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Abstract

Powder bed fusion (PBF) is a metal additive manufacturing process that is increas-

ingly used in the aerospace and medical industry to build complex parts directly from

computer-aided design. Due to the presence of large temperature gradients and rapid

cooling rates during the processing, the PBF process is assumed to follow a rapid

solidification processing route. However, the extent of deviation of the solid-liquid

interface from equilibrium as a function of processing conditions has not been studied

in detail for the PBF process. In this thesis, a numerical model is developed to study

the interfacial characteristics as a function of processing conditions to characterize if

the PBF process exhibits rapid solidification or not. The model is based on the work

of Hunt et al. [1, 2, 3] and is capable of simulating cellular and dendritic growth at

both low and high interface velocities. The developed model accounts for the various

undercooling such as constitutional and curvature undercooling, the variation of the

liquidus temperature with composition, and the partition coefficient and diffusion

coefficient with temperature. Moreover, the variation of the partition coefficient and

the liquidus slope with the growth velocity has also been considered in the developed

model. The model is used to predict the range of primary cellular/dendritic spac-

ing for a given set of input parameters. In addition to this, the tip undercooling,

tip Péclet number and spacing Péclet numbers have also been estimated using the
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model to quantify the extent of deviation of the solid-liquid interface from equilib-

rium. A good qualitative agreement between the predicted values from the numerical

model and the analytical KGT model is achieved. This new model can be used to

understand the relationship between the processing conditions, material system and

interfacial characteristics during the PBF process, and thus improve microstructural

development during PBF processing.
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Chapter 1

Introduction

This chapter provides an overview of Additive Manufacturing (AM) technology with

an emphasis on the Metal Additive Manufacturing (MAM) process. This is followed

by an introduction to the industrially relevant MAM processes of Powder Bed Fusion

(PBF) and Direct Energy Deposition (DED) along with a discussion of the significant

challenges inherent to MAM processing. In addition to this, the relationship between

the underlying physical processes, microstructure, properties and defect formation

during the MAM process is also briefly reviewed.

1.1 Additive Manufacturing

In the Additive Manufacturing process, also referred to as 3D printing or rapid pro-

totyping, a component is built in a layer by layer manner by progressively adding

material one layer at a time until the part is complete [10, 11, 12, 13]. It is different

from the conventional manufacturing processes, sometimes referred to as subtractive
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manufacturing, wherein a part is made by removing excess material from the feed-

stock or sheet metal [14, 11]. AM started as a technology for rapid prototyping in the

1980s. It was initially limited to only printing polymeric and porous substances [11].

However since its inception, the AM technology has grown tremendously and can now

be used to print metals, ceramics, biomaterials and composites [15].

In recent years, the interest in AM has grown tremendously due to its inherent

advantage over the conventional manufacturing process. AM offers freedom of design

due to its ability to build complex geometries directly from computer-aided design

without any need for costly tooling or forms. The manufacturing freedom in the

AM process has caught the eyes of the aerospace, biomedical, energy, automotive

industry along with hobbyists and artists alike [10, 11]. In contrast to the conventional

manufacturing process, the flexibility offered by AM allows for the design of highly

optimized functional/structural components by realizing complex hollow structures,

overhangs and lattice structures. Furthermore, leaner part designs can lead to a

reduction in total part counts by reducing or eliminating part assembly [14, 16]. AM

is an economically viable route for producing highly customized parts in low volume

and is well suited for low-to-medium volume productions [10].

AM began as a rapid-prototyping process, however owing to the advances in the

technology, reduction in the cost of production, and improvement in part-density

and part-quality, AM has evolved into an important manufacturing process in its

own right. Nowadays, it is possible to print high-quality structural and functional

parts that meet the accepted quality requirements of a certified production. Still,

the widespread adoption of AM is plagued by the large variability in the qual-

ity/properties of the parts produced [11, 10].
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Numerous AM technologies for printing metals have been developed over the past

years. These technologies can be classified based on the feedstock such as powder,

wire or sheets or the process used to consolidate the feedstock into a dense part. The

parts are consolidated either by melting the feedstock using a heat source followed

by subsequent solidification or by the use of ultrasonic vibrations. The ASTM F42

Committee has classified MAM into four categories [10, 11, 13]:

1. Powder Bed Fusion (PBF).

2. Direct Energy Deposition (DED).

3. Binder Jetting.

4. Sheet Lamination.

Among the technology available for printing alloys, the Powder Bed Fusion and

Direct Energy Deposition processes are of the utmost importance to industry [11].

In both PBF and DED, the underlying process is similar wherein the feedstock is

melted locally by the use of a high energy density heat source which on subsequent

cooling results in the microstructure development [10]. A brief discussion of the two

processes is given below.

1.2 Powder Bed Fusion

In the PBF process, a part is built selectively and locally by melting a thin layer of

powders particles using either a laser (PBF-L) or an electron beam (PBF-EB) as the

heat source. On subsequent cooling, this new layer forms a part of the build. This

process is repeated in a layer by layer manner until the component is complete. In

3
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the present work, the term PBF has been used to refer to both the laser and electron-

beam based PBF process, whereas, the PBF-L and PBF-EB are used when specifically

talking about one of the aforementioned processes. A schematic of a PBF-L setup is

shown in Figure 1.1. Although both systems use the same powder-bed principle, there

are some key differences in the hardware setup of the two [10, 11, 13]. PBF-L takes

place in an inert environment, whereas PBF-EB takes place in a vacuum chamber and

applies only to electrically conducting materials. Additionally, PBF-EB is a two-step

process. In the first step, the powder particles are lightly sintered using the diffused

electron beam to prevent electrostatic charging and repulsion of the particles. In the

second step, the electron beam is used to fuse the particles to the previous layer.

PBF is increasingly used in the aerospace and biomedical industries to build com-

ponents with complex designs. Although the build volume is small compared to

other MAM techniques, the method offers increased versatility to manufacture var-

ious free-form structures with complex internal geometries. The PBF process also

provides better dimensional tolerance and surface finish in comparison to other AM

processes [17].

1.3 Direct Energy Deposition

Unlike the PBF process, in the DED process, the feedstock is ejected through a

nozzle which is melted using a heat source and deposited in the desired location. The

feedstock can be either metal powder or metal wires. The commonly used heat source

is either a laser or an electron beam. Apart from these, plasma arc and gas metal arc

can also be used as a heat source in the DED process [11, 10, 13]. Figure 1.2 shows

a schematic of a powder fed and wire fed DED system with a laser and an electron

4
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Powder 
Supply

Laser Scanner

Part
Roller

Powder delivery piston

Fabrication piston

Figure 1.1: Schematic of a laser powder bed fusion (PBF-L) setup.

beam heat source. For non-reactive metals, the molten melt pool is protected from

oxidation by the use of a shielding gas such as argon or helium. In the case of powder-

fed DED, the shielding gas also helps to carry the powder particles to the melt pool.

Whereas for reactive metals, the build chamber is filled with an inert gas [10, 13]. The

build volume in the case of DED is large in comparison to the PBF process. However,

the dimensional tolerance and surface finish is not as good as the PBF process. In

addition to this, the DED process is also used for repairing components, therefore,

making it an important MAM technology [17, 10, 13].
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Substrate

Laser Beam

Deposited material
Powder Stream

Injection nozzle

(a)

Substrate

Deposited material

Electron beam

EB Gun

Wire 
Feeder

Wire

(b)

Figure 1.2: Schematic of (a) powder fed (laser) and (b) wire fed (EB) DED system.

1.4 Challenges: Metal Additive Manufacturing

As in any manufacturing process, the main challenge in MAM is the reliable pro-

duction of high-quality defect-free parts. Defects such as porosity, lack of fusion,

cracking, delamination, loss of alloying elements, anisotropic material properties and

residual stresses are among the main processing challenges associated with the MAM.

The quality and the properties of a part produced by MAM is affected by the process

(PBF/DED), process parameters, scan strategy, feedstock quality, build chamber at-

mosphere and many other parameters [13, 10, 18, 19]. Understanding the relationship

between the underlying physical phenomena, feedstock material, and processing route

on the material properties of the components and defect distribution is crucial for the

widespread adoption of the technology.

The physical properties of a metallic part depend upon the underlying microstruc-

ture and the defects [4]. These, in turn, are influenced by the solidification kinetics.
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In the MAM process, the solidification kinetics depends upon the characteristics of

the melt pool and the subjected thermal cycle. Whereas, the shape, size and temper-

ature profile of the melt pool depends on the interaction of the heat source (power,

speed and size) with the feedstock. After the initial solidification, the thermal cy-

cling and cooling further influence the phase, grain growth and precipitation kinetics

during the MAM process [13].

Melt pool characteristics also affect defect formation during the MAM process.

Loss of alloying elements takes place when the melt pool temperature is too high,

resulting in compositional changes affecting the solidification microstructure, corro-

sion resistance and mechanical properties of the component. Unduly high energy

density can result in keyhole formations in a component, which can destabilize and

collapse, resulting in voids and porosities. In contrast, the lack of fusion can result

from inadequate power supply [10, 13].

As described above, the same set of process parameters that affect the MAM

melt pool formation and temperature distribution not only influence the microstruc-

ture formation and subsequent growth kinetics but also affects the defect formation.

Therefore, it is of utmost importance to study the relationship between the process

parameters, microstructure and defect formation to identify the optimum processing

conditions which not only result in the desired microstructure but also reduce the

manufacturing defects within the parts.

7
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1.5 Outline

This thesis proposes the use of numerical modelling and simulation to study the so-

lidification characteristics during the metal additive manufacturing process. A com-

putational model is used to predict the interfacial characteristics during the PBF-L

process to establish the relationship between the processing and interfacial conditions.

The model is applied to laser resolidified Al-Cu alloy and the results are compared

with analytical growth theories.

This thesis is organized in the following order:

Chapter 2 describes the fundamentals of the solidification process as well as some

details of methodologies to numerically model solidification microstructure evolution;

Chapter 3 presents the scope and objective of this work;

Chapter 4 describes in detail the numerical model used in this study;

Chapter 5 reports the application of the model applied to binary Al-Cu alloy

and the corresponding results; and

Chapter 6 summarizes the key results of this work, limitations of the developed

model and suggestions for future work.

8



Chapter 2

Literature Review

Solidification is a phase transformation process wherein a liquid turns into a solid. It

is an important industrial technique that underpins most of the manufacturing pro-

cesses. Solidification of a metallic melt involves a complex interplay of many physical

processes occurring at different length scales and results in the formation of crystals.

Depending upon the processing conditions, the crystal structures formed can exist

in different phases and exhibit a wide range of microstructures. These phases and

microstructure depend upon the thermodynamics and kinetics of the solidification

process [4, 20, 21]. In what follows, the thermodynamics and kinetics of the solidifi-

cation processing are discussed in detail, along with the discussion of relevant MAM

microstructures. Finally, we will look at different approaches to numerically model

and simulate the solidification process.
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2.1 Solidification Processing

The process of solidification begins with the extraction of heat from the melt. The

extraction of the heat results in a decrease in the enthalpy of the solid and the liquid

phase. There is a further decrease in the enthalpy during the phase transformation

from the liquid to the solid phase equal to the latent heat of fusion ∆Hf [22, 23].

In pure metals, the temperature at which phase transformation takes place is

uniquely defined and is known as the melting point Tf of the substance. The melting

point of a pure substance is used to sharply define an interface between the solid and

the liquid phase. In the case of alloys, however, the phase transformation takes place

over a range of temperatures and the interface between the solid and the liquid phase

is given by a region of finite thickness known as the mushy zone [22, 23, 21].

In practice, the solidification of pure metals is seldom encountered. Even the com-

mercially pure metals have enough impurities to change the solidification characteris-

tics to that of an alloy [24]. Phase diagrams are useful in predicting the solidification

path, the phases present and their composition in equilibrium. A hypothetical binary

alloy phase diagram with an alloy of composition C0 maintained at the temperature

T ∗ and growing with a plane front is shown in Figure 2.1.

In considering alloy solidification it is further useful to define the partition coeffi-

cient k as

k =
C∗

s

C∗
l

, (2.1.1)

where C∗
s and C∗

l are the composition of the solid and the liquid phase at a given

temperature.
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Figure 2.1: A hypothetical binary alloy phase diagram with linear solidus and
liquidus line.

The equilibrium condition requires that there be no gradients in temperature nor

in phase composition. Furthermore, the composition of the solid and the liquid at a

given temperature T ∗ i.e. C∗
s and C∗

l respectively, are fixed by the phase diagram.

However, in practice, the solidification process is never slow enough to meet the

conditions for the equilibrium solidification [25].

The presence of thermal and compositional gradients causes deviation from the

equilibrium. Furthermore, at equilibrium solidification cannot proceed since the rate

of atom attachment at the solid-liquid interface will be equal to the rate of atom

detachment. For solidification to proceed, some degree of deviation from the equilib-

rium is required at the solid-liquid interface to act as the phase change driving force.

The presence of curvature or surface energy, the kinetics of attachment at the solid-

liquid interface and solute trapping can cause further deviation from the equilibrium
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conditions.

In practice, the solidification process can be classified in a well-defined hierarchy

depending upon the degree of departure from the equilibrium as shown in Table 2.1.

