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Abstract

Incorporation of advanced manufacturing depends on efficient strategies that can

use new available sensor technologies to improve quality monitoring and process un-

derstanding. One of these new technologies is nonlinear ultrasonics, which is a multi-

variate nondestructive method for the characterization of produced plastic parts. Two

approaches are proposed to integrate captured data for in-line quality classification,

and on-line monitoring and prediction. Cluster identification is evaluated with a com-

bination of principal component analysis (PCA) and a soft class analogy method for

products with differing quality based on information contained in the multivariate ultra-

sonic signal, providing a cost-effective alternative to destructive testing. In the second
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approach, a state-space dynamic model using subspace identification is applied to his-

torical process data and correlated with the ultrasonic-based quality data for quality

prediction. An on-line monitoring tool was proposed, in combination with a non-para-

metric evaluation. Results were validated with experimental data from a polyethylene

rotational molding process.

Keywords: Advanced manufacturing, Quality monitoring, Nonlinear ultrasonics,

Batch dynamic modeling.

1 Introduction

Manufacturing is progressively changing to a more intelligent environment. Based on re-

cent trends, the next decades will focus on wide spread utilization of advanced manufacturing

concepts, such as big data, cyber-physical systems and cloud computing.1 Data mining and

machine learning strategies are examples of new tools that have been demonstrated essen-

tial for the efficient use of big data in process systems2 Although these cyber resources are

gradually becoming known and adopted for use, broad application of these techniques is still

years away from being realized.

In polymer manufacturing, which is the focus of the present application, much empha-

sis has been on additive manufacturing so far,3 with too little discussion yet on intelligent,

data-driven smart manufacturing strategies for traditional processes. The concept of more

intelligent data-driven manufacturing focuses on the collection and use of larger amounts

of process and quality data to make decisions based on intimate understanding of the pro-

cess.4Various data-based procedures have been investigated for both continuous and batch

processes.5,6 The concept of advanced manufacturing is becoming increasingly relevant due

to the increase in the amount of digital data being recorded and stored, which in turn arises

from the adoption of new sensors capable of more than traditional univariate descriptors,

such as temperature, pressure and flow. Spectral sensors, for example, generate multivariate

datasets that can provide a multitude of quality parameters from the manufacturing environ-
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ment. On the molecular-level, structural modification has been demonstrated with the use of

spectroscopic techniques, such as Raman spectroscopy to monitor changes in morphological

amorphous and crystalline structures;7 fast-Fourier transform infrared (FTIR) spectroscopy

can be used for observing chemical modification;8 and, nuclear magnetic resonance (NMR)

can differentiate molecular level chain dynamics.9

When considering bulk nondestructive characterization methods, a study recently demon-

strated the use of multivariate nonlinear ultrasonics to identify differences in the structural

morphology of polyethylene (PE).10 Linear ultrasonic characterization based on sound ve-

locity and attenuation through the media has been traditionally applied;11–13 however, this

approach is limited by the viscoelastic nature of industrial polymers, like PE, which creates

a high degree of signal attenuation that is dependent on frequency.14 Although the adoption

of newer ultrasonic methods focused on multivariate analysis is suggested, technological and

economic barriers have prevented their implementation for in-line quality monitoring; in-line

monitoring refers to the quality assessment after the product has been produced.

Better decision-making tools are sought that can handle larget amounts of dada, show-

ing improvement in their assessment and prediction performance.15 Development of these

techniques has been especially focused in areas such as chemometrics16 and image process-

ing.17 Orthogonal projections, such as principal component analysis (PCA), have been at

the foundation of several multivariate data analysis tools. It can be used to simplify and

quickly understand complex databases with an algorithm that is simple to implement and

easy to compute.18 PCA has been widely used to analyze in-line spectroscopic data of pro-

cesses experiencing chemical changes19 and to aid in the detection of tracer elements20 in

continuous compounding. PCA base models have also been demonstrated as adaptable tool

for data mining in the big data era21 In the area of polymer processing, infra-red and Raman

spectroscopy sensors and univariate ultrasonic in-line measurements have been demonstrated

for monitoring an extrusion process.22 A hyperspectral imaging sensor was tested by oth-

ers for continuous extrusion, and its information correlated with the final product quality
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by multivariate statistical tools.23 There is even an example of multivariate sensor technol-

ogy to monitor in-mold production.24 These other applications of multivariate analysis with

spectral datasets25,26 are more familiar to the manufacturing environment, reliant on known

calibration and analysis protocols. Nonlinear ultrasonics presents new challenges for the field

of research since the signal contains complex morphological information on the systems being

monitored. Intelligent analysis tools have yet to be demonstrated with this sensor technology

for manufacturing, proving the data can be related to quality aspects of the product.

