t-test (unequal 

var.) 

FDR N 

Jaworska et al., 2014 3T Signa FreeSurfer (ns) Whole-brain, 

MANOVA with 

repeated measures 

ANOVA 

Indirectly by setting 

uncorrected p<0.01 

Y 

Lan et al., 2014 3T Signa FreeSurfer 5.1.0 Whole-brain, GLM 

(qdec) 

Monte Carlo N 

Lener et al., 2016 3T Philips  FreeSurfer (ns) Whole-brain, two-tailed 

Student’s t-test 

Bootstrap  N 

Liu et al., 2015 3T Signa FreeSurfer 5.3.0 Whole-brain, GLM 

(qdec) 

Monte Carlo Y 

Meier et al., 2016 3T GE  FreeSurfer 5.3.0 ROI, MANOVA, 

MANCOVA 

None Y 

Na et al., 2016 3T Siemens FreeSurfer 5.0 Whole-brain, GLM Monte Carlo Inspection only 

Niu et al., 2017 3T GE FreeSurfer 5.3.0 Whole-brain, GLM 

(qdec) 

Monte Carlo Inspection only 
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Papmeyer et al., 2015 1.5T Signa FreeSurfer 5.1.0 ROI, linear mixed-

effects model 

FDR N 

Peng et al., 2015 3T Signa FreeSurfer 5.3.0 Whole-brain, GLM FDR Y 

Perlman et al., 2017 3T various FreeSurfer 5.3.0 Whole-brain, GLM Monte Carlo Inspection only 

Phillips et al., 2015 1.5T Siemens FreeSurfer 4.5 ROI, MANCOVA None Y 

Pirnia et al., 2016 3T Siemens FreeSurfer 5.3.0 ROI, GLM None Y 

Qiu et al., 2014a 3T GE FreeSurfer 4.5.0 Whole-brain, GLM FDR N 

Sartorius et al., 2016 3T Siemens SPM12 Whole-brain, 

longitudinal only 

Family-wise error N 

Spati et al., 2015 3T Philips FreeSurfer 5.1.0 Whole-brain, GLM Monte Carlo N 

Taylor et al., 2015 Not specified FreeSurfer 5.1.0 Whole-brain, GLM Monte Carlo Inspection only 

(edits not needed) 

Truong et al., 2013 3T GE CIVET Whole-brain, GLM Random field theory N 

Tu et al., 2012 1.5T GE FreeSurfer 4.0.5 Whole-brain, GLM Monte Carlo N 

Van Eijndhoven et al., 

2016 

1.5T Siemens FreeSurfer 5.3.0 Whole-brain, GLM 

(qdec) 

Monte Carlo N 

Van Eijndhoven et al., 

2013 

1.5T Siemens FreeSurfer (ns) Whole-brain, GLM 

(qdec) 

None Y 

Van Tol et al., 2014 3T Siemens CIVET Whole-brain, two-

sample t-test 

FDR N 

Wagner et al., 2012 1.5T Siemens FreeSurfer 5.1.0 Whole-brain, GLM Monte Carlo Inspection only 

Won et al., 2016 3.0T Siemens FreeSurfer 5.0 ROI, ANCOVA Bonferroni Inspection only 

Yang et al., 2015 3T Siemens FreeSurfer 5.1.0 Whole brain, GLM 

(qdec) 

None Inspection only 

Zhao et al., 2017a 3T Siemens FreeSurfer 5.3.0 Whole-brain, GLM 

(qdec) 

Monte Carlo Y 

Zhao et al., 2017b 3T Siemens FreeSurfer 5.3.0 Whole-brain, GLM 

(qdec) 

Monte Carlo Y 

Zorlu et al., 2016 1.5T Philips FreeSurfer 5.3.0 Whole-brain, GLM 

(qdec) 

Monte Carlo Y  

GLM = general linear model; FDR = false discovery rate; FACE = fast accurate cortical extraction; SPM = Statistical 

Parametric Mapping; AN(C)OVA = analysis of (co)variance, MAN(C)OVA = multivariate analysis of (co)variance; ns = 

version not specified.  
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Table 3. Summary of significant clusters identified by meta-analysis of all included studies (n=24) 

 
Cortical region Brodmann 

Area 

Size 

(mm3) 

MNI 

X 

MNI 

Y 

MNI 

Z 

SDM-Z P-value 

MDD > HC  

Left supramarginal 

gyrus 

40 140 -46 -44 40 1.229 0.0015 

MDD < HC 

Bilateral medial 

orbitofrontal cortex 

11 489 0 30 -28 -1.430 0.00020 

Left pars opercularis  45 410 -48 28 0 -1.227 0.00065 

Left calcarine 

fissure/lingual gyrus 

17 242 -4 -82 2 -1.328 0.00037 

The voxel threshold was p <0.005, peak height threshold was SDM-Z > 1.0 and the extent threshold set at a cluster size of 50 

voxels. Regions are labelled according to the FreeSurfer Desikan-Killiany atlas. 

 
Table 4. Summary of significant clusters identified by meta-analysis of subgroup of studies with medication-naïve MDD 

samples (n=6) 

 
Cortical region Brodmann 

Area 

Size 

(mm3) 

MNI 

X 

MNI 

Y 

MNI 

Z 

SDM-Z P-value 

MDD > HC  

Right supramarginal 

gyrus 

40 902 56 -48 34 1.531 0.00016 

Left inferior parietal 

gyrus 

19 116 -28 -72 34 1.354 0.0018 

Right medial 

orbitofrontal cortex 

11 105 6 56 -18 1.246 0.0030 

MDD < HC 

Left fusiform gyrus 20 345 -52 -50 -10 -1.208 0.00049 

Left lateral 

orbitofrontal cortex 

47 235 -32 22 -10 -1.189 0.00071 
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Right lateral 

orbitofrontal cortex 

47 168 50 32 -10 -1.208 0.00049 

Right middle temporal 

gyrus 

21 58 62 2 -14 -1.191 0.00069 

 

The voxel threshold was p <0.005, peak height threshold was SDM-Z > 1.0 and the extent threshold set at a cluster size of 50 

voxels. Regions are labelled according to the FreeSurfer Desikan-Killiany atlas. 
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Table 5. Egger regression tests and jackknife analyses for each statistically significant cluster from main analyses  

 
Cortical region Brodmann 

Area 

Egger’s bias 

indicator 

T-statistic P-value Jackknife 

analysis 

Overall analysis (df = 22) 

MDD > HC 

Left supramarginal gyrus 40 -1.35 -1.65 0.113 23/24 

MDD < HC 

Bilateral medial 

orbitofrontal cortex 

11 0.23 0.48 0.636 23/24 

Left pars opercularis  45 0.23 0.39 0.701 23/24 

Left calcarine 

fissure/lingual gyrus 

17 0.62 0.91 0.371 23/24 

Subgroup analysis (df = 4) 

MDD > HC  

Right supramarginal 

gyrus 

40 -0.76 -0.30 0.777 1/6 

Left inferior parietal gyrus 19 3.67 1.55 0.197 1/6 

Right medial orbitofrontal 

cortex 

11 -2.33 -1.02 0.367 3/6 

MDD < HC 

Left fusiform gyrus 20 1.98 0.81 0.463 5/6 

Left lateral orbitofrontal 

cortex 

47 -0.12 -0.05 0.965 5/6 

Right lateral orbitofrontal 

cortex 

47 1.99 0.79 0.471 3/6 

Right middle temporal 

gyrus 

21 2.19 0.96 0.391 1/6 

The ratio for jackknife analyses indicates the number of studies in which the finding was replicated, out of all total studies 

included in the analysis. df = degrees of freedom. 
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Table 6. Summary of correlations identified between cortical thickness and clinical variables in the MDD samples 

 
Summary of correlations found between cortical thickness in MDD and clinical variables 

General clinical 

severity 

HAM-D score (+) L 

supramarginal gyrus 

thickness, (-) left lingual 

cortex thickness (Na et 

al., 2016) 

BDI score (+) bilateral 

superior parietal gyri 

thickness (Yang et al., 

2015) 

Duration of illness 

(-) R medial OFC 

thickness (Yang et 

al., 2015) 

HAM-D score (-) R 

rostral middle 

frontal gyrus and 

supramarginal gyrus 

(increased in MDD) 

(Qiu et al., 2014) 

 

HAM-D score (+) 

posterior 

cingulate cortex 

thickness (Truong 

et al., 2013) 

HAM-D score 

(-) thickness of 

L precentral 

gyrus and L 

superior 

temporal 

gyrus (Zorlu et 

al., 2016) 

Symptom 

dimensions 

HAM-A respiratory 

subscore (-) R medial 

OFC thickness (Canu et 

al., 2016) 

Visual analog scores for 

irritation and fatigue (-) 

R rostral ACC 

thickness (Lener et al., 

2015) 

GAD comorbidity 

(+) greater thinning 

in frontotemporal 

cortex (Canu et al., 

2015) 

Time required to 

complete CTT2 

(worse executive 

performance) (-) 

thickness of R rostral 

middle frontal gyrus, 

R superior frontal 

gyrus and R 

supramarginal gyrus 

(Tu et al., 2011) 

 

Trait anxiety 

score (-) L 

medial OFC 

thickness (van 

Eijndhoven et al., 

2013) 

 

Vulnerability and 

risk 

CTQ (-) left precuneus 

and bilateral frontal pole 

thickness; abuse subscore 

(-) R frontal pole 

thickness and neglect 

subscore (-) L inferior 

and right superior 

parietal gyri (Jaworska 

et al., 2014) 

 

Family history of mood 

disorder (+) OFC 

thickness (Lan et al., 

2015) 
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Physiological 

measures/genotype 

FKBP5 methylation (+) 

R transverse 

frontopolar gyrus 

thickness in C allele 

homozygote group (Han 

et al., 2017) 

Serum cortisol (-) 

thickness of lateral and 

midline frontal regions 

and bilateral temporal 

regions (Liu et al., 

2015) 

BDNF promoter 

methylation at 

CpG2 (higher in 

MDD sample) and 

CpG4 (-) thickness 

in several regions 

encompassing all 

four lobes (Na et 

al., 2016) 

   

Clinical response 

(longitudinal) 

Lower HAM-D score (+) 

thickness of R insula 

(van Eijndhoven et al., 

2016) 

Lower MADRS score 

following 

antidepressant treatment 

(+) thickness of R 

caudal ACC at baseline 

(Phillips et al., 2015) 

Overall clinical 

response following 

ECT (+) ACC 

thickness at baseline 

(Pirnia et al., 2016) 

Number of ECT 

sessions (+) post-

treatment thickness in 

three regions of L 

temporal cortex (van 

Eijndhoven et al., 

2016) 

Responders to 

ECT showed 

larger increase in 

thickness 

compared to non-

responders (van 

Eijndhoven, 

2016) 

 

 

(+) indicates a positive correlation and (-) indicates a negative correlation. ACC = anterior cingulate cortex; BDI = Beck 

Depression Inventory; BDNF = brain-derived neurotrophic factor; CTQ = Childhood Trauma Questionnaire; CTT = Color 

Trails Test; ECT = electroconvulsive therapy; FKBP5 = FK506 binding protein 51; GAD = generalized anxiety disorder; 

HAM-A = Hamilton Rating Scale for Anxiety; HAM-D = Hamilton Rating Scale for Depression; MADRS = Montgomery-

Asberg Depression Scale; OFC = orbitofrontal cortex.  
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Table 7. A comparison of the significant clusters identified in the ENGIMA study and the current meta-analysis 

 
Areas identified in ENIGMA study Areas identified in current study 

MDD < HC MDD < HC MDD > HC 

Overall group analysis 

Bilateral medial OFC** Bilateral medial OFC** Left supramarginal gyrus 

Bilateral fusiform gyri Left pars opercularis  

Bilateral insula Left calcarine fissure/lingual gyrus                           

Bilateral rostral ACC   

Bilaterial posterior cingulate cortex   

Left middle temporal gyrus   

Right inferior temporal gyrus   

Right caudal ACC   

First episode subgroup analysis 

Bilaterial fusiform gyri** Left fusiform gyrus** Right supramarginal gyrus 

Bilateral rostral ACC Bilateral OFC Left inferior parietal gyrus 

Bilateral insula Right middle temporal gyrus Right medial OFC 

Left medial OFC   

Left superior frontal cortex   

Right caudal ACC   

Right caudal posterior cingulate cortex   

Right isthmus cingulate cortex   

 

Areas that have been identified by both studies have been indicated by double asterisks (**). Results with the same label but in 

opposing hemispheres were not considered common to both studies. All labels derive from the FreeSurfer Desikan-Killiany 

atlas.  
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Abstract  

Thickness of the cerebral cortex has been previously investigated for its potential as a 

biomarker in major depressive disorder (MDD). This is the first study to examine the 

longitudinal effects of a serotonin-norepinephrine reuptake inhibitor, desvenlafaxine 

succinate (DVS), on whole-brain cortical thickness in patients treated for MDD. We also 

aimed to replicate a previous finding of an association between improvement in clinical 

severity and cortical thickness in five predefined regions-of-interest (ROI). Twenty-five 

individuals with MDD received treatment with DVS (50 mg/d) for 8 weeks, with 19 

completing the study. We used FreeSurfer 6.0 to compare group differences between 

MDD and controls (n=23) and between treatment responders, treatment non-responders 

and controls. We tested correlations between 8-week change in depression severity and 

regional cortical thickness in five ROIs: the rostral and caudal anterior cingulate cortices, 

lateral and medial orbitofrontal cortices and inferior temporal gyrus. There were no 

differences in cortical thickness between MDD and controls or DVS responders and 

controls. There was cortical thickening in DVS non-responders in the left pars orbitalis 

when compared to controls (MNI[X,Y,Z] = [-38.4, 37.6, -11.1]; p-value = 0.027). There 

were no significant correlations between change in depression severity and cortical 

thickness in any of the five ROIs. Brain cortical thickness does not seem to be a sensitive 

marker of short-term antidepressant response in MDD, except increased cortical thickness 

in non-responders. Duration of the intervention and inter-individual heterogeneity may 

impede identification of discriminating features of treatment response as associated to 

cortical thickness. 
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3.1 Introduction 

Major depressive disorder (MDD) involves changes in mood, cognition, sleep and 

psychomotor function, which can vary greatly between individuals. Given limited 

remission rates after antidepressant treatment [1], there is an ongoing search to identify 

and describe biomarkers that could be used to define subtypes among a heterogenous pool 

of patients [2–4]. The goal is to define an optimal combination of biomarkers that can 

reliably and meaningfully inform which individuals are more likely to respond to 

antidepressant treatment.  

As a consequence of this heterogeneity, the literature on the neuroimaging 

correlates of MDD is extensive and varied. Functional studies have identified widespread 

network dysfunction, particularly in the default mode and cognitive control networks 

comprising all four cerebral lobes [5]. Given these diffuse effects, abnormalities in 

cortical thickness (CT) are difficult to elucidate [6]. Thinner cortex has been seen in both 

unmedicated MDD and high-risk samples, which could indicate vulnerability to the 

disorder [7]. However, results are varied, ranging from thinning in all identified regions to 

both thinner and thicker cortex in the MDD group as well as null results. Given this lack 

of consensus, there is a need for additional data supported by rigorous statistical 

procedures. 

It has been suggested that pharmacological antidepressant treatment may 

‘normalize’ thinned cortex in MDD, correlating with symptom improvement [8,9]. 

However, animal studies examining possible causal links between first-line treatment and 

CT have observed a lack of change in thickness following drug administration [10,11]. 
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Moreover, this hypothesis has never been tested in a study using the antidepressant 

desvenlafaxine succinate (DVS), a serotonin-noradrenaline reuptake inhibitor (SNRI). 

Furthermore, associations between baseline CT and treatment response at varying 

time-points are emerging [8,9,12], although results are mixed. Other longitudinal studies 

of CT have examined the effects of various treatments including a selective serotonin 

reuptake inhibitor (SSRI) as well as nonspecific pharmacotherapy [8,9,13–16]. One study 

found that among five predefined regions-of-interest (ROI), thicker caudal anterior 

cingulate cortex (ACC) was correlated to symptom improvement over the treatment 

course involving varied pharmacotherapies [9]. There are no studies to date examining 

whether baseline CT can predict response to a specific SNRI, a gap we are aiming to 

address using a DVS treatment study with a sample of mid-life men and women. 

 We used two analytic approaches to address both exploratory and confirmatory 

aspects. Our primary objectives were to determine, using an exploratory whole-brain 

model-free approach, (a) whether certain CT features at baseline are associated to clinical 

response following 8 weeks of DVS treatment, (b) whether there are any structural 

changes within the MDD group as a result of the use of this antidepressant with or 

without satisfactory treatment response and (c) to compare baseline CT between MDD 

and healthy controls (HCs). A secondary objective was to use an a priori region- based 

approach, to replicate previous findings in Phillips et al. [9] described above. We will use 

the same five ROI to test correlations between baseline thickness in these regions and 

change in depression severity over the treatment period. 
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3.2 Methods 

3.2.1 Participants 

Participants were recruited through the Mood Disorders Program and the 

Women’s Health Concerns Clinic at St Joseph’s Healthcare, Hamilton, Ontario. All 

participants provided signed written informed consent before study entry. This study was 

approved by the local Research Ethics Board. 

