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Lay Abstract:

Open Effective Field Theories are a class of quantum theories in which a measured sector (the

system) is used to make physical predictions with, while interacting with an unmeasured sector

(the environment). In this thesis arguments are made that Open EFTs are useful for studying

gravitating quantum systems, especially when there is an event horizon present (for example in

gravitational fields like that of a black hole). Open EFTs are applied to simple toy problems in

such settings to illustrate their usefulness.
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Abstract:

Open Effective Field Theories are a class of Effective Field Theories (EFTs) built using ideas from

open quantum systems in which a measured sector (the system) interacts with an unmeasured

sector (the environment). It is argued that Open EFTs are useful tools for any situation in which

a quantum system couples to a gravitational background with an event horizon. The main reason

for this is that for any EFT of gravity one generically expects perturbation theory to breakdown

at late times (when interactions with the background persist indefinitely). It is shown that the

tools of Open EFTs allow one to resum late-time perturbative breakdowns in order to make

reliable late time predictions (without resorting to solving the dynamics exactly). To build

evidence of their usefulness to these types of gravitational problems, Open EFT approximation

methods are applied to two toy models relating to black hole physics.
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Chapter 1

Introduction

The goal of this thesis is to motivate the use of Open Effective Field Theories (EFTs) for ap-

plications on some gravitating quantum systems (especially when event horizons are present),

underlining why they are useful for these specific problems. As argued below, calculations in-

volving quantum systems weakly coupled to gravitational backgrounds are often plagued with

late time breakdowns of perturbation theory — this is problematic since late times are often

times precisely the regimes of interest in such calculations. The techniques discussed in this

thesis are one way of reliably resumming these late time issues in perturbative theories (which

EFTs always are for gravitational applications). Although this thesis focuses on applications of

Open EFT methods to toy problems only, the idea is to emphasize their utility so that these be

eventually applied to more realistic gravitational problems (in particular those involving EFTs

of gravity).

1.1 Effective Field Theories

The building blocks of fundamental physics appear to be quantum fields — roughly speaking,

Quantum Field Theory (QFT) is the quantum mechanics of fields (like the electromagnetic field),

which are here operators which take on a different value at each point in the spacetime continuum

[4, 5]. Excitations of quantum fields appear to us as elementary particles (such as electrons, pho-

tons and so on) which implies that particle number is not generically conserved in QFTs, which

helps to explain why they are so ubiquitous in modern physical descriptions, from relativistic

applications to many-body physics. It is often said that QFT is the most important unification

of special relativity and the principles of quantum mechanics (for example important ingredients

like cluster decomposition are satisfied by QFTs, and relativity of simultaneity implying the

1
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existence of antiparticles [4]).

Given the huge variety of particles and quantum phenomena seen at different energy scales,

the discussion of QFTs naturally leads to the concept of Effective Field Theories [6]. So-called

Wilsonian EFTs are built out of quantum fields, in settings where there exists a hierarchy of

energy scales E � M that can be exploited in order to yield a low-energy expansion of an

action in powers of E/M � 1 — these are designed to make predictions about the low-energy

behaviour of relativistic1 quantum phenomena (occurring with energies ∼ E) without needing

all the details of the higher energy theory (or UV “completion”, occurring at the heavy mass

scale ∼ M). For example, the most successful and general theory of the elementary particles is

the Standard Model, which includes electroweak interactions. In this more UV-complete theory

the weak nuclear force is described as being mediated by the W and Z gauge bosons. However

in sufficiently low-energy processes Fermi’s theory of weak interactions is much easier to use for

calculations (an EFT where there are no gauge bosons at all ie. the heavy degrees of freedom

W and Z have been integrated out).

To illustrate, consider the decay of a muon into an electron and two types of neutrinos. Elec-

troweak theory predicts that the W boson interacts with the muon and muon neutrino, as well as

the electron and electron neutrino (without the electron and muon interacting directly). What

this means is that this electroweak (flavour-changing) process is mediated by a W -boson (with

mass MW ∼ 80GeV), and with some effort the decay amplitude can be computed (explicitly

depending on the mass MW ). Since the masses of the electron and muon (me ∼ 0.0005GeV and

mµ ∼ 0.1GeV) are extremely small compared to MW , this decay amplitude can be expanded for

large MW (since all momenta will be small compared to MW in the rest frame of the decaying

muon) — after expansion, this decay amplitude scales like 1/M2
W to leading order. Fermi’s theory

of weak interactions is the EFT which captures this leading-order behaviour, by considering an

effective interaction in which the electron and muon interact directly (with this operator in the

effective action being suppressed by a power of 1/M2
W , as expected from the generic description

of an EFT as being a low-energy expansion in powers of E/M � 1). It turns out for these sorts

of low-energy processes, Fermi’s EFT of weak interactions is far more convenient for computing

various decay and scattering amplitudes. From this perspective, EFTs are useful because they

are practical.

The EFT framework allows for the systematic assessment of theoretical errors when computing

1It is worth emphasizing here, that EFTs are incredibly useful for studying non-relativistic problems as well
(like condensed matter systems)

2
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any observable, since one can in principle work to whatever arbitrary order in the low-energy

expansion (in powers of E/M � 1, with more and more work with each increasing order). This

is especially true when the effective interactions weakly couple the field content so that well-

established perturbative techniques apply (many if not most EFTs are weakly interacting, with

some exceptions like QCD describing the strong nuclear force).

Related to this, since the action for a Wilsonian EFT can have arbitrarily many operators in

its action (ie. we can work to any power of E/M � 1 we’d like) this totally dismisses renor-

malizability as a criterion for the well-posedness of an EFT: they are (in general) notoriously

non-renormalizable theories. Long ago, it was thought that a field theory should be renormal-

izable in order to be well-defined (meaning all divergences can be absorbed by a finite number

of counter-terms), however EFT quickly does away with this outdated notion — the point is

that an EFT is plenty predictive even though it is not always renormalizable (the reason for this

being that to compute any physical observable to a particular order in the EFT expansion, one

only needs a finite number of counter-terms, which is all that is needed in practice anyways).

The aforementioned Fermi theory of weak interactions is an example of such an EFT, as it is

technically non-renormalizable, and yet it makes plenty of predictions that helped pave the way

for its more UV-complete counterpart (the Standard Model).

Underlying the framework of EFTs is the principle of decoupling — this principle dictates that

we tend to have different physical descriptions depending on what length scale we are studying

(for example the motion of water in your bathtub obeys equations which don’t need to take

into account the details of string theory — it is then said that the physics at these two scales

is decoupled). Decoupling says that effective descriptions change depending on the length scales

we probe: most of the details of small-distance phenomena seem to be irrelevant for the physical

description of larger-distance phenomena, and it turns out that quantum fields seem to obey this

general physical principle. Philosophically this is at base of the EFT programme.

The above discussion has focused so far on the ways EFTs are useful when its more UV-complete

behaviour is known. There is however another way in which EFTs can be useful: they help in-

form us about high energy behaviour when UV completions are still mysterious to us. If we

think we understand the symmetries and field content of a low-energy theory, we can straight-

forwardly work to higher and higher order in a low-energy EFT expansion. By studying physical

observables and their dependence on the parameters in such an EFT (and then comparing this

to experimental data) one can in principle glean information as to what kind of new physics kicks

in at higher energies (in this way, this algorithm is very general as it is by construction agnostic

3
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about many of the details of the UV completion). The Standard Model EFT (SMEFT) commu-

nity works along these lines — by thinking of the Standard Model as the low-energy limit of a

fancier UV completion, one looks at higher dimension operators in its low-energy expansion in

the hopes of finding deviations and inklings of new physics beyond the Standard Model. Another

EFT of this type important to this thesis are EFTs of gravity.

EFTs of Gravity and Semiclassical Gravity

Given that the earlier discussion motivated EFTs through the marriage of special relativity and

quantum mechanics (at least partially), it may first come as a surprise that Einstein’s theory of

gravity, General Relativity (GR) [7, 8], may be regarded as the lowest order term in an EFT

expansion. In an EFT of gravity [6, 9] the field content is the gravitational metric gµν , and

the symmetry is general covariance (aka. diffeomorphism invariance of the theory under local

changes in coordinates). One can build a low-energy Wilsonian EFT expansion out of various

contractions of the Riemann curvature tensor Rµνσρ[g] in an action of the form2

S = −
∫

d4x
√−g

[
Λ +

M2
Pl

2
R+ c1R

2 + c2RµνR
µν + . . .

]
(1.1)

where MPl = (8πG)−1/2 is the Planck mass, Λ is the cosmological constant, and Rµν = Rσµσν

and R = Rµµ are standard definitions of the Ricci tensor and scalar. Depending on what

the particular application of the EFT of gravity is, it is well-controlled (meaning all quantum

corrections are small and the theoretical errors can be quantified) when understood as a low

energy expansion in powers of E/M as earlier (where the heavy scale M may sometimes be the

Plank mass MPl, but this need not always be the case).

Just like the Fermi theory of weak interactions, GR is non-renormalizable (meaning, if one keeps

the leading-order term in (1.1) all divergences in the theory cannot be absorbed by a finite

number of counterterms — this turns out to be because the coupling M2
Pl has dimensions of

mass squared). However as emphasized earlier, renormalizability is not necessary for an EFT

to be predictive. For this reason, the action (1.1) is interesting to study and helps to inform us

of how gravitons (the particle excitations of gµν) behave, and may help to provide clues about

what more UV complete physics may look like.

Our universe is of course filled with matter, and so from this point of view we should be able

to couple other kinds of quantum fields to gravity. In what follows, we explore two important

2If one is expanding to second order in curvature, in principle one should include RµνσρRµνσρ if one is being
completely general about what scalars one can build out of two curvature terms — note however that this term
is related to the other curvature squared terms in (1.1) through a topological invariant, and so can be eliminated.

4
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examples where gravity couples to other forms of matter; the first where the quantum fluctuations

of the metric are studied, and the latter where the metric behaves classically.

The first example where gravity is coupled to other kinds of quantum fields, is in the theory of

inflation [11, 12, 13, 14, 15, 16] with action

S = −
∫

d4x
√−g

[
M2

Pl

2
R+

1

2
gµν∂

µφ∂νφ+ V (φ) + . . .

]
(1.2)

where φ is a real scalar field (which drives the accelerated expansion of the early universe), and

V (φ) is a potential in φ. In order to study scalar fluctuations as well as gravitons, one takes

(1.2) and expands

gµν = g̃µν + hµν (1.3)

about a de Sitter space background g̃µν (thought to be the large-scale geometry of our universe

at the time of this writing), where hµν are the small gravitational fluctuations (whose excitations

eventually give rise to gravitons). The dynamical variables in the above theory are then φ and

hij , which have been used to describe the power spectrum of the Cosmic Microwave Background

(CMB) radiation at very late times to a remarkable degree of accuracy [17, 18] (note however no

quantum correlations have been detected in the CMB — we return to this point briefly in §5).

Moving on to the second example, when we constrain the EFT of gravity given in (1.1) to be

in the semiclassical gravity regime, we are in a regime where the gravitational field is classical

(keeping only the classical background g̃µν in the expansion gµν = g̃µν + hµν and neglecting

quantum effects) all while responding/backreacting to the presence of other quantum fields it is

coupled to. A further approximation to this is QFT in Curved Spacetime (QFTCS) [19, 20, 21],

where gravity is classical but the other quantum fields do not back-react onto the metric (meaning

quantum processes like particle production to do with the other quantum fields are free to occur,

but the gravitational background is assumed to behave as if no quantum fields are present at

all). Semiclassical gravity and QFTCS gives rise to many interesting results, most notably for

this thesis: the fact that for classical spacetimes g̃µν which contain event horizons, there arises a

notion of temperature for any quantum fields that reside there. This is known to be true for free

quantum field theories coupled to classical gravity of the form

S = −
∫

d4x
√−g

[
1

2
g̃µν∂

µφ∂νφ+
1

2
m2φ2 + . . .

]
(1.4)

where the “. . .” are meant to emphasize that there are higher-order interaction terms being

neglected here (when thought of as some, here unspecified, low-energy EFT expansion). The

fact that a notion temperature arises in all of the well-understood spacetimes with horizons

5
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(Minkowski [24], de Sitter [25], and various black hole spacetimes) is partially what makes the

later discussions of Open EFTs so appropriate in these settings.

Most famously, when g̃µν is Schwarzschild spacetime,

ds2 = g̃µνdxµdxν = −
(

1− rs
r

)
dt2 +

(
1− rs

r

)−1

dr2 + r2dθ2 + r2 sin2 φdφ2 , (1.5)

with rs = 2GMBH the Schwarschild radius (with MBH the mass of the black hole) one encounters

the Hawking effect [22, 23]. The quantum field φ behaves as if it is immersed in a thermal bath

at Hawking temperature (for observers far from the black hole)

TH =
1

4πrs
, (1.6)

and furthermore the black hole radiates perfect blackbody radiation at the above temperature

and therefore slowly loses mass and starts to disappear at late times. The process of black

hole evaporation is of course only true in the semiclassical gravity regime (in this case, when

MPl/MBH � 1 so that quantum gravity effects are small3), which means that the description

stops being semiclassical at some point when the black hole loses enough of its mass. As a result

there has been much debate about the fate of black holes at very late times [26, 27, 28, 29, 30, 31]).

Before moving on to the next subsection we make two final remarks. First, that in both of the

standard gravitational examples explored in the above (and indeed many others as well), late

times are regimes of great interest that we would like to understand. Secondly, if we understand

actions such as (1.4) to be the zeroth-order terms in a low-energy EFT expansion (since in (1.4)

we ignore higher-order interactions of the quantum fields) then this means we are implicitly

saying we have perturbation theory under control (including at late times). In the next section

we argue that interactions in EFTs of gravity are settings where perturbation theory may in fact

be suspect at late times.

1.2 Late Times, Secular Growth and Gravity

Consider an arbitrary quantum Hamiltonian

Ĥ = Ĥ0 + gĤint (1.7)

3The reason for this is that the relevant low-energy scale for power-counting the EFT is set by the typical
size of a derivative in the background configuration E2 ∼ ∂2g̃. For the Schwarzschild background (1.5) one finds
E2 ∼ rs/r3, which means that the EFT expansion is organized in powers of E/MPl ∼ 1/(rsMPl) ∼MPl/MBH � 1
for r ∼ rs near the event horizon. Whenever MPl/MBH � 1 this ensures that quantum loops associated with the
metric are negligible [6].

6
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where there is some dimensionless coupling g � 1 assumed small so that the interaction Ĥint can

be considered weak, and where the quantum evolution under the free Hamiltonian Ĥ0 is known.

Solving for the dynamics in time-dependent perturbation theory generically leads to non-sensical

predictions at late times for observables, known as secular growth. An observable O(t) computed

in perturbation theory,

O(t) =
∑

n

gnOn(t) , (1.8)

is called secularly growing if On(t) → ∞ at late times t → ∞ (for any n ≥ 1). The reason for

this breakdown of perturbation theory and why it can be so generally expected to occur is that

fundamentally observables are computed using unitary operators of the form

Û(t) := e−i(Ĥ0+gĤint)t . (1.9)

In performing a perturbative expansion, the evolution operator effectively gets expanded in g � 1

such that U(t) ' e−iĤ0t(1− igĤintt + . . .) — what this means is that no matter how small the

coupling g is, there always comes a time late enough in which it is a bad approximation to

compute Û(t) in powers of gĤintt.

As emphasized above, the EFT paradigm is generally a perturbative programme (especially when

gravity is involved) and so one may naturally ask why so many calculations in particle physics

seem to be free of secular growth issues: the answer is that this is because scattering calculations

are one of the few types of quantum mechanical calculations where this is distinctly not an issue.

In a typical scattering problem, the wavepackets of the initial components start off distantly

separated at early times, and only interact for a brief moment as their wavefunctions overlap

during the scattering event, and then finally the products freely fly off at late times (see Figure

1.1). This exception to the rule of secular growth helps to explain why the commonness of secular

breakdowns are somewhat under-appreciated in the particle physics community.

There are however plenty of other communities where secular growth is a well-known obstruction

to reliably computing late time behaviour. In particular, it is an issue whenever interactions

persist indefinitely (so perturbatively small effects accumulate to eventually yield large divergent

contributions): most notably in cases where particles interact with a medium, or environment.

Perhaps the best-studied setting where this happens is in calculations involving thermal baths

— when these thermal perturbative calculations are phrased in terms of EFTs, secular growth

often manifests itself in momentum space as severe (aka. power-law as opposed to logarthmic)

divergences, which translate to secular growth predictions for observables such as correlation

functions (for example, in hard thermal loop QCD calculations for near-massless bosons [32, 33],

7
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Figure 1.1: A cartoon of a scattering problem: non-interacting wavepackets are set up
far apart from each other at t → −∞, interact for a brief moment ∆tinteraction as their
wavefunctions overlap (with ∆tinteraction a short time interval over which perturbation theory
can be trusted), and the products fly off again for late times t→ +∞.

or the breakdown of mean-field methods when calculating nearby a critical point [34]).

Gravity as a Medium

It turns out that essentially any quantum system coupled to a gravitational field tends to suffer

secular breakdowns of perturbation theory. The reason for this is not that there is something

special about gravity (in this regard), but simply because the gravitational background is eter-

nally present: for any quantum degrees of freedom coupled to the background, gravity acts as a

medium for secular growth effects to manifest over. There are plenty of examples of this in the

literature, most prominently in cosmological settings [35, 36, 37, 38, 39, 40, 41, 42], but has been

shown to occur in Minkowski space [43, 44] as well as black hole spacetimes [45]. Since secular

divergences are known to be commonplace in thermal field theories, this is perhaps unsurprising

since all of these spacetimes have horizons and therefore a notion of temperature within them.

1.3 Late-Time Resummations

Just because weakly-coupled theories suffer secular growth problems does not mean we need to

exactly solve the theory in order to make reliable predictions at late times. Through a late-time

8
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resummation, one can extend the validity of perturbation theory to gain access to late time

behaviour (at least for certain regimes of parameter space).

The simplest example of this has to do with particle decay, where the number of particles N(t)

in the system obeys the evolution equation

dN(t)

dt
= −ΓN(t) . (1.10)

The decay rate Γ is computed in perturbation theory, and so it may seem at first surprising that

we can trust the solution

N(t) ' N(0)e−Γt (1.11)

out to very late times where Γt � 1. If one were to solve the equation naively in perturbation

theory, all the equation tells you is that

N(t) ' N(0)[1− Γt+ . . .] , (1.12)

which clearly suffers the problem of secular growth and stops begin useful the moment Γt ∼ O(1)

or larger. Why then can we trust the exponential in (1.11)?

The saving grace here is the observation that the evolution equation d
dtN(t) = −ΓN(t) is time-

local. It does not depend explicitly on t (only implicitly throughN), and therefore its perturbative

solution can be derived anywhere along the time axis. For example, one need not solve equation

(1.10) starting at t = 0, one can instead solve it at a different later time t = tj > 0, where the

perturbative solution is

N(t) = N(tj)[1− Γ(t− tj) + . . .] (1.13)

where (similar to the above) the perturbative solution can be trusted for Γ(t − tj) � 1. The

above implies that we have a family of solutions, each which can be trusted for some very small

window of times — if these windows overlap, then we can trust the solution over the union of

all these windows, and for this reason it truly makes sense to trust the exponential decay law

N(t) ' N(0)e−Γt, even though Γ is computed in perturbation theory. See Figure 1.2. If, for

example, the decay rate is computed to second order in the interaction so that Γ ∼ O(g), then

it is said that the solution has been resummed to all orders in gt, while neglecting orders g2t

effects. This happily means we have access to much later times than the original perturbation

series.

The above late-time resummation argument is in spirit a renormalization group-like argument

as it is reminiscent of how perturbative expressions for the runnings of couplings (as a function

9
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Figure 1.2: In the upper figure, perturbation theory gives a valid solution over a tiny interval
t ∈ [0, t2] where Γt � 1. In the lower figure, since the evolution equation is time-local, it
does not matter which tiny interval we perturbatively solve the equation in. We can trust
each of the perturbative solutions in the small interval where it is valid and stitch them all
together to trust the resummed solution N(t) ' N(0)e−Γt out to very late times.

of energy scale µ) get their domain of validity extended. For example in a standard course

in quantum electrodynamics (QED), one often computes the running of the renormalized4 fine

structure constant α(µ) in perturbation theory [6] for energy scales µ ≥ me above the mass of

the electron (where famously α0 := α(me) = e2/(4π) ' 1/137 with e the elementary charge). At

one loop in QED, one finds

α(µ) '
[
1− α

3π
log

(
µ2

0

µ2

)]
α(µ0) (1.14)

for any energy scale µ nearby a reference scale µ0 such that
∣∣α log(µ2/µ2

0)
∣∣ � 1. Since the

reference scale µ0 is arbitrary, one can derive the solution (1.14) for µ close to any applicable

QED scale µ0 ≥ me — differentiating the above expression with respect to log(µ2) one then finds

4typically in the modified minimal subtraction renormalization scheme
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that (1.14) implies

dα(µ)

d log(µ2)
= +

α2(µ)

3π
, (1.15)

which gives an answer for α(µ) with a much larger domain of validity than (1.14) would naively

imply, requiring the much weaker condition α � 1. When (1.16) is solved with the initial

condition α0 = α(me), one finds that

α(µ) =

[
1

α0
− 1

3π
log

(
µ2

m2
e

)]−1

(1.16)

and it is here said that the renormalization group improved running implied by (1.16) is valid

to all orders in α log(µ2/m2
e) (so long as α � 1) — this is the same kind of resummation being

performed at late times in the remainder of this work.

There are different ways to derive late-time resummations in the literature, however the method

used in Open EFTs (and so pertinent to this thesis) comes from Markovianity arguments in the

study of open quantum systems.

1.4 Open Quantum Systems

The framework of Open Quantum Systems (OQSs) [46, 47, 48, 49, 50, 51, 52, 53] is designed to

study a sector A (called the open system) whose degrees of freedom we are interested in tracking,

which interacts with some unobserved sector B (called the environment). Sectors A and B have

their own respective Hilbert spaces HSystem and HEnvironment which means that the interaction

is assumed to mix the two sectors with a Hamiltonian of the form

Ĥ = ĤA ⊗ IB + IA ⊗ ĤB + gĤint . (1.17)

For simplicity we assume in this section that the above Hamiltonian is time-independent. The

operators ĤA,B and IA,B are free Hamiltonians and identities on the Hilbert spaces of the system

and environment respectively, and the coupling g is usually assumed to be small so that the

system can be studied perturbatively assuming that the operator

Ĥ0 := ĤA ⊗ IB + IA ⊗ ĤB (1.18)

can be treated as a free Hamiltonian (under which the evolution of the system can be solved).

The situation is depicted in Figure 1.3. As with any quantum system, the density matrix ρ̂(t)

describing the state of both sectors A and B (an operator on HSystem ⊗HEnvironment) obeys the

11
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Figure 1.3: Schematic set-up for an open quantum system interacting with an environment.

Liouville equation

∂ρ̂

∂t
= −i[Ĥ0 + gĤint, ρ̂(t)] . (1.19)

The unitary time evolution underlying the equation is guaranteed to preserve the essential prop-

erties of the density matrix: (i) ρ̂† = ρ̂, (ii) Tr[ρ̂] = 1 and (iii) ρ̂ ≥ 1 (the latter meaning that

the eigenvalues of ρ̂ are non-negative). In particular the properties (ii) and (iii) together ensure

that all probabilities associated with the density matrix are properly bounded between 0 and 1.

In the framework of OQSs, the goal is to understand what the accessible sector A is doing

(without directly tracking the evolution of B), which means to track the reduced density matrix

%̂A := Tr
B

[ρ̂] (1.20)

with all the degrees of freedom of sector B traced away. In principle, %̂A (an operator acting

on HSystem alone) allows one to calculate whatever time-dependent observables desired in the

system. What is intriguing about OQSs is that the time evolution is no longer unitary — since the

interaction mixes the Hilbert spaces of the system and environment, if one tracks the evolution

of %̂A alone then it is free to undergo dissipation (leakage of energy into the environment), as

well as decoherence (loss of quantum coherence so that %̂A tends towards a classical statistical

ensemble).

12
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1.4.1 Master Equations

Typically the evolution of %̂A is understood using a master equation, which is derived from the

underlying Liouville equation. In this subsection we briefly derive an elementary master equation,

which is derived from the interaction picture version of equation (1.19)

∂ρ̂I

∂t
= −ig[ĤI

int(t), ρ̂
I(t)] . (1.21)

where the interaction picture variables are defined as

ĤI

int(t) := e+iĤ0tĤinte
−iĤ0t

ρ̂I(t) := e+iĤ0tρ̂(t)e−iĤ0t

(1.22)

and similarly for the reduced density matrix

%̂I

A(τ) = e+iĤAt%̂A(t)e−iĤAt . (1.23)

The best would be if one could simply apply the partial trace operation TrB directly onto (1.21)

so as to yield a master equation involving %̂A only. It turns out this is not so straightforward, and

one needs a more useful form of the Liouville equation to make progress. To this end we note

that there are other ways of writing the interaction picture Liouville equation, the first being the

integral version of (1.21)

ρ̂I(t) = ρ̂I(0)− ig
∫ t

0

ds [ĤI

int(s), ρ̂
I(s)] , (1.24)

and another version which involves inserting (1.24) into the RHS of (1.21) giving

∂ρ̂I

∂t
= −ig[ĤI

int(t), ρ̂
I(0)]− g2

∫ t

0

ds
[
ĤI

int(t), [Ĥ
I

int(s), ρ̂
I(s)]

]
. (1.25)

Note that (1.21), (1.24) and (1.25) are all equivalent. However it turns out that the last equation

is a useful starting point for developing a simple master equation if one additionally assumes

that the initial state is uncorrelated

ρ̂I(0) = %̂I

A(0)⊗ B̂ (1.26)

where B̂ is the initial state of the bath (assumed to be time-independent). By examining equation

(1.25), one can easily deduce that any correlations for t > 0 must come in at O(g) or higher5,

and so under this assumption one performs the so-called Born approximation

ρ̂I(t) ' %̂I

A(t)⊗ B̂ +O(g) , (1.27)

5Inserting ρ(t) = %̂A(t) ⊗ B̂ + gρ̂correlations(t) into (1.25) shows that this ansatz is consistent.

13



PhD Thesis - G. P. Kaplanek; McMaster University; Physics & Astronomy

in equation (1.25) giving

∂ρ̂I

∂t
' −ig[ĤI

int(t), ρ̂
I(0)]− g2

∫ t

0

ds
[
ĤI

int(t), [Ĥ
I

int(s), %̂
I

A(s)⊗ B̂]
]
. (1.28)

If one then assumes that the interaction is of the form

g ĤI

int(t) = g ŜI(t)⊗ B̂I(t) , (1.29)

then one can easily take the partial trace of (1.28) which gives rise to (after a change of integration

variable s→ t− s)

∂%̂I
A

∂t
' −g2

∫ t

0

ds

(
〈B̂I(t)B̂I(t− s)〉B̂

[
ŜI(t), ŜI(t− s)%̂I

A(t− s)
]

+ h.c.

)
(1.30)

where for simplicity we assume that

Tr
B

(
−ig[ĤI

int(t), ρ̂
I(0)]

)
= 0 (1.31)

and we define the environment average

〈Ô〉B̂ := Tr
B

[ÔB̂] . (1.32)

The master equation (1.30) is a simple master equation, which happens to agree with the leading-

order term of its more sophisticated counterpart the Nakajima-Zwanzig equation [54, 55] used in

the §2 and §4 of this thesis. However, as it stands equation (1.30) is not time-local and so an

additional approximation is required if it is to help us gain access to late times.

1.4.2 Horizons, Open EFTs and Lindblad Equations

For any type of EFT of gravity which couples quantum objects to a gravitational background it

seems that an OQS description strongly resembles the way in which an event horizon partitions

the degrees of freedom in the problem. The horizon naturally splits up the system into an

observed and an unobserved sector, which interact with one another (even though we can only

make measurements on one side of the horizon — see Figure 1.4). Considering this, and the fact

that gravitational backgrounds seem to introduce secular growth issues, it turns out that the

techniques of OQSs are extremely useful for studying such EFTs of gravity.

In order to be considered an Open EFT however, there should be a hierarchy of scales available

in order to simplify computations. It turns out that access to late times relies on whether there

is a limit of master equations like (1.30) in which it becomes time-local on the right hand-side,
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Figure 1.4: A cartoon of how an open quantum systems treatment may be applied to a
regions of spacetime separated by an event horizon (in this case that of a black hole with
Schwarzschild radius rs).

such that

∂%̂I
A

∂t
' −g2

∫ ∞

0

ds

(
〈B̂I(t)B̂I(t− s)〉B̂

[
ŜI(t), ŜI(t− s)%̂I

A(t)
]

+ h.c.

)
. (1.33)

Here one expands (about s = 0) the operator

%I

A(s) ' ρI

A(t)− s∂t%I

A(t) + . . . (1.34)

on the RHS of (1.33), under the assumption that there exists a hierarchy of scale between the

correlation time of 〈B̂I(t)B̂I(t− s)〉B̂ and the size of ∂t%
I
A(t) — the limit in which (1.33) is true

is known as the Markovian approximation6. Note that in equation (1.33) we have additionally

assumed that we probe times t much larger than the correlation time in the environment (so

that the upper limit on the integration can be approximated by ∞).

The Markovian approximation coarse-grains the evolution along the time axis, since it loses the

“memory” of the integration over s. What is so powerful about the Markovian approximation is

that one can convert equations like (1.33) into so-called Lindblad form [56, 57, 58] (now written

6Whose namesake comes from the Markov chain stochastic process, a sequence of events in which the probability
of an event occurring depends only on the state attained in the previous event.
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in the Schrödinger picture)

∂ρ̂A(t)

∂t
= −i[ĤA + g2Ĥeff , %A(t)] + g2

∑

j,k

hjk

(
Âj%A(t)Â†k −

1

2

{
Â†kÂj , %A(t)

})
(1.35)

for some effective Hamiltonian Ĥeff , and some family of operators Âj (usually closely related

to operators ŜI(t) in the original interaction), and the matrix [hij ] are called the Kossakowski

coefficients (which in practice are the s-integrals in (1.33) over the correlations 〈B̂I(t)B̂I(s)〉B̂).

Most crucially, Lindblad equations like (1.35) are time-local and therefore reliably predict late

time behaviour. The way this works is to notice that time-dependent perturbation theory would

instead predict the behaviour (in the interaction picture, where ĤI

eff(t) := e+iĤAtĤeffe
−iĤAt and

ÂI
j(t) := e+iĤAtÂje

−iĤAt)

ρ̂I

A(t) ' −ig2

∫ t

t0

ds [ĤI

eff(s), %I

A(t0)]

+ g2

∫ t

t0

ds
∑

j,k

hjk

(
ÂI

j(s)%
I

A(t0)ÂI†
k (s)− 1

2

{
ÂI†
k (s)ÂI

j(s), %
I

A(t0)
}) (1.36)

for any initial time t0 ≥ 0 (c.f. equation (1.14)), with this perturbative expression being valid

for g2(t− t0)/ξ � 1 (with ξ some typical timescale associated with the environment). Since the

solution is valid over any perturbatively small interval anywhere along the time axis (picking t0

anywhere we like, not necessarily at t0 = 0), this means we can trust the solutions over the union

of all these tiny overlapping time intervals and one can therefore trust the integrated solution to

(equivalent to (1.35))

∂ρ̂I
A(t)

∂t
= −ig2[ĤI

eff(t), %A(t)] + g2
∑

j,k

hjk

(
ÂI

j(t)%
I

A(t)ÂI†
k −

1

2

{
ÂI†
k Â

I

j , %
I

A(t)
})

(1.37)

to all orders in g2t/ξ (so long as g � 1). This is the same late-time resummation argument

given in §1.3 and is the main tool of the Open EFT treatment considered in this thesis as it

is fundamentally a hierarchy of scales argument (for other examples of Open EFTs used for

gravitational problems see [61, 62, 63, 64, 65, 66, 67, 68]).

Finally we note that Lindblad equations like (1.35) are easily shown to preserve hermicity and

unit traces of %̂A. It is also a theorem that if the eigenvalues of the Kossakowski matrix [hij ] are

non-negative then the Lindblad equation preserves positivity7,8. One of the lines of reasoning

7Technically, it preserves a stronger notion of positivity called complete positivity — by definition a finite
dimensional operator Ô is completely positive if Ô⊗ IN it is positive for any identity operator IN . This notion of
positivity is important in open quantum systems since it ensures states are positivity-preserving no matter what
kind of system they may get entangled with.

8The proof that complete positivity is preserved by Lindblad equations with non-negative Kossakowski coeffi-
cients is rather technical (using the technology of so-called quantum dynamical semigroups), and so we refer the
reader to [56, 57, 59, 60].
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taken in the Open EFT approach in this thesis is that if one consistently tracks the size of

theoretical errors when taking each approximation in the above then one must end up with a

positivity-preserving Lindblad equation (since the underlying Liouville equation one starts with

is positivity-preserving).

1.4.3 Qubits

For the rest of this section we make use of the earlier developments of this section so as to study

the simple toy model of a qubit (or Unruh-DeWitt detector [24, 69]) which moves through some

spacetime coupled to a quantum field (see Figure 1.5). We specify to the simple case in which the

Figure 1.5: A cartoon of an Unruh-DeWitt detector: a qubit which traverses some trajectory
through a curved spacetime, while interacting with a quantum field living there.

role of the environment is played by a real scalar field φ living in flat Minkowski space (assumed

to be massless and non-interacting), and the qubit free Hamiltonian is

ĤA(τ) =
ω

2
σ̂3

dτ

dt
(1.38)

where σ̂j denote the standard 2 × 2 Pauli matrices. We pick the interaction between the open

system and environment to be (in the interaction picture)

g ĤI

int(τ) = g ŜI(t)⊗ B̂I(t)
dτ

dt
(1.39)

with

ŜI(t) :=

[
0 e+iωτ

e−iωτ 0

]
and B̂I(t) := φI [yµ(τ)] (1.40)

where φI is the interaction picture field and the trajectory of qubit is yµ(τ) (parametrized by

the proper time τ as measured by the qubit). Note that both (1.38) and (1.39) include Jacobian

factors dτ/dt, which ensure that these operators generate translations in terms of the qubit’s

proper time (where t is the Minkowski time with which the scalar’s free Hamiltonian generates

17



PhD Thesis - G. P. Kaplanek; McMaster University; Physics & Astronomy

time translations in). The trajectory is here chosen to be (for a > 0)

yµ(τ) :=
(

1
a sinh(aτ), 1

a cosh(aτ), 0, 0
)
. (1.41)

Observers moving along the above uniformly accelerated trajectory will famously experience the

Minkowski vacuum |M〉 to be a thermal state at Unruh temperature T = a/(2π) [24, 70]. By

assuming the environment is prepared in the Minkoswski vacuum B̂ = |M〉〈M|, it turns out that

(1.30) becomes the set of equations

∂%I
11

∂τ
= g2

∫ τ

−τ
dsW(s)e−iωs − 4g2

∫ τ

0

ds Re[W(s)] cos(ωs)%I

11(τ − s) ,

∂%I
12

∂τ
= −2g2

∫ τ

0

ds Re[W(s)]e+iωs%I

12(τ − s) + 2g2e+2iωτ

∫ τ

0

ds Re[W(s)]e−iωs%I∗
12(τ − s) ,

(1.42)

where (with the limit ε→ 0+ understood)

W(τ) = Tr
B

(φI [yµ(τ)]φI [yµ(0)]) = − a2

16π2 sinh2
[a(τ−iε)

2

] . (1.43)

and where we have used

%̂I

A =

[
%I

11 %I
12

%I
21 %I

22

]
=

[
%I

11 %I
12

%I∗
12 1− %I

11

]
. (1.44)

So as to take the Markovian approximation, we note that the correlator W(τ) is peaked around

τ = 0 and correlations die away exponentially fast with timescale ∼ 1/a. When the timescales

associated with ∂τ%
I
A(τ) are large compared to 1/a the Markovian approximation should apply.