The extent of deviation of the interface from the equilibrium is directly correlated

with the rate of advancement of the interface (interface velocity) or the extent of

driving force for the solidification (amount of undercooling).

Table 2.1: Hierarchy of Equilibrium [8]

1. Full Diffusional (Global) Equilibrium

(a) There are no chemical potential gradients (compositions of phases are uni-
form).

(b) There are no temperature gradients.

(c) The Lever rule is applicable.

2. Local Interfacial Equilibrium

(a) The chemical potential is continuous across the interface.

(b) The phase diagram gives compositions and temperatures only at liquid-
solid interface.

(c) Corrections must be made for interface curvature (Gibbs-Thomson effect).

3. Metastable Local Interface Equilibrium

(a) Is important when stable phases cannot nucleate or grow sufficiently
rapidly.

(b) The interface condition is given by a metastable phase diagram, i.e. a true
thermodynamic phase diagram that is missing the stable phase or phases.

4. Interfacial Non-equilibrium

(a) The phase diagram fails to give temperature and composition at interface.

(b) The chemical potentials are not equal at interface.

12
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2.1.1 Local Interfacial Equilibrium

In practice, thermal and compositional gradients exist within the phases during so-

lidification. However, if the rate of diffusion of the atoms across the interface is fast

enough in comparison to the rate of the advancement of the interface V , the gradient

across the interface will equilibrate much more quickly than in the bulk phase and the

condition of local interfacial equilibrium can be assumed. Under these conditions, the

conservation equations for the diffusion of temperature and mass within the phases

along with the temperature and compositions at the interface given by the phase

diagram define the kinetics of solidification [8].

As mentioned previously, the departure from the equilibrium also occurs due to

the presence of boundary curvatures, therefore, the capillary effect needs to be incor-

porated to determine the shift in the equilibrium when the interface is not planar.

The shift in the freezing point is given by the Gibbs-Thomson equation [21]

T r
f = T∞

f − 2Γκ, (2.1.2)

where T∞
f and T r

f is the equilibrium melting temperature of a planar and curved

interface respectively, Γ is the Gibbs-Thomson coefficient and κ is the mean curvature.

If the solid-liquid interface is in motion, the interface attachment kinetics can lead

to further deviations from the equilibrium. The relationship between the interfacial

normal velocity and the kinetic undercooling is often expressed as [21]

Vn = µk∆Tk, (2.1.3)

where µk is the kinetic coefficient and ∆Tk is the kinetic undercooling. For most
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metals at low solidification velocities, the undercooling required is very small and

the actual interface velocity can be calculated from the bulk diffusion considerations

only. However, kinetic effects cannot be neglected at high growth velocities i.e., under

interfacial non-equilibrium conditions.

2.1.2 Metastable Equilibrium

Metastable equilibrium is important in many metallurgical processes. When the free

energy is minimum but not absolute minimum, metastable equilibrium occurs. This

is often the case when large fluctuation (nucleation) is necessary for the growth of a

stable phase. Metastable transformation takes place at high growth velocities when

many stable phases with complex crystal structures have difficulty in nucleation and

growth. Under the conditions of metastable equilibrium, the solid-liquid interface can

still be assumed to be in local equilibrium [8].

2.1.3 Interfacial Non-Equilibrium

When the rate of advancement of the solid-liquid interface V is comparable to the

rate of diffusion of the solute atoms across the solid-liquid interface, there will not be

enough time for the compositions to equilibrate near the interface and the assumption

of local interfacial equilibrium will not hold true [4]. Significant non-equilibrium

effects such as the formation of metastable phases, increased solute solubility at levels

exceeding the equilibrium solubility in the solids and novel microstructures have been

experimentally observed at high growth rates. Highly undercooled melt or a fast-

moving temperature field can result in the rapid growth of the solid phase [8, 4].
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The rate of diffusion of the solute atoms across the interface is given by the inter-

atomic diffusion rate Di/δi, where Di is the interfacial diffusion coefficient and δi is

the inter-atomic distance (width of the diffuse interface). When the rate of interface

advancement is very rapid (Vn >> Di/δi), the crystal will not have enough time to

rearrange its composition and all the solute atoms will be trapped inside the solid.

This phenomenon is referred to as partitionless solidification. Partitionless solidifi-

cation takes place when the interface temperature is significantly below the liquidus

temperature TL. The maximum temperature at which the partitionless solidification

can take place is restricted by the thermodynamic considerations and is called the

T0 temperature. At the T0 temperature, the molar free energy of the solid and liquid

phase is equal for a given composition.

Under the conditions of interfacial non-equilibrium, the phase equilibria need to

be appropriately modified to express the variation in the interface temperature and

solid composition that are produced at high-velocity as [4]

T ∗ = T (V,C∗
l )− 2Γκ, (2.1.4)

C∗
s = C∗

l k(V,C
∗
l ), (2.1.5)

where T (V,C∗
l ) and k(V,C∗

l ) represents the changes in the equilibrium freezing tem-

perature and partition coefficient at high velocities. The functions T (0, C∗
l ) and

k(0, C∗
l ) are equal to the equilibrium values given by the phase diagram when the

interface velocity is zero [4].

Several models have been proposed in the literature to model the dependence of
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partition coefficient with velocity. One of the simplest and most widely accepted

model which agrees well with the experiments was proposed by Aziz [26]. The model

ignores the dependence of the partition coefficient with composition and is expressed

as

kv =
ke + δiV/Di

1 + δiV/Di

, (2.1.6)

where ke is the equilibrium partition coefficient and the parameter δiV/Di can be

regarded as the interface Péclet number Pi. Figure 2.2 shows the variation of the

partition coefficient with velocity.

10−3 10−2 10−1 100 101

V (m/s)

0.2

0.4

0.6
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1.0

k v

ke = 0.1

Di/δi = 0.03

Figure 2.2: Variation of the partition coefficient with the growth velocity [4].

As kv → 1, the second condition that needs to be satisfied is T ∗ ≤ T0. Neglect-

ing the curvature effect, the interface temperature for a flat interface with kinetic

undercooling can be written as [4]

T ∗ = T∞
f +mvC

∗
l −

RgT
∞
f

∆Sf

V

V0

, (2.1.7)

where Rg is the gas constant, ∆Sf the entropy of fusion, V0 the collision limit of atom
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attachment i.e., the maximum velocity at which the atoms can still attach to the

crystal (its upper limit is speed of sound in metals), and mv is the apparent liquidus

slope at high velocities and is expressed as

mv = m

[
1 +

ke − kv [1− ln(kv/ke)]

1− ke

]
, (2.1.8)

2.1.4 Solidification in Metal Additive Manufacturing

In the MAM process, the consolidation of the metal powder happens by a fast-moving

laser or electron beam heat source resulting in the local melting of the metal powders.

The local melting of powder particles is followed by subsequent cooling and solidi-

fication. The MAM process is characterized by high thermal gradients and rapid

cooling, which during solidification, can lead to the deviation from the local interfa-

cial equilibrium. The actual temperature field in the fabricated part has a complex

temporal distribution and each layer experiences multiple re-heating and re-cooling

cycles. Furthermore, the process parameters including energy density, layer thick-

ness, surrounding material and pre-heat temperature greatly affect the temperature

gradient in the melt pool [11, 17, 10].

Experimental measurements of the temperature field during the MAM process is

not straightforward due to the highly transient distribution. Several experimental

techniques such as placing thermocouples at monitoring locations in the melt pool,

infrared imaging and in-situ x-ray synchrotron measurements have been used to mea-

sure relevant temperature distribution, thermal gradients and cooling rate [27, 28,

29, 30, 31, 32]. However, it is difficult to measure the temperature distribution in

the melt pool accurately with thermocouples and infrared imaging can only provide
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the surface temperature distribution and not the bulk 3D profile. An alternative

approach to predict the temperature distribution and the cooling rate in the melt

pool is through the use of computational models. Computational models can provide

the knowledge of the transient 3D temperature distribution, however, 3D transient

heat transfer analysis during MAM is a challenging task due to complex physical

processes involved [10, 33, 19, 34]. The typical thermal gradient and cooling rate

measured during the MAM process is reported in Table 2.2.

Table 2.2: Typical thermal gradients and cooling rate during MAM.

Process Thermal gradient (K/m) Cooling rate (K/s)

PBF-L O(106 − 107) O(103 − 108) [35, 30, 31]

PBF-EB O(105) O(103 − 104) [36]

DED O(103 − 105) O(102 − 103) [37, 38, 28]

In MAM, most of the heat is extracted through the substrate which acts as the

heat sink. As the component increases in height, the heat conduction through the

substrate decreases resulting in increased melt pool size and peak temperatures in the

melt pool. The local thermal gradients and cooling rates also vary greatly depending

upon the alloy system, processing condition, as well as location within the melt pool.

Moreover, as the distance between the layers and the substrate increases, the cooling

rate is expected to decrease. The most important parameters that affect the solid-

ification structure are the local solidification growth rate, V , and thermal gradient,

G [10]. Figure 2.3 shows the relationship between the MAM processing parameters

and the solidification microstructure, linked through the melt pool formation.

As seen in Figure 2.3, the ratio G/V affects the solidification morphology whereas
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Figure 2.3: Relationship between the MAM processing parameters and the
solidification microstructure through the melt pool formation.

the cooling rate G ·V affects the size of these structures. The variations in the cooling

rate and thermal gradient at different locations during the built results in the inho-

mogeneity in the microstructure and the physical properties of the parts produced by

MAM. Moreover, the microstructure and the grain structure at different locations are

further modified due to repeated heating and cooling cycle as the build progresses [10].

Therefore, to characterize the microstructure and predict the properties of the parts

built using MAM, it is essential to understand the evolution of the microstructure

with the processing conditions and as the build progresses in height during the man-

ufacturing process. In what follows, the fundamentals of microstructure evolution is

discussed in detail.
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2.2 Solidification Microstructure

Solidification microstructures are the microscopic patterns that are observed in the

10 nm−100 µm range when a liquid transforms to a solid [21]. According to Kurz, “A

microstructure is defined by the entirety of phases, grains, defects and their respective

morphologies, size, volume fractions, distributions, orientations, and crystallographic

directions” [5]. Most of the commonly exhibited microstructures by a pure metal or an

alloy can be classified into two categories: single-phase primary crystals (planar, cells

or dendrites) and polyphase (eutectic) structures. These morphologies either develops

as columnar (oriented) or equiaxed microstructures. Columnar microstructure devel-

ops when the heat flow is opposite to the growth direction (directional solidification)

and is also known as constrained growth. In contrast, equiaxed microstructure grows

when the heat flow and grain growth takes place in the same direction (undercooled

melt) [4].

The solidification microstructure along with the defects in the crystal and the mi-

crosegregation profile largely controls the properties and the quality of the as-solidified

component. Solidification microstructure also influences their behaviour in the subse-

quent forming processes [39, 40]. Thus microstructures act as a strategic link between

material processing and material behaviour. Therefore it is of practical importance

to study the relationship between the processing conditions and the microstructure

that results in the desired properties in the parts.

Solidification microstructures are controlled by several processes taking place at

different length scales. These processes depend upon the alloy composition, the ma-

terial properties (liquidus slope, partition coefficient), thermophysical properties (dif-

fusion coefficient, Gibbs-Thomson coefficient, thermal diffusivity) and also on the
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processing conditions such as the applied thermal gradient, cooling rate which con-

trols the flow of heat and mass through diffusion and convection [39, 40]. Over the

past years, great progress has been made in understanding the relationship between

the processing conditions and microstructure evolution through the development of

analytical and numerical models and improved experimental techniques. In this work,

the focus is on the single-phase primary crystals and in the subsequent sections, the

theories of planar, cellular and dendritic growth are discussed in the detail. This is

followed by the discussion of the microstructures observed during MAM processing.

2.2.1 Interface Dynamics

Solidification during MAM is characterized by the presence of a positive temperature

gradient i.e., the heat flows from the melt to the solid. Under these conditions, the

solid-liquid interface can exist in different morphologies depending upon the growth

condition. A single-phase interface has been observed to go through the following

sequence of interface morphologies: planar, cells, dendrites, cells, bands, planar as

the growth rate increases [5]. The presence of constitutional undercooling at low

velocities results in the destabilization of the interface. However, as the interface

velocity increases, the non-equilibrium effects become important which leads to the

re-stabilization of the interface as shown in Figure 2.4. The actual growth rates at

which these transitions take place depends upon the temperature gradient at the

interface, the alloy composition, and the interface attachment kinetics [39].
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Figure 2.4: Solid-liquid interface temperature during directional solidification. (a)
The equilibrium and non-equilibrium phase diagram. (b) Interface response as a
function of growth velocity corresponding to the phase diagram. The continuous

line in (b) corresponds to the approximate interface/tip temperature of the
morphologically stable structure under steady state [5].

