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Abstract

We are concerned with the existence of hypersurfaces in hyperbolic space whose
principal curvatures κ = (κ1, κ2, . . . , κn) satisfy a prescribed curvature relation
f(κ) = σ ∈ (0, 1) and has a prescribed asymptotic boundary at infinity.

Under standard assumptions on the curvature function f(κ), the problem has
been extensively studied by Bo Guan, Joel Spruck and their collaborators in a
series of papers [27, 25, 18, 16, 14, 15, 17]; a special case of the problem in which
the curvature vector κ lies in the positive cone K+

n = {κi > 0 ∀ i} has been
completely solved in [17] and the result is essentially optimal. In [14], by applying
the same approach to the general case, they proved the existence of solutions only
for 0 < σ0 < σ < 1 where σ0 is some number between 0.3703 and 0.3704.

In this thesis, we follow their method and extend their result in [14] to hold
for all 0 < σ < 1, with the help of an additional assumption

∑n
i=1 fi ≤ C on the

curvature function. In particular, our theorem applies to the curvature quotient
f = Hk

Hk−1
for all 1 ≤ k ≤ n in the k-th Garding cone, where Hk is the k-th

normalized elementary symmetric polynomial.
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n∑
i=1

n∑
j=1

F ijaij

, unless otherwise noted.

� Throughout this thesis, all hypersurfaces in Hn+1 are assumed to be con-
nected and orientable. If Σ is a complete hypersurface in Hn+1 with compact
asymptotic boundary at infinity, then the normal vector field of Σ is chosen
to be the one pointing to the unique unbounded region in Rn+1

+ \Σ, and the
principal curvatures are calculated with respect to this normal vector field.
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Chapter 1

Introduction

Fix n ≥ 2. Let Hn+1 be the hyperbolic space of dimension n+ 1 and let ∂∞Hn+1

denote the ideal boundary of Hn+1 at infinity.
The study of minimal hypersurfaces (i.e. hypersurfaces whose mean curvature

vanishes everywhere) with prescribed asymptotic boundary Γ was first initiated
by Anderson [2, 3], in which he proved the existence of a complete, absolutely
area-minimizing locally integral n-current Σ in Hn+1 whose support M has Γ as
its asymptotic limit; the boundary regularity at infinity of his construction was
then studied by Hardt and Lin in [19]. In particular, they found that near points
of the boundary Γ, M ∪ Γ may be described as the graph of some function which
is a solution to a Dirichlet problem and the PDE is degenerate along the part
of boundary corresponding to Γ. In [24], Lin studied the Dirichlet problem and
proved that the graph is as smooth as the boundary. Based on Lin’s method, Tone-
gawa [31] extended their results to hypersurfaces with constant mean curvature
and later the same problem was studied by Nelli-Spruck [25] and Guan-Spruck
[18] using a different approach.

For hypersurfaces of constant Gauss curvature in hyperbolic space with pre-
scribed asymptotic boundary at infinity, the problem was initiated by Labourie
[23] in H3 and settled by Rosenberg-Spruck [27] in Hn+1. It is then natural to
consider the problem for more general curvature functions as in the works [16, 14,
15, 17] of Bo Guan, Joel Spruck and their collaborators.

Suppose that f ∈ C2(K) ∩ C0(K) is a symmetric function defined in an open
symmetric convex cone K ⊆ Rn with vertex at the origin, containing the positive
cone

K+
n = {λ ∈ Rn : λi > 0 ∀ i} ⊆ K

. Given a disjoint collection of closed embedded smooth (n − 1)-dimensional
submanifolds Γ = {Γ1, . . . ,Γm} ⊆ ∂∞Hn+1 and a constant 0 < σ < 1, we study
the problem of finding a smooth complete hypersurface Σ in Hn+1 satisfying

κ(x) ∈ K and f(κ(x)) = σ for all x ∈ Σ (1.1)

with the asymptotic boundary
∂Σ = Γ (1.2)

1
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where κ = (κ1, . . . , κn) denotes the vector of induced hyperbolic principal curva-
tures of Σ and for a hypersurface Σ satisfying the second requirement (1.2), we say
it is asymptotic to Γ at infinity. We will call (1.1)-(1.2) the asymptotic Plateau
problem in hyperbolic space.

The first requirement (1.1) in its most general form will be of

f(κ(x)) = ψ(x, ν), x ∈ Σ

for some well-defined positive function ψ of position x and the unit normal ν. Here
we consider only the case that the right-hand side is a constant ψ = σ ∈ (0, 1).
We shall show later in chapter two that the right-hand side must be smaller than
one for a solution to exist; see corollary 2.5.1. Note that (1.1) is a relation among
the hypersurface’s principal curvatures, so the equation will be referred to as the
curvature relation satisfied by Σ. Two typical special cases that have been well-
studied are hypersurfaces of constant mean curvature in which f(κ) = 1

n

∑n
i=1 κi;

and hypersurfaces of constant Gauss curvature in which f(κ) = (κ1 · · ·κn)
1
n .

There are several equivalent models of the hyperbolic space Hn+1, each of
which is useful in certain contexts. In this thesis, we will use the upper half-
space model for Hn+1:

Hn+1 = {(x, xn+1) ∈ Rn+1 : xn+1 > 0}

equipped with the hyperbolic metric

ds2 =

∑n
i=1 dx

2
i

x2
n+1

so that we can identify ∂∞Hn+1 with Rn = Rn × {0} ⊆ Rn+1 and (1.2) may be
understood in the Euclidean sense.

Since the hyperbolic metric is conformally equivalent to the Euclidean metric
with a coefficient x−2

n+1 of conformality, the hyperbolic principal curvatures κi of
Σ are related to its Euclidean κei principal curvatures by the following relation:

κi = xn+1κ
e
i + νn+1, 1 ≤ i ≤ n at (x, xn+1) ∈ Σ (1.3)

where ν is the Euclidean unit normal vector to Σ and νn+1 = ν·en+1. Consequently,
a smooth hypersurface solution to (1.1)-(1.2) must be the graph of a smooth
function u over some bounded domain Ω ⊆ Rn

Σ = graph(u) = {(x, u(x)) ∈ Hn+1 : x ∈ Ω}

and the asymptotic boundary Γ must be the boundary of that domain i.e. Γ = ∂Ω.
The proofs of both (1.3) and that Σ = graph(u) will be given in section 2.1.

Therefore, we can begin by assuming Σ = graph(u) is a graphic hypersurface
and for it to satisfy the two requirements (1.1)-(1.2), the function u must meet
some conditions as well. It turns out that the curvature relation (1.1) can be
written as a partial differential equation (PDE hereafter) in a local orthonormal
frame and hence our geometric problem can thus be reduced to the following

2



M.Sc. Thesis - Bin Wang; McMaster University - Mathematics & Statistics

Dirichlet problem for an implicitly defined fully non-linear second order elliptic
PDE:

G(D2u,Du, u) = σ, u > 0 in Ω ⊆ Rn (1.4)

u = 0 on ∂Ω = Γ (1.5)

where the exact formula of G will be given in section 2.4. We shall seek solutions u
with κ[u] ∈ K where κ[u] := κ[graph(u)] and call them the admissible solutions.
Once we obtain such a solution u to this Dirichlet problem, its graph Σ := graph(u)
will be a solution to the asymptotic Plateau problem (1.1)-(1.2).

The following illustration of a similar problem considered in Rn+1 would be
helpful to understand our problem in Hn+1.

Example 1. Let Γ0 and Γ1 be two strictly convex smooth closed codimension 2
hypersurfaces in parallel planes {xn+1 = 0} and {xn+1 = 1}, respectively. Suppose
the projection γ1 of Γ1 onto the lower plane {xn+1 = 0} contains Γ0. Does there
exist a hypersurface Σ of constant Gauss curvature K0 for K0 sufficiently small?
Intuitively, the answer is affirmative; see below for a drawing by Spruck [29].
Moreover, the hypersurface is the graph of some function u over the annulus Ω
whose inner boundary is Γ0 and outer boundary is γ1. The function is a solution
to the following Dirichlet problem

det(uij) = K0(1 + |∇u|2)
n+2
2 , in Ω

u = φ, on ∂Ω

where φ = 1 on γ1 and φ = 0 on Γ0.

Figure 1.1: A drawing by Joel Spruck [29].

For more details, see [20, 13, 12].

Before we proceed to discuss our method of solution, we shall state the as-
sumptions imposed on the curvature function f(κ). First of all, f is assumed to
satisfy the fundamental structure conditions:

fi(λ) :=
∂f

∂λi
(λ) > 0 for λ ∈ K and 1 ≤ i ≤ n (1.6)

3



M.Sc. Thesis - Bin Wang; McMaster University - Mathematics & Statistics

f is a concave function in K (1.7)

As shown in [6], the first condition will imply the PDE (1.4) is elliptic for admissible
solutions and the second condition will make G concave with respect to D2u.

We shall also assume

f > 0 in K and f = 0 on ∂K (1.8)

This third condition implies that the PDE (1.4) will be uniformly elliptic on com-
pact subdomains of Ω for admissible solutions satisfying a priori bounds in the C2

norm and therefore allows us to apply the Evans-Krylov interior estimate [10, 22]
to derive the C2,α and higher order estimates.

In addition, the following few mild conditions are imposed:

f is normalized: f(1, . . . , 1) = 1 (1.9)

f is homogeneous of degree one: f(tκ) = tf(κ) for t ≥ 0 and κ ∈ K (1.10)

lim
R→∞

f(λ1, . . . , λn−1, λn +R) ≥ 1 + ε0 uniformly in Bδ0(1) (1.11)

for some fixed ε0 > 0 and δ0 > 0.
All these assumptions though technical, they are satisfied by a large class of

curvature functions, especially those of the most interest. For example, consider
the k-th normalized elementary symmetric polynomial

Hk(κ1, . . . , κn) :=
1(
n
k

)σk(κ1, . . . , κn) =
1(
n
k

) ∑
1≤j1<j2<···<jk≤n

κj1κj2 · · ·κjk , 1 ≤ k ≤ n

H0 := 1

which are defined in the k-th Garding cone

Kk := {λ ∈ Rn : σj(λ) > 0 ∀ 1 ≤ j ≤ k}

Remark 1. Kn is the positive cone and we denote it by K+
n to stress the positivity

feature κi > 0.