Motivated by the above considerations, this study proposes an analytical and statistical

framework that can efficiently use multivariate spectroscopic data from nonlinear ultrasonics

combined with process modeling to provide an in-line monitoring tool for nondestructive

assessment of produced parts considering chemical and morphological changes that were

caused during processing, and an on-line process modeling tool to improve understanding of

the process variables and allow final quality prediction. The proposed methods were applied

to a batch rotational molding manufacturing system.

The manuscript is organized as follows: Section 2 shows the experimental methods used

for practical application and validation of the technique. Section 3 describes the statistical

approaches used for multivariate data processing and process modeling. Section 4 demon-

strates the application of the monitoring tools, where historical batch data is first used to

build the models, and validation of the monitoring ability by correctly classifying desired

and undesired products, and demonstration the prediction capability. Section 5 presents the

concluding remarks.

2 Process Description and Quality Measurements

In this section, we describe the specific polymer manufacturing process and the destruc-

tive and nondestructive techniques utilized for characterization of the manufactured part

quality.
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2.1 Batch Manufacturing Process

A laboratory-scaled uniaxial rotational molding system was operated to prepare cubic

samples by melting a high density polyethylene powder (Exxon Mobil HD 8660.29, supplied

by Imperial Oil Ltd.). Rotation speed was kept constant at 4 RPM. Two heated panels

and a compressed air supply were manipulated variables by PI controller. Temperature

data corresponding to the heated panels and internal mold air was measured using K-type

thermocouples and collected using a custom-written data acquisition system in Labview

(National Instruments). After the powder was charged into the 90x90x90 mm cubic mold,

each sample was subjected first to a heating cycle to a selected maximum temperature. In

the subsequent cooling cycle, fan-circulated air was applied to the mold to solidify the part,

while all manipulated variables were turned off.

It is well understood that the final product quality is largely influenced by the temper-

ature trajectory of the molding process27 The mold undergoes the following four phases

over the course of processing (see Figure 1 for a representative profile of the internal mold

temperature): (i) the adhesion phase, where the powder heats up and adheres to the sur-

face, (ii) the melting phase, and (iii) the sintering phase, and finally (iv) the solidification

phase. Of the complete sequence of precessing events, the sintering phase is the most criti-

cal that dictates product quality.28 Depending on the duration and temperature trajectory

during the sintering phase, one can produce a weak part by incomplete sintering (residual

internal air bubbles present), or extensive thermo-oxidative degradation; or if the process is

well controlled meet target quality showing optimal mechanical properties and no significant

degradation. Accurately measuring the temperature trajectory, and understanding of how

it influences the final product quality, remains as incredibly challenging problems. Tradi-

tionally, a univariate selection of batch process time or maximum internal air temperature

is used to decide the end of the heating cycle. The changes in process operation (i.e. raw

material variability) can be very frequent, requiring several adjustments in process variables

to achieve desired quality. Monitoring approaches that are inexpensive and rapidly quantify
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of the product quality in-line (after the batch is finished) to eliminate defective parts, or

on-line (during the batch process) are therefore highly valuable.

o

Time (min)

Figure 1: Rotational molding batch internal air mold temperature profile

2.2 Destructive characterization

In order to validate the quality of each sample, two traditional destructive tests were

performed to evaluate the physical properties of produced parts. The extent of melt consoli-

dation from sintering (i.e. removal of trapped air bubbles during the process) was evaluated

using a falling weight dart impact test (ASTM D5420) as is typically done by rotomolding

processors. The impact data was used for classification purposes in this study where a sam-

ple was considered fully sintered if its impact value was above 0.41 Joules (J); this threshold

was determined as 80% of the maximum impact energy measured for optimal parts (0.51 J).

To evaluate the thermo-oxidative degradation, an oscillatory rheology test was performed on

a square cut, 30x30 mm, from a part in a DHR 2 parallel plate rheometer (TA Instruments).

Complex viscosity estimation was obtained with a frequency sweep from 0.1-100 rad/s at

a temperature of 190 oC. Data was converted using the Cox-Merz transformation and used
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the Cross model to estimate the value of zero-shear viscosity. Samples were classified as

degraded if the zero-shear viscosity was above 8160 Pa.s, or 20% higher than the supplied

material before processing (approximately 6800 Pa.s).

