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Abstract

In this thesis, we propose a novel hyper-rectangle cover theory which provides a new

approach to analyzing mathematical problems with nonnegativity constraints on vari-

ables. In this theory, two fundamental concepts, cover order and cover length, are

introduced and studied in details.

In the same manner as determining the rank of a matrix, we construct a specific

échelon form of the matrix to obtain the cover order of a given matrix efficiently and

effectively. We discuss various structures of the échelon form for some special cases

in detail. Based on the structure and properties of the constructed échelon form,

the concepts of non-negatively linear independence and non-negatively linear depen-

dence are developed. Using the properties of the cover order, we obtain the necessary

and sufficient conditions for the existence and uniqueness of the solutions for linear

equations system with nonnegativity constraints on variables for both homogeneous

and non-homogeneous cases. In addition, we apply the cover theory to analyze some

typical problems in linear algebra and optimization with nonnegativity constraints

on variables, including linear programming problems and non-negative least squares

(NNLS) problems. For linear programming problem, we study the three possible be-

haviors of the solutions for it through hyper-rectangle cover theory, and show that a

series of feasible solutions for the problem with the zero-cover échelon form structure.
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On the other hand, we develop a method to obtain the cover length of the covered

variable. In the process, we discover the relationship between the cover length deter-

mination problem and the NNLS problem. This enables us to obtain an analytical

optimal value for the NNLS problem.

Keywords: hyper-rectangle cover, cover order, cover length, linear equations

system, nonnegativity constraints, non-negative least squares, linear programming
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Chapter 1

Introduction

1.1 Motivation

The problems with nonnegativity constraints on variables play a prominent role in

engineering, physics, chemistry, computer science, and economics. In linear algebra,

nonnegativity constraints are frequently encountered in the system of linear equa-

tions, non-negative least squares problems, and linear programming problems (40).

However, most existing methods for solving linear equations system with nonnegativ-

ity constraints are based on the analysis of their dual problems. Also, most existing

algorithms for solving NNLS problems are based on numerical analysis rather than

the matrix itself. We are thus motivated to develop a novel mathematical tool that

can be applied to analyze the problems with nonnegativity constraints on variables

in a more direct way.
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1.2 Previous Work and Current Challenge

The system of linear equations is a fundamental part of linear algebra, which is

widely used throughout modern mathematics. There are various mature methods

that can be used to perform the analysis of the solution of linear equations system

without nonnegativity constraints, such as investigating the rank of the corresponding

matrices (18; 29; 51). However, the addition of nonnegativity constraints for the

variables makes the analysis of the solutions to the linear equations and the method to

determine whether it has non-zero solution directly more complex (19). The analysis

of the existence of non-negative solution is mainly based on Farkas’ Lemma (52). In

terms of uniqueness, there is no direct characterization in the general case. It should

be noted that in the analysis of non-negative solutions to the system of homogeneous

or non-homogeneous linear equations are mostly carried out by investigating other

associated problems rather than addressing the problem in a direct way. A novel

approach is therefore needed for the analysis of the system of linear equations with

nonnegativity constraints on variables directly.

Linear programming problems arise in many applications (16). Often, problems

can be reformulated as linear programs both in theory and in practice so that fast

algorithms can be utilized. Now, in a linear programming problem with nonnegativity

constraints on variables, there is an objective function which is linearly dependent

on a number of independent variables and those variables must also satisfy the non-

negativity condition. Dantzig invented the simplex method in 1947, which was the

first efficient method for solving linear programming problems and has been widely ac-

cepted as a computational tool (15). The simplex method is quite efficient in practice,

and the global optimal solution can be guaranteed as long as certain precautions are

2
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taken to prevent cycling (17; 43). Klee and Minty, however, found a family of linear

programming problems for which the simplex method takes a number of steps which

grows exponentially with the size of the problem (35). For some time, it was uncer-

tain whether linear programming could be solved in polynomial time until 1979 when

Leonid Khachiyan demonstrated that linear programming can be solved in polyno-

mial time (33). Narendra Karmarkar introduced the interior-point method for solving

linear programming problems in 1984, which represents a significant theoretical and

practical advancement in the field (31). The interior-point method was developed as

a result of the desire to develop algorithms with more solid theoretical foundations

than the simplex method. Despite some similarities between those two strategies, the

interior- point methods involve relatively expensive (in terms of computing) iterations

that quickly arrive at a solution, whereas the simplex method typically involves many

more inexpensive iterations (48; 61). Geometrically, interior-point methods approach

a solution from the interior or the exterior of a feasible region, but never from the

boundary. Considering simplex method, the procedure of which involves moving one

feasible solution to another and the value of the objective function will improve at

each step. In this thesis, cover theory will be applied to analyze the possibilities of

the solutions towards the LP problem, and for some matrix that contains the cer-

tain structures, the optimal solution can be obtained in a direct way by using the

properties of cover order.

In mathematical optimization, non-negative least squares (NNLS) problems have

been in existence for a long time, and are a type of least squares problem with nonneg-

ativity constraints widely encountered in science and engineering. Various methods

have been proposed to solve NNLS problems. Normally these methods can be divided

3
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into three classes: active set methods (24), iterative approaches and other methods

(13). The first technique to solve it is proposed by Lawson and Hanson in (38). It is

a typical example of an active set method and the corresponding algorithm is named

as lsqnonneg in Matlab. This commonly used algorithm always converges and ter-

minates in finite steps. However, there is no upper limit on the possible number of

iterations that the algorithm might need to reach the optimum solution. The imme-

diate followup to this work is called Fast NNLS (FNNLS), which is developed by Bro

and Jong (9). This method speeds up the basic NNLS by avoiding unnecessary re-

computations. By appropriately rearranging calculations to achieve further speedups

in the presence of multiple observation vectors, a variant of FNNLS, called fast com-

binatorial NNLS (56) is proposed. In contrast to active set methods, the iterative

approaches enable one to incorporate multiple active constraints at each iteration.

The Projective Quasi-Newton NNLS (PQN-NNLS) algorithm (34) is a representative

in this category, This method is based on Newton iteration and by using non-diagonal

gradient scaling matrix to approximate the hessian matrix at each iteration, the rate

of convergence accelerates efficiently. The novel sequential coordinate-wise (SCA)

algorithm (21) is another example of an iterative method for solving NNLS problem,

the idea of which is to optimize in each iteration with respect to a single coordinate

while the remaining coordinates are fixed. Apart from these two major categories,

interior point Newton-like method (3) generates an infinite sequence of strictly feasi-

ble points that converge to the solution and is known to be competitive with active

set methods for medium and large problems. Finally, the principal block pivoting

method (12; 47) is competitive for large and sparse NNLS problem. Since most ex-

isting algorithms for solving NNLS problem are based on numerical analysis, we are

4
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motivated to derive a method to solve it from the matrix perspective by applying the

techniques we developed in cover theory, specifically, by investigating the structure

of matrix itself to obtain the closed-form optimal value of NNLS problem.

1.3 Contributions and Thesis Organization

All the aforementioned factors motivate us to propose a novel theory for the deep

analysis of the problems that arise in the linear algebra and optimization with the

nonnegativity constraints on the variables. The main contributions in this thesis are

summarized as follows:

1) First, we establish the basic principles of the novel hyper-rectangle cover theory

which will be utilized as a basis for the discussion that follows. After the verification

of whether a variable is covered or not, we obtain the result of the equivalence be-

tween the full cover matrix and the existence condition of non-zero solution towards

the system of homogeneous linear equations with nonnegativity constraints. In addi-

tion, we establish conditions for guaranteeing the existence of non-negative solutions

to the system of non-homogeneous linear equations with nonnegativity constraints.

Moreover, by using the cover theory, we are able to find the necessary and sufficient

conditions under which a system of non-homogeneous linear equations with nonneg-

ativity constraints has a unique solution. It is noted that these conditions are based

on the matrix itself, in other words, we are able to analyze the solution of the system

of linear equations with nonnegativity constraints from analysing the matrix itself

rather than by investigating other associated problems.

2) Second, we present the related properties of cover theory which can be used to

determine the cover order and we also propose a specific échelon form of the matrix.

5
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Based on this échelon form, an efficient and effective method has been developed to

determine the cover order for any given matrix. The special structure of low-rank

matrices and matrices with some special form have been investigated. We also analyze

the structure of zero-cover matrices in depth, which can be useful to obtain the feasible

solution for the system of linear equations with nonnegativity constraints on solutions

and the linear programs. In addition, we develop the concepts about non-negatively

linear independence and non-negatively linear dependence, with which we could gain

a deeper insight about the linear equations system with nonnegativity constraints

on solutions. Additionally, we obtain the dual property between cover and uncover

by using the definitions and properties of generalized inverse of the matrix. We also

introduce an inner hyper-rectangle concept which has a strong relationship with the

properties of zero-cover.

3) Furthermore, on the basis of the specific échelon form and the corresponding

results on the system of linear equations with nonnegativity constraints on solutions,

we can verify whether or not the feasibility set of the linear programming problem

is empty. Then the various possibilities of the solutions and the optimal values of

the linear programs, to be more specific, it has optimal bounded solution, the linear

program is feasible but unbounded, or it has infinite unbounded optimal solution ,

corresponding respectively to the following scenarios: full cover, zero cover or the

cover order in between, have been analyzed in detail. Furthermore, with the special

structure of zero-cover part in the échelon form of the matrix, we are able to arrive

at a series of feasible solutions to the linear programs. We also compare the cover

method and the simplex method in solving LP problem and at the mean time, we

apply the proposed method to efficiently and effectively solve the Klee-Minty cube

6
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problem, which will require exponential time to solve if the simplex method is utilized.

4) Finally, we develop a method to determine the cover length of the covered

variables. We also establish the strong connection between solving NNLS problems

and finding the cover length. Based on this relationship, the NNLS problem can be

reconstructed as the cover length determination problem from which we are able to

obtain the analytical optimal value of the NNLS problem directly by analyzing the

matrix itself. For some certain types of matrices, such as the M -matrix, the closed-

form optimal value of the objective function of NNLS problem can be determined

in a more direct manner. In order to gain a deeper understanding of cover length

determination method, we also compare our proposed method to the commonly used

method, active-set method, in solving NNLS problem.

The rest of this thesis is organized as follows:

• Chapter 2: The basic related definitions and properties of novel hyper-rectangle

cover theory.

• Chapter 3: The character of full-cover and the analysis of the system of linear

equations with nonnegativity constraints on solutions based on the cover theory.

• Chapter 4: The details of the proposed échelon form to determine the cover

order and the structure of zero-cover matrix.

• Chapter 5: The details of the new systematic procedure for solving linear

programming problems by applying cover theory.

• Chapter 6: The method to determine the cover length of the covered variable

and utilize this method to attain the analytical optimal value of NNLS problem.

7
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• Chapter 7: The conclusion of this thesis and the a discussion of the possible

future work.

The logical connections among the chapters are shown in the Figure 1.1. We

start with the basic concepts of hyper-rectangle cover theory in Chapter 2, then we

apply the cover theory in analyzing the linear equations system with nonnegativity

constraints on solutions in Chapter 3. Then we can either go to Chapter 4 for the

investigation of the properties of cover order and go further to its applications in

solving linear programming problem in Chapter 5, or we can go directly to Chapter 6

to examine the properties of cover length and its applications in the analysis of non-

negative least squares problem. Finally, Chapter 7 includes the conclusion of above

and some possible future work.

8
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Figure 1.1: Logical connections among the chapters.
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Chapter 2

Basic Concepts of Hyper-Rectangle

Cover

In this chapter, for an M×N real matrix A, we formally give the definition of hyper-

rectangle cover (63). Two basic concepts are introduced: 1) cover order, which is

defined by the maximal side number of the hyper-rectangle that covers the feasible

domain determined by a quadratic form smaller than any given positive constant in

the non-negative orthant; and 2) cover length, which is defined as the side length of

the smallest hyper-rectangle that covers above feasible domain.

2.1 Definition of Hyper-Rectangle Cover

Definition 2.1.1. An M × N real matrix A is said to be r-covered (r ≤ N) by

a hyper-rectangle, if, for any given positive real-valued number τ > 0, the domain

determined by {x : x ∈ RN
+ ,x

TATAx ≤ τ 2} is located inside this hyper-rectangle

10
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{x : 0 ≤ xnk
≤ cnk

τ, k = 1, 2, · · · , r}, i.e.,

{x : x ∈ RN
+ ,x

TATAx ≤ τ 2}

⊆ {x : x ∈ RN
+ , 0 ≤ xnk

≤ cnk
τ, k = 1, 2, · · · , r}, (2.1.1)

where all cnk
are constants independent of τ . In addition,

1. the maximum r is named the cover order of A and denoted by Rc(A).

2. When Rc(A) = N , A has a full-cover.

3. When Rc(A) = 0, A has a zero-cover.

4. For a fixed nk satisfying 1 ≤ k ≤ Rc(A), the minimum constant cnk
is named

the nk-th cover length.

�

Those bounded elements in the variable x in the second set of Eq. (2.1.1) are

covered variables, and the corresponding column vectors in A are covered columns.

The above definition provides us with an intuitive method to determine the cover order

of any given matrix and the cover length of the corresponding covered variable. For

any matrix A ∈ RM×N and non-negative vector x ∈ RN
+ , the cover order of A is the

maximum number of bounded variable xi in x when the inequality xTATAx ≤ τ 2

holds, where i ∈ {1, 2, · · · , N}. The cover length is the maximum value that the

bounded variable can arrive.

For the purposes of better understanding the discussions above, the following

non-trivial examples are provided to illustrate the definitions of cover order and cover

length.

11
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Example 2.1.1. Consider

A =

(
1 1

)

and thus, we have

ATA =

1 1

1 1

 .

In this case, we have

xTATAx = (x1 + x2)2 ≤ τ 2,

where τ is any given positive real-valued number. The domain {x ∈ R2
+ : xTATAx ≤

τ 2} is shown in Figure 2.1. As illustrated by Figure 2.1, it can be seen that the

domain {x ∈ R2
+ : xTATAx ≤ τ 2} is triangle-shaped with three vertices being

(0, 0), (1, 0) and (0, 1) and can be covered by a square with four vertices determined

by (0, 0), (1, 0), (0, 1), and (1, 1). Hence, for any τ > 0,

{x ∈ R2
+ : xTATAx ≤ τ 2}

⊆ {x ∈ R2
+ : 0 ≤ x1, x2 ≤ τ}

Therefore, x1 and x2 are all covered and Rc = 2, then, A has a full-cover. The cover

length of x1 and x2 are both 1. �

12



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

Figure 2.1: The full-cover matrix in Example 2.1.1

Example 2.1.2. Consider

A =

(
0 1

)

and then we have

ATA =

 0 0

0 1

 .

For this matrix, we have the domain

{x ∈ R2
+ : xTATAx ≤ τ 2}

⊆ {x ∈ R2
+ : 0 ≤ x2 ≤ τ, x1 ≥ 0}

13
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Figure 2.2: The one-cover matrix in Example 2.1.2

This domain is shown in Figure 2.2 and it is shown to be unbounded in the x1-axis

direction. In other words, only one dimension is covered. Thus, we obtain that Rc = 1

and the cover length of the covered variable x2 is c2 = 1. �

Example 2.1.3. Consider

A =

(
1 −1

)

and we have

ATA =

 1 −1

−1 1

 ,

14
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Figure 2.3: The zero-cover matrix in Example 2.1.3

for this case, the feasible set:

{x ∈ R2
+ : xTATAx = (x1 − x2)2 ≤ τ 2}

is shown in Figure 2.3 and is open and unbounded with respect to both x1 and x2.

Hence, A has zero-cover, i.e., Rc(A) = 0. �

Example 2.1.4. Suppose

A =

 1 2

2 1



15
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Figure 2.4: The 2× 2 full cover matrix in Example 2.1.4

and we have the following matrix

ATA =

 5 4

4 5

 .

For this matrix, the set {x ∈ R2
+ : xTATAx ≤ τ 2} is an ellipse in the whole plane,

which is shown in Figure 2.4 and the part which is located in the positive domain is

fully covered by a rectangle. Thus x1 and x2 are both covered in this example and A

has a full-cover. �

From the above four examples, we can notice that the cover order Rc of the matrix

A represents the maximum dimension of the hyper-rectangle that covers the domain

determined by the set {x : x ∈ RN
+ ,x

TATAx ≤ τ 2} and the cover length ci of the

16
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covered variable xi in x represent the side length of the minimum hyper-rectangle

that covers above domain.

2.2 Conclusion

Among all the hyper-rectangles that cover the feasible domain determined by a

quadratic form smaller than any given positive constant in the non-negative orthant,

the cover order is the number of dimensions of the hyper-rectangle that covers the

domain which has the maximum number of finitely lengthy sides, (for example, in

Figure 2.2, the “hyper-rectangle” only has finite side length in x2-dimension, thus

the cover order is 1). and the cover length is the side length of hyper-rectangle that

covers the domain which has the minimum length of each finite-length side.

17



Chapter 3

Linear Equations System with

Nonnegativity Constraints on

Solutions

In this chapter, we propose the condition under which the variable and the corre-

sponding column vector in the matrix are covered. This result enables us to arrive at

discoveries in the analysis of the solutions for the linear equations system with non-

negativity constraints. We reveal the relationship between full cover and the unique

solution of the system of homogeneous linear equations with non-negative constraints,

which further provides us the condition for the existence of non-zero solution for such

a system. In terms of the system of non-homogeneous linear equations with nonneg-

ativity constraints, we also derive the necessary and sufficient condition with regard

to the existence and the uniqueness of the solutions.

With the aid of these newly developed results, the analysis of the non-negative

solutions to the system of liner equations would be more straightforward. One of the

18
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major advantages of these findings lie in the fact that these conditions are based on

the matrix itself, in other words, we are able to analyze the solution of the system

of linear equations with nonnegativity constraints on solutions from the matrix itself

rather than by investigating other associated problems, like transforming the original

problem into a non-negative least squares problem or a linear programming problem.

3.1 System of Homogeneous Linear Equations with

Nonnegativity Constraints on Solutions

Let A be an M ×N real matrix and x is a real column vector with N elements. We

present an important result in cover theory, allowing us to determine whether the

i-th column vector ai in A or the corresponding i-th variable xi of x in Ax is covered

or not, where i ∈ {1, · · · , N}. Furthermore, considering the system of homogeneous

linear equations with nonnegativity constraints on the solution: Ax = 0, where

x ≥ 0, new approaches of investigating the existence as well as the uniqueness of

solutions to such a system are proposed.

Theorem 3.1.1. Let A be an M × N real matrix. Then, the i-th column of A or

the i-th variable xi associated with the i-th column vector ai in Ax is covered if, and

only if Ax 6= 0 for any x ∈ RN
+ with xi > 0. �

Proof. To begin with, let us prove the necessary condition, i.e., by assuming that the

i-th column vector in the matrix A or the i-th variable xi in the vector x is covered

in Ax, we need to prove that for any non-negative real vector x ∈ RN
+ with xi > 0,

the product Ax is non-zero. Suppose that this statement was not true. Then, we

would have that there exists x0 ∈ RN
+ with x0,i > 0 such that the equality Ax0 = 0
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holds. As a consequence, for any positive real number p > 0, we would also have

A(px0) = 0, which implies px0,i is not bounded and for any given positive real-valued

τ > 0, we have:

0 = (px0)TATA(px0) ≤ τ (3.1.1)

This contradicts with the assumption that xi is covered in Ax. Therefore, the neces-

sary condition is true.

Now, let us consider the proof of the sufficient condition. Notice that for non-

negative real vector x with xi > 0, the quadratic form xTATAx can be rewritten as

follows:

xTATAx = ‖Āix̄i + aixi‖2 = x2
i ‖Āiu + ai‖2 (3.1.2)

where x̄i is the (N − 1) × 1 vector formed by deleting the i-th element xi from x,

u = x̄i/xi, Āi is the M × (N − 1) sub-matrix formed by deleting the i-th column

from A and u ≥ 0. Considering the set {Āiu : u ∈ RN−1,u ≥ 0}. Since it is a closed

convex hull, the minimum of ‖Āiu + ai‖2 exists, i.e., there exists a u0 ∈ RN−1 and

u0 ≥ 0 such that for any u ∈ RN−1 and u ≥ 0, we have

‖Āiu0 + ai‖2 ≤ ‖Āiu + ai‖2. (3.1.3)

In fact, ‖Āiu0 + ai‖ 6= 0. Otherwise, we can construct a non-negative real vector
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x0 ∈ RN−1 in the following way, i.e., let:

x0,i = 1,

x0,k = u0,k, k = 1, 2, · · · , i− 1,

x0,k = u0,k−1, k = i+ 1, · · · , N, (3.1.4)

where x0,i is the i-th element in x0 and x0,k is the k-th element in x0 while u0,k is the

k-th element in u0, for k = 1, · · · , i − 1, i + 1, · · · , N . Then, if ‖Āiu0 + ai‖ = 0, we

have:

Ax0 = Āiu0 + ai = 0, (3.1.5)

which contradicts with the assumption that Ax 6= 0 for any x ∈ RN
+ with xi > 0.

Now for any given positive real-valued number τ > 0, if we let xTATAx ≤ τ , then,

by Eq. (3.1.3), we have:

x2
i ‖Āiu0 + ai‖2 ≤ xTATAx ≤ τ 2 (3.1.6)

Hence, we obtain:

0 < xi <
τ

‖Āiu0 + ai‖
(3.1.7)

i.e., xi is covered in Ax. This completes the proof of the sufficient condition. Thus

the proof of Theorem 3.1.1 is finished.

To provide some more insight into above theorem, we propose the following brief
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discussion. Given an M×N real matrix A and real column vector x with N elements

in it, we consider the homogeneous linear equations system, Ax = 0 with non-

negative constraints x ≥ 0. Clearly, it is of interest to determine conditions that will

guarantee the existence of non-zero solutions to this system. Analyzing the solutions

of above homogeneous linear equations without nonnegativity constraints is quite

straightforward (42). However, when we add the nonnegativity constraints of the

solutions into the system, except transforming it into a related linear programming

problem, the method to direct determine whether it has non-zero solution is not

simple anyway (19; 50). It is noted that above theorem provides us with a method

to solve the above problem and by Theorem 3.1.1 we are able to obtain the following

results.

Corollary 3.1.1. Let A be an M × N real matrix and let Āj be the M × (N − 1)

sub-matrix formed by deleting the j-th column from A. Then, the following four

statements are true:

1. A system of homogeneous linear equations: Ax = 0, has a nonzero solution in

RN
+ if and only if A does not have full cover.

2. Let the j-th column of A be covered. Then, any column of Āj is covered in Āj

if and only if it, as a column of A, is also covered in A.

3. If the i-th column of A is covered, then, it is also covered in Āj for j 6= i.

4. A full column rank matrix A always have a full-cover.

�

It must be noted that Theorem 3.1.1 is parallel to the first statement of Corol-

lary 3.1.1, which provides us the necessary and sufficient condition for the existence
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of non-zero solutions for the homogeneous linear equations system with nonnegativity

constraints on solutions. It is shown that this condition is direct and simple and it

only relies on the matrix itself.