Now, we point out that both the higher order mean curvature H
1
k
k and the

curvature quotient
(
Hk

Hl

) 1
k−l

, 1 ≤ l < k ≤ n satisfy all the conditions (1.6)-(1.11)

in Kk. In particular, they include the following important special cases 1:

H1(κ) =
1

n

n∑
i=1

κi the mean curvature

H2(κ) =
2

n(n− 1)

∑
i<j

κiκj the scalar curvature

Hn(κ) = κ1 · · ·κn the Gauss curvature
1The prescribed curvature equation that we intend to study is Hk = const; we impose the

exponent 1
k in order for it to satisfy the homogeneity condition (1.10). Note that it is equivalent

to study H
1/k
k = const and the same reasoning applies to the curvature quotient.

4
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Remark 2. The ultimate goal is to solve the asymptotic Plateau problem (1.1)-

(1.2) for f = H
1/k
k and f =

(
Hk

Hl

) 1
k−l

in the k-th Garding cone Kk.

The standard way to solve a fully non-linear elliptic PDE is through the method
of continuity; see chapter 17 of [11]. However, as we shall in see in section 2.4, the
PDE (1.4) is degenerate where u = 0 and we cannot apply the continuity method
directly. Instead, following the method exhibited in the works [16, 14, 15, 17] of
Bo Guan, Joel Spruck and their collaborators, we will study the Dirichlet problem
with an approximate boundary condition:

G(D2u,Du, u) = 0, u > 0 in Ω ⊆ Rn (1.12)

u = ε, on ∂Ω (1.13)

.
There are two main difficulties in applying the continuity method to the ap-

proximate Dirichlet problem (1.12)-(1.13). The first one is to show the second
normal derivative is a priori bounded on the boundary i.e. unn ≤ C on ∂Ω, which
usually requires some geometrical assumptions about the domain Ω. In this thesis,
as in [14], we will assume the domain Ω is mean-convex i.e. the Euclidean mean
curvature of ∂Ω is non-negative H∂Ω ≥ 0. The second problem is that since the
PDE is fully non-linear elliptic, we need to obtain a global C2,α estimate instead
of a C2 estimate, which can be accomplished either by the Evans-Krylov theorem
[10, 22] or Calabi’s third derivative estimate [8]. In this thesis, as in [16, 14, 15,
17], we will use the former method.

When ε > 0 is sufficiently small, it follows from the continuity method that
the Dirichlet problem (1.12)-(1.13) is solvable for all σ ∈ (0, 1).

Theorem 1.0.1 ([14]). Let Ω ⊆ Rn be a bounded smooth mean-convex domain
i.e. H∂Ω ≥ 0. If f satisfies (1.6)-(1.11), then for any σ ∈ (0, 1) and ε > 0
sufficiently small, there exists a unique admissible solution uε ∈ C∞(Ω) of the
Dirichlet problem (1.12)-(1.13) satisfying the following a priori estimates√

1 + |Duε|2 ≤ 1

σ
+ Cε, uε|D2uε| ≤ C on ∂Ω (1.14)

uε|D2uε| ≤ C

ε2
in Ω (1.15)

where C > 0 is independent of ε.

We can then obtain a sequence of solutions uε from which we can extract a
uniformly convergent subsequence uεk , whose limit as εk → 0 is a solution to the
original Dirichlet problem (1.4)-(1.5). However, the estimate (1.15) does not allow
us to pass to the limit. Instead, we shall obtain such an estimate uε|D2uε|2 ≤ C
by proving a maximum principle for the largest hyperbolic principal curvature i.e.
κmax ≤ C.

The existence of solutions to the original Dirichlet problem can be proved as
follows. Since κmax ≤ C, the hyperbolic principal curvatures of an admissible
solution uε are uniformly bounded above by a constant independent of ε. Also,

5
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since f(κ[uε]) = σ in K and f = 0 on ∂K, it follows that the hyperbolic principal
curvatures κi admit a uniform positive lower bound independent of ε on compact
subdomains Ω′ of Ω; see theorem 2.2.1 or lemma 2.5.1. Hence the PDE (1.12) is
uniformly elliptic on Ω′ for admissible solutions uε and by the interior estimates of
Evans-Krylov [10, 22], we obtain uniform C2,α estimates for admissible solutions
on Ω′. Finally, the existence of solutions to (1.4)-(1.5) can be ensured by taking
the limit ε→ 0. See chapter three for more details.

Using this method, Bo Guan, Joel Spruck, Marek Szapiel and Ling Xiao have
completely solved the problem (1.1)-(1.2) when K = K+

n is the positive cone.

Theorem 1.0.2 ([16, 15, 17]). When K = K+
n is the positive cone and Γ = ∂Ω ∈

C2, the asymptotic Plateau problem (1.1)-(1.2) admits a solution for all σ ∈ (0, 1).
In addition, if the boundary Γ = ∂Ω satisfies either of the following conditions

(i) Γ = ∂Ω is C2,α mean-convex,

(ii) Γ = ∂Ω is C2 and strictly Euclidean star-shaped about the origin, or

(iii) if the curvature function f satisfies (1.6)-(1.11) in K+
n and

n∑
i=1

fi >
n∑
i=1

λ2
i fi in K+

n ∩ {λ : 0 < f(λ) < 1}

,

then the solution is unique.

Remark 3. The latest version of their theorem in [17] greatly improves their previ-
ous results [16, 15] by using a different test function in the proof of the maximum
principle κmax ≤ C; see theorem 1.3 in [17].

In [16, 15], the domain Ω was assumed to be at least C3 but now it is sufficient
for it to be only C2. Moreover, the assumptions (1.10) and (1.11) on the curvature
function can be removed. We also point out that in their theorem, the mean-
convexity assumption H∂Ω on the domain Ω is not needed for the existence of
solutions.

The next task is certainly to solve the problem in the general cone K. However,
the problem becomes so much harder to solve and so far they only obtained a
partial result.

Theorem 1.0.3 ([14]). Suppose Γ = ∂Ω for some bounded smooth domain Ω ⊆
Rn with H∂Ω ≥ 0 and f satisfies (1.6)-(1.11). The asymptotic Plateau problem
(1.1)-(1.2) is solvable in K for all 0 < σ0 < σ < 1, where σ0 is some number
between 0.3703 and 0.3704.

That is, the existence of a solution Σ with κ[Σ] ∈ K for all 0 < σ < 1 is
still not guaranteed even when the condition H∂Ω ≥ 0 is imposed. The question
of whether the problem (1.1)-(1.2) is solvable for all σ ∈ (0, 1) with the general
curvature constraint κ[Σ] ∈ K and no geometrical assumptions about the domain
Ω other than being smooth and bounded i.e. remove the condition H∂Ω ≥ 0,

6
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remains unsettled. In particular, we expect the problem to be solvable in the k-th
Garding cone for all σ ∈ (0, 1) when f = H

1/k
k is the higher order mean curvature

or when f =
(
Hk

Hl

) 1
k−l

is the curvature quotient for 1 ≤ l < k ≤ n.

Most recently, Sui [30] studied the problem with the more general curvature
relation

H
1/k
k (κ(x)) = ψ(x) and κ ∈ K+

n for all x ∈ Σ

and proved the existence of a smooth admissible solution in H3 under the assump-
tion that a locally strictly convex subsolution exists. However, the solution to the
most general case is still far from clear and one of the difficulties being that many
inequalities may not work without the positivity condition κi > 0.

In this thesis, we note that the central reason why theorem 1.0.3 fails to hold for
all σ ∈ (0, 1) is that their curvature estimate κmax ≤ C only holds for σ ∈ (σ0, 1).
Therefore, the task reduces to improving the curvature estimate. Specifically, we
prove

Theorem 1.0.4. Suppose Γ = ∂Ω for some bounded smooth domain Ω ⊆ Rn

with H∂Ω ≥ 0 and the curvature function f satisfies

there exists some C > 0 such that
n∑
i=1

fi(λ) ≤ C for all λ ∈ K (1.16)

in addition to (1.6)-(1.11) in the general cone K. Then the curvature estimate
κmax ≤ C holds for all σ ∈ (0, 1) in K and hence there exists for all σ ∈ (0, 1),
a smooth complete hypersurface Σ in Hn+1 satisfying (1.1)-(1.2) with uniformly
bounded principal curvatures

| κ[Σ] | ≤ C on Σ

Moreover, Σ is the graph of a unique admissible solution u ∈ C∞(Ω) ∩ C1(Ω)
of the Dirichlet problem (1.4)-(1.5).

Furthermore, u2 ∈ C∞(Ω) ∩ C1,1(Ω) and√
1 + |Du|2 ≤ 1

σ
, u|D2u| ≤ C in Ω,√

1 + |Du|2 =
1

σ
on ∂Ω.

That is, we extend theorem 1.0.3 to hold for all σ ∈ (0, 1) with the aid of
this additional assumption (1.16). Our improvement is based on an observation
that, by examining the inequalities in their proof of the curvature estimate from
a different perspective, it would turn out that the key issue is to estimate the sum∑n

i=1 fi in (optimally a subset of) K and this is the only place we impose the
assumption (1.16); all the other results in [14] remain intact.

Recall again that we desire the problem (1.1)-(1.2) to be solvable in the k-th
Garding cone Kk for all σ ∈ (0, 1) when the curvature function is either the higher

order mean curvature f = H
1/k
k or their quotients

(
Hk

Hl

) 1
k−l

, 1 ≤ l < k ≤ n. Note

7
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that the cases that (f,K) = (H1, K1) and (f,K) = (H
1/n
n , K+

n ) have already been
taken care of in [23, 27, 25, 18]; the results in [16, 15, 17] apply to general f in the
positive cone K+

n (but not in the k-th cone Kk) and in particular to the quotients(
Hn

Hl

) 1
n−l

, 1 ≤ l < n. In other words, the case (f,K) =

((
Hn

Hl

) 1
n−l

, K+
n

)
has been

resolved as well. For the remaining indices 1 < k < n, the problem (1.1)-(1.2)
still awaits solutions and new methods should be employed. We emphasize here
that our theorem 1.0.4 applies to the particular quotient Hk

Hk−1
in the k-th Garding

cone where 1 ≤ k ≤ n, therefore it fills in one of the missing pieces to the “jigsaw
puzzle”.