The practical execution of the described characterization methods was limited to a small

set of samples from a series of produced parts. Information obtained from a sampled group

might not portray the real quality of all batch runs. Total cost of the quality assessment

procedure is increased by the use of specific equipments and specilized procedures for different

quality tests that need to be executed separetely (sintering and degradation). This motivates

the use of alternative, less expensive, quick and non-destructive test methods.

2.3 Ultrasonic characterization

Nonlinear ultrasonics have been shown in recent work28 to be an effective tool that can

be correlated with traditional quality tests to evaluate both sintering and degradation effects

on a rotational molded part. The ultrasonic measurements were carried out after the sample

was removed from the mold and cooled to room temperature. Figure 2 presents the schematic

of the two ultrasonic transducers (F30a - broadband and R15 - resonant, Physical Acoustics

Corp.) positioned on one of the external surfaces, at a distance of 35 mm apart. A high

vacuum grease (Dow Corning) was used to affix the sensors to the surface. A series of pulses

(10 cycles-burst) were introduced to an uncut molded sample, with controlled frequencies

from 135 to 165 kHz, in 1 kHz ascending frequency steps. The signal was sampled at

an acquisition rate of 4 MHz (using a National Instruments data acquisition board). The

spectrum used in the analyses was from all 31 captured signals for the same sample after

Fourier transformation.

In this manuscript, the validity of nonlinear ultrasonics as a viable alternative to destruc-

tive characterization for quality classification is illustrated. The second relevant contribution

is a framework with the ability to predict the product quality on-line, enabling process cor-

rections and control as appropriate. In the next section, we describe the modeling tools that
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Figure 2: Nondestructive ultrasonic measurement schematic

we utilized to achieve these objecives.

3 Data-driven classification and modeling approaches

We address the monitoring problem for a general scenario where the nondestructive mul-

tivariate sensor for product characterization is available at the end of a batch process, with

specific application to the rotomolding process. To this end, two approaches are proposed,

one for in-line quality classification and the second for on-line quality prediction and process

visualization. The first approach focuses on the ultrasonic data evaluated from a produced

part at the end of every batch run for an in-line classification. Strategies described in Section

3.1 and 3.2 demonstrate a data processing methodology to reduce the complexity of the sig-

nal and show how to improve classification between qualitative classes. This nondestructive

classification tool can be applied in the situation where traditional characterization tests

are to be minimized. The second approach combines process modeling and non-parametric

evaluation, explained in Section 3.3 and 3.4, for on-line prediction of the final part quality.

Correlation between a dynamic model with the ultrasonic reduced space, allows at the cur-
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rent state of the process, to predict the final product quality, that can be validated using the

ultrasonic sensor once the process is concluded and the part is formed. This decision support

tool can help understand causes of process variability and be a foundation for quality control

strategies.

3.1 Principal component analysis (PCA)

Nonlinear ultrasonic analysis implies the interpretation of harmonics, thus requiring that

the captured signal must be converted from the time domain into the frequency domain.

Instead of traditional ultrasonic analysis that focuses on amplitude and sound velocity cal-

culations, in nonlinear ultrasonic analysis, changes in peak amplitude from different frequen-

cies are correlated with structural characteristics.28 To achieve this, principal component

analysis (PCA) was applied to first reduce the dimensionality of the ultrasonic multivariate

data without losing important information, using Equation 1 below:

U = TPt + e (1)

where U is the matrix with ultrasonic spectra organized in rows from different batches; T is

the concatenated scores vectors, P is a matrix with loading vectors, and e is the matrix of

residuals. The reduced score space is able to capture the essence of the information available

in the ultrasonic measurement, and can be interpreted using the loadings vector to under-

stand the importance of frequencies. The PCA model forms the basis of the classification

strategy described next.

3.2 Soft independent modeling of class analogy (SIMCA)

Ultrasonic spectroscopic data from rotational molded parts has been correlated with

traditional destructive tests to evaluate both sintering and degradation problems.28 For most

spectroscopic techniques applied to predict product quality, a calibration model derived from
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controlled conditions based on a design of experiments and results from destructive tests are

required. In practical industrial applications, a calibration model is often either unavailable

or infeasible. Thus, a flexible and efficient method is proposed for quality classification

based only on nondestructive data of historical samples, that can later be validated with

secondary (destructive) tests. The soft independent modeling of class analogy (SIMCA) tool

was utilized. The method utilizes the square prediction error (SPE) values calculated from

PCA models to achieve classifcation.29

Algorithm 1 describes in details the steps required to create and update a classification

model for different quality classes. Selection of initial clusters can be done manually through

the visual inspection of the scores plot of the base PCA model or through a cluster algo-

rithm to improve reproducibility Specifically, for the rotational molding process, three classes

were used as a starting point for the SIMCA algorithm, in order to utilize the ultrasonic

measurements alone to identify the presence of these different quality products. Any new

sample may be determined to belong to a particular class based on the SPE values, and

the PCA models updated at the end of one set of new measurements to enable subequent

classification.
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Algorithm 1 SIMCA algorithm

1. Create base PCA model with all available data.

2. Identify initial cluster points from the scores space, separate data into defined classes

(a) Calculate separate PCA models for each class.

