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Abstract
Polymers and polymer mixtures play such important roles in our lives that it is

hard to imagine life without them. Although a lot of progress has been made

in the past few decades in our understanding of polymer dynamics and rheol-

ogy using theoretical, computational, and experimental approaches, there are

significant gaps in what is still left to be done. For example, polydispersity is

the norm in industrially-produced polymers. However, a lot of the theories

that have been propounded are predicated on monodisperse polymers. Most

recently, molecular simulations have significantly improved our understanding

of polymer dynamics by either validating theories or offering novel insights

into their dynamics at the micro-structure level of detail. This thesis also uses

molecular simulation to explore three different classes of polymer systems –

monodisperse, polydisperse, and polymer-additive mixtures.

Two of the most significant theories of polymer dynamics are the Rouse

model describing the dynamics of short and unentangled chains, and the tube

and reptation model, which describes the motion of long, entangled chains. The

reptation model predicts different dynamical regimes that are marked by dis-

tinct time scales and further introduced the concept of an entanglement length

Ne – which signifies the length scale at which topological interactions between

a test chain and surrounding matrix chains become significant. These distinct

time scales have been investigated by various researchers but the reported val-

ues vary with different groups. Here, we devised a protocol for the accurate de-

termination of these time scales. We also calculated Ne using these time scales

and compared our results with those reported in the literature. Furthermore,
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using Rouse mode analysis – a technique that resolves the coupled motion of

monomers into distinct and uncoupled modes, we showed that the method can

be used to determine Ne, with the values obtained closer to that using monomer

displacement at longer time scales.

The computational calculation of the linear viscoelastic (LVE) properties of

polymers is very expensive due to the long relaxation times associated with

polymers. Using three different methods – Equilibrium molecular dynamics

(EMD) via the Green-Kubo relation, non-equilibrium molecular dynamics (NEMD),

and corrected Rouse Mode Analysis (cRMA), we determined the LVE properties

of polymer melts for both unentangled and entangled chains and compared the

uncertainty associated with each of them. Specifically, we demonstrate that the

cRMA method, although applicable to only the shorter chains, yielded the low-

est uncertainty. Compared to earlier reported results, we also show that, using

shorter computational runs, the NEMD gives an acceptable level of accuracy in

the calculation of the LVE properties.

Beyond methodology development, this thesis also studied the viscoelas-

ticity of realistic polymer systems of practical interest, including polydisperse

polymers and polymer-additive mixtures. We idealized a polydisperse sys-

tem using a bidisperse model wherein we combined longer chains with shorter

chains at different concentration levels. By investigating the individual motion

of the different chains, we showed that the dynamics of the longer chains are

sped up by the shorter chains, whereas the longer chains impeded the dynamics

of the shorter chains, although the nature of the dynamics of the shorter chains

was not altered. We also showed that the shorter chains reduce the extent of the
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entanglement effect of the longer chains using an RMA approach. By using the

individual LVE profiles of the long and short chains, we tested a semi-empirical

mixing rule for predicting the stress relaxation modulus G(t) of the bulk mix-

ture. We found that a simple mixing rule works well when the shorter chains

are the majority while the double reptation model – that assumes a simultane-

ous relaxation of both the test chains and surrounding matrix chains, does a

better job of the prediction when the longer chains are the majority.

We further explored the effect of molecular structure of single-bead additives

on the thermo-physical properties, such as the glass transition temperature and

Young’s modulus on the polymer-additive mixture. By varying the dimensions

of the molecular additive and over a range of concentration of the molecular

additives, we found that smaller-sized additives are better able to reduce the

glass transition temperature Tg and increase the Young’s modulus Y of the mix-

ture due to the improved packing efficiency of the system. On the other hand,

larger-sized particles are only marginally able to reduce the Tg. The LVE prop-

erties, specifically the zero-shear viscosity of the mixtures shows an opposite

trend to the Y, where once again the smaller-sized particles better reduce the

zero-shear viscosity. This essentially shows the decorrelation of traditional plas-

ticization markers. A reduction in one property does not imply a reduction in

another property and this varies with the dimensions and concentration of the

additives.

We finally describe our various attempts at developing a multi-bead plasti-

cizer model. For the models we have tried, we tuned the chain lengths of the

beads and their interaction with the polymer. Detailed microstructure analysis
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and viscoelasticity calculations reveal that they are either incompatible with the

polymer, resulting in phase separation, or only marginally compatible over a

very limited range.
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Chapter 1

Introduction

1.1 Background

Polymer is a broad term that encompasses materials such as plastics, thermosets,

and elastomers. With over 350 million tons of plastic produced in 20181 and

a North American per capita consumption of some polymers like polyethy-

lene, polypropylene, and polyvinyl chloride of about 65kg/person, polymers

have become the bedrock of the world’s current technological innovation and

contempt. They have important applications in virtually all industries – im-

plantable pacemakers in the health sector, aircraft wings in transportation, pip-

ing in construction, etc...The primary reasons why polymers are so popular are

due to their exceptional properties; light weight, high flexibility, the ease with

which they can be customized and their longevity2 – which ironically is also the

bane of their existence.

Although a lot of progress has been made in our understanding of the re-

sponse of polymers to flows, there are still some gaps in our understanding

1
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of some observed features. For example the nature of entanglements have not

been completely resolved; the entanglement length Ne, which is one of the im-

portant concepts in the tube and reptation model3–5 of polymer dynamics, still

varies with the method of determination.6,7 The wide range of spatial and time

scales inherent in these polymer materials, which are largely responsible for

their excellent features, do not make their analysis any easier when compared

with smaller molecules. For example, water is made up of small molecules

and is homogeneous on length scales of O(1Å) whereas for a polymer, due

to the connectivity of several monomers making up the polymer chain, there

are different length scales spanning – a single bond O(1Å), persistence length

O(10Å), entanglement length8 O(100Å) to the whole chain segment – which

can be several thousands more than the smallest length scale. These different

length scales fluctuate on timescales that span the order of picoseconds for the

bond length to minutes for the whole chain segment.9,10 These different time

and length scales contribute to the dynamics and stress relaxation processes ob-

served in polymer melts in a non-trivial manner and should be accounted for.

In this thesis, we focus on the dynamics and viscoelasticity of three polymer

systems – monodisperse, polydisperse, and plasticized polymers. We apply

molecular dynamics (MD) methods to these three systems. Our simulations re-

veal how different molecular parameters affect some of the observed viscoelas-

tic features.

This chapter lays the foundation for this thesis. It introduces our foci for

these 3 systems as well as the main theoretical underpinnings of polymer dy-

namics. We then discuss the archetypal aspects of the linear viscoelasticity of

2
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polymers. We briefly cover the coarse-grained model of the polymer chain that

we used throughout the thesis and finish off by giving an outline for the subse-

quent chapters.

1.1.1 Monodisperse Polymers

Monodisperse polymers consist of chains of uniform length. A lot of theoretical4,11

and molecular simulation9,12,13 work have focused on monodisperse polymers

to understand how polymers behave under different conditions. One of the

most consequential theories of polymer dynamics - the tube and reptation model

(discussed in section 1.2.2), that describes the dynamics of long entangled poly-

mer chains, predicted different dynamical regimes that are distinctly marked by

unique power law time scales. These scales have been verified in several molec-

ular simulation studies..6,12,14,15 In this thesis, we use monodisperse polymers

to devise a protocol for the reliable estimation of these time scales. Another

significant outcome of the tube model is the concept of entanglement length,

where the topological restrictions due to the long length of the polymer chain

are rather dominant. Although our long term goal was to study the viscoelas-

ticity of polydisperse polymers and polymer mixtures, this part of the thesis

research focused on monodisperse polymers to get a few "tools" ready. Specif-

ically, we attempt to extract the entanglement length from our monodisperse

systems. We use these results throughout the rest of the thesis. Since we discuss

the linear viscoelasticity rather extensively too, we compare different methods

for computing the linear viscoelastic properties in MD simulation using our

monodisperse systems.

3
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1.1.2 Polydispersity

Regardless of the polymerization technique employed in the production pro-

cess, polydispersity is inevitable in industrially produced polymers.16,17 The

theories of polymer dynamics on monodisperse linear polymers are more es-

tablished. Here, we use MD to explore how the different chains affect each

other’s dynamics in a mixture. We idealize a polydisperse system with a bidis-

perse system containing two different chain lengths – one short chain and one

long chain. The main framework for discussing the dynamics of the chains is

based on their lengths and are the Rouse model for short, unentangled melts

(discussed in section 1.2.1) and the tube and reptation model for longer, entan-

gled chains (discussed in section 1.2.2). The viscoelastic properties of interest

are also discussed in section 1.2.3. More specifically, our objectives here are

three-fold:

• Quantify the effect a long chain has on the dynamics of the short chain

and vice-versa. Since the dynamics of a polymer chain is strongly affected

by the chain length, we varied the chain lengths to span the 2 dominant

regimes of polymer dynamics – unentangled and entangled regimes.

• Evaluate the extent to which topological constraints of the longer chains

are affected by the presence of the shorter chains.

• Use the viscoelastic profiles of the individual components of the bidis-

perse system to predict the bulk viscoelasticity of the mixture using a

semi-empirical mixing rule.

4
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1.1.3 Plasticized Polymers

Pure polymers are rarely used by themselves in their pure form. They are usu-

ally blended with some other additives to yield intermediate products that can

be subsequently processed into other suitable forms like powder, flakes, pellets

or granules. These additives include colorants, fillers, stabilizers, anti-oxidants,

flame retardants, plasticizers, and other polymers to produce blends or alloys.

Of these additives, plasticizers account for more than one-third of all the global

additives market.18,19 Primarily, plasticizers are employed to enhance the pro-

cessability, flexibility, or distensibility of the polymer. They reduce the glass

transition temperature Tg of the polymer material as well as their mechanical

properties. Despite their huge importance, the mechanisms by which plasticiz-

ers work are not yet fully understood.20 We use MD to investigate the molecular

factors affecting the viscoelasticity of plasticized polymers. For the model em-

ployed, prior work has shown that the plasticization effect depends strongly on

the concentration and molecular sizes of the plasticizers.21–23 Specifically, we

focus on how the molecular structure of the plasticizers affect the linear vis-

coelastic properties.

1.2 Polymer Dynamics and Viscoelastic Properties

The dynamics and viscoelastic properties of polymer melts are very important

in several fields such as biology and the plastic industry. They govern flow

behavior during polymer processing. The dynamics of polymer melts are gen-

erally classified based on the polymer chain lengths: short, unentangled chains

and long, entangled chains. For short, unentangled melts, their dynamics and

5
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viscoelasticity are well described by the Rouse model wherein the diffusion co-

efficient D scales as N−1 and viscosity η ∼ N. When the chains are sufficiently

long and topological interactions between the chains are significant, i.e., entan-

gled, the tube model and reptation mode of relaxation typically describes the

dynamics and stress relaxation. Here, D ∼ N−2 and η ∼ N3. Several exper-

imental studies10,24 however report η ∼ N3.4. The quantitative discrepancies

have been attributed to the presence of other relaxation mechanisms other than

reptation.

1.2.1 Rouse Model

The Rouse model25 is the simplest model describing the dynamics of a poly-

mer chain. The model assumes a Gaussian chain and represents the chain as

a bead-spring model consisting of N beads and N − 1 springs and considers

all the other surrounding chains as a continuous viscous medium. Each bead

experiences a frictional force proportional to its velocity. The dynamics of each

bead on the test chain can be described by the inertia-less Langevin equation.

The equation of motion of the i-th bead can then be written as

ζ
d⃗ri

dt
= Hs [(⃗ri+1 − r⃗i)− (⃗ri − r⃗i−1)] + f⃗ r

i (1.1)

where ζ is the monomeric friction coefficient, Hs = 3kBT/b2 (kb is the Boltz-

mann constant, T is the temperature, and b is the bond length) is the spring

constant, r⃗i is the position of the i-th bead, and f⃗ r
i is the random force exerted

6
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on the i-th bead satisfying

〈
f⃗ r
i (t) f⃗ r

j (t
′)
〉
= 2ζkBTδijδ(t − t′ )⃗⃗δ (1.2)

where δ(t) is the Dirac delta function, δij is the Kronecker delta, and ⃗⃗δ is the

identity tensor. The Rouse model does not explicitly account for interactions

such as excluded volume and hydrodynamic interaction except that due to the

chain connectivity. It further assumes all the other interactions can be sub-

sumed into the friction coefficient. Despite the crude approximations, the model

has been found to adequately describe the dynamics of unentangled polymer

melts.5 Equation 1.1 can be solved by projecting the original bead coordinates r⃗i

to a set of mutually orthogonal coordinates known as Rouse modes or normal

coordinates X⃗p (p = 0, 1, ..., N − 1).

X⃗p ≡
√

2
N

N

∑
n=1

r⃗i(t) cos
(
(i − 1/2)pπ

N

)

(p = 0, 1, 2, ...N − 1)

(1.3)

The p = 0 mode describes the motion of the center of mass of the chain and the

other modes (1 ≤ p ≤ N − 1) describe the internal relaxations of sub-chains, or

"blobs", of the size of N/p beads. Each of the transformed coordinate or Rouse

mode X⃗p follows Langevin dynamics with its own friction coefficient and ran-

dom force. Importantly, relaxation of different modes is mutually independent.

The autocorrelation function (ACF) of each p > 1 mode decays exponentially

〈
X⃗p(t)X⃗p(0)

〉
=
〈

X⃗2
p

〉
exp

(
− t

τp

)
(1.4)

7
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with its own relaxation time τp given by

τ−1
p =

12kBT
ζb2 sin2

( pπ

2N

)
(1.5)

where b2 is the mean-square bond (spring) length. For leading modes with

p ≲ N/5, which describes the motions of larger segments with N/p ≳ 5 beads,

eq. (5.20) can be approximated by25

τp =
ζb2

3π2kBT

(
N
p

)2

. (1.6)

and the relaxation modulus G(t) is given by

G(t) =
ρkBT

N ∑
p

exp(−2tp2/τR) (1.7)

1.2.2 Tube and Reptation Model

When a chain exceeds a critical length – called the entanglement length Ne, the

Rouse model alone is no longer sufficient to describe its dynamics. The tube

model of Edwards3 and the reptation theory by Gennes,4 which were subse-

quently refined by Doi et al.5 are used. In this model, topological constraints

due to some other chains restrict the motion of a test chain along a tube and pre-

vents any lateral excursion of the chain beyond the tube diameter. The axis of

this tube is known as the primitive chain and has the same end-to-end distance

as the polymer chain. The chain can still wriggle within the confines of the tube

but the longer, time-dependent curvilinear diffusive motion of the primitive

chain only occurs longitudinally in the tube. This chain motion is referred to

8
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as reptation. The associated curvilinear diffusion coefficient D can be estimated

from Einstein’s relation

D =
kT
Nζ

(1.8)

where N is the length of the chain and ζ is the chain’s monomeric friction coef-

ficient. The time τd it takes for the primitive chain to fully reptate out of the tube

can be estimated26 from

τd =
⟨L⟩2

D
(1.9)

where L is the length of the primitive chain The full derivation with the prefac-

tor is5

τd =
1

π2
ζN3b4

kBTa2 (1.10)

where a is the tube’s diameter and b is the bond length between the beads of the

chain. The fraction of the tube still occupied by the chain ψ(t) at any time t is

ψ(t) =
8

π2 ∑
p;odd

1
p2 exp(

−p2t
τd

) (1.11)

and is proportional to the stress. The G(t) then becomes

G(t) = G0
Nψ(t) (1.12)

where G0
N is the plateau modulus.

1.2.3 Linear Viscoelasticity

The linear viscoelasticity of polymeric fluids is usually described based on their

response in simple flow fields. The material functions obtained depends on the

9
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flow field used. We describe the steady shear flows and the small amplitude

oscillatory motion below.

Steady Shear Flow In steady shear flows also known as planar Couette flow,

the polymer particles are free to rotate and there is an extensive vorticity devel-

oped in the flow field. The velocity profile is

vx = γ̇y (1.13)

where γ̇y is the shear rate. The equations describing the flow field are

τyx = −η
dvx

dy
(1.14)

τxx − τyy = −ψ1(
dvx

dy
)2 (1.15)

τyy − τzz = −ψ2(
dvx

dy
)2 (1.16)

where τii is the normal stress and τij(i ̸= j) is the shear stress, η is the non-

Newtonian viscosity and is dependent on shear rate, ψ1 and ψ2 are the first and

second normal stress coefficients respectively.

Small Amplitude Oscillatory Shear This is the classical method for deter-

mining the viscoelastic response of a fluid. The fluid is subjected to a sinusoidal

strain of

γ(t) = γ0 sin(ωt) (1.17)

10
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The velocity profile developed in the flow will be nearly linear if the amplitude

of the flow is small and fluid is highly viscous.27 Shear stress is then given as

σ(t) = γ0
(
G′(ω) sin(ωt) + G′′(ω) cos(ωt)

)
(1.18)

G′ and G′′ give the storage and loss moduli of the fluid respectively, similarly

interpreted as a measure of the elastic and viscous content of the fluid. Alterna-

tively, G′ and G′′ can be obtained from the Fourier integral of G(t)

G′ = ω
∫ ∞

0
G(t) sin(ωt) (1.19)

G′′ = ω
∫ ∞

0
G(t) cos(ωt) (1.20)

1.3 Coarse-Graining

In this work, we focus on flexible linear polymers. As mentioned in the earlier

sections, owing to the different and extensive time and length scales in poly-

mers, a full atom simulation that specifies the interactions between all the atoms

in a real polymer system is prohibitive for determining the rheological proper-

ties of a polymer. As mentioned earlier, the time scale of bond fluctuation is of

O(10−13)s or even much shorter whereas the stress relaxation phenomena can

be observed on O(102)s!.9,10 Using the most sophisticated parallel computers

11
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available, the time required to completely capture the different observable phe-

nomena is on the order of years. This makes a full-atom simulation of highly en-

tangled chains almost impossible to perform in a conventional sense although

there have been several multi-scale approaches28 that attempt to bridge these

length and time divides. The implication of these scales for computer simula-

tion is very severe. However, since we are not interested in a specific polymer

material but in the general features of the rheological characteristics of our sys-

tems and how different molecular parameters affect the bulk properties, we ig-

nore the local chemical details of the monomer and use a coarse-grained model

for our studies.

For the pure melt, bidisperse, and plasticized systems, we use a bead-spring

model to represent the polymer chains where the beads, representing the monomers,

are bonded by finitely extensible and non-linear (FENE) springs. The interac-

tion between the bonded beads is given by

UFENE(r) = −1
2

KR0
2ln

[
1 −

(
r

R0

)2
]

+ 4ϵ

[(σ

r

)12
−
(σ

r

)6
+

1
4

]
(1.21)

where r is the distance between the beads and σ and ϵ are the standard Lennard-

Jones (LJ) length and energy parameters respectively. The first term of the

equation is an attractive potential which models FENE springs between clos-

est neighbors along the chain and has a maximum bond length R0 = 1.5σ,

while the second term models the excluded-volume repulsion between beads

and included at r ≤ 21/6σ. The spring constant K = 30σ/ϵ allows a reasonable

12
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integration time step and prevents chains from crossing each other.12 The inter-

action between non-bonding beads is modeled using the standard LJ potential

ULJ(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

. (1.22)

We truncate the potential at r = 2.5σ and shifted by a constant to ensure conti-

nuity at the cutoff.

1.4 Dissertation Outline

The motif of this thesis is on the dynamics and rheology of polymers and poly-

mer mixtures. We start in chapter 2 by focusing on a reliable protocol for ex-

tracting the different relaxation timescales of flexible, entangled linear poly-

mer chain and also discuss a method for the determination of the entanglement

length Ne of the chains using Rouse mode analysis. In chapter 3, we compare

different methods of computing linear viscoelasticity from molecular dynam-

ics simulation, with emphasis on the computational resource requirement and

discuss the challenges inherent in the application of these methods. In chap-

ter 4, the dynamics and rheology of a bidisperse polymer melt consisting of long

chains well in the entangled regime and a short chain spanning unentangled to

mildly entangled regime, in different weight fractions are studied in detail. Fur-

thermore, we investigate a mixing rule based on the double reptation model for

describing the linear viscoelastic properties of the bidisperse mixture using the

relaxation profiles of the monodisperse constituent. We further investigate the

molecular parameters affecting the design of polymer-plasticizer mixture using

13
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a single-bead plasticizer model, again focusing on the dynamics and rheology

of the mixture as well as the broad factors affecting plasticization in chapter 5.

We describe our various attempts at developing a multi-bead plasticizer model

in chapter 6, detailing the broad factors affecting plasticizer compatibility with

polymers. We conclude the thesis in chapter 7 where we give a summary of the

thesis and the main contributions.
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Chapter 2

Methods for determining the

entanglement strand length

This chapter focuses on two methods – Mean square displacement (MSD) and

Rouse mode analysis (RMA) for determining the entanglement length Ne of

flexible Kremer-Grest (KG) bead spring model. The (MSD) method is the estab-

lished method in the literature for extracting Ne. However, it is rather difficult

to extract the relevant timescales of interest. Here, we seek to standardize the

MSD method for the first time, establish a reliable protocol for calculating Ne,

and propose a new approach to extract Ne using (RMA). We conclude by com-

paring the results from these two approaches.

I carried out the research, including setting up the model, carrying out the

simulations, and analyzing the data. I also wrote the initial draft. Li Xi made

extensive recommendations, edits, and supervised the whole research.

This chapter is under preparation for future publication.
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2.1 Introduction

The entanglement length Ne is one of the fundamental parameters of the tube

model.1 For a long entangled chain, it describes the length scale at which the ef-

fects of the topological constraints on the dynamics of a test chain due to matrix

chains become noticeable –i.e., a change over from the Rouse dynamics of short

sub-segments of an entangled chain to reptation dynamics of the whole chain.

It is also the number of monomers contained in the tube diameter.2 The tube

step length a relates the Kuhn length of the chain b to Ne,

Ne =
a2

b2 (2.1)

There are several approaches2–9 used in the literature to calculate Ne in molec-

ular simulations. The mean squared displacement (MSD) of a monomer, com-

monly referred to as g1(t) is a convenient method that tracks the time-dependent

trajectory of the individual monomers of a chain. One of the predictions of the

reptation model is the slowing down of chain dynamics at intermediate time

and length scales, and an eventual diffusive motion after a sufficiently long time

when the chain has completely reptated out of its tube. This slowing down has

been attributed to the presence of entanglements as a result of the intermolecular

interaction between a test chain and neighboring chains. The surrounding ma-

trix chains form a tube and restricts the motion of the test chain into a longitu-

dinal diffusive motion in the tube. A schematic of the tube model is shown in

fig. 2.1. There are distinct time scales associated with these dynamics. The inter-

section of the fitting lines of these different dynamical regimes occurs near the

characteristic relaxation times. This is subsequently used to determine Ne. This
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FIGURE 2.1: Schematic of a polymer chain confined in a tube by
surrounding matrix chains. The tube step length is a and the
dashed line in the middle of the tube segments represents the
primitive path of the chain.2,10

was the approach used by Kremer et al.3 and several other authors.4,7,8,11,12 For

the same fully flexible polymer model, several authors have reported different

values using the MSD approach. Kremer et al.3 and Pütz et al.4 both reported Ne

values close to 32, while Wang et al.7 obtained a value of 50. However, Likhtman

et al.5 argued that the intersection of the fitting lines to the different dynamical

regimes does not occur at the characteristic relaxation time of the entanglement

strand as done by the previous authors. Rather, the intersection time occurs at

a time t∗ near the relaxation time. Still, Hou2 showed that there is an additional

missing prefactor of π/2 that comes from the Gaussian distribution of the tube’s

segment displacement and obtained a value of Ne = 85. Nevertheless, the MSD

method suffers from the fragility of the regression technique or fitting process.
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The number of data points used in the fitting procedure can significantly affect

the calculated characteristic times at the intersection points and consequently

the value of Ne.

In rubber elasticity theory,13,14 the presence of cross-links in polymer net-

works shows up in the stress relaxation modulus G(t) where it relaxes to a fi-

nite value Ge in form of a plateau. Entangled polymers are also conceptualized

as consisting of temporary cross-links and this is also marked by a prolonged

plateau modulus in the G(t) that depends on the chain length. Unlike the cross-

linked polymer however, the G(t) eventually decays to zero given sufficient

time. The relationship between Ne and G0
N is given as,5,8,10

G0
N =

4
5

νkBT/Ne (2.2)

where ν is the monomer number density of the polymer chains, kB is the Boltz-

mann constant, and T is the temperature. In principle, it is possible to calculate

Ne from the plateau modulus according to eq. (2.2) . However, in MD simu-

lations, the G(t) is notoriously difficult to calculate due to the fluctuations in-

trinsic to small scale systems that dominate the G(t) signal. By pre-averaging

the stress tensor to improve the signal-noise ratio, Hsu et al.8 used this method

to calculate Ne for semi-flexible KG chains with comparable results with other

methods.

Another method commonly used relies on the primitive path (PP) of the

polymer chain. As shown in fig. 2.1, the PP is the shortest path between the two

ends of the original chain and lies along the axis of the tube. It is obtained by
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fixing both ends of the chain and contracting the chain into a contour while pre-

serving the non-crossability constraints with the other chains.15,16 The Primitive

Path Analysis (PPA) method was first developed by Everaers et al..17,18 In this

approach, an energy minimization run is carried out where the non-bonded re-

pulsive interactions between contiguous chain beads are turned off while chain

ends are fixed in space. This permits the chains to contract to their PP length

under the action of their own spring forces and also due to the topological con-

straints imposed by the surrounding chains.16,19 The resulting primitive path is

still a random walk at larger scales and can be mapped to freely jointed chains to

calculate the entanglement parameters. Other authors have used different pro-

tocols for shrinking the chains to obtain the primitive path. The Z1 algorithm

of Kröger20 and the CReTA code developed by Tzoumanekas et al.21 use a geo-

metric minimization approach to shrink the contour lengths of the chains while

their ends are fixed and the topological constraints imposed by the surround-

ing chains are preserved. The resulting PPs are tensionless lines and the points

of contact between the lines signify the entanglement points. However, the Ne

obtained from these two approaches differ by a factor of 2 which Everaers18

have explained by appealing to the phantom network model of rubber elastic-

ity. Indeed, these different results for Ne from the various PPA methods greatly

underscore how important it is to define the underlying assumptions or models

when reporting Ne values. Some of the criticisms of the PPA model include;

the artificial contraction of the chains which destroys the original melt structure

of the chain, since real chains do not shrink19 and the need to extrapolate the

results to an infinite long chain.2
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In this work, our goals are two-fold: (i) to standardize the MSD approach

for determining the intersection of the timescales, and (ii) to explore the Rouse

Mode Analysis (RMA) method for calculating Ne. Given how sensitive the MSD

approach is to the regression technique, it is tempting to avoid this difficulty by

using the RMA method. For the first time, we attempt to use the RMA to calcu-

late Ne. The large uncertainties inherent in the MSD are significantly reduced.

The applicability of Rouse modes to unentangled melts is well established in

the literature.3,22,23 For entangled chains, Rouse modes can still be applied by

using a stretched exponential to capture the chain relaxation24–26 as further dis-

cussed in the later sections. We proceeded by discussing the chain model and

numerical methods used (section 2.2). We then followed with a discussion on

the relevant theories of the MSD and RMA methods. We demonstrate our pro-

cedure for the extraction of the relevant timescales and the extraction of Ne in

both methods in section 2.4.

2.2 Simulation Details

We use the KG bead-spring model3 where each chain consists of N beads bonded

by finitely extensible non-linear elastic (FENE) springs.27 The potential between

bonded beads is

UFENE(r) = −1
2

KR0
2ln

[
1 −

(
r

R0

)2
]

+ 4ϵ

[(σ

r

)12
−
(σ

r

)6
+

1
4

]
(2.3)
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where r is the distance between the beads and σ and ϵ are the standard Lennard-

Jones (LJ) length and energy parameters. The first term of the equation rep-

resents an attractive potential which models FENE springs between nearest

neighbors along the chain with a maximum bond length R0 = 1.5σ, while

the second term models the excluded-volume repulsion between beads and the

term is only included at r ≤ 21/6σ. The spring constant K = 30σ/ϵ is chosen

to allow a reasonable integration time step while preventing chains from cross-

ing each other.3 The interaction between non-bonding beads is modeled by the

standard LJ potential

ULJ(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

. (2.4)

The potential is truncated at r = 2.5σ and shifted by a constant to ensure conti-

nuity at the cutoff. Hereinafter, all results will be reported in reduced LJ units

in which length, energy, time, and temperature are scaled by σ, ϵ, τ =
√

mσ2/ϵ

, and ϵ/kB (kB is the Boltzmann constant), respectively. A constant time step of

0.01 (in LJ time units or TUs) is used for all simulation.

We used chain lengths N = 200, 350, and 500. Each system contains 50, 000

beads except for N = 350 with 56, 000 beads. The beads were placed in a cubic

box with periodic boundary conditions at a constant bead density of 0.85. All

the simulations were carried out using the Large-scale Atomic/Molecular Mas-

sively Parallel Simulator (LAMMPS) package.28 The initial configuration was

generated by randomly placing the specified number and types of chains in the

simulation cell. Generation of the individual chains follows a procedure that is
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analogous to a self-avoiding walk in a continuum space, which prevents back-

folding of successive bonds but still leaves a large number of bead overlaps. A

dissipative particle dynamics (DPD) push-off method,29 originally proposed by

Sliozberg et al.30 was then used to obtain an equilibrated structure for produc-

tion runs. During the DPD run, interaction between non-bonding beads was

replaced by a soft repulsive potential of the form of

UDPD(r) =





ADPD
2 rc

(
1 − r

rc

)
r < rc

0 r ≥ rc

. (2.5)

DPD simulation was run at T = 1.0 using a cut-off distance rc = 1.0. The

potential was initially low with ADPD = 25. At the beginning, restriction was

imposed on the maximum distance each bead can move within one time step

which gradually increases from 0.001 to 0.1 over 15 TUs. The restriction was

then removed and the simulation was run for another 100 TUs. This was sub-

sequently followed by a gradual ramp of ADPD to 1000 over 5.5 TUs. The DPD

potential was then replaced with the standard LJ potential and MD in an NVT

ensemble was performed for additional 500 TUs during which a random veloc-

ity distribution was reassigned to all beads every 0.5 TUs. Equilibration quality

was examined through the mean square internal displacement (MSID)

〈
R2(n)

〉
≡
〈
|⃗rj − r⃗i|2

〉
(2.6)

which measures the square distance between the i-th and j-th monomeric unit

of the same chain, averaged over all ij-pairs with the same index separation
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n ≡ |j − i|. Auhl et al.31 showed that, compared with the radial distribu-

tion function, end-to-end distance and radius of gyration, MSID better captures

chain deformation at intermediate scales which does not fully relax until the

whole chain is equilibrated.

For each cell composition, three random initial configurations were indepen-

dently generated and each underwent the above equilibration procedure before

its production run. The production run of each configuration lasted for a total

of 3 × 106 TUs for N = 200 and N = 350 cases and 6 × 106 TUs for the N = 500

case. Results reported in this study were averages over these three trajectories

from independent initial configurations unless specified otherwise. Error bars

report the standard error between the independent runs.

2.3 Theory

2.3.1 Mean Square Displacement (MSD)

The dynamics of an entangled polymer melt can be studied using the mean-

squared displacement (MSD) of a monomer, g1(t) of a polymer chain

g1(t) =
1

ncN

nc

∑
i=1

N

∑
j=1

[⃗rij(t)− r⃗ij(0)]2 (2.7)

or the MSD of the center of mass, g3(t) of an individual chain averaged over the

total number of chains present in the system

g3(t) ≡
1
nc

nc

∑
i=1

[⃗ri,c.m.(t)− r⃗i,c.m.(0)]2 (2.8)
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where

r⃗i,c.m.(t) ≡
1
Ni

Ni

∑
j=1

r⃗i,j(t), (2.9)

nc is the number of chains, Ni is the length of the i-th chain, r⃗ij(t) is the position

of the j-th monomer of the i-th chain, and r⃗i,c.m.(t) is the position of the center

of mass of the i-th chain.

According to the reptation model1,4,32 there are four distinct power law regimes

associated with the monomer motion g1(t) in an entangled melt at times t > τ0

(τ0 is the characteristic time required for a monomer to move an order of its

size). The different power law time scaling for g1(t) and g3(t) are theoretically

predicted to be,

g1(t) =





6b2(Wt) t ≤ τ0

2
√

3
π b2(Wt)1/2 τ0 ≤ t ≤ τe

β( 4
3π )

1/4ab(Wt)1/4 τe ≤ t < τR

β
√

2
N ab(Wt)1/2 τR ≤ t ≤ τd

2 a2

N2 Wt1 t ≥ τd

(2.10)

and

g3(t) =





6 b2

N Wt t ≤ τe

β a2

N (Wt)1/2 τe ≤ t ≤ τR

2 a2

N2 Wt1 t ≥ τR

(2.11)

where b is the bond length, W = kBT
ζb2 is the Rouse monomer diffusion rate, β
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is a prefactor included as a result of the Gaussian nature of the segment dis-

placement along the tube9 and a is the step length of the tube.1,4,7 Also, τe is

FIGURE 2.2: Schematic of the mean square displacement of inter-
nal monomers of entangled chains plotted as a function of time.
The five distinct timescales and their corresponding values and
are shown.

the entanglement time or the Rouse relaxation time of Ne monomers, τR, the

Rouse time for the whole chain and τd is the time required for the chain to

completely leave its tube. These characteristic timescales associated with the

segmental dynamics of the chain were believed to occur at the intersection of

these different power law regimes.1,3,8 However, Likhtman et al.5 showed that

the relaxation times do not occur at the points of intersection, but rather at times

close to the relaxation times. Figure 2.2 shows a schematic of these power law

regimes. The relationship between the intersection times and the characteristic

relaxation times are obtained by solving for t between two intersecting lines.
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This results in

t∗0 = πτ0 (2.12)

t∗e =
π

9
τe (2.13)

t∗R = πτR (2.14)

t∗d =
π2

2
τd (2.15)

At very early times t < τ0, past the timescale where deterministic short-time

motion is no longer in effect, the monomer is completely oblivious of and unaf-

fected by the presence of the other monomers and moves in a diffusive manner.