Curvature Function Cone Solution

H1 K1 [25, 18]

H
1/n
n K+

n [23, 27](
Hn

Hl

) 1
n−l

, 1 ≤ l < n K+
n [15, 17]

general f K+
n [15, 17]

Hk

Hk−1
, 1 ≤ k ≤ n Kk theorem 1.0.4

H
1/k
k , 1 < k < n Kk unknown(

Hk

Hl

) 1
k−l

, 0 ≤ l < k − 1 < k < n Kk unknown

Table 1.1: Current Progress on the Asymptotic Plateau Problem

The thesis is organized as follows. Chapter two is of a preliminary nature,
providing necessary background for understanding the problem in concern and a
list of facts we will use frequently in our proofs of the main results. While chapter
three is devoted to prove theorem 1.0.4; we also prove the uniqueness of solutions
for (1.12)-(1.13) in section 3.1, which immediately yields a global gradient estimate√

1 + |Du|2 ≤ 1
σ
. We note that the gradient estimate and the condition (1.11)

are essential for the derivation of a boundary C2 estimate i.e. |D2u| ≤ C on ∂Ω,
which will be proved in section 3.2. The centerpiece of this thesis is section 3.3,
which contains the proof of a new curvature estimate κmax ≤ C relying on (1.16).
The proofs of all these estimates are all heavily dependent on the auxiliary results
listed in chapter two. Together with the boundary C2 estimate, we obtain a global
C2 estimate and hence a C2,α estimate as required by the method of continuity.
This new curvature estimate improves theorem 1.0.3 and yields theorem 1.0.4; we
emphasize that this is the only place we make changes to the results in [14].

8



Chapter 2

Preliminaries

We recall here some notions of Riemannian Geometry and introduce our notations
along the way. All these materials can be found in a standard textbook such as
[9].

A Riemannian manifold is a smooth manifold M equipped with a Rieman-
nian metric g, which is a correspondence associating to each point p of M an
inner product denoted by 〈·, ·〉p or gp(·, ·) on the tangent space TpM and varying
smoothly in the following sense: for any two smooth vector fields X, Y ∈ X(M),
the inner product gp(Xp, Yp) is a smooth function of p.

An affine connection ∇ on M is a map X(M)×X(M)→ X(M) denoted by
(X, Y ) 7→ ∇XY which satisfies

(i) C∞(M)-linearity in X: ∇fX+gYZ = f∇XZ + g∇YZ.

(ii) X(M)-additive in Y : ∇X(Y + Z) = ∇XY +∇XZ.

(iii) the Leibniz rule: ∇X(fY ) = f∇XY +X(f)Y .

for any vector fields X, Y, Z ∈ X(M) and smooth functions f, g ∈ C∞(M). Every
Riemannian manifold (M, g) admits a unique affine connection ∇ such that it is
symmetric

∇XY −∇YX = XY − Y X

and compatible with the Riemannian metric

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

. We call it the Levi-Civita connection on M . From now on, ∇ will always
denote the Levi-Civita connection of some Riemannian manifold rather than an
arbitrary affine connection.

The curvature tensor R of M is a correspondence associating to every pair
of vector fields X, Y ∈ X(M) a mapping R(X, Y ) : X(M)→ X(M) given by

R(X, Y )Z = ∇Y (∇XZ)−∇X(∇YZ) +∇[X,Y ]Z

Let {e1, . . . , en} be a local frame on M . We denote the local representation
of the Riemannian metric by gij = g(ei, ej) and its inverse by gij; we also use the

9
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following abbreviations:

∇i := ∇ei , ∇ij := ∇i∇j −∇∇iej

Rijkl := 〈R(ek, el)ej, ei〉, Ri
jkl := gimRmjkl

and the Christoffel symbols Γkij are the unique coefficients such that ∇eiej =
Γkijek.

Moreover, for a smooth function v defined on M , we identify its gradient ∇v
and Hessian ∇ijv as the vector fields defined by

〈(∇v)p, w〉 = dvp(w), p ∈M w ∈ TpM
∇ijv = ∇i(∇jv)− Γkij∇kv

Finally, we list a few important formulas in Riemannian geometry which will
be used in section 3.3. Let X denote the position vector of M , ν the outer unit
normal on M and {hij} the second fundamental form of M , we have

Xj = −hijν Gauss formula

νi = hijej Weingarten equation

hijk = hikj Codazzi equation

Rijkl = hikhjl − hilhjk Gauss equation

where hijk := ∇khij.
In the following sections, we list auxiliary results that will be used frequently

and implicitly in chapter three. Note that most results are provided with detailed
proofs except those requiring tedious proofs, for which we shall only briefly sketch
the proofs and refer the reader to sources of their full proofs.

Throughout this thesis, all hypersurfaces in Hn+1 are assumed to be connected
and orientable. If Σ is a complete hypersurface in Hn+1 with compact asymptotic
boundary at infinity, then the normal vector field of Σ is chosen to be the one
pointing to the unique unbounded region in Rn+1

+ \Σ, and the principal curvatures
are calculated with respect to this normal vector field.

2.1 Σ as a Graph

In this section, we derive the simple relation (1.3) between Euclidean principal
curvatures and hyperblic principal curvatures; as a consequence, we establish the
fact that Σ is the graph of some function over a domain Ω ⊆ Rn.

Let Σ be a hypersurface in Hn+1. We shall use g and ∇ to denote the induced
hyperbolic metric and Levi-Civita connection on Σ, respectively. As Σ is also a
submanifold of Rn+1, we shall distinguish a geometric quantity with respect to the
Euclidean metric by adding a ‘tilde’ over the corresponding hyperbolic quantity.
For example, g̃ denotes the induced metric on Σ from Rn+1 and ∇̃ is its Levi-Civita
connection.

10
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Suppose Σ is locally represented as the graph of some function u ∈ C2(Ω), u > 0
over Ω:

Σ = {(x, u(x)) ∈ Rn+1 : x ∈ Ω}

. The coordinate vector fields on Σ and the hyperbolic unit normal are

Xi = ei + uien+1, n = uν

where

ν =

(
−Du
w

,
1

w

)
=
−uiei + en+1

w

is the Euclidean unit normal and w =
√

1 + |Du|2.
The first fundamental form is then by definition

gij = 〈Xi, Xj〉 =
1

u2
(δij + uiuj) =

g̃ij
u2

The Christoffel symbol for the hyperbolic metric is

Γkij =
1

2

∑
m

(∂igjm + ∂jgmi − ∂mgij)gmk

=
1

xn+1

(−δjkδi,n+1 − δikδj,n+1 + δijδk,n+1)

and it is related to the Euclidean version by

Γkij = Γ̃kij −
uiδkj + ujδik − g̃klulg̃ij

u

Let ∇ be the Riemannian connection of Hn+1. Then

∇Xi
Xj =

∑
k

ΓkijXk =

(
δij
xn+1

+ uij −
uiuj
xn+1

)
en+1 −

ujei + uiej
xn+1

and the second fundamental form is

hij = 〈∇Xi
Xj,n〉 =

δij + uiuj + uuij
u2w

=
h̃ij
u

+
νn+1

u2
g̃ij (2.1)

The hyperbolic principal curvatures κ = (κ1, . . . , κn) of Σ are the roots of

det(hij − κgij) =
1

un
det

(
h̃ij −

1

u

(
κ− 1

w

)
g̃ij

)
= 0

Therefore,

κi = uκ̃i + νn+1 = uκ̃i +
1

w
(2.2)

and we can use this relation to prove

11
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Theorem 2.1.1 ([16]). If Σ is a complete C2 hypersurface in Hn+1 with compact
asymptotic boundary ∂Σ ⊆ {xn+1 = ε} for some ε > 0, then Σ is the graph of
some function u ∈ C2(Ω) ∩ C(Ω) over a bounded domain Ω ⊆ {xn+1 = ε}:

Σ = {(x, u(x)) ∈ Rn+1 : x ∈ Ω}
such that u > 0 in Ω and u = 0 on ∂Ω. Moreover, ∂Σ = ∂Ω.

Here we say Σ has compact asymptotic boundary if ∂Σ ⊆ ∂∞Hn+1 is compact
with respect to the Euclidean metric in Rn.

Proof. Let T be the set of t ≥ ε such that Σt := Σ∩{xn+1 ≥ t} is a vertical graph
and let t0 denote the minimum of T .

Suppose to the contrary that t0 > c. Then there must exist a point p ∈ ∂Σt0

such that νn+1(p) = 0 i.e. the normal vector to Σ at p is horizontal. It follows
from (2.2) that κ̃i = κi

t0
> 0 for all 1 ≤ i ≤ n at p.

However, if P is the plane through p spanned by e and ν(p), then Σ ∩ P is a
curve having non-positive curvature at p. This is a contradiction and so t0 = c.

See lemma 2.1 in [30] for a slightly different proof.

2.2 Properties of the Curvature Function

We first recall the Euler’s theorem on homogeneous functions, which will be
used most frequently throughout the text but without saying so.

Lemma 2.2.1 (Euler’s theorem). Let Ω ⊆ Rn be open. Suppose f ∈ C1(Ω) is
positively homogeneous of degree k in Ω. Then

kf(x) = ∇f(x) · x =
n∑
i=1

xifi(x) for all x ∈ Ω

Proof. Define g(t) := f(tx). Note that if we see g as g(t) = tkf(x) by exploiting
the homogeneity condition, then

g′(t) = ktk−1f(x)

. On the other hand, if we see g as g(t) = f(tx) and apply the chain rule, then

g′(t) = ∇f(tx) · x

. Hence we have ktk−1f(x) = ∇f(tx) · x and setting t = 1 yields the result.

Lemma 2.2.2. Suppose the smooth symmetric function f is concave, normalized
and homogeneous of degree one on an open symmetric convex set K containing
K+
n . Then for all λ ∈ K we have

f(λ) ≤ 1

n

n∑
i=1

λi and
n∑
i=1

fi(λ) ≥ 1 (2.3)

12
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Proof. For the first inequality, note that since f is concave we have for all x, y ∈ K
that

f(x)− f(y) ≤
n∑
i=1

fi(y) · (x− y)

Also since f is homogeneous of degree one, we have by the Euler’s theorem

∇f(λ) · λ = f(λ)

Applying this formula to λ = 1 = (1, 1, . . . , 1), we have
∑n

i=1 fi(1) = f(1) = 1.
Note further that as f is symmetric, fi(1) = fj(1) for all 1 ≤ i, j ≤ n. This can
be seen from the definition of partial derivative. It follows that fi(1) = 1

n
.

