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Abstract

The equilibrium phase behavior of disperse diblock copolymers is studied using the

self-consistent field theory. We first examine how dispersity affects the formation of

complex spherical phases in conformationally asymmetric diblock copolymers. For

disperse diblock copolymers with Poisson and Schulz-Zimm distributions, the Frank-

Kasper σ phase appears at a lower degree of conformational asymmetry than what

is predicted in monodisperse systems. We next present a general method of treating

molecular weight distributions (MWDs) specified by a set of molecular weight frac-

tions in numerical self-consistent field theory. The procedure is applied to MWDs

with similar dispersity indices and different skewness obtained from experimental

measurements. We find that consistent with experiments, the domain spacing and

equilibrium morphology could vary with the skewness. Lastly, we investigate how the

MWD shape characterized by the dispersity index and skewness affects the relative

stability of complex spherical phases. The predicted set of complex phases could

differ between MWDs with identical dispersity indices and different skewness. In

particular, it is found that the formation of the C14 and C15 phases is favored for

more positively-skewed distributions. Overall, the work underlines the importance of

the MWD shape on the phase behavior of disperse diblock copolymers and the need

of considering other statistical measures alongside the dispersity index, such as the
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skewness.
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Notation and abbreviations

We present below the definitions of all notation and abbreviations used in the main

body of the thesis.

DIS disordered
LAM lamellar
HEX hexagonally-packed cylindrical
DGY double gyroid
BCC body-centered cubic
Scp hexagonally close-packed spherical
RPA random phase approximation
SST strong segregation theory
UCA unit-cell approximation
SZ Schulz-Zimm
FK Frank-Kasper
SCFT self-consistent field theory
PI-PLA poly(isoprene)-b-poly[(±)-lactide]
c index for polymer chain type
α index for monomer type
f average volume fraction of A-monomers
χ Flory-Huggins parameter
N degree of polymerization or chain contour length
V system volume
b Kuhn or statistical segment length
Z partition function
nc number of type-c polymer chains
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kB Boltzmann constant
T temperature
β kBT
λT thermal de Broglie wavelength
R(s) space curve describing chain configuration

φ̂(r) monomer volume fraction operator
vα single α-monomer volume
v0 reference volume
H Hamiltonian
δ(x) Dirac delta function
Iα bounds of integration over contour length of α-block
P Wiener measure
F mean-field free energy
φα(r) spatially-varying α-monomer volume fraction
ωα(r) auxiliary field of α-monomers
ξ(r) Lagrange multipler field for incompressibility condition
Zc single-chain partition of type-c polymers
Qc normalized single-chain partition of type-c polymers
qc(r, s), q

†
c(r, s) forward and backward end-integrated propagators

φ̄c average volume fraction of type-c polymers
Pc number fraction or probability of type-c polymers
vc single-chain volume of type-c polymers
〈xc〉 number-averged value of xc
θ vector of unit-cell lattice parameters
z∗ complex conjugate of z
Ghkl reciprocal lattice vector, hb1(θ) + kb2(θ) + lb3(θ)
{b1(θ), b2(θ), b3(θ)} set of primitive wavevectors

f̂ (k) Fourier transform of f(r)
G mean-field grand canonical free energy
µc chemical potential of type-c polymers
zc activity of type-c polymers
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ufr (|r|) finite-range interaction between unlike monomers
σfr range of finite-range interaction
g(|r|; b) bonded potential for freely jointed chains
λc relative chain length Nc/〈Nc〉
Pois (λc;µ) Poisson distribution with mean of µ
SZ (λc; k) SZ distribution with shape parameter k
D(Nc) dispersity index
ε conformational asymmetry parameter
wc mass fraction of type-c polymers
mc moles of type-c polymers
Mc molecular mass of type-c polymers
L domain spacing in an ordered structure
CDFα cumulative distribution function for α-block lengths

R0

√
〈NA,c〉b2

A + 〈NB,c〉b2
B

µ̃3 skewness
φj,c(r) distribution of chain junctions
Φα,c (r) single α-monomer volume
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Below, the notation and abbreviations found in the appendices of the thesis is defined.

ΦA assumed average A-volume fraction
dα deviation function or residual for auxiliary field ωα(r)
d (θp) deviation function or residual for lattice parameter θp
∆ωα total deviation or residue for the auxiliary fields
∆θp total deviation or residue for the lattice parameters
Mλ number of points in the coarse-graining procedure for

the Poisson distribution
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Chapter 1

Introduction

Polymers are chain-like macromolecules composed of many repeat units, or monomers,

covalently linked together. When the monomers are all identical, the product is

referred to as a homopolymer. A block copolymer is produced by joining two or

more chemically distinct homopolymers together. In a mixture of different types of

homopolymers, the chemical incompatibility between unlike monomers drives phase

separation of the system on a macroscopic scale (see left side of Figure 1.1). For block

copolymers, chemical incompatibility again promotes separation. However, molecular

connectivity permits the separation to occur only on a length scale determined by to

the size of the polymers, typically in the range of 10 to 100 nanometers [5]. Conse-

quently, block copolymers are frustrated at the molecular level due to the inability to

optimize the two competing factors simultaneously. The molecular frustration leads

to the self-assembly of block copolymers, where the incompatible blocks segregate

into different domains. Packing of the self-assembled polymeric domains results in

the formation of ordered structures [6, 7, 8].

The simplest example of block copolymers is the linear AB-diblock copolymer
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where one end of an A-homopolymer or A-block is connected to the end of a B-

block. The equilibrium phase behavior of diblock copolymers is mainly regulated by

two parameters [6, 7]. The first is the relative length or volume fraction of one of

the two blocks f . The second is the segregation strength, which is specified by the

product χN . Here, χ refers to the Flory-Huggins parameter, and N is the degree

of polymerization (or polymer chain length). Since the primary driving force for

phase separation is the chemical incompatibility, self-assembly only occurs when the

segregation strength is sufficiently strong. At lower values of χN , the tendency to

phase separate is weak, and the melt is in a disordered state. Only when χN becomes

large enough will ordered structures spontaneously appear. Starting from a symmetric

block composition (f = 0.5), the structural motif of the equilibrium morphology is

planar or lamellar, proceeding to cylindrical and lastly to spherical micelles as the

block lengths become increasingly asymmetric [9] (see Figure 1.1). For the latter two,

the core and corona are composed of the minority and majority blocks, respectively.

Qualitatively, the self-assembled morphology of block copolymers is determined

by two factors, the A/B interfacial tension and the entropic chain-stretching energy.

The more a polymer is extended, the fewer accessible chain configurations, leading to

a decrease in entropy. The most common model for chain connectivity treats polymer

chains as ideal Hookean springs connected in series [6, 5, 7]. The optimal arrangement

of symmetric diblock copolymers (f = 0.5) is to pack along a flat interface. However,

packing in the same fashion for the asymmetric counterparts will stretch the majority

block more than the minority. As the asymmetry in block lengths grow, structures

with greater interfacial curvature towards the minority component are preferred. Do-

ing so relaxes the stretching of the majority blocks, which offsets the accompanying
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Figure 1.1: Schematic depicting on the left a phase-separated mixture of A- and B-
homopolymers. On the right, the general progression of the equilibrium morphology
in linear AB-diblock copolymers is illustrated. For clarity, only the surface dividing
the A- and B-rich domains is shown for the three structures on the right.

cost of extending the minority blocks to a higher degree. This explains the general

progression of equilibrium phases. The space-filling periodic arrangement of the cylin-

ders and spheres are further determined by the competition of two opposing factors,

commonly referred to as packing frustration [10, 11, 12, 8]. On one hand, minimiza-

tion of interfacial area energy prefers structures adopting interfaces with constant

mean curvature. On the other, minimizing the chain-stretching energy favors uni-

form chain-stretching or domain thickness. Both tendencies can be accommodated

simultaneously by perfect cylinders and spheres. However, these ideal shapes cannot

be packed to fill space uniformly. Voids will be present at the interstitial sites, as

illustrated in Figure 1.2 for hexagonally-packed cylinders. Consequently, the ideal

micelles will be deformed to resemble the enclosing Voronoi (or Wigner-Seitz) cells.

Minimization of interfacial area tends to retain the ideal circular or spherical inter-

faces. However, a subset of the B-blocks in the corona would be required to stretch
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more excessively to fill the space at the interstitial sites, which is disfavored by uni-

form chain-stretching. The interstitial spaces are located at the six corners of the

Voronoi cell shown in Figure 1.2. On the other extreme, optimal entropic stretching

energy would instead prefer an interface that is a dilated copy of the Voronoi cell,

which is depicted in Figure 1.2 for our example of cylinders. Adopting a polyhedral

interface will result in deviations from constant mean curvature, producing excessive

surface area [10]. This is of course unfavourable from the viewpoint of interfacial

energy. The delicate balance between uniform domain thickness and interfacial cur-

vature leads to an intermediate between the two extremes that resembles a shrunken

version of the Voronoi cell with rounded edges.

Figure 1.2: Schematic of packing frustration for hexagonally-packed cylindrical mi-
celles composed of A-rich cores and B-rich coronas.

Since planar layers can fill space and are uniform both in curvature and thickness,

the lamellar phase experiences no packing frustration [6, 8]. Minimization of packing

frustration results in hexagonally close-packed (HEX) cylinders and body-centered

cubic (BCC) spheres, respectively, when the A- and B-monomers are of equal size.

However, a difference in monomer sizes, referred to as conformational asymmetry,

has recently been found to lead to the emergence of complex spherical phases. In

4



D.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

2010, the Bates group experimentally observed an equilibrium Frank-Kasper (FK) σ

phase in poly(isoprene)-b-poly[(±)-lactide] (PI-PLA) and poly(styrene-b-isoprene-b-

styrene-b-ethylene oxide) [13]. Originating from the study of metallic alloys, the FK

phases are topologically close-packed structures featuring 12-, 14-, 15- and 16-fold

triangulated coordination polyhedras [14, 15, 16]. Characteristic of FK phases are

low-symmetry unit cells containing multiple types of atoms with different shapes and

sizes [16]. Four examples of FK phases are illustrated in Figure 1.3.

(a) A15 (b) σ (c) C14 (d) C15

Figure 1.3: Illustrations for four examples of Frank-Kasper phases. The colors denote
different types of atoms (metallic alloys) or micellar cores (diblock copolymer self-
assembly).

A theoretical calculation by Xie et al. revealed that conformational asymmetry

is one factor that can stabilize the non-classical spherical phases [1]. Conformational

asymmetry results in different in block elasticities, where stretching one component

incurs a smaller entropic penalty than the other [6, 11]. Intuitively, when stretching

ideal springs of unequal elasticity in series, springs that are easier to stretch will be

extended more. By the same token, since the A- and B-blocks mimic the behavior of

springs, it is entropically favourable to extend the component with the lower stretching

cost to a greater degree. The tendency to stretch one block more than the other leads

to an increased preference for the interface to curve towards the domains rich in

the larger-sized monomers. As a result, higher degrees of conformational asymmetry

5
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enable the formation of spherical-packing phases at larger f (see Figure 1.4a). When

the block lengths become comparable, the minority-rich cores will be large enough

that the interfaces begin to heavily deform towards the shape of the surrounding

Wigner-Seitz cell. It is argued that the tendency to form spherical domains with

larger sphericity is why the complex spherical phases, such as the FK σ and A15, can

then be stabilized [17, 18]. These structures have overall rounder Wigner-Seitz cells

than the BCC and Scp lattices. We note that the “Non-Sphere phases” in Figure 1.4a

refers to any not belonging to the spherical-packing phases, such as the hexagonally-

packed cylinders or lamellar.

The predicted role of conformational asymmetry in the formation of complex

spherical phases was recently investigated experimentally by Schulze et al. [2]. The

BCC structure was found to be the only spherical phase formed by nearly conforma-

tionally symmetric poly(ethylene-alt-propylene)-b-poly[(±)-lactide] diblock copoly-

mers. At the same time, the phase sequence HEX ↔ σ ↔ BCC predicted by Xie et

al. was observed in conformationally asymmetric PI-PLA and poly(ethylethylene)-

b-poly[(±)-lactide] diblock copolymers. The results of Schulze et al. confirm that

conformational asymmetry is a key ingredient for stabilizing the novel FK phases.

We can see from Figure 1.4 that the qualitative agreement between the experimen-

tal and theoretical works is excellent. However on the quantitative level, the FK σ

phase exhibits a large window of stability in experiments. To theoretically reproduce

the same level of stability, a larger degree of conformational asymmetry would be

required. The discrepancy suggests that there are additional factors affecting the

self-assembly of complex spherical phases. One possibility for the differences between

theory and experiment is dispersity.
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Figure 1.4: Phase diagrams as a function of segregation strength and block volume
fraction for different degrees of conformational asymmetry from (a) mean-field calcu-
lations by Xie et al. [1] and (b) experiments by Schulze et al. [2]. Figures are taken
from their respective references.

Dispersity refers to a distribution of the molecular weights and is inherent to vir-

tually all synthetic polymers. An example of a molecular weight distribution (MWD)

is illustrated in Figure 1.5a. The most common measure of dispersity in the liter-

ature is the dispersity index D [5, 7, 19], characterizing the width of the MWD. A

polymer sample without dispersity is commonly referred to as monodisperse. Early

theoretical works by Leibler et al. [20] and Hong et al. [21] examined the effects of

increasing the dispersity index on the disordered phase and order-disorder transition

7
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(a) (b) (c)

Figure 1.5: (a) Example of a molecular weight distribution. (b) and (c) are schematics
illustrating chain packing in monodisperse and disperse diblock copolymers, respec-
tively.

using the random phase approximation suitable for weak degrees of segregation. In

both works, the scattering function for the disordered state was derived with the in-

clusion of dispersity given by the Schulz-Zimm (SZ) distribution. The SZ model is

the most widely used MWD when probing the influence of increasing the dispersity

index [19]. Several years later, Burger et al. investigated dispersity effects on both the

ordered and disordered phases again using the RPA [22], incorporating composition

fluctuation effects using the framework developed by Fredrickson et al. [23]. This col-

lection of works reveal that disperse diblock copolymers would micro-phase separate

at lower segregation strengths, and the domain spacing would be larger compared to

monodisperse systems.

The first study using numerical mean-field theory on disperse diblock copolymers

with the SZ distribution was performed by Sides et al. [24, 25]. While Sides et al. em-

ployed a quadrature method to numerically represent the chain length distribution,

Cooke et al. alternatively carried out a perturbation expansion to examine the phase

behavior of disperse diblock copolymers with narrow MWDs [26]. Matsen has further
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refined the method introduced by Sides et al. and examined the effects of macro-

phase separation [27], which were largely ignored by the earlier studies. The A-block

dispersity effects of linear AB-diblock and BAB-triblock copolymers have also been

recently investigated by Matsen [28]. Consistent with early works, these numerical

studies found an increase in the domain spacing of the ordered structures. Addi-

tionally, the order-order phase boundaries were observed to shift collectively towards

compositions richer in the monomers of the more disperse blocks. The predicted ef-

fects stem mainly from the reduction of entropic cost for chain-stretching. Disperse

polymers can fill space more efficiently than their monodisperse counterparts by us-

ing longer chains to pervade the space furthest from the interface. Consequently, the

interface will develop a tendency to bend towards the component with the greatest

degree of dispersity. Two schematics that contrast chain packing in monodisperse

and disperse diblock copolymers are shown in Figures 1.5b-c.

Aside from the SZ distribution, Lynd and coworkers examined the effects of A-

block dispersity with an equilibrium polymerization distribution, derived from the

kinetics of a reversible chain-growth polymerization process [29]. Lynd et al. found

that the theoretical phase diagram remained largely unchanged from the SZ distribu-

tion. However, the domain size of the self-assembled structures varied substantially

between the two different MWDs with identical dispersity indices. The results of

Lynd et al. highlight that, to fully appreciate the effects of dispersity on the equilib-

rium behavior of block copolymers, one should consider more than the width of the

MWD.

Detailed experimental investigations of dispersity effects on the phase behavior of

9
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block copolymers were scarce until the turn of the century. Prior to that, a num-

ber of experiments [30, 31, 32, 33] fitted the scattering data of the disordered phase

to the expressions derived by Leibler et al. [20] and Hong et al. [21]. The inclu-

sion of SZ-dispersity brought about better agreement between theoretical predictions

and experimental results. In 1985, Hashimoto et al. compared the distribution of

domain sizes found in a lamellar-forming sample of diblock copolymers to the distri-

bution of molecular weights of the sample [34]. The experiments of Bendejacq and

coworkers nearly two decades later on high dispersity diblock copolymers revealed

that well-ordered structures from spontaneous assembly were not exclusive to samples

with narrow MWDs [35], shattering a previously common belief. A series of experi-

ments by Lynd and coworkers from 2005 to 2007 on polystyrene-b-polyisoprene and

poly(ethylene-alt-propylene)-b-poly(lactic acid) diblock copolymers demonstrated the

predicted effects of dispersity: enlarged domain spacing and changes in equilibrium

morphology from increasing the dispersity index [36, 37]. Lynd et al. also examined

in detail how the order-disorder transition is affected by dispersity in one of the two

blocks [38]. Their experimental results indicated that the segregation strength at

which the order-disorder transition takes place depended on whether dispersity was

in the minority or majority component. For the former and latter, ordering occurred

at lower and higher segregation strengths, respectively. Subsequent simulations by

Beardsley et al. [39, 40] have confirmed the block-dependent effect of dispersity on

the order-disorder transition observed in the experiments of Lynd and coworkers.

Developments in polymer synthesis and processing techniques have now progressed

to the extent that the MWD of samples can be precisely designed with specific prop-

erties [41, 42]. For instance in 2018, the Fors group showed that the period of the

10
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lamellar phase can be regulated by the width and skewness of the distribution in

thin films of poly(styrene)-b-poly(methyl methacrylate) [43, 41]. Whereas the dis-

persity index serves as a measure of the width, skewness characterizes the asymme-

try of a distribution about its mean [44]. A subsequent investigation by the Fors

group further demonstrated that the progression of equilibrium structures is differ-

ent among polymer samples with MWDs of equal dispersity indices and unequal

skewness [4, 41]. Most recently, the Dong group synthesized a library of oligomers

composed of a dimethylsiloxane and lactic-acid block that enabled the construction

of precise MWDs with varying dispersity indices and skewness [45]. A dependency

of the lamellar domain size, as well as order-disorder transition temperature on the

skewness was observed. For higher molecular weight block copolymers, a strategy for

preparing distributions with programmable properties using automated chromato-

graphic separation was reported by Zhang and coworkers in Ref. [46]. Using the

proposed protocol, Zhang et al. demonstrated that the parameter space over f can

be efficiently explored. A single parent sample of diblock copolymers was sufficient

to construct a phase diagram that would otherwise require the preparation of many

different samples.

The architecture of copolymers is unlimited and can lead to new exotic structures.

Similarly, the shape of a MWD also represents an endless number of variations. As dis-

cussed above, the current state of synthesis and processing techniques allows samples

with a particular width, skewness or even shape for the distribution to be prepared.