However, as emphasized in [71] (as well [1, 72, 90]) taking the Markovian approximation in (1.34)

results in an equation of motion that additionally requires ω/a � 1 (otherwise the subleading

terms in the Taylor series (1.34) become too large, spoiling the approximation). One way of

very easily attaining this (surprisingly stringent) Markovian limit is to take instead of (1.34) the

Taylor series

%̂I

A(τ − s)ŜI(τ − s) ' %̂I

A(τ)ŜI(τ)− s
(
∂τ %̂

I

A(τ)ŜI(τ) + %̂I

A(τ)∂τ Ŝ
I(τ)

)
+ . . . , (1.45)

keeping the leading-order term so that (1.42) becomes (also assuming τ � 1/a so the limits on

the integrals can be taken to be ∞)

∂%I
11

∂τ
' g2

∫ ∞

−∞
dsW(s)− 4g2

∫ ∞

0

ds Re[W(s)]%I

11(τ) ,

∂%I
12

∂τ
' −2g2

∫ τ

0

ds Re[W(s)]%I

12(τ) + 2g2e+2iωτ

∫ τ

0

ds Re[W(s)]%I∗
12(τ) .

(1.46)
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After some integration, the above equations simplify to

∂%I
11

∂τ
' g2a

4π2

(
1− 2%I

11(τ)

)
,

∂%I
12

∂τ
' g2a

4π2

(
− %I

12(τ) + e+2iωτ%I∗
12(τ)

)
.

(1.47)

These time-local equations have solutions which can be trusted to all orders in g2aτ where9

%I

11(τ) ' 1

2
−
[

1

2
− %11(0)

]
e−

g2aτ
2π2 ,

%I

12(τ) ' e−
g2aτ
4π2

[
%12(0) + %∗12(0)

g2a

4π2ω
(1− e2iωτ )

]
,

(1.48)

which means that the late-time state attained by the qubit is

lim
τ→∞

%I

A(τ) '
[

1
2 0
0 1

2

]
(1.49)

which is a maximally mixed state (to be understood as the high-temperature limit of a ther-

mal state at the Unruh temperature), with the off-diagonals vanishing in the late time limit

diminishing all quantum coherence.

To connect the above solution to the earlier discussion of secular growth one notes that the

solution %I
11(τ) found in time-dependent perturbation theory is simply

%I

11(τ) ' %11(0)−
(
%11(0)− 1

2

)
g2aτ

2π2
+ . . . (Perturbation Theory) (1.50)

which is easy seen to be the g2aτ � 1 limit of (1.48). All this means is that perturbation theory

correctly captures the departure from the initial state, but fails to work when g2aτ & O(1)

(resulting in a secular growth breakdown at late times). Finally it is worth noting that one can

easily place the equations (1.47) into Lindblad form, where

∂%̂A

∂τ
= −i

[
ω

2
σ̂3, %̂A

]
+ g2

3∑

j,k=1

hjk

(
σ̂j %̂Aσ̂

†
k −

1

2

{
σ̂†kσ̂j , %̂A

})
(1.51)

where the Kossakowski matrix is in this case simply

[hjk] =



g2a
2π2 0 0
0 0 0
0 0 0


 , (1.52)

which is easily seen to have non-negative eigenvalues. What this confirms is the logic that when

the appropriate limit of the underlying equations is taken, all equations should be well-behaved

physically (in this case, we see that the resulting equation of motion preserves positivity without

requiring any further approximations, like the rotating-wave approximation — see also [74, 75]).

9In solving %I12 one additionally assumes that g2a
4π2ω

� 1 so as to examine a simplifeid non-degenerate regime
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1.5 Point Particle EFTs

Wilsonian effective field theories described in §1.1 are organized in terms of a hierarchy of energy

scales. In the case that one studies a tiny compact object, in which the details of the short-

distance (aka. high energy) physics is unknown to us, it is useful to organize an EFT in terms of

a hierarchy of length scales. These types of effective theories are known as point-particle EFTs

(PPEFTs). We briefly describe these since both §3 and §4 use ideas from PPEFTs.

In general PPEFTs can be useful for parametrizing UV physics over length scales of the same

order or much larger than the size of the compact object (or point particle). Oftentimes these ef-

fective theories are applied to atoms with complicated substructure which ordinary QFT methods

are hard-pressed to describe (this already becomes an issue for relatively small nuclei, with atomic

numbers Z & 2). For example, if one seeks to compute observables like energy shifts in non-trivial

atoms (when finite nuclear size effects are difficult to derive from first principles), PPEFTs are

useful in accounting for nuclear-size effects in a model-independent way (with systematic control

over theoretical errors at every order in the EFT expansion) [76, 77, 78, 79, 80, 81, 82].

The PPEFT framework need not however be constrained to describe atoms only though: for

astrophysical objects these same techniques can be used to help understand the UV physics for

compact objects like black holes. For example, PPEFTs have been used to quantify the size of

potential UV physics near the event horizon of a black hole in [83, 84] (since quantum gravity

effects are thought to modify near-horizon physics). As described later in this thesis, PPEFTs

are in part used to develop a toy model of a black hole (which also contains Open EFT features),

which is designed to apply over macroscopically large distances compared to the size of the black

hole.

1.6 Outline of Thesis

The rest of this thesis is structured as follows: In §2 we study a qubit which hovers near the event

horizon of a black hole, and we find its late-time thermal state. In §3 we introduce the hotspot

model, which is meant to serve as a toy model of a black hole highlighting the OQS nature of a

black hole’s degrees of freedom (being split by the presence of an event horizon). This model is

understood as a PPEFT, meant to serve as a predictive model only over distances much bigger

than the size of the toy black hole. In §4 we study the hotspot model further, while applying

two Open EFT techniques on the field describing the exterior of the toy black hole. Finally, we

make some concluding remarks in §5.
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Chapter 2

Hot Qubits on the Horizon

G. Kaplanek and C. P. Burgess,

“Qubits on the Horizon: Decoherence and Thermalization near Black Holes,”

JHEP 01 (2021), 098

doi:10.1007/JHEP01(2021)098

[arXiv:2007.05984 [hep-th]].

2.1 Preface

We begin by studying the so-called Unruh-deWitt detector model (encountered earlier in §1.4.3),

in which a particle detector (ie. a qubit in this case) is coupled to a real scalar field φ, which

in turn is coupled to a classical Schwarzschild spacetime. The qubit is here forced to hover just

outside the event horizon of the black hole.

A free real scalar field is the simplest type of quantum field that can interact with a gravita-

tional background. Despite this the mathematics involved in coupling a scalar to Schwarzschild

space are immensely complicated — computing correlation functions like 〈φφ〉 are in general very

complicated mode sums [85], which can at best be only approximated by asymptotic forms. A

large portion of the work in this chapter has to do with controlling the near-horizon limit of a

class of correlation functions (obeying the Hadamard form coincidence limit) — in particular for

static observers sitting outside the horizon, correlations simplify drastically due to the enormous

redshifts factors that contribute near the horizon of the black hole. It is shown that the late

time limit ∆t/rs � 1 (with ∆t the Schwarzschild coordinate time) is accessible for the remark-

ably simple self-correlations found along the trajectory of the qubit (with all corrections being

parametrically small and controllable).
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Armed with these simplified correlations, the Nakajima-Zwanzig master equation is used to take

the Markovian approximation using the hierarchy of scales between the Hawking temperature

(∼ rs the correlation time in the environment) and the size of the variation of the qubit’s

reduced density matrix. One finds the expected result that the qubit thermalizes to the Hawking

temperature at very late times (because of the equivalence principle of GR there is also a close

relationship here with the uniformly accelerated trajectory studied in [71] and §1.4.3)

The major theme of this paper is control of theoretical error in the late time regime of the

qubit: both the complicated correlations of Schwarzschild space, and the Markovian limit of

the associated qubit state take a remarkably simple form once one is careful to stay within

the described approximation scheme. Another point of emphasis is just how tightly the late

time resummation constrains the parameter space here — by being careful to remain within

the domain of validity of the Markovian approximation one finds that only small qubit gaps

(compared to the Hawking temperature) admit a Markovian description.
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1 Introduction and summary

Making reliable predictions can be difficult at the best of times. But reliably predicting
behaviour at very late times is notoriously hard. What makes it difficult is the inevitable
breakdown of perturbative methods that happens at late times; a huge handicap given that
perturbative methods dominate a theorist’s intellectual toolbag.

Perturbative methods break down for a simple reason: if a Hamiltonian can be written
H = H0 + gH1 for some small dimensionless parameter g, then there is always a time
beyond which the time-evolution operator U(t, t0) = exp[−iH(t− t0)] is not well-described
by perturbing in g. The time where this breakdown occurs scales as an inverse power of
g, but is eventually exceeded no matter how small g might happen to be. Like death and
taxes, perturbative failure is just a matter of time.

This might not be bothersome if such late times were never of interest. However many
important physical processes occur on long time-scales like these. For example, even when
individual photons interact weakly with individual atoms, phenomena like refraction and
reflection (where 100% of photons scatter in one direction or another) occur on time-scales
long enough to invalidate perturbing in electromagnetic interactions. Thermalization is
another phenomenon whose time-scales are very large and scale inversely with coupling
strengths like g.

– 1 –
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In this paper we explore similar late-time issues for interacting quantum systems mov-
ing in gravitational fields. That similar phenomena must exist — particularly in the pres-
ence of horizons — is clear given the thermal nature of quantum fields in these space-
times [1–6]. Test probes should be expected to thermalize in such environments, and any
description of this process should share all of the late-time complications that thermal-
ization calculations always have [7–14]. In this paper we show this is true for quantum
systems exterior to a Schwarzschild black hole, extending our own earlier work that does
so for spacetimes with Rindler [15, 16] and de Sitter horizons [17].

The reason for doing so is not because this kind of thermalization is soon likely to be
observed. On the contrary, it is worth doing because the tools used are informative in their
own right. In particular, they show how standard techniques used to describe late-time
behaviour in optics and thermal physics apply equally well in gravitational settings [18–28].
This makes them potentially relevant to late-time puzzles known to occur in gravity, such as
the problem of secular growth in cosmological spacetimes [29–57] (for reviews see [58, 59])
and to problems like information loss [60] or ‘firewall’ problems [61, 62] in black-hole physics
(for reviews see [63, 64]).

In this paper we compute the late-time evolution of a two-level quantum system (i.e. a
qubit or Unruh detector [5, 65, 66]) that hovers at fixed radius r = r0 above the event
horizon of a Schwarzschild black hole while interacting with a quantum scalar field. We do
so perturbatively in the dimensionless coupling strength g with which the qubit interacts
with the quantum field. We show that if ω∞ is the redshifted splitting of the two qubit en-
ergy levels, and if ω∞ rs ! 1 where rs = 2GM is the usual Schwarzschild radius, and if the
scalar-field mass also satisfies mrs ! 1, then such a qubit has universal late-time behaviour
(for t ! rs/g

2) provided that it sits sufficiently close to the event horizon: 0 < r0−rs ! rs.
Not surprisingly, this universal evolution describes the evolution of the qubit towards

an asymptotic thermal state whose temperature equals the Hawking temperature T =
TH := (4πrs)−1. Perhaps more surprisingly we show that this approach to equilibrium
is also very robust, occurring exponentially with two different thermalization time-scales
proportional to

ξ = 4π tanh (2πrs ω∞)
g2ω∞

# 8π2rs
g2 + · · · since ω∞rs ! 1 . (1.1)

This evolution is robust in the sense that it depends only on the qubit/field coupling
strength, g, and on the background geometry for any quantum state whose Wightman
function has the standard ‘Hadamard’ form [67–69] at small field separations: i.e. it satis-
fies (3.13), reproduced here as

GΩ(x, x′) =
1

8π2 σ(x, x′) + · · · , (1.2)

where σ(x, x′) is half the square of the geodesic distance between spacetime points x and
x′. In particular, eq. (1.1) applies equally well if the quantum field is prepared in either the
Hartle-Hawking or Unruh vacua, and is independent of the scalar-field mass in the mass
range mrs ! 1.

– 2 –

PhD Thesis — G. P. Kaplanek; McMaster University; Physics & Astronomy

25



J
H
E
P
0
1
(
2
0
2
1
)
0
9
8

It has been known for some time that Hadamard behaviour suffices for deriving the
steady-state Hawking flux around Schwarzschild black holes [70], and our results extend
this conclusion to the approach to equilibrium for quantum probes. We remark in passing
that our results differ from early — and some recent — calculations of Unruh detectors
in Schwarzschild geometries [71–76], which often compute qubit excitation rates, finding
results that differ when the field is prepared in different states (such as the Hartle-Hawking
or Unruh vacua). These calculations usually compute the rate with which a qubit is ex-
cited out of its ground state, as opposed to the qubit’s late-time approach to its asymptotic
thermal state (as is computed here). Although the excitation rate can be accessed per-
turbatively in g, more effort is required to obtain the approach to equilibrium since the
time-scale involved is of order rs/g2.

We are able to make reliable predictions using arguments of Open Effective Field
Theories (Open EFTs) [24, 26, 28]. As is explained in more detail in [16], these recast
techniques from elsewhere in physics into an effective field theory language that is easily
adapted to gravitational systems. In essence these arguments have a renormalization-group
like structure: one sets up a differential evolution equation for the object of interest (in
this case the reduced density matrix for the qubit) whose domain of validity is larger than
the integrated evolution from which it is derived. That is, one explicitly evolves the system
using perturbation theory starting from an arbitrary initial time, t0. Although perturbative
evolution can only be used to evolve a limited way forward in time, say from t0 to t1, within
this window the result can be differentiated with respect to time to derive a differential
evolution equation.

If this evolution equation itself makes no specific reference to t0 then the same con-
struction could equally well be used to derive the same evolution equation starting at t1,
with perturbative validity out to t2, and again starting at t2 and so on. Whenever this can
be done the solutions to the differential evolution equation can be valid on the union of
each of these derivation intervals. If g ! 1 is the small perturbative expansion parameter
then this process ends up resumming all orders in g2t, say, but neglecting contributions in
the evolution1 that are of order g4t. As a result the solutions found this way can be trusted
even when t ∼ O(rs/g2).

One reason to explore the simple qubit systems considered here is to make this con-
struction very explicit, making it easier to understand. The starting point for the argument
is the Nakijima-Zwanzig equation [77, 78], which is a general evolution equation for the
reduced 2×2 density matrix, !(t), of the qubit. It is obtained by tracing over the Liouville
equation describing the evolution of the full qubit/field system, and then eliminating that
part of the density matrix that describes the non-qubit degrees of freedom. The result is an
integro-differential evolution equation that is useful because it refers only to the qubit’s re-
duced density matrix and not to the other degrees of freedom, which appear only implicitly
through correlation functions of Hint. Although the Nakajima-Zwanzig equation does not
in itself automatically allow perturbative time-evolution to be extended out to very late
times, it provides a useful starting point for identifying situations where this can be done.

1Order g4t evolution is similarly predicted using a more accurate evolution equation, and so on.

– 3 –
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As is true for most effective field theories, relative s implicity comes only when there is
a hierarchy of scales that can be exploited. The important hierarchy arises in this case if the
field correlation function 〈Hint(t)Hint(t′)〉 falls off to zero for |t−t′| > ζ, for some character-
istic time-scale ζ. In this case the useful hierarchy arises when exploring time-evolution over
much longer time-scales ∆t( ζ. Access to late times can happen if the Nakajima-Zwanzig
equation remains sufficiently simple once expanded in powers of this ratio ζ/∆t.

The qubit example studied here shows in detail how this can happen: the leading terms
in the Nakajima-Zwanzig equation become Markovian, in the sense that ∂t!(t) depends
only on !(t) and not on the details of its past history prior to time t. Markovian behaviour
of this form emerges for qubits near a black hole once ∆t( rs (at least this is true when the
redshifted energy difference ω∞ between the two qubit energy levels — as seen by a static
observer looking at the qubit far from the black hole — satisfies ω∞rs ! 1), Evolution to
all orders in g2t is then described by a Lindblad equation [79, 80]. (Some implications of
Lindblad evolution in Schwarzschild geometries are also explored in [81–87].) By deriving
the Lindblad equation as a limit of the Nakajima-Zwanzig equation for this system, we are
able to assess its domain of validity.

This paper. The rest of this paper is organized as follows. The next section, section 2,
sets up the system whose late-time near-horizon evolution is to be computed. In particular
section 2 defines our qubit/quantum-field system for static spacetimes, and then briefly
explores the properties of qubit trajectories that hover at fixed positions just above a
Schwarzschild black hole.

Section 3 follows this with a brief description of how reduced density matrices are
evolved in open systems, describing the Nakajima-Zwanzig equation whose solutions govern
the qubit’s late-time behaviour. Since at lowest nontrivial order the quantum field enters
into the qubit evolution only through its Wightman function, we also summarize in section 3
the near-horizon form for this function for field states that satisfy the Hadamard form for
small separations.

Finally, section 4 shows how the near-horizon limit of the Wightman function allows
the Nakajima-Zwanzig equation to be approximated by a Markov process, describing the
late-time exponential decay towards a Hawking-temperature thermal state. The time-scale
for this approach to equilibrium is computed for qubits asymptotically close to the horizon,
and found to be universal in the sense that it is determined only by qubit properties and the
black-hole geometry. Provided mrs ! 1 this rate is largely independent of the details of the
quantum field, and assumes only that it is prepared in a Hadamard state. In particular the
approach to equilibrium is the same when the field is prepared in either a Hartle-Hawking
or Unruh state.

2 Qubits in Schwarzschild

This section sets up the framework — a qubit/field system and the spacetime through
which the qubit moves — that is used to perform the calculations to follow.

– 4 –
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2.1 The qubit/scalar system

The system whose evolution we follow consists of a real massive scalar field φ(x) coupled
to a single two-level qubit through the action S = SB + SQ + Sint, where SB describes a
self-interacting quantum field

SB = −1
2

∫
d4x

√−g
[
gµν∂µφ∂νφ+ (m2 + ξR)φ2 + λ

12 φ
4
]
, (2.1)

within a background metric2 given as in (2.20) or (2.22). For this paper we neglect self-
interactions (λ = 0), though we briefly comment in the conclusions on how things can
change in their presence. The coupling ξ plays no role because Schwarzschild is Ricci flat,
and for reasons to be clear below the mass m is assumed to satisfy mrs ! 1.

The free qubit action is given by3

SQ =
∫

d4x
∫

ds
[
i

2 Z zi żi −
√
−ẏ2

(
ω0 −

iω̂

4 εijkui zjzk

)]
δ4[x− y(s)] , (2.2)

where zi(s) are classical Grassman variables (with i = 1, 2, 3) with żi := dzi/ds and zi :=
δijzj . The quantities Z, ω0 and ω̂ and ui are real parameters (with uiu

i = 1), with Z
eventually absorbed into the zi to obtain a convenient normalization that simplifies later
formulae.4 The integral over d4x is trivially done using the delta-function, and reveals
that the integration is over a specific timelike world line xµ = yµ(s), along which the qubit
moves through the ambient spacetime.5 Here s is a parameter along this world line, and
the quantity

ẏ2 := gµν [y(s)] ẏµ ẏν (2.3)

is what is required to ensure that SQ is invariant under reparameterizations of s. It is
usually convenient to fix this freedom by choosing proper time, τ , along the curve as the
parameter, in which case ẏ2 = −1.

Interactions beween z and φ are assumed to take the form

Sint =
iĝ

2

∫
d4x

∫
dτ φ εijknizjzk δ4[x− y(τ)] = iĝ

2

∫
dτ φ[y(τ)] εijknizj(τ)zk(τ) , (2.4)

where ĝ and ni are real coupling constants, with nin
i = 1, and our analysis is ultimately

performed perturbatively in ĝ.
2Nothing precludes also quantizing the fluctuations of the metric about the given background, using

standard EFT arguments [88–91], though for simplicity we do not do so since we do not expect this not
to alter our main point. In principle, dropping metric fluctuations can justified quantitatively by working
with N " 1 scalar fields and computing in the leading large-N limit.

3Terms linear in zi do not appear in this action because we require the classical Grassmann action to be
Grassman-even.

4Hats appear on couplings like ω̂ and ĝ to distinguish them from the corresponding quantities once
appropriate powers of Z have been absorbed into zi.

5For real systems yµ(s) is itself a dynamical variable to be quantized, but for simplicity we ignore
this complication here (treating the qubit trajectory as being specified), since it does not affect our later
discussions.

– 5 –
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Quantization. Working in the interaction picture, quantization of zi and φ is performed
as if they did not interact, with interactions included in powers of g (and λ) once time-
evolution is evaluated.

For zi this quantization goes through as usual [92], keeping in mind this is a constrained
system. To see why, recall that the canonical momenta are given by

pi := δSQ
δżi

= iZ
2 zi . (2.5)

Because this cannot be solved for żi as a function of the pj it is instead regarded as a
constraint: pi − i

2Z zi = 0. The qubit hamiltonian (generating evolution in proper time τ)
becomes

h = piżi −
[
i

2 zi żi −
(
ω0 −

iω̂

4 ε
ijkui zjzk

)]
= ω0 −

iω̂

4 ε
ijkui zjzk . (2.6)

The canonical quantization conditions turn out to imply that the anticommutator of pi and
zj is proportional to δij , and the parameter Z can be chosen to ensure that the quantum
version of the Grassmann condition becomes

{
zi , zj

}
= 2 δij . (2.7)

The space of quantum states furnishes a representation of this algebra, and for a 2-level
qubit this representation is two-dimensional. The required operator representations for the
zi therefore are the Pauli matrices

z1 = σ1 =


0 1
1 0


 , z2 = σ2 =


0 −i
i 0


 and z3 = σ3 =


1 0
0 −1


 . (2.8)

With this choice, properties of the Pauli matrices ensure that εijkzjzk = 2izi, and so defining
coordinates so that u · σ = σ3 then allows (2.6) to be written explicitly as

h = ω0 I + ω

2 σ3 , (2.9)

where I is the 2× 2 unit matrix, and hats are dropped on ω when variables are normalized
so that (2.7) holds. Eq. (2.9) reveals the free-qubit energy eigenvalues to be ω0 ± 1

2 ω and
so ω0 is their mean energy while ω (which we take to be positive) gives their level splitting
(as measured by an observer whose time is the qubit’s proper time, τ).

With this representation for zi the qubit/field interaction (2.4) becomes

Sint = −g
∫

dτ φ[y(τ)]niσi = −g
∫

dτ φ[y(τ)]σ1 , (2.10)

where the second equality specializes to the case where ni is perpendicular to ui (and so
can be chosen to lie along the ‘1’ axis).

In the absence of couplings (λ = g = 0) the scalar field is quantized in the usual fashion
for a static curved space [6]. The interaction-picture field equation is

(−" +m2 + ξR
)
φ = 0 , (2.11)

– 6 –
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and so for a static geometry one expands

φ(x) =
∑

n

[
un(x) an + u∗n(x) a∗n

]
, (2.12)

where un simultaneously satisfies Ltun = −iωnun and eq. (2.11), where Lt is the symmetry
generator in the timelike direction along which the metric is static. Canonical commutation
relations imply the creation and annihilation operators satisfy [an , a∗m] = δmn. As men-
tioned earlier, for applications to Schwarzschild our interest is in small masses,6 mrs ! 1,
and Ricci-flatness makes the term ξR drop out of subsequent discussion.

The scalar field hamiltonian (including self-interactions) is easily computed in the
presence of any spacetime metric of the form

ds2 = −f dt2 + γab dxa dxb (2.13)

where gat = 0 and both gtt = −f and the spatial metric gab = γab are t-independent. The
hamiltonian density (for the generator of evolution in t) is then given by

H = Π∂tφ− L (2.14)

where L is the lagrangian density from (2.1) and the canonical momentum is

Π := δSB
δ∂tφ

=
√
γ

f
∂tφ , (2.15)

where (2.1) is again used, together with the metric (2.13), to evaluate the derivative.
Therefore the scalar-field hamiltonian density, H, becomes

H =
√
fγ

[
(∂tφ)2
2f + 1

2g
ab∂aφ∂bφ+ 1

2(m
2 + ξR)φ2 + λ

4!φ
4
]
. (2.16)

Total energy. We can now assemble everything to identify the total field/qubit hamil-
tonian, leading to the following sum:

H = H0 +Hint (2.17)

where the ‘free’ hamiltonian is the sum of the two free hamiltonians constructed above

H0 = H⊗ I + I ⊗ h
dτ
dt . (2.18)

Here I is the unit operator in the scalar-field state-space, while H and h are as given in
eqs. (2.16) and (2.9). The factor dτ/dt is required because h generates translations in
proper time τ while H0 (and H) are defined to generate translations in t.

Since the interaction Lagrangian does not involve time derivatives its contribution to
the hamiltonian is simple to write down, starting from (2.10)

Hint = g φ[y(τ)]⊗ niσi
dτ
dt = g φ[y(τ)]⊗ σ1

dτ
dt . (2.19)

6Physically, once the scalar mass becomes much bigger than the temperature its states become exponen-
tially rarely occupied, leading one to expect them to decouple from qubit evolution. This expectation can be
very explicitly verified for simple systems such as an accelerating qubit moving through flat spacetime [16].

– 7 –
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In what follows we compute the implications of this interaction out to second order in g.
The nature of this perturbation theory depends on the relative size of ω and the O(g2)
corrections to the qubit energy levels, and for simplicity we work in the regime where these
corrections are much smaller than the qubit’s zeroth-order level splitting, a restriction that
eventually leads to the parameter conditions summarized in table 1.

2.2 Near-horizon geometry

Our interest lies in the near-horizon limit of the exterior of a spinless black hole, defined
in Schwarzschild coordinates by

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dθ2 + r2 sin2 θ dφ2 , (2.20)

where r > rs, where r = rs := 2GM defines the event horizon. These coordinates are
useful because they fall into the category defined in (2.13), with t being the static time on
which the metric does not depend, and so Lt = ∂t. The (Kretchsmann) curvature invariant
for this geometry is RρστκR

ρστκ = 12r2
s/r

6, and so is nonsingular at r = rs.
Schwarzschild coordinates famously break down at the horizon, in the vicinity of which

Kruskal coordinates, (T,X, θ,φ), defined by

T =
√
r

rs
− 1 exp

(
r

2rs

)
sinh

(
t

2rs

)

X =
√
r

rs
− 1 exp

(
r

2rs

)
cosh

(
t

2rs

)
, (2.21)

are more useful. In terms of these the line element becomes

ds2 = 4r3
s

r
e−r/rs

(
−dT 2 + dX2

)
+ r2dθ2 + r2 sin2 θ dφ2 (2.22)

where now r = r(X,T ) is the implicit function of X and T given by solving

X2 − T 2 =
(
r

rs
− 1

)
er/rs , (2.23)

and so is given by

r(X,T ) = rs
[
1 +W(z)

]
where z := 1

e
(X2 − T 2) , (2.24)

and W is the Lambert W function defined by W(z) exp[W(z)] = z (which has a unique
real solution for z > 0 and two real branches for −e−1 < z < 0).

Although these coordinates are well-behaved at the horizon, the spatial geometry at
fixed T is T -dependent. This is a reflection of the coordinate-independent statement that
the metric is only static outside of the horizon (where it can be rewritten as (2.20)). Inside
the horizon the metric’s symmetry directions are all spacelike.
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Hovering world-lines. The qubits whose late-time evolution we follow are chosen to
hover at fixed r = r0 > rs above the event horizon. This is clearly not a geodesic and so the
qubit can be maintained along this trajectory through the action of some non-gravitational
force, whose detailed nature need not concern us here.

Consider two events on this world-line that are distinguished by two values, τ1 and τ2,
of the qubit’s proper time; separated by ∆τ := τ2−τ1 > 0. These two events are separated
by a redshifted time ∆t for hovering observers situated at spatial infinity, with (2.20)
implying that

∆τ :=
∫ t2

t1
dt

√

−gµν
dyµ0
dt

dẏν0
dt = ∆t

√
1− rs

r0
, (2.25)

where yµ0 (t) denotes the curve along which only t varies, with r, θ and φ all fixed. Notice,
for future use, that ∆τ ! ∆t when 0 < r0 − rs ! rs.

Both of these intervals differ from the geodesic separation of these two points,

∆s :=
∫ t2

t1
dt

√

−gµν
dyµg
dt

dẏνg
dt , (2.26)

where the subscript ‘g’ indicates that integration is evaluated along the geodesic yµg (t) that
satisfies

ÿµg + Γµ
νλẏ

ν
g ẏ

λ
g = 0 (2.27)

as well as θ(t) = θ0, φ(t) = φ0 for all t while r(t1) = r(t2) = r0. Because this is a
geodesic it must describe the longest time interval as measured along any timelike curve
that connects the two events, so ∆s > ∆τ . Such a geodesic is possible if dr/dt(t1) > 0 is
chosen appropriately, since then any freely falling body initially moves radially away from
the horizon before eventually turning back and falling into the black hole.

In what follows it proves more convenient to work with the Synge world function,
σ(x1, x2), defined for timelike geodesics by [93–95]

σ(x1, x2) = −
1
2 (∆s)2 , (2.28)

since this has an integral form that is easier to manipulate (see appendix A).
For later purposes we are interested in a limit that simultaneously has a small invariant

interval, ∆s! rs, but corresponds to late times ∆t( rs. We remark in passing that the
above formulae show that both of these can be simultaneously true provided we pick r0 > rs
sufficiently close to the horizon so that

1− rs
r0
! 1 . (2.29)

Being close to the horizon suffices because the curve that hovers at fixed r = rs is a
geodesic, although it is a null geodesic — for which ∆s = 0 — rather than a timelike one.

3 Time evolution in open systems

We return now to the evolution of the qubit that hovers just above the horizon while
interacting with the quantum field. Our interest is in how this qubit responds to the
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fluctuations of the quantum field, and in how this response becomes universal in the late-
time limit very near the horizon.

Since it is only the qubit’s behaviour that is to be predicted, it is convenient to trace
out the scalar field from the system density matrix, and work instead only with the qubit’s
2× 2 reduced density matrix, defined as

!(t) := Tr
φ
[ρ(t)] (3.1)

where ρ(t) is the total — i.e. the combined field/qubit — density matrix, and the trace is
over the scalar-field part of the Hilbert space.

When needed we assume the field and qubit to be initially uncorrelated,

ρ0 := ρ(ti) = Ω⊗ !0 (3.2)

where !0 defines the initial qubit state and Ω is the density matrix for the quantum field.
Three commonly made choices for Ω might be the Hartle-Hawking state, ΩH := |H〉〈H|, the
Unruh state ΩU := |U〉〈U| or the Boulware state, ΩB := |B〉〈B|. These are all pure states
that are candidate vacua for the field, with |H〉 corresponding to the vacuum in the presence
of a black hole that is in equilibrium with a bath of radiation prepared at the Hawking
temperature, while |U〉 is the late-time vacuum for a black hole that forms in isolation.

Time evolution for ! is in principle determined by the evolution of the full system’s
density matrix, which in the interaction picture satisfies

∂tρ(t) = −i
[
V (t) , ρ(t)

]
, (3.3)

where V (t) := eiH0tHinte−iH0t. Eq. (3.3) has a standard perturbative solution

ρ(t) = ρ0 − i

∫ t

ti
ds
[
V (s) ρ0

]
− 1

2

∫ t

ti
ds1

∫ s1

ti
ds2

[
V (s2) ,

[
V (s1) ρ0

]]
+ · · · , (3.4)

given the initial condition ρ(ti) = ρ0.
As is discussed at great length elsewhere — see for example [16, 17, 28] and references

therein — there are two major obstacles to using eqs. (3.3) or (3.4) to predict !(τ) at late
times.

1. At first sight one could trace (3.3) over the scalar-field sector to obtain ∂t!, but the
result is hard to solve for !(τ), because the dependence of the right-hand side on !

is only implicitly given through its dependence on the full density matrix ρ.

2. The solution (3.4) does not have this same difficulty because in his equation we may
use ρ0 = Ω⊗ !0. The problem with (3.4) is that the perturbative approximation on
which it relies systematically breaks down at very late times (in the present example
this breakdown occurs at times of order t ∼ rs/g

2).

The Nakajima-Zwanzig equation [77, 78] provides the solution to problem (1) above,
and this is useful because the result shows how to find solutions that are not afflicted by
problem (2), in that they allow reliable perturbative predictions even when t is so large
that g2t cannot be neglected relative to rs.
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3.1 The Nakajima-Zwanzig equation

The logic of the Nakajima-Zwanzig equation is to project the full density matrix onto the
reduced density matrix and its complement:

! = P(ρ) and Ξ := Q(ρ) (3.5)

for some projection operator P2 = P and the second definition uses Q := 1 − P = Q2.
Since the time-evolution equation (3.3) for ρ is a linear equation it can be turned into a pair
of coupled linear evolution equations for the two quantities ! and Ξ. Eliminating Ξ from
this system gives the Nakajima-Zwanzig equation: an evolution equation that involves only
!, but is nonlocal in time due to the elimination of Ξ. Because this is essentially a linear
problem, it can be solved in great generality [77, 78].

As applied to the current example, following identical steps as given in [16, 17] leads
to the following result at second order in the coupling g:

∂!I(τ)
∂τ

# g2
∫ τ

0
ds
(
GΩ(τ, s)

[
mI(s)!I(s),mI(τ)

]
(3.6)

+G∗
Ω(τ, s)

[
mI(τ),!I(s)mI(s)

])− i

[
δω

2 σ3,!
I(τ)

]
,

where !I(τ) = e+ihτ!(τ) e−ihτ is the reduced density matrix in the interaction-picture
representation and so similarly mI(τ) := e+ihτσ1e−ihτ (and conventions generally follow [16,
17]). At this point several features of (3.6) bear explanation.

• First, notice that eq. (3.6) gives the evolution of ! as a function of proper time along
the qubit trajectory, and does so despite its derivation starting from the Liouville
equation (3.3), which is phrased in terms of the geometry’s static time coordinate,
t. This occurs in detail because of the time-dilation factors dτ/dt that appear in the
Hamiltonian in eqs. (2.18) and (2.19).

