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Abstract

We consider the problem of structural optimization which has many important appli-

cations in the engineering sciences. The goal is to find an optimal distribution of the

material within a certain volume that will minimize the mechanical and/or thermal

compliance of the structure. The physical system is governed by the standard models

of elasticity and heat transfer expressed in terms of boundary-value problems for elliptic

systems of partial differential equations (PDEs). The structural optimization problem

is then posed as a suitably constrained PDE optimization problem, which can be solved

numerically using a gradient approach. As a main contribution to the thesis, we derive

expressions for gradients (sensitivities) of different objective functionals. This is done

in both the continuous and discrete setting using the Riesz representation theorem and

adjoint analysis. The sensitivities derived in this way are then tested computationally

using simple minimization algorithms and some standard two-dimensional test problems.
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Chapter 1

Introduction

Whenever a force is applied to an object, it causes the particles inside of the object

to move closer together, but due to the Pauli exclusion principle, the particles cannot

occupy the same place at the same time and therefore will repel each other. On the other

hand, if the force is in the opposite direction, the particles will be pulled apart, but due

to the lower energy state that they are in, this will cause an attraction force between the

particles in order to keep the object together (Griffiths 2005). These internal forces in

the object are called stresses and the stress tensor is typically denoted with the symbol

σ. If the external forces acting on the object are greater than the internal forces, then

the object will start to deform. This deformation is called strain, and the strain tensor

is often denoted with the symbol ε or ò (Gere 2004). When one states that an object

is stiff, they are referring to the low amount of strain in the object when acted upon

by a mechanical load. In terms of stress and strain, it is most common to calculate

the opposite of stiffness, namely compliance or flexibility. Since there is always a slight

deformation of the object whenever a force is applied to it, compliance has become an

important quantity used by engineers in the design of different structures or vehicles.

Due to the rising concerns from costumers of the environmental impact and of increasing

fuel costs, vehicle manufactures have placed an increasing amount of resources into
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developing fuel efficient cars in recent years. This has pushed engineers to optimize the

performance of the vehicle while also minimizing its weight. This could be a reason why

there has been an increasing interest in topology optimization in recent years, as it has

allowed engineers to minimize the compliance of the part they are working on, while also

keeping the part under some maximum weight requirement. Topology optimization is the

optimization of an objective functional, specifically in this thesis the objective functional

will be compliance, where the design variable is the density of some material. The design

variable is typically denoted by ρ and is constrained to be between 0 and 1 in order to

make physical sense. Therefore, we give the physical meaning to the values of our design

variable by stating that ρ(x) = 0 represents a hole in the object while, ρ(x) = 1 is

meant to represent the placement of the material at location x. This is why topology

optimization gets its name from the study of topology, as the number of holes in an

object are typically used to denote the class of the object, and in topology optimization

we are looking for the optimal amount and placement of holes in an object. Topology

optimization differs from shape optimization in that there does not have to be a starting

shape configuration that will be changed, but can be a uniform distribution of material

over the entire space, which leads to more freedom for the final configuration than in

shape optimization. In this thesis, we will be using topology optimization to adjust

the density distribution in order to minimize compliance. The mathematical description

of compliance means that a system of partial differential equations, (PDEs), must be

solved in order to determine its value. This leads us to consider two types of approaches

in order to optimize systems modelled by PDEs, namely, we have a choice whether we

first discretize the partial differential equation and then optimize, or optimize and then

discretize.

Both of the optimization approaches have advantages and disadvantages associated with

them. The advantage with the "optimize-then-discretize" approach is that gradient is

independent of the mesh one is using, and the numerical solution of the PDE. Since
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the sensitivity information is obtained by solving symbolically-defined adjoint PDEs,

valuable insights can be deduced by analysing their structure. On the other hand, the

"discretize-then-optimize" approach is often simpler to solve and allows for more accurate

solutions for a particular discretization (Ferguson and Peters 2005). In this thesis we

derive both the continuous and discretized gradients for the elastic deformation and heat

transfer problems, as the gradients derived in the continuous setting are uncommon in

the literature, while the ones in the discretized setting are common but have not been

given a formal mathematical treatment.

The standard way of solving simple topology optimization problems for structural com-

pliance has been known since the creation of Sigmund’s 99-line code for topology op-

timization came out in 2001 (Sigmund 2001). Changes to the study of topology opti-

mization came over the next few years in the form of extensions to the code, such as an

extension to solve the heat transfer problem and a 3D version of the code (Bendsøe and

Sigmund 2004) (Liu and Tovar 2014). In more recent years, a greater focus has been

placed on multi-material topology optimization and in multi-physics problems (Chun-

gang et al. 2010). A current research goal in the field is the topology optimization of

heat transfer problems that involve radiation. This is due to the difficulty of discretizing

the partial differential equation system, as in the continuous setting, radiation is sim-

ply treated as a boundary condition. One issue that arises when the system has been

discretized is that the non-linearity of the radiation boundary condition is severe, so an

iterative process may not converge, and therefore an incremental method is encouraged

to guarantee convergence (Bialecki and Nowak 1981). Other concerns are found in devel-

oping a method to determine the value of the view factor of each element, as the shape

of the design space changes at each iteration. The view factor is a value that represents

the amount that one element, or part of the object, can see any other element, or part

of the object. The view factor affects the amount of heat transfer that can be achieved

through radiation from one element to another. Issues also arise as to the view factor

3
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when dealing with elements whose density value is neither 0 or 1, as these densities do

not make sense in real life, and therefore it is hard to decide whether radiation should

be modelled in these areas.

In this thesis, we make a contribution to the continued study of structural mechanics by

mathematically formalizing the sensitivities of the discretized elasticity and heat transfer

problems, and compare them to the sensitivities derived in the continuous setting. This

comparison is made by running standardized topology optimization algorithms with both

the discrete sensitivity and with the continuous sensitivity. We have also developed

a topology optimization algorithm where the 0-1 distribution is forced by adding a

penalty term to the objective function, and the volume constraint is satisfied using

subspace projection. Lastly, we also derived the sensitivities of coupled elastic - heat

transfer problems which include a radiation term in them. This is done in both the

continuous and discrete setting, with the hope that in future years, someone will be

able to accurately solve the coupled systems of partial differential equations in order to

extend the optimization algorithms.

The structure of the thesis is as follows: we started by outlining structural mechanics

and on its effectiveness in the current day and age. This is followed by Chapter 2,

where we define the mathematical models, variables, and governing systems needed to

describe elasticity and heat transfer. Then, in Chapter 3, we describe the optimization

problem and the gradient-based algorithm used to solve it, while also deriving the adjoint

sensitivities needed for the algorithm. Chapter 4 will go over the various computational

results of the algorithm and comment on the effectiveness of it. While Chapter 5 will

end the thesis with a summary of the work and any conclusions that can be made.

4



Chapter 2

Mathematical Models in

Elasticity and Heat Transfer

In this thesis we deal with three main physical phenomena. These are elastic defor-

mations under mechanical loads, heat transfer through conduction and heat transfer

through radiation. The phenomena are coupled due to the change in temperature in the

domain from both conduction and radiation, as the change in temperature causes a ther-

mal strain on the object. The effect of the thermal strain can be found in the equations

in the form of the temperature dependence of the strain tensor. In this thesis, we will

assume that the small displacement hypothesis is true and it states that any deforma-

tions caused by the mechanical loads are treated to be infinitesimally small. Therefore,

it is assumed that the mechanical loads do not change the domain enough to affect the

temperature equations. Assuming the small displacement hypothesis also allows us to

assume that the stress tensors stay the same throughout the optimization process as

the ratio of plane and shear stress does not change. If the hypothesis was not assumed,

then some areas of the domain would deform more than others, which would cause a

bending force in the object. This would change the stress equations as a bending force is

typically larger in magnitude than those placed on the object by the mechanical loads.

5
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Since the deformations are so small, the overall shape of the object does not change, and

therefore the interaction between the object and the heat source stay the same, which

leads to the conduction part of the heat transfer equations staying the same. Secondly,

since the shape is the same, the view factors for the radiation components are identical,

and therefore the radiation boundary terms remain unchanged.

2.1 Continuous Setting

2.1.1 Notation

In this section we define the different notation used throughout the thesis.

Body force vector: b : Ω→ Rd

Cauchy stress tensor: σ : Ω→ Rd×d

Convection coefficient: h ∈ R

Design Domain: Ω ⊂ Rd, where d ∈ {2, 3} is the dimension and Γ ⊂ Rd is the boundary
of Ω. The Boundary is defined such that Γ =

⋃4
i=1 Γi and Γi ∩ Γj = ∅ ∀i, j.

Design variable: ρ : Ω→ R

Deviatoric stress tensor: σ : Ω→ Rd×d

Displacement vector: u : Ω→ Rd

Elasticity tensor: C0 : Ω→ Rd×d×d×d

Emissivity coefficient: ε ∈ R

Environment Temperature: Te : Γ→ R

Euler-Almansi strain tensor: ò : Ω→ Rd×d

Heat Capacity: c ∈ R

Heat conduction coefficient: k0 ∈ R

Hydrostatic stress tensor: σh : Ω→ Rd×d

6
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Outward normal vector: n : Γ→ Rd

Perturbed displacement vector: δu : Ω→ Rd

Perturbed Temperature: δT = T − To : Ω → R, where To is the temperature when the
volumetric strain vanishes.

Radiation Source Temperature: T0 : Γ→ R

Stefan-Boltzman Constant: γ = 5.670367× 10−3kgK−4s−3

Surface Temperature: Ts : Γ→ R

Temperature: T : Ω→ R

Time: t ∈ R

Traction vector: t : Γ→ Rd

Unit tensor: I ∈ Rd×d

Volumetric heat source: p : Ω→ R

von Mises stress: σvm : Ω→ R

The ":" operator is defined as A : B = tr(BTA) = B : A. If A and B are rank 2
tensors, then A : B = AijBij , where AijBij is in the Einstein summation convention.
It is the tensor contraction of the product of two tensors, and reduces the rank of the
product by 2.

The L2 inner product, ∀ functionals f, g is: 〈f, g〉 =
∫

Ω fg dΩ.

The H1 inner product, ∀ functionals f, g is: 〈f, g〉 =
∫

Ω fg + ∇f ·∇g dΩ.

2.1.2 Definitions of Material Properties and State Variables

In order to later use the governing systems to perform topology optimization, we will

replace the elasticity tensor, C0, with

C = ρPC0, (2.1)
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and the heat conduction coefficient, k0, with

k = ρPk0. (2.2)

In (2.1) and (2.2), ρ is the density distribution and P ∈ N is a penalization factor. P

is typically used to encourage our design variable ρ into attaining the values of 0 or 1

as it causes an increase in the objective functionals to occur whenever ρ is close to one.

