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Lay Abstract

This thesis demonstrates the use of a “canonical path”, as defined by Gra-
ham et al. [1], as a method of visually tracking disease elimination at a country
level, focusing on measles elimination in the United States. Additionally, we
determine what model structures are required to define a theoretical path using
data on disease characteristics (e.g. vaccination coverage and natural history of
infection), while demonstrating how the path changes when disease character-
istics change. Our analysis suggests that using this method for other countries
or eradicable diseases could provide useful insight of the successes and failures
of elimination strategies. This has the potential to improve elimination and/or
eradication programs in the future.
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Abstract

The eradication of infectious diseases has been of key interest for many years.
While the World Health Organization (WHO) and other health organizations
typically track the progress of disease eradication based on whether regions
are meeting their eradication targets, being able to quantify and/or visually
track the eradication of a disease could prove beneficial. This thesis creates the
“canonical path” to the elimination of measles in the United States (US), using
similar methods as defined by Graham et al. [1]. We build on preliminary work
conducted to fulfill the requirements of an Honours Bachelor of Science in Inte-
grated Science at McMaster University, and the analysis conducted by Graham
et al. [1], through the investigation of the sensitivity of the path to changes in
its definition, as well how the path changes when we change the characteristics
of the disease. This thesis demonstrates the ability to use a canonical path on
a smaller, country-level scale, by using United States (US) state level data to
create the US canonical path. We also determine the model structures nec-
essary to simulate the canonical path, which suggests that the canonical path
method is most useful for eradicable diseases for which we have ample knowl-
edge of the disease, including the natural history of infection and vaccination.
We also predict how the path is affected by the pattern of seasonality and by
the natural history of infection. Overall, the analysis suggests that the more
this method is implemented for other countries that have eliminated measles or
for other diseases for which we have achieved elimination, we may gain insight
of the successes and failures of elimination strategies. This knowledge could
help the WHO and other organizations improve their disease elimination and
eradication strategies in the future.
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1 Introduction

With the emergence of the new pathogen SARS-CoV-2, and a 2 year long pandemic,
many people want to know: when will COVID-19 be gone? Ridding the world of an in-
fectious disease is known as eradication [2,3]. To date, the World Health Organization
(WHO) has only declared two diseases eradicated: smallpox and rinderpest [3]. For
diseases that we wish to eradicate, but have not yet achieved eradication, the WHO,
and other organizations like the Pan American Health Organization (PAHO), focus
on disease elimination. The key difference between these two goals is that eradication
requires a global reduction of cases to 0, while the WHO defines (measles) elimination
as “the absence of endemic' measles transmission in a defined geographical area (e.g.
region or country) for at least 12 months in the presence of a surveillance system that
has been verified to be performing well.” [5] Measles is a perfect example of this; it
has been considered eliminated in the United States as of 2000, however it is still
considered endemic in several developing regions of Africa and Asia [6,7].

Graham et al. [1] presented a novel method of tracking the elimination measles,
through the use of a “canonical path”. In their paper, they use country-level data to
define a global canonical path to the elimination of measles. The goal of this thesis
is to evaluate the use of the canonical path to track the elimination of measles and
other eradicable diseases within a single country. For our purposes we will focus on the
United States, due to the accessibility of data. The canonical path will be described
in detail in section 1.3.

1.1 Identifying Eradicable Diseases

As we are interested in tracking the elimination and/or eradication of infectious dis-
eases, understanding what makes a disease eradicable can help us determine for which
diseases a canonical path could be implemented. Currently, the WHO and the PAHO
have identified 30+ diseases that are candidates for elimination or maintaining elimi-
nation status by 2030, including measles [8]. Although there are considerable economic
and political constraints that affect whether disease eradication is feasible [9], a re-
cent article [3] identified 4 key biological aspects that help determine if a disease is
eradicable:

1. Is the disease easy to diagnose or recognize?

2. Is there a non-human reservoir and/or vector?

L“Endemic refers to the constant presence and/or usual prevalence of a disease or infectious agent
in a population within a geographic area.” [4]
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3. Is the disease geographically restricted?

4. Is there a vaccine or other transmission-disrupting alternatives? [3]

During the smallpox eradication campaign, the specificity of smallpox symptoms made
it very easy to diagnose and trace within communities [3]. Diseases for which diagno-
sis is more difficult, whether due to the nature of symptoms or the sophistication of
testing requirements, make it much harder to track the disease epidemiology, making
elimination more difficult. Additionally, if a disease can only infect humans, eradica-
tion becomes simpler as once eradicated within humans, it cannot persist in another
population or reservoir. Furthermore, when we approach eradication, diseases that
once affected the global population become increasingly geographically restricted [3].
While the geographical restriction of a disease can help the WHO and other organiza-
tions target regions still affected by the disease, regions that have achieved eradication
will get used to the absence of the disease and may not longer see the benefit that
eradication campaigns have. This could cause such regions to reduce their support to
the global campaign, in turn negatively affecting other regions’ eradication targets [3].

Finally, there must be some sort of transmission-disrupting mechanism in place. For
smallpox and rinderpest, the transmission-disrupting mechanism used was a vaccine.
However, the eradication campaign for Dracunculiasis (Guinea Worm Disease) has
been successful in reducing case numbers without the use of a vaccine. Reduced preva-
lence was achieved by The Carter Center, in collaboration with UNICEF, through
the distribution of water filtration systems to provide safe drinking water to affected
communities. The campaign resulted in a reduction in incidence from approximately
3.5 million in 1986, to only 53 cases in 2019 [3,10]. Thus, diseases do not neces-
sarily require a vaccine to be eradicated, but they must have some efficient form of
transmission-disrupting mechanism to be a candidate for eradication.

1.2 Measles Elimination Strategies

Once a disease has been deemed eradicable, the WHO and other health organizations
create global strategies for the elimination and/or the eradication of the disease. Since
shortly after the vaccine was invented in 1963, measles eradication has been of key
interest to the WHO and the PAHO [11,12]. In 2021, the WHO provided an up-
dated program with the goal of measles and rubella elimination for the years 2021 to
2030 [13]. In this program, they outline the achievements made over the duration of
the previous program (2012 to 2020). Over this period, 178 WHO member states had
introduced a second dose of the measles-containing vaccine and global coverage had
reached 71% in 2019. Additionally, in 2018, through 45 supplementary immunization
activities across 37 countries, approximately 346 million individuals were vaccinated
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for measles. Furthermore, as of 2018, 82 countries have eliminated measles. How-
ever, in spite of the progress that was made, “several contextual changes and im-
plementation challenges impeded progress and contributed to an increasing number
of outbreaks and a resurgence in measles cases.” [13] To improve measles elimina-
tion progress, the program has outlined several changes to the 2012 to 2020 plan.
The changes include, but are not limited to, strengthening capacity for outbreak pre-
paredness and response, strengthening cross-border monitoring, information sharing
and collaboration, and improving surveillance.

1.3 A Novel Method of Tracking the Progress Made Towards
Measles Elimination

While the WHO strategic plans outline specific goals for a given time-frame, tracking
the progress made towards elimination is largely based on the world’s progress through
the current plan. For example, how many regions are meeting vaccination targets?
Have we managed to improve our surveillance technologies? It would be helpful
to be able to quantify and/or visualize our progress towards elimination based on
the strategies in place, which is exactly what Graham et al. [1] accomplished. In
their paper, they introduced a novel method that investigates the global path to the
elimination of measles. They define a “canonical path”, which each WHO region
follows while progressing towards measles elimination [1].

The canonical path is defined as a path through incidence space, in which weighted
mean incidence per 100,000 individuals is plotted against smoothed unweighted Coef-
ficient of Variation (CV) of incidence. Graham et al. [1] use yearly measles incidence
and population for each WHO region from 1980 to 2014, by country. They create the
canonical path by finding the weighted mean incidence and CV for each country, and
then find the mean point in incidence space in each year for both the WHO African
and Americas regions. The mean position for each region is then plotted on the same
figure. Since the African and Americas regions are at different stages in elimination
progress, they join the paths at their intersection to define the global path that all
countries follow while progressing towards measles elimination. The resulting path is
shown in figure 1.
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Figure 1: Figure reprinted from Graham et al. [1], representing the global canonical
path to measles elimination. A: An incidence plane with the mean incidence per
100,000 for Africa (green) and the Americas (purple) on the y-axis and the CV on
the x-axis. B: A more coherent version of the canonical path outlining key points in
measles history [1].

With the global canonical path created, Graham et al. [1] conduct analysis on a coun-
try’s progression along the path as well as speed of progression. In addition, they
define a model that is capable of simulating country-level measles incidence, in order
to determine how targeting different age-groups with supplemental immunization ac-
tivities can change a country’s progression along the path. They show that measuring
a country’s progression in this way can provide important insight on future dynamics,
such as how measles dynamics change as we approach elimination, as well as each
country’s overall progress. They argue that as a public health tool, the canonical
path analysis has the potential to help countries optimize their programs by evalu-
ating each program’s success based on changes in the canonical path. This has the
potential to speed up the progression towards measles elimination worldwide.

1.4 Preliminary Work on the US Canonical Path

In a previous paper written to fulfill the requirements of an Honours Bachelor of
Science in Integrated Science at McMaster University, preliminary analysis was con-
ducted that demonstrated the ability to create a canonical path for the United States
using state-level Incidence and Population data [14]. Unlike the path created by Gra-
ham et al. [1], this previous paper created a canonical path that not only shows the
trajectory post-vaccination, but also prior to vaccination. However, the path was not
able to show the trajectory in incidence space in the post-elimination era as data
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extended only to the year 2000. The paper also qualitatively analyzed the difference
between the canonical path of the entire country and the individual state paths. We
visually compared the similarities and differences, but did not conduct any form of
quantitative analysis. The present paper builds on this preliminary work by address-
ing several research questions pertaining to the sensitivity of the canonical path to
changes in path parameters and methodology. These research questions are outlined
in the following section.

1.5 Research Objectives

The goal of this thesis is to build on the preliminary work, in order to better under-
stand the canonical path to elimination. We begin by conducting a sensitivity analysis
on the canonical path: we determine how changing parameters pertaining to the cre-
ation of the path affect the path and the inferences we make. Additionally, we aim to
understand what aspects of a model are required to simulate the US canonical path.
Finally, we investigate how the simulated canonical path depends on the properties of
a disease, by considering how different seasonality and the natural history of infection
affect the path. Addressing these questions has the potential to inform whether these
methods could be used for other diseases deemed eradicable by the WHO.

2 Creating a Canonical Path for the US using In-
cidence Data

2.1 Incidence and Population Data

This study uses several different sources for both incidence and population data. A
.xlsz file containing weekly measles incidence for each US state up to the year 2000 was
obtained from Project Tycho [15]. From 2001 to 2016, annual reports were downloaded
from Morbidity and Mortality Weekly Report (MMWR) as .pdf files [16,17], from
which we extracted the required data tables using the R function tabulizer [18].
The population data is also a combination of two data sources. The first is a data set
containing US census counts by state from 1790 to 1990, which was obtained from the
US Census Bureau [19]. As the US Census Bureau did not have census counts by state
for 2000, 2010, or 2020, the second data set is comprised of intercensal population
estimates by state from 2000 to 2010 and the census counts for 2000 and 2010 [20].
An in depth description of how the data was cleaned and combined can be found in
section 7.2.
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2.2 The US Canonical Path

2.2.1 Creation of a path for a Local Region

To create the path for a single region, we follow the methods of Graham et al. [1] to find
the weighted mean incidence and the smoothed, unweighted CV. First, we calculate
yearly measles incidence per 100,000 using the compiled incidence and population
data. Next, we find the weighted mean incidence through the use of a Gaussian-
weighted moving average. The peak of the Gaussian is two years before the current
point in time, and the standard deviation is 3 years. We begin this process once we
have 10 years of data, resulting in the first aggregated data point corresponding to
the year 1921. Graham et al. [1] used a different method to smooth the CV: they first
computed the normal mean and standard deviation of 10-year moving windows, and
computed their ratio to find what they call “local CV 7. Afterwards, they smooth
the “local CV 7 using a Gaussian filter.

When Graham et al. [1] instead calculated CV as the ratio of weighted standard
deviation and weighted mean incidence, they observed a sharp increase in CV when
there was a period of time where cases dropped significantly (refer to the page 2
of the supplementary material in Graham et al. [1] for more details). This was not
observed with their chosen method [1]. For consistency, we decided to follow their
same methods for smoothing CV, although we investigate the sensitivity of the path
to this choice in section 3.3.

2.2.2 Construction of the Canonical Path for the US as a whole

To construct the canonical path for the US as a whole, we begin by applying the
algorithm as described in section 2.2.1 to each individual US state. We then find
the mean point in incidence space of the US states each year and plot weighted
mean incidence per 100,000 against the smoothed, unweighted CV to define the US
canonical path. While Graham et al. [1] chose to weight each country equally when
finding the mean point in incidence space, we conducted a sensitivity analysis to
determine whether it would be better to weight each state based on their population
size. We found that there is very little difference between the equally-weighted and
population-weighted paths (d = 0.124, based on equation 1 below). Thus, we chose
to leave the states equally weighted for consistency with Graham et al. [1]. Refer to
section 7.4.1 for further detail.

Figure 2 shows the canonical path for the US as a whole. We plot incidence on a
square-root scale to see finer detail near zero incidence. In the figure, we show a time
progression by labeling points every 10 years, starting in 1922; in addition, above the
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canonical path we show the annual incidence time series. Around 1962, incidence
begins lowering and the CV is increasing, suggesting that the path is beginning to
progress towards elimination. This observation is exactly what we expect, as the
vaccine for measles was invented in 1963 [6]. Additionally, from 1922 to 1942, the
path indicates that incidence rose by a factor of 5. This is explained by the fact that
in 1922, measles had only been nationally notifiable for 10 years. This could suggest
that the cases did not increase by a factor of 5, but that measles was being reported
less prior to 1942. To support this argument, one could compare births to reported
cases over this time, as before vaccination almost everyone got measles [6]. However,
as we do not have births data going back to 1922, this would need to done in future
work.
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Inc per 100k

lS)“ZS 1950 1975 2000
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400 -

100 -
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Figure 2: A canonical path of the US as a whole, with the time series plotted at the
top. Starting in 1922, a point has been labeled on the path every 10 years to provide
a sense of time progression along the path. On the y-axis, weighted mean incidence
per 100,000 is plotted on a square-root scale to show finer detail near zero incidence.
The z-axis is the smoothed unweighted CV.

2.3 Comparison of the US Canonical Path to that of Individ-
ual US States

Using the same methods to calculate the weighted mean incidence per 100,000 and the
smoothed unweighted coefficient of variation, as previously discussed, we computed
canonical paths for the individual US states. These individual state paths can then be
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compared to the path for the entirety of the US, in order to investigate to what degree
states are deviating from the path derived for the whole country. We compare paths
using the Euclidean distance between them. Equation 1 below is used to calculate
the distance, d.

n

d = N Z ((iHClyi — inC27z‘)2 + (Cvl,i — CV27Z‘)2) (]_)

=1

inc; and cv; are the coordinates in incidence space of the first path, incy, and cvy are
the coordinates in incidence space of the second path, and n is the number of points
in the paths. This distance also works for n = 1, which represents the comparison
of the two paths for a single year of data. We define the distance with n = 1 as the
pointwise distance between two paths in a given year. We compute the pointwise
distances in section 2.5.

If we were to evaluate the distance without applying any scaling, all of the weight
would be placed on incidence, since it is on a much larger scale than CV . We therefore
scale the data before computing the distance. Graham et al. [1] chose to take the log
of incidence, and then scale both log incidence and CV to be between 0 and 1. If
we were to use this method for our data, the scaling of incidence prior to vaccination
and CV in the elimination era would be too strongly affected due to high levels of
variation. To avoid this issue, we chose to instead scale to the 90th percentile of
log incidence and CV. This method resulted in both axes being scaled consistently,
without impacting the scale of incidence pre-vaccination and the scale of CV in the
elimination era. We conducted a sensitivity analysis with respect to the percentile,
comparing path generated with percentiles of 0.8 to 0.95. We found that the paths
are not sensitive to the choice of percentile in this range (See section 7.3.4.1).

In initially comparing individual US states to the aggregate US path, we discov-
ered that there were several states with paths that were impossible to interpret, e.g.,
Mississippi. In plotting each state’s time series, we discovered that it was not until
roughly 1960 that all states were sufficiently reporting measles. Thus, we chose to
only compare each state to the US path for years after 1959. Using our distance
measure (1) to compare the canonical path of each US state to the path for the US
as a whole in this time period resulted in a median distance of 0.281 (Interquartile
Range (IQR): 0.093). The state path that was furthest from the US as a whole was
North Dakota (d = 0.509), whereas the closest was Virginia (d = 0.183). Figures 3
and 4 compare the canonical paths for Virginia and North Dakota with the aggregate
US path. The paths of Virginia and North Dakota are coloured based on the fact
that they are Democratic and Republican stronghold states respectively [21,22]. A
comparison of the paths of remaining states to the aggregate path can be found in
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section 7.3.3.1; each state is coloured in the same fashion to describe whether it is a
Democratic or Republican stronghold, or a swing state [21-23].
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Figure 3: A comparison of the canonical path for the US (black) to that of Virginia
(blue, democratic), with the time series of Virginia included at the top of the figure.
On the y-axis, weighted mean incidence per 100,000 is plotted on a square-root scale
to show finer detail near 0 incidence. The z-axis is the smoothed unweighted CV.
Evaluating the distance between the paths identified Virginia as the path most similar
to the aggregate US path with a distance of 0.183. This result is well represented in

this plot as Virginia seems to follow a very similar trajectory to that of the aggregate
US path.
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Figure 4: A comparison of the canonical path for the US (black) to that of North
Dakota (red, republican), with the time series of North Dakota included at the top of

the figure (cf. Figure 3). Evaluating the distance between the paths found that North
Dakota is the most dissimilar path (d = 0.509).

2.4 Assigning Each US State its Closest Point on the US
Path

To understand how the US states have progressed along the path over time, we chose
to assign each US state its closest point on the US canonical path for each of the
following years: 1962, 1972, ..., 2012. As there are 51 states, and thus 51 points that
will be labeled on the path for a given year, we create separate figures for Republican
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and Democratic stronghold states each year. We chose to split the data by political
stronghold, as an article in the New York Times outlined how political stronghold is
a very good predictor of COVID-19 vaccination [24]. Additionally, we split the plots
into 2 separate grids in figures 5 and 6. In comparing the progression of Republican to
Democratic stronghold states, we observe little difference in the speed of progression.
This suggests that once state began reporting roughly uniformly, they progressed
towards the elimination of measles at similar paces. We present a similar figure for
Swing states in the supplement (Section 7.3.5).
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Figure 5: Demonstration of how US States progress along the US canonical path over
time by presenting a grid with blocks showing the plots which correspond to the closest
point in the following years: 1952, 1962, and 1972. We show two separate plots for
Republican (red) and Democratic (blue) states to compare progression among these
groups. The same plot created for the years 1982, 1992, and 2002, is presented in
figure 6.
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Figure 6: Demonstration of how US States progress along the US canonical path over
time by presenting a grid with blocks showing the plots which correspond to the closest
point in the following years: 1982, 1992, and 2002. We show two separate plots for
Republican (red) and Democratic (blue) states to compare progression among these
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2.5 Pointwise Distances between States and the Aggregate

To understand how the paths of individual states vary from the aggregate US path
over time, we found the distance between the position of the US as a whole and each
individual state in incidence space, each year from 1960 to 2016. Creating a box plot
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of this data shows an almost monotonic increase in variation over time and a seemingly
systematic change in the median over time (see figure 7). The increase in variation
is likely attributed to the fact that as we approach elimination, the paths of each
state are noisier. This nature of the individual state paths also explains why there
is an observed increase in the median distance as the country progresses towards
elimination, since near elimination the variation in CV increases the dissimilarity
among US states.
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Figure 7: A box plot demonstrating how the pointwise distance (section 2.5 between
each state’s canonical path and the aggregate US path changes over time.

As shown in preliminary work [14] and in the previous sections, it is possible to
construct a canonical path for an individual country using paths of individual states,
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in the same way that Graham et al. [1] created a path for a WHO region from paths
of individual countries. We found that different states follow the aggregate path to
differing degrees. However, in order to make inferences, for instance regarding how
the structure of the path depends on characteristics of the disease, we must have a
robust understanding of how sensitive the path is to our assumptions when creating
the path, and also how dependent the path is on the characteristics of a disease. The
following sections will explore these important questions.

3 Sensitivity Analysis of the Aggregate US Canon-
ical Path

A key goal of canonical path analysis for measles is to investigate how different con-
trol strategies affect the path to elimination. In particular, this was investigated by
Graham et al. [1], who looked at the effect of targeting different age cohorts with sup-
plementary immunization activities. However, as previously mentioned, in order to
use the canonical path for these types of inferences, we need to understand how sen-
sitive the path is to the details of its construction. The following sections investigate
how the values of several parameters affect the derived canonical path.

3.1 Method of Weighting Mean Incidence per 100,000

As defined by Graham et al. [1], the canonical path is generated by plotting points in
incidence space. In incidence space, the r-axis is the smoothed, unweighted coefficient
of variation, and the y-axis is the weighted mean incidence per 100,000. To calculate
weighted incidence, Graham et al. [1] chose to use a Gaussian filter, putting the most
weight on the mean incidence two years prior and weighting all years in the past less.
While this is a reasonable choice, we are interested in determining whether or not
we could use a simpler moving average and achieve the same result. Figure 8 shows
the comparison of using a Gaussian filter vs. a uniformly weighted moving average to
calculate the weighted mean. We include the time series of data used to create each
of the paths at the top of the figure. Since the weighting does not change the time
series, each path has an identical time series.
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Figure 8: Comparison of canonical paths constructed with a Gaussian filter (black)
vs. a standard moving average (red) in order to weight mean incidence. Points are
labeled every 10 years starting in 1922 to have a sense of time progression along the
path, as well as to aid in the comparison of the paths.

Figure 8 shows that the canonical paths are similar, regardless of which of the two ways
the moving average is weighted (the distance (1) between the two paths is d = 0.059).
Before 1942, mean incidence is typically higher when calculated using the Gaussian
filter, whereas between 1962 and 1992 we see the opposite. The overall similarity of
the two paths suggests that we could use the simpler standard moving average to
calculate weighted mean incidence, without considerably affecting any inferences.
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3.2 Changing the Shape of the Gaussian Filter

When using the Gaussian filter, we must specify its centre (¢) relative to the current
time, and its standard deviation (o). Graham et al. [1] chose ¢ = —2yr and ¢ = 3yr.
We investigated sensitivity of the canonical path to these parameters, considering
—Hyr<c<0and lyr <o < 10yr. Figures 9 and 10 examine sensitivity to ¢ and
o, respectively. In each figure we include the time series of data used to create each
of the paths at the top of the figure. Since the weighting does not change the time
series, each path has an identical time series.
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Figure 9: Comparison of the aggregate US canonical path created using values for the
centre of the filter ranging from 0 to 5 years shifted from the current point in time.

Points are highlighted with a large dot every 10 years starting in 1922, with the point
corresponding to 1952 coloured black.
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Figure 10: Comparison of the aggregate US canonical path created using values for
the standard deviation of the Gaussian filter ranging from 1 to 10 years. Points are
highlighted with a large dot every 10 years starting in 1922, with the point corre-
sponding to 1952 coloured black.

In figures 9 and 10, increasing the number of years we shift the centre weights the past
more heavily than the present, whereas increasing the standard deviation effectively
increases the smoothing window. From 1921 to 1952, as the centre is shifted further
into the past, when the number of cases is lower than of the current point in time,
increasing the weight of the past reduces weighted incidence. Additionally, when we
increase the smoothing window, we decrease the weight of the centre of the Gaussian
and increase the weight of the tails. However, since we use a truncated Gaussian,
with most of the left tail cut off, this has the most impact on the points in the future
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(the right tail). Thus, since the majority of cases in the future are less than that of
the present, weighted incidence is reduced.

After 1952, shifting the centre further in the past results in increased weighted in-
cidence, as cases in the past were higher than those of the present due to vaccina-
tion [6]. Furthermore, increasing the standard deviation also increases weighted inci-
dence, since the left tail now contains a larger number of points with cases higher than
that of the present. Thus, increasing the the weight of the tails increases weighted
incidence.

From this analysis, although we do observe differences in the paths, they are easily
explained by the history of measles. This suggests that the choice of the location of
the centre or the standard deviation of the Gaussian filter will not have a substantial
impact on the inferences we make.

3.3 Method of Weighting the Coefficient of Variation

Another choice made by Graham et al. [1] was to not weight the CV in the same way
as used for the mean incidence. When they attempted to weight the CV in the same
way, whenever there was a period of time where incidence was much lower than before
(near elimination), there was a sharp increase in the weighted CV (refer to page 2 of
the supplement from Graham et al. [1] for more detail). Since in this paper we are
using finer scale data, we decided to see if this behaviour is also observed with the
aggregate US path. Thus, in figure 11, we compare the path created using a Gaussian
filter to weight both incidence and CV , to the path with CV weighted by first finding
the 10-year average CV and then smoothing using the R smth.gaussian() function
from the smoother package. Similar to figures 8 through 10, we include the time
series of each path, which is identical, at the top of the figure.
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Figure 11: Comparison of the path created using the same scaling method as used for
the mean incidence (blue), to the scaling method suggested by Graham et al. [1] that
instead finds the CV every 10 years, and then smooths it using a Gaussian smoothing
function in R (black) [1]. Points are plotted every 10 years starting in 1922.

In comparing the paths, there is very clearly a difference between the two paths.
Using the defined distance (Equation 1) results in a distance of 0.188. In the path
that uses a Gaussian filter to weight CV (blue), the weighting resulted in a much
smoother path, with a smaller range of CV values. Interestingly, we do not observe
any sharp increases in weighted CV as observed by Graham et al. [1]. Since we are
creating the path on a finer scale, one would assume that we would observe more
variation in the CV due to the greater amount of demographic stochasticity, but we
are actually observing the opposite. Regardless, the results suggest that the better
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choice of weighting is to first calculate the 10-year average and then smooth, as the
other method appears to reduce variation in the CV of incidence, which can get rid
of any patterns in the US path.

Overall, the results of the sensitivity analysis suggest that the choices we make regard-
ing the calculation of weighted incidence will not have a large impact on inferences.
However, over-smoothing the CV hides actual variation in CV, compromising our
ability to draw information from position on the canonical path.

4 Simulating the US Canonical Path

4.1 Building the Model

In order to fully understand any other factors that may influence the path, we must
be able to simulate it, i.e., we must be able to construct an equivalent path from
simulated case report data (for which the generative mechanisms are exactly known).
In their paper, Graham et al. [1] simulated the paths of individual countries in the
WHO Americas and African regions using a discrete time age-structured model, which
has a model matrix that defines transitions from all possible epidemiological stages”
and age combinations to all other possible stages and age combinations, at each time
step. The simulations used country-specific data for age distribution, vital dynamics,
vaccination coverage, and other derived measles parameters such as rate of decline in
maternal immunity, vaccine efficacy, basic reproductive number, and age-dependent
contact rates [1]. As the model used by Graham et al. [1] was rather complex, one
of the goals of the present paper is to determine what aspects of the model are truly
required to simulate the path.

When creating our model, we decided to start with the base Susceptible-Exposed-
Infectious-Recovered (SEIR) model with vital statistics and vaccination, and built
it up until we were able to simulate the US path effectively. The base SEIR model
equations are presented in equation 2.

2The stages included by Graham et al. [1] were: maternally immune, susceptible, infected, re-
covered, and vaccinated.
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In this equation, v is the birth rate, /N is the population size, p is the proportion of
the population vaccinated, 3 is the transmission rate, u is the death rate, % is the
mean latent period, and % is the mean infectious period. Sections 4.1.1 through 4.1.4

outline the steps taken to build a model that accurately reproduced the US canonical
path.

4.1.1 Time-varying $ and vaccination

Since measles is seasonally forced, the first element added to the model was a time-
varying transmission rate that uses cosine with a period of one year to represent the
seasonality (equation 3) [25].

B = Po(1 + acos(2nt)) (3)

Rozﬂoxzx

PRk CEInIeEn @

In equation 3, (3 is the mean transmission rate calculated using the expression for
the basic reproduction number, Ry, (equation 4) and « is the amplitude of seasonal
forcing. The value of « is chosen through optimization in section 4.2.

Since we are modeling the measles dynamics over the past 100 years, we also imple-
mented time-varying vaccination. This is accomplished by creating a function that
sets p = 0 before 1963, and linearly increases from 0 to the current estimated measles
vaccination coverage in the US; approximately 90.7% [26].