• Second, in expression (3.6) the quantity GΩ(τ, s) represents the scalar-field Wightman
functions

GΩ(τ, s) := Tr
φ

(
Ω φ[y(τ)]φ[y(s)]

)
, (3.7)

evaluated at two places along the qubit trajectory, yµ(s), and we use the property
GΩ(s, τ) = G∗

Ω(τ, s) for the Wightman function of a real scalars. These are fairly
complicated functions when evaluated in Schwarzschild spacetime and are usually
given implicitly in terms of a sum over mode functions [65, 71, 81, 96–102]. In what
follows we choose a near-horizon trajectory along which they take a simple form.

• Third, the final term in (3.6) comes from a counter-term interaction, obtained by re-
placing ω → ωbare = ω+δω in h, with δω regarded as being O(g2). This counter-term
is required because the qubit/field interaction shifts the inter-level energy spacing,
and so makes the parameter ω appearing in h no longer equal to this spacing. If the
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parameter in h is therefore instead called ωbare then ω remains the physical spacing
of qubit levels if δω is chosen to cancel the order g2 qubit energy shift.7

• Finally, notice that (3.6) would agree with the time derivative of (3.4) if in the right-
hand side one were to replace /I(s) with its initial condition /I0. Furthermore, such
a replacement at face value seems to be compulsory, because the difference between
/I(s) and /I0 is higher order in g. It is this assumption that /I(s) and /I0 are only
perturbatively different that breaks down at very late times, and when it does it
is (3.6) that is the more reliable equation.

Since ! is a Hermitian 2 × 2 matrix with unit trace, its elements /21 = /∗12 and
/22 = 1− /11 can be eliminated from (3.6) to leave the following two decoupled evolution
equations for the remaining two variables /11 and /12:

∂/I11
∂τ

= g2
∫ τ

−τ
ds e−iωsGΩ(τ, τ − s) (3.8)

−4g2
∫ τ

0
ds Re

[
GΩ(τ, τ − s)

]
cos(ωs)/I11(τ − s) ,

and

∂/I12
∂τ

= −iδω /I12(τ)− 2g2
∫ τ

0
ds Re

[
GΩ(τ, τ − s)

]
e+iωs/I12(τ − s) (3.9)

+2g2e+2iωτ
∫ τ

0
ds Re

[
GΩ(τ, τ − s)

]
e−iωs/I∗12(τ − s) .

These two equations perform a change of integration variables s→ τ − s relative to (3.6),
since the result takes a particularly simple form when the Wightman functions are transla-
tion invariant in τ . These are the main equations on which the remainder of the paper rely.

We note in passing that it can happen that the appearance in the above equations of
the oscillatory factors e±iωs and eiωτ can complicate the construction of their solutions.
Such terms can be removed from an ordinary differential equation by standard changes of
dependent variable, which in the present instance amount to returning to the Schrödinger
picture. The result in Schrödinger picture is

∂/11
∂τ

= g2
∫ τ

−τ
ds e−iωsGΩ(τ, τ − s) (3.10)

−4g2
∫ τ

0
ds Re

[
GΩ(τ, τ − s)

]
cos(ωs)/I11(τ − s) ,

and

∂/12
∂τ

= −i(ω + δω)/12(τ)− 2g2
∫ τ

0
ds Re

[
GΩ(τ, τ − s)

]
/12(τ − s) (3.11)

+2g2
∫ τ

0
ds Re

[
GΩ(τ, τ − s)

]
/∗12(τ − s) .

7A bonus of this definition is that δω also automatically cancels an ultraviolet divergence that arises in
the computed energy shift.
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3.2 Near-horizon Wightman function

So far the description of qubit evolution has been quite general, with little said about
the specific field state Ω or about the details of the qubit trajectory. Application of this
formalism to a qubit near a black hole requires filling in some of this detail, starting with
some information about the scalar-field Wightman function in a Schwarzschild geometry.

Hadamard correlation functions. As mentioned earlier, for generic trajectories the
scalar field Wightman function can be quite complicated, even for comparatively simple
states like the Hartle-Hawking, Unruh or Boulware vacua [65, 71, 96–102]. One of our
central points is that the late-time evolution very close to the horizon does not depend on
which of these choices for field state is made, with universal predictions relying only on the
state being ‘Hadamard’, in the sense that the Wightman correlation function

GΩ(x, x′) := Tr
φ

[
Ω φ(x)φ(x′)

]
(3.12)

has — in four spacetime dimensions — the following limit as x→ x′ [69, 103–106]:

GΩ(x, x′) =
1

8π2

{
∆1/2(x, x′)
σε(x, x′)

+ V (x, x′) log
∣∣∣∣
σε(x, x′)

L2

∣∣∣∣+WΩ(x, x′)
}
, (3.13)

with
σε(x, x′) := σ(x, x′) + 2iε[T (x)− T (x′)] + ε2 , (3.14)

and σ(x, x′) the so-called Synge world function [68, 93] that is equal to half the square of the
geodetic length between x and x′ (see appendix A). Here T is any future-increasing function
of time, and ε → 0+ a small-distance regulator with dimensions of length that appears in
the above formula so that GΩ(x, x′) satisfies the correct temporal boundary conditions.

The quantities ∆(x, x′), V (x, x′) and WΩ(x, x′) are biscalar functions that are symmet-
ric in x↔ x′, and regular in the limit that x→ x′. The renormalization length scale L > 0
is introduced on dimensional grounds, and different values for L can be absorbed into the
precise definition of WΩ(x, x′). The subscript Ω on WΩ is meant to emphasize that its
detailed form depends on the state Ω [107]. The same is not true of the functions ∆(x, x′)
and V (x, x′), which are universal in the sense that they depend only on the geometry of
the spacetime (and — in the case of V (x, x′) — on parameters like the mass of the field).

What this says is that the leading part of the coincident limit of GΩ(x, x′) is universal in
curved space, and shares in particular the singularity structure also found in flat space. The
Hadamard form expresses the physical condition common to all effective field theories [28]
that states that the details of very high-energy field modes are irrelevant provided because
for slowly changing backgrounds they are prepared within their adiabatic vacuum. This
amounts to a quantum variant of the principle of equivalence: modes with wavelengths
much shorter than the local radius of curvature do not ‘know’ that they are in curved space.

Because they depend only on local properties, there is a general procedure for com-
puting the geometric functions V (x, x′) and ∆(x, x′) in the coincident limit, for which

– 13 –

PhD Thesis — G. P. Kaplanek; McMaster University; Physics & Astronomy

36



J
H
E
P
0
1
(
2
0
2
1
)
0
9
8

σ(x, x′) → 0 [68, 108]. For a real massive scalar field evaluated on a Ricci-flat spacetime
(like the Schwarzschild geometry) they have the form

∆1/2(x,x′) = 1+ 1
360R

α β
µ νRαλβρσ

µσνσλσρ+O(σ5/2) (3.15)

V (x,x′) =
(
m2

2 −
1

360R
ρστ

µRρστνσ
µσν

)
+
(
m4

16 + 1
1440RρστκR

ρστκ

)
σµσ

µ+O(σ3/2) ,

where ∂µσ = σµ and σµ = gµνσν obey the relation σµσµ = 2σ. Terms written O(σ3/2) are
those containing three or more factors of σµ. For massive fields it is conventional to choose
the form of WΩ(x, x′) so that L2 = 2/m2, so that

GΩ(x, x′) #
1

8π2

{
1

σε(x, x′)
+
(
m2

2 + . . .

)
log

∣∣∣∣∣
m2σε(x, x′)

2

∣∣∣∣∣+ · · ·
}
. (3.16)

Of the vacuum states described above, the Hartle-Hawking [109] and Unruh vacua [110]
are both Hadamard states, and so share the same values for ∆(x, x′) and V (x, x′) but not
for WΩ(x, x′)). The Boulware vacuum is not, however, as can be seen from its singular
form for the stress-energy tensor at the horizon [102].

In practice the leading behaviour suffices for our purposes, which means we may use
∆(x, x′) # 1 and drop V (x, x′) in the applications to follow, leaving the result

GΩ(x, x′) #
1

8π2 [σ(x, x′)− iε[T (x)− T (y)] + ε2] + · · · , (3.17)

that applies when |σ(x, x′)| is much smaller than both r2
s and m−2.

Evaluation for qubits hovering near the horizon. What is special about the small-
σ(x, x′) limit is that it applies not just as x→ x′, but also when x and x′ are generic points
situated sufficiently close to a null geodesic. Small σ(x, x′) should apply in particular for any
two points hovering at a fixed position (r, θ,φ) = (r0, θ0,φ0) just outside the Schwarzschild
event horizon, with σ(x, x′)→ 0 as r0 → rs.

The function σ(x, x′) is evaluated in this limit in appendix A for points on such a
hovering trajectory as a function of their separation ∆t in Schwarzschild time, with the
result [75, 86, 87])

σ(x, x′) = −8r2
s

(
1− rs

r0

)
sinh2

(∆t

4rs

)
+O

(
σ2

r2
s

)
(3.18)

in the limit σ(x, x′) → 0. It is important that (3.18) remains valid even if ∆t ( rs,
provided that r0 is chosen close enough to rs to ensure that |σ(x, x′)|! r2

s . (The validity
of this approximation in the regime ∆t( rs is verified numerically in appendix A.)

For separations for which (3.18) applies, eq. (3.17) states that the Wightman function
for any Hadamard state has the form

GΩ(t+ ∆t, t) # − 1

64π2r2
s

(
1− rs

r0

) (
sinh [∆t/(4rs)]− iε/(4rs)

)2 + · · · . (3.19)
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4 Universal late-time near-horizon evolution

This section ties everything together to obtain a closed-form expression for the two universal
thermalization time-scales that arise for qubits hovering asymptotically close to the horizon.
The result is surprisingly simple because of an apparently paradoxical result: the simplicity
occurs because in the near-horizon limit one can exploit the Wightman function’s small-
σ(x, x′) Hadamard form (3.13). This seems paradoxical because thermalization occurs in
the limit of very long time separations, ∆t ( rs. The coexistence of these two limits is
possible only because of the enormous time-dilation that relates static clocks running very
near the horizon and those far from the black hole; two near-horizon events separated by
a small geodesic separation can look to a distant observer like they are separated by very
large times.

4.1 The near-horizon Nakajima-Zwanzig equation

The starting point is the interaction-picture Nakajima-Zwanzig equations (3.8) and (3.9)
for the qubit state !I(τ). At order g2 this gives

∂/I11
∂τ

= g2
∫ τ

−τ
ds e−iωs F (γs)− 4g2

∫ τ

0
dsRe [F (γs)] cos(ωs) /I11(τ − s) , (4.1)

and

∂/I12
∂τ

= −iδω /I12(τ)− 2g2
∫ τ

0
ds Re [F (γs)] e+iωs/I12(τ − s) (4.2)

+2g2e+2iωτ
∫ τ

0
ds Re [F (γs)] e−iωs/I∗12(τ − s) ,

where
F(∆t) := GΩ(t+ ∆t, t) = F(γ∆τ) with γ := 1√

1− rs/r0
. (4.3)

Our later interest is in late times as seen by an observer far from the black hole, so
changing coordinates τ = t/γ gives

∂/I11
∂t

= g2
∫ t

−t
ds e−iω∞sF(s)− 4g2

∫ t

0
ds Re

[
F(s)

]
cos(ω∞s)/I11(t− s) , (4.4)

and

∂/I12
∂t

= −iδω∞ /I12(t)− 2g2
∫ t

0
ds Re

[
F(s)

]
e+iω∞s/I12(t− s) (4.5)

+2g2e+2iω∞t
∫ t

0
ds Re

[
F(s)

]
e−iω∞s/I∗12(t− s) ,

where for convenience we define the redshifted qubit gap as seen by observers looking at
the qubit far from the black hole

ω∞ := ω

√
1− rs

r0
, (4.6)
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and perform a similar scaling of the O(g2) counter-term δω∞ := δω(1− rs/r0). Finally, F

denotes the scaled Wightman function

F(t) :=
(
1− rs

r0

)
F(t) . (4.7)

In the small-σ(x, x′) limit inspection of (3.19) shows that F has the simple asymptotic
form

F(∆t) # − 1
64π2r2

s (sinh [∆t/(4rs)]− iε/(4rs))2
, (4.8)

which is identical to the analogous result for the massless Rindler correlation function found
in [16] once one replaces rs → 1/(2a). Recall from appendix A that this asymptotic form
for F(t) is valid so long as |σ(x, x′)|! r2

s and so applies when

∆t

rs
!

∣∣∣∣2 log
(1− rs/r0

4

)∣∣∣∣ , (4.9)

and so in particular there is always an r0 > rs sufficiently close to the horizon for which
this is satisfied, no matter how large ∆t/rs happens to be.

4.2 The late-time Markovian approximation

From here on the story evolves much as it did in the Rindler example considered in [16],
by virtue of the similarity between (4.8) and its counterpart for an accelerated qubit in flat
spacetime.

In particular eqs. (4.4) and (4.5) greatly simplify when !I is slowly varying (compared
with the light-crossing time of the black hole, rs) and we focus on t( rs, because in this
case the sharply peaked form for F(t) allows the upper integration limit to be taken to
infinity, and implies that a Taylor expansion in the integrand of /ij(t − s) in powers of s
converges very quickly.

After choosing δω to cancel the field-induced shift in qubit energy — which means
picking

δω∞ = δω

(
1− rs

r0

)
= −g2DS , (4.10)

with DS defined by (4.14) below — these steps lead (at face value) to the following approx-
imate evolution equations (see [16] for details)

∂/I11(t)
∂t

# 2g2CS
e4πrsω∞ + 1 − 2g2CS /I11(t) , (4.11)

and
∂/I12(t)
∂t

# −g2CS /I12(t) + g2(CS − iDS) e+2iω∞t/I∗12(t) , (4.12)

in which the quantities CS and DS are defined by

CS = 2
∫ ∞

0
dsRe[F(s)] cos(ω∞s) #

ω∞ coth (2πrsω∞)
4π (4.13)
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g2CS/ω∞ ! 1 g2DS/ω∞ ! 1

rsω∞ ! 1 g2

8π2rsω∞
g2

2π2 log [ε/(2rs)]

rsω∞ ( 1 g2

4π
g2

2π2 log(eγω∞ε)

Table 1. The large- and small-ω∞rs asymptotic forms for the two quantities that must be small
to work with nondegenerate perturbation theory (see [16]).

and8

DS = 2
∫ ∞

0
ds Re[F(s)] sin(ω∞s) #

ω∞
2π2 log

(
eγε

2rs

)
+ ω∞

2π2Re
[
ψ(0)(−2irsω∞)

]
. (4.14)

where ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function [112].

Control over approximations. The words ‘at face value’ are added above eqs. (4.11)
and (4.12) because the term involving DS must actually be dropped in the above if we
are consistent. The reasons for this lie in the size of the deviations from the leading
approximation, and the assumptions that must be made in order to neglect them. We
briefly summarize the issues, following closely the discussion in [16, 17]. A side effect of
this observation — together with the energy shift (4.10) — is the elimination of all singular
dependence9 in the limit ε→ 0 that enters through eq. (4.14).

There are two kinds of approximations to consider — one convenient and one essential.
The issue of convenience concerns the relative size of the qubit splitting ω and the generic
size of field-driven corrections to this splitting. Assuming ω∞ to be much larger than the
corrections to ω induced by the interactions with the field simplifies calculations by allowing
use of non-degenerate methods. In terms of the functions CS and DS this condition requires

g2CS
ω∞

! 1 and g2DS

ω∞
! 1 . (4.15)

Table 1 displays the asymptotic form for these two quantities in the limit of large and small
ω∞rs, showing that they require ω∞rs not to be taken smaller than g2/4π.

The essential approximation is the one that makes the Markovian evolution dominate
the Nakajima-Zwanzig evolution. To see what this involves, recall that the Markovian
approximation is derived from the Nakajima-Zwanzig equation by Taylor expanding /Iij(t−
s) # /Iij(t)− s/̇Iij(t) + · · · inside the integrands of equations (4.4) and (4.5),

g2
∫ t

0
ds f(s)/Iij(t− s) # g2

∫ ∞

0
ds f(s)

[
/Iij(t)− s/̇Iij(t) + . . .

]
(4.16)

8A flat-space analog of DS is computed in [16] for generic field masses m #= 0 and with the replacement
a → 2/rs (using the different notation ∆M there). Equation (4.14) follows as the m → 0+ limit of this
function (this same function is evaluated in [111]).

9For the purposes of estimating the size of different contributions we take ε here to be much smaller
than other scales, but not infinitely small so that logarithms of ε cannot overwhelm powers of g2.
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g2 dCS
dω∞ ! 1 g2 dDS

dω∞ ! 1 ω∞
CS

dCS
dω∞ ! 1 ω∞

CS
dDS
dω∞ ! 1

rsω∞ ! 1 g2rsω∞/3 g2

2π2 log [ε/(2rs)] 8π2r2
sω

2
∞/3 4rsω∞ log [ε/(2rs)]

rsω∞ ( 1 g2

4π
g2

2π2 log(eγω∞ε) 1 2
π log(eγω∞ε)

Table 2. The large- and small-ω∞rs asymptotic forms for the four quantities that must be small
to believe the Markovian approximation to the Nakajima-Zwanzig equation (see [16]). Notice that
rsω∞ ( 1 is incompatible with Markovian evolution.

where t( rs is used to take the upper limit of integration to infinity (given the exponential
falloff of f(s) for s( rs). The size of the s/̇Iij(t) term characterizes the size of deviations
from the Markovian limit, and we evaluate it to understand what demands are made on
the free parameters of the model by the requirement that these be small. Physically this
amounts to requiring the evolution time-scale of /Iij to be large compared with the domain
of support of the rest of the integrand.

The quantitative conditions are obtained self-consistently, by evaluating /̇Iij assuming
the time dependence is given by (4.11) and (4.12), whose integration implies

/I11(t) =
1

e4πrsω∞ + 1 +
[
/11(0)−

1
e4πrsω∞ + 1

]
e−2g2CS t , (4.17)

and
/I12(t) = e−g

2CS t

[
/12(0) + /∗12(0)

(
g2DS

2ω∞
+ i

g2CS
2ω∞

)
(1− e2iω∞t)

]
. (4.18)

Differentiating this to find /̇Iij then allows the /̇I term to be computed in equations
like (4.16), and requiring the result to be negligible relative to the leading term for all
of the integrals appearing in eqs. (4.4) and (4.5) requires the following four quantities all
to be negligible:

g2 dCS
dω∞

! 1 , g2 dDS

dω∞
! 1 , ω∞

CS
dCS
dω∞

! 1 and ω∞
CS

dDS

dω∞
! 1 . (4.19)

The first two of these are required whenever the derivative in /̇ij is of order g2CS while the
second two arise when it is order ω∞. [Differentiation with respect to ω∞ arises from use
of identities like s cos(ω∞s) = (d/dω∞) sin(ω∞s) in equations like (4.16).]

Table 2 displays the asymptotic behaviour for these four quantities in the limits where
rsω∞ is very large or very small. This table makes clear in particular that only rsω∞ ! 1
is consistent in the Markovian regime, since otherwise the bounds ω∞C′S/CS ! 1 and
ω∞D′

S/CS ! 1 necessarily fail (because the eiω∞t oscillations are too rapid).
The asymptotic forms of table 2 say more than just this, however. From them we also

notice that rsω∞ ! 1 implies10 DS/ω ∼ D′
S and so

g2DS

ω∞
# g2 dDS

dω∞
=
(
g2CS
ω∞

)
×
(
ω∞
CS

dDS

dω∞

)
! g2CS

ω∞
, (4.20)

10Using ψ(0)(z) % 1
z
− γ + π2z

6 − ζ(3)z2 + . . . for |z| ' 1 (with ζ the Riemann zeta function) [112],
DS % ω∞

2π2 (log( ε
2rs ) + 4ζ(3)(rsω∞)2 +O[(rsω∞)4]) and D′S % 1

2π2 (log( ε
2rs ) + 12ζ(3)(rsω∞)2 +O[(rsω∞)4]).
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which implies that the g2DS/ω∞ term appearing in the solution (4.18) is negligible rela-
tive to the g2CS/ω∞ term. This means that the g2DS terms in the Markovian evolution
equations (4.12) can be neglected, allowing the Markovian evolution instead to be written
as (4.11) and

∂/I12(t)
∂t

# −g2CS /I12(t) + g2CS e+2iω∞t/I∗12(t) . (4.21)

In particular the divergent quantity DS plays no role in the Markovian limit, apart from
shifting the qubit energy levels in the way that is renormalized into the definition of ω.
Following the steps discussed at great length in [16, 17]) shows that these equations preserve
positivity of !(t) to O(g2) in the Markovian limit, with no additional approximations
necessary.

The solutions in the Markovian regime therefore become

/I11(t) =
1

e4πrsω∞ + 1 +
[
/11(0)−

1
e4πrsω∞ + 1

]
e−2t/ξ , (4.22)

and
/I12(t) = e−t/ξ

[
/12(0) + i/∗12(0)

g2CS
2ω∞

(1− e2iω∞t)
]
, (4.23)

where
ξ := 1

g2CS
= 4π tanh (2πrsω∞)

g2ω∞
# 8π2rs

g2 (4.24)

and the last line follows since the Markovian approximation demands ω∞rs ! 1. These
solutions describe the exponential decay towards a thermal distribution (with temperature
T = 1/(4πrs) = TH that equals the Hawking temperature), doing so with the characteristic
time-scale ξ # 8π2rs/g2. Notice that the approach to equilibrium takes place twice as fast
for the diagonal components of ! compared to its off-diagonal parts.

We remark in passing that it is also possible to solve the Nakajima-Zwanzig equation at
late times using weaker assumptions than those that lead to the above Markovian solutions,
using methods similar to those used in [17] (see also [111], where a non-Markovian solution
for an accelerated qubit is derived by method of Laplace transforms). The utility of such a
solution is less interesting here since the Markovian condition rsω∞ = rsω

√
1− rs/r0 ! 1

is satisfied for any qubit of fixed rest-frame energy splitting that hovers sufficiently close
to the black-hole horizon.

Frame independence of the Markovian limit. Since the solution (4.22) and (4.23)
refers to the redshifted time ∆t defined in (2.25) one may wonder about the physical
meaning of tracking a time coordinate as measured by a hovering observer far from the
black hole horizon, and whether the discussion of perturbativity and Markovianity applies
only in such a frame.

What matters is that there is a hierarchy of scales between the late times of interest,
∆t(r), (such as the equilibration time) and the correlation time of the environment, τc(r)
(in this case, the local Hawking temperature). These can equally well be compared at the
position of the qubit or by an observer at infinity. Although gravitational redshift changes
both ∆t and τc (and this is why they depend on r), this redshift cancels in their ratio;
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observers at all radii agree that ∆t(r) ( τc(r). Both a local observer travelling with the
qubit and one hovering at spatial infinity agree on the heirarchies of scale

∆t

rs
∼ TH∆t( 1 ⇐⇒ ∆τ

rs
√
1− rs/r0

∼ T (r0)∆τ ( 1 (4.25)

where TH = (4πrs)−1 is the Hawking temperature, and T (r0) = TH/
√
1− rs/r0 is the local

temperature. This means that there is nothing special about tracking the qubit evolution
in terms of the redshifted time ∆t, and in fact an observer at any radius will agree on a
hierachy of scales as in (4.25).

5 Conclusions

In summary, this paper shows how Open EFT methods can lend themselves to late-time
resummation in more general gravitational systems than the cosmological examples pre-
viously explored. As in the examples of [16, 17] simplicity arises near the horizon at late
times, even when the underlying geometry tends to makes quantum mechanical calcula-
tions difficult. Standard tools for open quantum systems give relatively easy access to
times of the order rs/g2, at least in the specific instance of an Unruh-DeWitt detector
placed very close to a Schwarzschild horizon and interacting with a quantum field. The
resulting evolution describes qubit thermalization with the expected Hawking radiation,
asymptoting to the Hawking temperature TH = (4πrs)−1. The time-scale for thermalizing
a hovering qubit can be computed, and in the very-near-horizon limit takes a universal
form that relies only on properties of the near-horizon geometry given only the relatively
weak assumption that the quantum field is prepared in a vacuum state of Hadamard form
(including in particular the Hartle-Hawking and Unruh states).

What makes the late-time evolution easy to resum is its Markovian nature over
Schwarzschild times that are long compared with rs. Autocorrelations of the field in a
Hadamard state then fall off very robustly for qubits hovering very near the horizon, effec-
tively washing out the past entanglement history. As one might expect from the equivalence
principle, the qubit behaviour becomes equivalent to that of a qubit accelerating through
flat space in the limit of infinite acceleration. It is the large acceleration (and blueshift)
experienced by the qubit which ensures that the quantum field mass eventually becomes
negligible in the near-horizon limit, explaining why the mass largely drops out of our re-
sult. As a consequence, the Markovian evolution seems likely to be very robust, at least
asymptotically close to the horizon (provided rsω∞ ! 1, so that the qubit states are not
too split to allow thermal excitation).

The absence of mass dependence (in the mrs ! 1 limit) also carries information about
dependence on the scalar self-coupling, λ. Scalar self-couplings are known to give rise to
secular effects for accelerated observers even in flat space [15] (see also [113] for other
evidence for secular growth in black-hole geometries), where it is known that they can
also be resummed at late times. For the Rindler problem late-time resummation amounts
to re-organizing perturbation theory using a small shifted mass, δm2 ∼ λa2, similar to
the development of small temperature-dependent masses in thermal environments [15].
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Similarity with the Rindler problem makes it is very plausible that a similar resummation
can be obtained near the Schwarzschild horizon by shifting the scalar mass by an amount
δm2 ∼ λ/r2

s , making the m-independence of near-horizon qubit evolution likely also to
imply the same for λ-dependence, at least when λ is small and times are late.
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A The Synge world function

This appendix derives some of the features of the Synge world-function that are used in
the main text.

Definitions. To this end consider two points, x and x′, that are connected by a timelike
geodesic Γ. If λ is an affine parameterization of Γ then it is described by the curve yµ(λ)
along which

ÿµ + Γµ
νσẏ

ν ẏσ = 0 (A.1)

is obeyed for all λ, with ẏµ := dyµ/dλ. The fact that Γ connects x and x′ is expressed as
the boundary conditions y(λi) = x′ and y(λf) = x.

For such a geodesic the Synge world function, σ(x, x′), is defined by [93–95]

σ(x, x′) := 1
2(λf − λi)

∫ λf

λi
dλ gµν ẏµẏν , (A.2)

where the integral is performed along the geodesic Γ. This integral is actually quite easy
to evaluate because the geodesic equation (A.1) implies that the quantity

ζ := gµν ẏ
µẏν (A.3)

is independent of λ along Γ, and so σ(x, x′) = 1
2 ζ (λf − λi)2. For timelike curves ζ is

negative, and if in that case the parameter is chosen to be proper time along the geodesic
— i.e. if λ = τ — then ζ = −1 and λf − λi = ∆s, establishing that

σ(x, x′) = −1
2(∆s)2, (A.4)

as used in the main text.
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Expansion as x→ x′. The dependence of σ(x, x′) on the geometry can be made explicit
in the limit x → x′. This is most easily done using (A.2) and specializing the evaluation
of ζ to the point x′ (as can be freely done since ζ is independent of λ), leading to

σ(x, x′) = 1
2(λf − λi)2 g′µν ẏµ(λi)ẏν(λi) , (A.5)

where here (and below) a prime on a field like g′µν indicates that it is evaluated at x′.
Expanding yµ(λf) in powers of λf − λi gives

yµ(λf) = yµ(λi) + (λf − λi) ẏµ(λi) +
1
2(λf − λi)2 ÿµ(λi) +

1
6(λf − λi)3

...
y µ(λi) + . . . , (A.6)

in which we use the boundary conditions y(λi) = x′ and y(λf) = x, as well as eliminating
ÿµ using the geodesic equation, leading to

xµ − x′µ = (λf − λi) ẏµ(λi)−
1
2(λf − λi)2Γµ′

ρν ẏ
ρ(λi)ẏν(λi) (A.7)

−1
6(λf − λi)3

(
∂ρΓµ′

νσ − 2Γµ′
ρηΓη′

νσ

)
ẏρ(λi)ẏν(λi)ẏσ(λi) + . . . .

Inverting the above gives a series expansion for (λf − λi)ẏµ(λi) in powers of x− x′:

(λf − λi)ẏµ(λi) = (x− x′)µ + 1
2 Γµ′

λν(x− x′)λ(x− x′)ν (A.8)

+1
6
(
∂λΓµ′

νσ + Γµ′
ληΓη′

νσ

)
(x− x′)λ(x− x′)ν(x− x′)σ + . . . ,

which, when used in (A.5), gives [93, 95]

σ(x, x′) = 1
2g

′
µν (x− x′)µ(x− x′)ν + 1

4g
′
µν,σ (x− x′)µ(x− x′)ν(x− x′)σ + · · · . (A.9)

One can continue in this way to any fixed order.11

Expansion for fixed r in Schwarzschild. We next evaluate (A.9) for the special case
x and x′ lie along a trajectory at fixed r = r0 (and θ and φ) in the Schwarzschild geometry.
Choosing x′ to correspond to ti = 0 and x to be tf = ∆t, we have (in Kruskal coordinates)

T − T ′ =
√
r0
rs
− 1 exp

(
r0
2rs

)
sinh

(∆t

2rs

)

X −X ′ =
√
r0
rs
− 1 exp

(
r0
2rs

)[
cosh

(∆t

2rs

)
− 1

]
. (A.10)

So using (2.22)

− g′TT = g′XX = 4r3
s

r0
e−r0/rs , (A.11)

11Although neither the coefficients nor x−x′ in this expansion are covariant, the final result is (transform-
ing as a bi-scalar). A more explicitly covariant expression can be found by expanding in a more covariant
variable, but expression (A.9) suffices for our present purposes.
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Figure 1. Numerical comparison of the Synge world-function and the asymptotic expres-
sions (A.12) and (A.15), showing how (A.12) enjoys the broader domain of validity. This plot
assumes r0/rs = 1 + 10−5.

the leading-order term in (A.9) is [75]

σ(x, x′) = 1
2 g

′
XX

[
−(T − T ′)2 + (X −X ′)2

]
+O[(x− x′)3]

= −8r2
s

(
1− rs

r0

)
sinh2

(∆t

4rs

)
+O[(x− x′)3] . (A.12)

which uses the identity sinh2 a− (cosh a− 1)2 = 4 sinh2(a/2).

Evaluating the sub-leading terms in the series shows that corrections are of order

O
[
(x− x′)3

]
] = O

{
r2
s

[(
1− rs

r0

)
sinh2

(
∆t

4rs

)]2}
= O

[
σ2(x, x′)

r2
s

]
, (A.13)

showing that (A.12) is a good approximation so long as |σ(x, x′)|! r2
s , or

(
1− rs

r0

)
sinh2

(∆t

4rs

)
! 1 . (A.14)

Notice that this can remain valid even when ∆t/rs ( 1 so long as r0 is sufficiently close
to rs that (A.14) remains satisfied.

Performing the same calculation using Schwarzschild coordinates instead gives

σ(x.x′) # −1
2

(
1− rs

r0

)
(∆t)2 + . . . . (A.15)

Although this agrees with (A.12) for ∆t ! rs, the domain of validity of (A.9) turns out
to be larger, applying even when ∆t/rs is not small. This can be seen numerically in σ,
as is shown in figures 1 and 2. Also shown in these figures is how the domain of validity
of (A.12) can be extended out to extremely large values of ∆t/rs simply by choosing r0 to
be ever-closer to the horizon itself.
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Figure 2. Numerical comparison of the Synge world-function and the asymptotic expres-
sions (A.12) and (A.15), showing how (A.12) enjoys the broader domain of validity. This plot
assumes r0/rs = 1 + 10−14.
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Chapter 3

Hotspots as Toy Black Holes

G. Kaplanek, C. P. Burgess and R. Holman,

“Influence through Mixing: Hotspots as Benchmarks for Basic Black-Hole Behaviour,”

JHEP 09 (2021), 006

doi:10.1007/JHEP09(2021)006

[arXiv:2106.09854 [hep-th]].

3.1 Preface

As described in §1, any time a quantum system is coupled to spacetime with an event horizon, it

seems that an open quantum systems description is useful. One of the most interesting settings

to apply Open EFT techniques are then of course in black hole spacetimes. What complicates

this is that ordinary black holes are compact objects with horizons localized around the black

hole, which always end up involving complicated mathematics. This tends to obfuscate the OQS

features that are present in such calculations.

For this reason the following paper introduces the exactly solvable hotspot model — a toy model

of a black hole designed to emphasize the open quantum features held by a black hole, so as to

provide a simpler playground to test Open EFT techniques. The basic set-up for the model is

for the external region of the black hole (outside the event horizon) to be modelled by a single

scalar field φ, and the internal region of the black hole (ie. inside the horizon) to be modelled by

a large amount of hot/thermal scalar fields χa which cannot be directly probed in the external

region. Since black holes have an enormous amount of degrees of freedom hidden behind their

event horizons, we assume there are N � 1 scalars χa. The internal and external degrees of
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freedom only interact in a compact region of space, which we take here to be some infinitesimally

small point (the “hotspot”).

Because the interaction occurs at a single point, PPEFT techniques are used to describe this

model which means that the hotspot model can only describe distances macroscopically far away

from the black hole when calculating physically relevant quantities for the external region of

the black hole. Since the interaction is taken to be Gaussian, the model is exactly solved by

calculating the 2-point correlation functions for the model. Notably, since the interaction region

is assumed to be a single infinitesimally-small point, one encounters “Coulomb-like” singularities

(seen in other contexts as well [86, 87, 88, 89]) when computing physical observables which are

later renormalized using PPEFT techniques.
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1 Introduction

At long last the detection of gravitational waves [1] has made near-horizon black-hole
physics an experimental science, and this is very likely to deepen our understanding of
General Relativity (GR) and/or end its hundred-year reign as the paradigm of choice when
describing gravity. With the advent of measurements — eventually precision measurements
— it behooves theorists to raise their game when quantifying the kinds of physics one might
hope to see in this new regime. And this they are doing; both by pushing the accuracy of
GR gravitational-wave predictions, and by exploring more systematically the predictions
of alternatives theories when gravitational fields are strong (for reviews see [2–5]).

Effective field theories (EFTs) are usually important tools for this kind of work, because
they allow predictions for physics on observable length scales that are robust to changes
in the details of what goes on at smaller scales [6–10]. This is useful both when these
smaller scales are understood and when they are not. Although EFT methods have a long
history, their use is even now still being developed for black hole applications [11–27]; a
development that has been slowed both by the relative novelty of EFT applications to
gravity in general [10, 28–32] and by some of the novel aspects of black hole physics in
particular, since these differ from more garden-variety applications of EFT techniques.

