
OUTLIER DETECTION IN BRAIN MRI

DIFFUSION DATASETS



USE OF MACHINE LEARNING FOR OUTLIER DETECTION IN

HEALTHY HUMAN BRAIN MAGNETIC RESONANCE IMAGING

(MRI) DIFFUSION TENSOR (DT) DATASETS

BY

NEIL A. MACPHEE, B.Eng.

a thesis

submitted to the department of School of Biomedical Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Neil A. MacPhee, March 2022

All Rights Reserved



Master of Applied Science (2022) McMaster University

(School of Biomedical Engineering) Hamilton, Ontario, Canada

TITLE: Use of Machine Learning for Outlier Detection in Healthy

Human Brain Magnetic Resonance Imaging (MRI) Dif-

fusion Tensor (DT) Datasets

AUTHOR: Neil A. MacPhee

B.Eng. (Electrical & Biomedical Engineering),

McMaster University, Hamilton, Canada

SUPERVISOR: Michael D. Noseworthy, Ph.D.

NUMBER OF PAGES: xiv, 147

ii



Lay Abstract

Artificial intelligence (AI) refers to the ability of a computer or robot to mimic human

traits such as problem solving or learning. Recently there has been an explosive

interest in its uses for assisting in clinical analysis. However, successful use of these

methods require a significantly large training set which can often contain outliers

or incorrectly labeled data. Due to the sensitivity of these techniques to outliers,

this often leads to poor classification rates as well as low specificity and sensitivity.

The focus of this work was to evaluate different methods of outlier detection and

investigate the presence of anomalies in large brain MRI datasets. The results of

this study show that these large brain MRI datasets contain anomalies and provide

a method best fit for identifying them.
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Abstract

Machine learning (ML) and deep learning (DL) are powerful techniques that allow for

analysis and classification of large MRI datasets. With the growing accessibility of

high-powered computing and large data storage, there has been an explosive interest

in their uses for assisting clinical analysis and interpretation. Though these methods

can provide insights into the data which are not possible through human analysis

alone, they require significantly large datasets for training which can difficult for

anyone (researcher and clinician) to obtain on their own. The growing use of publicly

available, multi-site databases helps solve this problem. Inadvertently, however, these

databases can sometimes contain outliers or incorrectly labeled data as the subjects

may or may not have subclinical or underlying pathology unbeknownst to them or

to those who did the data collection. Due to the outlier sensitivity of ML and DL

techniques, inclusion of such data can lead to poor classification rates and subsequent

low specificity and sensitivity. Thus, the focus of this work was to evaluate large

brain MRI datasets, specifically diffusion tensor imaging (DTI), for the presence of

anomalies and to validate and compare different methods of anomaly detection.

A total of 1029 male and female subjects ages 22 to 35 were downloaded from

a global imaging repository and divided into 6 cohorts depending on their age and

sex. Care was made to minimize variance due to hardware and hence only data from
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a specific vendor (General Electric Healthcare) and MRI B0 field strength (i.e. 3

Tesla) were obtained. The raw DTI data (i.e. in this case DICOM images) was first

preprocessed into scalar metrics (i.e. FA, RD, AD, MD) and warped to MNI152 T1

1mm standardized space using the FMRIB software library (FSL). Subsequently data

was segmented into regions of interest (ROI) using the JHU DTI-based white-matter

atlas and a mean was calculated for each ROI defined by that atlas. The ROI data

was standardized and a Z-score, for each ROI over all subjects, was calculated. Four

different algorithms were used for anomaly detection, including Z-score outlier de-

tection, maximum likelihood estimator (MLE) and minimum covariance determinant

(MCD) based Mahalanobis distance outlier detection, one-class support vector ma-

chine (OCSVM) outlier detection, and OCSVM novelty detection trained on MCD

based Mahalanobis distance data.

The best outlier detector was found to be MCD based Mahalanobis distance,

with the OCSVM novelty detector performing exceptionally well on the MCD based

Mahalanobis distance data. From the results of this study, it is clear that these global

databases contain outliers within their healthy control datasets, further reinforcing

the need for the inclusion of outlier or novelty detection as part of the preprocessing

pipeline for ML and DL related studies.
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Chapter 1

Introduction

1.1 The Brain

1.1.1 Brain Anatomy

The human brain accounts for only approximately 2% of a person’s body weight,

yet it is the main consumer of glucose derived energy in the body (Mergenthaler et al.,

2013) and has been estimated to contain over 80 billion neurons (Azevedo et al., 2009).

In an adult, the average human brain weighs between 1300-1400 grams (Holloway,

1968). It is situated within the skull and is protected from physical and chemical in-

juries by cerebral spinal fluid (Tortora and Derrickson, 2014). At the ultrastructural

level the brain is protected from microorganisms and toxins found in the blood by

the blood-brain barrier (BBB), which is made up of tight junction sealed endothelial

cells, basement membrane and surrounding astrocytic foot processes.

Macroscopically, there are 3 main sections of the adult brain: the cerebrum,

the cerebellum and the brain stem. These sections are covered by protective layers,
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called the cranial meninges, made up by the dura mater, the arachnoid mater, and

the pia matter. These 3 sections, along with the spinal chord, make up the majority

of the central nervous system (CNS). The cerebral cortex, or the outer layer of the

cerebrum, contains grooves and ridges in order to increase the surface area of the

brain. The ridges are referred to as gyri and the folds between gyri are referred to as

sulci. Certain areas of the brain which have deep sulci are referred to as fissures.

Microscopically, the tissues of the brain can be divided up into two main tis-

sue types: white matter and grey matter. Both the cerebral and cerebellar cortex

are made up of grey matter, while the subcortical areas are mostly white matter.

The majority of white matter is comprised of myelinated axons which gives it it’s

whiteish colour. Myelin allows for the faster transmission of nerve impulses through

the axons. Grey matter is comprised of the unmyelinated axons, neuronal cell bodies,

dendrites and more. The lack of myelination and the presence of Nissl bodies gives it

it’s greyish colour. Compared to grey matter, white matter has far fewer cell bodies

and consumes only a fraction as much oxygen.

The brain receives it’s blood supply from two sources, the internal carotid arter-

ies and the vertebral arteries. The internal carotid arteries split to form the middle

and anterior cerebral arteries. The right and left vertebral arteries combine to form

the basilar artery, which connects with the blood supply from the internal carotid

arteries via the posterior and anterior communicating arteries to form the circle of

Willis. The circle of Willis is an arterial ring which improves the chances of blood

flow to the regions of the brain in the case of an occlusion in the arterial vascular

supply. Due to the physiological nature of neurons, they are more sensitive to oxygen

deprivation than most cells in the body due to their high rate of metabolism requiring
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a constant vascular supply.

1.1.2 Physiology

Each part of the brain specializes in its own specific roles which combine to

allow for the overall function of the brain. The cerebrum controls the sensory and

motor information of the body along with memory, emotions and behaviours. The

cerebellum coordinates voluntary movement as well as fine tuning the precision of

motor movements from the cerebrum, with the brain stem bridging the gap from the

cerebrum and cerebellum to the spinal cord. The brain stem also performs autonomic

processes such as breathing, heart rate and temperature regulation, as well as sleep

cycles. Though the CNS is comprised of both white matter and grey matter, the

majority of normal, everyday human function relies on the high number of neurons

in the grey matter (Dolz et al., 2020). These neurons allow for the processing

of external information from the peripheral nervous system (PNS) as well as the

transmission of new information through axons in the white matter (Chiao et al.,

2019). White matter also connects different regions of the brain to form functional

circuits. The myelin acts as electrical insulator that allows high-speed transmission of

impulses through a process call saltatory conduction. Damaged myelin can effect the

conduction of these impulses resulting in cognitive, sensory and motor deficiencies.

1.1.3 Diseases

Though the brain has physical, chemical and biological mechanisms of defense,

it can still become vulnerable to many diseases. These may arise from physical injury,
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bacterial or viral infections, degenerative disorders, genetic disorders (e.g. inborn er-

rors in metabolism and cancers) and through processes that have yet to be fully

understood. The symptoms and their severity vary depending on the areas and brain

matter that are effected.

One important degenerative disorder is Alzheimer’s disease, being the cause of

an estimated 60% to 80% of all dementia cases (alz, 2020). Alzheimer’s disease has

been shown to cause atrophy and inflammation in the brain, and though the entire

progression is still unclear, accumulation of beta-amyloid and an abnormal version

of the tau protein are associated with cognitive changes (Hanseeuw et al., 2019).

Alzheimer’s disease is believed to begin decades before the onset of clinical symptoms

(Jack et al., 2009) with the progression of the disease being mostly unnoticeable until

significant brain changes have occurred. The symptoms often experienced from the

progression of Alzheimer’s disease include language impairment and memory loss as

the neurons responsible for these cognitive functions are injured or lost (alz, 2020).

The progression of Alzheimer’s disease from unnoticeable changes to the presence of

symptoms causing disability is referred to as the Alzheimer’s disease continuum and

consists of three broad phases: preclinical Alzheimer’s disease, mild cognitive im-

pairment due to Alzheimer’s disease, and dementia due to Alzheimer’s disease. The

preclinical Alzheimer’s disease phase is defined as measurable brain changes without

the presence of cognitive impairment, however, the detection of these changes be-

comes difficult in a clinical setting where the tools and expertise are not as widely

available as in a research setting, leading to cases often going undiagnosed. In order

to gauge the ability of neuroimaging and chemical biomarkers as assessment tools, the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) has collected data on a large,
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diverse cohort of subjects ranging from healthy controls to those on the Alzheimer’s

disease continuum (Petersen et al., 2009).

Another more common disorder causing cognitive impairment is mild traumatic

brain injury (mTBI), which encompasses the majority of traumatic brain injuries

(Mcdonald et al., 2012). It is estimated that at least 75% of all traumatic brain

injuries are considered mild by the commonly used clinical criteria (Thornhill, 2000),

with the majority of those traumatic brain injuries going unevaluated or unreported

by a medical professional (Kay et al., 1993). Mild TBIs are the result of physical im-

pact or drastic changes in acceleration which is thought to cause the brain to collide

with the inside of the skull and are characterized by their lack of a prolonged period of

unconsciousness following the incident (Vos et al., 2002). The majority of people who

suffer an mTBI face minor symptoms and recover within a few months (Mccrea et al.,

2009). However, about 10% to 15% of people report persistent symptoms or dysfunc-

tions long after the incident (Chapman et al., 1999). Common symptoms include

headaches, fatigue, anxiety, depression, increased irritability, as well as visual and

vestibular disturbances (Comper et al., 2005). Although there have been advances in

the use of functional neuroimaging for the detection of physiological changes, struc-

tural magnetic resonance imaging (MRI) usually fails to show the presence of brain

damage, making diagnosis of mTBI difficult.

1.1.4 Evaluation of White Matter Integrity

In order to ensure normal, everyday performance, any diseases or disorders

which might affect the brain and its functions must be diagnosed and assessed as early

as possible. While the majority of imaging studies surrounding the brain focuses on
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the cortical gray matter, due to its importance to cognition, focus must also be put

on the remaining 40% to 50% of the brain which lies underneath the cortex in order

to ensure overall brain health. The majority of this region is comprised of white mat-

ter that facilitates the high-speed transmission of signals throughout the brain that

are necessary for distributed neural systems such as memory and attention (Madden

et al., 2009). Reduced white matter integrity may result in disconnections between

these distributed neural systems, as well as instability of signal transmission and neu-

ral noise.

The most common forms of brain imaging used are computed tomography (CT)

and magnetic resonance imaging (MRI). For cognitive and behavioral studies func-

tional MRI (fMRI; using blood oxygen level dependent (BOLD) effect) to assess cor-

tical function, and structural MRI (assesses brain volumetric changes) are used. For

examining white matter integrity neither approaches are used as they provide little

information on the microscopic structures of the myelinated axons. However, another

form of MRI called Diffusion Tensor Imaging (DTI) allows for the in vivo measure-

ment of the microstructures of white matter by quantifying the direction and diffusion

of water within a tissue. Since myelin restricts the diffusion of water perpendicular

to the axon, leaving diffusion along the axon relatively free, these measurements can

be used to gauge the integrity of white-matter structures. The diffusion is classified

as either isotropic, having the same or similar value of diffusion in all directions, or

anisotropic, having different rates of diffusion in different directions. Isotropic diffu-

sion occurs in areas where water is unimpeded and allowed to diffuse in all directions,

such as the ventricles, with the random movement of these molecules driven via Brow-

nian motion (Kingsley, 2006). Anisotropic diffusion occurs in organized tissues, like
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the axons of white matter, where the diffusion of water molecules is restricted in

certain directions. The diffusion measurements in these structures can then be repre-

sented by different metrics to better describe the characteristics of the tissue. Using

these metrics, and an atlas of brain white-matter structures, regional white-matter

integrity can be compared to that of healthy subjects to assist in indicating relative

health in that region. Research with healthy adults has expanded the size of these

healthy brain data sets, allowing increased statistical power and estimations of the

correlation between white-matter integrity and brain function (e.g. cognition).

1.2 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a MRI pulse sequence that has grown in

popularity for its ability to provide information on the microscopic structures of white

matter, not possible with any other imaging modality.

1.2.1 Magnetic Resonance Imaging

In order to fully understand DTI and its use, one must first understand the

basics of MR imaging. The nuclear magnetic resonance (NMR) phenomenon was

first observed by Bloch and Purcell in 1946, who went on to win the Nobel prize for

physics in 1952. This was the beginning of the history which led to the development

of MRI. The core components of an MR system are an radio frequency (RF) subsys-

tem (RF amplifier, receiver and tuned RF coil), 3 orthogonal gradient coils (x,y, and

z), a superconducting magnet, a controller/acquisition computer system, shielding

against RF interference (i.e. Faraday cage) and active shielding (or bucking field)
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to minimize the magnet fringe field. The magnets used in clinical systems usually

range between 0.2 T and 3 T. Although recently there have been advances in head

only and whole body 7T, 9T and 11T systems. There are considerable numbers of

smaller bore animal research MRIs going up to 900MHz (i.e. 20T). The magnet is

the main component of the MR system, employing superconductivity in order to pro-

duce the static magnetic field (B0). Superconductive magnets utilize the properties

of certain materials that if cooled to almost absolute zero (-273.16 C, 0 K) have an

electrical resistance of zero. This allows for a current to be run endlessly through

a superconductive loop, maintaining the magnetic field indefinitely. These magnets,

when compared to previous options such as iron-cored and permanent magnets, pro-

duce a much higher and more stable/homogenous magnetic field within the bore of

the magnet. However, due to their need to be cooled to such low temperature, they

require a helium cooling system in order to keep them functioning.

As mentioned, the RF subsystem is comprised of an RF amplifier, a tuned RF

transmit/receive RF coil (or two separate coils, one for transmit and one for receive)

and components for demodulation and signal storage. The transmitter generates RF

pulses. If RF is transmitted at the Larmor frequency (Equation 1.2.1., proton spins

with absorb energy leading to an excited state.

ω0 = γB0 (1.2.1)

where ω0 is the frequency, γ is the gyromagnetic ratio of the atom (a measured

constant from nuclei having the quantum mechanical property of spin), and B0 is the

strength of the applied magnetic field.

After RF transmission and absorption of energy by the object, energy is released
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and detected with a phase sensitive detection (PSD) RF receiver. After a number of

steps including preamps, analog to digital conversion and demodulation of the carrier

wave the data is stored in a 2D (or 3D) array of values called k-space. The k-space

has real and imaginary channels and are used to reconstruct the final images. The

primary transmitting coil used is the body coil, which is built in to the MRI and

located inside the bore of the magnet. With this setup arrays of receive coils are then

placed around the patient anatomy of interest to detec the signals. Ideal receiver

coils maximize the MR signal while minimizing scanning noise. Since the presence of

a patient or phantom inside the MRI will affect the field homogeneity, a “pre-scan”

is used in order to optimize the transmitter and receiver and determine the exact

Larmor frequency needed to properly achieve the correct excitation frequency.

MR systems employ the use of three orthogonal linear magnetic field gradients;

Gx, Gy, and Gz. Scanners have these 3 components all collectively together in a

gradient tube. These lie within the bore of the magnet and can be electromagnetically

combined in order to produce a gradient in any direction and magnitude (within

defined limits for safety). The gradients are used to spatially localize an MR signal

to an area of interest within the body and are applied to spatially encode an image.

There are a number of additional gradients that can also be employed, in addition

to imaging gradients, that can be used for example in the encoding of diffusion. The

axis along the bore is referred to as “z”, the axis to the left and right is referred

to as “x”, and the axis going up and down is referred to as “y”. The magnetic field

gradients are applied through the use of three gradient amplifiers which apply voltage

and current to each gradient coil in order to generate the linearly varying magnetic

field. Linearity within this magnetic field is very important for gradients, as it is used
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to spatialize the MR signal to different points within the scanner. Nonlinearity of

the field can lead to errors such as geometric deformities as well as misplaced signal

which result in outliers and artefacts in the data.

MR images are generated through a combination of all subsystems; the RF and

gradient fields excite and give spatial information, respectively, and the measured

signal of the spins returning to thermal equilibrium is recorded and transformed into

an MR image. Based on the parameters set on the system, such as the echo time

(TE), repeat time (TR), flip angle and, if used, the inversion time (TI) different

types of image contrast may be selected. Contrast, or weighting, is governed by these

settings working in conjunction with inherent tissue properties that drive the system

back to thermal equilibrium. These tissue properties are the spin-spin relaxation (T2

and T2*), spin-lattice relaxation (T1) and proton density (PD). Subsequently images

may be T1, T2, T2* or PD weighted.

1.2.2 Diffusion Weighted Imaging

Routine MR images will show the anatomy of a tissue of interest with different con-

trasts. However, MRI contrast may also be weighted towards diffusivity of water.

The so called diffusion-weighted image (DWI) can be used to quantify the movement

of water molecules within the tissue. The movement of water molecules follows Brow-

nian motion. Classically diffusion weighting is done in 3 orthogonal planes producing

diffusion weighted images along X, Y and Z. The degree of diffusion weighting is

governed by the b-value:

b = γ2G2δ2 ·
(

∆− δ

3

)
(1.2.2)

10



M.A.Sc. Thesis – N. MacPhee McMaster University – Biomedical Engineering

where γ is the gyromagnetic ratio, G is the amplitude of the diffusion encoding

gradient (more details below), δ is the length of time the gradient is on and ∆ is the

diffusion encoding time, or time between diffusion encoding gradient lobes. The units

of b-value are seconds per mm2. Typical clinical scanning involves acquiring 3 DWI

images (i.e. along X, Y and Z), each using the same b-value, and one image with the

same timing but without diffusion encoding gradients (i.e. b = 0s/mm2).

After diffusion weighted imaging is performed a parametric image, called an ap-

parent diffusion weighted image is calculated according to Equation 1.2.3:

S(b) = Sb=0 · e−b·ADC (1.2.3)

Which uses both the diffusion weighted image and the image with no diffusion

weighting. It should be noted that the units of the parametric image, apparent

diffusion coefficient (ADC), are mm2 per second. The ADC is calculated from DWI

data and measures the magnitude of diffusion within a voxel, shown in Equation 1.2.4.

ADCk(ĝk, bk) = − 1

bk
log(

Sk
S0

) (1.2.4)

Where S0 is the signal intensity with no diffusion gradients, Sk is the signal in-

tensity from the k-th signal from applying the b-value bk. Note that the ADC does

not contain any sort of measure of the direction, which is fine for use in areas such as

grey matter where the orientation of the tissue does not affect the apparent diffusion.

However, in more organized tissues with restricted diffusion, such as white matter,

the apparent diffusion changes depending on the orientation of the tissue.

Such a DWI approach is not quantifiable. To quantify water diffusion a DWI
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scheme is performed to acquire images encoding diffusion in multiple non-collinear

directions (minimum number of 6). This approach, called diffusion tensor imaging

(DTI) allows diffusivity within a voxel to be represented by a mathematical model

called a “tensor”. A tensor describes the shape, magnitude, and direction of water

movement within every tissue voxel. Without restrictions or barriers, water is able

to diffuse freely which is referred to as “isotropic” diffusion. Represented by a tensor,

isotropic diffusion looks like a sphere as water molecules can thermally move in any

direction. In the case of restrictions and barriers, such as in white matter or other

directionally organized tissues, water is predominantly restricted to diffusion in a

direction along the dominant axis of the fibre and is referred to as “anisotropic”.

Represented by a tensor, anisotropic diffusion can look like a cigar shape as the

magnitude and direction of diffusion is restricted primarily to a certain axis. The

information collected from DWI and the tensors calculated from them can be used to

determine the underlying microscopic architecture of tissues.