4.1.2 Treating each simulation as a US state based on population

When we create the US canonical path, we are not using data for the entirety of the
US; we use state level data and find the mean. To mimic this, we ran 51 simulations,
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each representing a US state based on the state’s population in 1963. However, since
most states have a population less than the critical community size for persistence in
the model (~ 1 million [27]), we experienced extinction in the majority of simulations.
To avoid fadeouts, we implemented immigration. This is accomplished by changing
the % term, to instead be %(I + ¢). In this expression, ¢ models immigration as
prevalence from imported infections. In order to best represent immigration, ¢ needs
to be a function of time, since we assume that as vaccination rates change, so will the
number of infections resulting from immigration. We therefore took ¢ to be a function
of the equilibrium prevalence, which also changes over time due to vaccination. Thus,
q becomes the equilibrium prevalence at each time point, multiplied an immigration
factor, f (Equations 5 and 6). The value of f is chosen through optimization in

section 4.2.

vo

1
fan =N x i (09 - ) ®)
q = leqmf (6)

4.1.3 Using real data to improve the representation of vaccination and
vital statistics in the US

Using the model to simulate each US state, solely by changing the population size in
individual simulations, created a path that was not representative of the US canonical
path, as it had a different shape and did not match up at all. To improve the model
further, we updated the vaccination function, that we set in a naive way in section
4.1.1, to use US vaccination coverage data.

We collected cleaned Measles-Mumps-Rubella (MMR) vaccine coverage data for the
entirety of the US from 1980 to 2020 from the WHO [26]. Additionally, we obtained
cleaned MMR vaccine coverage data among 0-35 month olds for each US state from
2011 to 2017 from the National Center for Immunization and Respiratory Diseases
[28]. We were able to find un-cleaned state-wise data from 1995 to 2010 and 2018 to
2019, however the time required to clean the data was not feasible for this paper [29].
This data was discussed in detail in section 7.2.5. Using the country-wide coverage
from 1980, we updated the function to linearly increase to the coverage in 1980, and
then moving forward, it either uses the coverage for the given time, or chooses the
coverage value for the closest point in time. Although the function would be better
with more data, this allowed for a more accurate representation of the vaccination
time series within the simulations.

We further improved the model by combining births and deaths data by US state from
4 different sources into a single, working .csv file, which was then used to implement
time varying birth and death rates into the model. This is represented by a function
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that either takes the given birth or death rate value at the time step or chooses the
value based on the closest point in time. [30-33]. The vital statistics data is discussed
in detail in section 7.2.4.

4.1.4 Accounting for observation error and preventing transient behaviour

Although the components added thus far resulted in a path that followed a very
similar shape as the aggregate US path, its incidence was on a larger scale. This is
due to the fact that the model simulates incidence, while the path with real data
is reported cases. Thus, another component added to the model was to account for
observation error.

Before vaccination, it was estimated that almost everyone ended up getting measles [6].
Thus, to estimate the under reporting rate, we compared data for births and reported
cases in this era by plotting the ratio over time. However, we must divide reported
cases in a given year by births. The year is shifted by the mean age at infection
to approximate the year in which those with reported cases would have been born.?
Since we do not know the exact mean age at infection for measles, we compare these
ratios for different values of the mean age at infection in figure 12. From this figure,
we estimate that approximately 10% of cases are reported. Additionally, we observe
little variation across mean ages at infection.

3This is a crude estimate as we are assuming that everyone that gets measles from that birth
cohort, gets measles at the mean age at infection. To improve this estimate, we could collect age-
structured data and implement the methods used by Fine and Clarkson [34,35].
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Figure 12: As an estimate of the proportion of cases reported, these box plots show
how the ratio of reported cases in a given year to the births in the year shifted by the
mean age at infection (y) changes over time (x) in the pre-vaccination era. Each plot
represents different mean ages at infection. We define the proportion of un-reported
cases as 1 —y. This figure shows that, over time and across values of the mean age at
infection, there is not much change in the median proportion reported. We estimate
that approximately only 10% of measles cases are reported. We account for under
reporting in the model using this estimated value of the proportion of cases reported
with a binomial to sample our simulated incidence (Refer to section 7.5.1.5 for further
detail).

To account for this level of under reporting, we sample the simulated incidence using
a binomial, that requires the number of observations, the target number of reports
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(incidence), and the probability of a case being reported, 0.1. This resulted in a path
that follows not only a similar trajectory, but is also very close in scale based on
incidence.

The final addition to the model was simply to run for extra years at the initial condi-
tions to ensure our model is converging to an attractor and not exhibiting transient
behaviour. For our analysis we chose a length of the transient of 200 years. For more
details on how we built the model, refer to section 7.5.

4.1.5 Model Comparisons

For the purposes of this paper, we found that we were able to construct a canonical
path for the US using a simpler model that did not require age-structure or any addi-
tional epidemiological stages, as used in the model from Graham et al. [1]. However,
we haven’t implemented the model created by Graham et al. [1], so we cannot outline
the difference the model makes for our data. This is something than can be done in
future directions (Section 6.1). Additionally, although we were able to simulate the
US path using a simpler model, we discovered that the knowledge of measles natural
history of infection, vaccination timeline, and the availability of data, was crucial in
order to simulate the path effectively. This suggests that this method is only useful
for diseases in which we have extensive knowledge of the natural history of infection,
vaccine efficacy, and level of waning immunity.

4.2 Optimization of Model Parameters

With a model that represents the aggregate US path reasonably well, the next step was
to find values of certain parameters that do not have standard values, specifically, the
immigration factor, f, and the amplitude of seasonal forcing, o. For o values ranging
from 0 to 0.8 and f values of 0 and 107 to 0.01, we simulate the US canonical path for
all 81 parameter combinations in the 2-dimension (2D) parameter space. To find the
optimal parameter combination, we minimized the distance between each simulated
path and the US canonical path using the distance defined in equation 1. A heat map
of distance for each pairing of o and f is displayed in figure 13. In this figure grey
blocks represent parameter combinations that resulted in extinction. We also create
a figure comparing the canonical path of the US to each path created from the top 10
parameter pairings in figure 14 and plot each paths time series in figure 15.
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Figure 13: Heat map of distance with the immigration factor, f, on the y-axis and
« on the z-axis. Each grid block is coloured a shade of blue based on the value of
distance. Grey blocks represent parameter combinations that resulted in extinction.
The minimum distance occurs when o = 0.2 and f = 107°.
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Parameter Values
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Figure 14: Paths corresponding to top 10 pairings of o and f. For the remaining
analysis, we choose the following parameters: immigration factor, f, of 1073 and « of
0.1 (table 1).
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Figure 15: Time series corresponding to top 10 pairings of o and f. The colours of
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each time series correspond to the canonical paths in figure 14.

This process resulted in the optimal parameter pairing of: o = 0.2 and f = 107°.
However, in figure 13, it is evident that f < 10~ is not sufficient to prevent extinction
for a > 0.2. Since we wish to understand how the path changes for ranges of the
amplitude of seasonal forcing, o, we must use f > 105 Thus, we choose to use
The

I
2000

2000

2000

2000

2000

the second best parameter pairing for our analysis: o = 0.1 and f = 1073.
parameters used for the remaining analysis are presented in table 1.
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Parameter List
Parameter Value \ Description \ Source
% 5 days mean infectious pe- | [30]
riod
1 8 days | mean latent period | [36] |
Ro 17 basic  reproduction | [36] [37]
number
« 0.1 amplitude of seasonal | optimized (sec-
forcing tion 4.2)
initial run 200 years transient period chosen  practi-
cally
f 1073 immigration factor optimized (sec-
tion 4.2)

Table 1: Values of model parameters used in simulations.

5 Dependence of the Simulated Path on Disease
Characteristics

The creation of a model that well represents the US path opened up the potential
to understand how the canonical path depends on properties of the disease and en-
vironmental conditions. Changing parameters such as the mean infectious period, %y’

the mean latent period, cl;v or the amplitude of seasonal forcing, «, allows us to ex-
plore what the path could look like for diseases with similar seasonality, but different
natural history of infection, or in regions where the pattern of seasonal forcing may
be different. The parameter values used in the simulations are either those obtained
through optimization, values obtained from literature, or practical values (table 1).

5.1 Canonical Paths with Varying Mean Infectious and La-
tent Periods

As the mean infectious and latent periods vary across infectious diseases, understand-
ing how the path changes based on these parameters could provide insight on what
the path may look like for a disease with similar seasonality, but different history of
infection. First, we simulated paths for the following mean infectious periods: 2, 4,
8, 16, and 32 days (figure 16).

Since we have fixed Ry to be 17, changing the mean infectious period changes the
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transmission rate. For mean infectious periods of 2, 4, and 8 days, we observe a
similar trajectory to that of measles; the path is relatively smooth until we approach
the elimination era. However, increasing the mean infectious period further results
in a more jagged path. Additionally, we show the time series corresponding to each
value of the mean infectious period in figure 17.

200 -

[ ]
Mean Infectious Period (days)
o 2
150 - \ - 4
* 3
L] - 16
o 32

100~

Mean Incidence per 100,000

CcvV

Figure 16: Results of simulating the US path for mean infectious period ranging from
2 to 32 days. The paths for mean infectious periods of 2, 4, and 8 days exhibit a
similar trajectory of the path for measles (mean infectious period of 5 days [36]).
However, increasing the mean infectious period further results in more jagged paths.
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1970 1980 1990 2000

Figure 17: Time series corresponding to paths created using the following values of
the mean infectious period: 2, 4, 8, ..., 32. The colours of each time series correspond
to the canonical paths in figure 16.

Next, we simulated paths for mean latent periods in the same range (figure 18). The
time series of each path is presented in figure 19. When we compare the simulated
paths for ranging mean latent period, we see more similarity among the paths. These
results suggest that if an infectious disease, which only differs based on the natural
history of infection, has a mean infectious or latent period only differing by a couple
days, it is likely that its path to elimination will be similar. However, for a disease
like whooping cough that has a similar Ry as measles but much longer infectious
period [38], we would expect to see more jagged paths to elimination.
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Figure 18: Results of simulating the US path for mean latent period ranging from
2 to 32 days. In comparing the simulations for different mean latent periods we see
that the paths are very similar, with smooth trajectories to elimination.
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Figure 19: Time series corresponding to paths created using the following values of
the mean latent period: 2, 4, 8, ..., 32. The colours of each time series correspond
to the canonical paths in figure 18.

5.2 Canonical Paths with Varying Seasonality

Finally, we wished to determine how changing the amplitude of seasonal forcing, «,
affects the shape of the path. As the seasonal amplitude is increased from 0 to 1,
the SEIR model displays a sequence of bifurcations and a wide range of behaviours,
ranging from an annual cycle for a close to 0, to multiple co-existing stable cycles of
various lengths, to chaos (e.g., Earn [36, Figure 11]). We capture most behaviours
by considering @ = 0,0.1,0.2,...,0.8. Figure 20 shows the paths simulated for the
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specified values of a.. To determine which behaviours are observed in our model with
these values of «, we simulated the deterministic model for 2000 years from a single
set of initial conditions to determine if the time series converged to stable cycle, or
didn’t and either experiences chaos or multiple co-existing cycles. To improve our
ability to detect the presence of stable cycles, we would need to consider a grid of
initial conditions. This could be conducted in future work. Details can be found in
section 7.6, however the paths are labeled accordingly in figure 20. The time series of
each path is presented in figure 21.

200 -

Amplitude of Seasonal
Forcing a

* 0 (no seasonality)
—- (.1 (biennial)
e 0.2 (biennial)
—&- (.3 (chaotic)
e 0.4 (chaotic)
-o- 0.5 (chaotic)
* 06 )
e (.7 (chaotic)
e 08¢ )

100 -

chaotic

chaotic

Mean Incidence per 100,000

Ccv

Figure 20: Canonical paths simulated for the following amplitudes of seasonal forcing,
a: 0 to 0.8 in increments of 0.1. The legend describes both the value of o and the
primary stable cycle or chaotic behaviour estimated from the deterministic models in
section 7.6. This figure shows that paths created with a of 0 through 0.2, follow very
similar trajectories, however increasing « further increases the CV of incidence.
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0.001 -
1970 1980 1990

Figure 21: Time series corresponding to paths created using the following values of
the a: 0 to 0.8 in increments of 0.1. The colours of each time series correspond to the
canonical paths in figure 20.

The figure shows that for o values of 0 to 0.2, the trajectory is very similar, however
increasing « further increases the CV. Interestingly, although the paths represent dif-
ferent levels of seasonality, changing the amplitude of seasonal forcing is only changing
the CV of incidence. These results suggest that countries with either shorter stable
cycles or chaotic dynamics follow a smoother trajectory, similar to that of the US
path, although, countries with chaotic dynamics, like in Sub-Saharan Africa between
1986 and 2002 [39], will have increased CV of incidence due to the lack of a stable,
periodic cycle.
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6 Discussion

The goal of this thesis was to better understand the use of a canonical path to track the
elimination of measles and its potential use for other eradicable diseases on a country-
level scale by building on preliminary work conducted for an undergraduate thesis [14].
We began by creating the canonical path to the elimination of measles using the
methods outlined by Graham et al. [1]. To understand to what degree individual states
deviate from the path, we compared each state to the aggregate US path between 1960
and 2016 using the distance defined in equation 1. We identified Virginia and North
Dakota as the states most and least similar to the US path respectively in section
2.3(d = 0.183 and d = 0.509). Additionally, for the following years: 1962, 1972, ...,
2012, we projected each state onto the aggregate path to understand whether states
are progressing towards elimination at different speeds (Section 2.4). We compared the
progression of Republican and Democratic stronghold states, and found that there was
very little difference in progression across these groups (Section 2.5). Furthermore, in
creating a box plot of the pointwise distance between each USstate and the aggregate
path over time, we found that from 1960 to 2016, the median and variation of distance
increased. This is exactly as expected, since as we approach elimination, there is
increased variation in incidence, resulting in less similarity between the states and the
aggregate path.

Although these results suggest that individual states progress towards the elimination
of measles at similar speeds, this thesis demonstrated that we can successfully use the
method developed by Graham et al. [1] on a country-level scale. Using this method
for countries that have not yet eliminated measles, but may be close, has the potential
to identify regions within the country that could be slowing the country’s progres-
sion towards elimination. This information would allow the country to adjust their
elimination strategy to target specific region(s), in turn improving their progression
towards the elimination of measles.

In order to make inferences from the path, we conducted a sensitivity analysis to
determine how sensitive the path is to changes in its definition. Specifically, we
investigated how changing the weighting methods of incidence and CV, as well as the
shape of the Gaussian filter used in weighting, changes the path. We discovered that
we could use either a simple standard moving average or a linear Gaussian filter, as
chosen by Graham et al. [1], to weight incidence without greatly affecting the shape
of the path in section 3.1. Additionally, if we use the linear Gaussian filter to remain
consistent with the methods defined by Graham et al. [1], changing the location of
the centre or the standard deviation of the Gaussian filter has little impact on the
shape of the path (Section 3.2). We do observe systematic changes in the level of
weighted incidence, however this is explained by the fact that prior to vaccination,
cases were lower than that of the present. Thus, weighting the past or the tails more
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heavily will increase weighted incidence. The opposite is observed after vaccination.
These results suggest that the path and any inferences made are not sensitive to the
choice of weighting method for incidence. Although, when we changed the weighting
method for CV, we observed drastic changes in the path due to over-smoothing in
section 3.3. Thus, even though our inferences will not be greatly impacted by changes
in the weighting of incidence, we must choose a suitable weighting method for CV to
prevent over-smoothing, which can affect inferences by hiding true variation in the
path.

Another core element of this thesis was not only to simulate the aggregate US path,
but also to understand which elements of a model are necessary to accurately predict a
country’s path. For example, do we need to implement complex components like age
structure or additional epidemiological compartments, as implemented by Graham
et al. [1]?7 Or is a basic SEIR model, (Equation 2), sufficient? We started with a base
SEIR model, and built it up one component at a time until we achieved a model that
accurately reproduced the aggregate US path. We found that our model needed to
have the following time-varying structures to well represent the aggregate US path:
transmission, vital dynamics, and vaccination. Additionally, we needed to incorporate
a crude form of immigration to prevent extinction in states with a population below
the critical community size for persistence in the model (~ 1 million). Furthermore,
since the US path is constructed using reported case data rather than incidence, we
implemented observation error to account for under-reporting of measles. Finally, we
chose to run for extra time at the initial conditions to ensure that we converged to an
attractor. (Section 4.1)

In qualitatively comparing our model to that used by Graham et al. [1], we found
we were able to use a simpler model to simulate the UScanonical path. However, to
determine which model provides better prediction on a country-level scale, further
research that implements our model and the model used by Graham et al. [1] for the
same country, e.g. needs to be conducted. Regardless of which model provides better
prediction, an important take-away from the process of building up the model is that
we must have a robust understanding of the characteristics of a disease. This suggests
that this method is most useful for eradicable diseases for which we have data on the
natural history of infection and vaccination. (Section 4.1.5)

The final component of this thesis aimed to predict what the path may look like for
a disease with similar R of measles, but with different natural history of infection or
seasonality. In simulating canonical paths with the following mean infectious periods,
2,4, 8, ..., 32 days, we discovered that the paths with mean infectious periods similar
to that of measles experienced a smooth trajectory towards elimination. However, in-
creasing the mean infectious period past 8 days results in the paths being more jagged.
However, when considering mean latent periods in the same range, we observed little
difference between the paths. The results of changing the natural history of infection
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suggest that if a disease has similar characteristics and natural history of infection
varying only by a few days, it will experience a smooth path to elimination, like that
of measles. However, for a disease like whooping cough, that has a similar Ry but
much longer mean infectious period, the path will be more jagged (Section 5.1). Fur-
thermore, when the amplitude of seasonal forcing is changed, and the dynamics move
from short, stable cycles, to chaos, we observe that paths corresponding to chaos tend
to have higher CV of incidence. This suggests that all countries will follow a similarly
smooth path to elimination, but those with chaotic dynamics, like in Sub-Saharan
Africa between 1986 and 2002 [39], will have increased CV of incidence (Section 5.2).

6.1 Future Directions and Limitations

The analysis conducted in this paper has provided important insight on the sensitiv-
ity of the canonical path and provides examples of how its trajectory changes when
comparing ranges of key measles parameters. Although, there are limitations of this
study. For example, the data used to represent time-varying vaccination assumes that
the vaccination coverage is the same across all USstates. This could be ameliorated
by cleaning the state-level vaccination data from 1995 to 2019 obtained from the Na-
tional Immunization Surveys and collecting vaccine coverage data going back to the
introduction of a measles vaccine’ [29]. Additionally, we discovered that there are in-
consistencies in the reporting of measles across the USstates before 1960. Although we
were able to crudely estimate the approximate level of under-reporting to implement
observation error in our model, we need to collect births data going back to the year
in which measles became nationally notifiable and collect age-structured incidence
data. This would allow us to define a time series of reporting rates across states,
and correct for under-reporting when creating the canonical path for the USusing a
more realistic method as used by Fine and Clarkson [34,35]. Furthermore, our data
collection was impacted by the COVID-19 pandemic. One of the initial goals of the
paper was to compare the UScanonical path, to one created for Canada, in order
to explore similarities and/or differences between countries. However, as the current
focus is on COVID-19 research, collecting historical data for measles cases from each
province became very time-consuming and got us no where. Collecting this data in
order to compare the USand Canadian paths would be an interesting topic for future
research.

One could also collect data for countries that exhibit different measles seasonality, to

4We reached out to the Centers for Disease Control and Prevention (CDC) Advisory Committee
on Immunization Practices and they provided a link to their archives. We were not able to find
data through that source, however they suggested that we submit an Freedom of Information Act
(FOIA) request to get the data we need. Although this was not feasible for our report due to time
constraints. [40,41]
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determine if this corroborates the findings that countries with different seasonality
than that of measles have increased CV of incidence in their paths towards elimina-
tion. Another topic of future research is to create paths for other diseases that have
been eliminated, i.e., smallpox, polio etc., and compare the paths to that of measles.
Insights from the comparisons could inform whether this method of determining the
path to elimination of a disease could be used for diseases we have yet to eliminate.
The ability to use this method for a disease we wish to eliminate could allow coun-
tries to determine which elimination strategies would have the greatest impact on the
trajectory of the path. We could also use the model defined by Graham et al. [1] that
simulates the canonical path using a state-space compartmental model, to determine
which model provides the best representation of the US canonical path. Finally, the
canonical path created by Graham et al. [1] starts at small CV, increases in CV, and
then returns to small CV as elimination is approached. Thus, the CV is not a one-to-
one function of mean incidence and therefore provides information beyond what can
be obtained from a mean incidence time series alone. In our case, if the shape of the
path observed before vaccination is accurate, then the canonical path provides more
information in our case as well, as it is clearly a 2D path. However, since we identified
that the structure in this time period is affected by underreporting, we would need to
correct for underreporting before comparing the different methods.

6.2 Conclusion

As the elimination of diseases is of key interest, whether regarding the COVID-19
pandemic, or other diseases deemed eradicable by the WHO and the PAHO [8], being
able to track a country’s progress towards the elimination of diseases could prove use-
ful. While Graham et al. [1] demonstrated that the global canonical path analysis has
the potential to help countries improve their measles elimination strategies, this paper
not only showed that inferences are not sensitive to the definition of the path, but
also that the path can be used on a smaller scale to compare the individual USstates
to the US path as a whole. Using this method on a smaller scale could help coun-
tries determine which of the smaller regions are falling behind, and change elimination
strategies accordingly. Our analysis also shows how the path changes based on aspects
of measles, such as seasonality. Furthermore, the simulation analysis suggests that we
can simulate a theoretical path for an emerging disease based on plausible vaccina-
tion strategies and known data regarding the natural history of infection. However,
this is only possible for a disease with high vaccine efficacy and long-term immunity,
otherwise it is unlikely to be eliminated. The more we use this method for diseases
we wish to control or those already eliminated, we may learn more about strategies
that are most useful in eliminating diseases, in turn improving elimination programs
in the future.
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7 Supplementary Materials

7.1 Introduction

This supplement is written in knitr, compiled using R version 4.0.3 (2020-10-10) and
uses the following R package versions:

## tidyverse readxl date stats smoother calibrate
## 1.3.0 1.3.1 1.2-39 4.0.3 1.1 1.7.7
## RColorBrewer  tikzDevice rlist gridExtra adaptivetau
#i# 1.1-2 0.12.3.1 0.4.6.2 2.3 2.2-3
##  deSolve knitr tabulizer shiny miniUI  ggrepel
## 1.28 1.36 0.2.2 1.6.0 0.1.1.1 0.9.1

The goal of this supplement is to ensure that the results of this report are reproducible.

7.2 Data Collection and Cleaning

The analysis conducted in this report required the use of several different data sets
regarding measles incidence, population, vital statistics, and vaccination coverage.
Sections 7.2.1 through 7.2.5 outline how the data is cleaned and prepared for use.

7.2.1 Reading Incidence Data and Population into R

For measles incidence data up to 2001 and United States population data, we read
the data into R using the read_excel() function in the code below. We save the
generated data frames to a .RData file using save (). This allows us to use the data
sets later on, without having to re-input the data into R.

library(readxl)

library(knitr)

pop.data <- read_excel(’Good_data/Pop_data.xlsx’,col_names =FALSE)

measles.data <- read_excel(’Good_data/US.14189004.x1sx’)

pop.data.2000.2010 <-

read_excel(

’Good_data/intercensal_pop_US_state_2000-2010_CensusBureau.xls’
)
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save (pop.data,measles.data,pop.data.2000.2010,
file=’Good_data/alldata.RData’)

Since we have measles incidence data for the years 2000 to 2016 as MMWR re-
ports in .pdf format, reading the data from these files is more complex. To ex-
tract tables from pages in .pdf files, we use either the extract_tables() or the
extract_areas() functions from the tabulizer package. The difference between
the two functions is that extract_tables() either guesses the location of a table on
a specific set of pages or it allows you to provide values telling it where the table lies,
while extract_areas() allows the user to highlight the specific area of the chosen
pages that you wish to extract interactively using the shiny app that is opened when
calling the function. Due to the nature of the extract_area() function, this code
cannot be run in this document. Instead it is run in pdftoexcel.R and saves the data
to Good_data/measles.2000.2016.RData. The cleaning of this data is discussed in
section 7.2.3.2.

7.2.2 Population

As mentioned in section 2.1, we combine two separate data sets to obtain the annual
population estimates of each US state from 1912 to 2016. We begin cleaning the
data set containing annual population estimates for each US state from 2000 to 2010,
pop.data.2000.2010, by removing the population estimates for the entirety of the US
and the aggregate population estimates for the northeast, midwest, south, and west
regions. Additionally, for ease, we name the column containing the US state names
“State”. We also remove the first two rows of the data set as they are irrelevant
rows generated when reading in the file. Next, we fix the formatting of the US state
names as each begins with a “.”. This is accomplished using the substr () function
where we pass the argument start= 2 so that each entry in the “State” column is re-
written starting with the second character and ending with the last character, where
the number of characters in the string is found using nchar.

library(tidyverse)

load("Good_data/alldata.RData")

pop.data.2000.2010 <- pop.data.2000.2010[3:59, ]
colnames (pop.data.2000.2010) <- c("State", c(2:14))

Page 48 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

remove <- c("United States", "Northeast", "Midwest", "South",
"West”)

pop.data.2000.2010 <- pop.data.2000.2010 %>%
filter (! (State %in% remove))

## Fix the state mame formatting by removing the first
## character (as is each begins with a ’.°)
for (i in 1l:nrow(pop.data.2000.2010)) {
pop.data.2000.2010$State[i] <- substr(pop.data.2000.20108Statel[i],
2, nchar(pop.data.2000.2010$State[i]))

With the “State” column properly formatted, we also need to get rid of the columns
we do not need. For example, the data set has two entries for each of 2000 and 2010,
where one is the census count as of April 1st and the other is an intercensal estimate
as of July 1st. For consistency with the other intercensal estimates from 2001 to
2009, we choose to use the July 1st estimates instead of the April 1st counts. Thus,
we name the columns corresponding to the years in which we want data with 2000
through 2010, and the others are left alone. This allows us to remove the columns
that are not the “State” column or one corresponding to the years of data we need.
Additionally, we use na.omit() to remove the first row that has NA entries due to
formatting when reading the data into R. Additionally, we change the US state names
to be all capital letters to match the other population data set using the toupper ()
function.

## Remove th columns containing data we do not need,
## e.g., in 2000 and 2010 there is a census count and
## a popualtion estimate. Remove the count for
## consistency
colnames(pop.data.2000.2010) <- c("State", 2, c(2000:2009),
13, 2010)
pop.data.2000.2010 <- na.omit(pop.data.2000.2010)
index <- colnames(pop.data.2000.2010) %in}% c("State", c(2000:2010))
pop.data.2000.2010 <- pop.data.2000.2010[, index]

## Change state names to uppercase for consistency

## with other data frames
pop.data.2000.2010$State <- toupper(pop.data.2000.2010$State)

Now that the population data from 2000 to 2010 is cleaned, we combine this with
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the census data from 1900 to 1990 (pop.data). First, we create an empty data frame
that has the number of rows corresponding to the number of US states and columns
for the years 1900 to 2010, where the row names are the US states and the column
names are the years. Note that the census count data set has the columns organized
based on descending years (1990 to 1890). For simplicity we arrange this data frame
the same way, i.e., the columns are named 2010, 2000, 1990, ..., 1900. The population
estimates for 2000 and 2010 are obtained from the intercensal estimates data set and
entered in the data frame accordingly. The remaining data is provided by the census
counts data set.

nstates <- 51
year <- seq(2010, 1900, -10)

pop.data.all <- as.data.frame(matrix(NA, nrow = nstates,
ncol = length(year)))

state.names <- unname(unlist(pop.datal[(l:nstates) + 4, 1]))

state.names <- toupper(state.names)

colnames(pop.data.all) <- year
rownames (pop.data.all) <- state.names

pop.data.all[, "2010"] <- pop.data.2000.2010[, "2010"]
pop.data.all[, "2000"] <- pop.data.2000.2010[, "2000"]

pop.data.all[, 3:12] <- pop.data[5:55, 2:11]

Since, for the majority of the data, we only have census counts every 10 years, we
can linearly interpolate in between census years to estimate the annual population
by state. This is accomplished using approx() with the several arguments. The
first arguments are the original time values (1900, 1910, ..., 2010) and the population
in each state for each of those years. We also provide the function the number of
total data points we want to end up with (n), i.e., 111 years so that we have annual
population from 1900 to 2010. Finally we provide it the additional argument rule. If
rule is 1 then the estimate for a time greater than 2010 or less than 1900 are returned
as NA, if rule is 0 then the estimate is the closest extreme, i.e, either the population
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estimate for 1900 or 2010.

## Interpolate the population between censuses using
## the ’approx’ function. years_inter is the resulting
## years we wish to have after interpolation
years_inter <- c(1900:2010)

pop.estimates.inter <- as.data.frame(matrix(NA, nrow = nstates,
ncol = length(years_inter)))

for (i in 1l:nstates) {
approx.out <- approx(year, pop.data.all[i, ], method = "linear",
n = length(years_inter), rule = 1)
pop.estimates.inter[i, ] <- approx.out$y
}
colnames(pop.estimates.inter) <- approx.out$x
rownames (pop.estimates.inter) <- rownames(pop.data.all)

Unfortunately, this function does not have the capability to extrapolate. So to obtain
population estimates for 2011 to 2020, we use a linear model built on the data from
2001 to 2010, thus continuing at approximately the most recent observed slope. Before
we use a linear model, we create a column titled “State”. Its entries are the row
names of the data set. Then we transform our data from wide-format to long-format
using pivot_longer. This results in a data frame with the following columns: State,
Year and Population. To be of the proper format for the 1m() function, we change
the structure of the “Year” column from character to numeric using as.numeric().
Finally, we use the 1m() function to estimate the population in each year from 2011 to
2020 for each US state and sort the resulting data set by State. We save both this data
set and one created by transforming it back to wide format using pivot_wider ().
We also save the vector state.names for use in later code scripts.