Example 3.1.1. Following are examples that demonstrate how to determine whether

a homogeneous linear equations system with nonnegativity constraints on solutions

has nonzero solutions or not.

1. Consider A =

 1 2

2 1

, according to the definition of cover order in Defini-

tion 2.1.1, A has a full cover, then by Theorem 3.1.1 and the first statement in

Corollary 3.1.1, we can conclude that Ax = 0 only has zero solution in R2
+

2. Consider A =

 1 0

0 0

, we have Rc(A) = 1. Since A does not have full cover,

Ax = 0 has non-zero solution in R2
+. We can notice that x2 is an uncovered

variable and it can be any non-negative value while x1 is a covered variable and

it must be zero.

3. Consider A =

 1 −1

−1 1

, A has zero-cover. Thus Ax = 0 has non-zero

solution in the R2
+. Besides, x1 and x2 are both uncovered variables and they

can be any non-negative value.

�

In the following, we will give some algebraic conditions on full cover. For the sake

of simplicity, we first introduce some notations.

For any A ∈ RM×N and x ∈ RN
+ , let us first assume that x̄i is the (N − 1) × 1

vector attained by deleting i-th entry from x, Āii is the (N −1)× (N −1) sub-matrix
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formed by deleting i-th row and i-th column from ATA, aii is the entry in the i-th

row and i-th column of A, and āi is the (N − 1) × 1 vector generated by deleting

i-th entry from the i-th column of ATA. If there exist n negative entries in āi, then,

for presentation simplicity, we denote the indices of the negative entries of āi by

i
(−)
1 , · · · , i(−)

n , where 0 ≤ n ≤ N − 1. The discriminant of the following equation:

aiix
2
i + 2xiā

T
i x̄i + x̄Ti Āiix̄i = 0 (3.1.8)

with respect to xi is given by

∆i , −4x̄Ti (aiiĀii − āiā
T
i )x̄i (3.1.9)

For a better understanding of the algebraic expression, we introduce the following

definition of the Schur complement of a block matrix (62; 28).

Definition 3.1.1 (Schur Complement). Let M be an N×N matrix written as a 2×2

block matrix

M =

A B

C D

 , (3.1.10)

where A is a p× p matrix and D is a q × q matrix, with N = p+ q(so, B is a p× q

matrix and C is a q × p matrix). Then:

1. If D is invertible, then the Schur complement of the block D of the matrix M

is the p× p matrix defined by

M/D := A−BD−1C (3.1.11)
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2. If A is invertible, then the Schur complement of the block A of the matrix M

is the q × q matrix defined by

M/A := D−CA−1B (3.1.12)

�

Thus the Schur complement of the block Āii of the matrix ATA is given as

A/aii = Āii −
āiā

T
i

aii
(3.1.13)

Furthermore, if we assume that M in Definition 3.1.1 is symmetric, then with regard

to the Schur complement we have the following result (57), where we use the usual

notation, M � 0 to say that M is positive definite and the notation M � 0 to say

that M is positive semi-definite.

Lemma 3.1.1. For any symmetric matrix M of the form

M =

A B

BT C

 (3.1.14)

if A is invertible then the following properties hold:

1. M � 0 iff A � 0 and C−BTA−1B � 0.

2. If A � 0, then M � 0 iff C−BTA−1B � 0.

�
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The above lemma tells us that aiiĀii − āiā
T
i is a PSD matrix if ATA is PSD and

aii 6= 0. Thus, we have:

∆i ≤ 0, ∀i = 1, 2, · · · , N (3.1.15)

Then, let us form an n × n sub-matrix by the rows and columns of aiiĀii − āiā
T
i

indexed by i
(−)
1 , · · · , i(−)

n . To simplify the presentation, this sub-matrix is denoted

by C̄
(−)
i in the following discussion.

Theorem 3.1.2. For non-zero PSD matrix ATA ∈ RN×N , the following four state-

ments are true.

1. Suppose that there exists at least one i such that āi is nonnegative, that is,

{āi : āi ∈ RN−1
+ , i = 1, 2, · · · , N} 6= ∅

Then, ATA is of full-cover if and only if all the diagonal entries of ATA are

nonzero and Āii is of full-cover for any i satisfying āi ∈ RN−1
+ .

2. ATA is of full-cover if there exists i such that aii > 0 and (aiiĀii − āiā
T
i ) is of

full-cover.

3. ATA is of full-cover if all the principal sub-matrices in ATA are of full-cover.

4. Suppose that there exists āi having at least one negative entry, say,

{āi : āi /∈ RN−1
+ , i = 1, 2, · · · , N} 6= ∅

Then, ATA is full-cover only if C̄
(−)
i is full-cover for any i satisfying āi /∈ RN−1

+ .
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�

Proof. The proof of Theorem 3.1.2 is based on the following equality

xTATAx = aiix
2
i + 2xiā

T
i x̄i + x̄Ti Āiix̄i (3.1.16)

Proof of Statement 1): If there exists i such that āi is a non-negative vector, then,

for any x ∈ RN
+ , we have:

aiix
2
i ≥ 0, 2xiā

T
i x̄i ≥ 0, x̄Ti Āiix̄i ≥ 0.

Thus, xTATAx = 0 if and only if aiix
2
i = 0, 2xiā

T
i x̄i = 0 and x̄Ti Āiix̄i = 0. Since aii >

0, aiix
2
i = 0 if and only if xi = 0. In addition, if Āii has full cover, then, Theorem 3.1.1

tells us that x̄Ti Āiix̄i = 0 if and only if x̄i = 0. In this case, xTATAx = 0 if and only

if x = 0. By Theorem 3.1.1, we can conclude that ATA is of full-cover and thus, the

sufficiency proof of Statement 1) is complete.

To prove the necessity of Statement 1) by contradiction, we consider the following

two possibilities.

1. Let us suppose that there exists one i such that aii = 0. Then, there exists

a vector x0 with the i-th entry being one and the other (N − 1) entries being

zeros such that xT0 ATAx0 = 0. This observation tells us that ATA is not of

full-cover by Theorem 3.1.1. Thus, the positiveness of all the diagonal entries

of ATA is a necessary condition for ATA being of full-cover.

2. If {ai : ai ∈ RN−1
+ } 6= ∅, then, we suppose that there exists i such that ai ∈

RN−1
+ and Āii is not of full-cover. Then, by Theorem 3.2.2, we can always find

27



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

an (N − 1) × 1 nonzero vector x̄ ∈ RN−1
+ such that x̄T ĀT

iiĀiix̄ = 0. Then, we

form an N × 1 vector x by letting xi = 0 and x̄i = x̄. As a result, this nonzero

vector x ∈ RN
+ assures that

xTATAx = aiix
2
i + 2hiā

T
i x̄i + x̄Ti Āiix̄i

= x̄Ti Āiix̄i = 0 (3.1.17)

which implies that ATA is not of full-cover by Theorem 3.1.1.

Thus, Statement 1) is necessary for ATA being full-cover. Then, the proof of State-

ment 1) is complete.

Proof of Statement 2): For i = 1, 2, · · · , N , the discriminant ∆i of Eq. (3.1.16)is

defined as:

∆i , −4x̄Ti (aiiĀii − āiā
T
i )x̄i (3.1.18)

Since it is either negative or equal to zero, we consider the following two cases.

1. ∆i < 0. In this case, x̄i 6= 0N×1. Otherwise, ∆i = 0. Then, ∀x ∈ RN
+ , we can

have aiix
2
i + 2xiā

T
i x̄i + x̄Ti Āiix̄i = 0 with respect to xi has no solution and thus,

xTATAx 6= 0.

2. ∆i = 0. In this situation, x̄Ti (aiiĀii − āiā
T
i )x̄i = 0. Since (aiiĀii − āiā

T
i ) is full-

cover, Theorem 3.1.1 tells that x̄Ti (aiiĀii− āiā
T
i )x̄i = 0 if and only if x̄i = 0N−1.
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Then,

xTATAx = aiix
2
i + 2xiā

T
i x̄i + x̄Ti Āiix̄i (3.1.19)

= aiix
2
i

Therefore, xTATAx = 0 if and only if xi = 0. Combining this with x̄i = 0N−1

gives us that xTATAx = 0 if and only if x = 0N×1. By Theorem 3.1.1, we

conclude that ATA is of full-cover.

This completes the sufficiency proof of Statement 2)

Proof of Statement 3): We prove this by contradiction. Suppose that ATA is

of full-cover and there exists a principal sub-matrix Â of ATA such that Â is not

of full-cover. Without loss of generality, we assume that Â is formed by the entries

a
i
(−)
k i

(−)
l

, where k, ` = 1, · · · , n with 1 ≤ n ≤ N . When n = N , we arrive at a

contradiction to our assumption that ATA is of full-cover. When 1 ≤ n < N , by

Theorem 3.1.1, there exists an n× n nonzero vector x̂ with nonnegative entries such

that x̂T Âx̂ = 0. Then, we construct an N × 1 vector x by letting x
i
(−)
k

= x̂
i
(−)
k

, for

k = 1, · · · , n and the other (N − n) entries of x being zeros. We arrive at:

xTATAx = x̂T Âx̂ = 0 (3.1.20)

contradicting with our assumption that ATA is of full-cover. Therefore, Statement 3)

is indeed necessary for ATA being of full-cover.

Proof of Statement 4): Again, we prove it by contradiction. We suppose that

ATA is of full-cover and that there exists i such that ai /∈ RN−1
+ and C̄

(−)
i is not

of full-cover. Then, by Theorem 3.1.1, there exists an n × 1 non-zero vector p̄ with
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positive entries such that

p̄T C̄
(−)
i p̄ = 0 (3.1.21)

Now, we form an (N − 1)× 1 vector x̄i by letting x̄
i
(−)
1

= p̄1, · · · , x̄i(−)
n

= p̄n and the

other (N − n− 1) entries be zeros. In this case, we obtain

∆i = −4x̄Ti (aiiĀii − āiā
T
i )x̄i

= −4aiix̄
T
i Āiix̄i + 4

(
āTi x̄i

)2

= −4aiip̄
T C̄

(−)
i p̄ + 4

i(N−1)∑
i=i1

āix̄i

2

(3.1.22)

= 0 + 4

 i
(−)
n∑

i=i
(−)
1

āip̄i


2

≥ 0

Using our notations, we know that ā
i
(−)
1

< 0, · · · , ā
i
(−)
n

< 0 and thus

āTi x̄i =

i
(−)
n∑

i=i
(−)
1

āip̄i < 0 (3.1.23)

Since aii > 0, − āT
i x̄i

aii
> 0 and ∆i > 0, we can conclude that the quadratic equation

aiix
2
i + 2xiā

T
i x̄i + x̄Ti Āiix̄i = 0 with respect to xi has one positive solution given by

xi =
−
∑i

(−)
n

i=i
(−)
1

āip̄i +
√

∆i

2aii
(3.1.24)

30



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

Now, we see that there exists an N × 1 non-zero vector x ∈ RN
+ formed by xi and x̄i

such that xTATAx = 0. By Theorem 3.1.1, we know that ATA is not of full-cover,

contradicting our assumption that ATA is of full-cover. Therefore, this completes

the proof of Statement 4) as well as Theorem 3.1.2.

In addition, for the block-diagonal PSD matrix, we have the following result of

full cover.

Theorem 3.1.3. Let A` be an N` × N` PSD matrix for ` = 1, · · · , L. Then, the

block diagonal PSD matrix A = diag (A1, · · · , AL) has full cover if and only if A`

is of full-cover for any `. �

Proof. Let x` be a non-negative column vector with N` real elements in it, for ` =

1, · · · , L and let

x =

(
xT1 , · · · , xTL

)T
(3.1.25)

Then,

xTAx =
L∑
`=1

xT` Alxl (3.1.26)

On the one hand, if A` is of full-cover for any `, then, Theorem 3.2.2 tells us that

xT` A`x` = 0 if and only if x` = 0N`×1. This implies that xTAx = 0 if and only if

x = 0, thus by Theorem 3.1.1 we can obtain that A has full cover.

On the other hand, if A has full cover, then, according to Theorem 3.1.1, xTAx =∑L
`=1 xT` A`x` = 0 if and only if x` = 0 for any `. In addition, xT` A`x` ≥ 0 implies that∑L
`=1 xT` A`x` = 0 and xT` A`x` = 0 are equivalent. Combining the two statements
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leads to the conclusion that A` is of full-cover for any `.

This completes the proof of Theorem 3.1.3.

3.2 System of Non-Homogeneous Linear Equa-

tions with Nonnegativity Constraints on So-

lutions

Consider the system of linear equations Ax = b with nonnegativity constraint x ≥ 0,

where A is an M ×N real matrix and b is a M × 1 real vector. This type of problem

is frequently encountered in the field of signal and image processing, multispectral

data handling, and more (20; 22; 14). There are mature methods for performing the

analysis of the solution of the linear equations system without the requirement of

nonnegativity constraints on solutions.

However, the existing methods for analyzing the existence and uniqueness of non-

negative solutions to the system of linear equations are mainly concerned with discov-

ering other associated problems rather than addressing the problem directly or the

analysis of matrices with certain structures rather than the general case (58; 10; 32).

The classical result for analyzing the existence of non-negative solution to the

linear equations system are based on the Farkas’ Lemma (52), which is the underlying

principle for linear programming duality and has been critical to the development of

mathematical optimization. There are a number of slightly different (but equivalent)

formulations of the Farkas’ lemma in the literature. Here we present the most typical

one among them (23).
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Lemma 3.2.1 (Farkas’ lemma). Let A ∈ RM×N and b ∈ RM . Then exactly one of

the following two statements is true:

1. There exists an x ∈ RN such that x ≥ 0 and Ax = b.

2. There exists a y ∈ RM such that ATy ≥ 0 and bTy < 0

�

According to this lemma, given a problem of linear equations system with non-

negativity constraints on the solutions, there exist another dual problem which is

associated with it, and the original problem has a solution in the required domain if

and only if the associated dual problem has no solution in the specific domain. To

be more specific, Farkas’ lemma shows that if a set of inequalities has no solution,

then a contradiction can be produced from it by linear combination with non-negative

coefficients. In formulas: if the inequalities in the option 2 cannot be satisfied, i.e.,

ATy ≥ 0, bTy < 0 has no solution, then, the equality in option 1, Ax = b has

non-negative solutions. As for the conditions that guarantee the uniqueness of the

non-negative solution, there is no direct characterization in general.

In the following, we will provide an investigation of the existence and uniqueness

of non-negative solutions of the aforementioned linear equations system based on

the cover theory. The necessary and sufficient conditions for the existence and the

uniqueness of the non-negative solutions for such a system are derived.

Theorem 3.2.1. Let A be an M×N real matrix. Then, a system of non-homogeneous

linear equations with nonnegativity constraints on solutions: Ax = b has a solution

in RN
+ if and only if the cover order of the matrix Ã =

(
A −b

)
is less than or

equal to that of A. �

33



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

Proof. By moving the right hand side constant vector b to the left hand side of the

equation, the linear equation Ax = b can be rewritten as Ãx̃ = 0, where the new

coefficient matrix Ã =

(
A −b

)
and the new variable x̃ =

(
x x̃N+1

)
, and x̃N+1

is the (N + 1)-th element of x̃, which equals to 1 exactly.

Let us first prove the sufficient condition. In this case, under the assumption

Rc(Ã) ≤ Rc(A), then by Statement 2) of Corollary 3.1.1, we can claim that x̃N+1

is not covered in Ãx̃. Since Ã is not of full-cover, by Theorem 3.1.1, there exists a

x̃0 =

(
x0 x̃0,N+1

)
∈ RN+1

+ with x̃0,N+1 > 0, where x̃0,N+1 is the (N + 1)-th element

of x̃0, such that Ãx̃0 = 0. Hence, we have

Ax0 = bx̃0,N+1, (3.2.1)

Eq. (3.2.1) implies that x0/x̃0,N+1 is a solution of Ax = b. Therefore, the sufficient

condition is true.

Now, let us consider the proof of the necessary condition. In this case, we assume

that a system of linear equations with nonnegativity constraints on solutions: Ax = b

has a solution in RN
+ , i.e., there exists a x0 ∈ RN

+ such that the equality Ax0 = b

holds. Then, according to Theorem 3.1.1, the (N + 1)-th column vector of Ã is not

covered. In addition, by Statement 3) of Corollary 3.1.1, we know that if the i-th

column vector of Ã, where i ∈ {1, 2, · · · , N}, is covered in Ã, then, as a column

vector of A, is also covered in A. Therefore, the inequality Rc(Ã) ≤ Rc(A) holds.

This completes the proof of the sufficient condition and thus, also completes the proof

of Theorem 3.2.1.
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The following example may give a clearer understanding of the necessary and suf-

ficient condition for the existence of the non-negative solutions to the linear equations

system.

Example 3.2.1. Consider a linear equations system Ax = b, where

A =

 1 2

2 1

 ,b =

 3

4

 ,

and we have Rc(A) = 2 according to the definition of cover order in Definition 2.1.1.

Then by adding the column vector −b to the right hand side of matrix A, we will

have the new coefficient matrix

Ã =

 1 2 −3

2 1 −4


The cover order of Ã is 0, which is less than the cover order of A, i.e., Rc(Ã) ≤

Rc(A). As a result, according to Theorem 3.2.1, Ax = b has a solution in RN
+ and

the solution is x =

(
5
3

2
3

)T
. �

From Theorem 3.2.1, we can easily obtain the status of solutions to the non-

homogeneous linear equations system with nonnegativity constraints on solutions

under two specific scenarios. The results are stated in the following corollary.

Corollary 3.2.1. Let A be an M × N real matrix and b be an M × 1 real vector.

Then, for a system of non-homogeneous linear equations Ax = b, with nonnegativity

constraints on solutions x ≥ 0,
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1. if the matrix Ã =

(
A −b

)
is full cover, then the system has no solution in

RN
+ ;

2. if the matrix Ã =

(
A −b

)
is zero cover, then the system has at least one

solution in RN
+ .

�

Furthermore, based on Theorem 3.2.1 and the above example, we can easily obtain

the following important properties:

Property 3.2.1. Given an M ×N real matrix A,

1. adding a column to it may decrease its cover order;

2. adding a row to it will not decrease its cover order.

�

It is noted that Theorem 3.2.1 only specifies the necessary and sufficient condition

for the existence of non-negative solutions for the system of non-homogeneous linear

equations. With regard to the uniqueness of the solution for such a system, no direct

analytical necessary and sufficient condition is applicable. This brings us to the next

discussion on the uniqueness condition of the solution for such a linear equations

system.

Our result is obtained by applying the following Carathéordory’s theorem (52),

which states that if a point y of RM lies in the convex hull of a set S, then y can be

expressed as the convex combination of at most M + 1 points in S. Namely, there is

a subset T of S consisting of M + 1 or fewer points such that y lies in the convex

hull of T . The related definition of cone is given as follows (27).
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Definition 3.2.1. A set C ⊆ RM is a cone if αx + βy ∈ C for all x,y ∈ C and

α, β > 0. �

The following example provides us with a kind of cone spanned by a series of

vectors:

Example 3.2.2. Let a1, · · · , aN ∈ RM . Then the cone spanned by the vectors

a1, · · · , aN is

cone {a1, · · · , aN} = {θ1a1 + · · ·+ θNaN |θi ≥ 0 for i = 1, · · · , N}. (3.2.2)

�

The Carathéordory’s theorem that we are going to apply is given in the following

lemma.

Lemma 3.2.2 (Carathéordory’s theorem). Let S ⊆ RM be a finite set, and let y ∈

RM . If y ∈ cone S, then, there exists a linearly independent set T ⊆ S such that

y ∈ cone T . �

We next show the necessary and sufficient condition for the uniqueness of the

solution to the system of non-homogeneous linear equations which has nonnegativity

constraints on solutions, with the aid of aforementioned Carathéordory’s theorem.

We state the theorem as follows.

Theorem 3.2.2. Let A be an M×N real matrix. Then, a system of linear equations

with nonnegativity constraints on solutions: Ax = b has a unique solution in RN
+ if

and only if Rc(Ã) ≤ Rc(A) and Rc(Ã) + Rr(Ā) = N , Ā = {ai}i∈N̄ , where N̄ is a

set consisting of all the column indexes of A which are not covered in Ã and Rr(Ā)

is the rank of Ā. �
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Proof. As a first step, let us prove the sufficient condition. Let R̄c(Ã) be the number

of uncovered column vectors in Ã. Thus we have

Rc(Ã) + R̄c(Ã) = N + 1 (3.2.3)

and under the assumption Rc(Ã) +Rr(Ā) = N , we have

R̄c(Ã) = Rr(Ā) + 1 (3.2.4)

In addition, since Rc(Ã) ≤ Rc(A), we can obtain R̄c(Ã) = |N̄ | + 1 and as a result,

Rr(Ā) = |N̄ |. Therefore, all the column vectors {ai}i∈N̄ are linearly independent in

RM . As a consequence, a system of linear equations with nonnegativity constraints

on solutions: Ax = b has a unique solution.

To prove the necessary condition, we note that according to the property of Rc(Ã)

and the definition of Ā, we have

Rc(Ã) +Rr(Ā) ≤ N (3.2.5)

Let us assume x0 ∈ RN
+ is the unique solution of Ax = b, then we have Ax0 = b,

where

x0,i = 0, for i ∈ {1, 2, · · · , N} \ N̄ (3.2.6)

Considering Rc(Ã) +Rr(Ā) < N , in this case, the rank of Ā must be less than |N̄ |,

i.e., the inequality Rr(Ā) < |N̄ | must be satisfied. As the Carathéordory’s theorem

states, we are able to find a linearly independent subset {ai}i∈Ñ of {ai}i∈N̄ . Let
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Ñ be the set consisting of the linearly independent column indices of {ai}i∈N̄ , and

|Ñ | < |N̄ |. Then there exists another solution x1 ∈ RN
+ and x1 6= x0 such that

Ax1 = b and we have

x1,i = 0, for i ∈ {1, 2, · · · , N} \ Ñ (3.2.7)

This statement contradicts with the assumption that x0 is the unique solution of the

linear equation Ax = b. As a result, the equality Rc(Ã) + Rr(Ā) = N must be

satisfied to guarantee the uniqueness of the solution to the linear equation system

with nonnegativity constraints on variables. Thus, Theorem 3.2.2 is proved.

Example 3.2.3. Consider linear equations system Ax = b, where

A =

 1 2

2 4

 ,b =

 3

6


and Rc(A) = 2. Then we will have

Ã =

 1 2 −3

2 4 −6


In order to determine whether a unique solution exists for such a system, we first

need to confirm that a solution exists. Since Rc(Ã) = 0, which is less than the cover

order of the origin coefficient matrix A. According to Theorem 3.2.1, Ax = b has a

solution in RN
+ . In the next step, we need to determine whether it meets the uniqueness

requirement in Theorem 3.2.2. In this example, Ā is equivalent to A exactly, thus

Rr(Ā) = Rr(A) = 1. Then we have Rc(Ã) + Rr(Ā) = 1, which is less than the
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column number of A. As a consequence, the solution of this linear equations system

is not unique. Moreover, it is easy to obtain two explicit solutions:

(
1 1

)T
and(

0 3
2

)T
. �

Specifically, in Example 3.2.1, we note that Rr(Ā) = Rr(A) = 2, and thus we

have Rc(Ã) + Rr(Ā) = 2. As a result, the uniqueness condition in Theorem 3.2.2 is

satisfied and the linear equations system with nonnegativity constraint has a unique

solution, which is x =

(
5
3

2
3

)T
.