DTI data is acquired by repeating DWI scans from a tissue of interest while

varying the magnitude and orientation of the diffusion-sensitizing gradients. In order

to calculate a tensor for a given voxel, at least 6 non-collinear directions must be

acquired, in addition to a baseline image (no diffusion weighting). Routine clinical

DTI acquisition is done typically acquiring only the minimum recommended number

of 15-25 directions with one baseline image. But, for research-based acquisitions

diffusion tensor data is often great than 60 directions with multiple baseline images.

The model based diffusion tensor approach uses the Gaussian mixture model (GMM)
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to describe the movement of water molecules, shown in Equation 1.2.5.

Sk = S0

N∑
i=1

fn exp(−bkĝkDnĝk) + ηk (1.2.5)

The diffusion tensor, D, is a 3x3 symmetrical, positive-definite matrix, which

means it has 3 positive eigenvalues representing the magnitude of diffusion, and 3

orthogonal eigenvectors representing each eigenvalue direction, as shown in Equation

1.2.6. The eigenvectors can be used as coordinates for calculating fibre tractography,

with the major eigenvector defining the direction of greatest diffusion. The combi-

nation of these eigenvalues and eigenvectors gives the ellipsoid which represents the

diffusion in that voxel.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (1.2.6)

Magnetic field gradients are notably used for spatial encoding, however they are

crucial to diffusion weighted imaging for sensitizing MRI signals to the diffusion of

water molecules within tissues. The gradient pulses used for diffusion weighted imag-

ing most commonly have two gradient lobes of equal area which lie on either side of

the 180◦ RF pulse. These gradients are usually referred to as Stejskal-Tanner gra-

dients or bipolar gradients, even though they both go in the same direction for spin

echo scans. As for the shape of the lobes, a variety of different pulses can be used,

however, the trapezoidal shape is most popular due to their time efficiency, as seen in

Figure 1.1. Since magnetic field gradients are still required for slice selection during

the scan, the gradient pulses for spatial encoding usually occur right before diffusion
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sensitizing gradient field pulses.

1.2.3 DTI Theory

The first person to incorporate diffusion terms into the signal equation that governs

NMR, called the Bloch equation, was Torrey (Torrey, 1956). This helped describe the

diffusion of free water molecules by incorporating the attenuation of the MR signal due

to this physical property. Around a decade later, these Bloch-Torrey equations were

solved by Stejskal and Tanner to describe the anisotropic diffusion of water molecules

within a NMR volume (Stejskal and Tanner, 1965). It wasn’t until much later that a

model for estimating the diffusion tensor, D, was developed using multivariate linear

regression (Basser et al., 1994). Before this, diffusion related imaging could only be

preformed in tissues where the direction of the fibres was known, such as in giant

squid axons.

Diffusion tensor imaging has since been used for a wide variety of pathological

research, such as in autism (Travers et al., 2012), aging (Westlye et al., 2009), Multiple

Sclerosis (MS) (Filippi et al., 2001), and schizophrenia (Kubicki et al., 2007), to name

but a few.

The diffusion tensor is measured by encoding water diffusivity along multiple non-

collinear directions (at least 6 directions). The diffusion encoding direction is done

through the application of combinations of amplitudes and timings of 3 orthogonal

magnetic field gradients. Once water diffusion is measured, there are several ways one

can quantify the shape of the tensors within each voxel. The simplest approach to DTI

analysis is through a rank-2 tensor model leading to calculation of scalar metrics such

as Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and
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Figure 1.1: An example of a Stejskal-Tanner gradient with a trapezoidal shape.
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Radial Diffusivity (RD). These measures directly relate to the three main Eigenvalues

of the tensor, λ1 +λ2 +λ3. Specifically, in AD only the value of λ1 is quantified. While

in RD the average of λ2 and λ3 is taken. MD provides an average of all three, λ1, λ2,

and λ3, which is also equal to the trace (TR) of the tensor. And finally, FA provides

the relative difference between the largest eigenvalue compared to the others and

represents the fraction of diffusion that is anisotropic, shown in Equation 1.2.7. The

eigenvalue for each tensor is the value of the displacement/diffusion for each specific

vector. In essence FA is a scalar metric providing the relative shape of the tensor. It

scales between 0 and 1 where 0 is spherical (anisotropic) and 1 is a theoretically long

and thin cylinder (anisotropic).

FA =
1√
2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ2
1 + λ2

2 + λ2
3

(1.2.7)

Any of these scalar diffusivity metrics can be shown as a parametric scalar images

for quantification of the local tensors. MD is specifically sensitive to cerebral spinal

fluid (CSF), which has high values of diffusivity. AD, however, is only sensitive to

diffusion in the longest eigenvalue. For a parametric image of AD, highly organized

structures like white matter pathways are bright. Large open cavities, like ventricles,

have general high levels of diffusion which translates to high λ1 values. RD represents

the two shortest eigenvalues and shows dark values in highly organized and dense

structures like white matter, intermediate values in grey matter, and high values in

regions with CSF. FA plots the relative length of λ1, compared to λ2 and λ3.
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1.2.4 DTI Databases

With the growing use of machine learning for classification and exploratory data

analysis, there is a need for large, publicly accessible databases containing a diverse

population of medical imaging data. Currently, these databases are usually focused

on a specific disorder (e.g. austism, Alzheimer’s disease) and contain multi-site data

acquired from numerous imaging centres and MRI systems across the world. These

databases allow researchers to access large datasets containing healthy and diseased

subjects which is crucial for medical imaging based machine learning and deep learn-

ing.

In this study, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu) was used, which is comprised of healthy controls as well as subjects

within the three phases of Alzheimer’s disease. ADNI is a mutlisite study containing

the data from 63 facilities across Canada and the US with the goal of tracking the

progression of Alzheimer’s disease and aging through imaging, clinical assessment,

genetic and biospecimen biomarkers. Care has been taken in the compiling of these

databases by researchers to ensure all scanning is done on a similar scanner (3T),

and scan quality of each image was visually graded by an analyst. The scan quality

is graded from 1 to 4, with grades 1, 2, and 3 being accepted and a grade of 4 being

unusable. For this study, only the healthy controls were used from the database.
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1.3 Machine Learning

1.3.1 What is Machine Learning?

There has been an immense rise in the interest of using machine learning within

the field of MRI. From decoding brain states to finding early biomarkers for disease,

machine learning and pattern recognition have shown themselves to be important

tools in analyzing large, high-dimensional data. The goal of machine learning is to

be able to make predictions based on prior observations and provide insights into the

underlying structure of the data.

Machine learning can be broken down into two main categories, supervised learn-

ing and unsupervised learning. Supervised machine learning requires prior knowledge

on the expected outcome of the data, such as a class label or a continuous output

value. The goal of a supervised machine learning model is to learn the relationships

between input variables, or features, and the output value based on a sample of the

data. Supervised machine learning requires the partitioning of the sample data in

to a “training set” and a “test set”. The machine learning model is fed the training

set in order to learn the patterns associated with the input and output variables to

make predictions based on the data. Once trained, the model is tested on the input

variables of the test set with the outputs removed and predictions based on the rela-

tionships it learned. The predictions are then compared with the outputs of the test

set in order to gauge the accuracy and precision of the model. Supervised machine

learning can be further broken down into classification or regression based on whether

the interest is in predicting a discrete value, like a class label, or a continuous value.

Unsupervised machine learning does not require explicitly labeled output data
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and is used in analyzing the underlying structure of the data. It is often used for

exploratory analysis of data in order to provide insights on the features and their

relationships with one another, as well as dimensionality reduction. Since there are

no labels provided with the data, the models classify or group the data based solely

on the characteristics and relationships of the input features. Unsupervised machine

learning can be further broken down into clustering and association based problems.

Clustering is where the model tries to group similar data points together to discover

the possible presence of classes/groupings within the data, where as association tries

to discover trends in the data, for example, if someone buys product X from a store

they are likely to also buy product Y. A common use of unsupervised machine learning

for high-dimensional data is dimensionality reduction, which is a method used to

represent the input data with less features by transforming it into a lower dimensional

space while maintaining the important information. This often leads to the removal

of redundant features, usually containing noise, while preserving the majority of the

variance.

1.3.2 Outlier Detection

Both supervised and unsupervised machine learning methods can be used to detect

erroneous data within a dataset, depending on the availability of labeled data for

training. The unsupervised approach is referred to as ”outlier detection” and often

utilizes clustering, one-class support vector machines (OCSVM), and/or a variety of

distance metrics to identify anomalies. Outlier detectors are best fit for datasets where

it is suspected that there may be incorrectly included data within the dataset. Since

there are no class labels, the outlier detectors require manual tuning of parameters
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in order to achieve maximum performance. In this study, OCSVM and Mahalanobis

distance were chosen as outlier detector. Support vector machines are the most

widely used machine learning model in health care (Jiang et al., 2017) and minimum

covariance determinant (MCD) based Mahalanobis distance has been shown to be an

efficient tool for outlier detection (Hubert et al., 2017).

The supervised approach to anomaly detection is referred to as ”novelty detec-

tion”, and requires a clean dataset on which the model can be trained before it can

be used to detect anomalies. Novelty detectors are a form of ”one-class classifica-

tion” where the model learns the characteristics of labeled normal data. This form of

anomaly detection is best suited for situations where there is an abundance of labeled

”normal” data, but there lacks enough anomaly data to construct non-normal classes.

In this study, a ”clean” subset of data derived from the MCD-based Mahalanobis dis-

tance was used to train a OCSVM novelty detector to investigate the possibility of

training a novelty detector from the output of a outlier detector. One of the main

reasons to investigate this is to allow for automated hyperparameter tuning, which is

not possible with outlier detectors.

1.3.3 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised machine learning al-

gorithm for reducing the dimensionality of a dataset first presented in 1901 by Karl

Pearson (Pearson, 1901) but was later developed independently in the 1930s by Harold

Hotelling (Hotelling, 1933) where it received it’s current name. Most dimensionality

reduction models fall into two classes: feature elimination, where features are removed
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to reduce the number of variables considered, and feature extraction, where new, in-

dependent variables based on the prior ones are created and ordered on how well they

explain the variance of the data. PCA is a form of feature extraction where features

are combined and projected onto a new, lower dimensional feature space that best

explains the variance of the data. Once the data is in the new feature space, feature

elimination can be used to remove principal components which do not explain a sig-

nificant portion of the variance, reducing the number of features while maintaining

the majority of the original information.

Before feature extraction can be applied, PCA requires either normalization or

standardization of the independent variables X. In this study, standardization was

chosen as the z-scores of the data were of interest. Once the data has been stan-

dardized, the standardized matrix Z was then transposed and multiplied by Z to

compute the covariance matrix, ZTZ. From the covariance matrix the eigenvec-

tors and eigenvalues are calculated. The covariance matrix ZTZ is decomposed into

PDP−1 through eigendecomposition, where P is a matrix containing the eigenvec-

tors and D is a diagonal matrix with the eigenvalues located on the diagonal. The

eigenvalues of D are associated to the eigenvectors P in the corresponding columns.

The eigenvalues are then sorted from largest to smallest as well as their corresponding

eigenvectors. This new matrix of sorted eigenvectors is denoted as P ∗ and is ordered

by the importance of the eigenvectors, as determined by their eigenvalue. The matrix

Z∗ is then calculated using Equation 1.3.1.

Z∗ = ZP ∗ (1.3.1)
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Where Z∗ is a standardized version of X with the new features being a combina-

tion of the original features, in order of their relative importance.

At this point, feature elimination is usually employed to remove principal com-

ponents which are redundant or only explain a negligible proportion of the explained

variance. This can be done by constructing a scree plot to observe the proportion of

the variability explained by each principal component and choosing a cut off point

based on the ”elbow” of the plot or a pre-determined percentage of the total variance.

1.3.4 Support Vector Machines

SVMs are a machine learning algorithm used for both classification and regression

which work by finding a line or hyperplane that best separates classes within the

data. Though most SVMs are used in supervised learning, OCSVMs can be used in

unsupervised learning for the detection of anomalies within the data (Schölkopf et al.,

1999). One of the most useful properties of SVMs is their ability to form non-linear

decision boundaries by projecting the data onto a higher dimensional space using a

non-linear function. Non-linear decision boundaries are often useful for OCSVMs in

determining whether a data point is within the normal distribution as anomalies can

be located anywhere outside the one class, often making linear separation impossible.

For non-linear decision boundaries, data points are separated by projecting data

points from the original space, X, to a higher dimensional space, F, where a hyperplane

can be used to separate the data. When projected back down onto the original space,

a non-linear decision boundary is formed. The hyperplane determines the margin

between the classes, and with the closest points from both classes being equidistant
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from the decision boundary, the hyperplane searches for the ”maximal margin sepa-

rating them. For OCSVMs according to Schölkopf (Schölkopf et al., 1999), the data

is separated from the origin in the feature space F and attempts to maximize the

distance from the hyperplane to the origin. Since the data has been standardized,

the origin lies at the center of the data distribution. This captures where the proba-

bility density of the data is in the input space, X. The hyperplane used to form the

decision boundary for a dataset X = x1, x2, ..., xi, where i ∈ N and N is the number

of observations, is shown in Equation 1.3.2.

wTx+ b = 0 (1.3.2)

Where w is a vector normal to the hyperplane and b is a variable representing the

offset. This results in a small region of inliers given the class label +1, with everything

outside the decision function given a class label of -1. The aim of the OCSVM is to

solve the minimization function, shown in Equation 1.3.3 (Schölkopf et al., 1999).

min
w,ξ,ρ

1

2
||w||2 +

1

νn

n∑
i=1

ξi − ρ (1.3.3)

subject to:

(w · φ(xi)) ≥ ρ− ξi for all i = 1,...,n

ξi ≥ 0 for all i = 1,...,n

Where w is a vector normal to the hyperplane, φ is a feature map that maps the

input data into the feature space, ξ is a slack variable that allows some points to

lie within the margins, and ν is a unique variable used to tune the OCSVM. The ν
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variable acts as both the upper bound of the fraction of data points excluded by the

decision function as outliers, as well as the lower bound of the fraction of data points

used as support vectors. The range of values that can be used for ν must be between

0 and 1.

The ”kernel trick” can be used to reduce the complexity of the calculations neces-

sary for non-linear decision boundaries. The decision function only relies on the dot

product of vectors in the feature space, F, so it is not necessary to project the data

onto the higher dimensional space. Using the kernel function, K, shown in Equation

1.3.4, the same results can be achieved without the need for explicit projection.

K(x, xi) = ρ(x)Tρ(x) (1.3.4)

Since the function K returns the same results as projecting the data to F, it

can be used as a replacement. This gives SVMs a lot of power with non-linearly

separable points as the feature space can theoretically be an unlimited number of

dimensions, allowing the hyperplane to form highly complex decision functions. There

are several kernel functions that can be used with SVMs, including linear, sigmoidal,

and polynomial kernels. However, the kernel used in this study is the Gaussian Radial

Base Function (RBF), shown in Equation 1.3.5

K(x, x′) = exp

(
−||x− x

′||2

2σ2

)
(1.3.5)

Where σ is the variance and hyperparameter of the kernel and ||x − x′|| is the

Euclidean distance used as a dissimilarity measure. When the minimization function

is solved using Lagrange multipliers and the ”kernel trick”, the decision function
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becomes Equation 1.3.6.

f(x) = sgn((w · φ(xi))− ρ) = sgn(
n∑
i=1

αiK(x, xi)− ρ) (1.3.6)

Where αi are the Lagrange multipliers. Only αi > 0 are weighted when forming

the decision function, meaning only the support vectors, or the points closest to the

margin, are used when creating the decision boundary.

1.3.5 Mahalanobis Distance

Mahalanobis distance is a distance metric that measures the distance from a point

to the center of a distribution. It is very useful when working with multivariate

data as well as for one-class classification, multivariate anomaly detection, and semi-

supervised problems with heavily unbalanced datasets. First introduced by P.C.

Mahalanobis in 1939, the Mahalanobis distance is effectively a multivariate form of

Euclidean distance. The formula for calculating the Mahalanobis distance can be

seen in Equation 1.3.7.

d(µ,Σ)(xi)
2 = (x− µ)TΣ−1(x− µ) (1.3.7)

Where d(µ,Σ)(xi)
2 is the squared Mahalanobis distance, x is a vector of the obser-

vation, µ is a vector of the means of the features, and Σ−1 is the inverse covariance

matrix. With (x-µ) being the distance from a point to the distribution divided by

the covariance matrix, it is essentially the multivariate equivalent to standardization.

If the covariance is high due to the features being correlated, the distance will be
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reduced. The Mahalanobis distance works by first transforming the features into un-

correlated variables, scaling the variance of those features to 1, and then calculating

the Euclidean distance. This addresses the problem of correlation as well as scaling.

In a practical setting, µ and Σ are replaced by estimations of the mean and covari-

ance. Maximum likelihood estimator (MLE) and minimum covariance determinant

(MCD) estimator are often used in the estimation of these parameters. MLE is more

sensitive to outliers within the data which can lead to issues with the calculated

Mahalanobis distance whereas MCD is a far more robust estimator which forms a

”clean” subset of the data from which it estimates the parameters. MCD was first in-

troduced by P.J. Rousseuw in 1984 (Rousseeuw, 1984), and works by finding a subset

of
nsamples+nfeatures+1

2
samples that have the smallest determinant for their empirical

covariance.

1.3.6 Outlier Detection in the Brain

Several groups, using a variety of measures, have investigated the problem of outliers

within quantitative brain MR images. Mejia et al. (Mejia et al., 2017) investigated

a form of outlier detection for use in high-dimensional functional magnetic resonance

(fMRI) data that provided a single measure of “outlyingness”. After preprocessing

and scaling each volume to its median and median absolute deviation (MAD), the

PCA leverage was calculated and used as a measure of outlyingness due to its relation

to the Mahalanobis distance. Using the ABIDE database containing multiple subjects

from 16 different sites ( Di Martino et al, 2014), Mejia et al. were able to improve the

reliability of resting state networks and functional connectivity. The rs-fMRI results

also concluded that while a threshold of 4 to 5 times the median leverage worked best

26



M.A.Sc. Thesis – N. MacPhee McMaster University – Biomedical Engineering

for detecting artifacts, different MRI approaches and differing imaging modalities,

and types of outliers, may require different thresholds.

Looking at structural brain MR images, Moldovanu et al. (Moldovanu et al., 2015)

proposed the inclusion of a “detection of outliers” stage between acquisition and pre-

processing using elimination criteria and distance functions. The elimination criteria

included Chauvenet’s, Pierce’s and Grubb’s criteria and were applied to the histogram

image distributions to remove outlier values. Once removed, the similarity between

images with and without outliers were measured using three distance functions: Eu-

clidean, Minkowsky, and cosine distance. The results indicated that differences in

contrast can affect the detection of outliers, and the inefficiency of cosine distance as

a method of outlier detection.

Mourão-Miranda et al. (Mourão-Miranda et al., 2011) investigated the use of a

one-class SVM (OC-SVM) outlier detector in order to differentiate depressed patients

from healthy controls based on their fMRI data. Rather than approaching the problem

as a differentiation between two or more classes, they utilized the concept of a range

of “normality” in which a subject has a measurable distance from, and utilized the

discriminatory nature of OC-SVMs to detect signs of depression in response to sad

facial expressions during functional brain imaging. Having formed a distribution

of “normal” patterns by healthy controls in response to specific stimuli, they were

able to form an objective measure of the degree in which a psychological disorder

caused deviations from the normal. They found a significant correlation between

patients’ Hamilton Rating Scale for depression scores and their distance from the

normal decision boundary, and they were able to identify two subgroups within the

cohort which differed in their response to treatment for depression.
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Looking at diffusion magnetic resonance imaging (dMRI), Andersson et al. (An-

dersson et al., 2016) developed a method to detect and replace outlier data caused by

patient movement. Due to motion during the diffusion encoding part of the imaging,

signal loss can occur causing parts of the scan to become unusable and can biased

estimations due to the presence of outlier values. Where as in the past one might

exclude voxels, slices, or volumes which contain outlier values, Andersson et al. pro-

posed a method using a Gaussian process in order to predict what a certain region

should look like based on an assumption about neighbouring points in Q-space, an

advanced DTI technique using multiple b-values. They were able to replace outliers

using non-outlier data from surrounding image areas, therefore minimizing the impact

of the outlier on any subsequent diffusion analysis.

Also looking at single patient outlier detection and replacement in dMRI, Ni-

ethammer et al. (Niethammer et al., 2007) proposed a detection method based on

thresholding the Laplacian of the apparent diffusion coefficient (ADC) and replac-

ing the outlier values with sphere-neighborhood-interpolated values. To find severe

outlier values, the Laplacian of the ADC values over the sphere were calculated and

a threshold was established from reference DWI images. Maximum and minimum

“normal” Laplacian values for an ADC value were determined and used as a very

simple outlier rejection method. Outlier voxels were then replaced with smoothly in-

terpolated values based on the neighbouring voxels. Niethammer et al. were able to

improve the directional information from linear least squares tensor estimation using

their outlier detection and replacement method, reducing the effects of outlier values.