Inclusion criteria for MDD participants included: (a) 40–60 years of age; (b) 

diagnosis of current MDD according to the Mini-International Neuropsychiatric Interview 

(MINI); (c) score of at least 25 on the Montgomery–Åsberg Depression Rating Scale 

(MADRS). Exclusion criteria were: (a) current axis I psychiatric disorder other than 

MDD assessed by the MINI; (b) regular treatment with any SSRI or SNRI or other agents 

known to influence mood within 4 weeks before screening visit; (c) suicidal or homicidal 

ideation, psychotic symptoms; (d) laboratory abnormalities; (e) presence of significant 

medical issues; (f) pregnancy or breastfeeding. Exclusion criteria for age-matched and 

sex-matched HCs were as follows: (a) any lifetime axis I diagnosis according to the 

MINI; (b) substance abuse in the past 6 months; (c) presence of significant neurological 

disorder; (d) presence of MRI contraindications; (e) pregnant/breastfeeding. 

 

3.2.2 Experimental design 

Treatment consisted of a 2-week placebo lead-in, followed by an 8-week open-

label trial with DVS. After the placebo lead-in phase, placebo responders (defined as  

50% decrease in MADRS score), were excluded. Placebo non- responders started an open 
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trial with DVS (50 mg/day). At each visit (baseline, weeks 2, 4, 6, and 8), mood was 

assessed with clinician-rated MADRS. Self-report scales were completed at baseline and 

week 8 by all participants. Sleep quality was assessed with the Pittsburgh Sleep Quality 

Index, quality of life assessed using the abbreviated WHO Quality of Life questionnaire 

(BREF), anxiety symptom severity measured with the Beck Anxiety Index and cognitive 

errors measured with the Cognitive Failures Questionnaire. 

3.2.3 Brain imaging and statistical analyses 

Clinical measures were compared between MDD and HCs and changes from 

baseline to week 8 were considered using a within-subject analysis. Paired t-tests were 

used for normally distributed data. Wilcoxon matched pairs signed rank and Mann–

Whitney U-tests were used for data that was not normally distributed. 

Brain imaging was performed at the baseline and week 8 visits using a GE 3T 

whole body short bore scanner with parallel receiver channels (General Electric, 

Milwaukee, Wisconsin, USA). High-resolution T1-weighted anatomical images were 

acquired using a gradient-echo inversion-recovery sequence (TR = 1.6 s, TE = 5 ms, 

matrix 256×256×128, FOV 220×220mm, slice thick- ness 1 mm). T1 images were 

processed for CT analysis using FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu/) 

using a fully automated procedure [17]. The processed images were inspected visually for 

segmentation errors; a researcher blinded to group assignments carried out minor manual 

edits. The final images were smoothed with a 10 mm full-width half-maximum Gaussian 

kernel. 
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To address our primary exploratory objectives, general linear modelling from the 

FreeSurfer suite was used to model whole brain, vertex-wise differences in CT between 

MDD subgroups (pooled, responder, and nonresponder) and HC as well as longitudinal 

changes within the MDD group, controlled for age. Whole-brain results were corrected 

for multiple comparisons using cluster-wise thresholding with a vertex-wise threshold of 

P=0.01 and a cluster-forming threshold of P=0.05 [18], with an additional Bonferroni 

correction for two-hemisphere testing. 

For our secondary confirmatory analyses, Python 3.6.3 was used to test 

correlations between 8-week change in MADRS score and baseline average CT values for 

each of the following ROIs as defined by the FreeSurfer Desikan–Killiany atlas, in both 

hemispheres: rostral and caudal ACC, lateral and medial orbitofrontal cortex and inferior 

temporal gyrus. The atlas and regions are the same as those investigated by the authors of 

the study whose results we are aiming to replicate [9]. Pearson’s correlations were 

calculated for normally distributed variables while Spearman correlations were used for 

non-normal variables and were corrected using the false discovery rate at P = 0.05. 

 

3.3 Results 

Following the placebo lead-in phase, 25 eligible participants started treatment 

with DVS. Six participants were excluded because of attrition or incomplete imaging. 

Data passed quality checks for 19 MDD participants and 23 HC at baseline. We obtained 

week 8 response status for 16 patients, of which 12 were DVS responders. Thirteen MDD 
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participants had neuroimaging data at week 8 for within-group longitudinal analyses, of 

which nine were DVS responders. 

 

3.3.1 Clinical outcomes measures 

Treatment with DVS led to significant improvements in depressive symptoms 

(MADRS), sleep quality (Pittsburgh Sleep Quality Index) and quality of life (WHO 

Quality of Life) (Table 1). Cognitive Failures Questionnaire and Beck Anxiety Index did 

not significantly change following treatment (both P > 0.05). 

 

3.3.2 Cortical thickness 

Whole-brain analyses revealed that the left pars orbitalis, also known as the orbital 

part of the inferior frontal gyrus (BA47), was found to be thicker in the nonresponder 

group when compared to HC (Fig. 1 and Table 2). No differences in baseline CT were 

observed between pooled MDD versus HC or responders versus HC. No significant 

longitudinal changes were seen within any of the above groups. There were no significant 

correlations between CT in any of the ROIs and change in MADRS score. 

 

3.4 Discussion  

Our data revealed CT features that can distinguish MDD nonresponders from 

controls at baseline, exhibited as thickening in a region relevant to the circuitry of the 

disorder. This result is difficult to validate on the basis of existing literature because of 

the lack of studies containing equivalent nonresponder versus HC comparisons. 
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Moreover, tentative explanations for results of thicker cortex in MDD have not been 

confirmed, although it has been suggested that thickening may be a marker of 

inflammation due to compensatory mechanisms in response to the onset of a major 

depressive episode [6]. The pars orbitalis has been implicated primarily in emotional 

regulation as well as in executive function [19]. However, it is unlikely that thickening in 

this region is specific to MDD; other studies have also identified thickening in the 

orbitofrontal region in other neuropsychiatric disorders such as social anxiety and autism 

spectrum disorders [20,21], indicative of its larger role in emotional and executive 

dysfunction. Moreover, given the small sample size from which we derived our result, we 

cannot reach a definite conclusion as to why this specific result was seen. It is possible 

that greater pre- treatment structural deviation from HC may suggest the need for a longer 

treatment time to respond to DVS or a preferential response to a different and/or 

adjunctive treatment. A recent multisite study did not find any significant associations 

between baseline CT and treatment response to a SSRI [8]. However, their ROI analysis 

was restricted to a few regions that did not include the pars orbitalis, and therefore could 

not be used to corroborate or refute our results. 

 The whole-brain comparison between the pooled MDD and HC groups revealed 

no differences in CT at baseline, despite previous positive findings [6]. This variation of 

results is likely due to heterogeneity in this diagnostic population. Larger sample sizes 

and subtyping are required to further reduce the heterogeneity present in the overall 

sample. The recent publication by the ENIGMA consortium (N > 10 000) revealed only 

small effect sizes for CT differences between adult MDD and HC [22]. With our current 
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sample size, we were not able to address this particular limitation, but instead utilized an 

exploratory, model-free approach with a multi-step protocol for multiple corrections in 

order to produce statistically reliable results. Additionally, we found no significant 

longitudinal changes in whole-brain CT during the treatment course. It may be that the 

clinical changes led by DVS are not reflected by changes in CT or that an assessment 

after only 8 weeks of treatment is too soon to detect CT changes induced by DVS. 

 Given the large variation of CT results in the literature for MDD, we attempted to 

reproduce results from a highly-cited publication with a comparable sample size [9]. We 

were not able to replicate their positive result (thicker baseline caudal ACC associated to 

symptom improvement), although this could be due to several reasons. First, 

antidepressant use was not controlled for in the previous study, whereas our current study 

was a case-controlled trial with standardized administration of DVS. Second, differences 

in mean ages and symptom severity may have contributed to the discrepancy between the 

two sets of results. Additionally, sample sizes in both studies were small, with a total N 

ranging from 42 to 54 (including HC), increasing the chances of spurious findings due to 

reduced power [23]. 

 This paper is the first in the literature to examine cross- sectional and longitudinal 

CT features in the context of a specific SNRI, which is the main strength of the study. 

Automatically processed images were manually edited following blinding to correct for 

minor segmentation errors, improving the overall quality of the dataset [24]. Our 

limitations include the small sample size, particularly in the nonresponder group (n=4); in 

the field of neuroscience in particular, studies with small sample sizes were found to 
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overestimate the true effect [23]. We attempted to mitigate this limitation by using 

rigorous statistical thresholds for all analyses. 

 

3.5 Conclusion 
 

We have shown here, with a sample comparable to others found in the literature, 

that SNRI nonresponders had increased thickness in the orbital part of the inferior frontal 

gyrus (BA47). Further research investigating whole-brain differences between these 

groups is needed, as ROI-based approaches commonly exclude regions outside of the 

ACC and orbitofrontal cortex. The lack of replicability of correlations between specific 

ROIs and clinical improvement and the lack of differences between HC and the overall 

MDD group suggest variance among patients that may conceal group differences of 

smaller effect size. Using larger sample sizes, rigorous statistical controls for whole-brain 

analyses and subtyping of MDD groups are needed to counteract these limitations. Recent 

unsupervised machine learning approaches have shown the feasibility of subtyping on the 

basis of neuroimaging measures [25], although these subtypes have yet to be replicated or 

confirmed from a clinical perspective. Future studies might attempt to combine 

multivariate and univariate analyses to extract the complex patterns of clinical 

symptomology and objective biomarkers that exist under the heterogeneous umbrella 

label of MDD. 
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3.9 Figures and Tables 
 

 

 
 

Figure 1. The left pars orbitalis (BA 47) was found to be thicker in MDD non-responders 

to DVS as compared to HC in a whole-brain analysis. The scale refers to the cluster-wise 

-log(p) value. 
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Table 1. Characteristics of study participants. 

Measures 
MDD (n=19) 

HC (n=23) 
Baseline Week 8 

Age, Mean (SD) 53.8 (3.8) -- 50.7 (5.6)† 

Sex, N (%) 

Male  

Female 

 

15 (78.9) 

4 (21.1) 

 

-- 

-- 

 

13 (56.5) 

10 (43.5) 

Handedness, N (%) 

Right 

Left 

Ambidextrous 

 

16 (84.2) 

0 (0) 

3 (15.7) 

 

-- 

-- 

-- 

 

22 (95.6) 

1 (4.3) 

0 (0) 

MADRS, Mean (SD) 25.0 (6.6) 11.7 (9.1)** 1.6 (2.3)†† 

Beck Anxiety Index, Mean 

(SD) 

13.5 (6.6) 11.4 (10.8) 2.9 (3.1)†† 

Pittsburgh Sleep Quality Index, 

Mean (SD) 

11.8 (3.7) 10.0 (4.7)* 4.9 (3.9)†† 

Cognitive Failures 

Questionnaire, Mean (SD) 

47.5 (17.5) 43.9 (20.0) 

 

24.0 (13.6)†† 

WHO Quality of Life, Mean 

(SD) 

159.1 (62.7) 185.9 (51.0)* 288.7 (50.6)†† 

 

Asterisks (*) indicate significance of the within-group comparison from baseline to week 

8 in the MDD group. Crosses (†) indicate significance of the between-group comparison 

at baseline between MDD and HC. */† - p < 0.05; **/†† -  p < 0.001 

 

 

 

Table 2. Cluster information for comparison of whole-brain cortical thickness 

between MDD non-responders and HC. 

 

ClusterNo Max 

Value 

Annotation Size(mm2) MNI(X) MNI(Y) MNI(Z) CWP 

1 4.663 Left pars 

orbitalis 

429.33 -38.4 37.6 -11.1 0.027 
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Abstract 

Major depressive disorder (MDD) is considered a highly heterogeneous clinical and 

neurobiological mental disorder. We employed a novel layered treatment design to 

investigate whether cortical thickness features at baseline differentiated treatment 

responders from non-responders after 8 and 16 weeks of a standardized sequential 

antidepressant treatment. Secondary analyses examined baseline differences between 

MDD and controls as a replication analysis and longitudinal changes in thickness after 8 

weeks of escitalopram treatment. 181 MDD and 95 healthy comparison (HC) participants 

were studied. After 8 weeks of escitalopram treatment (10-20mg/d, flexible dosage), 

responders (>50% decrease in Montgomery-Åsberg Depression Scale score) were 

continued on escitalopram; non-responders received adjunctive aripiprazole (2-10mg/d, 

flexible dosage). MDD participants were classified into subgroups according to their 

response profiles at weeks 8 and 16. Baseline group differences in cortical thickness were 

analyzed with FreeSurfer between HC and MDD subgroups as well as between response 

groups. Two-stage longitudinal processing was used to investigate 8-week escitalopram 

treatment-related changes in cortical thickness. Compared to HC, the MDD group 

exhibited thinner cortex in the left rostral middle frontal cortex 

[MNI(X,Y,Z=−29,9,54.5,−7.7); CWP=0.0002]. No baseline differences in cortical 

thickness were observed between responders and non-responders based on week-8 or 

week-16 response profile. No changes in cortical thickness were observed after 8 weeks 

of escitalopram monotherapy. In a two-step 16-week sequential clinical trial we found 
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that baseline cortical thickness does not appear to be associated to clinical response to 

pharmacotherapy at 8 or 16 weeks.  

 

Keywords  

major depressive disorder; cortical thickness; structural neuroimaging; antidepressant 

response; clinical trial 
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4.1 Introduction 

Major depressive disorder (MDD) affects up to 300 million people worldwide and 

is one of the most prevalent causes of disability globally (“WHO | Depression” n.d.). 

First-line antidepressants have limited efficacy (Cipriani et al. 2018), often necessitating 

additional treatment courses that can prolong or worsen the patient’s distress. Moreover, 

antidepressants are prescribed based on group average responses from clinical trials, 

rather than on objective individual characteristics derived from clinical or neurobiological 

data. The high degree of heterogeneity among individuals meeting diagnostic criteria for 

MDD likely underlie a wide range of neurobiological subtypes (Drysdale et al. 2017). 

Clinical- and biomarker-informed treatment selection is the ultimate goal of precision 

medicine, where accurate subtyping would help clinicians discern whether certain 

medications are differentially effective in a subtype-dependent manner (Paris 2014; 

Young et al. 2016; Kennedy and Ceniti 2018). The Canadian Biomarker Integration 

Network in Depression (CAN-BIND) is a multi-site clinical treatment trial involving 

several major research centres in Canada (Kennedy and Ceniti 2018; Lam et al. 2016). 

Clinical, molecular and neuroimaging data were collected from over 300 participants, 

including MDD patients and healthy comparison (HC) participants. 

Neuroimaging has emerged as a promising approach in the search for biomarkers, 

including anatomical magnetic resonance imaging (MRI), which makes possible the 

visualization and quantification of the structure of the brain at millimeter resolution. One 

such parameter is cortical thickness, defined as the distance from the pial boundary to the 

gray matter (GM)/white matter (WM) boundary comprising the cell bodies of the cerebral 
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cortex as well as intracortical myelin (Narr et al. 2007; Seldon 2007; Shaw et al. 2008). 

There are various factors that could lead to cortical thinning, including reduction of 

synapses, atrophy of dendritic trees or reduced vascularization (Lyttle et al. 2015; Schüz 

and Palm 1989). Cortical thinning, independent of aging processes, has been 

demonstrated in samples of MDD participants and has been replicated in previous studies, 

albeit not without ambiguity regarding the specific subregions affected by cortical 

thinning (Schmaal et al. 2017; Pink et al. 2017; Suh, Schneider, et al. 2019). Moreover, 

cortical thickening has also been observed, particularly in medication-naïve, first-episode 

MDD patients (Philip van Eijndhoven et al. 2013; Fonseka et al. 2016; Peng et al. 2015; 

Qiu et al. 2014; Yang et al. 2015), which has been hypothesized to reflect glial 

hypertrophy as an immune response to initial excitotoxic injury during the first episode 

(Dowlati et al. 2010).  

Until recently (Schmaal et al. 2017; Perlman et al. 2017), studies on cortical 

thickness were hampered by small-to-moderate sample sizes (N<100) and therefore low 

power, especially when the statistical considerations that must be made for multi-

dimensional neuroimaging data are taken into account (Cremers, Wager, and Yarkoni 

2017). Under-powered neuroimaging studies suffer from effect size inflation and have 

low replicability (Button et al. 2013), often constraining statistical analyses to regions of 

interest that may not fully capture the whole-brain signature of the associated disorder. 

