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ABSTRACT 

Membrane bioreactors (MBRs) have proven to be an extremely effective wastewater 

treatment process combining ultrafiltration with biological processes to produce high-quality 

effluent. However, one of the major drawbacks to this technology is membrane fouling – an 

inevitable process that reduces permeate production and increases operating costs. The prediction 

of membrane fouling in MBRs is important because it can provide decision support to wastewater 

treatment plant (WWTP) operators. Currently, mechanistic models are often used to estimate 

transmembrane pressure (TMP), which is an indicator of membrane fouling, but their performance 

is not always satisfactory. In this research, existing mechanistic and data-driven models used for 

membrane fouling are investigated. Data-driven machine learning techniques consisting of random 

forest (RF), artificial neural network (ANN), and long-short term memory network (LSTM) are 

used to build models to predict transmembrane pressure (TMP) at various stages of the MBR 

production cycle. The models are built with 4 years of high-resolution data from a confidential 

full-scale municipal WWTP. The model performances are examined using statistical measures 

such as coefficient of determination (R2), root mean squared error, mean absolute percentage error, 

and mean squared error. The results show that all models provide reliable predictions while the RF 

models have the best predictive accuracy when compared to the ANN and LSTM models. The 

corresponding R2 values for RF when predicting before, during, and after back pulse TMP are 

0.996, 0.927, and 0.996, respectively. Model uncertainty (including hyperparameter and algorithm 

uncertainty) is quantified to determine the impact of hyperparameter tuning and the variance of 

extreme predictions caused by algorithm choice. The ANN models are most impacted by 

hyperparameter tuning and have the highest variability when predicting extreme values within 
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each model’s respective hyperparameter range. The proposed models can be useful tools in 

providing decision support to WWTP operators employing fouling mitigation strategies, which 

can potentially lead to better operation of WWTPs and reduced costs. 
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Chapter 1 – Introduction 

1.1 Background 

Often taken for granted, water is one of the most important natural resources and is the 

foundation for life to exist. Water covers approximately 71% of the Earth’s surface; however, only 

about 2.5% is freshwater, and the amount of freshwater easily accessed by humans is less than 1% 

of all water (Stephens et al., 2020). Although restored through the water cycle, the increase in 

global population has put an increasing strain on water supply and many areas have water 

shortages. Clean water and sanitation is recognized as one of the 17 Sustainable Development 

Goals (SDGs) by the United Nations (UN) (United Nations, 2020a). Despite this recognition, 

billions of people still lack access to safe drinking water. Climate change will only make the matter 

worse and is “projected to increase the number of water-stressed regions and exacerbate shortages 

in already water-stressed regions” (United Nations, 2020b). Therefore, it is essential to protect and 

repurpose the water that we use. Wastewater reuse dates to 3200 BC when civilizations used it for 

irrigation and aquaculture (Angelakis et al., 2018). As technology and knowledge evolved, 

wastewater reuse turned into wastewater treatment, where wastewater was effectively treated in 

wastewater treatment plants (WWTPs) with modern techniques such as the activated sludge 

process (ASP) that uses microorganisms for eliminating organic pollutants (Chang et al., 2002). 

Membrane bioreactors (MBRs) integrate ASP WWTP technology and are becoming one of the 

most promising water treatment technologies in the 21st century. MBRs are popular due to 

numerous benefits including extremely high-quality effluent, small footprint, and low operational 

and capital costs (Hamedi et al., 2019). MBRs combine both biological treatment and filtration 

into one process to treat wastewater. However, a major drawback to this technology is membrane 

fouling, an impediment to the membrane process that leads to higher operating costs and reduced 
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effluent quality (Guo et al., 2012; Iorhemen et al., 2016; Meng et al., 2009). This process is 

exhibited when an MBR operates at a constant flux and has a rise in transmembrane pressure 

(TMP), or a decrease in flux when operated at a constant TMP. To allow MBRs to be more widely 

implemented, accurate models that provide decision support for membrane fouling prediction are 

required.  

 The modeling of membrane fouling in MBR applications has been investigated since the 

mid-1980s. This investigation includes mechanistic membrane fouling models, with data-driven 

membrane fouling models becoming more popular in the early 2000s (Shi et al., 2021; Stephenson 

et al., 2000). Specifically, mechanistic membrane fouling models incorporate three main 

mechanisms associated to membrane fouling: the deposition of solids on the membrane surface, 

adsorption of solids onto pore surfaces, or complete pore-blocking (Stephenson et al., 2000). The 

problem is that membrane fouling is extremely complex and is influenced by many factors and 

non-linear relationships between biological, chemical, and physical variables. Additionally, each 

MBR system has a different process for which variables and calibration procedures will change 

(Dalmau et al., 2015; Drews, 2010). These models face challenges relating to complexities and 

assumptions about underlying variables and behaviour; they also require extensive calibration of 

model parameters.  

 In comparison, data-driven models seek to capture the underlying processes between input 

and output variables in datasets. The application of data-driven modeling techniques come with 

some risk because the generated models are not based directly on mechanical processes. To combat 

this, careful input variable selection and expert consultation should be employed. By nature, data-

driven models give a single-point prediction for a single data observation. It is important to 

quantify the uncertainties associated to these models to provide more robust decision support that 
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includes reliable prediction intervals (PIs) (Gönder et al., 2011; Nourani et al., 2022). Additionally, 

many data-driven models found in literature generally use data from MBR pilot-scale plants and 

there is a lack of long-term data from full-scale municipal WWTPs. With the improvement of 

technology and data collection techniques, datasets pertaining to WWTPs (including operational 

data and influent/effluent characteristics) are becoming more readily available and of higher 

quality. This provides the opportunity to utilize these datasets for the prediction of variables 

directly relating to membrane fouling, such as transmembrane pressure (TMP).  

1.2 Objective and Scope 

The main objective and scope of this thesis is to create data-driven models based on machine 

learning algorithms, including RF, ANN, and LSTM, to predict TMP at the various stages of an 

MBR production cycle. These proposed models will be applied to a confidential full-scale WWTP 

to test prediction accuracy utilizing performance metrics. This study entails the following primary 

objectives: (1) develop data-driven models to predict TMP at various stages of the MBR 

production cycle using the three algorithms; (2) evaluate the performance of the developed models 

and compare model accuracies; and (3) conduct an uncertainty analysis on the developed models 

to quantify hyperparameter and algorithm uncertainties. The work proposed in this thesis will 

provide useful tools for WWTP operators and provide insight into membrane fouling control. 

1.3 Thesis Outline 

Chapter 2 explores the literature of membrane bioreactor technology and associated membrane 

fouling phenomenon. Further, existing mechanistic and data-driven models used for membrane 

fouling will be reviewed and discussed; this includes advantages and disadvantages of both types 

of models and how they apply. 
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 Chapter 3 explores the case study application. This includes general MBR information, 

information pertaining to the full-scale municipal WWTP in this case study, and how operational 

data from the plant is gathered and collected.  

 Chapter 4 explores the methodology, implementation of, and uncertainties associated to 

the data-driven techniques that are used to model membrane fouling in this MBR case study. These 

techniques include random forest, artificial neural network, and long short-term memory network; 

how they operate will be discussed in detail. The implementation of these techniques corresponds 

to a careful input variable selection process and associated data preprocessing. Thereafter, the 

models will be compared using popular performance metrics to determine which perform the best. 

The uncertainty analysis procedure for both hyperparameter and model structure uncertainty will 

be discussed in detail. 

 Chapter 5 explores model performance pertaining to the implemented data-driven 

techniques. Further, it explores the uncertainty analysis results for hyperparameter uncertainty and 

model structure uncertainty (characterized by extreme point prediction). 