3. Classification of a new element

(a) Calculate standard prediction error (SPE) for each PCA model. Resultant matrix
SPE ∈ Rl×o, where l is the number of variables and o is the number of groups.

(b) Compare calculated values and locate in similar class using SPE limit values or
find the combination of vector a, where ai ∈ Ro, to satisfy the objective function:

min
l∑

i=1

SPE[a, i].

4. Model improvement: If the classification of a specific group meets the criteria, incor-
porate the new sample into the classified group; Repeat step 2 with the new dataset
built. If a newly introduced sample does not fit in any previous groups, consider the
creation of a new class.

This approach only requires data from the ultrasonic test and can be applied to any

classification that allows differentiation by the physical characteristics that influence the

ultrasonic spectrum, allowing a simple interpretation of a complex data set. As indicated

earlier, supplementary destructive tests can be conducted to give meaningful physical labels

after the fact. In the present examples, these could include, for instance, target quality

(meeting desired specifications), incomplete sintering and degraded.

3.3 Subspace identification for dynamic batch process modeling

The development of the on-line monitoring tool was based on a dynamic model that

was able to predict the trajectories of process variables (the internal mold temperature for

the present application), for a candidate future manipulated input trajectory. Furthermore,

the prediction from the dynamic model could then be utilized as the basis to predict the

utlrasonic spectrum (described in the Section 3.4).

Batch manufacturing processes have traditionally been treated with a rigid recipe ap-
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proach, requiring a design that would be specially selected for each material and equipment.

A flexible tool to model and understand variability in these processes was proposed with the

application of subspace identification.30 The model identification procedure outlined in30,31

yielded a linear time-invariant dynamic model that enabled prediction of process outputs

(based on candidate future inputs trajectories), and generalized the subspace identfication

procedure5 for batch process operation.32 In contrast to previous PLS based modeling ap-

proaches that uses the concept of maturity to represent a time invariant space for batches

with different lengths,33 no batch time alignment was required for the proposed approach.

The identified model took the form of Eqs.2-3 below:

xd
k+1 = Axd

k +Buk (2)

yk = Cxd
k +Duk (3)

where xk ∈ Rn represents the process state at different sampling instants, k; uk ∈ Rm and

yk ∈ Rl denote the input and output values at sampling instant k, respectively; and matrices

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, D ∈ Rl×m, m input variables, and l measured variables.

The model relied on subpsace states to appropriately capture the process dynamics over the

training data. For the purpose of prediction for a new batch, the subspace states needed to

be first estimated, and in the present work, this was done using a Luenberger observer, as

shown in Eq. 4 (see,34 for more details).

x̂[k + 1] = Ax̂[k] +Bû[k] + L(y[k]− ŷ[k]) (4)

where the hat mark denotes the observer prediction and L is the observer gain determined by

ensuring that the matrix (A− LC) is stable. From any point in time for a new batch (after

the state estimator has converged), this model could be used to predict the process outputs

for any candidate input trajectory, and thus could be utilized as a on-line monitoring tool.
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One of the contributions of the present work was to utilize the underlying dynamic model

to build an associated quality model that was able to predict, and visualize the final quality,

enabling its use as a quality monitoring tool.

3.4 On-line final quality projection

A combination of the ultrasonic data processing, described in Section 3.1, and the dy-

namic modeling, presented in Section 3.3, was used to develop an on-line monitoring tool to

correlate process state and the final product quality.

The proposed new approach connected subspace state variables with the reduced variables

related to the final quality (ultrasonic frequency data after PCA) from historical batch data

collected for training. More specifically, multiple linear regression was utilized to build a

model (see Eq. 5).

T = Rax̂f +Rb (5)

where Ra ∈ Rn×o and Rb ∈ Rn×o are the multiple linear regression coefficient matrices that

correlate the final state variable, x̂f , a vector obtained from Equation 4 with the scores, T,

from the projection (Equation 1 ) of ultrasonic spectra to a reduced space, where n is the

order of linear time invariant system and o is the order of projected scores space.