Another limitation is the paucity of longitudinal studies assessing patient response to a 

given antidepressant over time (Suh et al. 2019b). The few longitudinal studies that have 

tracked changes in cortical thickness over time are smaller than most cross-sectional 
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studies (N<30) (P. van Eijndhoven et al. 2016; Gryglewski et al. 2018; Koenig et al. 

2018; J. L. Phillips et al. 2015; Pirnia et al. 2016; Sartorius et al. 2016; Suh et al. 2019a). 

A recent consortium study has addressed several of these gaps in the literature, including 

a large MDD sample for sufficient power and a longitudinal design within a treatment 

paradigm that includes a placebo arm (Bartlett et al. 2018). Examining average values 

from 5 a priori selected regions (rostral and caudal anterior cingulate cortex (ACC), 

lateral orbitofrontal cortex, rostral middle frontal cortex and hippocampus), they found 

that only early thickening in the rostral ACC during the first week of treatment was 

associated with SSRI response at week 8 (Bartlett et al. 2018). No significant associations 

between pre-treatment cortical thickness and week-8 response were observed. This study, 

however, did not employ a whole-brain approach to capture information on cortical 

thickness in regions outside the pre-selected regions of interest (ROI).    

We used a vertex/surface-based method to calculate cortical thickness with 

FreeSurfer, which utilizes a triangulated mesh to model the two surfaces that delineate the 

cerebral cortex: the pial boundary separating GM and cerebrospinal fluid (CSF) and the 

WM boundary that lies below cortical GM. There are several advantages to vertex-based 

methods when compared to conventional voxel-based morphometry, including sub-voxel 

accuracy, topological continuity, robustness to varying acquisition and scanner 

parameters and decreased susceptibility to partial volume effects (Clarkson et al. 2011; 

Fischl 2012). 

Multi-site, multi-scanner effects are known to be a complex issue among the 

increasing number of large multi-site neuroimaging studies, which are necessary for 
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increasing sample sizes conducive to reliably detecting effects (Jahanshad et al. 2019; 

Hawco et al. 2018; Tozzi et al. undefined/ed). In recent years, the ComBat algorithm 

(Fortin et al. 2017; Johnson, Li, and Rabinovic 2007), originally developed for correcting 

batch effects in genomics, has been applied to correcting site- and scanner-associated 

variation (Bartlett et al. 2018; Yu et al. 2018). Here we have taken a similar approach, 

applying this algorithm to vertex-wise datapoints in our sample to accommodate our 

whole-brain analyses. 

We present a study novel in its simultaneous whole-brain approach, large sample 

of MDD and HC participants and 16-week sequential treatment designed to investigate 

associations with antidepressant response. Our primary objectives were to investigate 

vertex-wise pre-treatment features of cortical thickness associated with antidepressant 

response at 8 weeks and 16 weeks of treatment. Specifically, we aimed to determine 

whether MDD participants who achieved clinical response at 8 and/or 16 weeks had 

differences in cortical thickness at baseline compared to those who did not achieve 

clinical response. We also aimed to identify differences between MDD and HC 

participants at baseline. We hypothesized that thinner cortex at baseline, which has been 

associated with increased vulnerability to MDD (Hao et al. 2017; Papmeyer et al. 2015), 

would be associated with worse response to treatment. A final aim of the study was to 

determine whether there were measurable changes in cortical thickness over the 8-week 

course of treatment with escitalopram. It has been suggested that antidepressant treatment 

may cause thickening of the cortex (Koenig et al. 2018; J. L. Phillips et al. 2015), but this 

hypothesis has not been confirmed in larger trials or in whole-brain analyses and is 
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contradicted by preclinical findings, in which stress-related decreases in cortical thickness 

are not normalized following SSRI administration (Lyttle et al. 2015). To our knowledge, 

this is the first treatment study to examine whole-brain group differences and longitudinal 

changes in cortical thickness with a sample size that can support this statistical approach 

(Pardoe, Abbott, and Jackson 2013). This last point in particular, combined with a reliable 

site correction method, is key to interrogating the often contradictory and inconclusive 

cortical thickness findings in recent years (Suh et al. 2019b). 

 

4.2 Materials and Methods 

Full details of the clinical, neuroimaging and biomarker protocols and patient 

outcomes are available elsewhere (Kennedy et al. 2019; Lam et al. 2016; MacQueen et al. 

2019). The protocol was approved by the Research Ethics Boards at each institution. 

Information pertaining to inclusion/exclusion criteria and MRI acquisition parameters for 

this cohort can be found in Supplemental Information. The CONSORT diagram outlining 

the flow of participants throughout the 16-week clinical trial can be found in (Kennedy et 

al. 2019). MDD participants were aged 18-60 meeting DSM-IV-TR criteria for a major 

depressive episode (duration > 3 months) and HC subjects were matched for age and sex.  

 

4.2.1 Treatment protocol 

 At the baseline visit (week 0), all MDD participants started treatment with 

escitalopram 10mg daily, flexible-dosage, with a maximum dose of 20mg per day. At 

week 8, responders (defined as a greater than 50% reduction in MADRS score (Lam et al. 
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2016)) continued to receive escitalopram for a further eight weeks. Participants who did 

not respond received aripiprazole at 2-10mg per day (flexible-dosage), a first-line 

adjunctive agent chosen based on clinical guidelines set out by the Canadian Network for 

Mood and Anxiety Treatments (CANMAT) (Kennedy et al. 2016). 

 

4.2.2 Imaging processing for cortical thickness analysis 

We obtained T1-weighted images at weeks 0 (baseline), 2 and 8. Raw images 

were pre-processed using the fully automated pipeline from FreeSurfer (version 6.0) 

(https://surfer.nmr.mgh.harvard.edu/) (Fischl 2012). After motion correction and 

averaging (Reuter, Rosas, and Fischl 2010), surrounding non-brain tissue is removed 

(Ségonne et al. 2004) and the images then undergo a transformation to standard Talairach 

space and intensity normalization (Sled, Zijdenbos, and Evans 1998). The boundary 

between GM and WM undergoes tessellation to a triangular mesh and topological 

corrections are made. The GM/WM and pial surfaces are then deformed to certain 

locations where the greatest shifts in intensity occur and which indicate boundaries 

between different tissue compartments (WM/GM/cerebrospinal fluid) (Dale, Fischl, and 

Sereno 1999). These surfaces are then inflated to a spherical model and registered to the 

MNI atlas. For each participant, cortical thickness values are measured for each vertex on 

the cortical surface mesh as the shortest distance between the reconstructed pial and 

GM/WM surfaces.  

For longitudinal analyses, all images completed the FreeSurfer two-stage 

longitudinal processing stream (Reuter et al. 2012). The first step is the creation of a 

https://surfer.nmr.mgh.harvard.edu/
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“base” unbiased template for each subject based on images from all timepoints (Reuter, 

Rosas, and Fischl 2010). Cross-sectional images are then processed for longitudinal 

analysis using the base template for initialization for skull stripping, transformation and 

registration, in order to minimize random error and preserve stable within-subject features 

across all timepoints (Reuter et al. 2012). First-pass quality assurance following all 

FreeSurfer pre-processing involved checking for correct skull strips and registration to 

Talairach space.  

Quality assurance protocols from the Enhancing Neuroimaging Genetics through 

Meta-analysis (ENIGMA) consortium (http://enigma.ini.usc.edu/; April 2017) were used 

to assess results from the automatic cortical segmentation procedure outlined above. 

These protocols comprise an outlier detection analysis for parcellated ROIs as per the 

Desikan-Killiany atlas, visual inspection of internal segmentation (using sampled coronal 

and axial slices) and external surface reconstruction for each subject. Participants whose 

images failed at least one of these three steps were flagged for further inspection and 

manual edits of the main structural volume and white matter volume were made as 

necessary (254/795 total images over 3 timepoints). Edits were confined to cleaning up 

the pial boundary and on the white matter mask in the temporal lobes to improve 

segmentation of the gray matter from CSF on the superior aspect and gray matter from 

white matter in the temporal regions of the cortex, respectively. The resulting cortical 

maps were smoothed with a Gaussian kernel of 15mm full width at half-maximum in 

preparation for statistical group analyses. 

 

http://enigma.ini.usc.edu/
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4.2.3 Site effect corrections 

 Following FreeSurfer pre-processing and the completion of final quality checks, 

the Python implementation of the ComBat algorithm was used to correct for site effects 

on a vertex-wise basis (GitHub repository: https://github.com/ncullen93/neuroCombat). 

Full details can be found in Supplementary Materials.    

 

4.2.4 Statistical analyses 

All statistical analyses for demographics were performed in the open-source 

software Python (version 3.6) using the scipy library. MDD and HC groups were 

compared in terms of age, years of education and baseline MADRS using the Student’s t-

test. Age, years of education, age of illness onset, MADRS scores at the three timepoints, 

number of previous major depressive episodes and duration of illness were compared 

between the response groups using analysis of variance. Proportions of females/males 

were compared using a chi-square test (see Table 1).  

At week 8, MDD participants were either escitalopram responders (‘ESC-8’) or 

non-responders (‘NR-8’). At the week 16 endpoint, there were three groups based on 

response: those who continued to respond to escitalopram throughout the 16 weeks 

(‘ESC-16’), participants who responded to adjunctive aripiprazole (‘ARI-16’) and 

patients who continued to be non-responders by week 16 despite the addition of 

aripiprazole (‘NR-16’). In a secondary analysis, ESC-16 and ARI-16 groups were 

combined to define overall response at week 16. A small sample of five MDD 

https://github.com/ncullen93/neuroCombat
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participants who were in the ESC-8 group but were no longer responding by week 16 

were excluded only in subsequent analyses (Figure 1).   

To test for changes in vertex-wise cortical thickness as a result of antidepressant 

treatment over 8 weeks, longitudinal analyses were performed using repeated-measures 

ANCOVA for the following groups to test for any changes, controlled for sex, age and 

age2: the HC group, the MDD group and the three week-16 response subgroups. We also 

tested for differences in longitudinal changes from baseline to week 8 between ESC-8 and 

NR-8 groups to assess any between-group effects of escitalopram treatment. We 

measured longitudinal change using symmetrized percent change (SPC), the rate of 

change with respect to average thickness over the two timepoints. Using the average 

thickness renders SPC particularly robust to noise effects (Reuter et al. 2012; Tamnes et 

al. 2017). 

Cross-sectional analyses consisted of whole-brain, vertex-wise comparisons 

between the aforementioned groups at baseline, and pairs of timepoints were used for 

longitudinal analyses (baseline to week 2, week 2 to week 8, baseline to week 8). General 

linear modelling (ANCOVA) was used for both between- and within-group analyses 

using FreeSurfer statistical tools, incorporating age, age2 and sex as covariates (as per 

Perlman et al. 2017; Bartlett et al. 2018).  

All vertex-wise results were corrected for multiple comparisons and separate 

hemisphere testing using Monte Carlo simulation (10,000 iterations) with a vertex-wise 

threshold of p=0.01 and cluster thresholding at p=0.05 (Hagler, Saygin, and Sereno 

2006). Briefly, this technique involves indexing based on a lookup table provided by 
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FreeSurfer that has tabulated p-values corresponding to various cluster sizes at different 

smoothing levels. These values are derived from Gaussian Monte Carlo simulations of a 

z-field synthesized onto the cortical surface that is then thresholded to extract the largest 

cluster at a range of p-value thresholds, repeated 10,000 times. An additional Bonferroni 

correction was applied to take into account multiple exploratory cross-sectional contrasts 

(9 in total) for a post-correction cluster p-value threshold of p=0.0056 (family-wise 

threshold of 0.05 divided by the number of tests), set as the display threshold for all 

figures.  

To examine in more detail how cortical thickness is related to the extent of improvement 

following 8 and 16 weeks of pharmacotherapy, we tested the relationship between percent 

change in MADRS score at 8 and 16 weeks and baseline cortical thickness within the 

MDD group using multiple linear regression (controlling for sex, age and age2). 

Significant clusters from the whole-brain analysis were chosen as regions of interest, and 

a mask was created to extract average thickness values for each participant. Scatterplots 

were constructed to display the distributions and curves of best fit for each group in R 

version 3.4.1 (https://www.r-project.org/), using the package ggplot2. 

 

4.3 Results 

Baseline neuroimaging data were available for a total of 308 participants. 

Following the systematic quality screen as described above, we obtained FreeSurfer 

outputs for baseline images of usable quality from 181 MDD and 95 HC participants. 32 

images were excluded on the basis of poor overall segmentation that could not be 

https://www.r-project.org/
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manually corrected. There were no significant differences between MDD and HC on 

mean age or female:male ratio, although there was a significant difference in years of 

education (t=5.67; p=0.000) and baseline MADRS score (t=-63.88; p=0.000) (Table 1). 

By week 8, 22 participants had dropped out to give a sample size of 159 MDD 

participants, with a further reduction to 141 participants at week 16 (see Figure 1 for final 

MDD subgroup sample sizes). As indicated by omnibus tests, differences in age, sex, 

years of education, age of onset, illness duration, baseline severity and number of 

previous episodes were not significant between week-16 subgroups (Supplementary 

Table 1). 

 

4.3.1 Baseline cross-sectional analyses between groups 

Whole-brain analyses revealed that the MDD group exhibited thinner cortex at 

baseline in the left rostral middle frontal cortex (Figure 2; Table 2). There were no 

statistically significant differences at baseline in cortical thickness across the whole brain 

between the ESC-8 and NR-8 groups, between the ESC-16, ARI-16 and NR-16 groups, 

nor between the combined week-16 response group (ESC-16+ARI-16) and NR-16. 

 

4.3.2 8-week longitudinal changes in cortical thickness 

There were no significant longitudinal changes in cortical thickness within the HC 

group, the pooled MDD group or week-16 subgroups from baseline to week 8. 

Trajectories of cortical thickness change over the course of escitalopram treatment 

between ESC-8 and NR-8 groups were not found to be different. 
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4.3.3 Relationship between baseline cortical thickness and improvement in symptom 

severity 

 There were no significant relationships between baseline cortical thickness and 

extent of treatment response (percent improvement in MADRS scores) at either 8 or 16 

weeks within the MDD group. 

 

4.4 Discussion 

In a large sample, with the novel combination of robust site effect correction and a 

vertex-based whole-brain approach, we found no significant differences at baseline 

between week-8 or week-16 responders and non-responders. Therefore, we were unable 

to confirm the hypothesis that non-responders to pharmacotherapy would exhibit thinner 

cortex at baseline and subsequently, the notion that cortical thickness might be a useful 

biomarker for treatment response. We found that the MDD group exhibited thinner cortex 

in the left rostral middle frontal (RMF) cortex as compared to HC. This result is a 

replication of findings from previous studies. Two studies found thinner cortex in the 

RMF region in MDD compared to HC, although one found a bilateral effect (Zhao et al. 

2017) whereas the other also observed thinning in only the left region (Peng et al. 2015). 

Abnormalities in structural asymmetry in the RMF cortex has been reported in treatment-

naïve MDD (Zuo et al. 2019). We note that these three studies also found additional 

effects of thinner cortex in other regions in MDD that we did not replicate. Additionally, 

increased thickness in the RMF region over the course of treatment has been found to be 

indicative of remission in two separate studies (J. L. Phillips et al. 2015; Saricicek 



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 126 

Aydogan et al. 2019)-- however, in the current study we did not find significant changes 

in thickness within any response group on a whole-brain basis. Interestingly, in one study 

thinner bilateral RMF at baseline was correlated to better response in the placebo group 

(Bartlett et al. 2018) and increased thickness in this region was negatively correlated to 

symptom severity in MDD (Qiu et al. 2014). It appears that even for one region that is 

implicated relatively often in the literature, previous reports are mixed and are often 

accompanied by other findings that have not been replicated. 

Although our primary analyses yielded largely null results as far as the association 

between cortical thickness and antidepressant response, they are fairly consistent with 

recent studies that have been published on the topic of cortical thickness as a 

neuroimaging biomarker in MDD. Despite some positive preliminary results, pre-

treatment cortical thickness predictors of treatment response that are robust and replicable 

have yet to be discovered (J. L. Phillips et al. 2015; Suh et al. 2019a; Bartlett et al. 2018). 

Similarly, studies on diagnostic group differences in cortical thickness, although more 

numerous, have yet to converge on a set of replicable differences (Suh et al. 2019b), 

finding both thinner and thicker regions among disparate regions in MDD. The largest 

cortical thickness analysis to date from the ENIGMA consortium, with 1902 MDD 

patients and 7658 HC participants drawn from 20 cohorts, found small absolute effect 

sizes of thinning in MDD (Cohen’s d no larger than 0.14) despite its robust statistical 

power. Studies with sample sizes ranging from 50 to >100 per group tend towards null 

results for statistical testing of the MDD vs HC comparison (Perlman et al. 2017; 

Saricicek Aydogan et al. 2019). This indicates that smaller samples, particularly in the 
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context of cortical thickness analysis (Button et al. 2013), may run an increased risk of 

false positive results. Inconsistent methods for multiple comparison corrections and 

variable utilization of region-based vs. vertex-wise approaches have also contributed to 

the considerable heterogeneity among studies. Other clinical characteristics of the MDD 

sample may also influence the final results, such as varying definitions of 

response/remission, medication status and disease chronicity. 