A deeper understanding of dispersity effects is required for better harnessing such

capabilities. Thus, the aim of the thesis is to investigate how dispersity, in particular

the shape of a MWD and related statistical measures such as dispersity index and

11
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skewness, influences the phase behavior of diblock copolymers.

In the following chapter, we first present the mean-field theory used to study the

equilibrium behavior of disperse polymeric systems. We proceed to examine how

the relative stability of complex spherical phases in conformationally asymmetric di-

block copolymers is affected by A-block dispersity in the third chapter. Previous

theoretical [47, 48, 49] and experimental [50, 51, 52] works on disperse copolymers

mainly considered binary mixtures, revealing that a plethora of FK phases can be

accessed. Our focus will be on dispersity that is more inherent to synthetic polymers

from common synthesis techniques, described by the SZ and Poisson distributions. In

both cases, we find that increasing the dispersity (i.e. larger values of dispersity in-

dices) enhances the stability of the complex phases. With the inclusion of dispersity,

a lower degree of conformational asymmetry is required to access the σ phase than

in monodisperse systems. Our results provide a plausible origin to to the quantita-

tive discrepancy between theoretical predictions and the experimental observations

of Schulz et al. [2].

In the fourth chapter, we investigate how dispersity beyond the commonly as-

sumed SZ distribution affects the overall phase behavior of diblock copolymers. A

general method is presented for modeling the MWDs of polymer samples procured

experimentally. We apply the procedure to the MWDs from the experiments by the

Fors group [43]. We find that the phase behavior varies between samples with dis-

tributions of different shapes. By design, the disperse samples have nearly identical

dispersity indices and different skewness. The predicted trends in the equilibrium

behavior are in good qualitative agreement with experimental observations. Since

control over the shape of a MWD in synthetic polymers is greater than ever and

12
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continues to improve, we expect that our method will be valuable for future studies.

In the fifth chapter, we investigate how the shape of the MWD characterized by

the dispersity index and skewness influences the relative stability of complex spherical

phases. Increasing the dispersity index tends to improve the stability and encourage

the formation of novel spherical phases. We furthermore identify that skewness is a

vital parameter regulating the selection of accessible spherical packings. For distri-

butions with identical dispersity indices, it is predicted that samples with unequal

skewness exhibit different phase behavior. Our findings once again showcases the im-

portance of considering other statistical quantities besides the dispersity index when

studying the phase behavior of block copolymers. Lastly, summarizing remarks and

outlooks are given in the concluding chapter.
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Chapter 2

Theoretical framework

A number of theoretical approaches have been developed for the study of the phase

behavior of block copolymers. Broadly speaking, one can divide the approaches into

particle-based and field-based ones. In the particle-based approach, the relevant de-

grees of freedom are the positions and momenta or velocities of the particles. An ex-

ample is the molecular dynamic simulations where the classical equations of motion

are integrated numerically to determine the behavior of the system [53]. Alterna-

tively, the field-based approaches describe the system using a collection of continuous

fields, such as the densities of the particles.

At its heart, the problem of equilibrium statistical mechanics is to evaluate the

partition function. For a field-based model, the partition function and the ensemble

averages are defined in terms of functional integrals over the spatially varying fields.

The evaluation of these functional integrals usually cannot be performed analytically.

One would resort to various approximations. For polymeric systems, the most suc-

cessful and widely-used approximation is the mean-field approximation in the form

of the self-consistent field theory (SCFT). Since its inception by Edwards [54], there
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have been many contributions to the development of SCFT [55, 56, 57, 58, 24]. SCFT

has found success in the study of phase behavior for a wide variety of polymeric sys-

tems [9, 59, 60, 61, 62, 63].

Figure 2.1: Self-consistent field theory reduces the many-chain problem to a single
chain interacting with mean fields representing its interaction with other polymers.

The essence of SCFT is the assumption that the main contribution to the func-

tional integrals, representing the partition function and ensemble averages, comes

from a single set of fields maximizing the integrand. These fields satisfy a set of

SCFT equations derived from the maximization condition. Intuitively, the SCFT ap-

proximation reduces the many-body problem to a problem of a single chain in mean

fields (Figure 2.1). The fields represent the interactions between the polymers. De-

spite the enormous simplification afforded by the mean-field approximation, SCFT

calculations are carried out numerically, barring a few limiting cases. One example

is the random phase approximation (RPA), which is suitable for weakly-segregated

systems. In 1980, Leibler employed the RPA and determined the spinodal or limit

of stability against small perturbations in the densities for the homogeneous disor-

dered phase in incompressible linear AB-diblock copolymers [56]. The RPA results of

Leibler revealed that the disordered state transitions to the lamella and BCC spheres
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for f = 0.5 and f 6= 0.5, respectively, when χN is increased. Another analytic treat-

ment of SCFT is strong-segregation theory (SST), applicable for strongly-segregated

systems [24, 64, 6, 17]. For diblock copolymers, the assumptions of SST are that the

A/B interface is infinitely narrow, and the chains are strongly stretched such that the

chain trajectories are described by straight paths perpendicular from the interface.

SST predicts that the equilibrium morphology proceeds from lamella to cylinders to

spheres as block asymmetry grows from f = 0.5. While the RPA and SST provide

many insights, the two approaches are approximations to the full SCFT. Thus, nu-

merical calculations are also necessary, serving as a more direct means to studying

the mean-field phase behavior without the need for additional approximations.

2.1 Continuous Gaussian chains

We consider a model system of incompressible diblock copolymers with disperse A-

blocks and monodisperse B-blocks in a volume V . The connectivity of polymers is

treated by the continuous Gaussian chain model [7, 6], in which chain conformations

are described by a continuous space curve. We can view polymers as infinitely thin

elastic threads composed of statistical segments. The segment length, which we will

refer to interchangeable as the Kuhn length, is denoted by b. Each segment corre-

sponds to a number of monomers. The number is selected such that on the scale of

b, the chains obey random-walk statistics. Note that from hereafter, we will not dis-

tinguish the difference between monomers and statistical segments and use the terms

number of monomers, degree of polymerization and contour length interchangeable.

The system contains nc polymer chains of type-c with an A-block length NA,c and

therefore a total length of Nc = NA,c + NB. Here, the common B-block length is
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denoted NB.

Figure 2.2: Schematic depiction of (a) continuous Gaussian chains and (b) discrete
freely jointed chains with finite-range interactions.

The thermodynamics of the system is described by the partition function, which

can be expressed as a functional integral over all possible chain conformations [6, 7],

Z =
1∏

c nc! (λT,c)
3nc

∏

c

nc∏

i

∫
DRi,c(s)Pc [Ri,c(s)] exp

(
−βH[φ̂A(r), φ̂B(r)]

)
. (2.1)

with β = kBT and λT,c denoting the thermal de Broglie wavelengths of type-c poly-

mers. The space curve Ri,c(s) describes the conformation of the ith chain of type-c

polymers. We write the microscopic monomer volume fraction operators as,

φ̂A(r) =
∑

c

nc∑

i

vA

∫

IA,c

ds δ (Ri,c(s)− r) ,

φ̂B(r) =
∑

c

nc∑

i

vB

∫

IB,c

ds δ (Ri,c(s)− r) ,

(2.2)

where the bounds of integration are IA,c = [0, NA,c] and IB,c = [NA,c, Nc]. The volume

of a single α-monomer is denoted vα. When the non-bonded interaction is taken to
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be of the contact Flory-Huggins type, we have,

H[φ̂A(r), φ̂B(r)] =
1

β

∫
dr

χ

v0

φ̂A(r)φ̂B(r), (2.3)

where χ is the Flory-Huggins parameter characterizing the chemical incompatibility,

and v0 is a reference volume. The value of χ is generally small and positive, in the

range of 0 < χ � 1, which implies that the interactions between unlike monomers

encourage segregation. For instance between polystyrene and poly(methyl methacry-

late), χ ≈ 0.02 for temperatures of 100 − 200◦C [5]. The relationship between the

Flory-Huggins parameter and temperature is often expressed empirically as,

χ =
A

T
+B, (2.4)

where the temperature-dependent and independent terms are referred to as the ‘en-

thalpic’ and ‘entropic’ part, respectively [5].

For continuous Gaussian chains, the Boltzmann factor associated with the bonded

potential is given by the Wiener measure [65],

Pc [Ri,c(s)] = exp

(
−
∑

α

∫

Iα,c

ds
3

2b2
α

∣∣∣∣
dRi,c(s)

ds

∣∣∣∣
2
)
, (2.5)

with bα denoting the Kuhn length of α-monomers that is of order 1 nanometer.

To perform the particle-to-field transformation, we next insert into Eq. (2.1) an

identity associated with the functional delta function,

1 =

∫
Dφα(r)

∫ +i∞

−i∞
Dωα(r) exp

{
1

v0

∫
dr ωα(r)

[
φα(r)− φ̂α(r)

]}
, (2.6)
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where φα(r) and ωα(r) are the volume fraction and auxiliary field respectively, as-

sociated with α-monomers. Upon doing so, the partition function can be rewritten

as,

Z =
1∏

c nc! (λT,c)
3nc

∫
DφA(r)

∫ +i∞

−i∞
DωA(r)

∫
DφB(r)

∫ +i∞

−i∞
DωB(r)

∫
Dξ(r)

× exp (−βF [φA(r), ωA(r), φB(r), ωB(r), ξ(r)]) ,

(2.7)

where the dimensionless free energy density functional is given by,

v0

V
βF =

v0

V
βF [φA(r), ωA(r), φB(r), ωB(r), ξ(r)]

=
1

V

∫
dr
{
χφA(r)φB(r)− ωA(r)φA(r)− ωB(r)φB(r)

− ξ(r) [1− φA(r)− φB(r)]
}
−
∑

c

ncv0

V

(
lnQc + lnZ(0)

c

)
.

(2.8)

Here, the pressure field ξ(r) was introduced as a Lagrange multiplier to enforce the

incompressibility condition, and a factor of v0 has been absorbed into its definition

in writing Eq. (2.8). The single-chain partition function reads,

Zc =Zc[ωA(r), ωB(r)]

=

∫
DRc(s) exp

[
−
∑

α

∫

Ic,α

ds
3

2b2
α

∣∣∣∣
dRc(s)

ds

∣∣∣∣
2

− 1

v0

∫
dr ωα(r)φ̂α(r)

]

=

∫
DRc(s) exp

[
−
∑

α

∫

Ic,α

ds
3

2b2
α

∣∣∣∣
dRc(s)

ds

∣∣∣∣
2

− vα
v0

ωα (Rc(s))

]
,

(2.9)

with its normalized counterpart given by,

Qc = Qc[ωA(r), ωB(r)] =
Zc[ωA(r), ωB(r)]

Zc[0, 0]
=

Zc

Z
(0)
c

. (2.10)
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As a side-note, the constant terms involving the zero-field single-chain partition func-

tions Z
(0)
c that appear in Eq. (2.8) may be dropped since we will only be concerned

with the differences in the free energy. One never needs to explicitly reference Z
(0)
c

either when evaluating the normalized partition function as we will see below. The

auxiliary field ωα(r) may be interpreted as an inhomogeneous chemical potential field,

appearing as the thermodynamically conjugate variable to φα(r) in the free energy

Eq. (2.8) [7].

It is more convenient computationally to re-express the single-chain partition func-

tion as,

Qc =
1

V

∫
dr qc(r, Nc) =

1

V

∫
dr q†c(r, Nc), (2.11)

where qc(r, s) and q†c(r, Nc) are the forward and backward end-integrated propagators,

respectively. For continuous Gaussian chains, the forward end-integrated propagators

satisfy the modified diffusion equations [7],

dqc(r, s)

ds
=
bc(s)

2

6
∇2qc(r, s)− ωc(r, s)qc(r, s) (2.12)

subject to the boundary condition qc(r, 0) = 1 with,

ωc(r, s) =
vα
v0

ωα(r) and bc(s) = bα for s ∈ Iα,c. (2.13)

Similarly, the backward end-integrated propagator is,

dq†c(r, s)

ds
=
b†c(s)

2

6
∇2q†c(r, s)− ω†c(r, s)q†c(r, s), (2.14)
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again subject to the boundary condition q†c(r, 0) = 1 with,

ω†c(r, s) =
vα
v0

ωα(r) and b†c(s) = bα forNc − s ∈ Iα,c. (2.15)

It is often convenient to define a new contour length variable by s̃ = vα
v0
s and introduce

a reference Kuhn length b0 as the unit of length, such that Eq. (2.12) can be rewritten

as,

dqc(r, s̃)

ds̃
=
εc(s̃)

2

6
∇2qc(r, s̃)− ω̃c(r, s̃)qc(r, s̃). (2.16)

Eq. (2.13) now becomes,

ω̃c(r, s̃) = ωα(r) and εc(s̃) =

√
b2
αv0

b2
0vα

for s̃ ∈ Ĩα,c, (2.17)

where ĨA,c = [0, vA
v0
NA,c] and ĨB,c = [vB

v0
NA,c,

vB
v0
Nc]. The parameter εc(s̃) measures the

conformational asymmetry of the different blocks.

It may be more useful to write the free energy density defined by Eq. (2.8) in

terms of the chain number fractions Pc. To do so, we invoke the relationship between

the average chain volume fractions φ̄c and number fractions,

φ̄c =
ncvc
V

=
vc
〈vc〉

Pc, (2.18)

where vc = vANA,c + vBNB,c is the single-chain volume of type-c polymers and 〈vc〉 =
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∑
vcPc is its number-averaged value. We can then write,

v0

V
βF =

1

V

∫
dr
{
χφA(r)φB(r)− ωA(r)φA(r)− ωB(r)φB(r)

− ξ(r) [1− φA(r)− φB(r)]
}
−
∑

c

v0
Pc
〈vc〉

(
lnQc + lnZ(0)

c

)
.

(2.19)

2.1.1 SCFT approximation

We now apply the SCFT approximation to obtain the free energy of the system [7, 66,

67, 26]. The approximation amounts to minimizing the free energy density functional

given by Eq. (2.19) with respect to the monomer volume fractions, auxiliary fields

and Lagrange multipliers. Doing so will yield a set of self-consistency equations.

Minimizing with respect to the volume fractions leads to,

0 =
δF

δφA(r)
=

1

V
[χφB(r)− ωA(r) + ξ(r)] ,

0 =
δF

δφB(r)
=

1

V
[χφA(r)− ωB(r) + ξ(r)] .

(2.20)

which can be rearranged to form the self-consistent equations,

ωA(r) = χφB(r) + ξ(r)

ωB(r) = χφA(r) + ξ(r)

. (2.21)

The functional derivative with respect to the auxiliary field ωA(r) is,

0 =
δ

δωA(r)

v0

V
βF =−

(
φA(r)

V
+
∑

c

v0
Pc
〈vc〉

1

Qc

δQc

δωA(r)

)

=−
(
φA(r)

V
+
∑

c

v0
Pc
〈vc〉

1

Qc

δQc

δ(vAωA(r)/v0)

vA

v0

)
.

(2.22)
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Simplifying the above expression, and resolving the functional derivative yields the

self-consistent equation,

φA(r) =
∑

c

Pc
〈vc〉

1

Qc

[
vA

∫

IA,c

ds qc(r, s)q
†
c(r, Nc − s)

]
. (2.23)

Similarly for ωB(r), we have,

φB(r) =
∑

c

Pc
〈vc〉

1

Qc

[
vB

∫

IB,c

ds qc(r, s)q
†
c(r, Nc − s)

]
. (2.24)

Lastly, we can recover the incompressibility condition by minimizing with respect to

ξ(r),

0 =
δ

δξ(r)

v0

V
βF = − 1

V
[1− φA(r)− φB(r)] . (2.25)

The solution of the self-consistent equations, Eqs. (2.21)-(2.25), is not unique and

different SCFT solutions represent different phases of the system. A constant solu-

tion corresponds the homogeneous disordered phase, while spatially-varying solutions

correspond to the ordered structures. In general, solving the self-consistent equa-

tions is analytically intractable. We instead resort to numerical methods which is

detailed in the next section. An effective approach to numerical SCFT is to perform

the calculation within one unit cell of an ordered phase. However, the free energy

depends on the unit-cell lattice parameters, θ = {θ1, θ2, ..., θm} with m ≤ 6 in three

dimensions. A subsequent minimization over these parameters will be required. In

other words, we are seeking solutions of Eqs. (2.21)-(2.25), denoted as {φ′α, ω′α, ξ′},
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that also satisfy,

0 =
d

dθp

(v0

V
βF [φA(r), ωA(r), φB(r), ωB(r), ξ(r)]

) ∣∣∣∣
{φ′α,ω′

α,ξ
′}

=
v0

V
β

(
∂F

∂θp
+

∫
dr
∑

α

(
δF

δωα(r)

dωα(r)

dθp
+

δF

δφα(r)

dφα(r)

dθp

)
+

δF

δξ(r)

dξ(r)

dθp

)∣∣∣∣
{φ′α,ω′

α,ξ
′}

=
v0

V
β

(
∂F

∂θp

) ∣∣∣∣
{φ′α,ω′

α,ξ
′}

= −
∑

c

v0
Pc
〈vc〉

d lnQc

dθp

∣∣∣∣
{φ′α,ω′

α,ξ
′}
.

(2.26)

In going from the second to third line above, we have exploited the fact that {φ′α, ω′α, ξ′}

satisfy the mean-field equations and therefore δF
δφα(r)

∣∣
φ′α

= δF
δωα(r)

∣∣
ω′
α

= δF
δξ(r)

∣∣
ξ′

= 0. The

derivative of the single-chain partition function with respect to one particular unit-cell

parameter is [68],

dQc

dθp
= −

∑

h

∑

k

∑

l

d |Ghkl|2
dθp

[∑

α

b2
α

6

∫

Iα,c

ds q̂c(Ghkl, s)
[
q̂†c(Ghkl, Nc − s)

]∗
]
,

(2.27)

where z∗ is the complex conjugate of z, and f̂ (k) denotes the (forward) Fourier

transform of f(r). The reciprocal lattice vector is given by,

Ghkl = hb1(θ) + kb2(θ) + lb3(θ), (2.28)

where {b1(θ), b2(θ), b3(θ)} are three primitive wavevectors. For periodic functions,

we define the Fourier transform by,

f̂ (k) =
1

V

∫
drf(r) exp (−ik · r) . (2.29)
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2.1.2 Numerical procedure

To iteratively solve the SCFT equations and simultaneously optimize the lattice pa-

rameters, we use the variable-cell Anderson mixing method [68] extended to disperse

systems (see Appendix D). Within each iteration, the pseudo-spectral method [7]

is employed to solve the modified diffusion equations, Eqs. (2.12) and (2.14). We

furthermore adopt the Simpson’s Rule [69] to numerically perform the integrals over

space when evaluating the single-chain partition functions and free energy, as well

as the integrals over the contour length s when calculating the monomer volume

fractions from Eqs. (2.23)-(2.24). Details regarding the pseudo-spectral method and

Simpson’s Rule are given in Appendix B and C, respectively.