2.2.2 Planar Interface Growth

Planar interfacial growth is an important growth morphology since it results in the

uniform composition in the solid during steady growth. The problem of interfacial

stability has been studied by using the Mullins-Sekerka instability theory [41] and only

for restricted growth velocities, the interface becomes unstable. However, most of the

practical solidification conditions overlap with the instability region and therefore

most of the solidification microstructures are dendritic [5]. The lower and the upper

limit on the interfacial velocities is given by Vc (constitutional undercooling) and Va

(absolute stability) respectively i.e., for V < Vc and V > Va the interface grows with

planar morphology. The constitutional undercooling velocity is given as [5]
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Vc =
GmDl

∆T0

, (2.2.1)

where Dl is the diffusivity coefficient in the liquid phase and ∆T0 = TL − TS is

the difference between the liquidus and solidus temperature at C0. Gm is the mean

thermal gradient at the interface and is given as:

Gm =
GsKs +GlKl

Ks +Kl

,

where Ks and Kl are the thermal conductivities in the solid and liquid phase respec-

tively. Gs and Gl are the thermal gradients in the solid and liquid phase respectively.

The thermal gradients in the above equation are calculated at the interface. Finally,

the velocity for the absolute stability is expressed as [5]

Va =
Dl∆T v

0

Γkv
, (2.2.2)

and

∆T v
0 =

C0mv(kv − 1)

kv
,

where ∆T v
0 is the velocity-dependent temperature difference between the liquidus and

solidus temperature for dilute solutions assuming linear phase diagrams.

2.2.3 Cellular Growth

During directional solidification, cellular growth takes place when the planar interface

becomes unstable at low growth velocities or high velocities before the limit of absolute
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stability. The cellular structures are characterized based on the cell tip composition

or temperature, the spacing between the cell tips (periodicity of the cellular structure)

and the interface shape near the grooves. Based on the experimental observations

the cellular structures are classified into two types: low amplitude cells and large

amplitude cells as shown in the Figure 2.5 [39].

(a) Low amplitude cells (b) High amplitude cells

Figure 2.5: Growth morphologies of cellular structures.

Low amplitude interface cells forms at low and high velocities near the limit of

planar interface growth. Significant differences in the concentration profile of low

amplitude cells at low and high velocities have been found. Far from the threshold of

planar stability large amplitude cells are formed [39].

The crucial role of crystalline anisotropy in influencing the cellular array stability

has been shown using numerical and theoretical models [40, 42]. Moreover, the exis-

tence of a small range of stable spacing has also been studied using such models. In

these studies, the cellular array was found to be unstable beyond a lower spacing limit

with certain cells disappearing due to overgrowth. Above the critical upper spacing

limit the tip-splitting was observed to take place [39, 2]. Furthermore, experimental

studies on the transparent system have shown a selection of average cell spacing which
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goes down with increasing velocity [43, 44, 45].

2.2.4 Dendritic Growth

Most of the solidification processing conditions lie in the region where the dendritic

growth is stable and therefore dendritic structures are among the most prominent

microstructures observed during solidification processing. It is also among the most

complicated pattern formed during solidification and its ubiquity has made it one of

the most studied microstructure during the grain growth process. The term ‘den-

drite’ is derived from the Greek word for the tree (dendron) since the dendritic struc-

tures are highly branched with primary, secondary, tertiary and higher-order branches

as shown in Figure 2.6 [46, 40, 39].

𝜆,

𝜆-

𝑅

Figure 2.6: A schematic of a dendritic structure with the important length scales
which are used to characterize the dendritic structures.

Several microstructural features such as dendritic tip radius R, primary spacing λ1

(directional growth) and secondary spacing λ2 are used to characterize the dendrites
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as shown in Figure 2.6. Several theoretical and numerical models have been proposed

in the literature to quantitatively model the relationship between the processing con-

ditions and the characteristic length scales during dendritic growth. However, most

of these models only consider an isolated dendritic tip. Nevertheless, these dendritic

tip models have provided fundamental insight into the growth behaviour and help to

determine the tip radius and tip composition as a function of growth velocity or the

undercooling. Moreover, these models have been useful in predicting the microstruc-

tural transitions and creating microstructure selection maps [46].

Dendritic growth models

The first rigorous self-consistent model of a steady-state growth of an isolated thermal

dendritic tip was proposed by Ivantsov. In the model formulation, Ivantsov made

many simplifying assumptions such as the interface was assumed to be isothermal.

Moreover, the curvature and interface kinetic effects were neglected. A relationship

between the dimensionless undercooling and the thermal Péclet number was given by

Ivantsov for the case of pure undercooled melt [39, 40, 46] and is expressed as

∆ = Pt exp(Pt)E1(Pt), (2.2.3)

where ∆ is the non-dimensional undercooling and Pt is the thermal Péclet number

defined as the ratio of dendritic tip radius R and thermal diffusion length 2αl/V , with

αl being the thermal diffusivity in the liquid phase and E1 the exponential integral

function [40, 4]. Afterwards, Ivantsov extended his model to binary alloy dendrites

and gave a relationship between the solutal supersaturation Ω, growth rate V and

the tip radius R [4, 40] and is given as
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Ω = Pc exp(Pc)E1(Pc), (2.2.4)

where the solutal supersaturation (Ω = ∆C/∆C∗) is given as the ratio of the change

in the concentration of the tip (∆C = Ct − C0), to the concentration difference at

the tip (∆C∗ = Ct(1 − k)) and Pc is the solutal Péclet number, which is given as

the ratio of the tip radius R, to the solutal diffusion length 2Dl/V [4]. Nonetheless,

the solution of the Ivantsov equation did not give a unique solution for the dendritic

growth. For a given undercooling or supersaturation the product of V R is constant

and infinitely many solutions can exist.

The Ivantsov model neglected the capillary effects, consequently, neglecting the

thermodynamic constraint on the critical tip radius Rc given by the critical radius

of nucleation. At the critical radius, the supersaturation effect is counteracted by

the curvature [4, 40]. So the next step was to include the capillary effect in the

Ivantsov model. The modified Ivantsov model was proposed where the tip tempera-

ture/composition was modified by taking into account the capillary effects. Temkin

further improved the Ivantsov model by accounting for the capillary and interface ki-

netic effects. The inclusion of the capillarity resulted in a maximum point in growth

velocity. However, still, no unique solution was given by the modified theories, and

at least one other phenomenon had to be considered [40, 39, 46]. Earlier, it was

assumed that the dendrites select the tip radius which leads to the maximum growth

rate (maximum-velocity principle), however, the results predicted by the maximum-

velocity principle did not agree with the experiments [47, 48]. Interestingly, the shape

of a actual dendrite is very similar to a paraboloid near the tip region, therefore the

Ivantsov model was determined to be a reasonable solution for an isolated dendritic
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growth [48, 40].

Marginal Stability Criteria

Langer and Müller-Krumbhaar performed a linear stability analysis of an Ivantsov

paraboloid and found that of all the tip radius R, only a band of R gives a stable

radius. They showed ‘that dendrites that are too broad and slow growing suffer tip-

splitting instabilities, whereas those which are too sharp and fast growing tend to

broaden and slow down because of a side-branching instability’ [49, 50]. Among the

stable values of R, they found that the higher limiting value agreed remarkably well

with the experiments done by Glicksman et al. [47, 48], leading to the proposal that

the dendrite selects the largest stable radius and they called this criterion as ‘marginal

stability criteria’(MSC).

In the limit of low Péclet number the MSC predicts the relationship between the

dendrite tip radius which has the form

R =

[
Γ/σ∗

mGcξc −Gm

]1/2
, (2.2.5)

where Gc is the solute concentration gradient, σ∗ is a stability constant and ξc is a

Péclet number dependent function [39]. Although, there is good agreement between

the experimental results and the marginal stability criteria, however, it is not a rigor-

ous criterion since there is no justification for the selection of one stable radius over

all other stable values. Moreover, the model also ignores the effect of surface energy

on the self-consistent growth model. With the addition of the capillary effect, the

Ivantsov parabola does not remain shape-preserving. However, Langer and Müller-

Krumbhaar assumed that the interface deviates only slightly from the steady-state
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shape when isotropic capillary corrections are introduced.

Solvability Theory

The advent of MSC lead many authors to develop a mathematically rigorous model

of self-consistent steady-state dendritic growth problem without any ad-hoc assump-

tions [51, 52, 53, 54, 55, 56]. From these studies, it was found that if isotropic

capillarity or interface attachment is considered, no matter how small the effect, no

steady-state dendrite solution exists. Only in the presence of anisotropic interfa-

cial energy, a discrete set of steady-state shape shape-preserving solutions can be

found [51, 52, 53, 54]. Out of these discrete sets of solutions, only the fastest one

is stable against tip splitting instability [55, 56]. This stable solution gives a unique

dendritic tip radius and is known as the microsolvability condition.

The solvability condition has been applied at low and high Péclet numbers to

describe the relationship between the tip radius and growth velocity in both thermal

and solutal dendritic growth problems [57, 58]. The relationship for the dendritic

tip radius predicted by solvability condition is the same as equation (2.2.5) except

the stability parameter is not a constant but rather depends on the surface energy

anisotropy parameter ϵ.

The solvability condition shows that the steady-state dendritic shape is very close

to a parabola therefore the solutal and thermal fields can be approximated from that

given by the Ivantsov model [39, 46]. Although, the stability criteria predicted by

MSC and solvability condition is generally viewed as V R2 = constant. However, this

is only true for low Péclet number conditions. At high Péclet numbers i.e., greater

than unity; V R2 increases rapidly [59, 60].
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2.2.5 KGT Model

In the 1980s, Kurz, Giovanola and Trivedi proposed an analytical model of direc-

tion solidification applicable under rapid solidification conditions by combining the

Ivantsov solution with the marginal stability criteria. In the model, the radius of the

dendritic tip is estimated using the critical wavelength of a marginally stable planar

solid-liquid interface coupled with the solute trapping effect. In the KGT model, the

relationship between the microstructural characteristics with the growth velocity is

expressed as [60]

V 2A+ V B + C = 0, (2.2.6)

with

A =
π2Γ

P 2
c D

2
l

,

B =
mC0(1− k)ξc

Dl[1− (1− k)Iv(Pc)]
,

C = G,

where Iv(Pc) = Pc exp(Pc)E1(Pc) and ξc is given by the equation

ξc = 1− 2k

[1 + (2π/Pc)2]1/2 − 1 + 2k

The variation of the diffusion coefficient and the changes in the phase diagram

with temperature have also been considered in the KGT model. The KGT model

has been successfully applied to predict the experimental results and microstructure

characteristics under rapid solidification conditions.
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2.2.6 Rapid Solidification Microstructure

Rapid solidification (RS) processing often refers to solidification done under high

cooling rates or high undercooling values. According to Kurz and Trivedi, “The best

way to define RS is through the Péclet number of the corresponding microstructural

feature: typically tip radius, R, for dendrites, cell spacing, λ, for cells, interphase

spacing, λe, for eutectics, and atomic interface width, δi, for solute trapping” [39].

The classical growth theories based on low Péclet number approximation needs to be

modified to account for the localization of the diffusion field under RS. Furthermore,

the assumption of local interfacial equilibrium is no longer valid under RS.

Several authors have proposed theoretical models for predicting the microstruc-

tural features during rapid solidification. These models combine the transport model

of Ivantsov with the marginal stability criteria including the solute trapping effects,

the so-called IMS (Ivantsov-Marginal Stability) models [60, 61]. Good agreement be-

tween the experiments and the IMS theories has been found for a significant range of

undercooling in many metals and alloys.

Very fine-grained microstructures have been observed at high growth rates for a

large range of undercooling values. These fine-grained microstructures are believed

to be the result of dendrite fragmentation. Fragmentation refers to the detachment

of dendrite arms or trunks. These fragments can move into an undercooled melt and

can initiate fine-grained equiaxed microstructures. Also, before the stabilization of

the interface at high growth rates, very fine cellular structures are observed which are

referred to as microcellular to differentiate them from the coarse cells [39, 40, 62].

Another interesting phenomenon that has been observed at high growth rates is

the oscillatory behaviour of the solid-liquid interface known as banding. Banding
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takes place in the regime between cellular-dendritic and planar front solidification

where absolute stability is predicted by the absolute stability criteria. A banded mi-

crostructure is characterized by the presence of alternating planar front and cellular-

dendritic structures which are approximately perpendicular to the growth direction.

Periodicity of the bands has been observed to be independent of the growth velocity,

whereas the fraction of the cellular-dendritic bands decreases with increasing growth

rate [39, 46, 62].

2.2.7 Microstructure - Processing Relationship

Trivedi and Kurz showed that simple yet remarkable correlations exist between the

physical process and the microstructural length scales. They did this by examining

all the important physical processes that control the solidification microstructures

i.e., thermal and solute diffusion, capillarity etc. and by associating a characteristic

length scale to these physical phenomena. The basic conceptual approach behind

this idea shown in the Figure 2.7 [6]. The characteristic length scale of the physical

processes is listed in Table 2.3.