When the extant literature and the current results are taken together, it seems 

unlikely that cortical thickness alone could be used as a reliable predictor of short-term 

treatment response to pharmacotherapy. However, it has been shown to be useful for 

mapping and predicting clinical response to electroconvulsive therapy in a regionally 

consistent manner in several studies (P. van Eijndhoven et al. 2016; Pirnia et al. 2016; 

Sartorius et al. 2016; Schmitgen et al. 2019; Wade et al. 2017). Effectively, cortical 

thickness represents a totality of numerous microscopic properties; shown to be a 

relatively stable measure over the lifespan (Storsve et al. 2014; Hogstrom et al. 2013), it 

appears likely that any subtle structural characteristics predictive of the extent of short-

term response to pharmacotherapy, if they exist, are not well-reflected in this measure.  

We found no significant longitudinal changes in cortical thickness following 8 

weeks of escitalopram treatment, nor any differences between responders and non-

responders. Most studies reporting longitudinal changes in cortical thickness (Bartlett et 

al. 2018; Koenig et al. 2018; J. L. Phillips et al. 2015) have focused on pre-determined 

regions of interest for analysis, lending them the advantage of increased statistical power. 

Other studies have found no change in either cortical volume nor thickness within several 
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weeks of SSRI or SNRI treatment (Fu et al. 2015; Lyttle et al. 2015). It is also 

conceivable that 8 weeks might be too short a period of time to detect cortical thickness 

changes via MRI.  

 This study addressed a gap in the literature regarding identification of baseline 

features associated with differential treatment response (M. L. Phillips et al. 2015), 

particularly being the first neuroimaging study to incorporate sequential adjunctive 

treatment following lack of response to a first-line antidepressant medication (Kennedy et 

al. 2016). Given the variety of cortical regions that have been identified as being altered 

or abnormal in MDD, we opted for a whole-brain, exploratory approach, taking 

advantage of the relatively large sample size afforded by the multi-site effort of the CAN-

BIND trial. Other advantages of the current study include controlling for heterogeneity 

introduced by different MRI scanners and varying acquisition parameters by correcting 

for these effects on a vertex-wise basis using the ComBat algorithm. We also carried out 

blinded systematic manual correction of FreeSurfer outputs, which has been shown to 

provide more accurate segmentations when compared to uncorrected outputs (Popescu et 

al. 2016). 

 There are also several limitations associated with the study. First, although we 

have a relatively large sample size overall for both the MDD and HC groups, this 

advantage is reduced once we subdivide the MDD group based on week-16 response. 

Second, our age range was relatively large, possibly obscuring potential age-related 

trajectories and mechanisms of disease progression. Although we attempted to mitigate 

this limitation by controlling for both age and age2 in all neuroimaging analyses, it is 
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possible that age-specific relationships may emerge in studies with narrower age ranges 

or greater sample sizes. Third, we excluded subcortical and cerebellar regions in the 

analysis, as we focused only on cerebral cortical thickness, and therefore could not 

ascertain any longitudinal changes or baseline associations with treatment response in 

these areas. Moreover, we did not control for the potential confounding variable of 

cigarette smoking status (Zorlu et al. 2017). Finally, mass univariate analyses are not 

sufficient to discriminate structural features that could aid in informing individualized 

treatment.  

In conclusion, we show that cortical thickness in MDD at baseline was not 

associated to antidepressant response at 8 or 16 weeks, nor was it shown to change over 

an 8-week period of escitalopram treatment. We did replicate previous findings of cortical 

thinning in the left RMF cortex in MDD. Future studies might investigate not only 

univariate approaches to isolating potential biomarkers, but also multivariate methods 

incorporating multiple measures, an approach requiring a sufficient number of 

participants and clearly defined patient samples (Kim and Na 2018; Raamana et al. 2014). 

Another promising approach is the extraction of advanced multi-variate network-level 

features from whole-brain thickness features to assess their utility in predicting response 

to treatment (Raamana and Strother 2018). The emergence of larger consortia with 

sufficient power to identify subgroups based on biomarkers is a promising sign for the 

field (Brunoni et al. 2015; Lam et al. 2016; Schmaal et al. 2017; Trivedi et al. 2016). 

Methods range from retrospective grouping of subjects based on some outcome parameter 
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(as shown here with ‘response’) to using unsupervised, data-driven machine learning 

algorithms to model underlying patterns of variability (Drysdale et al. 2017). 
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4.7 Figures and Tables 
 

 

 
 

Figure 1. Number of participants in response subgroups at week 8 and week 16.  

22 participants were lost to attrition at week 8 and an additional 13 had dropped out by 

week 16. 

 

 

 

 
 

Figure 2. Region of thinner cortex at baseline in MDD as compared to HC.  

A significant cluster indicating thinner cortex in the left rostral middle frontal region are 

displayed from the lateral and frontal views. Scale bar shows max -log(p) values, 

following corrections for multiple comparisons using Monte Carlo thresholding. 
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Figure 3. Scatterplots and regression lines depicting the relationship between RMF 

thickness and % improvement in MADRS scores, grouped by response. 

Thickness values over the significant cluster in the RMF cortex at baseline were extracted 

for all MDD participants and plotted over % improvement in MADRS score at A) 8 

weeks of escitalopram treatment and B) 16 weeks of escitalopram or adjunctive treatment 

with aripiprazole for each participant. Datapoints have been grouped by colour based on 

response group at the respective treatment timepoints. 
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Table 1. Demographic and clinical information for the MDD and HC samples.  

 

 MDD Patients Healthy Controls 

 N Mean/ 

frequency 

SD N Mean/ 

frequency 

SD 

Age (1) 181 35.03 12.56 95 32.99 10.87 

Sex % F (1) 181 64.84 -- 95 63.54 -- 

Years of Education (2) 181 16.87 2.08 95 18.40 2.23 

Baseline MADRS (2) 181 29.84 5.65 95 0.82 1.73 

Age of Illness Onset 175 20.38 10.26 -- -- -- 

Number of previous MDEs 132 4.02 2.64 -- -- -- 

% Change MADRS (8-week) 159 -45.79 32.43 -- -- -- 

% Change MADRS (16-

week) 

141 -65.71 27.70 -- -- -- 

% Responders @ 8 weeks 159 47.17 -- -- -- -- 

% Responders @ 16 weeks 141 75.20 -- -- -- -- 

% Family history of  

psychiatric illness 

180 77.78 -- -- -- -- 

 

Superscripts indicate the significance of the test statistic comparing patient and healthy 

control samples. ‘1’ – p > 0.05, no significant differences between samples. ‘2’ – p < 

0.005. The N indicates the number of participants for which the corresponding 

information is available. 
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Table 2. Cortical region exhibiting greater thinning in MDD group compared to HC 

 

Cluster 

# 

Max -

log(p) Annotation Size(mm^2) MNIX MNIY MNIZ CWP 

Left hemisphere 

1 -3.389 
rostral middle 

frontal 
1599.21 -29.9 54.5 -7.7 0.0002 

 

 

Max -log(p) indicates the maximum -log(p) value among the vertices in the cluster. CWP 

= cluster-wise p-value. The Annotation heading refers to the location of the peak voxel as 

per the Desikan-Killiany atlas. The MNI coordinates indicate the location of the peak 

vertex. 
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4.8 Supplementary Material 

 

4.8.1 Participants 

 

Participants were recruited from six clinical sites in Canada: the Djavad 

Mowafaghian Centre for Brain Health (Vancouver, BC), Hotchkiss Brain Institute 

(Calgary, AB), University Health Network (Toronto, ON), Centre for Addiction and 

Mental Health (Toronto, ON), St. Joseph's Healthcare Hamilton (Hamilton, ON) and 

Providence Care Hospital (Kingston, ON). Recruitment of MDD and HC participants 

involved referrals from outpatient clinics and advertisements in the community. Subjects 

included in the MDD group were outpatients aged 18-60 who met DSM-IV-TR criteria 

for a major depressive episode (MDE) in MDD, the duration of which was longer than 3 

months. A confirmation of MDD on the Mini International Neuropsychiatric Interview 

(MINI) and a score greater than 24 on the Montgomery-Åsberg Depression Scale 

(MADRS) was used by all clinicians to confirm the MDE. Healthy control subjects were 

age- and sex-matched and had no history of psychiatric illness. All subjects were fluent in 

English and free of psychotropic medications for at least 5 half-lives before the baseline 

visit. Exclusion criteria for MDD subjects were: co-morbid diagnosis of any psychiatric 

illness considered the primary diagnosis, including bipolar disorder Type I and II or 

personality disorder that would interfere with participation; high suicidal risk; substance 

dependence or abuse in past 6 months; neurological or major medical condition; 

pregnancy or breastfeeding; psychosis in current episode; high risk for hypomanic switch; 

failure of four or more previous pharmacotherapeutic interventions; previous intolerance 
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to escitalopram or aripiprazole; having started psychological treatment in past three 

months with intent to continue and any contraindications to MRI.  

 

4.8.2 MRI acquisition 

 

3.0T structural MRI scans were obtained for each participant at three timepoints: 

baseline (pre-treatment), week 2 and week 8 from the beginning of treatment. Four 

different scanner models were used across the 6 clinical sites: Discovery MR750 3.0T 

(GE Healthcare, Little Chalfont, Buckinghamshire, UK), Signa HDxt 3.0T (GE 

Healthcare, Little Chalfont, Buckinghamshire, UK), TrioTim 3.0T (Siemens Healthcare, 

Erlangen, Germany), and Intera 3.0T (Philips Healthcare, Best, Netherlands). A whole-

brain T1-weighted turbo gradient echo sequence was used across all sites. The range of 

specific parameters are as follows: repetition time (TR) = 6.4-1760ms, echo time (TE) = 

2.2-3.4s, flip angle = 8-15 degrees, inversion time (TI) = 450-950ms, field of view (FOV) 

= 220-256mm, acquisition matrix = 256x256 – 512x512, 176-192 contiguous slices at 

1mm thickness with voxel dimensions of 1mm3. Total acquisition time, depending on 

scanner, ranged from 3:30min to 9:50 minutes. Shortly after scanning, all raw MRI data 

underwent a first-pass general quality assurance procedure to manually check for 

artifacts. Scans were accepted or rejected on visual inspection and efforts made to re-scan 

the participant as permitted by study timeline. Specific details of the multi-site quality 

control protocol have been described elsewhere [1]. 

 

4.8.3 Site correction using ComBat 

 



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 152 

 There are a variety of factors that contribute to site/scanner-specific variations in 

the overall sample, including different vendors and variations in pulse sequences, image 

scaling and bias fields. This non-biological variation is the main tradeoff in obtaining 

enough datapoints for a sufficiently powered neuroimaging analysis and if not well-

accounted for, can confound neuroimaging findings [2]. 

ComBat harmonization involves using linear modelling and empirical Bayes to 

estimate the additive and multiplicative effects of site on cortical thickness measurements 

and corrects for them while taking into account any variability associated with biology 

(sex, age, diagnostic status, etc.) [3,4]. Previous applications of ComBat in cortical 

thickness studies corrected for site effects in a region-based manner and was found to be 

reliable in this regard [5]. We will describe here in detail the steps taken to apply ComBat 

on a vertex-wise basis to accommodate our exploratory whole-brain analyses.  

 For each subject, FreeSurfer thickness surface maps were resampled to fsaverage, 

the FreeSurfer standard template, in order to obtain the same number of vertices (features) 

for each subject and to align all features from all subjects into the same space. Thickness 

files in fsaverage space were then converted to ASCII format to facilitate loading into 

Python (version 3.0) using mris_convert. We used the Python implementation of ComBat, 

neuroCombat, for ease of use and increased processing speed, considering the number of 

features per subject (160 000+). We found that several features (thickness values at 

certain vertices) were set to 0 for all participants, which precludes proper functioning of 

the algorithm. Prior to applying the algorithm, we removed these columns from the array, 

storing the indices for replacement following harmonization. We entered age, age2 and 
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sex as covariates and defined either diagnostic group or response status for the 

discrete_cols argument. Data were separately corrected for site effects for each analysis 

involving different group comparisons to preserve as much of the true biological 

variability as possible. The harmonized ASCII files were then converted back into 

FreeSurfer surface file format using the FreeSurfer Matlab scripts read_ascii_curv.m and 

write_curv.m. Thickness surface maps were resampled back into native space and 

smoothing was performed on these files as per usual for vertex-wise GLM analyses.  

 Figure S1 displays a visual representation of the effect of harmonization in the left 

rostral middle frontal gyrus, the region of interest identified in our whole-brain analyses. 

Visual inspection reveals that between-site variation has been reduced while conserving 

the pattern of between-group differences. 
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Supplemental Figure 1. Boxplots displaying the distribution of average cortical thickness 

values in the left rostral middle frontal cortex, categorized by site and stratified by 

diagnostic group, before and after applying the ComBat harmonization procedure. 
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Supplemental Table 1. Demographic and clinical information for week-16 MDD response 

subgroups.  

 

 ESC-16 ARI-16 NR-16 

 N Mean/ 

% 

SD N Mean/ 

% 

SD N Mean/ 

% 

SD 

Age(1) 64 33.64 11.83 42 36.95 11.9

6 

35 36.91 13.92 

Sex % F(1) 64 65.63 -- 42 64.29 -- 35 54 -- 

Years of 

education(1) 

63 16.78 2.30 42 17.07 1.92 35 16.66 2.13 

Age of illness 

onset(1) 

60 18.82 7.19 41 21.95 10.3

0 

34 21.88 13.30 

Illness duration 

(years)(1) 

60 14.58 10.90 41 15.22 14.0

4 

34 15.5 13.03 

Baseline 

MADRS(1) 

64 29.37 5.55 42 31.14 5.57 35 29.17 5.02 

8-week 

MADRS(2) 

64 7.83 5.15 42 21.88 5.62 35 25.57 8.88 

16-week 

MADRS(2) 

64 4.78 4.01 42 8.88 5.20 35 21.8 6.80 

Number of 

previous MDEs(1) 

63 3.46 3.35 42 3.07 3.67 33 2.61 3.43 

 

MADRS – Montogomery-Asberg Depression Rating Scale; MDE – major depressive 

episode; (1) – p > 0.05, no significant differences between samples. (2) – p < 0.005 in 

omnibus comparison among the three groups.  
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Abstract 

 
Dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis is considered one of the 

mechanisms underlying the development of major depressive disorder (MDD), but the 

exact nature of this dysfunction is unknown. We investigated the relationship between 

hypothalamus volume (HV) and blood-derived DNA methylation in MDD. We obtained 

brain MRI, clinical and molecular data from 181 unmedicated MDD and 90 healthy 

control (HC) participants. MDD participants received a 16-week standardized 

antidepressant treatment protocol, as part of the first Canadian Biomarker Integration 

Network in Depression (CAN-BIND) study. We collected bilateral HV measures via 

manual segmentation by two independent raters. DNA methylation and RNA sequencing 

were performed for three key HPA axis-regulating genes coding for the corticotropin-

binding protein (CRHBP), glucocorticoid receptor (NR3C1) and FK506 binding protein 5 

(FKBP5). We used elastic net regression to perform variable selection and assess 

predictive ability of methylation variables on HV. Left HV was negatively associated 

with duration of current episode (=-0.17, p=0.035). We did not observe significant 

differences in HV between MDD and HC or any associations between HV and treatment 

response at weeks 8 or 16, overall depression severity, illness duration or childhood 

maltreatment. We also did not observe any differentially methylated CpG sites between 

MDD and HC groups. After assessing functionality by correlating methylation levels with 

RNA expression of the respective genes, we observed that the number of functionally 

relevant CpG sites differed between MDD and HC groups in FKBP5 (2 = 77.25, 

p<0.0001) and NR3C1 (2 =7.29, p=0.007). Cross-referencing functionally relevant CpG 
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sites to those that were highly ranked in predicting HV in elastic net modelling identified 

one site from FKBP5 (cg03591753) and one from NR3C1 (cg20728768) within the MDD 

group. Stronger associations between DNA methylation, gene expression and HV in 

MDD suggest a novel putative molecular pathway of stress-related sensitivity in 

depression. Future studies should consider utilizing the epigenome and ultra-high field 

MR data which would allow the investigation of HV sub-fields.  

 

Keywords 

 

major depressive disorder, hypothalamus volume, DNA methylation, neuroimaging, gene 

expression  
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5.1 Introduction 

The ongoing search for biomarkers and predictors of response in major depressive 

disorder (MDD) has seen varying levels of success from separate clinical, molecular and 

neuroimaging perspectives (Kang and Cho 2020; Perna et al. 2020; Fiori et al. 2018; 

Mora et al. 2018). In the present study, we combined and examined relationships between 

a priori-defined clinical, neuroimaging and molecular variables within the theoretical 

framework of the hypothalamic-pituitary-adrenal (HPA) stress axis, posited to be 

dysregulated in MDD (Cernackova et al. 2020; Halaris 2019).  