This means that regions that have material placed in them are better prioritized if they

lower the objective function. Through heuristic methods and experience, it has been

determined that 3 is the optimal value for P.

The Euler-Almansi strain tensor, which describes the relationship between the displace-

ment and strain caused by mechanical loads on the domain, is defined as

ò = 1
2
(
∇u+ (∇u)T

)
, (2.3)

while the thermal strain, caused by the expansion resulting from the heating or cooling

of an object, is defined as

òT = κ · (δT ) I. (2.4)

The elastic strain (2.3) and the thermal strain (2.4) are then combined to give the total

strain in the system as

òs = ò− òT . (2.5)

2.1.3 Constitutive and Governing Equations

We can now use the elasticity tensor and equation (2.5) to postulate the constitutive

relation between stress and strain. This particular constitutive relation is called the

8
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Cauchy stress tensor and is defined as

σ = C : òs(u). (2.6)

Using (2.6), we are able to define the von-Mises stresses as

σvm =
√

3
2σ : σ, (2.7)

where the deviatoric stress tensor is defined as

σ = σ − σh, (2.8)

and the hydrostatic stress tensor is defined as

σh = I

[1
3 tr(σ)

]
. (2.9)

We do note that in order to calculate the strain, and therefore the stress, present in the

system, both the displacement vector u and temperature field T must be found by the

solution of the governing equations which are introduced below.

The governing system for the mechanical part of the model is


∇ · σ(u, T ) = −b in Ω

n · σ(u, T ) = t on Γ,

(2.10a)

(2.10b)

where b represents the body forces in the domain, and t is the traction vector, which is

meant to represent the mechanical loads placed on the object. System (2.10) is an ex-

pression of Newton’s first law of motion and represents the balance between the internal

forces of stress and the external forces of applied loads. The weak form of (2.10) is given

9
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by ∫
Ω
σ(u) : ò(δu) dΩ =

∫
Ω
b · δu dΩ +

∫
Γ
t · δu dΓ. (2.11)

The weak form is obtained by taking the L2 inner product between (2.10a) and a test

function. This inner product then has integration by parts applied to it and simplified

to get an equation resembling (2.11). In this particular case, the test function used was

δu. We will later use the weak form of our adjoint systems in the derivations of our

gradients. The governing system for the heat transfer part of the model is



∇ · (k∇T ) = −p in Ω

n · (k∇T ) = 0 on Γ1

T = TΓ on Γ2

n · (k∇T ) = γε
(
T 4

0 − T 4
)

on Γ3

n · (k∇T ) = h (Ts − Te) on Γ4,

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

where p is a heat source found in the domain, (2.12b) represents a part of the boundary

which is insulated so that no heat flux is flowing in or out of the system in that area,

(2.12c) represents a part of the boundary where the temperature is being kept constant,

(2.12d) represents a region of the boundary that is feeling the effects of radiation, and

(2.12e) represents the region of the boundary where there is convection through a differ-

ence in temperature with respect to the environment. The weak form of (2.12) is given

by ∫
Ω

[∇ · (k∇T )] (δT ) dΩ +
∫

Ω
p (δT ) dΩ =

∫
Ω

(
ρc
∂T

∂t

)
(δT ) dΩ. (2.13)

Once again, the weak form is obtained by taking the L2 inner product between (2.12a)

and a test function, in this case δT , and then integrating by parts. Note that in transient

problems, the time derivative of the temperature function must be defined in order for

the form to be correct. In this thesis, we only deal with static problems, and therefore

10
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the right hand side of (2.13) is simply zero. One should note that systems (2.10) and

(2.12) are coupled through the inclusion of T in the Cauchy stress tensors in (2.10).

Mathematically, this means that to determine the values of u and T , one must solve

(2.10) and (2.12) simultaneously. The physical interpretation of the coupled system is

that the changing temperature of the object adds thermal strain to the object and there-

fore will change the amount of displacement the object under-goes when a mechanical

load is placed on it. In the uncoupled case, which is used in later computations, the value

of T is set to equal T0 in (2.10), and systems (2.12) and (2.10) are solved separately.

This is because when T = T0, then δT = 0, and therefore the thermal strain (2.4) is also

equal to zero, which means that the total strain (2.5) simplifies to the structural strain

(2.3). Therefore in the uncoupled case, the governing system for the mechanical part of

the system (2.10) simplifies to:


∇ · (C : òs(u)) = −b in Ω

n · (Còs(u)) = t on Γ,

(2.14a)

(2.14b)

while the governing system for the thermal part (2.12) stays the same but is no longer

required to satisfy the governing system (2.10). The physical interpretation of the un-

coupled cases is that they are treated as two different situations, one in which the

temperature is kept constant, and the other where there are no mechanical loads placed

on the object.

In this thesis, we will only be using isotropic materials, which makes the Cauchy stress

tensor σ, (2.6), symmetric. Now due to the symmetry of σ, we are able to show

σ : ∇z = σ : ε(z), (2.15)

after some algebraic manipulation. Formula (2.15) is true ∀z ∈ Rd.

11
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2.1.4 Objective Functionals

Structural compliance will be defined as

Cs(ρ) =
∫

Ω
b · u dΩ +

∫
Γ
t · u dΓ, (2.16)

and thermal compliance as

CT (ρ) =
∫

Ω
pT dΩ. (2.17)

In an elastic system, an important measurement is the amount of stress in the system to

determine whether or not the material will fracture. Therefore, it is at times beneficial to

minimize the von Mises stress to make sure that the material is able to handle the stress

placed on it. When the von Mises stresses are the objective functional, the equation is:

J(ρ) =
∫

Ω
(σvm)2 dΩ =

∫
Ω

3
2σ : σ dΩ, (2.18)

Assuming that d = 3, a simplification of the von Mises stress term, using the Einstein

summation convention, is:

(σvm)2 = 3
2 (σ : σ) , (2.19)

= 3
2

(
(σij −

1
3δijσkk)(σij −

1
3δijσkk)

)
, (2.20)

= 3
2

(
σijσij −

2
3δijσkkσij + 1

9δijσkkδijσkk
)
, (2.21)

= 3
2

(
σijσij −

1
3σ

2
kk

)
. (2.22)

12
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2.2 Discrete Setting

When the continuous formulations, introduced above, are discretized, the structure of

the resulting discrete variables is dependant on the particular discretization used. The

discretization used below is based on a standard finite element method approach imple-

mented in the 99-line topology optimization code made by Sigmund (Sigmund 2001).

2.2.1 Notation

Design Domain: Ωh ⊂ Rd, where d ∈ {2, 3} is the dimension, h is the mesh parameter,
and Γh ⊂ Rd is the boundary of Ωh. N is the number of elements in mesh Ωh.

Design variable: ρ ∈ RN

Displacement vector: u ∈ RdN

Global Stiffness tensor: C ∈ RdN×dN

Global Thermal Stiffness matrix: K ∈ RN×N

Temperature: T ∈ RdN

Volumetric heat source: p ∈ RN

Vectors with exponents are understood to be done component wise, i.e T 3 = [T 3
1 , ..., T

3
N ].

The diag() function is defined as:

diag(y1, y2, ..., yN )→


y1 0 0 ... 0
0 y2 0 ... 0
... ... ... ... 0
0 0 0 ... yN



13



M.Sc Thesis – Mark Baczkowski; McMaster University– Department of Mathematics
and Statistics

Figure 2.1: Schematic Representation of the Discretization Used

2.2.2 Definitions of Material Properties and State Variables

As in the continuous setting, we must convert the stiffness and thermal stiffness matrices,

so that they are suitable for topology optimization. Therefore, the global stiffness matrix

is represented as

C = diag (ρpi (C0)i) , (2.23)

and the global thermal stiffness matrix is converted to

K = diag (ρzi (K0)i) , (2.24)

where i = 1, 2, ..., N − 1, N .

2.2.3 Constitutive and Governing Equations

For the discretized governing systems, the exact form of the system is dependant on

whether or not the system is coupled. For both the coupled and uncoupled systems, C

is a matrix that contains information about the solution to the structural part of the

elliptic equation (2.10a), with Neumann boundary condition (2.10b). K is a matrix that

contains information about the solution to the elliptic equation (2.12a), with Neumann
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boundary conditions (2.12b) and (2.12e), and Dirichlet boundary condition (2.12c). B is

a matrix that contains information about the solution to the thermal part of the elliptic

equation (2.10a), with Neumann boundary condition (2.10b). f is a vector containing

the values of the forces in equations (2.10a) and (2.10b). P is a vector containing the

values of the thermal excitation in equations (2.12a),(2.12b) and (2.12e). T0 is a vector

of the value T0, which is the temperature when the volumetric strain is 0. u is a vector

containing the values of the displacement vector u on the nodes of the mesh. T is a

vector containing the values of the temperature T on the nodes of the mesh. With these

vectors and matrices properly defined, we are able to define the uncoupled governing

system for the elasticity problem as

Cu = f , (2.25)

and for the heat transfer problem it is

KT = P . (2.26)

On the other hand, if the system is strongly coupled, ignoring the non-linear boundary

condition on Γ3, we are left with the discretized version of the governing system as

C −B

0 K


u
T

 =

f −BT0

P

 . (2.27)

2.2.4 Objective Functionals

The discretized definition of structural compliance is

Cs = uTf , (2.28)
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and the discretized definition for thermal compliance is

Cs = T Tp. (2.29)

The discretized definition of the von Mises Stress is

σvm = uTBTCTV CBu. (2.30)

Note that because the left-hand sides of (2.28) and (2.29) are scalars, the right-hand sides

are equal to their transpose, and that the T in the superscript is meant to represent the

matrix transpose and not the temperature field.