 Chapter 6 summarizes the research conducted in this work and provides recommendations 

for future work. 
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Chapter 2 – Literature Review 

2.1 MBR and Membrane Fouling 

MBR technology combines membrane filtration with the ASP. In an MBR, the separation of solids 

from wastewater is conducted by membrane filtration through microfiltration and/or ultrafiltration 

(Hamedi et al., 2019; Hermanowicz et al., 2006) as opposed to gravity-driven separation in a 

secondary clarifier. There are two different configurations of an MBR, an internal/submerged 

MBR or an external/side stream MBR. The submerged MBR utilizes membranes immersed in the 

bioreactor to pull wastewater through membrane pores with the assistance of a vacuum pump 

(Melin et al., 2006). These membranes will either be flat-sheet or hollow-fibre, both of which have 

their advantages and disadvantages (Hai & Yamamoto, 2011). For side stream MBRs, the 

membrane module is separate from the bioreactor and the mixed liquor wastewater is pumped 

through this module, employing cross filtration. In municipal wastewater applications, submerged 

MBRs are often used. Some of the main advantages of MBRs include high quality effluent, control 

over sludge retention time (SRT) and hydraulic retention time (HRT), a smaller capital footprint, 

and the ability to operate at low dissolved oxygen concentrations (Hamedi et al., 2019). However, 

a major drawback to MBR technology is membrane fouling.  

Within the MBR, membrane fouling is shown through the drop in permeate flux when the 

MBR is operated at a constant TMP, or an increase in TMP when the MBR is operated at a constant 

flux, thereby reducing the amount of permeate being produced. This increase in TMP, or TMP 

jump, has been described in a three stage process: Stage 1 represents initial fouling caused by 

initial pore blocking and adsorption of solutes; Stage 2 represents the weak gradual rise of TMP 

over time due to biofilm formation and additional pore blocking; Stage 3 represents a rapid change 

in the rate of TMP increase (Hai & Yamamoto, 2011; Hwang et al., 2008; Iorhemen et al., 2016). 
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The main mechanisms of membrane fouling are shown in Fig. 1 and include: cake layer formation, 

the narrowing of membrane pores, and the blocking of membrane pores (Chang et al., 2002; Hai 

& Yamamoto, 2011; Hamedi et al., 2019). Some additional mechanisms that impact membrane 

fouling are biomass characteristics (including mixed liquor suspended solids concentration and 

soluble microbial product concentration), membrane characteristics (membrane material and pore 

size), and operating conditions (Brauns et al., 2002; Hong et al., 2009; Jarusutthirak & Amy, 2006).  

 

Fig. 1. Three main mechanisms of membrane fouling (Hamedi et al., 2019) 

In general, membrane fouling occurs in different severities and can be split into both 

reversible and irreversible fouling. Reversible fouling can be managed through physical fouling 

mitigation processes like air scouring and membrane backflushing. Irreversible fouling is more 

serious and requires chemical cleaning procedures (Tsuyuhara et al., 2010). Membrane fouling 

leads to increased operational costs, material costs, and reduced membrane lifetime. Due to the 

complexity of MBR technology, membrane fouling, and nonlinear relationships between 

variables, it is difficult to accurately predict and/or model membrane fouling. 

2.2 Existing Mechanistic Models for Membrane Fouling 

Since membrane fouling is one of the major challenges for the widespread implementation of MBR 

technology, many mechanistic models were created to investigate this issue. Belfort et al. (1994) 

outlined the generic mass transfer approach that is commonly used to model membrane fouling in 

MBRs. In this approach, the continuity equation along with the Navier-Stokes equation and 
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boundary conditions are used to determine membrane fouling for a specific channel geometry 

(Belfort et al., 1994). This type of model seeks to identify membrane fouling through Brownian 

diffusion, shear-induced diffusion, inertial lift, and the mass transport of particles. Initial mass 

transport models were built on non-realistic assumptions such as steady-state operation, laminar 

flow, uniform permeation along the channel geometry, no external forces and constant influence 

characteristics such as viscosity and density (Belfort et al., 1994; Berman, 1953; Terrill & Thomas, 

1969). This work helped establish a base for future mechanistic models. 

An empirical model based on hydrodynamic interpretation was introduced by Liu et al. 

(2002) and investigated the impact of cross-flow velocity, membrane flux, and sludge 

concentration on the membrane fouling rate. The model uses several mathematical equations and 

expressions to simplify the rate of filtration resistance, filtration resistance, fluid viscosity, and the 

relationship between various cross flow velocities – the rate of filtration resistance and filtration 

resistance are directly related to TMP. The model is easy to use and produces accurate results for 

a small experimental dataset under specific operating parameters outlined in the study (R2 = 0.93) 

(Liu et al., 2003). However, the membrane fouling process is too complex to make numerous 

assumptions about underlying nonlinear relationships; additionally, a wide variety of operating 

conditions must be considered to provide useful decision support. 

The resistance-in-series (RIS) model was proposed by Field et al. (1995) and used 

mathematical equations and assumptions to characterize membrane fouling; many membrane 

fouling models in literature are based on the RIS model. In the model, dead-end filtration was 

assumed, thus the equation for permeation flux was based on Darcy’s Law. Permeate flux was 

considered as a function of TMP, viscosity (temperature-dependent), and three constant resistance 

values including the intrinsic membrane resistance, cake layer resistance, and irreversible fouling 
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resistance (including pore narrowing/blocking). Further, the idea of a critical flux was proposed, 

where there exists a flux value for an MBR where any operating flux above it will cause fouling 

and any operating flux below it will not. In such a model, it is crucial that the correct initial TMP 

is chosen as to not exceed the critical flux, thereby greatly reducing the rate of fouling (Chang et 

al., 2002; Field et al., 1995). Since it was first introduced, the RIS model has been used extensively 

to analyze membrane fouling within MBRs. The RIS model has been extended to conclude that 

the resistance of the activated sludge suspension in an MBR is equal to the sum of the resistances 

of the suspended solids, colloids, and solutes (Meng & Yang, 2007). Ludwig et al. (2012) utilized 

the RIS model within a dynamic mechanistic simulation model incorporating suction pressure, 

water head pressure, and crossflow aeration from a full-scale municipal WWTP. The model was 

calibrated and validated using a constrained linear least-squares optimization procedure to limit 

the root mean squared error (RMSE) between predicted and observed values. After testing, the 

model predicts TMP accurately (86% - 95% accuracy) in both hollow-fibre and flat-sheet MBR 

configurations (Ludwig et al., 2012) and can be integrated into existing active sludge simulation 

models (ASM). Further, Liang et al. (2006) integrated the RIS model using parameters for mixed 

liquor suspended solids (MLSS), dissolved organic matter, and varying resistances over time. The 

model was trained and validated with experimental data from a pilot submerged MBR plant 

yielding good accuracy between observed and predicted data. Mannina & Di Bella (2012) created 

an integrated model utilizing biological equations and the resistance-in-series method for 

membrane fouling characterization. 

While promising, the RIS model is built on the assumption that resistances behave the same 

individually as they do in combination; it has been proven that the sum of individual components 

are different from that of the mixture (Chang et al., 2009) and it is not clear how the change in one 
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resistance will affect another. Similarly, they do not consider concentration polarization (Belfort 

et al., 1994) of contaminants at the membrane surface. Due to their limitations, mechanistic and 

empirical models should be used with caution when quantifying membrane fouling in full-scale 

MBR applications. 

2.3 Existing Data-Driven Models for Membrane Fouling 

In recent times, data-driven techniques have become increasingly more popular for modeling 

membrane fouling. Data-driven models, unlike mechanistic models, do not rely on underlying 

mechanistic or mathematical principles, they rely on information from datasets. The assumptions 

made in mechanistic models can sometimes make them ineffective for real-world applications and 

cannot investigate complex underlying relationships between variables. In comparison, data-

driven techniques can effectively use information in datasets to model nonlinear relationships 

between input and output variables. There are many different algorithms available for data-driven 

techniques. A commonly used algorithm in the formulation of data-driven models is the artificial 

neural network (ANN) and its derivatives. For instance, Dornier et al. (1995) proposed a back-

propagation ANN to predict membrane fouling by modeling hydraulic resistance defined by 

Darcy’s Law. The ANN consisted of one input layer, two hidden layers, and one output layer using 

a sigmoidal activation function. Since there are one or more hidden layers, this type of model 

would be considered a multilayer perceptron (MLP) ANN. The input variables for this model were 

time, TMP, and cross flow velocity; the output variable for the model was hydraulic resistance. 