Most recently, Sairanen et al. (Sairanen et al., 2018) developed a slice-wise outlier

detection (SOLID) method for diffusion MRI data that uses a degree of “uncertainty”
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to adjust outlier values rather removing them. In order to avoid distributing slice

wise outliers over multiple volumes, SOLID was applied before image registration

and transformation. The Z-score was calculated for each slice and outlier detection

was done by comparing each slice observation to the mean for the whole brain. The

modified Z-score was also used to detect suspicious slices, allowing for their identifica-

tion and visual inspection. Uncertainty weightings, called voxel-wise SOLID weights,

were derived from the modified Z-score and scaled linearly from 1 (normal) to 0 (out-

lier) and used to inform a model estimator, based on which model the user chooses.

SOLID was able to identify all outliers when tested against other slice-wise outlier

detection methods and produced fewer false positives than the others.
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Chapter 2

Problem Definition and Hypothesis

2.1 Problem Definition

With the growing use of machine learning and deep learning as complementary

tools in medical diagnostics, medical datasets need to be preprocessed and analyzed

prior to the training process in order to catch outliers so as to ensure the best possible

learning. Depending on the occurrence rate, outliers can drastically effect the ability

of a model to correctly classify or predict data. DTI data has a high dimensional data

format which makes it impossible to analyze with the naked eye. Methods, such as z-

score, Mahalanobis distance, isolation forests, and density based spatial clustering of

applications with noise (DBSCAN) are currently used to identify outliers. Although

these are reliable methods for detecting outliers, there remains room for improvement

and better specificity and sensitivity.
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2.2 Hypothesis Statement and Proposed Solution

There are increasing numbers of large repositories of imaging data. This in-

cludes not only MRI, but also PET/CT, ultrasound, mammograms, etc. Although

there are supposedly strict measures for inclusion of normal data to these reposito-

ries, it is not only possible, but highly likely, that non-normal data is inadvertently

incorporated into the data. Non-normal data, for this case, means data (images)

that have some region/voxel/pixel that is not within what would be considered a

normal range, depending on the metric being assessed. The image type can be highly

varied. In this work, diffusion tensor imaging (DTI) data was chosen, which, in its

raw form, constitutes thousands of images. These images are then ’distilled’ through

some form of tensor decomposition into DTI scalar metrics (described previously).

DTI metrics are used to describe the health of white-matter myelin and as such are

affected by many brain diseases. For example, multiple sclerosis (MS) causes inflam-

mation, edema and breakdown of myelin while concussion causes transient (hopefully)

loss in myelin integrity, both of which can be assessed with DTI. Numerous groups

have shown non-normative values of DTI metrics for most psychological disorders

(schizophrenia, depression, ADHD, bipolar, etc.). Non-normative data could enter

into these normative datasets through anything from sub-clinical or undiagnosed dis-

ease to previous head injury that was not recalled or reported. Unfortunately, these

inclusions in the normative dataset repositories could lead to problems in training for

machine learning algorithms leading to elevated risk of higher false positive and false

negative rates. Thus, the objective of this project was to test and compare a com-

bination of machine learning methods to identify outliers in normative brain image

datasets. Specifically, this work focused on DTI due to it’s widespread application in
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understanding brain white-matter damage.
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Chapter 3

Materials and Methods

3.1 Data

The data used in this study was obtained through the public access database

ADNI (Petersen et al., 2009). Care was made to minimize variance due to hardware

and hence only data from a specific vendor (General Electric Healthcare) and MRI

B0 field strength (i.e. 3 Tesla) were obtained. The raw DTI data (i.e. in this case

DICOM images) chosen from this database were initially 1036 healthy controls, 473

male and 563 female, between the ages of 22 and 40. Due to the much smaller

dataset size of the male and female subjects age 36 to 40 (5 subjects or less per

cohort) they were excluded from the present study as they did not contain enough

data to represent their cohort. The remaining 1029 subjects were grouped by age and

sex into 6 different datasets shown below in Table 3.1.
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Datasets Number of Subjects
Male 22 to 25 140
Male 26 to 30 206
Male 31 to 35 125

Female 22 to 25 80
Female 26 to 30 246
Female 31 to 35 232

Table 3.1: Age and sex grouped datasets.

3.2 Hardware and Software

This study was done using a server located at the Imaging Research Center at

St. Joseph’s Healthcare in Hamilton, ON. The server had an AMD Ryzen Thread-

ripper 3960X 24-core CPU, an nVidia RTX 2080 GPU and 64GB of RAM and was

running Ubuntu 20.04.4 LTS as its operating system.

The preprocessing was done using FMRIB Software Library v5.0 (FSL) (Jenk-

inson et al., 2012), a free library of analysis tools designed for brain imaging data.

Several of the toolboxes from the library were used in the preprocessing phase and

are mentioned in section 3.3.1. The programming language used for modeling was

Python version 3.8 (Van Rossum and Drake, 2009), using the open-source integrated

development environment (IDE) Spyder (Raybaut, 2009). The Python libraries used

during research are listed below in Table 3.2.
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Python Library Description
matplotlib A library used for plotting and visualiz-

ing data (Hunter, 2007)
numpy A library adding multiple mathematical

functions useful for arrays and matrices
(Harris et al., 2020)

pandas A library used for data manipulation
and analysis, also adding useful data
structures for multivariate data (McK-
inney et al., 2010)

os A built in module for directory fetching,
creation, and navigation as well as other
operating system dependent functional-
ity (Van Rossum and Drake, 2009)

sklearn A machine learning library designed
for Python allowing for predictive and
exploratory data analysis (Pedregosa
et al., 2011)

scipy A library for scientific computing offer-
ing functions for a wide variety of sci-
entific and engineering tasks (Virtanen
et al., 2020)

Table 3.2: List of Python libraries used during research

3.3 Data Processing

3.3.1 Preprocessing

The raw DTI data was converted into NIfTI (Neuroimaging Informatics Tech-

nology Initiative) files using dcm2niix (Li et al., 2016) for future processing. FMRIB

Software Library v5.0 (FSL) (Jenkinson et al., 2012) and it’s toolboxes were used to

prepare the NIfTI files for analysis. Brain extraction was performed using FSL’s Brain

Extraction Tool (Smith, 2002) to isolate the brains from the surrounding anatomy.
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With the brains extracted, eddy current and motion correction was performed on the

data using FSL’s FDT Diffusion tool (Behrens et al., 2003, 2007). The diffusion ten-

sor was then reconstructed from the processed data using FSL’s dtifit tool (Behrens

et al., 2003, 2007) and output as diffusion scalar metrics (i.e FA, RD, AD, MD).

The reconstructed data was then registered to the MNI152 T1 1mm standardized

space (Mazziotta et al., 1995) in order to allow for comparison between brains. The

brains were then segmented into 18 regions of interest (ROI) using binary masks

according to the JHU DTI-based white-matter tractography atlas (Mori et al., 2005)

and a mean was calculated for each ROI defined by that atlas. The JHU white-

matter tractography atlas was chosen as it identifies the probability of certain voxels

pertaining to specific white matter structures of interest within the brain. In order to

ensure each subject had the same number of voxels per ROI, the atlas was applied to

one of the brains from the dataset at random and the probabilistic ROIs were saved

as binary masks. These binary masks were used to extract identically shaped ROIs

from each brain. The ROIs from the atlas used are listed below in Table 3.3.

The binary masks were applied to each subject using fslmaths, part of FSL’s

’FSLUTILS’ toolbox which allows for mathematical manipulation of images through

the command-line, in order to create nifty files of the isolated ROIs. The pipeline

was automated using Bash scripts which were executed through a command-line, and

a flow chart showing the entire process is shown in Figure 3.1. A Python script was

used to iterate through the segmented brains of a cohort to ensure each ROI had the

same number of non-zero voxels. The means of the 18 ROIs for each subject were

then added to a CSV file corresponding to each of the 4 diffusion metrics for their sex

and age grouped datasets. This was performed in Python version 3.8 (Van Rossum
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JHU White-matter Tractography Atlas ROIs
’Acoustic radiation Left’

’Acoustic radiation Right’
’Callosal body’
’Cingulum Left’

’Cingulum Right’
’Corticospinal tract Left’

’Corticospinal tract Right’
’Fornix’

’Inferior occipito-frontal fascicle Left’
’Inferior occipito-frontal fascicle Right’

’Optic radiation Left’
’Optic radiation Right’

’Superior longitudinal fascicle Left’
’Superior longitudinal fascicle Right’

’Superior occipito-frontal fascicle Left’
’Superior occipito-frontal fascicle Right’

’Uncinate fascicle Left’
’Uncinate fascicle Right’

Table 3.3: Names of white-matter structures chosen as ROIs.

and Drake, 2009) using the function ”pandas.DataFrame.to csv” from the library

”Pandas”.

3.3.2 Outlier Creation

In order to assure that the outlier detection techniques being investigated were

able to identify outliers within the datasets, abnormal data was created from existing

data with a range of ”outlyingness” to test each method. The synthesized outliers

were created from 5 subjects in the excluded cohorts so as to not reuse subjects from

the dataset being tested. The data was loaded into Python and the outliers were
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Figure 3.1: Flow chart displaying the preprocessing pipeline.

given a degree of ”outlyingness” which was determined by multiplying their subject

number (a range from 1 to 5) by 0.35, adding 1, and then multiplying the means of

their ROIs by that degree. The synthesized outliers had their ROI means increased by

%135, %170, %205, %240, and %275 respectfully. Using a range of different degrees

of ”outlyingness” was chosen to observe how the different outlier detection techniques

interact with mild to extreme outliers. The outliers were then added to the Female

26 to 30 cohort for testing. An example showing the Z-scores of the effected dataset

can be seen in Figure 4.3.

Initially, the outliers were created by adding random standard Gaussian

noise or uniform noise to the raw nifti file after being converted from DICOM, prior

to any preprocessing. This was done by utilizing the ”randn” function, which adds

Gaussian noise, as well as the ”rand” function, which adds uniform noise, from the

”fslmaths” toolbox. For the uniform noise, 0.1 unit increments were used to adjust

the amount of noise added to the image file as the ”rand” function takes a range from

0 to 1. However, it became apparent that the amount of noise added to the image

did not clearly dictate the degree of ”outlyingness” after it had been preprocessed.
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Figure 3.2: Histogram plot showing the Z-scores of the Fornix from the AD Female
26 to 30 cohort with synthesized outliers

A more quantitative approach post-processing was chosen to create the outliers, as

described above.

3.3.3 Feature Extraction

Feature extraction is a fundamental step in machine learning in order to ensure

your model is performing at it’s best. First, the diffusion metric data containing the

means of the ROIs was loading into Python using the function ’pandas.read csv’, each

sex and age cohort being analyzed separately. The means were then standardized

using ’sklearn.StandardScaler” which sets the mean of the feature to zero and the

standard deviation to one. The equation used to standardize the data is shown in
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Equation 3.3.1.

z =
(x− µ)

σ
(3.3.1)

Where x is a sample from the dataset, µ is the mean of the dataset, σ is the

standard deviation the sample and z is the standard score, or Z-score. Once the data

had been standardized, histograms were produced for each ROI to ensure that the

distributions were normal. An example of one of these histograms is shown in Figure

3.3.

Figure 3.3: Histogram plot showing the Z-scores of the right Cingulum from the FA
Female 26 to 30 cohort

In order to observe how many ROIs from each subject had Z-scores which
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may be classified as outliers, a cut off of 99.5% (or a Z-score of >2.807/<-2.807) was

chosen. Each subject with an ROI Z-score beyond the cutoff was recorded along with

which ROI and diffusion metric it was from. A plot was produced showing the num-

ber of Z-scores beyond the cutoff for each subject, with each diffusion metric shown

in a different colour.

The diffusion metric data was combined for each ROI to create CSV files con-

taining the standardized means FA, MD, RD, and AD of each subject. A CSV file

was created for each ROI so that they could be analyzed separately from one an-

other. Principal component analysis (PCA) was performed on the ROI data using

the function ”PCA” from the library ”sklearn.decomposition” to reduce the dimen-

sionality of the datasets. A scree plot was made to determine the number of principal

components needed to encapsulate at least 95% of the explained variance, and can

be seen in Figure 3.4 and a table containing the explained variance values for each

principal component found in Table 3.4. A cut-off of 2 principal components was

chosen as >95% of the explained variance was encapsulated in the first two principal

components.

3.4 Modeling

3.4.1 Mahalanobis Distance

Once the principal components of the data had been computed and the first two

principal components were selected, minimum covariance determinate (MCD) estima-

tor and maximum likelihood estimator (MLE) were used to estimate the covariance
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Figure 3.4: Scree plot of the ROIs for the Female 26 to 30 cohort

matrix and mean of the data. The subset of the data with the smallest determinant is

desired as the determinant of the covariance matrix represents how broad of a distri-

bution it has. The broader the distribution is, the more sparse the data is. The idea

behind MCD is to find a “pure” subset of the data while minimizing the effects of any

outliers in order to have the best estimate of the covariance matrix and the mean.

Both MCD and MLE estimate the parameters of a distribution. However, MLE tends

to be more sensitive to outliers within the data (Hardin and Rocke, 2005). The size

of the subset created by MCD is determined by equation 3.4.1

nsamples + nfeatures + 1

2
(3.4.1)

The MCD was estimated using the function ”MinCovDet” from the Python library

”sklearn.covariance”. The MLE was estimated using the function ”EmpiricalCovari-

ance” from the library ”sklearn.covariance”. The estimated covariance matrix and
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ROI PC1 PC2 PC3 PC4
Acoustic radiation Left 0.692 0.284 0.023 0.0
Acoustic radiation Right 0.705 0.271 0.024 0.0
Callosal body 0.674 0.32 0.006 0.0
Cingulum Left 0.707 0.272 0.021 0.0
Cingulum Right 0.721 0.259 0.02 0.0
Corticospinal tract Left 0.665 0.317 0.018 0.0
Corticospinal tract Right 0.658 0.321 0.021 0.0
Fornix 0.627 0.362 0.011 0.0
Inferior occipito frontal fascicle Left 0.705 0.271 0.024 0.0
Inferior occipito frontal fascicle Right 0.706 0.267 0.027 0.0
Optic radiation Left 0.658 0.328 0.014 0.0
Optic radiation Right 0.666 0.324 0.009 0.0
Superior longitudinal fascicle Left 0.593 0.392 0.014 0.0
Superior longitudinal fascicle Right 0.637 0.342 0.021 0.0
Superior occipito frontal fascicle Left 0.71 0.271 0.018 0.0
Superior occipito frontal fascicle Right 0.694 0.284 0.022 0.0
Uncinate fascicle Left 0.597 0.382 0.021 0.0
Uncinate fascicle Right 0.625 0.344 0.03 0.0

Table 3.4: Table showing the explained variance ratios of the four principal
components

mean from the MCD and MLE were then used to compute the Mahalanobis distance

for every point by fitting them to the data using the function ”fit” from the library

”sklearn”. The equation for Mahalanobis distance is given in Equation 3.4.2.

d(µ,Σ)(xi)
2 = (xi − µ)TΣ−1(xi − µ) (3.4.2)

Where xi is a sample from the dataset and µ is the mean, with (xi−µ) representing

the distance of an observation to the mean of the distribution. This is then multiplied

by the inverse covariance matrix (or divided by the covariance matrix) Σ. In this case,

both µ and Σ are replaced by the estimations from either MCD or MLE. With the
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Mahalanobis distances calculated, a cut off was set at an F1-score of 99.5%, classifying

all outside data points as outliers. Contour plots were then made using the ”contour”

function from ”matplotlib” showing the MCD and MLE based contours for the same

ROI datasets, with the outliers classified by the MCD based Mahalanobis distance

shown in Figure 3.5 in red. Plots showing the MCD and MLE based Mahalanobis

distance for each subject were also plotted with the cutoff line shown in red. A

comparison plot was also made to show the difference between the two estimators by

showing which values were above and below the cutoff lines and the differences in

classified outliers.

3.4.2 One Class Support Vector Machine Outlier Detector

The Mahalanobis distance decision functions were then used to compare to a One

Class Support Vector Machine (OCSVM) outlier detector which were trained on each

ROI dataset independently. Since OCSVM outlier detectors are an unsupervised

machine learning technique, there is no ground truth in which to train and test

your results with, making it impossible to automate tuning of the hyperparameters.

Several OCSVMs were trained with a range of ν and γ values and their decision

functions were plotted in order to choose the best model. An increase in γ increases

the complexity of the decision function which can lead to an issue with over fitting,

as shown in Figure 3.5

The parameter ν represents a bounded parameter that fine tunes the trade off

between generalization and overfitting the data. ν is the upper bound for the number

of samples to be excluded by the decision function, and the lower bound for the

number of points that are support vectors. For example, a ν of 0.10 means that not
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Figure 3.5: Comparison of 4 different γ values used when training an RBF OCSVM
with the same ν value, with the MCD based outliers shown in red

more than 10% of the samples can be excluded as outliers. The kernel chosen for the

OCSVM was a radial basis function (RBF) due to the elliptical nature of the data.

Linear, Polynomial and sigmoid kernels were also tested, however, their shapes did

not fit the data as well as RBF, as shown in Figure 3.6. 3.6.

The OCSVMs were fitted to the PCA data using the function ”OneClassSVM”

from the library ”sklearn.svm”. After a series of tests to observe how the different

γ and ν values affected the decision function it was decided to make two separate
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Figure 3.6: Comparison of 4 different OCSVM kernels, with the MCD based outliers
shown in red

plots where one of the values was held constant while the other varied. Since each

ROI dataset for each cohort contained different amounts of out-of-distribution data,

there was no one set of parameter values which excluded outliers consistently. For

the first plot, a ν value of 0.15 was selected while γ values of 0.01, 0.05, and 0.1 were

tested. All three OCSVM decision functions were plotted on a single figure with the

MCD based outliers shown in red for reference, though these outlier labels were not

used to train the models. For the second plot, a γ value of 0.05 was selected while
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ν values of 0.1 and 0.2 were tested along with a dynamic ν value calculated for each

ROI dataset. The dynamic ν was calculated from the number of MCD based outliers,

creating a pseudo novelty detector while still training the models in an unsupervised

way. Since the ν value is used at the upper bound of how many samples are excluded

by the decision function, a dynamic ν value was calculated using Equation 3.4.3

νdynamic =
nMCD−outliers

nsubjects
∗ 1.5 (3.4.3)

Where νdynamic is the ratio of MCD based outliers to the number of subjects

multiplied by a compensation constant. A compensation constant was added to allow

the upper bound to go above the estimated ratio of outliers to allow for a wider range

of excluded outliers. If in the case that no outliers were detected by the MCD based

Mahalanobis distance, a ν value of 0.05 was chosen for the νdynamic.

3.4.3 One Class Support Vector Machine Novelty Detector

A OCSVM novelty detector was trained using the ”pure” subset of data deter-

mined by the MCD based Mahalanobis distance. Since a OCSVM novelty detector

is only trained on ”pure” data, the outliers determined by MCD were excluded from

the training process. A 70/30 training/test split was chosen for the data, with the

outliers being added to the testing split. The function ”train test split” from the li-

brary ”sklearn.model selection” was used to split the inlier data. A OCSVM novelty

detector decides whether something is in the class, giving it a label of +1, or outside

of the class, giving it a label of -1. Therefore, all ”pure” data from the MCD subset

was given a label of +1 prior to training.

Hyperparameter tuning was done using the ”GridSearchCV” function from the
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library ”sklearn.model selection”. The range of γ values used during cross validation

were 0.0005, 0.001, 0.01, 0.1 and 1. The range of ν values used were between 0.001

and 1, with a 0.001 step increment, resulting in 1000 ν values being tested. The scor-

ing parameter chosen to evaluate the performance of the model was the ”f1” score,

which combines precision and recall. This scoring metric was chosen as it is a better

measure of incorrectly classified data, and can be seen in Equation 3.4.4:

F1 = 2 ∗ precision ∗ recall
precision+ recall

=
TP

TP + 1
2
(FP + FN)

(3.4.4)

Where TP is the number of true positives, FP is the number of false positives, and

FN is the number of false negatives. A total of 5000 different parameters were tested

and the best parameters from the cross validation stage were then saved and used to

fit the OCSVM novelty detector to the training data using the output ”best params ”

from the ”GridSearchCV” function. The classification metrics were saved using the

function ”classification report” from the library ”sklearn.metrics”. A countour plot

was made showing the decision function using the ”contour” function from the library

”matplotlib”.
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Chapter 4

Results

4.1 Preprocessing

Image preprocessing was done according to the methodology described in Chapter

3. At several points throughout the preprocessing pipeline, visual inspection of the

data was performed to ensure that any errors which might have occurred were not

being propagated. After brains were extracted, eddy current and motion correction

were performed, and the diffusion tensor was calculated, several subjects were chosen

at random for inspection. The subject data was viewed using FSLeyes (McCarthy,

2021), an image viewer designed for visualizing neuroimaging data from the FSL

toolbox, and inspected for any possible preprocessing errors. An example of one of

these images can be seen in Figure 4.1.