Table 2.3: Characteristic length scales of physical processes [6]

Characteristic Length
Undercooled Melt

Directional Solidification of alloys
Pure Alloy

Solute diffusion length, lD Dl/V Dl/V Dl/V

Thermal length, lT αl/V αl/V ∆T0/G

Capillary length, d0 Γ/∆T 0 Γ/∆T0 Γ/∆T0

Now, in a general alloy system where all three processes i.e., thermal, solute and
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Figure 2.7: A basic conceptual approach relating the microstructural length scales
with the physical processes through physical length scales [6].

capillary effects are important, the general microstructural length scale Li can be

given as [6]:

Li = A[lD]
a[lT ]

b[d0]
c (2.2.7)

where Li = (R, λ1, λ2, λe) is the characteristic length, the exponents a, b, c are con-

stant whose sum must be equal to 1 and A is a constant of proportionality. Moreover,
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the transition between different morphologies is the result of an interplay between dif-

ferent physical processes and this transition condition can be written in terms of the

physical length scales. For directional solidification this is given as:

(i) Transition from planar to cellular growth at low velocity: lD = lT

(ii) Transition from the cell to dendrite at low velocity: lD = klT

(iii) Transition from cellular to planar growth at high Velocity: lD = kd0

The transition from the dendrites to the cell at high velocities yet cannot be

defined by this simple relation, however, it is believed to be of the form lD = αd0,

where α is some constant [6].

2.2.8 MAM Microstructure

During MAM, the feedstock material is subjected to complex heating and cooling

cycles, hence many MAM processes can lead to the formation of meta-stable mi-

crostructure and non-equilibrium phase composition that can vary along the build

height [11]. Fine columnar cellular-dendritic microstructures are among the most

commonly observed structures during the MAM processing [63, 64, 65, 66, 67, 68].

These fine columnar microstructures are believed to be a result of high thermal gra-

dients and rapid cooling rates. Although the above considerations are valid for all

MAM processes, the exact phases and microstructure depend upon the alloy system

and actual MAM processing route taken. In what follows the variables that control

the microstructure formation during MAM are discussed in detail.

34



M.Sc. Thesis – P. Pal McMaster University – Materials Science & Engineering

Solidification Selection Maps (SMS)

As mentioned previously, the thermal gradient G, and growth rate V are important

parameters that affect the solidification microstructure and grain morphology that

forms for a given alloy composition and processing conditions. SMS maps are an

efficient tool that illustrates the structure-process relationship. They can be very

helpful in effectively assessing the wide parameter space and can be helpful in the

development of detailed numerical models [7].

Figure 2.8: Type 2 SMS map for Al-10wt%.Si-0.5wt%.Mg alloy for PBF-L
process [7].

Depending upon the value of the thermal gradient and growth rate, the solidifi-

cation structure may undergo columnar to equiaxed (CET) transition as shown in

the Figure 2.8. Using solidification maps one can figure out the values of G and V to

get the desired microstructure.
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Grain Structure

MAM alloys predominantly have oriented, columnar grains. The melt pool shape and

size can significantly affect the grain structure in the MAM process. In the case of

PBF systems which are characterized by fast scanning speeds, the grains are closely

aligned with ⟨100⟩ build direction, whereas, in the case of DED, the grain orientation

can significantly deviate from the build direction [10, 13].

2.3 Numerical Modelling

Quantitative prediction of solidification microstructure is a computational challenge

owing to the multi-physics and multi-scale nature of the solidification phenomenon.

Over the years, many computational models of the solidification and microstructure

formation have been developed to study the various aspects of the multi-scale phe-

nomenon, beginning with the nucleation and interfacial properties at the atomic scale

to macro-scale heat and mass transfer [69, 70, 71]. Figure 2.9 list the different models

that are used in the solidification study, these models have been roughly classified

based on the physical length and time scales at which they are applicable.

All these models are important in the study of the solidification phenomenon and

are linked with each other. The multi-scale approach involves calculating the desired

properties at a given scale with inputs coming from the lower scale models and the

outputs being used in the larger-scale models.

Atomistic simulations using Molecular Dynamics (MD) and Monte Carlo (MC)

methods have been extensively used to study the interfacial properties such as the

free-energy and the kinetic coefficient of the solid-liquid interface. These properties
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Atomistic Models 
(MD, MC)

Phase Field 
Crystal 

Microscale 
Models 
(PF, FT, VOF, 
LSM, EM, 
PFT, m-CA)

Mesoscale 
Models
(CA, Voronoi 
Tessellation, 
MC )DNN, 

Grain 
Envelope 
Dynamics

Length Scale
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m

e 
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e 

MD – Molecular Dynamics
MC – Monte Carlo 
PF – Phase Field 
FT– Front Tracking 
VOF – Volume of Fluid 
LSM – Level Set Method
EM – Enthalpy Method
PFT – Pseudo Front Tracking 
DNN – Dendritic Needle 
Network
CA – Cellular Automata 
m-CA – Modified CA

Macroscale 
models of heat 
and mass 
transfer

Figure 2.9: Different models used in the solidification study classified according to
the domain of applicability.

are crucial in studying the microstructure formation over a wide range of processing

conditions [72, 73, 74, 75, 76]. Atomistic models have also been used to quantitatively

study the phenomenon of solute trapping during rapid solidification and interface co-

alescence during the late stage solidification [77, 78]. To bridge the gap between

the atomistic and continuum scale the phase-field crystal (PFC) models were devel-

oped. PFC models describe the phenomenon at atomic length and diffusive time scale

and have been used to study phenomena like an expansion on melting, solid-liquid

bulk modulus, grain boundary energetics, reconstructive phase transitions and many

more [79, 80, 81].

On a micro/mesoscale level, phase-field models have been extensively used to
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study the evolution of solidification microstructure in a wide range of alloy systems.

Interfacial free-energy anisotropy derived from atomistic models can be used as inputs

in the phase-field models to predict the dendritic growth kinetics and orientation

selection [82, 83]. In turn, the grain growth kinetics derived from the phase-field

models can be used as inputs in the meso/micro-macro models of solidification such

as Cellular Automata coupled with Finite Element (CAFE) and analytical models

that make the connection between the microstructure and process scale [84]. In

the subsections that follow, we will discuss the microstructure and grain-structure

models in detail along with the Dendritic Needle Network (DNN) model which has

been developed to bridge the gap between these two modelling approaches.

2.3.1 Microstructure Modelling

Over the last three decades, several numerical models have been developed to simulate

the evolution of dendrites in pure metals and alloys under a wide variety of processing

conditions. These numerical models can be generally classified into two different

categories depending on how the moving solid-liquid interface is represented and

tracked during the simulations: explicit and implicit interface tracking methods.

In explicit methods such as Front Tracking (FT) and Pseudo Front Tracking (PFT)

methods, the interface is explicitly tracked by using the discretized form of the Stefan

boundary condition. These methods usually rely on two different grids: a fixed

Eulerian grid to solve the field equations and a lower order Lagrangian deforming

grid that is used to keep track of the interface [85, 86]. The explicit interface tracking

methods are computationally very expensive (equally or more expensive than phase

field), the topological changes are not easy to handle and they are extremely difficult

38



M.Sc. Thesis – P. Pal McMaster University – Materials Science & Engineering

to extend to 3D. To overcome these challenges implicit interface tracking methods

were developed [87].

Implicit tracking methods such as Phase Field (PF), Volume of Fluid (VOF),

Level Set Method (LSM) and Enthalpy Method(EM) use an auxiliary variable which

is a function of space and time defined over the whole domain to describe whether

a given location is solid or liquid [88, 89, 90, 91]. The auxiliary variable (order

parameter) takes on a fixed but different value in the solid and the liquid domain, and

a sharp and localized change in the order parameter is used to describe the solid-liquid

interface. The approach avoids the complexity of applying the boundary condition

at an unknown location which is part of the solution and topological changes are

easier to handle. The main challenge in the implicit methods is to accurately relate

the evolution of the order parameter with problem definition [82, 87]. Among all the

methods used for microstructure evolution, the phase-field method has emerged as a

top runner and is widely used to study the solidification phenomenon.

Phase Field Model

The phase-field (PF) model has its origins in the diffuse interface theory of van der

Waals, Chan-Hilliard, and Ginzburg-Landau theories of phase transition [92, 93]. The

PF model uses a non-conserved constant phase variable to describe the phase of the

material and the solid-liquid interface is defined as a steep, but continuous transition

of the phase-field variable [82]. The governing equations describing the evolution of

the PF model ensures the minimization of the free energy of the system with time,

moreover, they are coupled with the diffusion field near the interface [40].

PF models have been extensively used to study many different aspects of the
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solidification and crystal growth phenomenon. Beginning with Kobayashi’s works

in 1987, there has been great interest in the PF method for simulating dendritic

growth [40]. Following Kobayashi’s work [94], the PF theory was soon extended to

alloy systems and directional solidification [95, 96, 88, 97, 98, 99].

The PF methods were initially limited to high supersaturations, where the length

of the diffusion boundary layer is small. The requirement that the width of the

diffuse interface be the same as the physical interface posed a difficulty in making

quantitative predictions with the PF method. With the development of asymptotic

analysis of the phase-field variables known as the thin interface limit, it has become

possible to perform quantitative predictions with the phase-field method. The thin

interface limit allows one to use a much thicker interface than previously possible

and helps in the elimination of the non-equilibrium effects at the interface [100, 101,

102]. The introduction of an anti-trapping current technique to avoid the problem of

excessive solute trapping associated with a diffuse interface made it possible to make

quantitative predictions for non-isothermal alloy solidification [100, 102]. Recently,

progress has been made to develop quantitative PF models using the anti-trapping

current technique that are valid for arbitrary phase diagrams and/or finite solute

diffusivity in solid [70].

Karma and Rappel used PF models to test the microscopic solvability theory and

have found good agreement at low anisotropies [40]. The PF model quantitatively

agrees with directional solidification experiments [102] and provide an exact bench-

mark for analytical models of tip undercooling selection. The existence of stability

gap in pattern selection at low interfacial anisotropies and origin of side-branching as

noise amplification was also confirmed using the PF modelling [103, 104, 105]. The
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approach has also been applied to multiphase problems and peritectic alloys [106, 107].

Recently, some researchers have applied PF modelling to predict the microstruc-

ture evolution during the PBF process. The thermal field and melt pool information

were either calculated using macroscopic models of heat and fluid flow (Finite El-

ement, Lattice Boltzmann, Volume of Fluid) or through the analytical models and

were used as input to the PF method to predict the effect of processing parameters

on the microstructure, growth morphology and microsegregation patterns during the

PBF process. The phase-field models were validated by comparing the grain struc-

ture and dendritic spacing with the experimental micrographs [108, 109, 110, 111,

112, 113, 114, 115, 116]. However, the PF method has certain limitations. It is com-

putationally very expensive and additional techniques such as asymptotic analysis

and anti-trapping current are required to make quantitative predictions.

2.3.2 Grain Structure Modelling

Stochastic models based on Cellular Automata (CA) and Monte Carlo (MC) methods

can be used to predict the grain structure and texture during the solidification process.

Compared to the models discussed in the previous section, these models do not re-

solve the individual dendritic crystals but rather simulate the growth of the dendritic

envelope using simple rules and growth kinetics derived from analytical models (not

in the case of MC). With the improvements in the computational implementation, CA

models can simulate grain structure in large castings within reasonable computational

times. In what follows we will discuss the CA model in detail [117, 118, 119, 120].
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Cellular Automata

In CA, the discrete computational domain is represented by a grid of cells having

defined states and the evolution of the system is governed by state transition rules that

depend on the cell neighbours. Complex behaviours and patterns can be simulated

by repeatedly applying the transformation rules [121].

CAFE model was developed by Rappaz and Gandin in the 1990s to simulate

the dendritic grain formation during solidification [117, 118]. CAFE models have

been successfully applied to study casting, directional solidification, grain structure

formation, columnar to equiaxed transition (CET), grain impingement and defect

formation in different alloy systems [117, 118, 122, 123]. CAFE models have also been

used to study the grain structure and texture formation during MAM process [124,

125, 126, 127, 128].

Although the CAFE model has been successfully applied to study numerous phe-

nomena associated with solidification with great success. However, its application is

limited by certain assumptions made during the modelling process. The grain growth

kinetics is taken from the analytical model and therefore it is restricted only to cases

for which analytical growth theory exist. In the CAFE model, the dendrites are re-

stricted to grow along the ⟨100⟩ directions and as such it does not apply to hexagonal

systems. Moreover, the grains in the CAFEmodel interact through hard-impingement

and the grains do not slow down when their solute fields overlap [84].

To overcome some of the restrictions of the CAFE model, the modified-Cellular

Automata (m-CA) model was developed. These m-CA model solves for the solute

field and thus can handle soft impingement. This model can also elucidate the un-

derlying dendritic structure inside the grain envelope. The m-CA model has been
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successfully used to predict the primary and secondary dendritic arm spacing, CET,

growth competition among dendritic trunks and MAM process [129, 130, 131]. Al-

though m-CA overcomes some of the limitations of the CAFE model and produces

dendritic structures like PF, however, the growth algorithm cannot predict the actual

kinetics of the dendrite tips and has never been validated against analytical solutions

or phase field computations. To get to PF accuracy, the m-CA model needs a finer

grid and refined algorithm for calculating the interfacial curvature [84].

2.3.3 Dendritic Needle Network

Dendritic Needle Network (DNN), which represents the hierarchal dendritic structures

as thin needles that interact through long-range diffusion field has been developed

to bridge the gap between micro-scale models such as PF and mesoscale models

such as CAFE. In the DNN model, the solid-liquid interface is assumed to be in

local equilibrium. The growth dynamics of the individual needle is uniquely defined

by combining the solute balance near the tip region and the standard microscopic

solvability condition. However, in its current form DNN model is restricted to only

simulating grain growth in low Péclet number regime [132, 133].

