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ABSTRACT 1 

A non-destructive process analytical technology for monitoring the complex particle size 2 

distributions inherent to twin-screw granulation (TSG) was presented, based on ultrasonic acoustic 3 

emissions (AE).  AE spectra were collected by discrete signal acquisition during the continuous 4 

impacts of granules on an inclined plate positioned below the exit of an extruder. The paper 5 

outlines the setup considerations associated with the impact plate, based on an examination of its 6 

location, thickness (0.7, 1.0, 1.5 mm) and angle of inclination (10-60°) and the resulting particle 7 

behavior at the plate, as determined by high-speed image analysis and AE monitoring. 8 

Subsequently, AE spectra were collected during the wet granulation of lactose monohydrate at 9 

different liquid-to-solid ratios from 8-14% and correlated with the particle size distributions (PSD) 10 

to train a neural network model. Predicted PSD for particle sizes from 400 to 7000 µm based on 11 

the AE spectra of validation trials showed the largest root mean squared error (RMSE) of 4.25 12 

wt% at 2230 𝜇m. After transforming the AE data with a newly created digital filter based on 13 

particle impact mechanics to address auditory masking, the error for predicting fractions of each 14 

particle size was significantly reduced to below 1 wt%. The technology shows great promise as a 15 

monitoring method for TSG, being capable of predicting its complex size distributions in real time. 16 
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1. INTRODUCTION 21 

The concept of continuous manufacturing has been gaining momentum in the pharmaceutical 22 

industry over the past two decades. The publications of the United States Food and Drug 23 

Administration (FDA) on process analytical technologies (PAT) along with the harmonized 24 

tripartite Q8 guideline of the International Council for Harmonization (ICH) of ‘Technical 25 

Requirements for Pharmaceuticals for Human Use’ paved the way for regulatory acceptance of 26 

novel manufacturing technologies to be used in the production of solid oral dosage forms[1,2]. 27 

The advantages of continuous, in comparison to batch, manufacturing for drug products rely upon 28 

its higher product consistency, reduced costs associated with product scale-up, and ability to 29 

readily implement PAT[2,3]. 30 

Twin screw granulation (TSG) has gained much attention over the past decade as a continuous 31 

manufacturing technology for wet, foam, heat-assisted and hot melt granulation[3–5]. The 32 

advantages of TSG over other manufacturing technologies are its closely confined mixing 33 

characteristics, short residence time (seconds compared to minutes or hours), and modular process 34 

configuration, which dramatically reduce its equipment footprint[6,7]. One key difference between 35 

TSG and its batch counterpart is the particle size distribution (PSD) produced. A batch granulation 36 

process is expected to produce a unimodal (Gaussian) distribution whereas TSG typically produces 37 

a bimodal distribution for the same formulation[6,8–10]. The PSD is vital to determining tablet 38 

properties, such as strength and porosity, which ultimately affect the rate that this type of dosage 39 

form disintegrates upon ingestion[11,12].  40 

From a monitoring perspective, the challenges associated with a bimodal distribution are 41 

unique, since simple numerical descriptors such as the mean particle size or the span of the 42 

distribution have little correlated meaning with tabletting, unlike for a Gaussian distribution. This 43 
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presents a unique need for PAT within TSG to show correlation with the PSD, not just simple 44 

particle size descriptors, to monitor for quality consistency.  PAT currently examined for in-line 45 

granulation monitoring include near infrared (NIR) spectroscopy[13,14] and image 46 

processing[11,14,15], though the latter is more prevalent industrially for particle sizing at the 47 

moment.  Both of these approaches have the advantage of being non-destructive and can be 48 

integrated directly into the manufacturing process[13,14]. However, NIR spectroscopy requires a 49 

large amount of data for calibration and it is subject to sensor fouling which can lead to spurious 50 

results[16]. Image processing (ex. the commercial Horiba EyeconTM system) is also subject to 51 

fouling/dust accumulation around its optics and exhibits resolution issues when looking at 52 

extremes in particle sizes[17,18]. Both are good non-destructive technologies with no risk of 53 

interfering with or contaminating the granulation process but a more robust approach that was 54 

immune to fouling would be advantageous if it could address the aforementioned complexities of 55 