We begin a numerical SCFT calculation by first constructing an initial ansatz for

the monomer volume fractions for the morphology of interest. Analytic expressions

of the initial φα(r) are given in Appendix A. From the volume fractions, Eq. (2.21)

is used with ξ(r) = 0 to obtain an initial ansatz for the auxiliary fields, denoted

as ωα(r)|1. Whenever possible, we would use solutions from past calculations as

initial conditions. Doing so results in faster convergence provided the difference in

the parameters between the two calculations is not too large. We continue as follows:

1. Using the auxiliary fields ωα(r)|m determined from the mth iteration, calculate

the end-integrated propagators, qc(r, s)|m and q†c(r, s)|m from Eqs. (2.12) and

(2.14) via the pseudo-spectral method.

2. Compute the monomer volume fractions φα(r)|m from Eqs. (2.23)-(2.24) using

qc(r, s)|m and q†c(r, s)|m.

3. Compute q̂c(Ghkl, s)|m and q̂†c(Ghkl, s)|m by forward Fourier transforming qc(r, s)|m
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(a) LAM (b) HEX (c) G (d) HPL

(e) BCC (f) Scp (g) A15 (h) σ

(i) C14 (j) C15
(k) pσ

(l) Z

(m) M (n) P

Figure 2.3: Schematics of the candidate phases considered in SCFT calculations,
where the labels LAM, HEX, G, HPL, BCC and Scp correspond to the lamel-
lar, hexagonally-packed cylindrical, double-gyroid, hexagonally-perforated lamellar,
body-centered cubic and hexagonally close-packed spherical phases, respectively.

26



D.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

and q†c(r, s)|m.

4. Compute the stress d
dθp

(
v0
V
βF
)
|m from Eq. (2.26) using q̂c(Ghkl, s)|m and q̂†c(Ghkl, s)|m

for each lattice parameter θp

5. Compute the pressure field ξ(r) via,

ξ(r)|m =
ωA(r)|m + ωB(r)|m − χ

2
. (2.30)

6. Compute the output auxiliary fields using φα(r)|m and ξ(r)|m via Eq. (2.21),

ω
(out)
A (r)|m = χφB(r)|m + ξ(r)|m,

ω
(out)
B (r)|m = χφA(r)|m + ξ(r)|m.

(2.31)

7. Compute the deviation functions or residuals for the auxiliary fields,

d (r;ωα) |m = ωout
α (r)|m − ωα(r)|m. (2.32)

The residuals for the lattice parameters are set to,

d (θp) |m =
d

dθp

(v0

V
βF
) ∣∣∣∣

m

. (2.33)

8. Calculate the free energy density from Eq. (2.19) using ω
(out)
α (r)|m, φα(r)|m and

ξ(r)|m.

9. Calculate the error of the free energy density and the residue errors from

Eq. (D.24). If the desired accuracy is reached, a solution has been obtained.

Otherwise, continue with the next step.
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10. Apply either simple mixing or Anderson mixing to determine the input auxiliary

fields and lattice parameters for the next iteration. For simple mixing, we use,

ωα(r)|m+1 = ωα(r)|m + λSMd (r;ωα) |m,

θp|m+1 = θi + λSMd (θi) ,

(2.34)

where we found λSM = 0.1 offered a good balance between numerical stability

and convergence speed.

11. Return to Step 1 to begin the (m+ 1)th iteration.

Calculations proceed until the maximum difference in the free energy density

between three consecutive iterations, and the residue errors [68] defined by Eqs (D.24)-

(D.25) are less than 10−7 and 10−5, respectively. The equilibrium phase is lastly

determined by a comparison of the free energy of the candidate structures. We

illustrate the set of candidate phases of our study in Figure 2.3. As a technical aside,

the most computationally expensive part of the outlined procedure is the Fourier

transforms associated with calculating the end-integrated propagators via the pseudo-

spectral method and its Fourier representations (which is needed to evaluate the

stress). Thus, it is worth mentioning that Qiang et al. have recently developed a

method that greatly reduces the cost of the Fourier operations in what is referred to

as crystallographic Fast Fourier Transform [70].

2.2 Continuous distributions of chain lengths

The distribution of polymers with different chains lengths may be specified by a

continuous distribution P (Nc) rather than discrete set of values given by Pc. Only
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one small modification to the SCFT equations derived above is needed to account for

a continuous P (Nc) (and Nc),
∑

c
Pc
〈vc〉 →

∫
dNc

P (Nc)
〈v(Nc)〉 , where

〈v(Nc)〉 =

∫
dNc vcP (Nc). (2.35)

Specifically, the free energy functional becomes,

v0

V
βF =

1

V

∫
dr χφA(r)φB(r)− ωA(r)φA(r)− ωB(r)φB(r)

− ξ(r) [1− φA(r)− φB(r)]−
∫
dNc v0

P (Nc)

〈v(Nc)〉
[
lnQc + lnZ(0)

c

]
.

(2.36)

The monomer volume fractions from the self-consistent equations now reads,

φα(r) =

∫
dNc

P (Nc)

〈v(Nc)〉
1

Qc

[
vα

∫

Iα,c

ds qc(r, s)q
†
c(r, Nc − s)

]
. (2.37)

Lastly, the stress changes from Eq. (2.26) to,

0 =
d

dθp

(v0

V
βF [φA(r), ωA(r), φB(r), ωB(r), ξ(r)]

) ∣∣∣∣
{φ′α,ω′

α,ξ
′}

=
v0

V
β

(
∂F

∂θp

) ∣∣∣∣
{φ′α,ω′

α,ξ
′}

= −
∫
dNc v0

P (Nc)

〈v(Nc)〉
d lnQc

dθp

∣∣∣∣
{φ′α,ω′

α,ξ
′}
.

(2.38)

In deriving these three equations, we have assumed that the distribution P (Nc) is

normalized, ∫
dNc P (Nc) = 1. (2.39)
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2.3 Accounting for macro-phase separation

Since we are considering systems composed of multiple components, there is a possi-

bility of macro-phase separation. A convenient treatment of multi-phase coexistence

has been developed by Matsen [27] for disperse diblock copolymers within the SCFT

framework. The essential idea is that the single-phase region will transition to a co-

existence region when it is thermodynamically favorable for an infinitesimal amount

of another phase to nucleate within the system. The point at which this happens is

called the cloud point. The majority (parent) and minority phases are denoted the

cloud and shadow phases, respectively [27]. At the cloud point, the shadow phase

can take on any distribution of chain lengths, whereas the cloud phase must continue

to obey the original distribution. Thermal equilibrium with the cloud phase requires

that the chemical potential of the shadow phase must be,

µc = − 1

β
ln

(
Pc

Q
(cloud)
c

)
(2.40)

for polymer chains of type-c. The single-chain partition of type-c polymers in the

cloud phase is denoted Q
(cloud)
c .

We now apply the mean-field approximation in order to calculate the grand canon-

ical free energy density,

v0

V
βG =

1

V

∫
dr χφA(r)φB(r)− ωA(r)φA(r)− ωB(r)φB(r)

− ξ(r) [1− φA(r)− φB(r)]−
∑

c

zc
(
Qc + Z(0)

c

)
,

(2.41)
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where,

zc = exp (−βµc) , (2.42)

is often referred to as the activity [7]. Minimization of Eq. (2.41) yields a set of

self-consistent equations identical to Eqs. (2.21)-(2.23), (2.25) and (2.26) except with

the replacement,

Pc
〈vc〉
→ zc

v0

. (2.43)

Explicitly, the self-consistent relations become,

φA(r) =
∑

c

zc
v0

[
vA

∫

IA,c

ds qc(r, s)q
†
c(r, Nc − s)

]
, (2.44)

φB(r) =
∑

c

zc
v0

[
vB

∫

IB,c

ds qc(r, s)q
†
c(r, Nc − s)

]
, (2.45)

while the stress becomes,

v0

V
β

(
∂G

∂θp

) ∣∣∣∣
{φ′α,ω′

α,ξ
′}

= −
∑

c

zc
d lnQc

dθp

∣∣∣∣
{φ′α,ω′

α,ξ
′}
. (2.46)

Since the chemical potentials were calculated from the cloud phase, its solution com-

puted in the canonical ensemble beforehand can be inserted directly into Eq. (2.41)

to evaluate its grand-canonical free energy. The first point where a solution can be

found such that the grand canonical free energies of the cloud and shadow phases are

equal is where the cloud point occurs.

Numerically, the same procedure outlined in Section 2.1.2 can be applied to locate

a solution for the shadow phase, except with Eqs. (2.44)-(2.45) replacing Eqs. (2.23)-

(2.24) and Eq. (2.46) replacing Eq. (2.26) when calculating the monomer volume
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fractions in Step 2 and the stress in Step 4, respectively. We can also accommo-

date a distribution of chain lengths given by a continuous function by making the

substitution
∑

c zc →
∫
dNc z(Nc) in Eqs. (2.41) and (2.44)-(2.46) where,

z (Nc) = exp [−βµ (Nc)] ,

µ (Nc) =− 1

β
ln

(
P (Nc)

Q(cloud) (Nc)

)
.

(2.47)

2.4 Discrete freely jointed chains

The derivation presented in the previous subsection is for polymers modeled as con-

tinuous Gaussian chains, and the inter-molecular interaction was assumed to be of

a contact Flory-Huggins type. In this section, we will consider diblock copolymers

modeled as discrete freely jointed chains (FJC) with a finite-range Flory-Huggins

interaction between unlike monomers [71, 72]. Polymer chains are modeled as a col-

lection of connected rigid rods of a fixed (bond) length which can freely rotate about

(Figure 2.2b). Consequently, the length of a freely jointed chain is finite, whereas

Gaussian chains can be stretched indefinitely. The inclusion of a non-bonded inter-

action with finite range is also necessary to avoid unphysical behavior when polymer

chains become strongly stretched at large χN [71]. Rather than repeat the full deriva-

tion of the SCFT equations, we will highlight the differences and present the essential

results.
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For discrete FJCs, we write the microscopic volume fraction operators as,

φ̂A(r) =
∑

c

nc∑

i

vA

∑

s∈SA,c

δ
(
Rc,i
s − r

)
,

φ̂B(r) =
∑

c

nc∑

i

vB

∑

s∈SB,c

δ
(
Rc,i
s − r

)
,

(2.48)

where SA,c = {1, . . . , NA,c} and SB,c = {NA,c + 1, . . . , Nc}.

The free energy density functional with the inclusion of finite-range interactions

reads,

v0

V
βF =

1

V

∫
dr

[∫
dr′ φA(r) [χufr (|r − r′|)]φB(r′)

]
− ωA(r)φA(r)− ωB(r)φB(r)

− ξ(r) [1− φA(r)− φB(r)]−
∑

c

v0
Pc
〈vc〉

(
lnQc + lnZ(0)

c

)
,

(2.49)

where the finite-range non-bonded potential between unlike monomers is assumed to

have a Gaussian form,

ufr (|r|) =

(
3

2πσ2
fr

)3/2

exp

(−3|r|2
2σ2

fr

)
. (2.50)

The range of the interaction is denoted σfr, while its strength is characterized by

Flory-Huggins parameter χ. By design, we have,

∫
dr ufr (|r|) = 1,

∫
dr |r|2 ufr (|r|) = σ2

fr.

(2.51)

When the interaction range σfr → 0, the potential ufr (|r|) approaches a Dirac delta

function, and we recover the contact Flory-Huggins interaction given by Eq. (2.3).
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The bonded potential for discrete freely jointed chains is,

g(|r|; b) =
1

4πb
δ (|r| − b) , (2.52)

where b denotes the natural length of the bond. The relationship between the nor-

malized single-chain partition function and end-integrated propagators is still given

by Eq. (2.11). However instead of the modified diffusion equations for the forward

end-integrated propagators (see Eqs. (2.12)), we now have,

qc(r, s+ 1) = e−ψc(r,s)
∫
dr′ g(|r − r′|; bc(s))qc(r′, s), (2.53)

with qc(r, 1) = e−ωA(r),

ψc(r, s) =
vα
v0

ωα(r) for s ∈ Sα,c. (2.54)

The bond length between the sth and (s+ 1)th monomer (where counting starts from

the free A-block end) is denoted,

bc(s) =

{
bAA 1 ≤ s ≤ NA,c

bAB s = NA,c + 1

bBB NA,c + 1 < s ≤ Nc

. (2.55)

Similarly for the backward end-integrated propagator, we have,

q†c(r, s+ 1) = e−ψ
†
c(r,s)

∫
dr′ g(|r − r′|; b†c(s))q†c(r′, s), (2.56)
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with q†c(r, 1) = e−ωB(r) and,

ψ†c(r, s) =
vα
v0

ωα(r) forNc − s ∈ Sα,c. (2.57)

The bond length connecting the sth and (s + 1)th monomer (where counting starts

from instead the free B-block end) is,

b†c(s) =

{
bBB 1 ≤ s ≤ NB,c

bAB s = NB,c + 1

bAA NB,c + 1 < s ≤ Nc

. (2.58)

The set of self-consistent equations defined by Eqs (2.23)-(2.24) and (2.21) become,

φA(r) =
∑

c

Pc
〈vc〉

1

Qc


vA exp

[
vA

v0

ωA(r)

] ∑

s∈SA,c

qc(r, s)q
†
c(r, Nc − s+ 1)


 , (2.59)

φB(r) =
∑

c

Pc
〈vc〉

1

Qc


vB exp

[
vB

v0

ωB(r)

] ∑

s∈SB,c

qc(r, s)q
†
c(r, Nc − s+ 1)


 , (2.60)

and,

ωA(r) = χ

∫
dr′ ufr (|r − r′|)φB(r′) + ξ(r),

ωB(r) = χ

∫
dr′ ufr (|r − r′|)φA(r′) + ξ(r)

. (2.61)

Using the Fourier representation, Eq.(2.61) can be conveniently written in an almost

identical form as Eq. (2.21),

ω̂A (k) = [χûfr (|k|)] φ̂B (k) + ξ̂ (k) ,

ω̂B (k) = [χûfr (|k|)] φ̂A (k) + ξ̂ (k) ,

(2.62)
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where ûfr (|k|) is the Fourier transform of ufr (|r|),

ûfr (|k|) = exp

(
−σ

2
fr

6
|k|2
)
. (2.63)

The self-consistent equation from minimizing the free energy functional Eq. (2.49)

with respect to the pressure field ξ(r) is unchanged from Eq. (2.25).

Lastly, the change in the free energy with respect to the lattice parameters θp or

stress reads,

0 =
d

dθp

(v0

V
βF
)

=
v0

V
β

(
∂F

∂θp
+

∫
dr

(
δF

δωα(r)

dωα(r)

dθp
+

δF

δφα(r)

dφα(r)

dθp

)
+

δF

δξ(r)

dξ(r)

dθp

)

=
v0

V
β

(
∂F

∂θp

)

=
∑

h

∑

k

∑

l

d [χûfr (|Ghkl|)]
d|Ghkl|2

d|Ghkl|2
dθp

φ̂A (Ghkl)
[
φ̂B (Ghkl)

]∗

−
∑

c

v0
Pc
〈vc〉

d lnQc

dθp
.

(2.64)

We see that there is an additional contribution to ∂F
∂θp

not found in Eq. (2.26) com-

ing from the finite-range nature of the non-bonded interactions. As noted earlier,

χufr (|r|) reduces to the contact Flory-Huggins potential in the limit σfr → 0. We

accordingly see that Eq. (2.64) reduces to Eq (2.26) when the range of the inter-

action vanishes since χûfr (|k|) becomes a constant, and therefore d[χûfr(|k|)]
d|k| → 0 as

σfr → 0. The derivative of the single-chain partition for discrete freely jointed chains
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with respect to the lattice parameter θp is,

dQc

dθp
=
∑

h=1

∑

k=1

∑

l=1

Nc−1∑

s=1

ĥ (|Ghkl|; bc(s))
d(|Ghkl|2)

dθp
q̂c(Ghkl, s)

[
q̂†c(Ghkl, Nc − s)

]∗
,

(2.65)

where,

ĥ (|k|; b) =
b

2|k| ×
(
x cosx− sinx

x2

) ∣∣∣∣
x=|k|b

. (2.66)

2.4.1 Numerical procedure

The numerical procedure to obtain SCFT solutions differs slightly between the dis-

crete freely jointed and continuous Gaussian chains. There are two points worth

mentioning before outlining the procedure. First, we employ the convolution theo-

rem [73] to evaluate the double spatial integrals in Eq. (2.49) defining the free energy

density. Second, we use the convolution theorem again to evaluate Eq. (2.53) to prop-

agate qc(r, s) to qc(r, s + 1) when solving for the end-integrated propagators. One

forward and one backward Fourier transforms are required to numerically determine

qc(r, s+1) from qc(r, s), which is the same number of Fourier operations as obtaining

qc(r, s + ∆s) from qc(r, s) for continuous Gaussian chains via the pseudo-spectral

method. In the case of FJCs, the forward transform yields q̂c(Ghkl, s) and q̂†c(Ghkl, s),

which are needed to evaluate the stress. In contrast, the forward Fourier transform

results in an intermediate product that is necessary for the pseudo-spectral method

(see Appendix B). A second transform has to be performed to obtain the Fourier rep-

resentations of the propagators at each contour step for continuous Gaussian chains.

Therefore, the extra computational cost for evaluating the stress to optimize the unit

cell is extremely small for discrete FJCs.
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We outline below the iterative procedure to obtain self-consistent solutions for

FJCs with finite-range interactions:

1. Using the auxiliary fields ωα(r)|m obtained from the mth iteration as inputs, cal-

culate the end-integrated propagators, qc(r, s)|m and q†c(r, s)|m iteratively from

Eqs. (2.53) and (2.56). The Fourier transforms, q̂c(Ghkl, s)|m and q̂†c(Ghkl, s)|m,

are stored in memory.

2. Compute the monomer volume fractions φα(r)|m from Eqs. (2.59)-(2.60) using

qc(r, s)|m and q†c(r, s)|m and subsequently its Fourier transforms φ̂α (k) |m.

3. Compute the stress d
dθp

(
v0
V
βF
)
|m from Eq. (2.64) using q̂c(Ghkl, s)|m, q̂†c(Ghkl, s)|m

and φ̂α (k) |m.

4. Compute the pressure field ξ(r) in real space via,

ξ(r)|m =
ωA(r)|m + ωB(r)|m − χ

2
− λξ [1− φA(r)|m − φB(r)|m] , (2.67)

where λξ = 0.2 was found to provide a good balance between numerical stability

and convergence speed.

5. Forward Fourier transform ξ(r)|m to obtain ξ̂ (k) |m.

6. Compute the output auxiliary fields in Fourier space via Eq. (2.62),

ω̂A
(out)(k)|m = [χûfr (|k|)] φ̂B (k) |m + ξ̂ (k) |m,

ω̂B
(out)(k)|m = [χûfr (|k|)] φ̂A (k) |m + ξ̂ (k) |m,

(2.68)

7. Backward Fourier transform ω̂α
(out)(k)|m to obtain ωout

α (r)|m.
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8. Continue with Steps 8 to 10 detailed in Section 2.1.2.

9. Return to Step 1 to begin the (m+ 1)th iteration.

We again consider solutions to be converged when the maximum difference in the free

energy density between three consecutive iterations and the residue errors are less

than 10−7 and 10−5, respectively.