16



Chapter 3

Structural Optimization Problem

3.1 Problem Set-up

In topology optimization, the goal is to put holes in the object, by making regions in

the design space where the design variable is equal to zero. This will affect our objective

functional by changing the stiffness matrices, (2.1), (2.2),(2.23), (2.8), to be equal to

zero in those regions. These changes to the stiffness matrices will result in a change

to the solutions of our governing systems, (2.10),(2.12),(2.25) and (2.26). This in turn

will change the values of the objective functional J(ρ). Our particular objective func-

tional will depend on which problem we are looking at. In the uncoupled situations,

in the continuous setting, the objective functions will be structural (2.16) and thermal

compliance (2.17) respectively, with structural compliance (2.16) being used in the com-

putational part of this thesis. While in the coupled case, the objective function will be

total compliance, which is found by summing (2.16) and (2.17). In the discretize then

optimize case, (2.28) and (2.29) are used when uncoupled, while their sum is used in the

coupled situation. For the later computations, the objective functional will be the sum

of structural compliance (2.16) and a penalization term, (Jp in equation (3.1)), to force
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the design variable towards 0 or 1. Therefore, our objective function will be:

Js(ρ) =
∫

Ω
b · u dΩ +

∫
Γ
t · u dΓ + α

∫
Ω

(ρ [1− ρ])2 dΩ︸ ︷︷ ︸
Jp

= J0 + Jp, (3.1)

where α ∈ R+ is a constant determining how the two parts of the objective function

(3.1) are balanced. It is used to change how fast the design variable is pushed toward

the 0 − 1 distribution. With this in mind, we are able to state the general problem

mathematically as:

min
ρ∈L2(Ω)

J(ρ),

subject to: 0 ≤ ρ ≤ 1,

M =
∫

Ω
ρ dΩ = M0.

(3.2a)

(3.2b)

(3.2c)

In the optimization problem (3.2), the second constraint (3.2c) can be viewed as a cap

on the maximum mass of the object. While the first constraint (3.2b), is put in place

to make sure that the design variable, density, makes sense in the physical world, as it

is a mass fraction and therefore must be between 0 and 1. To satisfy this constraint

computationally, a change of variables was applied to the design variable ρ. Namely, we

change the definition of ρ to be a function of η such that ρ : R→ [0, 1], where η : Ω→ R.

This change of variables converts the optimization problem into:

min
η∈L2(Ω)

J(η),

subject to: M =
∫

Ω
ρ(η) dΩ = M0.

(3.3a)

(3.3b)

This change of variables affects the later derivations by requiring the use of the chain

rule to transform the gradients into the correct variables and therefore:

∇ηJ(η) = ρ′(η)∇ρ(η)J(ρ(η)), (3.4)
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where ∇ρ(η)J(ρ(η)) will be the expression for the gradient of the objective functional

(3.1) derived later on. For computational purposes, the change of variables used was:

ρ = ρ(η) = tanh(η)
2 + 1

2 . (3.5)

The tanh (x) function was used as it gave the desired range, was not periodic, and has

the domain of the entire real line. It was also chosen over arctan(x), as in MATLAB

(MATLAB 2019), tanh (x) has a faster convergence to its extreme values.

3.2 Optimization Approach

One of the main mathematical approaches for solving an optimization problem like (3.3)

is to use a gradient-based optimization algorithm. The main two methods tested in

this thesis are called steepest-decent and conjugate gradients. Since the gradient is a

vector that points in the direction of the steepest increase in the value of the objective

functional, one can create an optimization algorithm by determining the value of the

gradient at the given step and subtracting it from the design variable. Both approaches

still rely on using the gradient at a particular step, which means that we require a

formula to calculate the gradient of the objective functional (3.4). We know that we

are able to calculate such a formula thanks to the Riesz representation theorem which

states:

Theorem(Riesz Representation Theorem (Rudin 2006)) Let H be a Hilbert space. Then

for all bounded linear functionals f ∈ H∗, there exists a g ∈ H such that for all h ∈ H,

f(h) = 〈h, g〉

In our case, the Hilbert space that we will be acting in will be L2 and the bounded linear

functional will be the Gâteaux derivative. The Gâteaux derivative is the generalization
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of the directional derivative and conveys information about the magnitude of the steepest

ascent, as opposed to the gradient which gives the direction of the steepest ascent. The

Gâteaux derivative is calculated using:

J ′(ρ; ρ′) = lim
ρ′→0

J(ρ+ ρ′)− J(ρ)
ρ′

, (3.6)

where ρ′ is an arbitrary perturbation of the design variable. Now by using the inner

product in L2, the Gâteaux derivative and the Riesz Representation Theorem, we are

able to create an equation which will be refereed to as the Riesz form, namely:

J ′(ρ; ρ′) =
∫

Ω
∇J(ρ)ρ′ dΩ . (3.7)

where ∇J is the gradient of the objective functional. We will derive the expression

for the gradient of our objective functional by using the adjoint variable method. Our

derivation will involve taking the L2 inner product between the adjoint variables and

the Gâteaux derivative of the governing system and transforming it into an expression

which resembles the Riesz form (3.7). The adjoint variable method is a method for

computing the gradient of a function by defining an adjoint variable which must solve a

modification of the governing system, whose forcing terms are chosen accordingly. The

adjoint variable is denoted using the ∗ symbol, for example u∗. Adjoint variables, when

suitably defined, convey information about the sensitivity of the state variables to the

perturbations of parameters, e.g. u∗ contains information about the sensitivity of u

to perturbations of ρ. The operator defining the adjoint system is determined by the

governing system but we are allowed to choose the boundary conditions and the right-

hand side source/forcing terms. Our choice of these terms and boundary conditions is

limited by the fact that we are not allowed to pick terms that contain a perturbation

variable, as in principle, they may take arbitrary values. We exploit this freedom in

choosing the right-hand side and the boundary conditions, in order to use the adjoint
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system to express the directional derivative in the Riesz form. This allows us to identify

an expression for the gradient/sensitivity of our objective function. Typically, for a

particular objective functional, our choice of the boundary values or source term in

the adjoint system is unique. We have to go through these derivation to compute the

expression for the gradient of the objective functional, as opposed to using a symbolic

manipulation program, like MAPLE or the symbolic toolbox in MATLAB, because we

are looking for the gradient with respect to ρ, which is an element of a functional space.

This is an issue for a symbolic program as they are only able to integrate or find the

derivatives with respect to a variable in Rn.

One issue in using a gradient based method in topology optimization is called the checker-

board problem. The checkerboard problem occurs when there is a region in the domain

in which the optimization algorithm leads to alternating values of 0 and 1, and therefore

makes it look like a checker or chess board ((Bendsøe and Sigmund 2004)). This is an

issue as the physical interpretation of this is regions of floating material. To combat this,

many heuristic approaches have been implemented, for example, in the 99-line topology

optimization code by Sigmund (Sigmund 2001), the gradient is smoothed by averaging

out the value of the gradient at a particular element using the surrounding elements.

The radius of the surrounding elements used is then a parameter in the code. In this

thesis, we dealt with this checkerboard issue by taking our expressions for the gradients

of our objective functionals derived in the L2 space, and projecting them into the more

continuous Sobolev space of H1. We are able to apply this transformation thanks to

the Riesz Representation Theorem, as it states that a bounded linear function, in this

case the Gâteaux derivative of our objective functional, has a representation in a Hilbert

space as an inner product between the gradient of the objective functional and a variable,

in this case ρ′. Since the L2 and H1 spaces are both Hilbert spaces, they must be equal

to each other, i.e:

〈∇J, ρ′〉L2 = J ′(ρ; ρ′) = 〈∇J, ρ′〉H1 . (3.8)
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Using the definition of the inner product in these spaces, this means that:

∫
Ω

[∇xJ ] ρ′ dΩ =
∫

Ω

[
J − `2∇xJ

]
ρ′ dΩ, (3.9)

where the value `2 determines how much smoothing is occurring in the transition, and

can be interpreted as a change of units between the two spaces. Note that this equality

is only true for values of `2 away from 0 and ∞. Therefore, to project our L2 gradient

into the H1 space, we must solve the following PDE system:


[
1− `2∇x

]
∇H1J = ∇L2J on Ω

∂

∂n
∇H1J = 0 on Γ.

(3.10a)

(3.10b)

In the discrete setting, solving the PDE system (3.10) is equivalent to solving:

(
M − `2K

)
∇H1J = ∇L2J, (3.11)

where M ∈ Rd×d is the standard mass matrix for the discretization, and K is the

same stiffness matrix as in equation (2.26).

One issue with using a steepest decent approach in optimization is that it can be ineffi-

cient at times, as it can get stuck in steeper local valleys as oppose to heading towards

an overall minimum. To combat this, conjugate gradients can be used by taking infor-

mation of the gradient at every previous step to choose a more efficient direction at the

current step. The conjugate gradient algorithm is shown in Algorithm 1.
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Algorithm 1 Implementation of the conjugate-gradients variant of descent approach
Input:
ρ0 — initial guess for mass distribution

Output:
J(ρ) — Structural Compliance

ρ(0) ← ρ0(Initial guess)
n← 1
repeat
evaluate gradient ∇ρJ
Compute βn
Update the conjugate direction: Sn = −∇ρJ − βnsn−1
Update the design variable: ρn+1 = ρn + sn
n← n+ 1
Evaluate J(ρ)

until Condition Met

One of the main parameters that one can choose is the expression for β, as there are

many choices for its expression, but the most popular formulas are the Fletcher-Reeves

βn = ∇ηTn∇ηn
∇ηTn−1∇ηn−1

(3.12)

and the Polak-Ribiere, ((Nocedal and Wright 1999)):

βn = ∇ηTn (∇ηn −∇ηn−1)
∇ηTn−1∇ηn−1

. (3.13)

3.3 Derivations in the Continuous Setting

3.3.1 Uncoupled Cases

We will now present the derivations of gradient expressions for different objective func-

tionals, starting with structural compliance in the uncoupled system (2.16). The deriva-

tion will be subject to the structural governing system (2.10). The Gâteaux derivative
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of the objective functional (2.16) is:

J ′(ρ; ρ′) =
∫

Ω
b · u′(ρ; ρ′) dΩ +

∫
Γ
t · u′(ρ, ρ′) dΓ, (3.14)

while the Gâteaux derivative of the governing system (2.16) is:


∇ · [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)] = 0 in Ω

n · [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)] = 0 on Γ,

(3.15a)

(3.15b)

where the solution of the system is given by the perturbation variable u′(ρ; ρ′). We will

now define the adjoint system as


∇ · σ(u∗) = b on Ω

n · σ(u∗) = t on Γ,

(3.16a)

(3.16b)

whose weak form solution is given by:

∫
Ω
σ(u′) : ò(u∗) dΩ =

∫
Ω
b · u′ dΩ +

∫
Γ
t · u′ dΓ. (3.17)

We start by taking the L2 inner product between the perturbed system (3.15a) and the

adjoint variable u∗ to give:

0 =
∫

Γ
n · [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)] · u∗ dΓ

=
∫

Γ
[n · (PρP−1ρ′C0 : ò(u))] · u∗ dΓ +

∫
Γ
[n · (ρPC0 : ò(u′))] · u∗ dΓ.