3.3 Conclusion

Given an M ×N real matrix A and the real column vector x with N entries in it, we

propose a method of determining whether the i-th column of A or the i-th variable

xi corresponding to the i-th column vector ai in Ax is covered or not. In the process

of this verification, we are able to establish the equivalence relationship between full

cover and the unique solution of homogeneous linear equations system which has

nonnegativity constraints on solutions. We also introduce some related algebraic

conditions on full cover in order to have a better understanding of the properties of

cover order. Additionally, we also derive the necessary and sufficient condition that

guarantees the existence of non-zero solutions to the system of linear equations with

nonnegativity constraints. By using cover theory, we also obtain the necessary and

sufficient condition that leads to the unique solution for the system of linear equations

with nonnegativity constraints. It is noteworthy that these conditions are based on

the matrix itself, meaning that we can analyze the solution of the system of linear

equations with non-negative constraints on solutions from the matrix itself rather
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than from other associated problems.

In comparison with the linear equations system without the nonnegativity con-

straints on variables, we can summarize the results as follows.

• For homogeneous linear equations:

1. Ax = 0 has a nonzero solution if and only if rank(A)< N

2. Ax = 0 has a nonzero solution in RN
+ if and only if Rc(A) < N

3. Ax = 0 has a unique solution if and only if rank(A)= N

4. Ax = 0 has a unique solution in RN
+ if and only if Rc(A) = N

• For non-homogeneous linear equations:

1. Ax = b has a solution if and only if rank(A,b)=rank(A)

2. Ax = b has a solution in RN
+ if and only if Rc(A,−b) ≤ Rc(A)

3. Ax = b has a unique solution if and only if rank(A,b)=rank(A)= N

4. Ax = b has a unique solution in RN
+ if and only if Rc(A,−b) ≤ Rc(A)

and Rc(A,−b) +Rr(Ā) = N , where Ā is defined in Theorem 3.2.2
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Chapter 4

Cover Order

In this chapter, we present the necessary and sufficient condition to determine the

cover order of any given real matrix. With this condition, we are motivated to es-

tablish a specific échelon form of the matrix by applying a series of elementary row

operations and column permutations to it. This échelon form enables us to deter-

mine the cover order for any given matrix efficiently and effectively. For zero-cover

matrices, we also reveal the special structure and discover some properties of them.

Furthermore, we investigate the specific échelon form for some special matrices. In

the process of investigating the échelon form of the matrix, we arrive at a more pro-

found understanding in the analysis of linear equations system with nonnegativity

constraints on solutions.

Based on the échelon form of matrix, the concepts of non-negatively linear in-

dependence and non-negatively linear dependence have been developed. From these

concepts, we acquire a deeper insight into the system of linear equations with non-

negativity constraints on solutions. Then, we introduce the related concepts on the

construction of the generalized inverse of a matrix and based on Farkas’ lemma, we
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propose a new dual property on the coverage of a matrix.

Moreover, in the same behavior that we defined the hyper-rectangle that covers

the set
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
in Chapter 2, we introduce the inner hyper-

rectangle in the set
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
, which is shown to have a strong

relationship with the properties of zero-cover.

4.1 Properties of Cover Order

To ensure the completeness of the discussion, we present here some results related

to orthogonal complementary extracted from (1; 51), which can be applied to derive

the necessary and sufficient condition to determine the cover order of any given real

matrix. In the following discussion, RN
++ denotes the set of all the N × 1 vectors with

all N entries being positive and RN
+ denotes the set of all the N × 1 vectors with all

N entries being non-negative. If all the elements in the vector x are positive , then

we say, it is a positive vector. If all the elements in the vector x are all non-negative,

then it is a non-negative vector. Similarily, we can define the negative vector and the

non-positive vector correspondingly.

The definition of orthogonal complement and the related properties are given in

the following.

Definition 4.1.1 (Orthogonal Complement). The orthogonal complement of a sub-

space S of a vector space V equipped with a bilinear form B is the set S⊥ of all vectors

in V that are orthogonal to every vector in S. �

Lemma 4.1.1. Let S be a subspace of RN and S⊥ be the orthogonal complementary

subspace of S. Then,
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1. S ∩ RN
+ = ∅ if and only if S⊥ ∩ RN

++ 6= ∅.

2. S ∩ RN
++ = ∅ if and only if S⊥ ∩ RN

+ 6= ∅.

�

The definition of the row space of any matrix is given as follows (2; 53).

Definition 4.1.2 (Row Space). Let K be a field of scalars. Let A be an M × N

matrix, with row vectors r1, r2, · · · , rM . A linear combination of these vectors is

any vector of the form

c1r1 + c2r2 + · · ·+ cMrM ,

where c1, c2, · · · , cM are scalars. The set of all possible linear combinations of

r1, r2, · · · , rM is called the row space of A. That is, the row space of A is the span

of the vectors r1, r2, · · · , rM . �

Denote the row space of A by SA and the orthogonal complement to this row

space by S⊥A. Using Lemma 4.1.1, the following necessary and sufficient condition to

determine the cover order of a matrix is developed, which is stated as the following

theorem.

Theorem 4.1.1. Let R̄K
++ denote the set of all the nonnegative vectors with K positive

entries and specifically, R̄0
++ be {0N×1}. For any A ∈ RM×N , the cover order of A

is equal to maxSA∩R̄K
++ 6=∅K. �

Proof. The proof is done by first verifying Rc ≥ maxSA∩R̄K
++

and then proving Rc ≤

maxSA∩R̄K
++

.
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Proof of Rc ≥ maxSA∩R̄K
++

: Let us denote the i-th row of A by aTi for i =

1, 2, · · · , M and first assume

K0 = max
SA∩R̄K

++ 6=∅
K ≥ 1 (4.1.1)

By this assumption, there exists an M × 1 vector v such that

vTA = pT ∈ SA ∩ R̄K0
++ (4.1.2)

For an arbitrarily given τ > 0, from xTATAx = ‖Ax‖2
2 ≤ τ 2 we have, for i =

1, · · · ,M : −τ ≤ aTi x ≤ τ , where x ∈ RN
+ . Notice that ∀vi ∈ R, i = 1, 2, · · · , M , we

have

−|vi|τ ≤ via
T
i x ≤ |vi|τ (4.1.3)

Summing the above M inequalities, we can obtain

−τ
M∑
i=1

|vi| ≤ pTx ≤ τ
M∑
i=1

|vi| (4.1.4)

Since pT ∈ SA ∩ R̄K0
++, there exist K0 integers `

(+)
k ∈ {1, . . . , N} for k = 1, · · · , K0

such that p
(+)
`k

> 0 by our definition of R̄K0
++ and thus, we have pTx ≥ 0 for x ≥ 0.

Combining this observation with (4.1.4) yields

0 ≤ x
`
(+)
k
≤ τ

p
`
(+)
k

M∑
i=1

|vi|, k = 1, · · · , K0 (4.1.5)
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Thus,

{x : x ∈ RN
+ ,x

TATAx ≤ τ 2}

⊆

{
x : 0 ≤ x

`
(+)
k
≤
∑M

i=1 |vi|
p
`
(+)
k

τ, k = 1, · · · , K0

}
(4.1.6)

Then, according to the definition of cover order in Definition 2.1.1, we have

Rc ≥ K0 (4.1.7)

When K0 = N , we may have Rc = N since the definition of cover order in Defini-

tion 2.1.1 tells us that 0 ≤ Rc ≤ N .

Proof of Rc ≤ maxSA∩R̄K
++

: In the following, we consider the case with Rc < N .

Let p be defined in (4.1.2), which is an N × 1 nonnegative vector with K0 positive

entries. Denoting the indices of the zero-valued entries of p by `
(0)
k , where k =

1, · · · , (N −K0), we obtain

{`(0)
k , k = 1, · · · , (N −K0)} ∩ {`(+)

k , k = 1, · · · K0} = ∅ (4.1.8)

We can now generate an M × (N − K0) sub-matrix of A by using the (N − K0)

columns of A indexed by `
(0)
k , k = 1, · · · , (N −K0) and denote this sub-matrix by

Ā(0). We claim that SĀ(0) ∩ RN−K0
+ = ∅. This claim can be proved by contradiction:

Let us first suppose that

SĀ(0) ∩ RN−K0
+ 6= ∅ (4.1.9)
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As a consequence, there exists an (N −K0)× 1 vector q̄(0) such that

q̄(0) ∈ SĀ(0) ∩ RN−K0
+ (4.1.10)

Then, according to the definition of Ā(0), there exists a vector p̃ such that the `
(0)
k -th

entry of p̃ is given by the k-th element of q̄(0) for all k = 1, · · · , (N − K0) and

p̃ ∈ SA. Then, we denote the minimum of the K0 positive entries of p (defined

in (4.1.2)) indexed by `
(+)
k , k = 1, · · · , K0 by p

(+)
min. Moreover, let us denote the

minimum and the maximum of the entries of p̃ indexed by `
(+)
k , k = 1, · · · , K0 by

p̃
(+)
min and p̃

(+)
max, respectively. We notice that for `

(+)
k with k = 1, · · · , K0,

|p̃(+)
min|+ |p̃

(+)
max|+ 1

p
(+)
min

p
`
(+)
k

+ p̃
`
(+)
k

≥ |p̃(+)
min|+ |p̃(+)

max|+ 1 + p̃
`
(+)
k
≥ 1 > 0 (4.1.11)

by the definitions of p
(+)
min, p̃

(+)
min and p̃

(+)
max. From q̄(0) ∈ SĀ(0) ∩RN−K0

+ , where RN−K0
+ is

defined by the (N −K0)× 1 nonnegative vector with at least one positive entry, we

can have that among all the (N − K0) nonnegative entries of p̃ indexed by `
(0)
k for

k = 1, · · · , (N −K0), at least one is positive. Combining this observation with the

above established facts that

{`(0)
k , 1 ≤ k ≤ (N −K0)} ∩ {`(+)

k , 1 ≤ k ≤ K0} = ∅ (4.1.12)

and the entries of
|p̃(+)

min|+|p̃
(+)
max|+1

p
(+)
min

p + p̃ indexed by `
(+)
k , k = 1, · · · , K0 are positive, we

can conclude that at least (K0 + 1) entries of
|p̃(+)

min|+|p̃
(+)
max|+1

p
(+)
min

p + p̃ are positive. Putting
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this result and p, p̃ ∈ SA together leads us to

|p̃(+)
min|+ |p̃

(+)
max|+ 1

p
(+)
min

p + p̃ ∈ SA ∩ R̄K
++ (4.1.13)

with K ≥ K0 + 1, which contradicts to the assumption that K0 = maxSA∩R̄K
++ 6=∅K

in (4.1.1). Thus, our assumption that SĀ(0) ∩ RN−K0
+ 6= ∅ in (4.1.9) is not true, and

we arrive at

SĀ(0) ∩ RN−K0
+ = ∅ (4.1.14)

In addition, by Lemma 4.1.1, if SĀ(0) ∩RN−K0
+ = ∅, then, there exists an (N −K0)×1

vector q̃(0) such that

q̃(0) ∈ S⊥Ā(0) ∩ RN−K0
++ (4.1.15)

Then, we generate an N × 1 vector x0 by letting x
`
(+)
k

= 0 for k = 1, · · · , K0 and

x
`
(0)
k

= q̃
(0)
k for k = 1, · · · , (N −K0), respectively. Since q̃(0) ∈ S⊥

Ā(0) ∩ RN−K0
++ gives

us Ā(0)q̃(0) = 0, we obtain

xT0 ATAx0 = 0 + (q̃(0))T (Ā(0))T Ā(0)q̃(0) = 0 (4.1.16)

Now, for any positive τ , the following relationship holds

{ξx0 : ξ > 0} ⊂ {x : xTATAx ≤ τ 2,x ∈ RN
+} (4.1.17)

Since the positive quantity ξ is arbitrary, then for any τ > 0, there exists no positive
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constant c
`
(0)
k

such that

ξx
`
(0)
k
≤ c

`
(0)
k
τ (4.1.18)

In other words, at least (N −K0) entries of x0 can not be covered. By the definition

of cover order in Definition 2.1.1, which says that the cover order is the maximum

number of the covered entries of any given nonzero x, we arrive at Rc ≤ K0.

Combining Rc ≤ K0 with (4.1.7) yields Rc = K0. For the case K0 = 0, following

the same argument for Rc ≤ K0, we can have Rc ≤ 0. By Definition 2.1.1, Rc is

a nonnegative integer and thus, we can conclude that Rc = K0 = 0. The proof of

Theorem 4.1.1 is thus complete.

According to Theorem 4.1.1, we can easily obtain the following corollary and

lemma.

Corollary 4.1.1. Given an M × N real matrix A, if there exists at least one non-

zero row vector in A in which all the elements have the same sign, then, A has a

full-cover. �

Lemma 4.1.2. Given an M ×M real square matrix A, if, for every column of the

matrix, there exists an absolute value of an entry in a column larger than the sum of

all the absolute value of other entries in the same column, and they lie in different

rows, i.e., if

|aij| >
∑
k 6=i

|akj| for all j

where aij, i ∈ {1, 2, · · · ,M}, denotes the entry in the i-th row and j-th column in
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the matrix A, then A has a full-cover. �

Proof. To simplify the expression, we named the entry in a column whose absolute

value is larger than the sum of the absolute value of other entries in this column as

the column dominant entry. Suppose for the j-th column, the column dominant entry

is aij, where j = 1, 2, · · · , M and i ∈ {1, 2, · · · ,M}. Denote the row vectors of A

as r1, r2, · · · , rM . Then we can find a linear combination of these row vector of the

form:

r = c1r1 + c2r2 + · · ·+ cMrM ,

where cj = 1 if the column dominant entry of the j-th column aij is positive and

cj = −1 if aij < 0. In this case, r is a positive row vector with M elements. Thus,

according to Theorem 4.1.1, we have, A has a full-cover.

We also derive an important property of cover order which is stated in detail as

the following theorem.

Theorem 4.1.2. Given an M × N real matrix A, doing row operations to A will

not change its cover order. Specifically, given an invertible M ×M real matrix T, let

B = TA, then we have Rc(B) = Rc(A). �

Proof. Let us consider xTBTBx, which is equivalent to xT (ATTTTA)x according

to the assumption. Suppose λmin and λmax are the minimum eigenvalue and the

maximum eigenvalue of TTT respectively, then we have

λminI ≤ TTT ≤ λmaxI (4.1.19)
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According to above inequalities, we have

λmin(xTATAx) ≤ xT (ATTTTA)x ≤ λmax(xTATAx) (4.1.20)

Then, using the left hand side inequality: λmin(xTATAx) ≤ xTBTBx in Eq. (4.1.20)

and the definition of cover order in Definition 2.1.1, we have, for any real-valued

number τ > 0,

{x : x ∈ RN
+ ,x

TBTBx ≤ τ 2} ⊆ {x : x ∈ RN
+ ,x

TATAx ≤ τ 2

λmin
}

⊆ {x : 0 ≤ xki ≤
cki
λmin

τ, i = 1, · · · , Rc(A)}

where all cki are absolutely constants independent of τ , then by the definition of cover

order in Definition 2.1.1, we know that at least Rc(A) variables in x are covered. Thus

we have Rc(A) ≤ Rc(B).

According to the right hand side inequality in Eq. (4.1.20), i.e., xTBTBx ≤

λmax(xTATAx), we have, for any real-valued number τ > 0,

{x : x ∈ RN
+ ,x

TATAx ≤ τ 2

λmax
} ⊆ {x : x ∈ RN

+ ,x
TBTBx ≤ τ 2}

⊆ {x : 0 ≤ xki ≤ ckiτ, i = 1, · · · , Rc(B)}

where all cki are constants independent of τ , then with the definition of cover order

in Definition 2.1.1, we know that at least Rc(B) variables in x are covered. Thus we

have Rc(A) ≥ Rc(B).

As a result, we can conclude that, if det(T) 6= 0, and B = TA, then we have

Rc(A) = Rc(B).
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According to Theorem 4.1.1, we know that if we are able to find nonnegative

vectors in SA, then, the cover order of A is equal to the largest number of the positive

entries of these vectors. This result together with Theorem 4.1.2 indeed implicitly

suggests that we can perform a series of linear elementary row transformations and

column permutations to determine the cover order of the matrix A. This suggestion

leads us to the following section in which we introduce an échelon transformation of

the matrix to obtain the cover order of any given matrix.

4.2 Échelon Form of Matrix

4.2.1 Échelon Transformation

Given an M ×N real matrix A, the process of determining the cover order of A can

be described in the following steps:

1) Échelon form. Given an M × N real matrix A, we can find the elementary

transformation matrix E0 and permutation matrix P0 such that

E0AP0 =

I B0

0 0

 (4.2.1)

where I ∈ RRr×Rr , B0 ∈ RRr×(N−Rr) and Rr is the rank of the matrix A. Eq.

(4.2.1) is called the échelon form of A. It is noted that the transformation

towards the matrix A is not unique, we can choose different E0 and P0 arriving

at different values of B0.

Without loss of generality, we can assume A is of full-rank, i.e., Rr = M . In

52



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

particular, from Theorem 3.1.1 and Theorem 4.1.1,

(a) if the initial échelon form transformation of A in Eq. (4.2.1) results in

every entry in some row of B0 being positive, then, Rc(A) = N , i.e, A has

a full-cover;

(b) if every entry in some column of B0 is negative, then, Rc(A) = 0.

However, if the cover order of A is not immediately obvious from the structure

of B0 resulted from the initial échelon form, the following steps of structural

arrangement can be taken to determine the cover order.

2) Structure Arrangement. Search for all non-negative rows in B0 and select the

one which has the greatest number of positive elements. Moving this selected

row to the first row and assuming that it contains N1 positive entries. By doing

the row and column permutation, we can always ensure the identity matrix

structure ahead and let the following statements hold:

b11, b12, · · · , b1N1 > 0, b1(N1+1), · · · , b1(N−M) = 0 (4.2.2)

where b1i, i = 1, 2, · · · , N −M are the elements in the first row of the new

structure of B0. Then, in the above, ignoring the first N1 columns in new B0.

Find all non-negative rows in the remaining part of it and choose the row with

the largest number of positive elements. Moving this row to the second row and

assuming it contains N2 positive entries in the remaining N −M −N1 columns,

we have:

b2(N1+1), b2(N1+2), · · · , b2(N1+N2) > 0, b2(N1+N2+1), · · · , b2(N−M) = 0 (4.2.3)
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where b2i, i = N1 + 1, N1 + 2, · · · , N −M , are the elements in the second

row of the new form of B0 after above steps. By arranging the following rows

similarly, after s times, we obtain:

b11, b12, · · · , b1N1 > 0,

b1(N1+1), · · · , b1(N−M) = 0;

b2(N1+1), b2(N1+2), · · · , b2(N1+N2) > 0,

b2(N1+N2+1), · · · , b2(N−M) = 0;

... (4.2.4)

b(s−1)(N1+N2+ ··· +Ns−2+1), · · · , b(s−1)(N1+ ··· +N(s−1) > 0,

b(s−1)(N1+N2+ ··· +N(s−1)+1), · · · , b(s−1)(N−M) = 0;

bs(N1+N2+ ··· +Ns−1+1), · · · , bs(N1+ ··· +Ns) > 0,

bs(N1+N2+ ··· +Ns+1), · · · , bs(N−M) = 0.

where bij in Eqs. (4.2.4), i = 1, 2, · · · , s, j = 1, 2, · · · , N −M , and s ≤

M , are the elements in the first s rows of the structure of B0 after s times

transformation. Then let:

B̄ =



bs+1,N1+···+Ns+1 bs+1,N1+···+Ns+2 · · · bs+1,N−M

bs+2,N1+···+Ns+1 bs+2,N1+···+Ns+2 · · · bs+2,N−M

...
...

. . .
...

bM−1,N1+···+Ns+1 bM−1,N1+···+Ns+2 · · · bM−1,N−M

bM,N1+···+Ns+1 bM,N1+···+Ns+2 · · · bM,N−M


(4.2.5)

where bij in Eq. (4.2.5), i = s+ 1, s+ 2, · · · , M , j = N1 + · · ·+Ns + 1, N1 +
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· · · + Ns + 2, · · · , N −M , and s ≤ M , are the elements in the bottom-right

corner of the structure of B0 after s times transformation.

The row and column transformations on A ends when one of the following two

cases happens:

(a)
∑s

i=1Ni = N −M , in which case, A is full cover;

(b) There is no non-negative row vector in the row space of B̄.

3) Cover Order. At the end of the above structural arrangement procedure, we

arrive at the conclusion that the cover order of A is

Rc(A) =
s∑
i=1

Ni + s (4.2.6)

where s ≤M .

�

The next theorem states the property of the final form of the échelon form of any

given matrix.

Theorem 4.2.1. For any M × N real matrix A, there exists elementary matrix E

and permutation matrix P, such that:

EAP =

I B

0 0

 (4.2.7)

where I ∈ RRr×Rr , B ∈ RRr×(N−Rr) and Rr is the rank of the matrix A. Then B

either:

1. contains at least one non-negative row; or
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2. contains at least one negative column vector, or there exists one non-positive

column vector, but the position where the zero lies will be negative in some

other columns of B.

�

More specifically, when the first scenario occurs, i.e., B has at least one non-

negative row in it, then the cover order of A can be determined by the above steps.

Otherwise, Rc(A) = 0.

In the following, we present the proof of Theorem 4.2.1.

Proof. As stated before, without lose of generality, we can assume A has full rank,

i.e., Rr = M .

1. For N −M = 1, i.e.,

EAP =

(
I b

)
, (4.2.8)

where b is a M × 1 column vector. 1) If b contains at least one positive ele-

ments, then A is of full-cover. 2) If b is negative vector, then A is of zero-cover.

3) If b is a non-positive vector, then the cover order of A equals to the number

of zero term.

2. Suppose for N −M = K, the above conclusion holds: i.e., if Rc(A) > 0, then
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A can be transformed into the following form:



1 0 · · · 0 b11 b12 · · · b1K

0 1 · · · 0 b21 b22 · · · b2K

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 b(M−1)1 b(M−1)2 · · · b(M−1)K

0 0 · · · 1 bM1 bM2 · · · bMK


(4.2.9)

where

b11, b12, · · · , b1N1 > 0,

b1(N1+1), · · · , b1K = 0;

b2(N1+1), b2(N1+2), · · · , b2(N1+N2) > 0,

b2(N1+N2+1), · · · , b2K = 0;

... (4.2.10)

b(s−1)(N1+N2+ ··· +Ns−2+1), · · · , b(s−1)(N1+ ··· +N(s−1) > 0,

b(s−1)(N1+N2+ ··· +N(s−1)+1), · · · , b(s−1)K = 0;

bs(N1+N2+···+Ns−1+1), · · · , bs(N1+···+Ns) > 0,

bs(N1+N2+···+Ns+1), · · · , bsK = 0

and Rc(A) =
∑s

i=1Ni + s. Besides, let
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B̄ =


bs+1,N1+···+Ns+1 · · · bs+1,K

...
. . .