After selected subjects were inspected and deemed clear of process errors, the

brains were registered to the MNI152 standardized space and white-matter binary

masks from the JHU white-matter tractography atlas were applied.
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Figure 4.1: An axial slice fractional anisotropy (FA) parametric map of a subject in
the Male 22 to 25 cohort. The FA is a scaler metric, ranging from 0 to 1, describing
the shape of the tensor. A FA value of 0 indicates perfectly isotropic diffusion while

a value of 1 represents an infinitely long cylinder with infinitely negligible cross
section.
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4.2 Feature Extraction

An example of histogram plots (standardized Female 26 to 30 cohort) produced

using the methodology described in section 3.3.3 of Chapter 3 are seen in Figure

4.2. To reduce the number of figures in this section, the Female 31 to 35 cohort

was chosen for the majority of examples. For each cohort a total of 72 histograms

were produced, totalling 504 histograms for the 6 cohorts plus the synthesized outlier

cohort. An example showing the histogram plots of the synthesized outlier cohort

(Female 26 to 30 with added outliers) can be seen in Figure 4.3 with the synthesized

outliers trailing off to the right of each histogram.

In the histogram plots shown in 3.3, subjects with a Z-score beyond the confi-

dence interval cut off of 99.5% (Z-score of 2.807) can be seen in the majority of the

histograms. This reinforces the belief that these healthy control datasets contain

outliers.

4.3 Z-score Outlier Detection

4.3.1 Model Validation With Synthesized Outliers

Z-score outlier detection was tested on its ability to identify synthesized outliers

within a dataset. A total of 5 synthesized outliers were added to the data, however,

as seen in Table 4.1, only some of the outliers were identified within each ROI. For the

DTI metrics AD, RD and MD, the Z-score outlier detector was able to consistently

identify 4 of the 5 outliers. Seeing as the synthesized outliers had a range of increasing

outlyingness of %135, %170, %205, %240, and %275, it is understandable that the

first outlier may not be detected with this method as the presence of extreme outliers
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(a) Histogram of the Left Acoustic radiation
ROI

(b) Histogram of the Right Acoustic
radiation ROI

(c) Histogram of the Callosal body ROI (d) Histogram of the Left Cingulum ROI

(e) Histogram of the Right Cingulum ROI
(f) Histogram of the Left Corticospinal tract

ROI

Figure 4.2: Histogram plots of FA ROI Z-scores from the Female 26 to 30 cohort
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(a) Histogram of the Left Acoustic radiation
ROI

(b) Histogram of the Right Acoustic
radiation ROI

(c) Histogram of the Callosal body ROI (d) Histogram of the Left Cingulum ROI

(e) Histogram of the Right Cingulum ROI
(f) Histogram of the Left Corticospinal tract

ROI

Figure 4.3: Histogram plots of FA ROI Z-scores from the synthesized outlier
containing Female 26 to 30 cohort
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within the dataset can change the standard deviation, making less erroneous data

harder to identify. However, for FA, the z-score outlier detector missed two or more of

the outliers for the majority of the ROIs. This may be from the fact that the variance

of the FA metric for the cohorts is orders of magnitude larger, 10−3, compared to the

other DTI metrics, 10−7. The variance for each DTI metric was calculated using the

function ”var” from the library ”pandas.DataFrame”.

ROI FA AD RD MD
Acoustic radiation Left 3 4 4 4
Acoustic radiation Right 3 4 4 5
Callosal body 3 4 4 4
Cingulum Left 2 4 2 4
Cingulum Right 2 4 3 4
Corticospinal tract Left 4 4 4 4
Corticospinal tract Right 4 4 4 4
Fornix 2 4 3 4
Inferior occipito frontal fascicle Left 2 4 4 4
Inferior occipito frontal fascicle Right 2 4 5 4
Optic radiation Left 3 4 4 4
Optic radiation Right 4 4 4 4
Superior longitudinal fascicle Left 3 4 4 4
Superior longitudinal fascicle Right 5 4 3 4
Superior occipito frontal fascicle Left 5 4 5 5
Superior occipito frontal fascicle Right 4 4 4 5
Uncinate fascicle Left 2 3 4 4
Uncinate fascicle Right 2 4 4 4

Table 4.1: Number of outliers per ROI identified by Z-score outlier detection in the
Female 26 to 30 cohort with synthesized outliers out of 251 subjects.
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4.3.2 Model Testing With Real Data

With Z-score outlier detection shown to be able to pick up the majority of synthesized

outliers, the model was then tested on the 6 data cohorts. A table showing the number

of outliers detected by Z-score thresholding in the Female 31 to 35 cohort can be seen

in Table 4.2. Across the 4 DTI metrics for this cohort, at least one outlier was detected

for each ROI, with some having up to 8. In other cohorts, such as the Male 26 to

30 cohort, up to 11 outliers were detected in a single ROI across the 4 DTI metrics.

This further enforces the likelihood that there are anomalies within these multisite

DTI databases. For the 6 cohorts, only 10 out of the 108 ROIs tested did not have

an outlier detected, which is only about 9% of the total ROIs. A table showing the

number of outliers detected for each ROI within each cohort can be seen in Table

4.3. Following the methodology outlined in Chapter 3, an example plot showing the

number of ROI Z-scores beyond the cutoff for each subject is seen in Figure 4.4, with

the plot identifying which DTI scalar metrics the Z-score is from. From the figure it

is noted that several subjects within the dataset have 1 to 3 abnormal Z-scores, with

a few subjects having multiple ROIs beyond the threshold.
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ROI FA AD RD MD
Acoustic radiation Left 0 1 2 1
Acoustic radiation Right 1 2 1 1
Callosal body 0 2 1 1
Cingulum Left 1 1 2 0
Cingulum Right 1 2 2 2
Corticospinal tract Left 0 1 0 1
Corticospinal tract Right 1 0 2 2
Fornix 0 2 0 0
Inferior occipito frontal fascicle Left 0 0 2 2
Inferior occipito frontal fascicle Right 0 1 0 0
Optic radiation Left 0 1 0 2
Optic radiation Right 1 3 0 0
Superior longitudinal fascicle Left 2 1 2 0
Superior longitudinal fascicle Right 1 0 1 1
Superior occipito frontal fascicle Left 2 2 2 2
Superior occipito frontal fascicle Right 2 1 2 2
Uncinate fascicle Left 0 3 1 0
Uncinate fascicle Right 2 2 2 2

Table 4.2: Number of outliers per ROI identified by Z-score outlier detection in the
Female 31 to 35 cohort out of 232 subjects.
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ROI M22 25 M26 30 M31 35 F22 25 F26 30 F31 35
Acoustic radiation Left 5 6 0 0 7 4
Acoustic radiation Right 5 3 2 2 7 5
Callosal body 5 3 2 1 9 4
Cingulum Left 2 6 2 0 3 4
Cingulum Right 2 7 0 1 4 7
Corticospinal tract Left 1 4 2 1 4 2
Corticospinal tract Right 0 5 2 2 6 5
Fornix 3 3 1 0 4 2
Inferior occipito frontal fascicle Left 6 1 1 3 2 4
Inferior occipito frontal fascicle Right 5 5 2 0 6 1
Optic radiation Left 1 4 7 0 7 3
Optic radiation Right 2 3 4 0 10 4
Superior longitudinal fascicle Left 3 6 0 3 6 5
Superior longitudinal fascicle Right 3 7 1 3 11 3
Superior occipito frontal fascicle Left 2 11 2 5 9 8
Superior occipito frontal fascicle Right 1 6 2 2 7 7
Uncinate fascicle Left 2 3 2 1 8 4
Uncinate fascicle Right 6 5 5 1 5 8
Cohort size 140 206 125 80 246 232

Table 4.3: Number of outliers detected for each ROI within each cohort of
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4.4 Mahalanobis Outlier Detection

According to the methodology outlined in Chapter 3, PCA was performed and the

eigenvalues of the principal components were plotted on a scree plot. For each of the

6 cohorts, over 95% of the explained variance was contained in the first 2 principal

components. Feature extraction was used to remove the last two principal compo-

nents. An example scree plot (Female 31 to 35 cohort) is seen in Figure 4.5 with

the explained variance contained in each principal component shown in Table 4.4.

With the features being reduced to two principal components, data visualization and

decision functions become much simpler.

ROI PC1 PC2 PC3 PC4
Acoustic radiation Left 0.701 0.271 0.028 0.0
Acoustic radiation Right 0.688 0.286 0.025 0.0
Callosal body 0.647 0.348 0.005 0.0
Cingulum Left 0.687 0.289 0.023 0.0
Cingulum Right 0.711 0.266 0.023 0.0
Corticospinal tract Left 0.68 0.305 0.015 0.0
Corticospinal tract Right 0.683 0.298 0.019 0.0
Fornix 0.638 0.35 0.012 0.0
Inferior occipito frontal fascicle Left 0.709 0.264 0.026 0.0
Inferior occipito frontal fascicle Right 0.701 0.265 0.033 0.0
Optic radiation Left 0.629 0.359 0.012 0.0
Optic radiation Right 0.642 0.35 0.008 0.0
Superior longitudinal fascicle Left 0.62 0.367 0.012 0.0
Superior longitudinal fascicle Right 0.659 0.324 0.016 0.0
Superior occipito frontal fascicle Left 0.727 0.255 0.018 0.0
Superior occipito frontal fascicle Right 0.662 0.315 0.023 0.0
Uncinate fascicle Left 0.593 0.387 0.02 0.0
Uncinate fascicle Right 0.638 0.329 0.032 0.0

Table 4.4: Proportion of explained variance contained in each principal component
for the Female 31 to 35 cohort
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Figure 4.5: Scree plot of the eigenvalues of the Female 31 to 35 cohort, out of 232
subjects.
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4.4.1 Model Validation With Synthesized Outliers

The Mahalanobis distances were calculated using the maximum likelihood estima-

tor (MLE) and minimum covariance determinant (MCD) estimations, and contour

plots were produced to examine how both estimators handled the synthesized mild

to extreme outliers, as shown in Figure 4.6. The presence of extreme outliers heav-

ily affected the covariance and mean estimation of MLE, while it had a noticeably

smaller effect on the MCD. In Figure 4.6, the contours of the MLE based Mahalanobis

distance, shown in blue, are unable to fit the distribution due to the outliers shown

on the right. The MCD based Mahalanobis distance performs much better, ignoring

the extreme outliers for the mean and covariance estimations.

The number of outliers detected by both estimator based Mahalanobis distance

models is noted in Table 4.5. The MLE based detector was unable to accurately

estimate the covariance and mean of the data, leading to a poor decision function for

the 99.5% F-score threshold and lower detection rates as compared to MCD. Since the

synthesized outliers were added to a dataset suspected to contain other anomalies,

other erroneous datapoints were also identified by both models, especially for the

MCD based Mahalanobis distance detector. The MLE was used to compare to the

MCD for the rest of the cohorts, however, due to it’s susceptibility to outliers, it was

not considered for training a one-class support vector machine (OCSVM) for novelty

detection later on.
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Figure 4.6: Contour plots of the MLE based and MCD based Mahalanobis distance
decision functions. This example shows the Left Cingulum ROI in the synthesized

outlier cohort, with the MCD based outliers shown in red.
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ROI MLE MCD
Acoustic radiation Left 6 15
Acoustic radiation Right 4 13
Callosal body 9 21
Cingulum Left 4 12
Cingulum Right 5 11
Corticospinal tract Left 7 12
Corticospinal tract Right 8 15
Fornix 6 15
Inferior occipito frontal fascicle Left 4 12
Inferior occipito frontal fascicle Right 6 12
Optic radiation Left 7 20
Optic radiation Right 6 17
Superior longitudinal fascicle Left 8 11
Superior longitudinal fascicle Right 8 15
Superior occipito frontal fascicle Left 8 17
Superior occipito frontal fascicle Right 6 11
Uncinate fascicle Left 6 13
Uncinate fascicle Right 5 11

Table 4.5: Number of outliers detected in the synthesized outlier dataset by MLE
and MCD based Mahalanobis distance, out of 251 subjects.
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4.4.2 Model Testing With Real Data

With the MLE and MCD based Mahalanobis distance outlier detectors tested on the

synthesized outlier dataset, the models were then used to identify anomalies within

other cohorts. Contour plots were produced for each of the ROIs comparing the

estimators, as shown in Figure 4.7. As shown in the model validation stage, the

presence of outliers within the data heavily affects the MLE estimations, leading to

a poor decision function. In Figure 4.7, the MLE based contours, shown in blue, are

spaced further apart due to poor estimations while attempting to include data points

far from the distribution.

The Mahalanobis distance of each subject was then plotted with the exclusion

line shown in red in order to observe the data points which were excluded by both

models. Examples of these plots are demonstrated with Figure 4.8 and Figure 4.9.

The MLE consistently identified fewer outliers within each ROI, for all of the cohorts.

The MLE and MCD Mahalanobis distances were then plotted against each other to

observe the differences in their exclusion boundaries, as shown in Figure 4.10. The

bottom left quadrant shows data points which were deemed inliers by both models,

the top right quadrant shows the data points deemed outliers by both models, and

the top left quadrant shows data points deemed outliers by MCD based Mahalanobis

distance thresholding.
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Figure 4.7: Contour plots of the MLE based and MCD based Mahalanobis distance
decision functions. This example was for the right uncinate fascicle ROI in the

Female 31 to 35 cohort, with the MCD based outliers shown in red

Figure 4.8: Plot showing the MLE based Mahalanobis distances for each subject for
the Right corticospinal tract ROI in the Female 31 to 35 cohort, with the cutoff line

shown in red
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Figure 4.9: Plot showing the MCD based Mahalanobis distances for each subject for
the Right corticospinal tract ROI in the Female 31 to 35 cohort, with the cutoff line

shown in red

Figure 4.10: Plot showing the MLE based Mahalanobis distances vs. the MCD
based Mahalanobis distance for each subject for the right corticospinal tract ROI in

the Female 31 to 35 cohort, with the cutoff lines shown in red
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The number of outliers identified by each model for the Female cohorts are listed

in Table 4.6, while the same for the Male cohorts are in Table 4.7. In the majority

of cases, MLE based outlier detection identified significantly fewer possible outliers

when compared with MCD based detection. MCD, being the more robust estimator,

was able to better estimate the parameters of the data, producing a more reliable

exclusion boundary using the Mahalanobis distance.

F22 25 F26 30 F31 35
ROI MLE MCD MLE MCD MLE MCD
Acoustic radiation Left 1 7 6 13 4 6
Acoustic radiation Right 3 5 5 7 6 13
Callosal body 1 1 4 7 5 7
Cingulum Left 0 6 3 6 4 7
Cingulum Right 0 5 4 5 3 6
Corticospinal tract Left 1 9 8 11 4 5
Corticospinal tract Right 2 7 2 5 8 11
Fornix 0 0 3 10 2 5
Inferior occipito frontal fascicle Left 2 8 2 12 3 10
Inferior occipito frontal fascicle Right 0 2 4 11 2 12
Optic radiation Left 1 2 4 5 4 11
Optic radiation Right 1 1 7 6 4 5
Superior longitudinal fascicle Left 4 8 3 13 7 6
Superior longitudinal fascicle Right 2 6 6 12 3 13
Superior occipito frontal fascicle Left 4 6 4 11 6 12
Superior occipito frontal fascicle Right 2 4 5 9 4 11
Uncinate fascicle Left 1 1 6 12 5 9
Uncinate fascicle Right 0 6 4 4 6 12

Table 4.6: Number of outliers identified by the MLE and MCD based Mahalanobis
distance outlier detectors for the Female cohorts.
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M22 25 M26 30 M31 35
ROI MLE MCD MLE MCD MLE MCD
Acoustic radiation Left 2 4 5 8 0 1
Acoustic radiation Right 3 5 4 9 3 8
Callosal body 4 6 2 3 2 2
Cingulum Left 3 6 4 13 1 3
Cingulum Right 1 11 5 11 0 5
Corticospinal tract Left 2 2 3 6 1 4
Corticospinal tract Right 0 1 4 4 3 3
Fornix 2 4 3 6 1 1
Inferior occipito frontal fascicle Left 4 7 2 3 1 6
Inferior occipito frontal fascicle Right 3 4 3 7 3 4
Optic radiation Left 1 7 2 3 4 6
Optic radiation Right 2 5 3 10 2 5
Superior longitudinal fascicle Left 2 11 5 7 2 2
Superior longitudinal fascicle Right 2 12 4 7 2 2
Superior occipito frontal fascicle Left 1 2 9 14 0 7
Superior occipito frontal fascicle Right 3 9 5 12 1 6
Uncinate fascicle Left 5 6 5 8 2 4
Uncinate fascicle Right 5 13 5 9 3 4

Table 4.7: Number of outliers identified by the MLE and MCD based Mahalanobis
distance outlier detectors for the Male cohorts.

4.5 One-Class Support Vector Machine Outlier De-

tector

4.5.1 Model Validation With Synthesized Outliers

OCSVM outlier detectors were tested on the synthesized outlier dataset to observe

how mild to extreme outliers affect a models ability to form a decision function. Since

hyperparameter tuning is not a viable option, as there is no ground truth to the data,

a range of parameters were tested to observe which best fits the data. In order to
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Figure 4.11: Decision boundaries of 3 OCSVMs with a range of ν values.

test different values of the ν and γ parameters, two sets of plots were made where

one parameter was held constant while a range of values were tested for the other.

An example plot with a range of ν values is shown in Figure 4.11. As the ν value

increases, the number of identified possible outliers increases since the parameter ν

is the upper bound of the fraction of data points considered outliers. The dynamic ν

value explained in Chapter 3 forms the largest decision function of the three OCSVMs.

An example plot with a range of γ values is displayed in Figure 4.14. The complexity

of the decision function is increased as γ increases.

Each of the models decision functions are unaffected by the presence of extreme

outliers, allowing for exclusion of synthesized outlier data from the inliers. For each

ROI, all of the OCSVMs were able to identify the synthesized outliers as anomalies.
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Figure 4.12: Decision boundaries of 3 OCSVMs with a range of γ values.

4.5.2 Model Testing With Real Data

With the models validated on the synthesized outliers, the OCSVM outlier detectors

were tested on the remaining cohorts to investigate the presence of anomalies within

the data. The decision functions of the OCSVMs with varying ν values were plotted

for each ROI from the cohorts (Figure 4.13). The list of parameters used is listed in

Table 4.8, with the dynamic ν value being calculated according to approach outlined

in Chapter 3. The ouliers in the figure, shown in red, are from the MCD based detector

and were only used for visual reference as to how the OCSVM models exclude outliers

compared to other methods. Out of the three OCSVMs, the model with the largest

ν excluded the most amount of data points, shown in green, with the dynamic ν

excluding the least, shown in dark red. Since the shape of the distributions and

location of anomalies were unique for every ROI, there was no one set of parameter
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combinations which best fit the data for every dataset. Upon visual inspection, the

dynamic ν and ν = 0.1 OCSVMs appeared to best fit the data for most cases. The

number of outliers detected by each OCSVM model for the Female cohorts is in Table

4.12 and for the Male cohorts in Table 4.13. As noted, the OCSVM with ν = 0.2

identified the most amount of possible outliers. However, when inspecting the decision

function plots, such as Figure 4.13, the OCSVM is noted as excluding data points

which should be deemed inliers.

Overall, the dynamic ν and ν = 0.1 OCSVMs produced the most reasonable

decision functions out of the three combinations tested. The best selection between

these two models is dependant on the dataset being tested, as both models produced

the best decision function for different ROIs. With hyperparameter tuning not being

a viable option for unsupervised OCSVMs, one must rely on visual inspection of the

decision functions to make decisions and conclusions.