The model was trained and tested on 6 different short-term experimental datasets in which the 

coefficient of determination (R2) value for constant and variable operating conditions was 0.97 

and 0.90, respectively. This model showed positive results and led to further investigation into 

data-driven models for membrane fouling prediction.  
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 Liu et al. (2009) created an MLP ANN model using permeate flux, raw water turbidity, 

UV254 measurement (for organic content detection), operating time, and backwash type (binary) 

as input variables; the output variable for the model was TMP. The set of 990 data was normalized 

and split roughly 60:40 for training and testing purposes. To train the model, the Levenburg-

Marquardt (LM) technique was used for back propagation and used more than 120 epochs. This 

technique searches for the minimum mean squared error (MSE) between observed and predicted 

values. The results of the model showed a good result between observed and predicted values with 

correlation coefficient (R) of 0.85. The authors determined that water quality parameters including 

(turbidity and UV254) were just as important as operational parameters (flux, backwash frequency, 

and time) for the prediction of TMP.  

 Mirbagheri et al. (2015) created both MLP and radial basis function (RBF) ANNs to 

quantify membrane fouling. In RBF ANNs, a radial basis function is applied between the input 

and hidden layer, and a linear activation function is used between the hidden and output layers. In 

the MLP ANNs, there is no function between the input and hidden layer, and the sigmoidal 

function is commonly used between the hidden and output layers (Bayram et al., 2016). For both 

models, the input variables were time, total suspended solids (TSS), chemical oxygen demand 

(CODin), solids retention time (SRT), and MLSS; the output variables for the models were TMP 

and permeability. The dataset used in this study comes from a submerged MBR pilot plant fed 

with municipal wastewater. The dataset was comprised of 60 days of experimental data with a 

daily temporal resolution. The data was normalized and split 70:15:15 for training, testing, and 

validation, respectively. To train the model, the LM technique was used for back propagation with 

a maximum of 1000 epochs. The trial-and-error approach and genetic algorithm (GA) approach 

were both used to calibrate the models, where the GA approach produced better parameters for the 
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model. The authors concluded that the MLP ANN model performed better than the RBF ANN 

model with R2 values of 0.99 and 0.98, respectively.  

 Hazrati et al. (2017) created an artificial neural network (ANN) with a 4-month dataset on 

a pilot-sized MBR utilizing mixed liquor suspended solids (MLSS) concentration, hydraulic 

retention time (HRT), and time as input variables to predict chemical oxygen demand (COD) 

removal and TMP with great accuracy. The results for these models showed excellent accuracy 

when predicting on both training and testing datasets. Li et al. (2020) created a random forest (RF) 

model on the Hadoop big data platform to determine membrane fouling by predicting membrane 

flux. ANN and support vector machine (SVM) models were created to evaluate the RF model’s 

prediction accuracy and the results showed that the RF model had the best prediction accuracy.  

 Many data-driven models with various algorithms have been applied to predict membrane 

fouling; however, many of these models have drawbacks. Common drawbacks in the models 

include small datasets with coarse temporal resolution, datasets from pilot MBR plants, and non-

calibrated models. Additionally, these models lack uncertainty analyses to characterize both 

hyperparameter uncertainty and uncertainty due to model structure. The incorporation of 

prediction intervals for output prediction can be extremely useful to provide robust decision 

support.  

 In summary, data-driven models have produced promising results, but are not yet ready to be 

implemented for full-scale MBR decision support. The development of more robust data-driven 

models for the prediction of membrane fouling is required. 
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Chapter 3 – Study Area and Data Collection 

3.1 MBR 

MBR technology is a wastewater treatment technology that is increasingly used for municipal and 

commercial applications across the world. MBRs produce extremely high effluent quality with a 

small capital footprint (Hai & Yamamoto, 2011). Membrane fouling is one of the major challenges 

to wide-scale MBR implementation for wastewater treatment plants. This occurs over time as 

solids build up on the membrane surface and within membrane pores, increasing transmembrane 

pressure (TMP) between the inside and outside of the membrane. Fouling mainly occurs due to 

pore narrowing, pore clogging, and cake formation (Iorhemen et al., 2016). Membrane fouling can 

be split up into two main types of fouling, reversible and irreversible.  

Reversible membrane fouling is the deposition of solids on the membrane surface that are 

readily removable. This is primarily controlled through air scouring, membrane back pulsing 

(backflushing), and maintenance cleaning (Chang et al., 2002). Air scouring utilizes coarse 

bubbles from an aeration device to produce shear forces across the membrane surface, removing 

solids that are deposited on the membrane. The crossflow velocity of air bubbles is produced by 

bubbling air with an aeration device located underneath the membrane (Sofia et al., 2004). 

Membrane back pulsing is used to reverse the flow of permeate through the membrane. This 

process has been successful in removing most of the reversible fouling due to pore blocking, 

transporting the solids back into the bioreactor and partially dislodging loosely attached sludge 

cake from the membrane surface (Bouhabila et al., 2001; Hai & Yamamoto, 2011). Maintenance 

cleaning procedures with moderate chemicals are generally conducted on a weekly basis and helps 

reduce the need for more intense recovery cleaning procedures.  
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Irreversible fouling occurs over time where TMP increases to a point where further 

permeate production is no longer sustainable. Irreversible membrane fouling is controlled by 

recovery cleaning through means of chemical cleaning. Two commonly used chemicals for this 

type of cleaning are sodium hypochlorite and citric acid used for organic and inorganic foulants, 

respectively (Hai & Yamamoto, 2011). Both chemicals are used for either maintenance or recovery 

cleaning procedures, however the concentration used will be higher in recovery cleaning 

procedures.  

Membrane bioreactors are operated at either constant permeate flux with a changing TMP 

or a changing permeate flux with a constant TMP (Guo et al., 2012). Membrane fouling occurs as 

TMP increases to maintain a constant permeate flux or when permeate flux decreases while 

maintaining constant TMP. Membrane fouling and the subsequent rise of TMP (at a constant flux) 

is determined by physical and chemical interactions. These interactions and resulting membrane 

fouling are controlled by foulant characteristics, influent chemical composition, membrane 

properties, and hydrodynamic conditions (Li & Elimelech, 2004). Further, the length of the 

operation cycle and the frequency and length of the back pulse is important in controlling 

membrane fouling.  

3.2 Wastewater Treatment Plant 

The WWTP data used in this study is from a confidential municipal wastewater facility using the 

submerged membrane bioreactor (SMBR) technology equipped with hollow fiber membranes. 

This confidential WWTP is designed with an average influent capacity of 60,000 m3/d with a peak 

flow of 7,020 m3/d. The effective membrane surface area across all membrane trains is 412 m2. 

The plant utilizes a pretreatment phase consisting of 10 mm screening, equalization with a buffer 

tank, 1 mm fine screening, and grease removal/cooling. The primary treatment phase consists of 
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four aeration tanks using activated sludge followed by eight SMBR tanks to produce treated 

effluent. The tertiary treatment involves chlorination and sludge treatment through gravity belt 

thickening, aerobic digestion, and dewatering using filter presses. A graphical representation of 

the plant is shown below in Fig. 2. At this WWTP, membrane back pulsing occurs every 11 

minutes. Maintenance cleaning cycles generally occur 1 to 2 times per week and use sodium 

hypochlorite or citric acid as cleaning chemicals. Recovery cleaning cycles generally occur 2 to 4 

times per year utilizing higher concentrations of sodium hypochlorite or citric acid and a different 

cleaning procedure.  