(3.18)

(3.19)
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Using integration by parts on both integrals in (3.19) gives

=
∫

Ω
[∇ · (PρP−1ρ′C0 : ò(u))] · u∗ dΩ +

∫
Ω

[∇ · (ρPC0 : ò(u′))] · u∗ dΩ

−
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ−

∫
Ω

(ρPC0 : ò(u′)) : ∇u∗ dΩ,

=
∫

Ω
∇ · [PρP−1ρ′C0 : ò(u)) + (ρPC0 : ò(u′))] · u∗ dΩ

−
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ−

∫
Ω

(σ(u′)) : ∇u∗ dΩ.

(3.20)

(3.21)

Applying identity (2.15) to the last integral and noticing the first integral contains a

term from the perturbed system (3.15b) implies:

−
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ−

∫
Ω

(σ(u′)) : ò(u∗) dΩ = 0. (3.22)

After rearranging and using the weak form of the adjoint system (3.17) we end up with:

J ′(ρ; ρ′) =
∫

Ω
b · u′(ρ; ρ′) dΩ +

∫
Γ
t · u′ dΓ = −

∫
Ω

(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ. (3.23)

Finally by applying (2.15) again, and rearranging, it turns into the Riesz from (3.7):

J ′(ρ; ρ′) = −
∫

Ω
ρ′([PρP−1C0 : ò(u)] : ò(u∗)) dΩ. (3.24)

Therefore, we are able to identify the expression for the gradient of the objective func-

tional (2.16) as:

=⇒ ∇J(ρ) = −[PρP−1C0 : ò(u)] : ò(u∗) = −
[
dC

dρ
: ò(u)

]
: ò(u∗). (3.25)
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Using the simplification (2.22), the Gâteaux derivative of the objective function (2.18)

is:

J ′(ρ; ρ′) =
∫

Ω

3
2

(
2σij

dσij
dρ
− 2

3σkkδij
dσij
dρ

)
dΩ,

=
∫

Ω
3
(
σij −

1
3σkkδij

)
dσij
dρ

dΩ,

= 3
∫

Ω
(σ(u)− σh) : [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)] dΩ .

(3.26)

(3.27)

(3.28)

The Gâteaux derivative of the governing system (2.10) is:


∇ · [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)] = 0 on Ω

n · [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)] = 0 on Γ,

(3.29a)

(3.29b)

where the solution of the system is given by the perturbation variable u′(ρ; ρ′). We will

now define the adjoint system as


∇ · σ(u∗) = ∇ · [3 (σ(u)− σh) : C] on Ω

n · σ(u∗) = 0 on Γ,

(3.30a)

(3.30b)

whose weak form is given by:

∫
Ω
σ(u′) : ò(u∗) dΩ = 3

∫
Ω

(σ(u)− σh) : σ(u′) dΩ . (3.31)

Proceeding just as before, taking the L2 inner product between the adjoint variable u∗

and the perturbed system (3.29a) gives:

0 =
∫

Ω
[∇ · [PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)]] · u∗ dΩ,

=
∫

Ω
[∇ · (PρP−1ρ′C0 : ò(u))] · u∗ dΩ +

∫
Ω

[∇ · (ρPC0 : ò(u′))] · u∗ dΩ .

(3.32)

(3.33)
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Using integration by parts on both integrals in (3.33) gives:

=−
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ−

∫
Ω

(ρPC0 : ò(u′)) : ∇u∗ dΩ

+
∫

Γ
n · ([PρP−1ρ′C0 : ò(u)] · u∗) + n · ([ρPC0 : ò(u′)] · u∗) dΓ,

(3.34)

=−
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ−

∫
Ω

(ρPC0 : ò(u′)) : ∇u∗ dΩ

+
∫

Γ
[n · ([PρP−1ρ′C0 : ò(u)] + [ρPC0 : ò(u′)])] · u∗ dΓ .

(3.35)

Applying identity (2.15) to the second integral and noticing the third integral in (3.35)

contains a term from the perturbed system (3.29b) gives:

0 = −
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ−

∫
Ω
σ(u′) : ò(u∗) dΩ . (3.36)

Applying the weak form of the adjoint system (3.31) to the second integral gives:

0 = −
∫

Ω
(PρP−1ρ′C0 : ò(u)) : ∇u∗ dΩ− 3

∫
Ω

(σ(u)− σh) : σ(u′) dΩ, (3.37)

and after rearranging:

3
∫

Ω
(σ(u)− σh) : σ(u′) dΩ = −

∫
Ω

(
PρP−1ρ′C0 : ò(u)

)
: ∇u∗ dΩ . (3.38)

Adding 3
∫
Ω (σ(u)− σh) : (PρP−1ρ′C0 : ò(u)) dΩ to both sides gives:

3
∫

Ω
(σ(u)− σh) :

[
PρP−1ρ′C0 : ò(u) + ρPC0 : ò(u′)

]
dΩ

=
∫

Ω
3 (σ(u)− σh) : (PρP−1ρ′C0 : ò(u))

−
(
PρP−1ρ′C0 : ò(u)

)
: ò(u∗) dΩ .

(3.39)

Noting that the left hand side of the equation is the directional (Gâteaux) derivative

of the objective function (3.28), and the right hand side can be rearranged to be in the
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Riesz form (3.7):

J ′(ρ; ρ′) =
∫

Ω
ρ′
(

[3 (σ(u)− σh) : (dC
dρ

: ò(u))]−
[(
dC

dρ
: ò(u)

)
: ò(u∗)

])
dΩ. (3.40)

and therefore we can identify the expression of the gradient for the objective functional

(2.7) as:

=⇒ ∇J(ρ) =
[
3σ(u) :

(
dC

dρ
: ò(u)

)]
−
(
dC

dρ
: ò(u)

)
: ò(u∗). (3.41)

The last of the objective functionals in the uncoupled continuous setting will be thermal

compliance (2.17), and its governing system will be (2.12), with the simplification that

we will only look at the first boundary condition for the time being (2.12). With this

assumption, we get that the Gâteaux derivative of the objective functional (2.17) is:

J ′(ρ; ρ′) =
∫

Ω
pT ′ dΩ, (3.42)

and the Gâteaux derivative of the governing system (2.12) is:


∇ ·

[(
PρP−1ρ′k0

)
∇T + k∇T ′

]
= 0 in Ω

n ·
[(
PρP−1ρ′k0

)
∇T + k∇T ′

]
= 0 on Γ.

(3.43a)

(3.43b)

We will define the adjoint system as:


∇ · [k∇T ∗] = −p on Ω

n · [k∇T ∗] = 0 on Γ.

(3.44a)

(3.44b)
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As before, we start by taking the L2 inner product between the adjoint variable T ∗ and

the perturbed system (3.43a), which gives:

0 =
∫

Ω
T ∗[∇ ·

[(
PρP−1ρ′k0

)
∇T + k∇T ′

]
] dΩ . (3.45)

Applying integration by parts to (3.45) gives:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T + k∇T ′

]
dΩ

+
∫

Γ
T ∗
[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
dΓ .

(3.46)

Splitting the first integral into two integrals and noticing the second integral contains a

part of the perturbed system (3.43b) gives:

0 = −
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ−

∫
Ω

∇T ∗ · [k∇T ′] dΩ . (3.47)

Integrating the second integral by parts gives:

=−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ +

∫
Ω

∇ ·
(
[k∇T ∗]T ′

)
dΩ

−
∫

Γ
T ′[k∇T ∗] · n dΓ .

(3.48)

Noting that in the second and third integrals in (3.48), there are terms defined in the

adjoint system (3.44) gives:

=⇒ 0 = −
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ−

∫
Ω
pT ′ dΩ, (3.49)

and after rearranging the terms:

=⇒ J(ρ; ρ′) =
∫

Ω
pT ′ dΩ = −

∫
Ω

[
∇T ∗ ·

(
PρP−1k0∇T

)]
ρ′ dΩ. (3.50)
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Since the above equation is in the Riesz form (3.7), we are able to identify the expression

for the gradient of the objective functional (2.17) in the simplified case as:

=⇒ ∇J(k(ρ)) = −
[
∇T ∗ ·

(
PρP−1k0∇T

)]
. (3.51)

For the following derivation we will no longer use the previous simplification of not

including the radiation boundary condition (2.12d) in the governing system (2.12). Since

the objective functional is once again (2.17), the Gâteaux derivative of the objective

function is once again (3.42), and the perturbed system is now:



∇ ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= 0 in Ω

n ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= 0 on Γ1

T ′ = 0 on Γ2

n ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= −4γεT 3T ′ on Γ3

n ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= 0 on Γ4.

(3.52a)

(3.52b)

(3.52c)

(3.52d)

(3.52e)

We will now define the adjoint system as:



∇ · (k∇T ∗) = −p in Ω

n · (k∇T ∗) = 0 on Γ1

T ∗ = 0 on Γ2

n · (k∇T ∗) = −4γεT 3T ∗ on Γ3

n · (k∇T ∗) = 0 on Γ4

(3.53a)

(3.53b)

(3.53c)

(3.53d)

(3.53e)
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We start the derivation by taking the L2 inner product between the perturbed system

(3.52a) and the adjoint variable T ∗, which gives:

0 =
∫

Ω
T ∗[∇ ·

[
PρP−1ρ′k0∇T + k∇T ′

]
] dΩ , (3.54)

and after integration by parts we end up with:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T + k∇T ′

]
dΩ

+
∫

Γ
T ∗
[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
dΓ,

(3.55)

and splitting the first integral into two integrals and splitting the second integral into 4

parts yields:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ−

∫
Ω

∇T ∗ · [k∇T ′] dΩ

+
∫

Γ1
T ∗
[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
dΓ1

+
∫

Γ2
T ∗
[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
dΓ2

+
∫

Γ3
T ∗
[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
dΓ3

+
∫

Γ4
T ∗
[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
dΓ4 .

(3.56)

Noting that the boundary integrals all contain terms found in the perturbed system

(3.52b)–(3.52e) gives:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ−

∫
Ω

∇T ∗ · [k∇T ′] dΩ

+
∫

Γ2
T ∗
[
n ·
[
PρP−1ρ′k0∇T

]]
dΓ2 +

∫
Γ3
T ∗
(
−4γεT 3T ′

)
dΓ3 .