When τ0 < t < τe, the monomer slows down due to the connectivity to the other

monomers. The monomer only meanders within the tube and does not feel the

topological constraints imposed by the surrounding chains yet, resulting in a

t1/2 scaling. When τe < t < τR however, the topological constraints due to the

tube restrict the motion of the monomer or chain segment to a 1-dimensional

diffusive motion along its contour. After a sufficiently long time t > τd the mo-

tion of the chain segments again becomes diffusive. Alternatively, the center of

mass of the chain g3(t) can be studied. There are 3 distinct power law regions

here – a diffusive motion when t ≤ τe, a t1/2 scaling when τe ≤ t ≤ τR, and a

diffusive motion past τR.
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2.3.2 Rouse Mode Analysis (RMA)

The Rouse model treats the probe chain as a Gaussian chain and considers all

its surrounding chains as a continuous viscous medium – i.e., a mean-field ap-

proach. Dynamics of each bead on the probe chain is described by the inertia-

less Langevin equation.15 For example, the equation of motion for the i-th bead

is written as

ζ
d⃗ri

dt
= Hs [(⃗ri+1 − r⃗i)− (⃗ri − r⃗i−1)] + f⃗ r

i (2.16)

where ζ is the monomeric friction coefficient, Hs is the spring constant, r⃗i is the

position of the i-th bead, and f⃗ r
i is the random force exerted on the i-th bead

satisfying
〈

f⃗ r
i (t) f⃗ r

j (t
′)
〉
= 2ζkBTδijδ(t − t′ )⃗⃗δ (2.17)

where δ(t) is the Dirac delta function, δij is the Kronecker delta, and ⃗⃗δ is the

identity tensor. Equation (2.16) shows that position coordinates of neighboring

beads are coupled in their dynamics through spring forces. The RMA projects

the original bead coordinates r⃗i to a set of mutually orthogonal coordinates

known as Rouse modes or normal coordinates X⃗p (p = 0, 1, ..., N − 1). We adopt

the original form of projection by Rouse22

X⃗p ≡
√

2
N

N

∑
n=1

r⃗i(t) cos
(
(i − 1/2)pπ

N

)

(p = 0, 1, 2, ...N − 1)

(2.18)

which is widely used in the literature.23–25,33,34 The p = 0 mode describes the

motion of the center of mass of the chain and the other modes (1 ≤ p ≤ N − 1)

describe the internal relaxations of sub-chains, or "blobs", of the size of N/p
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beads. Each of the transformed coordinate or Rouse mode X⃗p follows Langevin

dynamics with its own friction coefficient and random force. Importantly, relax-

ation of different modes is mutually independent. The autocorrelation function

(ACF) of each p > 1 mode decays exponentially

〈
X⃗p(t)X⃗p(0)

〉
=
〈

X⃗2
p

〉
exp

(
− t

τp

)
(2.19)

with its own relaxation time τp given by

τ−1
p,Rouse =

12kBT
ζb2 sin2

( pπ

2N

)
(2.20)

where b2 is the mean-square bond (spring) length. For leading modes with

p ≲ N/5, which describes the motions of larger segments with N/p ≳ 5 beads,

eq. (2.20) can be approximated by22

τp,Rouse =
ζb2

3π2kBT

(
N
p

)2

. (2.21)

The Rouse model is commonly used to describe the dynamics of unentangled

polymer melts. With increasing chain length, topological constraints set in and

relaxation dynamics changes. For entangled chains, we may still project the

coordinates to X⃗p using eq. (2.18) but the ACFs no longer follow simple expo-

nential decay. A stretched exponential is often used instead25,34–37

〈
X⃗p(t)X⃗p(0)

〉
=
〈

X⃗2
p

〉
exp


−

(
t

τ∗
p

)βp

 (2.22)
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where τ∗
p and βp are the time scale and exponent (stretching parameter) for the

p-th mode. The relaxation time of a stretched exponential can be defined as

τp ≡
∫ ∞

0
exp


−

(
t

τ∗
p

)βp

 dt =

(
τ∗

p

βp

)
Γ
(

1
βp

)
(2.23)

where Γ(x) is the gamma function. Note that at the simple exponential limit,

i.e., βp → 1, the two time scales are the same τp = τ∗
p . In the reptation model,

the longest relaxation time is

τp,rept =
N2b2

p2
ζ

π2kBT
N
Ne

(2.24)

2.4 Results

2.4.1 MSD

We show a representative monomeric MSD curve for our N=500 system in

fig. 2.3. Variation in the curve slope is clearly distinguishable with transitions

identified at approximately 3, 2.8× 103, 5.5× 105, and 4.5× 106 TUs correspond-

ing to τ0, τe, τR, and τd respectively. We now describe the procedure of precisely

identifying these transition time scales. Our multi-step approach is as follows:

1. We divide the MSD curve into large blocks by visual inspection as shown

in fig. 2.3. Each individual block is large enough that it would contain the

scaling power of interest and possibly overlap with a neighboring scaling

power.
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FIGURE 2.3: Mean square displacement of internal monomers
g1(t) of N = 500. The vertical lines are chosen based on visual
inspection and indicate the region over which the initial regres-
sion is carried out.

2. We perform a block-wise curve fitting with overlapping blocks using a se-

lect number of points over the entire block size. The number of data points

selected for the regression is large and the obtained slope will be smeared

due to the size. However, a plot of the power law exponent against time

would indicate the time regime where the slope falls onto the expected

scaling-law exponent. By overlapping blocks, we mean that we perform

regression on elements 1 – 100, 5 – 105, 10 – 110, . . . 900 – 1000. The main

goal here is to roughly identify the region where the slope may lie.

3. We then zero in into the time regime identified in step 2 above and use

a fewer number of data points for the regression – five data points. This

time, the blocks do not overlap as in step 2 above. This ideally results in a

plateau that indicates the start and end points of the scaling law.
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4. We carry out another regression using only the start and end points iden-

tified in step 3 and force the regression to take the intended slope.

5. We repeat steps 1 – 4 for all the power laws we want to determine. The

fitting lines are extended such that they intersect. This intersection point

signifies the timescale of interest.

Starting with the first power law scaling t1, fig. 2.4a shows the results of a

block-wise curve fitting with overlapping blocks – i.e. (steps 1 & 2) on g1(t)

for N = 500. Here the number of points over which the regression was done

is 50. The number was chosen because of the relatively short time between this

power law regime and the next. We observe that the time over which the t1 scal-

ing was observed was somewhere between ∼ 0.2 and 0.4. We then zoom into

this result by carrying out a non-overlapping regression (step 3) over a smaller

number of data points (5 in this case) as shown in fig. 2.4b. The start and end

points for the t1 scaling is at t = 0.3 and t = 0.8 respectively. Using these values,

we then carry out another regression and extended the fitting lines to intersect

with the neighboring fitting lines (steps 4 and 5). Figure 2.4c and Figure 2.4e

also show the results of a block-wise curve fitting with overlapping blocks us-

ing 100 data points for the same N = 500 chain (Step 1 & 2) for the first t1/2 and

t1/4 scaling. This results in an apparent plateau at time (1.5 × 101 – 3.0 × 101)

in fig. 2.4c. This further decreased to a plateau at 0.525 and briefly at 0.5 before

falling off. Since we are interested in the 0.5 scaling, we zoom into the time

region between 3.5 × 101 and 4.0 × 101 and do a non-overlapping regression in

these time regime (Step 3). This is done since there is a huge correlation between

successive data points in the previous step. The results are shown in fig. 2.4d.
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FIGURE 2.4: Scaling law exponents of the monomer mean square
displacement g1(t) plotted against time for N = 500 [(a), (c), and
(e) are obtained from large blocks to determine the ranges for the
1.0, 0.5, and 0.25 scaling exponents respectively, (b), (d), and (f) are
the more refined plots for exponents obtained by using smaller
blocks for the regression]. The horizontal lines are included as a
guide to the eye to indicate the scaling law.
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FIGURE 2.5: Scaling law exponents of the monomer mean square
displacement g1(t) plotted against time for N = 500 [(g) and (i)
are obtained from large blocks to determine the ranges for the 0.5,
and 1.0 scaling exponents respectively, (h) and (j) are the more re-
fined plots for exponents obtained by using smaller blocks for the
regression].
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The 0.5 scaling is now more clearly defined. Some minor fluctuations are to be

expected in the values. The 0.5 scaling then begins to taper off at later times.

The start and end points for the actual regression are t = 38.71 and t = 39.0.

Figure 2.4e similarly shows the results for the 0.25 scaling where there are more

peaks and dips in the results. The 0.25 scaling is a direct prediction of the rep-

tation model where the chain is only allowed to move along the contour path

of the tube due to the topological restrictions imposed by the rest of the ma-

trix chains. The minimum dip at 0.25 occurs over a rather short time range

because of the relatively short time the chain spends in the tube constriction be-

fore increasing to the Rouse scaling of 0.5. The more refined scaling is shown in

fig. 2.4e where we clearly observe the 0.25 scaling with minor fluctuations. We

use t = 108200 and t = 108800 as the start and end points for the regression and

force the 0.25 slope through these points. Finally, fig. 2.5a and fig. 2.5c show the

block-wise curve fitting with overlapping blocks for the later t1/2 and t1 scaling

where the expected plateaus are more pronounced. Figure 2.5b and fig. 2.5d

show the refined results. The start and end points used for the regression are

t = 1292200 and t = 2890300 for the 0.5 slope. For the final 1.0 slope, we used

t = 5734600 and t = 5838100 for the regression.

We repeat the process for the other time scales and show the final results of

the intersection of the different scaling laws in fig. 2.6 for the chains N = 200,

N = 350, and N = 500. As expected, we observe the expected t1 scaling at early

times, a transition to t1/2 which describes the Rouse dynamics of the strand

between entanglements, then a more restricted t1/4 scaling. For the N = 200

chain however, we were also unable to see the t1/4 scaling but t0.35. The later
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TABLE 2.1: Time for the intersection of the different fitting lines
to the power regimes extracted from the pure N = 200, N = 350,
N = 500 melt MSD curve.

N t∗0 t∗e t∗R t∗d
200 3.23 1.28 × 103 5.05 × 104 3.86 × 105

350 3.20 3.43 × 103 1.66 × 105 1.74 × 106

500 3.31 3.14 × 103 5.88 × 105 4.36 × 106

TABLE 2.2: The characteristic times τ0, τe, τR, and τd for the pure
N = 200, N = 350, N = 500 melt MSD curve.

N τ0 τe τR τd
200 1.03 3.67 × 103 1.61 × 104 7.82 × 104

350 1.02 9.83 × 103 5.28 × 104 3.53 × 105

500 1.05 9.00 × 103 1.87 × 105 8.84 × 105

t1/2 and t1 scaling are also clearly shown. The results of the intersection and

the corresponding characteristic relaxation times for all the chains studied are

given in Table 2.1 and table 2.2 respectively.

Since τe = τ0Ne
2, τR = τ0N2, and τd = τ0N3/3Ne, the calculation of Ne can

be done using the ratio of any two of these relaxation times.

N′
e = (

τe

τ0
)1/2 ≡ 3(

t∗e
t∗0
)1/2 (2.25)

TABLE 2.3: Ne calculated from the different equations of MSD
given in eq. (2.25)–eq. (2.27) and from RMA

N N′
e = ( τe

τ0
)1/2 N′′

e = N( τe
τR
)1/2 N′′′

e = 3N( τR
τd
) NR

e = 3N τp,Rouse
τp,rept

200 58 96 123 236
350 98 151 157 203
500 92 110 318 213
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N′′
e = N(

τe

τR
)1/2 ≡ 3N(

t∗e
tR∗

)1/2 (2.26)

N′′′
e = 3N

τR

τd
≡ 3πN

2
(

tR∗
td∗

) (2.27)

Using eq. (2.25), eq. (2.26), and eq. (2.27), Ne is 92, 110, and 318 respectively for

FIGURE 2.6: Mean square displacement of internal monomers
g1(t) of chains N = 200, 350 and 500. The three curves overlap
until t ∼ O(104) before they separate. Vertical offsets have been
added to the N = 200 and N = 350 for clarity.

N = 500. While N′
e and N′′

e are close (a factor difference of ∼ 1.2), the value

obtained from eq. (2.27) represents a two-fold increase from that obtained using

eq. (2.25). The most refined estimate obtained from PPA of flexible chains using

the standard bead model-spring model is 85 ± 7,6,38 which is the same order of

magnitude as that obtained using eq. (2.25). The difference between N′′′
e and

the other values could be due to insufficient statistics at the long-time regime.
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Other authors11,12 have however ascribed the difference between N′
e and N′′

e to

the dilation of the tube. In their calculation of Ne for semi-flexible KG chains

FIGURE 2.7: Mean square displacement of the center of mass of the
chains g31(t) of chains N = 200, 350, and 500. The intermediate
scaling shows a power law of t∼0.6.

with N = 200 using values from the first (g1(t) ∝ t1/2 and g1(t) ∝ t1/4) and

second crossover points (g1(t) ∝ t1/4 and g1(t) ∝ t1/2), Zhou et al.11 reported

an increase of ∼ 2 between N′
e and N′′

e values. For the same semi-flexible model

but with a longer chain length of N = 350, Wang et al.12 obtained an increase of

∼ 1.5. As far as we know, Ne calculation using τR and τd (corresponding to N′′′
e )

for fully flexible chains has not been reported in the literature. This is perhaps

due to the long time required to get to this regime in simulations.

The MSD of the center of mass of the chains is shown in fig. 2.7. At the early

and later times, there is a clear t1.0 scaling. However, we observed a t0.6 scaling

in the intermediate time regime around t ∼ O(104) instead of the t0.5 predicted
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FIGURE 2.8: Scaling law exponents for center of mass mean square
displacement (g3(t) plotted against time for N = 500 [(a) is ob-
tained from large blocks to determine the ranges for the 0.5 scaling
exponents (b)is the more refined plots for the exponents obtained
by using smaller blocks for the regression]. The horizontal lines
are included as a guide to the eye to indicate the scaling law.

by the reptation theory. Figure 2.8a and fig. 2.8b show the coarse and refined

slopes of g3(t). Consequently, using the g3(t) for extracting the timescales may

introduce some ambiguities in the results.

2.4.2 RMA

Dependence of relaxation time of individual Rouse modes τp,rept, as calculated

from eq. (2.23), on the segment size N/p is shown in fig. 2.9. Rouse model pre-

dicts (eq. (2.21)) τp/(N/p)2 to be constant for all modes. However, it has been

found that Rouse prediction is accurate for N/p ≳ 5 which is indeed observed

in our simulation. Departure from the plateau is found at smaller scales (N/p ≲

5), where the relaxation times of all chain lengths overlap. Entanglement causes

a sudden slowdown in the dynamics, which shows as a surge in τp/(N/p)2

starting at N/p ∼ O(10). At the long-segment (small-p) limit, another, much
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higher, plateau is reached. This conforms with the tube model prediction1 of

eq. (2.24)

τp,rept ∼
(

N
Ne

)(
N
p

)2

.

A raised right-end plateau is also discernible in the N = 200 and N = 350 case.

For the N = 500 case, we observe some fluctuations in the expected plateau at

the right end. We extract Ne from the ratio of the 2 plateaus i.e. Equation (2.21)

FIGURE 2.9: Rouse mode analysis with stretched exponential fit-
ting – stretching parameter βp of N = 200, 350, and 500.

to Equation (2.24).

NR
e = 3N

τp,Rouse

τp,rept
(2.28)
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For N = 200, 350, and 500, NR
e = 236, 203, and 213 respectively.The results are

included in table 2.3. The results for N = 200 suggests that the entanglement

strand is at the same order of the chain length. For N = 350 however, the result

is a factor of ∼ 2.1, 1.34 and 1.29 higher than the prediction for N′
e, N′′

e , N′′′
e from

the MSD analysis. Similarly, for N = 500, however, NR
e exceeds N′

e and N′′
e by

a factor of 2.3 and 1.95. There is some level of agreement between NR
e and N′′′

e .

This is not too surprising because both methods rely on the relaxation time at

the long time limit. For a more accurate comparison of these methods, a much

longer chain, far greater than the entanglement length would need to be used.

2.5 Discussion

There have been several molecular dynamics studies reporting the different

power law regimes2–4,7,8,12,34 described in section 2.3.1 as a validation of the

reptation picture of polymer dynamics. The transition times between the differ-

ent timescales are determined by a power-law fit of the simulation data which

is very susceptible to the number of data points selected for the fitting. There is

also the latent dilemma of whether the characteristic entanglement time scaling

of t1/4 can be clearly observed. For the regime between τe and τR, Kopf et al.34

reported a transition of t0.46 to t0.37 for fully flexible KG chains with N = 150.

For other studies, the scaling reported is usually a value that puts the expected

t1/4 scaling within the uncertainty limits. Departure from this exponent is nor-

mally rationalized as due to the finite chain length studied and the short length

of the t1/4 scaling which is not necessarily larger than the crossover regions with

neighboring regimes (where smooth transitions between slopes are observed).
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There is also a wide variability in the reported characteristic timescales. For ex-

ample, using a fully flexible KG model and a chain length N = 200, Kremer et

al.3 reported τe = 1800 and a power law exponent of 0.28 ± 0.03 in that regime

which is within the expected 0.25 limit. For longer chains of N = 700 and

10000 of the same KG model, Pütz et al.4 clearly observed the t1/4 scaling but

reported τe = 1420 and 1100 respectively for both chains. Similarly, using the

same fully flexible KG chain model but a chain length N = 1000, Wang et al.7

results showed a clear t1/4 scaling but a τe ≈ 2950. This clearly demonstrates

the lack of robustness inherent in the MSD approach.

Regression produces a considerable statistical error during the determina-

tion of these characteristic time scales. In particular, the calculated values are

sensitive to the start and end point included in the regression, both of which are

chosen somewhat arbitrarily. Here, we have described a multi-step approach

for the MSD method that attempts to standardize the regression protocol. How-

ever, as shown in the previous sections our results are not conclusive yet. For

N′
e the value of 98 and 92 obtained from N = 350 and 500 are within the same

order of magnitude. However, the values are about a factor of 2 larger than that

obtained from N = 200. N′′
e are much closer in values with a ∼ 1.5-factor dif-

ference between the shortest (N= 200) and longest chain (N=500). On the other

hand, N′′′
e showed the most variance, with N = 200 and N = 500 differing

by a factor of ∼ 2.5. This is a major drawback as the values should converge

asymptotically to a value in an ideal scenario. Given that the t0.25 scaling is not

observed in the N = 200 case, this could be a possible extenuating reason.
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Although we have attempted a procedure for the reliable and repeatable ex-

traction of these timescales, some lingering questions remain. There is a wide

variability in the Ne values (ranging from 58 to 318) we have obtained using

the different characteristic timescales. There are several factors that can affect

the outcomes of the extracted timescales. Firstly, the finite chain length used for

the determination. By our Ne estimates, the number of entanglements for our

longest chain N = 500 would be ∼ 9 at best and ∼ 1 using Ne = 318. Even

for the longest chain we have simulated N = 500, the duration of the t1/4 scal-

ing is extremely short, indicating that the chains we have used are only weakly

or marginally entangled. As such the entanglement effects may not be strong

enough to ensure consistent values. A validation of our approach would require

much longer chains.

Furthermore, the pre-factors used in the tube model have not been rigorously

determined although they have been widely used. They rest on the premise that

the tube is Gaussian and that the short time monomer motion and the segmen-

tal motion within the tube are Rouse-like.1,4 However, our work26 revealed a

departure from Rouse dynamics at short length and time scales. This makes

comparison using the different timescales rather iffy. More generally, the sam-

pling density and the block size used for the regression are other factors that

could introduce variance.

The RMA values are more consistent. For all the chains we have studied,

Ne has the same order of magnitude. The difficulties associated with the MSD

approach – including regression uncertainties, are easily sidestepped. However,

there is a dip in the τp/(N/p)2 vs N/p for the N=500 chain for reasons unclear
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at this time. Compared to the Ne estimates of 85 in the literature,2,6 the RMA

values are much higher. The RMA values uses characteristic time at long times

(whole chain relaxation) and intermediate times (Rouse time) suggesting that,

perhaps the tube’s diameter is not constant across these different timescales.

Here as well, longer chains would be needed to validate this approach.

2.6 Conclusions

Using a fully flexible KG model, we have studied and compared two methods

for determining the entanglement length Ne – the mean square displacement

(MSD) and Rouse mode analysis (RMA) methods. The chain lengths studied

were N = 200, 350, and 500. For the MSD method, we developed a protocol

for fitting the lines to the MSD of the internal monomers g1(t) curve since the

values obtained depend greatly on the regression procedure. The intersection

of the fitting lines to the different dynamical regime gives times that are closely

related to the characteristic relaxation times of τ0, τe, τR, and τd. These are time

scales of different stages of stress relaxation process of entangled chains. We

subsequently used these values to calculate Ne. The Ne values obtained depend

on the pair of characteristic times (τ0 & τe, τe & τR, and τR & τd) used, with

the τR & τd times giving high Ne values compared to the other two pairs. We

further calculated τR and τd using RMA. The RMA offers a more robust and less

sensitive method for calculating Ne. While there are some numerical differences

in the MSD, we found a remarkable consistency in the RMA approach for all the

chains we have studied.
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Chapter 3

Methods for calculating linear

viscoelastic properties

The theme of this thesis is on the dynamics and linear viscoelasticity of pure

polymers and plasticized polymers. The computational calculation of the lin-

ear viscoelastic (LVE) properties of polymers is very expensive due to the long

relaxation times associated with polymers. In this chapter, we focus on three

classical methods for determining the linear viscoelasticity of polymer melts

in molecular dynamics simulations; equilibrium molecular dynamics (EMD),

Non-EMD, and Rouse mode analysis, with emphasis on the computational re-

source requirement and discuss the challenges inherent in the application of

these methods. The length of the polymer chains we have used ranged from

unentangled to entangled polymers. We compared the results from the three

methods. We find that the uncertainty from these methods are comparable.

I was responsible for the setting up the model, carrying out all the simula-

tions, analyzing the data, and the preparation of the initial draft. The research
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was conducted under the supervision of Li Xi and Shiping Zhu who also pro-

vided feedback on the draft. This chapter has been submitted for publication.
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Equilibrium and non-equilibrium molecular dynamics approaches for the linear
viscoelasticity of polymer melts

Oluseye Adeyemi,1 Shiping Zhu (朱世平),1 and Li Xi (奚力)1, 2, a)
1)Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7,
Canada
2)School of Computational Science and Engineering, McMaster University, Hamilton, Ontario L8S 4K1,
Canada

Viscoelastic properties of polymer melts are particularly challenging to compute due to the intrinsic stress
fluctuations in molecular dynamics (MD). We compared equilibrium and non-equilibrium MD approaches
for extracting the storage (G′) and loss moduli (G′′) over a wide frequency range from a bead-spring chain
model, in both unentangled and entangled regimes. We found that, with properly chosen data processing and
noise reduction procedures, different methods render quantitatively equivalent results. In equilibrium MD
(EMD), applying the Green-Kubo relation with a multi-tau correlator method for noise filtering generates
smooth stress relaxation modulus profiles, from which accurate G′ and G′′ can be obtained. For unentangled
chains, combining the Rouse model with a short-time correction provides a convenient option that circumvents
the stress fluctuation challenge altogether. For non-equilibrium MD (NEMD), we found that combining a
stress pre-averaging treatment with discrete Fourier transform analysis reliably computes G′ and G′′ with
much shorter simulation length than previously reported. Comparing the efficiency and statistical accuracy of
these methods, we concluded that EMD is both reliable and efficient, and is suitable when the whole spectrum
of linear viscoelastic properties is desired, whereas NEMD offers flexibility when only some frequency ranges
are of interest.

I. INTRODUCTION

The linear viscoelastic (LVE) properties of polymers
provide unique insights into their structure and also gov-
ern the flow behavior during processing. These prop-
erties are usually measured by a small displacement of
the polymer molecules from their equilibrium positions,
thereby ensuring that the response is still in the lin-
ear regime. Experimentally, LVE properties are deter-
mined by a small amplitude oscillatory shear (SAOS)
experiment1,2, which provides the storage (G′) and loss
(G′′) moduli of the material over a frequency spectrum.
The accessible frequency ranges are either limited by the
equipment capabilities or the degradation of the poly-
mers at high shear rates or temperatures. The high-shear
rate challenge is typically mitigated by the temperature
superposition technique.

Owing to the range of time and length scales in-
volved, computing the viscoelastic properties of polymers
in molecular dynamics (MD) simulations still remains a
formidable task. Indeed, for long-chain polymers, it re-
mains unrealistic to capture the whole spectrum of lin-
ear viscoelasticity using fully atomistic molecular models.
Even for highly coarse-grained models, accurate determi-
nation of viscoelastic properties in MD must still over-
come the challenges of long relaxation times and strong
stress fluctuations. In particular, for highly-entangled
polymers, MD must be combined with high-level poly-
mer dynamics models for quantitative prediction3.

a)coresponding author, E-mail: xili@mcmaster.ca; Web:
https://www.xiresearch.org

Regardless of the model being used, extraction of vis-
coelastic properties from MD simulations is an essential
step. This can be achieved with either equilibrium or
non-equilibrium MD (EMD and NEMD) simulation. The
EMD approach samples the spontaneous stress fluctua-
tions in the thermodynamic ensemble of the system. The
shear stress relaxation modulus G(t), from which linear
viscoelastic material functions are calculated, is related
to the time autocorrelation function (TACF) of the stress
tensor through the Green-Kubo (GK) relation4. The
NEMD approach, on the other hand, models the flow
condition of rheological measurement from which the cor-
responding material function is directly computed5.
Take shear viscosity, which is the most computed rhe-

ological property in the literature, for example. Since
the EMD approach simulates equilibrium conditions, it
can only provide the zero-shear viscosity as a temporal
integral of the relaxation modulus

η0 ≡ lim
γ̇→0

η =

∫ ∞

0

G(t)dt (1)

(where γ̇ is the shear rate). By constrast, the NEMD
approach simulates the steady shear flow condition and
calculates the viscosity by dividing the steady-state shear
stress by the shear rate. For simple liquids such as
the Lennard-Jones (LJ) fluid, shear viscosity values from
EMD and NEMD approaches agree well6,7. Although
there was a general perception that the EMD approach
is prone to large statistical uncertainty due to intense
stress fluctuations in molecular systems and difficult con-
vergence of the integral in eq. (1), it has been shown that
reliable results are attainable with careful selection of
the integration limits and data processing procedure7,8.
For polymers, viscosity is in general a function of shear
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rate, but a Newtonian plateau exists at the small γ̇ limit.
Extrapolation of the η(γ̇) profile from NEMD to the
γ̇ = 0 limit again agrees well with the EMD value from
eq. (1)9–13.

The focus of this study is on the full spectrum of linear
viscoelastic properties as reflected in the frequency (ω)-
dependent G′(ω) and G′′(ω) profiles. Compared with
shear viscosity, the computational cost for obtaining G′

and G′′ is significantly higher (in both EMD and NEMD)
as viscoelastic responses at a wide range of frequencies
are now required. The EMD approach again relies on
the GK relation and was first reported by Sen et al. 12 ,
followed by a number of later developments14,15. Many
more studies reported the EMD results of G(t) but did
not convert it to G′(ω) and G′′(ω)16–20. The NEMD
approach simulates the sinusoidal oscillatory shear flow
(modeling the SAOS condition) and obtains G′ and G′′

from the time-dependent shear stress signal. Those ef-
forts date back to earlier studies by Cifre et al. 21 and
Vladkov and Barrat 13 , and NEMD results of G′ and G′′

were also reported more recently by Karim et al. 22 .

Information on the comparsion between these two ap-
proaches is rather limited. For the bead-spring chain or
Kremer-Grest (KG) model23 of very short chain length
(N = 10 and 20), Vladkov and Barrat 13 conducted a
comparative study between EMD and NEMD approaches
for polymer viscoelasticity. Direct comparison between
the GK and NEMD approaches, however, was only re-
ported for the zero-shear viscosity. The study did not
report the G′ and G′′ results from the GK relation be-
cause it was not able to extract statistically meaning-
ful results buried under strong noises. It instead pro-
posed a corrected Rouse mode analysis (cRMA) approach
which brings in MD data to fill in the short-time dynam-
ics missing in the Rouse model. The method is funda-
mentally still an EMD approach but its viability relies
on the accuracy of the Rouse model which is designed
only for unentangled polymers. For the short chains
studied, good agreement was found between G′ and G′′

results from cRMA and NEMD. More recently, Karim
et al.22,24 compared NEMD results of G′ and G′′, for
N = 20 and 80, from several sources with the GK results
of Sen et al. 12 . Good agreement is generally found in the
frequency range tested by NEMD (typically fewer than
three decades) with discrepancy sometimes observed at
the low frequency (long-time) limit where statistical un-
certainty is highest in both methods.

The purpose of this study is to determine which
method is better for the accurate calculation of G′ and
G′′ over a wide frequency range. Many researchers seem
to prefer NEMD because of the general belief that EMD
is more affected by strong stress fluctuations. Indeed, the
large noise-to-signal ratio in the long-time tail of G(t) ob-
tained from the GK relation has sometimes caused erro-
neous conclusions in previous studies3. It takes extremely
long EMD simulations to effectively reduce the statisti-
cal uncertainty in G(t). For shear viscosity calculation,
it is widely accepted that NEMD requires substantially

less computational cost for satisfactory accuracy3,6,7,25.
We note that this advantage does not straightforwardly
translate to G′(ω) and G′′(ω) calculation because NEMD
must be separately performed for each frequency level of
interest, while the EMD approach allows the calculation
of the whole spectrum with one long simulation run.
In this study, we directly compare the accuracy and

efficiency of EMD and NEMD approaches for computing
G′(ω) and G′′(ω) profiles. This is the first time these
two approaches are compared with identical molecular
models, which will allow us to identify the discrepan-
cies, if any, that are attributed solely to the difference
in the methodology for computing viscoelastic proper-
ties. In addition to evaluating the quantitative equiva-
lence between their results, efficiency, in terms of which
method provides statistically more accurate results with
limited computational resources, is also a key considera-
tion. For EMD, our primary focus is on the GK approach,
but we also include the cRMA approach for complete-
ness. Methods are evaluated in monodisperse melts of
KG chains with N = 25 to 350, covering both unentan-
gled and (moderately) entangled regimes. To our knowl-
edge, NEMD calculation ofG′ andG′′ has not been previ-
ously reported for entangled polymers. Both categories
of methods are strongly influenced by statistical errors
due to stress fluctuations in MD simulation. We have ex-
perimented with various noise reduction techniques and
present the best procedure that we find for each method.
This allows us to compare the methods on an equal foot-
ing – i.e., each method is evaluated at its optimal settings.
Therefore, in addition to guiding the choice of method for
computing viscoelastic properties, the study also aims to
demonstrate the best practice in each approach.

II. METHODS

A. Simulation Details

We model the polymer chains using the classical
Kremer-Grest (KG) bead-spring chain model23. Consec-
utive beads in a polymer chain interact with the finitely
extensible non-linear elastic (FENE) springs potential

UFENE(r) = −1

2
KR0

2ln

[
1−

(
r

R0

)2
]

+ 4ϵ

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
(2)

where r represents the distance between the beads, and
σ and ϵ are the LJ length and energy parameters. The
first term of the equation models an attractive poten-
tial due to the entropic interaction between the polymer
segments, which diverges at a maximum bond length
R0 = 1.5σ. The second term represents the repulsive
force between beads and is only included at distances
r ≤ 2

1
6σ. The spring force K = 30ϵ/σ2 allows the use of
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a large integration timestep and also prevents the bonds
from cutting through each other. The interaction po-
tential between the non-bonded beads is modeled by the
standard Lennard Jones (LJ) potential

ULJ(r) = 4ϵ

((σ
r

)12
−
(σ
r

)6)
(3)

for which a cutoff of 2.5σ is used and a vertical offset is
added to ensure continuity at the cutoff. All the results
are reported in reduced LJ units and length, energy, time,
and temperature values are scaled by, σ, ϵ, τ =

√
mσ2/ϵ,

and ϵ/kB (kB is the Boltzmann constant) respectively.
The chain lengths studied range from the unentangled
N = 25 and 50 to marginally entangled N = 100 and
moderately entangled N = 350 cases20. The N = 350
case contains a total of 56000 beads in the simulation
box while all other cases contain 50000 beads in each
simulation box. All simulations were performed at a con-
stant bead density of 0.85 σ−3. The temperature of the
simulations was maintained at 1ϵ/kB with Nosé-Hoover
chains. All the simulations were carried out using the
Large-scale Atomic/Molecular Massively Parallel Simu-
lator (LAMMPS) package26. The equation of motion was
integrated using the velocity Verlet algorithm with a time
step of ∆t = 0.01 (in LJ time units or TUs).