## Use pivot_longer to get the long version of the
## data with columns state, year and population
pop.estimates.inter$State <- rownames(pop.estimates.inter)

long_pop_estimates <- pivot_longer(pop.estimates.inter, cols = !State,
names_to = "Year",
values_to = "Population")

long_pop_estimates$Year <- as.numeric(long_pop_estimates$Year)

## Vector of years we meed to extrapolate a population with lm
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years_new <- c(2011:2020)

## For each state I use lm to build a model of
## Population ~ year then use it to predict the missing years,
## then add 2t to the long population data frame
for (ii in state.names) {
filter_pop <- long_pop_estimates %>%
filter(State == ii & Year %inJ, c(2000:2010))

my_model <- 1lm(Population ~ Year, data = filter_pop)
pred_model <- predict(

my_model,

newdata = data.frame(Year = years_new)

)

new_data <- data.frame(
State = rep(ii, length(years_new)),
Year = years_new,
Population = pred_model

)

long_pop_estimates <- rbind(long_pop_estimates, new_data)

}

## Sort the population dataframe by state
long_pop_estimates_final <- long_pop_estimates %>%
arrange(State)

## Use prvot_wider to convert 2t back to wide format
pop.estimates <- pivot_wider(
long_pop_estimates_final,
names_from = "Year",
values_from = "Population")

state.names <- pop.estimates$State
pop.estimates <- pop.estimates[,-1]
rownames (pop.estimates) <- state.names

pop.estimates <- as.data.frame(pop.estimates)

save(pop.estimates, nstates, state.names, long_pop_estimates_final,
file = ’Good_data/pop.estimates.RData’)

Page 52 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

state.names <- unique(long_pop_estimates$State)
years.pop <- unique(long_pop_estimates$Year)

US_pop <- as.data.frame(matrix(ncol = 2, nrow = length(years.pop)))
colnames (US_pop) <- c("Year", "Population")
US_pop$Year <- years.pop

for (jj in years.pop) {
filtered <- long_pop_estimates %>%
filter(Year == jj)

US_pop$Population [US_pop$Year == jjl <-
sum(filtered$Population, na.rm = TRUE)

}

save (US_pop, file = "Good_data/US_population_data.RData")

7.2.3 Yearly Incidence per 100,000
7.2.3.1 Weekly Incidence per 100,000 from 1900 to 1999

With all of the required incidence data loaded and a cleaned data set containing
annual population estimates by US state from 1900 to 2020, we begin creating a data
set containing yearly incidence per 100,000 individuals. First, we create a data set
containing weekly incidence per 100,000 using the data set containing incidence from
1900 to 2001, measles.data. As is, the data set contains weekly measles incidence
for all US states, the entirety of the US and for US territories such as the Virgin
Islands, Puerto Rico, etc. It also contains data for fatalities and cumulative counts.
Thus, we filter the data set to only provide weekly measles counts for each of the US
states, including District of Columbia. Next, we change the format of the period end
date column to provide only the year, instead of the day, month and year. This will
allow us to take the sum of all weeks in a year to find the aggregate measles counts in
a given year in later code. For now, we create a column titled “per.100k”. Its entry
is the count for a given week and US state, multiplied by 100,000 and divided by the
population for the year in which the week ends. This data set is saved for later use.
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Code to follow.

library(tidyverse)

library(date)

library(knitr)
load(’Good_data/alldata.RData’)
load(’Good_data/pop.estimates.RData’)

## Add column for cases per 100k
filtered<- measles.data %>%
filter(
IAdminiName %in% c("AMERICAN SAMOA",
"GUAM",
"NORTHERN MARIANA ISLANDS",
"PUERTO RICO",
"VIRGIN ISLANDS, U.S.")) %>%
filter(!'Part0OfCumulativeCountSeries) %>%
filter(!Fatalities)

## Change the format of the date column

## from day, month, year to just year

filtered$PeriodEndDate <- format(as.Date(filtered$PeriodEndDate,
format="%d/%m/hY"),"%Y")

## Calculate inctidence per 100k for
## all states and years and put them in the new column

filtered.per.100k <- filtered %>%
mutate(per.100k = 0)

for (i in 1:length(filtered.per.100k$CountValue)) {
pop <-
pop.estimates[filtered.per.100k$AdminiName [i],
filtered.per.100k$PeriodEndDate [i]]
filtered.per.100k$per.100k[i] <-
filtered.per.100k$CountValue[1]*100000/pop
}

save(filtered.per.100k, file=’Good_data/incidence.per.100k.RData’)
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7.2.3.2 Yearly Incidence per 100,000 from 2000 to 2016

As mentioned in section 7.2.1, for the years 2000 to 2016, incidence data is obtained
from annual MMWR reports. After reading in the data, the cleaning of the generated
data set is extensive due to formatting issues when trying to pull a table from a .pdf
file. The formatting issues include but are not limited to: columns being combined
into a single column and unknown characters being inputted with strange formats.
First, we format the output of the extract_tables() function to be a data frame.
Next, if necessary, we split any combined columns into two using separate().

With the columns split, we extract the desired indigenous measles data by US state.
Note that some of the larger states are split in two, i.e., New York is split into Upstate
NY and NY City, so there will be more than 51 rows. We also leave out rows containing
aggregate counts for the entire US or other aggregate regions like the Pacific region.
Unfortunately, the row selections are not uniform across all reports, so we had to
go through each data frame to select the desired columns. Once the desired rows
are selected, we use as.numeric() to ensure the entries are numeric values and not
another structure. Additionally, we make the extracted column a data frame where
the row names are the state names from the first column and the column name is
the year. Finally, since we wish to combine all data from 2000 to 2016, we sort the
data frame by state. However due to the differing structure of the names of states
across years, for example sometimes you see District of Columbia and other times it
is just D.C, we manually make adjustments to the arrangement of states after using
the arrange () function to ensure each year has the same order of US states. After
implementing this method for each year, we combine the data using the following
code and save it as a .RData file. As the extract_areas function is interactive, the
code cannot be run in this script. Thus, all of the code used to clean and combine
each year of data can be found in pdftoexcel.R. The document is well commented
to ensure easy reproduction.

With cleaned yearly measles incidence from 2000 to 2016, we calculate yearly incidence
per 100,000 for each US state each year and save the result using the following code.

library(tidyverse)
library(knitr)

load(’Good_data/alldata.RData’)
load(’Good_data/pop.estimates.RData’)
load(’Good_data/measles.2000.2016.RData’)
load(’Good_data/incidence.per.100k.RData’)
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nstates <- 51
state.names <- rownames(measles_2000_2016)
years_2000_2016 <- seq(2000, 2016, 1)

## Create the empty data frame that will contain the
## incidence per 100k
measles_2000_2016_per_100k <- as.data.frame(

matrix(
NA,
nrow = length(measles_2000_2016[,1]),
ncol = length(measles_2000_2016[1,]))
)

colnames (measles_2000_2016_per_100k) <- years_2000_2016
rownames (measles_2000_2016_per_100k) <- state.names

## For each state and each year, find the mean incidence per 100k
for (i in 1l:nstates) {
for (j in 1:length(years_2000_2016)) {
measles_2000_2016_per_100k[i,j] <-
measles_2000_2016[
state.names[i],
as.character(years_2000_2016[j])
1%x100000/pop . estimates[
state.names[i],
as.character(years_2000_2016[j])
]

}
}

save (measles_2000_2016_per_100k,
file = ’Good_data/per.100k.2000.2016.RData’)

7.2.3.3 Final Yearly Incidence per 100,000 from 1900 to 2016

The first step in creating the final yearly incidence per 100,000 data set is to create
empty data sets that will contain our final yearly incidence per 100,000 and yearly
incidence per 100,000 from 1900 to 1999. We also format the period end date as a
numeric instead of character. Next, we find yearly measles incidence per 100,000 by
state from 1900 to 2000. We then create our final data set by combining the two data
sets. Note that the data set containing yearly measles incidence per 100,000 from
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1900 to 2001 goes up to 2010, it just has no data for the years 2002 to 2010. We also
set all NA values to 0. The final data set is saved to a .RData file.

library(tidyverse)

## Load all required RData files
load(’Good_data/alldata.RData’)
load(’Good_data/incidence.per.100k.RData’)
load(’Good_data/measles.2000.2016.RData’)
load(’Good_data/per.100k.2000.2016.RData’)
load(’Good_data/pop.estimates.RData’)

## Define two wectors of years, the first as the number
## of years in the first data set, the second

## containing the total years after combination
years_orig <- seq(1900, 2010, 1)

years_2016 <- seq(1900, 2016, 1)

## Create the necessary empty data frames
final.incidence.data <-
as.data.frame(matrix(NA,
nrow = nstates,
ncol = length(years_2016)))
yearly.incidence.1900.2000 <-
as.data.frame(matrix(NA,
nrow
ncol

nstates,
length(years_orig)))

## Make the year numeric instead of a character
filtered.per.100k$PeriodEndDate <- as.numeric(
filtered.per.100k$PeriodEndDate)

## Since we already found weekly incidence per 100k,

## we aggregate over each year for each state

for (i in 1:length(years_orig)) {

for (j in 1l:nstates) {
yearly.incidence.1900.2000[j,i] <-
sum(ifelse(
filtered.per.100k$AdminiName == state.names[j] &
filtered.per.100k$PeriodEndDate == years_origl[i],

filtered.per.100k$per.100k, NA), na.rm = TRUE)
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}

colnames(yearly.incidence.1900.2000) <- years_orig
rownames (yearly.incidence.1900.2000) <- state.names

first_years <- as.character(c(1900:2001))
second_years <- as.character(c(2002:2016))

colnames(final.incidence.data) <- years_2016
rownames (final.incidence.data) <- state.names

final.incidence.datal[,first_years] <-
yearly.incidence.1900.2000[,first_years]

final.incidence.datal[,second_years] <-
measles_2000_2016_per_100k[,second_years]

final.incidence.datal[is.na(final.incidence.data)] = 0

save(final.incidence.data,
file = ’Good_data/yearly.data.per.100k.RData’)

7.2.4 Vital Statistics
7.2.4.1 Mortality from 1968 to 2016

As mentioned in section 4.1.3, vital statistics data was collected from 4 different
sources and combined into one .csv file. The first source provided 3 .tzt files containing
mortality data for the US by state from 1968 to 2016. Since they were provided as
.txt files, we used the read.delim() function to read them into R. We provide the
argument header=TRUE so that the function knows that the first row of the table is
the column names. Next, since this file contains notes at the bottom that are not
a part of the data, I wrote a function called index_of_val to determine the row in
which the data ends and the notes begin. The function takes a vector (v) and some
value (c), and returns the row index at which the value first occurs. This function is
useful in our case as each of the files split the data and notes with “- - -”. Thus, we
use the function to find the row index for which each data frame has a “- - -7 in the
first column, and subsets the data frame to contain only the rows prior to that index.
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We also define a vector of columns that we wish to eliminate as drop, and remove
them from the data frame as well.

With these three data sets cleaned, we combine them to have one data set for mortality
from 1968 to 2016 using the rbind () function. Once combined we remove rows with
NA in the “Year” column as these represent the total deaths across all years in each
state. We also order the data frame by the “State” column and make the entries be
uppercase to match other data sets later on. Finally, since it is more useful to work
with .csv files, we write this data frame into a .csv file.

library(tidyverse)

library(knitr)

## Load the Mortality data

mortality_68_78 <- read.delim(
"Good_data/mortality/mortality_US_1968-78_state_cdcwonder.txt",
header = TRUE)

mortality_79_98 <- read.delim(
"Good_data/mortality/mortality_US_1979-98_state_cdcwonder.txt",
header = TRUE)

mortality_99_16 <- read.delim(
"Good_data/mortality/mortality_US_1999-2016_state_cdcwonder.txt",
header = TRUE)

## Function that takes a vector (v) and a
## value (c) and returns the indexr at which the value first occurs
index_of_val <- function(v, c¢) {
for (i in 1:length(v)) {
if (v[i] == o) {

index = 1

stopifnot(v[index] == c)

return(index)

}
}
}

## Vector of columns to eliminate
drop <- c("Notes", "Year.Code", "State.Code")

## Using my own function to determine
## where the data ends and notes begin (see function at top)

index_mort_68 <- index_of_val(mortality_68_78%Notes, "---")
index_mort_79 <- index_of_val(mortality_79_98$Notes, "---")
index_mort_99 <- index_of_val(mortality_99_16$Notes, "---")

Page 59 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

## Clean up the data set by removing notes and un-necessary columns
mortality_68_78_new <-
mortality_68_78[1:(index_mort_68 - 1),
I (names (mortality_68_78) %inj, drop)]
mortality_79_98_new <-
mortality_79_98[1:(index_mort_79 - 1),
! (names (mortality_79_98) %inJ drop)]
mortality_99_16_new <-
mortality_99_16[1: (index_mort_99 - 1),
! (names (mortality_99_16) %inj drop)]

## Combine the 3 datasets into ome containing all data
mortality_68_16 <- rbind(mortality_68_78_new,
mortality_79_98_new, mortality_99_16_new)

## Remove rows with NA in the year since these
## represent the total over all years for each state,
## and order by state name
mortality_68_16_final <- mortality_68_16 %>%
filter(!is.na(Year)) %>%
arrange (State) %>%
mutate(State = toupper(State))

write.csv(
mortality_68_16_final,
file = "Good_data/mortality_US_1968-2016_state_cdcwonder.csv")

7.2.4.2 Natality from 1995 to 2019

The second source of US vital statistics data provided 3 .txt files containing natality
data for the US by state from 1995 to 2019. Using the same methods outlined in
section 7.2.4.1, we clean and combine the files into one working file which we will
write into a new .csv file.

## load the natality data

natality_95_02 <- read.delim(
"Good_data/natality/natality_US_1995-2002_state_cdcwonder.txt",
header = TRUE)

natality_03_06 <- read.delim(
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"Good_data/natality/natality_US_2003-06_state_cdcwonder.txt",
header = TRUE)

natality_07_19 <- read.delim(
"Good_data/natality/natality_US_2007-19_state_cdcwonder.txt",
header = TRUE)

## Use my own function to determine where
## the data ends and mnotes begin
## (see definition of indez_of_val above)

index_nat_95 <- index_of_val(natality_95_02$Notes, "---")
index_nat_03 <- index_of_val(natality_03_06$Notes, "---")
index_nat_07 <- index_of_val(natality_07_19$Notes, "---")

## Clean up the data set by removing notes and un-necessary columns
natality_95_02_new <-
natality_95_02[1:(index_nat_95 - 1),
| (names (natality_95_02) %in’ drop)]
natality_03_06_new <-
natality_03_06[1:(index_nat_03 - 1),
I (names (natality_03_06) %inJ drop)]
natality_07_19_new <-
natality_07_19[1:(index_nat_07 - 1),
! (names (natality_07_19) %in} drop)]

## Combine the 3 datasets into ome containing all data

natality_95_19 <- rbind(natality_95_02_new,
natality_03_06_new,
natality_07_19_new)

## Remove rows with NA in the year since
## these represent the total over all years for each state,
## and order by state name
natality_95_19_final <- natality_95_19 %>%
filter(!is.na(Year)) %>%
arrange(State) %>%
mutate(State = toupper(State))

write.csv/(

natality_95_19_final,
file = "Good_data/natality_US_1995-2019_state_cdcwonder.csv")
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7.2.4.3 Creating a Single File Containing US Vital Statistics by State

As our goal was to use the US vital statistics data to improve our model that simulates
the US canonical path (refer to section 7.5.1), we used the other two sources described
in section 7.2.4.1 to have one data set containing births, deaths, population, birth
rate and death rate by US state. However, since there were 61 .pdf files containing
the missing mortality and natality data, using tabulizer to extract the tables from
each PDF would be incredibly time consuming. Instead, we created a new .csv file,
Good_data/vital_statistics_US_1953-2019_state_NCHS.csv, that would contain
all of the births and deaths data from 1953 to 2019. We started by entering the
deaths data for 1968 to 2016 and the births data from 1995 to 2019 using the .csv
files created using the code in sections 7.2.4.1 and 7.2.4.2. Next, we entered the births
and deaths data manually from the 61 individual .pdf files. Although time consuming,
this resulted in one cohesive .csv file containing births and deaths from 1953 to 2019.

Since we will need birth and death rates for the model, we load the .csv file into
R to create an .RData file containing, births, deaths, birth rate, death rate, and
other related columns for use in later code. First, we read the file into R using
read.csv(), with the argument header=TRUE. However, since we have a “Notes”
column containing notes written while entering, we subset the data frame to only
include the columns we need. When we read in the data file, the column names had
obscure labels, where some used non-English characters. Thus, we change the column
names to ones easy to type using a US-English keyboard. To match other data later
on, we use toupper () to make the state names capitalized. Doing this now makes
it simpler to find the population corresponding to each state and year, as the state
names will be identical. We also create vectors containing the state names and the
years of data for use in the code.

library(tidyverse)

load("Good_data/pop.estimates.RData")

vital_stats <- read.csv(
file = "Good_data/vital_statistics_US_1953-2019_state_NCHS.csv",
header = TRUE)

Year <- vital_stats[,1]
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vital_stats <- vital_stats[,c("State", "Births", "Deaths")]

## Change the column names
colnames(vital_stats) <- c("State", "Births", "Deaths")

## Re-add the year column with the proper column name
vital_stats$Year <- Year

## Make the state names uppercase for uniformity across data frames
vital_stats$State <- toupper(vital_stats$State)

state_names <- unique(long_pop_estimates_final$State)
years_final <- unique(long_pop_estimates_final$Year)

With the “State” column formatted properly, we create a new column, “Population”,
that contains the population for each state each year. Next, we reorder the columns
in a sensible way and then use the mutate() function to create two new columns for
the birth and death rates. At this point, the data set is ready for use in the model,
however, we added a few more columns to rank states based on their population, birth
rate and death rate. These were not necessary for the analysis in the report but is
nice for summarizing the data. We then save the data set to a .RData file for use in
later code.

## Add a population column
for (k in l:nrow(vital_stats)) {
for (sn in state_names) {
for (yf in years_final) {
if (vital_stats$State[k] == sn & vital_stats$Year([k] == yf) {
vital_stats$Population[k] <-
long_pop_estimates_final$Population[
long_pop_estimates_final$State == sn &
long_pop_estimates_final$Year == yf]

## Reorder the columns
vital_stats <-
vital_stats/[,
c("Year", "State", "Population", "Births", "Deaths")]
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## Create Birth Rate and Death rate columns
vital_stats <- vital_stats %>%
mutate(‘Birth Rate‘ = Births/Population) %>%
mutate(‘Death Rate‘ = Deaths/Population)

## Create columns for rankings
vital_stats$‘Pop Rank‘ <-

rep(0, length(vital_stats$Population))
vital_stats$‘Birth Rate Rank‘ <-

rep(0, length(vital_stats$‘Birth Rate))
vital_stats$‘Death Rate Rank‘ <-

rep(0, length(vital_stats$‘Death Rate‘))

years <- unique(vital_stats$Year)

## Sort by the column we want to rank by in a decreasing order,
## then assign a number from 1:51 according to that order.

## Then reorder back the same way and add the column

## into the original data frame

### Population ranking
for (ii in years) {
vital_stats_filtered <- vital_stats %>%
filter(Year == ii) %>%
arrange (desc(Population))

vital_stats_filtered$‘Pop Rank‘ <- 1:51

vital_stats_normal <- vital_stats_filtered %>Y%
arrange (State)

vital_stats[vital_stats$Year == ii,] <- vital_stats_normal

}

### Birth Rate Ranking
for (ii in years) {
vital_stats_filtered <- vital_stats %>%
filter(Year == ii) %>%
arrange(desc(‘Birth Rate‘))

vital_stats_filtered$‘Birth Rate Rank‘ <- 1:51
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vital_stats_normal <- vital_stats_filtered %>Y%
arrange(State)

vital_stats[vital_stats$Year == ii,] <- vital_stats_normal

}

### Death Rate Ranking
for (ii in years) {
vital_stats_filtered <- vital_stats %>%
filter(Year == ii) %>%
arrange(desc(‘Death Rate‘))

vital_stats_filtered$ ‘Death Rate Rank‘ <- 1:51

vital_stats_normal <- vital_stats_filtered %>Y%
arrange(State)

vital_stats[vital_stats$Year == ii,] <- vital_stats_normal

save(vital_stats, file = "data/vital_stats_data.RData")

}

7.2.4.4 Visualizing Vital Statistics

The following figures show population, births, deaths, birth rate, and death rate by
state over time.

## Plot population
pop_plot <- ggplot() +
geom_line(data = vital_stats,
aes(Year, Population, col = State),
1ty = 1, lwd = 1) +
ylab("Population") +
theme (legend.position="none")

## Plot births
birth_plot <- ggplot() +
geom_line(data = vital_stats,
aes(Year, Births, col = State),
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1ty = 1, lwd = 1) +
ylab("Births") +
theme (legend.position="none") +
coord_cartesian(expand = FALSE)

## Plot deaths
death_plot <- ggplot() +
geom_line(data = vital_stats,
aes(Year, Deaths, col = State),
1ty = 1, lwd = 1) +
ylab("Deaths") +
theme (legend.position="none") +
coord_cartesian(expand = FALSE)

## Plot per capita birth rates
birth_rate_plot <- ggplot() +
geom_line(data = vital_stats,
aes(Year, ‘Birth Rate‘, col = State),
1ty = 1, lwd = 1) +
ylab("Per Capita Birth Rate") +
theme (legend.position="none") +
coord_cartesian(expand = FALSE)

## Plot per capita death rates
death_rate_plot <- ggplot() +
geom_line(data = vital_stats,
aes(Year, ‘Death Rate‘, col = State),
1ty = 1, lud = 1) +
ylab("Per Capita Death Rate") +
theme (legend.position="none") +
coord_cartesian(expand = FALSE)
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7.2.5 Vaccination Coverage

In section 4.1.3 we describe the vaccination coverage data we were able to obtain
that came from 3 different sources. The first contained MMR vaccine coverage data
among 0 to 35 month olds in the United States for each US state from 2011 to 2017
as a .csv file. We attempted to find the data that was used to create this file to try
to find more years of data, which resulted in the third source of data that provided
uncleaned individual-level vaccine data from 1995 to 2010 and 2018 to 2020. Most of
the files are provided as .DAT files” and some years are accompanied by either SAS
or R input statements or both. However, the input statements were substantial and
un-commented. Thus, cleaning this data would be incredibly time-consuming and
not in the scope of this project. From here we decided to look for other sources of

5.DAT files are used to store data and are written based on the program that created them. They
can be composed of plain text or binary. Thus, knowing what type of data it contains is crucial [42].
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MMR coverage data and were able to find coverage estimates for the entirety of the
US from 1980 to 2020 as a .xlsx file. Unfortunately this data set was only for the US
as a whole, not by state. Thus, we decided to compare the coverage estimates for the
entirety of the US to the data split by US state from 2011 to 2017.

First we loaded in each data file. Next, we set all of the character columns of interest
to be uppercase for simplicity. Additionally, we filter the data set for each individual
state to only provide estimates of MMR coverage in each of the US states, while getting
rid of areas that are not of interest. We also re-format the Birth year/cohort column
to be numeric instead of a character. For the data set containing coverage for the
whole US, we create two different data frames. One containing WHO estimates and
the other containing Official Coverage Values. This data set also contained coverage
data for Canada, so we filter out the Canadian coverage as well as rows containing
NA, and then order the data frame by the “YEAR” column. The vaccination data for
each US state from 2011 to 2017 is split into different age categories: 13, 19, 24, and
35 months. The MMR coverage for each state and age category is an estimate based
on a sample of the population. In order to find the MMR coverage for all age groups
within a state, we must find the weighted mean coverage, calculated using the given
sample sizes. First, we create a column containing the coverage multiplied by the
sample size. Next, we create a data frame that contains the total sample size for each
US state each year for all age groups. Finally we create a data frame that contains
the weighted mean MMR coverage in each state each year across all age groups by
dividing each entry in the “Weighted Coverage” column and then taking the sum of
all age groups. We also add a column representing the US states. Additionally, we
transform the data frame from wide-format to long format for use in later code and
add a column for the sample size.

library(readxl)

vaccination <- read.csv(
file = "Good_data/vaccine_coverage_US_QO11—17_state_vaxxview.csv”,
header = TRUE)

vaccination_1980_2020 <- read_excel(
"Good_data/vaccine_coverage_US_CAN_1980-2020_WHO.x1lsx")

vaccination$Vaccine <- toupper(vaccination$Vaccine)
vaccination$Geography <- toupper(vaccination$Geography)

vaccination_1980_2020$NAME <- toupper (vaccination_1980_2020$NAME)

library(tidyverse)

Page 72 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

## Filter out unwanted elements of the data
## (lgrepl(’-’, Geography) gets rid of strings with a hyphen )
vaccination_mmr <- vaccination %>%
filter(Vaccine == "MMR" &
Geography.Type == "States/Local Areas" &
lgrepl(’-’, Geography) &
Geography != "GUAM" &
lgrepl(’-’, Birth.Year.Birth.Cohort))
vaccination_mmr$Birth.Year.Birth.Cohort <-
as.numeric(vaccination_mmr$Birth.Year.Birth.Cohort)

### WHO Estimates
vaccination_US_1980_2020_WUENIC <-vaccination_1980_2020 %>%
filter (CODE == "USA",
COVERAGE !'= is.na(COVERAGE),
COVERAGE_CATEGORY == "WUENIC")

vaccination_US_1980_2020_WUENIC <-
vaccination_US_1980_2020_WUENIC[
order (vaccination_US_1980_2020_WUENICS$YEAR), ]

### Offictal Coverage
vaccination_US_1980_2020_0FFICIAL <- vaccination_1980_2020 %>%
filter (CODE == "USA",
COVERAGE !'= is.na(COVERAGE),
COVERAGE_CATEGORY == "OFFICIAL")

vaccination_US_1980_2020_0FFICIAL <-
vaccination_US_1980_2020_0FFICIAL[
order (vaccination_US_1980_2020_0OFFICIAL$YEAR),]

vaccination_mmr_weighted <- vaccination_mmr %>%
mutate(‘Weighted Coverage‘ = ‘Estimate....‘*‘Sample.Size‘)

## Create wvectors for state mames and years,

## as well as the number of states and years

states <- unique(vaccination_mmr$Geography)

n_states <- length(states)

years <- unique(vaccination_mmr$Birth.Year.Birth.Cohort)
n_years <- length(years)

## Create the empty data frame that will contain the data
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sample_sizes <- as.data.frame(matrix(nrow = n_states*n_years, ncol = 3))
colnames (sample_sizes) <- c("State", "Year", "Sample Size")

## Set the State column to be the state vector repeated
## for each year of data
sample_sizes$State <- rep(states, n_years)

## Create a vector that has the years vector repeated for

## each state and then ordering it by the year, this way we can

## put it in the data frame so that each state is

## accompanied by each year in the data frame

years_ordered <- sort(rep(years, n_states))

## Assigning the sorted repeating vector of years to the Year column
sample_sizes$Year <- years_ordered

## Filter the state-wise MMR data frame for each state
## each year and finding the sum of the sample sizes and
## assign this to the corresponding state and year
## an the sample sizes data frame
for (ii in states) {
for (jj in years) {
filtered <- vaccination_mmr %>%

filter(Geography == ii & ‘Birth.Year.Birth.Cohort‘ == jj)
sample_sizes$‘Sample Size‘[sample_sizes$State == ii &
sample_sizes$Year == jj] <-

sum(filtered$‘Sample.Size*)

## Create a data frame that will contain the
## mean vaccine coverage across age groups
vaccination_mmr_final <-

as.data.frame(matrix(nrow = n_states, ncol = n_years))

for (i in 1:n_years) {
for (j in 1:n_states) {
## Filter for each year and state
filtered_vacc <-
vaccination_mmr_weighted %>%
filter(Birth.Year.Birth.Cohort == years[i]
& Geography == states[j])
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vaccination_mmr_finall[j, i] <-

== years[i]

sum (
filtered_vacc$‘Weighted Coverage‘/sample_sizes$‘Sample Size‘[
sample_sizes$State == states[j] & sample_sizes$Year
]

colnames(vaccination_mmr_final) <- as.character(years)

## Add a column that contains the US States
vaccination_mmr_final$state <- states

## Create a long wversion of the data set with

## columns for state, year and coverage

vaccination_final <-
pivot_longer(vaccination_mmr_final,

cols = lIstate,
names_to = "year",
values_to = "coverage")

vaccination_final$year <- as.numeric(vaccination_final$year)

## Check that the state and year columns match
setequal (vaccination_final$state, sample_sizes$State) &
setequal (vaccination_final$year, sample_sizes$Year)

## Add a sample size column
vaccination_final$‘Sample Size‘ <- sample_sizes$‘Sample Size°

After creating the data sets, we created a couple visuals to determine which sources to
use in the model. First we create a plot of US wide MMR coverage data, comparing

the WHO estimates to the Official Coverage.