(3.57)
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Integrating the second integral by parts gives:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ +

∫
Ω

∇ ·
(
[k∇T ∗]T ′

)
dΩ

−
∫

Γ
T ′[k∇T ∗] · n dΓ

+
∫

Γ2
T ∗
[
n ·
[
PρP−1ρ′k0∇T

]]
dΓ2 +

∫
Γ3
T ∗
(
−4γεT 3T ′

)
dΓ3,

(3.58)

and splitting the third integral gives:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ +

∫
Ω

∇ ·
(
[k∇T ∗]T ′

)
dΩ

−
∫

Γ1
T ′[k∇T ∗] · n dΓ1 −

∫
Γ2
T ′[k∇T ∗] · n dΓ2

−
∫

Γ3
T ′[k∇T ∗] · n dΓ3 −

∫
Γ4
T ′[k∇T ∗] · n dΓ4

+
∫

Γ2
T ∗
[
n ·
[
PρP−1ρ′k0∇T

]]
dΓ2 +

∫
Γ3
T ∗
(
−4γεT 3T ′

)
dΓ3 .

(3.59)

Noting that the second to the sixth integrals contain a part of the adjoint system (3.53)

allows us to transform (3.59) into:

0 =−
∫

Ω
∇T ∗ ·

[
PρP−1ρ′k0∇T

]
dΩ−

∫
Ω
pT ′ dΩ

+
∫

Γ3
T ∗
(
4γεT 3T ′

)
dΓ3 −

∫
Γ3
T ∗
(
4γεT 3T ′

)
dΓ3,

(3.60)

and after rearranging, we are able to transform it into the Riesz form (3.7):

J ′(ρ; ρ′) =
∫

Ω
pT ′ dΩ = −

∫
Ω

[
∇T ∗ ·

(
PρP−1k0∇T

)]
ρ′ dΩ. (3.61)

Since the equation (3.61) is now in the Riesz form (3.7), we are able to identify the

expression for the gradient of our objective functional (2.17) as:

=⇒ ∇J(k(ρ)) = −
[
∇T ∗ ·

(
PρP−1k0∇T

)]
. (3.62)
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We note that because of the small displacement hypothesis, the mechanical loads and

the displacement from them, does not affect the amount of thermal compliance in the

system. This leads us to having an expression for the gradient that does not contain

a term with u in it. Note that the gradient expressions for the simplified thermal case

(3.51) and the full thermal case with the radiation boundary condition (3.62) are exactly

the same. The difference in the two expressions is that T and T ∗ are solutions of different

governing and adjoint systems. This is because in the simplified case there is no radiation

boundary condition (3.44) as there is in the more general case (3.53).

3.3.2 Coupled Case

For the last derivation in the continuous setting, we will be looking at the most general

case as we no longer assume that T = T0 and therefore it will no longer be true that

δT = 0. This means that there is now thermal strain in the system and the system is now

coupled. Our objective functional for this case will be structural compliance (2.16). The

derivation will be subject to the the coupled system of (2.12) and (2.10). The Gâteaux

derivative of the objective functional (2.16) is then:

J ′s(ρ; ρ′) =
∫

Ω
b ·
[
u′(ρ; ρ′)

]
dΩ +

∫
Γ
t ·
[
u′(ρ; ρ′)

]
dΓ , (3.63)
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and the Gâteaux derivative of the coupled governing system is then:



∇ · [PρP−1ρ′C0 : òs(u) + ρPC0 :
[
ò(u′)− òt(T ′)

]
] = 0 in Ω

n · [PρP−1ρ′C0 : òs(u) + ρPC0 :
[
ò(u′)− òt(T ′)

]
] = 0 on Γ

∇ ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= 0 in Ω

n ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= 0 on Γ1

T ′ = 0 on Γ2

n ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= −4γεT 3T ′ on Γ3

n ·
[
PρP−1ρ′k0∇T + k∇T ′

]
= 0 on Γ4,

(3.64a)

(3.64b)

(3.64c)

(3.64d)

(3.64e)

(3.64f)

(3.64g)

whose solution is given by the perturbation variables u′(ρ; ρ′) and T ′(ρ; ρ′). We will now

define an adjoint system in the form:



∇ · [C : ò(u∗)] = −b in Ω

n · [C : ò(u∗)] = t on Γ

∇ · (k∇T ∗) =
[
(τ · I) : ρPC0

]
: ò(u∗) in Ω

n · (k∇T ∗) = 0 on Γ1

T ∗ = 0 on Γ2

n · (k∇T ∗) = −4γεT 3T ∗ on Γ3

n · (k∇T ∗) = 0 on Γ4,

(3.65a)

(3.65b)

(3.65c)

(3.65d)

(3.65e)

(3.65f)

(3.65g)

whose weak form is given by:

∫
Ω

(
C : ò(u′)

)
: ò(u∗) dΩ =

∫
Ω
b · u′ dΩ +

∫
Γ
t · u′ dΓ . (3.66)

We start the derivation by summing the L2 inner products between the adjoint vari-

able u∗ and the perturbed system (3.64a) and between the adjoint variable T ∗ and the
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perturbed system (3.64d) which gives:

0 =
∫

Ω
[∇ ·

[
PρP−1ρ′C0 : òs(u) + ρPC0 :

[
ò(u′)− òT (T ′)

]]
] · u∗

+ ∇ ·
[
PρP−1ρ′k0∇T + k∇T ′

]
T ∗ dΩ,

0 =
∫

Ω
[∇ ·

[
PρP−1ρ′C0 : òs(u)

]
] · u∗ dΩ

+
∫

Ω
∇ ·

[
ρPC0 :

[
ò(u′)− òT (T ′)

]]
· u∗ dΩ

+
∫

Ω
[∇ ·

[
PρP−1ρ′k0∇T

]
]T ∗ dΩ +

∫
Ω

∇ ·
[
k∇T ′

]
T ∗ dΩ.

(3.67)

(3.68)

Then applying integration by parts on (3.68) yields:

=−
∫

Ω
(PρP−1ρ′C0 : òs(u)) : ∇u∗ dΩ

−
∫

Ω

(
ρPC0 :

[
ò(u′)− òT (T ′)

])
: ∇u∗ dΩ

+
∫

Γ
n · ([PρP−1ρ′C0 : òs(u)] · u∗)

+ n · ([ρPC0 :
[
ò(u′)− òT (T ′)

]
] · u∗) dΓ−

∫
Ω

(PρP−1ρ′k0∇T ) ·∇T ∗ dΩ

−
∫

Ω
(k∇T ′) ·∇T ∗ dΩ

+
∫

Γ

[
n ·
[
PρP−1ρ′k0∇T

]]
T ∗ dΩ +

∫
Γ
n ·
[
k∇T ′

]
T ∗ dΩ,

=−
∫

Ω

[
(PρP−1C0 : òs(u)) : ò(u∗) + (PρP−1k0∇T ) ·∇T ∗

]
ρ′ dΩ

−
∫

Ω

(
ρPC0 :

[
ò(u′)

])
: ∇u∗ dΩ +

∫
Ω

(
ρPC0 :

[
òT (T ′)

])
: ∇u∗ dΩ

−
∫

Ω
(k∇T ′) ·∇T ∗ dΩ

+
∫

Γ
[n · ([PρP−1ρ′C0 : òs(u)] + [ρPC0 :

[
ò(u′)− òT (T ′)

]
])] · u∗ dΓ

+
∫

Γ

[
n ·
[
PρP−1ρ′k0∇T + k∇T ′

]]
T ∗ dΓ.

(3.69)

(3.70)
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Noticing the fifth integral contains a term from the perturbed system (3.64b), and the

sixth integral contains terms from the perturbed system (3.64d)–(3.64g) gives:

0 =−
∫

Ω

[
(PρP−1C0 : òs(u)) : ò(u∗) + (PρP−1k0∇T ) ·∇T ∗

]
ρ′ dΩ

−
∫

Ω

(
ρPC0 : [ò(u∗)]

)
: ò(u′) dΩ +

∫
Ω

(
ρPC0 :

[
òT (T ′)

])
: ∇u∗ dΩ

−
∫

Ω
∇T ′ · (k∇T ∗) dΩ

+
∫

Γ2
T ∗
[
n ·
[
PρP−1ρ′k0∇T

]]
dΓ2 −

∫
Γ3
T ∗
(
4γεT 3T ′

)
dΓ3 .

(3.71)

Performing integration by parts on the fourth integral gives:

0 =−
∫

Ω

[
(PρP−1C0 : òs(u)) : ò(u∗) + (PρP−1k0∇T ) ·∇T ∗

]
ρ′ dΩ

−
∫

Ω

(
ρPC0 : [ò(u∗)]

)
: ò(u′) dΩ +

∫
Ω

(
ρPC0 :

[
òT (T ′)

])
: ò(u∗) dΩ

−
∫

Ω
T ′ (∇ · (k∇T ∗)) dΩ−

∫
Γ
T ′ (n · (k∇T ∗)) dΓ

+
∫

Γ2
T ∗
[
n ·
[
PρP−1ρ′k0∇T

]]
dΓ2 −

∫
Γ3
T ∗
(
4γεT 3T ′

)
dΓ3 .

(3.72)

Noting that the fourth, fifth and sixth integrals contain a term from the adjoint system

(3.65) gives:

0 =−
∫

Ω

[
(PρP−1C0 : òs(u)) : ò(u∗) + (PρP−1k0∇T ) ·∇T ∗

]
ρ′ dΩ

−
∫

Ω

(
ρPC0 : [ò(u∗)]

)
: ò(u′) dΩ

+
∫

Ω

(
ρPC0 :

[
òT (T ′)

])
: ò(u∗) dΩ−

∫
Ω

(
ρPC0 :

[
òT (T ′)

])
: ò(u∗) dΩ

+
∫

Γ3
T ∗
(
4γεT 3T ′

)
dΓ3 −

∫
Γ3
T ∗
(
4γεT 3T ′

)
dΓ3.

0 =−
∫

Ω

[
(PρP−1C0 : òs(u)) : ò(u∗) + (PρP−1k0∇T ) ·∇T ∗

]
ρ′ dΩ

−
∫

Ω

(
ρPC0 : [ò(u∗)]

)
: ò(u′) dΩ.

(3.73)

(3.74)
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Using the weak form of the adjoint system (3.66), turns it into the Riesz form (3.7):

Cs(ρ; ρ′) =
∫

Ω
b · u′ dΩ +

∫
Γ
t · u′ dΓ

= −
∫

Ω

[
(PρP−1C0 : òs(u)) : ò(u∗) + (PρP−1k0∇T ) ·∇T ∗

]
ρ′ dΩ,

(3.75)

and therefore, we are able to identify the expression of the gradient of our objective

functional as:

∇Cs(ρ) = −(PρP−1C0 : òs(u)) : ò(u∗)− (PρP−1k0∇T ) ·∇T ∗. (3.76)

3.4 Derivations in the Discrete Setting

3.4.1 Uncoupled Cases

We will now begin the derivations for the objective functionals in the discrete setting. We

will start with an objective functional of the von Mises stress (2.30) and the derivation

is subject to (2.23). The Gâteaux derivative of the objective functional (2.30) is:

σvm
′(ρ;ρ′) =(u′(ρ;ρ′))TBTCTV CBu

+ uTBT p
[
diag

(
ρp−1
i (C0)iρ′i

)]T
V CBu

+ uTBTCTV p
[
diag

(
ρp−1
i (C0)iρ′i

)]
Bu

+ uTBTCTV CBu′(ρ;ρ′) .