Initial configurations were generated by randomly
placing the specified number and types of chains in a
cell following a self-avoiding walk conformation statistics.
The structures were further equilibrated using a modified
dissipative particle dynamics (DPD) push-off step27 dur-
ing which a soft repulsive potential

UDPD(r) =





ADPD

2
rc(1−

r

rc
), (r < rc)

0, (r ≥ rc)

(4)

was used to replace the LJ potential (eq. (3)) between the
non-bonded beads. DPD equilibration was performed at
T = 1.0 and used a cut-off distance rc = 1.0. The DPD
potential was initially kept low at ADPD = 25. At the be-
ginning, we restricted the maximum distance that each
bead can move in a single time step and gradually in-
creased it from 0.001 to 0.1 over 15TUs. After the restric-
tion was removed, we further ran the DPD simulation for
another 100TUs, following which ADPD was gradually
ramped up to 100 over 5TUs. Finally, we replaced the
DPD potential with the standard LJ potential (eq. (3))
and performed MD simulation in an NVT ensemble for
another 500TUs during which a random velocity distri-
bution was assigned to all the beads every 0.5TUs. Mean
square internal displacement of the chains, which is a sen-
sitive indicator of unrelaxed chain conformations28, was
examined to ensure the convergence of the equilibration
procedure – see Adeyemi et al. 20 .

B. Equilibrium Molecular Dynamics (EMD) or
Green-Kubo (GK) Approach

The GK relation relates the shear stress relaxation
modulus G(t) to the TACF of shear stress fluctuations

G(t) =
V

kBT
⟨σxy(t)σxy(0)⟩ (5)

where V is the volume of the system, T is the temper-
ature and σxy is an off-diagonal stress component. The
major challenge in using this approach is the intense fluc-
tuations of the stress TACF which is particularly severe
at the terminal (large t) regime. One strategy for the re-
duction of fluctuation is by pre-filtering the stress signal
with moving average before the TACF is calculated18,29.
Alternatively, moving average may be applied directly
to the G(t) profile12. The window size for moving aver-
age must be carefully selected to prevent the data from
being overly smeared. Lee and Kremer 15 found that
G(t) calculated from the filtered σxy(t) signal is artifi-
cially reduced at the short-time end, but argued that,
with properly-chosen window size, the long-time behav-
ior of G(t) is unaffected. Nevertheless, using a fixed
window size in the moving average approach is intrinsi-
cally limited because not only are the fluctuations coming
from various frequencies, but the uncertainty in G(t) also
grows with the time lag t due to the diminishing number
of independent segments for averaging in a fixed-length
time series. For this reason, strong fluctuations at the
long-time limit of G(t) cannot be effectively tamed with
moving average15,29,30 which is often a cause of erroneous
results3.

A more delicate multi-tau correlator method, proposed
by Ramı́rez et al. 31 , was used in this study. From our
practical experience, the method generates adequately
smooth G(t) profile across nearly the whole range of time
lag except at the very long time end where the relax-
ation modulus has nearly vanished. The idea is to filter
the stress signal σxy(t) and calculate its TACF on the fly
with a multi-level hierarchical data structure. Each level
contains p data points. Level 0 stores the most recent p
points from the time series, from which TACF for time at
t = 0∆t, 1∆t · · · , (p−1)∆t, is calculated and also stored.
At level l (l ≥ 1), each data entry is the average between
m data points from level l − 1 and the most recent p
block averages (each covers ml data points in the origi-
nal time series) are stored. Correspondingly, the TACF
stored at each level also covers longer time lag than the
previous one. Effectively, this method filters σxy(t) with
progressively larger window size for the TACF calcula-
tion at longer time lags. We used m = 2 and p = 16 as
recommended by Ramı́rez et al. 31 .

The equivalence between shear stress components of
different directions in an isotropic fluid is also leveraged
to reduce statistical error. Average over TACFs of those
equivalent components is expected to have lower uncer-
tainty than that of a single component σxy

32. The par-
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ticular form used in this study

G(t) =
V

5kBT
[⟨σxy(t)σxy(0)⟩+ ⟨σyz(t)σyz(0)⟩

+ ⟨σzx(t)σzx(0)⟩]

+
V

30kBT
[⟨Nxy(t)Nxy(0)⟩+ ⟨Nxz(t)Nxz(0)⟩

+ ⟨Nyz(t)Nyz(0)⟩] (6)

where

Nαβ = σαα − σββ (7)

(α, β = x, y, z) is the same as that used in Ramı́rez
et al. 31 .

Combining these measures allowed us to produce an
adequately smooth G(t) for the computation of the dy-
namic moduli G′ and G′′ through

G′ = ω

∫ ∞

0

G(t) sin(ωt)dt (8)

and

G′′ = ω

∫ ∞

0

G(t) cos(ωt)dt. (9)

Numerical evaluation of eq. (8) and eq. (9) is not as
straightforward as it may appear, because the multi-tau
correlator method returns G(t) on a non-uniform grid:
the spacing between consecutive points increases with
time lag t. Likhtman et al. 14 fitted the G(t) profile to a
series of Maxwell modes, from which the integrals were
evaluated analytically. The Maxwell modes approximate
G(t) with the superposition of exponential decay func-
tions, which thus cannot capture oscillations in the pro-
file. We used a different approach and approximated G(t)
with piecewise linear functions and integrated each piece
analytically. With sufficient resolution, this treatment
retains all the variations in the G(t) profile while also
avoiding nonlinear regression. Details of our method are
given in Appendix A.

As listed in table I, multiple separate EMD simula-
tion runs were performed for each case and the average
of those independent runs was reported. The duration
of each independent simulation run matches that of the
corresponding chain length in Likhtman et al. 14

The EMD approach is particularly appealing because
one simulation run contains the information for the whole
LVE profile. Meanwhile, if information is desired outside
the linear regime, NEMD would be the only viable ap-
proach.

C. Non-Equilibrium Molecular Dynamics (NEMD)
Approach

The NEMD technique measures the system’s unsteady
response to an induced perturbation. Unlike the EMD

TABLE I: EMD simulation parameters, including the
duration of each independent simulation and number of
independent simulations used. The maximum stress
relaxation time τmax is defined as the time when the

obtained G(t) (fig. 1) decays to 10−3.

N Simulation Duration (TUs) Num. Runs τmax (TUs)
25 5× 105 5 1.065× 103

50 5× 105 5 2.949× 103

100 1× 106 5 1.835× 104

350 3× 106 3 4.614× 105

method, this approach mimics a real experimental setup
by imposing the corresponding flow condition on the sim-
ulation box. In the determination of G′ and G′′, the
deformation is SAOS. The SLLOD equations of motion
were used, which imposes a time-dependent velocity pro-
file across the domain33. The imposed velocity corre-
sponds to a sinusoidal strain of

γ(ω) = γ0 sin(ωt) (10)

where γ0 is the amplitude of the oscillation and ω is the
angular frequency. At the start of the simulation, an ini-
tial mean velocity profile that matches the instantaneous
box deformation rate of the moment is imposed on all
beads for the quick convergence of the flow condition. In
general, for a viscoelastic sample, the stress response σ(t)
oscillates with the same frequency as the strain input

σ(t) = σ0 sin(ωt+ δ). (11)

There is, however, a phase angle shift δ which varies be-
tween 0 and π/2 (purely elastic and purely viscous limits,
respectively). The stress can be further decomposed into
two orthogonal functions

σ(t) = γ0[G
′(ω) sin(ωt) +G′′(ω) cos(ωt)] (12)

such that one of them is in sync with the imposed strain
(eq. (10)) and the other has a π/2 phase lead. Equa-
tion (12) above is easily seen from the trigonometric ex-
pansion of eq. (11) using

sin(ωt+ δ) = cos δ sin(ωt) + sin δ cos(ωt). (13)

Comparing eq. (11), eq. (12), and eq. (13), we get

G′ =
σ0

γ0
cos δ (14)

G′′ =
σ0

γ0
sin δ. (15)

Data processing for the NEMD method can also
present significant challenges as the obtained σ(t) time
series is again loaded with strong noises. Previous studies
often used least-square fitting of the NEMD stress out-
put to obtain G′ and G′′ in eq. (12)21,34. In Appendix B,
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we show that, in the absence of noise, a simple discrete
Fourier transform (DFT) of the sinusoidal time series

s(t) ≡ σ(t)

γ0
(16)

only has two non-zero modes

ŝ±kω
=

1

2
(G′′ ∓ iG′) (17)

where ·̂ denotes Fourier modes and kω is the wavenumber
corresponding to the imposed frequency ω: i.e.,

kω = Ncycle (18)

is the number of complete oscillatory cycles in the simula-
tion run. Stress fluctuations from simulation will show up
in a wide range of frequencies, but the signal at the ±kω
modes will still be the dominant ones and their imaginary
and real parts are related to G′ and G′′, respectively. In
practice, we additionally performed a noise-filtering step
by pre-averaging the σ(t) signal before the DFT analysis.
The σ(t) time series was divided into small blocks, each of
which covers 1/100 of an oscillatory cycle. The average of
each block was used to compute s(t) – the input of DFT.
Since the block size and oscillatory cycle differ by two
orders of magnitude, this step is designed to smoothen
the signal without interfering with the primary Fourier
modes. Applying DFT directly on the NEMD stress out-
put without pre-averaging, according to our tests, will
give nearly identical G′ and G′′ at high frequencies. At
low frequencies, however, its results contain strong, seem-
ingly random, statistical errors.

We performed NEMD for 50 frequency levels span-
ning four decades of ω (from 10−4 to 1). Simulation at
each frequency level contains Ncycle = 25 complete cy-
cles. In total, 9.16 × 108 MD time steps were used for
the entire spectrum. The number of time steps spent
at each frequency level increases ∝ 1/ω. For compar-
ison, Ncycle = 100 to 200 was often used in previous
studies21,34. As we will show in this study, with the noise
reduction procedure described above, Ncycle = 25 was
sufficient to generate statistically robust results. Short-
ening of individual NEMD runs partially contributed to
our ability to cover a wider frequency range and longer
chains than previous studies (which did not go over three
decades and did not attempt entangled chains).

Finally, as shown in table I, each EMD run of the N =
350 long-chain case costs 3 × 108 time steps. The total
cost of three independent EMD runs at N = 350, which
were used in obtaining its G(t), is comparable to the
combined cost of all NEMD runs at different frequencies
(one run at each frequency). This arrangement allows
us to directly compare these two methods at the same
computational cost for this particular chain length.

D. Corrected Rouse Mode Analysis (cRMA)

The Rouse model describes the dynamics of an unen-
tangled polymer melt without the topological constraints

imposed by other surrounding chains. It describes the re-
laxation of the polymer melt with a mean-field approach
in which effects of surrounding chains on the dynamics
of the probe chain are coarse grained as a continuous vis-
cous medium. The equations of motions for the chain
beads can be simplified by projecting the original bead
coordinates to a set of mutually orthogonal coordinates
known as the Rouse modes35,36

X⃗p ≡





√
1

N

N∑

n=1

r⃗i(t) (p = 0)

√
2

N

N∑

n=1

r⃗i(t) cos

(
(i− 1/2)pπ

N

)
(p = 1, 2, ...)

(19)

where r⃗i denotes the original bead position in Cartesian
coordinates and i and p are the indices for the beads
and Rouse modes, respectively. The p = 0 mode is pro-
portional to the center of mass coordinates of the chain.
Higher modes, 1 < p ≤ N−1, describe the internal relax-
ation of sub-chain segments of the size of N/p beads. Or-
thogonality of Rouse modes means that their relaxation
dynamics are independent from one another. Specifically,
the TACF of the p-th mode

〈
X⃗p(t)X⃗p(0)

〉
=
〈
X⃗2

p

〉
exp

(
− t

τp

)
(20)

does not depend on any other mode. Its relaxation time
scale τp is related to the relaxation time of the first mode
τ1 (same as the Rouse time τR) through τp = τ1/p

2. In
practice, τp can be obtained by fitting the TACF of the
corresponding Rouse mode from EMD to eq. (20). Once
τp is known, the G(t) can be calculated by

GRouse(t) =
νkBT

N

N∑

p=1

exp

(
−2t

τp

)
(21)

where ν is the number density of the beads.
Computation of Rouse modes from eq. (19) only re-

quires bead positions r⃗i whose fluctuations during an
EMD simulation are negligibly small when compared
with stress fluctuations. As such, obtaining G(t) from
the Rouse modes using eq. (21) is expected to produce
much lower statistical uncertainty, implying that accu-
rate results can be obtained with shorter runs. In this
study, the same EMD data set from Sec. II B was used
for computing Rouse modes.
Vladkov and Barrat 13 tested this idea and noted that,

for their very short (N = 10 and 20) chains, G′ from
RMA is very close to the NEMD results, while G′′ from
RMA is substantially lower than NEMD. This deficit was
attributed to the non-bonded interactions between beads
which are mostly excluded in the mean-field approxima-
tion of the surrounding chains. Effects of those inter-
actions are felt at time scales shorter than the internal
relaxation times of the polymer conformation τp. It is
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thus possible to extract their contributions directly from
the short-time limit of the stress TACF, where statistical
accuracy is the highest. Vladkov and Barrat 13 proposed
to fit the short time part of the G(t) profile from the GK
relation eq. (5) using

Gearly(t) = A exp

(
− t

τA

)
cos (Ωt)+B exp

(
− t

τB

)
(22)

where A, B, τA, τB , and Ω are fitting parameters.
The fullG(t) expression for the cRMA approach is then

G(t) =

{
Gearly(t) t ≤ τ∗

GRouse(t) t > τ∗
(23)

with Gearly(t) and GRouse(t) given by eq. (22) and
eq. (21), respectively. The cut-off time τ∗ = 0.44 was
empirically chosen in this study so that Gearly(t) and
GRouse(t) connect continuously. It also sets the upper
bound of the GK G(t) data used for parameterizing
eq. (22). To obtain G′ and G′′, the integrals of eq. (8) and
eq. (9) were correspondingly evaluated as summations of
two segments. The first segment integrates from t = 0 to
τ∗ using Gearly(t). For both unentangled (N = 25 and
50) cases, the obtained τA ≈ τB ≈ 0.1 are much smaller
than τ∗ – Gearly(t) is vanishingly small at t > τ∗. We
thus approximately used integration from 0 to ∞ instead
which can be evaluated analytically to give13

G′,early =
A

2

(
ω(ω +Ω)τA

2

1 + (ω +Ω)
2
τA2

+
ω(ω − Ω)τA

2

1 + (ω − Ω)
2
τA2

)

+B
ω2τB

2

1 + ω2τB2
(24)

G′′,early =
AωτA
2

(
1

1 + (ω +Ω)
2
τA2

+
1

1 + (ω − Ω)
2
τA2

)

+B
ωτB

1 + ω2τB2
. (25)

The second segment integrates from τ∗ to ∞ using
GRouse(t), which is evaluated numerically using the pro-
cedure of Appendix A.

III. RESULTS AND DISCUSSION

In this section, we first present the simulation outputs
and data processing for each of the EMD (GK), NEMD,
and cRMA approaches (Sec. IIIA to III C). G′ and G′′

from these approaches are then compared in Sec. IIID.
Uncertainty and computational cost considerations are
discussed in Sec. III E

A. EMD Results

The G(t) profiles from EMD using the GK relation are
shown in fig. 1. It can be seen that the hierarchical aver-
aging in the multi-tau correlator method has effectively

FIG. 1: Shear stress relaxation modulus G(t) of varying
chain length using EMD results and the GK relation.

erased noise in the G(t) for nearly the whole time range
of interest. At early times, the curves all collapse on one
another. The wild oscillations at early times come from
bond fluctuations and the curves appear broken because
negative values are not shown in the logarithmic scale.
This is followed in all cases by a t−1/2 scaling regime
as predicted by the Rouse model. The curves separate
at later times. The shorter chains (N = 25 and 50)
decay exponentially after their respective Rouse times.
For longer chains, however, the relaxation is prolonged
as a result of entanglement. Departure from the Rouse
relaxation is most visible for the longest N = 350 case.
(Departure from the t−1/2 Rouse scaling for the N = 350
case was confirmed in our earlier study20). At N = 350,
the chains are not yet deeply entangled and thus G(t)
does not develop a full-fledged stress plateau which is
not expected until N ≫ Ne

18,37.

B. NEMD Results

For a sinusoidal strain deformation that is small
enough to still be in the linear regime, it is expected
that the resulting stress is equally sinusoidal and oscil-
lates with the same frequency as the strain but with a
phase shift reflecting the viscoelasticity of the material.
The first thing to check is thus whether the resulting
stress is indeed oscillating with the same frequency. Fig-
ures 2a to 2d show the stress and strain time series for
different frequencies for the longest chain N = 350. It
can be seen that the stress indeed oscillates at the same
frequency as the strain with a notable phase lead. De-
spite the pre-averaging treatment mentioned in Sec. II C,
the resulting stress signal still contains substantial noise.
As frequency decreases, the stress magnitude is lower and
the noise-to-stress ratio is higher.
To demonstrate the effectiveness of DFT in extracting

the dominant mode for G′ and G′′, we take the lowest fre-
quency (ω = 1.2068×10−4) case in fig. 2d as an example,
where the noise level appears comparable to the ampli-
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FIG. 2: Stress-strain time series of a typical converged cycle at each frequency for N = 350 (a) ω = 1.0472 (b)
ω = 1.5325× 10−1 (c) ω = 1.9333× 10−2 (d) ω = 1.2068× 10−4 (all using γ0 = 0.1). The stress signal at each

frequency has been pre-averaged over a window size of 1/100 of the cycle.

tude of the primary oscillation. Figure 3 shows the power
spectrum of its stress time series (all 25 cycles included
in the statistics), as defined by

Pk = |c̃k|2 (26)

for the leading wavenumbers. Here, Pk is the power asso-
ciated with the k-th mode and c̃k is its complex Fourier
coefficient. Since the whole time series contains 25 cycles,
the primary mode is expected at k = 25. The power mag-
nitude at k = 25 is indeed distinctly higher than the rest
of the spectrum (despite the large noise seen in fig. 2d).
Its real and imaginary parts are used to calculate G′′ and
G′ respectively, according to eq. (17). An equally high
peak is expected at the (Nt − 25)-th mode. (Nt is the
total number of points in the time series). Its Fourier
coefficient is simply the complex conjugate of the k = 25
mode.

Data in fig. 3 come from 25 cycles with a maximum
strain amplitude γ0 = 0.1. The γ0 value was chosen
based on previous studies which reported that 0.1 falls
well within the linear regime where the complex moduli
do not depend on the strain magnitude13,21. Our chosen
Ncycle = 25 is, however, substantially lower than those

FIG. 3: Power spectrum of the stress signal for input
frequency ω = 1.2068× 10−4. The first 40 modes are

shown.

same previous studies (which used 100 to 200 cycles). To
justify this choice, we divide the whole time series into
individual cycles. Applying DFT to each cycle renders
its own G′ and G′′ values. Figure 4 shows these single-

60



8

cycle G′ and G′′ values for extended 100-cycle simulation
runs. For γ0 = 0.1, at low frequency (fig. 4a), results
from all cycles fluctuate around common mean values,
but at high frequency (fig. 4b), the results do not con-
verge statistically until a transient period is passed. The
transient period seems to depend on both frequency and
chain length. The particular case in fig. 4b shows a tran-
sient period lasting for ∼ 20 cycles but transient peri-
ods as long as ∼ 40 cycles were observed in other cases.
As such, when reporting data from these high-frequency
cases, the transient period must be discarded and the fol-
lowing 25 cycles in the converged regime should be used.

The computational overhead introduced by those extra
transient cycles is small since they only affect the least ex-
pensive, high-frequency regime. However, the fact that,
starting from the equilibrium state, it requires a num-
ber of cycles for the system to converge to steady oscil-
lation suggests that perturbation to the equilibrium is
substantial –i.e., the oscillatory shear may no longer be-
long to the linear regime. Since the linear and non-linear
regimes are separated based on the Weissenberg number
Wi ≡ τrelaxγ0ω (τrelax is the polymer relaxation time),
transition to the non-linear regime occurs at lower γ0
for higher ω. Indeed, for the same frequency and chain
length, if we reduce γ0 to 0.01 (fig. 4c), the transient
period is no longer observed. This effect of strain mag-
nitude will be further discussed below when we compare
G′ and G′′ results.

Figure 5 shows the effects of Ncycle on the normal-
ized uncertainty in the results. The uncertainty of, e.g.,
Ncycle = 10, was estimated by the standard error of
the 10 individual measurements coming from each cycle,
which was then normalized by the overall measurement
from all 10 cycles combined. There is an initial rapid de-
crease in uncertainty at the small Ncycle end but as more
cycles are included in the statistics, the marginal gain
of increasing the simulation length diminishes. Figure 5
only shows the N = 350 case but the observation is sim-
ilar for other chain lengths. In all cases, the uncertainty
becomes reasonably small for Ncycle ≥ 25. We have re-
peated the analysis with larger block size –i.e. instead
of using single cycles, we used every two or every five
cycles as an individual measurement and still arrived at
the same conclusion.

C. cRMA Results

The cRMA approach is only applicable to shorter un-
entangled chains. Figure 6 shows the TACFs of the first
3 modes for N = 25 and 50 calculated using eq. (20)
from EMD runs. The profiles are normalized with ⟨X2

p⟩
and thus all start at 1 at the t = 0 limit, which is not
shown in fig. 6 due to the logarithmic scale used. Smooth
exponential decay can be readily seen in all profiles. One
may note that the p = 1 mode of N = 25 nearly over-
laps with the p = 2 mode of N = 50. This is because
the p = 2 mode describes the relaxation of a sub-chain

FIG. 4: G’ and G” calculated from individual cycles for
N = 350: (a) γ0 = 0.1 and ω = 6.9813× 10−4; (b)

γ0 = 0.1 and ω = 1.0472; (c) γ0 = 0.01 and ω = 1.0472.

segment with half of the total chain length, which, in
the case of N = 50, happens to be 25 monomers. Fit-
ting the TACF profiles to eq. (20) yields the relaxation
times for the modes τp. For the same chain length, the
Rouse model prediction of τp = τ1/p

2 is approximately
held: e.g., for N = 50, τ1 = 2906.25, τ2 = 761.03, and
τ3 = 325.78.

The obtained τp values were used to compute the
Rouse-model prediction GRouse(t) per eq. (21) which is
then plotted in fig. 7 along with the GK result. It is
clear that the Rouse model accurately captures the GK
result for over three decades. Discrepancy is noted at
t ≳ O(104) where the stress has nearly vanished and the
GK result is laden with noise. At the short-time end
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FIG. 5: Uncertainty of (a) G′ and (b) G′′ with
increasing number of cycles included in the time series,

normalized by the estimated G′ and G′′ values
(N = 350).

FIG. 6: Relaxation of p = 1, 2, and 3 Rouse modes for
N = 25 (filled markers) and N = 50 (empty markers).
Lines represent fitted regression lines using the simple

exponential relaxation function of eq. (20).

(t ≲ O(1)), GRouse(t) is significantly lower than the GK
G(t) profile. This deficit is attributed to the the bead-
bead non-bonded interactions not fully captured by the
Rouse model and will result in an underestimate of G′′

especially at the high frequency regime13. A correction
is introduced by fitting the short-time part of G(t) to

eq. (22). The resulting Gearly(t) captures the short-time
G(t) profile well (fig. 7b) but decays quickly after t ≈ 0.4.
Calculation of G′ and G′′ in the cRMA approach com-
bines Gearly(t) and GRouse(t) according to the procedure
in Sec. IID.

D. Comparison of Methods

We turn now to the comparison of the computed G′

and G′′ profiles. We first show the results of the shorter
chains N = 25 and 50 in fig. 8a and fig. 8b. Since both
types of chains are well within the unentangled regime20,
a rubbery plateau does not exist in the G′ profile. We
further observe the Rouse scaling – G′ ∝ ω2 and G′′ ∝ ω
at the terminal (low ω) frequencies for both chains. The
G′′ values are greater than the G′ values at all frequen-
cies. For N = 25 in fig. 8a, all three methods (EMD/GK,
NEMD, cRMA) give nearly equivalent results for inter-
mediate and high frequencies (10−3 and above) for both
G′ and G′′. The agreement is equally good at the low
frequency end for G′′, but for G′, strong fluctuations are
found in both the EMD/GK and NEMD results. The
high noise-to-signal ratio is most likely due to the low
magnitude of G′ in that regime, which reflects the quick
relaxation of the N = 25 chains. For N = 50 in fig. 8b,
the results are very similar to N = 25 except that fluctu-
ations in G′ at the low-ω end appear smaller especially
in the NEMD case.

Of the three methods, cRMA is least affected by sim-
ulation noise and uncertainty. This does not come as
much of a surprise because the cRMA method is based
on particle coordinates from the EMD simulation and
avoids the intrinsically noisy stress calculation, with the
only exception of the short-time stress correlation used
in the correction term. Comparison with the EMD/GK
and NEMD results shows that cRMA also produces re-
liable results for linear viscoelastic properties. However,
its usage is limited to strictly unentangled polymers.

Unless otherwise noted, NEMD results here and be-
low used a standard strain amplitude of γ0 = 0.1, ex-
cept in the high frequency regime (ω ≥ 7.2222 × 10−2)
where γ0 = 0.01 was used. This is because the standard
γ0 = 0.1 would yield unreliable results at higher frequen-
cies. Figure 9 shows the comparison between these two
strain amplitudes in the N = 50 case as an example.
The standard γ0 = 0.1 is accurate for frequency up to
ω = 0.2244, after which unnatural kinks are found in
both profiles, with G′ and G′′ being respectively over-
and under-estimated compared with EMD results. Simi-
lar behaviors are found in all other chain lengths studied.
Reducing γ0 to 0.01 produces results that not only extend
smoothly from the γ0 = 0.1 results of lower frequency,
but also agree well with EMD results. This corroborates
our earlier discussion that for γ0 = 0.1, the flow is no
longer in the linear regime at high frequency.

Figure 10 showsG′ andG′′ for the longest chain species
N = 350 studied. Different from the shorter unentangled

62



10

FIG. 7: Relaxation modulus from the Rouse model
GRouse(t) compared with that from the Green-Kubo
relation G(t) (both using EMD data for N = 50);

Gearly(t) is a fit to the short-time part of G(t): (a) full
view; (b) enlarged view of the short-time regime.

chains in fig. 8, the entangled chains display crossovers
between the G′ and G′′ profiles. Two crossovers are ob-
served in the frequency range studied. The first cross
over at ω ∼ O(10−6) is at the same order of magnitude
as 1/τd – the disentanglement time τd = 1.74 × 106 was
determined from the monomer mean square displacement
(MSD) curve for the same N = 350 chains in Adeyemi
et al. 20 . Crossover at ω ∼ 1/τd was also commonly found
in experimental systems.38. The second crossover, as also
expected from experiments, should appear at ω ∼ 1/τe.
In our simulation, the corresponding crossover is found
at ω ∼ 2× 10−3, whereas τe is 3.43× 103 as determined,
again, fromMSD20 – i.e., 1/τe ≈ 3×10−4. The two values
differ by a factor of 6 to 7. We note that the difference
of this magnitude is not uncommon even between τe val-
ues measured from different experimental techniques39.
In addition, since N = 350 is not long enough for the
chains to be fully entangled – as reflected by the lack of
a fully developed stress plateau, quantitative discrepan-
cies with characteristics of fully entangled polymers in
experiments are excepted.

Likhtman et al. 14 also reported the first crossover be-
tween ω = 10−6 and 10−5. Their G′ and G′′ profiles ap-
pear smoother than ours in the terminal regime. This can
be attributed to their use of Maxwell modes for fitting the

FIG. 8: G′ and G′′ using EMD/GK, NEMD, and
cRMA methods for (a) N = 25 and (b) N = 50

(γ0 = 0.01 is used for ω ≥ 7.2222× 10−2 and γ0 = 0.1
used for lower ω).

FIG. 9: Effects of strain amplitudes on the NEMD
results in the high frequency regime (N = 50).
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FIG. 10: G′ and G′′ using EMD/GK and NEMD for
N = 350.

G(t) profile which inherently cannot capture the oscilla-
tions in the G(t) profile – either the short-time oscillation
caused by bond fluctuations or the long-time oscillation
caused by statistical uncertainty. Our fitting used piece-
wise linear functions (Appendix A), which preserves all
oscillations in the relaxation modulus. We may as well
obtain smooth terminal-regime profiles if we filter the
G(t) profile at the long-time limit before its conversion
to G′ and G′′. Likhtman et al. 14 , however, were not able
to identify the second crossover, the one corresponding
to 1/τe, unless the system density is significantly raised.
Finally, we again note the excellent agreement between
EMD and NEMD results in fig. 10. Both methods predict
the second crossover at the same position, although our
NEMD did not cover sufficiently low frequency to reach
the first crossover.

Figures 11 and 12 show the G′ and G′′ results for
all chain lengths. For G′, the curves all collapse on
themselves at higher frequencies. At lower frequen-
cies, the magnitude of G′ increases with increasing chain
length. Entanglement effects are clearly noticeable in
the N = 350 case, where the profile decays with a lower
slope at ω ≲ O(10−3). It, however, falls short of devel-
oping a fully flat plateau. The slower decay allows the
G′ profile to intersect the G′′ profile in that frequency
range (fig. 10). In comparison, the unentangled species
(N = 25 and 50) decays at faster rates as they approach
the terminal regime. Signs for entanglement cannot be
clearly identified from the G′′ profiles (fig. 12).

In all cases, NEMD and EMD/GK results are in ex-
cellent agreement for the frequency range covered by our
NEMD simulations, which provides mutual validation be-
tween these two methods. For NEMD, it is clear that,
with a proper data processing procedure, one can obtain
reliable results with much fewer cycles (25 in this study)
than previous reports. For EMD, its application using
the GK relation has been plagued by the strong statisti-
cal noise. Likhtman et al. 14 has showed that the multi-
tau correlator method can effectively suppress the noise
and render smooth G(t) profiles. Its success, however,

FIG. 11: G′ for N = 25, 50, 100 and 350 chains using
EMD/GK and NEMD.

FIG. 12: G′′ for N = 25, 50, 100 and 350 chains using
EMD/GK and NEMD.

builds on the aggressive filtering, using extended aver-
aging windows, at the long-time end of the TACF. The
effects of such filtering on the quantitative accuracy of
the results were not known, until our direct comparison
with NEMD establishes its validity.
With G′ and G′′, we can calculate the complex modu-

lus

G∗ ≡
√

G′2 +G′′2

and then the complex viscosity

η∗ ≡ G∗

ω

to test the validity of the Cox-Merz rule. The steady
shear viscosity η was obtained by running the NEMD
simulation of steady shear flow at different shear rates γ̇.
For each γ̇, the first 105 TUs of the shear stress time series
was discarded and the following 1.5 × 105 was averaged
to be used in the shear viscosity calculation. Uncertainty
was estimated by dividing the retained part into three
blocks of equal length and the standard error of viscosity
values from those blocks are reported.
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FIG. 13: Comparison of the complex viscosity η∗(ω),
from EMD/CK and cRMA approaches, with the shear

viscosity η(γ̇), from NEMD of steady shear flow
conditions (N = 25 and N = 50). Error bars are shown
for the latter but only when they are larger than the

marker size.

Figure 13 plots the steady shear viscosity η(γ̇) in com-
parison with η∗(ω) for the unentangled chain species.
Only EMD/GK and cRMA results are plotted for η∗.
The NEMD/SAOS results are very close to EMD/GK
(as reflected in their numerically equivalent G′ and G′′

results) and thus omitted for clarity. The viscosity pro-
files show typical behaviors of polymer melts, including
a Newtonian plateau at the low shear end and shear-
thinning at higher shear rates. It is clear that η(γ̇) stays
close to η∗(ω) for the entire range tested, indicating the
general applicability of the Cox-Merz rule to the KG
model chains. Both EMD/GK and NEMD/steady shear
are subject to larger statistical uncertainty at the low ω
or γ̇ end, while the cRMA approach gives smooth and
accurate results for unentangled chains.

E. Discussion: Accuracy and Cost

Results presented so far have established that, with
proper noise reduction and data processing procedures,
both EMD and NEMD give quantitatively reliable results
for G′ and G′′. The question now becomes which method
should one choose for obtaining the most accurate results
with limited computational resources.

Figure 14 shows the statistical uncertainty in the G′

and G′′ values calculated from all three methods using
our standard simulation lengths reported in Sec. II. For
EMD/GK and cRMA, uncertainty is straightforwardly
estimated from the standard error of results from inde-
pendent trajectories. As shown in table I, three to five in-
dependent EMD runs were performed for each case. For
NEMD/SAOS, the 25-cycle time series used for each fre-
quency was divided into five equal blocks (with five cycles

in each). Each block of time series undergoes the DFT
analysis to obtain its own G′ and G′′ values and the un-
certainty is reported as the standard error between single-
block results. The reported uncertainty magnitudes in
fig. 14 are all normalized by the corresponding G′ or G′′

values – i.e., they are reported as relative errors.

Accuracy of G′ and G′′ results must be discussed in
the frequency range of relevance, which varies with chain
length. We define the maximum stress relaxation time
τmax as the time for G(t) to first drop to 10−3 (see
fig. 1) and listed the timescale in table I for different
chain lengths. We note that for N = 350, τmax is much
longer than its Rouse time τR = 1.66 × 105 (as deter-
mined from MSD20) due to entanglement effects, whereas
for N = 25 and 50, τmax is very close to their respective
τR (which can be estimated from the τR of the N = 350
case using τR ∝ N2). The standard EMD simulation
length chosen for each independent run is one to two or-
ders of magnitude longer than τmax to ensure that the
stress TACF has multiple independent segments to aver-
age over for the longest time scale of interest. We then
mark ωmin ≡ 1/τmax as the minimum frequency of inter-
est for each chain length in fig. 14.