 The HPA axis is comprised of a series of hormonal actions and feedback 

regulation steps primarily among the hypothalamus, pituitary and adrenal glands. 

Corticotropin-releasing hormone (CRH) is excreted by the hypothalamus into portal 

blood, stimulating the anterior pituitary to release adrenocorticotropic hormone (ACTH) 

that results in cortisol release from the adrenals. Cortisol exerts negative feedback on this 

axis by binding to glucocorticoid receptors (GR) located in the hypothalamus and 

pituitary, as well as other central regions such as the hippocampus and prefrontal cortex. 

A plausible etiological theory of MDD is the desensitization of GR to cortisol due to 

inflammation, resulting in a dysregulated and prolonged stress response (Pace, Hu, and 

Miller 2007). FK506 binding protein 51 (FKBP5) is a chaperone to GR, and the two have 

been implicated in multiple studies with respect to MDD susceptibility and risk (Roy, 

Shelton, and Dwivedi 2017; Rao et al. 2016; Piechaczek et al. 2019), antidepressant 

response (Ising et al. 2019; Binder et al. 2004) and childhood maltreatment (Bockmühl et 

al. 2015). Although some studies have examined the interaction of molecular variables 
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pertaining to these genes with structural and functional neuroimaging (Tozzi et al. 2018, 

for example), none have done so in relation to hypothalamus volumetry (HV). Of 

particular note is the lack of studies examining the link between HV and childhood 

maltreatment in the imaging literature, although recent preclinical work suggests that 

early life stress suppresses cellular proliferation in the hypothalamus in adulthood 

(Bielefeld et al. 2021). 

 There has been some success identifying volumetric indicators of MDD symptoms 

and antidepressant response in vivo (Kang and Cho 2020), established most reliably in the 

hippocampus (Nogovitsyn et al. 2019; Santos et al. 2018). Additionally, antidepressant 

treatment has been associated with reversal of hippocampal volume deficits to a certain 

extent on a long-term basis (Malberg, Hen, and Madsen 2021; Boldrini et al. 2013). Both 

the hippocampus and the hypothalamus express significant levels of GR, and although it 

is widely known that the hippocampus exhibits neurogenesis, the discovery of the same 

phenomenon in the hypothalamus is relatively more recent and less explored (Markakis et 

al. 2004; Cheng 2013). Despite this and its central role in stress regulation, the 

hypothalamus is not studied often volumetrically in MDD due to its amorphous, 

heterogeneous structure leading to difficulty in segmentation. A few studies have 

examined group differences in volume in both in vivo and post-mortem contexts that 

were discrepant due to methodological limitations (Schindler et al. 2012). Post-mortem 

studies (using the same patient sample) found bilaterally smaller volumes of the 

hypothalamus in MDD (Bielau et al. 2005; Bernstein et al. 2012). Similar results were 

found in studies examining hypothalamus volume in anxiety (Terlevic et al. 2013) and 
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schizophrenia (Koolschijn et al. 2008). However, a recent imaging study found greater 

left-sided volume of this region in MDD in a small sample of 20 MDD participants 

(Schindler et al. 2019). We aim to leverage a larger and well-defined MDD study sample 

to add to these results. 

 The objective of this study was to investigate the relationship between HPA-axis-

related brain and blood variables in MDD in an exploratory fashion. We used bilateral 

HV and the blood DNA methylation and gene expression profiles of three genes involved 

in the HPA axis: CRH binding protein (CRHBP) as a proxy for CRH, NR3C1 (encodes 

GR) and FKBP5. We used the elastic net regularization method to quantify the extent to 

which DNA methylation at individual CpG sites on these genes predict HV. Secondary 

objectives included a hypothesis-driven analysis for group differences in HV measures 

and their clinical correlations (including childhood maltreatment, which has not yet been 

studied in relation to HV) in the largest analysis on this brain structure to date, for which 

we predicted smaller volumes in MDD. An additional discovery analysis was performed 

to assess whether there are any longitudinal changes in HV over 8 weeks of escitalopram 

treatment. 

5.2 Methods 

5.2.1 Study protocol 

Participant recruitment occurred at six Canadian research sites from August 2013 

to December 2016. All protocols were approved by the Research Ethics Boards at each 

institution. MDD participants were unmedicated at baseline, aged 18-60 years and met 

DSM-IV-TR criteria for a major depressive episode. MDD participants received flexible-
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dosage escitalopram treatment for 8 weeks, starting at 10mg with a maximum dose of 

20mg per day. Clinical response was defined as a greater than 50% reduction in the 

Montgomery-Asberg Depression Rating Scale (MADRS) score after 8 weeks. At the 8-

week timepoint, those who did not achieve response received an adjunctive treatment of 

aripiprazole (flexible dosage 2-10mg/day); responders continued escitalopram treatment 

as originally prescribed. At 16 weeks, MDD participants were further categorized into the 

following response categories: early sustained responders (achieved response at week 8, 

continued to respond at week 16), late responders (did not achieve week 8 response, but 

achieved response at week 16 with adjunctive treatment) and non-responders (week 8 

non-responders that failed to respond to adjunctive treatment by week 16). Additional 

inclusion/exclusion criteria for the CAN-BIND 1 study can be found in Supplementary 

Materials. Further details pertaining to clinical, neuroimaging and biomarker protocols as 

well as patient outcomes and a CONSORT diagram outlining the flow of participants 

throughout the 16-week trial are available elsewhere (Kennedy et al. 2019; Lam et al. 

2016; MacQueen et al. 2019). 

 

5.2.2 Image acquisition 

 Structural T1-weighted images were obtained at 3T at baseline and week 8. 

Across the six clinical sites four scanner types were used: three GE Discovery MR750, 

GE Signa HDxt, Siemens TrioTim and Philips Intera. All sites used a whole-brain turbo 

gradient echo sequence with the following ranges of parameters: repetition time (TR) = 

6.4-1760ms, echo time (TE) = 2.2-3.4s, flip angle = 8-15 degrees, inversion time (TI) = 
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450-950ms, field of view (FOV) = 220-256mm, acquisition matrix = 256x256 – 512x512, 

176-192 contiguous slices at 1mm thickness with voxel dimensions of 1mm isotropic. 

Total acquisition time ranged from 3:30min to 9:50 minutes. Raw data were manually 

checked for artifacts and if the visual inspection warranted, efforts were made to re-scan 

the participant as permitted by study timeline. Refer to MacQueen et al. (2019) for 

specific details on the neuroimaging protocols.  

 

5.2.3 Manual hypothalamus segmentation 

The retrospective nature of our investigation of this brain region and the 

variability in our 3T MRI data due to multiple scanners required manual segmentation to 

ensure data quality. We drew upon many recent sources (described in detail below) 

pertaining to hypothalamic boundaries and strengthened our protocol by blinding raters to 

subject identity/attributes.  

Manual segmentation of the hypothalamus was performed by two independent 

raters (J.S. & M.A.) using the open-source software ITK-SNAP 

(http://www.itksnap.org/). Segmentation was aided by an overlay of the subject’s gray 

matter tissue probability map (GM-TPM) as per Wolff et al. (2018), automatically 

generated using the VBM-Segment tool in SPM 12 in Matlab (with very light 

regularization, all other default settings maintained). Raters were blinded to subject ID, 

scanning site, treatment group and scanning timepoint. Subjects were shuffled and images 

were segmented in random order. A training phase for raters comprised 100+ 

http://www.itksnap.org/


Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 165 

‘throwaway’ segmentations prior to proper data collection of segmentation values to 

overcome any practice effects. 

The segmentation boundaries from Bocchetta et al. (2015) provided a visual guide 

for manual work, where the authors used co-registration of T1 and T2-weighted images to 

discern finer details and subdivide the segmentation into subunits. To make up for our 

lack of T2-weighted images, for each subject we used the GM-TPM as a transparent 

overlay (opacity ~6-10%) for additional perspective (Figure 1). We deviated slightly from 

the protocol of Bocchetta et al. (2015). While that group sub-segmented and subsequently 

excluded the fornix from volume calculations, we included the fornix in our segmentation 

once the medial edge separated from the wall of the third ventricle, thereby aligning more 

closely with the inclusion criteria in Schindler et al. (2013). The reason for this deviation 

is that in our 3T dataset, the fornix becomes difficult to distinguish from the surrounding 

gray matter as it starts to travel away from the ventricle wall in more caudal slices. 

Detailed anatomical landmarks are tabulated in table e1 of the supplement in Bocchetta et 

al. (2015).  

We carried out voxel-wise segmentation in itk-SNAP (brush size 1, isotropic) to 

‘shade in’ the right and left hemispheres of the hypothalamus separately, working in the 

coronal view in the rostral-caudal direction with sagittal and horizontal views visible for 

reference. We alternated starting with the left or right hemispheres and for each image 

and hid the first side from view as the other hemisphere was segmented to avoid visual 

bias. Whole volume segmentations included the preoptic region (starting at the anterior 

commissure), anterior hypothalamic region and mammillary bodies (stopping at the last 



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 166 

‘complete’ slice). We randomly selected 10-15% of segmentations from each site as well 

as a select number of more challenging segmentations (N= 50 segmentations in total) for 

inspection by a neuroanatomist/radiologist (M.R.), who provided expert quality assurance 

feedback on the boundaries. 

Inter-rater agreement scores were calculated across all segmentations and intra-

rater agreement was calculated independently for each rater using a randomly selected set 

of 50 segmentations. Spatial overlap was calculated using Dice scores and numeric 

agreement was calculated using two-way mixed, single score intraclass correlation 

coefficient (ICC; Shrout and Fleiss convention [3,1]). The average of the values from 

each independent rater were used in subsequent analyses. Volumes were corrected for 

intracranial volume (ICV) using the power-proportion method as described in Liu et al. 

(2014), shown to exhibit better performance in removing the confound of ICV compared 

to scaling by a linear factor only. The scaling factor s was defined as the beta coefficient 

for log(HV) regressed on log(ICV) for each hemisphere. The resulting ICV-corrected HV 

values were obtained by dividing the original values by ICVs. A measure of hemispheric 

asymmetry was calculated as (Left volume - Right volume)/Total volume (Zuo et al. 

2019).  

 

5.2.4 Molecular analyses of RNA transcript levels and DNA methylation 

For all participants, molecular analyses were performed at McGill University and 

the Genome Quebec Innovation Centre; full methodological details pertaining to DNA 

methylation analyses can be found in Ju et al. (2019). Briefly, genome-wide DNA 
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methylation was performed on the Infinium MethylationEPIC Beadschip (Illumina, USA) 

using DNA extracted from whole blood samples obtained from participants at baseline 

prior to treatment. Quality assurance and pre-processing were performed using the Chip 

Analysis Methylation Pipeline Bioconductor package in R 3.4. Beta values at each CpG 

site refer to the ratio of methylated signal to the sum of unmethylated and methylated 

signal.  

For gene expression analyses, whole blood for RNA was collected in EDTA tubes 

and filtered using LeukoLOCK filters (Life Technologies, USA). Total RNA was 

extracted using a modified version of the LeukoLOCK Total RNA Isolation System 

protocol and included DNase treatment to remove genomic DNA. RNA quality was 

assessed using the Agilent 2200 Tapestation, and only samples with RNA Integrity 

Number (RIN) ≥ 6.0 were used. All libraries were prepared using the Illumina TruSeq 

mRNA stranded protocol following the manufacturer’s instructions. Samples were 

sequenced at McGill University and the Genome Quebec Innovation Centre (Montreal, 

Canada) using the Illumina HiSeq4000 with 100nt paired-end reads. FASTXToolkit and 

Trimmomatic were respectively used for quality and adapter trimming. Tophat2, using 

bowtie2 was used to align the cleaned reads to reference genome. Reads that lost their 

mates through the cleaning process were aligned independently from the reads that still 

had pairs. Quantification on each gene's expression was estimated using HTSeq-count 

and a reference transcript annotation from ENSEMBL. Counts for the paired and 

orphaned reads for each sample were added to each other. Normalization was conducted 

on the resulting gene matrix using DESeq2. 
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5.2.5 Childhood maltreatment measure 

 

The Childhood Experience of Care and Abuse (CECA) interview was used to 

assess childhood maltreatment and caregiver relationships up to age 18 (Bifulco, Brown, 

and Harris 1994; Chakrabarty et al. 2019). CECA is retrospective and semi-structured, 

administered via secure videoconferencing and rated using standardized criteria. 

Subscales of antipathy, neglect, physical abuse and sexual abuse were rated on a 4-point 

severity scale based on narrative details such as frequency, age of experiencing the 

maltreatment and for how long, relationship with perpetrator and degree of injury. 

Subscales were summed to yield an overall childhood maltreatment score. 

 

5.2.6 Statistical analyses 

 

All statistical analyses were performed in Python 3.8.1 using packages 

statsmodels, sklearn and pingouin (Vallat, 2018). We tested for significant differences 

between demographic variables using either Student’s t-test or chi-square test for 

continuous and categorical variables, respectively. Testing for group differences in HV 

measures (left [LHV], right [RHV], asymmetry) was performed using Student’s t-test (in 

order to report confidence intervals and effect sizes) and subsequently general linear 

model to further control for sex and age. Spearman’s rank correlations with each HV 

measure, which were normally distributed, were performed with the following clinical 

measures, which were not normally distributed: baseline symptom severity (MADRS; 

individual items and total score), childhood maltreatment (CECA; sub-scores and total 

score) current episode duration, age of MDD onset and number of prior episodes. 
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Baseline HV variables were compared between antidepressant response groups at week 8 

(responders, non-responders) and week 16 (early sustained responders, late responders, 

non-responders) to determine whether baseline values are associated with treatment 

response. Linear mixed models were used for the longitudinal analysis of HV change over 

8 weeks, during which the MDD group received escitalopram treatment, accounting for 

sex and age. Site effects for both HV and methylation were assessed with analysis of 

variance. Correlations with age and sex differences were exploratory tests performed for 

right, left and asymmetry HV measures.  

We assessed variances for each CpG site, excluding sites whose standard 

deviation fell below the threshold of 0.02. All analyses described hereon use only CpG 

sites that passed this variance threshold. After checking homoscedasticity using Bartlett’s 

test, Student’s t-tests were used to compare methylation levels between MDD and HC 

groups at each CpG site, corrected for multiple comparisons using false discovery rate 

(FDR) at p=0.05. To assess functional significance of CpG sites for each gene, we 

computed Spearman’s  on the normalized beta values of each CpG site and the 

expression level of their respective genes, within each group. Statistical significance of 

correlations for the MDD group, which comprised twice as many samples as the HC 

group, were confirmed with 95% confidence intervals of  with a bootstrapping 

procedure that used a resampling size identical to that of the HC group. Correlations were 

further corrected for multiple comparisons using false discovery rate (FDR) at p=0.05. 

Chi-square test was used to assess the significance of the group difference in the numbers 

of significant gene expression/methylation correlations. 
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To explore relationships between HV measures and methylation profiles (low 

variance sites excluded), we used multiple linear regression with elastic net regularization 

(Zou and Hastie 2005). Regularization methods optimize model coefficients such that the 

most important variables are assigned higher values. Due to combining variable selection 

and parameter estimation in one step, these methods do not run the risk of inflated 

standard errors and model variances as traditional ordinary least squares methods do 

(Finch and Hernandez Finch 2016) and are additionally well-suited for the common 

scenario where the number of predictors is smaller than or roughly equivalent to the 

number of samples.  

Models were constructed for left and right HV each as a dependent variable and in 

each diagnostic group separately, resulting in 4 elastic net models (MDD–LHV, MDD–

RHV, HC–LHV, HC–RHV). Sex and age were included in addition to methylation 

profiles at each CpG site, comprising 64 explanatory variables in total. For each model, 

we split the data into train/test samples using a 0.75:0.25 ratio and used 10-fold cross-

validation and grid search for hyperparameter optimization. We repeated this procedure 

100 times for each model and recorded values for mean squared error (MSE), mean 

absolute error (MAE) and R2 on the test sample at each iteration. To calculate relative 

variable importance (RVI) scores, we counted how many times out of 100 runs the 

absolute value of each variable’s coefficient ranked in the top 15% of model coefficients. 

We cross-referenced CpG sites with RVI scores > 50 with those that were significantly 

correlated with gene expression (indicating functional significance) in order to infer 

which sites might reasonably be associated with HV. Although we are not able to directly 
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infer p-values for coefficients, the procedure of regularization in itself is designed to 

shrink ‘non-significant’ coefficients toward zero; additionally, we included sex and age as 

reference variables to infer relative strength of the other methylation variables in 

predicting HV. 