## Set the line colours manually
colours <- c("WHO" = "black", "Official" = "red")

## Compare the sources of waccine coverage for the US
US_vaccine_compare_source <- ggplot() +
geom_line(data = vaccination_US_1980_2020_WUENIC,
aes(YEAR, COVERAGE, color = "WHO")) +
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geom_line(data = vaccination_US_1980_2020_0FFICIAL,
aes (YEAR, COVERAGE, color = "Official")) +
labs(x = "Year",
y = "$\\%$ Coverage",
color = "Legend") +
scale_colour_manual(values = colours) +
theme( ## Change the position of the legend to
## be on the plot instead of beside <t
legend.position = c(0.98, .95),
legend. justification = c("right", "top"),
legend.box. just = "right",
legend.margin = margin(6, 6, 6, 6)
)

US_vaccine_compare_source

% Coverage
=]
o
1

1 1 1 1 1
1980 1990 2000 2010 2020
Year
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After creating this figure, we decided to move forward with the Official Coverage
data as there was very little difference. The next plot we created was comparing the
US-wide data (black) to the state-wise data (red).

## Set the line colours manually
colours <- c("US" = "black", "States" = "red")

## Compare wvaccine coverage by state to aggregate vaccine coverage
## of the US
vaccine_coverage_plot <- ggplot() +
geom_line(data = vaccination_final,
aes(year, coverage, group = state, color = "States"),
1ty = 1) +
geom_line(data = vaccination_US_1980_2020_0FFICIAL,
aes(YEAR, COVERAGE, color = "US")) +
geom_point(data = vaccination_final,
aes(year, coverage, group = state,
color = "States", size = ‘Sample Size‘)) +
labs(x "Year",
y = "\\% Coverage",
color = "Data Type") +
scale_x_continuous(limits = c(2010,2018), expand = c(0,0))+
scale_colour_manual(values = colours)
vaccine_coverage_plot
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Figure 22: Comparison of state-level and aggregate US measles vaccine coverage. The
reason these data do not match up is due to the fact that the US wide data is the
percent of children that received their first dose at the recommended interval (12
months) or later, while the state-wise data only considers those that received their
doses at 13, 19, 24, 35 months .

Due to the differences in the definition of coverage between the two sources, the MMR,
coverage estimates do not line up. Thus, we could not use a combination of these
data sets in our simulations, so we decided to use the source that provides the most
data, i.e., the data for the entirety of the US. Finally, we save the chosen data set to
an .RData file for use in other code scripts.

vaccination_data <- vaccination_US_1980_2020_0OFFICIAL

save(vaccination_data, file = "data/vaccination_data.RData")
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7.3 Creating the Canonical Path

7.3.1 Calculating Weighted Mean Incidence and CV

In order to create the canonical path, we must calculate the weighted mean inci-
dence and un-weighted smooth CV for for each US state, and then find their mean
point in incidence space each year to create the US canonical path. Since we will
be using the same method of calculating weighted incidence and smooth un-weighted
CV in other code, we create a function called cv_inc_fun(). This allows us to
find weighted incidence and smoothed CV uniformly across all code files without
duplicating code. The function takes the following arguments: data, state_names,
all_years, gaussian_window, sd, mean_loc, year_labels, find_CI, find_states,
inc_weighting, cv_weighting, and an optional argument state_weights. data is
the data containing incidence per 100,000 individuals for each state and each year,
where each row is a state and each column is a year. state_names is the vector
of state names included in the data. all_years is a vector containing the years
that will be used to find weighted mean incidence and smoothed un-weighted CV.
gaussian_window is the number of years to wait until the first data point is calcu-
lated, 10 by default. sd is the standard deviation of the Gaussian filter, 3 by default.
mean_loc is how many years prior to the year in question does the center of the
Gaussian filter lie, 2 by default. find_CI is a logical argument that tells the function
if it should calculate the confidence intervals on weighted incidence or not, FALSE
by default. find_states is a logical argument that tells the function if it should
save the weighted incidence and smoothed un-weighted CV by state as well as the
aggregate values, FALSE by default. inc_weighting, either “gaussian” or “moving”,
tells the function which type of weighting to use for incidence, “gaussian” by de-
fault. cv_weighting, either “smoothed” or “gaussian”, tells the function which type
of weighting to use for CV, “smoothed” by default. Finally, state_weights is a data
frame containing the weights for each state in each year that will be used when finding
the mean point in incidence space, NULL by default.

Within the function, we begin by requiring the smoother () package, for the smth.gaussian()
function. Next we define variables representing the number of states and the final years

of data that will be shown in the plot. If the function is not provided a data frame

of weights, the function creates a data frame containing equally-weighted weights.
Additionally, we re-name the data frame containing incidence to be more descrip-

tive. Next, we use the pre-defined function, gaussian(), that calculates Gaussian

values for a given mean location and standard deviation. This function is found in
functions.R, however the code is displayed below.
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gaussian <- function(x, mean, sd) {

gaussian_value <-
(1/ (sd*sqrt (2*pi) ) *exp (- ((x-mean) “2)/(2*sd"2)))
return(gaussian_value)

Using this function, the Gaussian weights for each calculation of the weighted mean
are found. Next, if inc_weighting="“gaussian” the function finds the sum of the
Gaussian weights and then divides each weight by the sum to get the final Gaus-
sian weights that will be used for weighted incidence. With the weights calculated,
the function multiplies the year in question and all years prior by their correspond-
ing weights and take their sum to find the weighted mean incidence for the given
year. if inc_weighting="“moving” it will use a moving average to calculate weighted
incidence.

Next, CV is calculated. If cv_weighting="“smoothed”, we use the same method as
Graham et al., such that we use a moving CV that is calculated for each 10 year time
shift, i.e., for 1921, it finds the CV of the incidence (un-weighted) from 1912 to 1921.
For 1922, the CV of 1913 to 1922 and so on. Finally, it smooths the un-weighted CV
using the smth.gaussian() function. It provides smth.gaussian() the following ar-
guments: tails=TRUE (tells the function to include the tails), window=smooth_window=
1 (tells it to smooth the entire input), and alpha= 3 * 3 (determines the breadth of
the Gaussian window, chosen as the variance). If cv_weighting="‘“gaussian”, the
function will the Gaussian filter that is used to weight incidence to weight CV.

With the weighted incidence and CV calculated for each US state, we find the mean
weighted incidence and CV across all US states to create the US canonical path,
using the weights either provided to the function, or generated within. We conducted
a sensitivity analysis to determine whether each state should be weighted equally, or
if we should weight each state based on population size (Refer to section 7.4.1).

We also find the standard deviation of incidence so that if find_CI=TRUE, we can
calculate confidence intervals. Finally, the function creates the data frames that
contain Incidence, CV, Year, and the confidence interval values (if desired). To provide
a sense of time progression along the plot, the function also creates a data frame
containing only the values based on the year_labels argument.

If find_states=TRUE, the function will output data frames containing weighted in-
cidence, smoothed un-weighted CV and filtered weighted incidence and smoothed un-
weighted CV (filtered based on the year_labels argument), along with data frames
containing this data for the US as a whole. The function also outputs the final_data
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vector for use in other code. This function can be found in functions.R, however
the code is displayed below.

#H##
###
#i#
#i#
#H##
#H##

Function that takes several arguments required to create the

data used for the canonical path, and finds weighted mean
incidence and smooth unweighted cv. These are then outputted

wnto a data frame that will be used for plotting.

It also creates a data frame containing points to plot on the path.
Outputs the two data frames and a vector of all years plotted

cv_inc_fun <- function(data, state_names, all_years,

inc_window=10, sd=3, mean_loc=2,
year_labels, find_CI=FALSE,
find_states=FALSE,

inc_weighting = "gaussian',
cv_weighting = "smoothed",
state_weights = NULL) {

require (smoother)

final_incidence_data <- data

## Number of states

nstates <- length(state_names)

## The resulting years of data

final_data <- seq(all_years[1] + inc_window - 1,

all_years[length(all_years)], 1)

## Define the empty data frame for the Gaussian weights.
## Each row 1s the weights for a given year
gaussian_weights <-

as.data.frame(matrix(

NA,
ncol = length(all_years),
nrow = length(final_data)))

for (i in 1:length(final_data)) {

## Vector of 1 to the length of the number of years

## we need to weight

x <- c(1:(i+inc_window - 1))

## Location of the mean (2 years before the year)

mean <- (i+inc_window - 1)-mean_loc

gaussian_vec <- gaussian(x, mean, sd)

gaussian_weights[i, (1:(i+inc_window - 1))] <- gaussian_vec
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sum_gaussian_weights <- vector(length= length(final_data))
## Find the sum of the Gausstian weights for each year
for (i in 1:length(final_data)) {
sum_gaussian_weights[i] <- sum(gaussian_weights[i,],
na.rm = TRUE)
}

final_gaussian_weights <- as.data.frame(
matrix(NA,
nrow = length(final_data),
ncol = length(all_years)))
## Divide the weights for each year by the sum of the
## weights in that year
for (i in 1:length(final_data)) {
final_gaussian_weights[i, (1:(i+inc_window - 1))] <-
gaussian_weights[i, (1:(i+inc_window - 1))] / sum_gaussian_weights[i]

## Create a wvector that will contain the weighted
## mean incidence for a given state
weighted_mean_incidence <- vector(length = length(final_data))
## Create a data frame that will contain the weighted
## mean incidence for all states (each row is a different state)
weighted_mean_incidence_all <-
as.data.frame(matrix(

NA,

nrow = nstates,

ncol = length(final_data)))

## In case our data has more years than we wish to plot,

## we find the column corresponding to the first year of data
## to use as an index when calculating weighted incidence
starting_column <-

which(colnames(final_incidence_data) == as.character(all_years[1]))
stopifnot (inc_weighting %in% c("gaussian", "moving"))
if (inc_weighting == "gaussian") {

for (i in l:nstates) {
for (j in 1:length(final_data)) {
## Find the weighted mean incidence for a given state (each row).
inc <- final_incidence_datali,
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starting_column: (j+(starting_column + inc_window - 2))]
weights <- final gaussian_weights[j, (1:(j+inc_window - 1))]
weighted_mean_incidence[j] <-

sum(inc*weights , na.rm = TRUE)

weighted_mean_incidence_all[i,j] <- weighted_mean_incidence[j]

}
}

} else {
for (i in 1l:nstates) {
for (j in 1:length(final_data)) {
## Find the weighted mean incidence for a given state (each Tow).
inc <-
final_incidence_datal

i,
(starting_column -1 + j):(j+(starting_column + inc_window - 2))]

weighted_mean_incidence[j] <-
sum(inc, na.rm = TRUE)/inc_window

weighted_mean_incidence_all[i,j] <- weighted_mean_incidence[j]

## Set the row names as the state names and

## the column names as the years (1921 to 2016)
colnames(weighted_mean_incidence_all) <- final_data
rownames (weighted_mean_incidence_all) <- state_names

## Create empty vectors and data frames to contain the CV data
unweighted_cv <- vector(length = length(final_data))
unweighted_cv_all <-

as.data.frame(matrix(

NA,
nrow = nstates,
ncol = length(final_data)))

stopifnot(cv_weighting %inJ c("gaussian", "smoothed"))
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if (cv_weighting == "smoothed") {
for (i in 1l:nstates) {
for (j in 1:length(final_data)) {
## CV = standard deviation/mean
inc <-
final_incidence_datal

i,
(j+starting_column -1):(j+(starting_column -1 + inc_window - 1))]

sd_inc <- sd(as.numeric(inc), na.rm = TRUE)

mean_inc <- mean(as.numeric(inc), trim = O, na.rm = TRUE)

unweighted_cv[j] <- sd_inc / mean_inc

unweighted_cv_all[i,j] <- unweighted_cv[j]

## Set the row names as the state names
## and the column names as the years
colnames (unweighted_cv_all) <- final_data
rownames (unweighted_cv_all) <- state_names

## Smooth the CV using smth.gausstan()
smooth_unweighted_cv_all <-
as.data.frame(matrix(
NA,
nrow = nstates,
ncol = length(final_data)))

for (i in l:nstates) {
smooth_unweighted_cv_all[i,] <- smth.gaussian(
as.numeric(unweighted_cv_alll[i,]),
tails = TRUE,
window = 1,
alpha = 3 * 3)

## Set the row names as the state names

## and the column names as the years

colnames (smooth_unweighted_cv_all) <- final_data

rownames (smooth_unweighted_cv_all) <- state_names
} else {
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weighted_cv <- vector(length = length(final_data))

weighted_cv_all <-
as.data.frame(matrix(

NA,
nrow = nstates,
ncol = length(final_data)))

for (i in l:nstates) {
for (j in 1:length(final_data)) {
inc <-
final_incidence_datal
i,
(starting_column) : (j+(starting_column + inc_window - 2))]
sd_inc <- sd(as.numeric(inc), na.rm = TRUE)
mean_inc <- mean(as.numeric(inc), trim = 0, na.rm = TRUE)
weights <- final gaussian_weights[j, (1:(j+inc_window - 1))]
weighted_cv[j] <- sum((sd_inc/mean_inc)*weights)

weighted_cv_all[i,j] <- weighted_cv[j]

}
}

colnames(weighted_cv_all) <- final_data
rownames (weighted_cv_all) <- state_names

smooth_unweighted_cv_all <- weighted_cv_all

colnames (smooth_unweighted_cv_all) <- final_data
rownames (smooth_unweighted_cv_all) <- state_names

## Find mean incidence and CV and standard deviation of incidence
mean_cv <-
vector(length = length(smooth_unweighted_cv_all[1,]))
mean_incidence <-

vector(length = length(weighted_mean_incidence_all[1,]))
sd_incidence <-
vector(length = length(weighted_mean_incidence_all[1,]))
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if (is.null(state_weights)) {

}
}

for (i in 1:length(mean_cv)) {
mean_cv[i] <-
mean (smooth_unweighted_cv_all[,i],
na.rm = TRUE)
mean_incidence[i] <-
mean (weighted_mean_incidence_alll[,i])
sd_incidence[i] <-
sd(weighted_mean_incidence_all[,i])
1

} else {
for (i in 1:length(mean_cv)) {
mean_cv[i] <-
sum(state_weights[,i]*smooth_unweighted_cv_all[,i],
na.rm = TRUE)
mean_incidence[i] <-
sum(state_weights[,i]*weighted_mean_incidence_all[,i])
sd_incidence[i] <-
sd(weighted_mean_incidence_all[,i])

if (find_CI) {

## Find the 95) incidence confidence intervals
CI_incidence <- vector(length = length(mean_incidence))

for (i in 1:length(mean_cv)) {
CI_incidence[i] <- gnorm(0.95) * (sd_incidence[i]/nstates)

}

upper_CI <- vector(length
lower_CI <- vector(length

length(mean_incidence))
length(mean_incidence))

upper_CI <- mean_incidence + CI_incidence
lower_CI <- mean_incidence - CI_incidence

## Data frame containing canonical path data
data_us <- data.frame(
CV = as.vector(mean_cv),
Incidence = as.vector(mean_incidence),
Upper = upper_CI,
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Lower = lower_CI,
year = as.character(final_data)
)
} else {
## Data frame containing canonical path data
data_us <- data.frame(
CV = as.vector(mean_cv),
Incidence = as.vector(mean_incidence),
year = as.character(final_data)

)
}

## Filter the data frame to include only data
## based on year_labels argument
point_mean_us <- data_us %>%

filter(year %inj as.character(year_labels))

if (find_states) {
## Empty wvector for maxz incidence
max_incidence_per_state <- vector(length = nstates)

## Create CV and Inctdence data frames where each
## column is a state and each row ts a year
CV_states <-
as.data.frame(matrix(

nrow = length(final_data),

ncol = nstates))
colnames(CV_states) <- state_names
CV_states$Year <- final_data

Incidence_states <-
as.data.frame(matrix(
nrow = length(final_data),
ncol = nstates))
colnames(Incidence_states) <- state_names
Incidence_states$Year <- final_data

## Create a data frame that will contain

## incidence and CV based on year_labels

Incidence_states_per_10y <- Incidence_states %>%
filter(Year %in’, year_labels)

CV_states_per_10y <- CV_states %>%
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filter(Year %in% year_labels)

## Transpose CV and incidence and adding a Year column
all_state_cv <- as.data.frame(t(smooth_unweighted_cv_all))
all_state_cv$Year <- final_data

all_state_inc <- as.data.frame(t(weighted_mean_incidence_all))
all_state_inc$Year <- final_data

## Create data frames to contain the points every

## 10 years starting in 1922

all_state_cv_per_10y <- all_state_cv %>%
filter(Year %in% year_labels)

all_state_inc_per_10y <- all_state_inc %>%
filter(Year %in% year_labels)

CV_states <- all_state_cv
Incidence_states <- all_state_inc

CV_states_per_10y <- all_state_cv_per_10y
Incidence_states_per_10y <- all_state_inc_per_10y

return(list(data_us = data_us, point_mean_us = point_mean_us,
final_data = final_data,
CV_states = CV_states,
Incidence_states = Incidence_states,
CV_states_per_10y = CV_states_per_10y,
Incidence_states_per_10y = Incidence_states_per_10y))

} else {
return(list(data_us = data_us,

point_mean_us = point_mean_us,
final_data = final_data))

7.3.2 Plotting the US canonical path

To generate the necessary data required to create the canonical paths, we start by
loading all required libraries, load pre-created data files, and source the functions.R
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file.

library(stats)

library(smoother) #smth.gaussian()
library(tidyverse)
library(RColorBrewer)

library(knitr)

library(ggrepel)

library(gridExtra)
source(’functions.R’)
load(’Good_data/yearly.data.per.100k.RData’)
load("Good_data/pop.estimates.RData")
load("data/presentation_logical.RData")

Next, we define the arguments required by the cv_inc_fun().

## Vector of state names

state_names <- rownames(final.incidence.data)

nstates <- length(state_names)

## Vector of the years of data we wish to use in

## calculations (1912 as this is when measles became
## nationally notifiable)

usable_data <- seq(1912, 2016, 1)

## How many years to watt until the first data point
## 1is calculated (same as Graham et al.)

inc_window <- 10

## Standard deviation of the Gaussian filter (same as
## Graham et al.)

sd <= 3

## Location of the center of the Gaussian filter (2
## years prior, same as Graham et al.)

mean_loc <- 2

## Years for which we want to plot a point and Year
## label along the path

year_labels <- seq(1922, 2012, 10)

## Logical wvalues to tell the function whether we want
## state path data and or confidence intervals
find_states <- TRUE

find_CI <- TRUE

## Use gaussian for inctdence and smoother for CV
inc_weighting <- "gaussian"

cv_weighting <- "smoothed"
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Finally, we call the function, without state_weights so that the states are equally
weighted and save the output for use in plotting.

## Call the cv_inc_fun

cv_inc_results <- cv_inc_fun(data = final.incidence.data,
state_names = state_names,
all_years = usable_data,
inc_window = inc_window,
sd = sd, mean_loc = mean_loc,
year_labels = year_labels,
find_CI = find_CI,
find_states = find_states,
inc_weighting = inc_weighting,
cv_weighting = cv_weighting)

## Save results for use in plotting

data_us <- cv_inc_results$data_us

point_mean_us <- cv_inc_results$point_mean_us

final_data <- cv_inc_results$final_data

CV_states <- cv_inc_results$CV_states

Incidence_states <- cv_inc_results$Incidence_states
CV_states_per_10y <- cv_inc_results$CV_states_per_10y
Incidence_states_per_10y <- cv_inc_results$Incidence_states_per_10y

Before creating the plot included in figure 2, we created plots with un-scaled incidence,
square-root incidence and log incidence (square-root is used in the final plot). In these
plots we also include confidence intervals.

## Canonical path, with y on a normal scale
path_unscaled <- ggplot() +
geom_path(data = data_us, aes(CV, Incidence),
colour = ’black’, 1ty = 1, lwd = 1) +
geom_errorbar(data = data_us,
aes(CV, Incidence, ymin = Lower, ymax = Upper),
colour = "black", width = 0.1, inherit.aes = FALSE) +
scale_y_continuous("Mean Incidence per 100,000",
limits = c(min(data_us$Incidence),
max (data_us$Incidence))) +
scale_x_continuous("CV", limits = ¢(0,3.5)) +
ggtitle("Un-scaled Incidence")
path_unscaled
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Figure 23: The US canonical path with Incidence un-scaled.
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## Canonical path, with y on a square root scale
path_sqrt <- ggplot()+
geom_path(data = data_us, aes(CV, Incidence),
colour = ’black’, 1ty = 1, lwd = 1) +
geom_errorbar(data = data_us, aes(CV, Incidence,
ymin = Lower,
ymax = Upper),
colour = "black", width = 0.1,
inherit.aes = FALSE) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(data_us$Incidence),
max (data_us$Incidence))) +
scale_x_continuous("CV", limits = ¢(0,3.5)) +
ggtitle("Square-root Incidence")
path_sqgrt
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Figure 24: The US canonical path with square-root Incidence.

Page 93 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

## Canonical path, with y on a log scale
path_log <- ggplot()+
geom_path(data = data_us, aes(CV, Incidence),
colour = ’black’, 1ty = 1, lwd = 1) +
geom_errorbar(data = data_us, aes(CV, Incidence,
ymin = Lower,
ymax = Upper),
colour = "black", width = 0.1,
inherit.aes = FALSE) +
scale_y_loglO("Mean Incidence per 100,000",
limits = c(min(loglO(data_us$Incidence)),
10)) +
scale_x_continuous("CV", limits = c(1,3)) +
ggtitle("Log Incidence")
path_log
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Figure 25: The US canonical path with log Incidence.
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From these plots, we chose to use a square-root scale as it shows more behaviour near
zero incidence, while preserving the shape of the path.

Additionally, using the following code, we plot the time series of incidence per 100,000
for the United States. We generate this data by taking the mean across all US states
each year.

## Create a long format data frame containing

## incidence per 100k of each state and the US since

## 1912

incidence_data <- as.data.frame(t(final.incidence.data))
incidence_data$US <- colMeans(final.incidence.data)
incidence_data$Year <- as.numeric(rownames (incidence_data))

long_incidence_data <- pivot_longer(incidence_data, cols = !Year,
names_to = "Region",
values_to = "Incidence")

long_incidence_data <- long_incidence_data %>%
filter(Year >= 1912)

## Create a data frame containing only the US
us_only_inc <- long_incidence_data %>%
filter(Region == "US")

us_ts <- ggplot() +
geom_path(data = us_only_inc, aes(Year, Incidence)) +
scale_y_logl0("Inc per 100k",
labels =
function(x) format(x, scientific = FALSE)) +

theme (

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)

The following code creates the figure shown in figure 2.
us_grobs <- list(us_ts, true_path)

us_lay <- rbind(1,2,2,2)
grid.arrange(grobs = us_grobs, layout_matrix = us_lay)
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7.3.3 US State Path Comparisons
7.3.3.1 Plotting the Canoncial Path Comparisons

To create the plots comparing each state path to the aggregate US path, we begin
by defining which political stronghold each state represents. This allows us to colour
each state path based on political stronghold: republican, democratic, or swing state.
The data was obtained from WorldAtlas [21-23].
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red_states <- c("alabama", "alaska", "arizona", "arkansas", "georgia",
"idaho", "kansas", "kentucky", "louisiana",
"mississippi","missouri", "montana", "nebraska",
"north dakota",'"oklahoma", "south carolina",
"south dakota",'"tennessee", "texas'", "utah",

"west virginia","wyoming")
red_states <- toupper(red_states)

swing_states <- c("colorado", "florida", "iowa", "michigan",
"minnesota")
swing_states <- toupper(swing_states)

blue_states <-
state_names[! (state_names %inJ, c(red_states, swing_states))]

Next, we create several lists that will contain data used to generate the state com-
parison plots as well as the plots themselves. We also define a vector containing the
years we wish to label. Additionally, we add a Path column to the US data frames,
while filtering them to only include the necessary columns. Finally, we create a data
frame that only contains data for the years we wish to label.

Once the US data is prepared, we run a for loop that creates data frames containing
the Incidence and CV of a single state, using the output of the cv_inc_fun(), while
defining max incidence of that state, and save the generated data frames to items of
a list. We then combine the US and state data frames for use in plotting. We also
create a named vector that tells ggplot which colour to use for each path based on
whether it is of the entire US or a single state. We save the named vector to a list for
each state to use in later code. The next argument of the for loop generates a plot
comparing the US canonical path to that of an individual state and saves it to a list.
Lastly, the for loop creates a plot of the time series of the corresponding state and
saves it to a list. The names of all lists are set equal to the vector of state names.

state_paths <- list()

state_data_list <- list()

state_point_list <- 1list()

state_text_list <- list()

state_ts_list <- list()

colour_each_state <- list()

max_incidence_per_state <- vector(length = nstates)
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label_years <- c("1922", "1962", "2002")

## Create a Path column that identifies
## that 1t <s the US path

data_us$Path <- "US"

point_mean_us$Path <- "US"

## Filter the data to only containing the
## necessary columns and rename the columns
data_us_filter <-
data_us[colnames(data_us) %in% c("CV", "Incidence",
nyearu s "Path")]
colnames(data_us_filter) <-
c("CV", "Incidence", "Year", "Path")
point_mean_us_filter <-
point_mean_us[colnames(point_mean_us) %inj c("CV",
"Incidence",
uyearu ,
"Path")]
colnames(point_mean_us_filter) <-
c("CV", "Incidence", "Year", "Path")

## Create a data frame filtered for the years we wish to label
us_text_data <- point_mean_us_filter %>%
filter(Year %inj, label_years)

for (i in 1l:nstates) {
## Define the current state
state <- state_names[i]

## Create the data frames
## that contain the CV and incidence for a single state
state_data <- data.frame(

CV = CV_states[,i] ,

Incidence = Incidence_states[,i],

Year = Incidence_states$Year,

Path = state

point_state_data <- data.frame(
CV = CV_states_per_10y[,i],
Incidence = Incidence_states_per_10y[,i],
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Year
Path

Incidence_states_per_10y$Year,
state

state_text_data <- point_state_data %>%
filter(Year %inJ, label_years)

## Find the maxz incidence for each state
max_incidence_per_state[i] <-
max(state_data$Incidence, na.rm = TRUE)

## Save data frames for later
state_data_list[[i]] <- state_data
state_point_list[[i]] <- point_state_data
state_text_list[[i]] <- state_text_data

## Create long data frames containing the US and state path data
all_data <- rbind(data_us_filter, state_data)

all_point_data <- rbind(point_mean_us_filter, point_state_data)
all_text_data <- rbind(us_text_data, state_text_data)

## Determine the colour of the state path
## based on the type of political stronghold
if (state %in% red_states) {
state_col <- "red"
} else if (state %in% blue_states) {
state_col <- "blue"
} else {
state_col <- "purple4"

}

## Manually choose the colours of the state and US path
colours <- c(state_col, "black")
names (colours) <- c(state, "US")

colour_each_state[[i]] <- colours
## Create the plot that plots both the state and US canontical path

state_plot <- ggplot() +
geom_path(data = all_data, aes(CV, Incidence, colour = Path),
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1ty = 1, lwd = 1) +
geom_point(data = all_point_data,
aes(CV, Incidence, colour = Path),
size = 3) +
geom_text_repel(data = all_text_data,
aes(label = Year, ’’, colour = Path),

x = all_text_data$CV,

y = sqrt(all_text_data$Incidence),
nudge_x = 1,

nudge_y = 1,

hjust = -0.45,

vjust = -0.75

) +

scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(all_data$Incidence, na.rm = TRUE),
800)) +
scale_x_continuous("CV",
limits = c(-.35, 3.5)) +
scale_colour_manual (values = colours) +
coord_cartesian(expand = c(0,0)) +
labs(colour="Path") +
theme(legend.position = c(.95, .99),
legend. justification = c("right", "top"),
legend.box. just = "right",
legend.margin = margin(6, 6, 6, 6),
legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)
) +
ggtitle(state)

state_inc_data <- long_incidence_data %>%
filter(Region == state)

state_inc_data$Path <- state

state_ts <- ggplot() +
geom_path(data = state_inc_data,
aes(Year, Incidence, col = Path)) +
scale_colour_manual(values = colours) +
scale_y_loglO(labels =
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function(x) format(x, scientific = FALSE)) +

ylab("Incidence per 100k") +
theme (

legend.position = "none",

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)

## Assign the plots to an entry in a list to use inm other code
state_paths[[i]] <- state_plot
state_ts_list[[i]] <- state_ts

}

## Assign the state nmames to be the names of the list
names (state_paths) <- state_names

names (state_ts_list) <- state_names

names (state_data_list) <- state_names

names (state_point_list) <- state_names

names (state_text_list) <- state_names

names (colour_each_state) <- state_names

The following are the plots comparing each of the US states’ canonical path to that
of the entire US. First we define several arguments required for the grid.arrange ()
function: a list of ggplot items that contain the canonical path comparisons and the
layout matrices that tell grid.arrange how to arrange the plots. Finally, we call
grid.arrange() to create the plot grids.

for (i in 1l:nstates) {
grobs_state <- list(state_ts_list[[i]], state_paths[[il])
lay_state <- rbind(1, 2, 2, 2)
grid.arrange(grobs = grobs_state, layout_matrix = lay_state)

}
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Additionally, since Colorado, Utah, Vermont, and Wisconsin had a higher maximum

number reported cases than most states, we re-create the grids for these states, in-
creasing the y-axis limit.