For unentangled cases (N = 25 and 50), cRMA is
clearly more accurate than both other methods, espe-
cially at the low-frequency end, where both EMD/GK
and NEMD suffer from strong fluctuations, the statisti-
cal error from cRMA is well below 1%.

Between EMD/GK and NEMD, there is notable dif-
ference in the frequency dependence of uncertainty. The
GK relation relies on the stress TACF to calculate G(t).
For EMD simulation of a given duration, there are more
shorter independent segments to average over than longer
ones. As a result, at ω ≳ 10−2, its error is rather low –
no more than a few percent, while each EMD case see
its largest error at the low frequency end. Uncertainty
from NEMD is less dependent on frequency and fluctu-
ates more or less in the 10−2 to 10−1 range. In fig. 14a
and fig. 14b, the error does seem to grow above 10% at
the low frequency end, but that is likely due to the fre-
quency dropping below ωmin, where the complex modulus
magnitudes are vanishingly small and no longer of signifi-
cant interest. It appears that for NEMD, the uncertainty
depends mostly on the number of cycles included in the
statistics which was set to be the same at different fre-
quencies.

To compare the efficiency between EMD and NEMD,
we first look at the N = 350 case (fig. 14d), where the
simulation cost, measured in terms of the total number
of MD time steps used in the statistics (all three inde-
pendent runs for EMD and 25 cycles at all frequencies
for NEMD), is controlled to be nearly the same. From
fig. 14d, the statistical errors from both methods are com-
parable in a wide frequency range of 10−4 ≲ ω ≲ 10−1.
The advantage of EMD is clear at ω ≳ 10−1, where its
error drops below 1%, but NEMD remains acceptable at
below 10%. The higher error from NEMD at high fre-
quency is attributed to the declining effectiveness of the
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FIG. 14: Uncertainty of G′ and G′′ from EMD/GK, NEMD, and (for unentangled chains only) cRMA normalized
by the estimated G′ and G′′ values: (a) N = 25, (b) N = 50, (c)N = 100, and (d) N = 350.

pre-averaging step applied to the stress signal. To avoid
contamination of stress signal at the imposed frequency,
we set the pre-averaging block size to 1/100 of the oscil-
lation period. As the imposed frequency increases, the
block size diminishes and becomes less effective at noise
removal. One may easily improve the accuracy at high
frequencies by running more cycles, which would not in-
troduce substantial extra cost due to the shorter periods
there. Per fig. 5, increasing to 100 cycles is estimated to
reduce the error in G′ by half. (Although fig. 5 used a
block size of 1 cycle for error estimation – versus 5 cycles
used in fig. 14, we have confirmed that the dependence
of error on Ncycle is not sensitive to the block size.)

Limitation of NEMD is more obvious at the low fre-
quency end. The frequency range swept by NEMD in
this study goes down to 10−4, which leaves nearly two
decades of lower frequencies that are still of interest (i.e.,
> ωmin) uncovered. By contrast, the same set of EMD
data can be used to generate G′ and G′′ of any frequency
without additional computational cost. Of course, for
limited EMD simulation length, statistical uncertainty
increases with decreasing frequency, but as far as results
in fig. 14d are concerned, the error remains at ∼ 10% for
most of the ω ∼ O(10−5) decade. To capture the same
decade using NEMD, the computational cost would be
10 times as high as that of the O(10−4) decade – i.e.,

the overall NEMD simulation cost must increase by an
order of magnitude. Based on fig. 5, one may propose
to accept slightly higher uncertainty and run the lowest
frequencies with fewer cycles, which nonetheless would
still require significantly higher computational cost.

The conclusion is similar at N = 100 (fig. 14c), where
the lowest frequency swept by NEMD is closer to ωmin.
NEMD also shows similar uncertainty level as EMD ex-
cept at ω ≳ 10−1 where the advantage of EMD is clear.
Note that this equivalence in performance between these
two methods is built on substantially higher computa-
tional cost in NEMD. Recall that the total computa-
tional cost of NEMD in this study does not change with
chain length. For N = 100, the cost of EMD (table I)
is only one third that of NEMD. This, however, does
not mean that EMD is three times better – everything
else the same, increasing the data size by a factor of three
would lead to a factor of

√
3 reduction in the uncertainty,

which is not big compared with fluctuations between data
points in fig. 14c. The advantage of EMD is smaller for
shorter chains (N = 25 and 50 in fig. 14a and fig. 14b). In
both cases, NEMD offers similar statistical accuracy as
EMD except, again, at the high-frequency end. The total
cost of NEMD is higher by nearly one order of magnitude,
but part of the low frequency data fall below ωmin. If we
only count NEMD runs at ω ≥ ωmin, the total computa-
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tional cost would be comparable to EMD at N = 25.
Our analysis shows that, contrary to many’s belief,

EMD using the GK relation and multi-tau correlator
method not only provides accurate results for linear vis-
coelastic properties, it also appears to be more efficient in
some cases, especially for longer chains where the need of
covering lower frequencies puts higher burden on NEMD.
For EMD, in theory, meaningful results at all frequencies
can be generated with a single run that covers the longest
relaxation time. In practice, EMD is equally constrained
by the limited simulation duration in the long-time (low-
frequency) end of the spectrum. Figure 15 shows the
variation of the normalized statistical error of EMD if we
shorten the duration of each independent run to 1/10,
1/3, and 2/3 of the standard duration (table I). It is clear
that as the simulation gets shorter, accuracy at lower
frequencies is first affected. For example, with a 10-fold
increase in simulation length, the error in G′ reduces by
a factor of 3 to 5 (fig. 15a), which is comparable to the

factor of
√
10 expected.

The advantage of EMD is that information on different
frequencies is contained in the same time series, whereas
NEMD would require a new simulation even for a slightly
different frequency. Although EMD seems more suscep-
tible to statistical noise, which is easier to remove in
NEMD because the frequency of the primary signal is
known a priori, this weakness is partially lessened by the
success of the multi-tau correlator method. The net out-
come is thus a small advantage in favor of EMD when
computing the complete spectrum of linear viscoelastic-
ity is the goal. The real advantage of NEMD lies in its
flexibility. For example, one may easily save half of the
computational cost by dropping every other frequency
level covered. It would also be preferred when only a
certain frequency range is of interest or lower accuracy is
permissible at certain frequencies. The latter is because
it allows the user to independently adjust the accuracy
at different levels by changing the number of cycles used.

IV. CONCLUSIONS

In this study, we compared equilibrium and non-
equilibrium MD approaches for computing the linear vis-
coelastic properties of polymer melts, using a KG bead-
spring chain model with chain lengths that range from
the unentangled (N = 25 and 50) to the marginally
and moderately entangled (N = 100 and N = 350)
regimes. For EMD, the primary focus was on the Green-
Kubo (GK) approach, but, for unentangled chains, we
also tested a corrected Rouse mode analysis approach
in which short-time GK results were introduced to sup-
plement the stress relaxation modulus calculation from
the Rouse model. We showed that with proper data
processing and noise reduction procedures, all these ap-
proaches produced quantitatively equivalent results for
G′ and G′′. For EMD with the GK relation, the multi-

FIG. 15: Dependence of normalized uncertainty in
EMD/GK results on the duration of each independent
simulation run (out of three used in the statistics of

N = 350): (a) G′ and (b) G′′. The longest run shown in
the figure (with 3× 106 TUs) is the standard duration

used in the study.

tau correlator method effectively removes the noise while
preserving the quantitatively accurate relaxation dynam-
ics. Numerical integration of the Fourier integrals with
the relaxation modulus G(t) approximated by a piecewise
linear function faithfully converts the results to complex
moduli. For NEMD, we applied DFT to extract G′ and
G′′ from the pre-averaged stress signal and showed that
25 cycles at each frequency is sufficient to obtain sta-
tistically meaningful results. The simulation length is
much shorter than previously reported in the literature
which significantly reduces the computational expense
needed to obtain a representative spectrum. In addi-
tion, we found that the strain amplitude of the imposed
oscillatory shear must be carefully chosen for different
frequency levels to avoid non-linear effects.

Comparing the statistical uncertainty of these meth-
ods, we found that, despite the common perception that
the EMD/GK approach is more strongly influenced by
stress fluctuations, it offers at least equally accurate and,
sometimes, more accurate results than NEMD when the
same total simulation time is used. The advantage of
NEMD is its flexibility especially when only a limited
frequency range is of interest. The cRMA method re-
lies on the accuracy of the Rouse model but, at least for

67



15

the KG model in the unentangled regime, it offers highly
accurate results.

Appendix A: Numerical Evaluation of the Fourier Integral

Assume we are given G(t) values at a series of discrete
points: G1, G2, ..., and Gk, where Gk represents the value
of G(t) at the k-th temporal grid point tk. The data
points do not have to be equally spaced apart. Indeed,
in this study, the discretized G(t) points came from the
multi-tau correlator method, which by construction uses
a non-uniform temporal grid and its spacing increases
with t. We used the multi-tau correlator output series of
Gk without modification.

Note that evaluating eqs. (8) and (9) is equivalent to
performing the Fourier integral

I ≡
∫ ∞

0

G(t) exp(−iωt)dt. (A1)

For its numerical evaluation, we follow the method in
Luyben 40 and divide the integral into sub-integrals of
individual grid intervals – i.e., ∆tk ≡ tk − tk−1. Equa-
tion (A1) is then written as the summation of sub-
integrals Ik:

I =
N∑

k=1

(∫ tk

tk−1

G(t) exp(−iωt)dt

)
≡

N∑

k=1

Ik (A2)

We now approximate G(t) in each interval tk−1 to tk with
a linear function (higher order polynomials can be used
to improve the accuracy):

G(t) ≈ ϕk(t)

= α0k + α1k(t− tk−1) for tk−1 < t < tk
(A3)

where α1k is the slope of the line over the k-th interval

α1k =
Gk −Gk−1

∆tk
(A4)

and α0k is the value of ϕk at the beginning of the interval

α0k = Gk−1. (A5)

The constants α0k and α1k change with each interval.
Inserting eq. (A3) into eq. (A2) gives

Ik ≈
∫ tk

tk−1

[α0k + α1k(t− tk−1)] exp(−iωt)dt (A6)

which can be evaluated analytically. Integrating eq. (A6)
by parts and substituting α0k and α1k by eq. (A4) and

eq. (A5) give

Ik ≈ Gk−1

iω
(exp(−iωtk−1)− exp(−iωtk))

− Gk −Gk−1

∆tk

∆tk
iω

exp(−iωtk)

+
Gk −Gk−1

∆tkω2
(exp(−iωtk)− exp(−iωtk−1))

= Gk

(
−exp(−iωtk)

iω
+

exp(−iωtk)− exp(−iωtk−1)

ω2∆tk

)

+Gk−1

(
exp(−iωtk−1)

iω
− exp(−iωtk)− exp(−iωtk−1)

ω2∆tk

)
.

(A7)

Extracting exp(−iωtk−1) and noting that ∆tk = tk −
tk−1, we obtain

Ik ≈ exp(−iωtk−1)

{
Gk

(
exp(−iω∆tk)− 1

ω2∆tk
− exp(−iω∆tk)

iω

)

−Gk−1

(
exp(−iω∆tk)− 1

ω2∆tk
− 1

iω

)}
.

(A8)

Finally, the full integral is given as

∫ ∞

0

G(t) exp(−iωt)dt ≈
N∑

k=1

exp(−iωtk−1)

{
Gk

(
exp(−iω∆tk)− 1

ω2∆tk
− exp(−iω∆tk)

iω

)

−Gk−1

(
exp(−iω∆tk)− 1

ω2∆tk
− 1

iω

)}
.

(A9)

Appendix B: Data Processing for the Stress Output from
Small Amplitude Oscillatory Shear (SAOS) in NEMD

The SAOS output (eq. (12)) can be rewritten as

s(t) =
σ(t)

γ0
= G′(ω)sin(ωt) +G′′(ω)cos(ωt). (B1)

Assume that the total NEMD run covers Ncycle whole
oscillatory cycles with a combined temporal duration of
Trun, and s(t) is stored on Nt grid points with equal spac-
ing ∆t. The time mark at each grid point is

tj = j∆t =
jTrun

Nt
(B2)

and

sj ≡ s(tj) =G′sin

(
ωjTrun

Nt

)
+G′′cos

(
ωjTrun

Nt

)

(j = 0, 1, ..., Nt − 1).

(B3)
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(Note: the j = Nt point is not included because we assign
sNt

= s0 to enforce the periodicity of the time series.)
The discrete Fourier transform (DFT) of the series is

ŝk =
1

Nt

Nt−1∑

j=0

sj exp(−
2πikj

Nt
)

=
1

Nt

Nt−1∑

j=0

(
G′sin

(
ωjTrun

Nt

)
+G′′ cos

(
ωjTrun

Nt

))

(
cos

(
−2πkj

Nt

)
+ i sin

(
−2πkj

Nt

))

=
1

Nt

Nt−1∑

j=0

(
G′ sin

(
2πkωj

Nt

)
+G′′ cos

(
2πkωj

Nt

))

(
cos

(
−2πkj

Nt

)
+ isin

(
−2πkj

Nt

))

=
1

Nt

(
Nt−1∑

j=0

G′ sin

(
2πkωj

Nt

)
cos

(
−2πkj

Nt

)

+

Nt−1∑

j=0

G′′ cos

(
2πkωj

Nt

)
cos

(
−2πkj

Nt

)

+ i

(
Nt−1∑

j=0

G′sin

(
2πkωj

Nt

)
sin

(
−2πkj

Nt

)

+

Nt−1∑

j=0

G′′ cos

(
2πkωj

Nt

)
sin

(
−2πkj

Nt

)))

(B4)

where

kω ≡ ωTrun

2π
=

Trun

Tcycle
= Ncycle (B5)

i.e., the total number of oscillatory cycles in the run (note
that ω/2π equals the frequency of oscillation – i.e., the
reciprocal of the cycle period Tcycle). Due to the orthog-
onality of sine and cosine functions, for the typical sit-
uation of 0 < kω << Nt, eq. (B4) is non-zero only for
k = kω and k = Nt − kω. The latter is equivalent to
k = −kω due to the 2π-periodicity of these functions.
The non-zero modes are complex conjugates

ŝ±kω
=

1

2
(G′′ ∓ iG′) (B6)

containing G′ and G′′ in their imaginary and real parts,
respectively.
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Chapter 4

Viscoelastic properties of bidisperse

polymer melts

In this chapter, we focus on bidisperse polymer melts in which a moderately

entangled polymer chain was mixed with shorter chains ranging from unen-

tangled melt to weakly entangled melt. We investigated the dynamics of the

different components by tracking their mean square displacement. The shorter

chains accelerate the dynamics of the longer chains while the dynamics of the

shorter chains are inhibited by the longer chains. A Rouse Mode Analysis was

further carried out on the systems investigated and we saw that the shorter

chains lessen the effects of entanglements on longer chains. By investigating a

mixing rule for evaluating the stress relaxation of the mixture, it was observed

that when the longer entangled chains are in the majority, the double reptation

model predicts the stress relaxation of the system with remarkable accuracy. On

the other hand, when the shorter chains are in the majority, a simple mixing rule

was better at the prediction.
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ABSTRACT

Polydispersity is inevitable in industrially produced polymers. Established theories of polymer dynamics and rheology, however, were mostly
built on monodisperse linear polymers. Dynamics of polydisperse polymers is yet to be fully explored—specifically how chains of different
lengths affect the dynamics of one another in a mixture. This study explored the dynamics of bidisperse polymer melts using molecular
dynamics and a bead–spring chain model. Binary mixtures between a moderately entangled long-chain species and an unentangled or mar-
ginally entangled short-chain species were investigated. We found that adding short chains can significantly accelerate the dynamics of the
long chains by substantially lessening their extent of entanglement. Meanwhile, although introducing long chains also hinders the motion of
the short chains, it does not qualitatively alter the nature of their dynamics—unentangled short chains still follow classical Rouse dynamics
even in a matrix containing entangled chains. Detailed Rouse mode analysis was used to reveal the effects of entanglement at chain segments
of different scales. Stress relaxation following a step shear strain was also studied, and semi-empirical mixing rules that predict the linear vis-
coelasticity of polydisperse polymers based on that of monodisperse systems were evaluated with simulation results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053790

I. INTRODUCTION

The rheology of polymeric materials depends on their molecular
structure. This dependence has been exploited in practical applications
for improving melt processability and in characterizing their molecular
weight distributions (MWD).1 The reliability of these applications
requires robust molecular theories capable of relating the rheological
properties and chain relaxation dynamics to the underlying molecular
makeup.

For melts of short unentangled chains, their dynamics and visco-
elasticity are well described by the Rouse model.2–4 When the chains
are sufficiently long and topological constraints between the chains are
significant, i.e., entangled chains, the tube model and reptation concept
pioneered by Edwards5 and de Gennes6 and further refined by Doi
and Edwards4 have been used with considerable success. Quantitative
discrepancies between experimental results and the initial tube model
have been attributed to the presence of additional relaxation mecha-
nisms other than reptation.7 Additional relaxation mechanisms such
as contour length fluctuation (CLF),4 which describes the retraction
and expansion of the contour length, and constraint release (CR),8,9

which accounts for the loss of entanglements due to the relaxation of
other chains, have improved the quantitative prediction.

These theories have largely been predicated on monodisperse sam-
ples. Industrial polymers are polydisperse, and extension of these theo-
ries to polydisperse samples requires the understanding of the interplay
between the relaxation dynamics of chains with different lengths. Semi-
empirical mixing rules, which weigh the contributions of different chain
lengths present in the polydisperse samples, are often used. The double
reptation model tries to capture the effects of polydispersity naturally.
Implicit in applying the double reptation model to polydisperse poly-
mers is the assumption that the relaxation dynamics of each constituent
chain length is not altered by the presence of other chains. Various stud-
ies have shown that this is not the case.10–13 Experimentally, it is difficult
to generate, e.g., strictly bidisperse samples to study the mutual interac-
tion between chains of different but well-defined molecular weights.
This problem naturally calls for molecular simulation in which the con-
stituent chain lengths can be precisely controlled.

The charm of polymer physics problems lies in the fact that
detailed chemical structures are often secondary to generic features of
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different polymers such as chain length and topology. For this reason,
important behaviors can often be captured in highly simplified lattice
models in Monte Carlo (MC) simulation. Baschnagel et al.14 used a
bond-fluctuation model (BFM) to study bidisperse melts of short
unentangled chains. It was found that mixing chains of different
lengths does not affect their statics (chain conformation statistics), but
dynamics are noticeably shifted with the shorter chains becoming
accelerated and longer chains slowed down. This conclusion was cor-
roborated by Lin, Mattice, and Von Meerwall15 where a more delicate
lattice model was used. Unlike the BFM, which uses a cubic lattice, the
newer model builds on a diamond lattice, and the potential energy
considers torsion angle variations according to the rotational isomeric
state (RIS) model.16 This setup allows for the modeling of chemically
specific polymers. The study investigated the dynamics of polyethylene
chains in bidisperse melts at high temperature (453 K) where the lon-
ger species is well within the entangled regime.

Molecular dynamics (MD) is the preferred method when realistic
dynamics must be captured. Off-lattice models are typically used in
MD simulation, among which the bead–spring chain model pioneered
by Kremer and Grest17 has been particularly instrumental. However,
most contributions focused on monodisperse polymer melts17–20 and
only a very small number of studies investigated the effects of poly-
dispersity.10,11,21–24 A bidisperse system provides the simplest case
where interactions between different chain lengths can be investigated.
Barsky10 studied chain diffusion dynamics in bidisperse mixtures of
Kremer–Grest (KG) model chains and observed that mixing with lon-
ger chains reduces the mobility of the shorter chains, while mixing
with shorter chains accelerates the motion of longer chains. The lon-
gest chain considered in that study had N¼ 90 (N is the number of
monomeric units or “beads”), which is at most only marginally
entangled and cannot capture most entanglement effects. In addition,
limited by the computer power at the time, the study only probed the
dynamics for a relatively short time period. Bidisperse systems of lon-
ger chains were studied later by Picu and Rakshit22 using a higher-
level model which maps 40 KG beads into a single coarse-grained
bead. Topological constraints due to entanglement are modeled by
forcing the middle beads to move along the backbone (i.e., reptation)
and only allowing three-dimensional motion in end beads. By con-
struction, the model can only simulate well-entangled chains. They
also found that the presence of surrounding shorter chains speeds up
the dynamics of the longer chains. Because the model does not con-
sider constraint release, the effect, at least as far their results are con-
cerned, can only be attributed to chain-end effects. Baig et al.25 also
reported that mixing with shorter chains speeds up the relaxation of
longer chains (and vice versa). The study used a more realistic united-
atom model for bidisperse cis-1,4-polybutadiene melts, which retains
both CLF and CR effects, and used the tube and segmental survival
probability functions as indicators of the relaxation of entangled
chains. Despite the changing dynamics, it also reported that static
properties of the constraining tubes, including their primitive path
conformations, are not affected by varying the surrounding chain
length. Polydisperse polymers with realistic, albeit very narrow, molec-
ular weight distributions were simulated more recently using a coarse-
grained model for polyethylene.23,24 It was found that keeping the
weight-average molecular weight constant, chain dynamics accelerates
with polydispersity. Mobility of the shortest chains increases much
faster than the average mobility does with polydispersity, which leads
to CR and faster terminal relaxation.

There has been a particular appetite for probe diffusion problems,
which study the dynamics of a specific chain type, labeled as the probe
species, in a matrix of (usually) another chain type. This is a special
case of binary mixtures where the volume fraction of the probe type
/probe is sufficiently low that probe–probe interactions are not impor-
tant. Such a setup is designed for studying the effects of matrix chains
on the probe. The example most relevant to our study is Wang and
Larson26 which used MD to investigate the dynamics of a long
entangled chain species (primarily NL ¼ 350) in a matrix of a shorter
chain species spanning both unentangled and entangled regimes
(NS ¼ 25 to 160). Both types were semiflexible, and the long-chain
volume fraction was kept at /L ¼ 0:15 to minimize the entanglement
between long chains. The study focused on the CR effects, which leads
to tube relaxation (described as the Rouse motion of the tube itself),
with varying short-chain length NS. More recently, Shanbhag and
Wang27 used a BFM, MD, and slip–spring model to simulate the diffu-
sion of a probe chain in two types of matrices, one with the same chain
type as the probe and the other with infinitely long chains, designed
for studying the self-diffusion and tracer diffusion of the probe chain,
respectively.

The general conclusion that mutual interactions in a binary mix-
ture result in the acceleration and deceleration of the slower and faster
chain species, respectively, not only applies to mixtures with different
chain lengths, but also to those of different chemical types, which, for
example, was also reported by Kopf, D€unweg, and Paul11 where the
two chain species differ in monomeric mass. Interestingly, varying
chain topology can lead to more complex mixing behaviors. Using a
BFM, Shanbhag28 showed that the mobility of a ring probe polymer
changes non-monotonically with increasing length of the linear matrix
chains.

In this work, we investigated the dynamics and rheology of bidis-
perse polymer melts using the KG bead–spring chain model. MD sim-
ulation was performed for binary mixtures between an entangled
chain species (NL ¼ 350) and a shorter, unentangled or marginally
entangled, chain species (NS ¼ 25, 50, and 100—monodisperse melts
of the first two are unentangled and the last one, as shown below, is
marginally entangled) as we were particularly interested in the inter-
play between chains of different dynamical regimes. The chain lengths
under our investigations fall into the same range as studied in Wang
and Larson.26 However, we studied compositions where neither com-
ponent can be viewed as the probe, i.e., each chain interacts with other
chains of both the same and the opposite type. Two concentration
levels were considered for each NL–NS combination—one has the
NL ¼ 350 species as the majority (/L ¼ 0:7) and the other as the
minority (/L ¼ 0:3) component. Compared with previous studies on
bidisperse melts with the KG model,10,26 our MD simulations were
also substantially longer to cover the entire relaxation spectrum of all
chains involved as well as to directly compute the full stress relaxation
profile.

We started with the mean-squared displacement (MSD) as a
direct measurement of individual chain dynamics (Sec. III A). It was
followed by a Rouse mode analysis (RMA) which reveals departure (or
the lack thereof) from the unentangled limit and onset of entangle-
ment in different components of the mixture (Sec. III B). Finally, we
examined the stress relaxation dynamics of the entire melt and evalu-
ated mixing rules for predicting the relaxation modulus of the bidis-
perse system given that of the monodisperse melt of each component
(Sec. III C).
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II. MODELS AND NUMERICAL METHODS

The KG bead–spring model17 was used. Each chain consists of N
beads bonded by finitely extensible non-linear elastic (FENE) springs.3

The potential between bonding beads is

UFENEðrÞ ¼ � 1
2
KR2

0 ln 1� r
R0

� �2
" #

þ 4�
r
r

� �12

� r
r

� �6

þ 1
4

" #
; (1)

where r is the distance between the beads, and r and � are the standard
Lennard-Jones (LJ) length and energy parameters. The first term of
the equation represents an attractive potential which models FENE
springs between nearest neighbors along the chain with a maximum
bond length R0 ¼ 1:5r, while the second term models the excluded-
volume repulsion between beads and the term is only included at
r � 21=6r. The spring constant K ¼ 30r=� is chosen to allow a rea-
sonable integration time step while preventing chains from crossing
each other.17 Note that compared with the semiflexible chains studied
in Wang and Larson,26 our model is fully flexible with no angle poten-
tial. This difference must be kept in mind for any comparison we
make with that study below.

The interaction between non-bonding beads is modeled by the
standard LJ potential

ULJðrÞ ¼ 4�
r
r

� �12

� r
r

� �6
" #

: (2)

The potential is truncated at r ¼ 2:5r and shifted by a constant to
ensure continuity at the cutoff. Note that the original model by
Kremer and Grest17 used a shorter cutoff of r ¼ 21=6r, making the
interaction between non-bonding beads purely repulsive. This practice
is still widely seen in the polymer dynamics literature although full
LJ potential including the attraction well is used more often
recently.12,29–31 Practically, comparison between the two approaches
found no significant difference in both chain statics and dynamics
when temperature is sufficiently high,12,29 such as T ¼ 1:0�=kB used
in this study (kB is the Boltzmann constant). Hereinafter, all results
will be reported in reduced LJ units in which length, energy, time, and
temperature are scaled by r, �, s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mr2=�
p

, and �=kB, respectively.
For example, the non-dimensional LJ energy and length parameters in
Eqs. (1) and (2) are both unity. A constant time step of 0.01 (in LJ
time units or TUs) is used for all simulations.

Each monodisperse system contains 50 000 beads, except the lon-
gest N¼ 350 case which contains 56 000 beads, and each bidisperse
system contains 56 000 beads. The difference in size here is very small,
and, for selected monodisperse cases, we have tested the larger size of
56 000 and found no noticeable size dependence. For both monodis-
perse and bidisperse systems, the beads were placed in a cubic box
with periodic boundary conditions at a constant bead density of 0.85.
The bidisperse systems mix a long-chain species (NL ¼ 350) with
shorter chains of various lengths (NS ¼ 25; 50, or 100) at two levels
of mass (or volume—the constituent beads are identical) fraction:
/L ¼ 0:7 and 0.3. The longer chain is moderately entangled—for ref-
erence, the entanglement strand length Ne for the KG model is in the
range of 30 to 80 depending on the method of determination.32

Detailed compositions are listed in Table I.

All the simulations were carried out using the large-scale atomic/
molecular massively parallel simulator (LAMMPS) package.33 The ini-
tial configuration was generated by randomly placing the specified
number and types of chains in the simulation cell. Generation of indi-
vidual chains follows a procedure that is analogous to a self-avoiding
walk in a continuum space, which prevents backfolding of successive
bonds but still leaves a large number of bead overlaps. A dissipative
particle dynamics (DPD) push-off method,31 originally proposed by
Sliozberg and Andzelm,34 was then used to obtain an equilibrated
structure for production runs. During the DPD run, interaction
between non-bonding beads was replaced by a repulsive potential in
the form of

UDPDðrÞ ¼
ADPD

2
rc 1� r

rc

� �
; r < rc;

0; r � rc:

8><
>: (3)

Compared with the LJ potential [Eq. (2)], which has nearly hard-
sphere repulsion at short range, the DPD potential is much softer. It
allows for easier passing of chains and thus fast relaxation during the
initial equilibration steps.

DPD simulation was run at T¼ 1.0 using a cutoff distance
rc ¼ 1:0. The potential was initially low with ADPD ¼ 25. At the
beginning, restriction was imposed on the maximum distance each
bead can move within one time step which gradually increases from
0.001 to 0.1 over 15 TUs. The restriction was then removed and the
simulation was run for another 100 TUs. This was subsequently fol-
lowed by a gradual ramp of ADPD to 1000 over 5.5 TUs. The DPD
potential was then replaced with the standard LJ potential, and MD in
a canonical (NVT—constant number of particles, volume, and tem-
perature) ensemble was performed for additional 500 TUs during
which a random velocity distribution was reassigned to all beads every
0.5 TUs.

Equilibration quality was examined through the mean square
internal displacement (MSID),

hR2ðnÞi � hj~r j �~r ij2i; (4)

which measures the square distance between the ith and jth mono-
meric unit of the same chain, averaged over all ij-pairs with the same
index separation n � jj� ij. Auhl et al.35 showed that, compared with
the radial distribution function, end-to-end distance, and radius of
gyration, MSID better captures chain deformation at intermediate
scales which does not fully relax until the whole chain is equilibrated.

TABLE I. Compositions of bidisperse systems simulated: N, /, and nc denote the
chain length, mass/volume fraction, and total number of chains of a given species,
respectively; subscripts “L” and “S” denote the longer and shorter component in the
mixture, respectively.

NL /L nc; L NS /S nc; S Total beads

350 0.7 112 25 0.3 672 56 000
350 0.7 112 50 0.3 336 56 000
350 0.7 112 100 0.3 168 56 000
350 0.3 48 25 0.7 1568 56 000
350 0.3 48 50 0.7 784 56 000
350 0.3 48 100 0.7 392 56 000
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Figure 1 plots hR2ðnÞi=ðnr2
bÞ (rb ¼ 0:97 is the equilibrium bond/

spring length), which is the characteristic ratio of the KG chain, vs n
for our equilibrated monodisperse systems. All curves increase mono-
tonically at the beginning. For the longer chains (N � 50), the charac-
teristic ratio converges to a constant value at the large n limit—i.e.,
C1. The obtained C1 ¼ 1:75 in our simulation is in excellent agree-
ment with previous studies (e.g., 1.74 in Kremer and Grest17 and 1.75
in Auhl et al.35).

For each cell composition, three random initial configurations
were independently generated, and each underwent the above equili-
bration procedure before its production run. Production runs were
performed in an NVT ensemble with T¼ 1.0 using Nose–Hoover
chains for thermostating. The production run of each configuration
lasted for a total of 5 �105 TUs for the monodisperse N¼ 25 case,
1 �106 TUs for the monodisperse N¼ 50 and N¼ 100 cases, and
3 �106 TUs for all other cases (any system, monodisperse or bidis-
perse, containing N¼ 350 chains). Results reported in this study were
averages over these three trajectories from independent initial configu-
rations unless specified otherwise. Error bars, when provided, report
the standard error between the independent runs.

III. RESULTS AND DISCUSSION
A. Mean square displacement (MSD)

We studied the dynamics of each component in the mixture
using the monomer MSD g1ðtÞ, which describes the motion of indi-
vidual monomers,

g1ðtÞ � 1
nc

Xnc
i¼1

1
Nj

XNi

j¼1

~r ijðtÞ �~r ijð0Þ
� �20

@
1
A; (5)

and the MSD of the center of mass g3ðtÞ which describes the overall
motion of the center of mass of individual chains,

g3ðtÞ � 1
nc

Xnc

i¼1

~r i;c:m:ðtÞ �~r i;c:m:ð0Þ
� �2

; (6)

where

~r i;c:m:ðtÞ � 1
Ni

XNi

j¼1

~r i;jðtÞ; (7)

where nc is the number of chains of each component, Ni is the length
of the ith chain, ~r i;jðtÞ is the position of the jth monomer of the ith
chain, and ~r i;c:m:ðtÞ is the position of the center of mass of the ith
chain.36,37 An efficient method for MSD calculation based on fast
Fourier transform (FFT), as detailed in Press et al.38 and Calandrini
et al.,39 was used.

Theoretically, the monomeric MSD of an unentangled chain
described by the Rouse model follows the following scaling behavior
in different time regimes:4,37

g1ðtÞ �
t1; t < s0;

t1=2; s0 < t < sR;

t1; t > sR;

8><
>: (8)

where s0 signifies the characteristic relaxation time of a single mono-
mer and sR is the Rouse time—the characteristic relaxation time of the
whole chain (according to the Rouse model). For entangled systems,
the simple tube model gives the following scalings:

g1ðtÞ �

t1; t < s0;

t1=2; s0 < t < se;

t1=4; se < t < sR;

t1=2; sR < t < sd;

t1; t > sd
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>>>>>>:
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and

g3ðtÞ �
t1; t < se;

t1=2; se < t < sR;

t1; t > sR;

8><
>: (10)

where se is the relaxation time of an entanglement strand and sd is the
disentanglement time—the longest relaxation time of an entangled
chain.