...

bM,N1+···+Ns+1 · · · bM,K

 (4.2.11)

where B̄ either contains at least one negative column vector, or has one non-

positive column vector, but the position where the zero lies will be negative

in some other column of B̄. In the following we will prove that if the above

conclusion holds for N − M = K, then this conclusion will also hold when

N −M = K + 1.

3. When N −M = K + 1, assuming

A =

(
I b1 · · · bK bK+1

)
(4.2.12)

where I is a M ×M identity matrix and bi, i = 1, · · · , K + 1 are all M × 1

column vectors. Without considering bK+1, denote the remaining part in A as

Ā, which equals to

Ā =

(
I b1 · · · bK

)
(4.2.13)

According to the assumption in the case of N −M = K, Ā can be transformed
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into échelon form and let

Rc(Ā) =
s∑
i=1

Ni + s (4.2.14)

By considering the corresponding bK+1 with the éhelon form of Ā (apply the

same row permutation to bK+1 as Ā permutes in the échelon transformation

and we still use bK+1 to denote it after the permutation ), we can see that if

b1,K+1 > 0, and we have:

Rc(A) =
s∑
i=1

Ni + s+ 1 (4.2.15)

If b1,K+1 = 0, we can perform the following process from the second row. There-

fore, in the following, we will consider the case when b1,K+1 < 0. The following

steps can be taken to make the first row non-positive and move it to the last

row without affecting the cover order of A.

Step 1 Let:

m = max
j∈{1,2, ··· , M}

{−bj1
b11

,−bj2
b12

· · · , − bj,K+1

b1,K+1

}, (4.2.16)

where bj1b11 < 0, bj2b12 < 0, · · · , bj,K+1b1,K+1 < 0, for j = 1, 2, · · · , M .

Using m times the first row of A and adding the product to each row in
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it, then we have A(1):



1 0 · · · 0 b11 · · · b1,K+1

m 1 · · · 0 b21 +mb11 · · · b2,K+1 +mb1,K+1

...
...

. . .
...

...
. . .

...

m 0 · · · 1 bM1 +mb11 · · · bM,K+1 +mb1,K+1


(4.2.17)

Step 2 Use (-1) times the first row of A(1) to get A(2):



−1 0 · · · 0 −b11 · · · −b1,K+1

m 1 · · · 0 b21 +mb11 · · · b2,K+1 +mb1,K+1

...
...

. . .
...

...
. . .

...

m 0 · · · 1 bM1 +mb11 · · · bM,K+1 +mb1,K+1


(4.2.18)

Step 3 Let:

t2 =
b2,K+1

b1,K+1

+m,

t3 =
b3,K+1

b1,K+1

+m,

... (4.2.19)

tM =
bM,K+1

b1,K+1

+m.

Let aTj be the j-th row of A(2). Then by adding aT1 tj to the j-the row in
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A(2), where j = 2, 3, · · · ,M , we have A(3):



−1 · · · 0 −b11 · · · −b1,K+1

m− t2 · · · 0

∣∣∣∣∣∣∣∣∣∣
b21 b2,K+1

b11 b1,K+1

∣∣∣∣∣∣∣∣∣∣
b1,K+1

· · · 0

...
. . .

...
...

. . .
...

m− tM · · · 1

∣∣∣∣∣∣∣∣∣∣
bM1 bM,K+1

b11 b1,K+1

∣∣∣∣∣∣∣∣∣∣
b1,K+1

· · · 0



(4.2.20)

Step 4 Multiplying the first row of A(3) that we obtained in the last step with

− 1
b1,K+1

and exchanging the position of the first column with the last col-

umn, we obtain: A(4):



1 0 · · · 0 b11

b1,K+1
· · · 1

b1,K+1

0 1 · · · 0

∣∣∣∣∣∣∣∣∣∣
b21 b2,K+1

b11 b1,K+1

∣∣∣∣∣∣∣∣∣∣
b1,K+1

· · · − b2,K+1

b1,K+1

...
...

. . .
...

...
. . .

...

0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
bM1 bM,K+1

b11 b1,K+1

∣∣∣∣∣∣∣∣∣∣
b1,K+1

· · · − bM,K+1

b1,K+1



(4.2.21)

Step 5 Permuting the corresponding rows and columns such that the first row in

the right-hand side of A(4) is moved to the last row, as well as securing the
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left-hand side identity matrix structure, we have A(5).



1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
b21 b2,K+1

b11 b1,K+1

∣∣∣∣∣∣∣∣∣∣
b1,K+1

· · · − b2,K+1

b1,K+1

...
...

. . .
...

...
. . .

...

0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
bM1 bM,K+1

b11 b1,K+1

∣∣∣∣∣∣∣∣∣∣
b1,K+1

· · · − bM,K+1

b1,K+1

0 0 · · · 1 b11

b1,K+1
· · · 1

b1,K+1



(4.2.22)

Step 6 Without considering the last column of A(5), we rearrange the rows and

columns of the first (M + K) columns such that we are able to obtain a

new échelon form matrix Ā(5) and

Rc(Ā(5)) =
s(2)∑
i=1

N
(2)
i + s(2) (4.2.23)

By considering the corresponding b̄K+1 in the échelon form of Ā(5), we see

that if b̄1,K+1 > 0, then

Rc(A) =
s(2)∑
i=1

N
(2)
i + s(2) + 1 (4.2.24)

If b̄1,K+1 < 0, we can repeat the above steps.

Finally, either after t times transformation, there exists one b̄1,K+1 > 0,
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such that the first row of the new matrix is non-negative and

Rc(A) =
s(t)∑
i=1

N
(t)
i + s(t) + 1 (4.2.25)

or, Rc(A) = 0 and there exists at least one column ((K + 1)-th column of

A) is negative.

To demonstrate how to determine the cover order of a given matrix based on the

échelon form, the following examples are given.

Example 4.2.1. The matrix A in the following examples is already in its échelon

form. And based on this form, we can determine the cover order of A directly.

1. Consider the matrix:

A =

1 0 1 1 0

0 1 −1 1 −1


From the above discussion, by considering the first non-negative row in A, we

can obtain that a1, a3 and a4 are all covered column vectors in A. Then without

looking at those covered columns, there is no non-negative row in the remaining

part of A. Thus a2, a5 are uncovered. Correspondingly, the associated x1, x3

and x4 in Ax are covered variables. As a result, Rc(A) = 3.
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2. Consider the matrix:

A =


1 0 0 −1 0

0 1 0 1 −1

0 0 1 1 −1


We note that there is a non-positive column vector a5 in matrix A. Besides,

the row where the zero lies in a5 has negative element in the other column. As

a consequence, A is zero cover.

�

With the proof of Theorem 4.2.1, we can easily reach the conclusion that the

zero-cover matrix possesses the following property.

Corollary 4.2.1. For any M ×N real matrix A, if A is zero cover then there exists

elementary matrix E and permutation matrix P, such that:

EAP =

I B

0 0

 (4.2.26)

where I ∈ RRr×Rr , B ∈ RRr×(N−Rr) and Rr is the rank of the matrix A. The matrix
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B possesses the following special structure:

b1,1, b2,1, · · · , br1,1 < 0;

br1+1,1, br1+2,1, · · · , bRr,1 = 0;

br1+1,2, br1+2,2, · · · , br1+r2,2 < 0;

br1+r2+1,2, br1+r2+2,2 · · · , bRr,2 = 0;

...

br1+r2+···+rk−1+1,k, · · · , br1+r2+···+rk−1+rk,k < 0.

where bi,j is the (i, j)-th element of matrix B, 1 ≤ k ≤ (N − Rr) and r1 + r2 + · · ·+

rk−1 + rk = Rr.

�

4.2.2 Specific Échelon Form for Special Cases

Observe that the échelon form of a matrix is not unique, and under different circum-

stances, a different form may be required. Due to this, it is necessary to investigate

the specific échelon form for special cases.

Lemma 4.2.1. Consider an M ×N full rank real matrix A and N ≥ 2M . Suppose

there is only one negative element in each column and each row in the right-hand side

of its échelon form, while the remaining elements are all positive. If A has zero-cover,

then A can be transformed into the following form, where the right hand side matrix

B in A will contain one row only has one negative term while other rows are all
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non-positive vectors:

A→



1 0 · · · 0 b11 b12 · · · b1,N−M

0 1 · · · 0 b21 b22 · · · b2,N−M

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 bM1 bM2 · · · bM,N−M


(4.2.27)

where b11 < 0 while b1j > 0, for j = 2, · · · , N −M and the remaining elements are

all non-positive. �

Proof. Without loss of generality, we can assume the matrix A has full rank, i.e.,

Rr = M , and let

A =



1 0 · · · 0 b11 b12 · · · b1,N−M

0 1 · · · 0 b21 b22 · · · b2,N−M

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 bM1 bM2 · · · bM,N−M


(4.2.28)

where bii < 0 and bij > 0, for i = 1, 2, · · · , M and j = 1, 2, · · · , N −M and

N ≥ 2M .

Step 1 Let:

t1 = − b1M

bMM

, t2 = − b2M

bMM

, · · · , tM−1 = −bM−1,M

bMM

.

According to the assumption, we have ti > 0 for i = 1 , 2, · · · , M − 1. Let

aTj be the j-th row of A. Then by adding aTM tj to the j-the row in A, where
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j = 1 , 2, · · · , M − 1. We will have A(1):



1 · · · t1 b11 + t1bM1 · · · 0 · · · b1,N−M + t1bM,N−M

0 · · · t2 b21 + t2bM1 · · · 0 · · · b2,N−M + t2bM,N−M

...
. . .

...
...

. . .
...

. . .
...

0 · · · 1 bM1 · · · bMM · · · bM,N−M



Step 2 Multiplying the last row of A(1) by (−1) to get A(2):



1 · · · t1 b11 + t1bM1 · · · 0 · · · b1,N−M + t1bM,N−M

0 · · · t2 b21 + t2bM1 · · · 0 · · · b2,N−M + t2bM,N−M

...
. . .

...
...

. . .
...

. . .
...

0 · · · −1 −bM1 · · · −bMM · · · −bM,N−M



Step 3 Multiplying the last row of A(2) that we obtained in the last step by − 1
bMM

and

exchanging the position of the M -th column with the 2M -th column in A(2) at

the mean time, we will get A(3):



1 0 · · · 0 b11 + t1bM1 · · · t1 · · · b1,N−M + t1bM,N−M

0 1 · · · 0 b21 + t2bM1 · · · t2 · · · b2,N−M + t2bM,N−M

...
...

. . .
...

...
. . .

...

0 0 · · · 1 bM1

bMM
· · · 1

bMM
· · · bM,N−M

bMM


It is observed that in A(3), the elements in the last row of right hand side of it
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are all negative, i.e.,

1

bMM

< 0,

bMj

bMM

< 0 for j = 1, · · · , M− 1, M + 1, · · · , N−M (4.2.29)

In addition, in the remaining part of the right hand side of the matrix A(3) we

have:

(a) for i 6= j where i = 1, · · · , M−1 and j = 1, · · · , M−1, M+1, · · · , N−

M :

bij + tibMi > 0 (4.2.30)

(b) for i = j where i = 1, · · · , M − 1:

bii + tibMi < 0 (4.2.31)

The inequality (4.2.31) holds since the matrix A has zero cover, then each row

of A(3) must contain at least one negative element.

Step 4 Denote the elements in the right hand side of A(3) as b
(1)
ij for i = 1, · · · , M − 1

and j = 1, · · · , N −M . Then let:

t
(1)
1 = −

b
(1)
1,M−1

b
(1)
M−1,M−1

, t
(1)
2 = −

b
(1)
2,M−1

b
(1)
M−1,M−1

, · · · , t(1)
M−2 = −

b
(1)
M−2,M−1

b
(1)
M−1,M−1

, t
(1)
M = −

b
(1)
M,M−1

b
(1)
M−1,M−1
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According to the above discussions, we have

t
(1)
i > 0 for i = 1 , 2, · · · , M − 2,

t
(1)
M < 0. (4.2.32)

Let a
(1)T
j be the j-th row of A(3). Then by adding a

(1)T
j t

(1)
i to the j-the row in

A(3), where j = 1 , 2, · · · , M − 2, M , we will have A(4) :



1 · · · t
(1)
1 0 b

(1)
11 + t

(1)
1 b

(1)
M−1,1 · · · 0 · · · b

(1)
1,N−M + t

(1)
1 b

(1)
M−1,N−M

0 · · · t
(1)
2 0 b

(1)
21 + t

(1)
2 b

(1)
M−1,1 · · · 0 · · · b

(1)
2,N−M + t

(1)
2 b

(1)
M−1,N−M

...
. . .

...
...

...
. . .

...
. . .

...

0 · · · 1 0 b
(1)
M−1,1 · · · b

(1)
M−1,M−1 · · · b

(1)
M−1,N−M

0 · · · t
(1)
M 1 b

(1)
M1 + t

(1)
M b

(1)
M−1,1 · · · 0 · · · b

(1)
M,N−M + t

(1)
M b

(1)
M−1,N−M



Step 5 Multiply the (M − 1)-th row of A(4) by (−1), then multiplying the (M − 1)-th

row of it with − 1
bM−1,M−1

and exchanging the position of the (M − 1)-th column

with the 2(M − 1)-th column, we will get A(5):



1 0 · · · 0 b
(1)
11 + t

(1)
1 b

(1)
M−1,1 · · · t

(1)
1 · · · b

(1)
1,N−M + t1b

(1)
M−1,N−M

0 1 · · · 0 b
(1)
21 + t

(1)
2 b

(1)
M−1,1 · · · t

(1)
2 · · · b

(1)
2,N−M + t

(1)
2 b

(1)
M−1,N−M

...
...

. . .
...

...
. . .

...

0 0 · · · 0
b
(1)
M−1,1

b
(1)
M−1,M−1

· · · 1

b
(1)
M−1,M−1

· · · b
(1)
M−1,N−M

b
(1)
M−1,M−1

0 0 · · · 1 b
(1)
M1 + t

(1)
M b

(1)
M−1,1 · · · t

(1)
M · · · b

(1)
M,N−M + t

(1)
M b

(1)
M−1,N−M


We notice that in A(5), the elements in the (M − 1)-th row of right hand side
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of it are all negative, i.e.,

1

b
(1)
M−1,M−1

< 0,

b
(1)
M−1,j

b
(1)
M−1,M−1

< 0 for j = 1, · · · , M− 2, M, · · · , N−M (4.2.33)

Moreover, the last row of the right hand side of the matrix A(5) are all negative

as well, i.e.,

t
(1)
M < 0,

b
(1)
Mj + t

(1)
M b

(1)
M−1,j < 0 for j = 1, · · · ,M− 2,M, · · · ,N−M (4.2.34)

Additionally, in the remaining part of the right hand side of the matrix A(5) we

have:

(a) for i 6= j where i = 1, · · · , M−2 and j = 1, · · · , M−2, M, · · · , N−M :

bij + tibMi > 0 (4.2.35)

(b) for i = j where i = 1, · · · , M − 2:

bii + tibMi < 0 (4.2.36)

The above inequality holds since the matrix A has zero cover, then each row of

A(5) must contain at least one negative element.

Repeat the whole process until the second row of the right hand side part of the
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new matrix has been transformed into a negative vector, and the final form is:



1 0 · · · 0 b
(M−1)
11 b

(M−1)
12 · · · b

(M−1)
1,N−M

0 1 · · · 0 b
(M−1)
21 b

(M−1)
22 · · · b

(M−1)
2,N−M

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 b
(M−1)
M1 b

(M−1)
M2 · · · b

(M−1)
M,N−M


where

b
(M−1)
11 < 0,

b
(M−1)
1j > 0, for j = 1, 2, · · · , N−M

b
(M−1)
ij < 0, for i = 2, 3, · · · , M, j = 1, 2, · · · , N−M

Therefore, the proof of Lemma 4.2.1 is complete.

From the proof of Lemma 4.2.1, we observe that this zero-cover matrix A contains

one negative column vector in it, i.e., the elements in the (M + 1)-th column of the

matrix A possesses the special structure in the statement of Lemma 4.2.1, which are

all negative.

Lemma 4.2.2. Given a real matrix A, if the matrix B0 in the échelon form of it

only has two columns, then A can be transformed into the following form:

EAP =

I B

0 0

 (4.2.37)

where the row vector of B is either non-positive or non-negative. Specifically, if A
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has zero-cover, then B will be a non-positive matrix, besides, there is no zero row

vector in B. �

Proof. According to the Theorem 4.2.1, the right-hand side matrix B in the échelon

form of A will either

1. have at least one non-negative row vector; or

2. have at least one negative column or has one non-positive column but the po-

sition where the zero lies will be negative in another column.

Now let us suppose A has full rank and there exist the elementary transformation

matrix E and the permutation matrix P such that

EAP =

(
I B

)
=



1 0 · · · 0 b11 b12

0 1 · · · 0 b21 b22

...
...

. . .
...

...
...

0 0 · · · 1 bM1 bM2


(4.2.38)

For the first case, i.e., when B contains at least one non-negative row vector. Without

loss of generality, we can suppose b11 and b12 are both positive, while the combination

of elements in other row vectors will be a) both negative, b) one positive and one

negative.

Step 1 By performing the row and column permutation, we are able to move the row

of B whose elements are both negative to the lower side of it while guaranteeing
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the identity matrix structure ahead, then we will have A(1):

A(1) =

(
I B(1)

)
=



1 0 · · · 0 b
(1)
11 b

(1)
12

0 1 · · · 0 b
(1)
21 b

(1)
22

...
...

. . .
...

...
...

0 0 · · · 1 b
(1)
M1 b

(1)
M2



Step 2 Let the number of negative row vectors in B(1) be P and let s = M−P . Suppose

b
(1)
s1 > 0 and b

(1)
s2 < 0, then let:

m = max
j∈{1, 2, ··· , M−P}

{−
b

(1)
j1

b
(1)
s1

,−
b

(1)
j2

b
(1)
s2

}, (4.2.39)

where b
(1)
j1 b

(1)
s1 < 0 and b

(1)
j2 b

(1)
s2 < 0 for j = 1, 2, · · · , M − P .

Multiply the (M −P )-th row of A(1) by m and adding the product to each row

in it. Then we will have A(2):



1 0 · · · m · · · 0 b
(1)
11 +mb

(1)
s1 b

(1)
12 +mb

(1)
s2

0 1 · · · m · · · 0 b
(1)
21 +mb

(1)
s1 b

(1)
22 +mb

(1)
s2

...
...

. . .
...

. . .
...

...
...

0 0 · · · 1 · · · 0 b
(1)
s1 b

(1)
s2

0 0 · · · 0 · · · 0 b
(1)
s+1,1 b

(1)
s+1,2

...
...

. . .
...

. . .
...

...
...

0 0 · · · 0 · · · 1 b
(1)
M1 b

(1)
M2


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It is observed that

b
(1)
i1 +mb

(1)
s1 > 0, b

(1)
i2 +mb

(1)
s2 < 0 for i = 1, · · · , s− 1;

b
(1)
s1 > 0, b

(1)
s2 < 0;

b
(1)
i1 < 0, b

(1)
i2 < 0 for i = s + 1, · · · , M.

Step 3 Multiply the s-th row of A(2) by (−1) to get A(3):



1 0 · · · m · · · 0 b
(1)
11 +mb

(1)
s1 b

(1)
12 +mb

(1)
s2

0 1 · · · m · · · 0 b
(1)
21 +mb

(1)
s1 b

(1)
22 +mb

(1)
s2

...
...

. . .
...

. . .
...

...
...

0 0 · · · −1 · · · 0 −b(1)
s1 −b(1)

s2

0 0 · · · 0 · · · 0 b
(1)
s+1,1 b

(1)
s+1,2

...
...

. . .
...

. . .
...

...
...

0 0 · · · 0 · · · 1 b
(1)
M1 b

(1)
M2



Step 4 Then for i = 1, 2, · · · , s− 1:

ti =
b

(1)
i2

b
(1)
s2

+m, (4.2.40)

and for i = s+ 1, s+ 2, · · · , M :

ti =
b

(1)
i2

b
(1)
s2

. (4.2.41)

Let aj
T be the j-th row of A(3). Then, by adding aj

T tj to the j-the row in A(3),
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where j = 1, · · · , s− 1, s+ 1 · · · , M , we have A(4):



1 0 · · · − b
(1)
12

b
(1)
s2

· · · 0

∣∣∣∣∣∣∣∣∣∣
b

(1)
11 b

(1)
12

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

0

0 1 · · · − b
(1)
22

b
(1)
s2

· · · 0

∣∣∣∣∣∣∣∣∣∣
b

(1)
21 b

(1)
22

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

0

...
...

. . .
...

. . .
...

...
...

0 0 · · · −1 · · · 0 −b(1)
s1 −b(1)

s2

0 0 · · · −ts+1,2 · · · 0

∣∣∣∣∣∣∣∣∣∣
b

(1)
s+1,1 b

(1)
s+1,2

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

0

...
...

. . .
...

. . .
...

...
...

0 0 · · · −tM2 · · · 1

∣∣∣∣∣∣∣∣∣∣
b

(1)
M1 b

(1)
M2

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

0


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Step 5 Multiplying the s-th row of A(4) obtained in the last step with − 1
bs2

and ex-

changing the position of the s-th column with the last column, we have A(5):



1 0 · · · 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
b

(1)
11 b

(1)
12

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

− b
(1)
12

b
(1)
s2

0 1 · · · 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
b

(1)
21 b

(1)
22

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

− b
(1)
22

b
(1)
s2

...
...

. . .
...

. . .
...

...
...

0 0 · · · 1 · · · 0
b
(1)
s1

b
(1)
s2

1

b
(1)
s2

0 0 · · · 0 · · · 0

∣∣∣∣∣∣∣∣∣∣
b

(1)
s+1,1 b

(1)
s+1,2

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

− b
(1)
s+1,2

b
(1)
s2

...
...

. . .
...

. . .
...

...
...

0 0 · · · 0 · · · 1

∣∣∣∣∣∣∣∣∣∣
b

(1)
M1 b

(1)
M2

b
(1)
s1 b

(1)
s2

∣∣∣∣∣∣∣∣∣∣
b
(1)
s2

− b
(1)
M2

b
(1)
s2


In A(5), use b

(2)
ij to denote the element in B(5), then we have:

b
(2)
ij < 0, for i = s, s + 1, · · · , M, and j = 1, 2.

Similarly, we can move all the negative row vectors in B(5) to the bottom side of

it while guaranteeing the identity matrix structure in the front. We note that the

number of those negative vectors are greater than P . Repeat Step 1∼5 till for i =
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1, 2, · · · ,M , we have:

bi1bi2 ≥ 0, (4.2.42)

i.e., there is no more row vector whose elements possess different sign. Thus the row

vector of B is either non-positive or non-negative.

For the second case, i.e., if A has zero-cover, then B contains one negative column,

or one non-positive column for which the position of the zero is occupied by a negative

quantity in another column. Similar to the first case, if the elements in some row of

B have different signs, then we can always transform this kind of row to the negative

one. Finally, B only contains two non-positive column vector and there is no zero

row vector in B.