## Eztract only Colorado, Utah, Vermont and Wisconsin as
## they are cut off
above_800 <- c("COLORADO", "UTAH", "VERMONT", "WISCONSIN")

state_above_800 <- state_paths[names(state_paths) %in% above_800]
state_ts_above_800 <- state_ts_list[names(state_paths) %in¥% above_800]
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## Get rid of legends and make y limit the maz value in

## Utah to see the plots fully

for (i in 1:length(state_above_800)) {

state_above_800[[1]] <- state_above_800[[i]] +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(c(min(state_data$Incidence,
na.rm = TRUE),
min(data_us$Incidence,

na.rm = TRUE))),

max (Incidence_states$UTAH))) +
theme(legend.position = "none"

grobs_state <- list(state_ts_above_800[[i]], state_above_800[[i]])
lay_state <- rbind(1, 2, 2, 2)

grid.arrange(grobs = grobs_state, layout_matrix = lay_state)

}
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Through the inspection of the time series of each US state, we discovered that it
wasn’t until roughly 1959 that all states began reporting measles uniformly. Thus,
conducting the comparison before this date may skew the results due to increased

variation. We re-create the US canonical path, greying-out the path before 1960 in
the following figure.

data_us$Reporting <- 0
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point_mean_us$Reporting <- 0
unif_year_val <- 1959

for (i in 1l:nrow(data_us)) {
if (as.numeric(data_us$year[i]) <= unif_year_val) {
data_us$Reporting[i] <- "Varied"
} else {
data_us$Reporting[i] <- "Uniform"
}

}

for (i in l:nrow(point_mean_us)) {
if (as.numeric(point_mean_us$year[i]) <= unif_year_val) {
point_mean_us$Reporting[i] <- "Varied"
} else {
point_mean_us$Reporting[i] <- "Uniform"
}

}

path_colours <- c(Varied = "darkgrey", Uniform = "black")

true_path_greyed <- ggplot()+
geom_path(data = data_us,
aes(CV, Incidence, col = Reporting),
1ty = 1, lwd = 1) +
geom_point(data = point_mean_us,
aes(CV, Incidence, col = Reporting),
pch = 15, size = 2) +
geom_text(data = point_mean_us,
aes(label = year , col = Reporting, ’’),
position = position_nudge(x = -1, y = -1),
hjust = -0.45,
vjust = -0.75,
x = point_mean_us$CV,
y = sqrt(point_mean_us$Incidence)) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(data_us$Incidence),
max (data_us$Incidence))) +
scale_x_continuous("CV", limits = c(min(data_us$CV),
max (data_us$CV))) +
scale_colour_manual(values = path_colours) +
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Figure 26: US canonical path with the path greyed out before 1960.

We now re-create the state comparison plots and the state time series, for only 1960
to 2016 using the following code.
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data_us_unif <- data_us_filter %>Y%
mutate(Year = as.numeric(data_us_filter$Year)) %>%
filter(Year > unif_year_val)

unif_years <- as.numeric(data_us_unif$Year)

point_mean_us_unif <- point_mean_us_filter %>%
mutate(Year = as.numeric(point_mean_us_filter$Year)) %>%
filter(Year > unif_year_val)

point_unif_years <- as.numeric(point_mean_us_unif$Year)

unif_paths <- list()
unif_state_data <- list()
unif_point_state <- list()

for (i in 1l:nstates) {
state <- state_names[i]

state_unif <- state_data_list[[statel] %>%
filter(Year %in% unif_years)

unif_state_datal[[i]] <- state_unif

point_state_unif <- state_point_list[[statel] %>%
filter(Year %in% point_unif_years)

unif_point_state[[i]] <- point_state_unif

## Find the maxz incidence for each state
max_incidence_per_state[i] <-
max (unif_state_data$Incidence, na.rm = TRUE)

## Create long data frames containing the US and state path data
all_data_unif <- rbind(data_us_unif, state_unif)
all_point_data_unif <- rbind(point_mean_us_unif, point_state_unif)

## Create the plot that plots both the state and US canonical path
state_plot <- ggplot() +
geom_path(data = all_data_unif, aes(CV, Incidence, colour = Path),
1ty = 1, lwd = 1) +
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geom_point(data = all_point_data_unif,
aes(CV, Incidence, colour = Path),
size = 3) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(all_data$Incidence, na.rm = TRUE),
800)) +
scale_x_continuous("CV",
limits = c(-.35, 3.5)) +

scale_colour_manual (values = colour_each_statel[[i]]) +
coord_cartesian(expand = c(0,0)) +
labs(colour="Path") +
theme(legend.position = c(.95, .99),

legend. justification = c("right", "top"),

legend.box.just = "right",

legend.margin = margin(6, 6, 6, 6),

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)
)+
ggtitle(state)

unif_paths[[i]] <- state_plot

}

names (unif_paths) <- state_names
names (unif_state_data) <- state_names
names (unif_point_state) <- state_names

us_only_inc_unif <- us_only_inc %>%
filter(Year > unif_year_val)

us_only_inc_unif$Path <- "US"

us_ts_plot_unif <- ggplot() +
geom_path(data = us_only_inc_unif,
aes(Year, Incidence, col = Path)) +
scale_y_logl0("Inc per 100k",
labels =
function(x) format(x, scientific = FALSE)) +
scale_colour_manual (values = colour_each_statel[[1]]) +
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theme (
legend.position = "none",
legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)

state_ts_unif <- list()
state_ts_unif_plot <- 1list()

for (i in 1l:nstates) {
state <- state_names[i]

state_inc_data <- long_incidence_data %>%
filter(Region == state & Year > unif_year_val) %>%
mutate(Path = state)

state_ts_unif[[i]] <- state_inc_data

state_ts_unif_plot[[i]] <- ggplot() +
geom_path(data = state_inc_data,
aes(Year, Incidence, col = Path)) +
scale_y_logl0("Inc per 100k",
labels =
function(x) format(x, scientific = FALSE)) +

scale_colour_manual (values = colour_each_statel[[i]]) +
theme (

legend.position = "none",

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)

names (state_ts_unif) <- state_names
names (state_ts_unif_plot) <- state_names
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for (i in 1l:nstates) {
final_grobs <- list(state_ts_unif_plot[[i]], unif_paths[[i]])

lay_final <- rbind(1, 3, 3, 3)
grid.arrange(grobs = final_grobs, layout_matrix = lay_final)

}
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The results from sections 7.3.2 and 7.3.3 are then saved to a .RData file for use in
other code.

file_name <- paste(paste("Good_data/true_path",
inc_window, sd, sep = "_"),
".RData”, Sep = ||u)

save(true_path, data_us, final_data, point_mean_us, CV_states, Incidence_states, s
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7.3.4 Analyzing the Distance Between State Paths and the US Path
7.3.4.1 Scaling and Distance Function Definitions

To determine how much each state varies from the US canonical path we find the
distance between each state’s path and that of the whole US using the distance as
defined in equation 1. To find the distance, we created two different functions. The
first function, scale_cases_percentile(), is used to scale incidence and CV so that
the log of incidence and CV at the specified percentile is normalized to 1. We chose
this method of scaling as opposed to having all of incidence and CV be between 0 and
1, as having incidence be between 0 and 1 would introduce noise before vaccination
due to increased levels of variation.

## Create a function that scales data so that the

## specified percentile value is 1

## Takes two arguements: data frame containing Year and
## either a column titled Incidence or Reports

## Returns two arguements: data frame that contains the
## scaled incidence/reports and the scaling value

## that all incidence wvalues were divided by

scale_cases_percentile <- function(data, type, percentile,
use_log) {
## Ensure that the inputs are of the proper format
stopifnot (type %in}% c("Incidence", "Reports") |
is.numeric(percentile) |
percentile < 1 | is.logical(use_log))
require(dplyr)

## Take the log of incidence first 1f specified
if (use_log) {
datal,typel] <- log(datal,typel)

}

## Filter out any CV with NA wvalues
data <- data %>%
filter(!is.na(CV))

## Find the value of Inctdence and CV at the
## specified percentile
scale_value_case <- quantile(datal,typel,
percentile, na.rm = TRUE)
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scale_value_cv <- quantile(datal,"CV"],
percentile, na.rm = TRUE)

scaled_data <- data
scaled_data$CV <- data$CV / scale_value_cv
scaled_datal, typel <- datal, typel / scale_value_case

return(list(scaled_data = scaled_data,
scale_value_case = scale_value_case,
scale_value_cv = scale_value_cv))

The function takes the arguments: data, type, percentile, and use_log. data is
the data we want to scale, type is either “Incidence” or “Reports” depending on
how the column is labeled in the data frame, percentile is a value between 0 and 1
telling the function which percentile to use, e.g., the 90th percentile would be 0.9, and
use_log is logical and tells the function whether it should take the log of incidence
prior to scaling. The function outputs the scaled data as well as the values used to
scale incidence and CV. This functionality allows us to use the scaling values on data
sets we wish to compare to the scaled data.

The second function, distance_btw_canon_path(), finds the distance between canon-
ical paths using the Euclidean distance as defined in equation 1. The function takes
the following arguments: orig_data, compare_data, type_orig, type_compare, and
data_years. orig_data is the data frame containing the data that was scaled based
on its own specified percentile, compare_data is a list containing all data frames you
wish to compare with orig_data, such that they are all scaled based on the specified
percentile of orig_data. type_orig and type_compare tell the function whether
incidence is labeled as “Incidence” or “Reports”. Finally, data_years is a vector
containing the years for which data should be compared.

First, the function determines whether the function arguments are of the correct
format. Next, it creates an empty vector of length of the compare_data list that will
contain the distance measure for each comparison. The function filters the data so
that we are only comparing the years of data specified by data_years, and makes
the “Year” column numeric. If there is no data to compare, the function sets the
distance to NA. Otherwise, it finds the mean of squared differences and outputs it into
the vector. The function outputs the vector containing the distance values, named
using the names of compare_data.
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### A function that provides a metric for sensitivity by
### finding the euclidean distance between paths
distance_btw_canon_path <- function(orig_data, compare_data,
type_orig,
type_compare, data_years) {
## Check that the inputs are the correct format
stopifnot (type_orig %inJ, c("Incidence", "Reports"),
type_compare %in% c("Incidence", "Reports"),
is.list(compare_data))
require(dplyr)
## Create the empty vector
sensitivity <- vector(length = length(compare_data))

## Filter the year column to only include the specified years
for (i in 1:length(compare_data)) {
orig_data_filtered <- orig_data %>%
filter(Year %in% data_years & !is.na(CV))
compare_data_filtered <- compare_datal[i]] %>%
filter(Year %in), data_years & !is.na(CV))

if (nrow(compare_data_filtered) == 0) {
sensitivity[i] <- NA
} else {

## If the years still are not the same,
## 1t filters the data frame further based on
## which data frame has more arguments
if (lidentical(orig_data_filtered$Year,
compare_data_filtered$Year)) {
if (orig_data_filtered$Year[length(orig_data_filtered$Year)] >
compare_data_filtered$Year[length(compare_data_filtered$Year)] |
length(orig_data_filtered$Year) >
length(compare_data_filtered$Year)) {
orig_data_filtered <- orig_data_filtered %>%
filter(Year %in% compare_data_filtered$Year)
} else {
compare_data_filtered <- compare_data_filtered %>%
filter(Year %in% orig_data_filtered$Year)

## Make the Year column numeric
orig_data_filtered$Year <-
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as.numeric(orig_data_filtered$Year)
compare_data_filtered$Year <-
as.numeric(compare_data_filtered$Year)

## Check that the year columns are the same
stopifnot(identical (orig_data_filtered$Year,
compare_data_filtered$Year))

sq_diff_inc <-
(orig_data_filtered[,type_orig] -
compare_data_filtered[,type_compare]) "2
sq_diff_cv <-
(orig_data_filtered[,"CV"] - compare_data_filtered[,"CV"])"2

## Find the mean of squared differences and put it in the vector
sensitivity[i] <-
sqrt (mean((sq_diff_cv + sq_diff_inc)))

#o}
## Name the vector using the names of the data list
names (sensitivity) <- names(compare_data)

## Return the list of distances
return(sensitivity = sensitivity)

To choose the value of the percentile, we conducted a sensitivity analysis to determine
whether the choice of the percentile changes the time-progression of the path. We
begin by loading data for our path created using real data, source functions.R, and
load the necessary libraries.

library(tidyverse)
library(knitr)

source("functions.R")
load("Good_data/true_path_10_3.RData")

Next, we define the arguments required to use the scaling function.
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## Path data using real US data

real_data <- data_us

## Vector of percentiles we wish to use

percentiles <- seq(0.8, 0.95, 0.05)

## Empty list that will house scaled data and scaling factors
scaled_real_data_percentile <- list()

use_log <- TRUE

We then run a for loop through each value of the percentile and create a single data
frame containing the scaled data for each percentile.

for (i in 1:length(percentiles)) {
## Scaling the real data using scale_percentile
scale_data <-
scale_cases_percentile(real_data,
"Incidence",
percentiles[i],
use_log)
scaled_real_data_percentile[[i]] <- scale_data$scaled_data

}

## Set the names of the lists to be the percentiles
names (scaled_real_data_percentile) <- percentiles

## Create a single data frame for the individual data
## with a Percentile column
all_percentile_data <-
bind_rows(scaled_real_data_percentile,
.id = "Percentile")

Finally, we create a figure comparing the scaled paths for each percentile. In this plot
we observe no difference in the shape of the path. The only difference across the paths
is that as you increase the percentile, the path shrinks. This suggests that the choice
of the percentile in this range does not matter. Thus, we choose to use a percentile
of 0.9.

scaled_canonical_path_real_percentile_vary <- ggplot() +
geom_path(data = all_percentile_data,
aes(CV, Incidence,
colour = Percentile),
1ty = 1, lwd = 1) +
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scale_y_sqrt("Mean Incidence per 100,000") +
scale_x_continuous("CV", limits = c(0,1.25),
expand = c(0,0))
scaled_canonical_path_real_percentile_vary

0.9-

=
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1

Percentile
— 0.8
— 0.85

=
w
1

— 0.9
— 0.95

Mean Incidence per 100,000

Cv
Figure 27: Demonstration of how changing the percentile used in scaling changes the
path.

Additionally, we save the plot to a .RData file.
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save(scaled_canonical_path_real_percentile_vary,
file = "data/scaling_plots.RData")

7.3.4.2 Evaluating the Distance Between Each State and the Aggregate
US Path

Using the functions as defined, we find the distance between each state’s canonical
path and the US canonical path from 1960 to 2016. We begin by loading tidyverse,
sourcing the functions.R file and loading the data frames for the canonical paths.

library(tidyverse)

library(knitr)

library(gridExtra)

library(ggpubr)

source("functions.R")
load("Good_data/true_path_10_3.RData")
load(’Good_data/yearly.data.per.100k.RData’)
load("data/presentation_logical.RData")

Next, we rename the data frame containing the US canonical path data and add a col-
umn corresponding to the year. We set data_years to be all years from 1960 to 2016
and set use_log=TRUE. Using these arguments, we call the scale_cases_percentile()
function to scale the data using the 90th percentile.

## Filter the data to only contain the years in which
## states reported untformly Additionally rename the US
## path data and add Year
real data <- data_us %>%

mutate(Year = as.numeric(year)) %>%

filter(Year > 1959)

## Define function arguments
data_years <- real_data$Year
use_log <- TRUE

percentile <- 0.9

## Call the function and set wvariables to each

## component of the function output for use later on
scale_real_data_values <-
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scale_cases_percentile(real_data,
"Incidence",
percentile,
use_log)

scale_factor_reports_state <-
scale_real_data_values$scale_value_case

scale_factor_cv_state <-
scale_real_data_values$scale_value_cv

scale_real_data <-
scale_real_data_values$scaled_data

Now that the US path data is scaled, we prepare the individual state path data for
scaling. First we transform the data from wide-format to long-format and make sure
that the “Year” and “State” columns are identical in the Incidence and CV data
frames. Additionally, we bind the columns of the CV data frame to the Incidence
column from the incidence data frame using cbind() to create one data frame.

## Convert to long format
long_CV_state <-
pivot_longer(CV_states, !Year,
names_to = "State",
values_to = "CV")
long_Incidence_state <-
pivot_longer (Incidence_states, !Year,
names_to = "State",
values_to = "Incidence")

## Check that the state and year columns are the same
setequal (long_CV_state$Year,
long_Incidence_state$Year) &
setequal (long_CV_state$State, long_Incidence_state$State)

## Combine the CV data frame to the incidence column
## to make one cohesive data frame,
## naming the columns accordingly
state_data <-

cbind(long_CV_state, long_Incidence_state$Incidence)
colnames(state_data) <-

c(colnames(long_CV_state), "Incidence")
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With a single data frame, we divide CV by the defined CV scaling factor and divide
the log of incidence by the defined incidence scaling factor, resulting in scaled data.

## Scale log incidence and CV by dividing by the pre-defined
## scaling factors
scaled_state_data <- state_data

scaled_state_data$CV <- state_data$CV/scale_factor_cv_state
scaled_state_data$Incidence <-
log(state_data$Incidence)/scale_factor_reports_state

Since we must have a list containing the data frame of each state, we use the following
code to filter the data for each state and enter it into a list.

## Create the empty list
scaled_state_data_list <- list()

states <- unique(scaled_state_data$State)

## Filter the data frame for each state and making 2t an entry im the list
for (i in 1:length(states)) {
filtered <- scaled_state_data %>%
filter(State == states[i])

scaled_state_data_list[[i]] <- filtered

}

## Name the data frames using the names of the states
names (scaled_state_data_list) <- states

Finally, we call the distance_btw_canon_path() function to find the distance be-
tween each US state and the aggregate US path between 1960 and 2016.

## Call the defined distance function
distance_states <-
distance_btw_canon_path(scale_real_data,
scaled_state_data_list,
"Incidence", "Incidence",
data_years)
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## Make the output containing the distances

## a data frame (so that we can visualize the results)
states_data <- as.data.frame(distance_states)
colnames(states_data) <- "Distance"

The following plot shows a histogram of the distances between each state and the
aggregate US path.

ggplot() + geom_histogram(data=states_data, aes(x=Distance))

5-
4-
3-
9-
1- L l

0.2 0.3 0.4 0.5
Distance

count

Figure 28: Histogram of the distances between US states and the aggregate US path.
The smallest distance corresponds to Virginia and the largest distance corresponds to
North Dakota.
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We use the summary () function to obtain summary statistics pertaining to the median
and IQR.

summary(distance_states)

## Min. 1st Qu. Median Mean 3rd Qu. Max .
## 0.1829 0.2487 0.2809 0.3034 0.3414 0.5089

We can also find the states with the maximum and minimum distance using the
following code.

min_loc <- which.min(distance_states)
max_loc <- which.max(distance_states)
min_distance_state <-
distance_states[min_loc]
min_distance_state
max_distance_state <-
distance_states[max_loc]
max_distance_state

Next, we create plots that compare the states corresponding to the minimum and
maximum distances to the US canonical path, with their time series at the top. The
following figures show the comparison plots for the minimum and maximum distances
respectively, while including a time series plot at the top, as shown in figures 3 and 4.

grobs_state_min_unif <- list(state_ts_unif_plot[[min_loc]],
unif_paths[[min_loc]])
lay_state_min_unif <- rbind(1, 2, 2, 2)
grid.arrange(grobs = grobs_state_min_unif,
layout_matrix = lay_state_min_unif)
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grobs_state_max_unif <- list(state_ts_unif_plot[[max_loc]],

unif_paths[[max_loc]])
lay_state_max_unif <- rbind(1, 2, 2, 2)

grid.arrange(grobs = grobs_state_max_unif,
layout_matrix = lay_state_max_unif)
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7.3.5 Assigning Each US State its Closest Point on the US Path

To see how US states progress along the path over time, we created a figure that plots
the closest point on the canonical path for each US state for the following years: 1962,
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1972, ..., 2012. We begin by creating empty lists to contain the data and plots, as
well as define the vector of years we wish to plot. Additionally, we define vectors that
provide the colours of the points of each US state, based on whether the state is a
Republican or Democratic Stronghold, or a swing state.

## Vector of years to plot closest point
closest_years <- seq(1962, 2012, 10)
## Empty lists to contain closest point data and paths
closest_points_list <-

as.list(vector(length = length(closest_years)))
closest_points_paths_red <-

as.list(vector(length = length(closest_years)))
closest_points_paths_blue <-

as.list(vector(length = length(closest_years)))
closest_points_paths_swing <-

as.list(vector(length = length(closest_years)))
names (closest_points_list) <- closest_years
names (closest_points_paths_red) <- closest_years
names (closest_points_paths_blue) <- closest_years
names (closest_points_paths_swing) <- closest_years

## Create mamed vectors that will be used to

## identify the colours of the plotted points

colours_cp <- c("red", "blue", "purpled")

names (colours_cp) <- c("Republican", "Democratic", "Swing")

To find the closest point on the path for each state in a given year, we create a func-
tion called closest_point. The function takes the following arguments: full_path,
compare, type_full, type_compare, and year. full_path is a data frame contain-
ing the weighted incidence, CV, and years of the US canonical path. compare is a list
containing the data frames containing the weighted incidence, CV, and years of each
US state. In these data frames, the years are numeric. type_full and type_compare
tell the function if the weighted incidence is labelled “Incidence” or “Reports”. year
is the year (numeric) for which we wish to find the closest point of each state on the
US path. The function finds the euclidean distance between each state in a given
year and all points in the US path. It finds the point corresponding to the minimum
distance, and saves the data in the corresponding row of the US path data frame.

## Finds the closest point on the path for all states in a given year
closest_point <- function(full_path, compare,
type_full, type_compare, year) {
stopifnot (type_full %in)% c("Incidence", "Reports"),
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type_compare %in) c("Incidence",
"Reports"),
is.list(compare))
require (dplyr)
closest_point_list <- compare
full_path_distance <- full_path
## For each state, filter the data to only include
## a point for the given year
for (i in 1:length(compare)) {
filtered <- comparel[[i]] %>%
filter(Year == year)

## Find euclidean distance between the state in a
## given year to each year of data in the original path
full_path_distancel[,type_full] <-
(full_path[,type_full] - filtered[,type_compare])"2
full_path_distance$CV <-
(full_path$CV - filtered$CV) "2
full_path_distance$euc_dist <-
sqrt(full_path_distancel[,type_full] +
full_path_distance$CV)

closest_point_list[[i]] <-
full_path[full_path$Year == full_path_distance$Year[
which.min(full_path_distance$euc_dist)],]

}

names (closest_point_list) <- names(compare)

return(closest_point = closest_point_list)

}

With the function created, we run a for loop across the years we wish to create a plot
of, that creates a plot of the US canonical path with the closest points of each US
state plotted. Within the for loop, we begin by calling the closest_point function.
We then change the format of the output, resulting in a single data frame containing
the closest point of each state in the given year. Next, we create a “Stronghold”
column that identifies whether the state is a Republican or Democratic stronghold,
or a swing state. Finally, we create separate plots for each type of Stronghold and
assign them as an item in a list. Additionally, we save the data frame containing the
closest point data to a separate list.
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## For each year, plot the closest point of each state
## that year on the US path
for (yr in closest_years) {
## Call closest_point function
closest_result <- closest_point(scale_real_data,
scaled_state_data_list,

"Incidence", "Incidence",
yr)
## Create long data frame
closest_result_long <- bind_rows(closest_result, .id = "State")

## Add a label column to identify each point and the year
## corresponding to the closest point on the path
closest_result_long <- closest_result_long %>%
mutate(Label = paste(State, paste("(", Year, ")",
sep = ""),
sep —} u))

## Find regular weighted incidence (was log), un-scaled

closest_result_long$Incidence <-
exp(closest_result_long$Incidencexscale_factor_reports_state)

## Find un-scaled CV

closest_result_long$CV <-
closest_result_long$CVxscale_factor_cv_state

## Filter the data frame to contain only the columns we want
col_keep <- c("State", "CV", "Incidence", "Year", "Label")
col_index <- which(colnames(closest_result_long) %in’% col_keep)

closest_result_long <- closest_result_longl[,col_index]

## Create a column for political stronghold
## (using vectors defined in canonical_path.Rnw)
for (i in l:nrow(closest_result_long)) {
if (closest_result_long$State[i] %in% red_states) {
closest_result_long$Stronghold[i] <- "Republican"
} else if (closest_result_long$State[i] %in% blue_states) {
closest_result_long$Stronghold[i] <- "Democratic"
} else {
closest_result_long$Stronghold[i] <- "Swing"
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}

## Current year indecx
yr_index <- which(closest_years == yr)

closest_result_long_red <- closest_result_long %>%

filter(Stronghold == "Republican")
closest_result_long_blue <- closest_result_long %>%
filter(Stronghold == "Democratic")
closest_result_long_swing <- closest_result_long %>%
filter (Stronghold == "Swing")

## Create plot
closest_points_paths_red[[yr_index]] <- ggplot() +
geom_path(data = data_us, aes(CV, Incidence),
colour = ’black’, 1ty =1, lwd = 1) +
geom_point(data = closest_result_long_red,
aes(CV, Incidence, colour = Stronghold),
alpha = 0.5, size = 3) +
scale_colour_manual (values = colours_cp[c("Republican",
"Democratic")]) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(data_us$Incidence),
510)) +
scale_x_continuous("CV",
limits = c(min(data_us$CV),
max (data_us$CV))) +
labs(colour = "Political Stronghold") +
ggtitle(paste(as.character(yr), sep = " "))

closest_points_paths_blue[[yr_index]] <- ggplot() +

geom_path(data = data_us, aes(CV, Incidence),

colour = ’black’, 1ty = 1, lwd = 1) +
geom_point(data = closest_result_long_blue,

aes(CV, Incidence, colour = Stronghold),

alpha = 0.5, size = 3) +
scale_colour_manual (values = colours_cp[c("Republican",

"Democratic")]) +

scale_y_sqrt("Mean Incidence per 100,000",

limits = c(min(data_us$Incidence),

510)) +

scale_x_continuous("CV",
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limits = c(min(data_us$CV),
max (data_us$CV))) +
labs(colour = "Political Stronghold") +
ggtitle(paste(as.character(yr), sep = " "))

closest_points_paths_swing[[yr_index]] <- ggplot() +
geom_path(data = data_us, aes(CV, Incidence),
colour = ’black’, 1ty =1, lwd = 1) +
geom_point(data = closest_result_long_swing,
aes(CV, Incidence, colour = Stronghold),
alpha = 0.5, size = 3) +
scale_colour_manual (values = colours_cp[c("Swing")]) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(data_us$Incidence),
510)) +
scale_x_continuous("CV",
limits = c(min(data_us$CV),
max (data_us$CV))) +
labs(colour = "Political Stronghold") +
ggtitle(paste(as.character(yr), sep = " "))

## Save data to a list
closest_points_list[[yr_index]] <- closest_result_long

}

red_blue_paths <- append(closest_points_paths_red,
closest_points_paths_blue)

We generate the figure presented in figures 5 and 6 using the following code.

## Create a grid with a single common legend
ggarrange(plotlist = red_blue_paths[c(1l, 7, 2, 8, 3, 9],
ncol=2, nrow=3, common.legend = TRUE,

legend="bottom")
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ggarrange(plotlist = red_blue_paths[c(4, 10, 5, 11, 6, 12)],
ncol=2, nrow=3, common.legend = TRUE,
legend="bottom")
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We additionally create a similar figure, but for only swing states using the following
code.

ggarrange(plotlist = closest_points_paths_swing,
ncol=2, nrow=3, common.legend = TRUE,
legend="bottom")
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Figure 29: A grid that demonstrates the progression swing states along the path from
1962 to 2012.

7.3.6 Box plot over Time of Pointwise Distances between States and the
Aggregate US Path

To find the pointwise distance between the states and the US path from 1960 to 2016,
we begin by defining the data frame that will contain the following data: Year, State,
and Distance.

pointwise_distance_results <- data.frame(
Year = rep(0, length(data_years)*length(states)),
State = rep(0, length(data_years)*length(states)),
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Distance = rep(0, length(data_years)*length(states))

## Set Year equal to 1921 to 2016 repeated for the number of states
pointwise_distance_results$Year <- rep(data_years, length(states))

## Order the data frame by Year
pointwise_distance_results <-
pointwise_distance_results[order(pointwise_distance_results$Year), ]

## Set State equal to the state names repeated for the number of years
pointwise_distance_results$State <- rep(states, length(data_years))

Next, we use our defined distance_btw_canon_path() function to find the distance
between each state and the aggregate path for each individual year using the following
code. The value for each year and each state is entered into the corresponding row in
the data frame.

for (yr in 1:length(data_years)) {
## Distance function like before, but our data_years argument
## 15 a single year
distances <-
distance_btw_canon_path(scale_real_data,
scaled_state_data_list,
"Incidence",
"Incidence", c(data_years[yr]))
pointwise_distance_results$Distancel[
which(pointwise_distance_results$Year == data_years[yr])] <-
as.vector(distances)

The following is the figure presented in figure 7.

pointwise_dist_year <- ggplot() +
geom_boxplot(data = pointwise_distance_results,
aes(x= Year, y = Distance, group = Year),
outlier.size = 0.75) +
theme (
legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
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axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)

)

pointwise_dist_year

1.0- .