A range of γ values were tested and the decision functions of the OCSVMs were

plotted for each ROI of each cohorts (Figure 4.14), with list of parameters used

(Table 4.11). The three OCSVMs all detected similar numbers of possible outliers, as

they shared the same ν value which acts as the upper bound of the fraction of outliers

detected. Since the γ parameter controls complexity of the decision function, γ = 0.01

OCSVM produced the simplest decision function, often excluding data points deemed

inliers by other OCSVMs and outlier detectors as it could not capture the shape of

the data. The γ = 0.1 OCSVM had the most complex decision function, which lead

to oddly shaped decision functions in some cases which were overfitted and stretched

to include data points deemed outliers by other methods. Of the three OCSVMs

tested with a range of γ values, γ = 0.05 produced the best fitting decision functions,

71



M.A.Sc. Thesis – N. MacPhee McMaster University – Biomedical Engineering

Figure 4.13: Decision boundaries of 3 OCSVMs with a range of ν values for the
Fornix ROI of the Female 31 to 35 cohort, with the MCD based outliers shown in

red for reference.

and classified similar data points as outliers similar to other methods tested. The

number of outliers detected by each OCSVM model for the Female cohorts is seen in

Table 4.12, while that for the Male cohorts is in Table 4.13.
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Figure 4.14: Decision boundaries of 3 OCSVMs with a range of γ values for the Left
Acoustic radiation ROI of the Female 31 to 35 cohort, with the MCD based outliers

shown in red for reference.

Parameters OCSVM-dynnu OCSVM-nu0.1 OCSVM-nu0.2
ν nMCDoutliers

nsubjects
∗ 1.5 0.1 0.2

γ 0.05 0.05 0.05
Kernel RBF RBF RBF
Tolerance 1e−1 1e−1 1e−1

Table 4.8: OCSVM parameters for testing a range of ν values.
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F22 25 F26 30 F31 35

ROI
OCSVM
dynnu

OCSVM
nu0.1

OCSVM
nu0.2

OCSVM
dynnu

OCSVM
nu0.1

OCSVM
nu0.2

OCSVM
dynnu

OCSVM
nu0.1

OCSVM
nu0.2

Acoustic radiation Left 12 9 15 13 25 50 11 23 46
Acoustic radiation Right 7 7 15 12 26 50 20 23 46
Callosal body 3 9 16 31 25 50 12 22 45
Cingulum Left 9 8 16 12 26 48 10 24 46
Cingulum Right 9 8 16 10 24 48 9 25 47
Corticospinal tract Left 12 8 14 15 27 50 7 23 47
Corticospinal tract Right 10 7 16 20 25 49 18 22 47
Fornix 3 8 15 16 25 50 9 24 47
Inferior occipito frontal fascicle Left 12 7 15 10 26 49 15 23 46
Inferior occipito frontal fascicle Right 4 9 16 9 23 49 19 25 46
Optic radiation Left 2 8 15 22 23 48 16 23 46
Optic radiation Right 4 7 16 21 25 50 8 23 46
Superior longitudinal fascicle Left 12 9 15 8 26 50 8 25 46
Superior longitudinal fascicle Right 9 6 16 17 26 48 18 25 45
Superior occipito frontal fascicle Left 9 7 16 21 26 48 18 24 47
Superior occipito frontal fascicle Right 6 7 16 12 23 49 16 23 47
Uncinate fascicle Left 1 8 15 13 23 50 13 23 47
Uncinate fascicle Right 9 8 15 7 24 48 18 24 46

Table 4.9: Number of outliers identified by each OCSVM for a range of ν values for
the Female cohorts.

M22 25 M26 30 M31 35

ROI
OCSVM
dynnu

OCSVM
nu0.1

OCSVM
nu0.2

OCSVM
dynnu

OCSVM
nu0.1

OCSVM
nu0.2

OCSVM
dynnu

OCSVM
nu0.1

OCSVM
nu0.2

Acoustic radiation Left 8 14 27 12 23 41 3 12 25
Acoustic radiation Right 8 12 28 13 21 41 11 13 26
Callosal body 9 15 27 5 20 42 4 12 25
Cingulum Left 8 15 27 19 21 40 4 12 26
Cingulum Right 16 13 28 15 21 42 6 13 26
Corticospinal tract Left 2 15 28 8 22 41 5 13 24
Corticospinal tract Right 2 12 29 6 20 43 3 14 25
Fornix 5 13 28 9 22 43 2 12 25
Inferior occipito frontal fascicle Left 10 14 29 3 21 41 9 12 25
Inferior occipito frontal fascicle Right 5 14 28 10 21 41 7 15 25
Optic radiation Left 11 16 29 4 21 41 10 13 26
Optic radiation Right 6 15 28 17 20 41 7 13 25
Superior longitudinal fascicle Left 16 12 29 9 20 41 2 11 24
Superior longitudinal fascicle Right 18 15 28 10 20 40 1 12 24
Superior occipito frontal fascicle Left 3 15 30 21 22 43 10 12 25
Superior occipito frontal fascicle Right 13 13 27 18 20 40 9 12 24
Uncinate fascicle Left 9 14 26 12 22 41 8 12 24
Uncinate fascicle Right 19 14 28 12 20 42 7 13 26

Table 4.10: Number of outliers identified by each OCSVM for a range of ν values for
the Male cohorts.
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Parameters OCSVM-dynnu OCSVM-nu0.1 OCSVM-nu0.2
ν 0.1 0.1 0.1
γ 0.01 0.05 0.1
Kernel RBF RBF RBF
Tolerance 1e−1 1e−1 1e−1

Table 4.11: OCSVM parameters for testing a range of γ values.

F22 25 F26 30 F31 35

ROI
OCSVM
gamma0.01

OCSVM
gamma0.05

OCSVM
gamma0.1

OCSVM
gamma0.01

OCSVM
gamma0.05

OCSVM
gamma0.1

OCSVM
gamma0.01

OCSVM
gamma0.05

OCSVM
gamma0.1

Acoustic radiation Left 8 9 8 25 25 26 24 23 25
Acoustic radiation Right 8 7 9 25 26 24 24 23 23
Callosal body 9 9 7 25 25 26 23 22 23
Cingulum Left 8 8 6 25 26 23 24 24 22
Cingulum Right 7 8 7 24 24 26 22 25 24
Corticospinal tract Left 8 8 9 24 27 27 23 23 24
Corticospinal tract Right 7 7 9 25 25 26 23 22 25
Fornix 9 8 7 25 25 24 22 24 22
Inferior occipito frontal fascicle Left 8 7 10 25 26 26 25 23 21
Inferior occipito frontal fascicle Right 8 9 9 24 23 25 24 25 23
Optic radiation Left 9 8 8 24 23 25 22 23 24
Optic radiation Right 8 7 7 25 25 26 24 23 22
Superior longitudinal fascicle Left 9 9 8 25 26 26 24 25 23
Superior longitudinal fascicle Right 8 6 8 23 26 24 23 25 24
Superior occipito frontal fascicle Left 8 7 7 25 26 24 22 24 25
Superior occipito frontal fascicle Right 9 7 9 24 23 23 23 23 23
Uncinate fascicle Left 7 8 8 24 23 24 24 23 22
Uncinate fascicle Right 7 8 8 25 24 25 23 24 22

Table 4.12: Number of outliers identified by each OCSVM for a range of γ values for
the Female cohorts.
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M22 25 M26 30 M31 35

ROI
OCSVM
gamma0.01

OCSVM
gamma0.05

OCSVM
gamma0.1

OCSVM
gamma0.01

OCSVM
gamma0.05

OCSVM
gamma0.1

OCSVM
gamma0.01

OCSVM
gamma0.05

OCSVM
gamma0.1

Acoustic radiation Left 13 14 15 20 23 20 12 12 13
Acoustic radiation Right 13 12 13 19 21 19 13 13 14
Callosal body 13 15 15 22 20 19 12 12 13
Cingulum Left 15 15 13 20 21 20 13 12 11
Cingulum Right 14 13 16 20 21 21 11 13 11
Corticospinal tract Left 15 15 14 20 22 22 13 13 12
Corticospinal tract Right 15 12 14 20 20 20 12 14 15
Fornix 14 13 13 20 22 19 13 12 13
Inferior occipito frontal fascicle Left 14 14 14 21 21 20 13 12 12
Inferior occipito frontal fascicle Right 14 14 16 19 21 20 12 15 13
Optic radiation Left 13 16 13 21 21 21 12 13 13
Optic radiation Right 14 15 14 20 20 18 13 13 12
Superior longitudinal fascicle Left 15 12 16 20 20 21 12 11 12
Superior longitudinal fascicle Right 14 15 15 21 20 21 11 12 12
Superior occipito frontal fascicle Left 13 15 14 21 22 21 12 12 12
Superior occipito frontal fascicle Right 13 13 14 21 20 20 13 12 12
Uncinate fascicle Left 13 14 14 19 22 19 11 12 12
Uncinate fascicle Right 13 14 13 20 20 20 13 13 12

Table 4.13: Number of outliers identified by each OCSVM for a range of γ values for
the Male cohorts.
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4.6 OCSVM Novelty Detection

The MCD based Mahalanobis distance inlier data was used to train a OCSVM novelty

detector for each ROI, of each cohort. Since the novelty detector is only trained on in-

class data, the inlier data was split 70/30 for training/testing. Hyperparameter tuning

was performed using cross validation to optimize the model using γ values of 0.0005,

0.001, 0.01, 0.1 and 1, and a range of ν values between 0.001 and 1, with a 0.001

step increment. The scoring metric chosen for cross validation was f1 score, as it is a

reliable measure of incorrectly classified data. The best parameters and classification

report for each ROI from cross validation were saved and a decision function was

plotted. As shown above in sections 4.4 and 4.5, both MCD based Mahalanobis

distance and OCSVMs are unaffected by the presence of extreme outliers within the

data. Model validation was performed and all synthesized outliers were excluded from

the MCD based training set as well as the OCSVM decision function.

An example of a decision function from a OCSVM novelty detector can be seen in

Figure 4.15, with the training data shown in black, the testing data shown in green,

and the outliers shown in red. The best parameters from cross validation for this

model were γ = 0.0005 and ν = 0.014, with the classification report shown in Table

4.14 and the confusion matrix shown in 4.16. The low γ value of 0.0005 is most likely

due to the fact that the OCSVM is being trained on the MCD based dataset, which is

elliptical in shape. This introduces a bias which is learned by the novelty detector and

influences a low complexity decision function, and in this case, leads to the inclusion

of outliers within the decision function as seen in 4.15.

Since this is a heavily unbalanced dataset with only 12 possible outliers in this

ROI out of 232 subjects (only 5.1% of the data), the weighted averages of the scores

77



M.A.Sc. Thesis – N. MacPhee McMaster University – Biomedical Engineering

Figure 4.15: Decision function of the OCSVM novelty detector for the Right
Uncinate fascicle from the Female 31 to 35 cohort.

Figure 4.16: Confusion matrix of the OCSVM novelty detector for the right
uncinate fascicle from the Female 31 to 35 cohort.
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are the best representation of how the model performs. The weighted averages, un-

like the macro averages, multiplies the class scores for each metric by the fraction

of the data which that class makes up. The OCSVM novelty detector performed

exceptionally well on the testing data, as shown in Table 4.15. Though these scores

do not accurately represent how the novelty detector would behave on all data, as

the classification rates are dependant on the class labels given by the MCD based

detector which the model is also trained on, it shows great promise for the use of

OCSVMs for novelty detection. For all cohorts, similar scores were observed in the

classification reports. The most common parameters determined by cross validation

were γ = 0.0005 and a ν value between 0.01 and 0.04. The ν values determined by

cross validation for OCSVM novelty detection relate closest to the dynamic ν values

used for OCSVM outlier detection.
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Precision Recall f1-score Support
-1 1.00 0.67 0.80 12
1 0.94 1.00 0.97 66
Accuracy 0.95 78
Macro avg 0.97 0.83 0.89 78
Weighted avg 0.95 0.95 0.94 78

Table 4.14: Classification report of the OCSVM novelty detector for the example
ROI, the right uncinate fascicle, from the Female 31 to 35 cohort.

Weighted

Precision

Weighted

Recall

Weighted

f1-score
Acoustic radiation Left 0.98 0.97 0.97
Acoustic radiation Right 0.91 0.91 0.91
Callosal body 0.96 0.96 0.95
Cingulum Left 0.96 0.96 0.95
Cingulum Right 0.96 0.96 0.95
Corticospinal tract Left 0.98 0.97 0.98
Corticospinal tract Right 0.93 0.92 0.91
Fornix 0.95 0.92 0.93
Inferior occipito frontal fascicle Left 0.96 0.96 0.96
Inferior occipito frontal fascicle Right 0.90 0.91 0.90
Optic radiation Left 0.85 0.87 0.86
Optic radiation Right 0.99 0.99 0.99
Superior longitudinal fascicle Left 0.99 0.99 0.99
Superior longitudinal fascicle Right 0.99 0.99 0.99
Superior occipito frontal fascicle Left 0.99 0.99 0.99
Superior occipito frontal fascicle Right 0.97 0.96 0.96
Uncinate fascicle Left 0.99 0.99 0.99
Uncinate fascicle Right 0.95 0.95 0.94

Table 4.15: Weighted classification scores for the Female 31 to 35 cohort.
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Chapter 5

Discussion

Chapters 3 and 4 outline the methodology and results from various outlier and novelty

detectors validated and tested on brain DTI datasets for the detection of anomalies.

Z-score outlier detection was the simplest method of anomaly detection, however,

the presence of extreme outliers during the validation stage affected the standard

deviation of the distribution leading to the model missing synthesized outliers. The

MLE based Mahalanobis distance was heavily affected by the presence of extreme

outliers, leading to poor estimations of the covariance and mean of the distribution.

The errors in these estimations lead to inaccurate identification of possible outliers

within the data as the contours of the Mahalanobis distance did not fit the shape

of the distribution. The MCD based Mahalanobis distance had a far more robust

estimator, and its ability to find a pure subset within the data allowed for a more

accurate estimation of the covariance and mean of the distribution in the presence of

extreme synthesized outliers. The contours of the MCD based Mahalanobis distance

outlier detector better fit the distributions than the MLE based detector and was

able to consistently identify possible outliers in the data.

81



M.A.Sc. Thesis – N. MacPhee McMaster University – Biomedical Engineering

OCSVM outlier detection was shown to have the ability to detect outliers in the

DTI brain datasets in an unsupervised way. However, due to the lack of automated

hyperparameter tuning, it became a cumbersome method requiring visual inspection

of multiple combinations of hyperparameter values for each ROI. Parameters which

performed well on separating erroneous data in some ROIs did not perform well on

others. The dynamic ν value provided a method for tailoring the upper bound of the

fraction of outliers for each ROI. But, it required information from another form of

outlier detection. On its own, OCSVM outlier detection does not seem promising as

an unsupervised anomaly detector for use in brain MRI data. It became apparent

that the more important parameter for tuning to use a OCSVM outlier detector was

ν, as changing the value of γ while maintaining the value of ν lead to similar numbers

of outliers detected as the fraction is bounded by ν. The models tested with a range

of γ values struggled to classify a certain number of outliers as determined by the ν

value, leading to some poor decision functions of varying complexity which did not

fit most distributions well.

The OCSVM novelty detector had exceptional weighted precision, recall, and

f1 scores. However, the classification was based on the output of the MCD based

Mahalanobis distance and did not accurately reflect how the model may work on new

data that had not been classified by MCD based Mahalanobis distance. The precision

and recall scores of 0.99 were suspiciously high and were most likely the result of

the novelty detector learning the decision function of the MCD based Mahalanobis

distance, as well as a lack of accurately labeled testing data. A wide range of γ

values were used during the cross validation stage to test whether a higher complexity

decision function would best fit the data, however, it was heavily biased by the shape
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of the decision function used to classify the subset of inlier data leading to a low

γ value being selected as the best parameter. OCSVMs show promise as a form of

novelty detection for DTI brain datasets, and, these are best fit for situations where

new data is being added to a clean dataset. An example of this could be the situation

of adding data to the same sex and age cohort from another multisite database to an

existing dataset. Instead of performing outlier detection, requiring the analysis of all

existing data along side the new data, a trained OCSVM novelty detector could be

used to perform novelty detection on only the new data being added.

Although some of the methods tested out performed the others, there was a clear

sign that these large, multisite DTI brain datasets contain erroneous data which do

not fit the distribution. If used in a classification setting without the removal of these

outliers, class separation might become more difficult as data points far outside the

distribution could be carrying the incorrect class label. Though the number of outliers

per subject is difficult to determine, as each method identified different amounts, there

were several data points per ROI which were identified as anomalies by most methods.

Outlier detection prior to classification, and even prior to the assembly of multisite

datasets, is a necessary part of the preprocessing pipeline which must be included.

The simplest and most reliable form beyond Z-score outlier detection would be MCD

based Mahalanobis distance, as the robust estimator is unaffected by the presence of

outliers in the data, and the Mahalanobis distance outlier detector is based on the

point distance from the center of the distribution.
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Chapter 6

Conclusion

In this thesis, unsupervised machine learning algorithms were used to investigate the

presence of anomalies in supposedly healthy brain DTI datasets. The algorithms were

tested on their ability to detect synthesized outliers before being utilized for anomaly

detection on 6 different datasets. Four different algorithms were used for anomaly

detection, including Z-score outlier detection, MLE and MCD based Mahalanobis

distance outlier detection, OCSVM outlier detection, and OCSVM novelty detection

trained on MCD based Mahalanobis distance data. It was found that the best method

for outlier detection on this data was MCD based Mahalanobis distance. Furthermore,

each outlier detection method was able to identify erroneous data, many of which

consisted of the same data points. The results from this study reinforce the need

for outlier or novelty detection as part of a preprocessing pipeline as anomalies were

detected in each cohort.
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6.1 Future Work

With the study concluding that anomaly detection is necessary for working with these

multisite datasets, future work is needed to further investigate the presence of erro-

neous data. This includes using additional information from the ROIs in addition to

the mean, such as the min and max of the voxels, to better understand the range of

values in each region. Gathering more information from the ROIs may provide addi-

tional insight useful for detection of anomalies. For Mahalanobis distance calculation,

additional estimators such as the MM-estimator and the Orthogonalized Gnanade-

sikan–Kettenring estimator could be tested. Additionally, in order to avoid having to

perform MCD based Mahalanobis distance in order to calculate the dynamic ν value

used in OCSVM outlier detection, the formula could be adjusted to use the number

of outliers detected by the Z-score as standardization is necessary prior to performing

PCA.

For additional methods testing, subjects from one of the online databases with

varying levels of disease progression (for example, the three stages of Alzheimer’s

disease) could be used as anomaly data to observe how the models classify them.

Furthermore, healthy control data from other online databases could be used to test

how the OCSVM novelty detector behaves with new data, as well as adding the

subjects with varying levels of disease as labeled outliers for further testing of the

model.
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6.2 Limitations

During this study, one of the biggest limitations was the lack of an expertly analyzed

dataset with all possible outliers removed. Though the purpose of the study was to

investigate large, multisite, brain DTI datasets containing healthy controls for the

presence of anomalies, there lacked a concrete way of comparing the unsupervised

models performance prior to exploratory analysis. The creation of synthesized outliers

helped validate that the models were able to identify anomalies and observe how they

behaved in the presence of highly erroneous data. However, the datasets which they

were added to still contained anomalies.

Another limitation of the study was the need for visual inspection of the plots

to determine whether the decision functions fit the data. With 6 cohorts and 18

ROIs, visually inspecting each plot became a time consuming process. Specifically

for the OCSVM outlier detectors, comparing the decision functions between multiple

parameter choices was difficult as the best parameters differed from one ROI to the

next. The number of outliers detected for these models were not always representative

of the amount of erroneous data as some of the decision functions excluded data points

which were deemed inliers by all other methods.
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Appendix A

Code

Your appendix goes here .