One issue — though not the only one [25–27] — that complicates developing EFT
methods for black-hole behaviour is their open and thermal nature, since the entanglement
and decoherence that such physics can involve is not captured by traditional Wilsonian
EFT tools. Such differences have led some to ask whether an effective description of
extra-horizon physics might involve unusual features (such as nonlocality) or otherwise
evade the arguments that usually preclude these phenomena from arising in a Wilsonian
context [33–43].
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What usually helps when developing EFT tools are concrete systems for which both
UV and IR sectors are well-understood and within which the EFT description can be
assessed by comparing to other methods. These kinds of comparisons are not yet available
for black holes, and the search for effective descriptions of black-hole physics are the poorer
for it. The purpose of this paper is to help fix this situation by providing a simple black-
hole proxy that can help fill this void. On one hand the model should be simple enough to
solve, but on the other hand share enough black hole properties to be informative about
some of their putative EFT descriptions.

The model we propose — inspired by similar models in condensed matter systems [44–
46] — has a large number of degrees of freedom with a thermal character and no gap; to
which an external field couples only in a small region of space; what we call here for brevity
a ‘hotspot’. We model the thermal degrees of freedom as a collection of N massless scalar
fields — χa with a = 1, · · · , N — that are initially prepared in a thermal bath. These fields
are meant to model the black hole’s interior. We take these fields to ‘interact’ with the
external massless scalar field φ, which is a proxy for the black hole’s exterior. The word
interact appears in quotes because φ only couples to the χa through a bilinear mixing term
of the form

Lmix = −ga χa φ , (1.1)

and so the entire theory remains gaussian and can be solved in great detail.
So far this just describes a field mixing with a thermal bath. To make it more black-

hole-like we imagine these two sectors only mix in a small localized region of space, and
not interacting — even gravitationally — otherwise. In order to do this we imagine space
at a given time to come with two spatial sheets, R+ and R−, with φ living only on R+
and χa living on R−. These two branches only intersect on a small spherical ball, Sξ, of
radius ξ, that plays the role of the black hole itself (see figure 1).

In principle gravity can be included in this model, and does not generate couplings
between the two sectors away from their overlap on Sξ (and this is why we take R± to
be disjoint). We do not pursue this gravitational coupling further in this paper, focussing
instead on how the field φ responds to the presence of the localized hotspot built from the
thermal fields χa. As a result our model does not capture the causal nature of the horizon
or the exponential redshifts that arise in its vicinity for real black holes.

Broadly speaking there are two types of black-hole EFTs that are usually pursued,
and both can have counterparts in our hotspot model. The main variant is one that is
appropriate to gravitational wave emission, and applies on length scales λ # rs that are
much larger than the black hole’s size (see figure 2). In this ‘world-line’ or ‘point-particle’
EFT the closest distance to the black hole that can be directly resolved corresponds to a
cutoff that has size ε# rs and so the black hole dynamics is described by its center-of-mass
coordinate; it is regarded as a point mass moving along a trajectory in spacetime. The
response of the black hole to applied ‘bulk’ fields (and the back-reaction of the black hole
back onto these fields) is described by an action defined as a functional of the bulk fields
integrated along the black hole’s one-dimensional world line. This type of EFT is obtained
in the hotspot example by taking the radius ξ of the interaction sphere Sξ to be much
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Figure 1: A cartoon of the two spatial branches, R+ and R−, in which the field φ and
the N fields χa repsectively live. The two types of fields only couple to one another in the
localized throat region, which can be taken to be a small sphere of radius ξ (or effectively
a point in the limit that ξ is much smaller than all other scales of interest).

Figure 2: An EFT regime appropriate for small black holes, for which the UV cutoff scale
is much smaller than the length of any low-energy probe, ε$ λ, but much larger than the
horizon scale ε# rs.

smaller than all other scales: ξ $ ε$ λ.
The puzzle for this EFT is how it should capture the enormous number of degrees of

freedom that are internal to the black hole, its perfect absorber properties and the Hawking
radiation that comes with it. In [12, 47–52] these are modelled by ‘integrating in’ a large
number of degrees of freedom, and in the hotspot model it is the χa fields that play this
role. The drawback of this approach is the model-dependence that enters when choosing
these extra degrees of freedom. Although the fluctuation-dissipation theorem implies that
predictions in linear response do not depend on these details, it remains open the extent
to which other predictions do, and if so whether the same might be true for low-energy
black hole properties. Although the extra degrees of freedom can again be integrated out,
they are not the traditional massive states of the usual Wilsonian treatments, and so can
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Figure 3: A ‘membrane’ EFT regime for which hypothetical UV physics modifies near-
horizon properties, for which the cutoff scale is much smaller than the length of any low-
energy probe, which is in turn much smaller than the horizon scale ε$ λ$ rs.

lead to actions with unusual properties including some forms of nonlocality. In companion
papers [53, 54] we use the hotspot model to explore some of these properties in an effort
to ascertain the rules for such an EFT, and the extent to which locality and ordinary
Wilsonian reasoning breaks down.

The second class of black hole models to which our hotspot setup can be relevant are
those for which probe scales, λ, and the UV cutoff length, ε, are both much smaller than
the horizon size, but where an effective description — whether of conventional [55–59] or
more exotic [60–70] physics — is envisaged to apply sufficiently near the event horizon
(see figure 3). The beginnings of an EFT treatment of this kind of physics are developed
in [71, 72], and involves an effective 3-dimensional action defined on a membrane that
shrink-wraps the world-tube a distance ε from the black hole event horizon. EFT methods
underline that the microscopic length ε is a regulator scale and so drops out of all physical
predictions (as regulators always do), and this makes the EFT framework particularly useful
for understanding the physical significance1 of the length-scales involved in these types of
models. This type of EFT can be studied within the hotspot framework by allowing the
radius ξ of the interaction sphere Sξ remain larger than the cutoff scale: ε $ λ $ ξ. We
do not pursue this variant further in this paper.

The remainder of this paper sets up the hotspot framework and derives the equa-
tions that govern how φ responds to the hotspot (topics that dominate the discussion of
section 2). Along the way we also make some preliminary explorations of its physical im-
plications (with more to follow in [53, 54]). We find in particular the following noteworthy
properties.

• The field equations satisfied by the Heisenberg-picture field φ are solved explicitly
under the assumption that the hotspot couplings ga of (1.1) turn on suddenly at time

1In particular, the relevant physical scale involves both couplings and the intrinsic UV length scale, and
so for weak coupling is often smaller than are the physical length scales of any micro-physics that may be
involved [71, 72].
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t = 0 and remain constant thereafter. The result is first computed perturbatively in
the hotspot coupling ga in section 3, and then as an exact expression in section 5.
Using the mode expansion of (2.25) and (2.26) our perturbative solution for the mode
functions appearing in φ is given in (3.1) and (3.2), while the exact result is given
in (5.10) and (5.11). The quantity g̃ appearing in these expressions is defined by
g̃2 :=∑

a g
2
a = Ng2.

Using the Heisenberg picture allows us to work in position space where we can follow
the passage of the initial transient wave (generated by the turn-on of the couplings)
as well as watch how the φ field settles down at later times in the on-going presence
of the hotspot coupling. Computing both exact and perturbative results allows us
to identify precisely which small dimensionless parameter controls the perturbative
expansion.

• The Heisenberg-picture evolution is used to compute the Wightman function
W(t,x; t′,x′) = 〈φ(t,x)φ(t′,x′)〉 for the external field, assuming the φ field starts
in its vacuum at t = 0− and the χa fields are prepared in a thermal state. The
perturbative result is given in (3.10) while the exact expression is in (5.14), (5.17)
and (5.20). These results are computed for arbitrary spacetime separations for the
fields, but we also obtain specific formulae for the regime where t > |x| and t′ > |x′|,
but t− t′ is otherwise arbitrary.

This result has a thermal character (in the sense that its temperature-dependent
part satisfies a detailed-balance relation — the Kubo-Martin-Schwinger (or KMS)
condition [73, 74] — though does so in a way that depends on the distance from the
hotspot.

• Section 4 detours to explore the consequences of supplementing the basic hotspot
interaction of (1.1) with a self-coupling, also localized at the hotspot, having the
form

Lλ = −λ2 φ
2 . (1.2)

Including this coupling is not simply an intellectual exercise because its presence
is often required to renormalize divergences that arise because fields like φ diverge
at the hotspot position once couplings are turned on there. As is well-known from
other contexts [76–87] having fields divergence at the position of a source like this
is fairly generic — the simplest example being the Coulomb potential diverging at
the position of a source charge. From an EFT perspective the presence of couplings
like λ is often compulsory, because the requirement that UV divergences drop out of
physical observables causes the couplings to run and λ = 0 need not be a fixed point
of this renormalization-group (RG) flow.

Section 4 computes the renormalization-group evolution implied for the coupling λ in
the hotspot model, along the way showing how this can be used to resum contributions
to all orders in λ(ε)/4πε (where ε is a near-hotspot regularization scale) along the
lines explored in [80–82]. The λ-dependence of the Wightman function is also given
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in the general expressions quoted above, and comparison with the exact result —
cf. eqs. (5.14), (5.17) and (5.20) — verifies how the RG resummation captures the
λ-dependence of the full expression.

Finally, section 6 briefly summarizes some of our conclusions and discusses some directions
for future work. Many of the calculational details are given in a collection of appendices.

2 Modelling the hotspot

This section sets up the benchmark model whose properties we study. We do so using
the language of open systems, with degrees of freedom divided up into an observable
system and an ‘environment’ — a proxy for the black hole interior — whose properties are
never measured.

2.1 Hotspot definition

For the observable sector we choose a single real scalar field, φ(x), and take it to live in
a spatial region, R+, of infinite extent. The environment is given by N real scalar fields,
χa with a = 1, · · · , N , that reside in a different spatial region R−. While one or both of
R+,R− could in principle be curved, we take them to be flat for simplicity. We also take
all of these fields to be massless.

We suppose that the fields interact with one another locally and only do so on a
relatively small codimension-1 2-sphere, Sξ, of radius ξ which is the only place where R+
and R− actually touch one another (see figure 1). In practice this means that both R+
and R− have a small sphere excised from the origin (for all time) and the surface of this
sphere is identified in the two spaces.

Our interest for much of this paper is in scales much larger than ξ and so consider the
idealization of taking ξ → 0, in which case Sξ reduces to a single point of contact between
R+ and R−, which we take to be the origin x = 0 of both R±. In this limit the couplings
of φ to χa are captured by an effective action localized at x = 0.

2.1.1 Action and Hamiltonian

The action that defines the model is therefore taken to be S = S+ + S− + Sint where the
kinematics of φ and χa are described by

S+ = −1
2

∫

R+
d4x ∂µφ∂

µφ and S− = −1
2

∫

R−
d4x δab ∂µχ

a∂µχb . (2.1)

Our later interest is usually in the case where the χa couplings do not break the O(N)
symmetry of their kinetic terms.

The lowest-dimension interaction (mixing, really) that involves φ on the interaction
surface is given by

Sint = −
∫

St
ξ

d4x

[
Ga χ

aφ+ Gφ

2 φ2
]
, (2.2)
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in which the integration is over the world-tube, Stξ swept out by the surface Sξ over time.
The Einstein summation convention applies, so there is an implied sum over a. The cou-
plings Ga and Gφ here have dimension mass: [Ga] = [Gφ] = +1.

In the limit ξ → 0 the 2-sphere Sξ degenerates to a point and this interaction becomes

Sint ' −
∫

dt
[
ga χ

a(t,0)φ(t,0) + λ

2 φ
2(t,0)

]
, (2.3)

where the integration is over the proper time of the interaction point x = 0 in both R+ and
R−. The couplings appearing here are ga = 4πξ2Ga and λ = 4πξ2Gφ and have dimensions
[ga] = [λ] = −1. Although the coupling λ might seem unnecessary, in later sections we see
how it can be generated by the presence of the couplings ga.

In what follows we allow the couplings ga and λ to depend on time, and in particular
will use this time dependence to turn on suddenly the interaction between the fields at
t = 0. Doing so allows us both to study transient effects associated with the couplings
turning on as well as late-time effects after the transients have passed.

The quantization of this model follows closely the treatment of a field coupled to a
central qubit given in [46]. The canonical momenta for this problem are

p := ∂tφ and Πa := δab ∂tχ
b , (2.4)

and quantization proceeds by demanding these satisfy the equal-time commutation rela-
tions

[
φ(t,x), p(t,y)

]
= iδ3(x− y) and

[
χa(t,x),Πb(t,y)

]
= iδab δ

3(x− y) . (2.5)

The free Hamiltonian is H0 := H+ ⊗ I− + I+ ⊗ H−, where H± and I± are the
Hamiltonian and identity operators acting separately within the φ- and χ-sectors of the
Hilbert space. Explicitly

H+ := 1
2

∫

R+
d3x

[
p2+

(∇φ)2
]

and H− := 1
2

∫

R−
d3x

[
δabΠaΠb+δab∇χa ·∇χb

]
. (2.6)

The interaction Hamiltonian (in the limit of a point-like interaction surface) is similarly

Hint = ga φ(t,0)⊗ χa(t,0) +
λ

2 φ
2(t,0)⊗ I− . (2.7)

2.1.2 Initial conditions and the sudden approximation

For later calculations we assume the state of the total system at t = 0 to be of the form

ρ(0) = ρ+ ⊗ ρ− , (2.8)

for separate density matrices ρ± in the two sectors. In general, interactions introduce corre-
lations and so do not preserve this factorized form, and it is for this reason that we imagine
the couplings between φ and χa to be initially absent, being turned on suddenly with

ga(t) = Θ(t) ga , (2.9)
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where Θ(t) is the Heaviside step function. This allows us to prepare initially uncorrelated
states and then observe how the joint system reacts to the onset of coupling.

In practice we choose the φ sector initially to be in its vacuum,

ρ+ = |vac〉 〈vac| (2.10)

where |vac〉 is the standard Minkowski vacuum defined by ap |vac〉 = 0. With eventual
comparison to black holes in mind we take the χa sector to be in a thermal state,

ρ− = ,β := e−βH−

Tr ′ [e−βH− ] , (2.11)

with inverse temperature β > 0. The prime on the trace indicates that it is only taken
over the χ sector.

2.2 Time evolution in different pictures

Our goal is to solve for the time-evolution of the φ-sector of the system and because Sint is
bilinear in φ and χa the system’s evolution can be evaluated in quite some generality. An
exact solution is in particular given in section 5, after first detouring in section 3 to describe
an approximate solution that is evaluated perturbatively in the following combination of
hotspot couplings

g̃2 := δabgagb = Ng2 , (2.12)

where the second equality specializes to the case where all couplings are equal.
Although not required when solving the model, a large-N limit can be defined wherein

the coupling g̃ is held fixed (and need not itself be particularly small) as N → ∞. This
limit is briefly discussed in section 3.3, where it is shown that the behaviour of the χa fields
becomes particularly simple since they become oblivious to the presence of the φ field. The
large-N limit is not used elsewhere in this paper, besides in section 3.3.

2.2.1 Interaction picture

For perturbative evaluation we first diagonalize the free Hamiltonian. This is done in the
usual way, by writing (with time-dependence as appropriate for the interaction picture)

φ(x)=
∫ d3p√

(2π)3 2Ep

[
eip·xap+e−ip·xa∗p

]
and χa (x)=

∫ d3p√
(2π)2 2Ep

[
eip·xbap+e−ip·xba∗p

]

(2.13)
where p · x := pµx

µ = −Ept + p · x with Ep = |p|, and the canonical commutation
relations imply the usual creation- and annihilation-operator algebra: [ap, aq] = [bap, bbq] =
0 (together with their adjoints) and [ap, a∗q] = δ3(p − q) while [bap, bb∗q ] = δabδ3(p − q).
This diagonalizes H±:

H+ =
∫

d3p
Ep

2

[
apa∗p + a∗pap

]
and H− =

∫
d3p

Ep

2 δab

[
bapbb∗p + ba∗p bbp

]
. (2.14)
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The interaction-picture interaction Hamiltonian in the pointlike limit (ξ → 0) similarly
becomes

Hint (t) = gaφ (t,0)⊗ χa (t,0) +
λ

2 φ
2 (t,0)⊗ I−

=
∫ d3p d3q

2 (2π)3
√
EpEq

[
ga
(
ape

−iEpt + a∗pe
+iEpt

)⊗ (baqe−iEqt + ba∗q e+iEqt
)

(2.15)

+ λ

2
(
ape

−iEpt + a∗pe
+iEpt

)(
aqe

−iEqt + a∗qe
+iEqt

)⊗ I−
]
.

Matrix elements of this can be used in standard fashion to compute the evolution of the
system’s state.

2.2.2 Heisenberg picture

Later sections solve explicitly for time evolution, and do so by solving how the fields evolve
in Heisenberg picture, including the effects of the couplings in Hint. To this end it is worth
briefly setting up the Heisenberg picture quantities and in particular exposing differences
from the interaction-picture description given above.

Keeping in mind that we later entertain time-dependent couplings, ga(t), the full time-
evolution operator U(t, t′) can be defined as the solution to ∂tU(t, t0) = −iH(t)U(t, t0)
that satisfies U(t = t0) = I. This leads to the usual time-ordered form

U(t, t0) = T exp
(
−i
∫ t

t0
ds H(s)

)
. (2.16)

It is this transformation that is used to construct time-dependent Heisenberg-picture op-
erators, AH(t), from Schrödinger-picture operators, AS, using:

AH(t) = U∗(t, 0)ASU(t, 0) . (2.17)

We assume here that the two pictures agree at t = 0.
A virtue of transforming to the Heisenberg picture that the state does not evolve

at all. In Heisenberg picture it is the field operators that carry the burden of any time
evolution when computing correlation functions or transition amplitudes. This means that
the factorized form (2.8) for ρ can also be used at later times, ensuring that χa-sector
expectation values can always be taken using the thermal state (2.11).

Eq. (2.17) implies in particular that the Heisenberg picture field operators are given by

φH(t,x) := U∗(t, 0)
[
φS(x)⊗ I−

]
U(t, 0) and χaH(t,x) := U∗(t, 0)

[I+ ⊗ χaS(x)
]
U(t, 0) ,

(2.18)
and similarly for their conjugate momenta. An important conceptual point about this
definition is that the presence of the interaction term in H implies that the Heisenberg
field operators do not only act separately on the two sectors of the Hilbert space. In
particular, expansion of φH(t,x) in terms of creation and annihilation operators involve
both ap and bap, as does the expansion of the χaH(t,x).
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In later sections the time-evolution of the fields φH and χaH is determined by explicitly
integrating their Heisenberg-picture field equations. These express the differential version
of (2.17),

∂tAH(t) = −iU∗(t, 0)[AS,HS(t)]U(t, 0) = −i[AH(t),HH(t)] . (2.19)

To work out the implications of (2.19) for the field operators explicitly we first record the
following Schrödinger-picture commutators with the full Hamiltonian

− i
[
φS(x),HS(t)

]
= pS(x) , −i

[
χaS(x),HS(t)

]
= Πa

S(x) , (2.20)

− i
[
Πa
S(x),HS(t)

]
= ∇2χaS(x)− gaδ

3(x) φS(0)

and
− i
[
pS(x),HS(t)

]
= ∇2φS(x)− δ3(x)

(
ga χ

a
S(0) + λφS(0)

)
. (2.21)

Using these in (2.19) yields the equations of motion2

(
−∂2

t +∇2
)
φH(t,x) = δ3(x)

[
λφH(t,0) + gaχ

a
H(t,0)

]
(2.22)

and
δab
(
−∂2

t +∇2
)
χbH (t,x) = δ3 (x) gaφH (t,0) . (2.23)

These equations can be solved because they are linear in all of the fields, a consequence
of Hint describing more of a mixing between φ and χa than an honest-to-God interaction.
It is convenient to do so by first expanding the fields in terms of mode functions and then
using the field equations to set up a coupled series of linear differential equations. That is,
writing

φH(t,x) = φ(t,x) + φ̂(t,x) and χaH(t,x) = χa(t,x) + χ̂a(t,x) , (2.24)

with φ and χa being the interaction-picture fields given by (2.13), then the deviations from
the interaction picture are

φ̂(t,x)=
∫ d3p√

(2π)3 2Ep

{[
Sp (t,x)ap+S∗p (t,x)a∗p

]
⊗I−+ I+⊗ δab

[
sap (t,x) bbp+sa∗p (t,x) bb∗p

]}

(2.25)
and

χ̂a(t,x)=
∫ d3p√

(2π)32Ep

{[
Ra

p(t,x) ap+Ra
p(t,x)∗ a∗p

]
⊗I−+I+⊗ δbc

[
rabp (t,x)bcp+rab∗p (t,x)bc∗p

]}

(2.26)
where the to-be-determined mode functions {Sp, sap, R

a
p, r

ab
p } vanish in the absence of Hint.

2Use of (2.19) assumes no further time-dependence arises through a time-dependence of couplings after
they are initially turned on, which amounts to assuming the ‘sudden’ approximation when turning on
couplings at t = 0.
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Inserting (2.25) and (2.26) into the Heisenberg equations of motion (2.22) and (2.23)
leads to the following set of coupled equations for the mode functions {Sp, sap, R

a
p, r

ab
p }:

(
−∂2

t +∇2
)
Sp(t,x) =

[
λ
(
e−iEpt + Sp(t,0)

)
+ gbR

b
p(t,0)

]
δ3(x)

(
−∂2

t +∇2
)
sap(t,x) =

[
λ sap(t,0) + δabgb e

−iEpt + gb r
ba
p (t,0)

]
δ3(x) (2.27)

δab
(
−∂2

t +∇2
)
Rb

p(t,x) = ga
[
e−iEpt + Sp(t,0)

]
δ3(x)

δac
(
−∂2

t +∇2
)
rcbp (t,x) = gas

b
p(t,0) δ3(x) .

2.3 Integrating out χa

We wish to understand how the φ field responds to the presence of the hotspot, and we
do so under the assumption that no measurements directly involve the fields χa. Because
no χa measurements are made the χa mode functions can be solved as functions of the φ
mode functions to obtain a reduced set of equation to solve.

To see how this works explicitly consider preparing the φ field in its vacuum and then
suddenly turn on hotspot couplings at t = 0. This should generate a flurry of transient
behaviour before the φ field settles down at late times into a new adiabatic vacuum whose
properties we wish to compute. To this end write ga(t) = ga Θ(t) and λ(t) = λΘ(t), and
so the time-dependence of eqs. (2.27) can be made more explicit:

(
−∂2

t +∇2
)
Sp (t,x) = Θ (t)

[
λ
[
e−iEpt + Sp (t,0)

]
+ gaR

a
p (t,0)

]
δ3 (x) (2.28)

δab
(
−∂2

t +∇2
)
Rb

p (t,x) = Θ (t) ga
[
e−iEpt + Sp (t,0)

]
δ3 (x)

and
(
−∂2

t +∇2
)
sap (t,x) = Θ (t)

[
λ sap (t,0) + δabgb e

−iEpt + gb r
ba
p (t,0)

]
δ3 (x) (2.29)

(
−∂2

t +∇2
)
rabp (t,x) = Θ (t) δacgcsbp (t,0) δ3 (x) .

These are to be solved subject to the initial conditions

Sp(0,x) = ∂tSp(0,x) = sap(0,x) = ∂ts
a
p(0,x) = 0

and Ra
p(0,x) = ∂tR

a
p(0,x) = rabp (0,x) = ∂tr

ab
p (0,x) = 0 . (2.30)

2.3.1 Solving the χa equations
The mode functions associated with χa can be eliminated from the coupled equations (2.28)
and (2.29) with initial conditions (2.30) by using the retarded propagator

GR(t,x; t′,y) =
Θ(t− t′)
4π|x− y| δ

[
(t− t′)− |x− y|

]
, (2.31)

that satisfies the equation of motion
(
−∂2

t +∇2
)
GR(t,x; t′,y) = −δ(t− t′)δ3(x− y) . (2.32)
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In terms of this the formal solutions for Ra
p and rabp (the mode functions appearing in χa)

are

Ra
p(t,x) = −δabgb

∫ ∞

0
ds GR(t,x; τ,0)

[
e−iEpτ + Sp(τ,0)

]

= −δabgb
Θ(t− |x|)

4π|x|
[
e−iEp(t−|x|) + Sp(t− |x|,0)

]
(2.33)

and
rabp (t,x) = −δacgc

Θ(t− |x|)
4π|x| sbp(t− |x|,0) . (2.34)

These solutions have support only in the forward lightcone of the event where the couplings
turn on, and there give the mode functions at a distance r = |x| from the hotspot in terms
of their values at the hotspot position, but as a function of the retarded time tr := t − r

and with an amplitude that is suppressed by a power of 1/r.
Using these solutions to eliminate Ra

p and rabp from (2.28) and (2.29) leaves a coupled
set of equations involving only the mode functions appearing in φ:
(
−∂2

t +∇2
)
Sp(t,x) = Θ(t)

(
λ
[
e−iEpt + Sp(t,0)

]
(2.35)

− g̃2Θ(t− |y|)
4π|y|

[
e−iEp(t−|y|) + Sp(t− |y|,0)

]∣∣∣∣
|y|=0

)
δ3(x)

as well as
(
−∂2

t +∇2
)
sap(t,x) = Θ(t)

[
λ sap(t,0) +

g̃√
N
e−iEpt (2.36)

− g̃2Θ(t− |y|)
4π|y| sap(t− |y|,0)

∣∣∣∣
|y|=0

)
δ3(x)

where we specialize to the case where all of the ga’s have the same size, and use (2.12) to
write ga = g̃/

√
N for all a. The factor of

√
N is extracted here for convenience because it

cancels an explicit factor of N that comes from the summation over the index ‘a’ in (2.35).
Eqs. (2.35) and (2.36) reveal a characteristic ‘Coloumb’ singularity as |y| → 0, which

at face value appears to threaten any program to solve (2.35) and (2.36) iteratively as a
series in g̃2 and λ. In what follows, this divergence at |y| = 0 is regularized by instead
evaluating y at the microscopically small scale |y| = ε. This divergence problem is a general
issue that arises when exploring effective field theories describing compact sources, where
the domain of validity of the low-energy/long-wavelength theory does not allow sufficient
spatial resolution to resolve the source’s structure; it is generic that external fields diverge
at the position of a compact source.

But the example of the Coulomb field for a small charge distribution also suggests
that evaluating the 1/r divergence at r = 0 is really an artefact of trying to extrapolate to
zero an external solution that is not actually appropriate in the microscopic theory within
which the source’s structure can be resolved. A general EFT treatment of these issues is
possible [10, 80–84] (and tested in detail calculating nuclear finite-size effects in atoms [85–
87]), and shows how all such divergences get renormalized by the effective couplings in
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the action — such as the coupling λ of hotspot action (2.3) — that describes the source’s
low-energy properties (as we also see in detail below).

2.3.2 Renormalization of λ and ε-regularization

Regulating the field equations on the microscopic surface |y| = ε allows (2.35) and (2.36)
to be rewritten

(
−∂2

t +∇2
)
Sp(t,x)=

(
Θ(t)λ

[
e−iEpt+Sp(t,0)

]− g̃
2Θ(t−ε)
4πε

[
e−iEp(t−ε)+Sp(t−ε,0)

])
δ3(x)
(2.37)

and

(
−∂2

t +∇2
)
sap(t,x) =

(
Θ(t)

[
λ sap(t,0) +

g̃√
N
e−iEpt

]− g̃2Θ(t− ε)
4πε sap(t− ε,0)

)
δ3(x)
(2.38)

where we use Θ(t)Θ(t− ε) = Θ(t− ε) since ε > 0.
These equations can also be formally integrated using the retarded propagator (2.31)

to give

Sp(t,x) = −
λΘ(t− |x|)

4π|x|
(
e−iEp(t−|x|) + Sp(t− |x|,0)

)

+ g̃2Θ(t− |x|− ε)
16π2|x|ε

[
e−iEp(t−|x|−ε) + Sp(t− |x|− ε,0)

]

' −
(Θ(t− |x|)

4π|x|

[
λ− g̃2

4πε

]
+ g̃2δ(t− |x|)

16π2|x|

)[
e−iEp(t−|x|) + Sp(t− |x|,0)] (2.39)

− g̃2Θ(t− |x|)
16π2|x|

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]

and

sap(t,x)=−
Θ(t−|x|)
4π|x|

[
λsap(t−|x|,0)+

g̃√
N
e−iEp(t−|x|)

]
+ g̃2Θ(t−|x|−ε)

16π2|x|ε sap(t−|x|−ε,0)

'−
(Θ(t−|x|)

4π|x|

[
λ− g̃2

4πε

]
− g̃

2δ(t−|x|)
16π2|x|

)
sap(t−|x|,0) (2.40)

− g̃Θ(t−|x|)
4π
√
N |x|

e−iEp(t−|x|)− g̃
2Θ(t−|x|)
16π2|x| ∂ts

a
p(t−|x|,0)

where the approximate equalities exploit the fact that ε is a microscopic quantity to ex-
pand each of the last terms in powers of ε, and dropping terms that are O(ε). Note that
this expansion in ε implicitly assumes that Epε $ 1 for all modes when expanding the
exponential function.

Although the 1/ε term diverges, this divergence can be absorbed by redefining

λR := λ− g̃2

4πε , (2.41)
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showing that the divergence renormalizes the φ self-coupling λ. Dropping the subscript ‘R’
for notational simplicity, eqs. (2.39) and (2.40) become3

Sp(t,x) = −
λΘ(t− |x|)

4π|x|
(
e−iEp(t−|x|) + Sp(t− |x|,0)

)
− g̃2δ(t− |x|)

16π2|x| (2.42)

− g̃2Θ(t− |x|)
16π2|x|

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]

and

sap(t,x) = −
g̃Θ(t− |x|)
4π
√
N |x|

e−iEp(t−|x|)−λΘ(t− |x|)
4π|x| sap(t−|x|,0)−

g̃2Θ(t− |x|)
16π2|x| ∂ts

a
p(t−|x|,0) .

(2.43)
These are the equations that are to be solved in the next sections to determine the mode
functions for φ, and from these also determine its response to the hotspot.

3 Perturbative response

This section provides one of the points of comparison for the exact results of section 5. Here
we solve eqs. (2.42) and (2.43) iteratively in g̃ and λ, and use the lowest order solutions to
determine perturbatively how the fields evolve in time.

3.1 Mode functions
The iterative solution to (2.42) and (2.43) gives the perturbative result

Sp(t,x) ' −
(
λ− ig̃2Ep

4π

)Θ(t− |x|)
4π|x| e−iEp(t−|x|) − g̃2δ(t− |x|)

16π2|x| (perturbative) (3.1)

and
sap(t,x) ' −

g̃Θ(t− |x|)
4π
√
N |x|

e−iEp(t−|x|) (perturbative) (3.2)

to leading nontrivial order in λ and g̃. The real part of the perturbative solution (3.2)
is shown in figure 4, which shows how the result is nonzero only after the passage of the
wave-front that radiates out from the turn-on event at t = x = 0.

Using these mode functions in the expansion for φ, the leading-order perturbative limit
of the Heisenberg-picture fields truncated at order g̃2 can be written

φH(t,x)'
(
φ(t,x)−λΘ(t−|x|)

4π|x| φ(t−|x|,0)− g̃
2Θ(t−|x|)
16π2|x| p(t−|x|,0)− g̃

2δ(t−|x|)
16π2|x| φ(0,0)

)
⊗I−

− g̃Θ(t−|x|)
4π
√
N |x|

N∑

a=1
I+⊗χa(t−x,0) (3.3)

where (as above) φ and χ are the interaction-picture fields given in (2.13) and p = ∂tφ is
the canonical momentum defined in (2.4). The Heaviside step functions show how φH(t,x)
does not respond to the turn-on of the hotspot couplings at t = 0 until after the transient
wave reaches the particular point x, after which mode interference occurs. The sum over
a is written explicitly in (3.3) to underline the necessity of keeping this term, even in the
large-N limit despite the factor of 1/

√
N .

3In arriving at (2.42) and (2.43) we simplify the terms which come multiplied by δ(t− |x|) by using the
initial conditions to eliminate Sp(0,0) = sap(0,0) = 0 in the final result.
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Figure 4: Re[sap(t,x)] from (3.2) vs t and |x|, showing the wave-front emanating from
t = x = 0, the growth for small |x| and the oscillatory behaviour with wavelength set by
Ep. (Colour online.).

3.2 Two-point φ correlator

The physical implications of the field evolution just calculated gets communicated to ob-
servables through field correlators, and because the model considered here is gaussian the
two-point function carries all of this information. For observers situated in R+ only the
correlators of the field φ can be accessed, and so we therefore next compute the two-point
correlator,

Wβ(t,x; t′,x′) := Tr
[
φH(t,x)φH(t′,x′)ρ0

]
= 1
Zβ

Tr
[
φH(t,x)φH(t′,x′)

( |vac〉 〈vac|⊗e−βH−
)]
,

(3.4)
where ρ0 denotes the system’s state, for which we use the state given in (2.8), (2.10)
and (2.11). Zβ := Tr ′

[
e−βH−

]
is the partition function for the N thermal χa fields.

Using the perturbative solution for φH given in (3.3) allows the leading-order in g̃2 and
λ contribution to be written in terms of the free correlation functions,

Wβ

(
t,x; t′,x′

)

'〈vac|φ(t,x)φ(t′,x′) |vac〉

−λΘ(t−|x|)
4π|x| 〈vac|φ(t−|x|,0)φ(t′,x′) |vac〉−λΘ(t′−|x′|)

4π|x′| 〈vac|φ(t,x)φ(t′−|x′|,0) |vac〉

+ g̃2Θ(t−|x|)Θ(t′−|x′|)
16π2|x||x′| Tr ′

[
χa (t−|x|,0)χb (t′−|x′|,0),β

]
(3.5)

− g̃
2Θ(t−|x|)
16π2|x| 〈vac|p(t−|x|,0)φ(t′,x′) |vac〉− g̃

2Θ(t′−|x′|)
16π2|x′| 〈vac|φ(t,x)p(t′−|x′|,0) |vac〉

− g̃
2δ (t−|x|)
16π2|x| 〈vac|φ(0,0)φ(t′,x′) |vac〉− g̃

2δ (t′−|x′|)
16π2|x′| 〈vac|φ(t,x)φ(0,0) |vac〉 .
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This can be simplified using the following explicit forms for the free correlators

〈vac|φ (t,x)φ (t′,x′) |vac〉 = 1
4π2[− (t− t′ − iδ)2 + |x− x′|2] , (3.6)

〈vac|p (t,x)φ (t′,x′) |vac〉 = t− t′

2π2
[
− (t− t′ − iδ)2 + |x− x′|2

]2 , (3.7)

and

〈vac|φ(t,x)p(t′,x′) |vac〉=−〈vac|p(t,x)φ(t′,x′)|vac〉= −t+t′

2π2[−(t−t′−iδ)2+|x−x′|2]2
,

(3.8)
leading to

Wβ(t,x; t′,x′)

' 1
4π2[−(t−t′−iδ)2+|x−x′|2]

+ λ

16π3

(Θ(t−|x|)
|x|

1
(t−t′−|x|−iδ)2−|x′|2 +

Θ(t′−|x′|)
|x′|

1
(t−t′+|x′|−iδ)2−|x|2

)

− g̃2Θ(t−|x|)Θ(t′−|x′|)
64π2β2|x||x′|sinh2

[
π
β (t−|x|−t′+|x′|−iδ)

] (3.9)

+ g̃2

32π4

(
−Θ(t−|x|)

|x|
t−t′−|x|

[
(t−t′−|x|−iδ)2−|x′|2]2

+Θ(t′−|x′|)
|x′|

t−t′+|x′|
[
(t−t′+|x′|−iδ)2−|x|2]2

)

+ g̃2

64π4

(
δ(t−|x|)

|x|[−(t′+iδ)2−|x′|2]+
δ(t′−|x′|)

|x′|[−(t−iδ)2−|x|2]
)
,

where the inverse temperature β = 1/T arises from the thermal average in the χ sector.
Of particular interest is the form of this result after the passage of the transients, with

both t and t′ chosen to lie in the future light cone of the switch-on event (i.e. t > |x| and
t′ > |x′|). In this region the above expression becomes

Wβ

(
t,x; t′,x′

)

' 1
4π2

[
− (t− t′ − iδ)2 + |x− x′|2

] + λ

16π3|x||x′|

[
|x|+ |x′|

(t− t′ − iδ)2 − (|x+ |x′|)2
]

− g̃2

64π2β2|x||x′| sinh2
[
π
β (t− |x|− t′ + |x′|− iδ)

] (3.10)

+ g̃2

32π4


− 1

|x|
t− t′ − |x|

[
(t− t′ − |x|− iδ)2 − |x′|2

]2 + 1
|x′|

t− t′ + |x′|
[
(t− t′ + |x′|− iδ)2 − |x|2

]2




As expected, in this limit the O(λ) and O(g̃2) terms break translation invariance, though
time-translation invariance is restored once the transients due to the coupling turn-on have
passed. Rotations about the position of the hotspot remain a symmetry. Apart from a
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(a) λ-dependent term. (b) g̃2-dependent term.