(3.77)

The Gâteaux derivative of the governing system (2.23) is:

Ku′ +K ′(ρ;ρ′)u = Ku′ + z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′ = 0, (3.78)
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whose solution is given by the perturbation variable u′(ρ;ρ′). We will define an adjoint

system in the form:

Ku∗ = 2
[
BTCTV CBu

]
. (3.79)

Taking the inner product between the perturbed system (3.77) and the adjoint variable

u∗, which in the discrete setting is just vector-vector multiplication, yields:

0 = (u∗)T (Ku′ + z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′) . (3.80)

Subtracting the directional derivative (3.77) from both sides and multiplying both sides

by -1 gives:

σvm
′(ρ;ρ′) =(u′)TBTCTV CBu

+ uTBT p
[
diag

(
ρp−1
i (C0)iui

)]T
ρ′V CBρ′

+ uTBTCTV p
[
diag

(
ρp−1
i (C0)iui

)]
Bρ′

+ uTBTCTV CBu′

− (u∗)T (Ku′ + z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′) .

(3.81)

Rearranging the right-hand side gives:

σvm
′(ρ;ρ′) =[uTBT p

[
diag

(
ρp−1
i (C0)iui

)]
V CB

+ uTBTCTV p
[
diag

(
ρp−1
i (C0)iui

)]
B

− (u∗)T z
[
diag

(
ρz−1
i (K0)iui

)]
]ρ′

+ u′
[
2
[
uTBTCTV CB

]
− (u∗)TK

]
.

(3.82)
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With the judicious choice of the adjoint system (3.79), the vector multiplying u′ vanishes,

and then the right-hand side is in the Riesz form (3.7):

σvm
′(ρ;ρ′) =[2uTBTCTV p

[
diag

(
ρp−1
i (C0)iui

)]
B

− (u∗)T z
[
diag

(
ρz−1
i (K0)iui

)]
]ρ′.

(3.83)

We are therefore able to identify the expression of the gradient of our objective functional

(2.30) as:

∇σ2
vm = 2BT p

[
diag

(
ρp−1
i (ui)T (C0)i

)]
V CBu− z

[
diag

(
ρz−1
i (ui)T (K0)i

)]
u∗.

(3.84)

Our second derivation will be that for static compliance (2.28) and will once again be

subject to (2.23). The Gâteaux derivative of the objective functional (2.28) is:

J ′d(ρ;ρ′) = fTu′(ρ;ρ′), (3.85)

and the Gâteaux derivative of the governing system (2.23) is:

Ku′ +K ′(ρ;ρ′)u = Ku′ + z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′ = 0 , (3.86)

whose solution is given by the perturbation variable u′(ρ;ρ′). We will define an adjoint

system in the form:

K(ρ)u∗ = f , (3.87)

whose solution is given by the adjoint variable u∗. Taking the inner product between

the perturbed system (3.86) and the adjoint variable u∗ gives:

0 = (u∗)T (Ku′ + z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′) . (3.88)
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Subtracting fTu′ from both sides and multiplying both sides by -1 gives:

fTu′ = −(u∗)T (Ku′ + z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′) + fTu′ . (3.89)

Note that that left hand side is the Gâteaux derivative of the objective function (3.85),

and therefore, after rearranging the right hand side:

J ′d(ρ;ρ′) = −(u∗)T z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′ + u′

[
fT − (u∗)TK

]
. (3.90)

With the judicious choice of the adjoint system (3.87), the vector multiplying u′ vanishes

and what remains is an expression in the Riesz form (3.7):

J ′d(ρ;ρ′) = −(u∗)T z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′ = (∇Cs)Tρ′. (3.91)

We are therefore able to identify the expression of the gradient of our objective functional

(2.28) as:

∇Jd(ρ) = −z
[
diag

(
ρz−1
i (ui)T (K0)i

)]
u∗. (3.92)

The third derivation in the discrete setting will have the objective functional of thermal

compliance (2.29), and will be subject to the governing system (2.26). The Gâteaux

derivative of the objective functional (2.29) is:

J ′d(ρ;ρ′) = pTT ′(ρ;ρ′), (3.93)

and the Gâteaux derivative of the governing system (2.26) is:

KT ′ +K ′(ρ; ρ′)T = KT ′ + z
[
diag

(
ρz−1
i (K0)iT i

)]
ρ′ = 0, (3.94)
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whose solution is given by the perturbation variable T ′(ρ;ρ′). We will define an adjoint

system in the form:

K(ρ)T ∗ = p, (3.95)

whose solution is given by the adjoint variable T ∗. Taking the inner product between

the perturbed system (3.94) and the adjoint variable T ∗ gives:

0 = (T ∗)T (KT ′ + z
[
diag

(
ρz−1
i (K0)iT i

)]
ρ′) . (3.96)

Subtracting pTT ′ from both sides and multiplying both sides by -1 gives:

pTT ′ = −(T ∗)T (KT ′ + z
[
diag

(
ρz−1
i (K0)iT i

)]
ρ′) + pTT ′. (3.97)

Note that that left hand side is the Gâteaux derivative of the objective functional (3.93),

and therefore, after rearranging the right hand side:

J ′d(ρ;ρ′) = −(T ∗)T z
[
diag

(
ρz−1
i (K0)iT i

)]
ρ′ + T ′

[
pT − (T ∗)TK

]
. (3.98)

With the judicious choice of the adjoint system (3.95), the vector multiplying T ′ vanishes

and what remains is an expression in the Riesz form (3.7):

J ′d(ρ;ρ′) = −(T ∗)T z
[
diag

(
ρz−1
i (K0)iT i

)]
ρ′ = (∇Jd)Tρ′. (3.99)

We are therefore able to identify the expression for the gradient of our objective func-

tional (2.29) as:

∇Jd(ρ) = −z
[
diag

(
ρz−1
i (T i)T (K0)i

)]
T ∗. (3.100)
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3.4.2 Coupled Case

The last derivation will be the coupled system in the discrete setting, where the objective

functional will be the combined structural and thermal compliance, c.f (2.28,(2.29)). The

derivation will be subject to (2.27). The Gâteaux derivative of the objective functional

(2.29) and (2.28) is:

J ′(ρ;ρ′) = fTu′(ρ;ρ′) + P TT ′(ρ;ρ′), (3.101)

and the Gâteaux derivative of the governing system (2.27) is:

C −B

0 K


u′
T ′

 =

−z
[
diag

(
ρz−1
i (C0)iui − (B0)i(δT )i)

)]
−z

[
diag

(
ρz−1
i (K0)iui

)]
ρ′, (3.102)

whose solution is given by the perturbation vectors u′(ρ;ρ′) and T ′(ρ;ρ′). We will also

define an adjoint system in the form:

 C 0

−B K


u∗
T ∗

 =

−f
−P

 . (3.103)

Taking the inner product between the perturbed system (3.102) and the adjoint vector

gives:

0 =
[
(u∗)T (T ∗)T

] C −B

0 K


u′
T ′



+

z
[
diag

(
ρz−1
i (C0)iui − (B0)i(δT )i)

)]
z
[
diag

(
ρz−1
i (K0)iui

)]
ρ′,

0 =(u∗)TCu′ − (u∗)TBT ′ + (T ∗)TKT ′

+ z(u∗)T
[
diag

(
ρz−1
i (C0)iui − (B0)i(δT )i)

)]
+ z(T ∗)T

[
diag

(
ρz−1
i (K0)iui

)]
ρ′ .

(3.104)

(3.105)
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Subtracting fTu′ + P TT ′ from both sides and multiplying both sides by -1 gives:

fTu′ + P TT ′ =− (u∗)TCu′ + (u∗)TBT ′ − (T ∗)TKT ′

− z(u∗)T
[
diag

(
ρz−1
i (C0)iui − (B0)i(δT )i)

)]
− z(T ∗)T

[
diag

(
ρz−1
i (K0)iui

)]
ρ′

+ fTu′ + P TT ′.

(3.106)

Note that that left hand side is theGâteaux derivative of the objective functional (3.102),

and therefore, after rearranging the right hand side, by collecting the terms proportional

to u′ and T ′ gives:

J ′(ρ;ρ′) =
[
−(u∗)TC + fT

]
u′ +

[
(u∗)TB − (T ∗)TK + P T

]
T ′

−
[
z(u∗)T

[
diag

(
ρz−1
i (C0)i ui − (B0)i(δT )i

))]
− z(T ∗)T

[
diag

(
ρz−1
i (K0)iui

)]
]ρ′.

(3.107)

With the judicious choice of the adjoint system (3.103), the vector multiplying u′ and

T ′ vanish and what remains is an expression in the Riesz form (3.7):

J ′(ρ;ρ′) =[−z(u∗)T
[
diag

(
ρz−1
i (C0)i ui − (B0)i(δT )i

)]
− z(T ∗)T

[
diag

(
ρz−1
i (K0)iui

)]
]ρ′,

(3.108)

and we are therefore able to identify the expression for the gradient of the objective

functional (2.29,2.28) as:

∇J(ρ) =
(
−z(u∗)T

[
diag

(
ρz−1
i (C0)iui − (B0)i(δT )i)

)])T
(
−z(T ∗)T

[
diag

(
ρz−1
i (K0)iui

)])T
.