2.5 Modeling dispersity

The previous sections presented the SCFT framework to study the phase behavior

of disperse diblock copolymers. Below, we discuss the molecular weight distribu-

tions (MWDs). Two MWDs are commonly used to describe dispersity of synthetic

polymers. The first is the discrete Poisson distribution,

Pois (x;µ) =
µxe−µ

x!
, x = 0, 1, 2, .. (2.69)

with a mean of 〈x〉 =
∑

x xP (x) = µ. For our convenience, we rewrite the above in

terms of λ = x/µ as,

Pois (λ;µ) =
µλµ

(λµ)!
e−µ, λ = 0,

1

µ
,

2

µ
, ... (2.70)

The Poisson distribution is suitable for describing the dispersity of synthetic polymers

produced via living polymerizations [74]. Numerically, the summation cannot be

carried out to infinite. We instead resort to a simple coarse-graining approximation

detailed in Appendix E.
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The second model is the continuous Schulz-Zimm (SZ) distribution,

SZ (x;µ, k) =
1

µ

kk

Γ(x)

(
x

µ

)k−1

exp

(
−kx

µ

)
, x ≥ 0. (2.71)

where Γ(x) is the gamma function while µ and k are commonly referred to as the scale

and shape parameter, respectively. It is more convenient to re-express Eq. (2.71) in

terms of λ = x/µ, yielding:

SZ (λ; k) =
kk

Γ(k)
λk−1e−kλ, λ ≥ 0. (2.72)

By construction, the mean is 〈λ〉 = 1. The SZ distribution is often applicable to

polymers synthesized using condensation or addition polymerizations [74]. Numer-

ically, we employ the Gauss-Laguerre quadrature rule [75] to evaluate any integral

over λ involving the SZ distribution. The use of the Gauss-Laguerre quadrature rule

in polymeric SCFT was introduced by Sides and Fredrickson [24]. An illustration of

the Poisson and SZ distributions is shown in Figure 2.4.
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Figure 2.4: Plot of the (left) Poisson distribution Pois (λ;µ) with µ = 8 and (right)
Schulz-Zimm distribution SZ (λ; k) with k = 2 as a function of λ.

A MWD could be characterized by its moments. Related to the second moment,

40



D.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

the dispersity index is the most common measure of dispersity in polymer literature:

D (Nc) =
〈Nc

2〉
〈Nc〉2

. (2.73)

When only one block is disperse (and the other is monodisperse), it may be more

useful to consider the α-block dispersity index D(Nα,c). For the Poisson distribution,

the dispersity index is D (λ) = (µ+ 1)/µ, while we have D (λ) = (k+ 1)/k for the SZ

distribution. Recent experiments have shown that the phase behavior can depend on

the asymmetry of the MWD about its mean [43, 4, 41, 45]. This property is captured

by the skewness,

µ̃3 =
〈(Nc − 〈Nc〉)3〉
〈(Nc − 〈Nc〉)2〉 32

, (2.74)

which is related to the third moment.
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Chapter 3

Effect of dispersity on the

formation of complex spherical

phases

In the present chapter, we examine the effects of dispersity on the formation of com-

plex spherical packing phases in conformationally asymmetric AB-diblock copolymers.

We quantify conformational asymmetry using the parameter,

ε =

√
b2

AvB

b2
BvA

, (3.1)

which comes from setting the reference Kuhn length as b0 = bA and the reference

volume as v0 = vA in Eq. (2.17). We assume the A-blocks are disperse and model

the polymers as continuous Gaussian chains with two different MWDs, namely the

Poisson and Schulz-Zimm (SZ) (see Section 2.5), for the A-blocks. For both cases,

we find that the stability of the Frank-Kasper σ phase increases with the degree of
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dispersity characterized by the dispersity index, Eq. (2.73). For the SZ distribution, a

number of FK structures other than the σ phase could be accessed by increasing the

conformational asymmetry. We also investigate the effects of macro-phase separation.

The regions of two-phase coexistence involving the σ phase are narrow compared to

the single-phase regions. By examining the spatial organization of polymer chains

within the spherical structures, we determine that inter- and intra-domain chain seg-

regation effects provide the mechanisms responsible for the enhanced stability and

resulting appearance of the complex spherical phases. This is in agreement with

previous theoretical studies on block copolymer blends [47].

3.1 Poisson distribution
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χ
N

f

Monodisperse

Non-spherical phasesBCCDIS

Scp

Figure 3.1: Phase diagram of a monodisperse system as a function of the A-volume
fraction f and segregation strength χN with ε = 1.32. The labels, BCC, Scp and DIS,
correspond to the body-centered cubic spheres, close-packed spheres and homogeneous
disordered phase, respectively.

The phase behavior of a monodisperse melt is first briefly considered, which serves

as a useful reference when examining the effects of dispersity. In Figure 3.1, we
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plot the phase diagram of a diblock copolymer melt as a function of the A-volume

fraction f and segregation strength χN . The conformational asymmetry parameter

is set to ε =
√
b2

AvB/b2
BvA = bA/bB = 1.32, which nearly coincides with that of PI-

PLA diblock copolymers [2]. We assume for convenience that the single-monomer

volumes are equal, vA = vB = v0. In agreement with Xie et al. [1], the complex

spherical phases are absent since the selected conformational asymmetry ε = 1.32 is

below the critical threshold of ε ≈ 1.5. The phase behavior resembles largely to that

of conformationally symmetric diblock copolymers [9] except the phase boundaries

between different ordered phases shift to larger A-volume fractions due to more flexible

A-blocks when bA > bB. There is a greater tendency for the interface to bend towards

the A-rich domains in conformationally asymmetric diblock copolymers [11, 17, 24].

12

16

20

24

28

32

36

40

0.1 0.15 0.2 0.25 0.3 0.35 0.4

χ
〈N

c
〉

f

-D(NA,c) = 1.125

HEX

σ
BCC

Scp

DIS

Figure 3.2: Phase diagram of the A-block disperse system as a function of the volume
fraction of A-monomers f and average segregation strength χ 〈Nc〉 with ε = 1.32 and
Pc = Pois (λc;µ). Note that effect of macro-phase separation is ignored here.

We now consider dispersity described by the Poisson distribution [see Eq. (2.70)].

In Figure 3.2, the phase diagram is plotted as a function of f and the number-averaged
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segregation strength χ 〈Nc〉. The number fraction or probability of polymers with A-

block length NA,c = λcNA,ref is given by Pc = Pois (λc;µ) where NA,ref denotes a

reference contour length. The value of µ is set to 8, yielding a dispersity index

of D (NA,c) = 1.125. We moreover use the coarse-graining procedure outlined in

Appendix E with Mλ = 4 to approximately represent the Poisson distribution in

numerical calculations. For the time being, the possibility of macro-phase separation

is also ignored. We defer examining both the effects of coarse-graining and macro-

phase separation later and show that neither effects will have a significant impact on

the phase behavior.

As seen in Figure 3.2, the emergence of the FK σ phase is predicted for χ 〈Nc〉 &

13. For χ 〈Nc〉 � 13, a phase transition sequence of HEX→ σ → BCC is found from

the phase diagram as f is decreased. We note that the same sequence of ordered

phases is observed in the experiments of Schulze et al. [2]. Since reducing packing

frustration is vital for the formation of complex spherical phases, the predicted ap-

pearance of the σ phase is evidence that dispersity alleviates packing frustration, an

idea proposed previously for blends [26, 27, 47]. In disperse systems, longer chains

can be used to more efficiently fill the spaces furthest from the interface, which relaxes

the stretching of the shorter chains. As a consequence, dispersity provides a means of

lowering the critical ε threshold above which the self-assembly of complex spherical

phases can occur, consistent with the experiments of Schulz et al..

In Figure 3.3, we plot the difference in free energy density, Eq. (2.19), between the

BCC and two other phases, HEX and σ, as a function of ε for a monodisperse and

disperse melt with Pc = Pois (λc;µ), respectively. We apply the same coarse-graining

procedure with Mλ = 4 again to represent the Poisson distribution in calculations.
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Figure 3.3: Difference in the free energy density between the BCC and HEX phases
(dashed lines), as well as between the BCC and σ phases (solid lines) as a function
of ε where the A-block lengths are a) monodisperse and b) distributed according to
Pc = Pois (λc;µ). The parameters are µ = 8, f = 0.25 and χN = χ 〈Nc〉 = 30.

The critical value of ε above which the σ phase occurs can be read off directly from

the plot. For monodisperse blocks, the conformational asymmetry parameter has to

exceed ε = 1.8 for the σ phase to occur. With dispersity included, the formation of the

σ phase takes place when ε ≥ 1.2. Thus, a modest degree of dispersity (D (NA,c) =

1.125) can lead to a 50% reduction in the critical value of ε for the appearance of the

FK σ phase.

We next examine the effect of the coarse-graining approximation for the Pois-

son distribution (see Appendix E). The procedure amounts to replacing the exact

distribution, which is non-zero for all λ ≥ 0, with an approximant described by Mλ

non-zero values of λ. We present the phase boundaries involving the σ phase for differ-

ent values of Mλ in Figure 3.4a. First and foremost, the σ phase is predicted to occur

at every level of coarse-graining considered. Its consistent appeareance suggests that

the qualitative phase behavior is unaffected by our approximation. As Mλ increases,

the HEX↔ σ phase boundary collectively shifts to larger values of f , while the BCC
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Figure 3.4: a) Phase boundaries involving the σ phase, and b) the locus of points
where the free energy densities of the BCC and HEX phases are equal shown as a
function of the volume fraction of A-monomers f and segregation strength χ 〈Nc〉.
The distribution of A-blocks lengths is given by Pc = Pois (λc;µ) with µ = 8 and
ε = 1.32.

↔ σ boundary moves to lower volume fractions. In other words, the stability region of

the σ phase slightly widens as the extent of the coarse-graining becomes finer. More

importantly, we find that the shift in the phase boundaries from increasing Mλ = 4 to

8 is much less pronounced than the shift from a change involving smaller values of Mλ

(i.e. 3 → 4). A similar trend is observed in Figure 3.4b, where we plot the locus of

points for which the free energy of the hexagonally-packed cylinders is equal to that

of the BCC phase. The illustrated curves would be the equilibrium phase boundaries,

had the FK phases been excluded from the set of candidate structures. Since only

the free energies of the HEX and BCC phases are needed for the comparison, we were

able to perform the calculations for up to Mλ = 16. The shift in the curves shown

in Figure 3.4b as Mλ increases from 3, 4, 8 to 16 becomes progressively smaller with

each increment. Together, Figure 3.4a and 3.4b suggests that the difference between

the exact phase boundaries and those calculated using the 8-point approximation will
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be less than the difference between Mλ = 4 and 8. For the latter, we find that the

difference is on the order of f ∼ 10−3.
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Figure 3.5: Phase diagram as a function of the volume fraction of A-monomers f
and segregation strength χ 〈Nc〉 of the A-block disperse system with ε = 1.32, Pc =
Pois (λc;µ) and µ = 8, with the effect of macro-phase separation included. Note that
the two-phase coexistence between the BCC and σ phases is narrower than the lines
indicating the phase boundaries.

3.1.1 Effect of macro-phase separation

Having demonstrated that our simple approximation scheme can produce qualita-

tively or quantitatively accurate results depending on the level of coarse-graining,

we examine the effects of macro-phase separation. We show in Figure 3.5 the phase

boundaries involving the σ phase with phase coexistence included using the frame-

work outlined in Section 2.2. Here, we choose Mλ = 4 for computational convenience.

The main concern of macro-phase separation is that the σ phase could be replaced by

a coexisting state between the neighboring classical spherical phase and hexagonally-

packed cylinders. From Figure 3.5, we see that that this is not the case. As expected,

there are regions of phase coexistence that emerge. We find however that the sequence
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of equilibrium structures, HEX↔ σ ↔ BCC, remains unchanged from what was pre-

viously shown in Figure 3.2. Moreover, both the coexistence regions between the σ

and HEX, as well as between the σ and BCC phases are negligibly small. The former

spans less than half a percent in f , while the σ+ BCC region is narrower than the

lines denoting the phase boundaries. This is consistent with the results of Ref. [27],

where the coexistence regions between two ordered phases are dwarfed by the neigh-

boring single-phase regions when D (NA,c) ≤ 1.2. Furthermore, the two-phase region

between adjacent spherical-packing phases is expected to be small regardless of the

dispersity. The reason is that the free energy differences between various spherical

phases are minute compared to between phases with different structural motifs, say

spheres and cylinders. Lastly, the narrowness of the two-phase regions may be pre-

sumably the reason for no experimental reports of macro-phase separation in Ref. [2].

3.2 Schulz-Zimm distribution

We now consider the dispersity described by the Schulz-Zimm distribution, Eq. (2.72).

As before, the conformational asymmetry parameter is set to ε = 1.32. The phase

behavior of the system as a function of f and χ 〈Nc〉 is shown in Figure 3.6, where the

probability distribution of the A-block length NA,c is Pc = SZ (λc; k) for k = 2, 3 and

4, corresponding to dispersity indices of D (NA,c) = 1.25, 1.33 and 1.50, respectively.

Similar to Sides and Fredrickson [24], the 8-point Gauss-Laguerre quadrature is used

to numerically evaluate Eqs. (2.23) and (2.36). The effect of macro-phase separation

is ignored in the phase diagram. We also plot only the order-order phase boundaries

as we are mainly concerned with how the relative stability between ordered structures

changes with increasing degrees of dispersity.
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As illustrated in Figure 3.6, the σ phase is an equilibrium structure for all three

values of k. Compared with the case of the Poisson distribution, the σ phase occupies

a significantly larger area of the phase diagram. Moreover, we see that the window of

stability for the σ phase widens as D (NA,c) increases from 1.25 to 1.5. The observed

trend indicates again that dispersity relieves packing frustration and also that the ex-

tent of the relief is greater at larger values of D (NA,c). In agreement with predictions,

Zhang et al. found that the FK phases appeared over a narrower region of the phase

diagram for less disperse samples of poly(dodecyl acrylate)-block -poly(lactide) [46].

Intuitively, a larger dispersity index would mean a greater variety of polymers with

different chain lengths which could be used to fill space more efficiently. One other

difference from the Poisson distribution is that the σ phase can directly transition to

the Scp phase by lowering f . The absence of the BCC phase at higher D (NA,c) has

been predicted previously [12, 6, 26, 27]. The displacement of polymers with shorter

A-blocks from the cores into the B-rich matrix relieves the packing frustration that

favors the BCC over the Scp lattice. We will shortly provide evidence supporting such

behavior.

Next, we consider diblock copolymers with a larger degree of conformational asym-

metry and demonstrate that dispersity could yield ordered phases that are metastable

in monodisperse systems. In Figure 3.7a, we show the phase diagram for the SZ dis-

tribution with D (NA,c) = 1.5 and ε = 2. While the σ phase is present as expected,

three other FK phases, namely A15, C14 and C15, also emerge. The appearance of

the C14 and C15 structures is in stark contrast with the behavior of monodisperse

linear diblock copolymers. In the absence of dispersity, increasing ε leads to an en-

larged region of stability for the σ phase once ε ≈ 1.5 [1], with the A15 eventually
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Figure 3.6: Phase diagram as a function of the volume fraction of A-monomers f
and segregation strength χ 〈Nc〉 of the A-block disperse system with ε = 1.32 and
Pc = SZ (λc; k) for k = 2 (yellow), 3 (blue) and 4 (black).

occurring when ε & 2.1 [76]. The same selection of FK phases in Figure 3.7a is

likewise reported in binary blends of conformationally symmetric diblock copolymers

[50]. In fact, we will see in the next subsection that the mechanisms for the formation

of complex spherical phases in binary mixtures are also found in the disperse systems

being considered.

3.3 Chain segregation effects

To better understand the impact of dispersity on the formation of complex spher-

ical phases, we examine the spatial arrangement of polymer chains within the self-

assembled structures. For the sake of clarity, we perform our analysis based on the

FK A15 phase. Its unit cell is cubic, containing two non-equivalent spherical domains.

We first consider dispersity effects on the spatial organization of chain junctions.

Figures 3.8a-d show plots of the normalized junction distribution Pcqc(r, λcNA,ref)q
†
c(r, NB)

on the z = 0 plane for various values of λc corresponding to different A-block lengths.
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Figure 3.7: Phase diagram as a function of the volume fraction of A-monomers f and
segregation strength χ 〈Nc〉 of the (a) A-block disperse and (b) monodisperse systems
with ε = 2. For (a), the distribution of polymers with different A-block lengths is
Pc = SZ (λc; k) where k = 2. Including dispersity leads to the appearance of three
other FK phases.

Here, Pc is given by the SZ distribution. For reference, we also include a plot of the

A-volume fraction φA(r) in Figure 3.8e. The white regions depict the A/B interface,

which is defined as the isosurface with φA(r) = 0.5. The behavior of chain junctions is

largely dependent on the length of the A-block. The junction distribution belonging

to polymers with very short A-blocks (λc = 8.33× 10−2) is shown in Figure 3.8a. We

find that junctions are dislodged from the A/B interface and most concentrated at

the interstitial spaces within the B-matrix. As noted earlier, the BCC is generally

preferred over the Scp phase due to its lower degree of packing frustration. With

the free polymer chains in the B-rich corona acting as fillers, packing frustration is

released, and the preferred lattice becomes Scp [12, 6, 26, 27]. For polymers with

slightly longer A-blocks, Figure 3.8b shows that the junctions are now located at

the A/B interface. The junctions moreover display a clear preference to reside in

areas with higher interfacial curvature. In contrast, the junction distribution exhibits

only subtle changes and is rather uniform at the interface for λc = 1.133 shown in
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Figure 3.8c. We depict lastly how the junctions are distributed for polymers with

the longest A-blocks (λc = 5.383) in Figure 3.8d. Unlike the molecules with shorter

A-blocks, the longer chains tend to be situated in the regions with lower interfacial

curvature. The same tendency is seen in the arrangement of junctions for the two

non-equivalent spherical domains. We find that the junction distribution is lower in

the smaller, rounder cores at the corners than in the polyhedral-like cores on the faces

of the unit cell.

Figure 3.8: Normalized distribution of chain junctions, Pcqc(r, λcNA,ref)q
†
c(r, NB),

where Pc = SZ (λc; k) for a) λc = 8.33 × 10−2, b) λc = 0.45, c) λc = 1.133, d)
λc = 5.383 on the z = 0 plane of the A15 phase. The spatially-varying volume
fraction of A-monomers φA(r) is shown alongside in e). The parameters are k = 2,
f = 0.30 and χ 〈Nc〉 = 40.

The behavior observed in Figure 3.8a-d is consistent with the notion of inter- and

intra-domain chain segregation. In a study of binary blends of conformationally sym-

metric diblock copolymers by Liu et al. [47], the two segregation effects were identified

to be responsible for the formation of a number of different FK phases. As detailed in
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Ref. [47], chain segregation occurring at the interfaces facilitates the assembly of non-

spherical domains, whereas inter-domain segregation encourages micelles of various

sizes to form. We note that the extent of chain segregation will not be as pronounced

here as what is seen in binary blends since the degrees of dispersity being considered

are not as extreme (i.e. D (NA,c) = 1.125 to 1.5).