The monomer MSD of our monodisperse systems is presented in
Fig. 2. Our calculation of g1ðtÞ did not average over all monomers as
indicated in Eq. (5). To minimize chain-end effects, only the middle
monomer of each chain was included. At early times, all chains should
start out with g1ðtÞ scaling with t1. This regime is not captured in
Fig. 2 because our sampling frequency was not high enough to capture
the dynamics at such a small timescale. The next expected regime, for
both unentangled and entangled chains, has a t1=2 scaling which is
indeed observed in all chain lengths studied. Dynamics of different
chain lengths diverge thereafter. The N¼ 25 and 50 cases directly
enter the diffusive regime ðt1Þ, which is consistent with the Rouse
model prediction [Eq. (8)]. Note that for N¼ 50, complete alignment
with the t1 scaling starts at t � Oð104Þ which agrees with previous
studies of monodisperse polymer dynamics.17 In comparison, the ear-
lier bidisperse polymer study by Barsky10 only covered time scales up
to t � 4000. Deviation from this pure Rouse dynamics is seen in
longer chains. For N¼ 100, we observe a clear slow-down in the
t � Oð103Þ toOð104Þ regime, but it falls short of completely dropping

FIG. 1. Characteristic ratio calculated from the mean square internal displacement
(MSID) for equilibrated monodisperse systems of different chain lengths.
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to a t1=4 scaling, which reflects weak entanglement and an insufficient
separation between the entanglement strand length and the chain
length (i.e., insufficient separation between se and sR). A pronounced
se < t < sR regime is found in the longest chain with N¼ 350. A
least-square regression analysis of the MSD data from t � 3� 103 to
2� 105 gives a t0:2860:02 scaling, which is close to, but still slightly
higher than, the theoretical t1=4 prediction.

For comparison, the g1ðtÞ profile for monodisperse N¼ 350
semiflexible chains reported in Wang and Larson26 was also visibly
steeper than the t1=4 scaling line. The increased slope could be
attributed to CR and CLF, both of which were not considered in Eq.
(9). CR leads to the relaxation of the constraining tubes, and the
mobility of chain segments contains contributions from both chain
reptation within tubes and the tube Rouse motion.40 Meanwhile,
even the longest N¼ 350 chains studied here are still not signifi-
cantly longer than the entanglement threshold. Therefore, CLF is
felt over substantial portions of the chains (if not the entire chains),
instead of just the chain ends (as in the case of well-entangled
chains). Theories are typically constructed for much longer chains
where the number of entanglement strands per chain Z � N=Ne

	 Oð1Þ [see Ne estimated in Eq. (11)]. Finally, we also note that
slope estimation from regression is always subject to statistical error
and can also be sensitive to the range of data points used. The
increase seen in our g1ðtÞ profile slope for N¼ 350 is not large com-
pared with uncertainty.

By fitting different segments of MSD data to the scaling laws with
their corresponding theoretical exponents [Eq. (9)], we can identify
the time scales for different dynamical regimes based on the intersec-
tions between the fitted lines. To obtain s0, we ran an additional short
100 TU simulation with data stored at higher frequency for the
N¼ 350 case [to obtain the g1ðtÞ profile for smaller time scales than
those shown in Fig. 2]. The results are summarized in Table II. This
approach, however, can be sensitive to the specific regression proce-
dure and its uncertainty. From the obtained time scales, the entangle-
ment strand length,

Ne ¼ se

s0

� �1=2

� 33; (11)

can be estimated, which is consistent with literature values based on
MSD.17

We next shift our focus to bidisperse systems, starting with the
effects of a longer chain component (NL ¼ 350) on the mobility of the
shorter chains. Figure 3(a) shows the center-of-mass MSD, g3ðtÞ, of
pure N¼ 50 chains and the same NS ¼ 50 chains when mixed with a

FIG. 2. Mean square displacement of internal monomers g1ðtÞ of monodisperse
systems.

TABLE II. Time scales extracted from the pure N¼ 350 melt MSD curve.

s0 se sR sd

3.20 3:43� 103 1:66� 105 1:74� 106

FIG. 3. Mean square displacement of the center of mass g3ðtÞ for N¼ 50 chains
in its pure melt and in bidisperse mixtures with NL ¼ 350 chains as the minority
and majority component: (a) log–log coordinates and (b) linear coordinates.
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longer NL ¼ 350 component in log–log coordinates. At short time,
MSD curves from monodisperse and bidisperse systems appear indis-
tinguishable. However, the pure N¼ 50 case (/S ¼ 1) is the first to
transition from the t1=2 to t1 scaling and shows higher chain mobility
afterward. With increasing concentration of the longer chain (lowering
/S), mobility of the N¼ 50 chains decreases. The difference appears
small in Fig. 3(a), but when put in linear scales [Fig. 3(b)], it is clear
that the diffusion rate of the N¼ 50 chains decreases. The same obser-
vation that the long-chain component impedes the motion of the
shorter chains is also made when other shorter chains (NS ¼ 25 and
100) are mixed with NL ¼ 350 chains. It also agrees with the general
observation made in a number of previous studies.10,14,22,25

We further quantify chain mobility in the long-time limit by cal-
culating its self-diffusion coefficient D using the Einstein relation,

lim
t!1 g3ðtÞ � 6Dt; (12)

which allows the extraction of D from the slope of the MSD curve.
Figure 4 shows the diffusion coefficient of the shorter component in
bidisperse mixtures as well as that of pure short-chain melts. As shown
in Fig. 4(a), the presence of the longer chains (NL ¼ 350) substantially
reduces the diffusion rate of the shorter chains regardless of the length
of the latter, and the effect is stronger as the fraction of the longer com-
ponent increases. The change in DS may not appear large in the loga-
rithmic scale used in the figure, but for /S ¼ 0:7 and 0.3, DS drops by
�15% and 30%, respectively, for all three short chain length NS levels.

Figure 4(b) re-plots the same set of data using NS as the indepen-
dent variable. It highlights that for the three composition levels (includ-
ing the pure short-chain limit) studied, the chain-length dependence
follows the same pattern, i.e., lines for different /S stay parallel to one
another. The trend extends at least up to NS ¼ 100 where weak entan-
glement has already kicked in, as reflected by the steeper slope between
NS ¼ 50 and 100. This means that, e.g., DSðNS ¼ 50Þ=DSðNS ¼ 25Þ
stays nearly the same for different /S levels (note, again, the logarithmic
scale in DS), at least in the range tested, suggesting that the increasing
resistance brought by the long chain can be lumped into a monomeric
friction factor that increases with the long-chain fraction but remains
independent of NS, i.e., fð/LÞ. This observation can be rationalized con-
sidering that the relaxation of the longer species is a much slower pro-
cess and, within the relaxation time of the shorter component, the long
chains can be approximated as an invariant matrix.

We turn now to the effects of the shorter component on the long
chains. Figure 5 shows the center-of-mass MSD of NL ¼ 350 chains in
bidisperse mixtures with the NS ¼ 25 species as the diluent. It is
observed that the presence of the shorter component speeds up the
relaxation of the longer chains and the effect increases with the short-
chain fraction /S ¼ 1� /L. Since N ¼ 350 	 Ne, entanglement
effects are clearly shown in the g3ðtÞ curve of the pure N¼ 350 case—
a t�0:6 scaling regime is found around t � Oð104Þ. The exponent is
slightly higher than the theoretical prediction of 1/2 in the se < t < sR

regime [Eq. (10)]. Again, we note that the N¼ 350 semiflexible chains
reported in Wang and Larson26 also showed a steeper g3ðtÞ profile

FIG. 4. Diffusion coefficient of the short-chain component in bidisperse mixtures
with NL ¼ 350 chains (compared with that of pure short chain) as functions of (a)
short chain mass/volume fraction /S and (b) short chain length NS.

FIG. 5. MSD of the center of mass g3ðtÞ of NL ¼ 350 chains in bidisperse mix-
tures with NS ¼ 25 chains (both as the minority and as the majority component).
MSD of pure N¼ 350 chains is also included for comparison.
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than the theoretical t1=2 prediction. The discrepancy, as discussed
above, may still be attributed to CLF and CR which are not considered
in the theory. Transition to the t1 diffusive regime occurs at
t � 2� 105 � sR. With increasing fraction of the short chains, the
exponent (slope in log–log coordinates) of the same time range,
t � Oð104Þ, greatly increases, reaching 0.82 at /L ¼ 0:3. This inter-
mediate regime becomes less differentiable from the long-time diffu-
sive limit, suggesting a weakening of entanglement effects by short
chain addition.

Effects of varying the short-chain length (NS ¼ 25; 50, and 100)
on the mobility of the longer chain (NL ¼ 350) are shown in Figs. 6(a)
(long-chain majority with /L ¼ 0:7) and 7(a) (long-chain minority
with /L ¼ 0:3). Panel (b) of both figures replot the data in linear coor-
dinates to highlight the changes in diffusion rate. At short time,
dynamics of the N¼ 350 chains stays close to its pure melt limit, but

after t � Oð103Þ (� se), it becomes clear that mixing with shorter
chains increases the mobility of the longer chains and the effect is
stronger as NS decreases. Around t � Oð104Þ—i.e., the original t1=2

scaling regime in pure entangled melts—the slope is again raised by
the addition of the short chains, which is more clearly observed when
the long chains become the minority component [Fig. 7(a)]. The onset
of this intermediate regime of slower dynamics, which marks se, is
reduced. Overall, the introduction of short chains speeds up the
dynamics of the entangled chain species and lessens the extent of
entanglement.

Increasing slope in the se < t < sR segment, with decreasing
matrix chain length NS, was also previously reported by Wang and
Larson26 in both the g1ðtÞ and g3ðtÞ profiles of their long probe chain.
For example, in their binary mixtures of NL ¼ 350 and NS ¼ 25 (both
semiflexible) chains with /L ¼ 0:15, the slope of g3ðtÞ reached 0.84,

FIG. 6. MSD of the center of mass g3ðtÞ of NL ¼ 350 chains in bidisperse mix-
tures as the majority component (/L ¼ 0:7), with NS ¼ 25; 50, and 100 chains as
the minority component: (a) log–log coordinates; (b) linear coordinates. The MSD
of pure N¼ 350 chains is also included for comparison.

FIG. 7. MSD of the center of mass g3ðtÞ of NL ¼ 350 chains in bidisperse mix-
tures as the minority component (/L ¼ 0:3), with NS ¼ 25; 50, and 100 chains as
the majority component: (a) log–log coordinates; (b) linear coordinates. The MSD
of pure N¼ 350 chains is also included for comparison.
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whereas their NS ¼ 160 (and NL ¼ 350) case had a slope of 0.58. The
latter is close to our monodisperse N¼ 350 case because NS ¼ 160 is
already substantially entangled (specifically considering their higher
chain rigidity which gives lower Ne than our flexible chains). With
more short chains in the surrounding (higher /S) or faster relaxation
of those chains (lower NS), CR is stronger, which leads to faster tube
relaxation and, eventually, the higher mobility in the longer entangled
chains.

The diffusion coefficient of the NL ¼ 350 chains, DL, is again cal-
culated from the MSD data at the long-time limit. The result is plotted
in Fig. 8. DL increases with the short-chain fraction /S ¼ 1� /L, and
the effect becomes stronger as NS decreases. With 30% short chains in
the mixture (i.e., NL ¼ 350 remains the majority), the speed-up is
87%, 52%, and 34% for NS ¼ 25, 50, and 100, respectively, while when
short chains reach 70% (i.e., NL ¼ 350 becomes the minority), the
speed-up reaches 455%, 320%, and 151% for the same three NS levels.

Speed-up of long chain dynamics upon introducing the short
chain component again agrees with various previous simulation stud-
ies.10,15,22,25,26 The results above have also been confirmed experimen-
tally. Wang et al.41 studied the effects of short chains on the dynamics
of long chains and vice versa using a binary mixture of 1,4-polybutadi-
ene at different weight concentrations of the long chains. The diffusion
coefficients of the different chains were measured using pulsed-
gradient nuclear magnetic resonance (NMR) spin echo measurements.
Their results showed that the dynamics of the longer chains were sped
up by the shorter chains and the effects were stronger with decreasing
weight fraction of the longer chains.

B. Rouse mode analysis (RMA)

The MSD analysis above suggests the following: (1) dynamics of
the short-chain species is impeded by the long chains but still follows
similar patterns as the corresponding pure short-chain melt; (2)
dynamics of the long-chain species is accelerated by the short chains,
and features of entanglement become weakened. Here, we apply
Rouse mode analysis to directly examine the extent of entanglement
effects in different species. We start with a quick review of the Rouse

model. It treats the probe chain as a Gaussian chain and considers all
its surrounding chains to form a continuous viscous medium, i.e., a
mean-field approach. Dynamics of each bead on the probe chain is
described by the inertia-less Langevin equation.8 For example, the
equation of motion for the ith bead is written as

f
d~r i
dt
¼ Hs ~r iþ1 �~r ið Þ � ~r i �~r i�1ð Þ� �þ~f

r

i ; (13)

where f is the monomeric friction coefficient, Hs is the spring con-

stant, ~r i is the position of the ith bead, and ~f
r

i is the random force
exerted on the ith bead, satisfying

h~f r

i ðtÞ~f
r

j ðt0Þi ¼ 2fkBTdijdðt � t0Þ~~d ; (14)

where dðtÞ is the Dirac delta function, dij is the Kronecker delta, and ~~d
is the identity tensor. Equation (13) shows that position coordinates of
neighboring beads are coupled in their dynamics through spring
forces. The RMA projects the original bead coordinates ~r i to a set of
mutually orthogonal coordinates known as Rouse modes or normal
coordinates ~Xp (p ¼ 0; 1;…;N � 1). We adopt the original form of
projection by Rouse,2

~Xp �
ffiffiffiffi
2
N

r XN
n¼1

~r iðtÞ cos
ði� 1=2Þpp

N

� �
;

ðp ¼ 0; 1; 2;…N � 1Þ;
(15)

which is widely used in the literature.11,13,42–44 The p¼ 0 mode
describes the motion of the center of mass of the chain, and the other
modes ð1 � p � N � 1Þ describe the internal relaxations of sub-
chains, or “blobs,” of the size of N/p beads. Each of the transformed
coordinate or Rouse mode ~Xp follows Langevin dynamics with its
own friction coefficient and random force. Importantly, relaxation of
different modes is mutually independent. The autocorrelation function
(ACF) of each p> 1 mode decays exponentially,

h~XpðtÞ~Xpð0Þi ¼ h~X 2
pi exp � t

sp

� �
; (16)

with its own relaxation time sp given by

s�1
p ¼ 12kBT

fb2
sin2 pp

2N

� �
; (17)

where b2 is the mean square bond (spring) length. For leading modes
with p.N=5, which describes the motions of larger segments with
N=pZ 5 beads, Eq. (17) can be approximated by2

sp ¼ fb2

3p2kBT
N
p

� �2

: (18)

Rouse model is commonly used to describe the dynamics of
unentangled polymer melts. With increasing chain length, topological
constraints set in and relaxation dynamics changes. For entangled
chains, we may still project the coordinates to ~Xp using Eq. (15), but
the ACFs no longer follow simple exponential decay. A stretched
exponential is often used instead,11–13,44,45

h~XpðtÞ~Xpð0Þi ¼ h~X 2
pi exp � t

s
p

 !bp
2
4

3
5; (19)

FIG. 8. Diffusion coefficient of the long chain (NL ¼ 350) in bidisperse mixtures
with shorter chains of different lengths NS.
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where s
p and bp are the time scale and exponent (stretching parame-
ter) for the pth mode. The relaxation time of a stretched exponential
can be defined as

sp �
ð1

0
exp � t

s
p

 !bp
2
4

3
5dt ¼ s
p

bp

 !
C

1
bp

 !
; (20)

where CðxÞ is the gamma function. Note that at the simple exponen-
tial limit, i.e., bp ! 1, the two time scales are the same sp ¼ s
p .

We start with the relaxation of NS ¼ 25 chains in its pure melt
(/S ¼ 1:0) and in mixtures with NL ¼ 350 chains. Figure 9 shows the
time ACF of the p¼ 1 mode at different mass fractions. In all cases,
the logarithm of the ACF follows a straight line for nearly the whole
time range, i.e., the simple exponential decay as given in Eq. (16) accu-
rately describes the relaxation dynamics of short chains. Relaxation
dynamics of unentangled monodisperse melts of KG chains is known
to be well approximated by the Rouse model despite its many simplifi-
cations.17 However, we find that even in mixtures with a long-chain
species well beyond the entanglement threshold, the nature of the
short-chain dynamics is not changed at least for /S down to 30%. (At
very low /S, we do expect the dynamic pattern to differ—indeed, dif-
fusion of small molecules, at extremely low concentration, in a matrix
of long-chain polymers is known to display jerky “hop”-like move-
ments.47) The presence of longer chains seemingly do not have any
effect other than to increase the relaxation time of the shorter chains—
note in Fig. 9 that the pure NS ¼ 25 melt has the steepest slope and
the relaxation slows down with increasing long chain fraction (/S
decreases). This is consistent with the earlier discussion that having
longer chains in the background medium increases the effective fric-
tion coefficient of the short chains. The results for NS¼ 50 are similar
and thus not shown here.

Fitting the ACF to the single exponential of Eq. (16) provides the
relaxation time, which is plotted against 1=p2 in Figs. 10 and 11 for
NS ¼ 25 and 50 chains, respectively. From Eq. (18), for the Rouse
model, sp vs 1=p2 should give a straight line, at least for small p, whose

slope equals the longest relaxation time s1. For NS ¼ 25 (Fig. 10), this
Rouse behavior is clearly demonstrated, whereas some small devia-
tions are observed in NS ¼ 50 case (Fig. 11). Introducing a longer
NL ¼ 350 species does not change the nature of the dynamics, but the
relaxation time of the shorter chains increases with increasing long-
chain content. In both figures, the highest p mode available is limited
by the sampling frequency—the frequency at which coordinates were
stored—used in our simulation.

Slow-down of short-chain dynamics in the presence of longer
chains in its surroundings is intuitively predictable and well established
in the literature.10,25,26 Nevertheless, our finding, from results here as
well as back in Fig. 4(b), that the reduced mobility can be fully
described by an increased friction factor, which is only a function of
composition /L and does not vary with NS, has never been reported
before to the best of our knowledge. Kopf, D€unweg, and Paul11 found

FIG. 9. Relaxation of the p¼ 1 Rouse mode of NS ¼ 25 chains in its pure melt
and in bidisperse mixtures with NL ¼ 350 chains. Lines represent linear regression
corresponding to the simple exponential relaxation of Eq. (16).

FIG. 10. Single-exponential relaxation time sp of NS ¼ 25 chains in its pure melt
(/S ¼ 1:0) and in bidisperse mixtures with NL ¼ 350 chains (p¼ 1 to p¼ 3).

FIG. 11. Single-exponential relaxation time sp of NS ¼ 50 chains in its pure melt
(/S ¼ 1:0) and in bidisperse mixtures with NL ¼ 350 chains (p¼ 1 to p¼ 3).
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that when two unentangled isotope chain species with identical chain
length but different monomeric mass are mixed, they retain the same
Rouse dynamics as their pure melts but with different effective mono-
meric friction factors—the light and heavy components see their fric-
tion factor to increase and decrease, respectively. The effective friction
factor depends on both the volume fraction of heavy chains and the
mass ratio between the components. However, at least for 10 � N
� 30 investigated in that study, it does not depend on the chain length
N. What we find here is that, for a short unentangled chain species,
mixing with a longer species, which is well within the entangled
regime, does not change its own dynamical patterns, even when, e.g.,
in the case of NS ¼ 50, its own length already exceeds Ne.

Departure from Rouse dynamics is observed as chain length gets
longer and entanglement effects set in. Rouse mode projection [Eq.
(15)] may still be applied to longer chains, but relaxation of each mode
is no longer independent. As a result, its ACF does not follow the sim-
ple exponential decay as given in Eq. (16). Figure 12 shows stretched
exponential [Eq. (19)] fits to the ACFs of leading Rouse modes of
the monodisperse N¼ 350 system as well as its mixture with short
NS ¼ 25 chains as the diluent. In both cases, it appears that the p¼ 1
mode may still be reasonably approximated by a simple exponential
(i.e., close to straight lines in the figure). However, at p¼ 3, the curva-
ture in the profile is too strong to be ignored, and a stretched exponen-
tial is required. The same behavior is observed in higher modes such
as p¼ 5 and 7 (not shown here). Coupling between different modes is
attributed to the topological constraints imposed by entanglements.
Indeed, using a simple lattice model, Shaffer13 showed that allowing
chains to cross one another would recover the Rouse dynamics in oth-
erwise entangled chains. For bidisperse mixtures, we observe that
introducing short NS ¼ 25 chains as a diluent, at least for /S up to
70% shown in Fig. 12, does not eliminate this non-Rouse behavior
even though the relaxation dynamics of the NL ¼ 350 chains is signifi-
cantly accelerated (compared with its pure melt).

Curvature in the ln ðh~XpðtÞ~Xpð0Þi=h~X 2
piÞ vs t plot is measured

by the stretching parameter bp, which can thus be viewed as an

indicator of non-Rouse behaviors (bp ¼ 1 in the purely Rouse limit).
Figure 13(a) shows bp as a function of N/p (which measures the number
of beads in each segment or sub-chain described by the pth mode) for
monodisperse melts of different chain lengths. At the high-p (small N/p)
end, all curves approximately overlap regardless of the chain length
(entangled or not), indicating that relaxation of small segments is inde-
pendent of the overall chain length. This terminal bp value of 0:5� 0:6
is significantly lower than 1—departure of small-scale segmental relaxa-
tion from the Rouse model is obvious even for the shortest chains. This
is likely due to the differences between the KG chain used in our simula-
tion and the Gaussian chain in the Rouse model. In particular, the latter
does not consider the excluded-volume effect between beads, which is
more important in dynamics at small scales. Indeed, strong departure of
bp from 1 at small scales was noted in several earlier studies.12,15,19 At
N=p � 3, bp starts to rise steeply, reaching nearly 0.8 at N=p � 5 (seg-
ment size of five beads), after which curves of different N separate. For
N¼ 25 (where N=p ¼ 5 corresponds to the p¼ 5 mode), bp continues
to increase with lowering p, ending well above 0.9 for the p¼ 1 mode.
For N¼ 50, bp plateaus around 0.8 until p¼ 3 mode after which it again
quickly rises above 0.9.

Entanglement effects are most clearly seen in the N¼ 350 case
where, after the plateau at 5.N=p. 10, bp quickly declines and
reaches its minimum at N=p � 70. This minimum bp is around 0.6.
Strong departure from the Rouse model at this length scale is attrib-
uted to the topological constraints between entangled chains: each
chain is now constrained to its surrounding tube (the chain follows
reptation motion) and can no longer meander freely in the three-
dimensional space. The size of segments N/p strongly affected by this
effect also coincides with the entanglement strand size Ne of the KG
model (30� 80). Interestingly, leading modes (p¼ 4 to 1) again show
a rapid surge of bp—relaxation of largest segments returns to the
Rouse-like single exponential behavior, which is consistent with the
observation in Fig. 12 that a simple exponential adequately captures
the relaxation behavior of the p¼ 1 mode. One can rationalize this
considering that at length scales 	 Ne, the conformation of the con-
straining tube itself (or, more accurately, the primitive path) undergoes
multiple turns. In addition, over the time scale of sd (the longest relax-
ation time of entangled chains), surrounding chains all have sufficient
time to relax, which causes significant CR, and the tube (primitive
path) conformation changes substantially through its own Rouse
motion.40 Chain motion at the largest scales is thus again described by
a three-dimensional random walk. The N¼ 100 case is similar to
N¼ 50, but a small dip in bp is found near N=p � 30 as a sign of
weak entanglement.

Dependence of relaxation time sp, as calculated from Eq. (20), on
the segment size N/p is shown in Fig. 13(b) (again for monodisperse
melts). Rouse model predicts [Eq. (18)] sp=ðN=pÞ2 to be a constant
for N=pZ5 which is indeed observed in the N¼ 25 and 50 cases in
our simulation. Departure from the plateau is found at smaller scales
(N=p . 5), where the relaxation times of all chain lengths again over-
lap. Entanglement causes a sudden slow-down in the dynamics, which
shows as a surge in sp=ðN=pÞ2 starting at N=p � Oð10Þ. At the long-
segment (small-p) limit, another, much higher, plateau is reached.
This conforms to the tube model prediction4 of

sp � N
Ne

� �
N
p

� �2

: (21)

FIG. 12. Relaxation of the leading Rouse modes of N¼ 350 chains in its pure
melt (filled symbols) and as the minority component in a bidisperse mixture with
NS ¼ 25 (empty symbols; /L ¼ 0:3). Lines represent stretched exponential fits
[Eq. (19)].
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FIG. 13. Rouse mode analysis with stretched exponential fitting—stretching parameter bp [(a), (c), and (e)] and relaxation time sp [scaled by ðN=pÞ2; (b), (d), and (f)]—of
monodisperse melts of varying chain length [(a) and (b)] and the NL ¼ 350 component in bidisperse mixtures with the longer chains as the majority [/L ¼ 0:7; (c) and (d)]
and minority [/L ¼ 0:3; (e) and (f)] component.
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A raised right-end plateau is also discernible in the N¼ 100 case,
although the level of elevation (from the Rouse plateau) is small, indi-
cating that N¼ 100 is close to the onset of entanglement.

For monodisperse melts, stretched exponential analysis of Rouse
modes has been performed in a number of previous studies using vari-
ous models. Shaffer’s13 BFM, despite its many differences in model
construction with the KG model used in our study, showed strikingly
similar results. Their bp profile started with a plateau value between
0.7 and 0.8, which agrees with our plateau at 5.N=p. 10. They did
not report a lower bp level for smallest N/p, but such discrepancy at
smallest scales is expected, given the differences between the models.
For entangled chains, they also showed a deep dip at higher N/p,
occurring also at N=p � 60–70 for their longest chains (N¼ 300 and
500). For reference, their model reported Ne � 32 based on the self-
diffusion coefficient of chains, i.e., their dip also occurred at
N=p � 2Ne, which was quantitatively consistent with our observation.
Their N¼ 160 chains, similar to our N¼ 100 case, showed a shallower
dip occurring at smaller N/p, which is a sign of weak entanglement
expected in the transitional regime. Their sp=ðN=pÞ2 profiles also
showed a raised plateau at the high-N/p end for entangled chains.
Interestingly, both hallmarks of entanglement [dip in bp and raised
plateau in sp=ðN=pÞ2] disappeared if chains were allowed to cross.
More recent studies based on the KG model, for N ¼ 500 to 2000, also
showed an “entanglement dip” at N=p � 70� 100 with bp dropping
down to � 0:5.12,46,48 On the other hand, the diamond lattice model
by Lin, Mattice, and Von Meerwall15 showed bp to increase monotoni-
cally from� 0:4 to a plateau of� 0:7 at the high-N/p end without the
entanglement dip. Similarly, Padding and Briels19 performed MD
using a coarse-grained polyethylene model and also only reported a
plateau at the high-N/p end for highly entangled chains. Note that
unlike the KG model, in which the LJ potential of tightly-bonded
beads is sufficient to prevent chain crossing, non-crossability had to be
explicitly enforced in the above two models. For Padding and Briels,19

the coarse-grained non-bonded interactions were too soft to prevent
chain crossing and an additional bond-crossing potential was imposed
(the so-called TWENTANGLEMENT algorithm45). Thus, whether or
not an entanglement dip would occur seems to depend on the specific
treatment of non-crossability.

In binary mixtures with shorter chains where the NL ¼ 350 spe-
cies remains the majority component [Figs. 13(c) and 13(d)], the same
hallmarks of entanglement—i.e., dip in bp at Oð10Þ.N=p.Oð102Þ
and raised plateau in sp=ðN=pÞ2 at N=pZOð102Þ—are preserved.
Introduction of the short chain diluent lessens the extent of entangle-
ment, as reflected by the shallowing of the bp dip and reduction in the
raised sp=ðN=PÞ2 plateau magnitude. At its core, this is still a CR
effect—faster relaxation of the shorter chains in its surroundings
emancipates the long chain from topological constraints earlier. This
can be described as faster tube Rouse motion,40 but as the diluent
chains get shorter, tube dilation8 also plays a role. Indeed, Baig et al.25

showed that tube dilation only occurs when NS < Ne, whereas for
larger NS, the diluent accelerates tube relaxation without changing its
diameter.

The effect strengthens as the diluent chain length decreases.
Increasing the short-chain mass fraction to 70% [Figs. 13(e) and 13(f)]
significantly alleviates entanglement and, with NS ¼ 25 as the diluent,
dynamics of NL ¼ 350 chains is pushed to the marginally entangled
limit [similar to the pure N¼ 100 case in Figs. 13(a) and 13(b)].

Increasing CR with increasing /S and with decreasing NS are both
expected and well established.15,25,26

C. Stress relaxation

Sections III A and III B focused on the dynamics of individual
chains—in the case of bidisperse mixtures, discussion of MSD and
RMA shows how the relaxation of one chain type is affected by the
dynamics of the other. We turn now to the stress relaxation dynamics
of the melt in its entirety. Stress relaxation modulus G(t) is defined as
the ratio of the time-dependent shear stress following a small step
strain to the strain magnitude. G(t) contains the full specrum of infor-
mation about the material linear viscoelasticity and is sensitive to the
MWD of the polydisperse mixture. A bidisperse mixture offers a sim-
ple model for studying the effects of chain-length disparity on G(t),
which will further contribute to the general understanding of MWD
effects on polymer rheology.

In equilibrium molecular dynamics, the Green–Kubo relation
relates G(t) to the ACF of shear stress fluctuations

GðtÞ ¼ V
kBT

hrxyðt0Þrxyðt0 þ tÞi; (22)

where V is the volume of the system, T is the temperature, and rxy is
the instantaneous shear stress. The stress relaxation modulus is rather
difficult to calculate due to intense stress fluctuations that are intrinsic
to small-scale systems, which has a particularly strong impact on the
stress ACF at the terminal (long-time) regime. In isotropic fluids,
stress ACFs in multiple directions can be averaged in an attempt to
reduce fluctuations.49 We use the particular form of

GðtÞ¼ V
5kBT

hrxyðtÞrxyð0ÞiþhryzðtÞryzð0ÞiþhrzxðtÞrzxð0Þi
� �

þ V
30kBT

hNxyðtÞNxyð0ÞiþhNxzðtÞNxzð0ÞiþhNyzðtÞNyzð0Þi
� �

;

(23)

where

Nab ¼ raa � rbb: (24)

The same expression was also used in Ramírez et al.50 The number of
different components for averaging is nevertheless still too small to
significantly reduce the noise in the signal.32 We further used the
multi-tau correlator method developed by Ramírez et al.50 which uses
a hierarchical multi-level data structure to store and filter time series
and calculate correlation functions on the fly. In its data structure, level
0 stores the most recent p data points in the time series. At level 1, the
first entry stores the average value of the most recent m (m< p) points,
the second entry stores the average of the next m points, and so on.
Similarly, each entry at level l is the average of m entries at level l–1. As
such, stored data represent local averages of the original time series,
and the averaging window size ðml for level l) increases with the level,
so does the time lag it covers (the range of previous time where infor-
mation is retained at the current level). For the smallest time lags (up
to p–1 sampling intervals), the unfiltered time series is used, whereas
for increasing time lag (higher levels), averages over larger window
sizes are used. In this study, we use the same default parameters p¼ 16
and m¼ 2 as recommended in Ramírez et al.50
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Relaxation modulus is calculated for both monodisperse and
bidisperse samples in our simulations. In Fig. 14, G(t) is scaled by a
factor of t1=2, as the Rouse model predicts a t�1=2 scaling in stress
relaxation

GRouseðtÞ ¼
ffiffiffi
p

p

2
ffiffiffi
2

p �chainkBT
t
sR

� ��1
2

ðt. sRÞ; (25)

where �chain is the number density of chains, related to the bead num-
ber density �bead by

�chain ¼ �bead

N
: (26)

Since sR scales with N2, for given monomer species and bead density,
G(t) magnitude does not depend on the chain length—chain length

only affects sR, i.e., when terminal relaxation [departure from Eq.
(25)] kicks in. Using �bead ¼ 0:85 and sR ¼ 1:66� 105 based on the
MSD of the pure N¼ 350 case from our simulation (Table II), the
Rouse prediction of t1=2GRouseðtÞ ¼ 0:62 (in LJ reduced units with G
nondimensionalized by kBT) is shown as a flat dashed line in Fig. 14.

It is observed that pure melts of the shorter (N¼ 25 and 50)
chains completely relax before a pronounced Rouse plateau can be
formed. For the pure N¼ 350 melt, a Rouse plateau is clearly identified
from t � Oð10Þ up to t � 2000. For comparison, se ¼ 3428 accord-
ing to Table II. Departure from the Rouse plateau at the small t limit is
also consistent with the earlier conclusion from RMA that the Rouse
model does not accurately capture the dynamics at small scales.
Entanglement manifests as a strong spike above the Rouse plateau at
longer time. For N¼ 100, entanglement is not strong enough to cause
substantially raised stress than the pure rouse level. For mixtures
between NL ¼ 350 chains with a shorter component, if the long chains
remain the majority [Fig. 14(a)], a spike is still clearly observable for
different diluent chain lengths (down to NS ¼ 25). If the long chains
become the minority [Fig. 14(b)], t1=2GðtÞ no longer rises above the
Rouse plateau. However, compared with the short-chain cases, in
bidisperse mixtures, a second lower (� 0:2) plateau regime is found,
indicating that even the weak entanglement present in those mixtures
can appreciably hinder relaxation at longer time scales.

