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LAY ABSTRACT

An important consideration of chemical processes is the maximization of production

and product quality. To that end developing an accurate controller is necessary to

avoid wasting resources and off-spec products. All advance process control approaches

rely on the accuracy of the process model, therefore, it is important to identify the

best model. This thesis presents two novel subspace based modeling approaches the

first using first principles based constraints and the second handling missing data

approaches. These models are then applied to a modified state space model with a

predictive control strategy to show that the improved models lead to improved control.

The approaches in this work are tested on both simulation (polymethyl methacrylate)

and industrial (bioreactor) processes.
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ABSTRACT

This thesis focuses on subspace based data-driven modeling and control techniques

for batch and continuous processes. Motivated by the increasing amount of process

data, data-driven modeling approaches have become more popular. These approaches

are better in comparison to first-principles models due to their ability to capture

true process dynamics. However, data-driven models rely solely on mathematical

correlations and are subject to overfitting. As such, applying first-principles based

constraints to the subspace model can lead to better predictions and subsequently

better control. This thesis demonstrates that the addition of process gain constraints

leads to a more accurate constrained model. In addition, this thesis also shows that

using the constrained model in a model predictive control (MPC) algorithm allows the

system to reach desired setpoints faster. The novel MPC algorithm described in this

thesis is specially designed as a quadratic program to include a feedthrough matrix.

This is traditionally ignored in industry however this thesis portrays that its inclusion

leads to more accurate process control. Given the importance of accurate process

data during model identification, the missing data problem is another area that needs

improvement. There are two main scenarios with missing data: infrequent sampling/

sensor errors and quality variables. In the infrequent sampling case, data points are

missing in set intervals and so correlating between different batches is not possible

as the data is missing in the same place everywhere. The quality variable case is

different in that quality measurements require additional expensive test making them

unavailable for over 90% of the observations at the regular sampling frequency. This

thesis presents a novel subspace approach using partial least squares and principal

component analysis to identify a subspace model. This algorithm is used to solve

each case of missing data in both simulation (polymethyl methacrylate) and industrial

(bioreactor) processes with improved performance.
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Chapter 1

Introduction
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1.1 Motivation

As technological advancements have led to increases in automation and computational

power the chemical engineering industry has also evolved. Traditionally, chemical pro-

cesses have relied on first-principles based models to design small scale systems that

can be converted to large scale industrial processes. While these approaches are ef-

fective, they are difficult to develop and often rely on assumptions and simplifications

that fail to fully encompass the true dynamics. To that end, data-driven modeling has

seen an increase in popularity as these techniques can analyze all the historical data,

collected from different modes of operation, to develop a comprehensive model. data-

driven modeling approaches take several forms and this thesis focuses on adapting

well-studied subspace identification methods for modeling and control. The purpose

of this section is to explain the basics behind batch subspace identification techniques

along with the contributions made to the area of batch modeling and control starting

with the definitions of batch processes. Batch processes are uniquely characterized

by their finite duration, their predefined recipe, and their termination based on a

process outcome. Batch dynamics differ from continuous processes in that they do

not reach steady state conditions which represent the desired operating state for the

process. Instead, batch processes focus on achieving a terminal product quality as

the desired outcome. This poses a challenge for process control strategies because

quality variables require additional testing and are not available as an “online” mea-

surement. Online measurements are variables, such as temperature and pH, that can

be measured continuously and can be used for control. Quality variables, which are

not measured directly, are not used in process control strategies and so batch con-

trol relies on trajectory tracking approaches based on a successful trial. While input

tracking can be simple to implement it does not utilize any process information or

dynamics making these approaches unable to handle variations in initial conditions.

To handle process variations and disturbances an advanced process control strategy
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must be developed and implemented. In these strategies, such as model predictive

control (MPC), a process model must first be developed. Thus, an accurate model

is integral to an effective control strategy. To develop a model there are two main

schools of thought: first-principles models and data-driven models. First-principles

models rely on the scientific knowledge of the system and require intensive study of

the process and expected interactions. These models are well explored however, they

are difficult to develop and often rely on assumptions to simplify the equations. Given

the abundance of historical data, data-driven modeling approaches, which rely on the

mathematical relationships in the data, are a better alternative. While numerous

data-driven modeling techniques exist, subspace identification is a natural choice due

to its computational efficient algorithm and ability to generate a simple linear time

invariant model capable of modeling both batch and continuous processes. Subspace

identification also has drawbacks as relying only on the mathematical relationships

in the training data can lead to overfitting and the matrix manipulations require full

rank data. In consideration of the above data-driven modeling and control shortcom-

ings, this thesis demonstrates novel improvements to subspace based techniques to

improve the modeling and control of these processes. These approaches are applied

to several industrially relevant processes such as seeded batch polymerization and

continuous bioreactors. The remainder of this section provides a brief outline of each

of the chapters and the contributions within.

1.2 Outline of the thesis

The purpose of the first manuscript is to address issues with data-driven modeling

approaches identifying incorrect process trends. When attempting to identify a data-

driven model through subspace identification the goal is to generate a linear time

invariant model that minimizes the error in the training data. This is done through a
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series of regression steps designed to identify a state trajectory and the system matri-

ces of the model. However, in subspace identification, the states are a transformation

of the physical states and as such, the first principles dynamics are not inherently

present in the final model. This work introduces an approach that can introduce first

principles knowledge into the data-driven model using constraints. The approach

is particularly effective at correcting process gains that have been misidentified. In

Chapter 3 the work on the constrained models is extended to focus on control strate-

gies. Traditional state space model predictive control (MPC) approaches omit the

feedthrough term when calculating the outputs. This is done since most industrial

processes do not have outputs that are directly affected by the inputs. However,

subspace identification identifies a feedthrough term that can capture unobserved

effects and is necessary for improved control. This work firstly introduces a state

space MPC algorithm that is capable of handling a feedthrough term and secondly

shows the benefits of the feedthrough matrix. Chapter 4 presents a completely novel

subspace model identification approach to handle the missing data problem. This ap-

proach is motivated by the need to handle scenarios where process data is unavailable

from numerous problems such as sensor faults and different sampling rates. The key

to this work lies in the close relationship between subspace identification techniques

and regression based approaches of partial least squares (PLS) and principal com-

ponent analysis (PCA). In particular, PCA and singular value decomposition result

in identical solutions. This work demonstrates that the regression steps of subspace

identification can be replaced by PCA and PLS steps using the non-iterative partial

least squares (NIPALS) regression technique. To test the strength of the proposed

approach a polymethyl methacrylate (PMMA) polymerization reactor is used as the

test-bed. The missing data subspace model is compared against linear interpolation

and mean replacement techniques in a receding horizon MPC approach. The simula-

tion results show the improved performance of the missing data approach. In Chapter

5, an application of the missing data algorithm is presented using a bioreactor process
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as the case study. The key challenges in the bioreactor problem are the large amounts

of missing data due to different sampling rates and the discrete addition of glucose

as an input. This paper provides a starting point to expand the missing data algo-

rithms to industrial applications. Specifically, the bioreactor industry is one where

advanced process control strategies are seldom used because any deviations from the

plant-model mismatch can potentially lead to a lost batch due to the delicate nature

of the cells. This work utilizes the missing data algorithm and state space MPC ap-

proach to model and control the bioreactor in order to improve batch quality. Chapter

6 presents all of the above techniques developed in this thesis to control a perfusion

bioreactor for Sartorius. By extending work from previous chapters this chapter uti-

lized constrained subspace identification techniques with the missing data algorithm

to identify a subspace model of the bioreactor. The state space MPC is then used to

control the bioreactor to maximize production and the control approach is currently

being implemented at Sartorius. The last chapter is used to make concluding remarks

and summarize the approaches developed in this thesis. Future work is also proposed

that can be continued with other students under my supervision.
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Chapter 2

Integrating Data-Driven Modeling

with First-Principles Knowledge

This first chapter presents a novel subspace model identification approach to handle

problems where data-driven modeling incorrectly identifies process trends such as

the gain between certain inputs and outputs. The problem results when data-driven

modeling approaches minimize the prediction error in the training set and overfit the

model with incorrect process trends. The key idea in this work is to impose constraints

based on first-principles knowledge in the model identification stage to generate an

improved subspace model. Furthermore, an iterative process is utilized to ensure that

the states of the model are representative of the process. This work was completed

in collaboration with industrial partners Siam Aumi, Chris Ewaschuk and Jay Luo

from Corning. They provided technical support and direction for the experiments and

identification approach.

Patel, N., Nease, J., Aumi, S., Ewaschuk, C., Luo, J., & Mhaskar, P. (2020). Integrat-

ing Data-Driven Modeling with First-Principles Knowledge. Industrial & Engineering

Chemistry Research, 59(11), 5103-5113
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2.1 Abstract

This paper addresses the problem of integrating subspace based model identifica-

tion with first principles modeling for handling scenarios where the subspace model

identifies spurious relationships between inputs and outputs. The key motivation is to

suitably synergize the two approaches while retaining the simplicity of subspace based

model identification. In the proposed methodology, as is done with traditional sub-

space identification, state trajectories that best describe the input-output data are

first computed (which implicitly correspond to an underlying linear time invariant

model). In computing the system matrices using the state trajectories, constraints

derived from first principles understanding, are incorporated into the optimization

problem. To reconcile the resulting mismatch between the state trajectories and the

system matrices, an iterative process is utilized. First, the system matrices computed

from the optimization problem are utilized to re-estimate the state trajectories (this

time utilizing a state estimator and the input and output trajectories). The state tra-

jectories are, in turn, utilized to re-solve the system matrices using the input-output

data. The process is repeated until convergence between successive state trajectories,

thus yielding state trajectories and ‘consistent’ system matrices. The efficacy of the

proposed approach is shown via simulations using a nonlinear process example.

2.2 Introduction

Models that capture and sufficiently represent the underlying dynamics of a pro-

cess are critical for model-based control. Fundamentally, there are two modeling

approaches available: first principles, mechanistic-based modeling, and empirical,

data-driven modeling. First principles models are sought for their ability to capture

inherent process dynamics. [15, 2, 10]These models rely on conservation equations,
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such as mass, mole, and energy balances. However, they can be high-dimensional

and add complexity, making them difficult to develop and maintain or use for control

design. In many cases, the availability of historical process data has led to the devel-

opment of data-driven models which are easier to develop and implement. One of the

more prevalent techniques in data-driven modeling is the partial least squares (PLS)

method [7]. In this approach, data from each experiment/process run is collected

and projected onto a lower dimension (latent variable space) with guaranteed latent

variable independence, where inferences about the nature of the process can be drawn

[MacGregor et al.]. The data is oriented in a series of runs where columns represent

measurements and rows represent observations. PLS models can be interpreted as

time-dependent linear models around historical run trajectories and require special

techniques to handle data from runs of non-uniform length. In PLS techniques, first

principles knowledge can be accounted for by additional variables calculated using

first-principles equations and appending the columns to the data matrix.

In addition to PLS, there are other types of data-driven modeling techniques such

as prediction error methods (PEM) [16, 12, 21]. These methods solve the problem

of minimizing the sum of square of the error between the predicted and measured

outputs, to compute the system matrices. The PEM methods can readily incorporate

additional constraints in solving the system matrices. The difficulty with PEMs lies in

the computational complexity. The traditional PEM methods require solving a non-

convex optimization problem to compute the system matrices, and successful model

identification can rely on initial parameter values being sufficiently close to that of

the solution.[12]. Unlike subspace identification which calculates states from the data,

PEM methods must compute and compare the states of the system along with the

predicted outputs as part of the optimization problem. The incorporation of first

principles model based constraints can make the PEM based approaches even more

computationally demanding.
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Subspace identification, another model identification approach, on the other hand, is

intrinsically more computationally tractable. [14, 8, 19] The method involves a two

step procedure where the first step is to use data projection to identify a state trajec-

tory and the second step is to compute the system matrices. Subspace identification

algorithms have different techniques from canonical variate analysis[11], numerical

algorithms for subspace state space identification [18]and multivariate output error

state space algorithms [20]. These subspace identification algorithms can be classified

by their use of singular value decomposition of matrices under different weightings

schemes. Recent developments of the traditional subspace method have allowed for

data from multiple experiments to be analyzed using the same singular value decom-

position method.[4]

While some efforts have been made to incorporate first principles knowledge into sub-

space identification approaches by including constraints, these approaches are compu-

tationally expensive. One approach [1] proposes a constrained least squares solution

while using a series of weighted constraints to turn the problem into a regular least

squares solution. However, it is limited to equality constraints. Additionally, the

method requires the system matrices to be solved in an intermediate step rather than

being solved simultaneously[1], thus not necessarily resulting in system matrices (and

the identified dynamics) being consistent with the constraints. Other approaches that

consider prior information utilize parameter estimation techniques using a Bayesian

framework to introduce steady state gains. [17] However, the constraints are proposed

as soft constraints in the optimization problem. In another approach, the moment of

the transfer function, i.e., the value of a point on the complex plane along with higher

order derivatives, can be constrained using a weighted constraints approach and a

quadratic optimization problem. This is done by using the Sylvester equation in con-

junction with subspace identification. [9] In summary, limited formulations exist that

enable incorporation of first principles knowledge explicitly as constraints, especially

in the context of subspace based dynamic models.
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Motivated by these considerations, this paper presents an identification method uti-

lizing notions from subspace identification [3], but enabling incorporation of first prin-

ciples knowledge. Compared to the existing subspace identification procedure, this

work introduces a novel blending of first-principles based constraints in the subspace

identification procedure to generate a constrained model. The integration of first

principles knowledge in subspace identification demonstrates the ability to identify

models that capture the underlying dynamics via data-driven modeling and reject

spurious predictions as a result of incorporating first principles constraints. Our ap-

proach is to utilize first-principle knowledge of the process dynamics in order to add

constraints to the subspace identification procedure. To achieve this, first, a nonlin-

ear optimization problem is used to solve for the system matrices (via state estimates

generated using an existing subspace identification technique) with constraints based

on first-principles knowledge, hereafter referred to as the constrained model. Then,

an iterative procedure is used to refine the resulting system matrices and reconcile

them with the state trajectories. The rest of the paper is organized as follows: Sec-

tion 2.3 presents two chemical stirred tank reactors (CSTR) in series as a motivating

example, followed by an overview of subspace identification methods. Section 2.3.2

reviews the subspace identification approach that does not require the training data

from multiple runs to be of uniform length. The proposed optimization based ap-

proach is then presented in Section 2.4.1 with the iterative algorithm described in

Section 2.4.2. Section 2.4.3 presents the validation results. In Section 2.5, an appli-

cation of the proposed approach to the CSTR example is presented, and the ability

to incorporate first principles knowledge demonstrated. Finally, concluding remarks

are made in Section 2.6.
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2.3 Preliminaries

In this section we first present an example to motivate our results, followed by a

review of existing subspace identification approaches.

2.3.1 Motivating Example: 2 Chemical Stirred Tank Reac-

tors (CSTRs) in Series

Consider a process which has two CSTRs in series (see Figure 2.1) where the effluent

from the first CSTR feeds into the second CSTR. Each CSTR has two inputs that

can be manipulated, the fresh feed concentration and the amount of heat added, and

two outputs that are measured: the effluent concentration and temperature. A first

principles model describing the evolution of the concentration of A, CAi
, and the

reactor temperature, Ti, i = 1, 2 for each CSTR, results in the following 4 ordinary

differential equations:

Figure 2.1: The schematic of the CSTR model
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dCA1

dt
= −F

V
(CA1,in − CA1,ss + CA,0 − CA1)− koe

−E
RT1CA1in

dT1

dt
= −F

V
(T0 − T1)−

∆H

Cpρ
koe

−E
RT1CAin +

Q1in

Cp

ρV

dCA2

dt
= −F

V
(CA2,in − CA2,ss + CA,0 − CA2)− koe

−E
RT2CA1in +

F

V
(CA1 − CA2)

dT2

dt
= −F

V
(T1 − T2)−

∆H

Cpρ
koe

−E
RT2CA2,in +

Q2in

Cp

ρV +
F

V
(T0 − T2)

(2.1)

where ρ is the density of the fluid, F is the inlet flow rate to the first CSTR, V is the

volume of each CSTR, R is the gas transfer coefficient, E is the activation energy of

the reaction, k0 is the value of the Arrhenius constant, T0 is the inlet feed temperature,

CA,0 is the inlet feed concentration, ∆H is the heat of reaction, Cp is the heat capacity

of the solution (see Table 2.1 for the parameter values). The input vector u includes

CA1,in,Q1in, CA2,in,Q1in and the output vector includes y as CA1, T1, CA2, T2.

Table 2.1: Parameter values for the motivating process example

Parameter Value Unit Parameter Value Unit
V 0.1 m3 ρ 1000 kg/m3

R 8.314 J/(mol ·K) E 8.314× 104 µm/s
CA,0 2 mol/L k0 7.2× 1010 K
∆H 4.78× 104 kJ/kg Cp 0.239 kJ/K · kg
T0 310 K F 100 L/s

The process set up shown in Figure 2.1 is such that the inputs of the second CSTR

do not effect the outputs of the first CSTR. Process noise and nonlinearities in the

process can mislead existing subspace identification procedure into identifying non-

casual relationships between the inputs of the second CSTR and the outputs of the

first CSTR (see 2.3.3 section for a demonstration).
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2.3.2 Subspace Identification

This subsection provides an overview of existing system identification methods that

use iterative optimization algorithms involving the minimization of prediction errors.

System identification methods rely on data from the measured outputs and manip-

ulated inputs in order to generate a model of the system. Some of the more widely

studied approaches that minimize prediction errors include maximum likelihood esti-

mation (MLE) and expectation minimization (EM) methods[16, 12, 21]. These tech-

niques are well-adapted to handle a wide range of model parameterizations including

linear time invariant (LTI) models, linear regression models, and non-linear models.

Batch subspace identification techniques have also been widely studied as a way to

identify a LTI state space model.[3, 5] The deterministic identification problem can

be described as follows: If s measurements (where s represents the length of the data)

of the input u(b)[k] ∈ Rm and the output y(b)[k] ∈ Rl are available for each run, then

a model with order n can be identified in the following format:

x̂(b)[k + 1] = Ax(b)[k] +Bu(b)[k],

y(b)[k] = Cx̂(b)[k] +Du(b)[k],
(2.2)

where the objective is to determine the order n of this unknown system and the system

matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

We denote the measured outputs as y(b)[k], where k is the sampling time from when

the run is initialized and b denotes the run number. Thus, the Hankel matrix, after

aligning each run b, is laid out as follows:
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Y
(b)
1|i =


y(b)[1] y(b)[2] · · · y(b)

[
j(b)

]
...

...
...

y(b)[i] y(b)[i+ 1] · · · y(b)
[
i+ j(b) − 1

]
 ∀ b = 1, . . . , nb (2.3)

where nb is the total number of runs used for identification and Y
(b)
1|i represents the

output Hankel matrix for each run.

A single Hankel matrix by itself would not allow data from multiple experiments or

runs to be utilized and the simple concatenation of the outputs from all of the runs

would generate a data set where the initial condition of a subsequent run is the end

point of the previous run which is also incorrect. Therefore, when concatenating the

data it is important to generate a matrix where this assumption is not necessary to

solve for the states. This can be achieved by horizontally concatenating the Hankel

matrices from each run to generate our pseudo-Hankel matrix for both the input and

output variables. This pseudo-Hankel matrix for the output data is defined as follows:

Y1|i =
[
Y

(1)
1|i Y

(2)
1|i · · · Y

(nb)
1|i

]
(2.4)

Similarly, a pseudo-Hankel matrix for input data can be generated. A key considera-

tion of this approach is that horizontal concatenation of data allows for runs of varying

lengths to be identified without aligning the variables. The use of these pseudo-Hankel

matrices for input and output data allows for data from multiple runs to be analyzed

to compute the state trajectory using any subspace identification technique, such

as the deterministic method used in this approach.[14] A consequence of horizon-

tal concatenation is that the identified state trajectories also consist of horizontally

concatenated state estimates from each run which can be represented as:
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X̂
(b)

i+1 =
[
x̂(b)[i+ 1] · · · x̂(b)

[
i+ j(b)

]]
∀ b = 1, . . . , nb (2.5)

X̂i+1 =
[
X̂

(1)

i+1 X̂
(2)

i+1 · · · X̂
(nb)

i+1

]
(2.6)

where nb is the total number of training runs used for identification. Finally, once

the state trajectory matrix is determined, the system matrices can be estimated using

methods such as ordinary least squares as shown below:

Y(b)
reg =

x̂(b)[i+ 2] · · · x̂(b)
[
i+ j(b)

]
y(b)[i+ 1] · · · y(b)

[
i+ j(b) − 1

]
 (2.7)

X(b)
reg =

x̂(b)[i+ 1] · · · x̂(b)
[
i+ j(b) − 1

]
u(b)[i+ 1] · · · u(b)

[
i+ j(b) − 1

]
 (2.8)

[
Y(1)

reg · · · Y(nb)
reg

]
=

A B

C D

[
X(1)

reg · · · X(nb)
reg

]
(2.9)

Y = θX (2.10)

where the existing subspace identification approach would yield the A, B, C and D

as the state-space model matrices and are henceforth collectively referred to as the

unconstrained model.

Remark 1. While the proposed approach utilizes a continuous process as

a motivating example it is important to note that the proposed approach is

applicable to numerous scenarios. The first scenario is where a continuous

process is initiated from different initial conditions and operated until steady

state (creating multiple runs). The second is where the process is operated

as a continuous operation for a sufficiently long period of time while making

appropriate step tests (thus producing a single run). Finally, the proposed

approach is also set up to handle data from different batches (runs). To clearly
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convey the method’s applicability to continuous and batch operations, the data

sets are referred to as ‘runs’.

Remark 2. The key consideration with subspace identification for multiple

data sets compared to a single data set is in the generation of the state tra-

jectory. The risk of not using a pseudo-Hankel matrix structure through a

concatenation of the data can result in a single state trajectory for the data

set, where the initial point of the next run is incorrectly linked to the end point

of the previous run. The subspace identification approach allows for the cor-

rect identification of the separate state trajectories from the training data to be

used for model identification, thus enabling the usage of multiple runs during

training.

2.3.3 Current Modeling Limitations

This section illustrates how current modeling techniques can result in spurious pre-

dictions to provide a contrast with the proposed modeling technique presented later

in the paper. To this end, we present modeling and validation results using the MAT-

LAB system identification toolbox to fit first order plus dead time (FOPDT) models,

and then using existing subspace identification techniques. The training set for the

following case studies consisted of 10 runs where s = 500 minutes. The input sequence

was a series of steps with each input move being held for 50 minutes. To simulate

process variability, the initial condition of each run was varied over a range of tem-

peratures (320 K to 350 K) and concentrations from (0.5 M to 3 M). The data was

used to generate a transfer function model of the system with input delays chosen

based on the best validation results. For the purpose of determining a subspace based

model, the data is arranged into the Hankel matrix format described in section 2.3.2

(for the present application, the number of states n = 4 was chosen based on cross
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validation; the problem of a more systematic method of choosing the number of states

is considered elsewhere [6]).

To test the validity of the model, especially against spurious relationships, a step

change was carried out where only the heat added to the second CSTR is changed

(see Figure 2.3) . As expected, there is no change in the outlet concentrations and

temperatures from the first CSTR. Both the FOPDT and subspace identification mod-

els, however, predict poorly in this scenario. The FOPDT model and subspace model

predict a change in the outlet concentration and temperature and a new steady state

for both variables (see Figure 2.2 for the process and predicted outputs and Figure

2.3 for the validation inputs). The result is not entirely unexpected. Note that the

identification techniques ‘fit’ the process data presented to them at the training stage,

and in an effort to capture the nonlinear dynamics as best as possible, could include

relationship between variables that are inconsistent with the physical process. This

provides the motivation behind crafting a data driven modeling framework that in-

corporates constraints at the model identification stage to ensure that known physical

relationships are obeyed.
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Figure 2.2: Step test results using the standard subspace identification techniques. The
solid black line represents the process, the grey dashed line represents the predictions by
the subspace model and the black dashed dot line represents the first order plus dead time

model predictions.

Figure 2.3: The input profiles used to generate the data to conduct targeted validation.
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2.4 Proposed Modeling Approach

The first step in the proposed approach is to identify an LTI state space model of the

system using data from historical runs. The state space model is found using a mod-

ified subspace identification algorithm that is able to handle multiple runs without

aligning the variables.[3] This model is used as an initial guess in an optimization prob-

lem with the objective of minimizing the prediction error (similar to PEM approach)

between the ”constrained” model and the process while respecting first principles

based constraints. The next step is to compare the new states of the constrained

model with the original states and then iterating until the states converge to within

a user-defined tolerance. The final converged model is referred to as the constrained

model.

2.4.1 Optimization Problem Formulation

The state space model that has been identified using the subspace identification ap-

proach mentioned above is designed without first principles knowledge of the system.

As illustrated in Section 2.3.3, the identification procedure can result in spurious

predictions. The purpose of the constrained approach is to utilize first principles

knowledge to identify a model that is consistent with what is physically realizable.