Figure 5: The equal-time t = t′ limits of the λ-dependent term and g̃2-dependent term of
the Wightman function given in eq. (3.11). (Colour online.).

global 1/r fall-off the thermal O(g̃2) term depends only on the retarded times tr = t− |x|
and t′r = t′ − |y|, with correlations that die exponentially once tr − t′r # β. By contrast,
the temperature-independent O(g̃2) term — and the O(λ) contributions — preserve the
power-law fall-off for large t − t′, but modify its amplitude in a way that becomes less
important further from the hotspot.

For some applications it is the equal-time correlator evaluated with t = t′ that is of
interest (at late times t > |x|, |x′|). In this case the above simplifies to4

Wβ(t,x; t,x′) '
1

4π2|x− x′|2 −
λ

16π3|x||x′|(|x|+ |x′|) (3.11)

− g̃2

64π2β2|x||x′| sinh2
[
π
β (|x|− |x′|)

] + g̃2

16π4(|x|2 − |x′|2)2

Notice (3.11) is real-valued, as should be the case for unitary time-evolution. The λ- and
the g̃2-dependent terms of (3.11) are plotted in figure 5

3.3 Two-point χa correlator in the large-N limit

Although the 〈φφ〉 correlator does not simplify in the large-N limit, the same is not true for
〈χχ〉 correlations. This can be seen by inserting the perturbative formulae (3.1) and (3.2)
for Sp and sap into the implicit solutions (2.33) and (2.34) for the χa-mode functions Ra

p
and rabp , which gives

Ra
p(t,x) ' −

g̃√
N

· Θ(t− |x|)
4π|x| e−iEp(t−|x|) + . . . (3.12)

and
rabp (t,x) = g̃2

N
· Θ(t− |x|− ε)

16π2|x|ε e−iEp(t−|x|−ε) . . . (3.13)

4Note that this formula has no iδ’s left in it — the reason for this is that any poles located at |x|+|x′| can
safely have δ → 0+ taken. For the remaining poles at |x|− |x′|, we use the identity 1

(z±iδ)2 = 1
z2 ± iπδ′(z)

and notice that a cancellation occurs.
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to leading order in g̃2 and λ. The solution (3.13) contains a 1/ε divergence, which can be
absorbed into the coupling for a self-interaction proportional to I+⊗δabχaχb (although for
brevity we do not do so here).

Eqs. (3.12) and (3.13) show that the mixing of χa with φ is suppressed by powers of
1/N , and so become negligible in the large-N limit. The same suppression does not occur
in the 〈φφ〉 correlator because the explicit 1/N suppression is compensated by the sum
over a and b in the combination gagb〈χa χb〉. It follows that these correlators satisfy

Tr[χaH(t,x)χbH(t′,x′)ρ0] = Tr ′
[
χa(t,x)χb(t′,x′),β

]
+O(1/N) (3.14)

and so in the limit N # 1 are simply the thermal correlation functions for free fields, as if
the φ field did not exist.

For completeness we quote here the explicit form for this free thermal correlator, with
details of the calculation given in section A.1. The result evaluated at spacetime points
x = (t,x) and x′ = (t′,x′) is5

〈χa(x)χb(x′)〉β :=Tr ′
[
χa(t,x)χb(t′,x′),β

]
(3.15)

= δab

8πβ|x−x′|

{
coth

[
π

β

(
t−t′+|x−x′|−iδ)

]
−coth

[
π

β

(
t−t′−|x−x′|−iδ)

]}
,

in agreement with standard formulae [92]. In this expression the limit δ → 0+ is to be taken
at the end of the calculation. Notice that eq. (3.15) obeys the required reality property
(for real scalars)

〈χa(y)χb(x)〉β =
[
〈χb(x)χa(y)〉β

]∗
, (3.16)

and at zero temperature (β →∞) goes over to

〈χa(x)χb(x′)〉β →
δab

4π2[−(t− t′ − iδ)2 + |x− x′|2] , (3.17)

as it should.

4 RG Improvement and resumming the λ expansion

This section studies the dependence of hotspot physics on the self-coupling λ, in particular
exploring how limiting it is to treat its implications perturbatively. Although the validity of
expansions in λ might seem to be a tangential issue if one’s focus is on the thermal coupling
g̃, it really is not. As discussed earlier, the response of a field like φ to the hotspot typically
diverges at the hotspot position — cf. for example equations (2.39) and (2.40) — and these
divergences are ultimately handled by being renormalized into couplings like λ, as in (2.41).
As a consequence of this renormalization couplings like λ run in the renormalization-group

5Note the given iδ-prescription is only valid for real time arguments. Given that the N environment
fields are assumed to be prepared in a thermal state, this correlation function must obey the Kubo-Martin-
Schwinger (KMS) condition 〈χa(t−iβ,x)χb(0,0)〉β = 〈χa(t,x)χa(0,0)〉∗β , which assumes a shift in imaginary
time — for the correct iδ-prescription in this case, see (A.19) in appendix A.1 (which agrees with the above
prescription for real time arguements).
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sense, and (as we show here, following [80, 81]) this can make it inconsistent to set them
to zero at all scales.

This section derives precisely how the coupling λ runs, and along the way shows that
the dimensionless expansion parameter that justifies treating λ perturbatively turns out
to be λ/4πε, where ε is the very small regularization length scale used to regulate the
divergences (as in eqs. (2.39) and (2.40)). Physically, both λ and ε might reasonably be
expected to be of order the size ξ of the compact hotspot; a length scale that has been
assumed to be much smaller than the other scales of physical interest. If perturbative
calculations actually require λ$ 4πε then they may not be that useful, since λ would have
to be much smaller even than this already very microscopic scale. The renormalization-
group arguments presented here show how perturbative predictions can be extended to the
regime λ >∼ 4πε, providing results that can be compared to the exact calculations to follow
in section 5.

4.1 Effective interactions and boundary condition

To better understand the effects of λ beyond perturbation theory this section temporarily
turns off the coupling g̃ in order to eliminate unnecessary distractions. Non-perturbative
information is then extracted by leaving λ nonzero for all time and exploring more sys-
tematically how it modifies the dynamics of the φ field. A natural framework for this is
the language of point-particle (or world-line) EFTs, since these systematically incorporate
the effects of small objects on their surroundings, organized in powers of ka (where a is
the object’s size and k is the momentum of a typical probe). In practice we therefore work
completely in the R+ sector, following closely the logic of [10, 80, 81], with the bulk field
interacting only with the contact interaction

Hint(t) =
λ

2

∫
d3x φ2(t,x) δ3(x) = λ

2 φ
2(t,0) , (4.1)

with λ independent of time.
The implications of λ are incorporated by identifying the mode functions that are

appropriate in the presence of this interaction. Since the Heisenberg equation of motion in
this case — cf. equation (2.22) — is

(
−∂2

t +∇2
)
φ (t,x) = λφ (t,0) δ3(x) , (4.2)

this is also the equation satisfied by each mode function, uω!m(t,x), in an expansion
(cf. equation (2.13)) like

φ(t,x) =
∞∑

!=0

+!∑

m=−!

∫
dω

[
uω!m(t,x)aω!m + u∗ω!m(t,x)a∗ω!m

]
. (4.3)

Once the λ-dependence of these mode functions is identified by solving (4.2), the implica-
tions for the Wightman function are obtained from formulae like

〈vac|φ(t,x)φ(s,y) |vac〉 =
∞∑

!=0

+!∑

m=−!

∫
dω uω!m(t,x)u∗ω!m(s,y) . (4.4)
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Here |vac〉 satisfies aω!m |vac〉 = 0, and aω!m satisfies the standard commutation relations
[aω!m, a∗ω̃!̃m̃] = δ(ω − ω̃)δ!!̃δmm̃, and the mode functions uω!m are assumed to be properly
normalized.

The main observation is that the dependence of uω!m on λ can be inferred by integrating
its equation of motion

(
−∂2

t +∇2
)
uω!m(t,x) = λuω!m(t,x) δ3(x) , (4.5)

over a tiny sphere Bε :=
{
x ∈ R3 ∣∣ |x| ≤ ε

}
of radius ε > 0 centred around the origin.

Following standard steps [80–82, 84] this integration leads to a λ-dependent boundary
condition near the hotspot, of the form

4πε2
(
∂uω!m(t,x)

∂r

)

r=ε
= λ uω!m(t,x)

∣∣∣
r=ε

. (4.6)

That is, for r > ε mode functions simply satisfy the Klein-Gordon equation
(
−∂2

t +∇2
x
)
up(t,x) = 0 , (4.7)

and only learn about the coupling λ through its appearance in the boundary condition (4.6).
Concretely, expanding the solution in terms of spherical harmonics,

uω!m(t,x) = e−iωtRω!(r)Y!m(θ,φ), (4.8)

the radial solutions are spherical Bessel functions

Rω!(r) = C!(ω)j!(ωr) +D!(ω)y!(ωr) , (4.9)

where C!(ω) and D!(ω) are integration constants, whose ratio is determined by the bound-
ary condition (4.6) and so is λ-dependent. Explicitly, the boundary condition (4.6) implies

4πε2 ∂rRω!(ε) = λRω!(ε) (4.10)

Substituting the solution (4.9) into (4.10), and using the Bessel function identity

∂rf!(ωr) =
/

r
f!(ωr)− ωf!+1(ωr) (4.11)

(that holds for both f! = j! and f! = y!), shows that the boundary condition (4.10) becomes

λ

4πε =
(
r ∂r lnRω!

)
r=ε

= /j!(ωε)− ωεj!+1(ωε) + (D!/C!)[/y!(ωε)− ωεy!+1(ωε)]
j!(ωε) + (D!/C!) y!(ωε)

, (4.12)

and this, once solved, leads to the following solution for the λ-dependence of D!/C!

D!(ω)
C!(ω)

= − [(λ/4πε)− /]j!(ωε) + ωεj!+1(ωε)
[(λ/4πε)− /]y!(ωε) + ωεy!+1(ωε)

. (4.13)

These expressions simplify in the limit of practical interest, where ωε $ 1. In this
limit we may use the expansions

j! (z) =
√
π z!

2!+1Γ
(
/+ 3

2

) +O
(
z!+2

)
and y! (z) = −

2! Γ
(

1
2 + /

)

√
π z!+1 +O

(
z−!+1

)
, (4.14)
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to find that (4.13) becomes

D! (ω)
C! (ω)

' π

Γ
(
/+ 3

2

)
Γ
(
/+ 1

2

)
[ (λ/4πε)− /
(λ/4πε) + /+ 1

] (
ωε

2

)2!+1
. (4.15)

The coefficient here can be simplified using

π

Γ
(
/+ 1

2

)
Γ
(
/+ 3

2

) = 24!+2 [/!]2

2 (2/+ 1) [(2/)!]2
. (4.16)

The inverse of (4.15) — or equivalently, the small ωε limit of (4.12) — similarly becomes

λ

4πε '
/ (ωε/2)2!+1 + (/+ 1)X! (ω)

(ωε/2)2!+1 −X! (ω)
(4.17)

where
X!(ω) :=

1
π

Γ
(
/+ 3

2

)
Γ
(
/+ 1

2

) D!(ω)
C!(ω)

. (4.18)

Whether the numerator and denominator of thse last expressions can be further expanded
depends on how the quantities (λ/4πε)− / and D!/C! behave when ωε$ 1.

4.2 Renormalization group and the interpretation of ε

There are two ways to read the above boundary conditions. The naive way is as given
in (4.13) or (4.15): they give D!(ω)/C!(ω) as an explicit function of / and the two dimen-
sionless variables λ/4πε and ωε. What is bothersome about this interpretation is that it
makes D!/C! depend not only on the coupling λ, but also on the arbitrary regularization
scale ε.

But if D!/C! depends on ε then so also will the physical observables that are built from
it. Normally regularization dependence in a calculation drops out of physical quantities
because it gets renormalized into a redefinition of the couplings. Or, equivalently, it is
cancelled by an implicit regularization dependence that is hidden within couplings like λ.

4.2.1 Running of λ

This observation suggests a different way to interpret the above boundary condition [80, 81].
This alternative reading insists physical quantities cannot depend on arbitrary regulariza-
tion scales, and because of this neither can D!/C!. In this case expressions like (4.12)
or (4.17) should be reinterpreted as making explicit how λ = λ(ε) must depend on ε in or-
der to ensure that D!/C! remains ε-independent. That is to say, in this interpretation (4.17)
is an RG equation for the coupling λ(ε).

To see what the evolution implied by (4.17) means more explicitly, it is worth expressing
it in differential form. As explored in detail in appendix B, this can be put into a universal
form by defining the new variable v(ε) using

λ

2πε = (2/+ 1) v − 1 , (4.19)
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Figure 6: The two categories of RG flow described by the evolution equation (4.20). This
figure plots the universal variable v(ε) against ln(ε/ε*). An example is shown with both
|v| > 1 and v < 1, and the plot shows the sign of |v| − 1 is invariant because v = ±1 are
fixed points. (figure taken from [87].).

for which differentiation of (4.17) becomes

ε
dv
dε =

(
/+ 1

2

)
(1− v2) . (4.20)

As is easily verified, the solution of (4.20) subject to the initial condition v(ε0) = v0 is
given by

v(ε) = (v0 + 1)(ε/ε0)2!+1 + (v0 − 1)
(v0 + 1)(ε/ε0)2!+1 − (v0 − 1) (4.21)

and this agrees with (4.17) once (4.19) is used, with integration constant v0 determining
the combination D!/C!. These generically describe evolution from v = −1 to v = +1 as ε
ranges from 0 to ∞. A plot of two representative solutions to (4.21) is given in figure 6.

Of course there is nothing wrong with simply regarding the boundary condition as
specifying D!/C! once a coupling λ0 is specified using a specific choice of regularization
scale ε0. What the RG interpretation tells us is that once this choice is made, we are
completely free to use any other regularization scale, ε1 instead, provided that we also
change the value of the coupling to λ1 where both pairs (ε0,λ0) and (ε1,λ1) lie on the
same RG trajectory λ(ε) defined by (4.17) (or, equivalently by (4.19) and (4.21)). It is
only when the coupling and regulator are changed in this correlated way that physical
quantities remain unchanged.

4.2.2 RG-invariant characterization of coupling strength

Because physical observables depend only on the coupling trajectories it is more informative
to specify the strength of the coupling by labelling the coupling trajectories using a more
convenient RG-invariant parameterization, rather than simply by specifying its value λ0 =
λ(ε0) for a specific (but arbitrary) regularizations scale ε0. This section follows [80, 81] and
identifies a particular choice of RG-invariant parameterization that is convenient because
(unlike the value λ0, say) the parameters are simply related to physical quantities.
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To this end the first observation is that the evolution equation (4.20) has two fixed
points, v = ±1, along which v is ε-independent. Trajectories that do evolve therefore
cannot cross v = ±1 and so fall into two distinct categories, distinguished by

η* := sign
(
v2 − 1

)
. (4.22)

η* is an RG-invariant quantity inasmuch as the sign of v2− 1 does not depend on ε for any
v(ε) satisfying (4.20).

Any specific curve can be uniquely characterized in an RG-invariant way by specifying
both η* and the new variable ε*, defined as the place where the curve passes through zero (if
η* = −1) or where it diverges (if η* = +1). Using this definition the general solution (4.21)
simplifies to

v(ε) = (ε/ε*)2!+1 + η*
(ε/ε*)2!+1 − η*

(4.23)

and this shows that the pair (η*, ε*) are related to any specific choice of initial condition
(ε0, v0) by η* = sign(v2

0 − 1) and
(
ε*
ε0

)2!+1
= η*

(
v0 − 1
v0 + 1

)
=
∣∣∣∣
v0 − 1
v0 + 1

∣∣∣∣ . (4.24)

What makes these variables convenient is that ε* provides an invariant length scale
that is shared by all representatives (ε, v) or (ε,λ) along a particular RG trajectory. It is
consequently this length scale — and not ε0 or λ0, say — that is physical and so whose size
characterizes the values of physical observables. This is shown in detail in [80–84, 86, 87],
where cross sections and energy shifts in many examples are evaluated and found to be
simply related to ε*.

To see explicitly why this is so, we write λ(ε) in terms of ε* by combining (4.19)
and (4.23) to get

λ

2πε + 1 = (2/+ 1)v(ε) = (2/+ 1) (ε/ε*)
2!+1 + η*

(ε/ε*)2!+1 − η*
, (4.25)

and for later purposes also record its inverse (cf. eqs. (4.19) and (4.24))
(
ε*
ε

)2!+1
=
∣∣∣∣
v − 1
v + 1

∣∣∣∣ =
∣∣∣∣

[λ/(4πε)]− /
[λ/(4πε)] + /+ 1

∣∣∣∣ . (4.26)

eq. (4.25) can be used in (4.15) to determine the integration constant ratio D!/C! from
which physical quantities are ultimately determined. This exercise gives

D!(ω)
C!(ω)

= πη*

Γ(/+ 3
2)Γ(/+ 1

2)

(
ωε*
2

)2!+1
, (4.27)

verifying that the explicit dependence on ε and λ combines into the invariant combinations
η* and ε*. In particular, it is the dimensionless quantity ωε* that controls the size of
any physical response, and (4.27) shows quantitatively in this language how small angular
momenta / are preferred when ωε* $ 1.
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In practical examples ε* is set by the size of the underlying object (in this case the
hotspot) times the appropriate coupling that controls the interactions through which it is
probed. For example, when a similar analysis is applied to describing the effects of finite
nuclear size on the energy levels in pionic atoms, one finds ε* ∼ RN is of order the nuclear
radius [82]. But the same analysis when describing nuclear-size effects on Hydrogen energy
levels finds ε* ∼ αRN , with α the fine-structure constant [80, 81].

By comparison, if boundary conditions must be imposed for an effective theory outside
the nucleus then ε > RN . Concrete examples like these show that a small source probed
by a weakly coupled field tends to produce ε* $ ε, if ε is regarded to be typical linear size
of the compact object.

4.2.3 Resumming all orders in λ/4πε
It is instructive to explore the connection between λ(ε) and ε* explicitly in the weak-
coupling limit, by expanding (4.25) in powers of ε*/ε. In this limit (4.23) simplifies to
v(ε) ' 1 + 2η* (ε*/ε)2!+1 + · · · , and so

λ

2πε ' 2/+ 2η*(2/+ 1)
(
ε*
ε

)2!+1
. (4.28)

For the / = 0 mode in particular λ becomes ε-independent in the perturbative limit, with

λ ' 4πη*ε* (for / = 0 and ε* $ ε) . (4.29)

This shows that for s-wave processes, expressions for physical quantities as functions of
ωε* (for mode frequency ω) can be turned into corresponding expressions as functions of
λω, by using (4.29). Provided powers of ε*/ε are negligible these expressions need have
no dependence on regulators like ε, making any discussion of RG evolution completely
unnecessary.

But what happens if ε is now decreased and λ(ε) adjusted along a particular RG flow
to a point where ε*/ε is no longer negligible and λ/4πε is no longer small? The answer
for the physical observable as a function of ωε* does not change at all, because physics
depends only on which RG trajectory one lives, and not on the particular point one sits
along this trajectory. All that changes as ε and λ are varied is that expression (4.29) can
no longer be used to trade ε* for λ; instead one must go back to the full result (4.25) when
doing so.

This observation provides a way to resum all orders in λ/4πε while holding quantities
like ωε* fixed. Suppose one computes an observable as a function of two dimensionless
quantities O = O[ωε,λ/4πε], and does so perturbatively in λ/4πε. The result can be
turned into an expression O = O[ωε, ε*/ε] by trading λ for ε* using (4.29). But we know
that ε is just a calculational artefact that is not actually in the physical result, which must
therefore really only be a function of the one variable ωε*.

The result for the same observable elsewhere on the RG trajectory, where λ/4πε and
ε*/ε are not small, is given by the same expression O = O[ωε*] since it does not depend
at all on ε. Expressing this result in terms of O = O[ωε,λ/4πε] using (4.25) then gives an
explicit resummation of the observable to all orders in λ(ε)/4πε.
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4.3 Resummation of the two-point function

The above reasoning can be applied to the perturbative calculation of φ-field response given
above, allowing results that are derived to lowest nontrivial order in λ/4πε to be promoted
into expressions that work to all orders in this variable.

4.3.1 s-wave resummation
We derive the resummed results here, and then check (in this section) that they capture
a full mode sum using the boundary condition (4.6). In later sections we also verify that
the results found for large λ/4πε in this way also agree with the exact expressions derived
in section 5.

The starting point is the perturbative expression (3.10), that is given again here in the
special case g̃ = 0:

Wβ(t,x; t′,x′)'
1

4π2[−(t−t′−iδ)2+|x−x′|2]+
λ

16π3|x||x′|

[ |x|+|x′|
(t−t′−iδ)2−(|x+|x′|)2

]
.

(4.30)
Anticipating the dominance of the / = 0 mode (as is appropriate in applications for which
ε* $ |x|, |x′| say, see next section), we may trade λ in this expression for ε* using (4.29)
to find

Wβ(t,x; t′,x′)'
1

4π2[−(t−t′−iδ)2+|x−x′|2]+
η*ε*

4π2|x||x′|

[ |x|+|x′|
(t−t′−iδ)2−(|x+|x′|)2

]
.

(4.31)
But an expression with broader validity than (4.30) can be obtained from (4.31) by using
in this result the more general / = 0 relation giving ε* in terms of λ given in (4.26), leading
to

〈φ(t,x)φ(t′,x′)〉 ' 1
4π2

[ 1
−(t− t′ − iη)2 + |x− x′|2

]
(4.32)

+ 1
16π3|x||x′|

∣∣∣∣
λ

(λ/4πε) + 1

∣∣∣∣
[ |x|+ |x′|
(t− t′ − iδ)2 − (|x|+ |x′|)2

]
.

This clearly agrees with (4.30) for small λ/4πε, but its validity is now extended to include
the regime λ >∼ 4πε provided only that / = 0 modes dominate when computing the hotspot
influence. The conditions under which this is true are explored more fully in the next
section, which verifies (4.32) starting directly from a mode-sum using modes that satisfy
the boundary condition (4.6).

4.3.2 Mode-sum calculation
We next recompute (4.32) by evaluating the φ-field correlator as an exact function of λ,
by calculating the sum over mode-functions whose λ-dependence is acquired through the
boundary condition (4.6). As described above, this boundary condition fixes the ratio
of integration constants D!/C! to be given in terms of ε* as in (4.27), repeated here for
conenience:

D!(ω)
C!(ω)

= πη*

Γ(/+ 3
2)Γ(/+ 1

2)

(
ωε*
2

)2!+1
. (4.33)
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Mode normalization. The integration constants C! and D! are determined separately
by combining (4.33) with mode-function normalization, which requires

〈uω!m, uω̃!̃m̃〉 = δ(ω − ω̃)δ!!̃δmm̃ , 〈uω!m, u∗ω̃!̃m̃〉 = 0 , 〈u∗ω!m, u∗ω̃!̃m̃〉 = −δ(ω − ω̃)δ!!̃δmm̃

(4.34)
where the angle brackets denote the Klein-Gordon inner product

〈F,G〉 := i

∫
d3x

(
F (t,x)∂tG∗(t,x)− ∂tF (t,x)G∗(t,x)

)
. (4.35)

As is easily verified, this inner product is time-independent when evaluated for any solu-
tions F,G to the Klein-Gordon equation, and this remains true even in the presence of
the modified boundary condition (4.6), whenever the effective coupling λ is real. To see
why notice that this boundary condition implies the radial flux density of Klein-Gordon
probability at r = ε is

Jr(ε) ∝
[
F (t,x)∂rG∗(t,x)− ∂rF (t,x)G∗(t,x)

]
r=ε

= (λ∗ − λ)
[
F (t,x)G∗(t,x)

]
r=ε

(4.36)

and so vanishes for real λ.
The normalization integrals are computed in appendix C.1, leading to the following

ε*-dependent results for C! and D! separately

C!m(ω) =
√
ω

π



1 +

[
π

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1]2


−1/2

, (4.37)

and

D!m(ω) = πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1√ω

π



1 +

[
π

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1]2


−1/2

.

(4.38)

With these choices the mode functions and field operators satisfy the required boundary
condition at r = ε, and this completely determines their dependence on ε*.

The main approximation made in deriving (4.37) and (4.38) is to assume that ωε is
small enough to allow the replacement of j!(ωε) and y!(ωε) with their leading asymptotic
forms; that is by using (4.15) instead of (4.13). Since the Bessel functions are explicitly
known this approximation can be improved to any desired order in ωε, by upgrading
condition (4.33) using a more accurate representation of the Bessel functions.

Mode sum. We are now in a position to compute the Wightman function in terms of a
mode sum, using the above ε*-dependent form for the modes,

uω!m(t,x) = C!m(ω)e−iωt
[
j!(ωr) +

πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ωr)

]
Y!m(θ,φ) ,

(4.39)
that properly matching at the boundary condition at r = ε (dropping subdominant terms
in ωε). As argued above, all explicit dependence on ε drops out of this exression once
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evaluated at |x| = ε, cancelling between any explicit dependence and the ε-dependence
implicit without the coupling λ, leaving a dependence only on the RG-invariant quantity
ε*. In particular, eqs. (4.37) and (4.39) do not assume validity of the weak-coupling limit
ε* $ ε (or equivalently λ/4πε need not be much smaller than unity).

The Wightman function is given in terms of these modes by

〈φ(t,x)φ(t′,x′)〉

=
∞∑

!=0

+!∑

m=−!

∫ ∞

0
dω uω!m(t,x)u∗ω!m(t′,x′) (4.40)

=
∞∑

!=0

+!∑

m=−!

∫ ∞

0
dω e−iω(t−t′)|C!m(ω)|2

[
j!(ω|x|)+ πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x|)

]

×
[
j!(ω|x′|)+ πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x′|)

]
Y!m(θ,φ)Y ∗!m(θ′,φ′) .

Performing the sum over m (see appendix C.2 for details) leads to the intermediate expres-
sion

〈φ(t,x)φ(t′,x′)〉

=
∞∑

!=0

2/+1
4π

∫ ∞

0
dω e−iω(t−t′)|C!0(ω)|2

[
j!(ω|x|)+ πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x|)

]

×
[
j!(ω|x′|)+ πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x′|)

]
P!(cosθ) . (4.41)

The terms in this sum involving two factors of j! reproduce the standard vacuum Minkowski
Wightman function in the absence of the hotspot source.

Leading order in ωε'. To make further progress we assume ωε* $ 1, which is a natural
limit for modes with energies much smaller than the UV scale 1/ε*. In this case because
ωε* appears raised to the power 2/+1 it follows that the leading regime comes purely from
the s-wave partial wave with / = 0. Using

j0(ω|x|) =
sin(x)
x

and y0(x) = −
cos(x)
x

, (4.42)

the contribution up to leading (linear) nontrivial order in ωε* can be simplified to

〈φ(t,x)φ(t′,x′)〉

' 1
4π2

∫ ∞

0
dω e−iω(t−t′)

{
ω
∞∑

!=0
(2/+1)j!(ω|x|)j!(ω|x′|)P!(cosθ)

− (4πη*ε*)
16π3|x||x′|

[
sin(ω|x|)cos(ω|x′|)+cos(ω|x|)sin(ω|x′|)

]
+O(ω2ε2*)

}
.

' 1
4π2|x−x′|

∫ ∞

0
dωe−iω(t−t′)

{
sin
(
ω|x−x′|) − (4πη*ε*)

16π3|x||x′| sin
[
ω
(|x|+|x′|)

]
+O(ω2ε2*)

}
.

(4.43)
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Evaluating the remaining integrals then gives

〈φ (t,x)φ (t′,x′)〉 ' 1
4π2

[
1

− (t− t′ − iδ)2 + |x− x′|2

]
(4.44)

+ (4πη*ε*)
16π3|x||x′|

[
|x|+ |x′|

(t− t′ − iδ)2 − (|x|+ |x′|)2

]
,

where δ = 0+ is the usual positive infinitesimal that is taken to zero at the end of the
calculation.

Notice that (4.44) precisely agrees with the result found in (4.31), and so guarantees
that the result (4.32) is found once the combination η*ε* is traded for λ(ε) using (4.26).
Higher orders in ωε* can be included systematically by including higher partial waves and
by working to higher order in the small ωε expansion of the mode-functions.

5 Exact two-point correlator

In this section we evaluate the φ mode functions without perturbing in λ and g̃, and sum
these modes to obtain the exact 〈φφ〉 Wightman function.

5.1 Mode functions

The first step is to find the mode functions in a way that does not rely on couplings being
small. To this end we must solve equations (2.42) and (2.43), which are repeated here for
ease of reference, for the mode functions Sp and sap:

Sp(t,x) = −
λΘ(t− |x|)

4π|x|
(
e−iEp(t−|x|) + Sp(t− |x|,0)

)
− δabgagb

16π2|x| δ(t− |x|) (5.1)

− δabgagb
16π2|x| Θ(t− |x|)

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]

and

sap(t,x) = −
δabgb
4π|x| Θ(t− |x|) e−iEp(t−|x|) − λΘ(t− |x|)

4π|x| sap(t− |x|,0)

− δbcgbgc
16π2|x| Θ(t− |x|) ∂tsap(t− |x|,0) (5.2)

subject to the initial conditions (2.30).
Clearly, whenever t < |x| the right-hand sides of these equations vanish and so they

imply that Sp(t,x) = sap(t,x) = 0, as required by causality. In the opposite case t > |x|
they instead become

Sp(t,x) = −
λ

4π|x|
[
e−iEp(t−|x|) + Sp(t− |x|,0)] (5.3)

− δabgagb
16π2|x|

[
(−iEp)e−iEp(t−|x|) + ∂tSp(t− |x|,0)

]
when t > |x|
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and

sap(t,x) = −
δabgb
4π|x| e

−iEp(t−|x|)− λ

4π|x|s
a
p(t− |x|,0)−

δbcgbgc
16π2|x| ∂ts

a
p(t− |x|,0) when t > |x| .

(5.4)
As suggested by the perturbative case, solutions to these equations unsurprisingly diver-
gence at the location of the compact source x = 0, which we regulate as before by re-
placing x = 0 with |x| = ε: Sp(t − |x|,0) = Sp(t − |x|,y)

∣∣
|y|=ε

and ∂tS
(0)
p (t − |x|,0) =

∂tS
(0)
p (t− |x|,y)

∣∣
|y|=ε

and so on.
To solve (5.3) and (5.4) (in the special case where ga = g̃/

√
N for all a) we make the

ansätze
Sp(t,x) = F (|x|)e−iEp(t−|x|) when t > |x| (5.5)

and
sap(t,x) = G(|x|)e−iEp(t−|x|) (for all a) when t > |x| , (5.6)

and so S(0)
p (t−|x|,0) := F (ε) e−iEp(t−|x|−ε) and ∂tS(0)

p (t−|x|,0) := F (ε) (−iEp)e−iEp(t−|x|−ε)
and similarly for sap. These ansätze solve (5.3) and (5.4) provided F and G satisfy

F (|x|) =
(
− λ

4π|x| +
ig̃2Ep

16π2|x|

)[
1 + F (ε) e+iEpε

]
(5.7)

and

G(|x|) = − g̃

4π
√
N |x|

+
(
− λ

4π|x| +
ig̃2Ep

16π2|x|

)
G(ε) e+iEpε (5.8)

whose solutions are

F (|x|)=
− λ

4π|x|+
ig̃2Ep

16π2|x|

1−
(
− λ

4πε+
ig̃2Ep

16π2ε

)
e+iEpε

and G(|x|)=
− g̃

4π
√
N |x|

e−iEp(t−|x|)

1−
(
− λ

4πε+
ig̃2Ep

16π2ε

)
e+iEpε

.

(5.9)
Recalling that the derivation of equations (2.42) and (2.43) assume εEp $ 1 — see the
discussion below equations (2.39) and (2.40) — we can take eiEpε ' 1 without loss, giving
the mode functions

Sp(t,x) '
− λ

4π|x| +
ig̃2Ep

16π2|x|

1 + λ

4πε −
ig̃2Ep

16π2ε

e−iEp(t−|x|) when t > |x| (5.10)

and

sap(t,x) '
− g̃

4π
√
N |x|

e−iEp(t−|x|)

1 + λ

4πε −
ig̃2Ep

16π2ε

e−iEp(t−|x|) when t > |x| . (5.11)
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Comparing (5.10) and (5.11) to the perturbative solutions (3.1) and (3.2) in the regime
t > |x|, it is clear that the perturbative expression are valid only when

∣∣∣∣∣
λ

4πε −
ig̃2Ep

16π2ε

∣∣∣∣∣$ 1 . (5.12)

For this to be small for all p requires each term to separately be small. If Λ is a bulk cutoff,
so that Ep < Λ for all p (which in principle is logically distinct from the UV cutoff 1/ε
associated with proximity to the hotspot) then at face value the perturbative limit requires

λ

4πε $ 1 and Λg̃2

16π2ε
$ 1 . (5.13)

5.2 Performing the mode sum
Given the mode functions in (5.10) and (5.11) the Wightman function of (3.4) can be
evaluated as a mode sum. For two points (t,x) and (t′,x′) satisfying t > |x| and t′ > |x′|,
the result becomes

Wβ

(
t,x; t′,x′

)
= 1
Zβ

Tr
[
φH (t,x)φH

(
t′,x′

) (|vac〉 〈vac|⊗ e−βH−
)]

=: S
(
t,x; t,x′

)
+ Eβ

(
t,x; t,x′

)
(5.14)

where the functions S and Eβ are defined by

S (t,x; t′,x′) =
∫ d3p

(2π)32Ep

(
e−iEpt+ip·x + Sp(t,x)

)(
e+iEpt′−ip·x′ + S∗p(t′,x′)

)
(5.15)

and

Eβ(t,x; t′,x′)=
1
Zβ

N∑

a,b=1

∫ d3p√
(2π)32Ep

∫ d3k√
(2π)32Ek

(
sap(t,x)sb∗k (t′,x′)Tr ′

[
bapbb∗k e

−βH−
]

+sa∗p (t,x)sbk(t′,x′)Tr
′ [

ba∗p bbke
−βH−

])
.