the PSD for TSG. Other potential techniques such as laser diffraction, mechanical vibrations, and 56 

electrostatic sensing have been shown to be feasible to predict particle size but are difficult to 57 

implement in a manufacturing setting due to their high costs, lower perceived sensor durability, 58 

accuracy, and reliability [19–21].  59 

Acoustic Emissions (AE) is an approach not yet considered for TSG monitoring but 60 

conceivably well suited to the process based on its advantages of needing no calibrations, greater 61 

immunity to the influences of fouling/dust accumulation, and low implementation costs[22]. It 62 

would not be a completely novel approach since AE has been used for monitoring in the past of 63 

other particulate process operations, both within[23–26] and outside[27–29] of the pharmaceutical 64 

industry. The associated technique relate features of a detected signal to the particle impacts or 65 

collisions that generated these acoustic emissions. Most notable examples have been reported for 66 
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high shear batch granulation, in order to determine the endpoint of the process and to predict a 67 

Gaussian particle size distribution [26,30]. Outside the pharmaceutical industry, multiple studies 68 

have involved pneumatic conveyers, fluidized beds, and milling units, using AE analysis to once 69 

again predict a Gaussian distribution[19–22,29].  Approaches for applying AE to monitor much 70 

more complex particle size distributions have yet to be disclosed in the literature. 71 

In this regard, the present study investigates the means for developing a robust non-destructive 72 

PAT capable of monitoring the complex PSD produced by continuous granulation via TSG. To 73 

predict weight fractions for a broad range of anticipated granule sizes, it is postulated that the 74 

intensity of a set of frequencies in an acquired AE spectrum can be correlated to the impact 75 

mechanics of specific particle sizes. Furthermore, it is postulated that with appropriate signal 76 

processing and selection of a neural network model that bimodal PSD may be predicted in real-77 

time for this continuous process. 78 

2. MATERIALS AND METHODS 79 

2.1. Materials and Process Setup  80 

Granulation was completed in a 27 mm 40 L/D Model ZSE-27HP corotating twin screw 81 

extruder (Leistritz Extrusion; Somerville, NJ, USA). The barrel consisted of a water-cooled feed 82 

zone (Z0) and nine barrel zones (Z1–Z9) actively controlled at 35℃. The screw speed for all 83 

experiments was 200 RPM. Flowlac® 100 α-lactose monohydrate (Meggle Pharma; Wasserburg, 84 

Germany) was chosen as the placebo formulation for the study due to its low water solubility, 85 

minimizing the effects of moisture on the acoustics during this preliminary stage of PAT 86 

development. The lactose was introduced into the extruder at a constant flow rate of 4 kg/h for all 87 

experiments using a Brabender T20 twin-screw gravimetric feeder (Mississauga, ON, Canada). 88 

An aqueous solution of 4 wt% METHOCELTM E3PLV (DuPont Nutrition & Biosciences; 89 
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Midland, MI, USA) was used as the liquid binder in this work and injected into the extruder at 90 

zone Z2 using an ISCO 260D high pressure syringe pump (Teledyne-ISCO Inc.; Lincoln, NE, 91 

USA) at varying liquid-to-solids (L/S) ratios of 8, 10, 12, 13, and 14%[31,32]. The liquid was 92 

injected in the intermeshing region between the two screws. Experiments for each L/S ratio were 93 

repeated 10 times to build a sizeable dataset for the modeling technique described in a later section. 94 

The screw design employed for these experiments consisted of multiple conveying elements with 95 

pitches of 30 and 20 mm from Z1-Z7 followed by two kneading blocks with discs at 60 degrees 96 

offset in Z8 and then subsequent conveying elements in Z9; the screw design is typical for twin-97 

screw wet granulation.  98 

2.2.Particle Size Analysis 99 

The granules produced from the extruder were air-dried at room temperature for 48 hours to 100 

below 5 % (w/w) moisture content before being analyzed for their size; moisture content was 101 

determined using an HG63 moisture analyzer (Mettler-Toledo; Columbus, OH). PSD data was 102 

determined using a Ro-Tap RX-29 sieve shaker (W.S. Tyler; Mentor, OH, USA).  A granulated 103 

sample of 100 g for each L/S ratio was originally classified into eight size fractions (using sieves 104 

of 2100, 1700, 1400, 1180, 850, 500, and 300 𝜇m nominal openings, as well as the bottom pan) 105 

by mechanically agitating for five minutes. The weight difference before and after sieving was 106 

used to find the wt% for each bin in the distribution. The mass on the 2100 𝜇m sieve was 107 

subsequently classified further by reconfiguring the shaker with sieves of 8000, 6300, 4760, 3350, 108 