 

5.3 Results 

274 images from baseline and 223 images from week 8 were ultimately included 

for final analyses after excluding for visual quality issues (e.g., failing GM-TPM 

generation, overly pixelated quality) for a total of 497 manual segmentations. The outlier 

analysis resulted in removal of 3 participants for a total of 271 participants (181 MDD, 90 

HC) at baseline and 217 participants at week 8 (138 MDD, 79 HC, no outliers found). 

There were no significant differences between groups in mean age, female:male ratio or 

ethnicity. Groups significantly differed in years of education, baseline MADRS, % family 

history of psychiatric disorders and total CECA score (Table 1). 

 

5.3.1 Demographics 

A one-way ANOVA revealed no effect of site on methylation values but did 

indicate an effect on HV values. Further pairwise testing revealed that one site (MCU) 

exhibited significantly different HV values in relation to all other sites. No significant 

differences were observed among the other 5 sites. A statistical correction method, 

ComBat (Fortin et al. 2017), was used to eliminate the effect of site while retaining 

variance associated with diagnosis, sex and age (Supplementary Figure 1); however, 
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using site-corrected values did not affect statistical significance of results. As the 

estimation of site effects is inherently noisy and there is no guarantee that we corrected 

for only the variance truly associated with scanning site, we report uncorrected values to 

prioritize simpler modelling (Kass et al. 2016). Refer to Supplemental Table 1 for 

demographic and clinical information grouped by site. 

 

5.3.2 Inter- and intra-rater agreement 

Raters exhibited good agreement with themselves and between each other overall 

with values equal to or greater than 0.78. Refer to Supplemental Table 2 for inter- and 

intra-rater agreement statistics. 

 

5.3.3 Demographic and clinical associations with HV 

GLM analyses (satisfying statistical assumptions of normality, linearity and 

homoscedasticity) accounting for sex and age revealed no significant difference between 

MDD and HC in either RHV or LHV (Figure 2A; see Supplemental Table 3 for t-test 

results, power analyses and effect sizes for mean differences). There was a negative 

association of LHV with duration of current episode (Spearman’s =-0.166, p=0.03). 

With respect to individual MADRS items, we observed for LHV a significant positive 

correlation with difficulty concentrating (=0.16, p=0.035). For RHV, the negative 

correlation with inner tension was significant (=-0.19, p=0.011). However, these clinical 

associations did not survive FDR correction for comparisons made across all items. There 

was no association of HV variables with CECA scores, baseline total MADRS, illness 
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duration, family history of psychiatric disorders or antidepressant response status at 8 or 

16 weeks, accounting for age and sex.  

Within the MDD group, a significant difference between males and females was 

observed in RHV (t=2.13, p=0.044) but not LHV (t=1.64, p=0.10). This pattern was 

similar in the HC group with no sex difference observed in LHV (t=1.81, p=0.08) 

although the difference in RHV was marginally significant (t=1.96, p=0.05) (Figure 2B). 

Significant associations with age were observed in both left and right HV in the MDD 

group (LHV: =-0.27, p=2.9e-4; RHV: =-0.24, p=1.3e-3) but not in the HC group. 

Slopes were similar in controls but not statistically significant (likely due to an uneven 

age distribution at higher values in this group). There was no effect of group on the 

association with age in either hemisphere (Figure 2C). 

Longitudinal analysis revealed no significant changes in HV variables over 8 

weeks of escitalopram treatment in the MDD group. Visualization of baseline and week 8 

values reveal a small yet consistent group difference that persisted after 8 weeks 

(Supplementary Figure 2), but these differences were not statistically significant at either 

timepoint. 

 

5.3.4 Differentially methylated points between groups 

3 CpG sites exhibited reduced methylation in MDD (cg19645279 on NR3C1: 

t=2.95, p=0.003; cg18718518 on NR3C1: t=2.56, p=0.011; cg07633853 on FKBP5: 

t=2.46, p=0.015), although none of these comparisons survived FDR correction. 
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5.3.5 Functional relevance analysis of CpG sites 

We excluded 15 out of 23 CpG sites on CRHBP, 24 out of 44 sites on FKBP5 and 

54 out of 81 on NR3C1 from analyses due to low variance (SD<0.02). Within the MDD 

group, 11 out of the remaining 20 CpG sites on FKBP5 correlated significantly to gene 

expression levels, and 8 out of 27 were significantly correlated for NR3C1. Within the HC 

group, the methylation profiles of 4 CpG sites on NR3C1 were significantly correlated 

with gene expression (Figure 3; Supplemental Table 4). Chi-square tests confirmed that 

the number of functionally relevant CpG sites within NR3C1 and FKBP5 in the MDD 

group were significantly different from the number of significant correlations observed in 

HC (FKBP5: 2 = 77.25, p<0.0001; NR3C1: 2 = 7.29, p=0.007). Neither group exhibited 

any functionally relevant CpG sites within CRHBP. 

  

5.3.6 Elastic net modelling of the effect of DNA methylation on HV 

On average across runs, regularized models for predicting RHV and LHV in 

MDD explained significantly higher amounts of variance (R2) than in HC (LHV: Welch’s 

t=10.91, p=2.63e-20; RHV: Welch’s t=8.36, p=2.3e-14) (Table 2; Figure 4). The variable 

of sex was shown to be consistently highly ranked across all four models, although age 

ranked highly only in the HC models. In the MDD group only, two highly ranked CpG 

sites were shown to also be significantly correlated with gene expression (cg20728768 

[NR3C1], cg03591753 [FKBP5]). The coefficient signs for both variables indicated 

positive associations of methylation with HV. CRHBP featured most heavily among 

highly ranked variables in the MDD models (4 CpG sites) with the other 4 sites evenly 
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split among NR3C1 and FKBP5, whereas all highly ranked CpG sites in the HC models 

were located on FKBP5.  

 

5.4 Discussion  

 We investigated characteristics of hypothalamus volume and epigenetic/gene 

expression profiles of three specific genes with major roles in the HPA axis in MDD. 

Novel findings of this study include the identification of two functionally relevant CpG 

sites that were predictive of HV within the MDD group, but not in healthy individuals, as 

well as the negative association of LHV with current episode duration. We showed that 

there are distinct relationships between HV and sex/age that are not affected by MDD 

status. We did not find any indication of a change in HV associated with 8-week 

escitalopram treatment. Finally, we did not observe that baseline volume was predictive 

of antidepressant response status at 8 or 16 weeks.  

 We found distinct differences between groups on the correlations between 

methylation and gene expression, whereby MDD exhibited more CpG sites within each 

gene that significantly correlated with its RNA expression levels; however, reduced 

methylation levels at 3 CpG sites (2 located on NR3C1 and 1 on FKBP5) in MDD did not 

survive correction for multiple comparisons. Elastic net models further quantified the 

relative contributions of each CpG site in predicting HV. One of the highly ranked CpG 

sites that was also significantly correlated with gene expression was cg20728768, located 

on NR3C1. Previously, methylation at this site was found to be positively correlated with 

a measure of resilience in a sample with varying levels of PTSD symptom severity 
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(Miller et al. 2020). In our study, methylation at this site was positively associated with 

HV, consistent with the implication that it may be a protective factor. In another study, it 

was negatively associated with PTSD, although this correlation did not survive correction 

for multiple comparisons (Mehta et al. 2019). The other significant CpG site was 

identified to be cg03591753, located on FKBP5. In one previous study, methylation at 

this site significantly predicted cortisol reactivity in interaction with the rs1360780 

variant of the FKBP5 gene and resistant behaviour to predict cortisol reactivity in infants 

(Mulder et al. 2017). We add to these findings, positing that DNA methylation levels at 

these CpG sites are linked to hypothalamic macrostructure in depression.  

The same explanatory variables, including sex and age as reference variables, 

explained significantly less model variance overall within the HC group. The HC models 

also consistently ranked sex and age highly among explanatory variables in predicting 

HV, although age was not significantly correlated with HV in HC as indicated by the 

Spearman correlation; this gives some indication as to the relative strength of the 

association of HV with methylation variables that were ranked below age in HC 

compared to MDD (ie. relatively weaker). Conversely, although age was significantly 

correlated with HV in the MDD group, its RVI was <20 in both MDD elastic net models, 

indicating that the methylation variables that ranked higher were relatively more 

successful in predicting RHV and LHV than age. Additionally, only the MDD models 

identified highly ranked sites that were also significantly correlated with gene expression. 

Taken together, these results demonstrate greater overall statistical associations among 

variables of gene expression, DNA methylation and hypothalamic structure in MDD than 
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in HC. This may be indicative of a concerted physiological response in MDD that could 

either be 1) a developmental or environment-elicited disruption leading to MDD 

symptoms or 2) a compensatory mechanism by the body to counteract other underlying 

etiological factors. With only baseline data available for DNA methylation, we were not 

able to test causal hypotheses. Although we did not observe group differences in DNA 

methylation among the CpG sites in these 3 genes, this was not entirely surprising given 

other genes have been identified to exhibit differential methylation in MDD (Chan et al. 

2020; Xie et al. 2021).  

 Not observing significant group differences in either left nor right HV suggests 

that either there are no hypothalamic volumetric changes in MDD, or the volumetric 

changes might be very small and would require much larger samples to be detected. The 

latter is likely the case, as indicated by power analyses (Supplementary Table 3). In the 

only other study that explicitly examined HV in MDD in vivo, Schindler et al. (2019) 

found essentially the opposite result: their sample of unmedicated MDD participants 

exhibited greater left HV in a much smaller cohort of only 20 MDD and 20 HC 

participants. Other relevant major differences between our analyses aside from sample 

size are the correction for ICV using the power-proportion method and including age as a 

covariate given that we observed a significant HV-age correlation in the MDD sample. 

Otherwise, the lack of association between HV and other clinical variables is consistent 

across the two studies. We additionally did not find an association between HV and 

CECA, the composite score of childhood maltreatment. As there are no previous studies 

examining this relationship available for direct comparison, we entertain a few 
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explanations: 1) early childhood experiences of emotional, physical or sexual abuse are 

not reflected by hypothalamic structure, 2) the CECA score, with its 4-point sub-scores, 

does not capture the specific lasting aspects of trauma that may be embedded in HV, or 3) 

similar to depressive status, more power is required to detect a finer-grained relationship 

between early trauma and HV.  

Previous literature regarding the link between HPA axis variables and depressive 

characteristics has been equivocal. It has previously been observed that most depression 

characteristics (severity, chronicity, symptom profile, prior childhood trauma) were not 

associated with HPA axis activity except for comorbid anxiety (Vreeburg et al. 2009). A 

more recent meta-analysis assessing effects across 361 studies did observe that patients 

with depression exhibited increased cortisol and adrenocorticotropic hormone levels; 

however, this effect did not extend to CRH, with the additional caveat that 

methodological limitations may have inflated some effects among primary studies (Stetler 

and Miller 2011). That we observed no change in volume due to escitalopram treatment is 

not entirely surprising given the heterogeneous and contradictory evidence for detectable 

volumetric changes in humans following pharmacological treatment in MDD (Enneking 

et al. 2020; Suh et al. 2020).  

With respect to the imaging component, we adapted innovative methods from 

previous papers (Wolff et al. 2018; Bocchetta et al. 2015; Schindler et al. 2013) to support 

a comprehensive and highly structured manual segmentation protocol designed to 

mitigate the limitations inherent in the study (eg. 3T resolution, scanner variability, lack 

of T2-weighted images for contrast, inter-rater agreement). A proportion of segmentations 
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was also checked for boundary accuracy and overall quality by a certified 

neuroradiologist with extensive neuroanatomical expertise. Given our data were derived 

from 3T imaging from multiple scanners, we did not have sufficient resolution to do a 

subunit-level analysis (Bocchetta et al. 2015). In particular, since the paraventricular 

nucleus is solely responsible for the release of CRH, being able to isolate the volume of 

this region may have increased our chances of detecting a relationship with GE and/or 

DNA methylation. A major recommendation for future research is to use higher 

resolution images coupled with a robust semi-automatic segmentation procedure in order 

to be able to discern hypothalamic sub-fields. Another common limitation in our study, as 

in other human in vivo studies, is that despite having access to structural and functional 

data in vivo, it was not possible to obtain the direct genetic and proteomic correlates in the 

human brain. Future studies could also explore the role of pro-inflammatory markers 

(Hiles et al. 2012; Milenkovic et al. 2019; Gill et al. 2020), notwithstanding the current 

challenges in integrating multimodal information in biological psychiatry. 

5.5 Conclusion 

In a large sample of well-characterized individuals with major depression, we 

investigated baseline hypothalamic volume characteristics in MDD and whether they are 

correlated to DNA methylation and expression of candidate genes implicated in HPA axis 

function. We identified CpG sites whose methylation levels simultaneously exhibited 

high scores in predicting HV and were significantly correlated to gene expression in 

MDD but not in HC, which may suggest a molecular pathway of stress-related sensitivity 

in depression. Future studies could expand their genetic approach to either the entire 
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epigenome or other/additional candidate genes, as well as utilizing increasingly available 

ultra-high-resolution images at 7T or higher to discern hypothalamic sub-fields. 
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5.9 Figures and Tables 
 

 
 

Figure 1. Representative view of a manually segmented hypothalamus (left = red, right = blue). Panels viewed from left to 

right in each row represent 8 contiguous slices, mammillary bodies not included for space. The image belongs to a HC 

participant. 
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Figure 2. A) Boxplots illustrating the difference in volume measures between HC and MDD. B) Boxplots illustrating the 

difference in volume measures between males and females, grouped by diagnostic status in each hemisphere. Asterisks (*) 

indicate that right HV exhibited a significant sex difference (p=0.05) in volume in both MDD (purple) and HC (green). Gray 

diamonds indicate datapoints that lie outside 1.5 interquartile range above and below the median. C) Scatterplots illustrating 
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correlations between left and right HV and age, grouped by diagnostic status. Correlations were significant only in left HV and 

right HV in the MDD group.  

 

 

 

 

  



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 197 

 
 

Figure 3. A) Heatmaps illustrating the correlation of DNA methylation at each CpG site with gene expression for each of the 

candidate genes. The CpG sites whose correlations with gene expression were significant are enclosed in the red boxes. The 

MDD group exhibited a significantly higher ratio of correlated CpG sites compared to HC in FKBP5 and NR3C1.  
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Figure 4. Plots illustrating the RVI scores of the 64 explanatory variables for each elastic net model, encompassing all CpG 

sites as well as sex and age as reference variables. Variables are colour coded to indicate the gene on which they are located as 

illustrated by the legend. The threshold for a CpG site being considered a highly ranked variable is denoted with a dashed red 

line (RVI=50). See Table 2 for the model mean error/fit parameters and the top-ranked variables for each model. 
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Table 1. Demographic and clinical information for the MDD and HC samples. 