Figure 3.9: Spatial distribution of A-block chain ends where Pc is given by the Schulz-
Zimm distribution for a) λc = 0.45, b) λc = 1.133, c) λc = 2.163, and d) λc = 5.383
on the z = 0 plane of the A15 phase. The white vectors depict the average orientation
of the A monomers [3]. The parameters are k = 2, f = 0.30 and χ 〈Nc〉 = 40.

To further elucidate the influence of dispersity on the spatial organization of poly-

mers, we consider the distribution of A-block chain ends Pcq
†
c(r, Nc) and the mean
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local orientation of A-segments given by [3],

tA,c (r) =

〈
nc∑

i

vA

∫

IA,c

dsTi,c (s) δ (Ri,c(s)− r)

〉

=
Pc
〈vc〉Qc

bA

6

[
vA

∫

IA,c

ds qc(r, s)∇q†c(r, Nc − s)− q†c(r, Nc − s)∇qc(r, s)
]
.

(3.2)

Here, the vector T (s) represents to the orientation of the sth segment (directed from

A- to B-end). For the same parameters as Figure 3.8, we show the distribution of

free A-block ends as the density plots for different values of λc in Figure 3.9. The

overlaying vectors indicate the projection of tA,c (r) onto the z = 0 plane. We see

that the ends of polymers with shorter A-blocks are located closest to the interface.

From where their free ends are concentrated, the mean segment orientation suggests

that the A-blocks extend radially outwards towards the nearby B-matrix. As λc

increases, the mass of chain ends moves deeper into the center of the micelles. From

the centers, the longer molecules tend to extend out to the flatter parts of the interface

where the concentration of their chain junctions is higher. The observed behavior is

again consistent with the idea of intra-domain segregation. Polymers with longer

A-blocks are partitioned to the domain interiors, filling the space furthest from the

interface. Shorter chains placed closer to the interface are allowed to relax. There are

also signs of inter-domain segregation. The free A-block ends of the longer molecules

are located almost exclusively within the larger domains.

In the current chapter, we examined how dispersity impacts the formation of

complex spherical phases in conformationally asymmetric diblock copolymers. The A-

block dispersity was given by either the Poisson or SZ distributions. For both cases, we

found that the FK σ phase can occur at a lower degree of conformational asymmetry
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than in monodisperse systems. Our findings help reconcile some of the discrepancies

between theoretical predictions and the experimental results of Schulze et al. [2]. We

observed that increasing the dispersity (i.e. larger dispersity indices) would enhance

the stability of the complex phases. For the SZ distribution in particular, a variety of

FK phases other than the σ phase becomes accessible when ε is increased. We also

investigated the effects of macro-phase separation, which revealed that the coexistence

regions between two spherical phases are negligible. Lastly, the spatial arrangement

of polymer chains within the self-assembled structures was examined. We found

that the formation of non-classical packings arises from inter- and intra-domain chain

segregation effects. The result is consistent with earlier theoretical works on binary

mixtures by other authors [47].
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Chapter 4

Effect of molecular weight

distribution shape on phase

behavior of diblock copolymers

In the previous chapter, we assumed that the dispersity is described by the commonly

used Poisson and SZ distributions. In this chapter, we will investigate the phase

behavior of diblock copolymers with experimentally measured molecular weight dis-

tributions (MWDs). We first present a general procedure to treating distributions

specified by many molecular weights in numerical SCFT calculations. The method is

subsequently applied to the samples from the experiments of the Fors group [4]. The

MWDs of these samples were prepared specifically to have nearly identical A-block

dispersity indices D(NA,c) and different skewness. For a given A-volume fraction f ,

we predict that the equilibrium structure can depend on the skewness, consistent

with the experiments. The results highlight the importance of the MWD shape on

the self-assembly process.
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4.1 Modeling experimental molecular weight dis-

tributions

Disperse synthetic polymer samples may contain thousands of different molecular

weights. Each molecular weight corresponds to a particular degree of polymerization,

or equivalently, chain contour length Nc. A large number of Nc poses a problem for

numerical SCFT calculations. As discussed in Section 2.1.2, the most computationally

expensive step is solving the forward and backward end-integrated propagators qc(r, s)

and q†c(r, s). Since the propagators need to be determined for each polymer type c,

the computation time would grow with the number of polymeric species. To make

matters worse, the system will generally include polymers that are much longer than

the mean value, resulting in longer computing time because the number of steps

from discretizing the chain contour length is proportional to Nc. To circumvent such

problems, we present below a general approach to handling distributions that contain

a large number of possible molecular weights in numerical SCFT, using an example

from experimental data courtesy of the Fors group [4].

An experimental MWD is specified by the data set {Mc, wc}M(src)

c=1 where wc is the

weight or mass fraction of polymer chains with molecular weight Mc,

wc =
mass of type c polymers

total mass of mixture
=

mcMc∑
c′ mc′Mc′

, (4.1)
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where mc is the number of moles. The corresponding number fractions are given by,

P (src)
c =

mc ×NAvog∑
c′ mc′ ×NAvog

=
mc∑
c′ mc′

=
mc∑

c′′ mc′′Mc′′

∑
c′′ mc′′Mc′′∑

c′ mc′

=
wc
Mc

( ∑
c′ mc′∑

c′′ mc′′Mc′′

)−1

=
wc
Mc

(∑

c′

mc′∑
c′′ mc′′Mc′′

)−1

=
wc/Mc∑
c′ wc′/Mc′

,

(4.2)

with NAvog denotes the Avogardo’s number. To convert from molecular mass to

relative degree of polymerization or chain length λ
(src)
c , we use the relationship:

λ(src)
c =

Mc

〈Mc〉
=

Nc

〈Nc〉
. (4.3)

We assume that the degree of polymerization is proportional to the molecular weight

with the proportionality constant being independent of molecular weight in writing

Eq. (4.3). As a minor technical detail, the data values are arranged in increasing

order of λ
(src)
c , i.e. λ

(src)
c ≤ λ

(src)
c+1 .

For discrete distributions, the SCFT equations involving the number fractions Pc

can be generally expressed as,
∑

c

g(λc)Pc, (4.4)

where g(λc) is some function of λc. The above equation can be re-written for conve-

nience as,
M(src)∑

c=1

g
(
λ

(src)
c′

)
P

(src)
c′ =

∫ M(src)

1

dc g
(
λ(src) (c)

)
P (src) (c) , (4.5)
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where,

λ(src) (c) =
M(src)∑

c′=1

λ
(src)
c′ I (c; c′) ,

P (src) (c) =
M(src)∑

c′=1

P
(src)
c′ I (c; c′) ,

(4.6)

with the step function I (c; c′) being,

I (c; c′) =

{
1 |c− c′| ≤ 1

2

0 otherwise
. (4.7)

We next take the crucial step of approximating λ(src) (c) and P (src) (c) that are defined

by the data set
{
λ

(src)
c , P

(src)
c

}M(src)

c=1
with the functions, λ (c) and P (c), respectively.

The two functions, λ (c) and P (c), are determined via polynomial regression on the

data sets
{
c, λ

(src)
c

}M(src)

c=1
and

{
c, P

(src)
c

}M(src)

c=1
, respectively. The step amounts to

writing, ∫ M(src)

1

dc g
(
λ(src) (c)

)
P (src) (c) ≈

∫ M(src)

1

dc g (λ (c))P (c) . (4.8)

Ideally, the replacements would satisfy λ (c) = λ
(src)
c and P (c) = P

(src)
c for any integer

c. For the example data, we show λ (c) and P (c) from regression in Figures 4.1a and

4.1b, respectively. We found that a higher quality fit for P (c) can be more easily

obtained by using two separate polynomial functions joined together at a common

value of c as opposed to a single polynomial for the whole data set.

To estimate the quality of the continuous approximation, we calculate the first

three moments directly from the data and via right-hand side of Eq. (4.5) using the

polynomials from linear regression, as tabulated in Table 4.1. The relative difference

across the moments is less than 1%. Similar to our treatment of the continuous SZ

60



D.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

0

2

4

6

8

1000 2000
0.0

0.4

0.8

1.2

1.6

2.0

1000 2000

λ
(c
)

c

Data - Sample 7
Fit

(a)

P
(c
)
×
10

−
3

c

Data
Fit 1
Fit 2

(a) (b)

Figure 4.1: Polynomial fits for the data of Sample 7: (a) λ (c) using
{
c, λ

(src)
c

}M(src)

c=1

and (b) P (src) (c) using
{
c, P

(src)
c

}M(src)

c=1
.

Sample 7 〈λc〉 〈λ2
c〉 〈λ3

c〉
(1) Data 1. 1.442 2.94
(2) Integral 1. 1.44 2.926
(3) Gauss-Legendre quadrature 0.982 1.432 2.932

Table 4.1: The first three moments of Sample 7 (1) calculated directly from the

data
{
λ

(src)
c , P

(src)
c

}M(src)

c=1
, as well as from integrating the polynomial fits λ (c)n P (c)

(2) exactly and (3) using the Gauss-Legendre quadrature.

61



D.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

distribution in Section 3.2, we will use the Gauss-Legendre quadrature to evaluate

expressions in the form of Eq. (4.5). For an M (gl)-point quadrature, we have,

∫ M(src)

1

dc g (λ (c))P (c) ≈
M(gl)∑

c

g
(
λ(gl)
c

)
P (gl)
c , (4.9)

where the relative chain lengths representing the abscissas reads,

λ(gl)
c = λ

(
M (gl) − 1

2
x(gl)
c +

M (gl) + 1

2

)
. (4.10)

Here, x
(gl)
c is the cth root of the Legendre polynomial of order M (gl), denoted as

P
(
x;M (gl)

)
. The associated number fractions are given by,

P (gl)
c = P

(
M (gl) − 1

2
x(gl)
c +

M (gl) + 1

2

)
×


 2

1−
(
x

(gl)
c

)2

(
d

dx
P
(
x;M (gl)

) ∣∣∣∣
x
(gl)
c

)−2

 ,

(4.11)

noting that the quadrature weight corresponding to term in the square brackets above

has been included in the definition of P
(gl)
c . We calculate the first three moments using

the 16-point quadrature illustrated Figure 4.2 and tabulate the results in Table 4.1.

The relative difference from the exact values computed from the data is less than 2%.

For completeness, the set of values for
{
λ

(gl)
c , P

(gl)
c

}
is explicitly given in Table F.3

of Appendix F. The outlined procedure effectively reduces the representation of the

MWD with thousands of species to a small number of points in numerical calculations.
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Figure 4.2: Plot of the relative chain lengths and corresponding number fractions
(without including the quadrature weights) from a 16-point Gauss-Legendre quadra-
ture in magenta, alongside the experimental values for Sample 7 in orange.

4.2 Effect of skewness

We apply our numerical procedure to three samples, 4, 7 and 15, from the experiments

by the Fors group, in order to examine how MWDs with equal dispersity indices and

differing skewness affect the phase behavior of diblock copolymers. The polynomial

fits for λ (c) and P (c), as well as the moments calculated from the data and Gauss-

Legendre quadrature for Sample 4 and 15 are given in Appendix F. Sample 4 is

regarded experimentally as monodisperse, while Sample 7 and 15 correspond to the

MWDs with positive and negative skewness, respectively. In Figure 4.3a, we plot

the phase diagram as a function of the A-volume fraction f and number-averaged

segregation strength χ 〈Nc〉 for the distribution of A-block lengths describing Sample

4, 7 and 15 in green, orange and blue, respectively. Following the experiments, we

assume the B-block length is uniform across all molecules. The Kuhn lengths are

also taken to be identical, bA = bB = b. For ease of comparison, we include the

experimental phase diagram from Ref. [4] as Figure 4.3b.
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Figure 4.3: (a) Phase diagram as a function of the number-averaged segregation
strength χ 〈Nc〉 and A-volume fraction f where the distributions of A-block lengths
are sourced from the data of Sample 4 (green), Sample 7 (orange) and Sample (15).
(b) Experimental phase diagram borrowed from Ref. [4].

We find that the same sequence of equilibrium phases HEXA → DGYA → LAM→

DGYB → HEXB is predicted as f increases for all three samples. The suffix α refers to

the minority domain being composed of α-monomers. This is to be compared with the

experimental sequence HEXA → LAM→ HEXB [4]. It is noted that the gyroid phase

is missing from the experiments [4]. The number of samples prepared experimentally

to the explore the parameter space of f is quite small. Considering the narrow window

of the gyroid phase, the discrepancy could be simply a matter of insufficient number

of sampling points. Gentekos et al. also reported a hexagonally-perforated lamellar

phase for the monodisperse samples on the f > 0.5 side of the phase diagram. We

found that the perforated lamella does not appear as an equilibrium morphology in the

phase space of interest. There may be two possible explanations for the disagreement.

First, experimentally observed perforated lamellar phases in monodisperse diblock

copolymers are often metastable states that will anneal to the stable double gyroid
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structure [77]. A second possible reason could be that the hexagonally-perforated

lamella corresponds instead to a lamellar phase coexisting with hexagonally close-

packed cylinders. For instance, the scattering data of the disperse sample reported

to exhibit perforated lamellar morphology was noted to be also consistent with a

coexisting LAM+HEX state in the experiments of Lynd et al. [38]. Given that Sample

4 is designed experimentally to be the most monodisperse out of the three being

considering, we suspect the former to be more likely the case.

Besides the lack of the double gyroid phase, the agreement between the experimen-

tal and theoretical results is qualitatively good for the portion of the phase diagram

where f < 0.5. SCFT predicts that the phase boundaries collectively move to higher

A-volume fractions relative to the monodisperse sample for both the positively- and

negatively-skewed distributions (Sample 7 and 15), with the shift being greater for the

latter. From Figure 4.3b, we see the same behavior is seen experimentally in Ref. [4].

The shift in the phase boundaries arising from A-block dispersity has been observed in

other theoretical [26, 78, 27, 29] and experimental works [36]. Non-uniformity in the

block lengths lowers the entropic cost of extending the disperse blocks. Thus, stretch-

ing the A-blocks become easier, and by relation, stretching the B-blocks become more

difficult. The A/B interface will develop a tendency to adopt configurations that are

curved towards the A-domains as to relax the stretching of the B-component. For

example in Figure 4.3a, hexagonally-packed cylinders are preferred by Sample 7 and

15 at A-volume fractions (0.35 . f . 0.40) where the planar lamellar phase would

normally occur in the monodisperse system. The effect of dispersity is similar to that

of conformational asymmetry when ε > 1 discussed in Chapter 3.

The reduced entropic penalty for chain-stretching will also lead to larger domain
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sizes. In Figure 4.4a, we plot the equilibrium lamellar period LLAM as a function of f

for the three samples at an average segregation strength of χ 〈Nc〉 = 50. We indeed

find that the domain spacing of the lamellar phase formed by the disperse Sample 7

and 15 is consistently larger than the monodisperse counterpart. The same trend is

observed experimentally by the Fors group [4]. Comparing the periods between only

the skewed samples with experiments is difficult given how similar the values are.
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Figure 4.4: Equilibrium lamellar period LLAM/R0 as a function of the A-monomer
volume fraction obtained via (a) numerical SCFT and (b) Eq. (4.18) from strong-
segregation theory where R0 =

√
〈Nc〉b and χ 〈Nc〉 = 50 for Sample 4 (green), Sample

7 (orange) and Sample 15 (blue).

4.2.1 Analysis via strong-segregetion theory

To estimate the reduction to the entropic stretching energy due to dispersity, we

briefly appeal to strong segregation theory (SST) [24, 64, 6, 17], which is an ana-

lytic treatment of SCFT suitable at large segregation strengths. Within SST, the

dimensionless free energy per chain can be written as a sum of three terms,

FSST = F (int) + F
(str)
A + F

(str)
B (4.12)
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where F (int) is the interaction energy associated with the contacts between unlike

monomers occurring in the narrow interfacial regions. The entropic costs of stretching

the A- and B-blocks are denoted F
(str)
A and F

(str)
B , respectively. Restricting our analysis

to the lamellar phase, the interfacial energy reads,

F (int) =
2b 〈Nc〉
L

√
χ

6
, (4.13)

where L denotes the period. The entropic stretching terms are given by the theory

of polymer brushes [78, 79],

F
(str)
A =

fπ2L2

32b2 〈Nc〉
SA, (4.14)

and

F
(str)
B =

(1− f)π2L2

32b2 〈Nc〉
SB. (4.15)

Here, Sα represents the reduction factor to the stretching energy arising from α-block

dispersity,

Sα =

∫
dλα [1− CDFα (λα)]3 . (4.16)

The cumulative distribution function for the probability distribution of the relative

α-block lengths, which we denote Pα (λα), is,

CDFα (λα) =

∫ λα

minλα

dλ′αPα (λ′α) , (4.17)

where λmin
α is the minimum value which Pα (λα) is defined for. The factor Sα char-

acterizes how disperse blocks can packed in a more efficient manner such as by using

longer chains to pervade the spaces more distant from the A/B interface [79]. For
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monodisperse blocks, the reduction factor evaluates to Sα = 1. Lastly, we determine

the equilibrium period by minimizing the free energy Eq. (4.12), which results in,

LLAM

R0

=
(Lmono/R0)

(fSA + (1− f)SB)1/3
, (4.18)

where Lmono is the optimal period for a pure system given by the classic expres-

sion [64]:

Lmono

R0

= 2

(
8χ 〈Nc〉

3π3

) 1
6

. (4.19)

To calculate cumulative distribution function from the sample data, we use the fol-

lowing integral relationship,

∫
dc P (c) =

∫
dλP (c (λ))

dc (λ)

dλ
, (4.20)

to write Eq. (4.17) in terms of the polynomial fit P (c),

CDFA (λA) =

∫ λA

λ
(src)
1

dλ′ PA (λ′) =

∫ λA

λ
(src)
1

dλ′ P (c (λ′))
dc (λ′)

dλ
. (4.21)

The inverse function c (λ) can be determined by fitting the data set
{
λ

(src)
c , c

}M(src)

c=1
.

We calculate SA for the samples with positive and negative skewness to be 0.52 and

0.43, respectively.

In Figure 4.4b, we plot the equilibrium lamellar domain size given by Eq. (4.18)

for the two disperse samples alongside the monodisperse system. Although LLAM

predicted by SST is systemically larger than what numerical SCFT calculates pre-

sumably due to the over-estimated degree of chain-stretching, the general trends are
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the same. The domain spacing is larger for the negatively-skewed than positively-

skewed distribution, which we can attribute from Eq. (4.18) to the entropic cost of

stretching the A-blocks being lower for Sample 15 (SA = 0.43 < 0.52). The larger

reduction in stretching energy predicted by SST also implies that the tendency for

the interface to curve towards the disperse A-blocks will be greater in Sample 15 than

7. This explains why the shift in the phase boundaries to higher A-volume fractions

is more pronounced for Sample 15 in Figure 4.3a.