In practice, contributions of different components of a polydis-
perse mixture are usually accounted for through mixing rules that
relate the MWD of the polydisperse mixture to its G(t). A generalized
form of the mixing rule is given as51–53

GðtÞ ¼ G0
N

ð1
logNe

F1=bðt;NÞwðNÞdðlogNÞ
 !b

; (27)

where G0
N is the plateau modulus and F(t, N) is a kernel function

accounting for the contribution from chains of length N. The w(M)
function is given by

wðNÞ � dWðNÞ
d logN

; (28)

where W(N) is the cumulative weight fraction of chains with the
degree of polymerization lower than N, and b is a parameter describ-
ing the mixing behavior. Different b values have been used in the liter-
ature. A b value of 1 gives linear combination derived from the simple
tube model. The double reptation model by Des Cloizeaux9 leads to a
b value of 2. Van Ruymbeke et al.7 adjusted the value to 2.25 to obtain
better fits for the linear viscoelastic properties evaluated in their study.
Higher b values have also been proposed in the literature to describe
higher order entanglements.7,54,55 Several kernel functions have also
been reported. The simplest choice is a step function56 which assumes
steep transition between strained and relaxed conformations.
Tsenoglou57 described the relaxation using a more realistic single
exponential function which gives better qualitative prediction. More
accurate quantitative description is possible with more sophisticated
forms such as the relaxation function of Doi and Edwards,4 along with
its derived form that accounts for the effects of contour length fluctua-
tions,4 and the time-dependent diffusion model of Des Cloizeaux.58

In a bidisperse mixture,

wðNÞ ¼ /SdðlogN � logNSÞ þ /LdðlogN � logNLÞ: (29)

FIG. 14. Stress relaxation modulus G(t) (scaled by t1=2) of pure polymer melts of
different chain length N (lines) and bidisperse melts with NL ¼ 350 and various NS
(symbols): (a) /L ¼ 0:7; (b) /L ¼ 0:3. Each profile is averaged over three inde-
pendent configurations. Horizontal dashed line shows the Rouse model prediction.
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Using the propertyðaþ�

a��

f ðxÞdðx � aÞdx ¼ f ðaÞ ð� > 0Þ (30)

of the Dirac delta function, Eq. (27) becomes

GSþLðtÞ ¼ G0
N /SF

1=b
S ðtÞ þ /LF

1=b
L ðtÞ

� �b
; (31)

where

FSðtÞ � Fðt;NSÞ (32)

and

FLðtÞ � Fðt;NLÞ (33)

are the kernel functions of the short- and long-chain species,
respectively.

Our focus here is not on the analytical theory of the relaxation of
individual chain species itself, but on predicting mixture rheology
based on the relaxation behaviors of individual components.
Therefore, we circumvent the analytical expression of the kernel func-
tion and extract it directly from MD simulation of corresponding
monodisperse melts. Note that at the /S ! 1 limit, Eq. (31) becomes

GS ¼ G0
NFSðtÞ (34)

and at the /L ! 1 limit,

GL ¼ G0
NFLðtÞ: (35)

Combining Eqs. (34) and (35) with Eq. (31) leads to

GSþL ¼ /SG
1=b
S ðtÞ þ /LG

1=b
L ðtÞ

� �b
; (36)

where GSðtÞ and GLðtÞ are obtained from the corresponding monodis-
perse simulation results.

Predictions from Eq. (36) are shown in Fig. 15 in comparison
with direct MD results of bidisperse mixtures. Since the mixing rule of
Eq. (27) is only applicable to entangled melts, binary mixtures between
NS ¼ 100 and NL ¼ 350 are selected here. Corresponding monodis-
perse MD results are also displayed. At early times, a regime domi-
nated by Rouse relaxation, all the curves overlap as expected. As per
the above discussion, G(t) from the Rouse model is independent of
chain length at t < sR. At longer times, dynamics of different cases
separate with the pure N¼ 100 case being the first to decay and
N¼ 350 being the last. Relaxation dynamics of bidisperse mixtures is
sandwiched between the two monodisperse limits.

Comparing the mixing rule results with MD of bidisperse cases,
b¼ 2 gives strikingly accurate prediction at /L ¼ 0:7 as shown in Fig.
15(a), showing that the double reptation model predicts the relaxation
of the system reasonably well. Note that for t up to at least Oð104Þ,
error bars in the MD data are smaller than the symbol size and thus
the comparison is statistically significant. For /L ¼ 0:3, b¼ 1 seems
to be more accurate for t. 2� 104 shown in the inset of Fig. 15(b),
but as we examine t > 2� 104, we spot a kink in the MD profile,
which brings the curve closer to the b¼ 2 line right before terminal
relaxation. Admittedly, fluctuations (and statistical uncertainty) also
grow in that regime as we move closer to terminal relaxation, making
the observation less statistically conclusive than the earlier agreement

with b¼ 1 at smaller t. We have also tested b ¼ 2:25 which gave
worse results and is thus not shown here. At this point, we are not
ready to interpret these observations, including (i) the concentration-
dependence of the b value and (ii) possible switch from b¼ 1 to b¼ 2
at later time in the /L ¼ 0:3 case. Definite answers will require expan-
sive simulations including multiple concentration levels and a wider
range of chain lengths.

IV. CONCLUSIONS

We have studied the chain dynamics and stress relaxation of
bidisperse polymer melts using MD simulation. For each bidisperse
system, we mixed a long NL ¼ 350 chain component, whose mono-
disperse melt is entangled, with a short-chain diluent (which is
either unentangled—i.e., NS ¼ 25 and 50, or marginally entangled

FIG. 15. Test of the mixing rule [Eq. (27)] in bidisperse mixtures of NS ¼ 100 and
NL ¼ 350 at (a) /L ¼ 0:7 and (b) /L ¼ 0:3. Insets show enlarged views of the
comparison between the mixing rule and MD before terminal relaxation in a linear
time scale. Error bars are shown for bidisperse MD cases only, which are no larger
than the symbol size except in the terminal-relaxation (large-t) regime.
Uncertainties in pure-melt MD cases are similar.
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NS ¼ 100). Two different composition levels, one with the long chains
as the majority component (/L ¼ 0:7) and the other as the minority
(/L ¼ 0:3) component, were studied.

Compared with a pure short-chain melt, mixing with longer
chains significantly reduces the mobility of short chains. However,
dynamics of a short, unentangled, chain species remains well-
described by the Rouse model, despite the presence of the longer,
entangled, chain species in the mixture. At least for /S down to 30%
studied, dynamics of a short chain in a slow-moving matrix containing
entangled long chains shows the same qualitative pattern as its relaxa-
tion in a pure monodisperse melt. Slow-down in the dynamics can be
well captured by a higher effective monomeric friction coefficient.

Likewise, adding a short-chain diluent can significantly accelerate the
motion of the longer, entangled, chain species. The effect is stronger as the
short-chain mass fraction increases and as its chain length decreases.
Unlike the previous case, however, this speed-up effect cannot be fully
described by a quantitatively lower friction coefficient, which is instead
accompanied by an overall lessening of the extent of entanglement.

Rouse mode analysis revealed that for short, unentangled, chains,
relaxation of Rouse modes displays simple exponential decay, except
the highest modes corresponding to dynamics at smallest scales.
Mixing with longer chains does not change this qualitative observa-
tion. Meanwhile, for longer, entangled, chains, strong departure from
simple-exponential relaxation is seen at intermediate length scales of
OðNeÞ. Relaxation times of intermediate and large scales also become
significantly elevated compared with the Rouse model. Both these
characteristics of entanglement become weakened with the introduc-
tion of short-chain diluents.

Despite the success of the Rouse model in describing the
dynamics of short chains (in both monodisperse melts and bidis-
perse mixtures with longer chains), stress relaxation of monodis-
perse short chains does not strictly follow the Rouse scaling. For
monodisperse entangled chains, a well-defined Rouse scaling regime
is observed, followed by a positive deviation from the Rouse model
at longer times (in the entanglement regime). Bidisperse mixtures
display similar positive deviation when the longer species is the
majority. When it becomes the minority, the relaxation modulus no
longer surpasses the Rouse scaling. Entanglement is instead reflected
as an elongated (compared with a pure short-chain melt) tail of resi-
due modulus.

Mixing rules for predicting a mixture’s relaxation modulus from
that of monodisperse melts of its constituent components were tested.
The double reptation model provides reasonably accurate prediction
when the longer chains are the majority. However, when longer chains
are the minority, the simple tube model can be more accurate in cer-
tain regimes.
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Chapter 5

Viscoelastic and thermo-mechanical

properties of polymer-additive

mixtures

In this chapter, we investigate the molecular parameters affecting the design

of polymer-plasticizer mixtures using a single-bead model for the plasticizers.

We focused on the thermophysical properties, dynamics, and the rheological

properties of the mixtures; examining plasticization markers such as glass tran-

sition temperature Tg, Young’s modulus Y, and the linear viscoelasticity of the

mixtures at different molecular sizes and concentrations of the plasticizer ad-

ditives. We observe that these different metrics for plasticization are indeed

not correlated; a reduction in one property, for example, Tg does not lead to a

corresponding reduction in Y.

This chapter builds on the earlier master’s thesis of Kushal Panchal,1 where

the decorrelation between plasticizer effects on Tg and Y was first reported. I
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repeated that work and refined the results with better accuracy. I then further

studied the effects of the additives on viscoelastic properties. I carried out all the

simulations reported in this chapter. I also analyzed the results and wrote the

draft. The research was conducted under the supervision of Li Xi and Shiping

Zhu who also provided feedback on the draft.

This chapter is under preparation for future publication.

5.1 Introduction

The thermophysical properties of polymers can be significantly altered upon

the addition of additives.2 One of such additives is a plasticizer, which is used

to modify properties like the elastic moduli, glass transition temperature Tg,

and rheological properties such as viscosity.3,4 Plasticizers are used to soften the

polymer, improve the flexibility, reduce the brittleness, and enhance the worka-

bility of the polymer in general. Despite how prevalent plasticizers are, there is

still a significant dearth in our understanding of how exactly they modify poly-

mers. Different theories used – free volume, lubricity, and gel theory have been

found inadequate in explaining different aspects of the plasticization process.5

In molecular dynamics (MD) simulations, an all-atom simulation, which fully

models the chemical structure of the material, can be used when material-specific

properties are being studied and several studies6–8 have investigated various

aspects of the polymer-plasticizer interaction. For example, Li et al.7 studied

the plasticization efficiency of phthalates in polyvinylchloride (PVC). All-atom

simulations however suffer from the prohibitive computational time required
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to fully run the simulations, due to the wide range of length and time scales

involved in polymer relaxation especially, when viscoelastic properties are be-

ing investigated. Generic bare-bone models of polymers and plasticizers which

capture the essential physics of the system can be used which leads to signifi-

cant savings in the computational time required. In addition, it allows for the

generic aspects of the physics to be focused on, rather than material-specific

properties. As we further discussed in chapter 6, it turns out that developing a

basic multi-bead model that mimics real plasticizer is non-trivial either due to

rapid phase separation that occurs when the model additives are added to the

polymers or in cases where they are compatible, the plasticization effects are

minimal.

Several authors have investigated the interaction between polymers and small

molecular additives using coarse-grained (CG) models in MD simulations.9–12

A previous work by Riggleman et al.13 used a bare-bones CG model, where the

additives are modeled as Lennard-Jones particles and the polymer represented

as a bead-spring model, to examine the effect of molecular additives on polymer

properties. Among other things, they found that at a low mass fraction of the

additive (∼ 5% mass fraction), there is a reduction in the Tg of the polymer. On

the other hand, there is also an increase in various mechanical properties, such

as the Young’s modulus Y and the shear modulus. A phenomenon referred to

as anti-plasticization. It was further explained that the antiplasticization effect

is due to improved packing efficiency in the glassy state, wherein the addi-

tives are able to pack themselves neatly between polymer chains. Riggleman
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et al.’s study by design, was focused on exploring the broad factors responsi-

ble for antiplasticization. The free volume theory,14–17 loosely described as the

space available for particles or chain segments to move freely as the tempera-

ture is reduced, has long been used to explain some of the observed dynamic

and thermophysical properties such as Tg and viscosity. Riggleman et al.13 fur-

ther argued that, while there are local-scale fluctuations in the elastic constants,

there was no corresponding long-scale density fluctuations which is a complete

antithesis of the free volume concept as being responsible for the observed vari-

ations. Their investigation was however limited to a molecular size and a single

concentration where the antiplasticization effect has been shown to occur.

There is also a relatively large body of work on polymer-particle interaction

wherein the additives are modeled as nanoparticles.18–22 Among other things,

it was reported that small neutral NPs reduce the viscosity of the host polymer

and there is a reduction in the monomeric relaxation rates when the mixtures

are weakly interacting. Furthermore, if the NPs are larger than half the entan-

glement mesh size, there is an increase in the viscosity and a negligible influence

on the monomer relaxation rate.20,23 We are however interested in studying the

plasticization effects of single-bead additives.

Previous works have largely focused on the antiplasticization effect.9,13,24

Our goal in this work is two–fold: (i) to explore the possibility of applying the

Kremer-Grest (KG) model25 for studying plasticization effects and (ii) to explore

the dependence of the Tg, Y, and linear viscoelasticity of polymer-particle sys-

tems on the molecular dimensions of a single-bead additive. The KG model

has been successfully used to investigate different areas in polymer physics
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such as the nature of entanglements,25 influence of polydispersity on linear

viscoelasticity,26,27 polymer networks,28 glass transition,29 and many other poly-

meric features. The main difference between this work and polymer-nanoparticles

is on the dimension of the particles. Relative to the monomer (bead) sizes of

model polymers, their additive sizes are usually much larger and the interac-

tion potential different. In general, it has been observed that small molecule

additive enhances the dynamics of the polymer chains in a manner similar to a

mixture of short chains and long chains.30 We investigate these properties over

a wide range of concentration and size dimensions.

5.2 Model and Methods

Our model consists of a mixture of polymer chains (A) and additives (B). Al-

though we have tried other models – as further discussed in chapter 6 where

we attempt to model a more realistic representation of the plasticizer. In the

model we describe here, each polymer chain is a KG chain, represented using a

bead-spring chain model25 where the beads are the monomers of the polymer

chain and the springs represent the bonds between the monomers. The bonded

beads interact using a finitely extensible non-linear elastic (FENE) potential

UFENE(r) = −1
2

KR0
2ln

[
1 −

(
r

R0

)2
]

+ 4ϵ

[(σ

r

)12
−
(σ

r

)6
+

1
4

]
(5.1)
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where r is the distance between the beads and σ and ϵ are the standard Lennard-

Jones (LJ) length and energy parameters. The first term of the equation repre-

sents an attractive potential, and models the FENE springs between the clos-

est neighbors along the chain with a maximum bond length R0 = 1.5σ, while

the second term models the excluded-volume repulsion between beads and the

term is only included at r ≤ 21/6σ. The spring constant K = 30ϵ/σ2 is chosen

to allow a reasonable integration time step while preventing chains from cross-

ing each other.25 For the non-bonded beads, the interaction is modeled by the

standard LJ potential

ULJ(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

. (5.2)

The potential is truncated at r = 2.5σ and shifted by a constant to ensure conti-

nuity at the cutoff. The non-bonded additives interact with one another using

the standard LJ potential of eq. (6.2).

We report the results in reduced LJ units wherein the length, energy, time,

and temperature are scaled by σ, ϵ, τ =
√

mAσ2/ϵ, and ϵ/kB (kB is the Boltz-

mann constant), respectively. For the polymer chain, the non-dimensional LJ

energy and length parameters are set at ϵA = 1 and σA = 1. We use a polymer

chain length N = 100 for all the simulations and the mass of each of the poly-

mer beads mA was kept at 1. To capture a range of additive molecular sizes, we

varied σB of the additives from 0.5 to 1.0. The mass of the additives was varied

as the cube of the particle size (mB ∝ σ3
B). Finally, the cross-interaction between

the polymer and the additives are captured via the Lorentz-Berthelot mixing
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rules given by

ϵAB =
√

ϵA/ϵB (5.3)

and

σAB =
1
2
(σA + σB) (5.4)

ϵB was set to 1.0ϵA to promote entropic mixing.13 The mass concentration ϕB

of the additives was varied from 1% to 30%. The total number of polymer and

additives was kept close to 10000 as much as possible. A detailed composition

of the mixture is listed in Table I.

We performed all simulations using the Large-scale Atomic/Molecular Mas-

sively Parallel Simulator (LAMMPS) package.31 The equation of motion was

integrated using the velocity-Verlet algorithm with a timestep of ∆t = 0.001

(in LJ time units or TUs). For both polymer chains and the additives, we gener-

ated their initial structures by arbitrarily packing the specified number of chains

and particles into a cubic simulation cell. The individual chains were generated

using a procedure similar to self-avoiding walk in a continuum space. This ap-

proach while preventing back-folding of the chains, still results in substantial

overlaps of the chain beads. The mass of the chain beads and particles were

set to 1 initially. We then equilibrate the mixture using a dissipative particle

dynamics (DPD) push-off method of Sliozberg et al..32 For the duration of the

DPD run, we replaced the interaction between non-bonding beads with a soft
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repulsive potential of the form of

UDPD(r) =





ADPD
2 rc

(
1 − r

rc

)
r < rc

0 r ≥ rc

. (5.5)

This potential allows the chains to pass through each other and therefore en-

hances a quicker relaxation during the initial equilibration steps. We ran the

DPD simulation at T = 1.0 using a cut-off distance rc = 1.0. The potential was

initially low and set at ADPD = 25. At the beginning, restriction was imposed on

the maximum distance each bead can move within one time step which gradu-

ally increases from 0.001 to 0.1 over 15 TUs. The restriction was then removed

and the simulation was run for another 100 TUs. This was subsequently fol-

lowed by a gradual ramp of ADPD to 1000 over 5.5 TUs. The DPD potential was

then replaced with the standard LJ potential and MD in an NVE ensemble was

performed for additional 500 TUs during which a random velocity distribution

was reassigned to all beads every 0.5 TUs. Finally, we changed the masses of the

additives from 1 to the specified masses and further ran MD in an NVT ensem-

ble for an additional 20 000 TUs. Since the relaxation of the system is dependent

on the relaxation time scale of the polymer chains, running the simulation long

enough to ensure the polymer chains have relaxed guarantees that our system is

well equilibrated. Our earlier paper30 shows the mean square internal displace-

ment (MSID) results for the polymer chains studied, where the MSID saturates

to the characteristic ratio of the chain. While the model we have described above

is similar to that used by Riggleman et al.,9 they however used a harmonic po-

tential between the bonds with a much stiffer chain with k = 2000ϵ/σ2.

96

http://www.mcmaster.ca/


Ph.D. Thesis – O.B. Adeyemi; McMaster University– Chemical Engineering

TABLE 5.1: Detailed compositions of polymer-plasticizer systems
simulated at various plasticizer mass fractions. σB, mB, MB, and
MA are the plasticizer size, mass of each plasticizer particle, total
mass of the plasticizer, and total mass of the polymer chains re-
spectively. The length of the polymer chain was kept constant at
N = 100

ϕB (%) σB mB MB MA ϕB (%) σB mB MB MA

1 0.5 0.125 93.46 9252.34 10 0.5 0.125 588.24 5294.12
1 0.6 0.216 96.50 9553.25 10 0.6 0.216 733.70 6603.26
1 0.7 0.343 98.12 9713.93 10 0.7 0.343 839.25 7553.22
1 0.8 0.512 99.06 9806.53 10 0.8 0.512 912.98 8216.83
1 0.9 0.729 99.63 9863.33 10 0.9 0.729 964.16 8677.42
1 1.0 1.00 100.00 9900.00 10 1.0 1.0 1000.00 9000.00

2 0.5 0.125 175.44 8596.49 15 0.5 0.125 731.71 4146.34
2 0.6 0.216 186.45 9136.74 15 0.6 0.216 971.22 5503.60
2 0.7 0.343 192.62 9438.42 15 0.7 0.343 1165.21 6602.88
2 0.8 0.512 196.26 9616.68 15 0.8 0.512 1312.37 7436.77
2 0.9 0.729 198.52 9727.68 15 0.9 0.729 1420.76 8051.06
2 1.0 1.00 200.00 9800.00 15 1.0 1.0 1500.00 8500.00

3 0.5 0.125 247.93 8016.53 20 0.5 0.125 833.33 3333.33
3 0.6 0.216 270.54 8747.50 20 0.6 0.216 1158.80 4635.19
3 0.7 0.343 283.70 9172.89 20 0.7 0.343 1446.04 5784.15
3 0.8 0.512 291.66 9430.35 20 0.8 0.512 1679.79 6719.16
3 0.9 0.729 296.69 9593.02 20 0.9 0.729 1861.59 7446.34
3 1.0 1.00 300.00 9700.00 20 1.0 1.0 2000.00 8000.00

4 0.5 0.125 312.5 7500 25 0.5 0.125 909.09 2727.27
4 0.6 0.216 349.29 8382.92 25 0.6 0.216 1310.68 3932.04
4 0.7 0.343 371.53 8916.81 25 0.7 0.343 1690.49 5071.46
4 0.8 0.512 385.31 9247.44 25 0.8 0.512 2018.93 6056.78
4 0.9 0.729 394.14 9459.34 25 0.9 0.729 2287.42 6862.25
4 1.0 1.00 400.00 9600.00 25 1.0 1.0 2500.00 7500.00

5 0.5 0.125 370.37 7037.04 30 0.5 0.125 967.74 2258.06
5 0.6 0.216 423.20 8040.75 30 0.6 0.216 1436.17 3351.06
5 0.7 0.343 456.30 8669.68 30 0.7 0.343 1905.20 4445.47
5 0.8 0.512 477.26 9067.86 30 0.8 0.512 2332.93 5443.50
5 0.9 0.729 490.88 9326.64 30 0.9 0.729 2699.00 6297.67
5 1.0 1.00 500.00 9500 30 1.0 1.0 3000.00 7000.00
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5.3 Results and Discussion

5.3.1 Glass Transition Temperature Tg

Although plasticization effects are vaguely defined, it is customary to use a re-

duction in Tg and other mechanical properties such as the elastic moduli as

markers.7,33 We consequently start our discussion with the glass transition re-

sults. As the temperature is lowered and at a sufficiently fast cooling rate, amor-

phous polymer melt (applies to other materials such as organic liquids and met-

als as well) would solidify into a glassy state without crystallization.2,16,34,35

This transition from liquid to the glassy state occurs at Tg and involves an ap-

parent discontinuity in thermodynamic quantities, such as the specific volume

or heat capacity.29,36–38 Both experimental and MD simulation methods exploit

this discontinuity for calculating Tg.

As shown in previous studies,7,28 determining Tg in MD simulations requires

a proper equilibration procedure to obtain reliable results. After the equili-

bration steps described in section 5.2 to remove overlaps and fully relax the

system, we further subject our system to several heating and cooling cycles to

completely erase the thermal history. We ran MD simulation in NPT ensemble

for 1000 TUs, then followed by 6 heating-cooling cycles – each with a 1000 TUs

run at 1ϵ/kB and 0.6ϵ/kB at zero pressure maintained by Nosé-Hoover baro-

stat. The production runs for the glass transition temperature simulations were

also performed in an NPT ensemble. Starting from an initial temperature of

1ϵ/kB, the system was cooled down at a rate of 1 × 10−7ϵ/kBτ at zero pressure

using a Nosé-Hoover thermostat and barostat – i.e. temperature drops by 0.01

98

http://www.mcmaster.ca/


Ph.D. Thesis – O.B. Adeyemi; McMaster University– Chemical Engineering

over 100 TUs using an MD timestep of 0.001. We average the system volume

every 1 TU over the 100 TUs used at each temperature. We then determine Tg

by the intersection of the fitting lines of the specific volume delineated by a

slope change. Before discussing the results for our polymer-particle systems,

FIGURE 5.1: Glass transition temperature Tg of pure and additive
polymer melt N = 100 determined from the dependence of the
specific volume on temperature. Vertical offsets are added to the
ϕ = 0.01and0.1 curves by a factor of 1.25 and 0.77 respectively to
make the plot clearer.

we determine the Tg for the pure melt of N = 100. For the pure melt case

shown in fig. 5.1, we observe a dependence of the specific volume on tempera-

ture marked by a sudden change of slope around Tg. The slopes were calculated

using at least 25 points on either side of the slope change. The intersection of

the fitting lines to the slopes yielded a value of 0.44 which falls within the range

of 0.41 − 0.45 commonly reported in the literature.28,29 For the same model but

a bigger system size (500 chains of N = 500), Grest29 used a cooling rate of
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1 × 10−6ϵ/(kBτ) and obtained a value of 0.43. We also show the specific vol-

ume of two sample mixtures (σB = 0.5 at ϕB = 0.01 and σB = 0.5 at ϕB = 0.10)

against temperature in fig. 5.1 where a similar dependence as with the pure

polymer melt is observed. The Tg for both mixtures are lower than the pure

polymer.

Figure 5.2 shows the dependence of the difference in Tg between the mixture

and pure system, ∆Tg on the additive mass fraction ϕB. A negative value reflects

the extent to which the Tg of the mixture is reduced relative to the pure polymer.

Firstly, we note that the smaller-sized particles are better at reducing Tg at all

concentrations considered. However, as the additive concentration increases to

∼ 10%, we observe a decrease in Tg for sizes σB ≤ 0.8. For bigger sizes σB > 0.8

and up to ϕB = 10%, there is a plateau and there is not a noticeable dependence

on ϕB. However, starting at around ϕB = 0.20, there is again, an increase in ∆Tg

FIGURE 5.2: Change in glass transition temperature ∆Tg for addi-
tive concentration from 1% to 30% of various additive sizes. Error
bars represent standard error over 3 independent samples and are
smaller than marker sizes.
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for all the sizes. Riggleman et al.13 reported a similar reduction in Tg for σB = 0.5

and ϕB = 0.05 compared with the pure polymer. They argued that the observed

changes in Tg and other antiplasticization markers are a reflection of changes

in the packing efficiency, which modifies the process of glass formation itself

rather than merely changing Tg. Essentially, the smaller beads pack themselves

nicely in between the holes of the polymer melt33 and makes the polymer melt

a stronger glass former. We believe this is certainly the case for the mixtures we

have studied here, at least for the smaller molecules (0.5 ≤ σB ≤ 0.8), with the

effects becoming stronger as σB decreases. When the additive sizes are closer

FIGURE 5.3: Temperature dependence of the specific volume for
a Lennard-Jones liquid at a pressure of 2.0 showing a jump singu-
larity.

to the size of the polymer bead (σB > 0.8) however, there is a reduction in the

packing efficiency leading to an increase in ∆Tg. This effect of increasing ∆Tg

becomes more pronounced at ϕB > 10%.
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With the increase in Tg with concentration, extrapolating this trend will even-

tually lead to higher Tg in pure LJ liquid than pure polymer, which is counter-

intuitive. Exploring the limit of pure LJ particles, it is well known that pure LJ

particles are poor glass formers which crystallize when cooled to a lower tem-

perature, and as such have no defined Tg. Depending on the pressure imposed

during the simulation, the system is either unstable, wherein the volume of the

simulation box keeps expanding during an NPT run at zero pressure, or a jump

singularity is observed in the plot of the specific volume against temperature

at the freezing temperature at higher pressures.36 A plot of this discontinuity

is shown in fig. 5.3 for the LJ particles at a pressure of 2.0. Since the pure LJ

particles are poor glass formers, the strategy employed to prevent crystalliza-

tion is to use a bidisperse model containing two different particle sizes and tune

their interaction parameters. Additionally, the density of these bidisperse mix-

tures is usually much higher (∼ 1.2 compared to our own 0.85) than the density

of the systems we have investigated and usually simulated at constant volume

conditions.39 This makes it somewhat difficult to properly situate our results

within the extremes of pure polymer and pure LJ particles. The Kob-Anderson

model40 is a notable example consisting of bidisperse LJ particles. In this model,

large LJ spheres are mixed with smaller spheres at an 80-20 number fraction.

Using a 3d model, a number density of 1.0 and a pressure of 1.0, Li et al.41

reported a glass transition temperature of 0.41. The two ends (polymer and ad-

ditive) have similar Tg so it is not entirely strange that Tg does not decrease with

ϕB.
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5.3.2 Young’s Modulus

The second property we investigate is the Young’s modulus. We simulate ten-

sile elongation by deforming the simulation box along the z dimension. The

length of the box along this dimension changes as a function of time as

Lz(t) = Lz,0 exp(ėt) (5.6)

where Lz,0 is the length before deformation, ė = de
dt is the strain rate. We used

ė = 0.03271/τ as used by previous studies.21,28 The lateral dimensions x and y

were maintained at a temperature of 0.1ϵ/kB and zero pressure using the Nosé-

Hoover barostat. The tensile stress is determined from the pressure difference

between the elongated dimension (Pz) and the average of the transverse dimen-

sion (Px and Py)

s = −Pz +
1
2
(Px + Py) (5.7)

and plotted against the engineering strain

e ≡ Lz − Lz,0

Lz,0
(5.8)

In the limit of small deformation, the relationship between the stress and strain

is linear. The Young’s modulus of the material is defined in this limit

Y ≡ lim
e→0

ds
de

(5.9)

The stress-strain curves for the pure polymer melt and some selected mixtures

are shown in fig. 5.4. All the curves show the typical features of a polymer

103

http://www.mcmaster.ca/


Ph.D. Thesis – O.B. Adeyemi; McMaster University– Chemical Engineering

FIGURE 5.4: Young’s modulus Y for pure polymer and some se-
lected mixtures. The linear portion of the strain used for the calcu-
lation was 2% of the overall strain.

undergoing tensile deformation: an elastic region at small strain; a yield point

right after the elastic region where there is an upturn at the top of the curve; a

strain softening region where the sample cross-sectional area reduces, resulting

in a decrease in stress; and a strain hardening region showing an increase in

stress before fracturing. Similar behaviors have been reported by several other

researchers using MD simulation.42,43 These curves are also the typical profiles

for pure, plasticized, and antiplasticized polymers. Compared to the pure poly-

mer curve, the antiplasticized polymers show an increased slope in the elastic

region – indicating the stiffening effect of the antiplasticizers; an increase in the

maximum yield stress reached; a short softening region at intermediate strains;

and a greater increase in stress in the strain-hardening regime at larger strains.

On the contrary, plasticizers resulted in a decrease in the elastic region, a smaller

yield stress, a more pronounced softening region and a much smaller increase
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in stress in the strain-hardening regime. Now focusing on the linear regime

and Young’s modulus, we only used e up to 2% similar to previous works in

the literature,13,28 to ensure the deformation is still in the linear regime. We ob-

tained a value of 48.44 for the pure melt. The Y for the polymer-additive system

tells a different story as shown in fig. 5.5. Again, we have plotted the difference

between the mixture and pure system ∆Y, against ϕB. Although the additives

of all sizes lessened the Tg at all concentrations, this is not quite the case for Y.

For the smaller additives (σB ≤ 0.8) the Y is higher than the pure polymer –

FIGURE 5.5: Change in Young’s Modulus ∆Y(Y − Y0) for plasti-
cizer concentration from 1% to 30% of various additive sizes. The
error bars represent standard error over 100 independent configu-
rations and are smaller than the markers.

indicating that these additives behave as antiplasticizers – broadly defined as

a reduction in Tg and a simultaneous stiffening of the material. At 5% mass

fraction of the σB = 0.5 additive, there was a ∼ 36% increase in Y. This is also

consistent with the earlier work of Riggleman et al.13 where at a 5% mass frac-

tion of the additives and temperature of 0.1, (although the potential between
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their connected beads was harmonic, we have used FENE in this work. In the

limit of small deformation, the calculated values should be equal) they reported

a similar increase in Y (∼ 40%) and a decrease in Tg. For σB ≥ 0.9 however, the

Y values are lower than the pure melt at all the concentrations we have investi-

gated and can consequently be regarded as plasticizers – which loosely defines

additives that lower the Tg and Y simultaneously. The level of Y increase in

these antiplasticizers (smaller additives) is much higher than the largest Y re-

duction at the larger additive size limit. For example, the maximum reduction

in Y was merely 12% at ϕB = 25% and σB = 1. On the contrary, there was over

a ∼ 150% increase in Y at the 30% mass fraction of the σB = 0.5 additive. An

interesting observation was the decorrelation of the plasticization markers, Tg

with Y – where a reduction in one property does not translate into a decrease

in another. We show this trend in fig. 5.6 where we have plotted the change in

Tg and Y for various bead sizes at ϕB = 1%. Indeed, there is a reduction in Tg

and Y at σB = 1.0, however, as σB decreases, while the Tg continues to decrease,

there is an increased stiffening of the polymer as reflected in the increase in Y.

This finding reveals the hidden complexity behind the concept of plasticization:

although plasticizers are used to label any material "softener", the "softening" ef-

fect in different properties (markers) are independent from each other and likely

follow separate mechanisms. As such plasticization can be considered a loosely

defined collective description of many different effects.