One piece of the proposed approach involves solving a nonlinear optimization prob-

lem with appropriate constraints to determine the system matrices, given a state

trajectory. A generalized formulation of the proposed optimization problem is shown

below:
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min
θ

(Y − θX)T (Y − θX)

s.t. F irst principles knowledge based constraints

(2.11)

θ =

A B

C D

 (2.12)

where Y and X are described in Equation 2.10, θ is comprised of the system matrices,

and the first principles based knowledge is imposed as appropriate constraints in the

optimization problem. This specific constraint can take many forms, including steady

state gains, dynamic gains, or other means of characterizing known/expected behavior

between variables.

This nonlinear optimization problem utilizes the system matrices identified through

traditional subspace approaches as an initial guess. Note that the solution of the op-

timization problem yields a set of system matrices that are computed using the state

trajectories determined from the standard subspace identification procedure. Thus,

while the system matrices respect the constraints, they are not necessarily ‘consis-

tent’ with the state trajectories. The next section presents an iterative procedure to

generate a consistent set of system matrices and state trajectories.

Remark 3. The optimization problem, depending on the nature of the first

principles knowledge, could very well be a non-convex optimization problem

(as in the case of the illustrative example). Thus, any solution is not guaran-

teed to be the global solution. However, a global optimum, while desired, is not

necessary to ensure the incorporation of the first principles knowledge. Any

potential local solution that respects the constraints enables the incorporation

of the first principles knowledge. Note that the implementation is also ‘warm
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started’ using the solution from the standard subspace identification approach.

This work utilized MATLAB’s fmincon solver to solve the optimization prob-

lem however, any other appropriate nonlinear programming solver can readily

be used.

Remark 4. With regard to the complexity of the optimization problem, it is

important to note that a direct implementation of the prediction error mini-

mization model would require the system matrices along with the entire state

trajectory to be computed (thus not only increasing the number of decision vari-

ables, but also requiring more nonlinear constraints). In particular, the system

matrices along with the inputs and outputs determining the state trajectory re-

sult in a highly nonlinear optimization problem. Such an optimization would

take the following form (written in pseudocode for the case of a single run):

min
A,B,C,D,x0

s∑
k=1

||y[:, k]− ŷ[:, k]||2

s.t. F irst principles knowledge based constraints

(2.13)

x[:, k + 1] = Ax[:, k] +Bu[:, k]

ŷ[:, k] = Cx[:, k] +Du[:, k]

x[:, 1] = x0

(2.14)

where input u ∈ Rm×s and the output y ∈ Rl×s are available and the decision

variables are the system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m

and the initial value of the states x0. The subsequent predicted output matrix

ŷ ∈ Rl×s and state matrix x ∈ Rn×s comes from solving Equation 6 for k =

1..s.
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The above optimization problem is significantly more nonlinear (the decision

variables are multiplied to each other, and raised up-to the power of N , where

N is the number of samples in the run), than the proposed, iterative algorithm

described in the next section. The proposed method offers a trade-off between

calculating the complete solution (as could be done with a modified PEM im-

plementation) and completely ignoring the first principles based constraints

(as with the subspace based identification approaches, including the recently

proposed approaches for handling data from multiple runs).

2.4.2 Iterative algorithm

Presently, the way Problem 11 is solved is as follows: The given data is first utilized to

solve the traditional subspace identification problem- this yields the system matrices

and the state trajectories, that are consistent with each other. Problem 11 then uti-

lizes these state trajectories, and the system matrices as initial guesses, and computes

a new set of system matrices that respect the constraints. In doing so, however, the

computed system matrices are no longer ‘consistent’ with the state trajectories- thus

an iterative procedure is followed.

The key idea of the proposed approach is to compute system matrices that are con-

sistent with the constraints. While that is seemingly achieved via the constraints in

the optimization problem, the optimization problem utilizes state trajectories in the

computations, which are in turn determined by the (unconstrained) subspace identi-

fication approach. Next we describe an algorithm as shown in Figure 2.4 that enables

achieving a set of system matrices and state trajectories that are consistent.
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Figure 2.4: The Iterative algorithm used to converge the state sequence

State Convergence Algorithm

1. Identify the states of the system and an unconstrained model by utilizing a

subspace identification technique.[14]

2. Using the state trajectory and an appropriate initial guess (the unconstrained

model the first time, and the previous solution in subsequent iterations) for the

optimization problem proposed in 2.4.1, identify a new constrained model.

3. Use the newly computed system matrices, and the input output data to com-

pute a new state sequence, using say a Luenberger observer, but the comparison

is carried out only for corresponding state values, past the time point of conver-

gence (see Section 2.4.3 for details on the observer).
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4. Compare the new states estimated using the constrained model with the states at

the previous iteration at the corresponding time points (take the absolute value

of the difference and then divide it by the length of the new state sequence) and,

if they have not, use the new state sequence and iterate (go back to step 2) until

the variation is less than a prescribed tolerance. Note that the state sequence

shrinks during each iteration based on the time it takes the state observer to

converge. However, the new states are directly compared to their corresponding

states in the original sequence. For example, if the original state sequence is

estimated at 100 time points and the observer takes 2 iterations to converge, the

state sequence from time points 3-100 is compared with the new state vector.

5. Once the state sequences have converged, the resultant system matrices are

denoted as the final constrained model.

Remark 5. For the simple cases where the first principles based constraints

are linear in the decision variables, the optimization problem reduces to a con-

vex optimization problem, ensuring a globally optimal solution. In such cases,

the convergence of the algorithm can be readily guaranteed. For application

purposes, the algorithm is terminated after a predetermined set of iterations.

In the present applications, this number was chosen as 30, with the algorithm

converging well within this threshold for all the test cases. Note that the incor-

poration of the physics based constraints do not require the iterative algorithm

to converge (at every step of the iteration, the constrained model that is gener-

ated respects the additional constraints): the convergence enables ‘consistency’

between the identified state trajectory and the identified model.

Remark 6. An important modeling parameter to consider further is the num-

ber of states- both for the constrained and unconstrained model. Specifically,

there could be scenarios where the analysis of the constrained model reveals
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that using the same number of states, albeit with the physics based constraints

incorporated, either renders some of the states redundant, or necessitates more

states. In the present implementation, the number of states determined during

the standard identification procedure is retained for the rest of the identifica-

tion procedure. Future implementations would explore further the choice with

the number of states (and specifically, using the constrained model identifica-

tion to guide the choice).

2.4.3 Model Validation

Model validation is the key step in model identification, given that success with vali-

dation scenarios ultimately enable confidence in the developed model. In state-space

models, where the initial state for a new data set is not know apriori, it is imperative

to first implement a state observer and determine a sufficiently accurate state estimate

so the prediction capability of the model can be evaluated. In this work, a Luenberger

observer is used. Specifically, during the initial part of a new dataset, the Luenberger

observer is used to find a good estimate of the current system states before using the

state space model. The observer has the following form:

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− ŷ[k]) (2.15)

where L is the observer gain and is chosen to ensure that (A − LC) is stable. The

initial state estimate could be chosen as zero, but for this work the state estimate

for each run generated from the subspace identification approach was used as the

initial state for the run. Once the observer has converged, the identified model can

be utilized for predicting the remainder of the trajectory.
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Remark 7. While the present illustration utilizes the Luenberger observer

to estimate the states of the system (appropriate for the noise-free illustrative

results in the present manuscript), in principle any observe can be utilized. In

certain scenarios, such as noisy process data, other state estimation techniques

such as the Kalman filter might be more applicable. Furthermore, the key

idea of the algorithm is not restricted to the particular subspace identification

algorithm. Any other subspace identification algorithm can be used to ‘warm

start’ the optimization problem with the key tool being the iterative algorithm

that makes the state trajectory consistent with the constrained system matrices

without resorting to having to solve a complex optimization problem.

Remark 8. This work focuses on applying first principles knowledge that

is known with ‘certainty’, such as steady state gains having a known value,

or certain input-output channels being zero. The approach is not designed to

handle situations where the ’first principles knowledge’ itself has parameters

that need to be identified (for instance, if it includes a reaction rate constant

that needs to be determined). Handling such situations can be done through

an alternative hybrid modeling approach where the two models are identified

and implemented in parallel. [6].

2.5 Application To The Motivating Example

In this section, first, the identification of a state space model for the two stage CSTR

process using the novel subspace identification approach is discussed. This is followed

by a comparison against the previously developed subspace identification procedure.
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2.5.1 Model Identification

The constrained optimization problem for the motivating example takes the following

form:

min
θ

(Y − θX)T (Y − θX)

θ =

A B

C D


Gθ = tf(A,B,C,D)

G(1, 3) = 0

G(1, 4) = 0

G(2, 3) = 0

G(2, 4) = 0

(2.16)

where Y and X are described in Equation 2.10, θ is comprised of the system matrices,

Gθ denotes the equivalent transfer function representation of the state-space system,

denoted by tf(A,B,C,D), with G(i, j) denoting the transfer function from input i to

output j. Thus, physical constraints are included which require that the inputs from

the second CSTR do not affect the outputs from the first CSTR. This is accomplished

by computing an equivalent transfer function model from the state space model and

for the transfer functions between inputs 3 and 4 and outputs 1 and 2, constraining

the numerator to be zero.

Note that the optimization problem is nonlinear and non-convex as presented. It is

important to recognize that the non-convexity arises from the constraints and not

the objective function. In particular, since the pre-computed state trajectory (using

the standard subspace identification method) is utilized in formulating the objective
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function, the objective function is quadratic in the decision variables and hence convex.

In contrast, if the state trajectory was unavailable, and the initial state vector needed

to be a decision variable, the objective function itself would be a highly nonlinear

function of the decision variables (the positive tradeoff would be that it would result in

the computation of an entirely consistent state trajectory and system matrices). Thus,

a full blown PEM optimization problem would have a similar form as in Equation 2.16,

with the following key additions: The optimization would also include x0, the initial

state value as the decision variable. In computing the objective function, the predicted

outputs at time k would be computed as follows:

Xk = Akx0 +
k−1∑
i=0

Ak−(i+1)Bui

Yk = CXk +Duk

(2.17)

Thus, even in the absence of the first principles based constraints, the optimization

problem would be highly nonlinear and non-convex, making it difficult to compute

the solution. The additional first principles based constraint, if included with the

full optimization problem, could render the optimization intractable. In contrast, the

proposed formulation provides a practical trade-off between computational complexity

and solution accuracy in incorporating first principles based constraints in the system

identification approach.

We next describe the implementation of the iterative algorithm. In the first step of the

algorithm, where the standard subspace identification is utilized to generate a state

sequence for input output data with s = 500, the state sequence that is generated

is of a length of 491. Using this state sequence, the optimization problem defined

above is solved to compute the ‘constrained’ system matrices, and using the first

state value as an initial guess, a Luenberger observer is run. Recall that the system

matrices, now being computed with the constraints in place, are no longer ‘consistent’

with the state trajectory, hence the output as predicted by the Luenberger observer
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contains an error. However, the Luenberger observer converges rapidly (after 2 time

steps), yielding a state trajectory of length 489 time points. This state sequence is

then compared against the original states at the corresponding time points to verify

whether they are within tolerance. In the present implementation, the error was not

within tolerance after the first iteration and the algorithm reverted to computing a

new set of ‘constrained’ system matrices and iterating until convergence is achieved,

which took 5 iterations. The length of the state sequence from each iteration is listed

in Table 2 and the state error is shown in Figure 2.5.

Table 2.2: Length of the state sequence

Iteration State Sequence
0 491
1 489
2 487
3 486
4 481
5 478

Figure 2.5: The normalized state error over the course of the iterations
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2.5.2 Simulation Results

Figure 2.6 shows the training input profile for one of the runs used to identify the

subspace model (the input data for validation has a similar profile). The training

results using the standard subspace identification approach [14] and a FOPDT model

are shown in Figure 2.7. The standard approach fits the true process reasonably well.

The FOPDT model fit is not as accurate given the nature of the model structure.

The real test is for the targeted validation sequence, where only one of the inputs

in the second CSTR is changed with the others held constant, (see Figure 2.8 where

the heat input to the second CSTR is increased). The resulting output profiles are

shown in Figure 2.9. The key plots are the top two, which show the process outputs

from the first CSTR continue to be unchanged, as desired. The constrained model

predictions do not change even after the step change in the input to the second CSTR.

In contrast, the unconstrained model and FOPDTmodel predict a change in the outlet

variables from the first CSTR. This is a result of the models incorrectly identifying

the transfer functions between the inputs to the second CSTR and the outputs of the

first CSTR. The bottom two plots in Figure 2.9 show the prediction in the variables

that are expected to change (outlet variables from the second CSTR). All the models

demonstrate plant-model mismatch. This is expected due to process nonlinearity

however, the proposed approach still captures the dynamics of the process known

with certainty, that is, the inputs to the second CSTR should not have any effect on

the first CSTR.

To quantify the model effectiveness, the root mean sum errors (RMSE) between each

of the scaled model outputs, ŷ, and the process outputs, y, is recorded along with the

percent difference between the model errors.
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RMSE =

√∑n
i=1(yi − ŷi)

n
(2.18)

For the targeted validation results, the constrained model error was 1.8770 while

the unconstrained model error was 2.5352, resulting in a difference of -25.96%. The

solution time for the unconstrained model was significantly faster in comparison to

the constrained approach as seen in Table 2.3. The experiment was carried out using

a 4th Gen Intel Core i5-4300M processor and 4GB of memory.

Table 2.3: Solution Times For Model Identification

Case Time(s)
Unconstrained 162.74
Constrained 21.754

The error is calculated to be consistent with how the predictions are generated, i.e.,

after using a Luenberger observer to identify the current state of the model and then

using the estimated states and future inputs to predict the future outputs. Note that

a negative percent error refers to the constrained model having a lower error than the

unconstrained model as calculated by the following equation:

% Error =
constrained model error − unconstrained model error

unconstrained model error
∗ 100 (2.19)
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Figure 2.6: The input profiles that are used to generate the training data.

Figure 2.7: The figures shows the training fit for each output. In each figure the dashed
dot line shows the FOPDT model fit, the grey dotted line is the traditional subspace

approach and the solid black line is the measured outputs.
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Figure 2.8: The input profiles used to generate the training data to conduct targeted
validation.

Figure 2.9: The figures show the outputs from each CSTR. In each figure the grey dashed
line shows the unconstrained model predictions the black dotted line shows the constrained
model predictions, the black dashed dot line shows the FOPDT model and the black line
is the measured outputs. Starting in the top right and going clockwise the figures are as

follows concentration leaving the first CSTR, temperature leaving the first CSTR,
concentration leaving the second CSTR and finally temperature leaving the second CSTR.

While the focus of this paper is on incorporating known first principles knowledge
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into the modeling technique, it is also important for the model to predict reasonably

well for regular experiments. Using an input sequence similar to the training data as

shown in Figure 2.10 a process run for validation was generated. Figure 2.11 shows the

validation results comparing the standard and proposed subspace approaches along

with the FOPDTmodel. The FOPDTmodel is compared for the sake of completeness,

with the resultant plant-model mismatch being quite evident. Both subspace models

perform reasonably well, and similar, however, the proposed subspace identification

performs slightly better compared to the traditional approach. During validation, the

proposed approach, being guided by first principles knowledge of the process, is able

to make slightly better predictions.

Figure 2.10: The input profiles that are used to generate the validation data.
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Figure 2.11: The figures show the outputs from each CSTR. In each figure the grey dashed
line shows the unconstrained model predictions the black dotted line shows the constrained
model predictions, the dashed and dotted line is the FOPDT model and the black line is
the measured outputs. Starting in the top right and going clockwise the figures are as
follows concentration leaving the first CSTR, temperature leaving the first CSTR,

concentration leaving the second CSTR and finally temperature leaving the second CSTR.

Remark 9. It is important to note that the simulation study in the present

manuscript is meant to illustrate the key idea of the proposed approach. While

we recognize that application to larger process examples would increase the

computational time, an enabling feature is that the identification step is of-

fline. Another point to consider is that for larger more complex problems,

the tradeoff achieved by the proposed method becomes even more meaningful.

Thus for larger problems, where solving the nonlinear optimization problem

of the form of Eq. 2.14, that solves for the state trajectories and system ma-

trices simultaneously in its entirety could become prohibitively expensive, the

proposed approach represents a useful compromise that enables incorporation

of first principles knowledge (compared to the standard subspace identification

approach), and yet keeps the computational burden reasonable.
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2.6 Conclusions

In this work, a novel data driven and first principles model identification approach

for subspace identification is proposed. The key idea in the proposed approach is to

incorporate first principles information in the identification of a subspace-based state

space model without converting it into a highly complex non-convex optimization

problem. To this end, an algorithm is developed that first uses standard subspace

identification method to generate state trajectories for the data. The state sequence

along with the input and output data is used in a least squares minimization solu-

tion to generate the system model. The identified model is then utilized to initialize

the constrained optimization problem. The states of the identified model can then

be iteratively checked until they converge to the final constrained model. This con-

strained model has first principles knowledge of the process allowing it to predict the

measured outputs more accurately as seen in the simulation results. In the simulation

case study, the proposed approach was able to improve upon the traditional subspace

model to predict the process outputs more accurately. When conducting a step test

in the second CSTR, the traditional approach incorrectly predicts a change in the

outputs of CSTR 1 while the proposed approach correctly identifies that no change

occurs in the outlet from CSTR 1.
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Chapter 3

Model Predictive Control Using

Subspace Model Identification

Where the previous chapter presented a novel integrated modeling approach this chap-

ter continues to work with that model to present a novel model predictive control

(MPC) state space algorithm. Traditional industrial (MPC) algorithms tend to ig-

nore the feedthrough part of a state space model as there aren’t direct input effects in

the outputs. The key problem is that most subspace algorithms identify a feedthrough

matrix due to error minimization techniques. This feedthrough matrix is therefore an

important part of the subspace model and shouldn’t be excluded in all cases. As such

this work explored a key area of MPC algorithms to develop a quadratic program

implementation that utilizes the feedthrough terms in the model.

Patel, N., Corbett, B., & Mhaskar, P. (2021). Model predictive control using subspace

model identification. Computers & Chemical Engineering, 149, 107276.
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3.1 Abstract

This paper addresses the problem of designing and implementing a data-driven model

based model predictive controller (MPC). In particular, we consider the problem

where a subspace identification approach is utilized to determine a state-space model,

while applying first-principles based knowledge in the model identification (denoted

as the constrained subspace model). The incorporation of the first-principles based

constraints in the subspace matrix [22] often leads to a feed-through matrix being

present. Such a model then is the best representation of the system dynamics, but

does not lend itself readily to existing linear MPC formulations where the feed-through

matrix is assumed to be zero. Thus, an existing linear MPC formulation is adapted to

handle the feed through matrix. The superior performance of this MPC design, which

can utilize the constrained subspace model, over existing approaches is demonstrated

using a two tank chemical stirred tank reactor process.
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3.2 Introduction

Advancements in computational power and increased automation in industry have

enabled the use of advanced process control strategies to maintain plant operation

at economic optimums, and to respond to market conditions. Model Predictive Con-

trol (MPC) is one such control strategy for which significant research has gone into

studying the stability properties [15, 17, 27, 3] and in devising readily implementable

quadratic program formulations [20] when the underlying model used in the MPC is

linear.

Given the dependence on the model, it is only natural that the best possible model

be identified and utilized within the MPC. To that end, there are two modeling and

MPC approaches available: first principles based models that identify a model (and

the associated parameters) by first starting with a model structure that is based on

first principles knowledge, and utilizing them within an MPC [15, 16, 17] and data

driven models which often use a simpler structure and are easier to identify and im-

plement. [23, 12, 29, 18, 9, 26] While good first principles models are reliable and

good for extrapolation, they are generally difficult to develop, and more importantly,

difficult to maintain. Data driven models, on the other hand, are relatively easy to de-

velop. Some approaches to developing linear time invariant models using data driven

techniques include prediction error minimization techniques [23, 12, 29] and linear re-

gression modeling [8]. In contrast to these approaches, which provide a computational

challenge, subspace identification is intrinsically more computationally tractable.

One of the these regression modelling techniques is the partial least squares (PLS)

method [8]. In this approach, data from each batch is organized and then projected

onto a lower dimension (latent variable space) which has guaranteed latent variable

independence, allowing the nature of the process to be determined [MacGregor et al.].

In order to handle batch data the data is oriented in series where columns represent
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measurements and rows represent observations. PLS generates a time-dependent lin-

ear model but requires additional techniques to handle non-uniform batch length.

The use of first-principles knowledge involves the creation of new variables calculated

from the first principles equations and appending the columns to the dataset.

Other techniques such as prediction error minimization (PEM) approaches solve the

problem by reducing the sum squared error between the predicted and measured out-

puts. These approaches are also capable of applying first principles based constraints;

the difficulty arises due to the increase computational complexity. As this is a non-

convex optimization problem successful model identification relies on a good initial

set of parameters. [12] An additional drawback is that PEM approaches must com-

pute and compare both the system states and the predicted outputs at each iteration.

Thus the addition of highly nonlinear first principles based constraints makes these

approaches more computationally demanding.

The incorporation of first principles based constraints has been achieved in subspace

identification approaches with similar drawbacks. One approach [1] utilizes a con-

strained least squares solution using weighted constraints to solve the problem with

traditional least squares techniques. The approach was limited to equality constraints

and required the system matrices to be solved in an intermediate step instead of with

the states.[1] This approach can result in the system matrices (and the system dy-

namics) being inconsistent with the constraints.

Other approaches that consider a priori knowledge with parameter estimation tech-

niques use a Bayesian framework to impose steady state gains. [24] These constraints

are only imposed as soft constraints and may not be satisfied. Another approach

utilizes weighted constraints on the moment of the transfer function to solve the

problem as a quadratic optimization approach. [10] In summation, there are existing

approaches capable of incorporating first principles knowledge explicitly as constraints

but none as specifically targeted to the constrained subspace based dynamic batch
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models.

Subspace identification [18, 9, 26, 11, 25, 28] results in a linear time invariant model,

and has been adapted to handle data from several runs [5, 4, 6]. Owing to the fact that

these are intrinsically data driven approaches, it results in one or both of two possible

scenarios occurring: firstly where the subspace model does not respect physical process

constraints or secondly where a nonzero feed-through matrix is identified. The first

scenario is a result of the possibility where in the process a truly ‘feedthrough’ term is

present, but the feedthrough term has not adequately manifested itself in the training

data. Data driven modeling also relies on the accuracy of the data, which could

be noisy, and can therefore, be led astray when finding the best model. The first

scenario is more problematic since a process model that does not match first principles

knowledge, such as process gains with opposite signs compared to what is known

and expected, means that control action taken is contrary to the one desired. It is

necessary to introduce constraints to the data driven approach in a suitable manner to

correct these gains.[1, 24, 10, 22] Previous work [22] presented a synergized approach

combining first principles knowledge with data driven subspace model identification

to identify a constrained subspace model. The constrained model is able to accurately

capture the process dynamics and is better at predicting the process in comparison to

the traditional unconstrained subspace model, especially with respect to being true

to first principles knowledge. Additionally, in identifying the best model traditional

(and constrained) subspace model identification may result in a nonzero feed-through

matrix. In order to use these models in the MPC, the state space MPC algorithm

[20] must be accordingly modified. Recall that state space MPCs have traditionally

considered a subspace model where the feed-through matrix is zero and thus rely on

the process outputs being a linear function of the states alone (and not the outputs).

This realization is in part due to subspace identification having a background in

electrical engineering systems where feed-through is more common in comparison to

MPC which was developed for use in process systems engineering where the dynamics
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are typically slower compared to other systems.

To address the problem of utilizing a physically consistent data driven model for

improved control, this manuscript presents a state space MPC using a constrained

subspace model. A constrained subspace model is identified for an illustrative two-

stage chemical stirred tank reactor (CSTR) system and then MPC is used to stabilize

the system from various initial conditions. The proposed model based MPC is com-

pared with other models where the feed-through matrix is set to zero and with the

traditional subspace model. By evaluating the objective function for the closed-loop

implementation, the effectiveness of the model is evaluated. The constrained model

based MPC has better performance in comparison to both traditional subspace mod-

els with a feed-through matrix and with the feed-through matrix set to zero. The rest

of the paper is organized as follows: Section 3.3 presents a two stage CSTR process as

the motivating example, followed by an overview of subspace identification methods

and MPC algorithms. Section 3.5.1 presents the subspace identification approach and

MPC formulation. In Section 3.5, an application of the proposed approach to the

CSTR process is presented. Finally, concluding remarks are made in Section 3.6.