Therefore, we have

f(λ) ≤ f(1) +
n∑
i=1

fi(1)(λi − 1)

= f(1) +
n∑
i=1

fi(1)λi −
n∑
i=1

fi(1)

=
1

n

n∑
i=1

λi

This proves the first inequality.
For the second inequality, we apply Euler’s theorem and concavity again

n∑
i=1

fi(λ) =
n∑
i=1

fi(λ) + [f(λ)− f(λ)]

= f(λ) +
n∑
i=1

fi(λ)−∇f(λ) · λ

= f(λ) +
n∑
i=1

fi(λ)(1− λi)

≥ f(1) = 1

Lemma 2.2.3. Suppose f satisfies (1.6)-1.10) in K and let λ ∈ K. If λr < 0 for
some 1 ≤ r ≤ n, then

∑
i 6=r

fiλ
2
i ≥

1

n− 1
(2f · |λr|+ frλ

2
r)

∑
i 6=r

fiλ
2
i ≥

1

n

n∑
i=1

fiλ
2
i

13
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Proof. Since λr < 0, we have min1≤i≤n λi ≤ λr < 0. Also, since
∑n

i=1 fiλi = f > 0
and fi > 0 for all 1 ≤ i ≤ n, there must be at least one λs > 0 and hence
max1≤i≤n λi > 0. We may now assume λ = (λ1, . . . , λn) is ordered as

λ1 ≥ λ2 ≥ · · · ≥ λn

with λ1 > 0 and λn < 0.
Since f is homogeneous of degree one, we have by Euler’s theorem that

∑n
i=1 fi(λ)λi =

f(λ) for all λ ∈ K. Hence ∑
i 6=n

fiλi = f + fn|λn|

If we apply the Cauchy-Schwartz inequality to the product
∑

i 6=n fi ·
∑

i 6=n fiλ
2
i ,

we obtain(∑
i 6=n

fi

)
·

(∑
i 6=n

fiλ
2
i

)
≥

(∑
i 6=n

√
fi ·
√
fiλi

)2

=

(∑
i 6=n

fiλi

)2

= (f + fn|λn|)2 = f 2 + 2ffn|λn|+ f 2
nλ

2
n

By concavity of f in K, we have that fn ≥ fi for all 1 ≤ i ≤ n and so
fnλ

2
n ≥ frλ

2
r.

It is then easy to deduce that(∑
i 6=n

fi

)
·

(∑
i 6=n

fiλ
2
i

)
≤ (n− 1)fn ·

∑
i 6=n

fiλ
2
i

Therefore, we have obtained

f 2 + 2ffn|λn|+ f 2
nλ

2
n ≤ (n− 1)fn ·

∑
i 6=n

fiλ
2
i

Finally, since |λn| ≥ |λr| and fnλ
2
n ≥ frλ

2
r, it follows that

∑
i 6=r

fiλ
2
i ≥

∑
i 6=n

fiλ
2
i ≥

(f 2/fn) + 2f |λn|+ fnλ
2
n

n− 1
≥ 2f |λn|+ fnλ

2
n

n− 1

≥ 2f |λr|+ frλ
2
r

n− 1

This proves the first inequality.

Theorem 2.2.1 ([6]). Suppose Σ is a smooth complete hypersurface in Hn+1

satisfying f(κ[Σ]) = σ in K and the curvature function f(κ) satisfies (1.7) and
(1.8) in K. Then there exists some δ > 0 such that

n∑
i=1

κi ≥ δ > 0 in {κ ∈ K : f(κ) ≥ σ}

14
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Remark 4. The same conclusion holds in the set {κ : f(κ) ≥ inf ψ} for the general
curvature relation f(κ) = ψ(x, ν).

Proof. The set {κ : f(κ) ≥ σ} is closed, convex and symmetric. The unique
closest point in this set to the origin is therefore of the form (b, . . . , b) for some
b > 0 and we can take δ = nb.

Theorem 2.2.2. Both the higher order mean curvature H
1
k
k and the curvature

quotient
(
Hk

Hl

) 1
k−l

satisfy all the assumptions (1.6)-(1.11) in the k-th Garding cone

Kk.

Proof. For the fundamental structure conditions (1.6)-(1.7), see theorem 2.16 in
[28] and section 2 in [32]; these are common knowledge in literature. The condition
(1.8) follows immediately from the definition of the k-th Garding cone:

Kk := {λ ∈ Rn : σj(λ) > 0 ∀ 1 ≤ j ≤ k}

. Similarly, the conditions (1.9) and (1.10) are straightforward to verify from the
definition of the k-th elementary symmetric polynomial:

Hk(κ) :=
1(
n
k

)σk(κ1, . . . , κn) =
1(
n
k

) ∑
1≤j1<j2<···<jk≤n

κj1κj2 · · ·κjk , 1 ≤ k ≤ n

While for (1.11), we have by direct computation that

lim
R→∞

f(λ1, . . . , λn−1, λn +R) =

∞, f = H
1
k
k(

k
l

) 1
k−l , f =

(
Hk

Hl

) 1
k−l

2.3 The Curvature Relation

In this section, we prove some useful formulas with the help of (1.1); they will be
used frequently without comments in subsequent parts of the thesis.

Let S be the vector space of n×n symmetric matrices. For the open symmetric
convex cone K ⊆ Rn with K+

n ⊆ K, we set

SK := {A ∈ S : λ(A) ∈ K}

where λ(A) = (λ1(A), . . . , λn(A)) denotes eigenvalues of A.
For a function F defined in SK , we denote

F ij(A) :=
∂F

∂aij
(A), F ij,kl(A) :=

∂2F

∂aij∂akl
(A), A = {aij} ∈ SK

.
We are interested in the case that F depends only on the eigenvalues of A i.e.

F (A) = f(λ(A))

.

15
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Lemma 2.3.1 ([28]). Suppose f is a smooth symmetric function satisfying the
fundamental structure conditions (1.6)-(1.7) in K and F (A) = f(λ(A)). Then for
all A ∈ SK ,

(i) F is smooth and {F ij} is symmetric.

; when A is diagonal,

(ii) F ij = fiδij and so the linearized operator L = F ij∂ij is elliptic.

(iii) we have

F ij(A)aij =
∑
i

fi(λ(A))λi(A) (2.4)

F ij(A)aikakj =
∑
i

fi(λ(A))λ2
i (A) (2.5)

where the Einstein summation convention is being used.

(iv) F is concave i.e. F ij,kl(A)ξijξkl ≤ 0 for all ξ ∈ S and A ∈ SK .

Proof.

(i) Smoothness of F follows from the smoothness of f and symmetry of F follows
from the symmetry of A.

(ii) Since F ij =
∑

k fλk
∂λk
∂aij

, we need to compute ∂λk
∂aij

. Consider a variation

Ãij := Aij + ε. If j < i then

det(Ã− λI) =
∏
k 6=i,j

(λk − λ)(λ2 − (λi + λj) + λiλj − ε2)

. It follows that

λ̃k = λk, if k 6= i, j

λ̃i =
λi + λj

2
+

√(
λi − λj

2

)2

+ ε2

λ̃j =
λi + λj

2
−

√(
λi − λj

2

)2

+ ε2

i.e. λ̃i = λi +O(ε2) and λ̃j = λj +O(ε2). Hence ∂λk
∂aij

= 0 if k 6= i, j.

If i = j, then λ̃k = λk for k 6= i and λ̃i = λi + ε. Thus in all cases, we have
∂λk
∂aij

= δkiδij and

F ij =
∑
k

fλk
∂λk
∂aij

= fiδij
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(iii) We just do direct computation.

F ijaij = fiδijaij = fiaii = fiλi

F ijaikakj = fiδijaikakj = fiδija
2
ij = fia

2
ii = fiλ

2
i

(iv) Let A,B ∈ SK . We want to show

F ij(A)(B − A)ij ≥ F (B)− F (A)

. Assume the eigenvalues {λi} of A and eigenvalues {µi} of B are arranged
so that

µ1 ≤ µ2 ≤ · · · ≤ µn

fλ1 ≥ fλ2 ≥ · · · ≥ fλn

. By some linear algebra, we have

F ijBij ≥ fλ1µ1 + · · ·+ fλnµn

and hence

F ij(B−A)ij = F ijBij−
∑

fλiλi ≥
∑

fλi(µi−λi) ≥ f(µ)−f(λ) = F (B)−F (A)

by the concavity of f .

Lemma 2.3.2 ([28]). When A = {aij} ∈ SK is diagonal with simple eigenvalues,
we have

(i) (fi − fj)(κi − κj) ≤ 0.

(ii) F ij,klaijakl = F ijaiiajj +
∑

i 6=j
fi−fj
κi−κj (aij)

2.

Remark 5. It follows from (i) that

fi − fj
λi − λj

≤ 0

. This fact is used in our proof of curvature estimate, when ensuring the positivity
of a particular term; see section 3.3.

Proof.

(i) Suppose λi > λj and let λ∗ denote the vector obtained from λ by interchang-
ing λi and λj. By symmetry and convexity of K, the ray

λ∗ + t(λi − λj)(ei − ej), 0 ≤ t ≤ 1

is in K.

Since f is symmetric and concave, the graph of

t 7→ f(λ∗ + t(λi − λj)(ei − ej))

is symmetric and concave about its maximum, which occurs at t = 1
2
. Hence,

(λi − λj)(fi − fj) ≤ 0

17
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(ii) Note that

F ij,kl =
∑
r

fr
∂2λr

∂aij∂akl
+
∑
r,s

frs
∂λr
∂aij

∂λs
∂akl

From our previous calculations, we see that∑
r,s

frs
∂λr
∂aij

∂λs
∂akl

= fikδijδkl

. Similarly, the second derivative ∂2λr
∂aij∂akl

is non-zero only when (i, j) = (k, l)

and i 6= j, in which case we have

∂2λi
∂a2

ij

=
1

λi − λj
,

∂2λj
∂a2

ij

= − 1

λi − λj
, if λi > λj

. Hence,

F ij,kl = fikδijδkl +
fi − fj
λi − λj

(1− δij)δijkl

where δijkl = 1 if (i, j) = (k, l) and zero otherwise.

Lemma 2.3.3. Let u be the height function of Σ and v ∈ C2(Σ), we have

(i) ∇ij
1
u

= 1
u
(gij − νn+1hij)

(ii) ∇ij
v
u

= v∇ij
1
u

+ 1
u
∇̃ijv − 1

u2
g̃klukvlg̃ij.

(iii) (νn+1)i = −h̃ij g̃jkuk.

(iv) ∇̃ijν
n+1 = −g̃kl(νn+1h̃ilh̃kj + ul∇̃kh̃ij)

Proof. We first recall how we define the Hessian of v ∈ C2(Σ).

∇ijv := ∇i(∇jv)− Γkij∇kv = ∇̃ijv +
1

u
(uivj + ujvi − g̃klukvlg̃ij)

(i) If we substitute v = u into the Hessian, we get

∇iju = ∇̃iju+
2uiuj
u
− 1

u
g̃klukulg̃ij

and

∇ij
1

u
= − 1

u2
∇̃iju+

1

u3
g̃klukulg̃ij

= − 1

u2
h̃ijν

n+1 +
1

u3
[1− (νn+1)2]g̃ij

= −ν
n+1

u
hij +

(νn+1)2

u3
g̃ij +

1

u3
[1− (νn+1)2]g̃ij

=
1

u
(gij − νn+1hij)
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where we have used

g̃klukul = |∇̃u|2 = 1− (νn+1)2

∇̃iju = h̃ijν
n+1

g̃ij = u2δij

along with (2.2).