 

Fig. 2. A simplified process diagram for the confidential WWTP 

 

3.3 Data Collection 

The timeseries data used in this study were collected through an automated asset performance 

management system, InSight. The InSight system collects data every other back pulsing cycle, 

thus the MBR operational data is available at a 22-minute temporal resolution. The before back 

pulse (BBP), during back pulse (DBP), and after back pulse (ABP) operational data measured 

between January 1, 2017, to December 31, 2020, were obtained and used for developing unique 
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models for BBP, DBP, and ABP TMP. The total dataset consisted of 83,982 instances. Operational 

data from 2015 to 2016 was available but omitted due to many missing data observations. Due to 

the cyclical nature of the data with local maximum and minimum values, common outlier 

determination methods like the three-standard deviation (3σ) method were not used. Instead, expert 

elicitation was used to manually identify and remove 159 outlier instances resulting in 83,823 

instances to be used to create the models. Continuous before, during, and after back pulse data are 

available every 22 minutes for TMP (kPa), flow (m3/d), flux (LMH), and permeability (LMH/kPa). 

The TMP data from different stages (i.e., before, during, and after back pulse) of the membrane 

cycle is shown in Fig. 3. Fig. 3 shows that BBP and ABP TMP data are negative, whereas DBP 

TMP data are positive. The positive and negative represents the direction of flow through the 

membrane. When TMP is negative, there is production in the MBR where water from the 

membrane tank is being pulled through the membrane, leaving as permeate. When TMP is positive, 

there is a back pulse occurring where permeate is being pushed back through the membrane and 

into the membrane tank. Additional after back pulse variables include permeate temperature (°C) 

and tank level (m) measured after each back pulse. Binary condition data are available for 

maintenance clean, recovery clean, production, and standby status. MLSS concentration (g/L) data 

is available at a temporal resolution of 1 minute.  

The collected data were preprocessed to prepare a dataset with a temporal resolution of 22 

minutes for model development. To deal with the discrepancy in temporal resolution, the most 

recent MLSS concentration relative to cycle data is used because the composition of the pretreated 

water does not change significantly over short periods of time (Wang et al., 2021). A full list of 

input variables for model development is shown in Table 1. 
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Table 1. Raw data collected from InSight 

Stage Variable Unit Frequency 

BBP  BBP TMP kPa 22-minute 

 BBP Flow m3/d  22-minute 

 BBP Flux LMH 22-minute 

 BBP Permeability LMH/kPa 22-minute 

DBP DBP TMP kPa 22-minute 

 DBP Flow m3/d  22-minute 

 DBP Flux LMH 22-minute 

 DBP Permeability LMH/kPa 22-minute 

ABP ABP TMP kPa 22-minute 

 ABP Flow m3/d  22-minute 

 ABP Flux LMH 22-minute 

 ABP Permeability LMH/kPa 22-minute 

 ABP Permeate Temperature °C 22-minute 

 ABP Tank Level Metre 22-minute 

Miscellaneous Date MM/DD/YYYY Daily 

 Days Numeric Daily 

 Time Minutes 22-minute 

 MLSS g/L 1-minute 

 MC Status Binary 1-minute 

 RC Status Binary 1-minute 

 Cumulative Flow m3/d  22-minute 

 Cycles Since RC Numeric 22-minute 

Note: BBP = Before back pulse, DBP = During back pulse, ABP = After back pulse 
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Fig. 3. Timeseries data for BBP, DBP, and ABP TMP from 2017 to 2020 
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Chapter 4 – Methodology 

4.1 Machine Learning 

For this research, RF, ANN, and LSTM algorithms were chosen. The random forest has proven to 

be an effective algorithm for use in wastewater applications (Li et al., 2020; Zhou et al., 2019) and 

is useful for investigating variable importance by reduction of MSE; this process is well-outlined 

by Grömping (2009). The ANN has proven to be very effective for membrane fouling prediction 

applications (Dornier et al., 1995; Hazrati et al., 2017; Liu et al., 2009; Mirbagheri et al., 2015) 

and has been used to check the accuracy of other algorithms (Li et al., 2020). LSTM has not been 

used for the prediction of membrane fouling but has been proven useful in wastewater effluent 

quality prediction (Farhi et al., 2021) due to its ability to recognize patterns and sequences in 

timeseries data. 

4.1.1 Random Forest 

The RF method is an ensemble method where the combination of decision tree or model tree 

predictors are used to make predictions. This method was introduced by Breiman (2001) 

influenced by previous work (Amit & Geman, 1997; Dietterich, 2000). It combines bootstrapping 

and random split selection to create independent decision trees whose outcomes are aggregated 

together to make a prediction (Breiman, 2001). The common element used in all procedures is that 

for the kth tree, a random vector Θk is generated that is independent of the past random vectors 

Θ1,…, Θk-1 but with the same distribution; and a tree is grown using the training set and random 

vector Θk, resulting in a classifier h (x, Θk) where x is an input vector (Breiman, 2001). More trees 

are generated independently until there are many trees in the forest. Then, a majority voting process 

happens, and a decision or prediction is made. Since bootstrapping is used, there are samples ‘in-

the-bag’ which are used as the training datasets and samples ‘out-of-bag’ used as the testing 
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datasets. Thus, out-of-bag (OOB) Mean Squared Error (MSE) can be calculated without additional 

computational resources by comparing the majority vote of the value for OOB data and comparing 

it to the true OOB data.   

Advantages of the random forest method include the robustness to changes in 

hyperparameters, that they are less likely to suffer from overfitting compared to other methods, 

and the ability to see variable importance through regression impurity (Breiman, 2001; Segal, 

2003; Wang et al., 2021). In this study, the randomForest v 4.6-14 package within the open-source 

programming language R is used to create the RF models. This package uses Breiman and Cutler’s 

random forest algorithm for classification and regression (Breiman, 2018). 

4.1.2 Artificial Neural Network 

Artificial Neural Network (ANN) models relate the input and output of a system to map nonlinear 

input-output relationships. These methods have been widely successful in wastewater applications, 

including influent flow prediction and membrane fouling through the prediction of TMP (Boyd et 

al., 2019; Mirbagheri et al., 2015; Zhang et al., 2019; Zhou et al., 2019). An ANN with one input 

layer, one output layer, and one or more than one hidden layer(s) is a multi-layer perceptron 

(MLP). The general idea behind this approach is that the information from the input layer is fed 

forward to a hidden layer with neurons that will process the information and pass it forward 

through an activation function to create a model output. The following equation shows how one 

neuron processes information from the previous layer to the next layer.  

𝑥𝑗+1 = 𝑓(∑ 𝑤𝑖,𝑗+1𝑥𝑖,𝑗 + 𝑏𝑗+1)𝑖        (1) 

where x is a neuron, j is the layer index, i is the neuron index for layer j, w is the weight assigned 

between two layers, b is the bias weight term, and f ( • ) is the activation function (Wang et al., 
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2021). In this study, the sigmoidal activation function is used between the hidden and output layers. 

The caret v 6.0-89 package (Kuhn, 2021) within R is used with model selection ‘nnet’ to produce 

regression based MLP ANNs to create before, during, and after back pulse TMP predictive models. 

The ANN utilizes the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to optimize model 

parameters, changing neuron weights to minimize error over iterations. 

4.1.3 Long Short-Term Memory Network 

Long short-term memory (LSTM) models are a type of recurrent neural network (RNN) introduced 

by Hochreiter and Schmidhuber (1997). LSTM units are now commonly comprised of a forget 

gate, input gate, and an output gate. In the forget gate, the model can decide what information in 

the time series will be kept and what will be thrown away. In the input gate, new information is 

fed into the model and the gate decides what new information will be kept in the cell state. The 

output gate decides what information can be used as the output based on the cell state (Yu et al., 

2019). The architecture of this type of LSTM unit is shown in Fig. 4. 

 

Fig. 4. Architecture of an LSTM unit 
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The forget gate is represented by ft where it has a value between 0 or 1 due to the sigmoid function 

applied to it. If the value is 1, all information will be saved inside the network. If the value is 0, all 

information will be discarded.  

𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)     (2) 

The input gate is represented by It where it also has a value between 0 or 1. If the value is 1, the 

new information will be allowed to be moved to the cell state; whereas if the value is 0, it will not 

be allowed.  

𝐼𝑡 =  𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)      (3) 

The cell state is represented by Ct and denotes information carried from one LSTM unit to the 

next. 

𝐶𝑡 =  𝑓𝑡 ∙ 𝐶𝑡−1 + 𝐼𝑡 ∙  �̃�𝑡       (4) 

The new information from input variables is denoted by �̃�𝑡 and is transformed by the hyperbolic 

tangent function to obtain a value between -1 and 1, where -1 indicates subtraction of information 

from the cell state and 1 indicates addition of information.  

�̃�𝑡 =  tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏�̃�)               (5)  

The output gate is represented by Ot with a value between 0 or 1 where 1 allows information 

transfer and 0 does not. This is then be multiplied with the cell state information after it is 

transformed by the hyperbolic tangent function; the product of the multiplication is then used as 

the output of the unit, ht.   

𝑂𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)                     (6) 
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ℎ𝑡 =  𝑂𝑡 ∙  tanh (𝐶𝑡)      (7) 

4.2 Model Development and Performance Evaluation 

4.2.1 Input Variable Selection 

Input variable selection was conducted to determine the best variables to be used in each of the 

models. The models are carefully designed to limit correlated input variables to investigate the 

impact that other input variables have on the output of the model. A manual input variable omission 

process was used to determine the decrease in model accuracy after removing input variables; the 

final models have a small drop in model accuracy compared to preliminary models and it is easier 

to see which input variables impact model accuracy in the final models. Additionally, less input 

variables used results in less computational resources required to train and tune the model, making 

it easier to apply to other WWTPs.  

Table 2 shows the selected input variables for models at each stage, statistical measures, 

and the correlation of that variable to other variables. Since TMP is directly related to permeability 

where permeability = flux/TMP, permeability is excluded. It is worth mentioning that in cases 

where it is not important to limit correlated input variables, permeability can be included to predict 

TMP, and has been shown to increase predictive accuracy in preliminary models. To model the 

effect of recovery cleaning, a new input variable “Cycles since RC” was introduced to count the 

number of membrane cycles between recovery cleaning events. This is important because the 

cyclical behaviour shown in Fig. 3 is caused by recovery cleaning cycles where a drastic change 

in TMP is shown. To incorporate the general trend that TMP increases as membrane life 

progresses, cumulative flow (m3/d) was also introduced as a new input variable calculated by 

summing before back pulse flow from each membrane cycle between the beginning of 2017 and 

the end of 2020.  
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Once the final input variables were selected for each of the three models (i.e., BBP, DBP, 

and ABP), a time lag based on chronological order was introduced to certain input variables 

depending on the point in the membrane cycle. For instance, for the BBP and DBP models, the 

ABP permeate temperature and tank level values were taken from the previous cycle. For the ABP 

models, the ABP permeate temperature and tank levels were taken from the current cycle. All other 

input variables were taken from the same cycle.

Table 2. List of input variables used in the models, statistical measures, and relationship to other variables 

Stage Variable 
Use in 

model 
Min Mean Max 

Standard 

Deviation 

Coefficient 

of Variation 

Relationship to 

other variables 

BBP  BBP TMP 

Y (Target, 

not used in 

DBP or ABP 

models) 

 

-34.96 -15.35 -6.22 4.36 -0.284 BBP Permeability 

 BBP Flow 

Y (Not used 

in DBP or 

ABP 

models) 

198.3 300.9 397.5 17.1 0.057 BBP Flux 

DBP DBP TMP 

Y (Target, 

not used in 

BBP or ABP 

models) 

 

7.61 18.64 29.61 3.34 0.179 DBP Permeability 

 DBP Flow 

Y (Not used 

in BBP or 

ABP 

models) 

300.1 405.8 500.0 6.50 0.016 DBP Flux 

ABP ABP TMP 
Y (Target, 

not used in 
-32.41 -15.13 -6.16 4.21 -0.278 ABP Permeability 
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BBP or DBP 

models) 

 

 ABP Flow 

Y (Not used 

in BBP or 

DBP 

models) 

170.1 301.0 399.2 17.0 0.056 ABP Flux 

 

ABP 

Permeate 

Temperature 

Y 24.2 32.3 38.3 3.50 0.108  

 

ABP Tank 

Level 
Y 2.999 3.189 3.259 0.014 0.004  

 Days Y - - - - -  

 MLSS Y 0.702 5.855 8.854 0.588 0.100  

 

Cumulative 

Flow 
Y - - - - - BBP Flow 

 
Cycles Since 

RC 
Y - - - - -  

4.2.2 ML models for TMP prediction 

In this study, RF, ANN, and LSTM were used to create nine different models that predict TMP 

(kPa) before, during, and after membrane back pulsing. Nine different models, three for each 

algorithm, were created because the output values for TMP varies between stages of the MBR 

production cycle. Creating separate models provides the best solution for accurate prediction of 

TMP at any point in the membrane cycle because the training and testing target data are exclusive 

to that part of the cycle (before, during, or after membrane back pulsing). The dataset was split 

randomly 75:25 for training and testing, respectively. There are 62,868 observations used for 
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training and 20,955 observations used for testing. The variables used in each model vary depending 

on the specific model and are shown in Table 1.  

To obtain an optimal RF model for each stage, a grid search was used to determine the 

optimal hyperparameters. The most optimal BBP RF model had 2,407 trees (ntree) and the number 

of variables tried at each split (mtry) was equal to 4. Since the random forest model already uses 

bootstrapping to resample data, cross validation was not used. The optimal DBP RF model had 

ntree equal to 1,598 and mtry equal to 2. The optimal ABP RF model had ntree equal to 1,576 and 

mtry equal to 4.  

To obtain the optimal ANN model for each stage, 5-fold cross validation was used on the 

training set while the testing set was used as a hold-out set for a maximum of 1,000 iterations per 

hyperparameter combination. The performance differences were negligible between models 

trained with 5-fold cross validation and models trained with 10-fold cross validation. Both training 

and testing datasets were centered and scaled using the mean and standard deviation of the training 

dataset. A grid search was used to determine the optimal hyperparameters available for decay and 

size. For the BBP ANN model, the decay and size were 0.001 and 30, respectively. The resulting 

ANN had a 7-30-1 network architecture. For the DBP ANN model, the decay and size were 0.01 

and 30, respectively. For the ABP ANN model, the decay and size were 0.001 and 29, respectively. 

To obtain the optimal LSTM model for each stage, a stochastic gradient descent (SGD) 

optimizer from the PyTorch package (Paszke et al., 2019) in Python 3.8.8 is used to optimize 

hyperparameters. The number of epochs used is equivalent to twice the number of observations in 

the training dataset. In each LSTM model, the batch size is 20, a parameter representing the number 

of previous observations used for training each training observation. The tuning for decay and size 
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was done in conjunction with the uncertainty analysis and was determined to be 0 and 14, 

respectively, for BBP, DBP, and ABP models.  

4.2.3  Performance Evaluation 

Four model performance measures were used to compare the RF, ANN, and LSTM models 

developed in this study. These statistical measures include the Coefficient of Determination (R2), 

MSE, Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE). R2 is a 

useful index in regression analyses, providing a good sense of how well data fit to a regression 

line. In this case, R2 is used to determine the correlation between model predictions and observed 

target variables from the testing datasets. R2 is calculated using Eq. (8): 

𝑅2 = 1 −  
∑(𝑦𝑖−�̂�𝑖)2

∑(𝑦𝑖−�̅�)2
      (8) 

where n is the number of samples, yi is the observed value, and 𝑦�̂� is the predicted value, and �̅� is 

the mean value of a sample. There is no universally accepted value range for R2, because a good 

value is relative to the problem. However, the closer to 1 the higher the correlation between 

observed and predicted data.  

MSE is the average squared error between predicted and actual values. The term is squared 

so any negative value is simply taken as a magnitude and does not negatively impact the accuracy 

of the term. MSE is calculated using Eq. (9).  