2.3.4 Cellar Array Growth Model

An alternative approach to study interfacial characteristics during directional solidi-

fication is through the use of the cellular array growth model developed by Hunt et

al. [134, 135, 1, 136, 2, 3]. The numerical model uses a hexagonal grid to represent an

array of directionally grown cells and dendrites and can be used to study the effect
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of the input parameters such as applied thermal gradient and steady-state interfa-

cial velocity and material properties on the existence of the cellular and dendritic

structures during directional solidification of binary alloys. The model has been used

by the Hunt et al. to study the growth morphology, stable spacing range, interfacial

conditions and microsegregation profile for a range of solidification velocities going

from normal solidification to rapid solidification conditions.

In comparison to the phase-field model which is very computationally expensive

and requires additional techniques such as anti-trapping current and asymptotic anal-

ysis to make quantitative predictions and the DNN model which is only restricted to

solidification done at low velocities, the cellular array growth model can be used to

study interfacial characteristic from the onset of constitutional undercooling to abso-

lute stability limit. In this thesis, a model based on the work of Hunt et al. has been

used to study relationship between the MAM processing conditions and the interfa-

cial conditions at the solid-liquid interface to establish if the MAM process exhibit a

rapid solidification route.

In the chapters that follow, the scope and objectives of this thesis are discussed.

This is followed by a detailed description of the developed model and its application

to the binary Al-Cu alloy system to study the interfacial characteristics over a range

of growth velocities.
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Chapter 3

Scope and Objective

There has been an increase in the use of the MAM especially PBF-L and PBF-EB

processes in the aerospace and the medical industry. However, the parts made by

MAM have large structure and property variations which makes their widespread

adoption difficult. Moreover, it is generally assumed in the literature that the solidi-

fication during MAM follows the rapid solidification processing route, however, there

are not many studies where the interfacial conditions during the PBF process have

been systematically studied.

To address these issues and to quantify the interfacial conditions during the PBF

process, in this master’s project it is proposed to develop a computationally efficient

model to simulate the growth of the cellular and dendritic array during the PBF

process.

The newly developed model is based on the work of Hunt et al. [134, 135, 1,

136, 2, 137, 3]. The model accounts for the changes in the phase diagram and other

non-equilibrium phenomena that occur at high interfacial velocities and is capable

of simulating an array of directionally grown dendrites or cells at both low and high
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Péclet numbers.

The objectives of this study are as follows:

1. To develop a computationally efficient model of direction solidification that is

valid at both low and high Péclet numbers.

2. To quantify the interfacial conditions such as undercooling values, tip concen-

tration and tip radius during the PBF-L process.

3. To identify the range of possible primary spacing during the PBF-L process.

4. To identify the RS processing zone based on the tip/spacing Péclet number

during the PBF-L process.
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Chapter 4

Numerical Method

In this chapter, the numerical method that has been developed to study the interfacial

behaviour during the PBF-L process is described in detail. The model can simulate an

array of directionally grown cells or dendrites under steady-state growth conditions.

In the model, a directionally grown array of cells or dendrites are approximated using

a grid of hexagonal cells and henceforth referred to as the cell model.

The cell model solves the solute conservation equation in an externally applied

linearly moving temperature field. In the cell model, the shape of the solid-liquid

interface is not known a priori and needs to be identified as part of the solution. The

developed model accounts for the constitutional and curvature undercooling, along

with the variation of partition coefficient and diffusion coefficient with temperature.

At high growth velocities, the non-equilibrium effects such as the variation of the

partition coefficient and liquidus slope with velocity and interface attachment kinetics

are also considered in the present model. The model is used to estimate the range of

primary spacing, the extent of different undercooling values, and the tip and spacing

Péclet number for a range of growth velocities during the PBF-L process. In what
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follows the cell model is described in detail.

4.1 Model Description

In the cell model, an axisymmetric hexagonal grid is used for representing an array

of directionally grown cells or dendrites. As shown in Figure 4.1a, the hexagonal

grid consists of a representative repeat unit, where each cell of radius/width W is

surrounded by six other cells and so on. The distance between centres of any two

adjacent cells is 2W and is equal to the primary spacing λ1. Each cell in the array

consists of a steadily growing cell or dendrite with a constant tip velocity V into a

liquid of bulk composition C0 as shown in Figure 4.1b [134, 135]. Due to symmetry,

only a single half-cell from the array is modelled and its interaction with the neigh-

bouring cells is accounted via appropriate boundary conditions. The single half-cell

used in the simulations is shown in Figure 4.2. In the Figure 4.2, the surface Γ4 is the

solid-liquid interface which is a free-boundary of the domain and its shape needs to

be identified as part of the solution. However, to simplify the free-boundary problem,

it is assumed that the solid-liquid interface can be represented as a paraboloid i.e.,

a surface of revolution. The coupling between the shape of the solid-liquid interface

and the governing partial differential equation for the steady solidification problem

results in a set of nonlinear equations. To keep the nonlinear problem tractable, fur-

ther simplifying assumptions are made such that no diffusion is considered in the solid

phase and the temperature field is externally applied which has an imposed transla-

tion in the z-direction. Under these assumptions, the problem reduces to identifying

the shape of the interface and position of the tip in an external temperature field

such that the conservation equation (Eq. 4.3.1 and Eq. 4.3.3) is satisfied everywhere
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in the domain and the undercooling condition (Eq. 4.6.3) is satisfied everywhere at

the solid-liquid interface.

2W

(a)

Solid

Liquid

2W

r

z

(b)

Figure 4.1: a) Schematic representation of the cellular/dendritic array when viewed
from the growth direction. In the simulations, only the middle dark grey cell is

modelled. The distance between the centres of any two adjacent cells is 2Wand is
equal to the primary spacing λ1. b) A single cell from the grid with the growing

solid inside.

4.2 Governing Equations and Boundary Conditions

The governing equation for the cell model consists of the solute conservation equation

in the liquid domain, which is solved with appropriately defined boundary conditions

at the fixed and free domain boundaries. As mentioned previously, the coupling

between the shape of the interface and the field variable, along with the boundary

conditions results in a system of nonlinear equations. In the present work, the re-

sulting system of nonlinear equations is simultaneously solved for the interface shape

and the concentration profile using the Newton-Raphson method.

Given the axisymmetric nature of the problem, it is easier to work in a cylindrical
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coordinate system and the solute conservation equation in the liquid domain in a

cylindrical coordinate system can be expressed as

∂Cl

∂t
= Dl∇2Cl, (4.2.1)

Since steady-state solutions are of interest in the present work, it is better suited to

work in a unidirectional moving frame of reference which is moving with velocity V in

the axial direction. Under steady-state conditions and in a moving frame of reference

the Eq. 4.2.1 can be rewritten as

Dl∇2Cl + V
∂Cl

∂z
= 0, (4.2.2)

where Cl is the composition in the liquid phase, Dl is the solute diffusivity in the

liquid phase, and V is the steady-state tip velocity.

Two distinct boundary conditions are required at the free-boundary of the domain.

One of the conditions is required to satisfy the solute conservation equation whereas

the other condition is required to identify the shape of the free boundary. Interface

being the free-boundary, one of the conditions is given the Stefan condition. In the

absence of diffusion in the solid phase, the solute flux at the solid-liquid interface is

given by one-sided Stefan condition as

Vn(1− k)C∗
l = −Dl

∂Cl

∂n
, (4.2.3)

where Vn is the normal interfacial velocity, k is the partition coefficient, C∗
l is the

interfacial composition on the liquid side and ∂Cl

∂n
is the normal solute flux at the

interface. The above equation was used to satisfy the solute conservation equation in
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the present model.

The other condition at the solid-liquid interface, which was used to identify the

self-consistent shape, is given by an equation that relates the interfacial temperature

with the interfacial composition and curvature and can be expressed as

T ∗ = TL +m(C∗
l − C0)− Γ(ζK1 +K2), (4.2.4)

where T ∗ is the interfacial temperature, TL is liquidus temperature, m is liquidus

slope, C0 is initial composition, Γ is Gibbs-Thomson coefficient. K1 and K2 are

the two principal curvatures of the surface of revolution and ζ is a parameter that

accounts for the anisotropic interfacial energy. ζ is given as

ζ = 1− 15ϵ cos(4θ),

where ϵ is the anisotropy parameter which is a measure of the strength of the

anisotropy. The surface energy is assumed to have four-fold symmetry and θ is the

angle between the surface normal and the crystal axis.

In addition to this, the governing equation also needs to satisfy the conditions

at the domain boundaries. At the north wall of the domain (Γ1) and the axis of

symmetry (Γ3), a no flux condition was specified i.e.,

∂Cl

∂r
= 0. (4.2.5)

At the far end of the domain i.e., z → ∞, the concentration will be equal to the

bulk concentration C0 . However, for this condition to be applicable in the simulation,

the east wall (Γ2) needs to be very far away from the tip. Alternatively, at a far enough
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distance from the tip, there will be no compositional variation in the r-direction and

under such assumption, the Eq. 4.2.2 can be integrated to give the concentration

gradient at the east wall (Γ2)

dCl

dz
= − V

Dl

(
Cl(z)− C0

)
, (4.2.6)

where Cl(z) is the liquid composition at a distance z ahead of the tip. Please note

that the above equation is valid if the distance L2 > Dl/V +W [134].

Finally, the boundary condition at the west wall (Γ5) is obtained by assuming the

complete mixing at the base of the interdendritic region. This condition is given as

dCl

dz
=

G

m
. (4.2.7)

The above equation is necessary to satisfy the Eq. 4.2.4 at the base of the cell/dendrite.

This assumption is valid if L1 >> (VW 2)/Dl [134].

As mentioned previously, no heat flow is considered in the present model and

a linearly moving temperature field is externally imposed in the simulations. The

temperature field moving with velocity V in the z-direction is expressed as

T = G(z − V t), (4.2.8)

where G is the thermal gradient and t is time. The temperature field is imposed in

the simulations by translating to a moving frame of reference by arbitrary fixing the

liquidus isotherm at the origin i.e.,

T = Gz + TL.
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Under these conditions, the problem reduces to identify the shape of the interface

and the position of the tip with respect to the liquidus isotherm such that the solute

conservation equation is satisfied everywhere in the domain and the undercooling

equation is satisfied everywhere at the interface.

4.3 Discretization

Figure 4.2: An illustration of the computational domain and the grid used in the
simulations. The growth direction is horizontal and towards the right; the length of
the cell behind the tip is L1 while L2 is the length ahead of the tip. Finally, the

domain boundaries are denoted by Γi where Γ4 is the free boundary of the domain
and the rest are the fixed boundaries.

The numerical model is developed in the cylindrical coordinate system following

the finite volume approach. For this purpose, the complete computational domain

is divided into several small control volumes (CVs) as shown in Figure 4.2. The

procedure for generating the grid will be outlined in the section 4.4. The governing

equation is discretized by considering the accumulation of the solute in a given control
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volume. Under steady-state conditions, the influx will be equal to the outflux and no

accumulation will take place in a control volume. Using the divergence theorem, the

discretized equation for the internal control volume can be written as

Ae

(
Dl

∂Cl

∂z
+ V Cl

)
e

− Aw

(
Dl

∂Cl

∂z
+ V Cl

)
w

+ An

(
Dl

∂Cl

∂r

)
n

− As

(
Dl

∂Cl

∂r

)
s

= 0,

(4.3.1)

where the subscripts e, w, n, s represents the east, west, north and south wall of a

CV respectively. Ak, where k = {e, w, n, s} represents the area of the corresponding

CV wall. The concentration gradient and its value at the north and south wall

are calculated using the central differencing, whereas, exponential interpolation is

used for the east and west wall due to the presence of convective fluxes in the z

direction [138, 139]. The form of the exponential interpolation is given as [135]

C = A+B exp

(
−V z

Dl

)
(4.3.2)

The constants A and B are calculated using the values of the adjacent control

volume.

Similarly, the discretized equation for the interfacial CV is expressed as

Ae

(
Dl

∂Cl

∂z
+ V Cl

)
e

+ An

(
Dl

∂Cl

∂r

)
n

− Ai

(
Dl

∂Cl

∂n
+ VnCl

)
i

= 0, (4.3.3)

where Ai is the area of the interfacial surface and ∂Cl

∂n
is the normal solute flux at the

interface, which is estimated using the Stefan condition.
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4.4 Interface Representation and Grid Generation

Before a grid can be generated, a method is required to discretely represent the shape

and location of the unknown solid-liquid interface. Various approaches such as height

function, line segment and marker particles exist to represent an unknown boundary

in a free-boundary problem. Each method has its advantages and disadvantages, and

in the present work, the height function method is used to represent the unknown

solid-liquid interface [140]. In the height function approach, the unknown boundary

is represented using a discrete set of points (z, r(z)), where r(z) is the height of the

interface at a distance z behind the tip.

The height function approach is extremely efficient and easy to implement in a

numerical model. However, the height function method requires the boundary slope

to be less than the mesh cell aspect ratio to work well. Furthermore, it cannot be

used for multiple-valued surfaces i.e., modelling secondary and tertiary arms. [140].