2360, 2100, and 1700 𝜇m nominal openings and mechanically agitating for another five minutes. 109 

Similarly, the mass in the bottom pan from the original agitation was subsequently classified 110 

further by reconfiguring the shaker with sieves of 500, 300, 250, 180, 150, 53, and 44 𝜇m nominal 111 

opening and once more, mechanically agitating for five minutes. During the TSG experiments, 112 
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granule sizes changed from very fine to very coarse, much more broadly than normal granulation 113 

operations. The sieving of the granules on the 2100 𝜇m sieve and pan was done in order to capture 114 

all possible changes across different L/S ratios for the neural network model implemented in the 115 

subsequent section. 116 

2.3. Acoustic Signal Acquisition 117 

To record the continuous particle impacts exiting from the extruder, a F15𝛼 broadband sensor 118 

that was most sensitive to frequencies between 100 to 450 kHz (Physical Acoustics; Princeton, NJ, 119 

USA) was attached to a 25.4 mm x 25.4 mm tab that extended from a SAE 304 stainless steel (SS) 120 

impact plate with dimensions of 44.5 mm x 76.2 mm; seating the sensor on the tab, off to the side 121 

of the plate, was preferred since the envisioned PAT design positions the plate inside the exit chute 122 

of a TSG but ready access to the sensor will demand that it be positioned outside of the chute walls. 123 

The sensor was fitted to the impact plate using high vacuum grease (Dow Corning) to improve 124 

contact. Figure 1 shows the sensor and impact plate assembly.  125 

The detected signal with the sensor was amplified using a Physical Acoustics 2/4/6c amplifier 126 

set to +60 dB and collected using a National Instruments 3.5 MHz 12-bit 4-channel data acquisition 127 

system. For each experiment, 30 seconds of data was collected from the collisions of granules onto 128 

the plate at a sampling rate of 3 MHz.  The vertical distance of the plate relative to the exit of the 129 

extruder was based on an analysis of apparent terminal velocity to ensure consistency of the 130 

impacts. Approximately 97% of the particles for Flowlac® 100 were below 250 𝜇m [33] and so, 131 

the smallest particle chosen to be a ‘granule’ in the model was 300 𝜇m based on the minimum 132 

sieve size in the study unlikely to capture ungranulated solids. The drop distance for a 300 𝜇m 133 

particle to reach terminal velocity was found to be roughly 20 cm below the exit of the extruder, 134 

which is where the plate was positioned. This was done for all experiments mentioned below. The 135 
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terminal velocity analysis was done to ensure the impacts of particles at the top or bottom of the 136 

plate would be relatively consistent with one another. Figure 2 shows a schematic for the 137 

experimental setup with the extruder and impact plate assembly. 138 

2.4. Studies of Plate Angle and Plate Thickness 139 

Initially, the impact plate setup was examined for differing inclinations of 10, 30, 45, and 60 140 

degrees relative to the horizontal plane with a fixed plate thickness of 0.7 mm. Only granulation 141 

at 8% L/S ratio was tested in this case. AE sampling for a 30 s duration was repeated three times, 142 

for every angle to account for statistical and acoustic variance.  The trajectory and mechanical 143 

integrity of granules colliding with the plate was observed at a distance of 10 mm away from the 144 

edge of the plate by high speed image analysis taken using a FASTCAM SA-Z type 2100k camera 145 