This relationship was not built on mechanistic understanding, but relied on the assump-

tion that all the information about the process was captured in the state vector. Thus, the

final quality depend on the final state vector as well. This was also the basis of how the

states were determined in the subspace identification approach.

Important advantages were found with the combination of the two techniques for on-line

monitoring. The use of a subspace based time invariant model allowed the quality model to

be applied for all batches regardless of the duration of the batch trial, without the need for

an alignment variable. Any nonlinearities in the process dynamics were captured (as best as
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they were expressed in the available data) through the choice of the number of states and

the resultant subspace model. The use of the reduced space rather than the full spectrum

for the ultrasonic multivariate signal, captured the essence of the information contained in

the spectrum, and thus a linear relationship between these two sets of variables ended up

being sufficient to predict the final quality.

One important contribution of the present work was the development of the visualization

tool. While the subspace states have been demonstrated to be important in capturing the

process dynamics,30 evolution of the subspace states by themselves did not lend itself readily

to physical interpretation beyond the outputs they predicted. In the present work, therefore,

a visualization tool was developed, aimed at predicting the utlrasonic spectrum at the end

of a batch trial. Note that the ulstrasonic spectrum, with its correlation to the final part

quality, was much easier to interpret and be read by practitioners (see35 for another instance

of off-line process visualization tool).

Another tool that utilized the proposed correlation between subspace states and the

reduced space of the utlrasonics was demonstrated as an alternate to the classification steps

in Section 3.2. A univariate non-parametric classification approach was utilized next to

classify final quality based on the on-line reduced space projection of the ultrasonic signal.

The task was then, for a new batch, to identify in the known samples which ones were most

similar to the newly produced part. This approach did not require an extensive calibration

based on previous data points. In order to execute this search and recognition, the use of the

k nearest neighbors (k-NN) algorithm was proposed. The objective was to find the closest,

or most similar, cases for a certain number of observations, k, thus minimizing the value of

the Euclidean distance, d defined as follows:

d =

√√√√ k∑
a=1

p∑
b=1

(t̂b − tab )
2 (6)

where p is the number of components of the reduced space, t̂ is the projected score from
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the current state variable from Eq. 5, and ta is the score from the a-th closest sample from

the database of historical batches.

With this non-parametric evaluation, the process data extracted from the subspace iden-

tification could be used to explore all the previous batch data available for prediction of

product quality. Therefore, with new data being available, the prediction could be improved.

However, larger available datasets also require more computing power for the search, thus

justifying the work being done in a reduced spaced (i.e. data processing using PCA).

4 Results

4.1 In-line quality monitoring

Recall that univariate analysis of an ultrasonic signal, focused on time domain estima-

tion of amplitude and sound velocity, is traditionally used for characterization or process

monitoring. In order to demonstrate the effectiviness of the proposed approach, the tra-

ditional methodology was used as comparison. Figure 3 shows the ultrasonic amplitude

for several batch runs with known final qualities separated into three different categories:

incomplete sintering, with residual internal air bubbles present; degraded, with extensive

thermo-oxidative degradation due to long exposure to heat; and, meeting target quality, for

samples showing optimal mechanical properties and no significant degradation. It was pos-

sible to observe a clear distinction between samples with incomplete sintering and the other

groups, since the air bubbles present caused an increase in signal attenuation that reduced

the final amplitude. However, no clear distinction was notable between the target and de-

graded groups. Also, even if a threshold value for amplitude was selected for differentiating

each group, some samples would fall outside the defined groups due to natural variation in

the amplitude that was related to the experimental procedure (for example, measurement

sensitivity to the application of coupling the vacuum grease between transducer and surface

of the sample). Thus, in the case of this study, relying only on the univariate analysis (i.e.
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signal amplitude) would not allow for a clear in-line classificaion between quality groups.

Observation #

Figure 3: Maximum time-domain ultrasonic amplitude of rotational molded polyethylene
samples (symbols indicate different quality groups defined based on destructive tests)

Using the same samples that were classified into the three categories previously men-

tioned, Figure 4 shows a score map of the first two components of a PCA model constructed

from the ultrasonic spectra from groups of molded samples. Of the available samples, 31

batch runs were used for training purposes. The data available to build the model included

measurements from each batch horizontally aligned as 31 vectors with each line representing

a frequency from the ultrasonic spectra with a total of 2500 from 0 to 1000 kHz. The number

of components in the PCA model was determined such as a minimum of 90% of variance

explained the ultrasonic spectra matrix data located after the inflection of a scree plot. A

group of 7 samples was reserved for validation, not to be included in the calibration of the

model. As can be seen from the projection, some clusters can be identified to help create

the base groups, but did not elucidate all the differences between classes. Note that since

the final class for each marked group was unknown, groups were numbered and not labeled.