This concludes the proof of Lemma 4.2.2

4.2.3 Échelon Form of Low-Rank Matrices

Low-rank matrices generally possess some interesting échelon forms. In the following,

we will examine the structure of the matrix with its rank equals to 2 in more detail.

Theorem 4.2.2. Suppose A is an M ×N real matrix such that Rr(A) = 2. If A is

full cover, then A can be transformed into:

A→

 I2 B2×(N−2)

0(M−2)×2 0(M−2)×(N−2)

 (4.2.43)

where B is a non-negative matrix. �

Proof. Without loss of generality, given an M ×N real matrix A and suppose it has
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full rank and its rank is 2, i.e., M = 2. If A has full-cover, then by Theorem 4.2.1,

A can be transformed into:1 0 b11 b12 · · · b1,N−2

0 1 b21 b22 · · · b2,N−2

 (4.2.44)

where b11, b12, · · · , b1,N−2 > 0. If there exist b2i < 0, i ∈ {1, · · · , N − 2}, then let

t = max
i∈{1, ··· , N−2}

{−b2i

b1i

, b2i < 0} = −b2j

b1j

(4.2.45)

Multiplying the first row of A by t and adding the product to the second row of it.

Then we have:1 0 b11 b12 · · · b1j · · · b1,N−2

t 1 b21 − b11
b2j
b1j

b22 − b12
b2j
b1j
· · · 0 · · · b2,N−2 − b1,N−2

b2j
b1j

 (4.2.46)

In the next step, multiplying the first row of above matrix by 1
b1j

and exchanging

the first column with the j-th column so that the identity matrix structure in the

left-hand side part can be guaranteed, we have:

1 0 b11

b1j

b12

b1j
· · · 1

b1j
· · · b1,N−2

b1j

0 1 b21 − b11
b2j
b1j

b22 − b12
b2j
b1j
· · · − b2j

b1j
· · · b2,N−2 − b1,N−2

b2j
b1j

 (4.2.47)

Now, for b2i < 0, i ∈ {1, · · · , N − 2},

b2i − b1i
b2j

b1j

= b1i(
b2i

b1i

− b2j

b1j

) > 0 (4.2.48)
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And, for b2i > 0, it is obvious that b2i − b1i
b2j
b1j

> 0. Thus, after these two steps, we

obtain a B which has two non-negative row vectors.

Theorem 4.2.3. Suppose A is an M × N real matrix and Rr(A) = 2. Then A is

zero cover if and only if it can be transformed into the form:

EAP =

 I2 B+ B−

0(N−2)×2 0 0

 (4.2.49)

where all the elements in B+ are non-negative and the elements in B− are all non-

positive. Specifically, B− contains at least one column which is a negative vector or

two non-negative vectors with their negative terms lie in different rows. �

Proof. Without loss of generality, we can assume A has full rank, i.e., M = 2. Firstly,

let us proof the sufficient condition. Given a zero-cover matrix A, then by Theo-

rem 4.2.1, it can be transformed into:

1 0 b11 b12 · · · b1,N−2

0 1 b21 b22 · · · b2,N−2

 (4.2.50)

then let:

t = max
i∈{1, ··· , N−2}

{−b2i

b1i

, b1ib2i < 0} = −b2j

b1j

(4.2.51)

Multiplying the first row by t and adding the product to the second row. Then we
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have: 1 0 b11 b12 · · · b1j · · · b1,N−2

t 1 b21 − b11
b2j
b1j

b22 − b12
b2j
b1j
· · · 0 · · · b2,N−2 − b1,N−2

b2j
b1j

 (4.2.52)

In the next step, multiplying the first row of above matrix with 1
b1j

and exchanging

the first column with the j-th column so that the identity matrix structure in the

left-hand side part can be guaranteed. Then we will have:

1 0 b11

b1j

b12

b1j
· · · 1

b1j
· · · b1,N−2

b1j

0 1 b21 − b11
b2j
b1j

b22 − b12
b2j
b1j
· · · − b2j

b1j
· · · b2,N−2 − b1,N−2

b2j
b1j

 (4.2.53)

For those b1i > 0, i ∈ {1, · · · , N − 2}, we have:

b2i − b1i
b2j

b1j

= b1i(
b2i

b1i

− b2j

b1j

) > 0 (4.2.54)

For those b1i < 0, i ∈ {1, · · · , N − 2}, if b2i < 0, then we have:

b2i − b1i
b2j

b1j

< 0 (4.2.55)

If b2i > 0, the sign of (b2i− b1i
b2j
b1j

) is uncertain. After above steps, and by doing some

certain column permutations, the matrix A can be transformed into the following

form:

(
I B(1) B(2) B(3)

)
(4.2.56)

where B(1) is a non-negative matrix, B(3) is a non-positive matrix, and the elements
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in the first row of B(2) are all negative, while the elements in the second row of it are

all positive. To simplify the discussion, we can write above matrix as:

1 0 b
(1)
11 b

(1)
12 · · · b

(1)
1,N−2

0 1 b
(1)
21 b

(1)
22 · · · b

(1)
2,N−2

 (4.2.57)

Then let:

m = max
i∈{1, ··· , N−2}

{−b
(1)
1i

b
(1)
2i

, b
(1)
2i b

(1)
1i < 0} = −b

(1)
1s

b
(1)
2s

(4.2.58)

Multiplying the second row of above matrix by m and adding the product to the first

row. Then we have:1 m b
(1)
11 − b

(1)
21

b
(1)
1s

b
(1)
2s

b
(1)
12 − b

(1)
22

b
(1)
1s

b
(1)
2s

· · · 0 · · · b
(1)
1,N−2 − b

(1)
2,N−2

b
(1)
1s

b
(1)
2s

0 1 b
(1)
21 b

(1)
22 · · · b

(1)
2s · · · b

(1)
2,N−2

 (4.2.59)

Multiplying the second row of above matrix with 1

b
(1)
2s

and exchanging the second

column with the s-th column so that the identity matrix structure in the left-hand

side part can be guaranteed, we have:

1 0 b
(1)
11 − b

(1)
21

b
(1)
1s

b
(1)
2s

b
(1)
12 − b

(1)
22

b
(1)
1s

b
(1)
2s

· · · − b
(1)
1s

b
(1)
2s

· · · b
(1)
1,N−2 − b

(1)
2,N−2

b
(1)
1s

b
(1)
2s

0 1
b
(1)
21

b
(1)
2s

b
(1)
22

b
(1)
2s

· · · 1

b
(1)
2s

· · · b
(1)
2,N−1

b
(1)
2s

(4.2.60)

In the above matrix, we have if b
(1)
2i > 0, i ∈ {1, · · · , N − 2}, then

b
(1)
1i − b

(1)
2i

b
(1)
1s

b
(1)
2s

> 0 (4.2.61)
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and if b
(1)
2i < 0, i ∈ {1, · · · , N − 2}, then

b
(1)
1i − b

(1)
2i

b
(1)
1s

b
(1)
2s

< 0 (4.2.62)

As a result, if A has zero cover, then it can be transformed into the right hand side

form in Eq. (4.2.49).

To prove the necessity: Suppose A can be transformed into the following form:

(
I2 B+ B−

)
(4.2.63)

Consider the case when B− contains two non-negative vectors with their negative

terms lie in different rows. Then Ax = 0 can be written as:

(
I2 B+ B̄− b1 b2

)
×



x1

x2

x+

x−

x

y


= 0 (4.2.64)

where

b1 =

b1

0

 ,b2 =

 0

b2

 (4.2.65)

and b1, b2 are both negative, B̄− is the matrix formed by deleting the column vectors
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b1 and b2 from B−. Then we have:

x1

x2

 =

x
y

−B+x+ − B̄−x− (4.2.66)

We can let the elements in x+ and x− be any positive value. If we let x and y be

positive and large enough, we can still obtain positive x1 and x2. In this case, all

elements in x are positive and satisfy the equation Ax = 0. By Theorem 3.1.1, A

has zero cover.

This concludes the proof of Theorem 4.2.3.

4.2.4 The Analysis of the Linear Equations System with Non-

negativity Constraints on Solutions through the Échelon

Structure

From the échelon structure of the matrix, we can gain a deeper understanding of the

system of linear equations having nonnegativity constraints on variables: Given an

M ×N real matrix A and an M × 1 column vector b. Consider the linear equations

system with nonnegativity constraints on variable x: Ax = b,x ≥ 0. According to

the above discussion, we have the cover order of A given by

Rc(A) =
s∑
i=1

Ni + s (4.2.67)
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where s is obtained from échelon transformation, and the number of uncovered vari-

able xi in x or the number of uncovered columns in the matrix A is

R̄c(A) = N −Rc(A) (4.2.68)

Then, we obtain the following result:

Lemma 4.2.3. Let A ∈ RM×N and b ∈ RM×1. For non-homogeneous linear equa-

tions with the nonnegativity constraints on variable x: Ax = b , x ≥ 0.

1. The system has a unique solution in R+
N if and only if Rr(A)− s = N −Rc(A)

and Rc(A) = Rc(Ã), where Ã = (A,−b) and s is the number of transformation

in the structure arrangement step of échelon transformation..

2. The system has infinite solution in R+
N when Rr(A) − s < N − Rc(A) and

Rc(Ã) ≤ Rc(A).

�

By reviewing Theorem 3.2.1 and Theorem 3.2.2, it is apparent that the result

obtained in Lemma 4.2.3 is consistent with the conclusion that we obtained in Chap-

ter 2.

4.3 Non-Negatively Linear Independence

Given an M ×N real matrix A, suppose A has full rank and M < N . Consider the

case when A does not have full cover, i.e., Rc(A) < N . Once we have its échelon
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form, we can divide this form into several components:

EAP =

Is 0 B(1) B(3)

0 IM−s B(2) B(4)

 (4.3.1)

where in Eq. (4.3.1), B(1) is a s× (
∑s

i=1 Ni) real matrix, the elements in B(3) are all

zeros, B(4) is a (M − s) × (N −M −
∑s

i=1Ni) real matrix and is B̄ in Eq. (4.2.5)

exactly. Generally, we can denote the matrix formed by the block matrices Is and

B(1) as:

Au =

(
Is B(1)

)
(4.3.2)

It is observed that Au has full cover. The matrix formed by the lower side block

matrices: I(M−s), B(2) and B(4) in Eq. (4.3.1) is denoted as:

Al =

(
0(M−s)×s I(M−s) B(2) B(4)

)
(4.3.3)

Note that the cover order of Al is zero. As a result, the cover order of the matrix

A will not be affected by deleting the row vectors from this part. There is, however,

a limit of M − s in the amount of rows that can be deleted, which means that, if

we continue to delete the row vectors after deleting these rows, the cover order of

A will be altered. In the following, we first give the definition of non-negatively

linear dependence and non-negatively linear independence. Then, according to the

échelon form and Theorem 3.1.1, we define the number of the non-negatively linear

independent row vectors and non-negatively linear dependent column vectors in the

matrix A.
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Definition 4.3.1. A sequence of vectors a1, a2, · · · , an from a vector space V is said to

be non-negatively linear dependent, if there exist non-negative scalars x1, x2, · · · , xn,

not all zero, such that

x1a1 + x2a2 + · · ·+ xnan = 0 (4.3.4)

where 0 denotes the zero vector. �

Definition 4.3.2. A sequence of vectors a1, a2, · · · , an is said to be non-negatively

linear independent if it is not non-negatively linear dependent, that is, if for non-

negative scalars x1, x2, · · · , xn, the equation

x1a1 + x2a2 + · · ·+ xnan = 0 (4.3.5)

can only be satisfied by xi = 0 for i = 1, 2, · · · , n. �

With the definition of non-negatively linear independent, given a real matrix, we

define the order of non-negatively linear independence as follows.

Definition 4.3.3. Let A be an M × N real matrix, then A is called non-negatively

linear independent with order s if the columns in every s rows are non-negatively

linear independent, but the columns in s− 1 rows are not fully non-negatively linear

independent, where s ≤M . �

Definition 4.3.4. Let A be an M × N real matrix, then A is called non-negatively

linear dependent with order s if every s columns are non-negatively linear dependent,

where s ≤ N . �
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Notice that in the above two definitions, we are more concerned with the number

of rows and columns than the exact position. Furthermore, the definitions above

provide us with a new perspective on what the cover order means as stated in the

following lemma.

Lemma 4.3.1. The cover order of the matrix A is the number of the non-zero

columns of the sub-matrix consisting of the minimum number of row vectors that

the columns in it are non-negatively linear independent. �

4.4 Dual Relationship between Cover and Uncover

In this section, we will first introduce the construction of the generalized inverse of

any given matrix A (4; 11; 44; 49), from which we can express the solutions to the

system of linear equations Ax = b (30). Then with the aid of Farkas’ Lemma, we

derive an interesting dual property between a column vector being covered in A and

an associated column vector being uncovered in the corresponding matrix Ã.

Definition 4.4.1. Let A be an M ×N real matrix. Then, an N ×M real matrix G

is said to be a generalized inverse of A if:

AGA = A (4.4.1)

. �

Lemma 4.4.1. Let N ×M real matrix G0 be a generalized inverse of an M × N

real matrix A. Then, all the generalized inverse matrices of the matrix A can be
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represented by

G = G0 −X + G0AΩAG0, (4.4.2)

where Ω is an arbitrarily given N ×M real matrix. �

Lemma 4.4.2. Let A be an M × N real matrix and A 6= 0. Then, a specific

generalized inverse of A is given by

G0 = (ATA)†AT , (4.4.3)

where

(ATA)† = V

Λ−1 0

0 0

VT (4.4.4)

with the singular value decomposition (SVD) of A being given by

A = U

Λ
1
2 0

0 0

VT (4.4.5)

�

With this specific generalized inverse matrix, all the generalized inverse matrices

of A can be expressed by

G = (ATA)†AT −Ω + (ATA)†ATAΩA(ATA)†AT , (4.4.6)

where Ω is an arbitrarily given N ×M real matrix.
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Using the generalized inverse matrices, we can express all the solutions to the

system of linear equations: Ax = b, as

x = Gb. (4.4.7)

Thus, we have the following lemma to uniformly express all solutions to the linear

equation system.

Lemma 4.4.3. Let G0 be a generalized inverse of an M × N matrix A. Then, all

the solutions to a system of linear equations: Ax = b are given by

x = G0b + (G0A− I)z, (4.4.8)

where z is an arbitrary vector in RN . �

Thus, in the derivation of the following Theorem 4.4.1, with the aid of Lemma 4.4.3,

we are able to write a general expression of the solutions for the corresponding linear

equations.

Lemma 4.4.4 (Farkas’ Lemma (variant)). Let M be an M × N real matrix and

b ∈ RM . Then either:

1. There is an x ∈ RN such that Mx ≤ b; or

2. There is a y ∈ RM such that y ≥ 0,MTy = 0 and bTy < 0.

�

With Farkas’ Lemma, we are able to obtain the following dual property of a vector

being covered and uncovered:
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Theorem 4.4.1. Let A =

(
I B

)
, where A ∈ RM×N , I = (e1, e2, · · · , eM) ∈

RM×M and B = (b1,b2, · · · , bN−M) ∈ RM×(N−M). Then, bk is uncovered in A

if and only if ek is covered in the matrix Ã, for k = 1, 2, · · · , N − M , where

Ã =

(
IN−M −BT

)
.

�

Proof. When we consider a specific matrix A =

(
I B

)
, where A ∈ RM×N , I ∈

RM×M and B ∈ RM×(N−M). Let K = N −M and for discussion convenience, we

write A = (a1, a2, · · · , aN), and the sub-matrix ĀN = (a1, a2, · · · , aN−1) by deleting

the N -the column from the matrix A. We also write B as (b1,b2, · · · ,bK) and the

sub-matrix B̄K = (b1,b2, · · · ,bK−1) is obtained by deleting the K-th column of the

matrix B.

Then, according to the equation in Definition 4.4.1, we see right away that a

generalized inverse matrix of ĀN is given by:

G0 =

(
I 0

)T
(4.4.9)

where G0 ∈ R(N−1)×M and the identity matrix I ∈ RM×M in above equation. Hence,

according to Lemma 4.4.3, all solutions to the system of linear equations: ĀNx =

−bK can be generated by

x = −G0bK + (I−G0ĀN)z (4.4.10)

Therefore, according to Theorem 3.2.1, we have: the system of linear equations:

ĀNx = −bK has a solution in RN−1
+ if and only if the cover order of the matrix
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(
ĀN bK

)
, i.e., the cover order of the matrix A is less than or equal to the cover

order of ĀN . Thus by adding aN or bK to the right hand side of ĀN , and if aN or bK

is not covered in

(
ĀN bK

)
, then the cover order of

(
ĀN bK

)
will not be greater

than the cover order of ĀN , and hence, the system of linear equation ĀNx = −bK

will have a solution in RN−1
+ .

From the above, we establish that: the column vector aN or bK is not covered in

A is equivalent to that there exists a vector z0 ∈ RN−1 satisfying:

−G0bK + (I−G0ĀN)z0 ≥ 0, (4.4.11)

i.e., (G0ĀN − I)z0 ≤ −G0bK . However, from Farkas’ lemma, letting

M = G0ĀN − I, (4.4.12a)

b = −G0bK , (4.4.12b)

we have either the inequality (G0ĀN−I)z0 ≤ −G0bK holds, or there exists y ∈ RN−1
+

such that

(G0ĀN − I)Ty = 0, (4.4.13a)

−bTKGT
0 y < 0. (4.4.13b)

Thus, we infer that: aN or bK is covered in A if and only if there exists y ∈ RN−1
+

which satisfies Eqs. (4.4.13). Now, let us examine what it means when such a vector

y exists.
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Rewrite y as

y1

y2

, where y1 ∈ RM
+ and y2 ∈ RN−M−1

+ , then Eqs. (4.4.13) can

be written as:

y2 = B̄T
Ky1, (4.4.14a)

bTKy1 > 0. (4.4.14b)

Now, consider the following (N −M)×N real matrix:

Ã =

I 0 −B̄T
K

0 1 −bTK

 . (4.4.15)

The size of the identity matrix I in the above matrix is (N −M − 1)× (N −M − 1)

and now let:

x̃ =


y2

y3

y1

 (4.4.16)

Then according to Eq.(4.4.14a) and inequality (4.4.14b), we have:

I 0 −B̄T
K

0 1 −bTK




y2

y3

y1

 =

 0

y3 − bTKy1

 (4.4.17)
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For the homogeneous linear equations system: Ãx̃ = 0, we have

y3 = bTKy1 > 0 (4.4.18)

Thus we say that there exists a non-negative vector x̃ ∈ RN
+ with x̃ 6= 0 such that

Ãx̃ = 0 holds, where y3 in x̃ is positive. By Theorem 3.1.1, we see that the column

vector corresponding to the variable y3 in the product Ãx̃ is not covered. We can

rewrite the matrix Ã as:

Ã =

(
I −BT

)
=

(
e1 e2 · · · eK −BT

)
(4.4.19)

We observe from Eq. (4.4.17) that the column vector eK ∈ RN−M corresponds to

the variable y3 in the product Ãx̃. Thus we have, eK is not covered in the matrix(
IN−M −BT

)
. This establishes the statement: “eK is not covered in the matrix(

IN−M −BT

)
if and only if there exists y ∈ RN−1

+ satisfying Eqs. (4.4.13) ” which,

in turn, implies and is implied by: “aN or bK is covered in the matrix A”.

Conversely, eK is covered in the matrix

(
IN−M −BT

)
iff aN or bK is not covered

in A. This completes the proof.

Remarks: Theorem 4.4.1 establishes a dual relationship for the coverage of vectors

in the matrix A and in the matrix Ã. If the coverage condition is not obvious in A,

it may be clearer when the dual matrix Ã is inspected.
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4.5 Inner Hyper-Rectangle Cover

Our main task in this section is to reveal the properties of inner hyper-rectangle in

the set

{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
. (4.5.1)

It is shown that these properties are closely related to zero-cover. To make our

idea more understandable, we revisit Example 2.1.3. By injecting new insight into

Fig. 2.3, we come up with Fig. 4.1 from which it can be observed that inside the

domain determined by

{(x1, x2) : (x1 − x2)2 ≤ τ 2, x1, x2 ≥ 0}, (4.5.2)

there is a largest inner square with four vertices being (0, 0), (0, 1), (1, 0) and (1, 1).

More importantly, we observe that shifting this square in the direction ξ(1, 1) for any

positive number ξ gives us a new square which is still inside {(x1, x2) : (x1 − x2)2 ≤

τ 2, x1, x2 ≥ 0}. We now formally state this important observation in a general case:

Theorem 4.5.1. If the cover order of an M×N real matrix A is Rc and 0 ≤ Rc < N ,

then, the following two statements are true.

1. There exists a nonnegative vector v ∈ RN
+ such that

{
x + ξv : 0 ≤ xi ≤

τ√
λmax

, 1 ≤ i ≤ N, ξ > 0

}
⊆
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
(4.5.3)
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Figure 4.1: Example of a zero-cover 2× 2 PSD matrix.

holds for any given positive constant τ , where λmax denotes the maximum eigen-

value of ATA.

2. The subprincipal matrix of ATA, which is formed by the rows and columns

having the same indices as the positive entries of v, is zero-cover.

�

Proof. Proof of Statement 1): Let λmax denotes the maximum eigenvalue of ATA,

then we have:

xTATAx ≤ λmax‖x‖2
2, (4.5.4)
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If λmax‖x‖2
2 ≤ τ 2 for any positive τ , then xTATAx ≤ τ 2 holds. This result gives us

that

{
x : 0 ≤ xi ≤

τ√
λmax

, 1 ≤ i ≤ N, ξ > 0

}
⊆
{
x : λmax‖x‖2

2 ≤ τ 2,x ∈ RN
+

}
⊆
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
(4.5.5)

In the following, we construct the desired nonnegative vector v. By Theorem 4.1.1,

we know that if the cover order of A is Rc, then, there exists a nonnegative vector

p with Rc positive entries and (N − Rc) zero-valued entries. Denote the indices of

these positive entries of p by `
(+)
i and the indexes of the zero-valued entries by `

(0)
k ,

where i = 1, · · · , Rc and k = 1, · · · , (N − Rc). Then, similar to the proof of

Theorem 4.1.1, we form an (N − Rc) × (N − Rc) sub-matrix of ATA by using the

columns of A indexed by `
(0)
i , i = 1, · · · , (N − Rc) and denote this sub-matrix by

Ā(0). From the second part of the proof of Theorem 4.1.1, the following relationship

holds:

SĀ(0) ∩ RN−Rc
+ = ∅ (4.5.6)

In addition, from Lemma 3.1.1, there exists an (N − Rc) × 1 positive vector v̄ such

that v̄ ∈ S⊥
Ā(0) ∩ RN−Rc

++ , satisfying

v̄T
(
Ā(0)

)T
Ā(0)v̄ = 0 (4.5.7)

Then, we construct an N × 1 nonnegative vector v by letting the `
(0)
i -th entry be
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given by the i-th entry of v̄ and the other Rc entries be zero. Such vector v satisfies

vTATAv = 0. Therefore, if

x0 ∈
{

x : 0 ≤ xi ≤
τ√
λmax

, 1 ≤ i ≤ N, ξ > 0

}
⊆
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
(4.5.8)

then,

(x0 + ξv)T ATA (x0 + ξv) = xT0 ATAx0 ≤ τ 2 (4.5.9)

holds for any positive numbers ξ and τ . Therefore,

(x0 + ξv) ∈
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
(4.5.10)

This completes the proof of Statement 1).