(3.109)
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3.5 Computational Algorithm

One of the main components in the algorithm is dealing with the mass constraint (3.3b)

in the optimization problem. We will do this by first defining a set that contains all

distributions that meet our mass constraint called the "target manifold", and it will be

defined as:

M =
{
η ∈ L2(Ω) :

∫
Ω
ρ(η) dΩ = M

}
. (3.110)

Now if our initial distribution is an element of our target manifold (3.110) then we will

be able to keep our mass distributions close to the manifold by only travelling in the

tangent subspace to the target manifold, which we will define as:

TηM =
{
η′ ∈ L2(Ω) :

∫
Ω

dρ

dη
η′ dΩ = 0

}
. (3.111)

Now since we are using a gradient-based optimization method, the direction we will be

travelling in will be in the direction of the gradient of the objective functional (3.4) at

each step. The issue with this is that we cannot guarantee that the gradient of the

objective functional is a direction that is in the tangent subspace (3.111). To make

sure that we end up in the tangent subspace, we will project the gradient onto the

tangent subspace (3.111). We will use the direction dρ(η)
dη to orthogonally project onto

the tangent subspace as (3.111) implies that dρ(η)
dη spans the space orthogonal to TηM,

whose dimension is 1. We are then able to define the projection of the gradient of the

objective function (3.4) onto the tangent subspace (3.111) as:

P∇J = ∇J − cdρ(η)
dη

, (3.112)

where P : L2 → TηM is the projection operator and c is a suitably chosen constant. To

guarantee that this projection lands us in the tangent subspace (3.111), we must make
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sure the projection meets the following condition:

∫
Ω

dρ(η0)
dη

(
∇J − cdρ(η0)

dη

)
dΩ = 0, (3.113)

and after solving for c we end up with:

c =
∫

Ω
dρ(η0)
dη ∇J dΩ∫

Ω

(
dρ(η0)
dη

)2
dΩ

. (3.114)

So after the projection onto the tangent subspace (3.111), our new gradient is:

∇TηMJs = ∇ρ(η)Js −

∫Ω dρ(η0)
dη ∇ρ(η)J dΩ∫

Ω

(
dρ(η0)
dη

)2
dΩ

 dρ(η0)
dη

, (3.115)

where ∇ρ(η)Js is (3.4).

Since the change of variables is non-linear, we cannot ensure that any arbitrarily sized

step in the tangent subspace (3.111) will remain in the target manifold (3.110), therefore

adding the gradient of the objective functional (3.4) to the current mass distribution may

cause us to "drift" from the target manifold. Now since staying on the target manifold

(3.110) is a condition in the optimization problem (3.2) we must address this issue. We

will do this by defining a retraction function, R : TηM→M, in two alternative ways.

The first way is using an "additive" or shifting method defined ∀η ∈ TηM as:

R1η = η + β, (3.116)

where β is chosen to satisfy the condition:

∫
Ω
ρ(η + β) dΩ = M. (3.117)
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The second way we can define the retraction function is using a "multiplicative" or

stretching method so that ∀η ∈ TηM:

R2η = ηγ, (3.118)

where γ is chosen to satisfy the condition:

∫
Ω
ρ(ηγ) dΩ = M. (3.119)

Now since the conditions placed on the retraction function (3.117, 3.119) are continuous,

we are able to use MATLAB’s fsolve function (MATLAB 2019), or any root finding

algorithm, to determine the value of β or γ that will define our retraction functions

(3.116,3.118) and therefore eliminate the "drift" found in the subspace projection. In

our computational experiment, the retraction function defined as (3.119) reduces the

magnitude of the gradient so that change in the objective functional is smaller than any

reasonable stop condition and therefore we have used (3.117).

The last main component of the algorithm is called line minimization. We have previ-

ously discussed how the gradient gives the direction of the steepest decent and so line

minimization is the process of finding how far one should go in this direction. This is

done mathematically by solving the minimization problem:

τk = arg min
τ>0

h(τ), (3.120)

where in our case, we define the function h : R→ R as:

h(τ) = Js(ρ(ηk + τ∇TηMJs)), (3.121)

where k is the current step of the algorithm and τ ∈ R is the step size. We then solve
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(3.120) by looking for a sufficient decrease in h’s value (3.121). This is done by testing

values of τ in a given range and minimizing to within a certain tolerance. In MATLAB

(MATLAB 2019), this can be done using the fminbnd function, which will find the

minimum value of h(τ) for τ1 < τ < τ2. To make this process as efficient as possible

a suitably small range of (τ1, τ2) is chosen using a heuristic method of shrinking or

expanding the brackets by testing values of the objective functionals at τ2, and comparing

them to a suitably chosen value. After all of these steps have been implemented, the

algorithm is shown in Algorithm 2.

Algorithm 2 Implementation of the Sobolev Gradient Algorithm
Input:
η0 — Initial guess for mass distribution
C — Stiffness Tensor
F — Force Vector

Output:
J(ρ(η)) — Structural Compliance

ρ(0) ← ρ(η0)(Initial guess)
n← 1
repeat
Solve C(ρ(n))u = F for u
Evaluate Gradient ∇ρJs(u)
Convert to Sobolev Gradient ∇H1Js ←∇ρJs
Compute the Subspace Projection ∇TηMJs

Perform Line Minimization τ (n) ← minτ>0 h(τ) = Js(ρ(η(n−1)
k + τ∇TηMJs))

Perform Retraction: β(n) ← given by solution of R(η(n−1), β) = 0
Update: ρ(n) ← ρ(η(n−1) + τ (n)∇TηMJs)
Evaluate J(ρ(n))
n← n+ 1

until J(ρ(n−1))−J(ρ(n))
J(ρ(n−1)) < 10−3
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Chapter 4

Computational Results

4.1 Validation of Derivation

We will now verify the validity of the derived expressions for the gradients, in both

the discrete and continuous settings, by performing a Kappa test on them. The Kappa

test is a method for determining how well two different gradient expressions agree with

each other. In our case we will be comparing how well the gradient expression that we

derived using the Riesz representation theorem matches up with the Gâteaux derivative

calculated by definition. i.e, by comparing:

lim
ε→0

J(ρ+ ε)− J(ρ)
ε

vs.
∫

Ω
∇J(ρ)ρ′ dΩ. (4.1)

This comparison is done by simply taking the ratio of the two terms. We also test it

over a non-uniform perturbation to make sure the values match up for different values

of ρ. Lastly, because we numerically cannot take the limit as ε goes to zero, we must

approximate it by taking distinct values for epsilon. The test is then performed by

calculating κ(ε) at different values of ε and noticing the patterns. So in our case the
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equation will be:

κ(ε) = J(ρ+ ερ′(s))− J(ρ)
ε
∫

Ω ∇J(ρ)ρ′(s) dΩ , (4.2)

where ε will range from 10−1 to 10−14. For the test to be successful, we should notice

that the value of κ(ε) should be close to one for small values of ε. Note that because

we are solving this value numerically there will be two types of errors that will affect

the value of κ in three different ways. The first type of error is called round-off errors,

which occur due to the fact that the computer only uses a finite amount of digits for its

calculations. This should cause the value of κ(ε) to increase for smaller values of ε. The

second type of error is called truncation errors, and they occur for two different reasons.

The first reason is that ε is not close enough to 0, and therefore does not approximate

the error very well. The second reason truncation errors occur is that the mesh is too

coarse to solve the PDE correctly.
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Figure 4.1: Graph of |κ(ε)− 1| vs. ε for the two Gradients at different
grid sizes

The expression for the gradient of the objective function in the discrete setting (3.92)

and in the continuous setting (3.4) have been used in the kappa test and the results were
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then plotted in figure (4.1). As we can see from figure (4.1), all three of the errors are

present in the calculation for the gradient of the objective functional in the continuous

setting (3.4). Round-off errors occur for ε ≤ 10−13 and for values smaller than that, the

value of the error increases. While the presence of truncation errors can be seen by the

error for ε > 10−3 and by the fact that when the grid size was doubled, the difference

between the two trials in the continuous setting was cut in half, as seen by the smaller

values of κ for the 200 × 200 grid. For the gradient of the objective functional in the

discrete setting (3.92), figure (4.1) shows that two types of errors were present in the

calculations. The main difference between the gradient derived in the continuous setting

and the one derived in the discrete setting is that the one in the discrete setting seems to

be much more sensitive to round-off errors, as when ε ≤ 10−7, the error starts to increase,

as opposed to 10−13 in the continuous setting. The second main difference between the

results for the two gradients is the shape of their plots, as for the discrete setting it is a

very clear v shape, while for the continuous setting it is mostly a flat line that increases

at the boundaries. This is due to truncation errors from having too coarse a mesh which

"cuts-off" the v-shape of the continuous gradient’s results as it is the dominating error at

this truncation level. This error is not present for the gradient in the discrete setting as

it is solved using the weak form of the PDE whose solution does not depend on the size

of the mesh. Lastly, based off of this graph. we can conclude that we have successfully

derived the gradient, in the continuous setting using the Riesz representation theorem,

as the difference between the Gâteaux derivative and the expression of the gradient is

in the realm of 10−5.

4.2 Optimization Results

We used four different algorithms in order to compare the implementation of the differ-

ent ideas mentioned in Chapter 3. The first algorithm that was tested was the standard
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99-line code by Sigmund (Sigmund 2001). This algorithm was used as it is a standard

algorithm in topology optimization and therefore gives a good benchmark for compari-

son. The algorithm will be referred to by Top99 discrete and the amount of smoothing

in the algorithm is given by the Rmin value. The smoothing of the gradient of the

objective function in Top99 discrete uses a heuristic method of averaging out the values

of the elements within a certain radius. The next set of trials that were run we called

Top99 continuous, and it is where we changed Top99 discrete to use the derived gradient

of the objective functional in the continuous setting (3.4). We then ran trials in an

algorithm we called continuous `2 gradient which had the same form of Algorithm 2,

except the step that converts the gradient into the Sobolev space was skipped. When

the conversion into the Sobolev space is not skipped, and therefore Algorithm 2 is in full

effect, we called those trials "continuous Sobolev gradient". In these trials, the amount

of smoothing of the gradient of the objective functional is given by the `2 value. Table

(4.1) contains information about the different trials that were run, and the value of the

different parts of the objective functional at the conclusion of the algorithms. Found

after table (4.1) are figures containing the final topologies for each of the trials, as well

as the objective function at each iteration of the algorithm.