This first clustering using a general PCA model with the whole group of samples thus serve

as the starting point for the classification. The SIMCA algorithm described in Section 3.2
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was performed to create PCA projections from each individual group of samples (details on

the performed calculation can be seen in Appendix A).

PCA Scores - Ultrasonics - Component 1

Figure 4: Projection of PCA scores from experimental batch samples using ultrasonic spectra
data (different classes indicated by marker color and format)

Although the selection of the samples contained in each group was based on the scores of

the ultrasonic PCA, the experimental validation (see Table 1) demonstrated that each class

was mainly populated by samples of different quality groups (incomplete sintering, target

and degraded). As a practical scenario, only a small number of samples from each group

is necessary to be tested in order to determine a quality label. For the clusters observed in

Figure 4, Group 1 correctly predicted most of the degraded samples with 5 samples being

characterized as target, representing a type 2 error. Group 2 was populated with all parts

characterized as incomplete sintering. And Group 3 had a combination of target (valid

prediction) and degraded samples. These clear distinctions based only on ultrasonic spectra

differences representd a significant evidence supporting the proposed in-line classification

method. The approach did not require extensive calibration with destructive methods, but

only one or two samples from the respective groups needed to be tested for the purpose of
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labeling.

Table 1: SIMCA groups label

Experimental validation
Group Label Correct Type 2 error

1 Degraded 7 5
2 Incomplete sintering 14 0
3 Target 3 1

Total 24 6

Another instructive analysis of each constructed PCA model was an evaluation of their

loadings. Figure 5 shows the ultrasonic projection of the loadings considering all scores to be

zero (center or average sample representation). Considering the region of the harmonic peaks,

the amplitude at the primary frequencies (same as the generated pulses) was lowest in the

case of incomplete sintering, and increased for the target and degraded cases. This amplitude

variation was expected from the increase in density caused by a reduction in air bubbles.

In the case of the third harmonic frequency range, there is also an increase in amplitude

that follows the previous pattern between classes, however considering the amplitude ratio

value, there is another distinction, with an increase from the target to degraded group. The

variation in this nonlinear parameter, harmonics amplitude ratio, has been demonstrated as

a sensitive indicator of morphological changes such as those related with thermo-oxidative

degradation.28 All of this analysis considered only the clusters of groups based on given class

attributes and data from ultrasonic spectra. The loadings could also be used to identify

significant frequencies related with quality features. For example, the observation of the

amplitude signal around 450 kHz can be used for detection of degraded samples

Validation of the classification approach using the SIMCA methodology is demonstrated

in Table 2. Classification used the value of SPE as a reference for classification into the la-

beled groups defined previously. All samples except one (Sample 6) were sucessefuly classified

with compared experimental validation test. It is possible to argue that the classification cov-

ering Group 3 accomodated samples with target quality and with some level of degradation,

but not representing the same structural change as observed in degraded samples classified
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Frequency (kHz)

Figure 5: Ultrasonic spectra projected from loadings of PCA models of different quality
groups

in Group 1. A reclassification of the experimental limits or the separation of Group 3 into

two subgroups could be tried to improve classification. Recall that the traditional univariate

descriptors simply did not allow any classification, and thus not attempt at validation was

made. In contrast, the proposed approach was excellent in its ability to classify samples.

Table 2: SIMCA groups classification

SPE Values
Sample Group 1 Group 2 Group 3 Classification Experimental validation

1 2590 4663 1779 Target Target
2 2568 19665 13618 Degraded Degraded
3 2877 1932 2486 Inc. Sintering Inc. Sintering
4 2911 2044 2614 Inc. Sintering Inc. Sintering
5 2670 1567 2386 Inc. Sintering Inc. Sintering
6 3638 38187 2062 Target Degraded
7 6351 40058 3736 Target Target
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4.2 On-line quality monitoring and prediction

4.2.1 Process modeling and projection validation

First step for on-line approach is the process modeling using subspace identification.

Following the approach described in Section 3.3, a third order state-space model was created

using subspace identification for the process data available from historical rotational molding

batches. Data included measurements of the internal air mold and heaters duties at 10

seconds interval. The input variables (x-variables of the model) were the heaters duties

values and the output variable modeled (y-variable) was the internal air mold temperature.