(Photron Limited, Tokyo, Japan) operating at 20,000 frames per second. Analysis of videos was 146 

done using Photron FastCam Viewer 4 software. 147 

In the second stage of experiments analyzing the impact plate setup, granule collisions were 148 

recorded for 30 s for plates with thicknesses of 0.7, 1, and 1.5 mm at a fixed inclination of 60°. In 149 

this case, more extensive granulation was performed at 8, 10, 12, 13, and 14% L/S ratios for each 150 

plate thickness. The AE sampling for 30 s was repeated three times for every L/S ratio to account 151 

for statistical and acoustic variance. 152 

2.5. Granulation Experiments for Model Training and Validation 153 

AE monitoring of particle collisions on the 1.5 mm thick impact plate angled at 60 degrees 154 

inclination relative to the horizontal plane, were recorded according to Sec 2.3. TSG trials were 155 

performed at L/S ratios of 8, 10, 12, 13, and 14%. At 8% it was found there was a large amount of 156 

ungranulated particles whereas 14% was found to be the maximum saturation before the granules 157 

turned into sludge. This range ensured AE spectra was collected from very fine to very coarse 158 
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granules. AE sampling for 30 s was repeated ten times per L/S ratio to generate a large training 159 

dataset for modeling and to account for statistical and acoustic variance. 160 

With an estimated flowrate of 1.1 g/s, a sampled signal of 30 s duration corresponded to 161 

thousands or tens of thousands of collisions depending on the selected operating conditions with 162 

the extruder. Factoring in repeats, more than 4,800 sampled signals were recorded for the training 163 

and validation experiments. A discrete Haar wavelet filter was used to reduce noise followed by 164 

Fast Fourier Transform (FFT) to view each processed signal in the frequency domain. With no 165 

visible peaks roughly above 600 kHz, the chosen frequency range of analysis was 0-700 kHz in 166 

this study. Each signal dataset was reduced in size for the model, decreasing the frequency 167 

resolution from 3 Hz to 67 Hz. 168 

A granular sample of roughly 300 g was collected for each L/S ratio after the 10 sampled 169 

signals were collected.  The PSD for the trial was determined by analyzing 100 g of the collected 170 

granules. Three repeats were done to assess the error in the sieving measurement. Following the 171 

characterization method in Sec 2.2, weight fractions were determined for the corresponding 172 

average particle sizes (>8000, 7150, 5530, 4055, 2855, 2230, 1900, 1550, 1290, 1015, 675, 400, 173 

275, 215, 165, 102, 49, and <44 𝜇m). Weight fractions above 7150 𝜇m and below 49 𝜇m were 174 

zero wt%, and did not change as the L/S ratio increased. As a result, the size fractions of >8000 175 

and <44 𝜇m were not included in the final dataset to reduce redundancies, making the final 176 

distribution composed of 16 weight fractions in the model.  177 

2.6. Designing an AE Impact Filter 178 

A particle monitoring system based on impacts, where granules spanning a wide range of 179 

sizes (and strengths) presents a challenge known as auditory or spectral masking. The “sound” 180 

produced by a large particle impacting a plate will overshadow the sound produced by a smaller 181 
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particle colliding at the same time or closely thereafter. Since the principle of an acoustic 182 

monitoring method is to relate the amplitude of a signal (or specific frequencies in the signal) to a 183 

count of particles, masking may have a detrimental effect on the predicted PSD. To address this 184 

issue, a digital signal filter was conceived to alleviate auditory masking at the impact plate, derived 185 

from Hertz theory for single particle impacts.  186 

The work by Rao describes the transverse response, normal modes, along with the force 187 

response when an impact force is applied to a metal plate at rest [34]. They are shown in Equations 188 

(1), (2), (6), and (7) below. The transverse response of the plate shown in Equation (1) below is a 189 

function of both the normal modes of the plate along with the plate response to the force applied.  190 

𝑤(𝑥, 𝑦, 𝑡) = / /𝑊&'(𝑥, 𝑦)𝜂&'(𝑡)
(

')*

(

&)*

 (1) 

where 𝑊&' represents the normal modes of the plate and 𝜂&' is the plate response to the force 191 

applied. M and n correspond to the modal numbers for the x and y direction.  The normal modes 192 

are of the plate are: 193 

𝑊&' =
2

3𝜌ℎ𝑎𝑏
sin :

𝑚𝜋𝑥
𝑎 = sin :