(ii) This follows from the same computation as in (i), just start with the defini-
tion of Hessian.

(iii) This is the Weingarten formula as stated in the beginning of this chapter.

(iv) This is the Codazzi equation as stated in the beginning of this chapter.

Lemma 2.3.4 ([15]). If Σ is a smooth hypersurface in Hn+1 satisfying (1.1), then
in a local orthonormal frame we have

F ij∇ij
1

u
= −σν

n+1

u
+

1

u

n∑
i=1

fi

F ij∇ij
νn+1

u
=
σ

u
− νn+1

u

n∑
i=1

fiκ
2
i

Proof. For the first identity,

F ij∇ij
1

u
=

1

u
F ij(gij − νn+1hij) by lemma 2.3.3 (i)

=
1

u

(∑
fi · 1− νn+1

∑
fiκi

)
by (2.4)

= −σν
n+1

u
+

1

u

∑
fi by lemma 2.2.1

To prove the second identity, we first expand F ij∇ij
νn+1

u
by lemma 2.3.3 (ii)

F ij∇ij
νn+1

u
= νn+1F ij∇ij

1

u
+

1

u
F ij∇̃ijν

n+1 − 1

u2
F ij g̃kluk(ν

n+1)lg̃ij (2.6)

and we compute each term as follows. The first term follows from the identity we
just proved:

νn+1F ij∇ij
1

u
=
νn+1

u

(∑
fi − νn+1σ

)
(2.7)

. For the second term, we use lemma 2.3.3 (iv) to get

1

u
F ij∇̃ijν

n+1 =
1

u
F ij(−g̃kl(νn+1h̃ilh̃kj + ul∇̃kh̃ij))
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and we need to evaluate each term in the bracket. For the first one, we do direct
computation

F ij g̃klh̃ilh̃kj =
1

u2
F ijh̃ikh̃kj since g̃kl =

δkl
u2

= F ij

(
hik −

νn+1

u2
g̃ik

)(
hkj −

νn+1

u2
g̃kj

)
by (2.1)

= F ij(hikhkj − 2νn+1hij + (νn+1)2δij) since g̃ij = u2δij

=
n∑
i=1

fiκ
2
i − 2νn+1

n∑
i=1

fiκi + (νn+1)2

n∑
i=1

fi by (2.4)-(2.5)

=
n∑
i=1

fiκ
2
i − 2νn+1σ + (νn+1)2

n∑
i=1

fi by lemma 2.2.1 and (1.1)

For the second one, we proceed as follows. By (2.2) and (1.1), we have

f(uκ̃1 + νn+1, . . . , uκ̃n + νn+1) = σ

, or equivalently
F ({g̃ik(uh̃kj + νn+1g̃kj)}) = σ

We differentiate it to obtain

F ij(u∇̃kh̃ij + ukh̃ij + (νn+1)ku
2δij) = 0

and so

F ij∇̃kh̃ij = −ukF ij h̃ij
u
− (νn+1)kuF

ijδij

= −ukF ij

(
hij −

νn+1

u2
g̃ij

)
− (νn+1)kuF

ijδij by (2.1)

= −ukF ijhij + ukν
n+1F ijδij − (νn+1)kuF

ijδij since g̃ij = u2δij

= −uk
∑

fiκi + ukν
n+1
∑

fi − (νn+1)ku
∑

fi by (2.4)

= −ukσ + ukν
n+1
∑

fi − (νn+1)ku
∑

fi by lemma (2.2.1)

The second term in (2.6) then evaluates to

1

u
F ij∇̃ijν

n+1 =
1

u
F ij(−g̃kl(νn+1h̃ilh̃kj + ul∇̃kh̃ij)) by lemma 2.3.3 (iv)

= −ν
n+1

u
F ij g̃klh̃ilh̃kj −

1

u
g̃klulF

ij∇̃kh̃ij

= −ν
n+1

u

∑
fiκ

2
i + 2(νn+1)2σ

u
− (νn+1)3

u

∑
fi

+ σ
|∇̃u|2

u
− |∇̃u|

2

u
νn+1

∑
fi +

uk
u2

(νn+1)k
∑

fi
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and by using |∇̃u|2 = 1− (νn+1)2, we have

1

u
F ij∇̃ijν

n+1 = −ν
n+1

u

∑
fiκ

2
i + [1 + (νn+1)2]

σ

u
− νn+1

u

∑
fi +

uk
u2

(νn+1)k
∑

fi

(2.8)
For the third term in (2.6), we do not need to expand it too much further,

because it will be cancelled out by the last term in (2.8):

− 1

u2
F ij g̃kluk(ν

n+1)lg̃ij = −uk
u2

(νn+1)k
∑

fi

Finally, we substitute everything that we have computed so far back into (2.6):

F ij∇ij
νn+1

u
= νn+1F ij∇ij

1

u
+

1

u
F ij∇̃ijν

n+1

− 1

u2
F ij g̃kluk(ν

n+1)lg̃ij by lemma 2.3.3 (ii)

=
νn+1

u

(∑
fi − νn+1σ

)
− νn+1

u

∑
fiκ

2
i

+ [1 + (νn+1)2]
σ

u
− νn+1

u

∑
fi

= −ν
n+1

u

∑
fiκ

2
i +

σ

u

2.4 The Differential Operator G

In this section, we show the conversion of the curvature relation f(κ[Σ]) = σ into
the PDE (1.4)

G(D2u,Du, u) = σ

and prove a few properties associated with the operator G.
According to [4], the Euclidean principal curvatures κe are the eigenvalues of

the symmetric matrix

aeij :=
1

w
γikuklγ

lj (2.9)

where

γij = δij −
uiuj

w(1 + w)
with inverse γij = δij +

uiuj
1 + w

and γikγkj = geij

By the relation (2.2), the hyperbolic principal curvatures κ = (κ1, . . . , κn) are
the eigenvalues of the symmetric matrix

aij[u] :=
δij + uγikuklγ

lj

w
(2.10)
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From now on, we confine ourself to consider the symmetric matrix A[u] :=
{aij[u]} and the matrix operator F (A) = f(λ(A)). The differential operator G in
equation (1.4) is given by

G(D2u,Du, u) = F (A[u])

. We shall now prove a few properties of the operator G which will be used in
section 3.1.

Lemma 2.4.1. If we define

Gij :=
∂G

∂uij
, Gi :=

∂G

∂ui
, Gu :=

∂G

∂u

, then

(i) Gij = u
w
F klγkiγjl and so G is degenerate where u = 0.

(ii) Gu = G− νn+1
∑
fi.

(iii) |Gs| ≤ σ
w

+ 2
w

∑
fi + 2

∑
fi|κi|.

Proof. We prove by direct computation.

(i) Since

Gij :=
∂G

∂uij
=

∂F

∂uij
=

∂F

∂akl

∂akl
∂uij

=
u

w
F klγkiγjl by (2.10)

, it follows that G is degenerate where u = 0.

(ii) we compute

Gu : =
∂G

∂u
=
∂F

∂u
=

∂F

∂aij

∂aij
∂u

= F ij 1

w
γikuklγ

lj by (2.10)

= F ijaeij by (2.9)

=
n∑
i=1

fiκ
e
i by (2.4)

=
n∑
i=1

fi
κi − νn+1

u
by (1.3)

=
1

u
f(κ)− νn+1

u

n∑
i=1

by lemma 2.2.1

In other words,

uGu = G− νn+1

n∑
i=1

fi (2.11)
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(iii) By direct computation, we have

Gs :=
∂G

∂us
=

∂F

∂aij

∂aij
∂us

= − us
w2

∑
fiκi −

2

w
F ijaik

(
wukγ

sj + ujγ
ks

1 + w

)
+

2

w2
F ijuiγ

sj

and the result follows.

The eigenvalues of {Gij} are related to the eigenvalues of {F ij} (which are
fi’s) by

Lemma 2.4.2 ([14]). Let 0 < µ1 ≤ µ2 ≤ · · · ≤ µn denote the eigenvalues of {Gij}
and let w =

√
1 + |Du|2. Then

wµk ≤ ufk ≤ w3µk, 1 ≤ k ≤ n

Proof. For ξ ∈ Rn, we have from lemma 2.4.1 that

uF ijξiξj = wGklγikγljξiξj = wGklξ
′

kξ
′

l

where

ξ
′

i := γikξk = ξi +
(ξ ·Du)ui

1 + w
.

Note that
|ξ|2 ≤ |ξ′ |2 = |ξ|2 + |ξ ·Du|2 ≤ w2|ξ|2

. Since both {Gij} and {F ij} are positive definite, the result follows from the
min-max characterization of eigenvalues.

We also prove a few properties for the linearized operator L of G:

L := Gij∂i∂j +Gi∂i +Gu

Lemma 2.4.3 ([14]). Suppose the curvature function f satisfies the fundamental
structure condition (1.6)-(1.7), the normality condition (1.9) and the homogeneity
condition (1.10) in K. Then

(i) L
(
1− ε

u

)
≤ − (1−σ)ε

u2w

∑
fi in Ω, where

L := L − 2

w2
F ijaikuk∂j

(ii) L(xiuj − xjui) = 0 and Lui = 0 for all 1 ≤ i, j ≤ n.

Proof.
For (i), just note that by computation

L
(

1− ε

u

)
≤ −(1− σ)ε

u2w

∑
fi −

2ε

u2w2
F ijaikukuj

.
For (ii), see [7].
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2.5 Height Estimates and the Asymptotic Angle

Condition

Throughout this section, unless otherwise stated, let Σ is a hypersurface in Hn+1

with ∂Σ ⊆ P (ε) := {xn+1 = ε} and let Ω ⊆ Rn × {0} be the region such that its
vertical lift Ωε := {(x, ε) : x ∈ Ω} to P (ε) is bounded by ∂Σ and Rn\Ω is connected
and unbounded. It is allowable that Ω has several connected components.

Lemma 2.5.1 ([14]). Let B1 be a ball of radius R centered at a = (a′,−σR) ∈
Rn+1 and B2 be a ball of radius of R centered at b = (b′, σR) ∈ Rn+1, where
σ ∈ (0, 1). We have

(i) Σ ∩ {xn+1 < ε} = ∅.

(ii) If ∂Σ ⊆ B1, then Σ ⊆ B1.

(iii) If B1 ∩ P (ε) ⊆ Ωε, then B1 ∩ Σ = ∅.

(iv) If B2 ∩ Ωε = ∅, then B2 ∩ Σ = ∅.

Remark 6. This lemma yields the C0 estimate for admissible solutions u to our
Dirchlet problem and a uniform positive lower bound for the hyperbolic principal
curvatures of graph(u). There are other methods to prove these results but they
are all similar in nature.