𝑀S𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2 𝑛

𝑖=1      (9) 

MAPE is the average error between predicted and observed data expressed as a percentage. 

It is calculated using Eq. (10).  
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𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|  × 100𝑛

𝑖=1    (10) 

RMSE is the squared root of the MSE. The advantage to having this metric is that the error 

is easy to understand because it will have the same units as the output variable (i.e., kPa). However, 

a disadvantage is that RMSE is difficult to use to compare different models because of varying 

system elements and different system operation parameters. It is calculated using Eq. (11).  

     𝑅𝑀𝑆𝐸 = √𝑀S𝐸 =  √∑
(𝑦𝑖−�̂�𝑖)2

𝑛

𝑛
𝑖=1       (11) 

4.3 Uncertainty Analysis 

An uncertainty analysis was conducted to determine both hyperparameter uncertainty and model 

structure uncertainty. Latin Hypercube Sampling (LHS) was used to randomly generate 

hyperparameter values for the quantification of parameter uncertainty. LHS is a method of 

sampling that can be used to produce hyperparameter values to be fed into the developed models 

for uncertainty quantification. In this case, the LHS process utilized sampling from a uniformly-

distributed square grid with two dimensions, selecting only one sample per combination of row 

and column (Stein, 1987). This provides a better distribution of hyperparameters across the 

sampling space when compared to using a random sampling method such as Monte Carlo 

simulation. To create each model’s Latin Hypercube (LH), uniform distributions of 

hyperparameters unique to each algorithm were created. Then, the LHS v 1.1.1 package in R 

(Carnell, 2021) was used to create each LH. This function utilizes a Columnwise Pairwise (CP) 

algorithm to generate an optimal grid to sample from. 

For each model, a LH was created containing 100 unique combinations of hyperparameters 

for each of the 3 algorithms. Important hyperparameters for each of the three algorithms (i.e., RF, 
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ANN, and LSTM) were identified based on the literature for uncertainty (Alvarez & Salzmann, 

2016; Probst et al., 2019; Zhang et al., 2019). The hyperparameters selected were size and decay 

for the ANN models, ntree and mtry for the RF models, and size and decay for the LSTM models. 

One hundred iterations of the models were run, recording each unique timeseries and 

corresponding performance metrics when predicting on the testing dataset. The timeseries were 

used to create prediction intervals (PIs), thereby quantifying a range of prediction instead of a 

single deterministic value.  

To quantify model structure uncertainty, the impact of algorithm selection on the prediction 

of the most extreme minimum and maximum TMP values were investigated. For each of the nine 

models, there were 100 associated predictions for the two most extreme values. The minimum, 

maximum, and average predictions were investigated to determine how the models perform at 

extreme prediction. 
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Chapter 5 – Results and Discussion 

5.1 Model Performance 

RF, ANN, and LSTM models were created for each stage of the membrane cycle. These models 

were tuned to optimize performance while minimizing the risk of overfitting. The resulting 

performance metrics for each model and stage are shown in Table 3. The best-performing 

algorithm was the random forest with the highest R2 and lowest RMSE for each model for all 

stages of the MBR cycle. For prediction of testing data, the metrics range between 0.927 to 0.996 

and 0.264 kPa to 0.904 kPa for R2 and RMSE, respectively. Comparatively, for ANN prediction 

of testing data, the metrics range between 0.910 to 0.973 and 0.692 kPa to 1.00 kPa for R2 and 

RMSE, respectively. For LSTM prediction on testing data, the metrics range between 0.878 and 

0.915 and 1.170 kPa to 1.397 kPa for R2 and RMSE, respectively.  

While the differences in metrics seem small, the BBP RF model had a RMSE value that is 

roughly 3 times smaller than the BBP ANN model’s RMSE value, showing a significant difference 

in accuracy. Model accuracies for BBP and ABP were similar because BBP and ABP TMP data 

are closely related – both gradually increase over time as membrane life goes on. The difference 

in performance metrics between BBP/ABP RF and ANN models were relatively similar in 

magnitude with the random forest models being more accurate in training and testing. However, 

DBP RF and ANN models have performance metrics much closer in magnitude when comparing 

performance metrics for the testing dataset – the difference in RMSE is 0.1 kPa. The LSTM models 

have satisfactory performance but were less accurate than the RF and ANN models. However, the 

optimal LSTM models had less variation in performance metrics across the BBP/DBP/ABP 

models in comparison to the RF and ANN models. 
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Table 3. Performance metrics for each model, by algorithm and cycle stage 

Model 

Cycle Stage and Performance Metric 

BBP DBP ABP 

R2 MAPE RMSE MSE R2 MAPE RMSE MSE R2 MAPE RMSE MSE 

RF (Train) 0.999 0.47% 0.116 0.013 0.985 1.61% 0.415 0.172 0.999 0.49% 0.121 0.015 

RF (Test) 0.996 1.08% 0.264 0.070 0.927 3.55% 0.904 0.816 0.996 1.14% 0.277 0.077 

ANN (Train) 0.973 3.51% 0.721 0.520 0.910 4.17% 1.00 1.01 0.974 3.46% 0.684 0.467 

ANN (Test) 0.973 3.52% 0.725 0.525 0.910 4.19% 1.00 1.01 0.974 3.47% 0.692 0.478 

LSTM (Train) 0.933 5.48% 1.125 1.266 0.882 4.81% 1.147 1.317 0.936 5.38% 1.060 1.123 

LSTM (Test) 0.932 5.54% 1.15 1.322 0.883 4.78% 1.145 1.310 0.935 5.42% 1.082 1.171 

 

It is worth mentioning that the predictive performance for all models decreases when attempting 

to predict extreme values. In machine learning models, extreme value prediction poses a problem 

to a trained model and there is often a trade-off between model accuracy and overfitting (Li et al., 

2020; Zhou et al., 2019). In the BBP scatterplot shown in Fig. 5 (a), many of the outliers are toward 

the bottom-left quadrant and above the line indicating where predicted data is equal to observed 

data. This indicates that on average, BBP RF, ANN and LSTM models were predicting more 

conservatively with a more extreme predicted value (compared to the observed value), with the 

LSTM model predicting the furthest from the observed value. The ANN model made a higher 

number of extreme predictions when compared to the RF model. In the DBP scatterplot shown in 

Fig. 5 (b), the differences between RF, ANN, and LSTM models were much less apparent. Extreme 

predictions were better distributed across the prediction range when compared to the BBP 

scatterplot where extreme predictions are more frequent towards either end of the prediction range. 

In the ABP scatterplot shown in Fig. 5 (c), the results for RF, ANN, and LSTM models were like 
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those discussed in the BBP scatterplot. However, extreme predictions were better distributed 

throughout the prediction range compared to the skewed behaviour to the lower left quadrant seen 

in the BBP scatterplot. Most outliers in the top-right quadrant were from the LSTM model, 

predicting a magnitude of TMP that was lower than the observed value, and resulted in a less 

conservative prediction. 
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Fig. 5. Scatter plots for predictions from RF, ANN, and LSTM: (a) testing dataset for BBP models, (b) 

testing dataset for the DBP models, (c) testing dataset for the ABP models 
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Since RF had the highest overall accuracy, it was selected for further analysis. In the BBP RF 

timeseries plot shown in Fig. 6 (a), very good results were shown with respect to prediction 

accuracy. The model could identify the cyclical nature of TMP caused by recovery cleaning cycles 

despite the random selection of testing data. The predictive accuracy of the model decreases at 

extreme values, but the model still provides a good estimate of TMP. It is important to note that 

the extreme values are often single observed values and do not represent the general trend of TMP. 