#!/ usr / b in /env python3

# −∗− coding : u t f−8 −∗−

”””

@author : nei lmacphee

”””

#%% Import l i b r a r i e s

############################################################

import numpy as np

import pandas as pd
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np . s e t p r i n t o p t i o n s ( p r e c i s i o n =2, suppres s=True )

import s c ipy

import os

import math

import n ibabe l as nib

from matp lo t l i b import pyplot as p l t

from matp lo t l i b import cm

#from n i b a b e l . t e s t i n g import da ta pa th

np . random . seed (777)

### Search d i r e c t o r i e s f o r NifTi f i l e s

#########################################

#os . chd i r ( ’/ Users/nei lmacphee /Dropbox/Grad School /Grad School

/Data/M22 25 proc / ’) #MacOS

os . chd i r ( ’ /home/macphena/brainDATA/DTI CSV ’ ) #radon c lean

data

#os . chd i r ( ’/home/macphena/brainDATA/DTI CSV out ’ ) #radon

OUTLIER

#os . chd i r ( ’/ Users/nei lmacphee /Dropbox/Grad School /Grad School

/Data/DTI CSV ’) #MacOS

### Create f i l e l i s t s and d i c t i ona r y

p a t h l i s t = l i s t ( )

88



M.A.Sc. Thesis – N. MacPhee McMaster University – Biomedical Engineering

f i l e l i s t = l i s t ( )

d i r s l i s t = l i s t ( )

o d d l i s t = l i s t ( )

#odds tore = d i c t ( )

data s to r e = dict ( )

coo l = 0

#%% Import Data

################################################################

# import StandardSca ler from sk l e a rn

from s k l e a rn . p r ep r o c e s s i ng import StandardSca ler

DTI mods = [ ’FA ’ , ’AD’ , ’RD’ , ’MD’ ]

#ROIs = [ ’ Acous t i c r ad i a t i on L ’ , ’ Acous t i c rad ia t i on R ’ , ’

Ca l l o s a l b o d y ’ , ’ Cingulum L ’ , ’ Cingulum R ’ , ’

Co r t i c o s p i n a l t r a c t L ’ , ’ Co r t i c o s p i n a l t r a c t R ’ , ’ Fornix ’ ,

’ I n f e r i o r o c c i p i t o−f r o n t a l f a s c i c l e L ’ , ’

I n f e r i o r o c c i p i t o−f r o n t a l f a s c i c l e R ’ , ’ Op t i c rad i a t i on L

’ , ’ Op t i c rad ia t i on R ’ , ’ S u p e r i o r l o n g i t u d i n a l f a s c i c l e L

’ , ’ S u p e r i o r l o n g i t u d i n a l f a s c i c l e R ’ , ’

S u p e r i o r o c c i p i t o f r o n t a l f a s c i c l e L ’ , ’ Supe r i o r o c c i p i t o−

f r o n t a l f a s c i c l e R ’ , ’ Unc i na t e f a s c i c l e L ’ , ’

Unc ina t e f a s c i c l e R ’ ]
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ROIs = [ ’ A c o u s t i c r a d i a t i o n L e f t ’ , ’ A c o u s t i c r a d i a t i o n R i g h t ’

, ’ Ca l l o sa l body ’ , ’ Cingulum Left ’ , ’ Cingulum Right ’ , ’

C o r t i c o s p i n a l t r a c t L e f t ’ , ’ C o r t i c o s p i n a l t r a c t R i g h t ’ , ’

Fornix ’ , ’ I n f e r i o r o c c i p i t o f r o n t a l f a s c i c l e L e f t ’ , ’

I n f e r i o r o c c i p i t o f r o n t a l f a s c i c l e R i g h t ’ , ’

O p t i c r a d i a t i o n L e f t ’ , ’ Opt i c r ad i a t i on R igh t ’ , ’

S u p e r i o r l o n g i t u d i n a l f a s c i c l e L e f t ’ , ’

S u p e r i o r l o n g i t u d i n a l f a s c i c l e R i g h t ’ , ’

S u p e r i o r o c c i p i t o f r o n t a l f a s c i c l e L e f t ’ , ’

S u p e r i o r o c c i p i t o f r o n t a l f a s c i c l e R i g h t ’ , ’

U n c i n a t e f a s c i c l e L e f t ’ , ’ U n c i n a t e f a s c i c l e R i g h t ’ ]

ages = [ ’ 22 25 ’ , ’ 26 30 ’ , ’ 31 35 ’ , ’ 36 40 ’ ]

df odd = pd . DataFrame ( )

sex = [ ’ Male ’ , ’ Female ’ ]

for j in range (0 , len (ROIs ) ) :

# read in CSV f i l e o f ROI means and remove unwanted f i r s t

column

#df DTI = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 0 ] ,

ROIs [ j ] ) )

df DTI = pd . r ead c sv ( ’ Male {} {} . csv ’ . format ( ages [ 0 ] , ROIs

[ j ] ) )

df DTI = df DTI . rename ( columns={ ’Unnamed : 0 ’ : ’ Subject ’ })
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#df DTIF = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 3 ] ,

ROIs [ j ] ) )

#df DTIF = df DTIF . rename ( columns={’Unnamed : 0 ’ : ’ Sub j e c t

’})

#df DTI = df DTI . append ( df DTIF )

df DTI = df DTI . s e t i n d e x ( [ pd . Index ( range (0 , len ( df DTI ) ) )

] )

for lmao in range (0 , len ( df DTI [ ’ Subject ’ ] ) ) :

df DTI . l o c [ lmao , ’ Subject ’ ] = ( ’M{} ’ . format ( lmao ) )

# Z−Scores

####################################################################

# crea t e ’ to be s ca l e d ’ dataframe wi thout s u b j e c t IDs

d f t b s = df DTI . drop ( ’ Subject ’ , a x i s =1)

# sca l e f e a t u r e s o f dataframe

s c a l e d f e a t u r e s = StandardSca ler ( ) . f i t t r a n s f o r m ( d f t b s .

va lue s )

# Add index and column names as w e l l as s u b j e c t IDs back

in t o dataframe

d f s c a l e d = pd . DataFrame ( s c a l e d f e a t u r e s , index=d f t b s .

index , columns=d f t b s . columns )
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d f s c a l e d [ ’ Subject ’ ] = df DTI [ ’ Subject ’ ]

d f s c a l e d = d f s c a l e d [ [ ’ Subject ’ , ’FA ’ , ’AD’ , ’RD’ , ’MD’

] ]

#d f s c a l e d = d f s c a l e d [ [ ’FA ’ , ’AD’ , ’RD’ , ’MD ’ ] ]

# Plo t h i s tograms o f z−s core s

for i in range (0 , len ( DTI mods ) ) :

# add s u b j e c t s wi th a STD > 2 to a l i s t

for n in range (0 , len ( d f s c a l e d [ : ] ) ) :

i f ( d f s c a l e d . l o c [ n , DTI mods [ i ] ] >= 2.807 ) or (

d f s c a l e d . l o c [ n , DTI mods [ i ] ] <= −2.807) :

o d d l i s t . append ( ’ {} {} {} ’ . format ( d f s c a l e d .

l o c [ n , ’ Subject ’ ] , DTI mods [ i ] , ROIs [ j ] ) )

#odds tore . update ({ ’{} ’ . format ( d f s c a l e d . l o c [ n

, ’ Sub j e c t ’ ] ) : ’{} {} ’ . format (DTI mods [ i ] ,

ROIs [ j ] ) })

else :

c oo l = coo l + 1

= p l t . h i s t ( d f s c a l e d [ DTI mods [ i ] ] , 2 0 )

p l t . t i t l e ( ’ Histogram of M{} {} {} z−s c o r e s ’ . format (

ages [ 0 ] , DTI mods [ i ] , ROIs [ j ] ) )
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p l t . s a v e f i g ( ’ /home/macphena/Outputs /{} {}/ h i s t {} {}

{} . png ’ . format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] , DTI mods [ i

] , ROIs [ j ] ) )

p l t . show ( )

#%% Create dataframe to s t o r e the number o f o u t l i e r va l u e s

per s u b j e c t ##########

df odd = pd . DataFrame (0 , index=d f s c a l e d . index , columns=

d f s c a l e d . columns )

df odd [ ’ Subject ’ ] = df DTI [ ’ Subject ’ ]

for m in range (0 , len ( o d d l i s t ) ) :

temp = o d d l i s t [m] . s p l i t ( )

num = df odd . index [ df odd [ ’ Subject ’ ] == temp [ 0 ] ] . t o l i s t ( )

df odd . l o c [num, temp [ 1 ] ] = df odd . l o c [num, temp [ 1 ] ] + 1

#%% Plot the number o f o d d i t i e s per s u b j e c t

#####################################

index bar = df odd [ ’ Subject ’ ]

#d f ba r = pd . DataFrame ({ ’FA’ : d f odd [ ’FA ’ ] , ’AD’ : d f odd [ ’AD

’ ] , ’RD’ : d f odd [ ’RD ’ ] , ’MD’ : d f odd [ ’MD’ ]} , index=

df odd . index , columns=df temp . columns )
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d f ba r = pd . DataFrame ( df odd , index=df odd . index , columns=

df odd . columns )

d f ba r [ ’ Subject ’ ] = d f ba r [ ’ Subject ’ ] . apply ( str )

d f ba r = df bar . s e t i n d e x ( ’ Subject ’ )

#ax = d f b a r . p l o t . bar ( s tacked=True , x l a b e l =’ Sub j e c t ID ’ ,

y l a b e l=’# of occurances ’ , r o t =60, f o n t s i z e =8, t i t l e =’

Number o f Ou t l i e r ROIs per Sub j e c t ’ , f i g s i z e =(16 ,11) )

d f bar . p l o t . bar ( stacked=True , f i g s i z e =(16 ,11) )

p l t . t i t l e ( ’Number o f Out l i e r ROIs per Subject M{} , Threshold

o f 2 .807 SD (99.5%) ’ . format ( ages [ 0 ] ) )

p l t . x l a b e l ( ’ Subject ID ’ )

p l t . y l a b e l ( ’# o f Occurances ’ )

p l t . x t i c k s ( r o t a t i o n =70, f o n t s i z e =8)

p l t . l egend ( t i t l e=’DTI metr i c s ’ , bbox to anchor =(1 .05 ,1) , l o c=

’ upper l e f t ’ )

#%% PCA

#########################################################################

from s k l e a rn . decomposit ion import PCA

# fea t u r e s a l r eady s ca l e d from z−score

d f s c r e e = pd . DataFrame (0 , index=ROIs , columns=[ ’PC1 ’ , ’PC2 ’ ,

’PC3 ’ , ’PC4 ’ ] )
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for p in range (0 , len (ROIs ) ) :

# read in CSV f i l e o f ROI means and remove unwanted f i r s t

column

#df DTI = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 0 ] ,

ROIs [ p ] ) )

df DTI = pd . r ead c sv ( ’ Male {} {} . csv ’ . format ( ages [ 0 ] , ROIs

[ p ] ) )

df DTI = df DTI . rename ( columns={ ’Unnamed : 0 ’ : ’ Subject ’ })

#df DTIF = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 3 ] ,

ROIs [ p ] ) )

#df DTIF = df DTIF . rename ( columns={’Unnamed : 0 ’ : ’ Sub j e c t

’})

#df DTI = df DTI . append ( df DTIF )

df DTI = df DTI . s e t i n d e x ( [ pd . Index ( range (0 , len ( df DTI ) ) )

] )

for lmao in range (0 , len ( df DTI [ ’ Subject ’ ] ) ) :

df DTI . l o c [ lmao , ’ Subject ’ ] = ( ’F{} ’ . format ( lmao ) )

# Z−Scores

####################################################################
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# crea t e ’ to be s ca l e d ’ dataframe wi thout s u b j e c t IDs

d f t b s = df DTI . drop ( ’ Subject ’ , a x i s =1)

# sca l e f e a t u r e s o f dataframe

s c a l e d f e a t u r e s = StandardSca ler ( ) . f i t t r a n s f o r m ( d f t b s .

va lue s )

# Add index and column names as w e l l as s u b j e c t IDs back

in t o dataframe

d f s c a l e d = pd . DataFrame ( s c a l e d f e a t u r e s , index=d f t b s .

index , columns=d f t b s . columns )

d f s c a l e d [ ’ Subject ’ ] = df DTI [ ’ Subject ’ ]

d f s c a l e d = d f s c a l e d [ [ ’ Subject ’ , ’FA ’ , ’AD’ , ’RD’ , ’MD’

] ]

x = d f s c a l e d . l o c [ : , DTI mods ] . va lue s

y = d f s c a l e d . l o c [ : , ’ Subject ’ ] . va lue s

pca = PCA( )

pca DTI = pca . f i t t r a n s f o r m ( x )

d f pca = pd . DataFrame ( data=pca DTI , columns=[ ’PC1 ’ , ’PC2 ’

, ’PC3 ’ , ’PC4 ’ ] , index=df bar . index )

# exp l a ined var iance
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e x p l a i n e d v a r i a n c e = pca . e x p l a i n e d v a r i a n c e r a t i o

print ( e x p l a i n e d v a r i a n c e )

for l l in range (0 , len ( d f s c r e e . columns ) ) :

d f s c r e e . l o c [ ROIs [ p ] , d f s c r e e . columns [ l l ] ] =

e x p l a i n e d v a r i a n c e [ l l ]

df DTI . t o c s v ( ’ /home/macphena/Outputs /{} {}/

e x p l a i n e d v a r i a n c e {} {} {} . csv ’ . format ( sex [ 0 ] , ages

[ 0 ] , ages [ 0 ] , DTI mods [ i ] , ROIs [ j ] ) )

# PC1 = 65% PC2 = 32% PC3 = 3% PC4 = 0%, reduce to 2

components f o r v i s u a l i z a t i o n

#ax2 = d f pca . p l o t . s c a t t e r ( x=’PC1 ’ , y=’PC2 ’ , c=’ red ’ ,

colormap=’ v i r i d i s ’ )

# s c a t t e r p l o t o f PC1 and PC2

#ax2 = d f pca . p l o t . s c a t t e r ( x=’PC1 ’ , y=’PC2 ’ , c=’ red ’ ,

colormap=’ v i r i d i s ’ )

#%% Scree p l o t

PC values = np . arange ( pca . n components ) + 1

# se t up co lour i t e r a t i o n

co l ou r = i ter (cm. rainbow (np . l i n s p a c e (0 , 1 , len (ROIs ) ) ) )
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p l t . f i g u r e ( f i g s i z e =(11.5 ,8) )

for j j in range (0 , len ( d f s c r e e . index ) ) :

c = next ( co l ou r )

p l t . p l o t ( PC values , d f s c r e e . l o c [ ROIs [ j j ] , : ] , ’ ro− ’ ,

l i n ew id th =2, l a b e l=’ Line {} ’ . format ( j j ) , c=c )#’{} ’ .

format ( j j ∗0.05+0.05) )

p l t . t i t l e ( ’ Scree Plot o f ROIs ’ )

p l t . x l a b e l ( ’ P r i n c i p a l Component ’ )

p l t . y l a b e l ( ’ Proport ion o f Explained Variance ’ )

p l t . l egend (ROIs , l o c=’ c ent e r l e f t ’ , bbox to anchor =(1 , 0 . 5 ) )

p l t . yl im ( [ 0 , 1 ] )

p l t . show ( )

p l t . s a v e f i g ( ’ /home/macphena/Outputs /{} {}/ s c r e e {} . png ’ .

format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] ) )

#

=============================================================================

# for v in range (0 , l en ( d f pca . index ) ) :

# f i g = p l t . f i g u r e ( f i g s i z e =(8 ,6) )

# with p l t . s t y l e . con t e x t ( ( ’ g g p l o t ’ ) ) :
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# p l t . s c a t t e r ( d f pca . l o c [ d f pca . index [ v ] , ’PC1 ’ ] ,

d f pca . l o c [ d f pca . index [ v ] , ’PC2 ’ ] , e d g e co l o r s=’k ’ , cmap=’

j e t ’ )

# p l t . x l a b e l ( ’PC1 ’)

# p l t . y l a b e l ( ’PC2 ’)

# p l t . t i t l e ( ’ Score P lo t ’ )

# p l t . show ()

#

=============================================================================

#%% Eucl idean Distance

from s k l e a rn . met r i c s . pa i rw i s e import e u c l i d e a n d i s t a n c e s

from s k l e a rn . covar iance import MinCovDet , Empir ica lCovar iance

#### Eucl idean d i s t ance = s q r t (sum fo r i to N( v1 [ i ] − v2 [ i ] )

ˆ2)

##

for zz in range (0 , len (ROIs ) ) :

# read in CSV f i l e o f ROI means and remove unwanted f i r s t

column
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df DTI = pd . r ead c sv ( ’ Male {} {} . csv ’ . format ( ages [ 0 ] , ROIs

[ zz ] ) )

#df DTI = pd . r ead c sv ( ’ Male {} o u t l i e r {} . csv ’ . format (

ages [ 0 ] , ROIs [ z z ] ) )

df DTI = df DTI . rename ( columns={ ’Unnamed : 0 ’ : ’ Subject ’ })

df DTIF = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 3 ] ,

ROIs [ zz ] ) )

df DTIF = df DTIF . rename ( columns={ ’Unnamed : 0 ’ : ’ Subject ’

})

df DTI = df DTI . append ( df DTIF )

df DTI = df DTI . s e t i n d e x ( [ pd . Index ( range (0 ,145) ) ] )

for lmao in range (0 , len ( df DTI [ ’ Subject ’ ] ) ) :

df DTI . l o c [ lmao , ’ Subject ’ ] = ( ’M{} ’ . format ( lmao ) )

# Z−Scores

####################################################################

# crea t e ’ to be s ca l e d ’ dataframe wi thout s u b j e c t IDs

d f t b s = df DTI . drop ( ’ Subject ’ , a x i s =1)

# sca l e f e a t u r e s o f dataframe

s c a l e d f e a t u r e s = StandardSca ler ( ) . f i t t r a n s f o r m ( d f t b s .

va lue s )
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# Add index and column names as w e l l as s u b j e c t IDs back

in t o dataframe

d f s c a l e d = pd . DataFrame ( s c a l e d f e a t u r e s , index=d f t b s .

index , columns=d f t b s . columns )

d f s c a l e d [ ’ Subject ’ ] = df DTI [ ’ Subject ’ ]

d f s c a l e d = d f s c a l e d [ [ ’ Subject ’ , ’FA ’ , ’AD’ , ’RD’ , ’MD’

] ]

x = d f s c a l e d . l o c [ : , DTI mods ] . va lue s

y = d f s c a l e d . l o c [ : , ’ Subject ’ ] . va lue s

pca = PCA( n components =(3) )

pca DTI = pca . f i t t r a n s f o r m ( x )

d f pca = pd . DataFrame ( data=pca DTI , columns=[ ’PC1 ’ , ’PC2 ’

, ’PC3 ’ ] , index=df bar . index )

euc = e u c l i d e a n d i s t a n c e s ( d f pca . l o c [ : , : ] , d f pca . l o c

[ : , : ] )

f i g , ax5 = p l t . subp lo t s ( f i g s i z e =(10 ,5) )

da ta p l o t = ax5 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ black ’ )

#

=============================================================================

# for l l in range (0 , l en ( d f s c r e e . columns ) ) :
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# d f s c r e e . l o c [ ROIs [ z z ] , d f s c r e e . columns [ l l ] ] =

exp l a i n ed va r i anc e [ l l ]

#

#

=============================================================================

#%% Minimum Covaraince Determinant e s t ima t ion and Mahalanobis

d i s t ance ############

from s k l e a rn . covar iance import MinCovDet , Empir ica lCovar iance

, E l l i p t i c E n v e l o p e

from s k l e a rn . svm import OneClassSVM

from s k l e a rn . l i n ea r mode l import SGDOneClassSVM

from s c ipy . s t a t s import f

from s k l e a rn . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t ,

GridSearchCV

import random

for p in range (0 , len (ROIs ) ) :

# read in CSV f i l e o f ROI means and remove unwanted f i r s t

column

#df DTI = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 0 ] ,

ROIs [ p ] ) )
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df DTI = pd . r ead c sv ( ’ Male {} {} . csv ’ . format ( ages [ 0 ] , ROIs

[ p ] ) )

df DTI = df DTI . rename ( columns={ ’Unnamed : 0 ’ : ’ Subject ’ })

#

=============================================================================

# for aaa in range (0 , l en ( ages ) ) :

# df DTIF = pd . r ead c sv ( ’ Female {} {} . csv ’ . format (

ages [ aaa ] , ROIs [ p ] ) )

# df DTIF = df DTIF . rename ( columns={’Unnamed : 0 ’ : ’

Sub j e c t ’})

# df DTI = df DTI . append ( df DTIF )

#

# fo r bbb in range (1 , l en ( ages ) ) :

# df DTIF = pd . r ead c sv ( ’ Male {} {} . csv ’ . format ( ages [

bbb ] , ROIs [ p ] ) )

# df DTIF = df DTIF . rename ( columns={’Unnamed : 0 ’ : ’

Sub j e c t ’})

# df DTI = df DTI . append ( df DTIF )

#

#

=============================================================================
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#df DTIG = pd . r ead c sv ( ’ Female {} {} . csv ’ . format ( ages [ 2 ] ,

ROIs [ p ] ) )

#df DTIG = df DTIG . rename ( columns={’Unnamed : 0 ’ : ’ Sub j e c t

’})

#df DTI = df DTI . append (df DTIG)

df DTI = df DTI . s e t i n d e x ( [ pd . Index ( range (0 , len ( df DTI ) ) )

] )

for lmao in range (0 , len ( df DTI [ ’ Subject ’ ] ) ) :

df DTI . l o c [ lmao , ’ Subject ’ ] = ( ’M{} ’ . format ( lmao ) )

# Z−Scores

####################################################################

# crea t e ’ to be s ca l e d ’ dataframe wi thout s u b j e c t IDs

d f t b s = df DTI . drop ( ’ Subject ’ , a x i s =1)

# sca l e f e a t u r e s o f dataframe

s c a l e d f e a t u r e s = StandardSca ler ( ) . f i t t r a n s f o r m ( d f t b s .

va lue s )

# Add index and column names as w e l l as s u b j e c t IDs back

in t o dataframe
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d f s c a l e d = pd . DataFrame ( s c a l e d f e a t u r e s , index=d f t b s .