3.3 Preliminaries

3.3.1 Motivating Example: 2 Chemical Stirred Tank Reac-

tors (CSTRs) in Series

The process example used to demonstrate the capabilities of the state space MPC

consists of two CSTRs that are connected in series (see Figure 3.1). In this example

there are four inputs: the fresh feed concentration and the amount of heat added

can be manipulated for each CSTR. There are also four outputs with the effluent
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concentration and temperature being measured from each CSTR. A first principles

model consisting of 4 ordinary differential equations describes the evolution of the

concentration of A, CAi
, and the reactor temperature, Ti, i = 1, 2 for each CSTR as

follows:

Figure 3.1: The schematic of the CSTR model

dCA1

dt
= −F

V
(CA1,in − CA1,ss + CA,0 − CA1)− koe

−E
RT1CA1in

dT1

dt
= −F

V
(T0 − T1)−

∆H

Cpρ
koe

−E
RT1CAin +

Q1in

Cp

ρV

dCA2

dt
= −F

V
(CA2,in − CA2,ss + CA,0 − CA2)− koe

−E
RT2CA1in +

F

V
(CA1 − CA2)

dT2

dt
= −F

V
(T1 − T2)−

∆H

Cpρ
koe

−E
RT2CA2,in +

Q2in

Cp

ρV +
F

V
(T0 − T2)

(3.1)

where ρ is the density of the fluid, F is the inlet flow rate to the first CSTR, V is the

volume of each CSTR, R is the gas transfer coefficient, E is the activation energy of

the reaction, k0 is the value of the Arrhenius constant, T0 is the inlet feed temperature,

CA,0 is the inlet feed concentration, ∆H is the heat of reaction, Cp is the heat capacity

of the solution (see Table 3.1 for the parameter values). The input vector u includes

CA1,in, Q1in, CA2,in, Q1in and the output vector includes y as CA1, T1, CA2, T2.

From Figure 3.1 (and first principles knowledge) it is clear that any changes to the

fresh inlet of CSTR 2 should not have any effect on the outputs of CSTR 1. In other
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Table 3.1: Parameter values for the motivating process example

Parameter Value Unit Parameter Value Unit
V 0.1 m3 ρ 1000 kg/m3

R 8.314 J/(mol ·K) E 8.314× 104 µm/s
CA,0 2 mol/L k0 7.2× 1010 K
∆H 4.78× 104 kJ/kg Cp 0.239 kJ/K · kg
T0 310 K F 100 L/s

words, in the process model, the transfer function between the respective inputs and

outputs should be zero.

Remark 10. The specific choice of ‘certain’ process knowledge that should

be incorporated in the data driven modeling must be done carefully. The idea

is to avoid introducing additional parameters that must be identified as part

of the identification procedure making the identification even more complex.

Only known relationships between variables, such as certain transfer functions

being zero, yet others being positive or negative should be utilized as constraints

in the model identification procedure. That said, if much more detailed first

principles knowledge must be incorporated, it can be done in another way [7].

These alternate approaches [7] address the situation where fairly complex first

principles information is available (in the form of detailed models) but may

contain parameters that are difficult to estimate. In such instances, the first

principles knowledge/model can be incorporated in a parallel fashion instead

of as constraints in the identification procedure.

3.3.2 Subspace Identification

This subsection provides an overview of traditional subspace identification methods

used to identify a state space model using process input and output data. In this

approach, given a set of process inputs uk ∈ Rp and the outputs yk ∈ Rq for a run of
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s time steps a subspace model of the following form is identified:

xk+1 = Axk +Buk, (3.2)

yk = Cxk +Duk, (3.3)

where the order n of this unknown system and the system matrices A ∈ Rn×n, B ∈

Rn×p, C ∈ Rq×n, D ∈ Rq×p are determined by finding the best fit to the training

runs. Consider now data from a run where k is the sampling instant since the run

is initiated (ie. setpoint change applied) and b denotes the run number. Then the

’standard’ Hankel matrix can be appropriately modified for a single run as:

Y
(b)
1|i =


y1

(b) y2
(b) · · · yjb

(b)

...
...

...

yi
(b) yi+1

(b) · · · y
(b)

i+j(b)−1

 ∀ b = 1, . . . , nb (3.4)

where nb is the number of runs being used for identification.

The above Hankel matrix is a simple representation of data collected from a single

process run. In order to analyze data from multiple runs a new matrix must be

constructed. Note that a simple concatenation of data from all runs would not provide

a distinct separation between the end of one run and the start of the next. The key to

utilizing data from multiple runs lies in building a pseudo-Hankel matrix where the

data is separated by run. This is achieved by horizontally concatenating the individual

Hankel sub-matrices into a single matrix for both inputs and outputs as follows:

Y1|i =
[
Y

(1)
1|i Y

(2)
1|i · · · Y

(nb)
1|i

]
(3.5)
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Incidentally using this approach does not require data from various runs to be identical

in length. From these pseudo-Hankel matrices a deterministic algorithm [18] can be

utilized to identify state trajectories that can be similarly concatenated as follows:

X̂
(b)

i+1 =
[

ˆxi+1
(b) · · · ˆxi+j(b)

(b)

]
∀ b = 1, . . . , nb (3.6)

X̂i+1 =
[
X̂

(1)

i+1 X̂
(2)

i+1 · · · X̂
(nb)

i+1

]
(3.7)

Using a standard least squares solution, the system matrices can be subsequently

identified as follows:

Y(b)
reg =

 ˆxi+2
(b) · · · ˆxi+j(b)

(b)

yi+1
(b) · · · yi+j(b)−1

(b)

 (3.8)

X(b)
reg =

 ˆxi+1
(b) · · · ˆxi+j(b)−1

(b)

ui+1
(b) · · · ui+j(b)−1

(b)

 (3.9)

[
Y(1)

reg · · · Y(nb)
reg

]
=

A B

C D

[
X(1)

reg · · · X(nb)
reg

]
(3.10)

The system matrices A,B,C, and D make up the traditional ”unconstrained” sub-

space model. The key consideration in this approach is that using subspace identifica-

tion techniques allows for the model to be identified with minimal complexity, albeit

without necessarily respecting physical constraints. In the case of the CSTR example,

the subspace identification procedure results in incorrect process gains. In particular,

the unconstrained subspace model predicts new incorrect steady states for both tem-

perature and concentration variables in CSTR 1 (see Figure 3.2) when introducing a

step change in CSTR 2 (see Figure 3.3 for the validation inputs).
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Figure 3.2: Outputs from both CSTRs after applying the targeted input sequence. The
solid black line represents the process and the grey dashed line represents the predictions

by the subspace model.

Figure 3.3: The input profiles used in targeted validation

3.3.3 Constrained Subspace Identification

This subsection highlights the approach used to impose first principles based con-

straints on the model.[22] The introduction of constraints and an iterative optimiza-

tion scheme results in a new set of constrained system matrices consistent with the
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states.

A generalized formulation of the optimization problem used to identify the constrained

model is shown below:

min
θ

(Y − θX)T(Y − θX)

s.t. F irst principles knowledge based constraints

(3.11)

θ =

A B

C D

 (3.12)

where Y and X are described in Equation 3.10, θ is comprised of the system matrices,

and the constraints are derived from appropriate first principles knowledge. The

first principles knowledge referred to in this work is the gain constraints between the

inputs of the 2nd CSTR and the outputs of the 1st CSTR. This optimization problem

is solved in a previous paper and the state space model has been included in this work

as a starting point for the reader. The problem is solved using gain constraints as

shown in Eqn 13 that are placed on the the least squares solution in Eqn 10. Using a

nonlinear optimization solver to solve this problem allows for a model to be identified

with the necessary first principles knowledge included. The resulting system matrices

is called the constrained model. For a detailed explanation of how the constrained

subspace model is identified see Patel et al. [22].

In the context of the CSTR example, the first principles knowledge based constraints

51



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

in Eqn 11 result in the optimization problem taking the form shown in Eqn 3.13:

min
θ

(Y − θX)T(Y − θX)

s.t. G(1,3) = 0

G(1,4) = 0

G(2,3) = 0

G(2,4) = 0

where Gθ = tf(A,B,C,D)

(3.13)

where tf(A,B,C,D) denotes the transfer function resulting from the state space

matrices, and thus for instance, G(1,3) being zero implies that the transfer function

between the third input (which is one of the inlets to the CSTR 2) and the first

output (which is one of the outlets from CSTR 1) should be zero. Now when the

same targeted input sequence is applied to the new constrained model, which has the

appropriate process gains, the CSTR outputs are correctly predicted. In Figure 2.9

the predictions from the constrained model are compared against the unconstrained

model. In the top two plots the constrained model clearly remains at the steady state

instead of shifting like the unconstrained model does when the input shifts. Note that

all the models demonstrate some level of plant-model mismatch resulting from process

nonlinearity. However, the key point to note here is that the constrained model, with

first principles based constraints, is able to more accurately predict the process on-

line in comparison to the unconstrained model, and more importantly, respect the

physical knowledge that the inlet to CSTR 2 should not effect CSTR 1.
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Figure 3.4: The figures show the outputs from each CSTR. In each figure the grey dashed
line shows the unconstrained model predictions the black dotted line shows the

constrained model predictions and the black line is the process outputs.

Remark 11. The advantage to incorporating the constraint in the manner

done in the present manuscript in comparison to prediction error minimization

methods (PEM) is that PEM requires the entire trajectory and system matrices

to be computed at once. The resulting optimization problem becomes quite large

and includes highly nonlinear transfer function constraints. The constraints in

this approach are proposed in a way to leverage the linear regression structure

of subspace methods that can be computed quickly. Thus, this approach offers a

trade-off between a complete solution (PEM based) and ignoring first principles

knowledge completely as is the case with traditional subspace identification.

Remark 12. Note that in terms of the fit (which is the objective function

when determining the models), the traditional unconstrained method has a

better fit than the constrained model. However, when using the model for

extrapolation (Figure 3.4) the constrained model predicts better. This is es-

pecially true for regions of operation where the physical constraints captured

by the constrained model are ‘active’, thus in regions where the gain between
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certain inputs and outputs being zero is more pronounced. Having this infor-

mation available to the model in the MPC in turn is expected to improve the

closed-loop performance.

3.3.4 Traditional MPC

This subsection provides an overview of a traditional linear MPC Muske and Rawl-

ings [20]. In this formulation, the MPC uses an infinite horizon open-loop objective

function (see Eqn 3.14) which is minimized to obtain the optimal input trajectory

uN, where uN =
[
u0 u1 . . . uN−1

]T
.

minimize
uN

∞∑
k=0

(yk)
TQ(yk) + (uk)

TR(uk) +∆uT
kS∆uk (3.14)

yk and uk represent the model output and model input k time steps from the ini-

tialization time. ∆uk is the change in inputs between time step k and time step k-1.

Q, R, and S are all symmetric positive (Q) and positive semi-definite (R and S) ma-

trices used to penalize the outputs, inputs and change in inputs between time steps

respectively. N represents the prediction horizon. Eqn 3.14 can be expressed using a

terminal cost function with a penalty matrix Q to capture the infinite horizon cost.

Thus, the optimization problem can be rewritten for a finite prediction horizon N as

follows:
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minimize
uN

(xN)
TQ(xN) +∆uT

NS∆uN+

N−1∑
k=0

(xk)
TCTQC(xk) + (uk)

TR(uk) +∆uT
kS∆uk

s.t. xk+1 = Axk +Buk , k = 0, . . . , N − 1

∆uk = uk − uk−1 , k = 0, . . . , N

umin ≤ uk ≤ umax , k = 0, . . . , N − 1

uk = 0 , k ≥ N

(3.15)

For an open-loop stable process, Q is determined from the solution of the following

discrete Lyapunov equation:

Q = CTQC+ATQA (3.16)

The optimization problem shown in Eqn 3.15 can be converted to a standard quadratic

program (QP) by redefining the matrices as shown in Eqn 3.17.

minimize
uN

1

2

(
uN

)T
HuN + (G (x0)− F (u−1))

T uN

s.t. umin ≤ uN ≤ umax

(3.17)

umin, umax ∈ RN∗p are vectors that represent the lower and upper bounds on the

constraints (in deviation form) respectively. u−1 represents the input at the previous

time step in deviation form. Finally, the matrices H, G, F are given in Eqns 3.18 and

3.19 from continuous substitution using Eqn 3.2 and Eqn 3.3. [20]
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H =


BTQB+R+ 2S BTATQB− S . . . BTATN−1

QB

BTQAB− S BTQB+R+ 2S . . . BTATN−2
QB

...
...

. . .
...

BTQAN−1B BTQAN−2B . . . BTQB+R+ 2S

 (3.18)

G =


BTQA

BTQA2

...

BTQAN

 , F =


S

0
...

0

 (3.19)

3.4 Proposed MPC Formulation

3.4.1 MPC Design

In this section, the MPC formulation is adapted to allow using the feed-through matrix

in the model. To this end, the state space MPC approach described in Section 3.3.4

is adapted to utilize the subspace model proposed in Eqn 3.10 where the D matrix is

nonzero to result in the following formulation:
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minimize
uN

(xN)
TQ(xN) +∆uT

NS∆uN+

N−1∑
k=0

(xk)
TCTQC(xk) + (uk)

TR(uk) +∆uT
kS∆uk

+2(uk)
TDTQC(xk) + (uk)

TDTQD(uk)

s.t. xk+1 = Axk +Buk , k = 0, . . . , N − 1

∆uk = uk − uk−1 , k = 0, . . . , N

umin ≤ uk ≤ umax , k = 0, . . . , N − 1

uk = 0 , k ≥ N

(3.20)

The key differences in the formulation result from the process outputs being a product

of the states and inputs. This gives rise to the additional terms containing the D

matrix. Note that the terminal costs function does not change since at the end of the

prediction horizon the inputs are zero.

This leads to a new QP formulation using the following matrices:

minimize
uN

1

2

(
uN

)T
H1u

N + (G1 (x0)− F1 (u−1))
T uN

s.t. umin ≤ uN ≤ umax

(3.21)

Finally, the matrices H1, G1, F1 are given in Eqns 3.21 and 3.23 from continuous

substitution using Eqn 3.2 and Eqn 3.3. [20]

H1 =


BTQB+R+ 2S+DTQD BTATQB− S+ 2DTCB . . . BTATN−1

QB+ 2DTAN−1CB

BTQAB− S BTQB+R+ 2S+DTQD . . . BTATN−2

QB+ 2DTAN−2CB
...

...
. . .

...

BTQAN−1B BTQAN−2B . . . BTQB+R+ 2S+DTQD

 (3.22)
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G1 =


BTQA+DTQCA

BTQA2 +DTQCA2

...

BTQAN +DTQCAN

 , F1 =


S

0
...

0

 (3.23)

Remark 13. The key benefit of the above formulation is in retaining the na-

ture of the problem as a quadratic program. Thus in principle, the feedthrough

matrix or feedthrough effect can readily be handled by nonlinear MPC formula-

tions, with the optimization problem turning into a non-convex problem (or at

least resulting in the optimizer not exploiting the essentially quadratic program

structure).

Remark 14. Note that if one were to use a nonlinear model (assuming that

an accurate enough model was available), a feedthrough term would not be

necessary. However, when identifying a linear model from process data, it

is evident that retaining a feedthrough term is better than dropping it, purely

from a fit and prediction perspective. Note that there could very well be sys-

tems wherein the D matrix (or parts of it) should be zero and the present

modeling and control formulation allows for these as special cases. More im-

portantly it allows for cases where the dynamics between some of the inputs

and outputs are very quick, resulting in a situation where it is best to capture

the relationship as a feed-through term in the time scale at which the model

is developed. In essence, the proposed approach allows for handling multi-

rate behaviour present in many physical systems. In bioreactors for example,

changes in temperature happen much faster in comparison to changes in cell

titer. From a modeling perspective being able to account for the impact of

these fast modes in the process using feed-through terms could be beneficial in

overcoming the modeling challenge of modeling such multi-rate dynamics.
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Remark 15. It is important to note that utilizing a constrained subspace

model to improve MPC performance is at its core different from, and com-

plimentary to, an offset free MPC algorithm.[14, 19, 21, 2] This approach

focuses on improving the model at the modeling stage itself, and can very well

be complemented with an offset free mechanism to further improve closed-loop

performance. One of the directions of future work would be to incorporate this

model within an offset-free formulation to demonstrate further improvement.

3.5 Application to the Motivating Example

To show the effectiveness of the constrained subspace model identification approach

the two stage CSTR process is controlled using an MPC algorithm. The constrained

model is compared against the traditional subspace model and the traditional sub-

space model where the feed-through matrix is set to zero.

3.5.1 MPC Implementation

In this scenario, the two stage CSTR process is initialized at a range of initial condi-

tions within 5%, 25% and 50% away from the steady state. 10 sets of random initial

conditions are created within each threshold and used to initialize the process. An

MPC is then implemented, using a Luenberger state observer to estimate the subspace

states. Until the state observer converges the system is given the nominal input. For

each MPC implementation, a prediction horizon of 5 time steps is chosen. The MPC
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parameters Q,R and S are shown below:

Q =


3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

R =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

S =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2


Remark 16. The choice of tuning parameters was specific to this process

model where the goal was to penalize the changes in the inputs to avoid extreme

input changes that are not practical in an industrial setting. Additionally, the

penalty on the states was designed to drive the system to the steady state.

These tuning parameters are purely based on the outcome the user hopes to

achieve and can take any values as long as Q is positive definite and R and S

are positive semi-definite.

Remark 17. Note that while the present implementation utilizes a Luen-

berger observer, in practice any state observer can be utilized for this approach

depending on the nature of the system. Future work will consider the effects

of the state observer on the MPC algorithm when attempting to stabilize the

system. Note that the state observer is an important part of the MPC im-

plementation since the model states need to converge before it can be used in

computing the control action. Therefore, instead of computing control action

that can be potentially disruptive to the system, only the nominal input is

applied to the system till the state observer converges.

3.5.2 Closed-loop Results

In order to determine the effectiveness of the model, the control sequence calculated

by the MPC can be used. The criteria used in this approach is to evaluate the integral
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of the objective function in Eqn 3.15 by taking the sum of the objective function at

each time step until convergence. The highest summation of the objective function is

thus the MPC implementation (and the model) that performs the worst. The values

reported in Table 3.2 were taken as an average over ten different initial conditions

within each of the various percent deviation thresholds.

Each of the ten simulations has the states initialized at a random value at 5%, 25%

and 50% away from the steady state. The error is then calculated using the input

and state trajectory to evaluate the value of the objective function as shown in Eqn

3.21. The average error for the constrained model is lower in comparison to both the

traditional and the traditional model with the D matrix set to 0. The constrained

model without a D matrix also has a lower error in comparison to the traditional

subspace model. This is a result of the constrained models having the correct process

gains which allows the MPC to take better control action and ultimately reach the

steady state faster.

Figure 3.5 shows the input trajectories calculated by the MPC using the four dif-

ferent subspace models for one initial condition. As expected the two constrained

models, with and without the D matrix, compute similar input trajectories which

are significantly different from the two unconstrained models. The difference in the

input trajectories results in Figure 3.6 where both the constrained models based MPC

stabilize much faster in comparison to the unconstrained model based MPCs. The

true steady state values of the system were 0.385mol/L and 332.3K for the outlet

concentration and temperature respectively of both CSTRs. When comparing the

performance of the MPC with and without a feed-through matrix the MPC with the

D matrix is capable of stabilizing faster. Figure 3.6 shows how the additional oscil-

lations in the unconstrained model and the slow response of the others results in the

constrained model with a D matrix having the best model fit in Table 3.2. In regards

to the predictive capabilities of the model Table 3.3 shows the validation results as
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demonstrated by Figure 3.7. This figure shows how the unconstrained models diverge

from the steady state due to incorrect process gains. Additionally, the constrained

model without a D matrix deviates from the setpoint slightly as shown by the higher

error value in Table 3.3. While the prediction error for a fixed input change is rela-

tively little, the mismatch manifests in poorer control performance as demonstrated

by Figure 3.7 and Table 3.3.

Table 3.2: The average value of the MPC objective function from each of the subspace
models starting from initial conditions at a percent deviation away from the steady state

values

Model 5% 25% 50%
Traditional 3.0907e3 5.7666e4 2.0385e5
Traditional with no D Matrix 2.0581e3 4.2171e4 1.4870e5
Constrained with no D matrix 1.2982e3 2.7312e4 9.5921e4
Constrained 624.3626 1.3396e4 4.7102e4

Figure 3.5: The input profiles for both CSTRs are shown with CSTR 1 inputs in the top
two figures. The constrained model (-), constrained model without a D matrix (–),

unconstrained model (:) and unconstrained model without a D matrix (-.) are all plotted
against each other.
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Figure 3.6: The output profiles for both CSTRs are shown with CSTR 1 outputs in the
top two figures. The constrained model (-), constrained model without a D matrix (–),

unconstrained model (:) and unconstrained model without a D matrix (-.) are all plotted
against each other.

Figure 3.7: The output profiles for temperature and concentration in the first CSTR . The
constrained model (-), constrained model without a D matrix (–), unconstrained model (:)

and unconstrained model without a D matrix (-.) are all plotted against each other.
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Table 3.3: The targeted validation prediction errors for each of the models.

Model Error
Traditional 31.7719
Traditional with no D Matrix 124.6866
Constrained with no D matrix 9.5276e-4
Constrained 9.5073e-4

3.6 Conclusions

In this work, a new MPC formulation is proposed to handle a feed-through matrix.

The MPC is then tested using an improved constrained subspace model in comparison

to traditional subspace models. The constrained model is identified in a way that it

has the correct process gains based on first principles allowing it to respond better to

the controller. Additionally, the constrained model identified a feed-through matrix

meaning the state space MPC must be appropriately modified to include the addi-

tional information. The use of the constrained subspace model in the modified state

space MPC has shown improved performance in comparison to traditional approaches.
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Chapter 4

Subspace Based Model

Identification for Missing Data

This chapter presents a novel subspace identification approach for dealing with the

problem of missing data in data-driven modeling approaches. The main problem is

that certain modeling steps like singular value decomposition are reliant on a complete

set of data to work. While this problem is typically solved through interpolation for

small amounts of missing values, interpolation is not suited when dealing with multi-

rate sampling or quality modeling scenarios where the amount of missing data is much

higher. Recognizing that the non-iterative partial least squares algorithm is designed

to handle regression with missing values, this work utilizes partial least squares and

principal component analysis to generate a subspace model. The model generated

from missing data was then compared against a traditional subspace model with both

mean and linear interpolation for varying amounts of missing data. This work was

completed in collaboration with Dr. Corbett as part of his graduate course where he

provided guidance and technical expertise in creating the algorithm.

Patel, N., Mhaskar, P., & Corbett, B. (2020). Subspace based model identification

for missing data. AIChE Journal, 66(10), e16538.
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4.1 Abstract

This paper addresses the problem of missing process data in data-driven dynamic

modeling approaches. The key motivation is to avoid using imputation methods or

deletion of key process information when identifying the model, and utilizing the rest

of the information appropriately at the model building stage. To this end, a novel

approach is developed that adapts nonlinear iterative partial least squares (NIPALS)

algorithms from both partial least squares (PLS) and principle component analysis

(PCA) for use in subspace identification. Note that the existing subspace identifi-

cation approaches often utilize singular value decomposition (SVD) as part of the

identification algorithm which is generally not robust to missing data. In contrast,

the NIPALS algorithms used in this work leverage the inherent correlation structure

of the identification matrices to minimize the impact of missing data values while gen-

erating an accurate system model. Furthermore, in computing the system matrices,

the calculated scores from the latent variable methods are utilized as the states of the

system. The efficacy of the proposed approach is shown via simulation of a nonlinear

batch process example.

4.2 Introduction

Batch processes are important for a wide range of manufacturing industries such as

chemicals, polymers, specialty glass, ceramics, and steel production. Batch processes

carry out a sequence or recipe, which can entail the addition of ingredients and ex-

ecuting processing steps. The recipe can be adjusted based on results from previous

batches to maintain and promote quality control. [18] Additionally, the use of batch,

instead of continuous processes, allows for batches that fail to meet the quality stan-

dards to be discarded without influencing other on-spec products. However, the high
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value of these products means that discarding batches result in significant lost revenue.

This motivates the need for advanced batch process control strategies which, in turn,

often necessitates a good process model. Recent advances in data storage technol-

ogy have resulted in increased availability of accessible historical process data, making

data-driven modeling more viable than before. Data driven modeling techniques how-

ever, have to often deal with several challenges ranging from process nonlinearity to

incomplete data.

One problem that is particularly common when dealing with historical data is that of

missing data where for certain time instances, process data is not recorded. In some

cases there are periods where an entire set of data is missing due to sensor failure

or maintenance on the system. In other cases the measurements contain large errors

and need to be removed from the data set. A common occurrence of missing data

in chemical engineering processes is when different sensors have different sampling

periods. Thus while there is continuous data from each sensor the measurements

cannot be readily aligned with the other recorded variables.

Partial least squares (PLS) is a data-driven techniques that is often applied to indus-

trial data, especially in cases for which missing data must be accounted for.[14, 23, 33]

In this method, process data from each run is collected and projected into two lower

dimensional subspaces (latent variable space). This ensures correct handling of corre-

lated input and output space variables. Furthermore, the subspace are characterized

by independent latent variables which can be used to understand relationships in

the process.[MacGregor et al.] PLS accounts for missing data by exploiting covari-

ance structures between related variables in the original variable space. This inherent

ability to handle missing data is one of the attributes that makes PLS an attractive

method for modeling batch processes.