Distance
[ _J
[ ]

0.0-

1960 1980 2000
Year

These results are then saved to a .RData file for use later on.

save(state_paths, min_distance_state,
max_distance_state,
distance_states, states_data,
pointwise_distance_results,
pointwise_dist_year, red_blue_paths,
closest_points_paths_blue,
closest_points_paths_red,
closest_points_paths_swing,
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closest_points_list,
scale_real_data,
scaled_state_data_list,
scale_factor_cv_state,
scale_factor_reports_state,

file = "data/dist_btw_states.RData")

7.4 Sensitivity Analysis of the US Canonical Path

The following sections show how the sensitivity analysis is conducted in R while
creating figures 8 through 11.

7.4.1 Use of an Un-weighted vs. a Weighted Mean to find the Mean Point
in Incidence Space

To determine whether we should weight each state equally, or based on population
size when finding the mean point in incidence space, we compare the path generated
with equal weighting in section 7.3.2 to one created by weighting each US state based
on their population size each year.

We begin by loading in necessary libraries, sourcing functions.R, and loading re-
quired .RData files.

library(stats)

library(smoother)

library(tidyverse)

library(RColorBrewer)

library(knitr)

library(ggrepel)

source(’functions.R’)
load(’Good_data/yearly.data.per.100k.RData’)
load("Good_data/pop.estimates.RData")

Next, we define the arguments required by cv_inc_fun() and create a data frame
that contains the population weights for each state in each year.

state_names <- rownames(final.incidence.data)
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nstates <- length(state_names)

## Vector of the years of data we wish to use in

## calculations (1912 as this is when measles became

## nationally notifiable)

usable_data <- seq(1912, 2016, 1)

## How many years to watt until the first data point

## 1is calculated (same as Graham et al.)

inc_window <- 10

## Standard deviation of the Gaussian filter (same as

## Graham et al.)

sd <- 3

## Location of the center of the Gaussian filter (2

## years prior, same as Graham et al.)

mean_loc <- 2

## Years for which we want to plot a point and Year

## label along the path

year_labels <- seq(1922, 2012, 10)

## Logical values to tell the function whether we want

## state path data and or confidence intervals

find_states <- TRUE

find_CI <- TRUE

## Use gaussian for inctdence and smoother for CV

inc_weighting <- "gaussian"

cv_weighting <- "smoothed"

## Set state weights using population

pop_data <- pop.estimates[, colnames(pop.estimates) %inj
as.character(usable_data)]

state_weights <- pop_data
for (i in 1l:ncol(state_weights)) {

state_weights[, i] <- pop_datal, i]/sum(pop_datal, i])
}

Once the arguments are defined, we call the function and create variables to store the
output of the function. These will be used for plotting.

## Call the cv_inc_fun
cv_inc_results <-
cv_inc_fun(data = final.incidence.data,
state_names = state_names,
all_years = usable_data,
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inc_window = inc_window,

sd = sd,

mean_loc = mean_loc,
year_labels = year_labels,
find_CI = find_CI,

find_states = find_states,
inc_weighting = inc_weighting,
cv_weighting = cv_weighting,
state_weights = state_weights)

## Save results for use in plotting

data_us_pop_weight <- cv_inc_results$data_us
point_mean_us_pop_weight <- cv_inc_results$point_mean_us

final_data <- cv_inc_results$final_data

CV_states <- cv_inc_results$CV_states

Incidence_states <- cv_inc_results$Incidence_states
CV_states_per_10y <- cv_inc_results$CV_states_per_10y
Incidence_states_per_10y <- cv_inc_results$Incidence_states_per_10y

Finally, we create a figure comparing the original path to that created with the states
weighted based on population.

load("Good_data/true_path_10_3.RData")

comp_true_paths <- true_path +
geom_path(data = data_us_pop_weight, aes(CV, Incidence),
colour = ’blue’, 1ty = 1, lwd = 1) +
geom_point(data = point_mean_us_pop_weight, aes(CV, Incidence),
colour = ’blue’, pch = 15, size = 2) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(data_us_pop_weight$Incidence),
max (data_us_pop_weight$Incidence))) +
scale_x_continuous("CV", limits = c(min(data_us_pop_weight$CV),
max (data_us_pop_weight$CV)))
comp_true_paths
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Figure 30: Comparison of using equally weighted states (black) to states weighed by
population (blue) to find the mean point in incidence space. From this plot we find
that there is very little difference between the two paths (distance: 0.124).

We find the distance between the two paths to quantify the similarity using the
following code.

scaled_orig <- scale_cases_percentile(data_us, "Incidence",
percentile = 0.9,
use_log = TRUE)

scaled_data_us <- scaled_orig$scaled_data

scale_factor_cv <- scaled_orig$scale_value_cv

scale_factor_inc <- scaled_orig$scale_value_case
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## Scale path data where the states are wetghted by population
scaled_data_us_pop_weight <- data_us_pop_weight
scaled_data_us_pop_weight$CV <-
data_us_pop_weight$CV/scale_factor_cv
scaled_data_us_pop_weight$Incidence <-
log(data_us_pop_weight$Incidence)/scale_factor_inc

colnames(scaled_data_us) <- c("CV", "Incidence", "Upper",
"Lower", "Year",
"Path", "Reporting")
colnames(scaled_data_us_pop_weight) <- c("CV", "Incidence",
"Upper", "Lower",
"Year")

distance <-
distance_btw_canon_path(scaled_data_us,
list(scaled_data_us_pop_weight),
"Incidence", "Incidence",
final_data)
distance

## [1] 0.1244686

Additionally, we save the results to a .RData file.

file_name <- paste(paste("Good_data/true_path_pop_weight",
inc_window, sd, sep = "_"),
n .RDatall s Sep = I ll)

save (true_path_pop_weight, data_us_pop_weight, final_data, point_mean_us_pop_weigh

7.4.2 Method of Weighting Mean Incidence per 100,000

One of the components of the sensitivity analysis was to determine whether we could
use a standard moving average as opposed to a Gaussian filter, as chosen by Graham
et al., to calculate weighted mean incidence. To determine this, we use the function
defined in section 7.3.1 and set inc_weighting="“moving”’. First, we load required
libraries, source functions.R and load pre-created data frames.
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library(stats)

library(smoother)

library(calibrate)

library(tidyverse)

library(knitr)

source("functions.R")
load("Good_data/yearly.data.per.100k.RData")
load("Good_data/alldata.RData")
load("Good_data/true_path_10_3.RData")
load("data/presentation_logical.RData")

Next, we define the arguments required by the cv_inc_fun().

## Vector of state names

state_names <- rownames(final.incidence.data)

nstates <- length(state_names)

## Vector of the years of data we wish to use in

## calculations (1912 as this is when measles became
## nationally notifiable)

usable_data <- seq(1912, 2016, 1)

## How many years to watt until the first data point
## is calculated (same as Graham et al.)

inc_window <- 10

## Standard deviation of the Gaussian filter (same as
## Graham et al.)

sd <- 3

## Location of the center of the Gausstan filter (2
## years prior, same as Graham et al.)

mean_loc <- 2

## Years for which we want to plot a point and Year
## label along the path

year_labels <- seq(1922, 2012, 10)

## Logical values to tell the function whether we want
## state path data and or confidence intervals
find_states <- FALSE

find_CI <- FALSE

## Use moving average for incidence and smoother for
## CV

inc_weighting <- "moving"

cv_weighting <- "smoothed"
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Finally, we call the function and save the output to create plots.

## Call the cu_inc_fun

cv_inc_results <- cv_inc_fun(data = final.incidence.data,
state_names = state_names,
all_years = usable_data,
inc_window = inc_window,
sd = sd,
mean_loc = mean_loc,
year_labels = year_labels,
find_CI = find_CI,
find_states = find_states,
inc_weighting = inc_weighting,
cv_weighting = cv_weighting)

## Save results for use in plotting

data_us_moving <- cv_inc_results$data_us
point_mean_us_moving <- cv_inc_results$point_mean_us
final_data <- cv_inc_results$final_data

Using the created data frames and those that contain the data for the path generated
using a Gaussian filter for incidence, we create the following figure (Figure 8).

## Set colours manually
colours <- c("Gaussian Filter" = "black",
"Standard Moving Average" = "red")

path_compare <- ggplot() +
geom_path(data = data_us,
aes(CV, Incidence, colour = "Gaussian Filter"),
1ty = 1, lwd = 1) +
geom_point(data = point_mean_us,
aes(CV, Incidence, colour = "Gaussian Filter"),
pch = 15, size = 2) +
geom_text(data = point_mean_us,
aes(label = year,’’, colour = "Gaussian Filter"),
position = position_nudge(x = -1, y = -1),
hjust = -0.45, vjust = -0.75,
x = point_mean_us$CV,
y = sqrt(point_mean_us$Incidence)) +
geom_path(data = data_us_moving,
aes(CV, Incidence, colour = "Standard Moving Average") ,
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1ty = 1, lwd = 1) +

geom_point(data = point_mean_us_moving,
aes(CV, Incidence, colour = "Standard Moving Average"),

pch = 15, size = 2) +
geom_text(data = point_mean_us_moving,

aes(label = year,’’, colour = "Standard Moving Average'),

position = position_nudge(x = -1, y = -1),

hjust = -0.45, vjust = -0.75,

x = point_mean_us_moving$CV,

y = sqrt(point_mean_us_moving$Incidence)) +
scale_y_sqrt("Mean Incidence per 100,000",

limits = c(min(data_us$Incidence),
max (data_us$Incidence))) +
scale_x_continuous("CV",
limits

c(min(data_us$Cv),
max (data_us$CV))) +

scale_color_manual (values = colours) +

labs(colour = "Weighting Method") +

theme (legend.position = c(.95, .95),
legend. justification = c("right", "top"),
legend.box.just = "right",
legend.margin = margin(6, 6, 6, 6),
legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)

)

ma_grobs <- list(us_ts, path_compare)
ma_lay <- rbind(1,2,2,2)
grid.arrange(grobs = ma_grobs, layout_matrix = ma_lay)
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The results are saved to a .RData file in the following code.

file_name <- paste(paste("Good_data/true_path_moving_avg",
inc_window, sep = "_"),
".RData", sep = "")

save (path_compare, data_us_moving,
data_us, point_mean_us,
point_mean_us_moving, final_data,
file = file_name)
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7.4.3 Changing the Shape of the Gaussian Filter

Another component of the sensitivity analysis investigated how changing the shape
of the Gaussian filter, that is used to calculate weighted incidence, changes the path.
We began by changing the location of its center. First, we load required libraries,
source functions.R and load pre-created data frames.

library(stats)

library(smoother)

library(calibrate)

library(tidyverse)

library(rlist)

library(knitr)

source(’functions.R’)
load(’Good_data/yearly.data.per.100k.RData’)
load(’Good_data/alldata.RData’)
load("data/presentation_logical.RData")

Next, we define the arguments required by the cv_inc_fun().

## Vector of state mames

state_names <- rownames(final.incidence.data)

nstates <- length(state_names)

## Vector of the years of data we wish to use in

## calculations (1912 as this is when measles became
## nationally notifiable)

usable_data <- seq(1912, 2016, 1)

## How many years to watt until the first data point
## is calculated (same as Graham et al.)

inc_window <- 10

## Standard deviation of the Gaussian filter (same as
## Graham et al.)

sd <- 3

## Range of Location of the center of the Gaussian
## filter

mean_loc <- c(0:5)

## Years for which we want to plot a point and Year
## label along the path

year_labels <- seq(1922, 2012, 10)

## Logical values to tell the function whether we want
## state path data and or confidence intervals
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find_states <- FALSE

find_CI <- FALSE

## Use gausstan for inctdence and smoother for CV
inc_weighting <- "gaussian"

cv_weighting <- "smoothed"

Finally, we call the function for each value of the location of the center and save the
output to create plots.

## Create empty lists that will contain the output of the cv_inc_fun()
## function for each mean location value

us_dataframes <- as.list(vector(length = length(mean_loc)))
point_us_dataframes <- as.list(vector(length = length(mean_loc)))

names (us_dataframes) <- as.character(mean_loc)

names (point_us_dataframes) <- as.character(mean_loc)

for (mean_loc_val in mean_loc) {
## Call the cv_inc_fun
cv_inc_results <-
cv_inc_fun(data = final.incidence.data,
state_names = state_names,
all_years = usable_data,
inc_window = inc_window,
sd = sd,
mean_loc = mean_loc_val,
year_labels = year_labels,
find_CI = find_CI,
find_states = find_states,
inc_weighting = inc_weighting,
cv_weighting = cv_weighting)

## Save results for use in plotting
mean_ind <- which(mean_loc == mean_loc_val)
us_dataframes[[mean_ind]] <-
cv_inc_results$data_us
point_us_dataframes[[mean_ind]] <-
cv_inc_results$point_mean_us

us_dataframes[[mean_ind]]$Mean_location <-

factor(mean_loc_val, levels = as.character(mean_loc_val))
point_us_dataframes[[mean_ind]]$Mean_location <-
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factor(mean_loc_val, levels = as.character(mean_loc_val))
final_data <- cv_inc_results$final_data

}

Since the function has created a list containing the data frames for each center, we
bind each list element by row to get a single data frame with data for each value of
the center.

## Bind the list items by row to ave one data frame that contains
## data for each mean location value

us_data <- list.rbind(us_dataframes)

point_us_data <- list.rbind(point_us_dataframes)

only_1952 <- point_us_data %>} filter(year == "1952")

Next, we create the figure shown in figure 9.

compare_mean_location <- ggplot()+
geom_path(data = us_data,
aes(CV, Incidence, colour = Mean_location),
1ty = 1, lwd = 1) +
geom_point(data = point_us_data,
aes(CV, Incidence, colour = Mean_location),
size = 2) +
geom_point(data = only_1952,
aes(CV, Incidence),
size = 2,
colour = "black") +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(us_data$Incidence),
max (us_data$Incidence))) +
scale_x_continuous("CV",
limits = c(min(us_data$CV),
max (us_data$Cv))) +
labs(colour = "Shift of the centre \n of the Gaussian (yrs)") +
guides(colour = guide_legend(title.hjust = 0.5)) +
theme (
legend.position = c(.95, .95),
legend. justification = c("right", "top"),
legend.box. just = "center",
legend.margin = margin(6, 6, 6, 6),
legend.title.align = 0.5,
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legend.direction = "vertical",

legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)

load(’Good_data/true_path_10_3.RData’)
mean_loc_grobs <- list(us_ts, compare_mean_location)
mean_loc_lay <- rbind(1,2,2,2)

grid.arrange(grobs = mean_loc_grobs, layout_matrix =
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The results are saved to a .RData file in the following code.
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save(compare_mean_location, us_data, us_dataframes,
file = "data/compare_mean_location_real.RData")

We also investigated how changing the standard deviation of the Gaussian filter
changes the trajectory of the path. We use the same methods as implemented
when changing the location of the center. First, we load required libraries, source
functions.R and load pre-created data frames.

library(stats)

library(smoother)

library(calibrate)

library(tidyverse)

library(rlist)

library(knitr)

source(’functions.R’)
load(’Good_data/yearly.data.per.100k.RData’)
load(’Good_data/alldata.RData’)
load("data/presentation_logical.RData")

Next, we define the arguments required by the cv_inc_fun().

## Vector of state names

state_names <- rownames(final.incidence.data)

nstates <- length(state_names)

## Vector of the years of data we wish to use in

## calculations (1912 as this is when measles became
## nationally notifiable)

usable_data <- seq(1912, 2016, 1)

## How many years to watt until the first data point
## 1s calculated (same as Graham et al.)

inc_window <- 10

## Standard deviation of the Gaussian filter (same as
## Graham et al.)

sd <- c(1:10)

## Location of the center of the Gaussian filter (2
## years prior, same as Graham et al.)

mean_loc <- 2

## Years for which we want to plot a point and Year
## label along the path

year_labels <- seq(1922, 2012, 10)

## Logical values to tell the function whether we want

Page 251 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

## state path data and or confidence intervals
find_states <- FALSE

find_CI <- FALSE

## Use gaussian for incidence and smoother for CV
inc_weighting <- '"gaussian'

cv_weighting <- "smoothed"

Finally, we call the function for each value of the standard deviation and save the
output to create plots.

## Create empty lists that will contain the output of the
## cvu_inc_fun() function for each sd value

us_dataframes <- as.list(vector(length = length(sd)))
point_us_dataframes <- as.list(vector(length = length(sd)))
names (us_dataframes) <- as.character(sd)

names (point_us_dataframes) <- as.character(sd)

for (sd_val in sd) {

## Call the cv_inc_fun

cv_inc_results <- cv_inc_fun(data = final.incidence.data,
state_names = state_names,
all_years = usable_data,
inc_window = inc_window,
sd = sd_val, mean_loc = mean_loc,
year_labels = year_labels,
find_CI = find_CI,
find_states = find_states,
inc_weighting = inc_weighting,
cv_weighting = cv_weighting)

## Save results for use in plotting

us_dataframes[[which(sd == sd_val)]] <-
cv_inc_results$data_us

point_us_dataframes[[which(sd == sd_val)]] <-
cv_inc_results$point_mean_us

us_dataframes[[which(sd == sd_val)]]$Standard_deviation <-
factor(sd_val, levels = as.character(sd_val))
point_us_dataframes[[which(sd == sd_val)]]$Standard_deviation <-

factor(sd_val, levels = as.character(sd_val))
final_data <- cv_inc_results$final_data
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Since the function has created a list containing the data frames for each standard
deviation, we bind each list element by row to get a single data frame with data for
each standard deviation value.

## Bind the list items by row to save one data frame that
## contains data for each standard deviation value
us_data_sd <- list.rbind(us_dataframes)

point_us_data_sd <- list.rbind(point_us_dataframes)
only_1952 <- point_us_data_sd %>} filter(year == "1952")

Next, we create the figure shown in figure 10.

compare_standard_deviation <- ggplot()+
geom_path(data = us_data_sd,
aes(CV, Incidence, colour = Standard_deviation),
1ty = 1, lwd = 1) +
geom_point(data = point_us_data_sd,
aes(CV, Incidence, colour = Standard_deviation),
size = 2) +
geom_point(data = only_1952,
aes(CV, Incidence),
size = 2,
colour = "black") +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(us_data_sd$Incidence),
max (us_data_sd$Incidence))) +
scale_x_continuous("CV",
limits = c(min(us_data_sd$CV),
max (us_data_sd$CV))) +

labs(colour = "Standard Deviation of \n the Gaussian") +
guides(colour = guide_legend(title.hjust = 0.5)) +
theme (

legend.position = c(.95, .95),

legend. justification = c("right", "top"),
legend.box.just = "center",

legend.margin = margin(6, 6, 6, 6),
legend.title.align = 0.5,
legend.direction = "vertical",
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legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)

)
load(’Good_data/true_path_10_3.RData’)

sd_grobs <- list(us_ts, compare_standard_deviation)
sd_lay <- rbind(1,2,2,2)
grid.arrange(grobs = sd_grobs, layout_matrix = sd_lay)
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The results are saved to a .RData file in the following code.
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save (compare_standard_deviation, us_data_sd, us_dataframes,
point_us_data_sd,
file = "data/compare_standard_deviation_real.RData")

7.4.4 Method of Weighting the Coefficient of Variation

The last component of the sensitivity analysis investigated how the choice of weight-
ing for CV changes the canonical path. First, we load required libraries, source
functions.R and load pre-created data frames.

library(stats)
library(smoother)
library(calibrate)
library(tidyverse)
library(knitr)
library(ggrepel)
library(gridExtra)
source("functions.R")

load(’Good_data/yearly.data.per.100k.RData’)
load(’Good_data/alldata.RData’)
load(’Good_data/true_path_10_3.RData’)
load("data/presentation_logical.RData")

Next, we define the arguments required by the cv_inc_fun(). We set cv_weighting
to "gaussian", so that the function knows to use a Gaussian filter to find the CV.

## Vector of state names

state_names <- rownames(final.incidence.data)

nstates <- length(state_names)

## Vector of the years of data we wish to use in

## calculations (1912 as this is when measles became
## nationally notifiable)

usable_data <- seq(1912, 2016, 1)

## How many years to wait until the first data point
## 1s calculated (same as Graham et al.)

inc_window <- 10

## Standard deviation of the Gaussian filter (same as
## Graham et al.)
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sd <- 3

## Location of the center of the Gaussian filter (2
## years prior, same as Graham et al.)

mean_loc <- 2

## Years for which we want to plot a point and Year
## label along the path

year_labels <- seq(1922, 2012, 10)

## Logical values to tell the function whether we want
## state path data and or confidence intervals
find_states <- FALSE

find_CI <- FALSE

## Use moving average for incidence and smoother for
## CV

inc_weighting <- "gaussian"

cv_weighting <- '"gaussian"

Finally, we call the function and save the output to create the plot.

## Call the cv_inc_fun

cv_inc_results <- cv_inc_fun(data = final.incidence.data,
state_names = state_names,
all_years = usable_data,
inc_window = inc_window,
sd = sd, mean_loc = mean_loc,
year_labels = year_labels,
find_CI = find_CI,
find_states = find_states,
inc_weighting = inc_weighting,
cv_weighting = cv_weighting)

## Save results for use in plotting

data_us_gaussian <- cv_inc_results$data_us
point_mean_us_gaussian <- cv_inc_results$point_mean_us
final_data <- cv_inc_results$final_data

## Create a Path column that identifies
## that 2t 7s the original path
data_us$Path <- "Un-weighted"
point_mean_us$Path <- "Un-weighted"
data_us_gaussian$Path <- "Weighted"
point_mean_us_gaussian$Path <- "Weighted"
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## Filter the data to only containing the
## mecessary columns and rename the columns
data_us_filter <-
data_us[colnames(data_us) %in% c("CV", "Incidence",
uyearn , "Path")]
point_mean_us_filter <-
point_mean_us[colnames(point_mean_us) %inj c("CV",
"Incidence",
uyearu ,
"Path")]

all_data <- rbind(data_us_filter, data_us_gaussian)
all_point_data <- rbind(point_mean_us_filter, point_mean_us_gaussian)

Next, we create the figure shown in figure 11.

## Set colours manually

colours <- c("black", "blue")

names (colours) <- c(unique(data_us$Path),
unique(data_us_gaussian$Path))

compare_cv_weighting <- ggplot() +
geom_path(data = all_data,
aes(CV, Incidence, colour = Path),
1ty = 1, lwd = 1) +
geom_point(data = all_point_data,
aes(CV, Incidence, colour = Path),
pch = 15, size = 2) +
geom_text_repel(data = all_point_data,
aes(label = year, ’’, colour = Path),
position = position_nudge(x = -1, y = -1),
hjust = -0.45, vjust = -0.75,
x = all_point_data$CV,
y = sqrt(all_point_data$Incidence)) +
scale_y_sqrt("Mean Incidence per 100,000",
limits = c(min(all_data$Incidence),
550)) +
scale_x_continuous("CV", limits = c(0.25,
2.5))+
scale_colour_manual(values = colours) +
labs(colour = "Weighting Type") +

Page 257 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

theme (
legend.position = c(.95, .95),
legend. justification = c("right", "top"),
legend.box. just = "center",
legend.margin = margin(6, 6, 6, 6),
legend.title.align = 0.5,
legend.direction = "vertical",
legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)

comp_cv_grobs <- list(us_ts, compare_cv_weighting)
comp_cv_lay <- rbind(1,2,2,2)
grid.arrange(grobs = comp_cv_grobs, layout_matrix = comp_cv_lay)
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The results are saved to a .RData file in the following code.

file_name <- paste(paste("Good_data/true_path",

inc_window, sd, "gaussian_test",
Sep = ll_ll)’ “.RData", Sep = llll)

save(data_us_gaussian, final_data, point_mean_us_gaussian,

true_path, data_us, point_mean_us,
compare_cv_weighting, file = file_name)

Page 259 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

7.4.5 Distance Between the Original Canonical Path and those Created
Through Sensitivity Analysis

In sections 7.4.2 and 7.4.4, we compared the original aggregate US path to the path
generated using a different weighting method for either incidence or CV. We can use
the distance function, as described in section 7.3.4.1, to quantify how far apart the
paths with different weighting methods are from the original aggregate US path. First,
we load in the required libraries, source functions.R, and load the necessary .RData
files.

library(tidyverse)

library(rlist)

library(knitr)

source("functions.R")
load("Good_data/true_path_10_3.RData")
load("Good_data/true_path_moving_avg_10.RData")
load("Good_data/true_path_10_3_gaussian_test.RData")

Next, since we are comparing each of the paths generated with difference weighting
methods to the original path, we use the scaling function, as described in section
7.3.4.1, to scale the original path data and generate the scaling factors for use on the
other data.

## Prepare the ortginal canonical path for scaling
real_data <- data_us

use_log <- TRUE

real_data$Year <- real_data$year

## Column mames need to be of the form "CV",
## "Incidence", "Reports" and "Year"
real_data <- real_datal, c("CV", "Incidence", "Year")]

## Scale the data using the 90th percentile
## using self defined function
scale_real_data_values <-
scale_cases_percentile(real_data, "Incidence",
0.9, use_log)

## Extract the scaling factors and scaled data
scale_factor_reports <- scale_real_data_values$scale_value_case
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scale_factor_cv <- scale_real_data_values$scale_value_cv

scale_real_data <- scale_real_data_values$scaled_data

With the original data scaled, and scaling factors created, we first scale the data where
incidence was calculated using a standard moving average and find its distance from
the original path.

## Prepare the moving average canontical path for scaling
moving_average_data <- data_us_moving
colnames (moving_average_data) <- c("CV", "Incidence", "Year")

scaled_moving_average_data <- moving_average_data

## Scale the moving average path data

## using the factors used by the original path

scaled_moving_average_data$Incidence <-
log(moving_average_data$Incidence)/scale_factor_reports

scaled_moving_average_data$CV <-
moving_average_data$CV/scale_factor_cv

## Turn the scaled data into a list for

## the distance_btw_canon_path function

scaled_moving_average_data_list <-
list(scaled_moving_average_data)

## Find the distance between the original

## path and the moving average path

dist_moving_average <-

distance_btw_canon_path(scale_real_data,

scaled_moving_average_data_list,
"Incidence",
"Incidence",
final_data)

dist_moving_average

## [1] 0.05852666

Finally, we scale the data where CV is calculated using a Gaussian filter and find its
distance from the original path.
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## Prepare the gaussian CV canonical path for scaling
colnames(data_us_gaussian) <- c("CV", "Incidence", "Year", "Path")

scale_gaussian_cv_data <- data_us_gaussian

## Scale the gaussian CV path data using the

## factors used by the original path

scale_gaussian_cv_data$Incidence <-
log(scale_gaussian_cv_data$Incidence)/scale_factor_reports

scale_gaussian_cv_data$CV <-
scale_gaussian_cv_data$CV/scale_factor_cv

## Turn the scaled data into a list for the
## distance_btw_canon_path function
scale_gaussian_cv_list <- list(scale_gaussian_cv_data)

## Find the distance between the original

## path and the gaussian CV path

dist_gaussian_cv <-

distance_btw_canon_path(scale_real_data,

scale_gaussian_cv_list,
"Incidence",
"Incidence",
data_years = final_data)

dist_gaussian_cv

## [1] 0.188065

7.5 Simulating the Canonical Path

7.5.1 Building the Model to Simulate the US Path

After completing the sensitivity analysis, the next goal was to determine what model
structures were required to simulate the aggregate US canonical path. In their pa-
per, Graham et al. [1] chose to use a discrete-time age-structured model to simulate
incidence. This model uses a model matrix at each time step to define a transition
from every epidemiological stage-age combination to the other possible epidemiolog-
ical stage-age combination. The epidemiological stages used in this model include:
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maternally immune, susceptible, infected, recovered, and vaccinated. They used re-
ported data for age distribution, vital dynamics, and vaccination coverage data, and
measles epidemiologic parameters (e.g., basic reproduction number and age-contact
rates).

To determine which of the model components are necessary to simulate the aggregate
US path, we started with the base SEIR model, as described in section 4.1. We built
the model up, adding a single new structure at a time, until we achieved a model
capable of simulating the aggregate US path. We ended up with a model that had
the following time-varying parameters: transmission (), vaccination coverage (p),
and vital dynamics (¢ and v). We also found that the base SEIR compartments
(susceptible, exposed, infected, and recovered) were sufficient for our purposes. Ad-
ditionally, to mimic the way we create the aggregate US path, i.e., taking the mean
across each US state, we decided to treat each state as its own simulation based on
population and vital statistics data. Finally, since the population of some states were
below the extinction threshold of 1 million, we needed to implement immigration into
the model. The following sections will describe the functions used to implement these
components into the model, and explain the code used to simulate the model.

7.5.1.1 Time-varying Transmission Rate [

We implement time-varying transmission by assuming that measles seasonality is
sinusoidally forced with a peak in January and a period of one year. Thus, we defined
a function that calculates the transmission rate using a cosine function in the following
code.

beta_fun <- function(t, alpha, beta0O, one_year) {
beta_val <- beta0O*(1 + alpha*cos(2*pi*t/one_year))
return(
beta_val

)
}

In beta_fun, alpha is the amplitude of seasonal forcing that is between 0 and 1,
and beta0 is found using the expression for the basic reproduction number Ryin the
following code.

betaO_fun <- function(params) {
with(as.list(params), {
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beta0 <- RO*mux*(sigma + mu)*(gamma + mu)/(nu*sigma)
return(
betal

19,

In betaO_fun, RO is the basic reproduction number, mu is the death rate, nu is the birth
rate, sigma is the reciprocal of the mean latent period, and gamma is the reciprocal of
the mean infectious period.