The solution to the above solidification problem necessitates the use of very small

control volumes to accurately resolve the area near the tip region. Whereas, larger

control volumes can be used further away from the tip. Therefore, to achieve higher

computational efficiency a nonuniform structured grid is used in the cell model as

shown in Figure 4.2.

For the easy treatment of the interfacial control volume cells for discretization and

the application of boundary conditions, the grid is generated in such a way that the

interfacial control volume corners lie on the interface. To calculate the interfacial area,

if the interface CVs are small or if the interface curvature is less, the interface passing

through the control volume corners can be approximated using the CV diagonals.

In Hunt et al.’s model, a geometric progression was used to distribute the grid
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points in the axial direction [1]. However, as the number of grid points → ∞ the grid

size does not go to zero for a grid generated using a geometric progression [141]. To

overcome this issue, an interpolating scheme is used in the present work to distribute

the grid points in the axial direction (along z). The axial coordinates of the grid points

are generated in two steps. In the first step, the length behind the tip L1 is divided

into m points by using a mapping between a uniform computational domain going

from [0, 1] and the physical domain going from [0, L1]. This mapping is expressed as

z = L1

(
(β + 1) + (1− β)X1−xc

X1−xc + 1

)
(4.4.1)

and

X =
β + 1

β − 1
,

where xc ∈ [0, 1] is the distance in the computational domain and β is a factor that

controls the distribution of points along the axis. If β → 1, the points are clustered

near the origin [139]. In the second step, the distance in front of the tip L2 is divided

into n points using the same methodology on the physical domain going from [0, L2].

At this point, the complete domain is divided using vertical lines.

Now, the radial coordinates of the intersection of grid lines are determined. Along

the solid-liquid interface Γ4 the coordinates are given by the intersection of the vertical

lines with the interface. Finally, the remaining area above the interface Γ5 is divided

into k equal points. For most of the simulations, m = 20, n = 40, k = 10 points were

used to generate the grid with β = 1.0005. The axial coordinates of the grid points

are kept fixed throughout the simulation. However, as the interface changes during
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the process of reaching a convergent solution, the values of r(z) change, and thus

the vertical coordinates are updated each iteration. This ensures that the interface

always passes through the control volume corner and no explicit redistribution of grid

points is required after each iteration.

4.5 Interface Reconstruction

To apply the boundary conditions at the interface, the interface normal vector is

required for the Stefan condition Eq. 4.2.3, and the principal curvatures are required

for the application of the undercooling Eq. 4.2.4. The Stefan condition is applied at

the centroid of each interface control volume. Whereas, the undercooling equation

is applied at each interface control volume corner (interface grid points) by linearly

interpolating/extrapolating the compositional values from the adjacent interfacial

control volume cells.

The normal vector is calculated using the formula

n̂ =
1√

r′2 + 1

−r′

1

 , (4.5.1)

and the principal curvatures for a surface of revolution given by the generating curve

r = r(z), where z is the distance along the axis of revolution can be expressed as

K1 =
r′′

(1 + r′2)
3
2

(4.5.2a)

K2 =
−1

r
√
1 + r′2

(4.5.2b)
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where r′ and r′′ represents the first and second derivative respectively.

To calculate the first and second derivatives at any interface grid point, different

approaches such as finite differencing and cubic spline interpolation were tried in this

study. The above two methods were used to calculate the derivatives of a surface of

revolution given by r =
√
−z, where z < 0 and the resulting values were compared

against the analytically obtained values. As shown in Figure 4.3, finite differencing

approximation and the cubic spline interpolation suffer from instabilities in the region

of high gradients i.e., near the tip and resulting values have a large error in them.
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Figure 4.3: Comparison of a) first and b) second derivatives calculated using the
finite differencing approximation, cubic spline interpolation and tilted cubic spline
interpolation (the cubic spline was fitted in a co-ordinate frame which was rotated
at an angle of 45o w.r.t to the original coordinate frame) with the analytically
obtained values for a surface of revolution given by r =

√
−z where z < 0.
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To avoid instabilities in the cubic spline interpolation near the tip region, the

cubic spline is fitted in a co-ordinate system which is rotated at 45o with respect to

the original frame of reference. The interface grid point coordinates from the original

coordinate system can be mapped to the rotated coordinate system via 2×2 rotation

matrix. The rotation matrix can be expressed as

z̃
r̃

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


z
r

 , (4.5.3)

where (z, r) is a coordinate of a point in the original coordinate system whereas

(z̃, r̃) is the corresponding coordinate in a new coordinate system which is rotated

at an angle θ with respect to the original one. Now, the derivatives in the original

coordinate system can be related to the derivatives in the rotated coordinate system

using the above rotation matrix. The relationship between the first derivatives is

given as

r′ =
r̃′ − 1

r̃′ + 1
, (4.5.4)

and the relationship between the second derivatives is expressed as

r′′ =
r̃′′(1 + r′2 − 2r′)√

2(1 + r̃′)
, (4.5.5)

where r̃′ and r̃′′ are the first and second derivatives in the new coordinate sys-

tem. Although the principal curvatures of a surface remain invariant under rotation,

Eq. 4.5.2b is only valid when the surface of revolution is represented by a generating
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curve r = r(z) where the z direction coincides with the axis of the revolution. There-

fore, the derivatives from the rotated coordinate system are transformed back to the

original coordinate system in order to calculate K2 using Eq. 4.5.2b.

Please note that special treatment is required to calculate the principal curvatures

at the tip since Eq. 4.5.2b is undefined because r = 0 at the tip, and also to avoid

any error in the derivatives due to cubic spline boundary condition. The first issue

is resolved by taking note of the fact that the two principal curvatures at the tip of

a regular surface of revolution are the same and equal. Now to resolve the second

issue, since it is not required to calculate K2, one can take advantage of the fact

that the principal curvatures of a surface remain invariant under rotation, and also

the Eq. 4.5.2a for calculating K1 remains valid under rotation. Following this, a

small region near the tip is mirrored and a cubic spline is fitted to the mirrored

region by changing the independent and dependent variables. This enables the direct

calculation ofK1 from the mirrored and rotated cubic spline interpolation and thereby

avoiding any errors due to cubic spline boundary conditions.
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Figure 4.4: Comparison of a) first principal and b) second principle curvatures
calculated using the finite differencing approximation, cubic spline interpolation and
tilted cubic spline interpolation with the analytically obtained values for a surface of
revolution given by r =

√
−z where z < 0. Please note that in the case of tilted

cubic spline, the curvature at the tip was calculated by fitting a separate cubic
spline in the tip region as described in the text.

The interface normal and curvature values obtained using the three approaches

i.e., finite differencing, cubic spline interpolation and tilted cubic spline interpolation

are shown in the Figure 4.3 and Figure 4.4 respectively. The results from the three

methods are compared with the values obtained analytically for a surface of revolu-

tion given by r =
√
−z, where z < 0. As evident from the figure, the tilted cubic

spline interpolation along with the special treatment of the tip results in a very good

estimation of the interface normal and curvature values even in the region of high

gradients. Please note that the result of the cubic spline interpolation is sensitive

to the boundary condition used. In the model, the cubic spline is fitted using the
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AGLIB library with the default boundary condition [142].

4.6 Model Application to Rapid Solidification

The model described so far does not account for any non-equilibrium phenomenon

that takes place at high growth velocities, therefore, the model is only applicable to

low Péclet number regime i.e., solidification done at normal growth velocities. At high

growth velocities, the above model needs to be modified to account for the variation of

the partition coefficient and the liquidus slope with the growth velocity. In addition to

this, at high growth velocities the kinetic undercooling can be significant and therefore

the interfacial attachment kinetics also need to be incorporated in the model [26, 3, 9].

In addition to this, the numerical model was also modified to have a more realistic

representation of the phase diagram instead of the linear approximation. This was

done by parametrizing the liquidus and solidus line via polynomial equation giving

Tl(C) and Ts(C). Thus, the partition coefficient also varies with temperature i.e.,

ke = ke(T ).

The variation of the partition coefficient with growth velocity is expressed as [26]

kv =
ke(T ) + (δiV/Di)

1 + (δiV/Di)
, (4.6.1)

where kv is the velocity-dependent partition coefficient, ke is the equilibrium partition

coefficient, δi is the inter-atomic width which is of the order of the thickness of the

interface and Di is the interface diffusivity coefficient. The variation of the partition

coefficient at the solid-liquid interface was considered by taking into account the

temperature and normal velocity at the interfacial location.
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At high growth velocities, the equilibrium phase diagrams are not applicable and

the relationship between the kinetic liquidus composition Ci
l and the equilibrium

liquidus composition Ce
l is expressed as [9, 3]

Ce
l = Ci

l

(
1 +

ke − kv(1− ln(kv/ke))

1− ke

)
+

V

V0(1− ke)
, (4.6.2)

where V0 is a parameter which is of the order of the velocity of sound. The first

term in the above equation takes into consideration the variation of the equilib-

rium liquidus slope with the interface velocity and the second term accounts for the

linear attachment kinetics. Ci
l is calculated at the interface grid points by interpo-

lating/extrapolating the compositional values from the adjacent interfacial control

volumes. Using Ce
l , the interfacial temperature can then be determined as

T ∗ = Tl(C
e
l )− Γ

(
ζK1 +K2

)
(4.6.3)

In the rapid solidification model, the diffusion coefficient was assumed to vary

with the temperature as

Dl = D0 exp(−Q/RgT ), (4.6.4)

where D0 is the diffusivity constant, Q the activation energy and Rg the gas constant.

Please note that in the model, Di = Dl(TL), since interface diffusivity coefficient

is unknown. At any step of the simulation, the temperature-dependent diffusivity

i.e., Dl(T ) was assumed to be equal in every CV and calculated based on the tip

temperature.
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4.7 Solution Methodology

The above problem was formulated as a system of nonlinear equations and simultane-

ously solved for the interface shape and the composition profile using the PETSc’s line

search variant of Newton’s method [143, 144, 145]. Newton’s method is a powerful

technique for solving a system of nonlinear equations and has q-quadratic conver-

gence if the initial guess is close to the solution and the Jacobian is non-singular.

However, if the starting guess is not close to the solution, Newton’s method may or

may not converge to a solution. Globally convergent variants of Newton’s method

such as line search and model-trust region approaches were introduced to overcome

the issue of local convergence. These methods use specific criteria to decide the step

direction and length to compute the next successive step when the Newton step is

not acceptable [146, 147].

In addition to the good initial guess, Newton’s method also requires an accurate es-

timation of the Jacobian matrix for quadratic convergence. The Jacobian matrix can

be either computed analytically or estimated using numerical approximations [146].

Analytical calculation of the Jacobian matrix of a free-boundary problem can be very

tedious and error-prone. Even a small error in the Jacobian matrix can deteriorate

the performance of Newton’s method or may even cause it to diverge. In contrast,

numerical estimation of the Jacobian matrix is computationally expensive and since

the grid is tightly coupled with the problem, as the interface evolves the Jacobian

needs to be recomputed at every iteration.

Initially, an analytically calculated Jacobian matrix was used in the present work.

The analytical estimation of the Jacobian matrix posed a challenge since the interface

normals and curvatures were calculated using the cubic spline interpolation during
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the function evaluation. Since the coefficients of the cubic spline interpolation were

unknown, the function could not be analytically differentiated to calculate the Jaco-

bian matrix. To overcome this issue, finite difference approximations for the interface

normal and curvature calculation were used during the analytical Jacobian estima-

tion. The correctness of the analytically calculated Jacobian matrix was tested by

calculating the direction derivatives using the analytical Jacobian matrix and com-

paring it with the values obtained from the fundamental theorem of calculus. This

test can be written as

J(x).p = lim
δ→0

[
F (x+ δp)− F (x)

δ

]
(4.7.1)

where F (x) is some vector valued function, J(x) is its Jacobian matrix, p is the

direction vector and δ > 0 is as scalar. If the Jacobian matrix is correctly estimated

then E(δ) = ||J(x).p− δ−1(F (x+ δp)− F (x))||2 will tend to zero.

Figure 4.5 shows the result of the above directional derivative test applied to the

analytical Jacobian. For this test, two different approaches were used to estimate

the interface normal and curvatures in the function evaluation, and their derivatives

in the Jacobian matrix. In the case of Figure 4.5a, cubic spline interpolation was

used in the function evaluation to calculate the interface normal and curvatures,

whereas, their derivatives in the Jacobian matrix were calculated using the finite

difference approximation. Whereas in the case of Figure 4.5b, finite differencing

was used in both the function evaluation and the Jacobian estimation to calculate

the interface normal and curvatures, and their derivatives. For this test, ϵ = 0

i.e., no anisotropy in the surface energy was considered. In the case of Figure 4.5a,

the error did not go down as the δ → 0, therefore, finite difference approximation
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Figure 4.5: Result of the directional derivative test used to test the correctness of
the analytical Jacobian matrix. In figure (a) cubic spline interpolation was used
whereas in figure (b) finite difference approximation was used to calculate the

interface normal and curvatures in the function evaluation. The interface normal
and curvature derivatives in the Jacobian matrix were based on the finite difference
approximation irrespective of the strategy used to construct the interface in the

function evaluation.

cannot be used in the Jacobian estimation when cubic-spline is used to reconstruct

the interface during function evaluation. To further confirm this, another directional

derivative test was performed where finite differencing was used to reconstruct the

interface in both the function evaluation and Jacobian estimation. The result of

this test is shown in Figure 4.5b. Please note that the numerical instabilities due

to floating-point operation causes the error to go up after a certain value of δ in

the Figure 4.5b. Following this, no more attempts were made to analytically calculate

the Jacobian matrix and the Jacobian was numerically estimated using the built-in
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finite differencing approximation in the PETSc.