One particularly successful approach to utilizing PLS techniques for modeling batch

processes has been using the batchwise unfolding approach [12, MacGregor et al.] In
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this approach, trajectory data from each batch is rearranged to form a single PLS

observation and is subsequently related to quality outcomes. For on-line use, the

approach uses missing data imputation methods to make predictions of the remaining

batch trajectories. The efficacy of this approach has been well demonstrated in a

variety of industrial cases. However, the approach necessitates so-called alignment

of the batches to account for varying batch duration which can be challenging in

practice. Furthermore, the method identifies a time-varying model, and at its core,

does not distinguish between output and input variables, which limits its natural

applicability for traditional model predictive control, and particularly applications

where the process duration itself might be a decision variable.

To address these issues, new approaches adapting existing subspace identification

techniques [22, 26, 15, 31] for batch processes have been proposed [5, 8]. The present

contribution focuses on adapting a recently proposed batch subspace identification

approach [5]. Recall that subspace identification is different to PLS in that it in-

herently distinguishes between process input and output variables. [22, 26, 15, 31]

Subspace identification is carried out in two distinct steps in the first historical batch

data is used to identify the state trajectory and the second step is to compute the sys-

tem matrices using a least squares solution. Subspace identification algorithms utilize

different techniques from canonical variate analysis[17, 29], numerical algorithms for

subspace state space identification [30]and multivariate output error state space algo-

rithms [32]. Subspace identification algorithms require singular value decomposition

(SVD) of the matrices [22, 15]. In recent results, traditional subspace algorithm has

been modified to use the same SVD method but for batch data with varying batch

lengths. [6] Subspace identification methods, however, are unable to directly handle

the problem of missing data since SVD requires matrices to be full rank. A method

introduced by [21] utilizes sub-matrices that contain full rank data by rearranging

the data. However, this isn’t appropriate for handling process data since subspace

identification relies on the time-dependent relationships in the data to identify a state
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trajectory.

To handle missing data there are several techniques that can be used; the most popular

being listwise deletion for regression based modeling.[7, 25] This method involves

removing the entire observation from the data set if one variable is missing before

carrying out any model identification procedure. Listwise deletion avoids the problem

of having mismatched lengths in the process data however, it removes the remaining

information which is accurately recorded. While this method is fairly popular due to

low computational cost, for large amounts of missing data significant trends may be

lost when the analysis is conducted.

Another common method to prepare data for model identification is to replace the

missing data values by using mean substitution for regression based models. [24, 13,

27, 2] The purpose of mean substitution is to attempt to prevent the missing data

point from affecting the analysis of that variable while keeping the information from

the other variables which were accurately recorded. However, this approach does not

consider the data trends at the time when the measurement went missing. In cases of

sensor failure resulting from the process being out of the range utilizing a mean value

at this time period will result in a value that is significantly different from the true

process. This can lead to errors in the model identification procedure since the states

of the system using the mean replacement value will be different from the true states.

Motivated by these considerations, this manuscript presents a different approach to

subspace identification that readily enables handing of missing data. Existing sub-

space identification techniques handle missing data in a number of different ways. In

addition to data imputation listed above other approaches carry out the prediction

minimization algorithms using only available measurements.[3, 19] Other approaches

such as subspace clustering are more computationally complex than the proposed ap-

proach and also do not readily allow for online applications.[1, 10] Specifically, the

novel use of PCA then PLS and finally a PCA step in the subspace identification
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approach allows for missing data values in the training data to be handled. While the

use of PCA techniques in subspace identification approaches isn’t a novel introduction

(see [34, 16]) it’s use in subspace identification with missing data has not been fully

explored. The key advantage of using PCA and PLS techniques is that any missing

data in the higher dimension has a minimal effect in the reduced dimensional space.

The first step is to use latent variable methods (PCA followed by PLS) to identify a

reduced dimensional space for the variables which accounts for missing data values.

The second step replaces singular value decomposition with PCA to identify the states

of the system. The rest of the paper is organized as follows: Section Preliminaries

presents a Polymethyl Methacrylate (PMMA) process as the motivating example, fol-

lowed by an overview of subspace identification methods. Section Model Identification

presents the subspace identification approach using latent variable methods. Section

Model Validation presents the validation approach, and clarifies the necessity of an

appropriate state estimator. In Section Application to Motivating Example, an ap-

plication of the proposed approach to the PMMA example is presented with missing

data values. Finally, concluding remarks are made in Section Conclusions.

4.3 Preliminaries

4.3.1 Motivating Example: Polymethyl Methacrylate (PMMA)

Process

PMMA is an important part of the polymer industry with applications ranging from

glass substitutes to furniture. PMMA like most quality specific products is typically

produced as a batch process. The key parameter in determining the quality of each

batch is the molecular weight distribution of PMMA. However, measuring the en-

tire molecular weight distribution is often not practical requiring an alternate set of
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measurable outputs to be used instead. To that end the number and weight average

molecular weights at the end of the batch can be used to quantify batch quality and

are therefore, the targeted variables for control.

Batch, free-radical polymerization of PMMA is carried out in a jacketed reactor with

a continuous stirrer. The reactor is charged with methyl methacrylate (monomer),

AIBN (initiator), and toluene (solvent). The heat input to the reactor is adjusted

based on the coolant/heating fluid flow rate. Table 4.1 presents a representative set

of initial batch conditions for the PMMA process.

Table 4.1: Initial batch conditions for PMMA reaction

Variable Value σ2 Units
Initiator Concentration 2.06×10−2 1.0×10−3 kg/m3

Monomer Concentration 4.57 0.5 kg/m3

Temperature 334.15 2.5 K

The PMMA process in this work is described using a first principles dynamic model

consisting of nine states governed by a set of nonlinear algebraic and differential

equations. The nine states of the system are as follows: reactor temperature, monomer

and initiator concentrations and six molecular weight distribution moments. The

dynamic PMMA model is taken from [9] while making suitable adaptations [11, 28]

with additional explanations of these adaptations provided in [4].

To reflect feed variations, the initial conditions for each batch are selected from a

normal distribution around the nominal initial condition. Table 4.1 shows both the

nominal initial condition value and the standard deviation in the initial conditions.

In this example the measured variables are reactor temperature, reactant volume and

stirrer torque. The volume measurements are used to determine the density which

can be considered to represent the extent of the reaction. Therefore, the batch can be

terminated based on a desired density set point instead of a set batch length. In the

present manuscript, the first principles model for the PMMA process will be utilized

75



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

as a test bed to demonstrate the missing data handling capability of the proposed

subspace identification algorithm.

4.3.2 Subspace Identification

This subsection provides a brief description of existing subspace identification meth-

ods. These techniques identify a state space model (typically) around steady-state

operating conditions using only input and output data. Specifically, given a series of

s measurements of the input uk ∈ Rp and the output yk ∈ Rq, the objective is to

identify a deterministic system of order n of the following form:

xd
k+1 = Axd

k +Buk, (4.1)

yk = Cxd
k +Duk, (4.2)

where the identification approach should reveal the order n of this unknown system

and the system matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, D ∈ Rq×p (up to within

a similarity transformation). Consider now data from a batch process where k is

the sampling instant since the batch initiation and b denotes the batch index. Then

the output Hankel submatrix for a batch b is constructed in the same fashion as a

‘standard’ Hankel matrix, given by:

Y
(b)
1|i =


y(b)[1] y(b)[2] · · · y(b)

[
j(b)

]
...

...
...

y(b)[i] y(b)[i+ 1] · · · y(b)
[
i+ j(b) − 1

]
 ∀ b = 1, . . . , nb (4.3)

where nb is the number of batches used for identification.

Utilizing the Hankel matrix as presented above does not factor data taken from mul-

tiple batches. Additionally, a simple concatenation of data from multiple batches
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would suggest that the states across multiple batches are linked which is clearly not

the case. Thus, the key to batch subspace identification is to build a pseudo-Hankel

matrix which enables data across batches to be used without the assumption that the

end of one batch is the beginning of another. The pseudo-Hankel matrix is generated

by horizontally concatenating the individual Hankel sub-matrices for each batch to

form a matrix for both input and output data. The pseudo-Hankel matrix takes the

form:

Y1|i =
[
Y

(1)
1|i Y

(2)
1|i · · · Y

(nb)
1|i

]
(4.4)

Similarly, pseudo-Hankel matrices for input data are formed. This approach for han-

dling multiple batches satisfies the requirements of subspace identification in addition

to not requiring the batches to have identical lengths.

Construction of appropriate pseudo-Hankel matrices for input and output enables de-

termination of state trajectories using any of the preexisting subspace identification

algorithms available in the literature (such as the deterministic algorithm [22] utilized

in this work). A consequence of concatenation of the Hankel sub-matrices is that the

identified state trajectories will also be comprised of similarly concatenated state esti-

mates for each training batch. Mathematically the identified state trajectory matrix

can be represented as:

X̂
(b)

i+1 =
[
x̂(b)[i+ 1] · · · x̂(b)

[
i+ j(b)

]]
∀ b = 1, . . . , nb (4.5)

X̂i+1 =
[
X̂

(1)

i+1 X̂
(2)

i+1 · · · X̂
(nb)

i+1

]
(4.6)

where nb is the total number of batches used for identification.

With the state trajectory matrix, the system matrices can be estimated easily using
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methods such as ordinary least squares which is shown below:

Y(b)
reg =

x̂(b)[i+ 2] · · · x̂(b)
[
i+ j(b)

]
y(b)[i+ 1] · · · y(b)

[
i+ j(b) − 1

]
 (4.7)

X(b)
reg =

x̂(b)[i+ 1] · · · x̂(b)
[
i+ j(b) − 1

]
u(b)[i+ 1] · · · u(b)

[
i+ j(b) − 1

]
 (4.8)

[
Y(1)

reg · · · Y(nb)
reg

]
=

A B

C D

[
X(1)

reg · · · X(nb)
reg

]
(4.9)

The system matrices A,B,C, and D make up the subspace model of the system and

can now be used for control.

4.3.3 PLS

This subsection provides a brief overview of the nonlinear iterative partial least squares

(NIPALS) regression techniques which are utilized in the proposed approach. The

purpose of PLS regression is to achieve the best explanation of both the X-space and

the Y-space while maximizing the relationship between the two spaces. Inherently

PLS techniques do not require a distinction between the output ”Y” block and the

input ”X” block and thus can be arranged in any sequence. However, in order to

get meaningful results it is important to mean-center the observations. Thus, given

an X ∈ Rn×k and Y ∈ Rn×m block (where n is the number of observations, k is

the number of variables in the X block, and m is the number of variables in the

Y block), at the training stage (or determination of the PLS model), after mean

centering and scaling the data, for a choice of the number of latent variables A, the

loadings, scores and weighting are computed. The NIPALS algorithm to determine

the model parameters is presented in the form of a pseudo code below:

First, set X0 = X, Y0 = Y
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for a = 1,2..A

1. Start with arbitrary initial column ua ∈ Rn×1

2. while the scores ta continues to change

(a) Regress columns from Xa−1 onto ua to get weightings wa ∈ Rk×1

(b) Normalize the weightings wa to have unit length

(c) Regress the rows from Xa−1 onto wa to get scores ta ∈ Rn×1

(d) Regress columns from Ya−1 onto ta to get weightings ca ∈ Rm×1

(e) Regress the rows from Ya−1 onto ca to get scores ua

(f) Go back to step (a) using the new ua

3. Deflate component from Xa−1 and Ya−1, i.e.,

(a) Regress columns from Xa−1 onto ta to get loadings pa

(b) Xa = Xa−1 − tap
T
a

(c) Ya = Ya−1 − tac
T
a

end for

The resultant vectors ta, wa ca and ua can be stacked together and denoted by T ∈

Rn×A, W ∈ Rk×A, C ∈ Rm×A, and U ∈ Rn×A. After a PLS model has been computed,

for a new Xnew ∈ Rl×k, where l is the new number of observations of the K variables,

the X block is first mean centered and scaled, and then the variables in the Ŷnew ∈

Rl×m are predicted as follows: define W ∗ ≡ W (P TW )−1 and then compute Tnew =

XT
newW

∗, and Ŷ T
new = T T

newC
′, and finally Ŷ T

new is uncentered and unscaled to predict

the observations.
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4.4 Proposed Modeling Approach

4.4.1 Model Identification

The proposed adaptation of the subspace model identification approach also utilizes

the Hankel matrices presented in Eq. 4.4 to compute the state sequence, and then uses

the ordinary least squares approach as with the traditional subspace identification

technique (see Eq. 4.9). The key adaptation is in how the state trajectories are

computed using the Hankel matrices, in a way that readily enables handling missing

data.

Having defined these matrix arrangements of the available observations recall that we

can rewrite Eq. 4.1 and Eq. 4.2 as:

X1|i+1 = AiX1 +∆iU1|i, (4.10)

Y1|i = ΓiX1 +HiU1|i, (4.11)

where Ai is the dynamic matrix A to the ith power. ∆i, Γi and Hi can all be

calculated by using iterative substitution of Eq. 4.1 and Eq. 4.2 (see [22] for a

detailed explanation). Using the pseudo-inverse (denoted •∗) Eq. 4.11 to isolate for

X1 and then substituting in Eq. 4.10 gives:

Xi+1 =
[
∆i −AiΓ∗

iHi AiΓ∗
i

]U1|i

Y1|i

 (4.12)

Next the following matrices can be defined where W1|i represents everything that is
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known and Li represents everything that must be solved for.

Li =
[
∆i −AiΓ∗

iHi AiΓ∗
i

]
(4.13)

W1|i =

U1|i

Y1|i

 (4.14)

Eq. 4.12 can now be expressed as:

Xi+1 = LiW1|i (4.15)

Rewriting Eq. 4.11 with respect to future outputs Yi+1|2i and substituting in Eq.

4.15.

Yi+1|2i = ΓiLiW1|i +HiUi+1|2i (4.16)

In order to implement the next step (which forms the basis of the novel contribution),

we recall the definition of projecting a matrix B ∈ Rn×A onto another matrix A ∈

Rn×A:

A/B⊥ = A(1−BT(BBT)−1B) (4.17)

The next step in the proposed approach is to project the future inputs onto the future

outputs in order to remove the known correlations from the data.
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Yi+1|2i/U
⊥
i+1|2i = Yi+1|2i(1−UT

i+1|2i(Ui+1|2iU
T
i+1|2i)

−1Ui+1|2i) (4.18)

Yi+1|2i/U
⊥
i+1|2i = (ΓiLiW1|i +HiUi+1|2i)(1−UT

i+1|2i(Ui+1|2iU
T
i+1|2i)

−1Ui+1|2i)

(4.19)

Yi+1|2i/U
⊥
i+1|2i = (ΓiLiW1|i)(1−UT

i+1|2i(Ui+1|2iU
T
i+1|2i)

−1Ui+1|2i)+

(HiUi+1|2i)(1−UT
i+1|2i(Ui+1|2iU

T
i+1|2i)

−1Ui+1|2i)
(4.20)

We recognize that the second term in Eq. 4.20 is a projection of the future inputs,

U⊥
i+1|2i, onto a space perpendicular to its row space which yields the zero matrix by

definition. Thus, this equation simplifies as follows:

Yi+1|2i/U
⊥
i+1|2i = ΓiLiW1|iU

⊥
i+1|2i (4.21)

The following projection of future outputs and past inputs and outputs onto the

orthogonal component of the future inputs is the first step of the proposed approach in

the subsection on the NIPALS algorithm for Subspace Identification, where NIPALS

algorithm is used to get the orthogonal projection of the future inputs instead of

existing techniques.

(Yi+1|2i/U
⊥
i+1|2i)

T = (W1|iU
⊥
i+1|2i)

TLT
i Γ

T
i (4.22)
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For ease of notation, we define W̃1|i = W1|iU
⊥
i+1|2i and Ỹi+1|2i = Yi+1|2i/U

⊥
i+1|2i. This

is used to describe the deflated matrices from the PLS technique described below.

Then Eq.4.22 can be re-written as:

Ỹi+1|2i = W̃
T

1|iL
T
i Γ

T
i (4.23)

In order to identify the state trajectory from Eq. 4.23 it first needs to be rearranged.

β = LT
i Γ

T
i (4.24)

βT = ΓiLi (4.25)

βTW1|i = ΓiLiW1|i (4.26)

(4.27)

Then using Eq. 4.15

βTW1|i = ΓiXi+1 (4.28)

The above sequence of equations represents the basis for the proposed approach and

the NIPALS algorithm to carry out these steps is presented as follows.

NIPALS algorithm for Subspace Identification

In this section we will describe how the equations presented above can be translated

into a series of three NIPALS algorithms steps to determine the state trajectory

followed by a linear regression step to identify the system matrices.

The procedure begins by projecting data perpendicular to future inputs. Specifically,
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both the future inputs and past inputs and outputs are projected perpendicular to

future inputs. For future outputs, this is motivated by the understanding that fu-

ture outputs depend only on the state and future inputs. Therefore, by projecting

the future outputs perpendicular to the future inputs, the projected values should be

strongly related to the state. For past inputs and outputs, under open-loop control,

if the system has been perfectly excited, there should theoretically be no covariance

between the past inputs and outputs and future inputs. As such, projecting per-

pendicular to the future inputs should not substantially change these blocks of data.

However, in cases where the system has not been fully excited (ie closed-loop identifi-

cation data) this step removes covariance and exposes the independent variation that

exists, permitting identification.

Remark 18. This paper does not focus on the substantial issues involved in

closed loop identification. As noted in previous work [6], batch processes under

trajectory tracking control may provide sufficient excitation without directly in-

troducing identification inputs such as pseudo random binary sequences. This

observation is the justification for the application example presented in this pa-

per. However, as noted above, the authors recognize the inherent potential of

the proposed methods for closed-loop identification. In future work, this possi-

bility will be explored explicitly. One area of particular interest is how squared

prediction error statistics from the latent spaces identified in this method can

be used to enforce model validity on when the models are applied in model

predictive control.

The projection of future outputs and past inputs and outputs perpendicular to future

inputs is represented in Eq. 4.22 in the factor (W1|iU
⊥
i+1|2i)

T . This can be achieved

using a NIPALS algorithm adapted from the NIPALS PCA algorithm as follows:

1. Initialize tuf ∈ Rn×1 with the first column of UT
i+1|2i ∈ Rn×j

84



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

2. Repeat until convergence in tuf :

(a) Regress columns of UT
i+1|2i onto scores tuf to get loadings Puf ∈ Rn×1

(b) Normalize the loadings Puf to have unit length

(c) Regress rows of UT
i+1|2i onto loadings to get updated scores tuf

3. Deflate future inputs by subtracting what has been explained in tuf :

UT
i+1|2i = UT

i+1|2i − tufP
T
uf (4.29)

4. Regress columns of W1|i ∈ Rn×p onto tuf to get loadings PW ∈ Rp×1

5. Normalize loadings PW to have unit length

6. Regress columns of Yi+1|2i ∈ Rn×q onto tuf to get loadings Cyf ∈ Rq×1

7. Deflate past inputs, past outputs, and future outputs using the scores calculated

in steps 1 to 3 as follows:

W̃1|i = W1|i − tufP
T
w (4.30)

Ỹi+1|2i = Yi+1|2i − tufC
T
yf (4.31)

8. Repeat steps 1 to 7 using the deflated matrices from the previous iteration until

all variance in the the future inputs, UT
i+1|2i, is explained (ie. the deflated matrix

doesn’t change with each iteration).

where j is the number of inputs, p is the number of inputs times the number of outputs

and q is the number of outputs.

The steps described above remove all variance from W1|i and Yi+1|2i that can be

explained (is correlated) with future inputs therefore, the remaining relationship is the
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effect of the current states on the future outputs. This is mathematically equivalent

to projecting data perpendicular to the future inputs as described in Eq. 4.22. Note

that steps1 to 3 are the standard NIPALS algorithm for calculating components of

PCA models. The efficient convergence of this algorithm is know to be guaranteed as

long as the initial guess for tuf is non-zero. Steps 4 to 7 are similar to the standard

deflation step of the X matrix in NIPALS PLS (see section PLS for details) and are

non-iterative.

Remark 19. One of the most beneficial aspects of the NIPALS algorithm is

the ability to elegantly handle missing data. Specifically, in every regression

step (ie steps 2a, 2c, 4, and 6) any row (observation) that has a missing value

may be excluded. Because of the relatively low leverage of each observation in

the overall model fit, excluding the missing observations does not negatively

impact the calculated regression coefficients. The stability of NIPALS for PCA

on datasets with missing data has been well studied.[23] . This ability uses the

covariance of columns (variables) in the X space to effectively impute missing

values. Note that the format of the data-blocks used in the proposed method

guarantees a high degree of covariance because of the selected Hankel unfolding

and the time-series nature of the data. This result is further used in each of

the following NIPALS steps in the proposed methodology.

Having projected past inputs, past outputs and future outputs perpendicular to fu-

ture inputs, the next step in the proposed approach is to identify the relationship

between past inputs and outputs and future outputs. Identifying this relationship is

the fundamental objective of subspace identification as, given the form of the state-

space model, this relationship is directly related to the underlying states. To identify

this relationship using NIPALS, the standard NIPALS PLS algorithm is applied (see
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subsection on PLS) on the following XPLS and YPLS matrices:

XPLS = W̃1|i

YPLS = Ỹi+1|2i

Note that the final model form of a PLS model (for prediction) is the linear form:

ŶPLS = XPLSβ (4.32)

Consequently, the PLS model described above is sufficient to describe the relationship

laid out in Eq. 4.23 where it follows that β = LT
i Γ

T
i . By taking a transpose and

multiplying by W1|i we arrive at:

βTW1|i = ΓiLiW1|i (4.33)

(4.34)

By further substituting the from Eq. 4.15 we get:

βTW1|i = ΓiXi+1 (4.35)

In Eq. 4.35 the left hand side is entirely comprised of known values (coefficients

from PLS and past inputs and outputs). Therefore, if the left hand side can be

appropriately decomposed into matrices of the correct dimensions to match the right

hand side, the result is a valid state-space representation. One way of achieving this,

as described by [22] is to use SVD. However, most SVD algorithms are not suited for

use with missing data. An alternative in this case is to use the NIPALS algorithm for

PCA. (The mathematical relationship between PCA and SVD is well known.)

Conducting PCA on the transpose of the left hand side of Eq. 4.35, ie XPCA = WT
1:iβ
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we get:

WT
1:iβ = TpcaP

T
pca + Epca (4.36)

Therefore it follows that the scores calculated in this PCA step are a valid realization

of the states of the system, Xi+1 = TT
pca. Furthermore, the loadings are related to the

matrix Γi. Notice that number of states (system order) is equivalent to the number

of components used in the PCA model. The resulting matrix from the proposed

algorithm results in a state trajectory matrix Xi+1 being determined which can be

used in Eq. 4.9 to compute the system matrices (A,B,C,D) using standard linear

regression.

4.4.2 Model Validation

Model validation is an integral part of the model identification procedure to ensure

that the identified model is able to accurately predict on-line. In this step batches

that were not part of the training data and do not contain any missing observations

are used to test the model’s ability to predict process outputs. In order to conduct a

more rigorous validation test missing data was not considered in the validation batch.

While it is possible for missing observations to occur on-line the missing observation

would only result in one fewer data point when comparing validation error. If there are

missing observations in the data before the Luenberger observer has converged then

the estimation technique will have to be appropriately modified to handle missing

data and it is expected the observer will take longer to converge. In the present work,

we focus on the ability of the proposed approach to identify a good model for the

process, and these specific illustrations remain the subject of future work.

During the initial part of the batch a Luenberger observer is used to estimate the states

of the system until the model output predictions are within a predefined tolerance of
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current process outputs. This is used as an indication that the current state of the

model is similar to the current state of the system. Once the observer has determined

the current state of the system the identified subspace model can be used to predict

the remainder of the batch to determine the validation error. The observer has the

following form:

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− ŷ[k]) (4.37)

where L is the observer gain and is chosen to ensure that (A− LC) is stable. Addi-

tionally, the poles of the observer are placed in the positive quadrant of the unit circle

to ensure stability. The initial state estimate, which can be chosen to be any value,

is given as the initial state identified through traditional subspace techniques. Note

that any state estimation technique, such as the Kalman filter, can be used and the

Luenberger observer is just one example.

4.5 Application to the Motivating Example

To show the effectiveness of the proposed approach at handling missing data three

different cases will be considered for the PMMA simulation example. Case 1 will

contain training data that is not missing any observations, Case 2 will contain training

data with random missing data from 5% up to 30% and Case 3 will contain a block

of missing data from 5% up to 30%.
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4.5.1 Model Identification

In this scenario, 15 training batches, under proportional integral (PI) control, are

generated from the PMMA process and used to identify three subspace models. The

first is identified using traditional subspace identification with mean replacement to

impute the missing values, the second is identified using traditional subspace iden-

tification with linear interpolation to impute the missing values and the third is the

proposed approach which uses PCA/PLS techniques. Note that the key novelty in

the present approach is in dealing with missing data in the context of building dy-

namic models (and not in the context of missing data when building PCA models).

In particular, when filling out missing data to identify dynamic models, the order of

data (because it is indexed with time) is relevant- and thus a direct implementation of

existing techniques for filling data in the context of PCA alone is not the most suited.