Proof.

(i) Let c := minΣ xn+1 and suppose to the contrary that 0 < c < ε. Then the
horosphere P (c) satisfies f(κ) = 1, since all such horospheres have principal
curvature 1. So P (c) lies below Σ and has an interior contact point, which
violates the maximum principle. Hence c = ε.

(ii) We expand B1 continuously untill it contains Σ and reverse the process.
Consider S1 := ∂B1 ∩ Hn+1. Note that κi[S1] = σ. Since both Σ and S1

satisfy f(κ) = σ, there cannot be a first contact.

(iii) We shrink B1 until it is inside Σ and when we expand it there cannot be a
first contact as in (ii).

(iv) Suppose B2 ∩ Σ 6=. We may shrink B2 unitil it lies below P (ε) and so it
is outside Σ. Now reverse the process, if there were a first interior contact,
then the outward normal to Σ at this contact point is the inward normal to
S2 := ∂B2 ∩ Hn+1. Since κi[S2] = σ with respect to its inward normal and
f(κ[S2]) = σ, this violates the maximum principle.

Now we show the upward unit normal νn+1 tends to a fixed asymptotic angle
on approach to the boundary.
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Lemma 2.5.2 ([14]). Suppose f satisfies (1.6), (1.9) and (1.10) in K. If κ[Σ] ∈ K
and

σ2 ≤ f(κ[Σ]) ≤ σ1

for some 0 ≤ σ2 ≤ σ1 ≤ 1, then we have for ∂Σ ∈ C2 and ε > 0 sufficiently small,

σ2 −
ε
√

1− σ2
2

r2

− ε2(1 + σ2)

r2
2

< νn+1 < σ1 +
ε
√

1− σ2
1

r1

+
ε2(1− σ1)

r2
1

on ∂Σ

where r1 and r2 are the maximal radii of interior and exterior spheres to ∂Ω,
respectively. In particular, when σ1 = σ2 = σ we have νn+1 → σ on ∂Σ as ε→ 0.

Proof. We assume r2 < ∞ and fix x0 ∈ ∂Ω. Let e1 denote the outward pointing
unit normal to ∂Ω at x0. Define

a1 := (x0 − r1e1,−R1σ1), a2 := (x0 + r2e1, R2σ2)

where R1, R2 satisfy

R2
1 = r2

1 + (R1σ1 + ε)2, R2
2 = r2

2 + (R2σ2 − ε)2 (2.12)

; and let B1 := BR1(a1) and B2 := BR2(a2).
Then B1 ∩ P (ε) is a ball of radius r1 internally tangent to ∂Ωε at x0 and

B2 ∩ P (ε) is a ball of radius r2 externally tangent to ∂Ωε at x0. Therefore by
lemma 2.5.1 (iii) and (iv), we have B1 ∩ Σ = ∅ and B2 ∩ Σ = ∅ i.e.

−u− σ2R2

R2

< νn+1 <
u+ σ1R1

R1

at x0 ∈ ∂Ω

Since u = ε on ∂Ω, we have

σ2 −
ε

R2

< νn+1 <
ε

R1

+ σ1 at x0 ∈ ∂Ω

and from (2.12),

1

R1

=

√
(1− σ1)2r2

1 + ε2 − εσ1

r2
1 + ε2

<

√
1− σ2

1

r1

+
ε(1− σ1)

r2
1

1

R2

=

√
(1− σ2)2r2

2 + ε2 + εσ2

r2
2 + ε2

<

√
1− σ2

2

r2

+
ε(1 + σ2)

r2
2

.
Hence the result.

We have the following two important consequences, the first of which will not
be used in our proofs of the main results but it is helpful for us to understand the
problem.

Corollary 2.5.1. Suppose f satisfies (1.6) and (1.9) in K. If Σ is a solution to
the asymptotic Plateau problem (1.1)-(1.2), then σ < 1.

25



M.Sc. Thesis - Bin Wang; McMaster University - Mathematics & Statistics

Proof. By lemma 2.5.1(i), we have u > ε in Σ and so

κ[u] := κ[graph(u)] = κ[Σ] < κ[P (ε)]

. Note that κ[P (ε)] = 1 by (2.2), thus we have

σ = f(κ[Σ]) by (1.1)

< f(κ[P (ε)]) by (1.6)

= f(1, . . . , 1) by (2.2)

= 1 by (1.9)

Remark 7. The conclusion still holds even if we replace σ by a general right-hand
side ψ(x, ν) in (1.1).

The following second consequence will be used in section 3.1.

Corollary 2.5.2. Suppose Σ is a smooth hypersurface in Hn+1 satisfying (1.1).
If Σ is globally a graph of some function u over some domain Ω ⊆ Rn:

Σ = {(x, u(x)) ∈ Hn+1 : x ∈ Ω}

, then

F ij∇ij
σ − νn+1

u
≥ 0

and so
σ − νn+1

u
≤ sup

∂Σ

σ − νn+1

u
on Σ

.
Moreover, if u = ε > 0 on ∂Ω, then there exists some ε0 > 0 depending on ∂Ω

such that

ε ≤ ε0 ⇒
σ − νn+1

u
≤
√

1− σ2

r
+
ε(1 + σ)

r2
in Ω

where r is the maximal radius of exterior sphere tangent to ∂Ω.

Proof. By lemma 2.3.4, we have

F ij∇ij
σ − νn+1

u
= σ · F ij∇ij

1

u
− F ij∇ij

νn+1

u

=

(
−σ

2νn+1

u
+
σ

u

∑
fi

)
−
(
σ

u
− νn+1

u

∑
fiκ

2
i

)
=
σ

u

(∑
fi − 1

)
+
νn+1

u

(∑
κ2
i fi − σ2

)

Now, by the Jensen or the Cauchy-Schwartz inequality, we have∑
κ2
i fi ≥

(
∑
κifi)

2∑
fi

=
σ2∑
fi
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and therefore

F ij∇ij
σ − νn+1

u
=
σ

u

(∑
fi − 1

)
+
νn+1

u

(∑
κ2
i fi − σ2

)
≥ σ

u

(∑
fi − 1

)
+
νn+1

u

(
σ2∑
fi
− σ2

)
=
σ

u

∑
fi

(
1− 1∑

fi

)
− σ2

u
νn+1

(
1− 1∑

fi

)
>
σ

u

(
1− 1∑

fi

)
− σ2

u

(
1− 1∑

fi

)
=
σ(1− σ)

u

(
1− 1∑

fi

)
> 0

where we have used the facts that
∑
fi ≥ 1 and that νn+1 < 1.

By the usual maximum principle, we have

sup
Σ

σ − νn+1

u
≤ sup

∂Σ

σ − νn+1

u

From this and the asymptotic angle condition in lemma 2.5.2, we can deduce

sup
Σ

σ − νn+1

u
≤ sup

∂Σ

σ − νn+1

u

≤
√

1− σ2

r
+
ε(1 + σ)

r2

and the proof is complete.
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Chapter 3

The Dirichlet Problem

In this chapter, we derive a maximum principle κmax ≤ C for the largest hyper-
bolic principal curvature of admissible solutions, which holds for all σ ∈ (0, 1) (as
compared to theorem 6.1 in [14]) and along with the well-established gradient es-
timate and boundary C2 estimate in [14], it will lead to the existence of solutions
for (1.4)-(1.5) and hence yields our theorem 1.0.4.

Before we proceed, we shall describe the method of solution by Guan-Spruck
in [14] which we entirely follow here. As we have mentioned in chapter one and
demonstrated in section 2.4, the PDE (1.4) is degenerate where u = 0 so we shall
consider the Dirichlet problem with an approximate boundary condition:

G(D2u,Du, u) = σ, u > 0 in Ω (3.1)

u = ε on ∂Ω (3.2)

whose existence of solutions can be ensured by the method of continuity, as illus-
trated in [5]. More specifically, we consider a family of Dirichlet problem indexed
by 0 ≤ t ≤ 1:

G(D2ut, Dut, ut) = tσ + (1− t) in Ω (3.3)

ut = ε on ∂Ω (3.4)

and the set
S = {t ∈ [0, 1] : (3.3)-(3.4) is solvable}

. The philosophy of the continuity method goes as follows. We shall show that
S is a non-empty, open and closed subset of the unit interval [0, 1]. Since [0, 1]
is connected, it must follow that S = [0, 1] i.e. the Dirichlet problem (3.3)-(3.4)
is solvable for all 0 ≤ t ≤ 1. In particular, the problem is solvable for t = 1 and
hence the Dirichlet problem of our interest (3.1)-(3.2) admits a solution.

To show S is non-empty, it is usually easy to find a solution for the case t = 0.
In this problem, the constant function u0 ≡ ε serves as one such solution. Indeed,
when u is a constant, the symmetric matrix in (2.10) is just the identity {δij} and
so

G[u0] = F (A[u0]) = F (δij) = f(λ(δij)) = f(1, . . . , 1) = 1

by (1.9).
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On the other hand, while the openness of S follows from the Implicit Function
Theorem (see chapter 17 in [11]), the closedness requires a global a priori C2,α

estimate |u|2,α ≤ C for some constant C > 0 independent of t where

|u|2,α := max
Ω
|u|+

∑
i

max
Ω
|ui|+

∑
i,j

max
Ω
|uij|+

∑
i,j

sup
x,y∈Ω,x 6=y

|uij(x)− uij(y)|
|x− y|α

. According to the standard elliptic theory [26] or the Lp theory in [1], in order
to derive the C2,α estimate, it suffices by concavity (1.7) to show a C2 estimate
|D2u| ≤ C; this has been perfectly done by Guan-Spruck in [14] by exploiting the
geometry of the domain Ω and taking advantage of condition (1.11), so that we
have

Theorem 3.0.1 ([14]). Let Ω ⊆ Rn be a bounded smooth mean-convex domain
i.e. H∂Ω ≥ 0. If f satisfies (1.6)-(1.11), then for any σ ∈ (0, 1) and ε > 0
sufficiently small, there exists a unique admissible solution uε ∈ C∞(Ω) of the
Dirichlet problem (1.12)-(1.13) satisfying the following a priori estimates√

1 + |Duε|2 ≤ 1

σ
+ Cε, uε|D2uε| ≤ C on ∂Ω (3.5)

uε|D2uε| ≤ C

ε2
in Ω (3.6)

where C > 0 is independent of ε.

Remark 8. Note that we also have uniqueness for the Dirichlet problem (3.1)-(3.2).