(5.16)
These mode sums are performed explicitly in appendix D, giving the following result for
S

S (t,x; t′,x′) = 1
4π2 [−(t− t′ − iδ)2 + |x− x′|2] (5.17)

+ 2ε2
g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c)

− I+(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|− |x′|, c)
]

+ ε

8π2|x||x′|

[
− 1
t− t′ + |x|+ |x′|− iδ

+ 1
t− t′ − |x|− |x′|− iδ

]

− 32π2ε4(1 + λ
2πε)

g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]

− ε2

4π2|x||x′|(t− t′ − |x|+ |x′|− iδ)2
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where the parameter c is the following combination of couplings and ε,

c := 16π2ε

g̃2

(
1 + λ

4πε

)
. (5.18)

The functions I∓(τ) are defined by

I∓(τ) = e±cτE1
(± c[τ − iδ]

)
where E1(z) :=

∫ ∞

z
du e−u

u
, (5.19)

is the En-function with n = 1 (closely related to the exponential integral function) and the
limit δ → 0+ is (as usual) understood.

The temperature-dependent contribution similarly evaluates to

Eβ(t,x; t,x′)=
2ε2

g̃2|x||x′|

[
Φ
(
e
−2π(t−t′−|x|+|x′|−iδ)

β ,1, cβ2π

)
+Φ

(
e
+2π(t−t′−|x|+|x′|−iδ)

β ,1, cβ2π

)]
− 2π
cβ

]

(5.20)
where Φ(z, s, a) is the Lerch transcendent, defined by the series Φ(z, s, a) = ∑∞

n=0
zn

(a+n)s
for complex numbers in the unit disc (with |z| < 1), and by analytic contribution else-
where in the complex plane. Asymptotic forms for the functions I± and Φ are given in
appendix D.1.1.

These expressions pass all of the smell tests. In particular, the full correlation function
Wβ = S + Eβ reduces to the perturbative correlation function quoted in (3.10) in the
appropriate perturbative limit. The perturbative expression in powers of g̃ is obtained
from the asymptotic form when both cτ # 1 in S (as shown explicitly in section D.1.1)
and cβ # 1 in Eβ (see section D.2.1). The expression found in this limit agrees with (4.32),
obtained earlier by resumming the perturbative result to all orders in λ/(4πε). Further
taking λ/(4πε)$ 1 in this expression then reproduces exactly the perturbative correlation
function (3.10) found previously.

Finally, this result has a thermal character in the sense that Eβ satisfies the Kubo-
Martin-Schwinger (KMS) condition [73, 74], as we show explicitly in appendix D.2.3.

6 Conclusions

Black hole physics is a puzzle wrapped in an enigma hidden by a horizon, and ongoing
studies of information loss show that Hawking radiation is the discovery that keeps on
giving. Although Hawking radiation in principle occurs in the weak-field regime where cal-
culation control should be good, reliable and explicit calculations of corrections to Hawking
radiation are relatively rare (partly due to the extremely late times involved). Yet resolv-
ing issues such as the existence (or not) of firewalls, possible loss of locality and the like
are crucial towards gaining an understanding of what a theory of quantum gravity should
ultimately look like.

In this paper we construct a Caldeira-Leggett type [45] toy model of a hot compact
relativistic object that captures some of the features of black holes, and so can be used as a
benchmark against which real calculations can be compared. The model is simple enough
to be solved explicitly, but complicated enough to capture some of the open-system effects
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believed to be important for black holes. Although the toy model cannot in itself resolve
the thorniest puzzles associated with horizons, it can show which features are shared with
more mundane systems that are hot and relatively small.

There are several directions in which this model might fruitfully be explored. In a
companion work [53], we apply to it several approximate Open-EFT techniques designed
to probe late-time evolution, to better identify their domains of validity and whether they
can illuminate the extent to which the open nature of the hotspot causes a breakdown
of local descriptions of the physics of the field φ living in R+. A second companion [54]
explores the behaviour of an Unruh detector (or qubit) that couples to the field φ in the
vicinity of the hotspot, to determine the extent to which it thermalizes as a function of its
couplings and its distance from the hotspot.

Other useful directions might explore the regime where the radius ξ of the interaction
sphere Sξ is not small, and so parallels the EFT discussion of [71]. By tuning the physics
at the interface between the spaces R± one might hope to mock up the entanglement
between modes inside and outside the horizon, and provide a simple analog of the matching
calculations often used to extract black hole phenomenology from scattering amplitudes.
The model can be further developed to include redshifting and the geometrical effects of
gravitational fields in regions R±. We offer up the hotspot model in the hopes that such
comparisons and extensions will prove instructive.
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A Thermal correlation functions

This appendix computes the thermal correlation functions used in the main text. This is
partly done as a confidence-building exercise to verify the techniques used elsewhere.

A.1 Free thermal correlation function

The first correlation to compute is the standard two-point function for a free thermal field.
Although the main text works with N fields for this correlation function it suffices to work
with only one of the N copies and evaluate

〈χ(t,x)χ(0,0)〉β = 1
Z

Tr
[
χ(t,x)χ(0,0) e−βH

]
, (A.1)
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where translation invariance in R− is used to set one of the fields to (t′,x′) = (0,0), the
relevant free-particle part of the Hamiltonian H− is denoted H and Z denotes the partition
function

Z := Tr[e−βH] =
∞∑

N=0

∑

{np}N
〈{np}N | e−βH |{np}N〉

=
∏

p

∞∑

np=0
e−βEpnp =

∏

p

1
1− e−βEp

=:
∏

p
Zp . (A.2)

This last expression temporarily switches for convenience to discretely normalized mo-
menta, as would be appropriate when the spatial volume V is finite, and takes the eigen-
values of H to be ∑p npEp. The field expansion for this normalization of states is

χ(t,x) =
∑

p

1√
2EpV

[
bp e

−iEpt+ip·x + b∗p e
iEpt−ip·x

]
(A.3)

where bp is the discretely normalized destruction operator, and the conversion between
discrete and continuum normalization is given by

bp =
[
(2π)3
V

]1/2

bp and
∑

p
= V

(2π)3
∫

d3p , (A.4)

and so on.
Inserting (A.3) into (A.1) allows it to be evaluated in the occupation-number basis,

leading to

〈χ(t,x)χ(0,0)〉β = 1
2VZ

∑

kq

Tr
[(
e−iEkt+ik·xbk + e+iEkt−ik·xb∗k

) (
bq + b∗q

)
e−βH

]

√
EkEq

= 1
2VZ

∑

k

Tr
[(
e−iEkt+ik·xbk + e+iEkt−ik·xb∗k

)
(bk + b∗k) e−βH

]

Ek
(A.5)

= 1
2VZ

∑

k

e−iEkt+ik·xTr
[
bkb

∗
ke
−βH

]
+ e+iEkt−ik·xTr

[
b∗kbke

−βH
]

Ek
,

and so, using bkb
∗
k = b∗kbk + 1, this becomes

〈χ(t,x)χ(0,0)〉β = 1
2V

∑

k

e−iEkt+ik·x

Ek
+ 1
VZ

∑

k

cos (Ekt− k · x)
Ek

Tr
[
b∗kbk e

−βH
]

=
∫ d3k

(2π)3
e−iEkt+ik·x

2Ek
+ 1
VZ

∑

k

cos (Ekt− k · x)
Ek

Tr
[
b∗kbk e

−βH
]

(A.6)

The required trace is a standard manipulation

1
Z
Tr
[
b∗kbke

−βH
]
= 1
Z

∞∑

N=0

∑

{np}N
〈{np}N | b∗kbk e

−β
∑

p Epnp |{np}N〉

=
∏

p

1
Zp

∞∑

np=0
np e

−βEpnp =
∏

p

1
eβEp − 1 , (A.7)
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and so

〈χ(t,x)χ(0,0)〉β =
∫ d3k

(2π)3
e−iEkt+ik·x

2Ek
+
∫ d3k

(2π)3
cos (Ekt− k · x)
Ek (eβEk − 1) . (A.8)

It remains to perform the integrals. The first evaluates to the vacuum Wightman
function while the second is the thermal correction. That is

∫ d3k

(2π)3
e−iEkt+ik·x

2Ek
= 1

4π2 [−(t− iδ)2 + |x|2] , (A.9)

where the limit δ → 0+ is understood, and the geometric series

1
eβk − 1 =

∞∑

n=1
e−nβk , (A.10)

allows the remaining term to be written

∫ d3k

(2π)3
cos(Ekt−k·x)
Ek (eβEk−1) = 1

4π2|x|

∫ ∞

0
dk e

−ikt+e+ikt

(eβk−1) sin(k|x|)

= 1
4π2|x|

∞∑

n=1

∫ ∞

0
dk
(
e−ikt+e+ikt

)
e−nβk sin(k|x|)

= 1
4π2|x|

∞∑

n=1

∫ ∞

0
dk
{
e−nβk sin

[
k(t+|x|)]−e−nβk sin [k(t−|x|)]

}

= 1
8πβ|x| ·

2
π

∞∑

n=1

[ (t+|x|)/β
n2+[(t+|x|)/β]2−

(t−|x|)/β
n2+[(t−|x|)/β]2

]
. (A.11)

This final sum can be performed using identity (1.421.4) from [116], which for z ∈ R states

coth (πz) = 1
πz

+ 2
π

∞∑

n=1

z

n2 + z2 , (A.12)

and so

〈χ(t,x)χ(0,0)〉β = 1
8π2|x|

( 1
t+ |x|− iδ

− 1
t− |x|− iδ

− 1
t+ |x| +

1
t− |x|

)
(A.13)

+ coth [π(t+ |x|)/β]− coth [π(t− |x|)/β]
8πβ|x| .

In the limit δ → 0+ (for real t and x) the real parts of the second line cancel leaving

〈χ(t,x)χ(0,0)〉β =
coth

[
π(t+ |x|− iδ)/β

]
− coth

[
π(t− |x|− iδ)/β

]

8πβ|x| (A.14)

which is the result quoted in (3.15) of the main text (after restoring the arguments t′ and
x′ of the second field using translational invariance).
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A.1.1 The KMS condition

A subtlety with the iδ-prescription in the above formula (A.14) is that it is only correct for
real t and |x|. This matters because the thermal correlation function is supposed to obey
the Kubo-Martin-Schwinger (KMS) condition given by

〈χ(t− iβ,x)χ(t′,x′)〉β = 〈χ(t′,x′)χ(t,x)〉β = 〈χ(t,x)χ(t′,x′)〉∗β , (A.15)

which (A.14) apparently does not satisfy because of the iδ-prescription used there.
Later in appendix D.2.3 we prove that the function Eβ obeys a KMS-type condition,

and so for later use we here flesh out the argument for why the KMS is explicitly obeyed
for the free thermal correlator 〈χ(t,x)χ(t′,x′)〉β. To see how this works, go back to (A.8)
(with arguments t′ and x′ reinstated) which says

〈χ(t,x)χ(t′,x)〉β =
∫ d3k

(2π)3
e−iEk(t−t

′)+ik·(x−x′)

2Ek (1− e−βEk) +
∫ d3k

(2π)3
e+iEk(t−t′)−ik·(x−x′)

2Ek (eβEk − 1) (A.16)

after use of the identity 1+ (eβEk − 1)−1 = (1− e−βEk)−1. Evaluating this with t→ t− iβ

gives6

〈χ(t−iβ,x)χ(t′,x′)〉β =
∫ d3k

(2π)3
e−βEke−iEk(t−t

′)+ik·(x−x′)

2Ek (1−e−βEk)
+
∫ d3k

(2π)3
e+βEke+iEk(t−t′)−ik·(x−x′)

2Ek (eβEk−1)

=
∫ d3k

(2π)3
e−iEk(t−t

′)+ik·(x−x′)

2Ek (eβEk−1) +
∫ d3k

(2π)3
e+iEk(t−t′)−ik·(x−x′)

2Ek (1−e−βEk)
(A.17)

= 〈χ(t′,x′)χ(t,x)〉β ,

as required by the KMS condition (A.15).
The validity of the KMS condition can be made manifest in position space if we re-

write (3.15) with an iδ-prescription that is both consistent with the KMS condition and
reduces to (3.15) in the limit of real t. To do this notice the identity

coth(a+ b)− coth(a− b) = − sinh(2b)
sinh(a+ b) sinh(a− b) for any a, b ∈ C , (A.18)

which allows the correlation function to be written in the KMS-consistent form (cf. for-
mula (A.13))

〈χ(t,x)χ(t′,x′)〉β =−
sinh

(2π|x−x′|
β

)

8πβ|x−x′|
[
sinh

(
π(t−t′+|x−x′|

β

)
− iπδ

β

][
sinh

(
π(t−t′−|x−x′|)

β

)
− iπδ

β

] .

(A.19)
6Notice that replacing t → t + ib for some imaginary part b in the above makes the integral converge

for all −β < b < 0, since (eβEk − 1)−1 & e−βEk and (1 − e−βEk )−1 & 1 + e−βEk for large momenta
βEk ' 1. This means that the correlator is a complex-analytic function of time t ∈ C in this strip [117]
(with −β < Im[t] < 0).
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B RG evolution

This appendix summarizes some parts of the renormalization evolution not made explicit
in the main text, closely following the discussion in appendix F of [87].

B.1 Universal evolution

The boundary conditions of the main text provide examples where the effective couplings
are found to satisfy equations of the form

g(ε) = Aρ2ζ
ε +B

Cρ2ζ
ε +D

, (B.1)

where g is a representative coupling and ε appears on the right-hand side through the
variable ρε. In the example of (4.17), for instance, we have g = λ/4πε while ρε = 1

2 ωε, the
power is ζ = /+ 1

2 and the parameters A,B,C and D are given explicitly by

A = / , B = (/+ 1)X!(ω) , C = 1 and D = −X!(ω) , (B.2)

where
X! (ω) :=

1
π

Γ
(
/+ 3

2

)
Γ
(
/+ 1

2

) D! (ω)
C!(ω)

. (B.3)

For later use, eq. (B.1) also inverts to give

ρ2ζ
ε = B −Dg

Cg −A
. (B.4)

The goal is to derive a universal differential version of this evolution (see, for exam-
ple [80–84] for more details). To start this off directly differentiate (B.1) holding A,B,C,D
fixed, leading to

ε
dg
dε = 2ζ

[
AD −BC

(Cρ2ζ
ε +D)2

]
ρ2ζ
ε = 2ζ

[(Cg −A)(B −Dg)
AD −BC

]
, (B.5)

where the second equality uses (B.4) to trade ρ2ζ
ε for g. This evolution equation has fixed

points at g = g∗, where
g∗ =

A

C
or g∗ =

B

D
, (B.6)

which can also be seen as the ρε → 0 and ρε →∞ limits of (B.1).
Equation (B.5) can be put into a standard form by redefining g to ensure that g∗ = ±1.

To this end write
g(ε) = u(ε) + 1

2

(
A

C
+ B

D

)
, (B.7)

in terms of which the fixed points are

u∗ = ±1
2

(
A

C
− B

D

)
= ±

(
AD −BC

2CD

)
, (B.8)

and (B.5) becomes

ε
du
dε = − 2ζCD

AD −BC

[
u−

(
AD −BC

2CD

)] [
u+

(
AD −BC

2CD

)]
. (B.9)
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Finally rescale
u =

[
AD −BC

2CD

]
v (B.10)

to see that
ε

dv
dε = ζ(1− v2) (B.11)

is an automatic consequence of (B.1) once one defines

g = u+ AD +BC

2CD = 1
2

(
A

C
− B

D

)
v + 1

2

(
A

C
+ B

D

)
. (B.12)

These expressions emphasize that although the positions of the fixed points for g

depend on the ratios A/C and B/D, the speed of evolution along the RG flow depends
only on ζ. Indeed the general solution to (B.11) is

v(ε) = (v0 + 1)(ε/ε0)2ζ + (v0 − 1)
(v0 + 1)(ε/ε0)2ζ − (v0 − 1) (B.13)

where the integration constant is chosen to ensure v(ε0) = v0. For ζ > 0 this describes a
universal flow that runs from v = −1 to v = +1 as ε flows from 0 to ∞.

Since the trajectories given in (B.13) cannot cross the lines v = ±1 for any finite
nonzero ε there are two categories of flow, distinguished by the flow-invariant sign of |v|−1
(see figure 6). That is, if |v0|−1 is negative (positive) for any 0 < ε0 <∞, then |v(ε)|−1 is
negative (positive) for all 0 < ε <∞. Every trajectory is therefore uniquely characterized
by a pair of numbers. These can equally well be chosen to be the pair (ε0, v0) that specifies
an initial condition v0 = v(ε0), or it can be taken to be the pair (ε*, y*) where y* =
sign(|v| − 1) = ±1 distinguishes the two classes of trajectories, and ε* is defined as the
value of ε for which v(ε*) = 0 (if y* = −1) or the value for which v(ε*) =∞ (if y* = +1).
The parameterization using (ε*, y*) is useful because physical observables turn out to have
particularly transparent expressions in terms of these variables.

For the specific cases given in (B.2) the fixed points are

A

C
= / and B

D
= −/− 1 (B.14)

and λ is related to the universal scaling variable v by (B.12), which becomes

λ

4πε = 1
2
[
(2/+ 1) v − 1

]
and so v = 1

2/+ 1

(
λ

2πε + 1
)
, (B.15)

as used in the main text.

C Mode properties

This appendix evaluates several properties associated with the modes in the presence of
a 1

2 λφ
2(0) interaction localized at the hotspot. The first subsection computes their nor-

malization constants and the second evaluates the mode sums required for the Wightman
function (in an approximate limit).
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C.1 Mode normalization

This appendix computes the ε*-dependence of the integration constants C! and D!, by
requiring the mode functions to be properly normalized. As discussed in the main text, we
do so using the standard Klein-Gordon inner product (4.35), since the reality of λ ensures
this remains time-independent even with the λ-dependent boundary conditions of section 4.

Our mode functions have the form

uω!m(t,x) = e−iωt
[
C!(ω)j!(ωr) +D!(ω)y!(ωr)

]
Y!m(θ,φ), (C.1)

where we have already seen that the boundary condition implies the ratio D!/C! is given
by (4.15) or (4.33). Inserting this into the Klein-Gordon inner product (4.35) yields

〈uω!m, uω̃!̃m̃〉 = i

∫
d3x

(
u∗ω!m(t,x)u̇ω̃!̃m̃(t,x)− u̇∗ω!m(t,x)uω̃!̃m̃(t,x)

)

= C∗! (ω)C!̃(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫

d3x j!(ωr)Y!m(θ,φ)j!̃(ω̃r)Y!m(θ,φ) (C.2)

+ C∗! (ω)D!̃(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫

d3x j!(ωr)Y!m(θ,φ)y!̃(ω̃r)Y!m(θ,φ)

+D∗
! (ω)C!̃(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫
d3x y!(ωr)Y!m(θ,φ)j!̃(ω̃r)Y!m(θ,φ)

+D∗
! (ω)D!̃(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫
d3x y!(ωr)Y!m(θ,φ)y!̃(ω̃r)Y!m(θ,φ)

Using orthonormality of the spherical harmonics Y!m(θ,φ)
∫

d2Ω Y!m(θ,φ)Y!̃m̃(θ,φ) = δ!!̃ δmm̃ , (C.3)

allows the above to be written as

〈uω!m, uω̃!̃m̃〉 = δ!!̃ δmm̃

[
C∗! (ω)C!(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫ ∞

0
dr r2j!(ωr)j!(ω̃r) (C.4)

+ C∗! (ω)D!(ω̃)(ω + ω̃)e+i(ω−ω̃)t
∫ ∞

0
dr r2j!(ωr)y!(ω̃r)

+D∗
! (ω)C!(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫ ∞

0
dr r2y!(ωr)j!(ω̃r)

+D∗
! (ω)D!(ω̃)(ω + ω̃)e+i(ω−ω̃)t

∫ ∞

0
dr r2y!(ωr)y!(ω̃r)

]
.

The j-j and the y-y terms can be evaluated using the orthonormality relation for spherical
Bessel functions,

∫ ∞

0
dr r2j!(ωr)j!(ω̃r) =

∫ ∞

0
dr r2y!(ωr)y!(ω̃r) =

π

2ω2 δ(ω − ω̃) , (C.5)

while the cross-terms are evaluated in appendix C.1.1, giving
∫ ∞

0
dr r2j!(ωr)y!(ω̃r) =

(ω/ω̃)!
ω̃(ω̃2 − ω2) . (C.6)
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The above manipulations lead to the expression

〈uω!m, uω̃!̃m̃〉 = δ!!̃δmm̃

[
C∗! (ω)C!(ω̃)(ω + ω̃)e+i(ω−ω̃)t π

2ω2 δ(ω − ω̃) (C.7)

+ C∗! (ω)D!(ω̃)(ω + ω̃)e+i(ω−ω̃)t (ω/ω̃)!
ω̃(ω̃2 − ω2)

+D∗
! (ω)C!(ω̃)(ω + ω̃)e+i(ω−ω̃)t (ω̃/ω)!

ω(ω2 − ω̃2)

+D∗
! (ω)D!(ω̃)(ω + ω̃)e+i(ω−ω̃)t π

2ω2 δ(ω − ω̃)
]
.

Of these, the terms with δ-functions are simplified if we take ω̃ → ω, and after some
simplification on the cross-terms the above becomes

〈uω!m, uω̃!̃m̃〉 = δ!!̃ δmm̃

(
π

ω

(|C!(ω)|2 + |D!(ω)|2
)
δ(ω − ω̃) (C.8)

+ e+i(ω−ω̃)t

ω − ω̃

[
− C∗! (ω)D!(ω̃)

ω!

ω̃!+1 +D∗
! (ω)C!(ω̃)

ω̃!

ω!+1

])
.

The second line of this last equation seems suspicious because it is time-dependent and
the Klein-Gordon inner product should not be when evaluated on a solution to the Klein-
Gordon equation. However, this has not yet accounted for the relation between C! and D!

that follows from the boundary condition, which states

D!m(ω)
C!m(ω) '

πη*

Γ(/+ 1
2)Γ(/+ 3

2)
·
(
ωε*
2

)2!+1
. (C.9)

Using this, the square bracket in (C.8) becomes
[
−C∗! (ω)D! (ω̃)

ω!

ω̃!+1 +D
∗
! (ω)C! (ω̃)

ω̃!

ω!+1

]

=C∗! (ω)C! (ω̃)
[
−D! (ω̃)
C! (ω̃)

ω!

ω̃!+1 +
D∗

! (ω)
C∗! (ω)

ω̃!

ω!+1

]

= πη*C
∗
!m (ω)C!m (ω̃)

Γ
(
/+ 1

2

)
Γ
(
/+ 3

2

)
[
−
(
ω̃ε*
2

)2!+1 ω!

ω̃!+1 +
(
ωε*
2

)2!+1 ω̃!

ω!+1

]

=0 , (C.10)

so, as expected, the boundary conditions ensure the time-independence of the inner prod-
uct.

The final result then is

〈uω!m, uω̃!̃m̃〉 = δ!!̃ δmm̃
π

ω

(|C!m(ω)|2 + |D!m(ω)|2)δ(ω − ω̃) (C.11)

= δ!!̃ δmm̃
π

ω



1 +

[
π

Γ(/+ 1
2)Γ(/+ 3

2)

]2 (
ωε*
2

)4!+2


 |C!m(ω)|2δ(ω − ω̃) ,
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which uses η2
* = 1. Proper normalization then implies

C!m(ω) =
√
ω

π

{
1 +

[
π

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1]2 }−1/2
, (C.12)

and

D!m(ω) = πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1√ω

π

{
1 +

[
π

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1]2 }−1/2

(C.13)
as claimed in the main text. It is straightforward to similarly check the other relations
〈uω!m, uω̃!̃m̃〉 = δ!!̃ δmm̃ δ(ω − ω̃) and 〈uω!m, u∗ω̃!̃m̃〉 = 0.

C.1.1 Evaluating the j( · y( product integral
We next compute the integral that appears in (C.6) above, when calculating the cross
terms when normalizing the mode functions. First we use j!(z) =

√
π
2zJ!+ 1

2
(z) to write

∫ ∞

0
dr r2j!(ar)y!(br) = (−1)!+1

∫ ∞

0
dr r2j!(ar)j−!−1(br)

= (−1)!+1π

2
√
ab

∫ ∞

0
dr rJ!+ 1

2
(ar)J−!− 1

2
(br) (C.14)

= (−1)!+1π

2
√
ab

lim
ε→0+

∫ ∞

0
dr r1−εJ!+ 1

2
(ar)J−!− 1

2
(br) .

From here we must use the formula (10.22.56) from [118] where
∫ ∞

0
dr r−λJµ(ar)Jν(br) =

aµΓ
(
ν+µ−λ+1

2

)
2F1

(
µ+ν−λ+1

2 , µ−ν−λ+1
2 , µ+ 1; a2

b2

)

2λbµ−λ+1Γ
(
ν−µ+λ+1

2

)
Γ(µ+ 1)

(C.15)

which assumes that 0 < a < b and Re[µ+ ν + 1] > Re[λ] > −1. In the case that 0 < a < b

and picking some tiny ε > 0 so that λ = ε− 1 as well as µ = /+ 1
2 and ν = −/− 1

2 we get
∫ ∞

0
dr r2j!(ar)y!(br) =

(−1)!+1π

2
√
ab

lim
ε→0+

{2 cos(π/)
π

· a
1
2+!b−

1
2−!

a2 − b2
+O(ε)

}
(C.16)

Noting that cos(π/) = (−1)! and taking the limit ε→ 0+ gives
∫ ∞

0
dr r2j!(ar)y!(br) =

(a/b)!
b(b2 − a2) when 0 < a < b (C.17)

which is only true for the case a < b. For the other case a > b we switch the positions of
the Bessel functions in the formula giving us (we need to simultaneously swap a and b, as
well as /+ 1

2 and −/− 1
2)

∫ ∞

0
dr r2j!(ar)y!(br) = (−1)!+1

∫ ∞

0
dr r2j−!−1(br)j!(ar)

= (−1)!+1π

2
√
ab

lim
ε→0+

∫ ∞

0
dr r1−εJ−!− 1

2
(br)J!+ 1

2
(ar) (C.18)

= (a/b)!
b(b2 − a2) when 0 < b < a .

– 40 –

PhD Thesis - G. P. Kaplanek; McMaster University; Physics & Astronomy

97



J
H
E
P
0
9
(
2
0
2
1
)
0
0
6

Combining gives the result for any a > 0 and b > 0
∫ ∞

0
dr r2j!(ar)y!(br) =

(a/b)!
b(b2 − a2) (C.19)

as quoted in (C.6).

C.2 Mode sum

This appendix evaluates the mode sum encountered in the main text when computing the
Wightman function for φ in the presence of the localized λφ2(t,0) hotspot interaction. As
argued in the main text, the Wightman function is given by the mode sum

〈φ(t,x)φ(t′,x′)〉

=
∞∑

!=0

+!∑

m=−!

∫ ∞

0
dω uω!m(t,x)u∗ω!m(t′,x′) (C.20)

=
∞∑

!=0

+!∑

m=−!

∫ ∞

0
dω e−iω(t−t′)|C!m(ω)|2

[
j!(ω|x|) + πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x|)

]

×
[
j!(ω|x′|) + πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x′|)

]
Y!m(θ,φ)Y ∗!m(θ′,φ′) .

C.2.1 Evaluating the sums

Next exploit spherical symmetry about the origin to rotate our coordinate axes so that
the x′ direction is the 3-axis of polar coordinates, in which case we can set θ′ = 0 (not
specifying φ′). Noting the identity (14.4.30) from [118] we can write

Y!m(0,φ′) = δm0

√
2/+ 1
4π , (C.21)

along with Y!0(θ,φ) =
√

2!+1
4π P!(cos θ) where P! is the Legendre polynomial of degree /.

This gives

〈φ(t,x)φ(t′,x′)〉

=
∞∑

!=0

2/+ 1
4π

∫ ∞

0
dω e−iω(t−t′)|C!0(ω)|2

[
j!(ω|x|) + πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x|)

]

× [j!(ω|x′|) + πη*

Γ(/+ 1
2)Γ(/+ 3

2)

(
ωε*
2

)2!+1
y!(ω|x′|)

]
P!(cos θ) . (C.22)

Notice also in passing that the Gamma-matrix identities Γ(n+1) = nΓ(n) and Γ(n) =
(n− 1)! and Γ(n+ 1

2) = 21−2n√πΓ(2n)/Γ(n) imply

π

Γ(/+ 1
2)Γ(/+ 3

2)
= 2π

(2/+ 1)Γ(/+ 1
2)2

= 24!+2Γ(/)2
8(2/+ 1)Γ(2/)2 = 24!+2[/!]2

2(2/+ 1)[(2/)!]2 . (C.23)
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Perturbative limit. For further progress assume ωε* $ 1 and seek only the leading
ε*-dependent contribution. Because of the factor (ωε*)2!+1 this allows restricting to / = 0
in the ε*-dependent term. In this regime we can approximate the mode sum

〈φ(t,x)φ(t′,x′)〉'
∞∑

!=0

2/+1
4π

∫ ∞

0
dω e−iω(t−t′)

(
ω

π

)
j! (ω|x|)j!

(
ω|x′|)P! (cosθ) (C.24)

+ 1
4π

∫ ∞

0
dω e−iω(t−t′)

(
ω

π

)
j0 (ω|x|) πη*

Γ
(

1
2

)
Γ
(

3
2

)
(
ωε*
2

)
y0
(
ω|x′|)P0 (cosθ)

+ 1
4π

∫ ∞

0
dω e−iω(t−t′)

(
ω

π

)
πη*

Γ
(

1
2

)
Γ
(

3
2

)
(
ωε*
2

)
y0 (ω|x|)j0

(
ω|x′|)P0 (cosθ)

+O
(
ω2ε2*

)
.

where the s-wave normalization simplifies to |C!m(ω)|2 ' ω
π [1 + O(ω2ε2*)]. Next use the

explicit form for the low-order spherical Bessel functions,

j0(x) =
sin(x)
x

and y0(x) = −
cos(x)
x

, (C.25)

and along with Γ(1
2)Γ(3

2) = π
2 and P0(x) = 1 to get

〈φ(t,x)φ(t′,x′)〉 ' 1
4π2

∫ ∞

0
dω e−iω(t−t′)

{
ω
∞∑

!=0
(2/+ 1)j!(ω|x|)j!(ω|x′|)P!(cos θ) (C.26)

− (4πη*ε*)
16π3|x||x′|

∫ ∞

0
dω e−iω(t−t′)

[
sin(ω|x|) cos(ω|x′|) + cos(ω|x|) sin(ω|x′|)

]}

which drops (ωε*)2 terms. The / sum is performed using (10.60.2) from [118] which says
∞∑

!=0
(2/+ 1)j!(u)j!(v)P!(cosα) = sin

√
u2 + v2 − 2uv cos(α)√

u2 + v2 − 2uv cos(α)
(C.27)

and so

〈φ(t,x)φ(t′,x′)〉

' 1
4π2

∫ ∞

0
dω e−iω(t−t′)ω ·

sin
(
ω
√
|x|2 + |x′|2 − 2|x||x′| cos(θ)

)

ω
√
|x|2 + |x′|2 − 2|x||x′| cos(θ)

− (4πη*ε*)
16π3|x||x′|

∫ ∞

0
dω e−iω(t−t′)

[
sin(ω|x|) cos(ω|x′|) + cos(ω|x|) sin(ω|x′|)

]

= 1
4π2|x− x′|

∫ ∞

0
dω e−iω(t−t′) sin

(
ω|x− x′|) (C.28)

− (4πη*ε*)
16π3|x||x′|

∫ ∞

0
dω e−iω(t−t′) sin

[
ω
(|x|+ |x′|)

]
.

The above result uses the alignment of the coordinates so that x′ points along the 3-axis
to write

|x|2 + |x′|2 − 2|x||x′| cos(θ) = |x− x′|2 . (C.29)
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The frequency integral finally is
∫ ∞

0
dω e−iTω sin(Xω) = i

2

∫ ∞

−∞
dω Θ(ω)

[
e−i(T+X)ω + e−i(T−X)ω

]
(C.30)

= 1
2

( 1
T +X − iδ

− 1
T −X − iδ

)

where δ is, as usual, the positive infinitesimal that arises in the Fourier transform of the
Heaviside step function. In this way the mode sum evaluates to the result quoted in the
main text:

〈φ (t,x)φ (t′,x′)〉 ' 1
4π2 ·

1
− (t− t′ − iδ)2 + |x− x′|2

(C.31)

− (4πη*ε*)
32π3|x||x′|

[ 1
t− t′ + |x|+ |x′|− iδ

− 1
t− t′ − |x|− |x′|− iδ

]
.

D Mode sum for the exact two-point correlator

In this appendix we explicitly evaluate the mode sums for the functions S (t,x; t′,x′) and
Eβ(t,x; t′,x′) defined in (5.15) and (5.16), giving us a non-perturbative expression for the
Wightman function Wβ(t,x; t′,x′) = S (t,x; t′,x′) + Eβ(t,x; t′,x′).