In contrast, replacing the missing values with mean values of variables over the entire

batch, especially when variables change significantly over the duration of the batch-

may not be the best strategy (and ideal benchmarking) either. Thus, a comparison

with missing data being replaced by linear interpolation is considered. The models

identified using mean replacement, linear interpolation based replacement, and the

proposed approach are then validated against a new batch in order to determine the

validation error. The error is calculated as the difference between the process and the

model predictions for the duration that the models are used for prediction (i.e., the

Luenberger observer has converged). The validation error is also normalized by the

number of the predictions to account for the observer converging at different times

between the two models. The validation error for the batch is calculated as follows:

V alidationError =

∑
(ŷ − yprocess)

#ofpredictions
(4.38)
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Figure 4.1 shows a typical output profile with random missing data entries. While

Figure 4.2 shows the output profile with blocks of missing data entries. The gaps

in the solid lines indicate that an observation is missing; note that the missing data

observations can occur at any point in the profile. This data set with all of the missing

variables is used as a training set to build a subspace model using PCA/PLS tech-

niques. This is the same process output profile that the subspace model is attempting

to predict except it utilizes mean replacement to fill in the missing observations.

Figure 4.1: The output training data for the temperature output with 30% randomly
missing data from all training batches.
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Figure 4.2: The output training data for the temperature output with 30% missing data in
blocks from all training batches.

4.5.2 Case 1: No Missing Data

Case 1 represents the base case to demonstrate how the proposed approach com-

pares against existing subspace identification techniques. Table 4.2 shows the fit error

between the traditional subspace model and the model obtained from the proposed

approach. The proposed technique has a lower fit error without missing data show-

ing that the proposed approach generates a model that is comparable to the existing

model identification approaches. The two models used identical training data, with

the same number of states and Hankel matrices. Thus, the lower fit error is an im-

portant result highlighting the effectiveness of the proposed approach.

Figure 4.3 shows the accuracy of the model when compared against a typical validation

batch. Without any missing data the proposed approach is still able to generate a

model that is capable of accurately predicting the process and is a suitable starting

point to handle the missing data problem.
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Table 4.2: Validation error for the two models without missing data

Model Fit Error
Traditional 2.1980
Proposed 1.2770

Figure 4.3: The output predictions from the new identified model for each output
(temperature, viscosity and density). The dashed grey line shows the predictions until the

state observer converged and then the grey line shows the predictions from the model
compared against the process (black).

4.5.3 Case 2: Random Missing Data

In this case data from the training batches was randomly deleted in order to achieve

missing data percentages between 5% and 30%. Data entries were removed from

each batch in different variables and observations to ensure there was no bias in the

training set. The proposed approach was then used to identify a subspace model. For

comparison traditional subspace identification was carried out using mean replacement

and linear interpolation for the missing values. The models were then validated based

on validation batches which did not contain any missing observations.

Table 4.3 shows the fit error between the traditional subspace model and the model

obtained from the proposed approach. The proposed approach is able to consistently

predict more accurately compared to the traditional approach. As expected the tra-
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ditional subspace method using mean replacement incorrectly identifies the process

since it uses the dataset shown in Figure 4.1 with mean replacement used to impute

the missing values (thus the dynamic model having to fit to large ‘jumps’ in values as

a result of filling in the same mean value for all missing data points). Similarly even

using linear interpolation to identify the missing values does not result in an accurate

representation of the process since it relies on the gradient provided by the available

data points, and forces an assumption that the variables evolve linearly with time

over that duration. Figure 4.4 shows the predictions of the proposed approach along

with the predictions using the Luenberger observer for the first 50 time-steps. When

comparing the fit of the proposed approach against Figure 4.5 which is the traditional

approach with mean replacement, the proposed approach predicts closer to the true

process. It is important to note that while the linear interpolation validation shown

in 4.6 is a better compared to mean replacement the proposed approach has the best

validation results.

Table 4.3: Validation error for each of the models with random missing data

Model Error 5% Error 10% Error 15% Error 20% Error 25% Error 30%
Mean Replacement 3.1849 6.8222 6.5922 7.4813 8.7168 10.5306
Linear Interpolation 3.9284 4.01278 4.4872 4.5833 5.0355 5.0550
Proposed 1.4748 1.2755 1.2991 1.2027 1.3979 1.6336
Lags 7 7 7 7 7 7
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Figure 4.4: The output predictions from the new identified model with 30% missing data
for each output (temperature, viscosity and density). The dashed grey line shows the

predictions until the state observer converged and then the grey line shows the predictions
from the model compared against the process (black).

Figure 4.5: The output predictions from the traditional subspace model using mean
replacement with 30% missing data for each output (temperature, viscosity and density).
The dashed grey line shows the predictions until the state observer converged and then the

grey line shows the predictions from the model compared against the process (black).

95



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

Figure 4.6: The output predictions from the traditional subspace model using linear
interpolation with 30% missing data for each output (temperature, viscosity and density).
The dashed grey line shows the predictions until the state observer converged and then the

grey line shows the predictions from the model compared against the process (black).

4.5.4 Case 3: Block Missing Data

In this case data from the training batches was randomly deleted in blocks so that an

entire sequence of observations from a variable was missing from the batch. The block

size was uniformly distributed with a mean of 10 observations and a standard devia-

tion of 3 observations and the block observations were randomly deleted throughout

the entire data set. For comparison, traditional subspace identification was carried

out using mean replacement and traditional subspace was carried out using linear in-

terpolation for the missing values. The models were then validated based on separate

validation batches which did not contain any missing observations.

Table 4.4 shows the error using the traditional subspace model and the model obtained

from the proposed approach. The proposed approach is able to consistently predict

more accurately compared to the traditional approach using both mean replacement

and linear interpolation. As expected linear interpolation results provided a lower

validation error compared to the mean replacement approach however, the proposed
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approach still has the smallest error. Figure 4.7 shows the predictions of the proposed

approach along with the predictions using the Luenberger observer for the first 50

time-steps of one validation batch. When comparing the fit of the proposed approach

against Figure 4.8 which is the traditional approach with mean replacement, it can

be clearly seen that the proposed approach predictions are closer to the true process

outputs. The linear interpolation validation shown in 4.9 provides better predictions

compared to the mean replacement approach however, the proposed approach results

in the best model.

Table 4.4: Validation error for each of the models with block missing data

Model Error 5% Error 10% Error 15% Error 20% Error 25% Error 30%
Mean Replacement 4.3018 6.0013 6.667 7.5709 8.3631 9.2156
Linear Interpolation 4.4767 3.1831 3.0405 3.0843 3.1881 2.3737
Proposed 2.9856 2.4233 2.8942 3.0653 2.7573 1.8549
Lags 7 7 7 7 7 16

Figure 4.7: The output predictions from the new identified model with 30% missing data
for each output (temperature, viscosity and density). The dashed grey line shows the

predictions until the state observer converged and then the grey line shows the predictions
from the model compared against the process (black).
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Figure 4.8: The output predictions from the traditional subspace model using mean
replacement with 30% missing data for each output (temperature, viscosity and density).
The dashed grey line shows the predictions until the state observer converged and then the

grey line shows the predictions from the model compared against the process (black).

Figure 4.9: The output predictions from the traditional subspace model using linear
interpolation with 30% missing data for each output (temperature, viscosity and density).
The dashed grey line shows the predictions until the state observer converged and then the

grey line shows the predictions from the model compared against the process (black).
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4.6 Conclusions

In this work, a novel subspace identification procedure for batch processes was pro-

posed with the goal of handling missing data. The identified model is compared

to traditional subspace techniques using mean replacement and linear interpolation

when handling both random and block missing data structures as demonstrated using

simulation results for a batch PMMA reaction. We are able to demonstrate favorable

results when comparing against existing mean replacement and linear interpolation

techniques for all cases of missing data ranging from 5% to 30%. The results ob-

tained by the proposed approach are explicable by the benefits of utilizing regression

techniques to handle missing data.

4.7 Acknowledgment

Financial support from the Ontario Graduate Scholarship and the McMaster Ad-

vanced Control Consortium is gratefully acknowledged.

99



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

Bibliography

[1] Balzano, L., Szlam, A., Recht, B., and Nowak, R. (2012). K-subspaces with

missing data. pages 612–615.

[2] Bennett, D. A. (2001). How can i deal with missing data in my study? Australian

and New Zealand journal of public health, 25(5):464–469.

[3] Chen, J., Huang, B., Ding, F., and Gu, Y. (2018). Variational bayesian approach

for arx systems with missing observations and varying time-delays. Automatica,

94:194–204.

[4] Corbett, B., Macdonald, B., and Mhaskar, P. (2013). Model Predictive Qual-

ity Control of Polymethyl Methacrylate. IEEE Transactions on Control Systems

Technology, 23(2):3948–3953.

[5] Corbett, B. and Mhaskar, P. (2016). Subspace identification for data-driven mod-

eling and quality control of batch processes. AIChE Journal, 62(5):1581–1601.

[6] Corbett, B. and Mhaskar, P. (2017). Data-driven modeling and quality control of

variable duration batch processes with discrete inputs. Industrial & Engineering

Chemistry Research, 56(24):6962–6980.

[7] Dodeen, H. M. (2003). Effectiveness of valid mean substitution in treating miss-

ing data in attitude assessment. Assessment & Evaluation in Higher Education,

28(5):505–513.

[8] Dorsey, A. W. and Lee, J. H. (2003). Building inferential prediction mod-

els of batch processes using subspace identification. Journal of Process Control,

13(5):397–406.

100



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

[9] Ekpo, E. and Mujtaba, I. M. (2008). Evaluation of neural networks-based con-

trollers in batch polymerisation of methyl methacrylate. Neurocomputing, 71(7-

9):1401–1412.

[10] Eriksson, B., Balzano, L., and Nowak, R. (2011). High-rank matrix completion

and subspace clustering with missing data. arXiv preprint arXiv:1112.5629.

[11] Fan, S., Gretton-Watson, S., Steinke, J., and Alpay, E. (2003). Polymerisation of

methyl methacrylate in a pilot-scale tubular reactor: modelling and experimental

studies. Chemical engineering science, 58(12):2479–2490.

[12] Flores-Cerrillo, J. and MacGregor, J. F. (2004). Control of batch product quality

by trajectory manipulation using latent variable models. Journal of Process Control,

14(5):539–553.

[13] Graham, J. W., Cumsille, P. E., and Shevock, A. E. (2012). Methods for handling

missing data. Handbook of Psychology, Second Edition, 2.

[14] Hu, B., Zhao, Z., and Liang, J. (2012). Multi-loop nonlinear internal model

controller design under nonlinear dynamic pls framework using arx-neural network

model. Journal of Process Control, 22(1):207–217.

[15] Huang, B., Ding, S. X., and Qin, S. J. (2005). Closed-loop subspace identification:

an orthogonal projection approach. Journal of process control, 15(1):53–66.

[16] Jiang, Q., Yan, X., and Huang, B. (2015). Performance-driven distributed pca

process monitoring based on fault-relevant variable selection and bayesian inference.

IEEE Transactions on Industrial Electronics, 63(1):377–386.

[17] Larimore, W. E. (1996). Statistical optimality and canonical variate analysis

system identification. Signal Processing, 52(2):131 – 144. Subspace Methods, Part

II: System Identification.

101



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

[18] Lee, K. S. and Lee, J. H. (2003). Iterative learning control-based batch process

control technique for integrated control of end product properties and transient

profiles of process variables. Journal of Process Control, 13(7):607 – 621. Selected

Papers from the sixth IFAC Symposium on Bridging Engineering with Science -

DYCOPS - 6.

[19] Liu, Z., Hansson, A., and Vandenberghe, L. (2013). Nuclear norm system identifi-

cation with missing inputs and outputs. Systems & Control Letters, 62(8):605–612.

[MacGregor et al.] MacGregor, J. F., Jaeckle, C., Kiparissides, C., and Koutoudi,

M. Process monitoring and diagnosis by multiblock pls methods. AIChE Journal,

40(5):826–838.

[21] Markovsky, I. (2013). Exact system identification with missing data. In 52nd

IEEE Conference on Decision and Control, pages 151–155. IEEE.

[22] Moonen, M., De Moor, B., Vandenberghe, L., and Vandewalle, J. (1989). On-and

off-line identification of linear state-space models. International Journal of Control,

49(1):219–232.

[23] Nelson, P. R., Taylor, P. A., and MacGregor, J. F. (1996). Missing data methods

in pca and pls: Score calculations with incomplete observations. Chemometrics and

intelligent laboratory systems, 35(1):45–65.

[24] Pallant, J. (2013). SPSS survival manual. McGraw-Hill Education (UK).

[25] Pigott, T. D. (2001). A review of methods for missing data. Educational research

and evaluation, 7(4):353–383.

[26] Qin, S. J. (2006). An overview of subspace identification. Computers and Chem-

ical Engineering, 30(10-12):1502–1513.

102



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

[27] Raaijmakers, Q. A. (1999). Effectiveness of different missing data treatments in

surveys with likert-type data: Introducing the relative mean substitution approach.

Educational and Psychological Measurement, 59(5):725–748.

[28] Rho, H.-J., Huh, Y.-J., and Rhee, H.-K. (1998). Application of adaptive model-

predictive control to a batch mma polymerization reactor. Chemical Engineering

Science, 53(21):3729–3739.

[29] Shang, L., Liu, J., Turksoy, K., Shao, Q. M., and Cinar, A. (2015). Stable

recursive canonical variate state space modeling for time-varying processes. Control

Engineering Practice, 36:113–119.

[30] Van Overschee, P. and De Moor, B. (1994). N4sid: Subspace algorithms for the

identification of combined deterministic-stochastic systems. Automatica, 30(1):75–

93.

[31] Van Overschee, P. and De Moor, B. (1995). A unifying theorem for three subspace

system identification algorithms. Automatica, 31(12):1853–1864.

[32] Verhaegen, M. and Dewilde, P. (1992). Subspace model identification part 2.

analysis of the elementary output-error state-space model identification algorithm.

International journal of control, 56(5):1211–1241.

[33] Walczak, B. and Massart, D. (2001). Dealing with missing data: Part i. Chemo-

metrics and Intelligent Laboratory Systems, 58(1):15–27.

[34] Wang, J. and Qin, S. J. (2002). A new subspace identification approach based

on principal component analysis. Journal of process control, 12(8):841–855.

103



Chapter 5

Polymethyl Methacrylate Quality

Modeling with Missing Data Using

Subspace Based Model

Identification

This chapter addresses the issue with batch quality modeling which is one of the key

issues in batch control. Traditionally batch processes are controlled using trajectory

tracking of an optimal recipe that has been tested numerous times with success. How-

ever, due to disturbances and different initial conditions this does not always lead to

optimal batch quality or production. Another issue is that quality variables require

additional testing and are available at very low frequencies making their incorporation

into modeling approaches difficult. To overcome these issues this manuscript uses the

missing data algorithm from the previous chapter to build a combined quality and

output model. This manuscript demonstrates the improved performance in compari-

son to interpolation techniques. This manuscript was completed with the help of an

undergraduate research student Kavita Sivanathan who helped run experiments to

collect the data.

Patel, N., Sivanathan, K., & Mhaskar, P. (2021). Polymethyl Methacrylate Quality
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Modeling with Missing Data Using Subspace Based Model Identification. Processes,

9 (10), 1691.
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5.1 Abstract

This paper addresses the problem of quality modeling in polymethyl methacrylate

(PMMA) production. The key challenge is handling the large amounts of missing

quality measurements in each batch due to the time and cost sensitive nature of the

measurements. To this end, a missing data subspace algorithm that adapts nonlinear

iterative partial least squares (NIPALS) algorithms from both partial least squares

(PLS) and principal component analysis (PCA) is utilized to build a data driven

dynamic model. The use of NIPALS algorithms allows for the correlation structure of

the input-output data to minimize the impact of the large amounts of missing quality

measurements. These techniques are utilized in a simulated case study to successfully

model the PMMA process in particular, and demonstrate the efficacy of the algorithm

to handle the quality prediction problem in general.

5.2 Introduction

Polymethyl methacrylate (PMMA) is an important industrial polymer with widespread

applications ranging from plastics to electronics. PMMA production occurs via a spe-

cific recipe in a batch process in order to ensure the optimal product quality. The

key parameter to determining product quality is the molecular weight distribution of

PMMA. However, measuring the entire molecular weight is a long, complex proce-

dure, therefore the number and weight average molecular weights are used as outcome

measures instead. These quality variables are measured at the end of the batch and,

as such, must be controlled tightly.

In order to achieve good quality control of the PMMA process, it is important to

develop a process model capable of handling batch data. Batch processes are unique
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in that they tend towards the low volume production of high value products, as this

allows for poor quality batches to be discarded.[2] Each discarded batch represents a

significant loss in revenue, motivating the need for advanced batch control approaches

and, fundamentally, the development of accurate quality models. Recent advances in

computing technology have led to increased amounts of historical data being available,

making data-driven modeling a viable choice for model identification. [21, 12, 26, 15,

9, 23] However, these techniques still have challenges when dealing with nonlinear

processes and scenarios where data is missing, as is the case with quality variables.

An important consideration when identifying data-driven models is the choice of input

and output variables. While the distinction is typically based on variables that are

controlled in comparison to those that are measured, the batch process also introduces

a separate type of output variable: quality variables. Quality variables are still consid-

ered to be outputs from the process, however, they are not measured continuously, nor

are they always measured online. Quality measurements are often calculated based

on the regular measured outputs or are determined by separate analyses of the batch.

This difference is an important consideration for data driven modeling techniques, as

one assumption that is prevalent in process modeling scenarios is that the inputs and

outputs are sampled at a single and uniform sampling rate. In practice, industrial pro-

cesses often have different sampling rates for input and output variables. Additionally,

processes record quality measurements at an even slower rate compared to traditional

inputs and outputs. This leads to scenarios where inputs and outputs have some

missing values due to differences in sampling rates, whereas quality measurements are

available at extremely low frequencies. This presents a challenge to traditional data

driven modeling approaches that require complete data sets to identify a model.

When attempting to model industrial batch processes using data containing missing

observations, a common data-driven technique used is partial least squares (PLS). [8]

In this technique, process data from multiple batches is taken and projected into two
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lower dimensional subspaces (latent variable space). This ensures that the relation-

ship between the correlated input and output space variables is maintained and is

characterized by the independent latent variables.[13] PLS techniques are capable of

handling missing data since they utilize the covariant structure between the input and

output variables from the original variable space. This inherent ability is one of the

key properties that makes PLS techniques suitable for modeling batch processes. The

application of PLS techniques to batch process modeling has been previously explored

and one successful approach is to utilize batchwise unfolding of the data. [6, 7, 13]

Process data from each batch is unfolded into a single PLS observation that is subse-

quently related to quality variables. This approach can be applied to on-line process

data by utilizing data imputation techniques to make predictions on the missing data

observations. While this approach has been well-documented in handling industrial

batch data, it requires batch alignment in order to account for varying batch duration.

Furthermore, the approach identifies a time-varying model and, since PLS inherently

doesn’t distinguish between input and output variables, it has limited applicability in

traditional model predictive control and scenarios where batch duration is a decision

variable.

Another technique that is suitable for building process models is subspace identifica-

tion [15, 18, 9, 23], which has been appropriately modified for handling batch data

using Hankel matrices. [2] Note that subspace identification is different from PLS

because it explicitly distinguishes between input and output variables. [15, 18, 9, 23]

Subspace identification consists of two distinct steps: identifying a state trajectory

from historical input and output batch data, and determining the system matrices

using a least squares solution. To achieve these outcomes, subspace identification

utilizes a range of techniques from canonical variate analysis [11, 20], numerical algo-

rithms [22] and multivariate output error state space algorithms. [24] One common

technique to subspace identification is singular value decomposition (SVD) of the ma-

trices. [15, 9] However, SVD requires matrices to be full-rank, making it unsuitable
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for handling batch data with missing observations. [14]

One way to handle the problem of missing data with subspace identification is through

a lifting technique.[3] The prevalent assumption is that all the inputs are sampled at

one frequency and all the outputs are sampled at another frequency. A model can then

be derived using the grouped inputs and outputs wherever the sampling frequencies

align. This process involves computed control moves over the larger sampling inter-

val instead of every sampling instance. Lifting has many advantages, including the

ability to convert a multi-rate system into a single rate system, but the key benefits

lie in model predictive control. However, this process is unsuited for the quality con-

trol problem, as quality measurements are not frequent enough to provide sufficient

excitation for modeling. These measurements are only available at percentages less

than 10%, making a single rate system impractical. Thus, a modeling approach that

can use the lower frequency sampling rate of the inputs and outputs is required. The

previous work [16] developed a technique for handling missing data in subspace iden-

tification approach with a focus on solving the problem of random missing data. The

present work recognizes that the missing data subspace approach can be applied to

the broader quality measurement induced missing data problem. Thus, the present

manuscript provides a solution for instances where the low frequency of quality mea-

surements in relation to other online measurements results in a missing data problem

(as in the simulated PMMA process example).

To overcome these challenges and model the PMMA process, the current paper fo-

cuses on a recent modification to subspace identification [17] that treats nonuniform

sampling rate data as a missing data problem. Specifically, the addition of PCA and

PLS steps to the subspace identification approach permits accounting for the miss-

ing quality measurements. While the use of PCA and PLS techniques is not a novel

introduction to model identification (see [25, 10]), the reduced latent variable space

is marginally affected by missing data, thus allowing for the treatment of nonuni-
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form sampling problems as a case of randomly missing data. The first step is to use

latent variable methods (PCA followed by PLS) to identify a reduced dimensional

space for the variables which accounts for missing observations. The second step re-

places SVD with PCA to identify the states of the system, whereupon traditional

subspace approaches can be utilized. The rest of the paper is organized as follows:

Section Preliminaries presents the Polymethyl Methacrylate (PMMA) process, fol-

lowed by a review of traditional subspace identification. The next subsection presents

the Subspace Identification approach that can readily handle missing data issues. In

the results section, identification and validation results for the PMMA process are

presented. Finally, concluding remarks are made.

5.3 Preliminaries

5.3.1 Polymethyl Methacrylate (PMMA) Process Descrip-

tion

PMMA is produced via free-radical polymerization in a jacketed reactor with a contin-

uous stirrer. At the start of each batch, the reactor is charged with methyl methacry-

late (monomer), AIBN (initiator), and toluene (solvent). The system is controlled by

manipulating the heat input to the reactor, which is based on the coolant/heating

fluid flow rate. Table 5.1 presents the nominal set of batch conditions used to ini-

tialize the PMMA process with standard deviation of σ2. In order to provide good

quality batches, a nominal temperature trajectory known to yield good quality re-

sults is tracked for each batch. Proportional-integral (PI) tracking is used to track

the batch temperature by manipulating the jacket temperature. The batch is then

terminated after the polymer density reaches the desired set-point.
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Table 5.1: Initial batch conditions for PMMA reaction

Variable Value σ2 Units
Initiator Concentration 2.06×10−2 1.0×10−3 kg/m3

Monomer Concentration 4.57 0.5 kg/m3

Temperature 61 2.5 ◦C

A first principles dynamic model is utilized as a test bed consisting of nine states

governed by a set of nonlinear algebraic and differential equations. The nine sys-

tem states are: reactor temperature, monomer and initiator concentrations and six

molecular weight distribution moments. This dynamic PMMA model has been taken

from [4] with suitable adaptations [5, 19] included [1]. To replicate natural process

variability in each batch, the initial conditions of the PMMA process are varied using

a normal distribution around the nominal conditions as shown in Table 5.1. Three

variables are assumed to be measured continuously: reactor temperature, reactant

volume and stirrer torque. The volume measurements are used to calculate the den-

sity, which is used to measure the extent of the reaction, allowing the batch to be

terminated once the reaction has reached a certain threshold, as opposed to termi-

nating at a fixed batch length. This leads to variable batch lengths depending on the

time required to reach the target density.

5.3.2 Subspace Identification

This subsection provides a brief description of existing subspace identification methods

that provide the basis for the PCA and PLS based modifications. These techniques

utilize input/output data to identify a state space model (typically) around steady-

state operating conditions. Specifically, given a batch of s measurements of the inputs

uk ∈ Rp and outputs yk ∈ Rq, a system with order n can be determined in the following
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form:

xk+1 = Axk +Buk, (5.1)

yk = Cxk +Duk, (5.2)

where the identification approach identified the system order n along with the system

matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, D ∈ Rq×p (up to within a similarity

transformation). Considerable work has been done to show how this model can be

developed for batch processes. Thus, consider k as the sampling instant from the

start of the batch and b denoting the batch number [2]. The identified state trajectory

matrix for each batch is represented as:

X
(b)
i+1 =

[
x(b)[i+ 1] · · · x(b)

[
i+ j(b)

]]
∀ b = 1, . . . , nb (5.3)

Xi+1 =
[
X

(1)
i+1 X

(2)
i+1 · · · X

(nb)
i+1

]
(5.4)

where nb is the total number of batches used for identification.