7.5.1.2 Time-varying Vital Statistics

To best represent the US as a whole, we used state level data for births and deaths, as
described in section 7.2.4, to implement time-varying vital statistics into the model.
We created a function called, birth_death_rate_fun that takes the following argu-
ments: t, vital_stats, and init_run. t is the time for which we wish to estimate
the birth and death rate, vital_stats is a data frame containing birth and death
rate data for a particular US state with the corresponding columns labeled “Birth
Rate” and “Death Rate”, and init_run is the number of years we are running from
the initial conditions. The function outputs the birth and death rate as a list for
the given time based on several if statements. If t is during the extra run time, the
function returns the birth and death rate values corresponding to the first data point.
If t is not during the extra run time, then the function outputs either the values at
that time (if the data is available) or it outputs the values at the closest point in time
for which we have data. The function is displayed below.

birth_death_rate_fun <- function(t, vital_stats, init_run) {

if (t < init_run + 1) {
nu_estim <- vital_stats$‘Birth Ratef[vital_stats$Time == init_run + 1]
mu_estim <- vital_stats$‘Death Rate‘[vital_stats$Time == init_run + 1]
} else {

if (t %in% vital_stats$Time) {
nu_estim <- vital_stats$‘Birth Rate‘[vital_stats$Time == t]
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mu_estim <- vital_stats$‘Death Rate‘[vital_stats$Time == t]

} else {
t_round <- vital_stats$Time[which.min(abs(vital_stats$Time-t))]
nu_estim <- vital_stats$‘Birth Rate‘[vital_stats$Time == t_round]
mu_estim <- vital_stats$‘Death Rate‘[vital_stats$Time == t_round]

}
}

nu_estim <- unname(nu_estim)
mu_estim <- unname(mu_estim)
return(

list(nu = nu_estim, mu = mu_estim)

7.5.1.3 Time-varying Vaccination Coverage

We implement time-varying vaccination coverage in a similar way as with time-varying
vital statistics. We defined a function called vaccination_fun_test that takes
the following arguments: t, t_final, t_first_vacc, vaccine_data, start_year,
end_year, and vacc_year. t is the time for which we wish to estimate the vaccina-
tion coverage, t_final is the final time of the simulation for which we need vaccina-
tion coverage estimates, t_first_vacc is the time at which vaccination begins in the
model, vaccine_data is a data frame containing vaccination coverage for the entirety
of the US as a percent, with column names of the form “YEAR” and “COVERAGE”,
start_year is a numeric value stating the year in which the simulation begins (af-
ter running for extra time), end_year is the year in which the simulation ends, and
vacc_year is the year of the first vaccination (i.e., earliest year we could have data
on vaccination coverage).

First, the function defines the ranges of years in which we have vaccination coverage
data. Next, it determines how many years there are between the year when vaccination
begins and the year when the vaccination data begins. The function then adds two
new columns, one that provides the time in a way that the adaptivetau function can
interpret, e.g., instead of the time being in years, it is the number of years elapsed.
The second is a column containing the proportion of the population vaccinated. If the
“COVERAGE” column is already a proportion, the “Proportion” column is equal to
the “COVERAGE” column. If the “COVERAGE” column is a percent, the column
is converted to a proportion. Finally, we estimate the vaccination coverage at a given
time based on an if-statement. If the time is before the time of the first vaccine,
the estimated proportion is 0. If the time is after the first vaccine was invented, but
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before we have data, the vaccine proportion linearly increases from 0 to the value of
the vaccinated proportion at the first data point. Finally, if the time is within the
range for which we have data, the function either outputs the the value at that time
(if the data is available) or it outputs the values at the closest point in time for which
we have data. The function is displayed below.

### Time-varying proportion of the population waccinated p
vaccination_fun_data <- function(t, t_final, t_first_vacc,
vaccine_data, start_year=1953,
end_year=2019,
vacc_year=1963) {
start_data_year <- vaccine_data$YEAR[1]
end_data_year <- vaccine_data$YEAR[length(vaccine_data$YEAR)]

## Find the number of years we need to add to t_first_vacc
## in order to define time im a way that
## adaptivetau can understand
if (t_final > (end_year - start_year + 1)) {
add <- abs(start_data_year - vacc_year) + 1
} else {
if (start_year == 1963) {
add <- abs(start_data_year - vacc_year) + 2
} else{
add <- abs(start_data_year - vacc_year) + 1

}
}

vaccine_data$Time <- c((t_first_vacc + add):t_final)

if (all(vaccination_data$COVERAGE >= 0) &
all(vaccination_data$COVERAGE < 1)) {
vaccine_data$Proportion <- vaccine_data$COVERAGE
} else {
vaccine_data$Proportion <- vaccine_data$COVERAGE/100
}
if (¢t >=0 & t < t_first_vacc) {
vacc <= 0
} else if (t >= t_first_vacc & t < (t_first_vacc + add)) {
## Linearly increases to specified final
## wvaccination coverage
vacc <- (vaccine_data$Proportion[1]/(add))*t -
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vaccine_data$Proportion[1]*t_first_vacc/(add)

} else {
if (t %in)% vaccine_data$Time) {
vacc <- vaccine_data$Proportion[vaccine_data$Time == t]
} else {
t_round <- vaccine_data$Time[which.min(abs(vaccine_data$Time-t))]
vacc <- vaccine_data$Proportion[vaccine_data$Time == t_round]

}
}

if (vacc > 1 | vacc < 0) {

stop("Vaccination proportion of", vacc, "at time", t)
} else {

return(vacc)
}

}

7.5.1.4 Immigration

To implement immigration, we decided to change the % term instead of adding
spatial structure to the model. This choice was in tune with the notion of building
model complexity as necessary, while reducing the computing time of the model. We
change the term, so that in a population with no infecteds, there is some immigration
from outside the model. The new term has the following form: %(I + q), where ¢ is
the number of infected immigrants. Since as vaccination coverage increases, we will
observe less cases due to immigration, we chose to make ¢ a function of the equilibrium
prevalence (See equations 5 and 6).

Thus, we first created eq_prev_fun_data which calculates the equilibrium points
of the model with time-varying vaccination, vital statistics and transmission. The
function takes the following arguments: t, params and N. t is the time at which
we want to calculate the equilibria, params is the list of parameters used in the
adaptivetau function and N is the population size at the given time. Using the
arguments, the function finds p, u, v, and g for the given time using the functions
as described in sections 7.5.1.1 to 7.5.1.3. Using these values and the other necessary
parameters from params the function calculates and outputs the equilibria as a list.

eq_prev_fun_data <- function(t, params, N) {
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p <- vaccination_fun_data(t, params$t_final,
params$t_first_vacc,
params$vaccine_data,
params$start_year,
params$end_year)

beta <- beta_fun(t, params$alpha, params$betal,

params$one_year)

nu <- birth_death_rate_fun(t, params$vital_stats,

params$init_run) $nu
mu <- birth_death_rate_fun(t, params$vital_stats,
params$init_run) $mu

with(as.list(params), {

zeta <- sigma/(gamma + mu)

RO <- ((betal*nu)/((sigma + mu)*mu))*zeta

pcrit <- (1 - 1/R0)

if (p < perit) {
S_eqm <- round((N/RO)*(nu/mu))
E_eqm <- round(N*(nu/(sigma + mu))*((1 - p) - 1/R0))
I_eqm <- round(E_eqm*zeta)
R_eqm <- N - S_eqm - E_eqm - I_eqgm
if (E_eqm < 0 || I_eqm < 0) {

cat("S_eqm =", S_egm, ", I_egm =", I_eqm,
", E_eqm =", E_egm, ", R_egm =", R_eqgm,
"N =", N, ”\n”)

cat("beta =", beta, ", p =", p, ", pcrit =",

pcrit, "\n")
stop("E_eqm < 0 or I_egm < 0")
}
} else if (p >= pcrit) {
S_egm <- round(N*(1-p)*(nu/mu))
E_egqm <- 0
I_egm <= 0
R_eqm <- N - S_eqm - E_egqm - I_eqgm
}
return(
list(S_eqm = S_eqm, E_eqm = E_eqm, I_eqm = I_eqm,
R_eqm = R_eqm)

19,
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With a function that can calculate the equilibrium prevalence at each time, we set ¢
equal to the maximum of the equilibrium prevalence multiplied by some small immi-
gration factor and the small immigration factor alone (i.e., one immigrant multiplied
by the immigration factor). As the choice of immigration factor is arbitrary, we
optimize this value in section 7.5.3.

7.5.1.5 Estimating the Level of Under-reporting

Since as is, our model simulates incidence, we must implement observation error to
account for the fact that not every measles case is reported. The way in which we
implement observation error will be discussed in section 7.5.2.2, however for now we
estimate the probability of a case being reported. To accomplish this, we compare
births shifted by the mean age at infection to reported cases, prior to vaccination, since
almost everyone got measles before the vaccine was infected. We begin by loading in
necessary .RData files and libraries.

load(’data/vital_stats_data.RData’)
load(’Good_data/yearly.data.per.100k.RData’)
load("data/vaccination_data.RData")

library(tidyverse)
library(gridExtra)
library(ggplot2)
library(knitr)

Then, for mean age at infection ranging from 0 to 5 years, we find the ratio of reported
cases to births in each state each year. We use this data to create a box-plot of the
ratio of reported cases to births over time for each value of the mean age at infection.

final.incidence.data$State <- rownames(final.incidence.data)

final_incidence_data_long <-
pivot_longer(final.incidence.data,

cols = !State,
names_to = "Year",
values_to = "Incidence_per_100k")

age_of _infection_shift <- c(0:5)
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vaccination_data$YEAR <- as.numeric(vaccination_data$YEAR)

## Empty list to contain under-reporting plots
plot_list <- as.list(vector(length = length(age_of_infection_shift)))

for(i in 1:length(age_of_infection_shift)) {
## Years to consider for incidence based on mean age at infection
no_vax_years_incidence <-
c((1953 + age_of_infection_shift[i]) :1962)

## Filter incidence and population based on mo_vaz_years_incidence
final_incidence_data_long_no_vax <- final_incidence_data_long %>%
filter(Year %inJ no_vax_years_incidence)
vital_stats_no_vax_pop <- vital_stats %>%
filter(Year %in% no_vax_years_incidence)

final_incidence_data_long_no_vax <-
final_incidence_data_long_no_vax[order(
final_incidence_data_long_no_vax$Year,
decreasing = FALSE),]

## Years to consider for births based on mean age at infection
no_vax_years_births <-
c(1953: (1962 - age_of_infection_shift[i]))

## Filter vital stats based on no_vaz_years_births
vital_stats_no_vax_births <- vital_stats %>%
filter(Year %inj, no_vax_years_births)

## Check that the mean difference is the mean age at infection
mean_diff_years <-
mean(no_vax_years_incidence - no_vax_years_births)

## Create a data frame containing all data required

## to estimate under-reporting

if (setequal(vital_stats_no_vax_pop$Year,

final_incidence_data_long_no_vax$Year)
& setequal(vital_stats_no_vax_pop$State,
final_incidence_data_long_no_vax$State)

& mean_diff_years == age_of_infection_shift[i]) {
reporting_state <- data.frame(
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Year = final_incidence_data_long_no_vax$Year,
State = final_incidence_data_long_no_vax$State,
Population = vital_stats_no_vax_pop$Population,
Births_shift_by_age_infec = vital_stats_no_vax_births$Births,
Incidence_per_100k =
final_incidence_data_long_no_vax$Incidence_per_100k
)
} else {
stop("Years", setequal(vital_stats_no_vax_pop$Year,
final_incidence_data_long_no_vax$Year),
"States",
setequal(vital_stats_no_vax_pop$State,
final_incidence_data_long_no_vax$State),
"Diff years", mean_diff_years)

## Add an inctidence column that ©s pure incidence instead of per 100k
reporting_state <- reporting_state %>’
mutate(Incidence = Incidence_per_100k*Population/100000)
## Add a column for the proportion reported estimate
reporting_state <- reporting_state %>%
mutate(reporting = Incidence/Births_shift_by_age_infec)

## Create a boxzplot of the ratio of reported cases to births over time
if (age_of_infection_shift[i] == 1) {
reporting_boxplot_year_shift <- ggplot() +
geom_boxplot(data = reporting_state,
aes(as.character(Year), reporting)) +
xlab("Year") +
ylab("Ratio of Reports to Births") +
ylim(c(0, 0.8)) +
ggtitle(paste("Mean age of infection of ",
age_of_infection_shift[i], " year", sep = "")) +
theme (axis.title.y = element_blank())
} else {
reporting_boxplot_year_shift <- ggplot() +
geom_boxplot(data = reporting_state,
aes(as.character(Year), reporting)) +
xlab("Year") +
ylab("Ratio of Reports to Births") +
ylim(c(0, 0.8)) +
ggtitle(paste("Mean age of infection of ",
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age_of_infection_shift[i], sep = "")) +

theme(axis.title.y = element_blank())

1] years " ,

## Output the plot to a list
plot_list[[i]] <- reporting_boxplot_year_shift

}

Next, we create the plot displayed in figure 12.

layout_matrix <- rbind(c(1,2),

C(3,4),
c(5,6))

grid.arrange(grobs
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The results are then saved to a .RData file for use later on.

save(layout_matrix, plot_list, file = "data/underreporting.RData")

7.5.2 Creating Parameter Files and Functions Used for Simulation
7.5.2.1 Setting Default Model Arguments

Since we will be simulating model in several different contexts, we begin by creating
a file that houses default values of all parameters used in the model. The default
parameters are displayed in the code below.

## Determines time unit (1 = years, 12 = months, 365 = days...)
one_year <- 1

## Number of years run from the initial conditions without wvaccination
init_run <- 0

## Start and end years of the simulation

start_year <- 1953

end_year <- 2019

## Mean infectious and latent periods

t_latent <- 8/365%one_year # 8 days latent

t_infec <- 5/365%one_year # 5 days infectious

gamma <- 1/t_infec

sigma <- 1/t_latent

## Amplitude of seasonal forcing

alpha <- 0.1

## Bastic Reproduction Number

RO <- 17

## Time between saved data

clock_tick <- one_year/12

## Immigration factor

immigration_factor <- 0

## Determine whether immigration is used or not (logical)
use_immigration <- FALSE

## Probability of a case being reported
probability_of_report <- 0.1

## List of the transitions used in the adaptivetau function
transitions_SEIR <- list(
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c(S = +1),

c(Ss = -1),

c(S=-1, E=+1, C = +1),
c(E = -1),

c(E=-1, I = +1),

c(I = -1),

c(I = -1, R = +1),

c(R = +1),

c(R = -1)

Since the simulations take at least 30 minutes to run, they must be conducted in sep-
arate R scripts. Thus, we use the following code to create an R document containing
the default model arguments that can be sourced from other R scripts.

library(knitr)
xfun: :Rscript_call(purl,
list (input=’model_parameter_inputs_new.Rnw’,
output=’model_parameter_inputs_new.R’))

7.5.2.2 Creating the Function that Simulates Yearly Incidence per 100,000

Once the model arguments are loaded we can simulate the model. We created the
function path_model () that simulates the model and outputs data frames containing
yearly and monthly incidence per 100,000, as well as yearly and monthly reports per
100,000. path_model takes the following arguments: pop, vit_stats, vacc_data,
US_states, rate_fun, transitions, start_year, end_year, use_immigration,

immigration_factor, init_run, one_year, gamma, sigma, alpha, RO, clock_tick,
and probability_of_report. pop and vit_stats are data frames containing yearly
population estimates and birth and death rates by state. vacc_data is a data frame
containing yearly vaccination coverage estimates for the US as a whole. US_states
is a vector containing the US state names, as they appear in pop and vit_stats.
rate_fun is a function required by adaptivetau that returns the rates for each
transition in the defined list of transitions. transitions is a list containing all
possible epidemiological transitions, e.g., become infected, death of susceptible, re-
covery, etc. start_year and end_year are the start and end years of the simulation.
use_immigration is a logical value that tells the function whether or not to include
immigration. immigration_factor is a small factor between 0 and 1 that tells the
function how much immigration to include. init_run is the number of years to run
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for from the initial conditions before the simulation begins in order to avoid transient

behaviour. one_year tells the function how many time steps there are in a year, e.g.,

1 means the time step is a year while 12 means that the time step is a month. gamma

and sigma are the reciprocals of the mean infectious and latent periods respectively.

alpha is the amplitude of seasonal forcing. RO is the basic reproduction number.

clock_tick tells the function how often we wish to save data, e.g., if the time step is
1

a year, clock_tick= j; saves the data monthly. Finally, probability_of_report is

the probability that a measles case will be reported.

The function begins by filtering the vital statistics data to contain on the years we
wish to simulate. Next, the function determines the value of immigration_factor
based on use_immigration. Additionally, the function finds several other arguments
pertaining to the model including the final time of the simulation, the time at which
the first vaccination occurs, the number of clock ticks that will be saved, and the
population of each US state at the given start year. Next, it creates empty data
frames that will contain the simulated cumulative incidence for each US state and the
population of each state over time.

Since we are simulating data for each US, the function then runs a for loop. Within
the for loop, first, the data frame containing vital statistics is filtered to include the
data for a single US state. Next, it sets the initial values of the birth and death
rates to be the value at the earliest year of data. Additionally, it adds a time column
to the vital statistics data frame. With all of the necessary parameters defined, the
parameters are combined into a list for use the in rate function. Using the list of the
parameters and the vector of initial population values, the initial conditions of the
model are set equal to the equilibrium point at ¢ = 0. The adaptivetau function is
then run. To save data at specific times we use the following insert_clock_ticks
function created by Dr. David Earn. The last argument of the for loop outputs the
saved values of time, cumulative incidence and population into the corresponding data
frames.

insert_clock_ticks <- function(x, clockTick, time.var="t" ) {
clockTick <- clockTick
xt <- x[,time.var]

mean.dt <- mean(diff (xt))

events.per.clockTick <- round(clockTick / mean.dt)
message ("insert_clock_ticks:\n",
"\tclockTick: ", clockTick, "\n",
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"\tmean.dt: ", mean.dt, "\n",
"\tleaps.per.clockTick: ", events.per.clockTick, "\n"
)
HARARARABABHBH BB AR ARARABHRBRBRRARAH
w <- which(diff (floor(xt/clockTick))==1) ## +1 ? before/after?
tickvec <- rep(NA_real_,length(xt))
tickvec[w] <- xt[w]
x[,"clock"] <- tickvec
return(x)

After the for loop is complete, the function calculates incidence from cumulative
incidence and outputs it into a new data frame. Since the model simulates incidence,
not reported cases, the function implements a binomial to sample incidence with a
probability of case being reported set equal to probability_of_report. Next, a new
column is added to each data frame to contain the mean across each US state. Finally,
the function calculates yearly incidence and reports per 100,000, outputs them to data
frames and returns the data frames in a list. See the function below.

path_model <- function(pop, vit_stats, vacc_data, US_states,
rate_fun, transitions, start_year,
end_year, use_immigration,
immigration_factor,
init_run, one_year, gamma,
sigma, alpha, RO, clock_tick,
probability_of_report) {

## Number of years we are simulating
data_years <- end_year - start_year +1

## Filter the vital stats data to only contain data
## for the years we wish to simulate
vital_stats <- vital_stats %>%

filter(Year %in% c(start_year:end_year))

## Choose the immigration factor based on the wvalue
## of use_immigration
if (use_immigration) {
immigration_factor <- immigration_factor
} else {
immigration_factor <- 0
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## Final time of simulation
t_final <- (init_run + data_years)*one_year

## Time at which wvaccination begins, counts the number
## of years until 1963 (when vaccine was invented)
if (init_run == 0) {
if (start_year == 1963) {
t_first_vacc <- 0
} else {
t_first_vacc <- 1963 - start_year + 1
}
} else {
t_first_vacc <-
(init_run + 1963 - start_year + 1)*one_year

## Number of clock ticks that will be saved
n_ticks <- length(seq(clock_tick,

t_final,

clock_tick))

## Get the population for each state
## from pop in the given starting year
pop_states <-

round (pop$Population [pop$Year == start_year])

## Create the data frames that will contain the
## cumulative incidence and population
SEIR_cuminc_sims <-
as.data.frame(matrix(nrow = n_ticks,
ncol = length(pop_states) + 1))
colnames (SEIR_cuminc_sims) <- c("time", US_states)
SEIR_pop_sims <- SEIR_cuminc_sims

## Run the simulation for each state

for (s in 1:length(US_states)) {
## Filter the vital stats to only contain data
## for the desired state
vital_stats_filtered <- vital_stats %>%
filter(State == US_states[s])
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## Set the initial values of mu and nu to the
## values in start_year

nu_init <- vital_stats_filtered$‘Birth Rate‘[1]
mu_init <- vital_stats_filtered$‘Death Rate‘[1]

## Create a time vector inm vital stats that
## depends on init_run
if (init_run == 0) {
vital_stats_filtered$Time <-
c(1:(length(unique(vital_stats$Year))))
} else {
vital_stats_filtered$Time <-
c((init_run + 1):t_final)

## List of the parameters used in the
## adaptivetau function
params_SEIR <- list(
vital_stats = vital_stats_filtered,
init_run = init_run,
t_first_vacc = t_first_vacc,
nu_init = nu_init,
mu_init = mu_init,
t_final = t_final,
N = pop_states[s],
gamma = gamma,
sigma = sigma,
alpha = alpha,
betald = betalO_fun(c(nu
mu

nu_init,
mu_init,

gamma, sigma, RO)),
one_year = one_year,

immigration_factor = immigration_factor,
vaccine_data = vaccination_data,
start_year = start_year,

end_year = end_year

## Use the eq_prev_fun to set the initial conditions
## to the endemic equilibrium point
EE_time_var <-
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}

eq_prev_fun(t=0, params = params_SEIR,
N = pop_states[s])

S <- EE_time_var$S_eqm
E <- EE_time_var$E_eqm
I <- EE_time_var$I_eqm
R <- EE_time_var$R_eqm
C<-0

init_values_SEIR <- c(S
I

S, E=E,

I, R=R, C=0)
## Simulate the model using ssa.adaptivetau
set.seed(36)

SEIR_sims <- ssa.adaptivetau(init_values_SEIR,

transitions, rate_fun,
params_SEIR, tf=t_final)

SEIR_results <- as.data.frame(SEIR_sims)

## Use the inseri_clock_ticks function David Earn
## created to save the states at chosen time interval
fixed_time_SEIR_results <-
insert_clock_ticks(SEIR_results,
clockTick = clock_tick,
time.var = "time")

fixed <- fixed_time_SEIR_results %>%
filter(!is.na(clock))

fixed N <- fixed %>%
mutate(N = S + E + I + R)

## Output the saved values of time,

## C and N into the corresponding data frames
SEIR_cuminc_sims[1:1length(fixed$clock),"time"] <- fixed$clock
SEIR_cuminc_sims[1:1length(fixed$clock),s + 1] <- fixed$C
SEIR_pop_sims[1:1length(fixed$clock),"time"] <- fixed$clock
SEIR_pop_sims[1:length(fixed$clock),s + 1] <- fixed N$N

## Remove the time column from the cumulative incidence,
## and create a data frame the same size that will contain incidence
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cuminc_sims <- SEIR_cuminc_sims[,-1]
inc_sims <- cuminc_sims

## Calculate inctdence
for (i in 1:ncol(cuminc_sims)) {
inc_sims[, i] <- c(NA, diff(cuminc_sims[ ,i]))

}

## Define a new data frame that contains incidence
SEIR_inc_sims <- SEIR_cuminc_sims
SEIR_inc_sims[,-1] <- inc_sims

## Create a data frame that will contain reported
## cases (our model simulates inctidence)
reports <- SEIR_inc_sims[,-1]

## Sample incidence using a megative binomial,
## where the probability of a case being reported is 107
for (i in 1l:ncol(reports)) {
for (j in l:nrow(reports)) {
set.seed (400)
reports[j,i] <-
rbinom(n = 1,
size
prob

SEIR_inc_sims[j, (i + 1)],
probability_of_report)

## Add columns that will contain the mean
SEIR_inc_sims$mean <- 0

SEIR_pop_sims$mean <- 0

reports$mean <- 0

## Find the mean each year using TowMeans
for (i in 1:(nrow(SEIR_inc_sims)-1)) {
SEIR_inc_sims$mean[i+1] <- rowMeans(SEIR_inc_sims[i+1,-1],
na.rm = TRUE)
SEIR_pop_sims$mean[i+1] <- rowMeans(SEIR_pop_sims[i+1,-1],
na.rm = TRUE)
reports$mean[i+1] <- rowMeans(reports[i+1,], na.rm = TRUE)

}
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## Calculate the incidence per 100k individuals using the
## saved population size at each time

inc_per_100k <- SEIR_inc_sims[,-1]

reports_per_100k <- reports

for (i in 1:ncol(inc_per_100k)) {
inc_per_100k[,i] <- SEIR_inc_sims[,i+1]*100000/SEIR_pop_sims[,i+1]
reports_per_100k[,i] <- reports[,i]*100000/SEIR_pop_sims[,i+1]

}

### Aggregate the incidence per 100k to yearly
## (current interval chosen by clock_tick)
yearly_inc_per_100k <-
as.data.frame(matrix(ncol
nrow
yearly_reports_per_100k <-
as.data.frame(matrix(ncol = ncol(reports_per_100k),
nrow = t_final))

ncol (inc_per_100k),
t_final))

for (j in 1l:ncol(yearly_inc_per_100k)) {
yearly_inc_per_100k[1, j] <-
sum(inc_per_100k[1:11, j],
na.rm = TRUE)
yearly_reports_per_100k[1, j] <-
sum(reports_per_100k[1:11, j],
na.rm = TRUE)
for (i in 1:(t_final-1)) {
yearly_inc_per_100k[i+1, j] <-
sum(inc_per_100k [(12%i): (12*i+11), j],
na.rm = TRUE)
yearly_reports_per_100k[i + 1, j] <-
sum(reports_per_100k [(12xi): (12*i+11), j],
na.rm = TRUE)

}
}

## Set the column names to be the state names and then mean
colnames(yearly_inc_per_100k) <- colnames(SEIR_inc_sims[,-1])
colnames(yearly_reports_per_100k) <- colnames(reports)
colnames(inc_per_100k) <- colnames(SEIR_inc_sims[,-1])
colnames (reports_per_100k) <- colnames(SEIR_inc_sims[,-1])
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yearly_inc_states <- yearly_inc_per_100k
yearly_reports_states <- yearly_reports_per_100k

return(list(yearly_inc_states = yearly_inc_states,
yearly_reports_states = yearly_reports_states,
monthly_inc_states = inc_per_100k,
monthly_reports_states = reports_per_100k))

7.5.3 Optimization of Model Parameters

While most of the model parameters can be obtained through literature, we decided
to optimize the following parameters: amplitude of seasonal forcing, a and the im-
migration factor. For a values ranging from 0 to 0.8 and immigration factor values
ranging from 0 to 0.01 by factors of 10, we simulate the aggregate US path for all
81 parameter combinations in the 2D parameter space. For each parameter com-
bination, we use the path_model function to simulate yearly reports per 100,000,
cv_inc_fun to create the data frames containing weighted Incidence and CV, and
then use scale_cases_percentile and dist_btw_canon_path to find the distance
between the simulated path and the path created using real world incidence data. The
distances are then outputted in a data frame. Refer to optimizing_parameters_new.R
if you wish to recreate the results, as the code takes approximately 1 day to run.

7.5.3.1 Optimization Result Summary

To summarize the optimization results, we begin by loading all required . RData files
and libraries.

load("Good_data/optimization_results.RData")
library(tidyverse)

library(gridExtra)

library(grid)

library(ggplot2)

library(lattice)

library(kableExtra)

library(knitr)

Next, we output a table containing the parameter values corresponding to the mini-
mum distance.
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distance_results <- distance_results %>%
filter(Immigration_factor != 0.1)

## Location of minimum distance

min_loc <- which.min(distance_results$Distance)

## Table containing parameter values corresponding to the minimum distance
kable(distance_results[min_loc,])

Init_run | Distance | Immigration_factor | Alpha
48 200 | 0.405692 le-05 0.2

To provide a visual of the results, we create a heat map with « is on the z-axis and
immigration_factor, f, is on the y-axis. The colour of each grid block is the distance
(grey blocks represent paths that went extinct).

## Create a data frame for each wvalue of init_run so we can create
## heatmaps
results_200 <- distance_results

powers <- -c(2:9)
labs <- vector(length = length(powers)+1)

for (i in 1:length(powers)) {
labs [1] <- paste("$10”{", pOWGI'S [i],"}$", sep = ||||)

}

labs[length(labs)] <- "0"

label_df <- data.frame(
Imm = as.factor(as.character(c(10°-(2:9), 0))),
Labels = labs

results_200$Label <- O

for(i in 1:nrow(results_200)) {
for (j in 1l:nrow(label_df)) {
if (results_200$Immigration_factor[i] == label_df$Imm[j]l) {
results_200$Label [i] <- label_df$Labels[j]

}
}
}
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## Create a heatmap
heatmap_optim <- ggplot() +
geom_tile(data=results_200,
aes(as.character (Alpha),
Label,
fill = Distance)) +
scale_fill_continuous(
limits = c(min(distance_results$Distance),
max(distance_results$Distance))
)+
xlab("Amplitude of Seasonal Forcing $\\alpha$") +
ylab("Immigration Factor $f3$") +
scale_y_discrete(limits = rev)

The following figure shows the heat map of distance, as shown in figure 13.

heatmap_optim
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Finally, we create a data frame containing the parameter combinations resulting in
the top 10 most similar paths.