𝑛𝜋𝑦
𝑏 = (2) 

where 𝜌, ℎ, 𝑎, 𝑏 are the density, thickness, length, and width of the plate, respectively. Assuming 194 

the particles are spherical and collisions are elastic, the force can be modelled with the Hertz theory 195 

of impact as shown [35,36]: 196 

𝐹(𝑡) = 𝐹+ sin @
𝜋𝑡
𝑡,
A = 𝐹+ sin(𝜋Ωt) (3) 
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with 𝐹+ being the maximum force and 𝑡, being the contact time of a collision, and Ω is the 197 

frequency of the impact force. Expressions for the maximum force and contact time are given in 198 

Equations (4) and (5), respectively: 199 

𝐹+ = 1.917𝜌*
-
. @
1 − 𝑣*
𝜋𝐸*

+
1 − 𝑣/
𝜋𝐸/

A
0//.

𝑅/𝑉+
2/. (4) 

 200 

𝑡, = 4.53Q
4𝜌*𝜋 :

1 − 𝑣*
𝜋𝐸*

+ 1 − 𝑣/𝜋𝐸/
=

3 R

//.

𝑅𝑉+
2/. (5) 

where 𝜌* is the density of the particle, 𝑣* and 𝐸* refer to the Poisson ratio and Young’s Modulus 201 

of lactose monohydrate. 𝑅 is the particle radius and 𝑉+ is its impact velocity. Knowing the impact 202 

force, the response of the plate to the force can be determined and is shown as: 203 

𝜂&'(𝑡) =
2𝐹+

(𝜔&'/ − Ω/)3𝜌ℎ𝑎𝑏
sin :

𝑚𝜋𝑥+
𝑎 = sin :

𝑛𝜋𝑦+
𝑏 = (𝜔&' sinΩt − Ω sin𝜔&'𝑡) (6) 

where 𝑥+ and 𝑦+ are the points of impact on the plate, and 𝜔&' is the natural frequency of the 204 

plate: 205 

𝜔&' = 𝜋/ T:
𝑚
𝑎 =

/
+ :

𝑛
𝑏=

/
U V

𝐸/ℎ-

12(1 − 𝑣/)𝜌ℎ
 (7) 

where 𝐸/ and 𝑣/ are the Young’s Modulus and the Poisson’s ratio for the plate, respectively. The 206 

plate compression for a single particle dropping onto a plate was then computed from Equation 207 

(1). The parameters used in Equations (1) – (7) are shown in Table 1.  208 

Figure 3 (a) shows the plate response, on a frequency basis, for the impact of a 100 µm 209 

particle. The plate response of a single granule of 49 to 7150 µm size impacting a stainless steel 210 



 

11 
 

plate at its epicenter, on a frequency basis, is shown in Figure 3 (b). As particle size increases, the 211 

plate is seen to vibrate at a lower frequency, giving an inverse relationship. This trend was also 212 

noted by others[37–39] and allows the user to understand and roughly correlate peaks in the 213 

spectrum with their particle size. 214 

Assuming granules impacting the plate are spherical in nature, the mass of a single granule 215 

is calculated per particle size (49 – 7150 𝜇m). It is assumed that the maximum mass of any particle 216 

that will strike the plate is equal to the flowrate in g/s over a one second basis (1.1 g in this study). 217 

The maximum mass is divided by the mass of every particle to obtain an approximate number of 218 

granules per particle size. The theoretical amplitude for each particle size is then scaled by the 219 

number of granules for its respective size. The measured amplitude from the AE experiments is 220 

then divided by the maximum amplitude at the theoretical impact frequency found in Figure 3 (c) 221 

to filter for auditory masking and produce the final spectrum. 222 

2.7. Neural Network Model 223 

To relate the data-intensive impact acoustic signal to particle sizes, an artificial neural network 224 

(ANN) model was employed due to the exhibited nonlinearity in the modelled environment. These 225 

types of models have been shown to be superior to statistical modeling when looking at highly 226 

non-linear systems[40–42], making them attractive for the purposes of predicting PSD from an AE 227 

signal. Before modeling, stratified splitting was used to ensure the training and testing sets 228 

contained an equal proportion of data for each L/S ratio.  Each L/S ratio dataset was split into 80% 229 

training and 20% testing. Then 10% of the training data was used for validation during model 230 

training. Principal component analysis (PCA) was used on the training set to reduce the dataset 231 

dimensions down to 12 components which contain 64.5% of the variance in the original data. Both 232 