Proof of Statement 2): Again, from the second part of the proof of Theorem 4.1.1,

we have

SĀ(0) ∩ RN−Rc
+ = ∅ (4.5.11)

Then, Theorem 4.1.1 indicates that Ā(0) is zero-cover. This completes the proof of

Statement 2) as well as Theorem 4.5.1.

From Theorem 4.5.1, it can be easily seen that the following property is true.

Property 4.5.1. If an M×N real matrix A is zero-cover, then, there exists an N×1
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vector v with all entries being positive such that

{
x + ξv : 0 ≤ xi ≤

τ√
λmax

, 1 ≤ i ≤ N, ξ > 0

}
⊆
{
x : 0 ≤ xTATAx ≤ τ 2,x ∈ RN

+

}
where τ is a constant, and λmax is the maximum eigenvalue of ATA. �

4.6 Conclusion

In this chapter, we have presented some matrix properties related to cover theory.

These can be used to determine the cover order. We also proposed the échelon

transformation of the matrix. Based on the specific échelon form of the matrix, an

efficient and effective method has been developed to determine the cover order for

any given matrix. The structure of zero-cover matrix has been investigated, which

can be useful to obtain the feasible solution for the system of linear equations with

nonnegativity constraints on solutions.

Furthermore, we also develop the concepts about non-negatively linear indepen-

dence and non-negatively linear dependence, with which we could gain a deeper in-

sight on the system of linear equations with nonnegativity constraints on solutions

and the meaning of the cover order.

Additionally, using the concept of generalized inverse of the matrix, we have dis-

covered a dual relationship such that a column vector ai of A can be determined as

covered or not by examining the associated column vector in a related matrix Ã.

Finally, the properties of inner hyper-rectangle have been revealed and are found

to be closely related to zero-cover.
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Chapter 5

Hyper-Rectangle Cover Theory

and Linear Programming Problem

Linear programming (LP, also known as linear optimization) is a method for ob-

taining optimal results (such as maximum profit or lowest cost) in a mathematical

model whose requirements are represented by linear relationships. Formally, a linear

program is an optimization problem whose objective function is linear in variables,

subject to linear equality and linear inequality constraints. Geometrically speaking,

the feasible region determined by the constraints of a linear program is a convex poly-

tope, which is a set defined as the intersection of finite half spaces and each half space

is defined by a linear inequality. The real-valued linear objective function is defined

on this polytope. The method for solving a linear programming problem is to seek

a point in this polytope where the objective function has the smallest (or largest)

value if there exist such a point. The application of linear programming can be found

in a wide range of fields of study. It is widely used in mathematics, in business and

economics, as well as in some engineering problems. Practically, there are a number
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of industries that use linear programming models for optimization, including trans-

portation, energy, manufacturing and telecommunications. It has been shown to be

useful when modeling diverse types of planning, routing, scheduling, and assignment

problems.

In this chapter, we will apply the hyper-rectangle cover theory to the analysis of

linear programming problem. Given a linear program, we propose a novel method

based on the results we obtained in Chapter 3 to determine the necessary and suf-

ficient condition to guarantee the non-empty feasibility set of the problem. In addi-

tion, we transform the linear program into a new structure with which we perform

the échelon transformation to the augmented matrix. With the échelon form of the

new augmented matrix and the condition to guarantee the non-negative solutions to

the system of linear equations, the three possible consequences for any given linear

program: 1) The linear program is infeasible; 2) The linear program is feasible but

(objective) unbounded; 3) The linear program is feasible and has an optimal solution,

are discussed in detail. On the other hand, we can also determine the feasibility and

the boundedness of the linear program by verifying the cover order of this augmented

matrix. Then, with the specific properties of zero-cover matrix, we are able to derive

a series of feasible solutions to the linear programming problem.

Furthermore, we compare our proposed method with the widely used simplex

method in solving linear programming problem and apply the cover method in solving

the Klee-Minty cube problem which shows that the worst-case complexity of simplex

method is exponential.
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5.1 Linear Programming Problem

In this section, we will present a systematic procedure using the concept of hyper-

rectangle cover for solving linear programming problems with non-negativity con-

straints on the variables.

5.1.1 Linear Program Form with Non-negativity Constraints

A linear program is an optimization problem where all involved functions, both in

the objective and in the constraints, are linear in the variable x and it is one of the

most used mathematical techniques in today’s modern applications.

Consider the linear programming problem with non-negativity constraints on the

variables:

Problem 5.1.1.

max c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1NxN ≤ b1

a21x1 + a22x2 + · · ·+ a2NxN ≤ b2

...

a(M−1)1x1 + a(M−1)2x2 + · · ·+ a(M−1)NxN ≤ b(M−1)

aM1x1 + aM2x2 + · · ·+ aMNxN ≤ bM

x1, x2, · · · , xN ≥ 0

The objective function is a linear combination of variables x1, x2, · · · , xN and

the coefficients are c1, c2, · · · , cN respectively. Let c = (c1, c2, · · · , cN)T and x =
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(x1, x2, · · · , xN)T . Then the objective function becomes cTx.

In a matrix-vector notation, the linear program with non-negative constraints on

the variables becomes:

Problem 5.1.2 (LP Problem).

max cTx

subject to Ax ≤ b

x ≥ 0

where A ∈ RM×N and b ∈ RM .

In a linear program, the objective function can either be minimization or maxi-

mization, while its constraints may include any combination of linear inequalities and

equalities. There are several standard forms available in the literature, which may

provide different advantages depending upon the circumstance. Here we will use the

following standard form:

Problem 5.1.3 (A Standard Form of LP Problem).

min cTx

subject to Ax = b

x ≥ 0

where A is a M×N real matrix, with M < N and b ∈ RM . The requirement M < N

ensures that in general there is an infinite number of solutions to the linear equation

Ax = b, which leaves the degrees of freedom for non-negative and optimal solutions.
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The variable vector x and the coefficient vector c are real column vectors with N

elements. The objective function of x to be optimized is a linear combination of xi

in x.

We note that the above linear programming problem has a specific form, which

satisfies the following two conditions:

1. All variables xi in x are constrained to be non-negative.

2. All constraints, except for the nonnegativity of the variables, are in the form of

equalities.

As we know, any linear programming problem can be transformed to the form in

Problem 5.1.3, which usually requires adding extra variables and constraints. By

adding a so-called slack variable, the inequality can be transformed into an equivalent

equality. The slack variables essentially take up the slack in the inequalities. Thus,

the following results will be valid for all linear programs.

We will assume that A has full rank since redundant or inconsistent linear equa-

tions can always be detected and removed if so desired, thus, the rows of A are

linearly independent which ensures that the equations in Ax = b are consistent for

any right-hand side column vector b.

The feasibility set of above linear program is:

F1 = {x ∈ RN : Ax = b, x ≥ 0} ⊂ RN (5.1.1)

A linear program is infeasible if its feasibility set is empty, otherwise, it is feasible.

Those points that fall within this feasibility set are referred to as feasible points, from

which we attempt to search for the optimal solution x∗ that minimizes the objective
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function cTx.

5.1.2 Hyper-Rectangle Cover Theory and the Feasibility Set

of Linear Programming Problem

According to the necessary and sufficient condition for the existence of non-negative

solution for the non-homogeneous linear equations system that we arrived in Theo-

rem 3.2.1 in Chapter 3, we can easily obtain the following result which can be used

to verify the emptiness of the feasibility set of a linear program:

Theorem 5.1.1. Given a linear programming problem:

min cTx

subject to Ax = b

x ≥ 0

where A ∈ RM×N , with M < N and b ∈ RM . The feasibility set F1 of above

linear programming problem is nonempty if and only if Rc(Ã) ≤ Rc(A), where Ã =(
A −b

)
. �

Let us denote the objective function cTx as z and it is treated as a constant in the

later discussion. By adding the objective function into the constraints, Problem 5.1.3

can be transformed into:
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Problem 5.1.4.

min z

subject to

A

cT

x =

b

z


x ≥ 0

To simplify our discussion, we use Ac and b(z) to denote the coefficient matrix of

x and the right hand side column vector in the equation of above LP problem, i.e.,

Ac =

A

cT

 , b(z) =

b

z

 (5.1.2)

Multiplying the right hand side of the equation in Problem 5.1.4 by (−1) and padding

the product vector to the right of Ac, we form the matrix:

A(z) =

A −b

cT −z

 (5.1.3)

Here, A(z) is a (M + 1)× (N + 1) real matrix.

The feasibility set of above linear program is:

F2 = {x ∈ RN : Acx = b(z), x ≥ 0} ⊂ RN (5.1.4)

By applying the échelon transformation that we proposed in Chapter 4 to the aug-

mented matrix A(z) without changing the position of its last row and last column,
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we have:

A(z)→
(

I B fz + g

)
(5.1.5)

where I is an (M + 1) × (M + 1) identity matrix, B is an (M + 1) × (N −M − 1)

real matrix, f and g are both column vectors with M + 1 elements.

In the following, for the simplicity of analysis, we separate A(z) into two parts

and let the left-hand side part be:

Ã =

(
I(M+1)×(M+1) B(M+1)×(N−M−1)

)
, (5.1.6)

Ã is an (M + 1)×N real matrix and let the last column of the échelon form of A(z)

be:

b̃ = fz + g, (5.1.7)

where b̃ ∈ RM+1 and each element in b̃ is:

b̃i = fiz + gi (5.1.8)

which is in the form of a linear function of z for i = 1, 2, · · · , M + 1.

Property 5.1.1. From Theorem 3.2.1, in order to have an non-empty feasibility set

for the linear programming problem 5.1.4, adding b̃ to the right hand side of Ã does

not increase the cover order of Ã. In other words, the cover order of A(z) is less

than or equal to the cover order of Ac. �
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A linear program is unbounded if the feasibility set of it is not empty but its

objective function can be made arbitrarily “well-behaved”. More specifically, if a

linear program is a minimization problem and unbounded, then its objective value can

be made arbitrarily small while maintaining feasibility. In other words, the objective

function can be negative infinity within the feasibility set.

Similarly, for an unbounded maximization problem, the objective value can be

positive infinity within the feasibility set.

For unbounded objective function over the feasiblility set, the following property

holds:

Property 5.1.2. In a minimization problem, if there exists an uncovered variable has

a negative coefficient in the objective function and has negative or zero coefficients in

all constraints in the échelon form, then the objective function is unbounded over the

feasible region. �

Similarily, we can also obtain the result for maximization problem.

Property 5.1.3. In a maximization problem, if there exists an uncovered variable

has a positive coefficient in the objective function and has negative or zero coefficients

in all constraints in the échelon form, then the objective function is unbounded over

the feasible region. �

5.2 Three Possibilities of the Linear Programming

Problem Solution

Based on Property 5.1.1, we will analyze the possibilities of the solutions and the

optimal value of the objective function of the linear programming problem from the
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following three cases: 1) Ã has full-cover; 2) 0 < Rc(Ã) < N ; 3)Ã has zero-cover.

The detailed analysis as follows.

Theorem 5.2.1. If Ã has full-cover and the matrix B in Ã is a non-negative matrix,

then the linear programming problem has optimal solution if and only if b̃i = fiz+gi ≤

0, for i = 1, 2, · · · , Rr. By solving these inequalities, we will have the range of z,

which is:

max{− gi

f
(+)
i

, i ∈ I} ≤ z ≤ min{− gi

f
(−)
i

, i ∈ I}, (5.2.1)

where f
(+)
i and f

(−)
i are the positive and negative terms in b̃I respectively. �

Proof. The proof of above theorem follows directly from Property 5.1.1.

It should be noted that if the constraint of z in Theorem 5.2.1 is contradictory,

i.e., if

min{− gi

f
(−)
i

, i ∈ I} < max{− gi

f
(+)
i

, i ∈ I}, (5.2.2)

then the feasibility set of this linear program is empty:

F2 = {x ∈ RN : Acx = b(z), x ≥ 0} (5.2.3)

= ∅

In other words, we are not able to find any feasible solution to this linear program in

this case.

If there is no lower bound of z, i.e., max{− gi

f
(+)
i

, i ∈ I} in Eq. (5.2.1) can be
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negative infinity, then the objective function in this minimization problem will be

unbounded.

By the same argument, obtaining the maximum value of z can also be achieved

by solving the above inequalities. The maximum value will then be:

max z = min{− gi

f
(−)
i

, i ∈ I}. (5.2.4)

If it does not exist, then the corresponding maximization problem is unbounded and

if the constraint is contradictory, the feasible domain is empty which is same with

the minimization case.

If Ã has full-cover, but the matrix B is not a non-negative matrix. Then let

I ⊆ {1, · · · , Rr} be the index set of the non-negative rows in Ã. According to the

assumption in échelon transformation section of Chapter 4, the first non-negative

row vector of Ã contains the largest number of positive terms and the number is

N1. Then the optimal value of the LP problem can be obtained by performing the

following steps.

Cover Method (Minimization Form)

Step 1 Solving fiz + gi ≤ 0, for i ∈ I and a candidate minimal value of z is:

z0 = max{− gi

f
(−)
i

, i ∈ I} = − gs

f
(−)
s

.

Step 2 If z0 satisfies:

max{− gk

f
(−)
k

, k ∈ {1, 2, · · · , Rr}\I} ≤ z0 ≤ min{− gk

f
(+)
k

, k ∈ {1, 2, · · · , Rr}\I}

109



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

then the process ends and the optimal value is obtained, which is

zmin = z0 = max{− gi

f
(−)
i

, i ∈ I}

Otherwise, there exists some k ∈ {1, 2, · · · , Rr}\I such that fkz0 + gk > 0, i.e.,

we have Rc(A(z)) > Rc(Ac), then the process continues.

Step 3 Choose column jk to pivot in (i.e., the variable to introduce into the basis) by:

−b1,jk

bk,jk
= min{−b1j

bkj
, bkj < 0, 1 ≤ j ≤ N1}

Step 4 Choose row k̄ to pivot in (i.e., the variable to drop from the basis) by:

fk̄z0 + gk̄
bk̄,jk

= min{fkz0 + gk
bkjk

, bkj < 0, fkz0 + gk > 0}

Step 5 Replace the k̄-th column with the (M + jk)-th column and re-establish the

échelon form.

Step 6 If the matrix B is a non-negative matrix in the new échelon form, then the

process ends and the optimal value is obtained, which is

z0 = max{− gnewi

f
(−)new
i

, i ∈ {1, 2, · · · , Rr}}.

Otherwise, the process continue.

Step 7 Go to step 1.

�
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The whole pivot process in each time is performed by using − bi,jk
bk̄,jk

times the k̄-th row

in Ã, and adding the product into i-th row, for i = 1, 2, · · · , Rr. Then we divide the

k̄-th row with bk̄,jk , and the (M+jk)-th column will become ek̄. Next, exchanging the

position of the (M + jk)-th column and the k̄-th column. After this process, fk̄z+ gk̄

will be negative and the structure of identity matrix ahead is reserved.

The above computational procedures of cover theory in solving LP problem are

summarized in the following flow diagram- Figure 5.1.

Figure 5.1: Flow diagram of the cover method
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We can approach the LP problem by performing the above steps in cover method

and we are making an attempt to show that such algorithm will not go to an infinite

loop by improving the lower bound of z0 in each Step 1 and it will go to the optimal

value for stop. However, we have not succeed yet.

For a better understanding of the above procedures, let us consider the following

example where Ã has full cover but the matrix B in Ã is not a non-negative matrix.

Example 5.2.1.

min −x1 − x2

2x1 + x2 + x3 = 12

x1 + 2x2 + x4 = 9

x1, x2, x3, x4 ≥ 0

let:

z = cTx = −x1 − x2

By adding the subject function into the constraints, we have the following augmented

matrix:

Ã(z) =


2 1 1 0 −12

1 2 0 1 −9

−1 −1 0 0 −z



112



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

Applying the échelon transformation to Ã(z), we have

Ã(z)→


1 0 0 1 −9− z

0 1 0 −1 9 + 2z

0 0 1 1 −21− 3z


Since we exchange the position of the first two rows during this transformation, the

corresponding position of variables are also exchanged. According to Theorem??, by

investigating fiz + gi ≤ 0, for i = 1 and i = 3, we have

−9− z ≤ 0

−21− 3z ≤ 0

By solving the above two inequalities, we will have a candidate optimal value of z,

which is

z0 = max{−9,−7} = −7

since z0 ≤ min{− g2

f2
} = −9

2
. As a result, the optimal value of the objective function

is z∗ = −7, and the corresponding optimal solution is x∗ =

(
5 2 0 0

)T
�

Similarly, for the case when 0 < Rc(A) < N , we can also apply the above proce-

dures to obtain the optimal value of the objective function and the optimal solution

towards the LP problem by changing the definition of the index set I and the range

of k. For this case, we consider i ∈ J , and J ⊆ {1, · · · , s} is the index set of the non-

negative rows in first s rows of Ã, where s is obtained through échelon transformation.

And k ∈ {1, 2, · · · , s}\J .

For the zero-cover matrix, the status of the solution towards the LP problem is
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given in the following theorem.

Theorem 5.2.2. For full rank matrix Ã, if it has zero-cover, then the linear pro-

gramming problem is feasible but unbounded. �

Proof. Since adding any column to the right hand side of a zero-cover matrix with

full-rank still yields a matrix with zero-cover, the feasible set F2 is always non-empty

in this case. However, according to Theorem 4.2.1, a zero-cover matrix can be trans-

formed to the form which has at least one negative column or has one non-positive

column, but the position where the zero lies will be negative in some other column

of it. Then by Property 5.1.2, the objective function is unbounded over the feasible

domain in this case.

5.3 Feasible Solution of the Linear Programming

Problem

Let us first review the following linear programming problem that we discussed in the

last section:

min z

subject to

A

cT

x =

b

z


x ≥ 0
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and the augmented matrix of x is

A(z) =

A −b

cT −z


where the matrix A, column vector b and c are components in Problem 5.1.3. By

applying the échelon transformation to A(z) without changing the position of the

last row and the last column, we obtain:

A(z)→
(

I(M+1)×(M+1) B(M+1)×(N−M−1) fz + g

)
.

As we discussed in the last section, we divide the matrix A(z) into two parts, and

let:

Ã =

(
I(M+1)×(M+1) B(M+1)×(N−M−1)

)
,

b̃ = fz + g.

Thus

(
I(M+1)×(M+1) B(M+1)×(N−M−1) fz + g

)
=

(
Ã b̃

)

is an échelon form matrix. Then by Eq. (4.3.1), the échelon form can be divided in

to the following blocks:

(
Ã b̃

)
=

Is 0 B(1) B(3) b̃(1)

0 I(M+1−s) B(2) B(4) b̃(2)

 (5.3.1)
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where s is obtained through échelon transformation. Then according to Theorem 3.1.1,

in the following linear equations:

(
Ã b̃

)
x = 0, (5.3.2)

the covered variables xi are all zeros, as a result, we can ignore those covered col-

umn vectors in

(
Ã b̃

)
, which correspond to

Is B(1)

0 B(2)

. Since B(3) and b̃(1) in

Eq. (5.3.1) are zero matrix and zero vector respectively. In the following, we only need

to consider the remaining part of it, i.e., the lower side of the matrix in Eq. (5.3.1),

which is

(
I(M+1−s) B(4) b̃(2)

)
(5.3.3)

Without loss of generality, we denote this part as:

(
Ā b̄

)
=

(
I B̄ b̄

)
(5.3.4)

=

(
I(M+1−s) B(4) b̃(2)

)

The cover order of

(
I B̄ b̄

)
is zero. Thus, in order to obtain the feasible solution

for the linear programming problem, we only need to solve the following system of

homogeneous linear equations, where the non-negative variable x̄ is the uncovered

part in x:

(
I B̄ b̄

)
x̄ = 0 (5.3.5)
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For the simplicity of the discussion, we can assume the size of I is m × m, B̄ is a

m× (n−m) real matrix and b̄ is a m× 1 column vector.

From Theorem 4.2.1, we know that the zero-cover matrix can be transformed to

the form which contains at least one negative column vector, or has one non-positive

column vector, but the position where the zero lies will be negative in some other

column of it. Without loss of generality, we can assume the negative column appears

in the first column of B̄, i.e.,

b̄T1 = (b̄11, b̄21, · · · , b̄m1)T (5.3.6)

is a negative column vector, i.e., b̄i1 < 0, for i = 1, · · · , m.

Then the following procedure enables us to obtain a series of feasible solutions to

the linear programming problem.

Suppose x̄ = (x̄1, · · · , x̄m, x̄m+1, x̄m+2, · · · , x̄n, x̄n+1), where the first m ele-

ments in x̄: x̄1, · · · , x̄m correspond to the column vectors in the m × m identity

matrix, x̄m+1, x̄m+2, · · · , x̄n correspond to the column vectors in B̄, and x̄n+1 cor-

responds to b̄ in the multiplication

(
I B̄ b̄

)
x̄.

Then, according to Eq. (5.3.5), the first m elements in x̄ can be expressed as a

linear combination of the last m − n + 1 elements: x̄m+1, x̄m+2, · · · , x̄n, x̄n+1 as

follows:

x̄1 = −b̄11x̄m+1 − b̄12x̄m+2 − · · · − b̄1(n−m)x̄n − b̄1x̄n+1

x̄2 = −b̄21x̄m+1 − b̄22x̄m+2 − · · · − b̄2(n−m)x̄n − b̄2x̄n+1

... (5.3.7)

x̄m = −b̄m1x̄m+1 − b̄m2x̄m+2 − · · · − b̄m(n−m)x̄n − b̄mx̄n+1
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In order to obtain a linearly independent feasible solution set, we first let the vector

(x̄m+1, · · · , x̄n, x̄n+1)T be a set of linearly independent vectors (L, 1, 0, · · · , 0)T ,

(L, 0, 1, · · · , 0)T , · · · , (L, 0, 0, · · · , 1)T successively. Also, according to Eqs. (5.3.7), in

order to satisfy the nonnegativity constraints on the variable x̄i, i = 1, · · · , n + 1,

we let

L = max

{
− b̄i2
b̄11

, − b̄i3
b̄21,

, · · · , −
b̄i(n−m)

b̄m1

, − b̄i
b̄i1

}
, i = 1, 2, · · · ,m. (5.3.8)

Then we are able to get a set of linear independent basic feasible solution αi, for

i = 1, 2, · · · , n−m− 1, n−m:

α1 = (−b̄11L− b̄12, · · · ,−b̄m1L− b̄m2, L, 1, 0, · · · , 0)T

α2 = (−b̄11L− b̄13, · · · ,−b̄m1L− b̄m3, L, 0, 1, · · · , 0)T

... (5.3.9)

αn−m−1 = (−b̄11L− b̄1n, · · · ,−b̄m1L− b̄mn, L, 0, 0, · · · , 0, 1)T

αn−m = (−b̄11L− b̄1, · · · ,−b̄m1L− b̄m, L, 0, 0, · · · , 0, 1)T

Thus the solution of the following linear equations:

(
I B̄ b̄

)
x̄ = 0 (5.3.10)

can be represented by the convex combination of this set of basic feasible solution αi,

where i = 1, 2, · · · , n−m, i.e.,

x̄ = k1α1 + k2α2 + · · ·+ kn−mαn−m (5.3.11)
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with k1, k2, · · · , kn−m being any positive real value, and

k1 + k2 + · · ·+ kn−m = 1. (5.3.12)

By adding the covered variables to x̄, we will obtain a series of feasible solutions

to Problem 5.1.4.