index , columns=d f t b s . columns )

d f s c a l e d [ ’ Subject ’ ] = df DTI [ ’ Subject ’ ]

d f s c a l e d = d f s c a l e d [ [ ’ Subject ’ , ’FA ’ , ’AD’ , ’RD’ , ’MD’

] ]

x = d f s c a l e d . l o c [ : , DTI mods ] . va lue s

y = d f s c a l e d . l o c [ : , ’ Subject ’ ] . va lue s

pca = PCA( )

pca DTI = pca . f i t t r a n s f o r m ( x )

#df pca m = pd . DataFrame( data=pca DTI [ : , 0 : 3 ] , columns=[ ’

PC1 ’ , ’PC2 ’ , ’PC3 ’ ] , index=d f b a r . index )

df pca = pd . DataFrame ( data=pca DTI [ : , 0 : 2 ] , columns=[ ’PC1 ’

, ’PC2 ’ ] , index=df DTI [ ’ Subject ’ ] )

# f i t a MCD es t imator to both the PCA and raw data

mcd cov pca = MinCovDet ( random state =0) . f i t ( d f pca . va lue s

)

#mcd cov d t i = MinCovDet ( random state=0) . f i t ( x )

# f i t a MLE es t imator to both the PCA and raw data

mle cov pca = Empir ica lCovar iance ( ) . f i t ( d f pca . va lue s )

#mle co v d t i = Empirica lCovariance ( ) . f i t ( x )
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### square roo t the MLE d i s t

#

=============================================================================

# mle s q r t p ca = l i s t ( )

# fo r qwer in range (0 , l en ( d f pca ) ) :

# h o l d s q r t = math . s q r t ( mle cov pca . mahalanobis (

d f pca ) [ qwer ] )

# mle s q r t p ca . append ( h o l d s q r t )

#

=============================================================================

print ( ’The Estimated Covariance matr i ce s f o r the PCA

va lues o f M{} {} :\nMLE:\n{} \nMCD:\n{} ’ . format ( ages

[ 0 ] , ROIs [ p ] , mle cov pca . covar iance , mcd cov pca .

c ova r i anc e ) )
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#pr in t ( ’The Estimated Covariance matr ices f o r the mean

DTI va l u e s o f M{} {} :\nMLE:\n{} \nMCD:\n{} ’ . format (

ages [ 0 ] , ROIs [ p ] , m l e c o v d t i . covar iance , mcd cov d t i .

covar iance ) )

# Ca l cu l a t e F−d i s t r i b u t i o n Score

dfn , dfd = ( len ( d f pca . columns ) − 1) , ( len ( d f pca ) − len (

d f pca . columns ) )

f p p f = f . ppf ( 0 . 99 5 , dfn , dfd )

f l i n e = [ f p p f ] ∗ len ( df DTI )

#f l i n e = [ f p p f ] ∗ 146

### Plo t MLE Mahalanobis d i s t ance vs index

f i g , ax6 = p l t . subp lo t s ( f i g s i z e =(10 ,6) )

da ta p l o t = ax6 . s c a t t e r ( d f pca . index , mle cov pca .

mahalanobis ( d f pca . va lue s ) , c o l o r=’ black ’ , )

p l t . p l o t ( d f pca . index , f l i n e , c o l o r=’ red ’ )

p l t . t i t l e ( ’ Mahalanobis Distance per Subject M{} ’ . format (

ages [ 0 ] ) )

p l t . x l a b e l ( ’ Subject ID ’ )

p l t . y l a b e l ( ’MLE Mahalanobis Distance ’ )

p l t . x t i c k s ( r o t a t i o n =70, f o n t s i z e =8)
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#p l t . l e gend ( t i t l e =’DTI metr i c s ’ , b box to anchor =(1.05 ,1) ,

l o c=’upper l e f t ’ )

#p l t . s a v e f i g ( ’/home/macphena/Outputs /{} {}/MLEM{} {} . png

’ . format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] , ROIs [ p ] ) )

### Plo t MCD Mahalanobis d i s t ance vs index

f i g , ax6 = p l t . subp lo t s ( f i g s i z e =(10 ,6) )

da ta p l o t = ax6 . s c a t t e r ( d f pca . index , mcd cov pca . d i s t ,

c o l o r=’ black ’ , )

p l t . p l o t ( d f pca . index , f l i n e , c o l o r=’ red ’ )

p l t . t i t l e ( ’ Mahalanobis Distance per Subject M{} ’ . format (

ages [ 0 ] ) )

p l t . x l a b e l ( ’ Subject ID ’ )

p l t . y l a b e l ( ’MCD Mahalanobis Distance ’ )

p l t . x t i c k s ( r o t a t i o n =70, f o n t s i z e =8)

#p l t . l e gend ( t i t l e =’DTI metr i c s ’ , b box to anchor =(1.05 ,1) ,

l o c=’upper l e f t ’ )

#p l t . s a v e f i g ( ’/home/macphena/Outputs /{} {}/MCDM{} {} . png

’ . format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] , ROIs [ p ] ) )
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### Plot MCD Mahalanobis d i s t ance vs MLE Mahal D.

f i g , ax6 = p l t . subp lo t s ( f i g s i z e =(10 ,6) )

da ta p l o t = ax6 . s c a t t e r ( mle cov pca . mahalanobis ( d f pca .

va lue s ) , mcd cov pca . d i s t , c o l o r=’ b lack ’ , )

#da t a p l o t = ax6 . s c a t t e r ( mcd cov pca . r ewe i gh t cova r i ance (

d f pca ) , mcd cov pca . d i s t , c o l o r=’ b l a c k ’ , )

p l t . p l o t ( mcd cov pca . d i s t , f l i n e , c o l o r=’ red ’ )

p l t . p l o t ( f l i n e , mcd cov pca . d i s t , c o l o r=’ red ’ )

p l t . t i t l e ( ’ Mahalanobis Distance per Subject M{} ’ . format (

ages [ 0 ] ) )

p l t . x l a b e l ( ’ Subject ID ’ )

p l t . y l a b e l ( ’MCD Mahalanobis Distance ’ )

p l t . x t i c k s ( r o t a t i o n =70, f o n t s i z e =8)

#p l t . l e gend ( t i t l e =’DTI metr i c s ’ , b box to anchor =(1.05 ,1) ,

l o c=’upper l e f t ’ )

#p l t . s a v e f i g ( ’/home/macphena/Outputs /{} {}/MLE vs MCD M{}

{} . png ’ . format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] , ROIs [ p ] ) )

ou t i e = 0
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d f i n l i e r s m c d = pd . DataFrame ( columns=[ ’PC1 ’ , ’PC2 ’ ] )

d f o u t l i e r s m c d = pd . DataFrame ( columns=[ ’PC1 ’ , ’PC2 ’ ] )

d f i n l i e r s m l e = pd . DataFrame ( columns=[ ’PC1 ’ , ’PC2 ’ ] )

d f o u t l i e r s m l e = pd . DataFrame ( columns=[ ’PC1 ’ , ’PC2 ’ ] )

for qq in range (0 , len ( d f pca ) ) :

i f mcd cov pca . d i s t [ qq ] > f p p f :

ou t i e = out i e +1

d f o u t l i e r s m c d . l o c [ ’M{} ’ . format ( qq ) ] = df pca .

l o c [ ’M{} ’ . format ( qq ) ]

else :

d f i n l i e r s m c d . l o c [ ’M{} ’ . format ( qq ) ] = df pca . l o c

[ ’M{} ’ . format ( qq ) ]

for qq in range (0 , len ( d f pca ) ) :

i f mle cov pca . mahalanobis ( d f pca . va lue s ) [ qq ] > f p p f

:

ou t i e = out i e +1

d f o u t l i e r s m l e . l o c [ ’M{} ’ . format ( qq ) ] = df pca .

l o c [ ’M{} ’ . format ( qq ) ]

else :
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d f i n l i e r s m l e . l o c [ ’M{} ’ . format ( qq ) ] = df pca . l o c

[ ’M{} ’ . format ( qq ) ]

#pr in t ( ’Number o f Mahalanobis d i s t an c e s over 99.5%

conf idence l e v e l o f {} : {} ’ . format ( f p p f , ou t i e ) )

print ( ’ Percentage o f o u t l i e r s f o r M{} {}\nMCD:{}

MLE:{} ’ . format ( ages [ 0 ] , ROIs [ p ] , ( len ( d f o u t l i e r s m c d ) /

len ( d f pca ) ) , ( len ( d f o u t l i e r s m l e ) / len ( d f pca ) ) ) )

f i g , ax3 = p l t . subp lo t s ( f i g s i z e =(10 ,5) )

#da t a p l o t = ax3 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ b l a c k ’ )

i n l i e r p l o t = ax3 . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ )

i n l i e r p l o t . s e t l a b e l ( ’ I n l i e r s ’ )

o u t l i e r p l o t = ax3 . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ O u t l i e r s ’ )

ax3 . s e t t i t l e ( ’ Mahalanobis d i s t ance o f M{} {} datase t ’ .

format ( ages [ 0 ] , ROIs [ p ] ) )

ax3 . s e t x l i m (−6 ,6)

ax3 . s e t y l i m (−6 ,6)

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )
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xx , yy = np . meshgrid (

np . l i n s p a c e ( p l t . xl im ( ) [ 0 ] , p l t . xl im ( ) [ 1 ] , 100) ,

np . l i n s p a c e ( p l t . yl im ( ) [ 0 ] , p l t . yl im ( ) [ 1 ] , 100) ,

)

zz = np . c [ xx . r a v e l ( ) , yy . r a v e l ( ) ]

mahal mle cov = mle cov pca . mahalanobis ( zz )

mahal mle cov = mahal mle cov . reshape ( xx . shape )

# p l o t MLE contour in BLUE

emp cov contour = p l t . contour ( xx , yy , np . s q r t (

mahal mle cov ) , l e v e l s = [1 , 2 , 3 , 4 , 5 , 6 ] , cmap=’ B lue s r ’ ,

l i n e s t y l e s=’ dashed ’ )

#emp cov contour . s e t l a b e l ( ’MLE’)

mahal mcd cov = mcd cov pca . mahalanobis ( zz )

mahal mcd cov = mahal mcd cov . reshape ( xx . shape )

# p l o t MCD contour in RED
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mcd cov contour = p l t . contour ( xx , yy , np . s q r t (

mahal mcd cov ) , l e v e l s = [1 , 2 , 3 , 4 , 5 , 6 ] , cmap=’ Reds r ’ ,

l i n e s t y l e s=’ dashed ’ )

#mcd cov contour . s e t l a b e l ( ’MCD’)

ax3 . l egend (

[

emp cov contour . c o l l e c t i o n s [ 1 ] ,

mcd cov contour . c o l l e c t i o n s [ 1 ] ,

i n l i e r p l o t ,

o u t l i e r p l o t ,

] ,

[ ”MLE d i s t ” , ”MCD d i s t ” , ” i n l i e r s ” , ” o u t l i e r s ” ] , l o c=’

upper r i g h t ’ )

#p l t . s a v e f i g ( ’/home/macphena/Outputs /{} {}/ contour M{}

{} . png ’ . format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] , ROIs [ p ] ) )

### OCSVM

##########################################################
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df t ra in mcd , d f t e s t mcd = t r a i n t e s t s p l i t (

d f i n l i e r s m c d , t r a i n s i z e =0.75)

OCSVMa = OneClassSVM(nu=0.1 , gamma=0.05)

OCSVMa. f i t ( d f pca . va lue s )

OCSVMb = OneClassSVM(nu=0.1 , gamma=0.01)

OCSVMb. f i t ( d f pca . va lue s )

OCSVMc = OneClassSVM(nu=0.1 , gamma=0.1)

OCSVMc. f i t ( d f pca . va lue s )

#y pr e d t r a i n = OCSVM. p r e d i c t ( d f t ra in mcd )

#y p r e d t e s t = OCSVM. p r e d i c t ( d f t e s t mcd )

#y p r e d o u t l i e r s = OCSVM. p r e d i c t ( d f o u t l i e r s mcd )

SVM dec = OCSVMa. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM dec = SVM dec . reshape ( xx . shape )

SVM decb = OCSVMb. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM decb = SVM decb . reshape ( xx . shape )

SVM decc = OCSVMc. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM decc = SVM decc . reshape ( xx . shape )
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f i g , ax7 = p l t . subp lo t s ( f i g s i z e =(11 ,7) )

da ta p l o t = ax7 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ black ’ )

da ta p l o t . s e t l a b e l ( ’ I n l i e r ’ )

#t r a i n p l o t = ax7 . s c a t t e r ( d f t ra in mcd [ ’PC1 ’ ] ,

d f t ra in mcd [ ’PC2 ’ ] , c o l o r=’ b l a c k ’ )

#t r a i n p l o t . s e t l a b e l ( ’ Trained ’)

#t e s t p l o t = ax7 . s c a t t e r ( d f t e s t mcd [ ’PC1 ’ ] , d f t e s t mcd

[ ’PC2 ’ ] , c o l o r=’ purp l e ’ )

#t e s t p l o t . s e t l a b e l ( ’ Test ’ )

o u t l i e r p l o t = ax7 . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

ax7 . s e t t i t l e ( ’One−Class SVM Out l i e r d e t e c t i o n o f M{} {}

datase t ’ . format ( ages [ 0 ] , ROIs [ p ] ) )

ax7 . s e t x l i m (−5 ,5)

ax7 . s e t y l i m (−5 ,5)

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

# p l o t SVM contour in GREEN

SVM contour = p l t . contour ( xx , yy , SVM dec , l e v e l s =0,

c o l o r s=’ darkred ’ , l i n e w i d t h s =3)
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SVM contourb = p l t . contour ( xx , yy , SVM decb , l e v e l s =0,

c o l o r s=’ darkblue ’ , l i n e w i d t h s =3)

SVM contourc = p l t . contour ( xx , yy , SVM decc , l e v e l s =0,

c o l o r s=’ darkgreen ’ , l i n e w i d t h s =3)

ax7 . l egend (

[

SVM contour . c o l l e c t i o n s [ 1 ] ,

SVM contourb . c o l l e c t i o n s [ 1 ] ,

SVM contourc . c o l l e c t i o n s [ 1 ] ,

i n l i e r p l o t ,

o u t l i e r p l o t ,

] ,

[ ”OCSVM (nu=0.1 , g =0.05) ” , ”OCSVM (nu=0.1 , g =0.01) ” ,

”OCSVM (nu=0.1 g =0.1) ” , ” i n l i e r s ” , ” o u t l i e r s ” ] , l o c

=’ upper r i g h t ’ )#, bbox to anchor =(1 , 0 .5 ) )

p l t . s a v e f i g ( ’ /home/macphena/Outputs /{} {}/OCSVM gamma M{}

{} . png ’ . format ( sex [ 0 ] , ages [ 0 ] , ages [ 0 ] , ROIs [ p ] ) )

#p l t . s a v e f i g ( ’/home/macphena/brainDATA/Outputs /Contour/

contour M{} {} . png ’ . format ( ages [ 0 ] , ROIs [ p ] ) )
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#p l t . s a v e f i g ( ’/ Users/nei lmacphee /Dropbox/Grad School /

Grad School /Outputs / contour F {} {} . png ’ . format ( ages

[ 0 ] , ROIs [ p ] ) )

#

=============================================================================

# # Ca l cu l a t e the MLE based Mahalanobis d i s t an c e s

# mahal mle cov = mle cov pca . mahalanobis ( )

#

# # Create meshgrid o f f e a t u r e 1 and f e a t u r e 2 va l u e s

# xx , yy = np . meshgrid (

# np . l i n s p a c e ( p l t . x l im () [ 0 ] , p l t . x l im () [ 1 ] , 100) ,

# np . l i n s p a c e ( p l t . y l im () [ 0 ] , p l t . y l im () [ 1 ] , 100) ,

# )

#

=============================================================================

#%% Support Vector Machine

##################################################

from s k l e a rn . kerne l approx imat ion import Nystroem

from s k l e a rn . p i p e l i n e import make p ipe l ine

from s k l e a rn . m o d e l s e l e c t i o n import GridSearchCV , KFold
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from s k l e a rn . met r i c s import f 1 s c o r e , make scorer ,

c l a s s i f i c a t i o n r e p o r t , con fus i on mat r ix

import warnings

warnings . f i l t e r w a r n i n g s ( ’ once ’ )

#f1 s c = make scorer ( f 1 s co r e )

nus = [ 0 . 0 0 0 1 , 0 . 001 , 0 . 01 , 0 . 1 , 1 ]

gammas = [ 0 . 0 0 0 1 , 0 . 001 , 0 . 01 , 0 . 1 , 1 ]

#nus = np . arange (0 . 01 , 1 , 0 . 01 ) . t o l i s t ( )

#gammas = np . arange (0 . 01 , 1 , 0 . 01 ) . t o l i s t ( )

tuned parameters = { ’ k e rne l ’ : [ ’ r b f ’ ] , ’gamma ’ : gammas , ’ nu

’ : nus}

s c o r e s = [ ’ p r e c i s i o n ’ , ’ r e c a l l ’ ]

#s p l i t s = KFold ( n s p l i t s =5) . s p l i t ( d f i n l i e r s mcd )

# s p l i t i n l i e r data in t o t r a i n i n g and t e s t s e t s

# cons t r u c t s a genera tor o f t u p i l s o f t ra in , t e s t where

they conta in the i n d i c e s o f t r a i n i n g and t e s t data

Xsvm = np . concatenate ( [ d f i n l i e r s m c d , d f o u t l i e r s m c d ] ,

a x i s =0)

# combine in t o one da t a s e t to pass to GridSearchCV

ysvm = np . repeat ( 1 . 0 , len ( d f i n l i e r s m c d . va lue s ) )
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ysvm out = np . repeat (−1.0 , len ( d f o u t l i e r s m c d . va lue s ) )

ysvm = np . concatenate ( [ np . r epeat ( 1 . 0 , len ( d f i n l i e r s m c d .

va lue s ) ) , np . r epeat (−1.0 , len ( d f o u t l i e r s m c d . va lue s ) )

] )

# OCSVM uses +1 fo r i n l i e r va l u e s and −1 f o r o u t l i e r

va l u e s

nn , mm = len ( d f i n l i e r s m c d ) , len ( d f o u t l i e r s m c d )

#s p l i t s = (( t ra in , np . concatenate ( [ t e s t , np . arange (nn , nn

+mm) ] , a x i s=0)) f o r t ra in , t e s t in s p l i t s )

# make a new genera tor o f ( t ra in , t e s t ) s p l i t s wi th

i n d i c e s f o r the anomalous examples inc luded in the

t e s t f o l d s

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (

d f i n l i e r s m c d , ysvm , t r a i n s i z e =0.75 , random state

=(7) )

y t e s t o u t = np . concatenate ( ( y t e s t , ysvm out ) )
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X te s t out = np . concatenate ( ( X test , d f o u t l i e r s m c d .

va lue s ) )

g r i d s e a r c h = GridSearchCV (OneClassSVM ( ) ,

tuned parameters , s c o r i n g=’ f1 ’ , r e f i t=True , verbose =3)

g r i d s e a r c h . f i t ( X train , y t r a i n )

OCSVM = OneClassSVM(nu=0.15 , gamma=0.1)

OCSVM. f i t ( d f pca . va lue s )

trans form = Nystroem (gamma=0.12 , random state =777)

OCSVM sgd = SGDOneClassSVM(nu=0.05 , random state =777 , t o l

=1e−6, f i t i n t e r c e p t=True )

p ipe sgd = make p ipe l ine ( transform , OCSVM sgd)

p ipe sgd . f i t ( X tra in . va lue s )

OCSVM nov = OneClassSVM(nu=0.01 , gamma=0.01)

OCSVM nov . f i t ( X tra in . va lue s )

y p r e d t r a i n = OCSVM nov . p r e d i c t ( d f t ra in mcd . va lue s )

y p r e d t e s t = OCSVM nov . p r e d i c t ( d f t e s t mcd . va lue s )
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y p r e d o u t l i e r s = OCSVM nov . p r e d i c t ( d f o u t l i e r s m c d .

va lue s )

g r i d s e a r c h . best params

SVM dec = OCSVM. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM dec = SVM dec . reshape ( xx . shape )

SVM dec nov = OCSVM nov . d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l

( ) , yy . r a v e l ( ) ] )

SVM dec nov = SVM dec nov . reshape ( xx . shape )

SVM dec sig = p ipe sgd . d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( )

, yy . r a v e l ( ) ] )

SVM dec sig = SVM dec sig . reshape ( xx . shape )

f i g , ax8 = p l t . subp lo t s ( f i g s i z e =(10 ,5) )