 

 MDD Patients Healthy Controls MDD vs HC 

 N Mean/ 

frequency 

SD N Mean/ 

frequency 

SD Test 

statistic 

p-value 

Age (ns) 181 34.55 12.30 90 32.66 10.55 t=1.25 0.21 

Sex % F (ns) 181 65.75 -- 90 64.44 -- 2=0.006 0.94 

Years of Education (***) 181 16.86 2.14 90 18.54 2.13 t=-6.11 3.5e-9 

Baseline MADRS (***) 181 29.78 5.52 90 0.84 1.81 

 

t=48.4 9.1e-

135 

% Family Hx psych. 

illness (***) 

180 78.89 -- 86 20.93 -- 2=88.3 5.6e-21 

Age of Illness Onset 175 20.30 10.05 -- -- -- -- -- 

Number of previous 

MDEs 

129 3.96 2.62 -- -- -- -- -- 

% Δ MADRS @ 8 weeks 157 45.60 32.34 -- -- -- -- -- 

% Δ MADRS @ 16 

weeks 

145 64.47 28.10 -- -- -- -- -- 

% Responders @ 8 weeks 157 46.50 -- -- -- -- -- -- 

% Responders @ 16 

weeks 

145 72.41 -- -- -- -- -- -- 

CECA score (***) 159 6.12 2.89 82 4.20 1.98 2=21.5 3.6e-6 

Ethnicity 181 -- -- 90 -- -- -- -- 

Caucasian 121 66.30 -- 59 65.56 -- 2=0.015 0.90 

Asian 26 25.01 -- 19 21.11 -- 2=1.22 0.27 

Hispanic 10 5.52 -- 2 2.22 -- 2=1.54 0.21 

Black 5 2.76 -- 2 2.22 -- 2=0.069 0.79 

Other 18 9.94 -- 5 5.56 -- 2=1.48 0.22 

Prefer no answer 1 0.56 -- 2 2.22 -- 2=1.50 0.22 

 

Superscripts indicate the significance of the test statistic comparing patient and healthy 

control samples. ‘ns’ – p > 0.05, no significant differences between samples. ‘***’ – p < 

0.005. The N indicates the number of participants for which the corresponding 

information is available. 
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Table 2. Mean elastic net model error parameters (out of 100 runs) and top-ranking CpG 

sites (RVI>50) for each model, listed in order of RVI/ 

 

Group 
HV 

measure 

MSE 

(std) 

MAE 

(std) 
R2 (std) Variables Gene RVI 

Coefficient 

sign 

MDD 

RHV 
9.94 

(1.74) 

2.54 

(0.24) 

0.11 

(0.07) 

Sex -- 99 − 

cg03906910 NR3C1 90 + 

cg03286609 CRHBP 89 + 

cg18493242 CRHBP 77 + 

cg26269677 CRHBP 75 + 

cg20728768** NR3C1 71 + 

cg18419716 CRHBP 52 + 

        

LHV 
9.34 

(1.83) 

2.41 

(0.26) 

0.10 

(0.07) 

Sex -- 91 − 

cg03286609 CRHBP 89 + 

cg18493242 CRHBP 87 + 

cg03591753** FKBP5 85 + 

cg16912838 FKBP5 71 + 

cg20728768** NR3C1 66 + 

cg03906910 NR3C1 62 + 

cg26269677 CRHBP 54 + 

         

HC 

RHV 
11.13 

(2.24) 

2.82 

(0.32) 

0.039 

(0.04) 

cg03546163 FKBP5 99 + 

Sex -- 93 − 

cg03591753 FKBP5 80 + 

Age -- 73 − 

cg16912838 FKBP5 61 + 

        

LHV 
9.93 

(2.36) 

2.54 

(0.35) 

0.021 

(0.026) 

Sex -- 96 − 

Age -- 88 − 

cg03546163 FKBP5 85 + 

cg03591753 FKBP5 82 + 

cg03245912 FKBP5 66 + 

cg20813374 FKBP5 55 − 

cg00130530 FKBP5 51 − 

 

Double asterisks (**) indicate CpG sites that were significantly related to respective gene 

expression levels. 
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5.10 Supplementary Material 

 

5.10.1 Participants 

 

Participants were recruited from six clinical sites in Canada: the Djavad 

Mowafaghian Centre for Brain Health (Vancouver, BC), Hotchkiss Brain Institute 

(Calgary, AB), University Health Network (Toronto, ON), Centre for Addiction and 

Mental Health (Toronto, ON), St. Joseph's Healthcare Hamilton (Hamilton, ON) and 

Providence Care Hospital (Kingston, ON). Recruitment of MDD and HC participants 

involved referrals from outpatient clinics and advertisements in the community. Subjects 

included in the MDD group were outpatients aged 18-60 who met DSM-IV-TR criteria 

for a major depressive episode (MDE) in MDD. A confirmation of MDD on the Mini 

International Neuropsychiatric Interview (MINI) and a score greater than 24 on the 

Montgomery-Åsberg Depression Scale (MADRS) was used by all clinicians to confirm 

the MDE. Healthy control subjects were age- and sex-matched and had no history of 

psychiatric illness. All subjects were fluent in English and free of psychotropic 

medications for at least 5 half-lives before the baseline visit. Exclusion criteria for MDD 

subjects were: co-morbid diagnosis of any psychiatric illness considered the primary 

diagnosis, including bipolar disorder Type I and II or personality disorder that would 

interfere with participation; high suicidal risk; substance dependence or abuse in past 6 

months; neurological or major medical condition; pregnancy or breastfeeding; psychosis 

in current episode; high risk for hypomanic switch; failure of four or more previous 

pharmacotherapeutic interventions; previous intolerance to escitalopram or aripiprazole; 
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having started psychological treatment in past three months with intent to continue and 

any contraindications to MRI.  
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Supplemental Figure 1. Boxplots displaying the distribution of left hypothalamus volume, 

categorized by site and stratified by diagnostic group, before and after applying the 

ComBat harmonization procedure. CAM – Centre for Addiction and Mental Health; 

MCU – McMaster University; QNS – Queen’s University; TGH – Toronto General 

Hospital; UBC – University of British Columbia; UCA – University of Calgary. 

 

 

 
 

Supplemental Figure 2. Boxplots illustrating change in HV (blue: left HV; orange: right 

HV) over 8 weeks of escitalopram treatment in the MDD group, compared with the non-

treated HC group.  
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Supplemental Table 1. Demographic and clinical information grouped by site.  

MADRS – Montogomery-Asberg Depression Rating Scale  

 

 

 

  

 MDD HC Total 

Site N Mean 

Age 

% F Baseline 

MADRS 

# 16-wk 

Responders 

N Mean 

Age 

%F Total N 

CAM 8 31.25 87.50 26.63 2/5 7 31.00 28.57 15 

MCU 27 34.93 70.37 29.56 20/24 16 33.69 68.75 43 

QNS 11 40.55 45.45 30.09 6/8 11 29.91 81.82 22 

TGH 48 35.50 62.50 32.02 24/37 20 33.95 70.00 68 

UBC 59 34.64 67.80 28.03 35/48 9 34.22 77.78 68 

UCA 28 30.96 64.29 30.61 18/23 27 32.11 55.56 55 
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HV 

Inter-rater agreement Average intra-rater agreement 

Numeric (ICC) Spatial (Dice) Numeric (ICC) Spatial (Dice) 

Left 0.85 0.84 0.78 0.91 

Right 0.83 0.82 0.79 0.91 

Left + Right 0.80 0.83 0.79 0.91 

 

Supplemental Table 2. Numeric and spatial agreement between and within independent 

raters for manual segmentation of the hypothalamus. Inter-rater agreement was obtained 

using all 497 segmentations and intra-rater agreement using 50 randomly chosen images. 

 

 

 

 

 

  

HV 

Mean 

difference 

(mm3) 

Test 

statistic 

95% 

Confidence 

Interval 

Cohen’s 

D 
p-value Power 

Ideal 

sample 

size 

Left 0.41 1.02 [-0.39, 1.2] 0.13 0.314 0.17 930 

Right 0.55 1.31 [-0.28, 1.38] 0.168 0.192 0.25 557 

Asymmetry -0.002 -0.69 [-0.01, 0.00] 0.086 0.492 0.10 2123 

 

Supplemental Table 3. Mean differences and associated statistics of t-tests in HV 

measures between MDD and HC. Results from power analyses are included in the last 

two columns.  
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 MDD HC MDD vs HC 

Gene CpG site Location CpG site Location 
Ratio 

comparison 

CRHBP -- -- -- -- ns 

FKBP5 

cg07633853 Body 

-- -- 
2 = 77.25 

p<0.0001 

 

cg13344434 Body 

cg03591753 5’UTR 

cg25563198 TSS1500 

cg15929276 5’UTR 

cg03245912 TSS1500 

cg25114611 TSS1500 

cg07633853 Body 

cg24295963 5’UTR 

cg14642437 5’UTR 

cg23416081 5’UTR 

      

NR3C1 

cg17342132 Body cg15115787 Body 

2 = 7.29 

p = 0.007 

 

cg20728768 Body cg17342132 Body 

cg15115787 Body cg18718518 TSS1500 

cg12888360 Body cg23430507 5’UTR 

cg01751279 5’UTR   

cg01294526 TSS1500   

cg14438279 5’UTR   

cg19457823 Body   

 

Supplemental Table 4. CpG sites that were significantly correlated with expression levels 

of their respective genes (within MDD and HC separately) and descriptions of their 

locations. The last column displays the test statistic and associated p-value of the 

difference in numbers of significant CpG sites between MDD and HC for each gene. 
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Chapter 6: Discussion 

6.1 Summary of findings 
 

This thesis examined structural neuroimaging correlates of MDD neurobiology 

and antidepressant response in adults. Anatomical measures, such as cortical thickness 

and HV, are appealing in their relative ease of measurement and characterization in 

comparison to functional approaches to neuroimaging, motivating researchers to 

investigate whether structural features can be of use in predictive models of 

antidepressant response. Although there have been some promising findings, the majority 

of these studies suffer from lack of statistical power, insufficient or inappropriate control 

of confounding variables and/or lack of replication in independent samples, among other 

limitations. The studies herein suggest that although there are average differences in 

cortical thickness between those diagnosed with MDD and HC participants, structural 

neuroimaging may not be an appropriate method to predict response to antidepressants on 

a short-term period (weeks to months). 

 Chapter 2 thoroughly characterized the extant literature of cortical thickness in 

MDD, mostly comprised of cross-sectional comparisons with HC and to a lesser extent, 

longitudinal studies of treatment-induced changes. The quantitative meta-analysis 

identified regions of cortical thinning and/or thickening in distinguishing MDD 

participants from HC using seed-based d mapping. In the whole MDD sample, we 

observed cortical thinning in bilateral orbitofrontal cortex, left pars opercularis and left 

calcarine fissure/lingual gyrus. In the subgroup analysis of first episode MDD, we 

observed thicker supramarginal cortex and thinner left fusiform gyrus. These findings 
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were further validated by a sensitivity analysis and quantification of publication bias. We 

critically appraised the literature to highlight the main limitations and make 

recommendations for future studies.  

 Chapter 3 was partly motivated by the fact that, although widely conjectured, 

there was insufficient proof that cortical thickening occurs as a result of antidepressant 

treatment. This study specifically investigated the effects of a serotonin-norepinephrine 

reuptake inhibitor (SNRI), desvenlafaxine succinate, on cortical thickness over an 8-week 

period. We also used the opportunity to run a confirmatory analysis of cortical thickness 

differences between groups and investigate whether baseline cortical thickness was 

associated with differential clinical response to DVS. Using FreeSurfer and a full arsenal 

of quality control (QC) protocols including corrections for multiple comparisons, we 

found that only non-responders to DVS exhibited higher baseline cortical thickness in the 

left pars orbitalis compared to HC. We attempted to replicate a previously published 

result of an association between symptom improvement and baseline cortical thickness 

values for 5 ROIs comprising frontal, temporal, and anterior cingulate regions, which was 

not successful, although numerous methodological and sample differences may have 

contributed to the discrepancy. 

 Chapter 4 comprised a comprehensive investigation of cortical thickness in a large 

sample of well-characterized MDD participants. Given all that we knew about prior 

limitations and constraints in this area of research, it was an important opportunity to 

confirm what we already suspected and discover new features of interest. Again, using 

FreeSurfer, we implemented the ENIGMA QC protocol and manual edits of volumes to 



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 209 

maximize data quality and optimize the ensuing cortical thickness measurements. In 

addition, we implemented a vertex-wise correction for site effects using the ComBat 

algorithm and accounted for the non-linear effect of age. We replicated the finding of 

thinner frontal cortex in MDD, specifically in the left rostral middle frontal region. There 

were no differences in baseline cortical thickness between response groups, no 

longitudinal changes with treatment, and no relationship with symptom severity.  

 The approach for Chapter 5 was to combine both neuroimaging and molecular 

variables bounded within the theoretical framework of HPA axis function. It was the first 

study to address the relationships between hypothalamus volume (HV), DNA methylation 

of stress axis genes and the influence of childhood maltreatment. The hypothalamus 

regulates a range of autonomic and somatic functions including sleep, sexual function, 

and perhaps most relevant to MDD, the physiological stress response. The main focus 

was to discern the relationship between HV and gene expression/DNA methylation of 

CRHBP, FKBP5 and NR3C1. Using blinded manual segmentation, we obtained a 

measure of HV with good inter-rater reliability. Left HV was negatively correlated with 

current episode duration, although it was not associated with childhood maltreatment, 

symptom severity or antidepressant response. We found that the MDD group exhibited a 

greater number of correlations between the expression and DNA methylation profiles of 

NR3C1 and FKBP5, indicating greater functional relevance of DNA methylation in these 

genes. A cross-validated elastic net analysis revealed that DNA methylation explained 

more variance in HV in the MDD group than in HC; moreover, methylation at two 

functionally relevant sites positively correlated with HV in MDD but not in HC. Taken 
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together, these results demonstrated that MDD exhibited greater statistical concordance 

among biologically disparate variables related to stress. It validates the existence of at 

least one coordinated neuro-physiological process in the disorder, although the direction 

of the relationship remains to be seen. 

 

6.2 Significance of overall findings 
  

The results in Chapters 2-5 suggest an effect of left lateralization in MDD with 

respect to diagnostic status for cortical thickness and symptom severity for HV, which is 

consistent with what has previously been shown with emotion regulation circuitry and 

white matter microstructure (M. L. Phillips et al., 2015). Notably, all the significant 

regions identified in the meta-analysis in Chapter 2 were also located on the left 

hemisphere (with the exception of thinner orbitofrontal cortex, which occurred on both 

hemispheres). Currently, findings on brain structural asymmetry are equivocal. Greater 

right-sided asymmetry in the orbitofrontal cortex was found to correlate with anhedonia 

in MDD (Dotson et al., 2021), which may correspond to smaller left-sided volumes 

overall in MDD. However, Zuo et al. (2019) demonstrated that their MDD group 

exhibited higher left-sided asymmetry in the frontal cortex (including the rostral middle 

frontal region), corresponding either to smaller right-sided or greater left-sided volumes. 

A meta-analysis of 59 studies comprising 3280 MDD participants showed that GM 

decreases in the frontal, temporal, parietal, and limbic lobes were predominant in the right 

side (Huang et al., 2021). Moreover, a large study (2256 MDD and 3504 HC participants) 

combining data from 31 sources found no group effect of asymmetry, indicating that there 
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is no consistent MDD-specific asymmetry in cortical structure, at least in terms of 

thickness (de Kovel et al., 2019). Positive results from smaller studies may be more 

reflective of characteristics specific to each cohort or individual differences between 

participants (more on this below). 

 For cortical thickness, we replicated the finding that MDD tends to exhibit thinner 

cortex in prefrontal and frontal regions in medication-free subjects (specifically in 

Chapters 2 and 4). Most recently, it was observed in a sample of 104 MDD participants 

that gray matter was reduced in the left rectus and bilateral middle frontal gyri (S. Zhao et 

al., 2021). The middle frontal gyrus was also implicated among other widespread regions 

in group-level differences between MDD and HC (Y. Wang et al., 2021). However, most 

other brain-behaviour or brain-experience associations that have been observed were not 

replicated by the current studies. For instance, the often cited yet preliminary finding of 

ACC volume being decreased in those with MDD (Belleau et al., 2019; Ibrahim et al., 

2022; Mak et al., 2009) or as being predictive of treatment response (Chen et al., 2007; J. 

L. Phillips et al., 2015; Sämann et al., 2013) did not materialize as a significant result in 

this thesis. A recent meta-analysis found that the ACC exhibits a quadratic trajectory 

across the lifespan, which may partly explain discrepant findings that only account for a 

linear component of age (Frangou et al., 2022). Another reason may be that studies of the 

ACC are heavily influenced by theory and pre-existing assumptions about regions 

putatively involved in emotion regulation, meaning it is often selected for targeted ROI 

analyses. Thus, any effects in this region may be more likely to be excluded from the 
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results of whole-brain analyses, where the threshold for statistical significance is much 

higher.  

With respect to treatment response in general, higher frontal volume has 

previously been associated with response, whereas higher temporal volumes have been 

associated with non-response, across 5 studies included in a recent review (Enneking et 

al., 2020). However, 3 of these studies had a sample of less than 45 MDD participants 

(Chen et al., 2007; Li et al., 2010; Liao et al., 2013), 1 studied a nonlinear relationship 

between cortical volume and response (Korgaonkar et al., 2015) and 1 study included 

participants suffering from unipolar and bipolar depression in their sample (Sämann et al., 

2013). Likewise, the evidence for volumetric changes in response to antidepressant 

treatment is relatively poor, with negative findings observed across 7 out of 11 reviewed 

studies (Enneking et al., 2020), in addition to the negative results in Chapters 3-5. More 

recent studies have also observed a lack of association with baseline neuroimaging 

measures and treatment response to medications, specifically with respect to structural 

brain age (Ballester et al., 2021) and using positron emission tomography (PET) to 

quantify glucose metabolism (Hill et al., 2021). PET findings in this area, although less 

numerous, also suffer from a lack of replication, similar to other modalities.  

 To predict treatment response on the order of weeks to months, it may be that 

modalities with higher temporal resolutions would exhibit more utility, such as fMRI or 

EEG. A recent study using resting-state fMRI found that connectivity measures between 

the salience, executive control and somatomotor networks predicted treatment outcome to 

one of three common antidepressants (Braund et al., 2021). Similarly, task-based fMRI 
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measuring reward processing, in conjunction with clinical variables and demographics, 

achieved an R2 of 48% in predicting response to sertraline, although R2 was smaller for 

predicting response to adjunctive bupropion and placebo (Nguyen et al., 2022). However, 

clinical data on symptom severity remained the strongest predictors of treatment 

response. 

 Research on hypothalamic structure and function is still in early stages, and the 

study in Chapter 5 was the first to assess the relationship between hypothalamus volume 

and DNA methylation of stress axis genes. We cautiously interpreted the finding of a 

positive association between DNA methylation and hypothalamus volume to be a 

protective factor. Further evidence for this interpretation can be found in Humphreys et 

al. (2019), where lower levels of DNA methylation in stress axis genes were associated 

with greater odds of MDD onset in a sample of young girls. Recent research also 

highlights the putative role of the hypothalamus in mood and anxiety (Modi et al., 2019; 

D. Wang et al., 2019). On the other hand, a recent review suggested that rather than the 

hypothalamus, volumes in the hippocampus, amygdala and frontal cortex are more likely 

to mediate the link between MDD and childhood maltreatment/adverse events (Silva et 

al., 2021). 