The guess solution for Newton’s method is estimated using a two-step approach.

In the first step, the initial shape of the interface is estimated using the equation

proposed by McCartney and Hunt [134]. The equation is expressed as

gke−1
l =

(Ct +Gz/m)(1− ke) +DlG/mV

Ct(1− ke) +DlG/mV
, (4.7.2)

where Ct represents the tip composition and gl is the liquid fraction at a distance z

behind the tip. The tip composition can be calculated as

Ct = (C0 −DlG/mV ) (4.7.3)

and

gl = 1−
(

r

W

)2

(4.7.4)

In the second step, with the initial estimate of the interface shape, the interface

shape is fixed and a linear solve is done to estimate the initial composition profile.

After this, the combined initial interface shape and solutal field are used as the

starting guess for Newton’s method. The solutions are iterated until the error in the

composition values obtained from the conservation equation (Eq. 4.3.1 and Eq. 4.3.3)

and the temperature values obtained from the undercooling Eq. 4.6.3 were less than

10−7 everywhere in the domain and along the solid/liquid interface respectively. Note

that to prevent the line search method from stepping towards invalid interface shapes,

i.e., when the interface height does not monotonically increase with the distance from

the tip, an artificial cost is added in the functional evaluation. In addition to this for
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certain cases, slowly turning on the anisotropy parameter in the undercooling equation

from a very small value to the desired value can help in getting the convergence.

4.8 Material Parameters

In the next chapter, the cell model is applied to a binary Al-Cu alloy to identify the

range of cell spacing W for which self-consistent interface exists for a given range of

input parameters. The material properties of the Al-Cu system are listed in the Ta-

ble 4.1 [3, 9].

Table 4.1: Physical constants for the Al-Cu system and other input parameters used
for the simulations [3, 9].

D0 (m2/s) 1.10× 10−7

Q (J/mol) 23800

Γ (Km) 1× 10−7

δi (m) 0.9× 10−9

V0 (m/s) 1000

E4 0.005

C0 (at%) 12.80

G (K/m) 5× 106

Tl(C) = 933.6− 5.37× C − 0.34369× C2 + 0.04315× C3 − 2.2054× 10−3 × C4 +
3.7162× 10−5 × C5

k(T ) = 1.1317138× 104 − 66.910962× T + 0.15815355× T 2 − 1.8679168× 10−4 ×
T 3 + 1.1023244× 10−7 × T−7 − 2.6001967× 10−11 × T 5

The liquidus slope can be calculated by taking the derivative of the Tl(Cl) with

respect to Cl.
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Chapter 5

Results and Discussion

In this chapter, the numerical method developed in this thesis is applied to a binary

Al-Cu alloy to study the interfacial characteristics for a range of growth velocities.

The developed model can be used to study the effect of an applied thermal gradient,

steady-state interface velocity, cell width and initial composition on the existence of

cellular/dendritic structures.

The results from the cell model include the shape of the solid-liquid interface,

the position of the tip with respect to the liquidus isotherm and the concentration

profile in the liquid phase. The steady-state concentration profile and shape of the

interface obtained using the cell model for tip velocity V = 1.0 cm s−1 and cell spacing

W = 0.10 µm is shown in Figure 5.1. In the model, no diffusion was considered in

the solid phase, and the solid dark blue colour in the Figure 5.1 represents the solid

phase. Moreover, the cell tip was located approximately 9.28 µm behind the liquidus

isotherm. As mentioned previously in Chapter 4, the liquidus isotherm was arbitrarily

set at the origin and the position of the tip in the temperature field was a variable

that was identified using the cell model. In addition to this, complete mixing can be
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seen in the inter-dendritic region at the base of the tip. Moreover, the composition

profile only varies in the z-direction at a far enough distance from the tip as seen

in Figure 5.1.

10.0 9.5 9.0 8.5 8.0 7.5
z ( m)

0.000

0.075

r (
m

)

0.0 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2

Figure 5.1: Concentration profile in the liquid phase and the shape of the interface
obtained using the cell model for V = 1.0 cm s−1 and W = 0.10 µm. The solid region
in dark blue colour is the solid phase which is not modelled in the present work.

The solutions were iterated until the error in the composition profile obtained

using the Eq. 4.3.1 and Eq. 4.3.3 was less than 10−7 in every CV and the error in the

temperature obtained using the undercooling Eq. 4.6.3 was also than 10−7 at every

interface grid point. A plot of the error in the temperature values at the interface

grid points is shown in Figure 5.2. The error in the temperature value at every

grid point was less than 10−7 as shown in Figure 5.2. Similarly, the error in the

concentration value at each CV was also less than 10−7 at the time of convergence as

shown in Figure 5.3.
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Figure 5.2: Error in the temperature obtained using the Eq. 4.6.3 at the interface
grid points. The numbers on the x-axis corresponds to the interface grid points

where 0 represent the base and 20 represent the tip.
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Figure 5.3: Error in the concentration profile obtained using the Eq. 4.3.1
and Eq. 4.3.3 at every CV.

5.1 Effect of Grid Size and Domain Size

In this section, the effect of grid size and domain size on the numerical results is

reported. Firstly, the effect of different grid sizes on the self-consistent interface shape
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and the concentration profile is analyzed. Following this, the effect of the domain size

on the results obtained using the cell model is considered.

5.1.1 Effect of Grid Size

To analyze the effect of grid size on the accuracy of the numerical results, three

different grid sizes were considered i.e., coarse, medium and fine grid. The parameters

used for generating different grids are listed in Table 5.1. The simulations were carried

out for V = 0.1 cm s−1 and the results were compared at three different cell spacings

W = {0.080, 0.50, 3.00} µm. The effect of different grids on the shape of the

solid-liquid interface is shown in Figure 5.4. No appreciable difference in the shape

of the interface can be seen for the three different grid sizes considered in this study

as shown in Figure 5.4.

Table 5.1: Parameters used for generating the grid.

m n k
coarse 10 20 5
medium 20 40 10
fine 30 60 15

Next, the effect of grid size on the interface concentration and interface under-

cooling was considered and the results are shown in Figure 5.5 and Figure 5.6. For

all different cell spacing W considered, the coarse grain failed to accurately predict

the interfacial concentration and undercooling values, whereas, the composition and

undercooling values almost overlap each other for the medium and fine grid as shown

in Figure 5.5 and Figure 5.6 respectively. For cell spacing of 0.50 µm and 3.00 µm,

the predicted interfacial concentration and interfacial undercooling are almost similar

for the medium and fine grid. However, some differences in these values exist for the
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medium and fine grid at 0.080 µm cell spacing.

Since no appreciable difference in the interface shape, concentration and under-

cooling were observed for the medium and fine grid, thus the medium grid was used

for all the simulations in the remainder of this study. That usually corresponded to

m = 20 grid points along the interface, n = 40 grid points ahead of the interface and

k = 10 grid points above the interface.
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Figure 5.4: Effect of a coarse, medium and fine grid on the shape of the interface
obtained using the cell model for V = 0.1 cm s−1. The simulations were run for three

different cell spacing W . Please note that the tip has been moved to the origin.
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Figure 5.5: Effect of a coarse, medium and fine grid on the interfacial concentration
for V = 0.1 cm s−1. Please note that the tip has been moved to the origin.

5.1.2 Effect of Domain Size

In this subsection, the effect of the domain size on the interface shape, concentration

and undercooling value is considered. For this purpose, the domain length L1 and L2

were independently varied and the resulting interfacial values were compared. The

simulations were carried out at V = 0.5 cm s−1 and W = 0.50 µm using the fine grid.

The numerical experiments were carried out for four different pairs of (L1, L2) and

their values are listed in Table 5.2. As seen in the Figure 5.7 and Figure 5.8 the

interfacial concentration and undercooling values were not sensitive to the domain
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Figure 5.6: Effect of a coarse, medium and fine grid on the interface undercooling
for V = 0.1 cm s−1. Please note that the tip has been moved to the origin.

size as long as the L1 and L2 satisfied the conditions mentioned in the Section 4.2.
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Table 5.2: Values of L1 and L2 used for analyzing the effect of domain size on the
numerical results.

# L1 (µm) L2 (µm)
1 1 4
2 2 4
3 1 8
4 2 8
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Figure 5.7: Effect of domain size on the interfacial concentration for V = 0.5 cm s−1.
Please note that the tip has been moved to the origin.
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Figure 5.8: Effect of domain size on the interface undercooling for V = 0.5 cm s−1.
Please note that the tip has been moved to the origin.

5.2 Effect of Cell Spacing

In the cell model, the cell spacing W is a parameter that can be varied to analyze the

effect of the primary spacing λ1 on the existence of cellular/dendritic solution for a

given set of input parameters. In this section, the effect of cell spacing on the shape

of the solid-liquid interface, tip composition, tip radius and tip undercooling has been

analyzed and presented.

Figure 5.9 shows the change in the shape of the self-consistent solid-liquid interface
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obtained using the cell model as the cell spacing W was increased from 0.15 µm to

1.0 µm. At the lower spacings considered, the shape of the solid-liquid interface was

characteristic of cellular structures and appear like high amplitude cells. Whereas,

those obtained for larger spacing resemble more like parabolic dendrites. Please note

that the smallest spacing corresponds to maximum interaction among the neighbour-

ing cells, whereas, as the spacing increases less and less interaction will take place

among the neighbouring cells with very wide spacing essentially corresponding to an

isolated case. Also, note that no attempt has been made in this work to qualitatively

characterize the interface shape as cellular or dendritic based on their appearance.
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Figure 5.9: Effect of cell spacing W on the shape of the solid-liquid interface. The
simulation was carried out at V = 0.5 cm s−1. Please note that the interface has been
plotted only up to 2 µm behind the tip and the tip has been moved to the origin.

A plot of tip composition against spacing for V = 0.5 cm s−1 is shown in Fig-

ure 5.10. The tip composition had an inverse relationship with the cell spacing and

as the cell spacing increased tip composition went down. At small spacings, the in-

teraction among the solute field of the neighbouring cells will be more. Increased

interaction among the neighbouring cells can make it difficult for the solute atoms to

diffuse in the lateral direction which can result in an increased build-up of the solute

atoms along the interface. The variation of the tip radius R with the cell spacing is

shown in Figure 5.11 and the tip radius increased with the cell spacing. At low cell
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spacings, very fine cellular/dendritic structures were formed with high tip curvature,

whereas, as the cell spacing increased cellular/dendritic tip become broader and the

tip curvature decreased as shown in Figure 5.9.
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Figure 5.10: Effect of cell spacing W on tip composition for V = 0.5 cm s−1.

Finally, the effect of cell spacing on the tip undercooling can be seen in Figure 5.12.

The tip undercooling also had an inverse relationship with the cell spacing. The in-

crease in the tip undercooling at lower spacing could be seen as a combined effect of

the constitutional and curvature undercooling. However, the contribution of the cur-

vature undercooling was negligible in comparison to constitutional undercooling and

the increase in tip undercooling was mainly due to the constitutional undercooling.
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Figure 5.11: Effect of cell spacing W on tip radius for V = 0.5 cm s−1.
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Figure 5.12: Effect of cell spacing W on tip undercooling for V = 0.5 cm s−1.
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5.3 Primary Spacing, Tip Composition, Radius and

Undercooling

In this section, the cell model is applied to identify the range of cell/primary spacing

for which a self-consistent solid-liquid interface exists at a given interface velocity.

Following this, the variation of the tip composition, tip radius and tip undercooling

against the interface velocity and cell spacing has also been considered in this section.

5.3.1 Primary Spacing

Figure 5.13 shows the range of primary spacing λ1 = 2W for which self-consistent

interface shapes were identified in the present study. The numerical spacing was

also compared with the spacing values predicted by the KGT model [60] and the

experimental spacing from the laser resolidification experiment [3].

To find the range of cell spacing at which self-consistent solutions exists at a given

growth condition, the cell spacingW was scanned to find the minimum and maximum

spacing limit. In the Figure 5.13 the squares represent the smallest spacing, whereas

the diamonds represent the largest spacing at which the model converged to a solution.

The grey area between the upper (diamonds) and lower (squares) limit represents

intermediate spacing at which convergent solutions also exist. Please note that there

exists an upper critical spacing beyond which the cells/dendrites will be unstable.