Note that the estimate (3.6) does not allow us to take the limit ε → 0. In
other words, it is sufficient for (3.6) to ensure that (3.1)-(3.2) admits a solution
but it cannot be used to guarantee a solution to the original Dirichlet problem
(1.4)-(1.5), when take the limit ε→ 0. We are then motivated to prove a new C2

estimate for admissible solutions uε which is independent of ε. We will do so by es-
timating the principal curvatures κ = (κ1, . . . , κn) of Σε = graph(uε); here we are
concerned only with an upper bound because a uniform positive lower bound has
been obtained in theorem 2.2.1 and lemma 2.5.1. Once we have obtained the cur-
vature estimate, it follows that (3.1) is uniformly elliptic on compact subdomains
of Ω and we have |uε|2,α ≤ C on compact subdomains of Ω by the Evans-Krylov
regularity theory [10, 22]. Letting ε → 0 will give us a solution to (1.4)-(1.5).
Therefore, we can prove theorem (1.0.4) which we restate here for convenience.

Theorem 3.0.2. Suppose Γ = ∂Ω for some bounded smooth domain Ω ⊆ Rn with
H∂Ω ≥ 0 and the curvature function f satisfies (1.16) in addition to (1.6)-(1.11) in
the general cone K. Then the curvature estimate κmax ≤ C holds for all σ ∈ (0, 1)
in K and hence there exists for all σ ∈ (0, 1), a smooth complete hypersurface Σ
in Hn+1 satisfying (1.1)-(1.2) with uniformly bounded principal curvatures

| κ[Σ] | ≤ C on Σ
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Moreover, Σ is the graph of a unique admissible solution u ∈ C∞(Ω) ∩ C1(Ω)
of the Dirichlet problem (1.4)-(1.5). Furthermore, u2 ∈ C∞(Ω) ∩ C1,1(Ω) and√

1 + |Du|2 ≤ 1

σ
, u|D2u| ≤ C in Ω,√

1 + |Du|2 =
1

σ
on ∂Ω.

Finally, we emphasize that our result applies to the particular curvature quo-
tient f = Hk

Hk−1
, for 1 ≤ k ≤ n.

Corollary 3.0.1. For the curvature function f = Hk

Hk−1
, the asymptotic Plateau

problem (1.1)-(1.2) admits a solution in the k-th Garding cone Kk for all σ ∈ (0, 1).

Proof. We only need to verify that f = Hk

Hk−1
satisfies (1.16) in Kk. Indeed,

n∑
i=1

fi =
n∑
i=1

∂Hk

∂λi
Hk−1 −Hk

∂Hk−1

∂λi

H2
k−1

≤
n∑
i=1

∂Hk

∂λi
Hk−1

H2
k−1

=
(n− k + 1)Hk−1Hk−1

H2
k−1

= n− k + 1

for all λ ∈ Kk.

Now, in what follows, we first prove that Gu < 0 in Ω which implies uniqueness
of solutions for (3.1)-(3.2) and a gradient estimate

√
1 + |Du|2 ≤ 1

σ
as an immedi-

ate consequence; this is where we need the mean-convexity assumption H∂Ω ≥ 0.
Next, we employ the gradient estimate and the asymptotic behavior condition
(1.11) to derive a boundary C2 estimate for admissible solutions; the method we
use here is highly based on the one developed by Caffarelli-Nirenberg-Spruck in
[5, 6, 7], which is somewhat complicated but also truly delicate. We might skip
a few tedious computational steps in order to make the proof clearer. Finally, we
end the chapter with a detailed estimation for the hyperbolic principal curvatures
of admissible solutions, which along with the boundary C2 estimate derived in
section 3.2, produces a global C2 estimate and hence a C2,α estimate.

3.1 Gradient Estimate and Uniqueness of Solu-

tions

Theorem 3.1.1 ([14, 17]). Let 0 < σ < 1 and Ω ⊆ Rn be mean-convex i.e.
H∂Ω ≥ 0. Suppose u ∈ C2(Ω) is a solution to (3.1)-(3.2) for some ε > 0. Then
Gu < 0 in Ω. Consequently, the linearized operator of G satisfies the maximum
principle and has trivial kernel. That is, (3.1)-(3.2) admits at most one solution.
Moreover, we have the gradient estimate 1√

1+|Du|2
= νn+1 > σ in Ω.
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Proof. Since

uGu = G− νn+1
∑

fi ≤ σ − νn+1

by (3.1), (2.11) and lemma 2.2.2, we have Gu ≤ η for η := σ−νn+1

u
. Hence, it

suffices to show η < 0 in Ω.
According to corollary 2.5.2, η achieves its maximum on ∂Ω and we may assume

the maximum occurs at 0 ∈ ∂Ω. We then choose coordinates (x1, . . . , xn) at 0 such
that xn is the interior unit normal to ∂Ω at 0. Then at 0,

uα = 0, 1 ≤ α < n

un > 0

unn ≤ 0

In addition, we have

ηn =
un
u

unn
w3
− un

u
η < 0 =⇒ unn

w3
< η

.
On the other hand, by lemma 2.2.2,

σ = f(κ) ≤ 1

n

∑
κi

i.e. the hyperbolic mean curvature H(Σ) of Σ is greater than or equal to σ. Thus,
by (2.2), the Euclidean mean curvature He(Σ) satisfies

1

n

1

w

(
δij −

uiuj
w2

)
uij = He(Σ) =

H(Σ)− νn+1

u
≥ σ − νn+1

u
= η

. Since ∑
α<n

uαα = −un(n− 1)H∂Ω

, restricting He(Σ) ≥ η to ∂Ω, we get

n · η ≤ 1

w

(∑
α<n

uαα +
unn
w2

)
= −(n− 1)

un
w
H∂Ω +

unn
w3
≤ unn

w3
< η

. Hence (n− 1)η < 0 and the gradient estimate follows immediately

η < 0 =⇒ νn+1 > σ =⇒
√

1 + |Du|2 < 1

σ
in Ω

. The proof is now complete.

3.2 Boundary Second Derivative Estimate

Theorem 3.2.1 ([14]). Suppose Ω ⊆ Rn is a bounded smooth domain withH∂Ω ≥
0. If u ∈ C3(Ω) is an admissible solution to the Dirchlet problem (3.1)-(3.2), then
for ε > 0 sufficiently small

u|D2u| ≤ C on ∂Ω
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Proof. Consider an arbitrary point on ∂Ω, which we may assume to be the origin
of Rn and choose the coordinates so that the unit vector in the the positive xn-axis
is the interior normal to ∂Ω at the origin. There exists a uniform constant r > 0
such that ∂Ω ∩Br(0) can be represented as a graph:

xn = ρ(x′) =
1

2

∑
α,β<n

Bαβxαxβ +O(|x′|3), x′ := (x1, . . . , xn−1)

We may assume r ≥ ε. Since u = ε on ∂Ω, we have u(x′, ρ(x′)) = ε on
∂Ω ∩Br(0) and so

uαβ(0) = −un(0)Bαβ, α, β < n

. Hence,
|uαβ(0)| ≤ C|Du(0)|, α, β < n

where C > 0 depends on the Euclidean mean curvature of ∂Ω.
Now consider for each α < n the operator

Tα := ∂α +
∑
β<n

Bαβ(xβ∂n − xn∂β)

. By lemma 2.4.3 and the boundary condition u = ε on ∂Ω, we have

L(Tαu) = 0

|Tαu|+
1

2

∑
l<n

u2
l ≤ C in Ω ∩Bε(0)

|Tαu|+
1

2

∑
l<n

u2
l ≤ C|x|2 on ∂Ω ∩Bε(0)

from which we can define

φ := ±Tαu+
1

2

∑
l<n

u2
l −

C

ε2
|x|2

so that φ ≤ 0 on ∂[Ω ∩Bε(0)]. It follows from lemma 2.4.2 and lemma 2.4.1 that

Lφ ≥
∑
l<n

Gijuliulj −
C

ε

(∑
fi +

∑
fi|κi|

)
. According to [21], for each point at Ω ∩Bε(0) there exists an index r such that

∑
l<n

Gijuliulj ≥
c0

2u

(∑
i 6=r

fiκ
2
i −

2

w2

∑
fi

)

. Thus,

Lφ ≥ −C1

(
Gijφiφj +

1

ε

∑
fi

)
.
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Now define h := (eC1φ− 1)−A
(
1− ε

u

)
with A large enough. By lemma 2.4.3,

we have

h ≤ 0 on ∂[Ω ∩Bε(0)]

Lh ≥ 0 in Ω ∩Bε(0)

. It follows from the usual maximum principle that h ≤ 0 in Ω ∩ Bε(0). Since
h(0) = 0, we have hn(0) ≤ 0 and the mixed normal-tangential derivative estimate

|uαn(0)| ≤ A

C1ε
un(0)

It remains to estimate the pure normal second derivative. We may assume
{uαβ} is diagonal, 1 ≤ α, β < n. Since uα(0) = 0 for α < n, we have from (2.10)
that

A[u] =
1

w


1 + uu11 0 · · · uu1n/w

0 1 + uu22 · · · uu2n/w
...

...
. . .

...

uun1/w uun2/w · · · 1 + uunn/w
2


By lemma 1.2 in [6], if εunn(0) is very large, then the eigenvalues of A[u] are

given asymptotically by

λα =
1

w
[(1 + εuαα(0)] + o(1), α < n

λn =
εunn(0)

w3

[
1 +O

(
1

εunn(0)

)]
. However, from the double tangential derivative estimate |uαβ(0)| ≤ C|Du(0)|,
the gradient estimate in section 3.1 and condition (1.11), we see that for ε > 0
sufficiently small

σ ≥ 1

w

(
1 +

ε

2

)
≥ σ

(
1 +

ε

2

)
> σ

which is a contradiction.
The proof is now complete.

3.3 Curvature Estimate

We prove the following maximum principle for the largest principal curvature of
Σ by following the same method in [16, 14, 15, 17], which improves theorem 6.1
in [14] and hence extends theorem 1.0.3 to hold for all σ ∈ (0, 1).

Theorem 3.3.1. Suppose f satisfies (1.16) in addition to (1.6)-(1.11) and σ ∈
(0, 1). Let Σ = graph(u) be a smooth graph in Hn+1 satisfying f(κ) = σ and
∂∞Σ ⊆ ∂∞Hn+1.
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For x ∈ Σ, define the largest principal curvature of Σ at x by

κmax(x) := max
1≤i≤n

κi(x)

and let a > 0 be a constant such that

νn+1 ≥ 2a > 0 on Σ

. We have

max
Σ

κmax

νn+1 − a
≤ max

{
C,max

∂Σ

κmax

νn+1 − a

}
Remark 9. The constant a > 0 arises from the gradient estimate. Specifically, since
νn+1 ≥ C > 0, we simply choose a > 0 to be the number such that 0 < 2a ≤ C.
See section 3.1.