5.4 Comparison with Simplex Method in Solving

Linear Programming Problem

5.4.1 Simplex Method

In 1947, Dantzig developed the simplex method, which is the first algorithm that solves

the linear programming problem efficiently in most cases. Geometrically speaking,

the feasible region of a linear program is a convex polytope, which is defined as

the intersection of finitely many half spaces. The objective function is a real-valued

affine function defined over this polytope. An extreme point or vertex of the convex

polytope is known as basic feasible solution (BFS). The linear programming problem

is to find an extreme point of this polytope where the objective function has the

smallest (or largest) value if such an extreme point exists. By moving along the edge

of the polytope to the extreme points, the simplex method identifies the extreme

points with better objective values, i.e., it proceeds by moving from one feasible

solution to another at each step, improving the value of the objective function. The

process continues until the optimum objective value is reached, or an unbounded

edge is visited. Due to the finite number of extreme points in the polytope, for an LP
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problem having a non-empty feasible region, the algorithm always terminates after a

finite number of transitions and it terminates in one, and only one, of the following

possible situations:

1. by determining an optimal solution;

2. by demonstrating that there is no feasible solution; or

3. by demonstrating that the objective function is unbounded over the feasible

region.

Before presenting a formal and general version of the simplex method. The canon-

ical form of linear programs is introduced. It satisfies the following:

1. All variables are constrained to be non-negative.

2. All constraints are expressed as equalities, except for the non-negative con-

straints of variables.

3. The righthand-side coefficients in the constraints are all non-negative.

4. The basic variable is isolated in each constraint. The variable which is isolated

in a given constraint will not appear in any other constraint, and the coefficient

of it in the objective function is zero.

Since any linear program can be transformed to its canonical form, the following

discussion on the simplex method is valid for any general linear programs. Given a

linear program in the form of Problem 5.1.1, it can be transformed into the following

canonical form (8):
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Problem 5.4.1 (Canonical Form).

x1 + ā1,m+1xm+1 + · · ·+ ā1sxs + · · ·+ ā1nxn = b̄1,

x2 + ā2,m+1xm+1 + · · ·+ ā2sxs + · · ·+ ā2nxn = b̄2,

...

xr + ār,m+1xm+1 + · · ·+ ārsxs + · · ·+ ārnxn = b̄r,

...

xm + ām,m+1xm+1 + · · ·+ āmsxs + · · ·+ āmnxn = b̄m,

(−z) + c̄m+1,m+1xm+1 + · · ·+ c̄sxs + · · ·+ c̄nxn = −z̄0,

xj ≥ 0 (j = 1, 2, · · · , n)

The data āij, b̄i, z̄0 and c̄j in Problem 5.4.1 are known. They are either the

original data or the data that updated during the transformation. x1, x2, · · · , xm

are assumed to be the basic variables. Moreover, since the above problem is in the

canonical form, we have the righthand-side coefficients bi ≥ 0 for i = 1, 2, · · · , m.

The following steps are the essential computation steps of the simplex method in

solving linear programming problem.

Simplex Algorithm (Maximization Form)

Step 1 The problem is initially in canonical form and all b̄i ≥ 0.

Step 2 If c̄j ≤ 0 for j = 1, 2, · · · , n, then the algorithm ends and the optimal value is

obtained. Otherwise, there exists some c̄j > 0 and the algorithm continues.
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Step 3 Choose the column to pivot in (i.e., the variable to introduce into the basis) by:

c̄s = max
j
{c̄j, c̄j > 0}.

If āis ≤ 0 for i = 1, 2, · · · ,m, then stop; the primal problem is unbounded.

If there exists āis > 0 for some i = 1, 2, · · · ,m, then the process continues.

Step 4 Choose row r to pivot in (i.e., the variable to drop from the basis) by the ratio

test:

b̄r
ārs

= min
i

{
b̄i
āis
, āis > 0

}

Step 5 Replace the basic variable in row r with variable s and re-establish the canonical

form (i.e., pivot on the coefficient ārs).

Step 6 Go to step 1.

The pivot steps are summarized pictorially in Fig.5.2 and the last tableau specifies

the new values for the data after the pivot.
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Figure 5.2: Algebra for a pivot operation.

It is observed that the new value for z is:

znew = z̄0 + c̄s

(
b̄r
ārs

)
. (5.4.1)
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By the choice of the variable xs introduced into the basis, we have c̄s > 0. Since

b̄r ≥ 0 and ārs > 0, this implies that znew ≥ zold. As a result, after each pivot, the

objective function will reach a better or same value. Additionally, if b̄r > 0, then the

objective value strictly increases after every pivot.

Finally, in a finite number of iterations, the simplex method will terminate and

it will show that there is no feasible solution; finds an optimal solution; or show that

the objective function is unbounded over the feasible region.

In practice, the simplex method has shown remarkable efficiency. However, in

1972, Klee and Minty gave an example, the Klee–Minty cube (35), showing that the

worst-case complexity of simplex method is exponential time. From then on, almost

every variation of the method has shown to give poor results for a specific class of

linear programs. It is an open question if there is a variation of simplex method

having polynomial computation complexity.

5.4.2 Comparison

In the simplex method, the objective value z in the canonical tableau of linear pro-

gramming problem is regarded as a variable whereas in the cover method, it is treated

as a constant. Given a linear program, the cover method first transforms the problem

into the canonical form of Problem 5.1.4, and then A(z) is then transformed into its

échelon form. At this stage, if the matrix B in this échelon form is a non-negative

matrix, then the optimum objective value can be determined directly according to

Theorem 5.2.1. Thus, the computational complexity of this case is almost entirely

determined by the complexity of échelon transformation. In the following, we will

review the échelon transformation and analyze the computation complexity of it.
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Consider an M × N real matrix A, where M < N and A has full rank. The

complexity of transforming A into an échelon form is O(M2N). Then we find out

all non-negative row vectors in B and select the one with the greatest number of

non-zero elements. In the échelon transformation process, this selected row is sup-

posed to be moved to the first row. Meanwhile, the non-zero elements in this row are

expected to be moved to the forward side of B while performing the corresponding

column permutation such that the identity matrix structure could be preserved. In

the following step, without considering the columns of A corresponding to those non-

zero elements in this row, perform the same transformation on the remainder of A to

obtain its échelon form. However, in order to simplify the computation complexity

of solving LP problem, once the non-negative row vector with the largest number of

positive terms is identified, instead of performing the corresponding row and column

permutations to obtain the canonical échelon form of A, we can analyze the remain-

ing part of A without considering the columns of A corresponding to those non-zero

elements in this row directly. This can simplify the computational complexity by

reducing the number of transformation operations. The complexity of this struc-

tural re-arrangement process is O(M2(N −M)). As a result, the total computation

complexity of solving this kind of LP problem by cover method is O(M2N).

However, if the matrix B is not a non-negative matrix, then the method for solving

the LP problem will involve the pivoting steps, in which case, the complexity of the

algorithm is no longer polynomial.

Property 5.1.1 indeed proposes a condition for which the optimum objective value

appears. The optimum BFS can also be determined by examining the row where the

optimum objective value is encountered.
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5.4.3 Klee-Minty Cube Example

In this section, we will apply the cover theory to solve the Klee–Minty cube problem.

The problem is formulated as follows (26):

min −2N−1x1 − 2N−2x2 − · · · − 2xN−1 − xN

x1 ≤ 5

4x1 + x2 ≤ 25

8x1 + 4x2 + x3 ≤ 125

...

2Nx1 + 2N−1x2 + · · ·+ 4xN−1 + xN ≤ 5N

x1, x2, · · · , xN ≥ 0

The linear program has N variables, N inequality constraints except for the nonneg-

ativity constraints on variables xi, for i = 1, 2, · · · , N , and 2N extreme points. Let

us denote the objective function as z, then we have:

−2N−1x1 − 2N−2x2 − · · · − 2xN−1 − xN = z.

By introducing the slack variables si ≥ 0, i = 1, 2, · · · , N , the inequality constraints

can be transformed into equations. In addition, padding the above z-equation into

the coefficient matrix of variables xi and si, for i = 1, 2, · · · , N , we will have the
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following matrix:

A(z) =



1 0 · · · 0 2N 2N−1 · · · 4 1 −5N

0 1 · · · 0 2N−1 2N−2 · · · 1 0 −5N−1

...
...

. . .
...

...
...

. . .
...

...
...

0 0 · · · 1 1 0 · · · 0 0 −5

0 0 · · · 0 −2N−1 −2N−2 · · · −2 −1 −z


The first row of A(z) consists the largest number of positive elements in all row

vectors in it, and

arg maxN+1≤i≤2N

(
−
A(z)(N+1)i

A(z)1i

)
= 2N

Thus, in the next step, let the 2N -th column vector of A(z) be eN+1, where eN+1 ∈

RN+1 and the elements in it are all zeros except the N + 1-th term in it is one. Then

moving the the 2N -th column to the N +1-th column of the resulted matrix, we then

have the échelon form of A(z):



1 0 · · · 0 0 2N − 2N−1 2N−1 − 2N−2 · · · 2 −5N − z

0 1 · · · 0 0 2N−1 2N−2 · · · 1 −5N−1

...
...

. . .
...

...
...

...
. . .

...
...

0 0 · · · 1 0 1 0 · · · 0 −5

0 0 · · · 0 1 2N−1 2N−2 · · · 2 z


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Perform the same permutation to the variables in x and according to Theorem 5.2.1,

the optimal value of the objective function is

z∗ = −5N

and the corresponding optimal solution is

x∗ = (0, 0, · · · , 0, 5N)T

It is observed that if the simplex method formulated by Dantzig is applied in solving

this Klee–Minty cube problem, and suppose the initial vertex for the simplex method

is the origin, then the method goes through all 2N extreme points (55), finally reaching

the optimal vertex (0, 0, · · · , 0, 5N)T . Thus, showing that the worst-case complexity

of simplex method is exponential time.

In the following, we provide a detailed pivot sequence of simplex method for

N = 3 (26), which goes through all 8 extreme points, starting at the origin, to show

the exponential time complexity of simplex method in solving the Klee-Minty cube

problem. Let s1, s2, s3 be the slack variables.
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Figure 5.3: Klee-Minty polytope shows exponential time complexity of simplex
method
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5.5 Conclusion

On the basis of the échelon form and the corresponding results on the system of linear

equations with nonnegativity constraints on solutions, we can verify whether or not

the feasibility set of the linear programming problem is empty. Then the solutions

and the optimal values of the linear programs have the following possibilities, (i) it

has optimal bounded solution, (ii) it is feasible but unbounded, or (iii) it has infinite

unbounded optimal solution. These correspond to the following scenarios: full cover,

zero cover or the cover order in between, and have been analyzed in detail. Moreover,

with the échelon form and the specific structure of zero-cove matrix, a series of feasible

solutions of any given linear programming problem can be obtained. We also include

a comparison of cover method and simplex method in solving the linear programming

problem in this chapter. We apply the cover method to solve the Klee-Minty cube

problem with great efficiency.
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Chapter 6

Cover Length

In Chapter 4, we have derived a method to determine the cover order of any given

real matrix A. In this chapter, we will propose a method to obtain the cover length

ci of the covered variables xi in Ax, where A ∈ RM×N and x ∈ RN
+ . In addition, we

also find that there is a strong relationship between the cover length problem and the

non-negative least square problem, i.e., the NNLS problem can be reconstructed as

a problem of determining the cover length of the corresponding variable. Therefore,

it is possible to obtain an analytical result of the NNLS problem by applying the

method to determine the cover length. We will also include a discussion of various

algorithms for solving the NNLS problem and the method developed in this section.

131



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

6.1 Cover Length Determination of the Covered

Variable

We first encountered the concept of cover length in Definition 2.1.1. In this section,

we propose a method which can be used to determine the cover length of the covered

variable xi in Ax.

In general, given an M × N real matrix A, and real column vector x with N

non-negative elements in it, if the i-th variable xi is covered, for i = 1, 2, · · · , N ,

then the cover length ci of it can be obtained by solving the following optimization

problem:

Problem 6.1.1. Let A be an M ×N real matrix, x = {x1, x2, · · · , xN}T ∈ RN
+ and

xN be covered in Ax.

max xN (6.1.1)

subject to xTATAx ≤ 1

where xn ≥ 0 for n = 1, 2, · · · , N . �

It is obvious that if the maximum value of xN does not exist, then the value of xN

can be very large under the constraints meaning that xN is not covered within the

feasible domain. Otherwise, if Problem 6.1.1 has an optimal value, i.e., the maximum

value of xN exists within the feasibility region, then xN is covered and according to the

definition of cover length of the covered variable in Definition 2.1.1, the maximum

value of xN which satisfies the inequality constraints: xTATAx ≤ 1, is the cover

length cN of the variable of xN .
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In order to solve the above optimization problem, let us form a Lagrangian func-

tion corresponding to the constrained optimization problem as follows:

L(x,λ) = −xN −
N∑
n=1

λnxn +
λN+1

2
(xTATAx− 1), (6.1.2)

where λn > 0 for n = 1, 2, · · · , N + 1.

Then, the necessary and sufficient condition for x∗ to be an optimal solution of

Problem 6.1.1 is that the following Karush-Kuhn-Tucker(KKT) conditions (54) must

be satisfied:

∇L(x,λ)|x=x∗,λ=λ∗ = −eN − λ∗ + λ∗N+1A
TAx∗ = 0,

x∗nλ
∗
n = 0 for n = 1, 2, · · · , N,

λ∗N+1

(
(x∗)TATAx∗ − 1

)
= 0,

(x∗)TATAx∗ ≤ 1, (6.1.3)

x∗ ≥ 0,

λ∗N+1 ≥ 0,

λ∗ ≥ 0,

where the non-negative vector λ∗ ∈ RN
+ is associated with the optimal vector x∗ such

that L(x∗,λ∗) is a stationary point of L(x,λ). On the other hand, we note that

xTATAx can be rewritten as follows,

xTATAx = pNN

(
xN +

p̄TN x̄N
pNN

)2

+ x̄TN

(
P̄NN −

p̄N p̄TN
pNN

)
x̄N (6.1.4)

where P = ATA is a N ×N PSD matrix, pNN is the (NN)-th element in P, P̄NN is
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the (N − 1)× (N − 1) sub-matrix of P by deleting N -th row and N -th column from

it, p̄N is the (N − 1)× 1 vector generated by deleting N -th entry from the N -th row

of P and x̄N denotes the (N − 1) × 1 non-negative vector obtained by deleting the

N -th entry from x.

Therefore, we can have another way to represent the KKT conditions of the opti-

mization problem as follows:

−λ̄∗N + λ∗N+1

((
x∗N +

p̄TN x̄∗N
pNN

)
p̄N +

(
PNN −

p̄N p̄TN
pNN

)
x̄∗N

)
= 0

−1− λ∗N + λ∗N+1

(
pNNx

∗
N + p̄TN x̄∗N

)
= 0

x∗nλ
∗
n = 0

λ∗N+1

(
(x∗)TATAx∗ − 1

)
= 0 (6.1.5)

(x∗)TATAx∗ ≤ 1

x∗ ≥ 0

λ∗N+1 ≥ 0

λ∗ ≥ 0,

for n = 1, 2, · · · , N . Here, λ̄∗N is the (N − 1)× 1 vector generated by deleting N -th

entry from λ∗ and x̄∗N denotes the (N−1)×1 vector generated by deleting N -th entry

from x∗. Since x∗N 6= 0, then by x∗nλ
∗
n = 0, for n = 1, 2, · · · , N , we have λ∗N = 0.

In addition, in order to satisfy the second equation in the above KKT conditions, we

have λ∗N+1 6= 0 and thus we have:

x∗N = λ∗N+1. (6.1.6)
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Using the KKT conditions in Eqs.(6.1.5), the solution to Problem 6.1.1 is given in

the following theorem:

Theorem 6.1.1. Let A be an M × N real matrix with its rank being Rr. Then, xn

is covered in Ax if and only if there exists an invertible principal sub-matrix Pi1i2···ir

of order r in ATA that includes nn-th element [ATA]nn, such that the following two

conditions are satisfied simultaneously:

1. P−1
ij=n;i1i2···ireij=n ≥ 0 and [P−1

ij=n;i1i2···ireij=n]ij=n > 0;

2. det(Pij=n→k;i1i2···ir) ≥ 0 for k = 1, 2, · · · , N but k 6= i1, i2, · · · , ir, where

Pij=n→k;i1i2···ir denotes an r× r sub-matrix of ATA maintaining all the entries

of Pij=n;i1i2···ir but having (pk,i1 , pk,i2 , · · · , pk,ir) as a new row replacing the old

row: (pij=n,i1 , pij=n,i2 , · · · , pij=n,ir).

3. cn =

√[(
Pij=n;i1i2···ir

)−1
]
nn

�

Proof. We denote the PSD matrix ATA as P in the following discussion. The KKT

conditions of Problem 6.1.1 can be simplified as follows:

Px = b (6.1.7)

x ≥ 0

b ≥ 0, bN > 0

xibi = 0 for i = 1, 2, · · · , N − 1

where b ∈ RN
+ . Let N̄ be the set consisting of all the indices of xi which are all

positive in the variable x. Then we are able to find a |N̄ | × |N̄ | sub-matrix P̄ of P,
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such that the following equality holds:

P̄x̄ = e|N̄ | (6.1.8)

where all the elements xi in x̄ are uncovered variables in x and x̄|N̄ | = xN , i.e., the

last entry in x̄ is equivalent to the last one in x. Then there exists a full column rank

matrix T ∈ R|N̄ |×r, where r ≤ |N̄ |, containing P̄|N̄ | in P̄. Without lose of generality,

we can let

T = {t1, · · · , tr−1, P̄|N̄ |}, (6.1.9)

and we will have

Tx̃ = e|N̄ |, (6.1.10)

where x̃ ≥ 0, x̃ ∈ Rr and the last element of x̃: x̃r > 0. This can be proved in the

following:

1. Let T be the smallest set which containing the |N̄ |-th column of P̄: P̄|N̄ |, s.t.,

e|N̄ | ∈ cone T, where

cone T = cone {t1, · · · , tr−1, P̄|N̄ |} (6.1.11)

= {θ1t1 + · · ·+ θr−1tr−1 + θrP̄|N̄ ||θi ≥ 0 for i = 1, · · · , r}
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2. T is linearly independent, otherwise there are real value µj, such that,

r−1∑
j=1

µjtj + µrP̄|N̄ | = 0. (6.1.12)

And there are λj ≥ 0, λr > 0, such that,

r−1∑
j=1

λjtj + λrP̄|N̄ | = e|N̄ |, (6.1.13)

By multiplying the Eq.(6.1.12) with α on both side and adding the product into

Eq.(6.1.13) , we can obtain the following equality:

r−1∑
j=1

(µj + αλj)tj + (µr + αλr)P̄|N̄ | = e|N̄ |. (6.1.14)

If µr ≥ 0, then let

α = max
1≤j≤r−1

{
−λj
µj
, µj > 0

}
= −λi

µi
. (6.1.15)

Thus for every 1 ≤ j ≤ r − 1, we have:

λj + αµj ≥ 0, (6.1.16)

while

λi + αµi = 0. (6.1.17)

Then we can have a new x̃ ∈ Rr−1 with the r − 1-the element being positive
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while others being all non-negative:

x̃r−1 = λr + αµr > 0, (6.1.18a)

x̃k = λj + αµj ≥ 0, for 1 ≤ j ≤ r − 1, and j 6= i (6.1.18b)

where x̃r−1 is the last element in new x̃, λr, µr, λj, µj are elements in Eq.(6.1.14)

and x̃k is the k-th element in the new x̃, where 1 ≤ k ≤ r − 2.

If µr < 0, then let

α = max
1≤j≤r−1

{
−λj
µj
, µj > 0

}
= −λi

µi
. (6.1.19)

Then we can have a new x̃ ∈ Rr−1 with the r − 1-the element being positive

while others being all non-negative in the same manner as the case when µr ≥ 0.

As a consequence, we can always find a smaller set T̃ which contains P̄|N̄ | such

that e|N̄ | ∈ cone T̃, which contradicts to the assumption that T is the smallest

set that containing P̄|N̄ | such that e|N̄ | ∈ cone T.

As a result, T is linearly independent. According to the constraints of x, x̃ should

be equivalent to x̄ and T = P̄. Thus P̄ is invertible. Since we have P̄x̄ = e|N̄ |, where

x̄ ≥ 0, x̄ ∈ Rr and x̄r > 0, then we will have

P−1
ij=n;i1i2···ireij=n ≥ 0, (6.1.20)

and the (ij = n)-th element in it is positive.

Till now, the first statement has been proved.

By using the new row (pk,i1 , pk,i2 , · · · , pk,ir) to replace the old row (pij=n,i1 , pij=n,i2 ,
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· · · , pij=n,ir) in Pi1i2···ir , we will have:

Pij=n→k;i1i2···ir x̄ = bkeij=n (6.1.21)

To simplify the expression, we denote Pij=n→k;i1i2···ir as P̄k. If P̄k is inverible, then

by Cramer’s Rule (36), we can get:

xn =
bk
∣∣P̄(r−1)×(r−1)

∣∣∣∣P̄k

∣∣ (6.1.22)

where P̄(r−1)×(r−1) is the (r − 1)-th order leading principle sub-matrix of the matrix

Pi1i2···ir . Since Pi1i2···ir is a positive definite matrix, and for PD matrix, its leading

principal minors are all positive (6). The i-th leading principal minor of a matrix

Pi1i2···ir is the determinant of its upper-left i×i sub-matrix. According to the property

of PD matrix, we can get det(P̄(r−1)×(r−1)) > 0. Since bk ≥ 0, xn > 0, then from

Eq.(6.1.22), we can obtain that det(P̄k) > 0. And when bk = 0, det(P̄k) = 0. As a

result, det(P̄k) ≥ 0, for k = 1, 2, · · · , N but k 6= i1, i2, · · · , ir.

When the above conditions are all satisfied, the cover length of xn can be obtained

directly, which is

√[(
Pij=n;i1i2···ir

)−1
]
nn

.

From the above discussion, it is observed that Theorem 6.1.1 can also be applied

to determine whether the i-th variable xi in x is covered or not. In other words,

we can also conclude that if we are not able to find out a principal sub-matrix that

can satisfy the conditions listed in Theorem 6.1.1, then there is no optimal value to

Problem 6.1.1. Thus we say that the corresponding variable is not covered over the

feasible region.