PCA and the ANN were setup in Python using the sklearn library.  233 
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For the case of the testing set, the acoustic signal from granule collisions for each L/S ratio 234 

were averaged in the testing set giving one representative spectrum for each L/S ratio. This strategy 235 

allows for simplicity when performing new experiments as well as gives the opportunity to see the 236 

prediction error for each distribution. When predicting PSD with the testing set, loadings from a 237 

PCA model were used to convert the dataset into scores. The scores are then fed into the ANN to 238 

predict the PSD. The ANN employed an input layer with 12 nodes, which correspond to the 239 

number of components from PCA. This was followed by 3 hidden layers at 500 nodes, 250, and 240 

100 nodes, respectively along with one output layer with 16 nodes, corresponding to each particle 241 

size. The Rectified Linear Unit activation function (ReLU) was used for the input and first hidden 242 

layer. The second and third hidden layers had the hyperbolic tangent (tanh) and sigmoid function, 243 

respectively, while the output layer had a linear activation function. 50% dropout regularization 244 

was employed between layers to minimize overfitting. The chosen Loss function was the mean 245 

squared error (MSE). To quantify prediction error in the model, the root mean squared error 246 

(RMSE) was used.  247 

For the case when the model used the AE Impact Filter, the training, testing, and validation 248 

datasets were identical to the original approach.  In this case, PCA was not used to compress the 249 

AE data since it was found to worsen predictions when the filter was used. The ANN architecture 250 

was identical to the case without the filter, both in terms of the activation functions and number of 251 

layers. The only difference being the input layer had 10395 nodes due to PCA not being used to 252 

reduce the dataset. 253 

 254 

 255 
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3. RESULTS AND DISCUSSION 256 

3.1. Effect of Impact Plate Angle 257 

Exiting granules from the extruder were targeted to collide at the epicenter of the plate to 258 

optimally minimize both plate vibrations and AE signal attenuation. The incline angle of the 259 

impact plate will have a strong influence on the amplitude of acoustic emissions due to the contact 260 

mechanics present. Figure 4 plots the average maximum amplitude in the spectra collected for 261 

inclined plate angles of 10, 30, 45, and 60 degrees relative to the horizontal plane. The maximum 262 

amplitude was seen to increase as the incline angle increased until 45 degrees, reflecting the gain 263 

in AE signal intensity associated with particle impacts. This seems contrary to expectation, at least 264 

following the theory of single particle impacts which anticipates the amplitude of AE associated 265 

with a collision should be greater for smaller inclinations [39]. The trend seen for amplitude was 266 

attributed to the accumulated mass observed on the plate over time at angles of 10 and 30 degrees, 267 

dampening the impact force of subsequent colliding particles.  Conditions at 45 and 60 degrees 268 

showed no accumulated mass on the plate but as expected, the amplitude decreased for the steeper 269 

angle in these two cases due to decreasing normal collision forces by falling particles. 270 

Based on the trend in maximum amplitude, it might be naturally assumed that the choice 271 

for plate inclination in the setup would have been at 45 degrees; however, the effects of granular 272 

breakage and secondary collisions on the spectra must also be considered.  Figure 5 shows the 273 

captured motion of granules colliding with the impact plate at 45 and 60 degrees inclination, as 274 

observed by high speed image analysis. At 45 degrees, more granular damage was observed during 275 

the primary collision with the plate and rebounding particles had a greater chance of striking the 276 

plate again. At 60 degrees, the decreased normal force reduced the damage seen by granules as 277 

they collided with the plate and since they departed the field of view by ‘sliding or rolling’, there 278 
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was little likelihood of a detectable secondary impact. Despite the lower signal amplitude at 60 279 

degrees, this condition was chosen as the preferred plate incline angle.  280 

It is expected that some granule breakage will always occur regardless of the inclination 281 

angle of the plate. Such breakage has more influence on a rebounding rather than an impacting 282 

particle and hence, more significantly affect the PSD rather than acoustic emission in our study.  283 