There is an additional effect that our SST analysis does not incorporate that may

change the tendency of adopting curved interfaces. The effect is when polymers with

extremely asymmetric block compositions become dislodged from the A/B interface

and reside completely in the domain of its majority segments. Similar behavior was

seen in the previous chapter (see Figure 3.8). For f < 0.5, short A-block, long B-

block molecules will be susceptible to being dislocated from the interface and situated

in the B-matrix. This can drive the system to form interfaces with higher curvature

towards the minority A-domain. The effect would be stronger in Sample 15 than 7. In

a negatively-skewed distribution, there will be a larger population of shorter A-block

polymers by virtue of its longer tail on the left side of the mean (λ < 1). This is

consistent with the LAM→ DGYA → HEXA transitions observed in Sample 15 than

7 with a larger f . Similarly for f > 0.5, long A-block, short B-block polymers will

have a propensity to detach from the interface, swelling the A-matrix and promoting

the interface to curve towards the B-domains [36, 80, 25]. The effect is expected to

be more pronounced in Sample 7. A greater abundance of longer A-block chains is

available in a positively-skewed distribution that would have a longer tail on the right

side of the mean (λ > 1).
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4.3 Inclusion of B-block dispersity

One other discrepancy between the experimental and our theoretical results is the

location of the phase boundaries relative to the monodisperse sample for f > 0.5.

SCFT continues to predict a shift of the order-order transitions to larger values of f

regardless of the skewness. We see the same trend is also observed by the Fors group

for Sample 15 from Figure 4.3b. However, the LAM → HEXB transition is experi-

mentally reported to occur at a lower f for the positively-skewed than monodisperse

sample. There are a few possible explanations for the disagreement. For one, the num-

ber of samples used to probe the parameter space of f > 0.5 is sparser than f < 0.5,

which would make precisely resolving the phase boundary more difficult. Another

possibility could be that the B-blocks have a small degree of dispersity, which is an

opportunity to explore its effects in the current section. Up until now, we have only

considered dispersity occurring in the A-blocks.

Since we do not expect the B-block dispersity to be large in keeping with ex-

periments, the Poisson distribution is employed to model its dispersity. We choose

µ = 8 which yields D(NB,c) = 1.125. The overall dispersity index D(Nc) differs

slightly from monodisperse B-blocks and remains within the experimental range of

1.02-1.21 [4]. We furthermore assume that the distribution of the two blocks are in-

dependent of one another. Therefore, the number fraction of polymers with A- and

B-block lengths, NA,c = λA,cNA,ref and NB,c = λB,cNB,ref , respectively, will be given

by the joint probability,

Pc = PA,c × PB,c. (4.22)

The set of values {Pα,c} characterizes the distribution of α-block lengths.
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We plot in Figure 4.5 the phase diagram analogous to Figure 4.3a except with the

introduction of B-block dispersity. In the same fashion as Section 3.1, the Poisson

distribution is numerically represented using the coarse-graining scheme detailed in

Appendix E with Mλ = 4. As a technical aside, the values of λB,c after coarse-

graining are further rounded in order to ensure that the number of steps discretizing

the contour length is an integer for both the A- and B-blocks when using a common

step size. We tabulate the values for λB,c and PB,c in Table 4.2 for completeness. Due

to numerous chain compositions (M (gl) ×Mλ & 60), we consider only the lamellar

and cylindrical phases in the calculation to assess the effects of introducing B-block

dispersity.
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Figure 4.5: Phase diagram as a function of the number-averaged segregation strength
χ 〈Nc〉 and A-volume fraction f where the distributions of A-block lengths are sourced
from the data of Sample 4 (green), Sample 7 (orange) and Sample 15 (blue), while the
B-block lengths are assumed to obey the Poisson distribution Pois (λ;µ) with µ = 8
(dashed lines) and monodisperse (solid lines).

λB,c 1.6 1.2 0.7 0.3

PB,c 0.1046 0.4387 0.4140 0.0427
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Table 4.2: Values for the relative B-block lengths λB,c and the corresponding prob-
abilities PB,c, from the coarse-graining procedure applied to the Poisson distribution
Pois (λ;µ) with µ = 8.

With disperse B-blocks, the phase boundaries as a whole migrate to smaller A-

volume fractions compared to what is seen in Figure 4.3a. We do find that the LAM

→ HEXB for the positively-skewed sample now takes places at values of f lower than

the monodisperse sample assuming uniform B-blocks. To be consistent, the same

phase transition will also move to smaller A-volume fractions when B-block dispersity

is included for Sample 4. This unfortunately leaves us with the same discrepancy as

before. The change to the order-order transition curves from introducing B-block

dispersity agrees with our earlier SST analysis. The increased tendency to curve the

interface towards the A-domains stems from the enhanced reduction in the stretching

energy due to the lowered cost of extending the disperse A-blocks. When both the

A- and B-blocks are disperse, the entropic penalty for stretching either blocks will be

reduced, albeit to different extents. The preference to stretch one block more than the

other and form interfaces more curved towards the A-domains will therefore decrease,

restoring the phase boundaries to lower values of f .

In the current chapter, we examined the phase behavior of diblock copolymers with

experimentally determined MWDs . A general procedure for treating experimental

MWDs in numerical SCFT was first provided. Since current polymer synthesis and

processing techniques offer precise control over the width, skewness and even shape of

a MWD [41, 42, 46], we anticipate that the outlined method will be useful for future

studies on dispersity. The protocol was applied to samples from the experiments by

the Fors group [4]. By design, the average molecular weight and dispersity indices of

the samples are nearly identical, whereas the skewness varies. We find that samples
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with positive and negative skewness can produce different equilibrium phases at a

given A-volume fraction. Qualitatively, the predicted differences in the phase behavior

between the samples agrees well with the experimental results of the Fors group [4].

The findings here emphasize the importance of the MWD shape and the need for

other statistical measures to complement the dispersity index when studying the

phase behavior of disperse block copolymers.
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Chapter 5

Effect of skewness on the formation

of complex spherical phases

In this chapter, we investigate how the shape of a MWD affects the formation of

complex spherical phases in diblock copolymers, focusing on the interplay between

the dispersity index and skewness. For computational convenience, the polymers

are modeled as discrete freely jointed chains (FJCs) instead of continuous Gaussian

chains. Some of the numerical advantages offered by the FJC model were discussed

in Section 2.4.1. We first examine differences in the phase behavior between the two

chain models for both monodisperse and disperse systems. In monodisperse systems,

the FK σ phase is predicted to occur at a lower degree of conformational asymmetry

for FJCs. When dispersity is introduced, chain segregation favoring the formation of

complex phases occurs in both chain models. We will explore the phase behavior of

spherical phases for a variety of MWD shapes. The skewness, Eq. (2.74), is identified

to be a key parameter regulating the equilibrium selection of spherical packings. In

particular, we find that MWDs with larger positive skewness render the C14 and C15
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phases accessible. Decreasing the skewness subsequently favors the formation of the

A15 and σ phases. We lastly examine the roles played by polymers with different

chain lengths in the self-assembly of spherical phases.

5.1 Schulz-Zimm distribution revisited

We start by considering monodisperse diblock copolymers modeled as FJCs. This

facilitates a brief discussion on some of the differences from the continuous Gaussian

chain model. In Figure 5.1, we plot the phase diagram as a function of the segregation

strength χN and A-volume fraction f with the conformational asymmetry set to

ε = 2. From hereinafter, the range of the non-bonded interaction will be assumed

to be the same as the Kuhn length of the A-monomers, σfr = bA. We adjust the

length of the B-block while keeping NA = 12 to tune f . This is opposed to fixing

the total degree of polymerization, N = NA/f , as f is changed. For the FJC model,

the distinction will yield slightly different results since the free energy [see Eq (2.49)]

depends on both χ and N , rather than only on the product χN . We find the sequence

of equilibrium phases is identical to that predicted for continuous Gaussian chains.

As f decreases, one encounters HEX→ σ → BCC → Scp → DIS. However, the BCC

region is narrower here, while in exchange the σ phase spans a larger range of f . The

enlarged σ-phase region is related to the fact that the complex phases start to form at

a lower degree of conformational asymmetry for FJCs. In monodisperse systems, the σ

phase occurs when ε & 1.5 for continuous Gaussian chains [47], whereas its appearance

can be before ε = 1.5 for discrete FJCs. Increasing ε beyond the critical value at

which the σ phase initially appears will widen its window of stability. Therefore,

we can expect that the σ-phase region will be larger for FJCs at the same degree of
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conformational asymmetry.
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Figure 5.1: Phase diagram for monodisperse freely jointed chains as a function of
the segregation strength χN and A-volume fraction f with A-block length NA = 12
and ε = 2.

We plot the free energy density difference between the BCC and two other phases

(HEX and σ) as a function of ε for monodisperse continuous Gaussian and discrete

FJCs in Figure 5.2a and b, respectively. The formation of the σ phase indeed takes

place at a smaller value of ε = 1.5 for FJCs than ε = 1.8 for Gaussian chains. In

Figure 5.3, we plot the spatially-varying A-volume fraction for the lamellar phase

as a function of the x-position for continuous Gaussian (blue) and FJCs (orange)

at two different values of ε. Due to the finite range of the non-bonded interactions

[see Eq. (2.50)], the A/B interface is wider for FJCs, consistent with Ref. [71]. The

greater overlap of unlike monomers indicates that the segregation between the A-

and B-blocks is weaker than in continuous Gaussian chains at a given value of χ 〈Nc〉.

While we have performed the analysis for only the lamellar phase, the same effect

applies to other phases. Consequently, the phase boundaries of monodisperse FJCs

resemble largely those of Gaussian chains except shifted to higher values of χ 〈Nc〉 [71].
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The progression from lamellar to cylinders and lastly to spheres will occur at block

compositions closer to f = 0.5. Since spherical phases can already form at larger

values of f , a lower value of ε is needed to access the σ phase for FJCs with finite-

range interactions.
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Figure 5.2: Difference in the free energy density between the BCC and HEX phases
(dashed lines), as well as between the BCC and σ phases (solid lines) as a function of
ε where polymers are modeled as (top) continuous Gaussian and (bottom) discrete
freely jointed chains. The parameters are f = 0.25 and χN = 30.

We next consider the phase behavior of FJCs with A-block dispersity described

by the SZ distribution. The results allow for a comparison of the effects of dispersity

with continuous Gaussian chains. It also serves as a reference point later when inves-

tigating the formation of complex spherical phases for other MWDs. In Figure 5.4, we

show the phase diagram as a function of the average segregation strength χ 〈Nc〉 and

f . The mean and shape parameter of the SZ distribution is 〈NA,c〉 = 12 and k = 1.5,

respectively, which corresponds to a dispersity index of D(NA,c) = 1.5. Similar to Sec-

tion 3.2, we treat the chain-length distribution using the four-point Gauss-Laguerre

quadrature in numerical calculations. The number fractions of polymers with A-block

77



D.Sc. Thesis - Chi To Lai McMaster - Physics & Astronomy

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

φ
A
(x
)

x/LLAM

Gaussian chain model Freely joint chain model

Figure 5.3: Spatially-varying volume fraction of A-monomers φA(x) for the lamellar
phase as a function of the normalized position x/LLAM at χ 〈Nc〉 = 30 for continuous
Gaussian (blue) and freely jointed chains (orange). The conformational asymmetry
parameter is ε = 1.0 (left) and ε = 2.0 (right).

lengths NA,c = λc 〈NA,c〉 are Pc = PSZ,4(c), which are tabulated in Table 5.1 for ref-

erence. For simplicity, we also carry out the calculations in the canonical ensemble,

ignoring the possibility of phase separation. The effects of using the quadrature rule

and ignoring macro-phase separation were discussed earlier in Chapter 3. We again

tune f by only changing the B-block length. Upon adding dispersity, FK phases other

than the σ phase, namely A15, C14 and C15, become accessible. The appearance of

these non-classical packings due to dispersity was observed for continuous Gaussian

chains (see Figure 3.7a). In fact, the variety of complex structures is identical for the

two chain models. We find that the phase behavior of the spherical phases in both

monodisperse and disperse systems is fairly similar between the continuous Gaussian

and discrete FJC models.
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Figure 5.4: Phase diagram of disperse freely jointed chains as a function of the
segregation strength χ 〈Nc〉 and A-volume fraction f with ε = 2. The number fraction
of different types of polymer chains is given by the PSZ,4(c).

c 0 1 2 3
NA,c 56 27 11 2
Pc 5.07× 10−3 0.176 0.624 0.195

Table 5.1: Values of the A-block length NA,c and number fraction Pc = SZ (λc;µ)Wc

for each polymer type c for the four-point approximation of the SZ distribution
PSZ,4(c). Here, the weights associated with the abscissas λc from the Gauss-Laguerre
quadrature rule are denoted Wc.

5.1.1 Spatial distribution of polymer chains

We saw in Chapter 3 that chain segregation provide the mechanisms of the formation

of complex spherical phases in continuous Gaussian chains. We can confirm that

the same effects are present in discrete FJCs by examining how the polymers are

spatially distributed within the self-assembled domains. For clarity, our analysis is

again performed on the A15 phase. In Figure 5.5, we plot the spatial distribution of

chain junctions on the z = 0 plane for the four different A-blocks at f = 0.35 and

χ 〈Nc〉 = 30. Strictly speaking, discrete chains do not have a chain junction defined in

the same way as continuous chains. Instead as a proxy, we take the average between
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the spatially-varying volume fractions of the only A- and B-monomers sharing a bond

together along the backbone:

φj,c (r) =
ΦA,c (r) + ΦB,c (r)

2
. (5.1)

Here, the monomer volume fractions are given by,

ΦA,c (r) =
Pc
〈vc〉

1

Qc

[
vA exp [ωA(r)] qc(r, NA,c)q

†
c(r, NB + 1)

]
,

ΦB,c (r) =
Pc
〈vc〉

1

Qc

[
vB exp [ωB(r)] qc(r, NA,c + 1)q†c(r, NB)

]
.

(5.2)

We notice that the distribution of junctions varies with the chain length and largely

resembles what was seen earlier for disperse Gaussian chains (see Figure 3.8). The

junctions of polymers with the shortest A-blocks are mainly located at the interstitial

sites in the B-rich matrix, as shown in Figure 5.5d. We see from Figure 5.5c that

the junction of shorter A-block chains found in the interfacial regions are more con-

centrated in the areas where the interface is more curved. For the longer molecules

depicted in Figure 5.5a-b, the chain junctions tend to aggregate at the flatter parts of

the interface. The junction distribution is also higher in the larger, more polyhedral-

like than the smaller, rounder A-rich domains.

The spatial distribution of the chain junctions confirms that the same inter- and

intra-domain segregations observed in disperse Gaussian chains are also present in

FJCs. As mentioned before, inter-domain segregation, seen here more predominately

for the longer chains, facilitate the assembly of micelles with different sizes. Seg-

regation within individual domains favors non-spherical cores to form [47]. Before

continuing, we briefly note that the regions where the junction distribution is highest
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are thicker than those predicted for Gaussian chains due to the combination of two

reasons. One is due to the interfacial width being greater in FJCs, which was seen in

Figure 5.3. The other is due to the proxy taken to be the junction distribution.

Figure 5.5: Density plots of the normalized junction distributions (Eq. 5.1) for poly-
mers with A-block length (a) NA,0 = 56, (b) NA,1 = 27, (c) NA,2 = 11 and (d)
NA,3 = 2 on the z = 0 plane for an equilibrium A15 phase. The spatially-dependent
volume fraction of A-monomers φA(r) is shown alongside in (e). The parameters are
ε = 2, Pc = PSZ,4(c), f = 0.35 and χ 〈Nc〉 = 30.

5.2 The effects of dispersity index and skewness

Recent works have shown that the shape of a MWD can have a considerable impact on

the equilibrium behavior of polymeric systems. The MWD shape can be described

by its moments. The first moment µ1 is the average molecular weight, while the

second moment µ2 quantifies the width of the MWD. The third moment describes the

asymmetry of the peak in MWDs. Commonly, only the dispersity index, D = µ2/µ
2
1,

is used. However, the importance of µ̃3 is gradually being recognized. As discussed in

the previous chapter, experiments by Gentekos et al. demonstrated that the domain

spacing [43, 41] and morphology [4, 41] of the equilibrium phase can depend on the
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skewness. It is noted that skewness offers information on the tail of the distribution

and how the probability behaves around the mean [44]. For a uni-modal distribution,

a positive value of skewness indicates that the tail is located to the right, and the

mass of the distribution is concentrated to the left of mean. The opposite is true for

a negative skewness.

We will examine below how the MWD shape affects the formation of spherical

packing phases. In particular, we focus on the interplay between the dispersity index

and skewness. Starting with the (approximate) SZ distribution, we will selectively

adjust each of the populations of polymers to explore a variety of MWD shapes with

different skewness and dispersity indices. To ensure that the number fractions sum

to unity, a replacement distribution is considered,

P̃SZ,4(c;R,PR) =

{
PR c = R

1−PR
1−PSZ,4(R)

PSZ,4(c) c 6= R
. (5.3)

Here, the index R denotes the type of polymers with its number fraction replaced

by the new value PR. Using Eq. (5.3), one can vary the probability of one specific

component, while preserving the relative amounts of the others, i.e.,

P̃SZ,4(c;R,PR)

P̃SZ,4(c′;R,PR)
=
PSZ,4(c)

PSZ,4(c′)
, (5.4)

for c, c′ 6= R.

We start by examining the phase behavior when the population of polymers at

the tails of the distribution is removed. Doing so leads to significant changes to the

MWD shape. In particular, the dispersity index changes from its original value of

D(NA,c) = 1.50 to 1.41 and 1.25 upon excluding the longest and shortest components,
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Figure 5.6: Phase diagrams as a function of the segregation strength χ 〈Nc〉 and
A-volume fraction f with ε = 2. The number fractions of chains with differing A-
block lengths are given by (a) P̃SZ,4(c; 0, 0) and (b) P̃SZ,4(c; 3, 0). Insets show the
corresponding distribution of A-block lengths.

respectively. The skewness similarly is altered from µ̃3 = 1.33 to 0.83 and 1.98,

respectively.

We first consider the case where the longest chains (R = 0) are absent. Figure 5.6a

gives the phase diagram as a function of χ 〈Nc〉 and f where the A-block lengths

follow the distribution P̃SZ,4(c; 0, 0). We again tune the length of the common B-

block to adjust f . A noticeable change occurs in the phase behavior when the longest

molecules are excluded. For the same range of parameters, both the C14 and C15

phases are replaced by the σ phase. This difference is caused remarkably by only

removing a population of chains that is less than 1% of the total number of chains in

the system. We see from Figure 5.7 that the re-scaled probabilities of the three other

components are almost visually indistinguishable to the original values PSZ,4(c). The

stark contrast in the phase behavior from excluding such a small population of chains

reflects the special role played by polymers with the longest A-blocks.
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Figure 5.7: Probability weights Pc as a function of A-block lengths, NA,c for the

distributions, PSZ,4(c) (blue), P̃SZ,4(c; 0, 0) (green), P̃SZ,4(c; 3, 0) (yellow).