Another common hypothesis in the literature is that symptom severity leaves its 

mark on, or is reflected by, the macrostructural level via cortical thickness or volumetric 

measures. However, our review in Chapter 2 regarding clinical correlations of cortical 

thickness in MDD revealed major inconsistencies among findings. In the primary studies 

in Chapters 3 - 5, there were no associations to be observed between cortical 
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thickness/HV and symptom severity (or improvement). Either there really are no 

associations between brain structure and severity of MDD to be observed, or we are not 

detecting structural changes or symptom severity with enough sensitivity and/or 

specificity. Evidence suggests some combination of the two possibilities. The ENIGMA 

meta-analyses for cortical and subcortical features of depression found no associations 

between symptom severity and subcortical volumes or cortical thickness in adults 

(Schmaal et al., 2016, 2017). However, attempts to model higher-level associations 

between symptoms and brain features have been more successful. In one study, after 

identifying dysphoric and anxio-somatic symptom clusters, the authors showed that 

models trained on novel individualized functional connectivity-symptom severity maps 

reliably predicted dysphoria in a validation cohort (Y. Zhao et al., 2022). Notably, this 

finding was not replicated using a conventional group average approach in the same 

sample. Generalizability of findings in this arena seems to be a problem elsewhere. For 

instance, Drysdale et al., (2017) demonstrated a relationship between brain connectivity 

and clinical symptoms using multivariate methods but has not been replicated since its 

publication. In one recent study, the authors did not observe any associations between 

depression or anxiety with independent brain components extracted from structural and 

functional modalities and in a relatively large sample of 170 participants (Maglanoc et al., 

2020). Rather, the strongest associations they observed with brain components were with 

sex and age.  

Taken all together, these results and subsequent studies from other groups suggest 

that univariate and group-level findings lack the specificity and sensitivity required for 
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establishing reliable biomarkers of the subjective experience of depression. A paradigm 

shift in the way we approach the multimodal and high-dimensional data we collect may 

be required to yield reliable advances in precision psychiatry. 

 

6.3 Strengths 
 

 The CAN-BIND analyses (Chapters 4 and 5) benefited from a relatively large 

sample size for primary studies, counteracting the likelihood of Type II error in using 

linear models with multiple terms. Multiple sites of data collection across Canada were 

leveraged to recruit more participants in tandem, synchronized by standardized protocols.  

Imaging analyses throughout this thesis underwent extensive QC measures. For 

CT analyses, a baseline QC framework was adapted from the ENIGMA consortium and 

further enhanced with in-depth visual inspections as well as blinded manual edits. For the 

HV analysis, we drew from the literature on semi-automatic protocols to implement a 

degree of standardization and aids for manual segmentation, including the use of a gray 

matter tissue probability map overlay to further distinguish hypothalamic boundaries 

(Wolff et al., 2018). These strategies were used to mitigate any systematic bias from 

scanning or automatic segmentation error. 

Low-powered neuroimaging analyses can lead to inflated estimates of group 

differences due to sampling variability (Szucs & Ioannidis, 2020). In this thesis, the 

possibility of Type 1 error was mitigated by applying stringent multiple testing 

corrections, either via Bonferroni correction, false discovery rate, cluster-based 

thresholding, permutations, or a combination of the above. Although the number of 
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positive results were likely reduced as a result of these protocols, it lends a greater degree 

of reliability and credibility to the results that did survive.  

As a given, we accounted for important covariates such as age and sex in all 

analyses. In Chapter 5 in particular, we characterized the relationships between HV and 

these covariates in detail to inform future studies. In Chapter 4, we additionally accounted 

for quadratic age, as it is now well-known that cortical thickness follows a nonlinear 

trajectory throughout the lifespan (Frangou et al., 2022; Storsve et al., 2014). Site effects 

presented a more difficult challenge, but we strove for a balanced approach to site 

correction in this thesis. For the cortical thickness analysis in Chapter 4, the reasons for 

site differences in cortical thickness measures were not immediately clear, as they could 

have been due to scanner differences but could also have been influenced by demographic 

differences between site samples, such as age distribution or sex ratios. We adapted the 

ComBat algorithm to apply corrections on a vertex-wise basis to eliminate a significant 

variability bias that had clearly been skewing findings (i.e., common significant 

differences between response groups and HC were not reflected in the overall group 

difference, although power should have been sufficient to detect these effects). This led to 

a biologically and statistically plausible finding of thinner cortex in the left middle frontal 

gyrus. However, for the HV analysis in Chapter 5, as only one site exhibited significantly 

different HV values than the others, the site correction was not well-justified. Since 

results did not change upon site correction, we prioritized the sparse model to avoid 

introducing potential bias when it was unnecessary.  
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6.4 Limitations 
  

The limitations of this thesis work span from ground-level methodological 

considerations such as sample size to more abstract considerations such as inter-

individual variation. The sample size of the CAN-BIND cohort was simultaneously a 

limitation as well as a strength, as the problem of site effects countered the increase in 

participants to some extent. In a multisite study, we would ideally use all the participants 

from one site as a holdout set to validate primary findings; in this thesis, we prioritized 

maximizing sample size in univariate analyses to settle inconsistent findings, as opposed 

to constructing generalizable models for personalized prediction. 

 Even as we maximized sample size, there is still the significant possibility of Type 

II error occurring in these analyses. The signal-to-noise ratios in complex biological data 

subsuming multiple sources of variation, including MRI and molecular markers, are 

notoriously low. Accounting for important covariates may have affected the sources of 

variation in which we are interested, as it has been shown that the effects of demographic 

variables such as sex and age may eclipse those of disorder-related processes (Maglanoc 

et al., 2020; Suh et al., 2021). It may also be that the differences in brain structure 

between MDD and HC or between response groups are not detectable using current 

standard MRI field strengths (1.5-3T) or popular automatic protocols.  

It is often acknowledged that MDD is a heterogenous disorder clinically, and by 

extension assumed to be so neurobiologically and physiologically as well (Feczko et al., 

2019). However, beyond clinical heterogeneity, there is a strong possibility that normal 

inter-subject variation is likely to be greater than average group differences, particularly 
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in the frontal, cingulate and temporal regions that are most often implicated in mood 

disorders (Dinga et al., 2019; Frangou et al., 2022). This natural variability may occlude 

disorder-specific features that might be relevant on an individual basis to that individual’s 

experience and outcomes. There may be other non-clinical factors that influence brain 

measures independent of depression that were not considered, such as impaired social 

functioning (Zhou et al., 2021), exercise (Bashir et al., 2021; Domingos et al., 2021), 

excessive internet use (Sadeghi et al., 2021) and/or bilingualism (Anderson et al., 2021), 

to name a few. Structural changes might occur even before an individual experiences 

much of life: a recent review found that perinatal depression in the mother was associated 

with structural alterations in the amygdala and fronto-temporal regions in offspring 

(Cattarinussi et al., 2021). It was also recently observed in a study investigating post-

traumatic stress disorder (PTSD) that different symptom clusters mapped onto different 

cortical thickness and volumetric features, even as overall differences between PTSD and 

HC groups were non-significant (Crombie et al., 2021). Going forward, we may need to 

be more attentive to dimensional aspects of MDD, breaking down the clinical diagnosis 

status often used in univariate analyses to a dimensional profile (based on severity or 

presence of specific clinical symptoms or domains as per the Research Domain Criteria 

[Insel et al., 2010]) for each individual that could be used in multivariate approaches in 

discerning brain-behaviour relationships. Additionally, identification and replication of 

robust neural correlates with specific symptoms or dimensions would improve 

interpretability of future findings. 



Ph.D. Thesis – J.S. Suh; McMaster University – Neuroscience.  

 219 

On the clinical side, the main instrument to measure symptom severity within this 

thesis was the MADRS, a clinician-administered structured interview. Although it is 

assumed that being clinician-administered, the MADRS is more reliable than self-report 

measures, it poses several limitations. First, this scale does not take into account atypical 

symptoms of depression, such as increased appetite/weight as well as increased sleep. The 

prevalence of the atypical subtype among those diagnosed with MDD has been estimated 

to be anywhere between 6% in the UK Biobank cohort (Brailean et al., 2020) to 15.3% in 

a Chinese cohort (Xin et al., 2019), with a mid-level estimate of 10.23% observed in a 

large cross-sectional survey (Blanco et al., 2012). These studies additionally found that 

the atypical subtype is associated with female gender, earlier age of onset, greater 

symptom severity/episode frequency, obesity, psychiatric comorbidities and increased 

suicidal ideation/attempts, among others (Blanco et al., 2012; Brailean et al., 2020; Xin et 

al., 2019). As a result, the MADRS may have underestimated symptom severity in those 

who experienced atypical symptoms of depression. In the ENIGMA study of cortical 

features in MDD, associations only with the BDI self-report score were detected with 

respect to surface area of frontal and parietal regions (Schmaal et al., 2017), but not with 

the HAM-D (clinician-administered), illustrating a possible explanatory gap between self-

report and assessor-administered measures. Since measures of antidepressant response 

were based on the MADRS as well, this may partly explain the lack of association with a 

variety of brain structural or molecular variables. Future studies might employ both self-

report and clinician-observed measures of symptom severity, either by including both in 

an analysis or by creating a composite measure. 
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6.5. Future directions 
 

6.5.1 Deciphering the neurobiology of MDD 

 

As mentioned above, there is likely no 1-to-1 correspondence between low-level 

imaging features (e.g., average cortical thickness values of independent regions) and what 

we know as ‘mood’, not to mention all the other somatic, vegetative, and dysphoric 

symptoms that comprise the MDD diagnosis. Mood on its own is a complex, higher-order 

process that is likely emergent from the interaction of multiple regions (variable both 

spatially and temporally) rather than something that can be mapped to immediately 

detectable features at individual regions (Horien et al., 2020). This highlights the 

importance and relevance of connection-based measures, which can be applied both 

structurally and functionally and are also more robust to variations in parcellation (Lord 

et al., 2016). One example is to employ targeted dimensionality reduction approaches 

such as independent component analysis to characterize distinct sources of variation that 

may be distributed spatiotemporally in the brain (Maglanoc et al., 2020). Another 

approach is to use graph theoretical methods to characterize structural and functional 

network organization and explicitly model statistical dependence among brain regions 

(Yun & Kim, 2021). More generally, higher-level, connection-based measures should 

become the standard in clinical translational efforts going forward, as goals for effective 

modelling start to outstrip the utility of univariate comparisons and standard parametric 

mapping.  
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 In addition, socioeconomic factors should be considered with more care and 

precision. It has been found that not only were race and household income independently 

associated with likelihood of MDE in 12 months, but gender also interacted with race and 

income to predict MDE in a sample of over 4000 individuals in the National Survey of 

American Life (Assari, 2017). A recent review on the biological, psychological, and 

social determinants of depression illustrated a complex landscape of interacting risk and 

protective factors at the individual and societal levels (Remes et al., 2021). Considering 

the multitude of factors involved in depressive onset, progression, and outcomes, it seems 

almost self-evident that between-individual variation would be greater than average 

between-group differences.  

Recently, Reddan (2021) recommended a structured approach for developing 

clinically relevant neuroimaging models of chronic pain that properly reflects the 

biopsychosocial model. As depression shares similarities with chronic pain in many 

aspects, we might extrapolate these recommendations to guide our efforts. The approach 

is divided into 3 levels. The first level is the nomothetic (population-based) approach to 

diagnosis, where one seeks group differences that would theoretically be generalizable to 

the larger population—here, researchers strive to “control for” as many individual 

differences as possible, in order to discern the group-level signal. The finding of thinner 

cortex in prefrontal areas replicated in this thesis would be an example of a nomothetic 

finding.  

The second level of the approach tackles heterogeneity of the disorder, 

specifically the fact that even a robust group difference may not be reflected in a given 
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individual. This approach essentially involves training a model on many samples from the 

same individual. Due to cost and time requirements of the scanning that would be 

involved, a regularized model can be used that incorporates group-level priors to 

considerably reduce data acquisition demands (Lindquist et al., 2017). Finally, 

socioeconomic diversity can be incorporated by thoroughly assessing an individual’s SES 

from different perspectives (including their subjective perception of it) and relating it to 

brain features. It was suggested to create a thorough SES survey that spans personality, 

external conditions, and internalization or beliefs of external conditions (Reddan, 2021). 

At the very least, we may be able to construct a brain component that reflects SES, to be 

incorporated in higher-level predictive models.  

 

6.5.2 Predicting treatment response in MDD 

 

 Given the ambiguity around the neurobiology of MDD as described by MRI, it is 

perhaps no surprise that the mission of using MRI to predict treatment response in MDD 

is still in early stages. At this point, we might take a step back to consider the various 

factors that may affect prediction of treatment response. In addition to the differences 

among imaging modalities, depression treatments comprise pharmacotherapy as well as 

psychotherapy and brain stimulation techniques such as transcranial magnetic stimulation 

(TMS), electroconvulsive therapy (ECT) and transcranial direct current stimulation 

(tDCS). Furthermore, pharmacotherapeutics are not made equal, with different 

antidepressants ostensibly targeting different neurotransmitter systems. There are general 

treatment guidelines for when to use which treatment, mostly depending on previous 
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treatment resistance and symptom severity (Davidson, 2010). The fact that successful 

treatment is still largely predicated on trial and error highlights the need to focus on first 

principles; that is, the underlying neurobiological mechanisms by which depression 

occurs (as discussed above) and how various treatments exert their effects to alleviate 

these symptoms. Again, a dimensional approach would be a good starting point and might 

render even structural imaging measures more useful. As a case in point, one study 

observed that using different structural measures to predict different latent symptom 

dimensions in the HAM-D after ECT was more successful than trying to find one set of 

imaging features to predict the total clinical score (Wade et al., 2021). 

 A recent meta-analysis aimed to quantify the overall classification performance of 

machine learning models predicting single-subject response to various treatments in 

MDD (Cohen et al., 2021). With respect to treatments, ECT exhibited higher performance 

than medications, although the difference was not statistically significant across all 

treatments. With respect to modality, MRI generally performed better than EEG, with 

surprisingly no quantifiable difference in performance between sMRI and fMRI studies. 

However, the authors suggest that this last result may be affected by publication bias, 

where research groups may have found and published significant results only with fMRI 

measures, even if they had also tested sMRI measures that were negative and remain 

unpublished. Cohen et al. (2021) also observed that sample sizes of the reviewed studies 

tended to be low and ran the risk of overfitting, concluding overall that it is still too early 

to include MRI in clinical decision making. The current state of research in this area calls 

into question the value addition of neuroimaging overall; that is, whether adding imaging 
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variables on top of clinical data significantly improves treatment response prediction 

relative to the cost and time involved in collecting that data. Furthermore, beyond the 

ability to predict whether or not someone will respond to a given treatment (a binary 

response), differential biomarkers that can help select the most effective treatment for a 

given individual are necessary to achieve true clinical utility. As is apparent, there are a 

multitude of variables and factors that significantly complicate the overall endeavour. 

 It is likely that the problem is not only scientific but infrastructural as well. 

Conventional interventional trials focus on a very narrow area of the entire feature space 

that make up a clinical phenotype and are typically biased towards the ‘typical’ clinical 

trial participant rather than patients in the real world. In presenting a solution that strives 

to be truly integrative, Dickson et al. (2020) proposed the master observational trial 

(MOT), a protocol construct combining the high-quality data obtained via interventional 

trials with lower quality but highly abundant real-world data. Real world data might 

comprise medical records/charts, insurance claim information, and data obtained via 

mobile devices, such as momentary time sampling of various self-report or actigraphy 

measures. The MOT is essentially characterized by the lack of rigid inclusion/exclusion 

criteria and increased flexibility that allows the addition of new testing protocols and 

subsidiary interventional trials to answer specific questions, all subsumed under a 

centralized data organization scheme. It presents a possible solution to capture 

information on MDD that is truly population-level, which would enable precise, 

individual-oriented descriptions and predictions, a significant advance towards true 

precision psychiatry. 
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6.6 Conclusion 
 

In this thesis, we showed that thinning in the middle frontal gyrus was a reliable 

and significant marker of MDD diagnosis but did not observe any significant cortical 

thickness associations with antidepressant response. We observed a stronger concordance 

between hypothalamus volume and blood-derived epigenetic profiles of stress axis genes 

in the MDD group that was not observed in healthy controls. Overall, we found that 

neuroimaging biomarkers of neurobiology are easier to isolate than biomarkers of future 

antidepressant response. We recommend that future studies model statistical dependence 

between structural brain measures and consider the complexity of depression subtypes 

and socioeconomic backgrounds. 
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