Proof. Denote

M0 := sup
Σ

κmax

νn+1 − a
Suppose the maximum M0 is attained at an interior point x0 ∈ Σ. We choose a

local orthonormal frame around x0 such that hij(x0) = κi(x0)δij and for notational
convenience, we may assume κ1(x0) = κmax(x0). In what follows, we will suppress
notation to not write out x0 but keep in mind all the calculations are done at
x0. Note that we may also assume κ1 > νn+1 > 0 otherwise we would have
κ1 ≤ νn+1 ≤ 1 already.

Now since h11
νn+1−a has a local maximum at x0, we have

h11i

h11

− ∇iν
n+1

νn+1 − a
= 0 (3.7)

h11ii

h11

− ∇iiν
n+1

νn+1 − a
≤ 0 (3.8)

We multiply (3.8) by h11F
ii = κ1F

ii (and summing over i),

F iih11ii −
κ1

νn+1 − a
F ii∇iiν

n+1 ≤ 0 (3.9)

Our strategy goes as follows. We will estimate each term in (3.9) and conclude
that if κ1 is bigger than some certain constant then the quantity in (3.9) will be
strictly positive which is a contradiction. Hence κ1 should be smaller than that
constant and we obtain the desired upper bound for κ1.

By differentiating the equation F (hij) = σ twice and using the formulas in-
troduced at the beginning of chapter two, we find that the first term in (3.9)
is

F iih11ii = −F ij,klhij1hkl1 + σ(1 + κ2
1)− κ1

(∑
fi +

∑
κ2
i fi

)
. Also, by lemma 2.3.4 the second term in (3.9) is
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κ1

νn+1 − a
F ii∇iiν

n+1 = 2κ1F
iiui
u

∇iν
n+1

νn+1 − a
+ σκ1

1 + (νn+1)2

νn+1 − a

− κ1ν
n+1

νn+1 − a

(∑
fi +

∑
κ2
i fi

)
So (3.9) becomes

0 ≥ −F ij,rshij1hrs1 + σ

[
1 + κ2

1 −
1 + (νn+1)2

νn+1 − a
κ1

]
(3.10)

+
(∑

fi +
∑

κ2
i fi

) aκ1

νn+1 − a
(3.11)

− 2κ1

νn+1 − a

n∑
i=1

fi
ui
u
∇iν

n+1 (3.12)

Next, for the first term in (3.10) we apply lemma 2.3.2 to obtain

−F ij,klhij1hkl1 ≥
∑
i 6=j

fi − fj
κj − κi

h2
ij1 ≥ 2

∑
i≥2

fi − f1

κ1 − κi
h2
i11

Before we proceed, we derive

∇iν
n+1 = −heij(ge)jkuk by (2.18) in [15]

=

(
νn+1

u
geij − uhij

)
(ge)jkuk by (2.1)

=

(
νn+1

u
δik − uhij

δjk
u2

)
uk

=
νn+1 − κi

u
· δikuk

=
ui
u

(νn+1 − κi)

It follows from (3.7) that

hi11 = κ1
∇iν

n+1

νn+1 − a
=

κ1

νn+1 − a
ui
u

(νn+1 − κi)

and so the first term in (3.10) becomes

−F ij,klhij1hkl1 ≥ 2
∑
i≥2

fi − f1

κ1 − κi
h2
i11 = 2κ2

1

∑
i≥2

fi − f1

κ1 − κi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

. Similarly, the last term in (3.12) becomes

− 2κ1

νn+1 − a

n∑
i=1

fi
ui
u
∇iν

n+1 = − 2κ1

νn+1 − a

n∑
i=1

fi
ui
u
· ui
u

(νn+1 − κi)

= 2κ1

n∑
i=1

fi
u2
i

u2

κi − νn+1

νn+1 − a
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Therefore, we have

0 ≥σ
[
1 + κ2

1 −
1 + (νn+1)2

νn+1 − a
κ1

]
+

aκ1

νn+1 − a

(∑
fi +

∑
κ2
i fi

)
(3.13)

+ 2κ2
1

∑
i≥2

fi − f1

κ1 − κi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
n∑
i=1

fi
u2
i

u2

κi − νn+1

νn+1 − a
(3.14)

Recall that our strategy is to make the right hand side strictly positive; more
specifically, we will show the right hand side is bigger than σ(κ2

1 −C1κ1 +C2) for
some positive constants C1, C2 depending on a. Then, if κ1 is large enough, then
this quadratic expression will be strictly positive, which is a contradiction. Hence
κ1 must have an upper bound.

There are both positive and negative terms in this inequality and we shall es-
timate each negative term to show that their negativity won’t affect the positivity
of the overall sum.

There is a negative term inside the square bracket in the first line (3.13) and
we observe that

σ

[
1 + κ2

1 −
1 + (νn+1)2

νn+1 − a
κ1

]
≥ σ

[
1 + κ2

1 −
2

a
κ1

]
which can be made positive by assuming κ1 ≥ 2

a
.

For the second line (3.14), the first term is positive due to lemma 2.3.2 but
the second term can be potentially negative if κi < νn+1. The problem being we
are not sure about how negative they are. Let us break it into cases. When κi is
largely negative, we may add those terms to the sum

∑n
i=1 κ

2
i fi in (3.13) so that

we could use the quadratic term to absorb the negativity:

aκ1

νn+1 − a

n∑
i=1

κ2
i fi + 2κ1

n∑
i=1

fi
u2
i

u2

κi − νn+1

νn+1 − a

≥ κ1

νn+1 − a
∑

κi<νn+1

fi · (aκ2
i + 2κi − 2νn+1)

≥ κ1

νn+1 − a
∑

κi<νn+1

fi · (aκ2
i + 2κi − 2)

where we have used
∑n

i=1
u2i
u2

= 1− (νn+1) ≤ 1.
Observe that

aκ2
i + 2κi − 2 ≥ 0 if κi ≤

−1−
√

1 + 2a

a
or κi ≥

−1 +
√

1 + 2a

a

that is, we only need to worry about those κi’s with −η < κi < νn+1, where

η :=
1 +
√

1 + 2a

a
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In particular, it suffices to consider the summands in the second sum of (3.14)
with −η < κi < νn+1.

2κ1

n∑
i=1

fi
u2
i

u2

κi − νn+1

νn+1 − a
≥ 2κ1

νn+1 − a
∑

κi<νn+1

fi
u2
i

u2
(κi − νn+1)

=
2κ1

νn+1 − a

 ∑
κi≤−η

+
∑

−η<κi<νn+1

 fi
u2
i

u2
(κi − νn+1)

Now we can rewrite the inequality (3.13)-(3.14) as

0 ≥σ
[
1 + κ2

1 −
2

a
κ1

]
+

aκ1

νn+1 − a

n∑
i=1

fi (3.15)

+
aκ1

νn+1 − a

n∑
i=1

κ2
i fi + 2κ1

∑
κi≤−η

fi
u2
i

u2

κi − νn+1

νn+1 − a
(3.16)

+ 2κ2
1

∑
i≥2

fi − f1

κ1 − κi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
∑

−η<κi<νn+1

fi
u2
i

u2

κi − νn+1

νn+1 − a
(3.17)

with the first two lines being positive. It remains to ensure the third line is positive.
Note that the first term is positive by lemma 2.3.2; the trouble term is the second
one. Consider

J = {i : −η < κi < νn+1, θfi < f1}
L = {i : −η < κi < νn+1, θfi ≥ f1}

where θ ∈ (0, 1) is to be determined. We have

2κ1 ·
∑

−η<κi<νn+1

fi
u2
i

u2

κi − νn+1

νn+1 − a
= 2κ1 ·

(∑
i∈J

+
∑
i∈L

)
fi
u2
i

u2

κi − νn+1

νn+1 − a

For the J-sum, since
∑n

i=1
u2i
u2

= 1− (νn+1)2 ≤ 1, we have

2κ1

νn+1 − a
∑
i∈J

fi
u2
i

u2
(κi − νn+1) ≥ 2κ1

νn+1 − a
∑
i∈J

fi(κi − νn+1) (3.18)

> − 2κ1

νn+1 − a
(η + 1)

∑
i∈J

fi (3.19)

For the L-sum, we need to employ the first term in (3.17).

2κ2
1

∑
i≥2

fi − f1

κ1 − κi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
∑
i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a

≥2κ2
1

∑
i∈L

fi − f1

κ1 − κi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
∑
i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a

≥2κ1(1− θ)
∑
i∈L

κ1

κ1 − κi
fi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
∑
i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a
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We note that

κ1

κ1 − κi
= 1 +

κi
κ1 − κi

> 1− η

1 + η
, if −η < κi < νn+1

i.e. κ1
κ1−κi > 1 − µ for some 0 < µ := η

1+η
< 1. We then have a coefficient of

(1− θ)(1− µ) = 1− µ− θ + µθ > 1− (µ+ θ) > 0 by choosing 0 < θ < 1− µ.

2κ1(1− θ)
∑
i∈L

κ1

κ1 − κi
fi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
∑
i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a
(3.20)

≥2κ1(1− µ− θ)
∑
i∈L

fi
u2
i

u2

(
κi − νn+1

νn+1 − a

)2

+ 2κ1 ·
∑
i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a
(3.21)

=2κ1

∑
i∈L

fi
u2
i

u2

κi − νn+1

νn+1 − a

(
κi − νn+1

νn+1 − a
+ 1

)
−(µ+ θ)

κi − νn+1

νn+1 − a︸ ︷︷ ︸
>0

 (3.22)

≥2κ1

∑
i∈L

fi
u2
i

u2

(κi − νn+1)(κi − a)

(νn+1 − a)2
(3.23)

≥2κ1

∑
i∈L,κi>a

fi
(κi − νn+1)(κi − a)

(νn+1 − a)2
(3.24)

≥− 2κ1

∑
i∈L,κi>a

fi (3.25)

Finally, adding up (3.19) and (3.25)

− 2κ1

νn+1 − a
(η + 1)

∑
i∈J

fi − 2κ1

∑
i∈L,κi>a

fi

≥− 2κ1
η + 1

νn+1 − a
∑

−η<κi<νn+1

fi

≥− Cκ1 by (1.16)

The right-hand side of (3.15)-(3.17) becomes

0 ≥ σ(1 + κ2
1 − Cκ1)

for some C > 0 depending only on a and the proof is complete.

Together with the boundary C2 estimate in section 3.2, we obtain a global C2

estimate
|u|C2(Ω) ≤ C

and hence a C2,α estimate for admissble solutions. According to the method of
continuity, we have a sequence of solutions uε to (3.1)-(3.2). Letting ε→ 0 yields
theorem 1.0.4.
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