Next, we examine the effect of removing the shortest molecules from the distribu-

tion. Different from the longest component, the shortest chains represent nearly 20%

of the total number of chains, and there is a visible difference between the parent and

re-scaled probabilities given by P̃SZ,4(c; 3, 0). We plot in Figure 5.6b the phase dia-

gram as a function of χ 〈Nc〉 and f where the A-block lengths follow the distribution

P̃SZ,4(c; 3, 0). As expected, the change in the phase behavior is opposite to what was

seen when excluding the longest chains. The C14 and C15 phases occupy a larger

portion of the phase diagram, appearing at lower segregation strengths and over a

wider span of f . The expansion comes at the expense of the σ and A15 phases. We

find however that the sequence of spherical packings A15→ σ → C15→ C14→ Scp

as f decreases remains unchanged from the parent distribution seen in Figure 5.4.

The difference in the phase behavior between Figures 5.6a and 5.6b implies that

larger values of skewness favors the assembly of the C14 and C15 structures. Large

positive skewness implies a (minor) population of very long polymers at the tail of

the distribution, which should be most beneficial for the self-assembly of the C14
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and C15 phases. Among the considered FK phases, both feature the largest volume

differences between the symmetrically non-equivalent Voronoi cells and by extension,

the enclosed A-rich domains (see Figure 5.8). The role of the longer chains is similar

to that of homopolymers blended with diblock copolymers, where the C14 and C15

phases have also been observed experimentally [52] and theoretically [48, 49]. The

homopolymers residing in the interior of the A-rich cores relieve the need of stretching

diblock copolymers anchored to the A/B interface to fill the space most distant from

the interfacial region. Polymers with longer A-blocks can efficiently pervade the same

space. Inter-domain segregation of the homopolymers or longer diblock copolymers

will subsequently facilitate the formation of different sized micelles.

Before continuing, we note that the mean chain length 〈Nc〉 will vary slightly when

excluding either the shortest or longest polymers from the system. While the phase

behavior exhibited by FJCs does depend on the total chain length, the differences

between Figures 5.6a and 5.6b cannot simply be attributed to the shift of 〈Nc〉. For the

shortest common B-block length we considered, the change is less than 10% (ranging

from 〈Nc〉 = 27 to 29) and decreases with increasing NB. As a rough comparison, the

topology of the phase diagram is identical between N = 40 and 80, with the shift in

the phase boundaries being approximately 1% in f for monodisperse melts [71].

To further probe the interplay between skewness and dispersity and discern their

importance on the variety of accessible spherical phases, we next adjust each of the

probabilities Pc, fixing instead the segregation strength to χ 〈Nc〉 = 30. In Fig-

ure 5.9a, we show the phase diagram as a function of the number fraction of the

longest polymers P0 and A-volume fraction f . The A-block lengths obey the distri-

bution P̃SZ,4(c; 0, P0). Consistent with earlier results, only the σ and A15 morphology
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Figure 5.8: Mean micelle volume deviations for different complex spherical phases
as a function of the A-volume fraction f . Here, 〈V n〉 = (

∑
V n

miMmi) / (
∑
Mmi), and

V n
mi denotes the volume of the micelles with a multiplicity of Mmi. The parameters

are Pc = PSZ,4(c), ε = 2 and χ 〈Nc〉 = 30. The different types of micelles for C14 and
C15 phases feature the greatest disparity in volume.

are present when P0 . 0.01. Upon increasing P0, both the C14 and C15 phases

emerge, while the σ-phase region gradually recedes and disappears. Interestingly, the

behavior featured by the spherical phases is not monotonic in P0. Continuing to add

the longest molecules for P0 & 0.07 re-introduces the σ phase into the phase diagram

and narrows the window of stability for C15 phase. We also find that the Scp phase

can appear over a region where the A-volume fraction exceeds 30% at larger values

of P0. Its occurrence is remarkable considering the close-packed spheres are only

found within a narrow window centered about f ∈ [0.1, 0.2] in monodisperse melts

for χN ≈ 30 [71]. We will discuss its origins in the upcoming sections.

We plot in Figure 5.9b the phase diagram analogous to Figure 5.9a except the

probability of the second longest polymers P1 is varied instead. The A-block length

distribution is P̃SZ,4(c; 1, P1). Unlike in the absence of the longest component, the C14

and C15 alongside the σ phase can occur when P1 = 0. We find that there are no
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Figure 5.9: Phase diagrams as a function of the A-volume fraction f and probability
Pc with ε = 2 and χ 〈Nc〉 = 30. The number fractions of polymer chains with different

A-block lengths Pc are given by (a) P̃SZ,4(c; 0, P0), (b) P̃SZ,4(c; 1, P1), (c) P̃SZ,4(c; 2, P2)

and (d) P̃SZ,4(c; 3, P3). To the right of each phase diagram, the dispersity index and
skewness are shown as function of Pc.

A-volume fractions where the C14 and C15 phases can be stabilized once P1 exceeds

roughly 0.18. Instead, the only non-classical packings predicted are the A15 and σ.

Figure 5.9c depicts the phase behavior as a function of f and the number fraction

of polymers with the second shortest A-blocks P2. The distribution of A-block lengths

is described by P̃SZ,4(c; 2, P2). Near the top of the phase diagram where P2 nearly

coincides with its original value (PSZ,4(2) ≈ 0.65), the C14 and C15 phases are featured

over a narrow region. Both cease to appear as equilibrium phases once P2 . 0.61.
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When further decreasing P2 beyond ∼ 0.35, the σ phase also becomes inaccessible.

It is interesting to note that in this vicinity where the only predicted complex phase

is the A15, the distribution P̃SZ,4(c; 2, P2) is fairly flat in that P1 ≈ P2 ≈ P3 ≈ 0.3.

Lastly, we show the phase diagram as a function of f and number fraction of the

shortest polymers P3 in Figure 5.9d. The A-block lengths obey P̃SZ,4(c; 3, P3). The

equilibrium behavior shares some similarities with what is seen in Figure 5.9b. We

see that both the C14 and C15 phases can occur when P3 is zero. The window of

stability for the two phases shrinks as the population of the shortest molecules grows,

eventually vanishing at P3 ≈ 0.21.

5.2.1 Relationship with dispersity index

Alongside each phase diagram shown in Figure 5.9, we plot the A-block dispersity

index D(NA,c) and skewness µ̃3 as a function of Pc. As seen in Figure 5.9a, selec-

tively changing the number fraction of the longest chains results in a dispersity index

and skewness that are non-monotonic in P0. Both quantities initially increase and

subsequently decrease as P0 runs from 0 to 0.2. The same applies for D(NA,c) when

varying the population of polymers with the second longest A-blocks in Figure 5.9b.

However, the skewness monotonically decreases with P1. For Figures 5.9c and 5.9d,

both D(NA,c) and µ̃3 are monotonic functions of the respective number fractions. In

particular, the dispersity index increases with P2 whereas the skewness decreases.

The opposite is true for P3.

From Figure 5.9a, we see that the C15 phase, and the C14 to a lesser extent, is

present for nearly the whole range of A-block dispersity index. Despite the change

in D(NA,c) being less than 2% over the interval 0.1 ≤ P0 ≤ 0.2, there is notable
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variation in the phase behavior. The C15 phase becomes absent once P0 & 0.14. A

similar result is found in Figure 5.9b. We find that despite the range of D(NA,c) for

P1 ≤ 0.19 and P1 ≥ 0.19 is roughly the same, the predicted complex spherical phases

are very different. For 0 ≤ P1 ≤ 0.19, the C14, C15, A15 and σ phases are present,

whereas the σ and A15 are the only non-classical phases found when P1 & 0.19. We

can conclude from Figures 5.9a and 5.9b that the dispersity index D(NA,c) does not

correlate well with the emergence of the complex phases.

There is a stronger correlation between the A-block dispersity index and equi-

librium behavior when the number fraction of the shorter polymers is selectively

adjusted. We see in Figure 5.9c that the C14 and C15 phases are present for the low-

est values of D(NA,c) and disappear when the dispersity index increases by decreasing

P2. Similarly in Figure 5.9d, both structures can appear for nearly the whole range

of P3 barring P3 ≥ 0.21 where D(NA,c) is lowest. When considering only the results

of Figures 5.9c and 5.9d, it may be tempting to think that lower degrees of dispersity

encourage the assembly of the C14 and C15 phases.

5.2.2 Relationship with skewness

Next, the relation between skewness and the formation of complex spherical phases

is explored. We again start with Figure 5.9a. Over the interval 0.01 . P0 . 0.14

where the C14 and C15 phases form, µ̃3 has larger values. Only the A15 and σ

phases are predicted for both P0 & 0.01 and P0 . 0.14 where the skewness has

smaller values (similar to both intervals). The situation is more straightforward in

Figures 5.9b-5.9d where µ̃3 is a monotonic function of the respective number fractions.

In all three cases, we observe that the C14 and C15 phases are found whenever µ̃3
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is greatest. In Figures 5.9b and 5.9d where µ̃3 is a decreasing function, the two

structures are accessible at lower values of P1 and P3. On the other hand, the skewness

monotonically increases with P2 for Figure 5.9c. The regions occupied by the C14 and

C15 morphology are located at higher number fractions where again the distribution

is most positively-skewed.

The relation between the skewness and relative stability of the non-classical phases

can be made more transparent by re-casting the y-axis from the number fractions to

the skewness instead. Doing so leads to the phase diagrams shown in Figure 5.10.

As noted above, the skewness of the A-block length distribution P̃SZ,4(c; 0, P0) is

not monotonic in P0. The skewness increases and decreases when moving along the

portions of the y-axis below and above the dotted line in Figure 5.10a, respectively.

In all four cases, we observe that the C14 and C15 morphology are found at larger

values of µ̃3. The region occupied by the two phases is in the middle for Figure 5.10a,

whereas its location is at the top of the phase diagram for Figures 5.10b-5.10d. When

the phase behavior is shown as a function of skewness, we also notice that the A15-

region tends to widen over f when µ̃3 decreases. We therefore find that strongly

positively-skewed distributions favors the formation of the C14 and C15 phases, while

decreasing the skewness gives way to the A15 and σ phases. This is consistent with

the work of Liu et al. on binary blends [47]. A larger asymmetry in the chain lengths

between the two components (with the longer polymers being the minority) would

result in a wider range of blend compositions where the C14 and C15 phases could

appear. On the other hand, only the σ phase is expected for lower ratios of chain

lengths.
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Figure 5.10: Phase diagrams as a function of the A-volume fraction f and skewness
µ̃3 with ε = 2 and χ 〈Nc〉 = 30. The number fraction of polymer chains with A-block

length NA,c is given by (a) P̃SZ,4(c; 0, P0), (b) P̃SZ,4(c; 1, P1), (c) P̃SZ,4(c; 2, P2) and (d)

P̃SZ,4(c; 3, P3).

5.3 Variations in the A-block lengths

In this subsection, we investigate the impact of adjusting the A-block lengths NA,c

on the phase behavior. The results yield more insights on the roles played by poly-

mers with different chain lengths in the self-assembly of spherical phases. In Fig-

ure 5.11a, we show the phase diagram as a function of the number fraction P0 and
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Figure 5.11: Phase diagrams as a function of the A-block length NA,c and A-monomer
volume fraction f with ε = 2 and χ 〈Nc〉 = 30. The number fraction of polymer chains

with differing A-block lengths Pc is given by (a) P̃SZ,4(c; 0, P0), (b) P̃SZ,4(c; 1, P1), (c)

P̃SZ,4(c; 2, P2) and (d) P̃SZ,4(c; 3, P3).

A-block length NA,0 of the longest component. The distribution of A-block lengths

is P̃SZ,4(c; 0, P0). Note that the common B-block length is fixed to NB = 36 for the

calculation. Additionally, the ranges of A-block lengths are restricted such that the

order, NA,0 > NA,1 > NA,2 > NA,3, is preserved. For NA,0 . 62, we find the sequence

of complex phases C14 → C15 → σ → A15 as P0 increases is identical to what is
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seen in Figures 5.4 and 5.6b when increasing f . At smaller values of P0, the equi-

librium behavior is fairly insensitive to the exact makeup of the longest molecules,

presumably due to its low concentration.

Remarkably, a Scp phase is predicted to be accessible for P0 & 0.08 where the A-

volume fraction can exceed 40%. Its appearance at nearly symmetric values of f could

be understood by examining the spatial arrangement of polymers. The junction dis-

tributions of polymers with different A-block lengths are illustrated in Figures 5.12a-d

at NA,0 = 86 and P0 = 0.20. We show alongside the spatially-dependent volume frac-

tions φA,c(r) in Figures 5.12e-h. The behavior of the chain junctions is very different

from what is seen in Figure 5.5. When P0 is large, the cores for both types of micelles

are almost made up entirely of the A-blocks from the longest component. The second

longest polymers are only located at the edges of the A-domains. We observe that the

degree of inter-domain segregation is much weaker compared to Figures 5.5a-b. As

seen in Figure 5.12d, the shortest molecules are dispersed fairly uniform throughout

the B-matrix as opposed to being concentrated at the interstitial regions. Even the

polymers with the second shortest A-blocks shown in Figure 5.12c are found in the

interstices at concentrations nearly equal with the interfacial regions. We will see

below that when there are many dislodged polymers within the B-matrix, the Scp

lattice will be favored.

In Figure 5.11b, we depict the phase behavior as a function of NA,1 and prob-

ability of second longest molecules P1. The A-block lengths follow the distribution

P̃SZ,4(c; 1, P1) while the common B-block length is NB = 32. We see that the four FK

phases can be realized at any A-block length NA,1 by selecting an appropriate value

for P1. In fact, the same phase sequence C14 → C15 → σ → A15 as P1 increases is
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Figure 5.12: Density plots of the (a)-(d) normalized junction distributions (Eq. 5.1)
and (e)-(h) A-volume fraction φA,c(r) for polymer chains with A-block length (a)/(e)
NA,0 = 86, (b)/(f) NA,1 = 27, (c)/(g) NA,2 = 11 and (d)/(h) NA,3 = 2 on the z = 0

plane for an A15 phase. The parameters are ε = 2, P0 = 0.2 and Pc = P̃SZ,4(c; 0, P0).

encountered regardless of NA,1. We find that the preferred spherical packing shows

a stronger dependency on P1 than NA,1. Even at the largest probabilities, the phase

boundaries remain fairly horizontal. Consequently, the phase behavior is nearly the

same at the two extreme ends, NA,1 = 27 and 56. At the latter, we may view the

second longest chains as effectively replaced by the longest polymers, being almost

identical in composition (NA,0 − NA,1 = 57 − 56 = 1). This suggests that the roles

served by the two longest components are similar, provided the difference between

NA,0 and NA,1 is not as extreme as what was examined in Figure 5.12. The overlap in

roles was also observed earlier when analyzing the spatial arrangement of polymers
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within the spherical domains (see Figure 5.5).

Figure 5.11c depicts the phase behavior as a function of NA,2 and the number

fraction of the second shortest polymers P2. The distribution of A-block lengths is

given by P̃SZ,4(c; 2, P2), and the shared B-block is NB = 32. At a glance, we notice

that a large area of the phase diagram is occupied by hexagonally-packed cylinders. In

fact, the HEX phase is always preferred regardless of any changes to the distribution

once NA,2 & 16. For NA,2 . 16, we see a familiar phase sequence of HEX→ A15→ σ

for nearly the whole range of P2. Further decreasing NA,2 can induce either a σ → C15

and σ → Scp transition at the higher and lower values of P2, respectively. We find that

the A-block length NA,2 plays a greater role in determining the phase behavior here,

dictating whether spherical or cylindrical micelles will be favored. This is in contrast

with Figures 5.11a and 5.11b where the phase behavior was more strongly dependent

on the probabilities of the longer chains. The sensitivity of the phase behavior to

NA,2 can be attributed to the fact that P2 represents the largest population in the

distribution. It is therefore not surprising that changes to the block composition of

the polymers belonging to P2 would affect the equilibrium behavior the most (out of

the four components).

Lastly, we plot the phase behavior as a function of the relative population P3 and

A-block length NA,3 of the shortest polymers in Figure 5.11d. The A-block lengths

obey the distribution P̃SZ,4(c; 3, P3), and the common B-block length is NB = 36.

Changing either P3 or NA,3 will influence the availability of short A-block chains that

can be dislodged from the interface and placed into the B-rich matrix for different

reasons. Longer A-blocks result in a larger enthalpic penalty for situating the short

polymers in the matrix due to the greater number of unfavourable A/B contacts per
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molecule, reducing their tendency to become displaced from the interface. On the

other hand, increasing P3 directly makes more of the polymers with short A-blocks

available to be placed in the B-domain. As the fraction of shortest chains becomes

larger, we find the phase sequence proceeds as C15 → C14 → Scp. The same was

seen in Figures 5.4 and 5.6b as f decreases by increasing the common B-block length.

Both increasing P3 or NB enrich the fraction of free polymer chains residing in the

B-rich matrix. By the same effect, it is also possible to induce the C15 → C14 and

C14→ Scp transitions by decreasing the A-block length NA,3 at the larger examined

values of P3.

From Figures 5.4 and 5.11d, we can deduce that the availability of short poly-

mers that can be dislodged and placed into the B-matrix should favor, in decreasing

order, Scp > C14 > C15 > σ > A15. When the amount of dislodged chains is low,

the interstitial spaces that causes packing frustration have to be filled by stretching

chains originating from the interface. One measure that characterizes such manner

of stretching is the mean stretching moment I(X) [17, 81]. A calculation by Reddy

et al. using the diblock foam model [81] ranks from least to most optimal stretching,

I (C15) & I (C14) > I (σ) > I (A15) > I (BCC). The ranking nicely coincides with

the progression of equilibrium spherical phases as the likelihood of finding short A-

block polymers in the B-matrix is reduced. Based solely on considerations of optimal

stretching, it may be possible that the A15 phase is eventually followed by the BCC

at higher values of f where the fraction of dislodged chains is even lower, providing

that spherical micelles remains preferred over cylinders. It is therefore interesting to

mention that in a study by Qiang et al. [82] on dendron-like AB-type block copoly-

mers, the phase sequence σ → A15→ BCC is predicted as f increases. Despite the σ
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and A15 phases spanning an extremely wide window over f (∼ 0.15 to 0.7), neither

the C14 and C15 morphology are present. Their absence could be related to lack of

short chains that act as fillers in the B-rich matrix and long molecules that encour-

age the assembly of micelles with large volume asymmetries. The former would also

explain why the width of the Scp-region was found to be roughly the same as what is

predicted in monodisperse diblock copolymers.

In the current chapter, we examined how the formation of spherical phases is in-

fluenced by the shape of a MWD in diblock copolymers. In particular, we focused on

the relationship between the dispersity index and skewness based on the discrete FJC

model, which was selected for the computational advantages offered over continuous

Gaussian chains. We began by looking at the differences in the phase behavior be-

tween the two chain models for monodisperse and disperse systems. For monodisperse

FJCs, a lower degree of conformational asymmetry was necessary to trigger the for-

mation of the FK σ phase. We found that the appearance of the complex phases due

to dispersity can be attributed to the chain segregation effects. The relative stability

of the spherical phases was subsequently examined for a variety of MWD shapes.