Fortunately, the absence of detectable breakage in the captured video of impacts at 60 degrees 284 

inclination gave increased confidence that the signal was being correlated to an accurate 285 

representation of the particles that produced the acoustic emissions. 286 

3.2. Effect of Impact Plate Thickness 287 

The other setup parameter studied was plate thickness. Figure 6 shows AE spectra for plates 288 

of different thicknesses, constantly inclined at 60 degrees to the horizontal plane. There was 289 

generally no change in the nature of the spectra for the same L/S ratio as the thickness increased 290 

from 0.7 to 1.5mm; however, the signal amplitude decreased as the thickness of the plate increased, 291 

most notably seen for the spectra at 13 and 14% L/S ratios. Particle impacts onto the 0.7 mm plate 292 

were creating detectable vibrations in the plate itself during experiments implying particles might 293 

contact onto the plate multiple times during a single collision event due to the rebound motion of 294 

the plate, thereby increasing the measured amplitude. As its thickness increased the plate vibrated 295 

less from the particle impacts. A thickness of 1.5 mm was considered acceptable for the final setup 296 

since no motion from the plate was observed during experiments, and yet the signal strength was 297 

sufficient for the model to distinguish different particle collisions. 298 

3.3. Signal Analysis based on Particle Size 299 

 Figure 7 shows the average acoustic spectra from the TSG experiments for each L/S ratio 300 

along with their respective PSDs. The observable trend in AE spectra, shown in Figure 7(a), was 301 
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a decrease in the amplitude as L/S ratio increased, with the main regions of interest being 50-150 302 

kHz and 200-300 kHz. From plate response calculations in Figure 3(b), the 50-150 kHz region 303 

corresponds to 300 – 1000 𝜇m particle impacts and the 200-300 kHz region relates to 150 – 240 304 

𝜇m particle impacts. Correspondingly, Figure 7(b) shows that as the L/S ratio increased, the weight 305 

fraction of granules between 49 – 1550 𝜇m decreased substantially, seeming to corroborate the 306 

decrease in amplitude in the AE spectra. While the plate response frequency assignments were 307 

derived only for single particle impacts, they appear to be suitably correlated with the particle sizes 308 

under this study from TSG.  Impacts of particles above 2200 𝜇m in size were predicted to produce 309 

plate responses around 20-50 kHz, beyond the ideal sensitivity range of the broadband sensor. AE 310 

associated with these larger particles still exhibited detected frequencies (harmonics) in the 311 

experiments that could be discriminated by the model but the current setup should be considered 312 

reasonable for monitoring particles below 3000 𝜇m. Since the largest granule size suitable for 313 

tableting is 1.25 mm[43–45], the current setup was considered suitable for the purposes of 314 

introducing the ANN model. Future studies will consider the advantages of a two sensor system 315 

to acquire a broader range of frequencies so that the model might have a better capacity to predict 316 

very coarse granules via TSG. 317 

3.4. Model Training and Validation 318 

Confidence in the model predictions was evaluated based on RMSE calculated for the 319 

testing AE spectra corresponding to granulation at each L/S ratio, as shown in Figure 8. Predicted 320 

PSDs based on the testing datasets processed without and with the impact filter are shown in Figure 321 

9 and 10, respectively along with their experimentally measured PSD for each L/S ratio. For the 322 

case of processing the AE data without the impact filter, the RMSE for the majority of particle 323 

sizes was below 2 wt% for all L/S ratios. This is reflected in Figure 9 where the model was able to 324 
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fit each PSD fairly well. The particle size with the highest error was 2230 𝜇m for PSD at 12% L/S 325 

ratio, which goes up to 4.25 wt% RMSE as seen in Figure 8 (a). This high RMSE is attributed to 326 

the PSD being strongly bimodal with both peaks being nearly equal to one another, which likely 327 

increased the difficulty in predictions. In general, the model without the filter was considered to 328 

have satisfactorily learned to associate the AE spectra to sets of particles colliding with the impact 329 

plate, at least for the specific case of lactose monohydrate which granulates at much lower degrees 330 

of saturation than most pharmaceutical formulations. Future studies will be required to understand 331 

how formulations and degree of saturation affect the AE spectra and the model’s ability to 332 

associate acoustics to particle size. This will enable the prediction error for each particle size to be 333 

tracked for different formulations making this potentially a very powerful monitoring tool when 334 

producing multiple products from the same TSG.  335 

  For the case of processing the AE spectral data with the impact filter, a significant 336 

decrease was seen in the prediction error in comparison to Figure 8(a), now at or below 1 wt% 337 