As we can see from (4.2a), the final mass distribution suffers from the checkerboard

issue mentioned in Chapter 3. This is due to having the Rmin value less than one,

as this implies that there is no smoothing on the gradient of the objective functional

(3.92). As we can see from figure (4.2b), simply changing the gradient of the objective

functional to be the one derived in the continuous setting (3.4) does not fix the issue

of checker-boarding. The main difference between the two distributions can be found

in the middle of the structures where figure (4.2a) is all checker-boarded, while figure

(4.2b) has connected beams. As we can see from figures (4.2c) and (4.2d), increasing

the value of Rmin, and therefore applying some smoothing to the gradients, has fixed

the checker-boarding issue from figures (4.2a) and (4.2b). The main difference between
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Table 4.1: Values of Key Parameters and Results. Note Jp is calculated
using α = 1 in order to be able to compare values

Gradient Type α `2/Rmin Js J0 Jp Iterations

Top99
Discrete

N/A 0.5 84.3908 83.8749 0.5159 43
N/A 1.5 103.0256 80.0115 23.0141 430
N/A 2.5 108.3188 83.4568 24.8621 80

Top99
Continuous

N/A 0.5 84.2736 84.0004 0.2732 46
N/A 1.5 102.7021 80.1697 22.5324 225
N/A 2.5 108.3751 83.4777 24.8975 80

Continuous
`2

Gradient

0 N/A 84.4289 83.4986 0.9303 19
0.5 N/A 86.1054 85.9875 0.2357 11
1 N/A 93.9628 93.8512 0.1116 10

Continuous
Sobolev
Gradient

0 0.5 92.1622 91.4057 0.7565 22
0 1.5 90.7574 89.5230 1.2344 27
0 2.5 89.9616 88.6364 1.3252 28
0 4.5 90.7798 90.1155 0.6644 40
1
16 0.5 91.1860 91.008 0.6808 16
1
16 1.5 90.0616 89.8733 1.5063 22
1
16 2.5 94.2743 94.1421 1.0576 21
1
16 4.5 94.9084 94.7202 1.5056 24
1 0.5 93.4479 93.1210 0.3269 14
1 1.5 94.2602 93.6265 0.6337 12
1 2.5 96.3020 95.8281 0.4739 14
1 4.5 103.0734 102.2983 0.7751 14
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(a) Discrete Setting,
Rmin = 0.5

(b) Continuous Setting,
Rmin = 0.5

(c) Discrete Setting,
Rmin = 1.5

(d) Continuous Setting,
Rmin = 1.5

(e) Discrete Setting,
Rmin = 2.5

(f) Continuous Setting,
Rmin = 2.5

Figure 4.2: Final Mass Distributions of Top99 Algorithms
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(b) Continuous Setting,
Rmin = 0.5
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(f) Continuous Setting,
Rmin = 2.5

Figure 4.3: Objective Functional Vs. Iteration of Top99 Algorithms
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figure (4.2d) and figure (4.2c) is that figure (4.2d) does not have the hole in the very

centre of the domain as those two supports have been merged into one. As we can see

from figures (4.2e) and (4.2f), increasing the Rmin value to 2.5 has had the effect of

smoothing the inner supports together from figures (4.2c) and (4.2d) into just having

two support beams instead of five. At this amount of smoothing, figures (4.2e) and (4.2f)

have become indistinguishable from each other.

In the next set of trials, we used the continuous `2 gradient algorithm and tested dif-

ferent values for α, which is the constant in front of our 0-1 penalization term in the

objective functional (3.1). Note for these three trials, we do not use the Sobolev gradi-

ents and therefore there is no smoothing on the gradient. The mass distributions can

then be found in figure (4.4), while the value of the objective function at each step can

be found in figure (4.5). From figure (4.4a), we can see that it resembles the distribu-

tions in figures (4.2c) and (4.2d), with the main difference being the checker-boarding

distribution in the top-right corner of the domain. The mass distribution in figure (4.4b)

resembles the distributions found in figures (4.2e) and (4.2f), with the main difference

being the extra support beam in the bottom-right of the domain. The main issue with

this distribution is that there are regions in the domain where there is mass that is not

connected to anything, or just sticking out of the support beams and therefore should

not affect the structural compliance values (2.16). When α is increased to 1, this issue

is more prominent as can be seen in figure (4.4c). The main idea to solve this issue is

by smoothing the gradient by projecting it into the Sobolev space, which is the only

difference in the continuous Sobolev gradient algorithm (2).

In the continuous Sobolev gradient trials we have two parameters in α and `2 to ex-

periment with. The mass distributions in these trials can be seen in figures (4.6), (4.8)

and (4.10), and the objective functional values at each step can be found in figures

(4.7),(4.9) and (4.11). As can be seen in figures (4.6), (4.8) and (4.10), Algorithm 2 ends
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(a) α = 0 (b) α = 0.5

(c) α = 1

Figure 4.4: Final Mass Distributions of Continuous `2 Gradient Algo-
rithms
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(c) α = 1

Figure 4.5: Objective Functional Vs. Iteration of Continuous `2 Gradi-
ent Algorithms
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(a) `2 = 0.5 (b) `2 = 1.5

(c) `2 = 2.5 (d) `2 = 4.5

Figure 4.6: Final Mass Distributions of Continuous Sobolev Gradients
Algorithms at α = 0
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Figure 4.7: Objective Functional Vs. Iteration of Continuous Sobolev
Gradients Algorithms at α = 0
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(a) `2 = 0.5 (b) `2 = 1.5

(c) `2 = 2.5 (d) `2 = 4.5

Figure 4.8: Final Mass Distributions of Continuous Sobolev Gradients
Algorithms at α = 1
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Figure 4.9: Objective Functional Vs. Iteration of Continuous Sobolev
Gradients Algorithms at α = 1
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(a) `2 = 0.5 (b) `2 = 1.5

(c) `2 = 2.5 (d) `2 = 4.5

Figure 4.10: Final Mass Distributions of Continuous Sobolev Gradients
Algorithms at α = 1

62



M.Sc Thesis – Mark Baczkowski; McMaster University– Department of Mathematics
and Statistics

0 2 4 6 8 10 12 14

Iteration Number

0

100

200

300

400

500

600

Js

Jo

Jp

(a) `2 = 0.5

0 2 4 6 8 10 12

Iteration Number

0

100

200

300

400

500

600

Js

Jo

Jp

(b) `2 = 1.5

0 2 4 6 8 10 12 14

Iteration Number

0

100

200

300

400

500

600

Js

Jo

Jp

(c) `2 = 2.5
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Figure 4.11: Objective Functional Vs. Iteration of Continuous Sobolev
Gradients Algorithms at α = 1
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with distributions that most resemble figure (4.4a), with the exception that there is no

longer any major case of a checker-board distribution. From these figures, we are able

to make two key observations. The first is that as the value of α increases, the size of

the hole in the centre left of the structure decreases, and no longer exists at α = 1. This

is an interesting pattern as it is the same hole that disappeared when the gradient of

the objective functional was changed in Top99 from one derived in the discrete setting

(3.92) to one that was derived in the continuous setting (3.4), as was pointed out when

comparing figures (4.2c) and (4.2d). The second key observation we can make is that

as the smoothing increases, the distributions change by also minimizing the previously

mentioned hole, and the support beam in the bottom-right corner starts to merge with

the bottom-right edge of the structure due to the increased smoothing.

64



Chapter 5

Conclusions

In this thesis we presented a detailed investigation into the derivation of expressions for

gradients of different objective functionals, using the Riesz representation theorem, for

the purpose of topology optimization. Our specific focus was on structural and thermal

compliance in both the continuous and discrete settings, as well as a look at the differ-

ences between the uncoupled and coupled systems. We verified the gradient expressions

in both the discrete and continuous setting by performing a Kappa test on them. We

then used the gradient expressions obtained for the uncoupled system in the continuous

setting and created an algorithm to minimize structural compliance (2), with constraints

on the total mass and a limited range for our design variable (3.3). We concluded the

analysis by comparing the results of the new algorithm with the standard algorithm for

topology optimization, namely the 99-line code created by Sigmund (Sigmund 2001).

The final results showed that we successfully met the optimization problem constraints

using a change of variables and using a subspace projection, while we were also able to

deal with the common topology optimization issue of a checker-board mass distribution

(Bendsøe and Sigmund 2004) with the use of Sobolev gradients.

From figure 4.1 we can see that the gradient expression for the objective function derived

in the continuous setting has a slower rate for the propagation of errors than the gradient
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expression derived in the discrete setting. From the discussion in Chapter 4, it can be

concluded that Algorithm 2 was successful in optimizing the objective function with a

mostly similar structure to the ones obtained by the 99-line code. The main advantage

in Algorithm 2 is that it is able to deal with both the checker-boarding issue and the

ideal 0-1 distinction of the objective function better than the standard 99-line code. This

can be seen in the figures in chapter 4 and the information found in table (4.1). This is

because, when the standard 99-line code has a low value of Jp, for example when Rmin

= 0.5 and Jp = 0.5159, then the corresponding distribution had a severe checker-board

distribution issue (4.2a). When the smoothing was increased for the 99-line code, the

checker-boarding issue was resolved (4.2c - 4.2e) but it resulted in Jp values in the range

of 22-24, which suggests that there are many elements where the design variable was

not close to either 0 or 1. This lack of 0-1 distinction can be seen in the final mass

distributions as the figures have a "fussiness" to them that stems from some elements

being neither fully black nor white. In contrast, Algorithm 2 never had a Jp value above

1.5063, which resulted in figures that looked very sharp in comparison to the ones from

the 99-line code. Also, unlike the 99-line code, the algorithm was able to achieve these

lower Jp values without succumbing to any major checker-boarding distributions as can

be seen in figures (4.6a)–(4.10d).

There are two main disadvantages in Algorithm 2. The first is that it generally takes

longer due to the line minimization step using the fminbnd function which is not the

most efficient. While the second draw back of the algorithm is that it performs worse

in minimizing compliance, as the J0 values are in the range of 7% − 20% higher than

the standard 99-line code. We believe that some of this worse performance is caused

by the sharpness of the 0-1 distinction, as when we look at the combined values of Jp

and J0, namely Js, Algorithm 2 tends to perform 10% better than the standard 99-line

code, as the increased value of J0 is compensated for by the much lower values of Jp.

The different outcomes of Algorithm 2 for different values of `2 may suggest that the
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optimization problem, 3.2, is not well posed in a mathematical sense. The argument for

this is that the Riesz Representation Theorem is used to state the equivalence between

the gradient in the L2 space and in the Sobolev space, and since they are equivalent, for

the problem to be well posed, they should both lead to the same unique final topology.

One may argue against this by noting that the Riesz Representation Theorem implies

that the integrals of the two gradients are equivalent. This means that the gradient

are equivalent in an integral or in an overall sense and not in a exact or at every point

sense. Now since they are not equivalent at every part of the domain, an optimization

algorithm could lead to different local minimums using the different gradients, and both

may miss the unique distribution that gives the global minimum.

We hope that this thesis, in its classification and in depth description in its use of the

adjoint method will help in the deviation of gradient expressions for more complicated,

or more non-standard topology optimization problems for future engineers. Specifically,

we hope that the gradient used for the coupled elastic-thermal system will help in the so-

lution of the open problem in topology optimization involving thermal radiation. Lastly,

we hope that the ideas used in the proposed algorithm, such as the penalization term for

the 0-1 distribution, the subspace projection to deal with the mass constraint, or the use

of transforming the gradient into the Sobolev space to smooth the gradients and deal

with the checker-board distribution, will help with or inspire ideas for future research in

the field of topology optimization.
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