Using the state trajectory matrix, the system matrices can be estimated easily using

the following matrix regression steps:

Y(b)
reg =

x(b)[i+ 2] · · · x(b)
[
i+ j(b)

]
y(b)[i+ 1] · · · y(b)

[
i+ j(b) − 1

]
 (5.5)

X(b)
reg =

x(b)[i+ 1] · · · x(b)
[
i+ j(b) − 1

]
u(b)[i+ 1] · · · u(b)

[
i+ j(b) − 1

]
 (5.6)

[
Y(1)

reg · · · Y(nb)
reg

]
=

A B

C D

[
X(1)

reg · · · X(nb)
reg

]
(5.7)
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5.3.3 Noniterative Partial Least Squares (NIPALS) Algorithm

This subsection provides a brief description of the existing NIPALS based PCA and

PLS subspace identification approach. These steps are used to carry out regressions

in the traditional subspace approach that rely on full rank matrices, since PCA and

PLS can handle missing data. This approach is fully described in Patel et al. [16].

The first step in subspace identification is to project the future outputs and past inputs

and outputs perpendicular to future inputs to remove the correlation between the past

data and future inputs. This can be achieved using a NIPALS algorithm for PCA.

The PCA step removes all of the variance associated with the future inputs, and the

remaining correlations are the result of the effect of current states on future outputs.

The next step in the NIPALS approach is to identify the relationship between the past

inputs and outputs and the future outputs. This relationship provides the basis of

subspace identification techniques, as it relates directly to the underlying states of the

process. In order to identify this relationship, a NIPALS algorithm for PLS is applied.

Here, the two blocks are chosen such that the first block contains the past inputs and

outputs and the second block contains the future outputs. Finally, after carrying out

PLS, the first block contains only known values (coefficients from the past inputs

and outputs). This matrix can then be appropriately decomposed to matrices to

match the second block, resulting in a valid state space representation. In traditional

subspace, the relationship is then identified through singular value decomposition

(SVD). However, SVD is not suitable for handling matrices with missing data, and

PCA can be used instead. It then follows that the scores from PCA are a valid

realization of the process states and can then be used in Eq. 5.7 to compute the

system matrices (A,B,C,D) via linear regression.

Remark 20. This approach is particularly important when considering the

quality control problem, and opens up the possibility of direct control of quality.
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Thus, since the model can be utilized to predict quality variables during the

intervals which it is not measured, a classical control structure such as PID

can be utilized to directly control the (predicted) quality to a desired trajectory,

terminating at the desired final quality.

5.4 PMMA Model Identification

Two case studies are considered for the PMMA process, where the output data is

lost in storage (thus, the PI controller is able to run in the closed-loop using the

available temperature measurements. Note that the approach and implementation

readily holds for the situation where the measurements would simply be unavailable

at random times, and would need a change in how the PI controller is implemented).

Case 1 contains training data with 30% random missing output data and quality data

measurements retained at intervals of 1 in every 10, 20 and 30 time steps, respectively.

Case 2 contains training data with quality measurement available every 10 time steps

and random missing output data ranging from 5% up to 30%. Thus, the effects of

both lower frequency of quality measurement availability and increasing missing data

are independently investigated.

Remark 21. The key difference between data imputation approaches and the

missing data approach is that imputation can lead to inconsistency between the

imputed data (in terms of the model structure implied) and the model structure

being identified. Thus, in the comparison case study, where linear interpolation

techniques are utilized, it is seen that linear interpolation is not consistent with

the type of model ultimately being identified (linear time invariant dynamic

model), resulting in the inability to capture the process trends sufficiently,

leading to poor model performance. The success of the approach is based on

the format of the data-blocks, which guarantees a high degree of covariance
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due to batch unfolding of the Hankel matrices and the temporal nature of the

data.

5.4.1 Model Identification

For each case, 15 training batches under proportional integral (PI) control are gen-

erated from the PMMA process and are used to identify two subspace models. To

compare the present approach against existing results, first a model is identified using

traditional subspace identification with linear interpolation of the measured outputs

to determine missing values in the training batches and, subsequently, the proposed

approach using PCA/PLS techniques to handle infrequent quality sampling is imple-

mented. The two models are then validated against a new set of 15 batches (under

PI control) that are also modified to have missing data similar to the training batches

to determine the validation error.

Remark 22. Note that the number of states and lags are a user specified

parameter. The choice is based on the best training fit defined as the lowest

error between the predictions and the process outputs. The states and lags used

are specific to the present implementation and future work will explore further

the relationship between the number of states and model quality.

5.4.2 State Observer

After identifying the state space model an important consideration before utilizing

it for online predictions is to ensure that the model states converge with the pro-

cess. This approach utilizes the Luenberger observer, which updates the states using

feedback from the outputs weighted using a gain matrix L in the following method:
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xk+1 = Axk +Buk + L(yprocess − ŷ) (5.8)

To handle missing outputs when the model is run with a new batch, this approach

uses linear interpolation until the process outputs converge within a tolerance of 0.1%

or until 40 minutes have passed (the sampling instance when this occurs is denoted

by c). After that, the model is run online and is used to predict the process outputs.

The model’s effectiveness can then be determined based on the prediction error until

the end of the batch. The error is determined by the sum of the difference between

each available process output (yprocess) and model prediction (ŷ) for the duration that

the models are used for prediction (i.e., after the Luenberger observer has converged).

This value is then normalized by the number of process outputs available to account

for differences in batch duration as well as missing observations. The validation error

for each batch is calculated as:

V alidationError =

∑s
k=c |ŷ(k)− yprocess(k)|
#ofpredictions

(5.9)

where k is the batch index, c is the index when the Luenberger observer converges

and s is the batch length.

5.4.3 Case 1: Missing Quality Data

In this case, the amount of missing quality data was varied to retain quality mea-

surements in intervals of 10, 20 and 30 sampling times, resulting in missing data

percentages of 90%, 95% and 97%, respectively. The reason for doing this is to test
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the utility of the approach for situations where the quality measurements may take

longer times to be obtained. Additionally, output data from the training batches are

randomly deleted to obtain a missing data percentage of 30%. Both the missing data

approach and the traditional subspace approach were then used to develop a subspace

model. To handle the missing measurements, the traditional subspace identification

approach uses linear interpolation in order to have a full rank matrix. The two mod-

els are then validated against validation batches where both output and quality data

entries were removed, similar to training batches.

Table 5.2 shows the average validation error of the traditional subspace model and

missing data approach from modelling 15 validation batches. The missing data ap-

proach consistently has a lower error compared to the traditional subspace model.

Figure 5.1 shows the predictions for reactant conversion from the proposed approach,

traditional approach, as well as the output estimates using the Luenberger observer

for the first 40 time-steps from both models compared to the true process for one

batch. figures 5.2 and 5.3 show the predictions for the number average molecular

weight and weight average molecular weight from both models compared to the true

process. Looking at each of the model predictions, the three figures clearly show

how the missing data approach is able to more accurately model the true process in

comparison to the traditional subspace identification.

Table 5.2: Average validation error for two models with missing quality data and 30%
random output data

Model Keep 10 90% Missing Keep 20 95% Missing Keep 30 97% Missing
Traditional 56,106 73,996 61,190
Proposed 10,149 8,779 9,781
Lags 9 12 14
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Figure 5.1: The conversion predictions from both models with every tenth quality
measurement retained and 30% missing output data. The dashed grey lines represent
Luenberger observer estimates until the 40th minute and the solid grey line shows the

predictions from the proposed approach in comparison to the process, represented by the
solid black line. The dotted and dashed black lines show the predictions made by the
Luenberger observer and traditional subspace identification using linear interpolation,

respectively.
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Figure 5.2: The number average molecular weight predictions from both models with
every tenth quality measurement retained and 30% missing output data. The dashed grey
lines represent estimates made by the Luenberger observer until the 40th minute and the
solid grey line shows the predictions from the proposed approach in comparison to the
process, represented by the solid black line. The dotted and dashed black lines show the
estimates made by the Luenberger observer and traditional subspace identification using

linear interpolation, respectively.
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Figure 5.3: The weight average molecular weight predictions from both models with every
tenth quality measurement retained and 30% missing output data. The dashed grey lines
represent estimates made by the Luenberger observer until the 40th minute and the solid
grey line shows the predictions from the proposed approach in comparison to the process,
represented by the solid black line. The dotted and dashed black lines show the estimates

made by the Luenberger observer and traditional subspace identification using linear
interpolation, respectively.

5.4.4 Case 2: Random Missing Output Data

In this case, the output data from training batches is randomly deleted in order

to achieve missing data percentages from 5% up to 30% while every tenth quality

variable measurement is kept (90% missing outputs). The missing data approach is

then compared against traditional subspace identification with linear interpolation.

The models are then validated against validation batches with both output and quality

data entries removed in a similar manner to training batches.

Table 5.3 shows the average validation error in predicting quality variable data for

15 batches from the traditional subspace identification and missing data approach.

In comparison to the traditional subspace approach, the missing data approach is
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able to consistently make more accurate predictions. Figure 5.4 shows the conversion

predictions made by the proposed approach, traditional subspace approach, as well

as the predictions from the Luenberger observer for the first 40 time-steps for both

models compared to the true process for one validation batch. figures 5.5 and 5.6 show

the predictions for number average molecular weight and weight average molecular

weight from both models compared to the true process. The three graphs clearly show

that the proposed approach is able to more accurately model and predict the process

data compared to traditional subspace identification.

Table 5.3: Average validation error for two models with every tenth quality measurement
retained and random missing output data

Model Error 5% Error 10% Error 15% Error 20% Error 25% Error 30%
Traditional 28,649 29,760 34,187 36,041 36,645 56,106
Proposed 12,674 8,016 9,342 10,450 10,242 10,149

Figure 5.4: The conversion predictions from both models with every tenth quality
measurement retained and 20% missing output data. The dashed grey lines represent

estimates made by the Luenberger observer until the 40th minute and the solid grey line
shows the predictions from the proposed approach in comparison to the process,

represented by the solid black line. The dotted and dashed black lines show the estimates
made by the Luenberger observer and traditional subspace identification using linear

interpolation, respectively.
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Figure 5.5: The number average molecular weight predictions from both models with
every tenth quality measurement retained and 20% missing output data. The dashed grey
lines represent estimates made by the Luenberger observer until the 40th minute and the
solid grey line shows the predictions from the proposed approach in comparison to the
process, represented by the solid black line. The dotted and dashed black lines show the
estimates made by the Luenberger observer and traditional subspace identification using

linear interpolation, respectively.
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Figure 5.6: The weight average molecular weight predictions from both models with every
tenth quality measurement retained and 20% missing output data. The dashed grey lines
represent estimates made by the Luenberger observer until the 40th minute and the solid
grey line shows the predictions from the proposed approach in comparison to the process,
represented by the solid black line. The dotted and dashed black lines show the estimates

made by the Luenberger observer and traditional subspace identification using linear
interpolation, respectively.

Remark 23. Note that while the subspace identification approach itself is not

a novel introduction, its application to the batch quality problem is. Quality

variables are different from missing data scenarios since they are available at

a much lower frequency than traditional outputs and they contain more im-

portant process information. Modeling the intermittent quality measurements

along with the process outputs is a difficult task, given the large differences in

data frequency. However, a singular model is desirable for control. This paper

demonstrates how missing data algorithms can be adjusted to include quality

variables for accurate process modeling.

123



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

5.5 Conclusions

In this work, a missing data subspace identification approach for batch processes with

missing quality measurements and outputs is proposed. In this approach, missing

quality measurements were treated as missing data, allowing the model to make pre-

dictions without inaccurately imputing the missing observations. The missing data

subspace model is compared to traditional subspace identification using linear interpo-

lation. The proposed model was able to perform better than the traditional approach

for cases with quality measurements retained in intervals of 10, 20 and 30 as well as

cases with random missing output data ranging from 5% to 30%. The results from the

missing data approach show the benefits of using latent variable methods to handle

missing data.
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Chapter 6

Subspace Based Model

Identification for an Industrial

Bioreactor: Handling Infrequent

Sampling Using Missing Data

Algorithms

This chapter provides a practical application of the missing data algorithm along with

the additional benefit of handling discrete measurements to solve the infrequent sam-

pling problem. The key problems were the large amounts of missing data due to the

different sampling rates and a discrete input signal. This work leverages the missing

data algorithm described in the previous chapter to use a higher frequency sampling

rate that allows the discrete inputs to be treated as step inputs over one sampling

period. This work was completed in collaboration with Sartorius who provided insight

into the industrial bioreactor and provided data and modeling experience.

Patel, N., Corbett, B., Trygg, J., McCready, C., & Mhaskar, P. (2020). Subspace

Based Model Identification for an Industrial Bioreactor: Handling Infrequent Sam-

pling Using Missing Data Algorithms. Processes, 8(12), 1686.
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6.1 Abstract

This manuscript addresses the problem of modeling an industrial bioreactor using

process data. Bioreactor design is an integral part of modern industrial practice and

is responsible for the production of high value products, and in particular, because of

confidentiality issues, for what we will refer to as the Sartorius Bioreactor. Due to the

complex mechanisms driving cell growth, determining the optimal operating condi-

tions for the Sartorius Bioreactor is a challenging but important problem. One of the

key impediments to this is the difficulty in developing good dynamic process models.

While increased availability of sensors has made more data available, the appropriate

use of this data for developing a data-driven dynamic model remains challenging. In

particular, in the context of the Sartorius Bioreactor, it is important to appropriately

address the problem of dealing with a large number of variables, which are not al-

ways measured or are measured at different sampling rates, without taking recourse

to simpler interpolation or imputation based approaches. These approaches might be

suitable for steady state modeling, but do not necessarily serve the objective of data

driven dynamic modeling. This manuscripts addresses the problem of developing a

dynamic model for the Sartorius Bioreactor via appropriately adapting a recently de-

veloped subspace model identification technique which in turn uses nonlinear iterative

partial least squares (NIPALS) algorithms to gracefully handle the missing data. The

other key contribution is evaluating the ability of the identification approach to pro-

vide insight into the process by computing interpretable variables such as metabolite

rates.
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6.2 Introduction

Bioreactors are an important part of many different industries ranging from environ-

mental engineering to bio-pharmaceuticals. Several factors influence the productivity

of a bioreactor including mass transfer, heat transfer and concentration of the biocat-

alyst used to produce the final product. [26] One such bio-pharmaceutical product is

monoclonal antibodies, which is the focus of the present work. In this process, one

of the key objectives is to maximize the volume specific production of the antibody.

While the desired product can be characterized in many ways, the Sartorius Biore-

actor is designed to produce the specific protein through a careful manipulation of

bioreactor properties. The volumetric production of the monoclonal antibodies is in-

fluenced by several parameters such as feed concentrations and cell growth that must

be appropriately modeled and controlled.

There are a host of parameters that determine the cell growth, death, and protein

production dynamics. Glucose is a key nutrient for cell growth providing the necessary

source of energy and biomass formation however, excess glucose can lead to production

of lactate leading to increased cell death. Glutamine behaves similar to glucose acting

as a nutrient promoting cell growth especially in cases of fast cell growth. Both

lactate and ammonia have detrimental effects on cell growth with the latter being

more potent.[12] External factors like temperature and pH play an important role

in maximizing the effects of the various nutrients on cell growth. Increasing the

temperature up to a certain threshold increases cell growth due to increased system

dynamics. After which a temperature shift midway through the batch is used to

increase antibody production. [2, 29] The effects of pH are more complicated since

the effects of lactate and ammonia are dependent on the pH levels therefore a shift

in the pH is also often necessary in later stages of the batch.[12] The complex effects

of these metabolites and external factors in batch product leads to a challenging
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modeling and control problem.

While detailed first principles equations for bioreactors exist in general, and for the

Satorius Bioreactor in particular [12], the associated parameter estimation problem

is quite a challenging one. There have been several implementations of parameter es-

timation techniques and other mathematical approaches for first principles modeling

of industrial-scale growth, [23, 6, 19, 5, 1, 16]including one used by Sartorius [12],

however, further contributions to these methods remains the subject of another work.

The focus in the present manuscript is on leveraging data to build data driven dy-

namic models. There are several challenges with the measurements available from the

bioreactor. While some of the process variables can be measured continuously using

online sensors (ie. temperature, pH) other variables (ie. metabolites) require sam-

pling and separate tests. This results in an infrequent sampling problem where only

some observations are available frequently while the rest are not, leading to instances

of ‘missing data’. In order to account for the missing observations, existing modeling

approaches must either interpolate the missing values or use a method to align the

available measurements. Interpolating values is not a reliable approach when dealing

with highly nonlinear dynamics. Additionally, using only the available measurements

to build a model ignores the continuous measurements available between the sam-

pling intervals. Note that each of th metabolite concentrations must be measured

independently requiring several samples to be taken in order to get a full range of

measurements. This isn’t practical in a bioreactor therefore measurements are only

taken a couple of times a day leading to large amounts of missing data. Additional

factors that must be accounted for are that due to the negative effects of excess glu-

cose, the Sartorius Bioreactor operation involves discrete additions after levels drop

below a certain threshold. This discrete addition leads to a discontinuous glucose pro-

file which must be appropriately accounted for. Furthermore, since cell growth relies

on a host of parameters and peaks during batch operation, the length of each batch

is a design choice and can be variable, and the data driven and modeling approach
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must be able to handle batches of varying lengths.

Due to the reasons stated above, many of the existing approaches for data-driven

modeling are not directly suitable to solve the current identification problem. When

attempting to analyze industrial batch data containing missing observations, a com-

mon data-driven technique used is partial least squares (PLS) which works on the

principle of projection to latent space. [9] In this technique, process data from mul-

tiple batches is taken and projected into a lower dimensional subspace (latent vari-

able space). This ensures that the relationships between the correlated input and

output space variables is maintained and is characterized by the independent latent

variables.[MacGregor et al.] PLS techniques are capable of handling missing data since

they utilize the covariance structure between the input and output variables from the

original variable space. This inherent ability is one of the key properties that make

PLS techniques suitable for modeling batch processes. The application of PLS tech-

niques to batch process modeling has been previously explored and one successful

approach is to utilize batchwise unfolding of the data. [7, MacGregor et al.] Process

data from each batch is unfolded into a single PLS observation that is subsequently

related to quality variables. This approach can be applied to on-line process data by

utilizing data imputation techniques to make predictions on the missing data obser-

vations. While this approach has been well-documented in handling industrial batch

data, it is not readily suitable for the current problem since it requires batch alignment

in order to account for varying batch duration (although techniques such as dynamic

time warping or using alignment variables exist). More importantly this approach

inherently does not distinguish between inputs and outputs- thus all variables are

treated in the same fashion, in turn requiring special modifications to recognize the

distinctions between process inputs and outputs.

Another technique that is suitable for building dynamic process models is subspace

identification [18, 21, 10, 25] which has been adapted for handling batch data. [3].
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Note that subspace identification is different from PLS because it explicitly distin-

guishes between input and output variables. [18, 21, 10, 25] Subspace identification

consists of two distinct steps: identifying a state trajectory from historical input and

output batch data and using a least squares solution to determining the system ma-

trices of a Linear Time Invariant (LTI) system. To achieve these outcomes subspace

identification utilizes a range of techniques from canonical variate analysis [14, 22], nu-

merical algorithms [24] and multivariate output error state space algorithms. [27] One

common technique to subspace identification is singular value decomposition (SVD)

of the matrices. [18, 10] However, SVD requires matrices to be full-rank making it

unsuitable for handling batch data with missing observations.[17] Thus, subspace iden-

tification by itself is unable to handle the metabolite rates with missing measurements

coming from the infrequent sampling rates.

As a result of these considerations, a missing data subspace modeling approach using

PCA and PLS steps was recently developed [20]. Specifically, the addition of PCA

and PLS steps to the subspace identification approach allows for the missing obser-

vations to be accounted for. While the use of PCA and PLS techniques is not a novel

introduction to model identification (see [28, 11]) the reduced latent variable space is

marginally affected by missing data. The first step in the approach is to use latent

variable methods (PCA followed by PLS) to identify a reduced dimensional space for

the variables which accounts for missing observations. The second step replaces SVD

with PCA, to handle missing observations, to identify the states of the system where-

upon traditional subspace approaches can be utilized. The approach in [20], however,

does not directly handle discrete additions (of glucose), and thus is not directly ap-

plicable. Another recent result [4] that explicitly handles discrete additions is not

applicable due to two reasons- the first is that the results in [4] do not handle missing

data, and the second is that a direction application of the approach in [4] coupled

with the missing data approach of [20] would lead to batches with almost no data, in

turn making the approach inapplicable. Finally, while the results in [4, 20] provide a
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modeling framework, the resultant subspace models do not necessarily provide insight

into the process dynamics, and could be improved by augmenting with tools to enable

easier access to the practitioner.

Motivated by the above considerations, the present manuscript adapts the missing

data approach of [20] to specifically handle the discrete addition nature of the Sartorius

Bioreactor along with the missing data in the metabolite measurements and develops

a data driven dynamic model that also predicts variables that can be much better

interpreted by the practitioner. The approach is designed to handle batch data with

variable batch length without the need for batch alignment techniques. This approach

is utilized to identify two LTI models of the system: one for the concentrations and the

other, to provide more insight into the process dynamics, for the metabolite rates. The

rest of the paper is organized as follows: Section 6.3 presents the bioreactor process

and overview of traditional subspace identification. In Section 6.4, an application of

the proposed approach to the Sartorius Bioreactor is presented. Finally, concluding

remarks are made in Section 6.6.

6.3 Preliminaries

A brief overview of the bioreactor process is presented in this section followed by the

missing data subspace identification approach for batch processes.

6.3.1 Bioreactor Process Description

The Sartorius bioreactor is operated as a fed-batch reactor with nominal or centre

point conditions of a pH of 7.1, dissolved oxygen of 60% and a temperature of 36.8◦C.

It has a discrete feed input utilized to maintain the glucose concentration in the

reactor at 2.5 g/L. After being initialized with a starting cell culture the process runs
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for 12 days before the reactor is stopped and the final cell titer is measured. The

process has some continuous measurements available such as pH and temperature,

but the rest of the measurements are only sampled up to three times a day. The

bioreactor has the ability to control temperature, pH and (through discrete additions),

the glucose concentrations. The measured outputs are titer, viable cell density(VCD),

cell viability, glutamine concentration, lactate concentration, glutamate concentration

and ammonia concentration.

Sartorius Bioreactor utilizes a discrete nutrient feed system. Thus, glucose is added

to the system in a series of discrete additions in order to maintain the target glucose

concentration. The glucose measurement is utilized to determine the glucose addition

time, and at each addition interval a feed volume ( 200mL) with a high glucose

concentration is added to the bioreactor resulting in a sharp (slight) increase in the

volume and a larger increase in the glucose concentration. The eventual objective

of the model is to be utilized for the purpose of a control strategy such as model

predictive control. The utility of the model therefore is in its ability to predict the

final protein titer, by using the measured inputs and outputs for up to a given time in

the batch, and based on candidate input variables at the end of the batch. Another

key objective is to utilize the model to monitor rates of metabolites consumption.

These rates provide a useful view’into the process and enables making more sense of

the model, in turn making the model much more accessible to the practitioner.

6.4 Dynamic Modeling of the Bioreactor

In this section, first a dynamic model is identified, with the model output being

measured variables. In the next subsection, a dynamic model is identified that uses

a combination of measured and calculated variables to directly estimate metabolite

consumption rates.
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6.4.1 Dynamic Model Identification and Validation Using Mea-

sured Outputs

The first model examines the daily metabolite concentrations and their impact on cell

titer. In this process the following measurements are available: glucose concentration,

temperature setpoint, pH setpoint, titer, viable cell density(VCD), cell viability, glu-

tamine concentration, lactate concentration, glutamate concentration and ammonia

concentration. One of the first decisions in developing subspace identification based

models is determining the input and output variables that allows for model identifi-

cation, and is also in line with process implementation. Thus, pH setpoint and the

temperature setpoint are selected as two of the input variables. The controller on

the process works reasonably well, thus the pH and temperature values pretty closely

follow the setpoints. The objective in this work is to determine the effect of these

variables on the metabolites and cell titer, not the effect of the pH and temperature

setpoint on the pH and temperature. In essence, the temperature and pH directly

influence cell growth dynamics and the shifts in the setpoints represents changes in

the growth profiles. The other measured variables inside the bioreactor, however, do

not cause significant changes in the temperature or pH values and so the measured

output values have more noise than useful information and are consequently omitted.

Thus only the titer, viable cell density (VCD), cell viability, glutamine concentra-

tion, lactate concentration, glutamate concentration and ammonia concentration are

chosen as the seven outputs.

Glucose on the other hand poses its own challenge. There are two potential ways to

include glucose in the model. The first is to include the glucose addition as an input,

and model glucose as an output. In such a scenario the model would be trying to

decipher the effect of glucose addition on the glucose concentration- which is a fairly

straightforward mole balance, and the other is the effect of the rate of consumption

136



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

of glucose in its role as a metabolite. While this is possible in principle, every discrete

addition of glucose would cause a jump in the glucose measurement, and would in

turn cause the states to ‘jump’. Such a discrete addition piece could be modeled using

the subspace identification approach in [3], but would lead to having to split the batch

into multiple batches- with each batch comprising the time period between discrete

additions. While this would be possible in principle (and reasonable for the process

considered in [3]), in the present instance this would lead to each of the batches having

very sparse measurements- thereby comprising mostly missing data. In this case, the

recently developed missing data approach [20] would not be directly applicable.