We found that the predicted spherical packings can vary between distributions with

different skewness and equal dispersity indices. In particular, more positively-skewed

distributions would favor the C14 and C15 phases, while less positive values of skew-

ness would lead to the A15 and σ phases. Similar to Chapter 4, the presented results

highlight the importance of the MWD shape on the phase behavior of disperse block

copolymers.
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Chapter 6

Conclusion

The aim of the thesis was to examine how dispersity influences the phase behav-

ior of diblock copolymers. In particular, we focused on the shape of the molecular

weight distribution characterized by the dispersity index and skewness. The role of

dispersity in the formation of complex Frank-Kasper phases was first examined in the

conformationally asymmetric diblock copolymers. We found that A-block dispersity

described either by the SZ or Poisson distributions would lower the critical degree of

conformational asymmetry required for the formation of the σ phase. Our results on

the dispersity effects reconcile the theoretical predictions and the experimental obser-

vations of Schulz et al. [2]. By examining the spatial distribution of polymers within

the self-assembled structures, we detected the presence of inter- and intra-domain

segregation of the polymers. Similar segregation effects were previously identified by

Liu et al. [47] as the mechanisms for the appearance of non-classical spherical phases

in binary blends of diblock copolymers.

We next presented a general procedure of treating molecular weight distributions

specified by a set of molecular weights and mass fractions commonly found in samples
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of synthetic polymers. The method was subsequently applied to the MWDs of three

samples used in the experiments by the Fors group [43] to examine how the distribu-

tion shape affects the self-assembly of disperse diblock copolymers. Apart from the

domain spacing, we found that the morphology of the equilibrium phase itself could

vary between the samples with different skewness and similar dispersity indices. The

predicted phase behaviors for the positively- and negatively-skewed samples agree

qualitatively with experimental observations. Given that fine-control over the distri-

bution shape for synthetic polymers is possible presently [41, 42, 46], we expect that

our proposed procedure could be valuable for future studies.

We lastly investigated how the shape of a MWD characterized by the disper-

sity index and skewness influences the relative stability of complex FK phases. The

skewness was identified to be a key parameter regulating the formation of spherical

packings. At equal dispersity indices, we found that the array of predicted spherical

phases may differ drastically depending on the skewness. For moderately positively-

skewed distributions of A-block lengths, the formation of the A15 morphology was

enabled, while access to the C14 and C15 was possible at the largest values of skewness

explored. Overall, the results underline the importance of looking beyond the width

of the distribution, and the need of other statistical measures such as the skewness to

complement the dispersity index when studying the phase behavior of disperse block

copolymers.

Cooke and Shi [26] examined the phase behavior of disperse diblock copolymers by

carrying out a perturbative expansion about the mean chain length to second order,

which corresponds to the dispersity index. In light of the current work, alongside

other recent studies [43, 4, 41, 45], highlighting the impact of skewness, a natural
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extension would be to conduct a similar calculation to the third-order term. The

third-order term is related to the skewness, and would therefore allow its general

effects to be more fully explored. Experiments indicate that the FK phases [83, 51, 52]

often appear along with dodecagonal quasicrystalline structures, featuring twelve-fold

rotational symmetry along one plane and periodicity in the direction normal to that

plane. While in principle quasicrystalline phases can be incorporated into the SCFT

framework [84, 85], the numerical calculations are by no means trivial. It would

be of interest to examine how the relative stability of the quasicrystalline phases

changes when introducing dispersity. We have shown that larger positive skewness

generally enhanced the stability of the complex FK phases, leading to a greater variety

that could be accessed. It remains to be seen if the propensity to form dodecagonal

quasicrystalline structures would also be increased by varying the shape of the MWD.

Lastly, our study of dispersity effects was mainly restricted to the sphere-forming

regime of diblock copolymers. It would be interesting to study the roles played by

the dispersity index and skewness in the context of novel packings of cylinders [86],

as well as in the formation of exotic bicontinuous phases [87, 88, 89, 90, 91, 92].
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Appendix A

Initial ansatz of numerical SCFT

In this appendix, we present analytic expressions used as an initial ansatz of φA(r)

for a number of ordered phases. The volume fraction of B-monomers φB(r) should be

initialized using the incompressibility condition φA(r) +φB(r) = 1. From the volume

fractions, one can obtain the the initial ansatz of the auxiliary fields using Eq. (2.21)

with ξ(r) set to 0.

Starting with the homogeneous disordered phase, its initial ansatz is trivially given

by a constant,

φA(r) = ΦA, (A.1)

where ΦA is the expected average A-volume fraction.

For the lamellar phase with layers perpendicular to the z-direction, we have,

φA(r) = ΦA + (1− ΦA) cos(qz), (A.2)

where q = 2π/L and L specifies the period.
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The initial ansatz for the hexagonally-packed cylindrical phase with its axis par-

allel to the x-direction in a non-primitive tetragonal unit cell is,

φA(r) = cos

(
q

2y√
3

)
+ cos

[
q

(
z +

y√
3

)]
+ cos

[
q

(
z − y√

3

)]
, (A.3)

where we assume that Ly =
√

3Lz =
√

3L.

For the body-centered cubic spherical phase belonging to space group (Im3̄m),

we initialize the A-volume fraction in a cubic unit cell by,

φA(r) =
1

2

(
1 +

2∑

i=0

cos
[
q
(
xi − xi+1

)]
)
, (A.4)

where x = x0, y = x1, z = x2 and the line above the subscripts denotes the modulo

operation with modulus 3, i = i (mod 3).

The initial ansatz for φA(r) of the face-centered cubic spherical phase in the

conventional cubic unit cell is given by,

φA(r) =
1

2
+

1

8

(
cos [q (x0 + x1 + x2)] +

2∑

i=0

cos
[
q
(
xi + xi+1 + xi+2

)]
)
. (A.5)

For the double-gyroid phase, we construct the initial ansatz from its space group

(Ia3̄d) as,

φA(r) =
1

6
+

1

10

{
2∑

i=0

cos
[
q
(
2xi + xi+1 + xi+2

)]
− cos

[
q
(
−2xi + xi+1 + xi+2

)]

− cos
[
q
(
2xi + xi+1 − xi+2

)]
+ cos

[
q
(
2xi − xi+1 + xi+2

)]
}
.

(A.6)
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Appendix B

Pseudo-spectral method

We detail below the procedure to numerically solve the modified diffusion equation,

∂q(r, s)

∂s
= ∇2q(r, s)− ω(r)q(r, s), q(r, 0) = 1, (B.7)

via the pseudo-spectral method [7]. Here, q(r, s) is the propagator of interest and

ω(r) is a periodic potential.

We begin by assuming that space has been discretized into Mx×My ×Mz points

such that the spatial step size in the γ-direction for γ ∈ {x, y, z}, is given by ∆γ =

Lγ/Mγ, where Lγ is the length in the same direction. We further suppose that the

contour length Nc is discretized into Ms + 1 points, so that the contour step size is

given by ∆s = Nc/Ms. The extra contour step is needed so that s0 = 0∆s = 0 and

sMs = Ms∆s = Nc. Under the above assumptions, the propagator at contour step

sn = n∆s for n ∈ {0 ≤ n ≤ Ms|n ∈ N} can now represented by an Mx ×My ×Mz
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array, denoted qn, with elements,

qnuvw = q(ruvw, sn), (B.8)

where ruvw = (u∆x, v∆y, w∆z) for u ∈ {0 ≤ u < Mx|u ∈ N}, v ∈ {0 ≤ v < My|v ∈

N}, and w ∈ {0 ≤ w < Mz|w ∈ N}.

From qn, we can obtain the propagator at the next contour step qn+1 as follows:

1. We first apply the contribution due to the potential ω(r) to qn which results

in,

qnuvw
∣∣ 13 = exp

(
−ω(ruvw)

∆s

2

)
qnuvw. (B.9)

2. Next, we perform a fast Fourier transform (FFT) to qnuvw
∣∣ 13 to obtain its Fourier

representation,

p̂nuvw
∣∣ 13 =

1

MxMyMz

Mx−1∑

l=0

My−1∑

m=0

Mz−1∑

n=0

qnlmn
∣∣ 13 exp

[
−2πi

(
ul

Mx

+
vm

My

+
wn

Mz

)]
.

(B.10)

3. The diffusion contribution, ∇2, is now accounted for via,

p̂nuvw
∣∣ 23 = exp

[
−4π2∆s

(
Kx(u)2

M2
x

+
Ky(v)2

M2
y

+
Kz(w)2

M2
z

)]
p̂nuvw

∣∣ 13 , (B.11)

where

Kγ(t) =

{
t 0 ≤ t < Mγ

2
+ 1

Mγ − t Mγ

2
≤ t < Mγ

. (B.12)

We introduce the function Kγ(t) here in order to conform with the standard

form used by the FFT package, FFTW3 [93].
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4. Next, a backward FFT is performed to p̂nuvw
∣∣ 23 , yielding,

qnuvw
∣∣ 23 =

Mx−1∑

l=0

My−1∑

m=0

Mz−1∑

n=0

p̂nlmn
∣∣ 23 exp

[
+2πi

(
ul

Mx

+
vm

My

+
wn

Mz

)]
. (B.13)

5. Lastly, we obtain qn+1 by applying the potential contribution once more as in

Step 1,

qn+1
uvw = exp

(
−ω(ruvw)

∆s

2

)
qnuvw

∣∣ 23 . (B.14)

By applying the potential and diffusion contributions separately as opposed to jointly,

we have succeeded in solving q(r, s) to second order accuracy in s, i.e. the associated

corrections to q(r, s) are of order O(∆s3) [7].
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Appendix C

Simpsons Rule

The numerical integration method employed throughout SCFT calculations is the

Simpsons Rule for both even and odd number of intervals [69]. Given M +1 > 6 data

points, {(xi, yi = y(xi))}Mi=0, assumed to be equally spaced in x, the integration rule

reads,

∫ xM

x0

dx y(x) ≈ ∆x

(
9

24
y0 +

28

24
y1 +

23

24
y1 +

M−3∑

i=3

yi +
23

24
yM−2 +

28

24
yM−1 +

9

24
yM

)
,

(C.15)

where ∆x = xi−xi−1. One small computational advantage offered by Eq. (C.15) over

the even Simpsons Rule is that the integration weights are all equal to 1, except for

the first and last three points.

When the data is periodic such that yM = y(xM) = y(x0) = y0, Eq. (C.15) can be

re-written as,

∫ xM

x0

dx y(x) ≈ ∆x

(
18

24
y0 +

28

24
y1 +

23

24
y1 +

M−2∑

i=3

yi +
23

24
yM−2 +

28

24
yM−1

)
, (C.16)
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where it is no longer necessary for yM to appear on the right-hand side of the above

equation since y0 = yM .

107



Appendix D

Variable-cell Anderson Mixing

In the following, we discuss our implementation of variable-cell Anderson mixing. This

numerical technique was pioneered by Anderson [94]. Schmid first applied Anderson

mixing in the context of SCFT in a study of liqid monolayers [95]. The technique was

then further developed for polymeric systems by Thompson [96]. Recently, Arora

et al. extended the usage of Anderson mixing to simultaneously solve the SCFT

equations and optimize the lattice parameters, which the authors called variable-cell

Anderson-mixing [68]. The benefit offered by Anderson mixing is a faster rate of

convergence than the simple mixing scheme introduced in Section 2.1.2 for minimal

computational costs, both in terms of memory and number of operations.

Simple mixing uses only the information from the current iteration, the inputs

{ωA(r),θ}|m and outputs ω
(out)
α (r)|m to construct the inputs for the next iteration

{ωA(r),θ}|m+1. However, Anderson mixing determines {ωA(r),θ}|m+1 using an op-

timal combination of inputs and outputs spanning a number of previous iterations.

Thus, when the history of inputs show steady signs of convergence, the convergence
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process is readily expedited through Anderson mixing. Conversely, when the devi-

ations of the fields from one iteration in the past from the next is large, Anderson

mixing performs rather poorly, frequently yielding new inputs that are farther away

from the desired solutions than before. For these reasons, simple mixing is often first

used to ensure a history of well-behaved input fields for numerical stability, before

switching to Anderson mixing for a faster rate of convergence.

Given the inputs {ωA(r),θ}|m+1 belonging to the mth iteration, the deviation

functions or residuals for the auxiliary fields reads,

d(m)
α = d (r;ωα) |m = ω(out)

α |m − ωα|m, (D.17)

where ωα|m = ωα(r)|m and ω
(out)
α |m = ωα(r)|m. For the lattice parameters θ|m =

{θp|m}Pp=1, the residuals are,

d (θp)
(m) =

d

dθp

(v0

V
βF
) ∣∣∣∣

m

. (D.18)

The auxiliary fields serving as inputs for the next iteration takes the form,

ωα|n+1 =Λlωα|m + (1− Λl)ω(out)
α |m

−
l∑

j=1

Aj
[
Λl (ωα|m − ωα|n−j) + (1− Λl)

(
ω(out)
α |m − ω(out)

α |n−j
)]

=

(
1−

l∑

j=1

Aj

)
(
ωα|m + (1− Λl)d(m)

α

)
+

l∑

j=1

(
ωα|m−j + (1− Λl)d(m−j)

α

)

,

(D.19)

where l = min (m,Ml) is the current number, of previous iterations to consider,

whereas Ml is the maximum number to consider. The parameter Λ governs the
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relative contribution of input fields to ωα|n+1, while Aj are the elements of the vector

A that satisfies,

UA = D. (D.20)

Here, U is l × l symmetric matrix,

(U)jk =
∑

α

∫
dr
(
d(m)
α − d(m−j)

α

) (
d(m)
α − d(m−k)

α

)

+
P∑

p

(
d (θp)

(m) − d (θp)
(m−j)

)(
d (θp)

(m) − d (θp)
(m−k)

), (D.21)

and D is a vector of length l,

(D)j =
∑

α

∫
dr d(m)

α

(
d(m)
α − d(m−j)

α

)
+

P∑

p

d (θp)
(m)
(
d (θp)

(m) − d (θp)
(m−j)

)
,

(D.22)

with 1 ≤ j, k ≤ l. Similarly, the lattice parameters for the next iteration θ|m+1 is

given by,

θp|m+1 =

(
1−

l∑

j=1

Aj

)
(
θp|m + (1− Λl)d(m)

α

)
+

l∑

j=1

(
θp|m−j + (1− Λl)d(m−j)

α

)
.

(D.23)

We use Λ = 0.9 and Ml = 30 in our implementation of Anderson mixing. Further-

more, A is obtained via LU factorization [97]. We can see from Eq. (2.34) that ωα|n
and ω

(out)
α |n contributes to ωα|n+1 in an identical manner in every iteration when sim-

ple mixing is used. For Anderson mixing however, the contributions of the input and

output fields from one particular past iteration to ωα|n+1 can differ from one iteration

to another, being governed by the magnitude of Aj. Thus, Anderson mixing is able

to correct for the occasional misbehaved or “bad” step [96], whereas simple mixing
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cannot.

As noted earlier, when the history of inputs and outputs are poorly behaved, U

may not be invertible, meaning an optimal combination of the inputs/outputs cannot

be found. To prevent such a situation, it is recommended that simple mixing is first

used until the total deviations or residue errors associated with the auxiliary fields,

∆ωα|m =

√√√√√
∫
dr
(
d

(m)
α

)2

∫
dr (ωα|m)2 , (D.24)

and associated with the lattice parameters,

∆θp|m =

√√√√√
∑P

p

(
d (θp)

(m)
)2

∑P
p (θp|m)2

, (D.25)

are less than 10−2 before Anderson mixing is employed.
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Appendix E

Approximation for the Poisson

Distribution
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Figure E.1: Approximation of the Poisson distribution a) after the first step (trunca-
tion), and c) after the second step (coarse-graining) for λ0 = 0, λf = 16, and Mλ = 4.
The same is shown in b), and d) for λf = 18, and Mλ = 3.
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We begin with the Poisson distribution,

Pois (λ;µ) =
µλe−µ

λ!
, λ = 0, 1, 2, ... (E.26)

which is non-zero for an infinite number of λ values. The goal of our approximation

scheme is to construct an approximation that is non-zero for a finite Mλ values of λ.

The first step is to choose two values, λ0, and λf , such that the change in P (λ) is

greater within than outside the interval [λ0,λf ]. The choice is arbitrary, subject to the

constraint that ∆λ = (λf − λ0)/Mλ is an integer, and simply amounts to truncating

the distribution at either ends. The second step is to reduce the λf − λ0 points to

Mλ points via coarse-graining:

λi =

∑∆λ−1
j=0 (λ0 + i∆λ+ j)P (λ0 + i∆λ+ j)

∑∆λ−1
j=0 P (λ0 + i∆λ+ j)

. (E.27)

The approximate distribution, which is non-zero for λ = λi, is given by,

P̃ (λi) =

∑∆λ−1
j=0 (λ0 + i∆λ+ j)

∑Mλ−1
k=0

∑∆λ−1
j=0 P (λ0 + k∆λ+ j)

. (E.28)

For our work, we choose λ0 = 0, and λf = 16 for Mλ = 4, 8, and 16, while λf = 18

for Mλ = 3 to ensure that ∆λ is an integer. This procedure is shown schematically

in Figure E.1 for two different degrees of coarse-graining.
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Appendix F

Supplementary information for

Chapter 4
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Figure F.2: Polynomial fits for the data of Sample 15: (a) λ (c) using
{
c, λ

(src)
c

}M(src)

c=1

and (b) P (src) (c) using
{
c, P

(src)
c

}M(src)

c=1
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Sample 15 〈λc〉 〈λ2
c〉 〈λ3

c〉

1) Data 1. 1.4263 2.521

2) Integral 0.9997 1.4244 2.5119

3) Quadrature Rule 0.9982 1.4233 2.5163

Table F.1: The first three moments of Sample 15 (1) calculated directly from the

data
{
λ

(src)
c , P

(src)
c

}M(src)

c=1
, as well as from integrating the polynomial fits λ (c)n P (c)

(2) exactly and (3) using the Gauss-Legendre quadrature.
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Figure F.3: Polynomial fits for the data of Sample 4: (a) λ (c) using
{
c, λ

(src)
c

}M(src)

c=1

and (b) P (src) (c) using
{
c, P

(src)
c

}M(src)

c=1
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Sample 4 〈λc〉 〈λ2
c〉 〈λ3

c〉
1) Data 1. 1.085 1.233
2) Integral 1. 1.085 1.233
3) Quadrature Rule 1.003 1.09 1.24

Table F.2: The first three moments of Sample 4 (1) calculated directly from the

data
{
λ

(src)
c , P

(src)
c

}M(src)

c=1
, as well as from integrating the polynomial fits λ (c)n P (c)

(2) exactly and (3) using the Gauss-Legendre quadrature.

λ
(gl)
c P

(gl)
c

8.0416324 9.3171584× 10−6

7.1624019 2.9372502× 10−5

5.8515582 0.000369386094
4.4270944 0.0059176728
3.13880433 0.0282233699
2.11242293 0.07742264
1.36681614 0.176635128
0.86082552 0.38639963
0.5342314 0.198716017
0.33098385 0.046300866
0.20773068 0.0177815545
0.134298560 0.010000831
0.091108596 0.0078676980
0.066112300 0.0068341697
0.052239564 0.0050164162
0.0455953884 0.00249803124

Table F.3: Relative chain length and corresponding number fractions
{
λ

(gl)
c , P

(gl)
c

}

from a 16-point Gauss-Legendre quadrature for Sample 7.
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