D.1 The temperature-independent contribution, S (t, x; t′, x′)

Using the explicit form for the mode function Sp(t,x) given in (5.10), the function
S (t,x; t,x′) defined in (5.15) simplifies to

S (t,x; t′,x′) = 1
4π2 ·

1
−(t− t′ − iδ)2 + |x− x′|2 + S1(t,x; t,x′) + S2(t,x; t,x′) + S3(t,x; t,x′)

(D.1)
with the definitions

S1(t,x; t′,x′) :=
1
|x′|

∫ d3p
(2π)32Ep

e−iEp(t−t
′+|x′|)+ip·x − λ

4π −
ig̃2Ep
16π2

1 + λ
4πε +

ig̃2Ep
16π2ε

(D.2)

and

S2(t,x; t′,x′) :=
1
|x|

∫ d3p
(2π)32Ep

e−iEp(t−t
′−|x|)−ip·x′ − λ

4π + ig̃2Ep
16π2

1 + λ
4πε −

ig̃2Ep
16π2ε

(D.3)

as well as

S3(t,x; t′,x′) :=
1

|x||x′|

∫ d3p
(2π)32Ep

e−iEp(t−t
′−|x|+|x′|)

(
λ
4π

)2
+
(
g̃2Ep
16π2

)2

(
1 + λ

4πε

)2
+
(
g̃2Ep
16π2ε

)2 . (D.4)

Integrating the momentum angles away in spherical coordinates and simplifying turns the
above into

S1(t,x; t′,x′) =
ε

4π2|x||x′|

∫ ∞

0
dp e−ip(t−t′+|x′|) sin(|x|p)−4πλ/g̃

2 − ip

c+ ip
(D.5)
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and

S2(t,x; t′,x′) =
ε

4π2|x||x′|

∫ ∞

0
dp e−ip(t−t′−|x|) sin(|x′|p)−4πλ/g̃

2 + ip

c− ip
(D.6)

as well as

S3(t,x; t′,x′) =
ε2

4π2|x||x′|

∫ ∞

0
dp pe−ip(t−t′−|x|+|x′|) (4πλ/g̃

2)2 + p2

c2 + p2 (D.7)

where we define the constant
c := 16π2ε

g̃2 + 4πλ
g̃2 . (D.8)

It is more convenient to arrange the integrals as

S1(t,x; t′,x′)=
iε

8π2|x||x′|

∫ ∞

0
dp
(
e−ip(t−t

′+|x|+|x′|)−e−ip(t−t′−|x|+|x′|)
)[

i(4πλ/g̃2−c)
p−ic −1

]

= 2ε2
g̃2|x||x′|

∫ ∞

0
dp
(
e−ip(t−t

′+|x|+|x′|)−e−ip(t−t′−|x|+|x′|)
) 1
p−ic

− iε

8π2|x||x′|

∫ ∞

0
dp
(
e−ip(t−t

′+|x|+|x′|)−e−ip(t−t′−|x|+|x′|)
)

(D.9)

and

S2(t,x; t′,x′) = −
2ε2

g̃2|x||x′|

∫ ∞

0
dp
(
e−ip(t−t

′−|x|+|x′|) − e−ip(t−t
′−|x|−|x′|)

) 1
p+ ic

− iε

8π2|x||x′|

∫ ∞

0
dp
(
e−ip(t−t

′−|x|+|x′|) − e−ip(t−t
′−|x|−|x′|)

)
(D.10)

as well as

S3(t,x; t′,x′) =
ε2

4π2|x||x′|

∫ ∞

0
dp e−ip(t−t′−|x|+|x′|)

[
p−

[
c2 − (4πλ/g̃2)2

]
p

c2 + p2

]

= ε2

4π2|x||x′|

∫ ∞

0
dp pe−ip(t−t′−|x|+|x′|)

− ε2
[
c2 − (4πλ/g̃2)2

]

8π2|x||x′|

∫ ∞

0
dp e−ip(t−t′−|x|+|x′|)

[ 1
p− ic

+ 1
p+ ic

]
. (D.11)

From here we note the elementary integrals (where the limit δ → 0+ is understood)
∫ ∞

−∞
dp Θ(p)e−iτp = −i

τ − iδ
and

∫ ∞

−∞
dp Θ(p)pe−iτp = −1

(τ − iδ)2 ,
(D.12)

as well as the integrals

I∓(τ, c) =
∫ ∞

0
dp e−ipτ

p∓ ic
. (D.13)

We defer the calculation of the integrals to section D.1.2, where the result (D.30) is given
by

I∓(τ, c) = e±cτE1
(± c(τ − iδ)

)
, (D.14)

– 44 –

PhD Thesis - G. P. Kaplanek; McMaster University; Physics & Astronomy

101



J
H
E
P
0
9
(
2
0
2
1
)
0
0
6

where E1(z) :=
∫∞
z du e−u

u is the so-called exponential En-function with n = 1, and where
the limit δ → 0+ is understood (note that we have E∗1(z) = E1(z∗) is satisfied, and so
I−(τ) = I+(−τ) remains true).

With the above we find

S1(t,x; t′,x′) =
2ε2

g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c)

]
(D.15)

− ε

8π2|x||x′|

[ 1
t− t′ + |x|+ |x′|− iδ

− 1
t− t′ − |x|+ |x′|− iδ

]

and

S2(t,x; t′,x′) = −
2ε2

g̃2|x||x′|

[
I+(t− t′ − |x|+ |x′|, c)− I+(t− t′ − |x|− |x′|, c)

]
(D.16)

− ε

8π2|x||x′|

[ 1
t− t′ − |x|+ |x′|− iδ

− 1
t− t′ − |x|− |x′|− iδ

]

as well as

S3(t,x; t′,x′) = −
ε2

4π2|x||x′| ·
1

(t− t′ − |x|+ |x′|− iδ)2 (D.17)

− 32π2ε4(1 + λ
2πε)

g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]
.

Finally, putting the above all together into the sum (D.1) gives

S (t,x; t′,x′) = 1
4π2 [−(t− t′ − iδ)2 + |x− x′|2] (D.18)

+ 2ε2
g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c)

− I+(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|− |x′|, c)
]

+ ε

8π2|x||x′|

[
− 1
t− t′ + |x|+ |x′|− iδ

+ 1
t− t′ − |x|− |x′|− iδ

]

− 32π2ε4(1 + λ
2πε)

g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]

− ε2

4π2|x||x′|(t− t′ − |x|+ |x′|− iδ)2

which is the result quoted in (5.17).

D.1.1 Perturbative limit of S

From here we wish to consider the perturbative limit of the above, which is taken by
assuming that

cτ =
(
16π2ε

g̃2 + 4πλ
g̃2

)
τ # 1 . (D.19)
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Note that the function E1(z) has the following asymptotic series

E1(z) ' e−z
[1
z
− 1
z2 +O(z−3)

]
for |z|# 1 (D.20)

which implies that the functions I∓(τ, c) have the following asymptotic series for |cτ |# 1

I∓(τ, c) ' ± 1
c(τ − iδ) −

1
c2(τ − iδ)2 +O(|cτ |−3) for |cτ |# 1 . (D.21)

We also note in passing that for any z ∈ C (with |Arg(z)| < π so not directly on the branch
cut) has the series expansion

E1(z) ' −γ − log(z)−
∞∑

k=1

(−z)k
k · k! (D.22)

which is a convergent sum for any z ∈ C but is particularly useful when |z| $ 1. This
means that for |cτ |$ 1 we have

I∓(τ, c) ' −γ − log
(
c(τ − iδ)

)
+O(cτ) |cτ |$ 1 , (D.23)

where this limit will clearly suffer from secular growth problems once cτ is no longer small.
Taking the |cτ |# 1 limit of the expression S here (dropping O(|cτ |−3) contributions),

and simplifying after using c = (16π2ε+ 4πλ)/g̃2 yields

S
(
t,x; t′,x′

)

' 1
4π2

[
−(t−t′−iδ)2+|x−x′|2

] (D.24)

+ 1
16π3|x||x′| ·

λ

1+ λ
4πε

· |x|+|x′|
(t−t′−iδ)2−(|x|+|x′|)2

+ g̃2

32π4
(
1+ λ

4πε

)2


− 1

|x|
t−t′−|x|

[
(t−t′−|x|−iδ)2−|x′|2

]2 +
1
|x′|

t−t′+|x′|
[
(t−t′+|x′|−iδ)2−|x|2

]2




− 1
64π4|x||x′| ·

λ2
(
1+ λ

4πε

)2 ·
1

(t−t′−|x|+|x′|−iδ)2
.

For perturbatively small λ (meaning λ/(4πε)$ 1) the above turns into

S
(
t,x; t′,x′

)' 1
4π2

[
−(t−t′−iδ)2+|x−x′|2

] (D.25)

+ λ

16π3|x||x′| ·
|x|+|x′|

(t−t′−iδ)2−(|x|+|x′|)2

+ g̃2

32π4


− 1

|x|
t−t′−|x|

[
(t−t′−|x|−iδ)2−|x′|2

]2 +
1
|x′|

t−t′+|x′|
[
(t−t′+|x′|−iδ)2−|x|2

]2




where we neglect O(λ2) contributions. Notice that this exactly matches the temperature-
independent contribution to the correlator in the perturbative limit (see (3.10)).
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D.1.2 Evaluating the integrals I∓(τ, c)
Here we evaluate the integrals I∓(τ, c) defined in (D.13). Since I−(τ, c) = I∗+(−τ, c), it
suffices to compute I−(τ, c) here. Splitting apart I−(τ, c) into real and imaginary parts
gives

I−(τ) =
∫ ∞

0
dp p cos(pτ) + c sin(pτ)

p2 + c2
+ i

∫ ∞

0
dp c cos(pτ) + p sin(pτ)

p2 + c2
. (D.26)

Assuming that c > 0 and τ ∈ R and using formulas (3.723.1)-(3.723.4) from [116] the above
can be easily evaluated to give

I−(τ, c) = −ecτEi(−cτ) + iπecτΘ(−τ) (D.27)

where Ei(x) := − ∫∞−x du e−u
u is the exponential integral function. Since I−(τ, c) = I∗+(−τ, c)

this immediately implies that

I+(τ, c) = −e−cτEi(cτ)− iπe−cτΘ(τ) (D.28)

The above formulae can be simplified into a more useful form by relating it to the function
E1(z) :=

∫∞
z du e−u

u (the so-called exponential En-function with n = 1, related to the
exponential integral function for x > 0 by E1(x) = −Ei(−x)). Obviously E1 closely
related to Ei — however for complex arguments, the definition of Ei becomes somewhat
ambiguous due to branch points at 0 and ∞, and so E1 is better defined for this reason.

Noting the behaviour of the function E1(z) nearby its branch cut (along the negative
real axis) where

lim
η→0+

E1(−x± iδ) = −Ei(x)∓ iπ for x > 0 , (D.29)

the functions I∓(τ, c) can be written in the more useful form

I−(τ, c) = ecτE1
(
c(τ − iδ)

)
(D.30)

I+(τ, c) = e−cτE1
(− c(τ − iδ)

)

where the limit δ → 0+ is understood as usual (note that we have E∗1(z) = E1(z∗) is
satisfied, and so I−(τ) = I+(−τ) remains true).

D.2 The temperature-dependent contribution, Eβ(t, x; t′, x′)

In order to evaluate the trace, we put the system in a box (as done in appendix A.1 for
the free thermal correlation function). Performing the trace, and then reverting back to
the continuum limit, yields the mode sum

Eβ
(
t,x; t′,x′

)
=

N∑

a=1

∫ d3p
(2π)3 2Ep


sap (t,x) sa∗p

(
t′,x′

)
+

2Re
[
sap (t,x) sa∗p (t′,x′)

]

eβEp − 1


 .

(D.31)
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Using the explicit form of the mode function sap given in (5.11) the function Eβ(t,x; t′,x′)
turns into the integral

Eβ
(
t,x; t′,x′

)
= g̃2

16π2|x||x′|

∫ d3p
(2π)3 2Ep


 e−iEp(t−|x|−t

′+|x′|)
(
g̃2Ep
16π2ε

)2
+
(
1+ λ

4πε

)2 +
2cos[Ep (t−|x|−t′+|x′|)][(
g̃2Ep
16π2ε

)2
+
(
1+ λ

4πε

)2
][
eβEp−1

]


.

(D.32)
Integrating the angles away and simplifying the above yields

Eβ
(
t,x; t′,x′

)
= 4ε2
g̃2|x||x′|

∫ ∞

0
dp p

p2 + c2

[
e−ip(t−|x|−t

′+|x′|) + 2 cos [p (t− |x|− t′ + |x′|)]
eβp − 1

]

(D.33)

= 4ε2
g̃2|x||x′|I

(
t− |x|− t′ + |x′|, c,β)

where c is the constant (5.18) consisting of the couplings and ε defined by

c := 1 + λ
4πε

g̃2

16π2ε

= 16π2ε

g̃2 + 4πλ
g̃2 , (D.34)

and we define the integral

I(τ, c,β) =
∫ ∞

0
dp p

p2 + c2

[
e−iτp + 2 cos(τp)

eβp − 1

]
, (D.35)

which we evaluate here for c,β > 0 and τ ∈ R. To compute I, use
∫∞
0 dq e−cq sin(pq) =

p
p2+c2 giving

I(τ, c,β) =
∫ ∞

0
dq
∫ ∞

0
dp e−cq sin(pq)

[
e−iτp + 2 cos(τp)

eβp − 1

]
. (D.36)

Next we rearrange the above into the form

I(τ, c,β) =
∫ ∞

0
dq e−cq

[ ∫ ∞

0
dp i

(
e−i(τ+q)p − e−i(τ−q)p

)

2 +
∫ ∞

0
dp sin

(
(τ + q)p

)− sin
(
(τ − q)p

)

eβp − 1

]
.

(D.37)
We note the elementary result (with the limit δ → 0+ understood)

∫ ∞

−∞
Θ(x)e−iyx =

∫ ∞

0
dx e−iyx = −i

y − iδ
(D.38)

as well as formula (3.911.2) from [116] (valid for a 2= 0 and Re[β] > 0)
∫ ∞

0
dx sin(ax)

eβx − 1 = π

2β coth
(
πa

β

)
− 1

2a . (D.39)

With these formulae the integral (D.37) becomes

I(τ, c,β) = 1
2

∫ ∞

0
dq e−cq

[ 1
τ + q − iδ

− 1
τ − q − iδ

(D.40)

+ π

β
coth

(
π(τ + q)

β

)
− 1
τ + q

− π

β
coth

(
π(τ − q)

β

)
+ 1
τ − q

]
.
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Using the result of the Sochocki-Plemelj theorem

1
x± iδ

= 1
x
∓ iπδ(x) , (D.41)

the integral (D.40) simplifies to

I(τ, c,β) = 1
2

∫ ∞

0
dq e−cq

[
iπδ(τ+q)−iπδ(τ−q)+ π

β
coth

(
π(τ + q)

β

)
− π
β
coth

(
π(τ − q)

β

)]
.

(D.42)
Applying the Sochocki-Plemelj theorem yet again to the above yields

I(τ, c,β) = π

2β

∫ ∞

0
dq e−cq

[
coth

(
π(q + [τ − iδ])

β

)
+ coth

(
π(q − [τ − iδ])

β

)]
(D.43)

where the behaviour coth(z) ' 1/z near z ' 0 allows use of formula (D.41) (and so
justifying the iδ-prescription in the arguments of the coth(·) functions). From here we note
the identity

coth
(
z

2

)
= 2

1− e−z
− 1 , (D.44)

and make the change of integration variable to Q = 2πq/β giving

I(τ, c,β) = 1
4

∫ ∞

0
dQ e−

cβ
2πQ

[
coth

(
Q+ 2π[τ − iδ]/β)

2

)
+ coth

(
Q− 2π[τ − iδ]/β)

2

)]

= 1
2

∫ ∞

0
dQ e−

cβ
2πQ

[ 1
1− e−2π(τ−iδ)/βe−Q

+ 1
1− e+2π(τ−iδ)/βe−Q

− 1
]

= 1
2Φ
(
e
−2π(τ−iδ)

β , 1, cβ2π

)
+ 1

2Φ
(
e
+2π(τ−iδ)

β , 1, cβ2π

)
− π

cβ
, (D.45)

where we use the integral representation (see formula (25.14.5) in [118])

Φ(z, s, a) = 1
Γ(s)

∫ ∞

0
dx xs−1e−ax

1− ze−x
valid for Re[s] > 0, Re[a] > 0 & z ∈ C \ [1,∞)

(D.46)
where Φ(z, s, a) is the Lerch Transcendent, usually defined by the series (see formula
(25.14.1) in [118])

Φ(z,s,a) =
∞∑

n=0

zn

(a+n)s valid for |z|< 1 . (D.47)

For other values of z ∈C (ie. not inside the unit disc) the function Φ is defined via analytic
continuation in the complex plane. At the end of the day, using the above formula (D.45)
in (D.33) yields

Eβ(t,x; t′,x′)=
2ε2

g̃2|x||x′|

[
Φ
(
e
−2π(t−t′−|x|+|x′|−iδ)

β ,1, cβ2π

)
+Φ

(
e
+2π(t−t′−|x|+|x′|−iδ)

β ,1, cβ2π

)
− 2π
cβ

]

(D.48)

which is the result quoted in (5.20) in the main text.
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D.2.1 Perturbative limit of Eβ

Here we take the perturbative limit of Eβ which turns out to be the limit in which

cβ

2π # 1 . (D.49)

We first note the asymptotic series of the Lerch transcendent for any large a

Φ(z, s, a) ' 1
1− z

1
as

+
N−1∑

n=1

(−1)nΓ(s+ n)
n! Γ(s) · Li−n(z)

as+n
+O(a−s−N ) for a# 1 (D.50)

for fixed s ∈ C and fixed z ∈ C \ [1,∞), where Li−n(z) = (z∂z)n z
1−z are polylogarithm

functions of negative integer order. Using Li−1(z) = z
(1−z)2 and Li−2(z) = z+z2

(1−z)3 as well as
Li−3(z) = z+4z2+z3

(1−z)4 we find that for cβ/(2π)# 1 we have

Φ
(
z, 1, cβ2π

)
' 1

1− z

2π
cβ
− z

(1− z)2

(
2π
cβ

)2
+ z + z2

(1− z)3

(
2π
cβ

)3
+O((cβ)−4) (D.51)

Φ
(
1
z
, 1, cβ2π

)
'
[
1− 1

1− z

] 2π
cβ
− z

(1− z)2

(
2π
cβ

)2
− z + z2

(1− z)3

(
2π
cβ

)3
+O((cβ)−4)

Which means that (half of) the sum of these two functions has the asymptotics

1
2Φ

(
z, 1, cβ2π

)
+ 1

2Φ
(
1
z
, 1, cβ2π

)
' π

cβ
− z

(1− z)2
(2π
cβ

)2
+O((cβ)−4) , (D.52)

which when used for the function I(τ, c,β) given in (D.45) yields

I(τ, c,β) ' − e
−2π(τ−iδ)

β

[
1− e

−2π(τ−iδ)
β

]2

(2π
cβ

)2
+O((cβ)−4) = − π2

c2β2 csch
2
(
π[τ − iδ]

β

)
+O((cβ)−4)

(D.53)
Using this and c = 16π2ε

g̃2

(
1 + λ

4πε

)
, at the end of the day we find that Eβ in the perturbative

limit is

Eβ(t,x; t′,x′) ' −
g̃2

64π2β2|x||x′|
(
1 + λ

4πε

)2 csch
2
(
π[t− t′ − |x|+ |x′|− iδ]

β

)
+ . . .

which (at leading-order) is exactly the expected temperature-dependent contribution to
the perturbative result when λ/(4πε) $ 1 (see formula (3.10), which neglects O(λ2) con-
tributions).

D.2.2 I(τ, c,β) in the limit δ → 0+

Because Φ(z, s, a) has a branch cut along z ∈ [1,∞), the limit δ → 0+ of the expres-
sion (D.45) is somewhat tricky to take. For completeness we take this limit here: to this
end, revert back to the integral form (D.42) and integrate the δ-functions explicitly to get

I(τ, c,β) = π

2β

∫ ∞

0
dq e−cq

[
coth

(
π(q + τ)

β

)
+ coth

(
π(q − τ)

β

)]
+ iπ

2

[
e+cτΘ(−τ)− e−cτΘ(τ)

]

(D.54)
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The remaining integrals over q are now ill-defined for general τ (the reason for this being
that for any τ ∈ R one of the two coth(·) functions gets integrated over a singularity at
q = τ). Since the remaining integral is clearly symmetric under τ → −τ , we assume for
now that τ > 0. For τ > 0 the first integral is easier to compute, where we change the
integration variable to u = exp

(− 2π(q + τ)/β
)

where

π

2β

∫ ∞

0
dq e−cq coth

(
π(q + τ)

β

)
= 1

4e
cτ
∫ exp(−2πτ/β)

0
du u

cβ
2π−1

[ 2
1− u

− 1
]

(D.55)

= 1
2e

cτB
(
e
−2πτ

β ; cβ2π , 0
)
− π

2cβ

where B(z; a, b) =
∫ z
0 du ua−1(1 − u)b−1 is the incomplete Beta function. For the second

integral, the procedure is similar with the added complication that the integrand gets
integrated over the root at q = −τ (since we assume here that τ > 0). We find in much
the same way that

π

2β

∫ ∞

0
dq e−cq coth

(
π(q − τ)

β

)
= e−cτ

2

∫ exp(+2πτ/β)

0
du u

cβ
2π−1(1− u)−1 − π

2cβ , (D.56)

however since the upper limit on the integral is greater than 1 (since τ > 0 is assumed),
the above integrand gets integrated over a singularity at u = 1. Interpreting the above
integral as a Cauchy Principal value turns the above into

π

2β

∫ ∞

0
dq e−cq coth

(
π(q − τ)

β

)
= e−cτ

2 lim
η→0+

[ ∫ 1−η

0
+
∫ exp(+2πτ/β)

1+η

]
du u

cβ
2π−1(1− u)−1 − π

2cβ .

(D.57)
The first integral is easily seen to evaluate to B

(
1 − δ; cβ2π , 0

)
, while the second integral

requires a variable change u = 1/v giving
∫ exp(+2πτ/β)

1+η
du u

cβ
2π−1(1− u)−1 =

∫ exp(−2πτ/β)

1/(1+η)
dv v−

cβ
2π (1− v)−1 (D.58)

=
[ ∫ exp(−2πτ/β)

0
−
∫ 1/(1+η)

0

]
dv v−

cβ
2π (1− v)−1

= B
(
e
−2πτ

β ; 1− cβ

2π , 0
)
− B

(
1

1 + η
; 1− cβ

2π , 0
)

which then implies that

π

2β

∫ ∞

0
dq e−cq coth

(
π(q−τ)

β

)
= e−cτ

2

[
B
(
e
−2πτ

β ;1− cβ

2π ,0
)

(D.59)

+ lim
η→0+

{
B
(
1−η; cβ2π ,0

)
−B

(
1

1+η ;1−
cβ

2π ,0
)}]

− π

2cβ .

The limit can be taken noting B(z; a, 0) ' − log(1 − z) − ψ(0)(a) − γ + O(z) for z → 1−
(with ψ(0)(z) := Γ′(z)/Γ(z) the digamma function) giving

π

2β

∫ ∞

0
dq e−cq coth

(
π(q − τ)

β

)
= e−cτ

2

[
B
(
e
−2πτ

β ; 1− cβ

2π , 0
)
+ π cot

(
βc

2

)]
− π

2cβ .
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where the identity ψ(0)(1− a)− ψ(0)(a) = π cot(πa) has been used. Putting the above all
together (extending the domain to τ > 0 for the above integrals) leaves

I(τ, c,β)= ec|τ |

2 B
(
e
−2π|τ |

β ; cβ2π ,0
)
+ e−c|τ |

2

[
B
(
e
−2π|τ |

β ;1− cβ

2π ,0
)
+π cot

(
cβ

2

)]
− π

cβ
− iπ2 sign(τ)e−c|τ | .

(D.60)
To write the above formula in a slightly more convenient manner, we note formula (8.17.20)
from [118] which implies that

B(z; 1− a, 0) = B(z;−a, 0) + z−a

a
, (D.61)

and so allows us to write the above formula as

I(τ, c,β)= ec|τ |

2 B
(
e
−2π|τ |

β ; cβ2π ,0
)
+ e−c|τ |

2

[
B
(
e
−2π|τ |

β ;− cβ

2π ,0
)
+π cot

(
cβ

2

)]
− iπ2 sign(τ)e−c|τ | .

(D.62)
The beta function can only be related to the Lerch transcendent for arguments |z| < 1,
which explains why the limit δ → 0+ is not straightforward from the representation (D.45).

D.2.3 KMS-like condition for Eβ

Here we show that the function Eβ is thermal, in the sense that it obeys a KMS-like
condition (as does the free thermal correlator of appendix A.1.1) where

Eβ(t− iβ,x; t′,x′) = Eβ(t′,x′; t,x) (D.63)

cf. equation (A.15). The proof for this follows almost identically as the proof given in
appendix A.1.1, save for the fact that Eβ enjoys a time-translation invariance only when
t > |x| and t′ > |x′| — in this limit, we have the representation (D.33)

Eβ(t,x; t′,x′) =
4ε2

g̃2|x||x′|

∫ ∞

0
dp p

p2 + c2

[
e−ip(t−|x|−t

′+|x′|)

1− e−βp
+ e+ip(t−|x|−t′+|x′|)

eβp − 1

]
, (D.64)

after using the identity 1 + (eβp − 1)−1 = (1 − e−βp)−1. The above function is a complex
analytic function of time for in the strip where −β < Im[t] < 0 — we then clearly have

Eβ(t−iβ,x; t′,x′)=
4ε2

g̃2|x||x′|

∫ ∞

0
dp p

p2+c2
[
e−βpe−ip(t−|x|−t

′+|x′|)

1−e−βp + e+βpe+ip(t−|x|−t′+|x′|)

eβp−1

]

(D.65)

= 4ε2
g̃2|x||x′|

∫ ∞

0
dp p

p2+c2
[
e−ip(t−|x|−t

′+|x′|)

eβp−1 + e+ip(t−|x|−t′+|x′|)

1−e−βp
]

(D.66)

=Eβ(t′,x′; t,x) (D.67)

which shows that (D.63) holds true. Note however that the full correlation function
Wβ = S + Eβ is not explicitly thermal since the temperature-independent contribution S

obviously fails to satisfy a KMS-like condition analogous to (D.63). However, in a limit
where Eβ dominates over S (provided t > |x| and t′ > |x′|) one should expect to see
thermality manifest itself more directly (this is explored using an Unruh-Dewitt detector
model in [53], where it is shown that a stationary qubit outside the hotspot thermalizes
whilst only interacting with φ).
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Chapter 4

Hotspot Open EFT

Approximations

C. P. Burgess, R. Holman and G. Kaplanek,

“Quantum Hotspots: Mean Fields, Open EFTs, Nonlocality and Decoherence Near Black Holes,”

Fortschr. Phys. 2022, 2200019

doi.org/10.1002/prop.202200019

[arXiv:2106.10804 [hep-th]].

4.1 Preface

The previous chapter is essential to the current chapter. Where the earlier chapter solves the

hotspot model in full detail, the current chapter uses these exact solutions as a point of compar-

ison when applying Open EFT techniques to the hotspot model.

So far in this thesis, much of the discussions of Open EFT techniques have been in reference to

very simple problems involving particle decays and qubits (note that in [90] a qubit is shown to

thermalize when sitting next to the hotspot) — the work presented here is so far closest to what

one would wish to study in the Open EFT framework: what happens to the fields themselves

at late times? In this case to what degree can one solve for the open system sector’s evolution

alone? It is shown here that the same arguments apply for fields as they do for qubits in so far

as making reliable late-time predictions. The Nakajima-Zwanzig equation is developed here for

the exterior field φ and assumed to be Markovian in the limit that the energy of the field modes
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are much smaller than the inverse temperature set by the hot interior fields χa. The Gaussian

components of the reduced density matrix are here solved for in the field-basis, in order to make

two points.

First, the equal-time correlator 〈φ(t)φ(t)〉 is computed by integrating over the Markovian solution

found in the third section of the paper — interestingly, this correlator only agrees with the exact

solution in a very specific limit of the perturbative regime (namely where the energy of allowed

modes of the field are far smaller than the temperature of the hotspot interior). Secondly, the

timescale for decoherence of the reduced density matrix is found to be cutoff dependent due to

nature of the Markovian approximation taken.

In the last section an attempt is made to study non-locality of the hotspot in analogy to the

non-locality that is thought to be exhibited by more realistic black holes. This is done by taking

the (so far not discussed) mean-field approximation in which the (interaction picture) unitary

evolution operator is split apart according to

V̂ (t) = V̂ (t)⊗ IB + V̂(t) (4.1)

where the mean-field evolution operator V̂ (t) is defined by the average V̂ (t) := 〈V̂ (t)〉B over

the environment’s initial state, and the diffuse evolution operator is defined as the difference

V̂(t) := V̂ (t) − V̂ (t) ⊗ IB. Writing V̂ (t) as the exponentiation of a mean-field Hamiltonian

Ĥ int results in a non-local Hamiltonian in this framework, and is a good approximation for the

evolution of the system in the limit where the diffuse contributions are small. This technique is

known to be fruitful in a variety of settings where quantum systems propagate through mediums

(like photons propagating through glass [6], or neutrinos interacting with the interior of the Sun

[91]). It turns out that the mean-field approximation agrees with the solved physics of §3 only

in the limit that the φ and χa become decoupled (ie. when the hotspot interaction is negligible).

The work presented here shows that there are regimes where Open EFT techniques agree with

limits of the exact answer, but the Open EFT approximations are highly restrictive on the

parameter space where things do align with the known answers.

118



Quantum Hotspots: Mean Fields, Open EFTs,

Nonlocality and Decoherence Near Black Holes

C.P. Burgess,a,b R. Holmanc and G. Kaplaneka,b

aDepartment of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton ON, Canada.
bPerimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo ON, Canada.
cMinerva Schools at KGI, 1145 Market Street, San Francisco, CA 94103, USA.

Abstract: E↵ective theories describing black hole exteriors resemble open quantum systems inasmuch

as many unmeasurable degrees of freedom beyond the horizon interact with those we can see. A solvable

Caldeira-Leggett type model of a quantum field that mixes with many unmeasured thermal degrees of

freedom on a shared surface was proposed in arXiv:2106.09854 to provide a benchmark against which

more complete black hole calculations might be compared. We here use this model to test two types

of field-theoretic approximation schemes that also lend themselves to describing black hole behaviour:

Open EFT techniques (as applied to the fields themselves, rather than Unruh-DeWitt detectors)

and mean-field methods. Mean-field methods are of interest because the e↵ective Hamiltonians to

which they lead can be nonlocal; a possible source for the nonlocality that is sometimes entertained

as being possible for black holes in the near-horizon regime. Open EFTs compute the evolution of

the field state, allowing discussion of thermalization and decoherence even when these occur at such

late times that perturbative methods fail (as they often do). Applying both of these methods to a

solvable system identifies their domains of validity and shows how their predictions relate to more

garden-variety perturbative tools.
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1 Introduction and Discussion

Quantum fields in black-hole backgrounds have long been known to behave in surprising ways [1, 2],

even at energies well below whatever new physics ultimately describes gravity at its most foundational

level. Although the nature of the approximations being made when studying these e↵ects was initially

puzzling, this quantum-gravitational interplay has been integrated into the broader framework of

theoretical physics within the formalism of e↵ective field theories (EFTs) [3, 4] (for reviews see [5–9]).

In the meantime black hole physics grew up, with the discovery of gravitational waves [10] con-

fronting EFT calculations [11–21] of black hole properties with experimental measurements. This has

stimulated much work and has underlined some of the unique challenges posed when working with

black holes in an EFT framework. One of these challenges asks how the EFT should handle the large

numbers of gapless and dissipative degrees of freedom [12, 22] associated with the black hole’s entropy.

It would be useful to compare black-hole calculations with similar ones for well-understood solvable

systems that share as many of these features as possible, and to this end ref. [23] proposed a solvable
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Caldeira-Leggett style [24, 25] model in which an ‘external’ massless quantum field � interacts with

many unseen gapless thermal fields, but only on a surface meant as a poor man’s model of the event

horizon. Following [23], in what follows we call such a hot localized source a ‘hotspot’.

In this paper we use this model to explore two types of approximate tools that both lend themselves

to black-hole applications and capture di↵erent aspects of black-hole exceptionalism. (A companion

paper [26] computes the response an Unruh-DeWitt (qubit) detector that couples to the external field

� at a fixed distance from the hotspot.) Applying approximate tools to a solvable model allows explicit

identification of their domain of validity, which can be useful for applications to more realistic systems

for which a full solution is not known.

The two approximations explored here are late-time Open-EFT methods1 and mean-field expan-

sions. Ref. [23] solves the system dynamics exactly, but does so within the Heisenberg picture and

so obscures how the � field state evolves once couplings to the hotspot are switched on. Open-EFT

methods are designed to extract this state evolution, in principle allowing access to questions such

as whether (and how quickly) the hotspot decoheres the external � field. Furthermore it does so

with a domain of validity that allows it to treat phenomena (like thermalization) that occur at times

su�ciently late that naive perturbative methods generically fail.

Mean-field methods provide a framework within which an e↵ective Hamiltonian description is

possible even while including open-system e↵ects (see for example [9] for practical examples treated in

the same framework used here). Such a Hamiltonian description need not be guaranteed for generic

systems. Furthermore, the e↵ective mean-field Hamiltonian is often nonlocal and/or non-Hermitian,

making it natural to ask whether mean-field methods might provide relatively mundane origins for

exotic non-Wilsonian behaviour in the vicinity of black hole horizons; exotic behaviour that is often

speculated to exist near black holes [44–50].

Our arguments and results are laid out as follows. §2 starts by briefly reviewing the hotspot model

given in [23] and summarizes the results computed there that are relevant for later comparisons. The

model’s main variables are a massless field, �, (meant to represent observable degrees of freedom

on the near side of the horizon) plus a thermal bath (also with massless fields, �a) meant to model

the dissipative e↵ects of beyond-the-horizon physics. These fields ‘interact’ locally by mixing only

on a surface meant to represent the horizon itself (though the interaction surface is not an actual

geometrical local horizon).

Once the model is set up §3 formulates the evolution of the external field � after tracing out the

thermal degrees of freedom. This section does so by deriving eq. (3.22); a Nakajima-Zwanzig evolution

equation [51, 52] – a common open-systems tool – for the reduced density matrix of the field �. We

find a limit in which this equation takes a Markovian form – (3.29) – and we solve for the field’s

density matrix in this Markovian limit, doing so perturbatively in the system couplings and working

in the field basis where the solution is a Gaussian state. Using this result we compute the equal-time

correlations h�(t,x)�(t,y)i – with the result (3.74) – and identify the domain of validity of Markovian

methods by comparing this to the correlator given in §2.

§3 closes by computing a measure of the � state’s purity after the �a fields are integrated out, and

computes the decoherence rate as a function of the �-� coupling parameters and hotspot temperature.

For each mode the rate of departure from an initially pure free-vacuum state is controlled by the time

scale g̃2/� where � is the inverse hotspot temperature and g̃ is a measure of the �-� couplings.

1Refs. [26–29] also explore the use of Open EFT techniques, but do so for the much simpler case where late-time

predictions are only sought for an Unruh-DeWitt qubit detector [30, 31], rather than for the entire � field. (See [32–41, 43]

for related discussions of field decoherence in cosmology.)
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Finally, §4 defines what a mean-field Hamiltonian is, and what this definition means – c.f. eq. (4.15)

– for the field � in the hotspot model. The result is in general nonlocal on the interaction surface and in

time (with characteristic nonlocality scales given by the surface radius, ⇠, and the inverse temperature,

�), but is typically local in the radial ‘o↵-horizon’ direction. This mean-field Hamiltonian is used to

compute once again the system correlation function h�(t,x)�(s,y)i for comparison with the results of

§2, showing that validity of mean-field methods requires some couplings (like the � self-coupling �) to

dominate the temperature-dependent combination g̃2/�.