Glucose is therefore considered an input in the present manuscript. From a practical

standpoint, it is reasonable because the glucose concentration can be readily measured

and modified and thus be an input in a controller implementation. The dataset

however poses an interesting challenge in this regard because the measurements of

glucose are takn before the glucose addition, but not measured right after the glucose

addition. The first measure to handle that includes the computation of the glucose

concentration right after the glucose addition. This is the more intuitive part, and

can be computed readily as follows: V +C+
G = V −C−

G + VGFeed
CFeed

G , where V is the

volume in L, CG is the concentration of glucose in mg/L and the + and - represent

the after and before feed addition respectively

The other more important question is how to utilize the newly computed glucose

concentration. Again, there are two alternatives and here one approach is clearly

incorrect. The first alternative is to add an additional data point in the batch. Thus

right after the data point before the addition, a new point is added where the value

of the glucose measurement is changed, but the value of the other variables is kept

the same. While this sounds intuitively right, such a choice would provide the model

with false information. In particular, it would suggest to the model that the value

of the glucose changed in one sampling time while the others stayed the same. This
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is counter to what happens in the process in that the value of the glucose jumps

instantaneously. The implementation of this approach is shown in Figure 6.1 and

it clearly shows how the concentration in the reactor ‘increases’ between sampling

intervals. For example after days 3,6, 7 8,9,11 the glucose concentration seems to

increase slowly over time which is contrary to what we know happens (i.e., glucose

gets consumed). The second and correct adaptation then, is to replace the value of

the glucose measurement by the newly calculated measurement. As seen In Figure 6.2

the concentration increases instantly upon glucose addition and the next measured

sample shows that the glucose concentration decreases between sampling instances.

Figure 6.1: The glucose input profiles for a training batch using the incorrect assumption
of taking measurements whenever they are sampled.
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Figure 6.2: The glucose input profiles for a training batch using the correct approach of
updating the glucose concentration instantaneously.

Having determined the right set of inputs and outputs, the training input sequence

from one batch is shown below in Figure 6.3. Note that the temperature and pH set-

points are only moved from the center line values to induce variations in the dataset,

reflective of the true process, and as such not all batches have these shifts. To iden-

tify the model, data from 11 different batch runs were used for training batches. The

training batches were chosen to establish the daily operating conditions of the Sar-

torius bioreactor with sufficient variation provided by different temperature and pH

setpoint changes providing a reasonably rich data set.

Remark 24. We recognize that the use of 11 training batches does limit the

ability to accurately validate the model. In future work, as more data becomes

available, the identification can be redone to include more batches. What is

perhaps more important to recognize is that the model is good for the data

range it is used for in the training. Thus, in conjunction with existing model

monitoring techniques [13], one can readily monitor if the model continues to

be valid for the batch under consideration. If the monitoring technique reveals
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that the model predictions are diverging from the observations, the model can

be retrained using the new on-line measurements in order to improve model

accuracy.

Having handled the discrete nature of the input addition, the data driven modeling

approach [20] was subsequently implemented to identify a system model. A state

space model of order 3 was identified by ensuring the best model fit during the training

stages.

Figure 6.3: The input profiles for a training batch.

The modeling identification procedure [20] used is a combination of subspace identi-

fication with PCA and PLS techniques to handle variable batch length missing data

problems. The identification approach used in this paper identifies an LTI model as

follows: Given s measurements (where s represents the length of the data) of the

input u(b)[k] ∈ Rm and the output y(b)[k] ∈ Rl variables from each batch a model with

order n can be identified using the following equations:

x̂(b)[k + 1] = Ax(b)[k] +Bu(b)[k],

y(b)[k] = Cx̂(b)[k] +Du(b)[k],
(6.1)
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where the objective is to determine the order n, from cross validation, and the system

matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m.

The system matrices are identified in two stages where first a state sequence is identi-

fied and then subsequently the system matrices. The subspace identification approach

is carried out using a series of PCA and PLS regressions with non-iterative partial least

squares algorithms (NIPALS). The first part of subspace identification is to identify

a state trajectory. This is done using PCA by projecting the past inputs and outputs

perpendicular to the future inputs. We recognize that the future inputs should be

completely independent of any past data however, this step insures we remove any

potential correlations as a result of insufficient excitation. Additionally, the future

outputs are projected perpendicular to the future inputs. Recognizing that the fu-

ture outputs are a result of the states and future inputs by removing the correlation

between the future inputs the remaining correlation depends on the states. In the

next step, PLS is carried out between the newly deflated past inputs and outputs

and future outputs. This is done in order to explain how the past data results in

the current states for the future data and to expose the underlying state relationship.

Finally in order to explicitly identify the state trajectory, where traditional methods

[18] utilize singular value decomposition, this approach uses PCA. The end result is

a state trajectory that can be used to identify the system matrices using regression

techniques. The key use of NIPALS algorithms in these steps gives this approach the

ability to handle missing data. For a more detailed explanation of the approach used

in this paper see [20].

Remark 25. Sartorius has developed a good first principles model of the

bioreactor however, the parameter estimation problem continues to be a focus

of future work. That said, the proposed data driven approach could readily be

utilized with the first principles model. Thus, a data driven approach which

leverages the process data can be utilized to develop a hybrid model for improved
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prediction power. [8]

Remark 26. One of the considerations when modeling a dynamic process

like cell growth is that there are different phases in cell growth that occur over

the course of one batch. The metabolic response of cells to their environ-

ment is complex and therefore strongly nonlinear. This response is also widely

believed by biologists to be non-markov (ie cells have memory of historical con-

ditions). In these different phases the process may behave differently making

a linear time invariant model an unsuitable choice. To handle this situation

it is possible to treat each different growth phase as a separate smaller batch.

This differs from the traditional batch problem since the beginning of each

smaller batch represents the end of the previous smaller batch. These smaller

batches would then be used as part of the model identification allowing the

identified subspace model to appropriately capture the behavior in each phase.

As can be seen in the application section, the present data driven modeling

approach works reasonably well. In future work, as more batches need to be

modeled (and the model will likely be utilized for feedback control purposes),

such phase-based identification approaches will be pursued. Finally, another

direction of generalization would be to determine good initial conditions for the

states based on the measured observations. Presently, the states are initialized

at a value which is the average of the value for the batches used in training.

In future work, an approach can be followed where the subspace model is better

initialized for quick convergence of the state observer and the resultant ability

to predict starting from early on in the batch.

Remark 27. Note that one of the advantages of a first principles modeling

approach is that it can be more easily extrapolated. Thus if a first principles

modeling approach is used, the resultant rate expressions can be utilized to

model the operation of the process in a continuous fashion. On the other
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hand, a data driven model identified using data from batch operation cannot

be directly applied to continuous operation. It can serve as a ‘starting point’

and adapted using the monitoring based re-identification approach, and, even

more quickly retrained if it is utilized as part of a hybrid modeling strategy via

leveraging the extrapolation capability of the underlying first principles model.

6.4.2 Dynamic Model Validation

This section illustrates the validation procedure for a new batch. Recall that validation

is the key step in model identification, by providing a means to evaluate the successes

of a developed model. Note that one of the inherent features of any state space based

model is the requirement of the knowledge of initial states. If it is a first principles

model, where not all the state variables are measured (as is often the case) using

the first principles model would require an initial state estimation process step. In

the present instance, the model is a linear state space mode, with the states being a

realization of the input output dynamics, and thus by construction, unmeasured. By

the same construction though, the states are observable from the measured outputs,

and thus enable the design of a state observer/estimator. For a new data set therefore,

an initial state estimate is first computed before prediction is possible. In the present

work, a Luenberger observer design is used at the beginning of the batch until the

predicted outputs converge with the process outputs. The observer has the following

form:

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− ŷ[k]) (6.2)

where L is the observer gain and is chosen to ensure that (A− LC) is stable.
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The missing data problem has specific implication in this regard, and need to be

adequately accounted for. Thus, the above observer cannot be ‘implemented’ directly

when parts of the output are missing. Specifically, when the output measurement is

missing the term used to update the prediction, L(y[k] − ŷ[k]), yields an undefined

value. In order to operate the state observer with missing data this work uses the

linearly interpolated value as the process measurement at time k in order to update

the states.

Remark 28. The use of linear interpolation for state estimation is only one

of the possible approaches. In addition to multirate state estimation, which

is a well documented problem, it possible to build a smaller model without

missing data for state estimation. This approach involves building a separate

subspace model using the continuous output observations. This model can

then be used to estimate the states of the system until they converge and the

full model can be used for validation. This approach is not considered in the

present manuscript, primarily because of the observed success of the modeling

approach, but with increased data availability and modeling challenges, could

very well be included in future work.

After the states have converged this is where the identified model’s predictive capa-

bilities are tested with the missing outputs. The remainder of the batch is predicted

using the model however, as the process measurement comes in the model uses that

estimate with the observer in order to update the state estimate at that specific sam-

pling time.

Remark 29. While the present illustration utilizes linear interpolation for

the state estimator it does not assume any knowledge of the process instead

taking measurements as they become available. Linear interpolation is only

used to allow for a good state estimate to be obtained which is not a part
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of validating the identified model’s predictive capabilities. The model is still

identified from a dataset with missing values and can be used to predict when

process measurements are not available. Note that the model’s predictive ca-

pability is not limited to a ‘next step prediction’ the model predicts to the end

of the batch and updates the trajectory with each available measurement to

predict the final quality more accurately.

To show the effectiveness of the missing data approach on the Sartorius bioreactor case

study, this section identifies a dynamic model used to predict the quality variables and

a dynamic model to identify the metabolite rates. These models are built on training

data from the Sartorius bioreactor and then validated on a separate batch. The error

is calculated as the normalized prediction error between the predicted model and

the true process outputs. Note that the error is only calculated at the points where

process measurements are available. The error is calculated as follows:

PredictionError =
∑ |ŷ − yprocess|

predictions
(6.3)

where yprocess represents the process outputs, ŷ represents the predicted outputs and

predictions represent the number of available measurements. The prediction errors

from both the training data and the validation batch are shown below in Table 6.1.

As expected the validation error is slightly larger than the training error since the

validation batch was not used in model identification. Figure 6.4 shows the training

results and Figure 6.5 shows the validation results from the quality model. In Figure

6.4 there are model predictions despite the lack of a process measurement because

the model keeps track of the states internally allowing it to make predictions at every

time step. As shown in both sets of figures the model is able to accurately predict the

trends in the metabolites and more importantly the viable cell density which shows
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the cell concentration at the end of the batch. This is the key parameter Sartorius

uses in downstream processes and despite the large amounts of missing data the trend

was accurately predicted.

Table 6.1: The prediction error between the subspace based model and the process for
both the training and validation batches.

Model Fit Error
Training 0.7930
Validation 1.9696

Figure 6.4: The training fit (grey) from the dynamic model for each output are compared
against the process data (black) for a training batch.
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Figure 6.5: The process data (black) is compared with the dynamic model predictions
using the state observer (grey solid) until the states converge and then the dynamic model

predicts the remainder of the validation batch (grey starred).

6.5 Metabolite Rate Modeling of the Bioreactor

The metabolite rate model is important for Sartorius in order to see the daily trends

in the bioreactor. The goal is to be able to control the reactor overnight based on

the end of day predictions. Thus, knowing the trends in the metabolite rates is an

important factor when considering what additions need to be before allowing the

process to run. In addition to improving the model predictions, knowing the specific

metabolite rates is important to ensuring the data driven model matches the physical

properties of the system. As described in Section 6.3.1 the metabolite concentrations

have certain effects on the process that must be represented in the data driven model.
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6.5.1 Metabolite Rate Model Identification

The metabolite rates are an important part of the bioreactor process as they determine

how the outputs from the dynamic mode change with respect to the viable cell density.

Analyzing the metabolite rates is an important part of determining the ideal input

conditions required for optimal growth in each stage. The specific metabolite rates

are calculated as follows:

Rmt(xv) =
mt(t+ h)−mt(t)

ixv

(6.4)

ixv =
0.6xv(t) + 0.4xv(t+ h)

h
(6.5)

Where Rmt denotes the metabolite rate for a metabolite mt, xv represents the viable

cell density, ixv represents the integrated viable cell density and h represents the

sampling interval. The modeling approach calculates metabolite rates using three

inputs (glucose concentration, temperature setpoint and pH setpoint) and 5 outputs

(glucose rate, glutamine rate, lactate rate, glutamate rate and ammonia rate), and

then builds a model to directly predict the metabolite rates. A metabolite rate model

of order 3 was identified based on training fit results.

6.5.2 Metabolite Rate Model Validation

The training fit and validation error is shown in Table 6.2 and are similar in magnitude.

As shown in Figure 6.6 for the training data and in Figure 6.7 for the validation batch,

the metabolite rates have a large amount of daily fluctuation. These trends are key to

understanding the overnight behavior of the process and the validation fit in Figure

6.7 shows how the metabolite rate model is able accurately model the rates.
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Table 6.2: The prediction error between the subspace based metabolite rate model and the
process for both the training and validation batches.

Model Fit Error
Training 4.7848
Validation 4.9276

Figure 6.6: The output predictions (grey) from the metabolite model for each output are
compared against the process data (black) for one training batch.
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Figure 6.7: The process data (black) is compared with the metabolite rate model
predictions using the state observer (grey solid) until the states converge and then the
metabolite rate model predicts the remainder of the validation batch (grey starred).

For comparison the metabolite rates are calculated using the dynamic model and

shown in Figure 6.8 below and compared to the metabolite rates calculated using

the measurements. As seen in this figure the rate predictions calculated from the

predicted measurements do not match very well with the rates calculated using the

measurements themselves. In essence, the errors in the predictions of the variables get

much more enlarged when using them in the calculations of the metabolite rate. The

calculated rates differ by a magnitude of ten in comparison to the rates calculated

based on the measurements. The advantage of directly modeling the metabolite rates

is clearly demostrated as the calculated rate rely on the model predictions of the viable

cell density and the metabolites. Thus, small errors in these variables compound

resulting in a poor result in the prediction of the metabolite rates. Another drawback

of calculating the model parameters is that in the glucose consumption rate. In the

modeling approach, glucose is utilized as an input [12]. Therefore, using the calculated

parameters to identify the glucose rate is not meaningful when attempting to use this

model for control purposes. Given the limitations using calculated rates and the

150



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

inability to model glucose the use of a separate model to identify the metabolite rates

is necessary.

Figure 6.8: The process data (black) is compared with the model predictions using the
state observer (grey solid) until the states converge and then the model predicts the

remainder of the batch (grey starred).

6.6 Conclusions

In this work, the problem of identifying a dynamic batch model with large amounts

of missing data was solved using a modified subspace identification procedure. The

Sartorius bioreactor problem also had discrete inputs from the glucose feed additions

which were modeled as instantenous additions to great effect. The dynamic modeling

approach used the NIPALS algorithms to gracefully handle missing data allowing for

accurate model predictions of the validation batches. When modeling interpretable

variables like metabolite rate the modified approach is shown to be more accurate in

comparison to calculating the rates from process measurements.
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Chapter 7

Process-Aware Data Driven

Modeling and Model Predictive

Control of Bioreactor for

Production of Monoclonal

Antibodies

This chapter presents a novel subspace modeling approach for the Sartorius Bioreac-

tor. The key idea was that the bioreactor is operated as a continuous process meaning

that existing batch trajectories were no longer applicable. The goal of this work was

to design a comprehensive model utilizing all the methods described in the previous

chapters of this thesis. The bioreactor has several first-principles based constraints

required in the model, large amounts of missing data, and discrete inputs. This work

was completed in collaboration with a master’s student Samardeep Sarna who is under

my supervision with Dr. Mhaskar. As such my principal contribution was to develop

the methods used in this work and assist in writing this work. This paper is still

included as it showcases a practical application of all the previous approaches devel-

oped in the thesis. This was also done with industrial partner Sartorius who provided
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insight into the industrial bioreactor and provided data and modeling experience. The

paper is currently in the review process.

Sarna, S., Patel, N., Corbett, B., McCready, C., & Mhaskar, P. Submitted Computers

& Chemical Engineering, (2022).
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7.1 Abstract

This manuscript addresses the problem of controlling a bio-reactor to maximize the

production of a desired product while respecting the constraints imposed by the nature

of the bio-process. The approach is demonstrated by first building a data driven model

and then formulating a model predictive controller (MPC) with the results illustrated

by implementing on a detailed monoclonal antibody production model (the test bed)

created by Sartorius Inc. In particular, a recently developed data driven modeling

approach using an adaptation of subspace identification techniques is utilized that

enables incorporation of known physical relationships in the data driven model de-

velopment (constrained subspace model identification) making the data-driven model

process aware. The resultant controller implementation demonstrates significant im-

provement in product compared to the existing PI controller strategy used in the

monoclonal antibody production. Simulation results also demonstrate the superiority

of the process aware or constrained subspace model predictive controller compared to

traditional subspace model predictive controller. Finally, the robustness of the con-

troller design is illustrated via implementation of a model developed using data from

a test bed with a different set of parameters, thus showing the ability of the controller

design to maintain good performance in the event of changes such as a different cell

line or feed characteristics.

7.2 Introduction

The need for bio-based and pharmaceutical products is on the rise with advancements

in healthcare and the demand of an ever-increasing global population. Bioreactors

form an important part of this industry by allowing for the mass production of these

bio-pharmaceutical products. One such product is a monoclonal antibody which is
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produced by Sartorius and is used to demonstrate the model based controller design

approach. The Sartorius Bioreactor is designed to produce this protein in a perfusion

processing setup.

There exist several challenges associated with control of bio reactors in general, and

the monoclonal antibody production in consideration, in particular (herewith referred

to as the Sartorius Bioreactor). First off, in contrast to batch or fed-batch processing

[22, 6, 26] the Sartorius Bioreactor is operated in perfusion mode (thus is a continuous

removal of bleed and harvest streams). In addition to the perfusion mode of operation,

there are several other factors, such as hydrodynamics and transport phenomena

[16], that affect the volumetric production of the monoclonal antibodies. Factors like

cell growth rate, feed rate and feed concentration are all key variables in bioreactor

operation and thus, these factors need to be accounted for in order to maximize the

final product. The final product is a combination of the volumetric flow rate (referred

to as harvest rate) and a high volume specific concentration of the antibody (referred

to as titer). In order to maximize the final product the individual interactions between

different inputs, outputs and other parameters must first be examined. The first and

most important parameter to consider is glucose concentration, as glucose is the key

energy source, however, excess glucose is also detrimental due to lactate production

which increases cell death. Similarly, Glutamine plays an important role especially for

promoting cell growth during periods of fast growth. Lactate and more so, ammonia,

are inimical to cell growth[14]. These metabolites are not the only factors affecting

cell growth. Both temperature and pH play a key role. Increasing temperature has

been shown to increase cell growth rate. However, high temperatures can also lead

to cell death. To handle this issue, increased antibody production is achieved with a

midway temperature shift [4, 29]. A more complex variable is pH since pH levels also

affect ammonia and lactate levels. Often, a shift in pH in later stages is necessary [14].

Further, due to operational considerations, it is preferable to decrease the pH rather

than increase it since it can be decreased by sparging CO2 but increasing pH would
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require the addition of a base that could potentially disturb the cell environment

negatively. In essence, since the production of a specific product such as a protein by

these cells is heavily affected by the environment in the reactor, such as the pH and

glucose levels [2, 24, 26] and with such a diversity of variables affecting the system

dynamics with many of these having contradictory effects in different ranges, the

modelling and control problem is a challenging one.

With the increasing recognition of the flexibility provided by process control in process

operation, process control is being adopted within the bio-processing industry [25].

One popular and successful control strategy that has been used in large scale produc-

tion is model predictive control (MPC). MPC relies on a process model to calculate

the optimal input trajectory to meet desired objectives while respecting constraints

or bounds. MPC has been implemented in chemical industries and the energy sector

with favorable results. In recent years it has also been implemented for biochemical

and fermentation processes [19, 15, 3]. However, MPC of bioreactors is not common

in industry due to the sensitive nature of the cells and the set batch recipes available.

Instead proportional integral (PI) control is used to follow a batch trajectory. The use

of PI control however, potentially limits the productivity of the process (as illustrated

by the results in this manuscript) motivating the need to explore the implementation

of MPC.

In an MPC implementation, the process model forms the heart of the entire strat-

egy therefore identifying a good model is critical to improved control. When mod-

elling a system, first principles models are valuable since they provide a direct insight

into the process. Although parameter estimation for first principles models is chal-

lenging, parameter estimation methods for first principles models exists in literature

[8, 27, 7, 20, 17, 1], and this has been applied to bioreactors [14]. More recently,

Sartorius Inc. has developed a high fidelity simulator for the monoclonal antibody

process, and is used in the present manuscript to illustrate the control approach. The
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detailed simulator, while being a good representation of the bioreactor, is not very

suitable for direct incorporation in an MPC formulation due to model complexity.

More importantly, it is of much more benefit to the practitioner to demonstrate the

implementation of a control approach that can readily utilize process data directly for

model development and control implementation.

Data driven and black box models are one choice for ease of implementation[6, 30].

Reduced order models can also achieve high performance control if it is possible to

capture basic and fundamental dynamical features of the system. The performance

of the controller is often the main objective for model building in these instances and

thus such kind of models are valuable [12]. Within data-driven methods, there are

several different approaches; however, not all such approaches are suitable for the

Sartorius bioreactor problem. One particular concern is that the complex metabolite

interactions require specific gains that must be adhered to in the data driven model.

To that end any modeling approach must be capable of incorporating these constraints

with minimal complexity. Techniques such as Partial Least Squares (PLS) do not ex-

plicitly differentiate between inputs and outputs or handle multiple batches without

additional complexity [11, 10]. To that end, an approach involving Linear Time Invari-

ant (LTI) models would be better suited to handle this problem. One such approach

is subspace identification, which is a well established system identification method

and has several advantages such as having only one decision variable (the order of

the system) and its ability to handle large multi-input multi-output (MIMO) prob-

lems well. The model complexity of MIMO and the simpler single-input single-output

(SISO) systems is similar when using subspace identification. This is in contrast to

methods such as Auto-Regressive Moving Average with eXogenous inputs (ARMAX)

models which have multiple ‘tuning’ parameters. In comparison to methods such as

ARMAX, subspace identification is often easier to implement, faster and more accu-

rate, including cases with white noise. [9] Additionally, recent results have allowed

imposing constraints in subspace identification at the modeling stage with minimal
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additional computational complexity [22], to enable the model to be more ‘aware’ of

the process.

Motivated by the above considerations, the present work addresses the problem of

maximizing the production in a Sartorius bioreactor using MPC with a process aware

or constrained subspace model. Specifically, a process aware subspace MPC is imple-

mented on the simulation test-bed and compared against existing PI control. Next the

need to implement process aware MPC is demonstrated by comparing against a tra-

ditional subspace model based MPC. Finally, the robustness of the MPC approach is

tested by comparing the MPC against a new process with different system dynamics.

The rest of the paper is arranged as following: Section 7.3 described the bioreactor

process, reviews subspace identification and constrained subspace identification. The

model predictive control scheme which is developed and used is presented in section

7.4. Section 7.5 presents the application of the proposed method to the Sartorius

Bioreactor. Concluding remarks are presented in Section 7.6.

7.3 Preliminaries

7.3.1 Bioreactor Process Description

The Sartorius Bioreactor grows live cells in an enclosed environment meaning that

the growth and death rates affect the environment in the reactor and consequently

the titer (final product). A simplified schematic of the bioreactor is shown in figure

7.1. The recycle stream shown in the figure recycles live cells as a cell retention filter

does not allow live cells to leave in the harvest stream.

A detailed first principles model developed by Sartorius is used as a test bed in

the present manuscript. The Sartorius simulator comprises a system of 10 ordinary
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differential equations to describe the time evolution of variables including the cells

and metabolites (characterized by viable cell density (VCD), dead cell density, lysed

cell density, biomaterial, titer, glucose, glutamine, lactate, ammonia and glutamate).

The parameters, and various function describing growth rates etc are determined

by fitting the model to experimental data from twelve AMBR 250 fed batch runs

to yield a biologically meaningful and fairly accurate description of the bioreactor.

Transferrability of this model structure from fed-batch to perfusion operation has

been established by Sartorius researchers, and as such, the present model is being

utilized to demonstrate the data driven modeling and control approach.

Figure 7.1: Schematic of Sartorius Bioreactor

The process initiates in growth phase for 3 days during which the system is operated

in a fed batch fashion. This is followed by a perfusion phase for 30 days. In this

work, based on the specific process used by Sartorius, the nominal values for the
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temperature and pH are set at 36.1◦C and 7.1 respectively. The reactor temperature

(◦C), pH, glucose feed concentration (g/L), feed rate (vols/day) and bleed rate(L/day)

are available as potential inputs. The measured outputs are viability (%), viable cell

density (VCD) (105 cells/mL)], titer (mg/L) and glucose concentration (g/L). The

inputs and outputs are organized in the following vectors:

u =



Reactor Temp

pH

Feed Conc

Feed Rate

Bleed Rate



y =


V iability

V CD

Titer

Glucose Conc


The process objective is to maximize bioreactor production over the course of the

perfusion phase which is currently done by putting VCD under PI control where with

a fixed setpoint of 50. The PI controller that is currently employed adjusts the the

bleed rate in order to control the VCD. With the feed rate kept constant at 0.25L/day

or 1.25 volumes/day and under constant volume operation, the harvest rate can be

computed as:

Harvest Rate = Feed Rate−Bleed Rate (7.1)

As the bleed rate is the most significant contributor to cell growth, it is utilized as

the control variable with additional shifts in temperature or pH being applied by the

operators manually. The objective of the present work is to demonstrate the possibility
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of using a data driven MPC to control and improve the bioprocess operation.