RMSE for all particle sizes being considered. This improved accuracy in predicted PSD is reflected 338 

in Figure 10 where the model and experimental sieved weight fractions are much closer in value. 339 

With the impact filter, the loss error was no longer localized around 2230 𝜇m, highlighting the 340 

effect that auditory masking was having on the AE signal in the original model.  Diminishing 341 

auditory masking of the signal allowed the model to more equally consider the contribution of all 342 

frequencies (and particle collisions) in the response.  343 

4. CONCLUSION 344 

Ultrasonic acoustic emissions were explored as an approach for PAT to monitor the exiting 345 

particle size from a twin screw granulator, a continuous granulation method noted for producing 346 

complex size distributions. The elements of the approach consisted of a 1.5 mm thick stainless 347 



 

17 
 

steel impact plate, ideally inclined at 60 degrees to minimize powder accumulation and ensure 348 

rebounding trajectories did not allow for secondary collisions by granules from the granulator. 349 

Using an artificial neural network model and PCA to reduce the dimensions of the dataset, error 350 

analysis showed the model experienced the most difficulty predicting the distribution when it was 351 

strongly bimodal, with the highest reported error of 4.25 wt% for the 2230 𝜇m fraction. Applying 352 

a newly introduced impact filter to the AE data to minimize auditory masking, the model error 353 

decreased significantly below 1 wt% and became evenly distributed amongst all particle sizes 354 

rather than being localized to the larger particles in the exiting distribution.  For this preliminary 355 

study for an AE-based PAT approach, the training was done with lactose monohydrate, but future 356 

studies will follow to examine how formulation and level of saturation affects acoustic emissions 357 

of impacting granules. It is anticipated that plate design and the auditory masking filter will require 358 

revisions as fracture strength and cohesiveness change the nature of particle impacts. Practically 359 

speaking, the accuracy of the approach will also need study as the flow rate increases to production 360 

levels and only a fraction of the exiting mass is impacting the plate.  361 
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FIGURES 513 

 514 

Figure 1. Top-down view of the impact plate inclined at 60 degrees relative to the horizontal plane 515 

(a) without and (b) with the acoustic emission sensor. 516 

 517 

Figure 2. Schematic of the PAT setup for particle size monitoring, showing the twin-screw 518 

granulator and impact plate assembly positioned after its exit in the experiments. 519 
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 520 

Figure 3. (a) Frequency spectrum for the plate response corresponding to a 100 µm particle 521 

collision. (b) Calculated frequencies corresponding to particles between 100 and 7150 µm particle 522 

collision with the plate at its epicenter. (c) Maximum amplitude and recorded frequency of 523 

particles between 100 and 7150 𝜇m. 524 
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 525 

Figure 4. Average maximum amplitude of the AE spectra corresponding to changing incline plate 526 

angle. 527 

 528 

Figure 5. Trajectory of a particle on the impact plate with (a) 45 and (b) 60 degrees angle relative 529 

to the horizontal plate shown by super-imposing images over time. Arrows were shown to 530 

highlight the observed particle path followed. 531 
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 532 

Figure 6. AE spectra for each L/S ratio for the impact plate inclined at 60 degrees for thicknesses 533 

of 0.7, 1, and 1.5 mm. 534 

 535 

Figure 7. (a) Acoustic spectra of particle impacts for each L/S ratio. (b) PSDs for each L/S ratio. 536 

The vertical line indicates the often considered ideal size (1250 𝜇m) suitable for tableting. 537 
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 538 

Figure 8. RMSE for every particle size at different L/S ratios for AE data (a) without and (b) 539 

with the impact filter. 540 

 541 

Figure 9. PSD predictions for (a) 8% (b) 10% (c) 12% (d) 13% and (d) 14% L/S ratio for AE 542 

spectral data without the impact filter. Error bars represent the standard deviation (n=3). 543 
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 544 

Figure 10. PSD predictions for (a) 8% (b) 10% (c) 12% (d) 13% and (d) 14% L/S ratio for AE 545 

spectral data with the impact filter. Error bars represent the standard deviation (n=3). 546 

 547 