Shown in Fig. 6 (b) is the DBP RF timeseries plot. The predictive accuracy was relatively good 

but not as good as the BBP and ABP RF models. The model had a tougher time recognizing the 

local max-min values in the cycle. However, it is worth noting that between 2017 and mid-2019 

the DBP TMP observed values contained many more outliers or extreme values. From mid-2019 

to the end of 2020, the predictive accuracy increased, `and the model better predicted the observed 

value, even at extreme values. Fig. 6 (c) represents the ABP RF timeseries plot. The results shown 

were very similar to those shown by the BBP RF timeseries plot in Fig. 6 (a). Observed values 

between BBP and ABP were similar because the ABP values from one cycle essentially become 

the BBP values for the next cycle. However, the negative trough and global minimum shown in 

BBP TMP data in mid-2019 is not present in the ABP TMP data. It is noteworthy that the ANN 

and LSTM timeseries plots have predictions with a higher variation between observed and 

predicted values. The timeseries plots for the ANN and LSTM models can be found in the 

Appendix as Figures A1-A3 and A4-A6, respectively. 
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Fig. 6. Timeseries plots for RF: (a) testing dataset for the BBP model, (b) testing dataset for the DBP model, 

(c) testing dataset for the ABP model 
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The results achieved for the developed models were comparable to or better than some 

existing empirical, semi-empirical, and ML models found in literature that also use TMP prediction 

to characterize membrane fouling (Liang et al., 2006; Liu et al., 2009; Mannina & Di Bella, 2012; 

Mirbagheri et al., 2015; Schmitt et al., 2018; Zuthi et al., 2017). However, pilot-scale MBRs and 

small datasets were used to build the models found in literature. The models built for this paper 

utilized high-resolution operational data over a 4-year period from a full-scale MBR municipal 

WWTP. The comparison of performance metrics between the models made in this study and 

literature can be found below in Table 4. There were no comparisons from literature for how well 

the RF algorithm can perform when predicting TMP from a MBR system. For the ANN-based 

models, the accuracies found here are slightly worse than those found in literature. It can be 

difficult to model the weak gradual rise in TMP over time due to biofilm formation and pore 

blocking if the datasets are from short experimental time periods (Hwang et al., 2008; Iorhemen 

et al., 2016). However, it is worth noting that model input variables, model structure, dataset size, 

MBR plant size/configuration, and influent characteristics are vastly different for those found in 

literature.   

Table 4. Performance metrics for TMP models from literature 

Model 

Output 

variable(s) 

Performance 

(Testing) 

Reference Comments/Limitations 

ANN TMP R2 = 0.72 

(Liu et al., 

2009) 

938 observed values, very small 

membrane area (17 cm2) 
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5.2 Uncertainty Analysis 

The impacts of hyperparameter uncertainty on model output were analyzed using the LHS 

approach described in Section 3.3. In general, the ANN models were most affected by changing 

hyperparameters, with an R2 ranging between 0.847 to 0.972 for the BBP model, 0.797 to 0.908 

Model tree 

(MT), 

Deterministic 

TMP  

RMSE = 2.00 

kPa, 1.93 kPa 

(Dalmau et 

al., 2015) 

Dataset spanning 462 days with a 10-

second resolution averaged to a daily 

resolution, pilot scale MBR system 

(2260 L, 8 m2 of membrane area), data-

driven model was not calibrated 

RBFANN-

GA, MLP 

ANN-GA 

TMP & 

Permeability 

R2 = 0.98, 

0.99 

(Mirbagheri 

et al., 2015) 

Pilot scale MBR system (8 m2 of 

membrane area), dataset spans 60 days 

with varying HRT, optimized with a 

genetic algorithm (GA) 

ANN TMP R2 = 0.99 

(Yusuf et 

al., 2015) 

Pilot scale MBR system (20 L), entire 

dataset spanning less than 1 hour, 50:50 

train/test split 

ANN TMP R2 = 0.99 

(Hazrati et 

al., 2017) 

Pilot scale MBR system (7 L), dataset 

spans 125 days with varying HRT  

ANN TMP R2 = 0.97 

(Schmitt et 

al., 2018) 

Pilot scale MBR system (75 L) operating 

for 180 days, trial-and-error-based 

hyperparameter tuning, small dataset 

ANN, SVM, 

RF 

Flux 

R2 = 0.90, 

0.92, 0.95 

(Li et al., 

2020) 

Information regarding the datasets used 

is unavailable, model was not calibrated 
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for the DBP model, and 0.862 to 0.971 for the ABP model. For the RF models, R2 was ranged 

between 0.993 to 0.996 for the BBP model, 0.925 to 0.927 for the DBP model, and 0.992 to 0.996 

for the ABP model. For the LSTM models, R2 ranged between 0.160 to 0.895 for the BBP model, 

0.451 to 0.861 for the DBP model, and 0.192 to 0.907 for the ABP model. 

For the RF models, accuracy generally increased with increasing ntree and the best mtry 

values were 4 and 5. However, changing mtry had a bigger impact on predictive accuracy than 

ntree, and randomly selecting hyperparameters for RF did not lead to unsatisfactory results. For 

the ANN models, accuracy increased with increasing size, or number of hidden layer neurons, and 

a decay parameter closer to 0. The decay parameter represents a regularization tool that helps the 

optimization process and aims to avoid overfitting (Venables & Ripley, 2002). While the 

predictive accuracy increased with a smaller decay value, there is less variation between training 

and testing performance metrics shown in Table 3. It is suspected that larger datasets require 

smaller decay values because complex data provides regularization and other regularization 

methods are not as necessary for tuning (Smith, 2018). For the LSTM models, the performance 

metrics varied significantly across all BBP, DBP, and ABP models. Like the ANN models, a decay 

parameter closer to 0 produced a much better result, where the best-performing LSTM models had 

values close to 0. Models with similar decay values and vastly different size values had close to 

the same predictive accuracy, so decay has a greater impact on model accuracy.  

 Because ANN had the highest variation at extreme observed values between maximum and 

minimum predicted values, it was selected for further uncertainty analysis. All predicted values 

were between the maximum-minimum band which encloses the prediction interval (PI) for the 

model. The band graphs shown in Fig. 7 display the predictions from the 100 model iterations 

conducted for uncertainty analysis on the ANN models. The “Average” line represents the average 
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prediction value from 100 model iterations. The “Maximum” and “Minimum” bands show the 

highest and lowest predicted value for each observed value from the 100 timeseries, respectively. 

As shown in Fig. 7, the maximum and minimum bands had more severe jumps in TMP at drastic 

changes in TMP, exacerbating the behaviour shown in the observed TMP values and exhibited the 

model’s inaccuracy in predicting extreme values. The largest difference in R2 between the average 

prediction and observation is shown with the BBP model in Fig. 7 (a). The timeseries uncertainty 

band graphs for the RF and LSTM models can be found in the Appendix as Figures A7 – A9 and 

Figures A10 – A12, respectively. 
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Fig. 7. Timeseries uncertainty band graphs displaying the average, maximum, and minimum values from 

100 iterations for: (a) BBP ANN model, (b) DBP ANN model, (c) ABP ANN model 

To further analyze the uncertainty due to model structure, the most extreme values in the 

observed testing dataset (maximum and minimum TMP) were investigated. Table 5 shows a 

summary of the statistical measures associated to the predictions of the extreme maximum and 

minimum observed values. The ranges of prediction for the RF models were significantly smaller 

than the ranges shown by the ANN and LSTM models. Further, the RF models had mean prediction 

values closest to the minimum or maximum observed value in most cases. 