#da t a p l o t = ax3 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ b l a c k ’ )

t r a i n p l o t = ax8 . s c a t t e r ( X tra in [ ’PC1 ’ ] , X tra in [ ’PC2 ’ ] ,

c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ Trained ’ )
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t e s t p l o t = ax8 . s c a t t e r ( X tes t [ ’PC1 ’ ] , X tes t [ ’PC2 ’ ] ,

c o l o r=’ green ’ , e d g e c o l o r s=’ k ’ )

t e s t p l o t . s e t l a b e l ( ’ Test ’ )

o u t l i e r p l o t = ax8 . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

ax8 . s e t t i t l e ( ’One−Class SVM vs SGD−OCSVM Novelty

d e t e c t i o n o f M{} {} datase t ’ . format ( ages [ 0 ] , ROIs [ p ] ) )

ax8 . s e t x l i m (−6 ,6)

ax8 . s e t y l i m (−6 ,6)

# p l o t SVM contour in GREEN

#SVM contour = p l t . contour ( xx , yy , SVM dec , l e v e l s =4,

c o l o r s =’ darkred ’ )

SVM contour nov = p l t . contour ( xx , yy , SVM dec nov , l e v e l s

=0, c o l o r s=’ darkred ’ , l i n e w i d t h s =[3 ] )

SVM contour sig = p l t . contour ( xx , yy , SVM dec sig , l e v e l s

=0, c o l o r s=’ darkblue ’ , l i n e w i d t h s =[3 ] )

ax8 . l egend (

[

SVM contour nov . c o l l e c t i o n s [ 1 ] ,

SVM contour sig . c o l l e c t i o n s [ 1 ] ,

t r a i n p l o t ,
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t e s t p l o t ,

o u t l i e r p l o t

] ,

[ ”OCSVM” , ”SGD−OCSVM” , ”MCD−based t r a i n i n g s e t ” , ”MCD

−based t e s t i n g s e t ” , ”MCD−based o u t l i e r s ” ] , l o c=’

lower l e f t ’ , bbox to anchor =(1 , 0 . 5 ) )

OCSVM poly = OneClassSVM( ke rne l=’ poly ’ , nu=0.25 , gamma

=0.1)

OCSVM poly . f i t ( d f pca . va lue s )

OCSVM sigmoid = OneClassSVM( ke rne l=’ s igmoid ’ , nu=0.1 ,

gamma=0.1)

OCSVM sigmoid . f i t ( d f pca . va lue s )

OCSVM linear = OneClassSVM( ke rne l=’ l i n e a r ’ , nu=0.1 , gamma

=0.1)

OCSVM linear . f i t ( d f pca . va lue s )

SVM dec ex1 = OCSVM poly . d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l

( ) , yy . r a v e l ( ) ] )

SVM dec ex1 = SVM dec ex1 . reshape ( xx . shape )
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SVM dec ex2 = OCSVM sigmoid . d e c i s i o n f u n c t i o n (np . c [ xx .

r a v e l ( ) , yy . r a v e l ( ) ] )

SVM dec ex2 = SVM dec ex2 . reshape ( xx . shape )

SVM dec ex3 = OCSVM linear . d e c i s i o n f u n c t i o n (np . c [ xx .

r a v e l ( ) , yy . r a v e l ( ) ] )

SVM dec ex3 = SVM dec ex3 . reshape ( xx . shape )

f i g , ax9 = p l t . subp lo t s ( f i g s i z e =(10 ,5) )

#da t a p l o t = ax3 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ b l a c k ’ )

t r a i n p l o t = ax9 . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = ax9 . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

ax9 . s e t t i t l e ( ’ Poly and Sigmoid OCSVM o u t l i e r d e t e c t i o n

o f M{} {} datase t ’ . format ( ages [ 0 ] , ROIs [ p ] ) )

ax9 . s e t x l i m (−6 ,6)

ax9 . s e t y l i m (−6 ,6)

p l t . x l a b e l ( ’PC1 ’ )
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p l t . y l a b e l ( ’PC2 ’ )

# p l o t SVM contour in GREEN

#SVM contour = p l t . contour ( xx , yy , SVM dec , l e v e l s =4,

c o l o r s =’ darkred ’ )

SVM contour ex1 = p l t . contour ( xx , yy , SVM dec ex1 , l e v e l s

=0, c o l o r s=’ darkgreen ’ , l i n e w i d t h s =[3 ] )

SVM contour ex2 = p l t . contour ( xx , yy , SVM dec ex2 , l e v e l s

=0, c o l o r s=’ darkblue ’ , l i n e w i d t h s =[3 ] )

ax9 . l egend (

[

SVM contour ex1 . c o l l e c t i o n s [ 1 ] ,

SVM contour ex2 . c o l l e c t i o n s [ 1 ] ,

t r a i n p l o t ,

o u t l i e r p l o t

] ,

[ ”OCSVM − poly ” , ”OCSVM − s igmoid ” , ”MCD−based

I n l i e r s ” , ”MCD−based o u t l i e r s ” ] , l o c=’ lower l e f t ’ ,

bbox to anchor =(1 , 0 . 5 ) )

f i g , axs = p l t . subp lo t s (2 , 2 , f i g s i z e =(10 ,10) )
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#da t a p l o t = ax3 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ b l a c k ’ )

t r a i n p l o t = axs [ 0 , 0 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = axs [ 0 , 0 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

t r a i n p l o t = axs [ 0 , 1 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = axs [ 0 , 1 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

t r a i n p l o t = axs [ 1 , 0 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = axs [ 1 , 0 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

t r a i n p l o t = axs [ 1 , 1 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )
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o u t l i e r p l o t = axs [ 1 , 1 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

f i g . s u p t i t l e ( ’ Comparison o f OCSVM Kernel d e c i s i o n

f u n c t i o n s ’ , f o n t s i z e =20)

axs [ 0 , 0 ] . s e t t i t l e ( ’ Poly OCSVM o u t l i e r d e t e c t i o n ’ )

axs [ 0 , 1 ] . s e t t i t l e ( ’ Sigmoid OCSVM o u t l i e r d e t e c t i o n ’ )

axs [ 1 , 0 ] . s e t t i t l e ( ’ L inear OCSVM o u t l i e r d e t e c t i o n ’ )

axs [ 1 , 1 ] . s e t t i t l e ( ’RBF OCSVM o u t l i e r d e t e c t i o n ’ )

SVM contour ex1 = axs [ 0 , 0 ] . contour ( xx , yy , SVM dec ex1 ,

l e v e l s =0, c o l o r s=’ darkgreen ’ , l i n e w i d t h s =[3 ] )

SVM contour ex2 = axs [ 0 , 1 ] . contour ( xx , yy , SVM dec ex2 ,

l e v e l s =0, c o l o r s=’ darkblue ’ , l i n e w i d t h s =[3 ] )

SVM contour ex3 = axs [ 1 , 0 ] . contour ( xx , yy , SVM dec ex3 ,

l e v e l s =0, c o l o r s=’ darkred ’ , l i n e w i d t h s =[3 ] )

SVM contour ex4 = axs [ 1 , 1 ] . contour ( xx , yy , SVM dec ,

l e v e l s =0, c o l o r s=’ orange ’ , l i n e w i d t h s =[3 ] )

OCSVMa = OneClassSVM(nu=0.15 , gamma=1)

OCSVMa. f i t ( d f pca . va lue s )

OCSVMb = OneClassSVM(nu=0.15 , gamma=0.1)

OCSVMb. f i t ( d f pca . va lue s )

OCSVMc = OneClassSVM(nu=0.15 , gamma=0.05)
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OCSVMc. f i t ( d f pca . va lue s )

OCSVMd = OneClassSVM(nu=0.15 , gamma=0.01)

OCSVMd. f i t ( d f pca . va lue s )

SVM dec = OCSVMa. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM dec = SVM dec . reshape ( xx . shape )

SVM decb = OCSVMb. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM decb = SVM decb . reshape ( xx . shape )

SVM decc = OCSVMc. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM decc = SVM decc . reshape ( xx . shape )

SVM decd = OCSVMd. d e c i s i o n f u n c t i o n (np . c [ xx . r a v e l ( ) , yy .

r a v e l ( ) ] )

SVM decd = SVM decd . reshape ( xx . shape )

f i g , axs = p l t . subp lo t s (2 , 2 , f i g s i z e =(10 ,10) )

#da t a p l o t = ax3 . s c a t t e r ( d f pca [ ’PC1 ’ ] , d f pca [ ’PC2 ’ ] ,

c o l o r=’ b l a c k ’ )

t r a i n p l o t = axs [ 0 , 0 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )
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o u t l i e r p l o t = axs [ 0 , 0 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

t r a i n p l o t = axs [ 0 , 1 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = axs [ 0 , 1 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

t r a i n p l o t = axs [ 1 , 0 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = axs [ 1 , 0 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

t r a i n p l o t = axs [ 1 , 1 ] . s c a t t e r ( d f i n l i e r s m c d [ ’PC1 ’ ] ,

d f i n l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ black ’ , e d g e c o l o r s=’ k ’ )

t r a i n p l o t . s e t l a b e l ( ’ I n l i e r ’ )

o u t l i e r p l o t = axs [ 1 , 1 ] . s c a t t e r ( d f o u t l i e r s m c d [ ’PC1 ’ ] ,

d f o u t l i e r s m c d [ ’PC2 ’ ] , c o l o r=’ red ’ , e d g e c o l o r s=’ k ’ )

o u t l i e r p l o t . s e t l a b e l ( ’ Out l i e r ’ )

f i g . s u p t i t l e ( ’ Comparison o f RBF OCSVM gamma va lues ’ ,

f o n t s i z e =20)

axs [ 0 , 0 ] . s e t t i t l e ( ’OCSVM gamma=1 ’ )
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axs [ 0 , 1 ] . s e t t i t l e ( ’OCSVM gamma=0.1 ’ )

axs [ 1 , 0 ] . s e t t i t l e ( ’OCSVM gamma=0.01 ’ )

axs [ 1 , 1 ] . s e t t i t l e ( ’OCSVM gamma=0.001 ’ )

SVM contour ex5 = axs [ 0 , 0 ] . contour ( xx , yy , SVM dec ,

l e v e l s =0, c o l o r s=’ darkgreen ’ , l i n e w i d t h s =[3 ] )

SVM contour ex6 = axs [ 0 , 1 ] . contour ( xx , yy , SVM decb ,

l e v e l s =0, c o l o r s=’ darkblue ’ , l i n e w i d t h s =[3 ] )

SVM contour ex7 = axs [ 1 , 0 ] . contour ( xx , yy , SVM decc ,

l e v e l s =0, c o l o r s=’ darkred ’ , l i n e w i d t h s =[3 ] )

SVM contour ex8 = axs [ 1 , 1 ] . contour ( xx , yy , SVM decd ,

l e v e l s =0, c o l o r s=’ orange ’ , l i n e w i d t h s =[3 ] )

#%%

# Define c l a s s i f i e r s

c l a s s i f i e r s = {

” Empir ica l Covariance ” : E l l i p t i c E n v e l o p e (

s u p p o r t f r a c t i o n =1.0 , contaminat ion =0.25) ,

”Minimum Covariance Determinant” : E l l i p t i c E n v e l o p e (

contamination =0.25) ,

”OCSVM” : OneClassSVM(nu=0.25 , gamma=0.35)}
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c o l o r s = [ ”m” , ”g” , ”b” ]

legend1 = {}

l egend2 = {}

f i g , ax7 = p l t . subp lo t s ( f i g s i z e =(10 ,6) )

xx1 , yy1 = np . meshgrid (

np . l i n s p a c e (−6 , 6 , 100) ,

np . l i n s p a c e (−6 , 6 , 100)

)

for i i , ( c l f name , c l f ) in enumerate ( c l a s s i f i e r s . i tems ( ) )

:

p l t . f i g u r e (1 )

c l f . f i t ( d f pca )

z1 = c l f . d e c i s i o n f u n c t i o n (np . c [ xx1 . r a v e l ( ) , yy1 .

r a v e l ( ) ] )

z1 = z1 . reshape ( xx1 . shape )

legend1 [ c l f name ] = p l t . contour (

xx1 , yy1 , z1 , l e v e l s =[0 ] , l i n e w i d t h s =2, c o l o r s=

c o l o r s [ i i ]

)
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#%% Reshaping the data 2D−>3D

###################################################

z s c r 3d = np . z e r o s ( ho ld data . shape )

dim = 0

for g in range (0 , len ( z s c r ) ) :

i f g == 0 :

for a in range (0 , len ( z s c r 3d ) ) :

for b in range (0 , len ( z s c r 3d [ 0 ] ) ) :

z s c r 3d [ a , b , 0 ] =+ z s c r [ g , b ]

i f ( g+1)%182 == 0 :

dim =+ 1

for a in range (0 , len ( z s c r 3d ) ) :

for b in range (0 , len ( z s c r 3d [ 0 ] ) ) :

z s c r 3d [ a , b , dim ] =+ z s c r [ g , b ]

for x in range (1 ,182) :

# Disp lay the background

p l t . imshow ( z s c r 3d [ . . . , x ] . T, o r i g i n=’ lower ’ ,

i n t e r p o l a t i o n=’ nea r e s t ’ , cmap=’ gray ’ )

# Mask background va l u e s o f a c t i v a t i o n map

masked act = np .ma. masked equal ( act , 0 . )
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p l t . imshow ( masked act [ . . . , x ] . T, o r i g i n=’ lower ’ ,

i n t e r p o l a t i o n=’ nea r e s t ’ , cmap=’ hot ’ )

# Cosmetics : d i s a b l e a x i s

p l t . a x i s ( ’ o f f ’ )

p l t . show ( )

# [85 :87 ,12323 :12325 ]

from s c ipy . s p a t i a l import d i s t ance

e u d i s t = d i s t anc e . c d i s t ( data 2d [ f i l e l i s t [ 4 ] ] , data 2d [

f i l e l i s t [ 4 ] ] , ’ euc l i d ean ’ )

### PCA

########################################################################

from s k l e a rn . decomposit ion import PCA

from s k l e a rn . p r ep r o c e s s i ng import StandardSca ler

sc = StandardSca ler ( )

pca da ta s to r e = dict ( )

ho ld pca = f loat ( )
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for p in range (0 , len ( f i l e l i s t ) ) :

ho ld pca = PCA( ) . f i t t r a n s f o r m ( sc . f i t t r a n s f o r m ( data 2d [

f i l e l i s t [ p ] ] ) )

pca da ta s to r e . update ({ f i l e l i s t [ p ] : ho ld pca })

#exp l a i n ed va r i anc e = pca . e x p l a i n e d v a r i a n c e r a t i o

# Score p l o t o f the f i r s t 2 PC

for v in range (0 , len ( f i l e l i s t ) ) :

f i g = p l t . f i g u r e ( f i g s i z e =(8 ,6) )

with p l t . s t y l e . context ( ( ’ ggp lo t ’ ) ) :

p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ v ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ v ] ] [ : , 1 ] , e d g e c o l o r s=’ k ’ ,

cmap=’ j e t ’ )

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

p l t . t i t l e ( ’ Score Plot (%s ) ’ % f i l e l i s t [ v ] )

p l t . show ( )

with p l t . s t y l e . context ( ( ’ ggp lo t ’ ) ) :
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p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ 1 ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ 1 ] ] [ : , 1 ] , e d g e c o l o r s=’ k ’ , cmap

=’ j e t ’ )

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

p l t . t i t l e ( ’ Score Plot (%s ) ’ % f i l e l i s t [ 1 ] )

p l t . show ( )

### ou t l i e r vs o r i g i n a l ###

with p l t . s t y l e . context ( ( ’ ggp lo t ’ ) ) :

p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ 3 ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ 3 ] ] [ : , 1 ] , e d g e c o l o r s=’ k ’ , cmap

=’ j e t ’ )

p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ 5 ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ 5 ] ] [ : , 1 ] , e d g e c o l o r s=’ k ’ , cmap

=’ j e t ’ , c=’ green ’ )

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

p l t . t i t l e ( ’ Score Plot (%s ) ’ % f i l e l i s t [ 1 ] )

p l t . show ( )

# Eucl idean d i s t ance f o r score p l o t s

euc l i d ean data = dict ( )
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for z in range (0 , len ( f i l e l i s t ) ) :

for i in range (75) :

euc l i d ean data . update ({ f i l e l i s t [ z ] : ( pca da ta s to r e [

f i l e l i s t [ z ] ] [ : , i ] − np . mean( pca data s to r e [

f i l e l i s t [ z ] ] [ : , : 7 5 ] ) ) ∗∗2/np . var ( pca da ta s to r e [

f i l e l i s t [ z ] ] [ : , : 7 5 ] ) })

for p in range (0 , len ( f i l e l i s t ) ) :

c o l ou r = [ p l t . cm . j e t ( f loat ( i ) /max( euc l i d ean data [ f i l e l i s t

[ p ] ] ) ) for i in euc l i d ean data [ f i l e l i s t [ p ] ] ]

f i g = p l t . f i g u r e ( f i g s i z e =(8 ,6) )

with p l t . s t y l e . context ( ( ’ ggp lo t ’ ) ) :

p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ p ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ p ] ] [ : , 1 ] , c=colour ,

e d g e c o l o r s=’ k ’ , s =60)

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

p l t . t i t l e ( ’ Score Plot (%s ) ’ % f i l e l i s t [ p ] )

p l t . show ( )

### Mahalanobic Distance

##########################################################

from s k l e a rn . covar iance import Empir ica lCovar iance , MinCovDet

robust cov = dict ( )
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mahal datastore = dict ( )

# f i t a Minimum Covariance Determinant (MCD) robus t e s t imator

to data

robust cov = MinCovDet ( s u p p o r t f r a c t i o n =1) . f i t ( pca da ta s to r e [

f i l e l i s t [ 0 ] ] [ : , : 5 ] )

# Get the Mahalanobis d i s t ance

m = robust cov . mahalanobis ( pca da ta s to r e [ f i l e l i s t [ 1 ] ] [ : , : 5 ] )

for b in range (0 , len ( f i l e l i s t ) ) :

# f i t a Minimum Covariance Determinant (MCD) robus t

e s t imator to data

robust cov = MinCovDet ( s u p p o r t f r a c t i o n =0.9) . f i t (

pca da ta s to r e [ f i l e l i s t [ b ] ] [ : , : 5 ] )

# Get the Mahalanobis d i s t ance

mahal datastore . update ({ f i l e l i s t [ b ] : robust cov .

mahalanobis ( pca da ta s to r e [ f i l e l i s t [ b ] ] [ : , : 5 ] ) })

for p in range (0 , len ( f i l e l i s t ) ) :

c o l ou r = [ p l t . cm . j e t ( f loat ( i ) /max( mahal datastore [

f i l e l i s t [ p ] ] ) ) for i in mahal datastore [ f i l e l i s t [ p ] ] ]

f i g = p l t . f i g u r e ( f i g s i z e =(8 ,6) )

with p l t . s t y l e . context ( ( ’ ggp lo t ’ ) ) :
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p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ p ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ p ] ] [ : , 1 ] , c=colour ,

e d g e c o l o r s=’ k ’ , s =60)

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

p l t . t i t l e ( ’ Score Plot (%s ) ’ % f i l e l i s t [ p ] )

p l t . show ( )

### Local o u t l i e r f a c t o r

########################################################

from s k l e a rn . ne ighbors import Loca lOut l i e rFacto r

l o f d a t a s t o r e = dict ( )

for q in range (0 , len ( f i l e l i s t ) ) :

l o f t e s t = Loca lOut l i e rFacto r ( n ne ighbors =4)

l o f d a t a s t o r e . update ({ f i l e l i s t [ q ] : l o f t e s t . f i t p r e d i c t (

pca da ta s to r e [ f i l e l i s t [ q ] ] ) })

for d in range (0 , len ( f i l e l i s t ) ) :

c o l ou r = [ p l t . cm . j e t ( f loat ( i ) /max( l o f d a t a s t o r e [ f i l e l i s t [

d ] ] ) ) for i in l o f d a t a s t o r e [ f i l e l i s t [ d ] ] ]

f i g = p l t . f i g u r e ( f i g s i z e =(8 ,6) )

with p l t . s t y l e . context ( ( ’ ggp lo t ’ ) ) :
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p l t . s c a t t e r ( pca da ta s to r e [ f i l e l i s t [ d ] ] [ : , 0 ] ,

p ca da ta s to r e [ f i l e l i s t [ d ] ] [ : , 1 ] , c=colour ,

e d g e c o l o r s=’ k ’ , s =60)

p l t . x l a b e l ( ’PC1 ’ )

p l t . y l a b e l ( ’PC2 ’ )

p l t . t i t l e ( ’ Score Plot (%s ) ’ % f i l e l i s t [ d ] )

p l t . show ( )

l o f t e s t = Loca lOut l i e rFacto r ( n ne ighbors =3)

l o f t e s t . f i t p r e d i c t ( pca da ta s to r e [ f i l e l i s t [ 0 ] ] )

#

################################################################################
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