In Figure 6, the fit using the dynamic model is shown for two representative batches.

o

Sampling Instant

Figure 6: Batch internal air temperature profile for two validation batches until the instant
of heating stage termination

Figure 7 shows the validation results using the identified model. In these results, the

initial duration of a new batch is determined by a Lungberger observer to estimate the state

of the subspace model (thus imbuing the modeling approach with learning characteristics).

After the states have converged (corroborated via the convergence of estimated outputs to

the measured outputs), the measured ouput trajectory was predicted for the remainder of
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the batch. The predictions were done starting from 3 different time points in the batch to

demonstrate the improved ability of the model to predict process evolution behavior farther

into the batch run.

o

Sampling Instant

(a) Batch 1

o

Sampling Instant

(b) Batch 2

Figure 7: Validation for dynamic model
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4.2.2 On-line process visualization

Having illustrated the ability of the subspace model to capture the process dynamics, the

objective of this section is to demonstrate the ability to predict the spectrum of the molded

part. To this end, first, a model is built between the terminal subspace states, and the

reduced ulstrasonic spectrum for the training batches (as described in Section 3.4). Thus, a

multiple linear regression model was determined between the final state variables, containing

3 vectors with the size of the number of batches, and the ultrasonic spectra data in a reduced

dimension after PCA, considering the scores of 8 components aligned with the size of the

number of batches. A total of 21 batch runs (with measured process variables and ultrasonic

spectra from the molded part) were used to calibration of the model. A group of 7 samples,

that were not included on the original model calculation, were separated for validation.

The results for this proposed correlation showed excellent prediction capability. In partic-

ular, for validation purposes, two batches were chosen which corresponded to a incomplete

sintering and degraded parts, respectively, exhibiting significantly different spectra. The

model however, was able to predict very well the spectrum in each case utilizing the final

subspace states alone, as can be seen in Figures 8 and 9. The ability to predict dynamic

behavior (shown in section 4.2.1), along with the ability to predict terminal spectrum based

on the terminal states built confidence in the possibility of using the dynamic model together

with the multiple regression model for the purpose of on-line monitoring.

Figure 10 shows the trajectory of a batch run for the first two components of the ultrasonic

spectrum based on the process trajectory with batch time. In this figure, the states at any

given point in time are used to compute the terminal scores. As the process progressed, the

states got closer to the terminal states, and thus the ability to predict the terminal PCA

scores kept continually improving. In other words, with the progression of the sintering

phase and increase in temperature during the heating phase, the process got closer to the

finished product, and thus closer to the region of model validity. The apparent chaotic

path presented by the process trajectory can be explained as being either a phenomena
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Figure 8: Experimental validation of the ultrasonic spectra projection from incomplete sin-
tering sample
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Figure 9: Experimental validation of the ultrasonic spectra projection from degraded sample

or a visualization limitation. As a phenomena, rotational molding has different processing

phases, as described in Section 2.1, that can be registered as shifts in the process trajectory.

And the projection represented in Figure 10 is a limited view of a multivariate system on

a two-dimensional space. An ideal visualization would take in account more components

but would be unpractical to preview. This on-line process monitoring combined measured
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process data with a projection of product quality, wich gave a useful visualization of the

process state that goes beyond the collection of univariate measurements.

PCA Ultrasonic - Scores - Component 1

Figure 10: Process trajectory considering state-space variables at each sampling instant to
project first two components of the reduced PCA ultrasonic spectra for a final degraded
sample

The next set of figures show another visualization tool. In particular, a tool capturing the

evolution of molding through the various phases as the batch run proceeded. To build the

tool, first the classification method using the k-NN algorithm described in Section 3.4, with a

k=3 was built. The value of the ’k’ parameter can be decided based on the characteristics of

the historical database. For the current proposed model, an odd number was selected to allow

only a single prediction. The value also had to be smaller than the number of samples from

the smallest quality group to predict, otherwise, no sample would be classified in that group.

As the number of available batches can be increased this value could be optimized based on

the lowest occurrence of prediction errors. The predicted ultrasonic spectra were converted

from the reduced space to the frequency domain using the PCA loadings, and the absolute

values of the amplitudes were used (to avoid meaningless negative values). Figure 11 showed

the evolution of a particular batch. On the k-NN plot (top right corner), it is possible to see
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a gradual decrease in the calculated distance from the beginning of the sintering phase with

a prediction of incomplete sintering quality, when it shifts temporarily to degraded quality,

but then reaches target as a class prediction. The projected ultrasonic spectra from each

sampling process instant shifts from incomplete sintering, with an increase in amplitude as

the primary frequency increased, and a reduction of the amplitude ratio based on the third

harmonic peak amplitude.