Fig. 8 represents the 100 predicted TMP values and the corresponding TMP range it fits 

into. For instance, Fig. 8 (a) represents the predictions of the minimum value in the BBP testing 

dataset and the associated predictions from the 100 iterations of each model – this resulted in 300 

predicted values from ANN, RF, and LSTM BBP models. The observed minimum value is -34.7 

kPa. Thus, all 100 predictions from the RF model iterations lie between the range of -36 kPa to -

32 kPa, with an average of -33.8 kPa. However, the 100 predictions from the ANN models lie 

between the range of -30 kPa to -20 kPa, with an average of -25.5 kPa. The predictions from the 

LSTM models lie between the range of -24 kPa to -15 kPa with an average of -19.3 kPa. The 
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uncertainties shown within the RF models were significantly less than the uncertainties shown 

within both ANN and LSTM models within their respective defined hyperparameter ranges. The 

RF model showed low variance with low bias while the ANN model showed high variance with 

high bias. Most LSTM predictions were higher than -20 kPa, which is much further than the 

observed minimum value of -34.7 kPa. Likewise, Fig. 8 (b) shows 300 values for the maximum 

value in the BBP testing dataset, with an observed maximum value of -6.3 kPa. All 100 predictions 

from the RF model iterations lie between the range of -8.5 kPa to -7.5 kPa, with an average of -8.1 

kPa. In comparison, the 100 predictions from the ANN model iterations lie between the range of -

6.0 kPa to -9.0 kPa, with an average of -7.5 kPa. The LSTM predictions lie between the range of 

-11.6 kPa and -6.5 kPa with an average of -9.4 kPa. The RF model exhibited behaviour that is 

consistent with low variance and high bias, whereas the ANN model exhibited behaviour more 

consistent with high variance and high bias. In this case, the ANN predicted closer to the test value 

than the RF. The LSTM model predicted the least accurately out of the three algorithm choices 

within their respective defined hyperparameter ranges.  

For the DBP testing dataset, the observed minimum and maximum TMP values were 8.34 

kPa and 29.38 kPa, respectively. The average predictions for the observed minimum value for the 

RF, ANN, and LSTM models are 14.1 kPa, 13.5 kPa, and 14.1 kPa, respectively. The average 

predictions for the observed maximum value for the RF, ANN, and LSTM models are 26.5 kPa, 

22.2 kPa, and 20.7 kPa, respectively. As shown in Fig. 8 (c) and Fig. 8 (d), the ANN model 

predicted the minimum value more accurately, whereas the RF predicted the maximum value more 

accurately with greater frequency. The LSTM is performing more competitively for DBP TMP 

prediction when compared to the RF and ANN models but is still performing the least accurately. 
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For the ABP testing dataset, the observed minimum and maximum TMP values are -32.2 

kPa and -6.2 kPa, respectively. The average predictions for the observed minimum value for the 

RF, ANN, and LSTM models are -31.3 kPa, -29.0 kPa, and -24.5 kPa, respectively. The average 

predictions for the observed maximum value for the RF, ANN, and LSTM models are -7.3 kPa,     

-7.8 kPa, and -10.3 kPa, respectively. As shown in Fig. 8 (e) and Fig. 8 (f), the RF model predicted 

both minimum and maximum values more accurately when compared to the ANN and LSTM 

models. Through BBP/DBP/ABP model creation, it is shown that the LSTM algorithm is less 

sensitive to drastic changes in observed TMP values and cannot recognize extreme predictions 

effectively. 
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Fig. 8. Histograms depicting frequency for the most extreme test dataset observations: (a) BBP RF, ANN, 

LSTM for min-value, (b) BBP RF, ANN, LSTM for max-value, (c) DBP RF, ANN, LSTM for min-

value, (d) DBP RF, ANN, LSTM for max-value, (e) ABP RF, ANN, LSTM for min-value, (f) ABP RF, 

ANN, LSTM for max-value 
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Table 5. Summary of model structure uncertainty for extreme value prediction

  BBP DBP ABP 

  Min. value Max. value Min. value Max. value Min. value Max. value 

  RF ANN LSTM RF ANN LSTM RF ANN LSTM RF ANN LSTM RF ANN LSTM RF ANN LSTM 

Minimum -34.0 -29.9 -22.8 -8.4 -8.9 -11.6 14.0 12.5 12.7 26.1 20.2 19.1 -31.6 -31.2 -28.9 -8.2 -11.2 -12.2 

Maximum -32.8 -20.4 -15.1 -7.7 -6.4 -6.5 14.2 14.5 15.6 26.8 23.6 22.4 -30.1 -27.3 -21.4 -7.0 -4.7 -8.8 

Mean -33.8 -25.5 -19.3 -8.1 -7.5 -9.4 14.1 13.5 14.1 26.5 22.2 20.7 -31.3 -29.0 -24.5 -7.3 -7.8 -10.3 

Median -33.9 -25.5 -19.2 -8.1 -7.4 -9.5 14.1 13.6 14.1 26.5 22.3 20.7 -31.4 -29.0 -24.3 -7.1 -7.6 -10.3 

Standard 

Deviation 

0.3 2.2 1.3 0.2 0.6 1.0 0.0 0.3 0.6 0.2 0.6 0.6 0.3 0.8 1.5 0.3 1.2 0.8 

Range 1.22 9.47 7.68 0.8 2.51 5.13 0.23 1.99 2.91 0.67 3.39 3.28 1.58 3.91 7.45 1.23 6.52 3.47 

Test value -34.67 kPa -6.31 kPa 8.34 kPa 29.38 kPa -32.17 kPa -6.22 kPa 
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Chapter 6 – Conclusions 

In this research, data-driven models utilizing RF, ANN, and LSTM algorithms were developed to 

characterize membrane fouling through the prediction of TMP at various points of the MBR 

production cycle. These models were developed utilizing 4 years of high-resolution operational 

data from a full-scale municipal WWTP. After a careful input variable selection process, the 

models were successfully applied to predict BBP, DBP, and ABP TMP showing excellent 

predictive accuracy. In addition, the uncertainty analysis conducted provides PIs for 

hyperparameter uncertainty and insight into model structure uncertainty associated to extreme 

predictions. These proposed models can provide decision support to WWTP operators to assist in 

the reduction of membrane fouling.  

 The RF models perform the best in terms of the statistical measures R2, MAPE, RMSE, 

and MSE when compared to both ANN and LSTM models. The R2 values for the testing of the 

BBP, DBP, and ABP RF models were 0.996, 0.927, and 0.996, respectively; the values for the 

testing of the ANN models were 0.973, 0.910, and 0.974, respectively; and the values for the 

testing of the LSTM models were 0.932, 0.883, and 0.935, respectively. The results of the model 

testing show that these models can be a useful tool when predicting TMP, the RF models being 

the most robust and reliable within the selected hyperparameter range. When compared to the RF 

and ANN models, the LSTM models had the highest degree of overall hyperparameter and model 

structure uncertainty. However, the ANN had the highest degree of uncertainty with extreme value 

prediction. The ANN models had difficulty maintaining consistency when predicting extreme 

TMP values, whereas the LSTM models did not recognize extreme observed TMP values.  

 In future studies, these models can be applied to other WWTPs with MBR systems. 

Additionally, variable importance can be derived from data-driven models to obtain information 
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on the model input variables that have the greatest impact on membrane fouling. For example, the 

RF algorithm can utilize out-of-bag MSE to determine the change in error if a variable is to be 

removed. Further, partial dependence plots can be used to determine the approximate change in 

the output variable based on a change in an input variable. The predictive models presented in this 

study provide promising results, however, they are limited to predicting TMP based on data at a 

present point in time. Implementing models to forecast TMP could provide better decision-support 

for operators to adjust for membrane fouling before it occurs. 
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Appendix 

 

Figure A1. Timeseries for optimal BBP ANN Model 

 

 

Figure A2. Timeseries for optimal DBP ANN Model 
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Figure A3. Timeseries for optimal ABP ANN Model 

 

 

Figure A4. Timeseries for optimal BBP LSTM Model 
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Figure A5. Timeseries for optimal DBP LSTM Model 

 

 

Figure A6. Timeseries for optimal ABP LSTM Model 
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Figure A7. Timeseries uncertainty band graph for BBP RF Model 

 

 

Figure A8. Timeseries uncertainty band graph for DBP RF Model 
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Figure A9. Timeseries uncertainty band graph for ABP RF Model 

 

 

Figure A10. Timeseries uncertainty band graph for BBP LSTM Model 
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Figure A11. Timeseries uncertainty band graph for DBP LSTM Model 

 

 

Figure A12. Timeseries uncertainty band graph for ABP LSTM Model 
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