7.3.2 Subspace Identification Description

Subspace identification is one model identification technique that is used to identify

a Linear Time Invariant (LTI) model of the form:

x̂[k + 1] = Ax[k] +Bu[k],

y[k] = Cx̂[k] +Du[k],
(7.2)

where the objective is to identify the order n, and the system matrices A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m. The particular subspace adaptation utilized in

the present work is originally based off of [18], which was later adapted for batch

processes[5].

An important consideration for the process under consideration is to ensure that the

bioreactor is not disturbed too frequently otherwise the cell balance will be disrupted

leading to inefficient protein production and additional costs. Thus an appropriate

frequency of input changes is utilized in collecting data such that it has the fewest

number of perturbations while meeting reasonable prediction accuracy. Based on a

preliminary analysis, perturbation of inputs three times per day is utilized in the

present work. An additional consideration is that the process runs in growth phase

for 3 days followed by perfusion phase for 30 days thus it takes over a month of time

(and significant costs) to generate data. To be able to demonstrate the approach, data

is generated from a detailed simulation test bed provided by Sartorius. The data was

generated by gradual shifts in the inputs over their appropriate constrained ranges

along with small perturbations. Data was obtained from a single batch run over thirty

days with measurements available thrice a day (for a total of 90 measurements). Note
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that the ability to use this relatively modest dataset is extremely important for the

process under consideration where each run is prohibitively expensive.

The Sartorius simulator is used to generate input-output trajectory for one run, and

this data is assumed to be available for building the data driven MPC, and shown in

figures 7.2 and 7.3.
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 7.2: Input data for building model with training (dotted) and validation data
(solid).

168



Ph.D. Thesis - N. Patel; McMaster University - Chemical Engineering

(a) Titer (b) Harvest

(c) Product (Titer × Harvest) (d) Viable Cell Density (VCD)

(e) Glucose Concentration in Reactor

Figure 7.3: Output data for building model with training (dotted) and validation data
(solid).
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Identification of the system matrices is done in two stages, first stage involves identify-

ing a state sequence and the second stage comprises of identifying the system matrices

[18]. Using subspace identification, the state sequence can be identified using methods

such as SVD before knowing the A,B,C,D system matrices. The system matrices are

later identified by least squares regression.

In solving for the state sequence, block Hankel matrices are constructed for the inputs

and outputs. The number of block rows (i) and columns (j) are chosen sufficiently

large, typically i should be greater than or equal to n+ 1 and j >> max(mi, li).

The output and input block Hankel matrices are:

Yp =



y[k] y[k + 1] . . . y[k + j − 1]

y[k + 1] y[k + 2] . . . y[k + j]

y[k + 2] y[k + 3] . . . y[k + j + 1]
...

...

y[k + i− 1] y[k + i] . . . y[k + i+ j − 2]



Up =



u[k] u[k + 1] . . . u[k + j − 1]

u[k + 1] u[k + 2] . . . u[k + j]

u[k + 2] u[k + 3] . . . u[k + j + 1]
...

...

u[k + i− 1] u[k + i] . . . u[k + i+ j − 2]


Yf and Uf are defined similar to Yp and Up except the values are offset by i. These

matrices are used to identify the state vector which can be organized in a Hankel

matrix allowing the A,B,C,D matrices to be solved by least squares regression.
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x[k + i+ 1] . . . x[k + i+ j]

y[k + i] . . . y[k + i+ j − 1]

 =

A B

C D

x[k + i] . . . x[k + i+ j − 1]

u[k + i] . . . u[k + i+ j − 1]


(7.3)

Note that the approach identifies a linear state space model where the states are

unmeasured but observable from measured outputs. As subspace states are not mea-

sured, it is necessary to estimate the states before using the subspace model for

prediction/validation. To this end, during model validation an initial state estimate

is chosen (can be based on a state estimate from identification or a random initial-

ization) and a state observer is utilized. The state observer is run until the error

(Euclidean norm) between the predicted output and actual/observed output is below

a chosen tolerance, from which point on the model can be utilized for prediction pur-

poses. This same approach is utilized when the model is used for feedback control.

Note that Sartorius Bioreactor operation has the unique advantage of an initial 3 day

growth phase (without any feedback control) that can be used to converge the states

allowing the controller to be used online immediately after the growth phase ends.

In this work a Luenberger observer was used which takes the following form:

x̂[k + 1] = Ax̂[k] +Bu[k] + L(y[k]− ŷ[k]) (7.4)

where L is the observer gain and is chosen such that (A− LC) is stable. ŷ[k] is the

predicted value given by the state space equation y[k] = Cx̂[k] +Du[k].

7.3.3 Constrained Subspace Identification

In this subsection the approach used to impose the physical constraints on the sub-

space model is described [23]. The key idea is to include the first-principles knowledge
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of the system at the model identification stage through the use of constraints to make

the data-driven model process aware. In this approach, instead of using regression to

determine the model parameters (7.3) an optimization problem with the first prin-

ciples based constraints is posed and solved. Thus, while the initial state trajectory

may have been determined without considering the physical constraints, the resultant

matrices do account for the presence of constraints. To minimize the discord between

the state trajectory and the constraints, the state trajectory is re-estimated using

the newly computed system matrices, and this iterative process terminated when a

pre-decided tolerance is achieved (see [23] for further details).

For the Bioreactor, it is understood that the steady state gain between the bleed

rate and titer (product) should be negative. Similarly a positive relation holds for

temperature, glucose feed concentration and feed rate and is incorporated into the

constrained subspace model through constraints. The constraints are therefore math-

ematically formulated as:

dcgain(3, 5) + 0.01 <= 0

−dcgain(3, 1) + 0.01 <= 0

−dcgain(3, 3) + 0.01 <= 0

−dcgain(3, 4) + 0.01 <= 0

norm(eig(A))− 0.99 <= 0

(7.5)

where dcgain(i, j) refers to the (i, j)th index of the steady state gain matrix, which

for a discrete linear time invariant (LTI) system is:

dcgain = D + C(I − A)−1B (7.6)

Thus the first constraint specifies dcgain(3, 5) to be negative. That is, the gain be-
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tween the third output (titer) and the fifth input (bleed rate) should be negative.

Similarly, the other gain constraints enforce the positive steady state gain relationship

between the titer and the temperature, feed concentration and feed rate, respectively.

The final constraint is for the eigenvalues of the identified A matrix to lie within the

unit circle.

Remark 30. Subspace identification was chosen as the model identification

approach due to the following reasons: 1) The method results in a linear time

invariant model which in turn makes the resultant control problem easy to

solve and implement, 2) Compared to other approaches such as Projection to

Latent Spaces (PLS), the method explicitly accounts for the presence of input

and output variables, consistent with a control implementation and 3) Even

though the model parameters are eventually determined using a regression, the

state trajectory first invokes the key property of a state- that future outputs

should be able to be completely determined using the current states and the

future inputs, thus avoiding potential overfitting issues. The implementation

does not require a first principles model- in the present manuscript, the first

principles model is simply used as a test bed. Finally, the method can be readily

adapted to incorporate first principles information either explicitly, as is done

in the present manuscript, or through a hybrid model [13].

Remark 31. Yes another possibility for model identification would be to use

the resurgent techniques of artificial neural networks. For developing a good

neural network model, large amounts of data is needed. While it is possible in

principle with the test bed, it would not be very feasible when this technique is

implemented in practice on the Sartorius Bioreactor. Note that the data set

size utilized for training in the present work was chosen while being cognizant

of the cost and effort needed to generate data from bioreactor.
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7.4 Model Predictive Controller Formulation

In this section, the state space MPC formulation adapted to use the feedthrough

matrix [21] utilizing the subspace model of Eqn 7.3 is described. A Python script

utilizing scipy.optimize [28] is used to solve the optimization problem. At the lth time

step, with the observer determining x̂[l], the following optimization problem is solved

to compute the control action:

min
ū

P∑
i=1

(y3[i])
TQ(u4[i]− u5[i])

+(∆uT )R(∆u) + S∆u

s.t.

umin ≤ ū[i] ≤ umax , i = 1, . . . , P

∆u = ū[i]− ū[i− 1] , i = 2, . . . , P

∆u[1] = ū[1]− u[l − 1]

x[1] = x̂[l]

x[i+ 1] = Ax[i] +Bū[i] , i = 1, . . . , P

y[i] = Cx[i] +Dū[i] , i = 1, . . . , P

(7.7)

where y denotes the predicted output obtained from Eqn 7.3 and as described in

section 6.3.1 y3 corresponds to the titer, u is the input vector and ū is the optimization

variable i.e. the inputs MPC computes, and sets u[l] = ū[1], and umin and umax are

the vectors corresponding to the lower and upper bounds respectively for the inputs

(see Table 7.1). The bounds are kept commensurate to the usual practice in industry

and hence feed rate, albeit important and strongly related to maximizing product,

has been given a smaller upper bound. An effort has been made to impute any

increase in product to the other strongly related variables such as glucose by tuning
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the weight appropriately. P denotes the prediction horizon, Q is a negative value

picked to appropriately weigh the product maximization in the objective function.

R is a diagonal matrix with appropriate penalties for input change. S is a scalar

weight to additionally penalize a positive change in pH. This term has been chosen

to not be a quadratic term specifically to penalize only positive changes. Note that

the implementation of a positive pH change is done via using a buffer, which ‘shocks’

the cells and is preferably avoided.

Table 7.1: Input Constraints

u units umin umax unom

Temp degC 35 36.8 36.1
pH 6.95 7.15 7.1

Glucose Feed Conc. mg/L 6 12 9
Feed Rate vols/day 1 1.6 1.25
Bleed Rate L/day 0.01 0.05 0.025

Remark 32. Note that in this formulation the predicted outputs are deter-

mined using a state space model with a feedthrough term. When identifying a

data driven model it has been shown that retaining the feedthrough term pro-

vides more accurate control comparing to dropping it, motivating the use of

the recent MPC formulation in the present work [21].

The elements of the matrix R in the term ∆uTR∆u are taken as the inverse of the

nominal value of that input variable to compensate for the different scales of the

manipulated inputs. The value S is utilized to specifically penalize positive changes

in the pH. To accomplish this we adjust the elements in R and S such that the increase

to the objective due to pH change from term R is higher than the decrease due to

term S when the pH decreases. In case of a candidate positive pH change, since R

and S have positive weights, the pH terms add up from (∆uT )R(∆u) which is always

positive due to being quadratic and S∆u which is positive since ∆u is positive. In
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the case of a negative pH change, the positive contribution from (∆uT )R(∆u) would

outweigh the negative contribution from S∆u for any reasonable change in pH when

s is small. The value of s is taken as 0.05. The value of the R term corresponding

to pH is 10
7.1

. For a ∆u of -0.05, the (∆uT )R(∆u) term is +0.0035 and S∆u term is

-0.0025 resulting in a net +0.001 penalty. Thus, a change to the pH would be only

made if it results in a net benefit to the product quality. On the other hand, for a

candidate increase in pH, for a ∆u of +0.05, the (∆uT )R(∆u) term is +0.0035 and

S∆u term is +0.0025 resulting in a net +0.006 penalty, a six times higher penalty

than a corresponding decrease.

The net affect of such a choice of the tuning parameters and the formulation is that

any significant pH changes are penalized but increases in pH are penalized more than

decreases in pH.

The MPC is initialized when the error between predicted outputs and observed out-

puts (using the Luenberger observer) becomes smaller than a user specified tolerance.

The tolerance is chosen such that there is minimal plant-model mismatch but also

enough time left to implement an MPC strategy. Before the state observer converges,

a constant nominal input is applied to the process.

Q = q1 (7.8)

R =



r
unom,1

0 0 0 0

0 r
unom,2

0 0 0

0 0 r
10×unom,3

0 0

0 0 0 r
unom,4

0

0 0 0 0 r
unom,5


(7.9)
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S = s (7.10)

Table 7.2 reports q1, r and s while unom values are reported in table 7.1. Since the

inputs vary in orders of magnitude, the weights on input change penalty are also

adjusted as such with their respective nominal values.

Table 7.2: Tuning parameters

q1 r s

-1 10 0.05

Remark 33. The objective function in the MPC formulation focuses on max-

imizing the final product which depends on both the titer (similar to output

concentration) and the harvest rate (similar to output flow rate). The specific

objective function can readily be altered. The key contribution of the present

manuscript are not the input profiles that the controller implements, but to

demonstrate that a data driven model based MPC, with a meaningful objective

function, can be implemented on the system (the test bed in this case) and

a biologically acceptable control action and system behavior achieved. This

objective function can be further fine tuned or changed based on the specific

needs of the process operation.

7.5 Results and Discussion

The first contribution of the work is to demonstrate the improved performance achiev-

able using a data driven MPC implementation over the current industrial practice of

PI control. In current practice, a PI control is used with a fixed VCD setpoint of
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30 which it is able to achieve at the twenty five day mark as shown in Figure 7.4.

Under the PI control, the bleed rate is initially kept low, and as the VCD starts to

peak, the bleed rate is increased in order to hold a VCD setpoint of 30 as seen in Fig-

ure 7.5. As expected the other variables are held at their nominal values since only

one PI controller is used which is linked to the bleed rate. This controller reaches

a final product of 97 mg/day. In contrast, the implementation of the MPC results

in a VCD over 47 but more importantly, results in the production of 178 mg/day of

product as mentioned in Table 7.3. This is due to the controller’s ability to shift all

of the input variables while utilizing an appropriately identified process aware model.

Figure 7.5 shows that increasing temperature, decreasing pH, increasing glucose feed

concentration and decreasing bleed rate leads to optimal bioreactor operation and a

clearly superior control strategy. Yet another benefit of the MPC implementation is

the ability to simply ask it to maximize the product (through the objective function)

instead of specifying a set-point.

In contrast, if the PI implementation was used to arbitrarily increase the PI setpoint

to 60 (in an effort to achieve comparable product) the set-point is not met (see Figure

7.5). This of course is due to the limited control action available to the PI (the

bleed rate), which it does push to zero. While the resulting final product is slightly

higher than the original PI implementation at 104mg/day, the increase is marginal.

Of course, in practice, the bleed rate would never be set to zero because without

removing any waste from the bioreactor the build up would lead to increased cell

death (thus under MPC implementation, the bleed rate is not allowed to go below

0.01 L/day as reported mentioned in Table 7.1).
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Table 7.3: Constrained Subspace MPC vs PI control

Case ) Improvement (%)

Current PI 0 (current)
Higher VCD setpoint PI 7.2

Constrained subspace MPC 83.5

(a) Titer (b) Harvest

(c) Product (Titer × Harvest) (d) Viable Cell Density (VCD)

Figure 7.4: Comparison of performance of the best MPC (dotted lines) with existing PI
(solid lines) as well as PI with higher VCD setpoint (dahsed lines).
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 7.5: Comparison of inputs of the best MPC (dotted lines) with existing PI (solid
lines) as well as PI with higher VCD setpoint (dashed lines).
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The second objective of this work is to demonstrate the necessity of a process aware

constrained subspace identification technique when identifying the plant model. The

key advantage in utilizing the constrained model is that a traditional unconstrained

model may have incorrect steady state process gains. The process awareness comes

from constrained subspace identification approach applied biologically relevant knowl-

edge in the model identification stage by having the correct and relevant signs in

the steady state gain between inputs and outputs as constraints during identifica-

tion of the system matrices. Figure 7.6 clearly shows the advantage of utilizing the

constrained subspace method compared to regular subspace identification (see Table

7.4). The MPC utilizing the unconstrained subspace model with short horizon is

referred to as USH in the table for brevity. Similarly, ULH, CSH and CLH represent

unconstrained long horizon, constrained short horizon and constrained long horizon

respectively. Note that, in short horizon control these differences aren’t as noticeable

especially in the titer concentration as evident in Figure 7.6. However, when longer

control horizons are utilized, the unconstrained model MPC performance deteriorates

due to the effect of wrong gain signs identified, causing it to move inputs in a wrong

direction. This difference is highlighted in Figure 7.7 where the unconstrained MPC

fails to decrease the bleed rate as it has the wrong sign in the process gain. The

longer horizon unconstrained subspace MPC thus performs very slightly better than

existing PI control while the constrained model far outperforms both. Longer control

horizons lead to improved performance with the process aware (constrained subspace)

MPC as the controller is able to optimize the input trajectory over a longer period.

Not only does the long horizon constrained subspace based MPC get the highest final

product, it achieves the higher product and higher concentration both much earlier

whereas the shorter horizon approaches only are able to reach values towards the end,

leading to a significantly lower cumulative product compared to the longer horizon

constrained MPC as shown in Table 7.5.
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(a) Titer (b) Harvest

(c) Product (Titer × Harvest)

Figure 7.6: Comparison of performance of the best case i.e.longer horizon constrained
subspace MPC (dotted) with MPCs based on shorter horizon constrained subspace
(dash-dotted), longer horizon unconstrained i.e. regular subspace (solid) and shorter

horizon unconstrained i.e. regular subspace (dashed).

Table 7.4: Unconstrained Subspace MPC vs Constrained Subspace MPC - Final Product

Case Final Improvement over Improvement over
Product (mg/day) current PI (%) USH MPC (%)

USH 160 65 0
ULH 107.4 10.7 -33
CSH 174 79.4 9
CLH 178 83.5 11.3
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Table 7.5: Unconstrained Subspace MPC vs Constrained Subspace MPC - Average
Product

Case Average Improvement over Improvement over
Product (mg/day) current PI (%) USH MPC (%)

USH 94 18.2 0
ULH 85.3 7.3 -9.3
CSH 103.2 29.8 9.8
CLH 132.8 67 41.3
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 7.7: Comparison of inputs of the best case i.e.longer horizon constrained subspace
MPC (dotted) with MPCs based on shorter horizon constrained subspace (dash-dotted),

longer horizon unconstrained i.e. regular subspace (solid) and shorter horizon
unconstrained i.e. regular subspace (dashed).
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The final contribution of this work is to show the robustness of model predictive

control to maximize the final product. In order to test the robustness of the controller

the MPC using the constrained subspace model is compared against a new bioreactor

process. In the new bioreactor the parameters such as growth rates and death rates are

now different than the training data used to identify the constrained subspace model.

This creates additional plant model mismatch and represents scenarios where the

reactor may be processing new batches of cells. Figure 7.8 shows how the constrained

MPC is able achieve a similar final product. When comparing the input changes made

by the MPC, Figure 7.9 shows that the constrained MPC makes similar input moves in

both the constrained model built on new or current data as well as a constrained model

which was built on data from an older system. The MPC utilizing the constrained

subspace model built on old plant data is also able to achieve a high final product

though at a cost of higher temperatures which is not very desirable. But overall, the

control performance remains acceptable when using the constrained subspace MPC

on a different system demonstrating robustness
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(a) Titer (b) Harvest

(c) Product (Titer × Harvest)

Figure 7.8: Comparison of performance of the constrained subspace MPC trained on old
model plant system (solid) with performance of constrained subspace MPC trained on

current model plant system (dotted) to demonstrate robustness.
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(a) Temperature (b) pH

(c) Glucose feed concentration (d) Feed rate

(e) Bleed rate

Figure 7.9: Comparison of inputs of the constrained subspace MPC trained on old model
plant system (solid) with performance of constrained subspace MPC trained on current

model plant system (dotted).
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7.6 Conclusions

The present manuscript demonstrated the possibility of using a process aware data

driven model predictive control scheme for bioreactors to enable performance improve-

ment compared to industry standard of proportional-integral controller schemes. The

importance of using a process aware model within model predictive control schemes

was illustrated by comparing subspace model with process knowledge based con-

straints to standard subspace model based MPC implementation. Finally, the ability

of the MPC to handle process changes was illustrated, with the MPC performance

continuing to be acceptable under process changes.
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This thesis focuses on the data-driven modeling and control of both batch and con-

tinuous processes using subspace methods. However, there are limitations to this

work which are listed in remarks in each paper. One of main concerns is that this

work identifies a subspace model which is a linear time invariant model. While it

is possible to develop time variant models, these result in a huge optimization prob-

lem as the initial state becomes a decision variable. The first approach in Chapter

2, applied first-principles constraints to batch subspace identification techniques. As

data-driven models rely solely on the mathematical correlation between the inputs

and outputs they often end up identifying incorrect process trends to minimize the

prediction error in the training data. The constrained subspace approach was devel-

oped in order to identify a subspace model that would always have the correct process

information such as the correct sign on input/output gains. This approach was tested

using a simulation example that showed the constrained model was better at predict-

ing the process online. Chapter 3 continued to utilize this model to develop a state

space model predictive controller that could handle a feedthrough matrix. Industrial

MPC algorithms tend to ignore the feedthrough term when computing control ac-

tion as the dynamics do not justify its use. The state space MPC in Chapter 3 uses

a simple quadratic program structure and includes the feedthrough term leading to

improved controller performance. The constrained model is able to reach the steady

state at a faster and more efficient rate that the traditional subspace models without

feedthrough terms. Chapter 4 discusses another novel contribution in the form of a

regression-based subspace identification approach. The missing data problem is a big

part of industrial data analysis since it is very difficult to have full data observations

due to different sampling rates and equipment downtime. Traditional subspace re-

lies on singular value decomposition and other matrix manipulations that require the

matrices to be full rank. In the proposed algorithm the same subspace techniques

are carried out using a series of equivalent regressions using the NIPALS algorithm

for both PCA and PLS. The proposed algorithm was then tested using a polymethyl
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methacrylate simulation and compared against both linear interpolation and mean

replacement techniques. The proposed subspace model had the best performance in

comparison to both interpolation approaches. The missing data in this context must

be clarified to be present in the outputs where the inputs are available. Moreover the

amount of missing data must still allow for sufficient excitation in order for trends

to be determined. Another problem that benefits from this missing data approach

is that of batch quality control. In order to measure the quality of the batch addi-

tional tests must be conducted meaning that quality measurements are not available

at the same frequency as traditional outputs. To that end, it is important to build

a model that can utilize both the quality variables and process outputs together.

These quality variables often have more than 90% missing data making interpolation

techniques unreliable and data subspace methods impossible. Chapter 5 takes the

missing data algorithm presented in Chapter 4 and solves the quality problem for

the polymethyl methacrylate process. Using the algorithm to predict the quality and

output variables together resulted in a more accurate process model in comparison to

interpolation and using individual models. Chapter 6 demonstrates a practical appli-

cation of the missing data problem to model the Sartorius bioreactor. The bioreactor

was initially modeled by a first-principles based model which was difficult to main-

tain as there were many differential equations with numerous parameters that were

estimated. Additionally, this bioreactor has a unique infrequent sampling situation in

that the key input glucose is a discrete input. To handle discrete inputs in a contin-

uous process it was necessary to develop an update procedure to have the increased

glucose measurement at the correct time interval. Using the missing data algorithm, a

subspace model of the system was identified that was more accurate in comparison to

the existing first principles model. Finally, in Chapter 7, a complete application of the

developed modeling and control algorithm is used to model a continuous bioreactor.

First-principles gain constraints were used at the model identification stage and the

missing data algorithm was also utilized. Finally using the new state space MPC the
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identified model was successfully able to model and control the bioreactor to increase

the batch production and quality.

8.1 Future Work

This section presents recommendations for future areas of exploration based on the

work defined in this thesis. Some of these areas are currently being explored by other

graduate students under my supervision in the Mhaskar research group while others

will be explored with future students. The first area to be investigated is based on

the work done using the missing data algorithm for bioreactor modeling. Startup and

shutdown procedures are a difficult part of modeling and control due to the varying

dynamics and are often ignored. Currently the industrial bioreactors utilized in this

thesis have been modeled after a three day initialization period has passed. When

utilizing the model online the three day startup allows enough time for the states to

converge making the model accurate immediately after this period ends. Building a

subspace model capable of controlling the bioreactor during this initial startup period

would lead to additional savings and potential terminal quality improvements. The

second area of research is to work on handling batch process shifts resulting from

differing batch conditions and material standards. The subspace models that were

generated to include first-principles knowledge are expected to be more robust as they

avoid overfitting incorrect trends. However, as time passes the batches will deviate

further from the training data and even with the process knowledge retraining will

be necessary. An approach to update the process model using new batches can be

developed using the missing data algorithm as only certain variables might need to be

accounted for. Finally, the aim of this thesis was to utilize subspace based methods

to develop process models and use them in control strategies. Moving forward, these

same techniques of missing data and first-principles constraints can be applied to
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other types of data driven models. Specifically, neural network based model benefit

from linear regression techniques like PLS and PCA making them a good candidate

to expand this work.
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