Note that there was no experimental validation of the spectrum predicted during this

particular batch- i.e., the processing was not terminated at say 12 minutes into the batch.

However, the training and, more importantly, validation samples did include batches that

were terminated at different times into the batch, and that demonstrated the reasonableness

of the tool to predict the final spectrum at different times during the batch. Furthermore,

the model-based classification also matched with the experimental classification.

We next demonstrate the application of the proposed tool for detection of process condi-

tions for a sample prepared outside of specifications. For this specific case, Figure 12 shows a

different heating cycle with a higher heating rate that allowed the internal mold temperature

to reach high values in a shorter time. The result was a shift in the classification by the k-NN

search algorithm, from incomplete sintering to a degraded sample being projected after 11

minutes of batch run, at which time the internal temperature was already above 220 oC.

The proposed monitoring tool also allowed for further process data interpretation beyond

the final product quality classification. For the profile shown in Figure 12, it is notable that

the heating conditions shifted the projections from incomplete sintering directly to degraded

sample. In contrast to the example shown in Figure 11, the sample did not go through

the target quality condition. This questions the traditional view for the rotational molding

process that the quality depends only on either selection of the time to stop the heating

cycle based on a fixed heating rate or based on the peak internal air temperature. In other

words, a process run using the traditional understanding would not yield the target quality

for either of these samples. It is understood that sintering and thermo-oxidative degradation
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Figure 11: Process monitoring for a target quality sample

in rotational molding are parallel processes influenced by the combination of time and tem-

perature.36–38 Thus, it is understandable that some heating profiles can accelerate or reduce

either of these two processes and might not be fully explained by monitoring of individual

variables. In summary, the proposed multivariate monitoring approach combines sufficient

process knowledge without the need of mechanistic determination to provide an estimation

of the progression of the final quality during the batch run.

In order to demonstrate the adaptability of the proposed statistical tools for quality

monitoring, Table 3 groups the predictions and experimental verification for samples of the

validation group, with all product classes being accurately predicted. To the knowledge of

the authors, there is no other data-driven on-line method capable of accurately predicting
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Figure 12: Process monitoring for a degraded quality sample

both degradation and sintering quality for rotationally molded samples.

Variation between batches of different manufacturing units are expected due to the nature

of heaters and oven designs that can be used. Considering the long term use of the same

unit, the developed model can be used to detect significant deviations that might be cause

to failures on heaters or sensors. A possible source of batch to batch variation and noise

was the ultrasonic measurement with use of coupling agent. Recommendation for multiple

points of measurement and crosschecking with different sensors can be done to reduce the

introduction of noisy data.
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Table 3: Results for classification prediction and experimental measurements for validation
group

On-Line Prediction Experimental validation
Sample k-NN Prediction Impact Incomplete sintering? Viscosity Degraded? Observed

1 95 Target 0.50 No 8088 No Target
2 234 Incomplete 0.31 Yes 6645 No Incomplete
3 62 Target 0.43 No 7522 No Target
4 264 Degraded 0.65 No 13418 Yes Degraded
5 52 Target 0.51 No 6966 No Target
6 45 Degraded 0.51 No 11365 Yes Degraded
7 82 Incomplete 0.37 Yes 6447 No Incomplete

5 Conclusions

Data-driven approaches based on a more intelligent manufacturing framework that uses

multivariate data from nonlinear ultrasonics for in-line quality classification and an on-line

monitoring tool were demonstrated and validated. Classification based on multivariate sta-

tistical analysis have shown efficiency even with minimal qualitative input, to confirm the

validity of important structural properties contained on the multivariate ultrasonic spectrum

tested from rotomolded polyethyelene parts. The proposed correlation between the termina-

tion state-space from the end of the heating phase and the reduced space ultrasonic spectrum

was applied for the on-line visualization and quality prediction. The data-driven tools based

on operational data and a nondestructive quality measurement described in this document

have strong potential to be used not only for quality evaluation but also to improve process

understanding. The integration of batch modeling and multivariate data projection for on-

line quality prediction was the basis for development of new batch control strategies. Some

practical challenges still need to be addressed for future improvement of the methods, such as

the reduction of prediction error, control of data noise and a protocol for optimization with

larger datasets. However, the presented work strongly support the use of nonlinear ultra-

sonics as a viable sensor technology for incorporation to advanced manufacturing practices

for batch processing in polymer industry.
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