## Since the data frame is ordered by distance,

## take top 10 results

distance_results_ordered <-
distance_results[order(distance_results$Distance),]

distance_results_ordered$Rank <- c(l:nrow(distance_results_ordered))

top_10_results <- distance_results_ordered[1:10,]

kable(top_10_results)
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Init_run | Distance | Immigration factor | Alpha | Rank
48 200 | 0.4056920 le-05 0.2 1
65 200 | 0.4130475 1e-03 0.1 2
30 200 | 0.4140507 le-07 0.2 3
64 200 | 0.4179669 le-03 0.0 4
57 200 | 0.4400064 le-04 0.2 5
68 200 | 0.4414252 le-03 0.4 6
47 200 | 0.4514070 le-05 0.1 7
71 200 | 0.4516143 le-03 0.7 8
28 200 | 0.4539835 le-07 0.0 9
46 200 | 0.4582254 le-05 0.0 10

We then save the results to a .RData file for use in other code.

save(distance_results,
top_10_results, heatmap_optim,
file = ’data/optimization_plots.RData’)

7.5.3.2 Plotting the Top 10 Parameter Pairing Paths

To visualize the optimization results, we chose to plot the paths created for the top
10 parameter combinations. In optimizing_parameters_new.R, we save the monthly
incidence and data frames containing weighted incidence and CV that are required
to create the canonical path for each parameter combination. We begin by loading in
the required .RData files and libraries.

library(tidyverse)

library (RColorBrewer)

library(knitr)

library(ggpubr)
load("Good_data/optimization_results.RData")
load("Good_data/true_path_10_3.RData")
load("data/optimization_plots.RData")
load("data/presentation_logical.RData")

Next, we filter each data frame to only contain the years we wish to compare (1962
to 2016).
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## Filter the data frames to only go up to 2016

## since that s when the path created with real data ends
data_years <- c(1962:2016)

path_data_frames_filter <- path_data_list

for (i in 1:length(path_data_list)) {
path_data_frames_filter[[i]] <- path_data_list[[i]l] %>%
filter(Year %in% data_years)

Now that each data frame contains only the years we need, we bind each data frame
by row to have one data frame with the data of all simulated paths. Since, the list
is named based on the parameter combinations, we index each data frame using a
label the describes the value of the length of the transient, immigration factor, and
«. However, we only want the path data for the top 10 parameter combinations, thus
we create a column in the top_10_results data frame that has the same format, so
we can filter by the label column. We then filter the data frame to only contain the
top 10 paths, create a rank column and re-format the label column.

## Create a single data frame by binding each list item by row,
## add a column that indexes each list item by the label
all_path_data <- bind_rows(path_data_frames_filter, .id = "Label")

## Create a label column in top_10_results with the same format
top_10_results$lLabel <- 0O

for (i in 1l:nrow(top_10_results)) {
top_10_results$label [i] <-
paste("init run: ",
top_10_results$Init_run[i],
", $£$: ",
top_10_results$Immigration_factor[i],
", $\\alpha$: ",
top_10_results$Alphali],
sep = " n)

}

## Create a Power column to represent the power of 10 of the
## ammigration factor

powers <- -c(5,3,7,3,4,3,5,3,7,5)

top_10_results$Power <- powers
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## Filter all_path_data to only include the data for

## the top 10 paths and add a rank column

all_path_data_top_10 <- all_path_data %>%
filter(Label %in% unique(top_10_results$Label))

all_path_data_top_10$Rank <- 0

for (i in 1l:nrow(all_path_data_top_10)) {
for (j in 1l:nrow(top_10_results)) {
if (all_path_data_top_10$Label[i] == top_10_results$Label[j]) {
all_path_data_top_10$Rank[i] <- top_10_results$Rank[j]

}
}
}

## Order by rank and make the rank column a factor
all_path_data_top_10 <-
all_path_data_top_10[order(all_path_data_top_10$Rank),]

all_path_data_top_10$Rank <- factor(all_path_data_top_10$Rank,
levels = as.character(1:10)

)

## Use paste to make the label column provide the rank,
## ammigration, and alpha for each set of data
for (i in 1l:nrow(all_path_data_top_10)) {
Rank <- all_path_data_top_10$Rank[i]
Init_run <-
top_10_results$Init_run[
which(top_10_results$Rank == Rank)]
Power <-
top_10_results$Power [
which(top_10_results$Rank == Rank) ]
Alpha <-
top_10_results$Alphal
which(top_10_results$Rank == Rank)]

val <- paste(Rank, ": ",
paste(paste(
" $\\a1pha=" ,
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Alpha, n$u’ Sep = nu)’
paste("$f= 10°{",

Power, "}$",

sep = ||n), sep = u\nn),

sep = ||)

all_path_data_top_10$Label[i] <- val

}

## Define a vector of labels to be the label column
labels <- all_path_data_top_10$Label

Finally, we create the plot displayed in figure 14.

## Define the palette used for the ggplot (from Paired brewer palette)
# palette <- palette(brewer.pal (n=10, name = "Paired"))
my_palette_top_10 <-
c("#A6CEE3", "#1F78B4", "#B2DF8A", "#33A02C"
"#FBOA99", "#E31A1C" , "#FDBF6F", '"darkorangel",
"#CAB2D6", "#6A3D9A")
## Set names of each colour to be the rank
ranks <- c(1:10)
names (my_palette_top_10) <- ranks

## Rename the data frame containing the real path data
data_us_filter <- data_us_unif

compare_top_10 <- ggplot() +
geom_path(data = all_path_data_top_10,
aes(CV, Reports, col = Rank), size = 0.75) +
geom_path(data = data_us_filter, aes(CV, Incidence),
col = "black", size = 0.75) +
scale_y_sqrt() +
scale_colour_manual(values = my_palette_top_10,
labels = unique(labels)) +
labs(colour = "Parameter Values") +
theme (
legend.position = c(.99, .99),
legend. justification = c("right", "top"),
legend.box. just = "center",
legend.margin = margin(6, 6, 6, 6),
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legend.title.align = 0.5,
legend.direction = "vertical",
legend.spacing.y = unit(0.25, ’cm’),
legend.text = element_text(size = text_size),
legend.title = element_text(size = text_size),
axis.text = element_text(size = text_size),
axis.title = element_text(size = text_size)
)+
guides(colour = guide_legend(byrow = TRUE))
compare_top_10
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Additionally, we plot the time series corresponding to each of the parameter combi-
nations in the code below. This plot is presented in figure 15.
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## Define arguments used to subset the time series data
window <- 10

step <- 1/12

ts_list_top_10 <- as.list(vector(length = length(ranks)))
names (ts_list_top_10) <- ranks

ts_list_short <- as.list(vector(length = length(ranks)))

## Plot the both the full time series for each set of parameters
## and the time series for & years

ts_data_frames <- ts_data_list[top_10_results$Labell

for (i in 1:length(ts_data_frames)) {
row_ind <- which(top_10_results$Rank == ranks[i])
init_run <- top_10_results$Init_run[row_ind]
alpha_val <- top_10_results$Alphalrow_ind]
power_val <- top_10_results$Power [row_ind]

ts_years <- seq((data_years[1]-init_run-window+step),
2019, step)

monthly_data <- ts_data_frames[[i]]
monthly_data$Year <- ts_years

monthly_data_long <-
pivot_longer (monthly_data, cols = !Year,
names_to = "State",
values_to = "Reports")

monthly_data_long$Rank <- as.character(ranks[i])

mean_only <- monthly_data_long %>%
filter(State == "mean" & Year %in}% data_years)

ts_plot_top_10 <- ggplot() +
geom_path(data = mean_only,
aes(Year, Reports, col = Rank)) +
scale_y_logl0(limits = c(0.00001, 1000),
labels =
function(x) format(x, scientific = FALSE)) +
scale_colour_manual (values = my_palette_top_10,
labels = unique(labels)) +
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ylab("") +
xlab("") +
x1im(c (1960, 2000)) +
ggtitle(paste(ranks[i],
": $\\alpha=",
alpha_val,
"$ and $£=10"{",
power_val, "}$",
sep="")) +
theme(plot.title = element_text(size = 10,
face = "bold"))

ts_list_top_10[[i]] <- ts_plot_top_10

}

top_10_plot_list <- ts_list_top_10

ggarrange(plotlist = top_10_plot_list,
ncol = 2, nrow = 5,
common.legend = TRUE,
legend = "none"
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We save the results to a .RData file for use in other code.

save (true_path, data_us, point_mean_us,
compare_top_10, all_path_data_top_10,
my_palette_top_10, file = "data/top_10.RData")

7.6 Canonical Paths for Varying Seasonality

With a model that is capable of simulating the US canonical path, we decided to
investigate how varying seasonality affects the trajectory of the path. In this re-
gard, we simulate the path for the following « values: 0, 0.1, 0.2, ..., 0.8, and us-
ing an immigration factor of 1073 (optimized). We use the path_model function,
as described in section 7.5.2.2, to simulate the yearly incidence per 100,000 and
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the cv_inc_fun, as described in section 7.3.1, to create the data frames contain-
ing weighted incidence and CV for each value of a. The simulation is conducted in
model_sensitivity_alpha_new.R as the code takes several hours to run. The calcu-
lation of weighted incidence and CV is conducted in cv_inc_sensitivity_alpha_new.
as it takes over an hour to run.

Once the data frames containing weighted incidence and CV are created, we begin
creating the plots of the data. First, we load in the necessary . RData files and libraries.

library(stats)

library(smoother)

library(calibrate)

library(tidyverse)

library(rlist)

library(RColorBrewer)

library(knitr)

library(gridExtra)

library(ggpubr)
load("data/state_data_vacc_alphas_200_imm.RData")
load("data/cv_inc_state_alpha_sensitivity_200_imm.RData")
load("data/presentation_logical.RData")

Next, we determine the year in which the plotting should begin. This is not necessarily
the starting year as we ran for 200 years from the initial conditions to remove transient
behaviour.

## Determine at which data point the path should be
## plotted (want to plot after the extra run time is
## complete)
use_immigration <- TRUE
init_run <- 200
if (init_run == 0) {
start_plot <- 1
} else {
start_plot <- init_run + 1
}

Next we filter the data frames to on include the years we wish to plot.

years <- unique(data_us$year)
final_years <- years[start_plot:length(years)]
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## Filter the data based on the year we want to begin
## plotting based on start_plot
data_us_reports <- data_us_reports %>%

filter(year %in¥% final_years)

Before plotting the paths, we solve the deterministic version our model to determine
what stable cycles (if any) are present with each value of alpha. First, we load in
the necessary .RData files and libraries, and source the R files containing default
parameters and functions.

library(tidyverse)
library(deSolve)
library(knitr)

source("functions.R")
source("model_parameter_inputs_new.R")
load("data/vital_stats_data.RData")
load("Good_data/US_population_data.RData")

Next, we set the arguments required to simulate the deterministic model.

Once we have defined all of the necessary data files, we run a for loop through each
value of alpha. It begins by creating a vector of names parameters required by the
following deterministic rate function. Since we observe large changes in magnitude of
prevalence when « is chaotic, we logarithmically integrate £ and I.

### Deterministic Rate function
SEIR_det <- function(t, state, params) {
with(as.list(c(state, params)), {
beta <- beta_fun(t, alpha, betal, one_year)
I <- exp(logl)
p <- vaccination_fun(t, t_final, t_first_vacc, final_vacc_coverage)
E <- exp(logE)

N<-(S+E+1I+R)

dS <- N*(1 - p)*nu - S*Ixbeta/N - muxS
dlogE <- S*I*beta/(E#N) - sigma + mu
dlogl <- sigma*E/I - gamma + mu

dR <- N*p*nu + gammax*I - muxR
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list(c(dS, dlogE, dlogI, dR))

D)
1

Next, the for loop sets the initial conditions to be the equilibrium point at ¢ = 0.
Additionally, we create a vector containing the time for which we wish to simulate the
deterministic model. Finally, we call the 1sode function from the deSolve library,
to solve the deterministic model. The code also creates plots of the deterministic
solution and then subsets them so that we can find the stable cycles.

for (alpha_val in alpha_vec) {
## Vector containing the parameters used in the ode function
params_det <- c(

nu = nu,
mu = mu,
N =N,

gamma = gamma,

sigma = sigma,

alpha = alpha_val,

betald = betal_fun(c(nu, mu, gamma, sigma, RO)),
one_year = one_year,

immigration_factor = immigration_factor,

RO = RO

## List version of params_det
params_egm <- as.list(params_det)

## Set initial conditions to equilibrium
EE <- eq_prev_fun(0, params_eqm, N = params_eqm$N)

S <- EE$S_eqm
E <- EE$E_eqm
I <- EE$I_eqm
R <- EE$R_eqm

init_values_det <- c(S = S, logE = log(E),
logI = log(I), R = R)

## Defining the time sequence used in the ode function
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times <- seq(0, t_final, by = clock_tick)

## Chose to use lsode to ensure it treats the

## model as stiff, asks the function to find

## the jacobian using jactype = "fullint"

SEIR_ode <- lsode(y = init_values_det, times = times,
func = SEIR_det, parms = params_det,
jactype = "fullint")

## Make the output of ode a data frame
SEIR_ode_df <- as.data.frame(SEIR_ode)

## Save the data frame to a list
alpha_det_list[[which(alpha_vec == alpha_val)]] <-
SEIR_ode_df
}

short_alphas <- ¢(0.025, 0.1, 0.2)

for (i in 1:length(alpha_det_list)) {

if (alpha_vec[i] %in% short_alphas) {
time_low <- 2015

} else {
time_low <- 1970

}

data <- alpha_det_list[[i]] %>%
filter(time >= time_low & time <= 2020)

plot <- ggplot() +
geom_line(data=data, aes(time, logI)) +

ggtitle(paste0("$\\alpha=$ ", alpha_vec[i]))

print(plot)
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Figure 31: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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a=0.1
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Figure 32: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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a=0.2
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Figure 33: The deterministic solutions to the model for ranging values of o. From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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a=0.3
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Figure 34: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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a=04
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Figure 35: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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Figure 36: The deterministic solutions to the model for ranging values of o. From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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a= 0.6
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Figure 37: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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a=0.7
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Figure 38: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.
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Figure 39: The deterministic solutions to the model for ranging values of . From
these plots we observe an annual cycle for a values of 0.025, 0.1 and 0.4, triennial for
0.2 and 0.3 and chaos for the rest.

From these plots we observe an annual cycle for a of 0.025, a biennial cycle for 0.1
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and 0.2, and chaos for the rest.
With the data prepared, we create the figure displayed in figure 20.

## Define the palette used for the ggplot (from Paired brewer palette)

my_palette_alpha <- c("#A6CEE3", "#1F78B4","#B2DF8A","#33A02C",
"#FBOA99" , "#E31A1C", "#FDBF6F" , "darkorangel",
"#CAB2D6")

names (my_palette_alpha) <- alpha_vec

## Create the canonical path
canonical_path_alpha_reports <- ggplot()+
geom_path(data = data_us_reports,
aes(CV, Incidence, col = Alpha),
lty = 1, lwd = 1) +
geom_point(data = point_data_us_reports,
aes(CV, Incidence, col = Alpha),
shape = 21, fill = "black",
size = 2, stroke 1.5) +

theme (

legend.position = c(.95, .95),

legend. justification = c("right", "top"),

legend.box. just = "right",

legend.margin = margin(6, 6, 6, 6),

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)
)+
scale_y_sqrt("Mean Incidence per 100,000",

limits = c(min(data_us_reports$Incidence),
max (data_us_reports$Incidence))) +
scale_x_continuous("CV", limits = c(0,3.5), expand = c(0,0)) +
scale_colour_manual(values = my_palette_alpha,
labels = c("0 (no seasonality)",

"0.1 (biennial)",
"0.2 (biennial)",
"0.3 (chaotic)",
"0.4 (chaotic)",
"0.5 (chaotic)",
"0.6 (chaotic)",
"0.7 (chaotic)",
"0.8 (chaotic)"
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)) +

labs(colour = "Amplitude of Seasonal \n Forcing $\\alpha$") +

guides(colour = guide_legend(override.aes = list(linetype=1, size=1)))
canonical_path_alpha_reports

200-
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Next, we create plots of the time series on a monthly scale for each of the values of
alpha, and plot them individually, as presented in figure 21.

## Define arguments used to subset the time series data
window <- 10

step <- 1/12

ts_list_alphas <- as.list(vector(length = length(alpha_vec)))
names (ts_list_alphas) <- alpha_vec

start_plot_year <- final_ data[start_plot]

ts_list_short <- as.list(vector(length = length(alpha_vec)))
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## Plot the both the full time series for each wvalue of alpha
## and the time series for 5 years

for (i in 1:length(monthly_reports_states_alphas)) {
monthly_data <- monthly_reports_states_alphas[[i]]
monthly_data$Year <-
seq(final_data[l]-window+step,
final_data[length(final_data)], step)

monthly_data_long <-

pivot_longer(monthly_data, cols = !Year,
names_to = "State",
values_to = "Reports")

monthly_data_long$Alpha <- as.character(alpha_vec[i])

mean_only <- monthly_data_long %>%
filter(State == "mean" & Year >= as.numeric(start_plot_year))

ts_plot_alpha <- ggplot() +
geom_path(data = mean_only,
aes(Year, Reports, col = Alpha)) +
scale_y_logl0(limits = c¢(0.00001, 1000),
labels =
function(x) format(x, scientific = FALSE)) +
scale_colour_manual (values = my_palette_alpha) +

ylab("") +
xlab("") +
x1im(c (1962, 1990)) +
ggtitle(paste("$\\alpha=", alpha_vec[i], "$", sep = "")) +
theme (
plot.title = element_text(size = 10, face = "bold"),
legend.position = "none"

ts_list_alphas[[i]] <- ts_plot_alpha

}

alpha_plot_list <- ts_list_alphas

ggarrange(plotlist = alpha_plot_list,
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ncol = 2, nrow = 5,
common.legend = TRUE,
legend = "none")
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We also save the results to a .RData file.

if (use_immigration) {
if (init_run == 0) {
path_file <-
paste(paste("data/canonical_path_alpha",
"imm", "sensitivity", sep = "_"),
" .RData", sep = "")
} else {
path_file <-
paste(paste("data/canonical_path_alpha",
init_run,"imm", "sensitivity", sep = "_"),
".RData", sep = "")

}

} else {
if (init_run == 0) {
path_file <- "data/canonical_path_alpha_sensitivity.RData"

} else {
path_file <- paste(paste("data/canonical_path_alpha",
init_run, "sensitivity", sep = "_"),
" _RData", sep = "")

}
}

save (canonical_path_alpha_reports, data_us_reports,
point_data_us_reports, my_palette_alpha, ts_list_alphas,
file = path_file)

7.7 Canonical Paths for Varying Natural History of Infection

The final analysis conducted in the paper investigated how changing the mean in-
fectious and latent periods affect the trajectory of the path. Thus, we began by
simulating the path for the following range of mean infectious periods: 2, 4, 8, ..., 32
days. We use the path_model function, as described in section 7.5.2.2, to simulate the
yearly incidence per 100,000 and the cv_inc_fun, as described in section 7.3.1, to cre-
ate the data frames containing weighted incidence and CV for each value of the mean
infectious period. The simulation is conducted in model_sensitivity_gamma_new.R
as the code takes several hours to run. The calculation of weighted incidence and CV
is conducted in cv_inc_sensitivity_gamma_new.R as it takes over an hour to run.
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With the data frames created, we use the same methods described in section 7.6 to
create figure 16.

library(stats)

library(smoother)

library(calibrate)

library(tidyverse)

library(rlist)

library(RColorBrewer)

library(knitr)

library(ggpubr)
load("data/state_data_vacc_gamma_sensitivity_200.RData")
load("data/cv_inc_state_gamma_sensitivity_200.RData")
load("data/presentation_logical.RData")

## Determine at which data point the path should be plotted
## (want to plot after the extra run time is complete)
use_immigration <- TRUE

init_run <- 200

if (init_run == 0) {
start_plot <- 1
} else {

start_plot <- init_run + 1

}

## Filter the data based on the year we want to begin
## plotting based on start_plot

years <- unique(data_us$year)

final_years <- years[start_plot:length(years)]

data_us_reports <- data_us_reports %>%
filter(year %in% final_years)

## Make the infectious period a factor

data_us_reports$t_infec <-
as.factor(data_us_reports$t_infec)

point_data_us_reports$t_infec <-
as.factor(point_data_us_reports$t_infec)

Page 313 of 322



M.Sc. Thesis - E. O’Meara; McMaster University - Mathematics

## Define the palette used for the ggplot

## (from Paired brewer palette)

my_palette_gamma <- c("#A6CEE3","#1F78B4","#B2DF8A","#33A02C",
"#FB9A99")

t_infec <- unique(data_us_reports$t_infec)

names (my_palette_gamma) <- levels(t_infec)

## Change column mames
colnames(data_us_reports) <-

c("Gamma", "CV", "Incidence", "Year", "T_Infec")
colnames(point_data_us_reports) <-
c("Gamma", "CV", "Incidence", "Year", "T_Infec")

canonical_path_gamma_reports <- ggplot()+
geom_path(data = data_us_reports,
aes(CV, Incidence, col = T_Infec), 1ty = 1, lwd = 1) +
geom_point(data = point_data_us_reports,
aes(CV, Incidence, col = T_Infec),
shape = 21, fill = "black", size = 2, stroke = 1.5) +

theme (

legend.position = c(.95, .95),

legend. justification = c("right", "top"),

legend.box. just = "right",

legend.margin = margin(6, 6, 6, 6),

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)
)+
scale_y_sqrt("Mean Incidence per 100,000",

limits = c(min(data_us_reports$Incidence),
max (data_us_reports$Incidence))) +
scale_x_continuous("CV", limits = c(0,3.5), expand = c(0,0)) +
scale_colour_manual(values = my_palette_gamma) +
labs(color="Mean Infectious Period (days)’) +
guides(colour = guide_legend(override.aes = list(linetype=1, size=1)))
canonical_path_gamma_reports
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Next, we create plots of the time series on a monthly scale for each of the values of
gamma, as presented in figure 17.

window <- 10

step <- 1/12

ts_list_gamma <- as.list(vector(length = length(gamma_vec)))
names (ts_list_gamma) <- gamma_vec

start_plot_year <- final_data[start_plot]

for (i in 1:length(monthly_reports_states_gamma)) {
monthly_data <- monthly_reports_states_gamma[[i]]
monthly_data$Year <-
seq(final_data[l]-window+step,
final_data[length(final_data)],
step)
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monthly_data_long <-
pivot_longer (monthly_data,

cols = !Year,
names_to = "State",
values_to = "Reports")

monthly_data_long$t_infec <- t_infec[i]

mean_only <- monthly_data_long %>%
filter(State == "mean" & Year >= start_plot_year)

ts_plot_gamma <- ggplot() +
geom_path(data = mean_only, aes(Year, Reports, col = t_infec)) +
scale_y_logl0(limits = c(0.00001, 100),
labels
function(x) format(x, scientific = FALSE)) +

scale_colour_manual (values = my_palette_gamma) +

ylab(un) +
Xlab("") +
labs(colour = "Mean Infectious Period") +

x1im(c (1962, 2000)) +
ggtitle(paste("Mean Infectious Period (days): ",

365/gamma_vec[i], sep = "")) +
theme (
plot.title = element_text(size = 10, face = "bold"),
legend.position = "none")

ts_list_gamma[[i]] <- ts_plot_gamma

}

We plot the time series for each gamma in a grid using the following code.
gamma_plot_list <- ts_list_gamma
ggarrange(plotlist = gamma_plot_list,

ncol = 2, nrow = 3,

common.legend = TRUE,
legend = "none"
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Additionally, we save the results to a .RData file.

if (init_run == 0) {
sim_file <- "data/canonical_path_gamma_sensitivity.RData"
} else {
sim_file <-
paste(paste("data/canonical_path_gamma",
"sensitivity", init_run, sep = "_"),
" .RData", sep = "")

save (canonical_path_gamma_reports, data_us_reports,
point_data_us_reports, ts_list_gamma, file = sim_file)

Lastly, we simulated the path for the following range of mean latent periods: 2, 4, 8,
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..., 32 days. We use the path_model function, as described in section 7.5.2.2, to simu-
late the yearly incidence per 100,000 and the cv_inc_fun, as described in section 7.3.1,
to create the data frames containing weighted incidence and CV for each value of the
mean latent period. The simulation is conducted in model_sensitivity_sigma_new.R
as the code takes several hours to run. The calculation of weighted incidence and CV
is conducted in cv_inc_sensitivity_sigma_new.R as it takes over an hour to run.

With the data frames created, we use the same methods described in section 7.6 to
create figure 18.

library(stats)

library(smoother)

library(calibrate)

library(tidyverse)

library(rlist)

library(RColorBrewer)

library(knitr)

library(ggpubr)
load("data/state_data_vacc_sigma_sensitivity_200.RData")
load("data/cv_inc_state_sigma_sensitivity_200.RData")
load("data/presentation_logical.RData")

## Determine at which data point the path should be plotted
## (want to plot after the extra run time is complete)
use_immigration <- TRUE
init_run <- 200
if (init_run == 0) {

start_plot <- 1
} else {

start_plot <- init_run + 1

}

## Filter the data based on the year we want to begin plotting
## based on start_plot

years <- c(unique(data_us$year))

final_years <- years[start_plot:length(years)]

data_us_reports <- data_us_reports %>%
filter(year %in% final_years)
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## Define the palette used for the ggplot

## (from Paired brewer palette)

my_palette_sigma <- c("#A6CEE3","#1F78B4","#B2DF8A","#33A02C",
"#FB9A99")

t_latent <- unique(data_us_reports$t_latent)
names (my_palette_sigma) <- levels(t_latent)

## Change column mames
colnames(data_us_reports) <-

c("Sigma", "CV", "Incidence", "Year", "t_latent")
colnames(point_data_us_reports) <-

c("Sigma", "CV", "Incidence", "Year", "t_latent")

canonical_path_sigma_reports <- ggplot()+
geom_path(data = data_us_reports,
aes(CV, Incidence, col = t_latent),
1ty = 1, lwd = 1) +
geom_point(data = point_data_us_reports,
aes(CV, Incidence, col = t_latent),
shape = 21, fill = "black", size = 2, stroke = 1.5) +

theme (

legend.position = c(.95, .95),

legend. justification = c("right", "top"),

legend.box.just = "right",

legend.margin = margin(6, 6, 6, 6),

legend.text = element_text(size = text_size),

legend.title = element_text(size = text_size),

axis.text = element_text(size = text_size),

axis.title = element_text(size = text_size)
)+
scale_y_sqrt("Mean Incidence per 100,000",

limits = c(min(data_us_reports$Incidence),
max (data_us_reports$Incidence))) +
scale_x_continuous("CV", limits = c(0,3.5), expand = c(0,0)) +
scale_colour_manual(values = my_palette_sigma) +
labs(color="Mean Latent Period (days)’) +
guides(colour = guide_legend(override.aes = list(linetype=1, size=1)))
canonical_path_sigma_reports
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Next, we create plots of the time series on a monthly scale for each of the values of
sigma.

window <- 10

step <- 1/12

ts_list_sigma <- as.list(vector(length = length(sigma_vec)))
names(ts_list_sigma) <- sigma_vec

start_plot_year <- final_data[start_plot]

for (i in 1:length(monthly_reports_states_sigma)) {
monthly_data <- monthly_reports_states_sigmal[[i]]
monthly_data$Year <-
seq(final_data[l]-window+step,
final_data[length(final_data)],
step)
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monthly_data_long <-
pivot_longer (monthly_data,

cols = !Year,
names_to = "State",
values_to = "Reports")

monthly_data_long$t_latent <- t_latent[i]

mean_only <- monthly_data_long %>%
filter(State == "mean" & Year >= start_plot_year)

ts_plot_sigma <- ggplot() +
geom_path(data = mean_only, aes(Year, Reports, col = t_latent)) +
scale_y_logl0(limits = c(0.00001, 100),
labels
function(x) format(x, scientific = FALSE)) +
scale_colour_manual (values = my_palette_sigma) +

x1im(c (1960, 2000)) +

ylab("") +
xlab("") +
labs(colour = "Mean Latent Period") +
ggtitle(paste("Mean Latent Period (days): ",
365/sigma_vec[i], sep = "")) +
theme (
plot.title = element_text(size = 10, face = "bold"),
legend.position = "none")

ts_list_sigmal[[i]l] <- ts_plot_sigma

}

We plot the time series for each value of sigma in a grid using the following code, as
presented in figure 19.

sigma_plot_list <- ts_list_sigma
ggarrange(plotlist = sigma_plot_list,
ncol = 2, nrow = 3,

common.legend = TRUE,
legend = "none"
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Additionally, we save the results to a .RData file.

if (init_run == 0) {
sim_file <- "data/canonical_path_sigma_sensitivity.RData"
} else {
sim_file <-
paste(paste("data/canonical_path_sigma",
"sensitivity", init_run, sep = "_"),
".RData", sep = "")

save(canonical_path_sigma_reports,
data_us_reports, point_data_us_reports,
ts_list_sigma, file = sim_file)
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