5.3.3 Linear Viscoelasticity

We now turn to the effects of the molecular additive on the overall rheological

properties of the mixture. To do this, we calculate the linear viscoelastic (LVE)
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FIGURE 5.6: Young’s modulus and glass transition temperature
for various bead sizes at at an additive concentration ϕB = 0.01.

properties of the mixture at a temperature of 1.0ϵ/kB. We ran MD in the NVT

ensemble for 1 × 107 TUs. We use equilibrium molecular dynamics (EMD) for

the calculation and explore different LVE properties such as the stress relaxation

modulus G(t) and the storage and loss moduli, G′ and G′′ respectively. Calcu-

lating G′ and G′′ is a 2-stage process that requires the determination of G(t)

of the mixture followed by its Fourier-integral.30,44–47 The Green-Kubo relation

gives the relationship between G(t) and the autocorrelation function (ACF) of

the shear stress fluctuations

G(t) =
V

kBT
⟨σxy(t0)σxy(t0 + t)⟩ (5.10)

where V is the volume of the system, T is the temperature, and σxy is the instan-

taneous shear stress. To improve the signal to noise ratio of the stress signal in

the system, we average the stress ACF over multiple directions. This results in
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the form

G(t) =
V

5kBT
[
⟨σxy(t)σxy(0)⟩+ ⟨σyz(t)σyz(0)⟩

+⟨σzx(t)σzx(0)⟩] +
V

30kBT
[
⟨Nxy(t)Nxy(0)⟩

+⟨Nxz(t)Nxz(0)⟩+ ⟨Nyz(t)Nyz(0)⟩
]

(5.11)

where

Nαβ = σαα − σββ. (5.12)

Furthermore we used the multi-tau correlator method developed by Ramirez et

al.48 which uses a hierarchical multi-level data structure to store and filter time

series and calculate correlation functions on the fly. In its data structure, level 0

stores the most recent p data points in the time series. At level 1, the first entry

stores the average value of the most recent m (m < p) points, the second entry

stores the average of the next m points, and so on. Similarly, each entry at level

l is the average of m entries at level l − 1. As such, stored data represent local

averages of the original time series and the averaging window size (ml for level

l) increases with the level, so does the time lag it covers (the range of previous

time where information is retained at the current level). For the smallest time

lags (up to p − 1 sampling intervals), the unfiltered time series is used, whereas

for increasing time lag (higher levels), averages over larger window sizes are

used. In this study, we use the same default parameters p = 16 and m = 2 as

recommended in Ramirez et al..48 The G′ and G′′ are then directly determined
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by taking the Fourier integral of the G(t)

G′ = ω
∫ ∞

0
G(t) sin(ωt) (5.13)

G′′ = ω
∫ ∞

0
G(t) cos(ωt) (5.14)

The G(t) is very sensitive to the molecular structure of the polymeric materials49

and can give insight into the nature of the relaxation mechanism. At very short

times in unentangled and entangled polymers, the G(t) value is large due to the

twisting and stretching of bonds. After a sufficient time, there is a significant re-

laxation of stress and the unentangled melt decays. The topological constraints

in an entangled polymer however results in a plateau that is independent of

the length of the chain before the chains are finally able to reptate our of their

constraints.50

FIGURE 5.7: Stress relaxation modulus G(t) at ϕB = 0.05

Figure 5.7 shows the G(t) of polymer-additive mixtures at ϕB = 0.05 and
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that of the pure melt, N = 100. The results are rather surprising especially for

the smallest additive σB = 0.5. We repeated the simulation to ensure it was not

due to an error in the simulation. There is an extended plateau that persisted

even much further in time which is atypical for an uncrosslinked, unentangled

polymer melt. Even in entangled polymers, the plateau region in the G(t) curve

is more gradual and does not decay abruptly as seen for the σB = 0.5 case at

t ∼ O(105). Several works and our earlier results30,46,47 have also shown that

for the KG model we have used, a plateau in the G(t) is not observed until

N ≥ 350. For the other bead sizes (σB > 0.5) however, the relaxation is typical

and σB = 0.6 resulted in the lowest profile. However, the pure melt still has

a much higher profile than all the other σB sizes except 0.5 – which indicates

that the additives have effectively plasticized the polymer. To better quantify

the plasticization effect we calculate the zero-shear viscosity η0 of the mixtures

which is a cumulative representation of G(t). We calculate η0 using51

η0 ≡ lim
γ̇→0

η(γ̇) =
∫ ∞

0
G(t)dt (5.15)

where G(t) is the relaxation modulus and η(γ̇) is the shear rate dependent vis-

cosity. We show the viscosity results for the mixture in fig. 5.8a and have in-

cluded the pure polymer melt for reference. η0 for the pure polymer is 108.72

which compares favorably with the 129 from Maxwell’s mode fitting result of

Likhtman et al.46 and the non-equilibrium MD result of ∼ 107 reported by

Kröger et al..52 The plot shows a spike in η0 at σB = 0.5. At higher bead sizes

(σB > 0.5), all the bead sizes reduced η0 compared to the pure melt. As the bead

size increases, η0 also increases up until σB = 0.9 and then dropped at σ = 1.0.
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(a) η0 for the various mixtures at ϕB = 0.05

(b) η0 and Young’s modulus Y at ϕB = 0.05

FIGURE 5.8: Zero-shear viscosity η0 and Young’s modulus Y for
various bead sizes at an additive concentration ϕB = 0.05.
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This shows that, the smaller the beads the better the plasticization effect of the

additives. Again, we compare the viscosity plots with the Y results at the same

ϕB = 0.05 in fig. 5.8b. The figure also shows a decorrelation of η0 with Y, where

Y decreases with increase in σB while η0 increases. There is also a slight dip in

Y similar to the small rise in η0 at σB = 0.9. Indeed, if we examine closely the

Tg, Y, and η0 of the mixture at σB = 0.6 of the additive and ϕB = 0.05, we see

that, as Tg decreases, Y increases, and η0 decreases. If we had only measured Tg

and η0, σB = 0.6 would be called a plasticizer. On the other hand, calculating

Tg and Y alone would have made it an antiplasticizer. Figure 5.9 and fig. 5.10

show the G′ and G′′ for the same mixture. The extended plateau observed for

σB = 0.5 carries over to the G′ results where it is essentially a flat line. Since

the G′ is mainly the energy stored in the system, we again observe that the G′

decreases with with decreasing additive size at all frequencies. Similar trends

are observed in the G′′ profiles.
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FIGURE 5.9: G′ for polymer-additive mixture at an additive con-
centration of ϕB = 0.05.

FIGURE 5.10: G′′ for polymer-additive mixture at an additive con-
centration of ϕB = 0.05.
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5.3.4 Voronoi Analysis

One important theory used in the explanation of the glass transition phenomenon

is the free volume theory.16,53 It is based on the idea that there are local pockets

of space surrounding the beads of polymer chains that allows for some degree

of mobility. The larger the space, the lower the Tg. Small molecule additives

lower the Tg by making it easier for the chains to slide past each other and

consequently increasing the free volume. Voronoi decomposition is the go-to

approach for determining the free spaces around particles.54,55 Given the coor-

dinates of the atomic centers of the particles – referred to as sites, the Voronoi

cell determines a set of points in the plane that is closest to the given site.9

We show the probability density function (PDF) of the Voronoi volume of

the polymer and additive in fig. 5.11 at a temperature of 0.1 for σB = 0.5 and

1.0. Our Tg results had earlier indicated that for σB = 0.5, the Tg decreases

with increasing concentration, goes through a minimum around ϕB = 0.1 and

increases again at the highest concentration, ϕB = 0.30 that we have studied.

Figure 5.11a shows the PDF of the free volume around the polymer, normalized

by the volume of the polymer bead. The results show that the free volume in-

creases as ϕB decreases. Of course, this makes intuitive sense. However, unlike

our Tg results, we do not see a corresponding transition in the mean value of

the PDF. Similarly, fig. 5.11b shows the PDF of the free volume surrounding the

additive, again normalized by volume of the particle. Again, we also see that

there is more free volume surrounding the particles at a lower ϕB. On the other

hand, when σB = 1.0, the PDF shown in fig. 5.11c and fig. 5.11d collapses on
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one another. The concentration has very little effect because the additive par-

ticles are indistinguishable from the polymer beads. Comparing the Voronoi

volume at ϕB = 0.05 for different bead sizes in fig. 5.12, we see that the mean

value of the free volume increases with increasing σB. Going by the free volume

theory, it is expected that the increase in free volume will lead to a lower Tg.

Our results however show an opposite trend – negating the idea of free volume

as an explanation for Tg. Several authors have also shown the concept of free

volume inadequate in explaining the different aspects of the glass transition

phenomena.9,13,56 For example, Riggleman et al.13 showed that the increased

particle mobility that is expected with increase in free volume does not hold.

On the other hand, the available free volume correlates with our results for

the Young’s modulus. An improvement in packing efficiency, which is as a

result of increase in density (smaller volume occupied by polymer and addi-

tives) is responsible for the enhanced stiffness observed in mixtures containing

the smaller additives. Figure 5.12 shows that the mean free volume increases

with increasing additive size, resulting in a larger total volume occupied by the

polymer and additives. This leads to a decrease in density, thereby leading to

a reduction in the packing efficiency as the additive size increases. The smaller

beads are however able to pack themselves more efficiently around the polymer

beads and is responsible for the increase in Y shown in fig. 5.5. Indeed, Young’s

modulus is a measure of the stiffness at small strain limit, where particles are

only displaced by a small distance on average. An increase in the local wiggle

room surrounding each particle is bound to make such dislocation easier. This

observation of enhanced stiffness with decrease in free volume is consistent
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(a) σB = 0.5 polymer (b) σB = 0.5 additive

(c) σB = 1.0 polymer (d) σB = 1.0 additive

FIGURE 5.11: Probability density function of normalized Voronoi
volume of (a) polymer beads at σB = 0.5 (b) additive beads at σB =
0.5 (c)polymer beads at σB = 1.0 (d) additive beads at σB = 1.0 for
selected concentration. Each Voronoi volume (Vf ) is normalized
by that of its enclosed particle (Vp)

with other experimental and MD simulations studies.9,57 Using both all-atom

MD simulation and experimental methods, Zhang et al.57 studied the depen-

dence of the Young’s modulus on the fractional free volume in three kinds of

epoxy matrices – diethylene toluene diamine (DETDA)/4,5-epoxycyclohexyl-

1,2diglycidyldiformate(TDE85), single-walled carbon nanotube fortified with

DETDA/TDE85, and m-phenylenediamine (MPD)/TDE85, with fractional free

volume (FFV) of 15.64%, 14.45%, and 14.18% respectively. Both experimental

and simulated results consistently showed that the Young’s modulus increased

with a reduction in FFV.
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FIGURE 5.12: Probability density function of Voronoi volume at
ϕB = 0.05 for various bead sizes.

5.3.5 Rouse Mode Analysis

To gain insights into the phenomenological results reported in the section 5.3.1

to section 5.3.3, we carry out a Rouse mode analysis (RMA) on the chains. More

specifically, we wanted to understand how the additives affect the segmental

relaxation dynamics. Below, we give a short and non-exhaustive summary

of the main conclusions of the RMA. The Rouse model treats the probe chain

as a Gaussian chain and considers all its surrounding chains as a continuous

viscous medium – i.e., a mean-field approach. Dynamics of each bead on the

probe chain is described by the inertia-less Langevin equation.58 For example,

the equation of motion for the i-th bead is written as

ζ
d⃗ri

dt
= Hs [(⃗ri+1 − r⃗i)− (⃗ri − r⃗i−1)] + f⃗ r

i (5.16)
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where ζ is the monomeric friction coefficient, Hs is the spring constant, r⃗i is the

position of the i-th bead, and f⃗ r
i is the random force exerted on the i-th bead

satisfying
〈

f⃗ r
i (t) f⃗ r

j (t
′)
〉
= 2ζkBTδijδ(t − t′ )⃗⃗δ (5.17)

where δ(t) is the Dirac delta function, δij is the Kronecker delta, and ⃗⃗δ is the

identity tensor. Equation (5.16) shows that position coordinates of neighboring

beads are coupled in their dynamics through spring forces. The RMA projects

the original bead coordinates r⃗i to a set of mutually orthogonal coordinates

known as Rouse modes or normal coordinates X⃗p (p = 0, 1, ..., N − 1). We adopt

the original form of projection by Rouse59

X⃗p ≡
√

2
N

N

∑
n=1

r⃗i(t) cos
(
(i − 1/2)pπ

N

)

(p = 0, 1, 2, ...N − 1)

(5.18)

which is widely used in the literature.20,45,60–62 The p = 0 mode describes the

motion of the center of mass of the chain and the other modes (1 ≤ p ≤ N − 1)

describe the internal relaxations of sub-chains, or "blobs", of the size of N/p

beads. Each of the transformed coordinate or Rouse mode X⃗p follows Langevin

dynamics with its own friction coefficient and random force. Importantly, relax-

ation of different modes is mutually independent. The autocorrelation function

(ACF) of each p > 1 mode decays exponentially

〈
X⃗p(t)X⃗p(0)

〉
=
〈

X⃗2
p

〉
exp

(
− t

τp

)
(5.19)
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with its own relaxation time τp given by

τ−1
p,Rouse =

12kBT
ζb2 sin2

( pπ

2N

)
(5.20)

where b2 is the mean-square bond (spring) length. For leading modes with

p ≲ N/5, which describes the motions of larger segments with N/p ≳ 5 beads,

eq. (5.20) can be approximated by59

τp,Rouse =
ζb2

3π2kBT

(
N
p

)2

. (5.21)

The Rouse model is commonly used to describe the dynamics of unentangled

polymer melts. With increasing chain length, topological constraints set in and

relaxation dynamics changes. For entangled chains, we may still project the

coordinates to X⃗p using eq. (5.18) but the ACFs no longer follow simple expo-

nential decay. A stretched exponential is often used instead18,61–64

〈
X⃗p(t)X⃗p(0)

〉
=
〈

X⃗2
p

〉
exp


−

(
t

τ∗
p

)βp

 (5.22)

where τ∗
p and βp are the time scale and exponent (stretching parameter) for the

p-th mode. The relaxation time of a stretched exponential can be defined as

τp ≡
∫ ∞

0
exp


−

(
t

τ∗
p

)βp

 dt =

(
τ∗

p

βp

)
Γ
(

1
βp

)
(5.23)

where Γ(x) is the gamma function. Note that at the simple exponential limit,

i.e., βp → 1, the two time scales are the same τp = τ∗
p . In the reptation model,

119

http://www.mcmaster.ca/


Ph.D. Thesis – O.B. Adeyemi; McMaster University– Chemical Engineering

(a) ϕB = 0.05; p = 1 (b) ϕB = 0.05; p = 2

FIGURE 5.13: Rouse Mode Analysis of the polymer-additive mix-
ture at ϕB = 0.05 for various bead sizes.

the longest relaxation time is

τp,rept =
N2b2

p2
ζ

π2kBT
N
Ne

(5.24)

Our earlier work30 on the dynamics and stress relaxation of polymer melts have

shown that chain lengths N ≥ 100 are much better described by the stretched

exponential of eq. (5.22). We therefore used eq. (5.23) to determine the sub-

segment relaxation time of the chains upon the addition of the additives. We

show the relaxation time of the first two modes against the bead size at ϕB =

0.05 in fig. 5.13. The relaxation time of the pure polymer is also included for

comparison. It can be readily seen in fig. 5.13a for the p = 1 mode that the

additives lower the relaxation time τp of the polymer. The smaller the bead size,

the stronger the reduction in τp. Viscosity is strongly related to the relaxation

time in polymers53 and we note that viscosity follows a similar trend to τp. For

the p = 2 mode, which signifies the relaxation of half-segments of the chain, the

trend is also similar to the p = 1 mode.
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The increase in relaxation time with additive size is also consistent with our

observations for Tg even though our RMA was done at a temperature of 1.0. The

glass transition phenomenon is observed when the characteristic timescale that

defines the relaxation of the molecules with respect to each other far exceeds

the observation timescale.16 According to the empirical Vogel-Fulcher law,16,65

it is expected that the relaxation time will continue to increase as the tempera-

ture is lowered. This suggests that the dynamics governing the glass transition

phenomenon is similar to viscoelasticity.

As stated earlier on the decorrelation of Young’s modulus with viscosity, it

also follows that the nature of the dynamics in the viscoelastic measurements is

rather different from that of the Young’s modulus given the decrease in Y with

increasing additive size. Temperature dependence of these measures could also

be a factor in this decorrelation. Riggleman et al.13 had earlier reported a sur-

prising dependence of the Young’s modulus on temperature where antiplasti-

cized and pure polymer had similar Y values close to the Tg despite a ∼ 1.6-

factor difference at a lower temperature of 0.1. The relaxation times of higher

p-modes may shed some light on the relationship between τp of the smaller

segments of the chain and Y since Young’s modulus is defined in the limit of

small deformation and at short times. However, our previous work30 on the re-

laxation times at higher p-modes indicate a departure of small-scale segmental

relaxation from Rouse model due to differences between the KG chain and the

Gaussian chain model of the Rouse model, specifically, the neglect of excluded

volume interactions in the Rouse model which is important at smaller length

scales. Furthermore, at intermediate p-modes of 5–10, if eq. (5.24) – (τ1/p2) is
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used, we would obtain the same dependence where the relaxation time still in-

creases with additive size.

5.3.6 Mean Square Displacement

We studied the mobility of the polymer chains and in the mixtures by calculat-

ing the mean square displacement of the center of mass of the chains

g3(t) ≡ ⟨[⃗ri,c.m.(t)− r⃗i,c.m.(0)]2⟩ (5.25)

where

r⃗i,c.m.(t) =
1
N

N

∑
1

r⃗i,j(t) (5.26)

N is the length of the chain, r⃗i,j(t) is the position of each monomer and r⃗i,c.m.(t)

is the position of the center of mass for each chain.47,66 The dynamics of the

plasticizer additives was calculated using

gp(t) ≡ ⟨[⃗ri(t)− r⃗i(0)]2⟩ (5.27)

where r⃗i(t) is the coordinate of each additive. For the results presented here, we

ran MD in NVT ensemble for a total time 2× 105 TUs at T = 0.4 and 1× 107 TUs

at T = 1.0. At a low temperature of 0.4, lower than the Tg of the pure polymer,

the g3(t) curve shows dynamics that are typical in the glassy regime. At early

times, all the curves start out strongly overlapping one another. The dynamics

here is superdiffusive and the slope of log g3(t) vs log t is greater than 1. At

intermediate times around O(101), there is a plateau region, where neighboring
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atoms dynamically arrest other atoms and only localized segmental motion is

permitted (caging effect).7,67 At later times, the curves again start to separate.

Amid the fluctuations, we notice a general trend of the curves going down with

increasing additive size, indicating the relaxation time is faster as the additive

size decreases. This is also consistent with the results from RMA where the

relaxation time increases with increasing additive size. It then suggests that

the nature of the dynamics in Tg and G(t) are similar. As also noted by Li et

al.7 when comparing the dynamics of pure PVC and plasticized PVC near the

glass transition zone, we observe that the dynamics of the different curves are

practically indistinguishable in the caging zone which again challenges the free

volume theory that the additives create more space between the chains.

Figure 5.14b shows the MSD for the plasticizer additives at the different sizes.

There is a clear dependence of the dynamics on the additive size even at the

early times. The dynamics of the different additives slows down with increas-

ing additive size. The time spent in the plateau region (caging zone) by the

additives before escaping and transitioning into the diffusive zone decreases

with increasing additive size. It should be noted that the temperature used here

is 0.4. Since the smallest additives are better at depressing the Tg, therefore it

is not surprising that they have higher mobility. The dynamics are different at

higher temperatures. Figure 5.15a shows the g3(t) of the polymer chains in the

mixtures with the different additive bead sizes at ϕB = 0.05 and temperature T

= 1.0. All the curves strongly overlap and are practically indistinguishable from

one another. The differences in the mobility of the chains appears small and are

subsumed in the log scale plots. Plotting the same results on a linear scale tells
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(a) Polymer MSD.

(b) Plasticizer MSD.

FIGURE 5.14: Mean square displacement of (a) the polymer chains,
(b) the plasticizer additives at T = 0.4
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a different story as shown in fig. 5.15b. At early to intermediate times, the plots

again are indistinguishable from one another. However, at t ∼ O(3 × 105), all

the curves begin to separate, with σB = 0.5 having the highest mobility and the

largest bead size, σB = 1.0 the least. In general, the dynamics increase with de-

creasing bead sizes. There is however an overlap between σB = 0.7 and σB = 0.8

at these later times. This general trend is consistent with our earlier RMA re-

sults where the relaxation time of the chains decrease with decreasing bead size

of the additives. This is also similar to our earlier work30 comparing the effect of

short chain lengths on the dynamics of long entangled chains. In that work we

observed that the shorter chains sped up the dynamics of the longer chains and

the effect became stronger with decreasing chain length of the shorter chains.
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(a) g3(t) at T = 1.0 (log-log coordinates)

(b) g3(t) at T = 1.0 (linear coordinates)

FIGURE 5.15: Mean square displacement g3(t) of the polymer in
the polymer-additive mixture at T = 1.0.
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5.4 Conclusion

In this work, we have explored the effects of molecular structure of a polymer

additive on key plasticization markers such as the glass transition temperature,

Young’s modulus, and on the linear viscoelasticity of the polymer mixture. We

used LJ particles as the additive and varied the size σB from 0.5 to 1.0. The mass

of each bead mB varied as the cube of the size of the bead.

Compared with the pure polymer, our glass transition results show that the

smaller-sized particles (σB ≤ 0.8) are better at reducing the Tg of the pure poly-

mers. The effect is stronger with increasing concentration until it gets to a crit-

ical concentration at ∼ 10% mass fraction of the additive where there is a de-

crease in the efficiency of the smaller-sized particles at reducing Tg. The larger-

sized additives however, are only marginally able to reduce the Tg at all the

concentration studied. Calculation of the Young’s modulus Y of the system also

shows that the smaller-sized particles (σ ≤ 0.8) increased the stiffness of the

pure polymer – meaning that they serve as strong anti-plasticizing agents while

the larger-sized particles led to a decrease in Y. The magnitude of the increase

in Y for the antiplasticizers is a lot much higher than the reduction due to the

larger-sized additive. Our viscoelasticity results revealed that the lowest bead

size σB = 0.5 that we have studied showed atypical relaxation profile similar

to a cross-linked polymer. While the other bead sizes σB > 0.6 lowered the

viscosity relative to the pure polymer.

Our Rouse mode analysis revealed that the relaxation time of polymer chain

decreases as the bead size decreases. We further explored the concept of free
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volume available to the polymer beads by determining the Voronoi volume

around each particle. Our results showed that the free volume is inadequate in

explaining some observed features. For example, despite the increased free vol-

ume available to the larger-sized particles, they are worse at reducing Tg, which

is contrary to the predictions. One of the most important takeaways from this

study is the decorrelation of the various plasticization markers. We observe that

a reduction in one property, for example, Y does not guarantee a decrease in the

other property, like Tg or the zero-shear viscosity, η0.
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Chapter 6

Polymer-plasticizer mixtures with

more realistic plasticizer models

This chapter is a continuation of Chapter 5. We expand our discussion on the

single-bead molecular models of plasticizers to multi-bead models that mimic

real plasticizers. Our goal is to develop model plasticizers that are fully mis-

cible with the polymer and also have plasticization effects. It turned out that

this attempt is non-trivial. We tuned these multi-bead models by exploring dif-

ferent parameters such as the energy interaction parameter between the host

polymer and plasticizers, positions of attractive anchor beads within the plasti-

cizers to prevent phase separation, and the length of the non-polar legs. Most

of the models we tried are not compatible with the polymers – resulting in sep-

aration of the mixture into different phases while a few were compatible at high

interaction energy between the polymers and plasticizers. We further quan-

tified phase separation by determining the radial distribution function of the

polymer-plasticizer mixtures and examined the temperature dependence of the
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phase separation tendency of some select models. In continuation of the over-

all theme of this thesis, we explored the linear viscoelasticity of the miscible

mixtures. By calculating the viscosity of the model systems, our simulations

showed that the models we have tried show limited plasticization effects.

I developed the models, set up the simulations, analyzed the results, and

wrote the draft. Li Xi made comprehensive recommendations, edited the draft,

and supervised the whole research.

This chapter is under preparation for future publication.

6.1 Introduction

Plasticizers play a huge role in the polymer industry. Among other things, they

are used to soften the polymeric material, impart flexibility and pliability, and

improve the rheological properties of the polymer during processing.1,2 Indeed,

their uses are numerous and the plasticizer term can mean different things –

which often depends on the thermophysical properties (e.g. glass transition

temperature Tg, Young’s modulus Ym) the plasticizers are being used to mod-

ify. Loosely speaking, any substance capable of softening any material can be

regarded as plasticizers. For example, adding water to clay to make it more

pliable. However, the bulk of industrial plasticizers used in the polymer indus-

try are more restrictive in their molecular make-up. Most notably, phthalates,

which are the most popular class of plasticizers in the poly(vinylchloride) (PVC)

market, and accounting for over 90% of the market share,3 are dialkyl esters of

phthalic acid, containing a strong polar core with non-polar alkyl chain legs.
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Despite how ubiquitous plasticizer usage is in the polymer industry, there

is a significant gap in our understanding of the plasticization mechanisms, es-

pecially their structure-property relationships. Many of the theories that have

been put forward – gel, lubricity, and free volume theories are mostly phe-

nomenological and are somewhat insufficient in linking the molecular struc-

ture of the plasticizers to their plasticization capabilities.1,4 Experimentally, it

is rather challenging to isolate the microscopic origin of the observed macro-

scopic plasticization effects, partly due to the disordered nature of polymers.

This makes computer simulations an attractive alternative.

In molecular dynamics (MD) simulations, very few all-atom simulations –

where all the atoms are explicitly modeled, have been used to study different

aspects of the plasticization phenomena.5–7 One such investigation was carried

out by Li et al.6 using an all-atom simulation where they compared the plasti-

cization effects of some common phthalates on PVC. Their studies revealed that,

compatibility with PVC worsened with an increase in the side chain length of

phthlates having identical alkyl side chain configuration. Since plasticization is

a multi-property attribute, which includes the rheological properties, exploring

the viscoelastic response of plasticized polymers using an all-atom simulation

would take several years using the fastest supercomputers due to the extensive

time and length scales in polymer relaxation.8,9 There is also a significant ef-

fort being deployed in targeted molecular design of plasticizers10 especially so-

called green plasticizers due to the toxicological and environmental concerns of

short chain phthalates, thus underscoring the need for robust models capable

of offering insights into the exact nature of the plasticization process.11,12
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In studying the plasticization phenomenon, the vast array of possible plas-

ticizer choices makes experimentally iterating through the likely alternatives

very daunting. Coarse-grained (CG) simulations where multiple atoms can be

coarsed into a single bead are helpful in side-stepping the long relaxation times

that are inherent in polymer dynamics, especially when the rheological proper-

ties which depends on the relaxation time are being studied. Few studies13–15

have used the CG approach to study the interaction between plasticizers and

polymers. The plasticizers are usually modeled as single-bead molecular addi-

tives, and have provided unique insights into several aspects of the plasticiza-

tion process – including the role of molecular packing and density variation in

some observed properties like Ym and Tg. Our studies on single-bead plasti-

cizers reported in chapter 5 also showed a decorrelation of Tg and Ym – where

small-sized additives are better at reducing Tg but not Ym while the larger-sized

beads are better at lowering Ym but not as effective at reducing Tg.

While the single-bead models are valuable for studying and understanding

the phenomenology and fundamental physics of plasticization, they however

are not realistic and can offer only limited insights into how the molecular struc-

ture of the plasticizer – including the chain length, stiffness, etc. contributes

to the plasticization mechanism. The single-bead model is a very basic model

devoid of some of the other relevant attributes of a plasticizer. Most indus-

trial plasticizers such as Bis(2-ethylhexyl)phthalate (DEHP), Diisobutylphtha-

late (DIOP), Diisononylphthalate (DINP), and Diisodecylphthalate (DIDP) have

long nonpolar alkyl legs with a strong repulsive behavior and an attractive po-

lar core. The repulsive parts serve to isolate the interactions between polymer
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segments and loosen their dynamics while the attractive parts slow down the

interaction to help in the formation of a mixture.

Studies using multi-bead models that attempt to mimic the real structures

of plasticizers are rather few. Most notably, Mangalara et al.16 used multi-bead

oligomers to study the mechanical properties and glass formation behavior of

polymers. The beads of the oligomers are half the size of the host polymer beads

and the interaction between the beads of the oligomers are purely repulsive.

While this is a much better improvement over the single-bead, it is still different

from a real plasticizer especially accounting for the polarities of the different

parts intrinsic to most plasticizers.

Lattice and off-lattice models are routinely employed in computer simula-

tions to study different areas of polymer physics. For example, the bond fluctu-

ation model9,17–20 is a noteworthy lattice algorithm used in Monte-Carlo simu-

lations that have been used to study glass transition in polymers,21 bidisperse

polymers,22 etc. When studying realistic dynamics however, MD simulations

are preferred. Our intention here is similar in spirit to the famed off-lattice

Kremer-Grest (KG) model23 used in studying the generic dynamics of poly-

mers. Among other things, the KG model has further aided our understanding

of different aspects of polymer physics such as entanglement effects in dense

polymer melts24–26 and the viscoelastic properties27–29 in polymers using MD

simulations.
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In this work, our goal is to develop a robust multi-bead model that is sim-

ilar to real plasticizers to aid our understanding of the plasticization mecha-

nism. Real plasticizers contain polar and non-polar groups for different pur-

poses: non-polar groups break the polar-polar interactions between polymer

segments while polar groups help maintain its compatibility with the polymer.

We attempt to find a sweet spot that maximizes plasticization efficiency while

maintaining compatibility. Firstly, we attempt to construct such model that re-

mains compatible with polymer, after which the plasticization effects will be

tested as done for the single-bead additive in chapter 5. As we show in the

later sections, it turns out this process is non-trivial, especially due to compat-

ibility issues between the plasticizers and polymers. This chapter is still work

in progress and the remainder is structured as follows: we describe the poly-

mer and plasticizer models in section 6.2.1. We then discuss the compatibility

of the polymer-plasticizer mixture in section 6.3.1, the temperature dependency

in section 6.3.2, and the linear viscoelasticity properties of the mixtures in sec-

tion 6.3.3.

6.2 Models and Methods

6.2.1 Polymer Model and Simulation Procedure

Each polymer chain is represented using a bead-spring chain model23 where

the beads B, are the monomers of the polymer chain and the springs represent

the bonds between the monomers. The bonded beads interact using a finitely
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extensible non-linear elastic (FENE) potential

UFENE(r) = −1
2

KR0
2ln

[
1 −

(
r

R0

)2
]

+ 4ϵ

[(σ

r

)12
−
(σ

r

)6
+

1
4

]
(6.1)

where r is the distance between the beads and σ and ϵ are the standard Lennard-

Jones (LJ) length and energy parameters. The first term of the equation repre-

sents an attractive potential, and models the FENE springs between the clos-

est neighbors along the chain with a maximum bond length R0 = 1.5σ, while

the second term models the excluded-volume repulsion between beads and the

term is only included at r ≤ 21/6σ. The spring constant K = 30ϵ/σ2 is chosen

to allow a reasonable integration time step while preventing chains from cross-

ing each other.23 For the non-bonded beads, the interaction is modeled by the

standard LJ potential

ULJ(r) = 4ϵ

[(σ

r

)12
−
(σ

r

)6
]

. (6.2)

The potential is truncated at r = 2.5σ and shifted by a constant to ensure conti-

nuity at the cutoff. The non-dimensional LJ energy and length parameters are

set at ϵ = 1 and σ = 1. We use a polymer chain length N = 25 for all the

simulations and the mass of each of the polymer beads was kept at 1.

The plasticizer models we have tested consist of purely repulsive beads, R

with an attractive middle torso, Y beads. To some degree, this is similar to

nearly all plasticizers used in the PVC industry.10 For example, DEHP consists

of a strong polar core in between a pair of nonpolar alkyl legs as shown in
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fig. 6.1. The polar core of the DEHP is strongly attracted to the polar parts of

the PVC chain. The nonpolar alkyl legs also interpose in between the strong

polar-polar interactions of a PVC chain thereby weakening the strongly attrac-

tive PVC-PVC interactions. We similarly model this behavior using a model

FIGURE 6.1: Chemical structure of Bis(2-ethylhexylphthalate)
DEHP

with an attractive core sandwiched between two repulsive tails. A more gen-

eral configuration of the models has the form given in fig. 6.2. The leg length is

n, k is the length of the attractive "anchor" beads to enhance compatibility, and

FIGURE 6.2: Generic Plasticizer Model

m is the torso length. Bead Y has the same size dimension as the polymer B

bead i.e. σY = 1 and has a cutoff rc = 2.5. We varied the interaction between

the B −Y beads by tuning ϵY using 0.1, 0.3, 0.5, 1.0, 1.2, 1.5, 2.0, 3.0, 4.0, and 5.0.

These ϵ values represent the range from weakly attractive to strongly attractive.

We kept the rc for the B − R and R − Y interaction at 21/6 to ensure it is purely

repulsive. As with the polymer beads, the bonded beads of the plasticizers also
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interact using eq. (6.1) and the non-bonded beads with eq. (6.2). The interaction

between the polymer and plasticizer beads are also governed by eq. (6.2). A

summary of the plasticizer model configurations is given in table 6.1.