In the following, We will examine an example to illustrate the features of the
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above method to obtain the cover length of a covered variable before presenting more

details.

Example 6.1.1. Given the folllowing 4× 4 matrix A

A =



−3 −2 −5 −2

3 −5 0 −4

1 3 1 −3

2 2 1 4


we can obtain its corresponding PSD matrix

P = ATA =



23 −2 18 −1

−2 42 15 23

18 15 27 11

−1 23 11 45


In order to determine the cover length of the covered variable x4, we find the principal

sub-matrix of P which can satisfy all the conditions listed in Theorem 6.1.1. We will

start our examination from checking all the 2× 2 principle sub-matrices. Specifically,

we only need to consider the 2 × 2 principal sub-matrices which contain negative
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element in the right upper side corner, since only this kind of 2 × 2 principal sub-

matrices may satisfy the condition that the last column of the inverse of it is a non-

negative vector and the second element in it is positive. As a result, for the second-

order principal sub-matrices we only need to verify the following principal sub-matrix:

P14 =

 23 −1

−1 45

 .

1. We verify that P14 is invertible and the last column of the its inverse is a positive

column vector.

2. Then we replace the second row in P14 with the other rows resulting in the

following two sub-matrices:

P4→2;14 =

 23 −1

−2 23

 ,P4→3;14 =

 23 −1

18 11

 .

Then we check the determinant of them and they are verified to be both non-

negative.

From above discussion, we can see that the invertible 2× 2 principal sub-matrix P14

satisfies all the conditions in Theorem 6.1.1 and we have:

P−1
14 =

 45
1034

1
1034

1
1034

23
1034

 .
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As a result, we can conclude that the cover length of x4 is

c4 =

√
23

1034
.

�

Lemma 6.1.1. For any A ∈ RM×N and x ∈ RN
+ ,

1. If all the entries of ATA are positive, then the cover length of xn is cn =

1√
[ATA]nn

.

2. If ATA has full rank and all the entries in the n-th column of
(
ATA

)−1
are

positive, then, we have cn =
√[

(ATA)−1]
nn

.

�

Proof. To prove the first statement, we consider an M ×N real matrix A and a non-

negative real vector x with N elements in it. We can rewrite xTATAx as follows:

xTATAx = x̄T ĀT Āx̄ + x̄T ĀTanxn + aTnĀx̄xn + aTnanx
2
n

where Ā is the M × (N − 1) sub-matrix formed by deleting the n-th column of A, x̄

denotes an (N − 1)× 1 vector obtained by deleting n-th entry from x and an is the

n-th column of A.

According to the assumption in Statement 1), i.e., all the entries in ATA are

positive, then we can always have that x̄T ĀT Āx̄ ≥ 0, x̄T ĀTanxn ≥ 0, aTnĀx̄xn ≥ 0

and aTnanx
2
n ≥ 0. Thus for any given positive real-valued number τ > 0, letting

xTATAx ≤ τ 2 allows us to arrive at aTnanx
2
n ≤ τ 2, which gives us xn ≤ τ√

aT
nan

. This
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observation tells us that for any x ∈ RN
+ and a given matrix A ∈ RM×N , of which

all the entries in its PSD matrix ATA are positive, satisfying xTATAx ≤ τ 2, the

maximum achievable value of xn is 1√
[ATA]nn

. Therefore, in this case, according to

the definition of cover length in Definition 2.1.1, we have the cover length of the n-th

variale xn is given by cn = 1√
[ATA]nn

.

The second statement can be obtained from Theorem 6.1.1 directly.

6.2 Further Discussion on Cover Length Determi-

nation

Property 6.2.1. Suppose there are k negative elements, Pi1N , Pi2N , · · · , PikN in the

N-th column of P. Then we only need to examine whether there exist PijN , j =

1, · · · , k that can satisfy the conditions in Theorem 6.1.1 when checking two-by-two

principal sub-matrix of P. �

Furthermore, if there does not exist any two-by-two principal sub-matrix of P that

can satisfy the conditions in Theorem 6.1.1, when we come to the checking of 3 × 3

principal sub-matrix of P, we only need to consider those 3×3 principal sub-matrices

of P whose first two elements in the third column of it contains at least one negative

entry.

Property 6.2.2. If there exists an invertible r-order principal sub-matrix Pi1i2···ir−1N

of P including PNN and

P−1
i1i2···ir−1N

eN > 0,
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and there exists k such that

det(PN→k;i1i2···N) < 0

for k = 1, 2, · · · , N − 1 while k 6= i1, i2, · · · , ir−1, then, let {j1, j2, · · · , jr−1}

be an index set which is an ordered arrangement of r − 1 distinct elements from

{i1, i2, · · · , ir−1}. Now, if

det(Pj1j2···jr−2ir−1→kjr−1;j1j2···jr−2ir−1→kN) < 0

for all possible arrangements, then Pi1i2···ir−1kN is the (r+1)-order principal sub-matrix

to be considered in the next step. �

The above property provides us with some information for the determination of

the next (r + 1) order principal sub-matrix that we need to examine based on the

current situation that the present r order principal sub-matrix cannot satisfy all the

conditions listed in Theorem 6.1.1. This provides us with a way to reduce the size

of the algorithm for cover length determination. The following example is used to

illustrate the above two properties.

Example 6.2.1. Given a 4× 4 matrix A as follows:

A =



−2 3 5 4

4 0 −1 −2

0 0 −2 3

4 −4 2 4



144



Ph.D. Thesis – X. Chu McMaster University – Electrical & Computer Engineering

and its PSD matrix is

P = ATA =



36 −22 −6 0

−22 25 7 −4

−6 7 34 24

0 −4 24 45


We want to determine the cover length of x4 in Ax. According to Property 6.2.1, the

only 2× 2 principal sub-matrix that we need to examine is

P24 =

 25 −4

−4 45


It is invertible and P−1

24 e2 > 0. Since

det(P21;24) = det

 25 −4

−22 0

 < 0,

but

det(P23;24) = det

 25 −4

7 24

 > 0

Then we consider det(P12;14) = det

 36 0

−22 −4

, which is smaller than 0. Thus

according to Property 6.2.2, P124 is the 3 × 3 matrix that we are going to examine
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in the next step. Consider

P124 =


36 −22 0

−22 25 −4

0 −4 45


we have:

1. det(P124) > 0, P−1
124e3 > 0;

2. det(P123;124) = det


36 −22 0

−22 25 −4

−6 7 24

 > 0

Thus the cover length of x4 is

c4 =
√

[P−1
124]33 =

1√
13/567

�

6.3 The Cover Length Determination Problem

and the NNLS Problem

The non-negative least squares (NNLS) problem is a constrained least squares regres-

sion problem in which all the variables can only have non-negative values. Specifically,

the NNLS problem can be formulated as follows (39):
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Problem 6.3.1 (Nonnegative Least Squares(NNLS)). Given a matrix B ∈ RM×N

and a column vector b ∈ RM , find a nonnegative vector u ∈ RN
+ such that

min ‖ Bu− b ‖2
2 (6.3.1)

subject to u ≥ 0

�

In other words, the goal of NNLS problem is to find a nonnegative vector u ∈ RN
+

which can minimize the objective function f(u) =‖ Bu− b ‖2
2. In the following, we

establish a connection between the cover length determination problem and the NNLS

problem, that is, by introducing a new variable, we show that the NNLS problem can

be reconstructed as a problem of determining the cover length of the corresponding

variable. This provides us with a method to arrive at the closed-form optimal value

of the objective function of the NNLS problem.

Let

τ 2 =‖ Bu− b ‖2
2 (6.3.2)

When τ = 0, Problem 6.3.1 is equivalent to the problem of finding solutions for the

non-homogeneous linear equations Bu = b with nonnegative constraints on solutions.

Let us consider the case when τ > 0: By dividing τ 2 on both sides of Eq.(6.3.2), we

have

‖ B
u

τ
− b

1

τ
‖2

2= 1. (6.3.3)
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Introducing a new variable

x =

(
u
τ

1
τ

)T
. (6.3.4)

The origin NNLS problem can be transformed into:

Problem 6.3.2.

max xN+1 (6.3.5)

subject to ‖ Ax ‖2
2= 1

where xi ≥ 0 for i = 1, 2, · · · , N , xN+1 > 0 and A =

(
B −b

)
. �

We observe that Problem 6.3.2 is consistent with Problem 6.3.1. As a result, both

the NNLS and the cover length determination problem are equivalent. By solving the

cover length of the corresponding variable xN+1, we obtain the equivalent closed-form

optimal value of NNLS problem. If, in case, we are not able to find the cover length

of this variable, i.e., xN+1 is uncovered in Ax, then we conclude that the original

NNLS problem has no optimum solution.

The following example is used to illustrate the equivalence between the NNLS

problem and the cover length determination problem.
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Example 6.3.1. The cover length determination problem in Example 6.2.1 is con-

sistent with the NNLS problem: min
u∈R3

+

‖ Bu− b ‖2
2, where

B =



−2 3 5

4 0 −1

0 0 −2

4 −4 2


and

b =

(
−4 2 −3 −4

)T
.

Let

τ 2 = ‖ Bu− b ‖2
2

x =

(
x1 x2 x3 x4

)T
=

(
u
τ

1
τ

)T
.

The cover length of x4 is

c4 =
1√

13/567
=

1

τ
,

thus the optimal value of this NNLS problem is

τ 2 =‖ Bu− b ‖2
2= (

1

c4

)2 = 13/567.

�
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The above example shows us how to convert the cover length determination of a

desired variable into finding the optimal value of the corresponding NNLS problem

and verifies the equivalence of the two problems. Moreover, on the basis of the

relationship between the cover length determination problem and the NNLS problem,

we are able to obtain the analytical optimal value of the NNLS problem directly for

some certain types of matrices. In the following, we will use M -matrix as an example

to demonstrate this conclusion. Let us first introduce the definitions and related

properties of the Z-matrix and the M -matrix (46; 59; 41; 45; 5):

Definition 6.3.1 (Z-matrix). An N×N real matrix in which the off-diagonal entries

are less than or equal to zero, i.e., a matrix of the form: A = (aij) with aij ≤ 0 ∀ i 6=

j, 1 ≤ i, j ≤ N , is a real Z-matrix. �

Definition 6.3.2 (M-matrix). Let A be a N ×N real Z-matrix. That is, A = (aij)

where aij ≤ 0 for all i 6= j, 1 ≤ i, j ≤ N . Then matrix A is also an M-matrix if it

can be expressed in the form

A = sI−T, (6.3.6)

where T = (tij) with tij ≥ 0, for all i 6= j, 1 ≤ i, j ≤ N , and s is at least as large as

the maximum of the moduli of the eigenvalues of the matrix T, and I is an identity

matrix. �

Many statements that are equivalent to the definition of a non-singular M -matrix

are known, and any one of these statements can serve as a definition of a non-singular

M -matrix. In the following, we only mention the characterizations that we will need

in our discussion.
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Lemma 6.3.1. Let A ∈ RN×N be a Z-matrix, then the following statements are

equivalent to A being a non-singular M-matrix:

1. All the principal minors of A are positive. That is, the determinant of each

submatrix of A obtained by deleting a set, possibly empty, of corresponding

rows and columns of A is positive.

2. A is inverse-positive. That is, A−1 exists and all the elements in A−1 are all

non-negative.

�

Then, with the properties of M -matrix and cover length, we can obtain the fol-

lowing result.

Theorem 6.3.1. Let matrix B ∈ RN×(N−1) and vector b ∈ RN . Denote A as(
B −b

)
. Suppose A is a non-singular M-matrix, then the optimal value of the

NNLS problem min
u∈RN−1

+

‖ Bu− b ‖2
2 is equal to 1

[(ATA)−1]NN
. �

Proof. By assumption, A is a non-singular M -matrix, therefore ATA is invertible

and all the elements in (ATA)−1 are positive according to Theorem 6.3.1. When the

original NNLS problem is formulated into the problem of cover length determination

of xN by applying Lemma 6.1.1, the cover length of the corresponding variable xN is

given by:

cN =
√[

(ATA)−1]
NN

.
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Thus, the optimal value is

τ 2 =‖ Bu− b ‖2
2=

(
1

cN

)2

=
1

[(ATA)−1]NN

In mathematics, a stochastic matrix is a square matrix used to describe the transi-

tions of a Markov chain. Each of its entries is a nonnegative real number representing

a probability (25; 37; 60). It is also called a probability matrix, transition matrix,

substitution matrix, or Markov matrix.

Definition 6.3.3 (Stochastic Matrix). A stochastic matrix is a non-negative square

matrix, with each row summing to 1. �

In the following, a simple example is given as an application of Lemma 6.1.1 in

obtaining the optimal value of the NNLS problem when A is a stochastic matrix. It

shows finding the minimum value of the objective is a one-step process.

Example 6.3.2. Let matrix B ∈ RN×(N−1) and vector b ∈ RN . Denote A as(
B −b

)
. Suppose A is a stochastic matrix, then the optimal value of the NNLS

problem min
u∈RN−1

+

‖ Bu− b ‖2
2 is

[
ATA

]
NN

. �

6.4 Comparison with the Active-Set Method in

Solving NNLS Problem

The first widely used algorithm for solving NNLS problems is an active-set method

published by Lawson and Hanson in their 1974 book (39). There are several features
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of this normally used active set method. A typical example of an active-set method

is implemented by the algorithm lsqnonneg in Matlab, aiming at obtaining an active

set and arriving at an approximate solution to NNLS problem with this active set.

The detailed algorithm is given as follows.

Algorithm 1 lsqnonneg

Input: B ∈ RM×N , b ∈ RM

Output: u∗ ≥ 0 such that u∗ = arg max ‖ Bu− b ‖2
2.

1: Initialize: P = ∅, R = {1, 2, · · · , n}, u = 0, w = BT (b−Bu)
2: repeat
3: Proceed if R 6= ∅ ∧ [maxi∈R(wi) > tolerance]
4: j = arg maxi∈R(wi)
5: Include the index j in P and remove it from R
6: sP = [(BP )TBP ]−1(BP )Tb
7: if min (sP ) ≤ 0 then
8: α = −mini∈P [ ui

(ui−si) ]

9: u := u + α(s− u)
10: Update R and P
11: sP = [(BP )TBP ]−1(BP )Tb
12: sR = 0
13: end if
14: u = s
15: w = BT (b−Bu)

It starts with an all-zero vector and computes the associated negative gradient

vector w. Then it finds the index of the position where the maximum value of

w occurs and move this index from the inactive set to the active set. By solving

the corresponding least squares problem with current active set, one non-negative

solution candidate can be obtained. The active set and inactive set can be updated

with current candidate solution and continue the whole process until all the elements

in w are non-positive or the inactive set is empty.

As Lawson and Hanson show, this algorithm always converges and terminates in
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finite steps. However, there is no upper limit on the possible number of iterations

that the algorithm might need to reach the point of optimum solution. And it might

be very slow in practice owing largely to the computation of the pseudo-inverse.

With regard to the computational complexity, since the exact running time re-

quired for the NNLS solver is unknown, the computational cost cannot be specified

exactly. In many standard implementations of NNLS solvers (and particularly those

based on active-set methods), the computational complexity is typically O(MN2) per

iteration (7).

Compared with active-set method, the cover length determination method takes

finite operations and once we find one principal sub-matrix that can satisfy the con-

ditions in Theorem 6.1.1, then the algorithm can stop. Furthermore, we can find an

upper limit on the possible number of steps that the algorithm needs and obtain a

closed-form optimal value of the NNLS problem.

From the perspective of computation complexity, there is no clear advantage of the

cover length method compared with the lsqnonneg since it involves the combination

and permutation operations. However, while the accuracy of lsqnonneg solution

depends on a prescribed tolerance ε, the cover-length method yields the exact value

of the function. And it performs better than lsqnonneg for small size matrices.

In the following, we present an example to illustrate the performance of the cover

length method in solving a general NNLS problem.

Example 6.4.1. The average running time (seconds) and average error of the lsqnonneg

and cover length methods for the matrices and vectors randomly generated by Matlab’s

rand function are shown in the Table 6.1.

The results listed here are averaged over 100 random samples with varying number
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of columns (from 1 to 3) of B in NNLS problem. The default termination tolerance

on the solution of lsqnonneg is 10×
∑

ij |bij| ×N × eps, where eps = 2.22× 10−16,

N is the row number of the matrix B, and bij is the element in B. Table 6.1 also

includes the computation complexity (number of maximum operations) of the cover

length method in solving a general NNLS problem.

It is clear from the table that the advantage of the cover length method over

lsqnonneg is in the accuracy of the solution since cover length yields closed-form

solutions.

Table 6.1: Comparison between Matlab’s lsqnonneg and cover length method in
solving NNLS problem (All tests are performed on a 2.3 GHz Intel Core i5, with a

memory of 8GB 2133 MHz LPDDR3.)

column number of B 1 2 3
complexity cover length method 6 16 589

running time (sec) cover length method 1.20× 10−4 2.40× 10−4 0.0024
lsqnonneg 2.10× 10−4 3.17× 10−4 4.18× 10−4

average error cover length method 0.0000 0.0000 0.0000
lsqnonneg 1.1102× 10−16 2.6645× 10−15 2.8422× 10−14

�

6.5 Conclusion

In this chapter, a method is proposed to obtain the cover length of the covered

variable xi in Ax. We also find that there is an interesting connection between the

cover length determination problem and the NNLS problems. More specifically, given

any NNLS problem, it can be converted to the cover length determination problem.

In the process of determine the corresponding cover length of the covered variable, we
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are able to obtain the analytical optimal value of the NNLS problem. The importance

of the application of the cover theory in the analysis of NNLS problem lies in that

it solves the NNLS problem directly by investigating the matrix itself. Furthermore,

for certain kinds of matrices, such as the M -matrix, the closed-form optimal value

can be obtained in a more straightforward way. We also include a comparison of

our proposed method and the commonly used active-set method to solve the NNLS

problem so that we may have a better understanding of the advantage of cover length

determination method.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Linear system of equations with nonnegativity constraints on variables, linear pro-

gramming problems and NNLS problems arise often in science, engineering and busi-

ness. Nonnegativity constraints on solutions, or approximate solutions to these prob-

lems are commonly found in modern applications. For the purpose of preserving the

characteristics of solutions with respect to the real-life data like images, text, and

audio spectra, it is important to pay attention to nonnegativity so as to avoid spu-

rious results. Thus, we are motivated to propose an effective technique to deal with

the typical problems with nonnegativity constraints that arise in the linear algebra

and optimization from the viewpoint of matrix. In this thesis, the hyper-rectangle

cover theory is introduced and developed. It provides us with a new perspective of

analyzing the important characteristics of nonnegativity constraints. In the process of

exploring the properties of the significant concepts of cover order and cover length in

the cover theory, the novel approaches and viewpoints towards these typical problems
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are identified.

More specifically, in the process of determining whether the variable is covered

or not, the necessary and sufficient condition under which a system of homogeneous

linear equations with nonnegativity constraints has a unique solution has been identi-

fied, which exactly corresponds to full-cover. As a matter of fact, we could naturally

obtain the necessary and sufficient conditions for the existence of non-zero solutions

for this system. In addition, with regard to the system of non-homogeneous linear

equations with nonnegativity constraints on the variables, the normally used meth-

ods for analyzing the existence of the solution are mainly concerned with some other

associated problems, i.e., the original problem has a solution in the required domain

if and only if its associated problem has a solution. With the help of cover theory,

it is possible to obtain the necessary and sufficient condition of the existence of the

non-negative solutions directly by comparing the cover order of the original coefficient

matrix and the augmented matrix in our form of the linear equations system. We

also propose the condition for the guarantee of the unique solution, thereby filling the

lacking of the characterization of uniqueness.

In the process of investigating the properties of cover order for any given matrix,

we discover the equivalence between the cover order and the largest number of the

positive terms of the non-negative vectors in the row space of the matrix. In addition,

since performing row transformation will not alter the cover order of the matrix, we

establish a specific échelon form of the matrix by carrying out a series of elementary

row operations and column permutations. With this échelon transformation, we could

determine the cover order for any given matrix. Specifically, for zero-cover matrices,

some matrices of special form, and low-rank matrices, the échelon form of them
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possess particular structures. Moreover, when we examine the properties of zero-

cover matrices, we gain a deeper understanding in the analysis of linear equations

system with non-negative constraints on solutions. Based on the specific échelon

form of matrix established, the concepts of non-negatively linear independence and

non-negatively linear dependence have been developed, providing us with a deeper

insight of the linear equations system with nonnegativity constraints on solutions and

the meaning of cover order. We also discover the dual relationship between cover and

uncover based on the related properties of the generalized inverse of matrix, i.e., the

dual relationship shows that if the cover condition of vectors in the matrix is not

obvious, it may be clearer when the dual matrix is inspected.

On the basis of the échelon form and the related results on the system of lin-

ear equations with nonnegativity constraints on solutions, we are able to determine

whether the feasibility set of the linear programming problem is empty or not. Simplex

method is widely used as a computational approach in solving linear programming

problem and the procedure involves moving from one feasible solution to another. As

the process progresses, the value of the objective function improves. For any given

linear program, there are three possibilities: 1) the linear program is infeasible; 2)

the linear program is feasible but (objective) unbounded; 3) the linear program is

feasible and has an optimal solution. By employing cover theory, we obtain the con-

ditions under which these three possibilities occur, as well as the optimal value of

the objective function for each. Besides, with the property of zero-cover matrix, a

series of feasible solutions to the linear programming problems can be obtained. A

comparison between our proposed method and the simplex method is presented. The

Klee-Minty cube problem shows that the worst-case complexity of simplex method is
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exponential time while our proposed method can solve it efficiently and effectively.

An analytical method is proposed to determine the cover length of the covered

variable by formulating the cover length determination problem into the correspond-

ing optimization problem. It is observed that the NNLS problem can be re-formulated

into the cover length determination problem, thus a new approach is proposed to solve

the NNLS problem and obtain the analytical optimal value of it. The most signifi-

cant aspect of this method lies in its dependence on the structure of the matrix itself.

Specifically, we only need to investigate the structure of those principal sub-matrices.

For some matrices, such as the M -matrix, the optimal value could be obtained more

directly. The work here also includes a comparison of various algorithms in solving

NNLS problems.

7.2 Future Work

The work included in this thesis just scratches the surface of the cover theory and

there are still much work to be conducted in the future to further enrich this theory.

Mathematically, we can apply the cover theory in the analysis of a great num-

ber of mathematical problems with nonnegativity constraints on the variables. By

investigating the specific form of the matrix with full cover and the matrix with zero

cover, we may further apply the cover theory in the analysis of non-negative matrix

factorization (NMF).

From the application aspect, it is promising to apply the cover theory in the

unique identification in signal processing, (especially, in the optical wireless commu-

nications), and machine learning. In particular, when we consider the large data

set, the cover theory may play an important role in the reduction of the dimension.
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(Specifically, there may exist two types of reduction: the first kind is that we only fo-

cus on those bounded variables — thus throwing out the uncovered variables reduces

the complexity of the problem; the second kind lies in the linear equations system

with nonnegativity constraints on variables — since those covered variables are zero,

we can only focus on uncovered ones). This may further be applied to data recovery

where the data is constrained to be non-negative.
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