Above this critical limit, the cellular/dendritic spacing will adjust through tip splitting

in the case of cells and tertiary arm growth in the case of dendrites. Similarly, a lower

critical spacing limit also exists. Beyond the lower limit, the cells/dendrites will be

subjected to an overgrowth mechanism. These phenomena ensures that in practice
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Figure 5.13: The range of primary spacing (2W ) for which self-consistent interface
shapes were identified is plotted against velocity. The square and diamonds

correspond to the minimum and the maximum primary spacing, and the grey area
corresponds to the intermediate spacing at which self-consistent interface shapes
were identified. For comparison, the primary spacing calculated using the KGT
model is also plotted. Two different approaches were used to identify the primary

spacing using the KGT model referred to as KGT1 and KGT2. The circles
correspond to the experimental spacings obtained from the laser resolidification

experiments [3].

the cells/dendrites grow within a small stable spacing range [2]. Also note that in

the present work, no stability analysis has been done to figure out the stable spacing

range in Figure 5.13.

To compare the numerical spacing with the spacing value predicted using the KGT

model, two different approaches were considered in the present work. In the first

approach KGT1, to calculate the primary spacing λ1 an array of dendritic envelope

similar to Figure 4.1a was considered where the tip dynamics was given by the KGT
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model [21] and the primary spacing can be expressed as

λ1 =

(
4∆T v

0R

G

)1/2

, (5.3.1)

where R was calculated using the KGT model. In the second approach KGT2, the

primary spacing was assumed to be twice the KGT tip radius. The primary spacing

predicted using the two approaches is plotted in Figure 5.13. The primary spacing

predicted using the second approach KGT2 was within the spacing range found using

the cell model.

The primary spacing measurements from the laser resolidification experiment has

also been plotted in the Figure 5.13. A good agreement exists between the experi-

mental and the numerical spacing as shown in the figure. However, at the present

moment, the numerical model is not able to go beyond the velocity of 10 cm s−1. The

sensitivity of Newton’s method to the initial guess is believed to be the reason behind

the instability of the model at high velocities, and continual efforts are underway to

improve the model so that it can be applied to even higher velocities.

5.3.2 Tip Composition, Radius and Undercooling

The variation of the tip composition and the tip radius against velocity is plotted

in Figure 5.14 and Figure 5.15 respectively, along with the corresponding values ob-

tained via the KGT model. The squares and diamonds correspond to the composition

and radius values calculated at the lower and upper spacing limit which were identified

in Figure 5.13.
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Figure 5.14: Tip composition against growth velocity for a range of primary spacing
identified in Figure 5.13. For comparison the tip composition obtained using the

KGT model is also plotted.

As seen in the Figure 5.14, the KGT composition was in good agreement with the

numerical composition at the upper spacing limit for high growth velocities. However,

significant deviation exists between the two at low growth velocities. A poor match at

low growth velocities is thought to have occurred because of the interaction between

the neighbouring cells, whereas, at high growth velocities little solutal interaction will

take place between the adjacent cells since the spacing Péclet number was approaching

1 as shown in Figure 5.17. This situation better corresponds with the KGT model

assumption of an isolated dendrite. At low growth velocities, the ability of the cell

model to take into consideration the solutal interaction between the neighbouring

cells leads to higher tip concentration. The same can be seen in the case of the tip
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radius also. The KGT tip radius was close to the predicted upper spacing tip radius

at high growth velocities where the interaction between the neighbouring cells was

less compared to lower spacing.
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Figure 5.15: Tip radius plotted against growth velocity for a range of primary
spacing identified in Figure 5.13. The KGT tip radius is also plotted in the figure.

The variation of the tip undercooling against tip velocity is plotted in Figure 5.16.

The individual contribution of the constitutional and curvature undercooling to the

total tip undercooling is also shown in the Figure 5.16. As can be seen, the tip

undercooling decreased with increasing cell spacing. This is due to the increased

solutal interaction at lower spacings which leads to solute build along the interface

and thus higher constitutional undercooling. Moreover, most of the driving force for

the solidification came from the constitutional undercooling and the contribution of

the curvature undercooling was only significant at high growth velocities.
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Figure 5.16: A Plot of the total tip undercooling along with the individual
contribution of the constitutional and curvature undercooling against growth

velocity for the spacing limit shown in Figure 5.13.

5.4 Tip and Spacing Péclet Number

In this section, the variation of the tip (top) and spacing (bottom) Péclet number

for a range of growth velocity is shown in Figure 5.17. In addition to this, the

variation of the Péclet number with cell spacing at a given velocity has also been

shown in the Figure 5.17. Péclet number is an important dimensionless parameter

which is defined as the ratio of the microstructural length scale and the diffusion

length scales. At low growth velocities, this ratio is much less than 1, whereas, at

high growth velocities the two length scales are of similar order and the Péclet number

tends to be 1 or greater. When the microstructural and diffusion length scales are of a

similar order, the classical growth theories cannot be used to model the solidification

86



M.Sc. Thesis – P. Pal McMaster University – Materials Science & Engineering

process.

The tip Péclet number was less than 0.5 for the complete range of growth velocity

as shown in Figure 5.17 (top). Moreover, the tip Péclet number increased with the

growth velocity which points towards the localization of the diffusion field near the tip

region at high growth velocities. Please note that the high tip Péclet number predicted

for the upper spacing limit at low growth velocities was due to the large value of tip

radius as shown in Figure 5.15. However, as mentioned previously the cells/dendrites

are expected to be unstable at that cell spacing and therefore in practice such high

tip Péclet number are unlikely.

Figure 5.17 (bottom) shows the variation of the spacing Péclet number against

velocity which is an important dimensionless parameter for cellular structures. At

the lower spacing limit, the spacing Péclet number was smoothly increasing with

the growth velocity that approached 1 at high growth velocities. Relatively high

spacing Péclet number was predicted for upper spacing limit even at low velocities.

However, as mentioned previously the cellular/dendritic structures are likely to be

unstable at those spacings values and therefore such high Péclet numbers are not

expected to exist in practice. Also, note that the abrupt increase in the spacing Péclet

number at medium growth velocity at upper spacing limit is a numerical artefact

since self-consistent solutions have been found at those primary spacings. A good

agreement between the numerical model and the KGT model was found at high

growth velocities since much less interaction takes place among the neighbouring

cells at high Péclet numbers. Moreover, at high growth velocities, the spacing Péclet

number was approaching 1 and this might explain the suppressed secondary and

tertiary arms as seen in experimental micrographs [148].
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Figure 5.17: A plot of the tip Péclet number (RV/2Dl) and Spacing Péclet number
(λ1V/2Dl) against growth velocity for the spacing range shown in Figure 5.13.

5.5 Sources of Uncertainty and Error; Computa-

tional Efficiency

In the cell model, the cell spacing W is a parameter and the solutions only exist for

a range of cell spacing at any given set of input parameters. The numerical model

proved to be very stable at the intermediate spacing range, however, the convergence

was difficult at the end of the spacing range. Moreover, the solutions were sensitive

to the domain length at very low and high cell spacing and a certain amount of trial
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and error was required to identify the right domain size.

Similarly, the numerical model was very stable at intermediate growth velocities

and easily converged to a solution. However, at very low and high growth velocities,

it was difficult to find convergent solutions as evident from the Figure 5.13.

The complete mixing approximation at the left wall Γ5 is justifiable for narrow

cells, however, at large spacings, this assumption is less valid. A more appropriate

boundary condition at Γ5 can be obtained by considering the concentration gradient

from an analytical solution for a paraboloid of revolution [1].

The model is computationally very efficient; at intermediate growth velocities and

cell spacing, the model converged to a solution in a minute or two for the medium grid

size. However, to efficiently scan the solution space using the cell model, a good initial

estimate of the primary spacing at which convergent solutions can exist was required.

For this purpose, the primary spacing prediction from the KGT model was used to

narrow down the range of cell spacing at which the cell model was applied to identify

the self-consistent solutions. Please note it took almost 10 to 15 minutes to get to

a converged solution at fine grid size. At the fine grid size, the cost of numerical

Jacobian estimation significantly contributes to the overall time complexity of the

model.

5.6 Application to PBF-L

Despite many simplifications made in the cell model to model an array of directionally

grown cells/dendrites, it is a computationally efficient method to predict the primary

spacing and interfacial characteristics during the PBF process. In the present work,
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the cell model has been applied to Al-Cu alloy to study the variation of the interfa-

cial conditions with the growth velocity to identify the solidification processing zone

exhibited during the PBF-L process.

Different criteria exist to classify the solidification process into different processing

zones and an approximate criteria based on the interfacial velocity has been proposed

by Kurz and Fisher, and Stefanescu. According to Kurz and Fisher, if the interface

velocity is more than 1.0 cm s−1 classical growth theories based on low Péclet num-

ber approximation are not valid. Similarly, Stefanescu proposed that the metastable

phase diagrams should be used at velocities greater than 1.0 cm s−1 since metastable

transformations are possible at these velocities. Further, at velocities greater than

10.0 cm s−1 the local interfacial equilibrium assumption breaks down and the partition

coefficient starts to deviate from the equilibrium value and as the growth velocity ap-

proaches O(m/s), solute trapping becomes important and partitionless solidification

can take place [4, 149]. Although, the above criteria based on the interface veloc-

ity serves as a good reference for classifying the solidification process into different

processing zones. However, the interfacial conditions during solidification not only

depend on the processing conditions but also the material system. Thus interfacial

conditions such as undercooling can vary depending upon processing conditions and

the material system.

Alternatively, the solidification process can be classified on the basis of the Péclet

number of the corresponding microstructural feature. Accordingly, under normal

solidification conditions, the Péclet number is much less than 1, whereas, rapid so-

lidification is classified by a Péclet number of 1 or greater. In the present work, the

tip Péclet number was less than 1 for the complete range of solidification velocities
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considered. However, at the higher end of the interfacial velocities considered, the tip

Péclet number ∼ 0.5, which shows the localization of the diffusion field near the tip

region. Similarly, the spacing Péclet number ≈ 1 at the higher end of solidification

velocities considered. Moreover, for the velocities considered in this study the solute

trappings was not significant. The findings in this study are in agreement with the

work of Boussinot et al. [148].

The variation of the composition in the semi-solid along the solid-liquid interface

is shown in Figure 5.18. At low growth velocity i.e., V = 0.1 cm s−1 composition varies

almost linearly along the interface. This straight-line arises because the relationship

between the temperature and composition given by the liquidus line is almost linear

and the composition must follow the linear temperature variation in the semi-solid.

However, the non-equilibrium effects at high growth velocity result in the deviation

of the composition profile from a straight line as shown in Figure 5.18. Based on the

results from this study, it can be said that the classical growth theories based on the

low Péclet number approximation are not valid and high-velocity effects need to be

considered to accurately model the solidification process during the PBF-L process.
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Figure 5.18: Concentration profile along the interface.
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Chapter 6

Conclusions

This chapter provides key contributions of this thesis, followed by an outline of the

major limitations of the present model and suggestions for future work.

6.1 Conclusions

In order to study the interfacial characteristics and identify the solidification process-

ing zone exhibited during the PBF-L process, a numerical model was developed to

simulate an array of directionally grown cells and dendrites. The developed model

identifies the shape of the solid-liquid interface and the composition profile in the

liquid phase for a given set of input parameters. The model is capable of simulating

directional growth at both low and high interfacial velocities. At high growth ve-

locities, the model also accounts for the non-equilibrium phenomenon by taking into

consideration the variation of the partition coefficient, liquidus slope with velocity

and the linear attachment kinetics. The model was used to predict the magnitude of

different undercoolings along with the tip and spacing Péclet number to estimate the
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extent of deviation of the solid-liquid interface from equilibrium during the PBF-L

process. The key findings of the present study are as follows:

1. Self-consistent steady-state interface shapes were identified for a range of growth

velocities and cell spacing.

2. The interfacial composition decreased with the increasing cell spacing. At lower

spacings, the increased interaction among the neighbouring cells could lead to

an increased solute built up along the interface.

3. The cell tip radius increased with increasing cell spacing.

4. Most of the driving force for the solidification came from the constitutional

undercooling. The curvature undercooling was significant only at high growth

velocities.

5. The model predicted the range of primary spacing at which self-consistent cel-

lular/dendritic structures existed for a given set of input parameters. Good

agreement between the numerical spacing and experimental spacing was found

at high growth velocities.

6. The predicted tip composition and tip radius qualitatively agreed with the re-

sults from the KGT model. The predicted values from the numerical model and

the KGT model were more in agreement at high growth velocities where the

interaction among the neighbouring cells was less.

7. Moderately high tip and spacing Péclet number has been predicted at high

growth velocities which shows that the non-equilibrium effects are important at

high interface velocities.
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6.2 Model Limitations and Potential FutureWorks

The critical model assumptions and the limitations of the present work are discussed

along with suggestions for future work to the present study.

1. The solid-liquid interface is represented as a paraboloid of revolution and no

provision exists to account for the development of secondary or tertiary arms.

2. No stability analysis has been done in the present work to identify the stable

spacing range for cell and dendrites. In the future, stability analysis could

be done to directly compare the predicted spacing range with the experimental

data. Moreover, no distinction has been made between the cellular and dendritic

structures in the present work.

3. The model is only applicable to binary alloys, however, most of the commercial

PBF-L alloys have more than two components. The model could be adapted to

pseudo-binary systems and further extended to multi-component alloys.

4. The model is unstable at the extremities. Convergence is difficult at the onset

of constitutional undercooling and near the absolute stability region.
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