All the results are reported in reduced LJ units wherein the length, energy,

time, and temperature are scaled by σ, ϵ, τ =
√

mσ2/ϵ, and ϵ/kB (kB is the

Boltzmann constant), respectively. The mass concentration ϕB of the model par-

ticles was kept at 15%. The total number of polymer and plasticizer particles

was kept close to 10000 as much as possible. We performed all simulations us-

TABLE 6.1: Multi-bead model configuration of the form
(R)n–(Y)k–(R)m–(Y)k–(R)n where n and m are the leg and torso
length respectively

Model n k m model structure
A 1 0 1 R-Y-R-Y-R
B 2 0 1 R-R-Y-R-Y-R-R
C 3 0 1 R-R-R-Y-R-Y-R-R-R
D 1 0 2 R-Y-R-R-Y-R
E 2 0 2 R-R-Y-R-R-Y-R-R
F 3 0 2 R-R-R-Y-R–R-Y-R-R-R
G 1 0 3 R-Y-R-R-R-Y-R
H 2 0 3 R-R-Y-R-R-R-Y-R-R
I 3 0 3 R-R-R-Y-R-R-R-Y-R-R-R
J 2 2 1 R-R-Y-Y-R-Y-Y-R-R

ing the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

package.30 We integrated the equation of motion using the velocity-Verlet algo-

rithm with a timestep of ∆t = 0.01 (in LJ units of TUs). For both polymer chains

and the plasticizer chains, we generated their initial structures by arbitrarily

packing the specified number of chains and particles into a cubic simulation

cell. At this stage there was no distinction between the polymer chains and the
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plasticizer chains. The individual chains were generated using a procedure sim-

ilar to self-avoiding walk in a continuum space. This approach while prevent-

ing back-folding of the chains, still results in substantial overlaps of the chain

beads. The mass of the chain beads and particles were set to 1 initially. We then

equilibrate the mixture using a dissipative particle dynamics (DPD) push-off

method of Sliozberg et al..31 For the duration of the DPD run, we replaced the

interaction between non-bonding beads with a soft repulsive potential of the

form of

UDPD(r) =





ADPD
2 rc

(
1 − r

rc

)
r < rc

0 r ≥ rc

. (6.3)

This potential allows the chains to pass through each other and therefore en-

hances a quicker relaxation during the initial equilibration steps. We ran the

DPD simulation at T = 1.0 using a cut-off distance rc = 1.0. The potential was

initially low and set at ADPD = 25. At the beginning, restriction was imposed on

the maximum distance each bead can move within one time step which gradu-

ally increases from 0.001 to 0.1 over 15 TUs. The restriction was then removed

and the simulation was run for another 100 TUs. This was subsequently fol-

lowed by a gradual ramp of ADPD to 1000 over 5.5 TUs. The DPD potential was

then replaced with the standard LJ potential and MD in an NVE ensemble was

performed for additional 500 TUs during which a random velocity distribution

was reassigned to all beads every 0.5 TUs. Finally, we further ran MD in an NVT

ensemble for an additional 20 000 TUs to fully relax the system. Since the relax-

ation of the system is dependent on the relaxation time scale of the polymer
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chains, running the simulation long enough to ensure the polymer chains have

relaxed guarantees that our system is well equilibrated. Our earlier paper29

shows the mean square internal displacement (MSID) results for the polymer

chains studied where the MSID saturates to the characteristic ratio of the chain.

After the relaxation, we flipped the plasticizer beads as desired to either R or Y

beads, tuned ϵY as desired, and ran MD in an NVT ensemble for 1000 TUs.

6.3 Results

Before the plasticization efficiency can be reliably determined, the compatibility

of the plasticizers need to be tested to ensure the mixtures do not phase separate.

Although the compatibility requirement between the components are driven

primarily by processing needs i.e. the need to ensure the components are well

blended together prior to processing, there is also the renewed concern of plas-

ticizer loss from migration. Short-chain phthalates are particularly infamous for

this migration. Indeed, trace amounts of plasticizers have been found in human

blood due to plasticizer loss from packages into food products.32–34 We discuss

two main aspects of compatibility here – (i) the phase separation: at the mini-

mum the plasticizer should not separate from the polymer on the timescale of

the simulation or experiment. We examined this by visual inspection35 and by

determining the radial distribution function g(r) of the mixtures, (ii) and we

also investigated the temperature dependence of the phase separation between

the plasticizers and polymers.
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6.3.1 Phase Separation

Given the molecular structures of the plasticizer and the interaction parameters

between the polymer and the plasticizer, only a few of the plasticizer models we

have tested are compatible with the polymer. Granted that given sufficient time,

most plasticizers will eventually migrate out of the host polymer, it should be

kept in mind that even with phthalates, the timescale of the migration is rather

long. We ran a short MD simulation of 1000 TUs to test the compatibility of

our plasticizers with the polymer. Viscoelastic measurements are typically done

over a much longer timescale O(106TU).29 Therefore, at the minimum, the plas-

ticizers should not separate until past the timescale for viscoelastic measure-

ments. We examine the phase separation visually and analyze the structure of

the mixture by computing the radial distribution function g(r). The g(r) gives

the probability of finding a particle at a distance r from a reference particle.36,37

To begin, we show the visualization of a well-mixed polymer-plasticizer system

in fig. 6.3. The well-mixed system was obtained prior to tuning the interaction

between the plasticizers and polymers – at the stage when both of them were in-

distinguishable in their interaction. The plasticizers are well-dispersed within

the host polymer without any apparent clustering of the plasticizer particles.

We start with the models A − C given in table 6.1. The models only differ in

the length of the repulsive R legs while having another R bead sandwiched be-

tween two attractive Y beads. We varied the ϵ interaction between the B and

Y beads. It should be noted that ϵ is a measure of how strongly the particles

are attracted to each other. We tracked the evolution of the microstructure to
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FIGURE 6.3: Visualization of a well-mixed polymer-plasticizer
mixture prior to phase separation. The blue beads the polymer
beads. The red and yellow beads make up the plasticizer beads.
The yellow beads serve as attractive anchor points to enhance mis-
cibility with the blue polymer beads.

ensure the system is at steady state by calculating the time-dependent coordi-

nation number (CN) using

CNBR ≡ 4πνR

∫ rmin

0
gBR(r)r

2dr (6.4)

where νR is the domain-average number density of type R; gBR is the radial dis-

tribution function of the R beads around a reference particle B, and rmin delin-

eates the edge of the first solvation shell and is the minimum position between

the first two neighboring peaks in the gBR(r) profile. Representative plots of the

CN are shown in fig. 6.4 for ϵ = 0.3, 1.2, and 4.0. At a low ϵ value of 0.3, the

CN starts from a high value and instantaneously drops and fluctuates around a

mean value – which indicates the evolution of the structure has reached a steady
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state. At an intermediate ϵ value of 1.2 however, CN decays over a longer time

period before eventually fluctuating around the mean. Finally, when ϵ is 4.0, the

structure of the system is not changing as much. The CN indicates the average

number of particles of type R around a central B atom. A high CN decaying to

low CN shows that there is a reduction in the number of R beads surrounding

the B beads and is a precursor for phase separation. These figures are typical for

all the models and indicate all our systems have attained steady state. Repre-

sentative snapshots at different ϵ for models A and C at the final time are shown

in fig. 6.5 and fig. 6.6 respectively. For model A, we observe phase separation for

ϵ up to 1.2, microphase separation at ϵ = 1.5; where there are growing clusters

of the plasticizer beads dispersed within the polymer beads, and miscibility for

ϵ > 2. For model C however, phase separation was observed at all values except

at ϵ = 3.0 − 5.0. The corresponding polymer-plasticizer g(r) for the represen-

tative systems i.e. the probability of finding a plasticizer particle (either the R

or Y beads) at a given distance r from a polymer particle are shown in fig. 6.7

and fig. 6.8 respectively. At low ϵ and 0 TU, fig. 6.7a shows that the B − Y and

the B − R beads are rather uniformly distributed within the system. At 1000

TU however, the mixture has completely separated into two different phases as

shown by the low peak of the B − R and B − Y curves compared to the start

time. Due to the weak attraction between the B − Y beads, the B − Y curve is

very similar to the B − R curve, indicating that there is no obvious preference

for the Y beads. Similarly, at ϵ = 1.2 as shown in fig. 6.7b, although the B − Y

curve is slightly higher at 1000 TU, the attraction is still not sufficient to prevent

a phase separation. On the other hand, at a higher ϵ value of 4.0, there is a dis-

tinct and much higher peak in the B − Y curve in fig. 6.7c, showing that there
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are more Y beads in the neighborhood of the B particles which prevents a phase

separation of the mixture. Indeed, the B − R line shows there are more plas-

ticizer particles surrounding the polymer particles on average. Increasing the

chain length of the repulsive legs in model C does not fundamentally change

the nature of the system structure at low ϵ as fig. 6.8a and fig. 6.8b show. At

higher ϵ however, there is a higher tendency for the plasticizers to stay away

from the polymer beads due to the increasing R-leg length as can be seen in the

reduced B − R line in fig. 6.8c. The increased attraction between the B and Y

beads also promotes their contact at the interface and forces the additional R

legs inwards. A closer look at fig. 6.6c shows that there are more Y beads at the

B − Y interface resulting in a microphase separation where there are pockets of

plasticizer clusters distributed within the polymer phase. The plasticizer chains

are still somewhat dispersed within the mixture but the R −Y cluster is increas-

ing in size. It appears the Y beads create an outer covering for the R beads

thus reducing their B − R contact in what looks like an apparent micelle forma-

tion – where hydrophilic groups concentrate at the surface and the hydrophobic

groups move inwards.38
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(a) ϵ = 0.3 (b) ϵ = 1.2

(c) ϵ = 4.0

FIGURE 6.4: Time-dependent coordination number showing the
evolution of the microstructure at ϵ = 0.3, 1.2, and 4.0. These plots
are typical for our systems and indicate the structure has reached
a steady state.
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(a) ϵ = 0.3 (b) ϵ = 1.2 (c) ϵ = 4.0

FIGURE 6.5: Model A. Phase separation and compatibility be-
tween the polymer and plasticizer beads at 100 TUs. The blue
B and red R beads are the polymer and plasticizer beads respec-
tively. The yellow beads (Y) are part of plasticizer beads and are
tuned to make the plasticizer chain more attractive to the polymer
chain. The figures are the ϵ interaction between the B and Y beads
(a) ϵ = 0.3 (phase separation), (b) ϵ = 1.2 (phase separation), and
(c) ϵ = 4.0 (compatibility).

(a) ϵ = 0.3 (b) ϵ = 1.2 (c) ϵ = 4.0

FIGURE 6.6: Model C. Phase separation and microphase separa-
tion between the polymer and plasticizer beads at 100 TUs. The
blue B and red R beads are the polymer and plasticizer beads re-
spectively. The yellow beads Y are part of plasticizer beads and are
tuned to make the plasticizer chain more attractive to the polymer
chain. The figures are the ϵ interaction between the B and Y beads
(a) ϵ = 0.3 (phase separation), (b) ϵ = 1.2 (phase separation), and
(c) ϵ = 4.0 (microphase separation).
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(a) ϵ = 0.3 (b) ϵ = 1.2

(c) ϵ = 4.0

FIGURE 6.7: Radial distribution function g(r) of model A,
R − Y − R − Y − R. The figures are the ϵ interaction between the
B and Y beads at (a) ϵ = 0.3 (phase separation), (b) ϵ = 1.2 (phase
separation), and (c) ϵ = 4.0 (compatibility)
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(a) ϵ = 0.3 (b) ϵ = 1.2

(c) ϵ = 4.0

FIGURE 6.8: Radial distribution function g(r) of model C,
R − R − R −Y − R −Y − R − R − R. The figures are the ϵ interac-
tion between the B and Y beads at (a) ϵ = 0.3 (phase separation),
(b)ϵ = 1.2 (phase separation), and (c) ϵ = 4.0 (microphase separa-
tion).
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Models D – F wherein we have increased the middle R beads compared to

models A – C tell a similar story as shown in fig. 6.9 and fig. 6.10. Here as well,

the outer chain length of the R beads increases from D to F. At low ϵ values

there is a distinct separation of the mixture into different phases which can be

readily seen in fig. 6.11a and fig. 6.12a by the difference in the B − R and B −
Y peaks at the start and end times. On increasing the ϵ to 3.0 however for

model D, fig. 6.11b shows that there is a sizable number of both R and Y beads

surrounding the B beads. In this case, the Y beads successfully act as anchors

of attraction to prevent phase separation. Increasing the ϵ to a higher value of

5.0 in fig. 6.11c also results in a compatible system. In fig. 6.12b and fig. 6.12c,

increasing the chain length also results in clustering of the plasticizer beads and

a tendency towards a microphase separation. There is a distinct B − Y peak,

which is again due to the higher attraction between the B − Y beads.

Further increasing the middle R beads in models G – I does not change the

phase separation narrative at low ϵ value as shown in fig. 6.13a and fig. 6.14a. A

low ϵ value of 0.1 shown in fig. 6.15a is consistent with earlier results showing

phase separation at similar values. At an intermediate ϵ value of 2.0, fig. 6.15b

shows a strong B − Y attachment and a much lower B − R peak, suggesting

a microphase separation i.e., each plasticizer molecule still has to stay close to

the interface with the polymer phase to enhance the B − Y contact. A further

increase in ϵ to 5.0 again in fig. 6.15c shows a well-mixed polymer-plasticizer

mixture with Y beads serving as an anchor point of attraction between the B

and Y beads as reflected in the g(r) peak. Yet again, fig. 6.16a shows phase

separation while fig. 6.16b and fig. 6.16c show that an increase in the outer R
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legs results in poorer compatibility even at higher ϵ values.
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(a) ϵ = 0.1 (b) ϵ = 3.0 (c) ϵ = 5.0

FIGURE 6.9: Model D. Phase separation and compatibility be-
tween the polymer and plasticizer beads at 100 TUs. The blue
B and red R beads are the polymer and plasticizer beads respec-
tively. The yellow beads (Y) are part of plasticizer beads and are
tuned to make the plasticizer chain more attractive to the polymer
chain. The figures are the ϵ interaction between the B and Y beads
showing (a) ϵ = 0.1 (phase separation), (b) ϵ = 3.0 (compatibility),
and (c) ϵ = 5.0 (compatibility).

(a) ϵ = 0.1 (b) ϵ = 3.0 (c) ϵ = 5.0

FIGURE 6.10: Model F. Phase separation and microphase separa-
tion between the polymer and plasticizer beads at 100 TUs. The
blue B and red R beads are the polymer and plasticizer beads re-
spectively. The yellow beads Y are part of plasticizer beads and are
tuned to make the plasticizer chain more attractive to the polymer
chain. The figures are the ϵ interaction between the B and Y beads
(a) ϵ = 0.1 (phase separation), (b) ϵ = 3.0 (microphase separation),
and (c) ϵ = 5.0 (microphase separation).
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(a) ϵ = 0.1 (b) ϵ = 3.0

(c) ϵ = 5.0

FIGURE 6.11: Radial distribution function for model D. The figures
are the ϵ interaction between the B and Y beads (a) ϵ = 0.1 (phase
separation), (b)ϵ = 3.0 (compatibility), and (c) ϵ = 5.0 (compatibil-
ity)
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(a) ϵ = 0.1 (b) ϵ = 3.0

(c) ϵ = 5.0

FIGURE 6.12: Radial distribution function for model F. The figures
are the ϵ interaction between the (B) and (Y) beads (a) ϵ = 0.1
(phase separation), (b) ϵ = 3.0 (microphase separation), and (c)
ϵ = 5.0 (microphase separation)
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Finally, we increase the anchor Y beads in model I and the g(r) at different

ϵ values are shown in fig. 6.17 where the phase separation at low ϵ is apparent.

Increasing the Y beads does not improve the compatibility at ϵ = 1.0 as shown

in fig. 6.18b. When the ϵ increases to 5.0, fig. 6.18c shows a well-dispersed plas-

ticizer in the polymer phase enhanced by the increased B − Y attraction.

Summarily, in all the models we have studied, shorter R legs and higher ϵ

values favor the compatibility between the polymer and the plasticizer. On the

other hand, low ϵ values and an increase in the repulsive R legs reduces the

compatibility – also resulting in complete phase separation. At higher ϵ and

longer R beads, it mostly results in a microphase separation. This is summa-

rized in fig. 6.19 This is to a certain degree consistent with the earlier full-atom

simulation of Li et al.6 where they compared the compatibility and plasticiza-

tion efficiency of phthalates with the same alkyl side chain configuration with

PVC. Specifically, it was reported that increasing the length of the side chain

results in worse compatibility and plasticization efficiency.
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(a) ϵ = 0.1 (b) ϵ = 2.0 (c) ϵ = 5.0

FIGURE 6.13: Model G. Phase separation, microphase separation,
and compatibility between the polymer and plasticizer beads. The
blue B and red R beads are the polymer and plasticizer beads re-
spectively. The yellow beads (Y) are part of plasticizer beads and
are tuned to make the plasticizer chain more attractive to the poly-
mer chain. The figures are the ϵ interaction between the B and Y
beads (a) ϵ = 0.1 (phase separation), (b) ϵ = 2.0 (microphase sepa-
ration), and (c) ϵ = 5.0 (compatibility).

(a) ϵ = 0.3 (b) ϵ = 2.0 (c) ϵ = 4.0

FIGURE 6.14: Model I. Phase separation and microphase separa-
tion between the polymer and plasticizer beads. The blue B and
red R beads are the polymer and plasticizer beads respectively.
The yellow beads (Y) are part of plasticizer beads and are tuned
to make the plasticizer chain more attractive to the polymer chain.
The figures are the ϵ interaction between the B and Y beads (a)
ϵ = 0.3 (phase separation), (b) ϵ = 2.0 (microphase separation),
and (c) ϵ = 4.0 (microphase separation).
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(a) ϵ = 0.1 (b) ϵ = 2.0

(c) ϵ = 5.0

FIGURE 6.15: Radial distribution function for model G. The figures
are the ϵ interaction between the B and Y beads (a) ϵ = 0.1 (phase
separation), (b) ϵ = 2.0 (microphase separation), and (c) ϵ = 5.0
(compatibility)
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(a) ϵ = 0.3 (b) ϵ = 2.0

(c) ϵ = 4.0

FIGURE 6.16: Radial distribution function for model I. The figures
are the ϵ interaction between the (B) and (Y) beads (a) ϵ = 0.3
(phase separation) (b) ϵ = 2.0 (microphase separation), and (c)
ϵ = 4.0 (microphase separation)
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(a) ϵ = 0.1 (b) ϵ = 1.0 (c) ϵ = 5.0

FIGURE 6.17: Phase separation and compatibility between the
polymer and plasticizer beads of model J. The blue B and red R
beads are the polymer and plasticizer beads respectively. The yel-
low beads Y are part of plasticizer beads and are tuned to make
the plasticizer chain more attractive to the polymer chain. The fig-
ures are the ϵ interaction between the B and Y beads (a) ϵ = 0.1
(phase separation), (b) ϵ = 1.0 (phase separation), and (c) ϵ = 5.0
(compatibility).
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(a) ϵ = 1.0 (b) ϵ = 1.0

(c) ϵ = 4.0

FIGURE 6.18: Radial distribution function for model J. The figures
are the ϵ interaction between the (B) and (Y) beads (a) ϵ = 0.1
(phase separation), (b) ϵ = 1.0 (phase separation), and (c) ϵ = 5.0
(compatibility)
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FIGURE 6.19: Summary of the phase separation of the various
models. We used ϵ values of 0.1, 0.3, 0.5, 1.0, 1.2, 1.5, 2.0, 3.0
,4.0, and 5.0. Red represents the phase separation region, yellow
the microphase separation, and green represents regions where the
plasticizer and polymer are compatible.
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6.3.2 Temperature Effects

In order to understand how temperature affects compatibility, we further ex-

amined model A that showed the greatest compatibility, and varied the tem-

perature while varying the energy interaction parameter the same as with the

previous models. We showed the results for ϵ = 1.5 in fig. 6.20. At a low tem-

perature, T = 0.4, lower than the Tg for the KG model (Tg for the KG model is

∼ 0.4226,39), fig. 6.20a shows that the there is no phase separation. The system

is more or less frozen in place. Although there is a drop in the number of R

particles surrounding the B particles, there is a significant number of Y beads

surrounding the B beads. Obviously, this is due to the reduced dynamics of the

system at the lower temperature. While the thermo-mechanical measurements

can be done at such low temperatures, the viscoelastic properties are almost

impossible to be measured due to the increase in relaxation times at such re-

duced temperature. Once the temperature increased as shown in fig. 6.20b to

fig. 6.20d, the microphase separation was strongest at T = 0.8 where the num-

ber of R beads of the plasticizer surrounding the polymer blue B beads have

reduced significantly. Increasing the temperature also ensures the particles stay

closer together as observed in the B − R curves.
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(a) T = 0.4 (b) T = 0.8

(c) T = 1.0 (d) T = 1.2

FIGURE 6.20: Radial distribution function g(r) for model A at dif-
ferent temperatures. The ϵ interaction was kept at 1.5 between the
B and Y beads (a) T = 0.4, (b) T = 0.8 (c) T = 1.0, and (d) T = 1.2
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6.3.3 Linear Viscoelasticity

To check plasticization effects, we investigate the linear viscoelasticity of some

select models that have shown miscibility with the host polymer. Specifically,

we determine the stress relaxation modulus G(t) of the various systems using

equilibrium molecular dynamics simulation. The Green-Kubo relation gives

the relationship between the G(t) and the autocorrelation function (ACF) of the

shear stress fluctuations as

G(t) =
V

kBT
⟨σxy(t0)σxy(t0 + t)⟩ (6.5)

where V is the volume of the system, T is the temperature, and σxy is the instan-

taneous shear stress. To improve the signal to noise ratio of the stress signal in

the system, we average the stress ACF over multiple directions. This results in

the form

G(t) =
V

5kBT
[
⟨σxy(t)σxy(0)⟩+ ⟨σyz(t)σyz(0)⟩

+⟨σzx(t)σzx(0)⟩] +
V

30kBT
[
⟨Nxy(t)Nxy(0)⟩

+⟨Nxz(t)Nxz(0)⟩+ ⟨Nyz(t)Nyz(0)⟩
]

(6.6)

where

Nαβ = σαα − σββ. (6.7)

We used the multi-tau correlator method developed by Ramirez et al.40 which

uses a hierarchical multi-level data structure to store and filter time series and

calculate correlation functions on the fly. In its data structure, level 0 stores the
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most recent p data points in the time series. At level 1, the first entry stores

the average value of the most recent m (m < p) points, the second entry stores

the average of the next m points, and so on. Similarly, each entry at level l

is the average of m entries at level l − 1. As such, stored data represent local

averages of the original time series and the averaging window size (ml for level

l) increases with the level, so does the time lag it covers (the range of previous

time where information is retained at the current level). For the smallest time

lags (up to p − 1 sampling intervals), the unfiltered time series is used, whereas

for increasing time lag (higher levels), averages over larger window sizes are

used. In this study, we use the same default parameters p = 16 and m = 2 as

recommended in Ramirez et al..40 Furthermore, to effectively compare between

the different systems, we calculate the zero-shear viscosity η0 from41

η0 ≡ lim
γ̇→0

η(γ̇) =
∫ ∞

0
G(t)dt (6.8)

where G(t) is the relaxation modulus and η(γ̇) is the shear rate dependent vis-

cosity. Figure 6.21 shows the G(t) and η0 for models A, G, and J. These are plas-

ticizer models that have shown limited compatibility with the polymer at high

ϵ values. The G(t) for the polymer mixtures, the pure polymer, and the poly-

mer mixed with "dummy" plasticizers Ns – shorter chains with equal length to

the plasticizers but having all B beads is given in fig. 6.21a – spanning over five

decades. These G(t) profile are typical for a short polymeric material, with very

high modulus at the early times and intense fluctuations at t ∼ O(10−1) due to

bond oscillations.28 The customary plateau in entangled polymers at interme-

diate times are absent due to the short chain length (N = 25) we have used.
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The entanglement length Ne for the KG model42,43 is ∼ 85. At early times, all

the curves overlap and are indistinguishable from one another. At intermediate

times t ∼ O(10−1), all the curves separate into distinct lines and the curve for

the polymer mixed with dummy plasticizers is lower than the pure polymer

and the plasticized polymers with various ϵ values. However, at much later

times t ∼ O(101), there is an overlap between the profiles of the pure polymer

and when ϵ = 2. In general, the profiles are higher with increasing ϵ with the

exception at ϵ = 1.5 where there is a microphase separation and the curve does

not decay (at least on the timescale of our simulations) which is reminiscent of

a gel or cross-linked polymers.44 The corresponding viscosity for model A is

shown in fig. 6.21b. The polymer mixed with the dummy plasticizers resulted

in the lowest viscosity followed by the pure polymer. For the plasticized poly-

mers, the viscosity increases with ϵ except at ϵ = 1.5 where there is a dramatic

increase in viscosity. If plasticization is defined as a reduction in viscosity, then

only ϵ = 2 has shown the tendency of being an effective plasticizer. Similarly

for models G and J, larger ϵ values, although enhanced miscibility, resulted in

curves with higher G(t) profiles especially up to t ∼ O(101) due to the stronger

intermolecular attraction between the polymer and plasticizer beads. At later

times, it is harder to distinguish between the different lines. Again, the viscos-

ity plot fig. 6.21d and fig. 6.21f show that the polymer mixed with the dummy

additives has a much lower viscosity than at the various ϵ values, with the vis-

cosity increasing as ϵ increases. Compared to the pure polymer, the viscosity

at ϵ = 5.0 increased by ∼ 92% and ∼ 480% for models G and J respectively.

Summarily, the models that have large enough ϵ to ensure miscibility showed

little or no plasticization effect.
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(a) R − Y − R − Y − R (b) R − Y − R − Y − R

(c) R − Y − R − R − R − Y − R (d) R − Y − R − R − R − Y − R

(e) R − R − Y − Y − R − Y − Y − R − R (f) R − R − Y − Y − R − Y − Y − R − R

FIGURE 6.21: Stress relaxation modulus G(t) and zero-shear vis-
cosity η0 for models A, G, and J at a temperature of 1.0. The pure
polymer and polymer mixed with a short chain additive Ns equal
in length to the plasticizer length are included as references.
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6.4 Discussion

Most of the plasticizer models we have explored resulted in phase separation.

The few models that are compatible with the polymer showed little or no plas-

ticization tendency when we examined the linear viscoelasticity. Nevertheless,

a few other directions can still be explored. As mentioned earlier, phthalates

are one of the most popular class of plasticizers. They are however mostly used

with a polar polymer, PVC. We have accounted for polarity using a rather crude

method of tuning the relative attraction between the polymers and plasticizers.

As such, an additional way to further check the viability of these models would

be to better tune the polymer chains to account for polarity, for example by in-

cluding partial charges on the polymers. Additionally, the pair potential we

have used for both our plasticizer models and polymers has been the LJ po-

tential – which is mostly used to describe the interaction between non-polar

molecules.45 Indeed, the benzene ring in the middle of phthalates is not strictly

non-polar. It is polarizable. Explicitly incorporating polarization effects using,

for example, fluctuating-charge models46,47 that accounts for polarization by

determining the charge distribution as a result of geometrical or external per-

turbations may significantly improve the modeling predictions.

Indeed, instead of the random trials-and-errors approach we have used here

for modeling the plasticizers, a more efficient method may be some systematic

coarse graining to get CG forcefields that map to realistic atomic models for ex-

ample, DEHP. This approach can provide insight into the features that are crit-

ical to proper plasticization behaviors. We have also used fully flexible models

for the plasticizers. On the contrary, real plasticizers have nearly fixed angles
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between the legs which are generally long, although not long enough to entan-

gle with the polymers, but the increased chain length causes additional friction.

Furthermore, it is also possible that real plasticizers are not completely miscible

with the host polymer in a thermodynamic sense. They may just temporarily

stay blended for long enough time. Additional simulations would be needed

to properly investigate this. The length of the polymer chains we have used are

also rather short at N = 25. Industrial polymers are usually much longer and

entanglement effects typically play a role. It will be interesting to see the effects

of entanglements, if any, on the observed properties.

6.5 Conclusion

In this chapter, we have described our various attempts at developing plasti-

cizer models that mimic real plasticizers. We developed models that have a

strong attractive polar core and a repulsive non-polar legs – which are the typ-

ical attributes of a real plasticizer such as DEHP. By tuning the interaction pa-

rameter ϵ between the polymer and the plasticizer, we explore the evolution of

the structure of the system. The mixtures mostly separate into different com-

ponents for the parameters we have explored. There are a few intermediate

cases where the phase separation is not complete – resulting in microphase sep-

aration. Finally, there were also a few systems where both the plasticizers and

polymers were completely miscible, especially at high ϵ values and short leg

length of the plasticizer. Our simulations show that models with longer legs

showed worse compatibility with the polymer. In the miscible systems, our lin-

ear viscoelastic results show that the models do not lower the viscosity of the
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polymer. This underscores the fact that the interaction between the plasticizers

and polymers are non-trivial.
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Chapter 7

Conclusions and Contributions

In this thesis, we have focused on the dynamics and linear viscoelastic proper-

ties of pure polymers, polydisperse polymers, and polymer blends using coarse-

grained molecular dynamics (MD) simulation. We dwelt on two prominent

theories of polymer dynamics – the Rouse model that describes the dynamics

of short unentangled chains and the tube and reptation model describing that

of long, entangled chains. We used the well-known Kremer-Grest (KG) model

for our polymer chains and the length of the polymer chains we have studied

straddled these two theoretical regimes.

Our first two contributions are to the methodology development for the com-

putational estimation of key quantities and properties in polymer dynamics and

rheology. Those efforts focused on pure polymer melts. Chapter 2 focuses on

the extraction of the entanglement strand length Ne from molecular dynamics

simulation. The reptation model predicts four distinct characteristic timescales;

τ0 – the monomer characteristic time, τe – the entanglement time, τR – the Rouse
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relaxation time, and τd – the disentanglement time. Additionally, one of the im-

portant parameters of the reptation model was the definition of a length scale

– the entanglement length, Ne where the topological interactions between a test

chain and matrix chains become significant. In MD simulations, the Ne is usu-

ally determined from the intersections of the timescales associated with differ-

ent segments of the chain. However, there is a considerable variability in the

values of the timescales obtained and moreover, the calculated Ne depends on

the chosen timescales. This underscores the need for a proper definition of the

reported Ne. Here, we devised a protocol for the reliable estimation of the power

law time scales from the monomer mean square displacement. Among other

things, the calculated Ne strongly depends on the timescales used – with the

longer timescales τR and τd giving the largest value while the earlier timescales

τ0 and τe gave a much smaller value. This is due to the time dependent widen-

ing of the "tube" containing the test chain. Additionally, and for the first time,

to the best of our knowledge, we also used Rouse mode analysis (RMA) to also

extract Ne. The RMA offers a more robust and less sensitive method for calcu-

lating Ne. This yielded a value closer to that determined from τR and τd.

Chapter 3 focuses on the methods for calculating linear viscoleastic prop-

erties of polymer melts. We compared three different methods for predicting

the linear viscoelastic properties (G′ and G′′) of polymers in MD simulations –

equilibrium molecular dynamics (EMD), non-equilibrium molecular dynamics

(NEMD), and Rouse mode analysis (RMA), given a fixed amount of computa-

tional resource. Besides the intense stress fluctuations peculiar to the EMD ap-

proach, the Fourier transformation of the G(t) to G′ and G′′ is also non-trivial
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due to the non-uniform sampling time in the G(t). We used an interpolation

scheme to overcome this hurdle. The NEMD method traditionally uses an ex-

cessive amount of computational resources to avoid potential statistical inaccu-

racy. Through careful error analysis, we identified the exact amount of comput-

ing time necessary for statistical accuracy. We presented results at much lower

frequencies and longer chain length than previously reported in the literature.

The RMA is only applicable to short chain lengths. Therefore, we compared the

uncertainty of these three approaches for short chain lengths using the amount

of computational resource as a constraint. Our results showed that RMA gave

the lowest uncertainty.

The rest of the thesis focuses on viscoelastic properties of more realistic poly-

mer systems, including polydisperse polymer melts and polymer-additive blends.

In chapter 4, idealizing a polydisperse mixture using a bidisperse system con-

sisting a short unentangled chain and another long enough to be considered en-

tangled based on the Kremer-Grest (KG) model, we studied the effects of poly-

dispersity on the dynamics of the polymer chains by calculating the monomer

and center-of-mass mean square displacement. Our results showed that the dy-

namics of the longer chains are sped up by the shorter chains and the converse

is true for the shorter chains wherein their dynamics are inhibited by the longer

chains. However, the nature of the dynamics of the short chains is unaffected

by the presence of the longer chains. By performing a RMA on the individ-

ual chains, we also showed that the shorter chains lessened the entanglement

effects of the longer chains. We further tested a semi-empirical mixing rule

for predicting the stress relaxation modulus of the system using the individual
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stress relaxation G(t) profiles of the constituent chains. This is a rather unique

approach as we were able to see how the bidisperse components affect the bulk

G(t). Here, our results showed that the double reptation model better predicts

the G(t) when the longer chains are the majority. However, a simple mixing

rule yields a much better result when the shorter chains are the majority.

In chapter 5, we explored the ability of small molecular additives to plasti-

cize a polymer chain by varying the mass concentration and molecular dimen-

sions of the additives. The markers for plasticization are typically indicated by

a reduction in the glass transition temperature, Young’s modulus, and the zero-

shear viscosity η0. We found that Tg, Y, and η0 are de-correlated. Furthermore,

as the mass concentration of the additives increase, the smaller-sized particles

effectively reduce the Tg. There is however a transition concentration where the

efficiency of the reduction in Tg by the additives begin to reduce.

In chapter 6, we described our different attempts at modeling a multi-bead

plasticizer model which mimic a real plasticizer. Detailed analysis of the mi-

crostructure showed that our models are either incompatible with the polymers

or only marginally miscible with the polymers over a narrow range and do not

give rise to plasticization.
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