Taken together, the respective approximate methods described in §3 and §4 hold in complementary

regimes of parameter space, both of which are subsets of the broader domain of perturbative methods

found in [23].

2 The hotspot reloaded

This section briefly summarizes the hotspot-model setup as given in [23]. The fields involved consist

of an observable sector — a single real massless scalar field, � — and an unmeasured disspative and

gapless environment — N real massless scalar fields, �a prepared in a thermal state. These two

systems live in di↵erent spatial regions (R±) that only intersect in a small localized domain: a sphere

S⇠ of radius ⇠ enclosing the origin that is identified for the two spaces (see Fig. 1). We choose here not

to follow the gravitational back-reaction of these fields, and so treat R± as independent flat spatial

slices. A surface S⇠± encircles the origin within each of these spaces, with S⇠± identified to obtain the

interaction surface S⇠. The �a fields are meant to represent unmeasured degrees of freedom internal

to the black hole with which external fields can interact.

Figure 1. The two spatial branches, R+ and R�, in which the field � and the N fields �a repsectively live.

In practice the two regions are idealized as flat (though curvature can in principle also be included) with the

spherical interaction region S⇠ identified. The two types of fields only couple to one another within S⇠ (which

e↵ectively becomes the world-line of a point in the special case that ⇠ is much smaller than all other scales of

interest). Figure taken from [23].

Interactions on S⇠ are taken to be bilinear mixings of the fields, of the form Lint = �ga �
a �,
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plus possible quadratic self-interactions of the fields as required by any renormalization-group flows.2

With black holes in mind we consider observables that depend only on the � field and do not directly

measure any of the �a’s.

The action for the model is

SUV = �1

2

Z

Rt
+

d4x @µ�@
µ�� 1

2

Z

Rt
�

d4x �ab @µ�
a@µ�b �

Z

St
⇠

d3x


Ga �

a�+
G�

2
�2

�
, (2.1)

where Rt
± denote spacetime regions whose spatial slices are R±, and the integration for the interaction

is over the world-tube, St
⇠ swept out by the surface S⇠ over time. The couplings Ga and G� have

dimension mass, and G� is included because it can be required to renormalize divergences that arise

due to the presence of the �-� mixing Ga. When performing calculations we usually specialize to the

case where Ga = G is a-independent and define the combination

eG2 := �abGaGb = NG2 . (2.2)

As described in [23] this hotspot model comes in two versions, depending on whether or not the

radius ⇠ is regarded to be an ultraviolet scale.3 When ⇠ is a UV scale the 2-sphere S⇠ degenerates to

a point and the above description gets replaced by an e↵ective action organized in powers of ⇠. The

leading �-dependent interactions in this e↵ective theory become

Sint�e↵ ' �
Z

dt


ga �

a(t,0)�(t,0) +
�

2
�2(t,0)

�
, (2.3)

where the integration is over the proper time of the interaction point. At leading order the e↵ective

couplings � and ga are related to the couplings in (2.1) by

ga = 4⇡⇠2Ga and � = 4⇡⇠2G� (2.4)

and so have dimensions of length. In this limit it is the quantity

g̃2 = �ab gagb = Ng2 (2.5)

that plays the same role as did (2.2) when ⇠ was not small.

2.1 Time evolution

The Hamiltonian for this system can be written H = H0 + Hint where H0 := H+ ⌦ I� + I+ ⌦ H�
is the free Hamiltonian, with H± and I± the Hamiltonian and identity operators acting separately

within the �- and �-sectors of the Hilbert space:

H+ :=
1

2

Z

R+

d3x
h
p2 +

�r�
�2i

and H� :=
1

2

Z

R�

d3x
h
�ab⇧a⇧b + �abr�a · r�b

i
, (2.6)

and the canonical momenta are defined by p := @t� and ⇧a := �ab @t�
b. The interaction Hamiltonian

is similarly

Hint =

Z

S⇠

d2x


Ga �⌦ �a +

G�

2
�2 ⌦ I�

�
, (2.7)

2Such flows arise due to renormalizations of the Coulomb-like divergences that appear even at the classical level near

the interaction surface [53–57].
3The same distinction also arises for black-hole EFTs, for which the black hole event horizon can either be regarded

as being shrunk to a point – as in world-line point-particle EFTs [11–21] – or can be regarded as being macroscopic

[58, 59]. This latter type of EFT can be used to summarize situations where it is ordinary GR [60–64] or exotic physics

[65–73] whose UV near-horizon physics is being summarized.
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which in the point-hotspot limit reduces to

Hint(t) ' ga �(t,0) ⌦ �a(t,0) +
�

2
�2(t,0) ⌦ I� . (2.8)

Reference [23] solves explicitly for the time-evolution for this model within the Heisenberg picture,

with most of the explicit results given for the point-hotspot limit (for which ⇠ ! 0). The remainder

of this section quotes a few of the results found for later comparisons.

2.1.1 System state

In the Heisenberg picture states do not evolve with time, and correspond to the initial state of the

system in the Schrödinger or interaction pictures. Correlation functions in [23] are computed assuming

the � and �a fields are initially uncorrelated, with

⇢0 = ⇢+ ⌦ ⇢� , (2.9)

where the � sector is in its standard Minkowski vacuum, |vaci, and the �a sector is in a thermal state,

%� , with temperature T = 1/�:

⇢+ = |vaci hvac| and ⇢� = %� :=
e��H�

Tr�[e��H� ]
. (2.10)

Here H� is the �a-sector bulk Hamiltonian and the subscript ‘�’ on the trace indicates that it is only

taken over the � sector.

2.1.2 Operator evolution

In Heisenberg picture the entire burden of time evolution falls on the field operators, which evolve

according to

�H(t,x) := U�1(t, 0)
⇥
�S(x) ⌦ I�

⇤
U(t, 0) and �a

H(t,x) := U�1(t, 0)
⇥
I+ ⌦ �a

S(x)
⇤
U(t, 0) , (2.11)

where the full time-evolution operator is U(t, t0) = T exp
⇣
�i
R t

t0 ds H(s)
⌘

and T denotes time-

ordering.

In di↵erential form, a generic Heisenberg-picture operator AH(t) satisfies @tAH(t) = �i
h
AH(t), HH(t)

i
,

which in particular implies the fields �H and �a
H satisfy the equations of motion that follow from the

action (2.1): ⇤� = ⇤�a = 0 for all points exterior to S⇠. For points on S⇠ the presence of the

interaction implies the equations of motion instead impose the boundary condition

@r�
���
r!⇠

=
⇣
Ga�

a + G� �
⌘

r!⇠
, (2.12)

(and similarly for �a). In the ⇠ ! 0 limit of a point source both the bulk equation and boundary

condition are e�ciently summarized by the equations

(�@2
t + r2)�H(t,x) = �3(x)


��H(t,0) + ga�

a
H(t,0)

�
(2.13)

and

�ab(�@2
t + r2)�b

H(t,x) = �3(x) ga�H(t,0) . (2.14)

It is these last equations that are solved explicitly in [23], with the result used to compute the

time-evolution of the system’s correlation functions. These integrations are performed assuming the
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couplings Ga and G� (or ga and �) turn on suddenly at t = 0 and remain time-independent thereafter.

These solutions generically diverge as r ! ⇠ (or r ! 0 in the point-hotspot limit) and because of this

these equation must be regulated, such as by evaluating the boundary conditions at a small distance

⇠ + ✏ from the singular point. The divergences associated with taking ✏ ! 0 are ultimately absorbed

into renormalizations of couplings like G� [53–57]

2.2 Correlation functions

The main result of [23] is the calculation of the correlation functions for the fields, whose results we

now quote for future use.

2.2.1 � correlation functions

The �-field Wightman function is defined by

W�(t,x; t0,x0) := Tr
h
�H(t,x)�H(t0,x0)⇢0

i
, (2.15)

where ⇢0 is the state given in (2.9), with explicit formulae given in the small-hotspot limit (⇠ ! 0).

The result computed to leading nontrivial order in g̃2 and � turns out to be given by

W�(t,x; t0,x0) ' 1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤

+
�

16⇡3

✓
⇥(t � |x|)

|x|
1

(t � t0 � |x| � i�)2 � |x0|2 +
⇥(t0 � |x0|)

|x0|
1

(t � t0 + |x0| � i�)2 � |x|2
◆

� g̃2⇥(t � |x|)⇥(t0 � |x0|)
64⇡2�2|x||x0| sinh2

h
⇡
� (t � |x| � t0 + |x0| � i�)

i (2.16)

+
g̃2

32⇡4

✓
� ⇥(t � |x|)

|x|
t � t0 � |x|

⇥
(t � t0 � |x| � i�)2 � |x0|2

⇤2 +
⇥(t0 � |x0|)

|x0|
t � t0 + |x0|

⇥
(t � t0 + |x0| � i�)2 � |x|2

⇤2
◆

+
g̃2

64⇡4

✓
�(t � |x|)

|x|
⇥
� (t0 + i�)2 � |x0|2

⇤ +
�(t0 � |x0|)

|x0|
⇥
� (t � i�)2 � |x|2

⇤
◆

(perturbative) ,

where the delta functions and step functions describe the transients due to the switch-on of couplings

at t = |x| = 0. The infinitesimal � ! 0+ is taken to zero at the end of the calculation.

Of most interest here is the form for the correlation function inside the future light-cone of this

switch-on (i.e. for t > |x| and t0 > |x0|), for which this perturbative expression becomes

W�(t,x; t0,x0) ' 1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤ +
�

16⇡3|x||x0|

 |x| + |x0|
(t � t0 � i�)2 � (|x + |x0|)2

�

� g̃2

64⇡2�2|x||x0| sinh2
h
⇡
� (t � |x| � t0 + |x0| � i�)

i (2.17)

+
g̃2

32⇡4

✓
� 1

|x|
t � t0 � |x|

⇥
(t � t0 � |x| � i�)2 � |x0|2

⇤2 +
1

|x0|
t � t0 + |x0|

⇥
(t � t0 + |x0| � i�)2 � |x|2

⇤2
◆

(inside light cone, perturbative)

The exact correlator is also computed in [23] and the result is compared there to this perturbative

limit, verifying that the full dependence on � agrees with RG-improved resummations using point-

particle EFT boundary-condition based methods [57]. Because the full result is not needed in what
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follows it is not repeated here, beyond observing that the perturbative result emerges from the full

one once it is expanded in powers of

g̃2

16⇡2✏⌧

✓
1 +

�

4⇡✏

◆�1

⌧ 1 and
g̃2

16⇡2✏�

✓
1 +

�

4⇡✏

◆�1

⌧ 1 . (2.18)

For later comparisons it is useful to focus on the equal-time special case of these formulae, for which

t0 = t. Of particular interest when comparing with other approximation schemes is the equal-time

limit of the perturbative result (2.17), which is

W�(t,x; t,x0) ' 1

4⇡2|x � x0|2 � �

16⇡3|x||x0|(|x| + |x0|) (2.19)

� g̃2

64⇡2�2|x||x0| sinh2
h
⇡
� (|x| � |x0|)

i +
g̃2

16⇡4(|x|2 � |x0|2)2 .

(inside light cone, perturbative)

2.2.2 �a correlation functions

Reference [23] also gives the explicit form for the �a free-field thermal correlator. Evaluated at

spacetime points x = (t,x) and x0 = (t0,x0) the result (at large N) is

h�a(t,x)�b(t0,x0)i� =
�ab

8⇡�|x � x0|

⇢
coth


⇡

�
(t � t0 + |x � x0| � i�)

�
(2.20)

� coth


⇡

�
(t � t0 � |x � x0| � i�)

��
,

in agreement with standard formulae [74]. In this expression the limit � ! 0+ is to be taken at the

end of the calculation.

3 Open EFT late-time field evolution

The solution to the hotspot problem given in [23] is provided in the Heisenberg picture, and a drawback

of this picture is that it obscures how the system’s state evolves. This is unfortunate because it makes

it di�cult to compare with much of the literature on open quantum systems, which is often phrased

in terms of the system’s reduced density matrix (see for example [9]).

In this section we aim to make this comparison more transparent, by solving the hotspot problem

using the Schrödinger-picture (in practice we use the interaction picture once we resort to perturbative

methods), computing in particular the reduced density matrix �S(t)

�S(t) := Tr�[⇢S(t)] , (3.1)

for the �-field (defined as the partial trace of the full Schrödinger-picture density matrix ⇢S(t) over

the �a sector).

The cumbersome nature of the Schrödinger picture for field theories prevented us from solving

exactly for �S(t) even within the hotspot model (though we have no reason to believe that this cannot

be done). So we instead compute this evolution perturbatively in the hotspot couplings, also restricting

for simplicity to the case of a point-like hotspot (⇠ ! 0). A major drawback of using perturbation

theory, however, is that perturbative methods intrinsically break down at late times, seeming to put
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beyond reach a reliable calculation of phenomena like decoherence or thermalization. We therefore

also adapt Open EFT techniques [9, 27–29, 41, 75–77] to verify that they allow the perturbative result

to be resummed to extend the perturbative domain of validity to very late times.4 Doing so also allows

the testing of these tools in this relatively unfamiliar quantum-field setting.

3.1 Open EFT evolution

In principle the time evolution of the system’s state is given within the Interaction picture by the

Liouville equation,
@⇢

@t
= �i

⇥
Hint(t), ⇢(t)

⇤
(3.2)

where Hint(t) is given by eq. (2.7), and where ⇢(t) is the interaction-picture state

⇢(t) = e+iH0t⇢S(t) e�iH0t (3.3)

where H0 = H+ ⌦ I� + I+ ⌦ H� is the free Hamiltonian for the combined system. It is easy to see

from the above that the Schrödinger-picture reduced density matrix �S(t) is related to the interaction-

picture reduced density matrix �(t) through the relation

�(t) = e+iH+t�S(t) e�iH+t . (3.4)

When solving these equations we assume the uncorrelated initial state ⇢(0) = ⇢0 = ⇢+ ⌦ ⇢� given in

(2.9) where ⇢+ = |vaci hvac| and ⇢� = %� is the thermal configuration for the � sector.

3.1.1 Nakajima-Zwanzig equation

In principle the evolution of �(t) is given by taking the trace of (3.2) over all unmeasured degrees of

freedom (in this case the fields �a). In perturbation theory one usually first formally solves (3.2) and

then takes the trace of the result, leading to

�(t) = �(0) � i

Z t

0

ds Tr�
h
Hint(s) , ⇢0

i
+ (�i)2

Z t

0

ds1

Z s1

0

ds2 Tr�
h
Hint(s1) ,

h
Hint(s2) , ⇢0

ii
+ · · ·

(3.5)

where Tr� denotes the partial trace only over the �a sector. The drawback of this expression is

the relatively complicated dependence of its right-hand side on the full system’s state. Because the

right-hand side refers explicitly to the initial state ⇢0 successive terms in the series generically grow

without bound for large t, causing the perturbative approximation to fail at late times and precluding

accessing issues like thermalization and late-time decoherence.

The better route for late-time purposes is to take the trace of the di↵erential relation (3.2) and to

eliminate from this the dependence of the right-hand side on any unmeasured degrees of freedom (for

a review of the steps given below see for example [9]). The good news is that because of the linearity

of (3.2) this can be done in great generality, with the resulting evolution equation for �(t) known as

the Nakajima-Zwanzig equation [51, 52]. Although this is a textbook derivation, we now describe it in

some detail since it is not often applied to quantum fields (as we do here) in the relativity literature.

The logic of the derivation proceeds as follows. One first defines the super-operator P acting on

operators in the Hilbert space by

P(O) = Tr� [O] ⌦ ⇢� , (3.6)

4Open EFT techniques were also applied to the hotspot in ref. [26], but only to obtain the late-time thermalization

behaviour of an Unruh-DeWitt detector [30, 31] that sits at rest displaced from the hotspot.
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where ⇢� = %� is the time-independent initial thermal density matrix for the fields �a. This is a

projection super-operator because it satisfies P2 = P, as therefore must its complement R = 1�P.

The definition (3.6) is defined so that it projects the full density matrix ⇢(t) onto the reduced density

matrix �(t),

P
⇥
⇢(t)

⇤
= �(t) ⌦ ⇢� , (3.7)

and so R[⇢(t)] can be regarded as describing all of the unmeasured parts of the full density matrix.

Our goal is therefore to rewrite the Liouville equation as a coupled set of evolution equations

for the mutually exclusive quantities P
⇥
⇢(t)

⇤
and R

⇥
⇢(t)

⇤
, and then eliminate R

⇥
⇢(t)

⇤
from these

by solving its equation as a function of P
⇥
⇢(t)

⇤
. To this end write the interaction-picture Liouville

equation (3.2) in terms of a linear Liouville super-operator,

@t⇢ = Lt(⇢) where Lt(⇢) = �i[Hint(t), ⇢ ] , (3.8)

and project the result using the operators P and R. Since P + R = 1 this leads to

P(@t⇢) = PLtP(⇢) + PLtR(⇢) (3.9)

and

R(@t⇢) = RLtP(⇢) + RLtR(⇢) . (3.10)

The unmeasured degrees of freedom are eliminated by formally solving eq. (3.10):

R[⇢(t)] = G(t, 0)R[⇢(0)] +

Z t

0

ds G(t, s)RLtP[⇢(s)] (3.11)

with

G(t, s) = 1 +

1X

n=1

Z t

s

ds1 · · ·
Z sn�1

s

dsn RLs1
· · · RLsn

, (3.12)

and inserting the result into (3.9). This yields the desired self-contained evolution equation for P[⇢(t)]:

P[@t⇢(t)] = PLtP[⇢(t)] + PLtG(t, 0)R[⇢(0)] +

Z t

0

ds K(t, s)[⇢(s)] (3.13)

with kernel

K(t, s) = PLtG(t, s)RLsP . (3.14)

For uncorrelated initial states of the form ⇢(0) = ⇢+ ⌦ ⇢� the second term on the right-hand side of

(3.13) vanishes because P
⇥
⇢(0)

⇤
= ⇢(0) and so R

⇥
⇢(0)

⇤
= 0.

In what follows we wish to use (3.13) but work only to second order in Hint(t), which means

expanding out the kernel K(t, s) to second order in Lt. At this order we can therefore take G(t, s) ' 1

in K(t, s), which becomes

K(t, s) ' PLtRLsP , (3.15)

and so (3.13) simplifies to

P[@t⇢(t)] ' PLtP[⇢(t)] +

Z t

0

ds PLtRLsP[⇢(s)] . (3.16)

Writing this out explicitly using the definitions of P, R and Lt then gives the more explicit form

@�

@t
' �i Tr�

nh
Hint(t),�(t) ⌦ ⇢�

io
(3.17)

�
Z t

0

ds Tr�

⇢
Hint(t) ,

h
Hint(s) , �(s) ⌦ ⇢�

i
� Tr�

⇣h
Hint(s),�(s) ⌦ ⇢�

i⌘
⌦ ⇢�

��
.

– 9 –

PhD Thesis - G. P. Kaplanek; McMaster University; Physics & Astronomy

128



To apply this expression to the hotspot fields expand Hint(t) in terms of a basis of operators with

the factorized form

Hint(t) = AA(t) ⌦ BA(t) , (3.18)

where AA acts only in the � sector and BA acts only in the �a sector. With this choice (3.16) simplifies

to become

@�

@t
' �i

h
Aa(t) , �(t)

i
hhBa(t) ii (3.19)

+

Z t

0

ds

✓h
Aa(s)�(s) , Ab(t)

i
hhBb(t)Ba(s) ii +

h
Ab(t) ,�(s)Aa(s)

i
hhBa(s) Bb(t) ii

◆

�
Z t

0

ds

✓h
Aa(s)�(s) , Ab(t)

i
+
h
Ab(t) ,�(s)Aa(s)

ii◆
hhBb(t) iihhBa(s) ii .

where hhO ii := Tr� [⇢� O] = Tr� [%�O] is the thermal trace for operators acting purely in the � sector.

For the point-hotspot system the interaction Hamiltonian given in (2.8) has the form Hint(t) =

ga�(t,0) ⌦ �a(t,0) + 1
2��

2(t,0) ⌦ I� (in the Interaction picture) and so using hh�a ii = 0 the second-

order Nakajima-Zwanzig equation reduces to

@�

@t
' � i�

2

h
�2(t,0),�(t)

i
+ gagb

Z t

0

ds

✓
hh�b(t,0)�a(s,0) ii

h
�(s,0)�(s) ,�(t,0)

i
(3.20)

+hh�a(s,0)�b(t,0) ii
h
�(t,0) ,�(s)�(s,0)

i◆

We write the thermal correlation function for two � fields as

gagbhh�b(t,0)�a(s,0) ii =: g̃2W (t � s) = � g̃2

4�2
csch2


⇡

�
(t � s � i�)

�
(3.21)

where � = 0+ goes to zero at the end of any calculation and the first equality defines the function

W (t) with g̃2 := �ab gagb as given in (2.5), while the second equality uses the explicit form for the

x0 ! x limit of the correlation function given in (2.20).

Finally, after a change of integration variables s ! t � s we arrive at the form for the Nakajima-

Zwanzig equation whose properties are explored below:

@�

@t
' � i�

2

h
�2(t,0),�(t)

i
(3.22)

+g2

Z t

0

ds

✓
W (s)

h
�(t � s,0)�(t � s) ,�(t,0)

i
+ W ⇤(s)

h
�(t,0) ,�(t � s)�(t � s,0)

i◆
.

3.1.2 Markovian limit

Since the correlation function W (s) is sharply peaked about s = 0 and falls o↵ exponentially fast like

W (s) / e�2⇡s/� for s � �, the integral simplifies if the rest of the integrand varies more slowly in the

region where W varies quickly. In such a case the integral is well-approximated by expanding the rest

of the integrand in powers of s, using

�(t � s)�(t � s) ' �(t,0)�(t) � s
⇥
@t�(t,0)�(t) + �(t,0)@t�(t)

⇤
+ . . . (3.23)

beneath the integral sign in (3.22). Notice that this assumes both � and � vary slowly, and so its

justification requires both that �(t) should be slowly varying and that we work in an e↵ective descrip-

tion that keeps only those modes of � whose energies satisfy E ⌧ 1/�. This becomes relevant when
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choosing momentum cuto↵s for later integrals, since this Markovian derivation requires ⇤⌧ 1/�. Part

of the discussion to follow aims to identify more precisely the region of parameter space for which this

Markovian approximation is valid (which we find by asking when the subleading terms in the series

(3.23) are small).

Keeping only the leading-order term in the Taylor-series (3.23) yields the approximate equation

of motion

@�

@t
' � i�

2

h
�2(t,0),�(t)

i
+ g̃2C

h
�(t,0)�(t) ,�(t,0)

i
+ g̃2C ⇤

h
�(t,0) ,�(t)�(t,0)

i
. (3.24)

where the coe�cient is given by

C (t) :=

Z t

0

ds W (s) (3.25)

and the approximate equality requires t � � so that the integration includes the strong peaking of

W (s) (with exponential fall-o↵) noted above. Although the coe�cient C (t) is in principle a function of

t, in practice the narrowly peaked form of W (t) ensures it approaches a constant exponentially quickly

once t � �. The value of this constant can be evaluated explicitly by taking the upper integration

limit to infinity and evaluating the resulting integral using expression (3.21) for W (t):

C (t) ' C1 =

Z 1

0

ds W (s) = � 1

4�2

Z 1

0

ds

sinh2
⇥
⇡
� (s � i�)

⇤ ' 1

4⇡�
� i

4⇡2�


�

�
+ O

⇣
�

�

⌘�
, (3.26)

for t � �. The divergence as � ! 0 is a reflection of the divergence of the integrand as s ! 0.

It is sometimes useful to convert (3.24) to the Schrödinger picture, as is done by noting that

e�iH+t @�

@t
e+iH+t =

@�S

@t
+ i[H+,�S(t)] . (3.27)

which follows from the relation (3.4), giving

@�S

@t
' �i

h
H+ +

�

2
�2

S(0),�S(t)
i

+ g̃2C
h
�S(0)�S(t),�S(0)

i
+ g̃2C ⇤

h
�S(0) ,�S(t)�S(0)

i
. (3.28)

Using this in (3.28) finally gives

@�S

@t
' �i

h
H+ +

�

2
�2

S(0),�S(t)
i

+
g̃2

4⇡

✓
1

�
� i

⇡�

◆h
�S(0)�S(t) ,�S(0)

i
+

g̃2

4⇡

✓
1

�
+

i

⇡�

◆h
�S(0) ,�S(t)�S(0)

i
(3.29)

= �i
h
H+ +

�ren

2
�2

S(0),�S(t)
i

+
g̃2

4⇡�

⇣h
�S(0)�S(t) ,�S(0)

i
+
h
�S(0) ,�S(t)�S(0)

i⌘
,

which shows that the divergence can be absorbed into the renormalization

�ren := �� g̃2

2⇡2�
. (3.30)

3.1.3 Evolution equation in a field basis

It is easiest to solve an equation like (3.29) in a basis that diagonalizes the interaction Hamiltonian,

and in this instance this suggests using a basis of field eigenstates defined as the basis that diagonalizes

the Schrödinger-picture field operator �(0,x) = �S(x):

�S(x) |'(·)i = '(x) |'(·)i (3.31)
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where the eigenvalue '(x) is a real-valued function of position.

The wave-functional of the free vacuum |vaci in this reprsentation is given by a gaussian [78]

h'(·)| vaci =
p

N0 exp


�1

2

Z
d3x

Z
d3y E(x,y)'(x)'(y)

�
(3.32)

=
p

N0 exp


�1

2

Z
d3p

(2⇡)3
Ep 'p'�p

�

where the kernel E(x,y) is given by

E(x,y) =

Z
d3p

(2⇡)3
Ep eip·(x�y) , (3.33)

where Ep := |p| and the normalization factor N0 is determined by using the normalization condition

hvac|vaci = 1.

In the field basis the reduced density matrix is a time-dependent functional of the basis field

configurations '1(x) and '2(x), with components

�S['1,'2; t] := h'1(·)|�S(t)|'2(·)i (3.34)

which the Markovian equation (3.29) implies must satisfy

@�S['1,'2; t]

@t
' �i h'1(·)|

h
H+,�S(t)

i
|'2(·)i (3.35)

�


g̃2

4⇡�

�
'1(0) � '2(0)

�2
+

i�ren

2

�
'2

1(0) � '2
2(0)

��
�S['1,'2; t] .

We henceforth drop the subscript ‘ren’ on the renormalized coupling parameter �. Evaluating the

commutator term using

h'(·)| H+ | i =
1

2

Z
d3x


� �2

�'(x)2
+
��r'(x)

��2
�
h'(·)| i , (3.36)

for any state | i, the equation of motion for �S finally becomes

@�S['1,'2; t]

@t
' � i

2

Z
d3x


� �2

�'1(x)2
+
��r'1(x)

��2 +
�2

�'2(x)2
�
��r'2(x)

��2
�
�S['1,'2; t]

� g̃2

4⇡�

�
'1(0) � '2(0)

�2
�S['1,'2; t] �

i�

2

�
'2

1(0) � '2
2(0)

�
�S['1,'2; t] .

(3.37)

As is easily verified, when � = g̃ = 0 this equation has as a solution

�S(t,'1,'2) = h'1(·)|vaci hvac|'2(·)i

= N0 exp

✓
�1

2

Z
d3x

Z
d3y E(x � y)

⇥
'1(x)'1(y) + '2(x)'2(y)

⇤◆
(3.38)

where the second equality uses (3.32) and the kernel E(x � y) is as defined in equation (3.33).

3.2 Solutions for the reduced density matrix

We next solve eq. (3.37) for the �-sector density matrix in the presence of the hotspot interactions.
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3.2.1 Gaussian ansatz

Keeping in mind that the hotspot ‘interactions’ are all bilinear in the fields we seek solutions to (3.37)

subject to the more general Gaussian ansatz

�S['1,'2; t] = N (t) exp

✓
� 1

2

Z
d3x

Z
d3y

⇢
A1(x,y; t)'1(x)'1(y) + A2(x,y; t)'2(x)'2(y)

+2B(x,y; t)'1(x)'2(y)

�◆
, (3.39)

with the kernels A1, A2 and B to be determined. Note that we can without loss of generality assume

the symmetry

Aj(x,y; t) = Aj(y,x; t) , (3.40)

and that hermiticity of the reduced density matrix – �⇤
S['1,'2; t] = �S['2,'1; t] – implies N ⇤(t) = N (t)

and

A⇤
1(x,y; t) = A2(x,y; t) and B⇤(x,y; t) = B(y,x; t) . (3.41)

Notice that �S = | i h | for a gaussian pure state h'(·)| i / exp
⇥
� 1

2 K(x,y)'(x)'(y)
⇤

only if

A1(x,y) = A⇤
2(x,y) = K(x,y) and B(x,y) = 0 . (3.42)

with the free vacuum (3.38) corresponding to the choice K(x,y) = E(x�y). Since the first of these is

an automatic consequence of (3.41), this shows that A1 and A2 can be regarded as the deformations

of the ground state away from the free result due to the interactions, while having B 6= 0 corresponds

to the interaction causing the initially pure state to become mixed.

The kernels are obtained by plugging the ansatz (3.39) into (3.37) and equating the coe�cients of

the di↵erent functional forms on both sides of the equation. The details are worked out in Appendix

A.1, with the results simply quoted here. Equating the coe�cients of terms independent of 'i implies

1

N
@N
@t

= � i

2

Z
d3x

h
A1(x,x; t) � A2(x,x; t)

i
. (3.43)

This expression can also be derived from the condition that Tr+�S(t) = 1 for all times. The coe�cient

of '1(x)'1(y) similarly gives

@A1(x,y; t)

@t
= �ir2

x�
3(x � y) +

✓
g̃2

2⇡�
+ i�

◆
�3(x)�3(y) (3.44)

+

Z
d3z

h
�iA1(z,x; t)A1(z,y; t) + iB(x, z; t)B(y, z; t)

i
,

while the coe�cient of '2(x)'2(y) leads to

@A2(x,y; t)

@t
= ir2

x�
3(x � y) +

✓
g̃2

2⇡�
� i�

◆
�3(x)�3(y) (3.45)

+

Z
d3z

h
iA2(x, z; t)A2(y, z; t) � iB(z,x; t)B(z,y; t)

i
.

Finally, the coe�cient of '1(x)'2(y) gives

@B(x,y; t)

@t
= � g̃2

2⇡�
�3(x)�3(y) (3.46)

+

Z
d3z

h
�iA1(z,x; t)B(z,y; t) + iB(x, z; t)A2(z,y; t)

i
.
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The implications of these equations are simpler to see in momentum space, so we define

Aj(x,y; t) =

Z
d3k

(2⇡)3

Z
d3q

(2⇡)3
Aj(k,q; t) e+ik·x e�iq·y (3.47)

and B(x,y; t) =

Z
d3k

(2⇡)3

Z
d3q

(2⇡)3
B(k,q; t) e+ik·x e�iq·y ,

for which the symmetry Aj(x,y; t) = Aj(y,x; t) of (3.40) implies

Aj(k,q; t) = Aj(�q,�k; t) . (3.48)

In terms of these equation (3.43) becomes

1

N
@N
@t

= � i

2

Z
d3k

(2⇡)3

h
A1(k,k; t) � A2(k,k; t)

i
(3.49)

while equations (3.44) through (3.46) become

@A1(k,q; t)

@t
= i(2⇡)3|k|2�3(k � q) +

✓
g̃2

2⇡�
+ i�

◆
(3.50)

+

Z
d3p

(2⇡)3

h
�iA1(k,p; t)A1(p,q; t) + iB(k,p; t)B(�q,�p; t)

i
,

@A2(k,q; t)

@t
= �i(2⇡)3|k|2�3(k � q) +

✓
g̃2

2⇡�
� i�

◆
(3.51)

+

Z
d3p

(2⇡)3

h
iA2(k,p; t)A2(p,q; t) � iB(�p,�k; t)B(p,q; t)

i

and

@B(p,q; t)

@t
= � g̃2

2⇡�
+

Z
d3k

(2⇡)3

h
�iA1(p,k; t)B(k,q; t) + iB(p,k; t)A2(k,q; t)

i
. (3.52)

These are the equations we solve in the next few sections. Notice in particular that (3.46) or (3.52)

implies g̃2/� 6= 0 is an obstruction to B(q,x, t) = 0 being a solution.

3.2.2 Perturbative solution

As is easily verified, for � = g̃ = 0 these above equations are solved by

B(p,q, t) = 0 and Aj(k,q) = (2⇡)3|k| �3(k � q) , (3.53)

corresponding to the vacuum solution of (3.38). We next seek solutions that are perturbatively close

to this vacuum solution, as should be possible for small g̃ and �.

To this end we write

Aj(k,q; t) = (2⇡)3|k| �3(k � q) + aj(k,q; t) + . . . and B(k,q; t) = b(k,q; t) + . . . , (3.54)

and linearize eqs. (3.49) through (3.52) in the perturbations aj and b. The resulting evolution equations

decouple, to become
@a1(k,q; t)

@t
=

g̃2

2⇡�
+ i�� i(|k| + |q|) a1(k,q; t) , (3.55)

– 14 –

PhD Thesis - G. P. Kaplanek; McMaster University; Physics & Astronomy

133



@a2(k,q; t)

@t
=

g̃2

2⇡�
� i�+ i(|k| + |q|) a2(k,q; t) (3.56)

and
@b(k,q; t)

@t
= � g̃2

2⇡�
� i
�
|k| � |q|

�
b(k,q; t) . (3.57)

These are to be solved subject to the initial conditions

a1(k,q; 0) = a2(k,q; 0) = b(k,q; 0) = 0 , (3.58)

since the scalar � is starts o↵ in its vacuum state.

The solutions to these initial-value problems are given by

a1(k,q; t) =

✓
�� ig̃2

2⇡�

◆
1 � e�i

�
|k|+|q|

�
t

|k| + |q| , (3.59)

a2(k,q; t) =

✓
�+

ig̃2

2⇡�

◆
1 � e+i

�
|k|+|q|

�
t

|k| + |q| (3.60)

and

b(k,q; t) =

✓
ig̃2

2⇡�

◆
1 � e�i(|k|�|q|)t

|k| � |q| . (3.61)

In the limit k = q (or in the limit of small t) this last solution simplifies to

b(k,q; t) ! � g̃2t

2⇡�
when k ! q . (3.62)

As remarked earlier — and explored in more detail in §3.4 — nonzero b is a signature of �S

becoming a mixed state, and so (3.61) shows that this only happens for nonzero g̃2/�. Furthermore

when g̃2/� is nonzero there can be no static solution with @tb = 0, (and in particular no solution with

b = 0) and |b(k,k; t)| monotonically increases. The coupling �, by contrast, just deforms the ground

state but leaves it pure.

The normalization N (t) is found in a similar way. Using the above solution in (3.49) allows it to

be written

@tN
N = � i

2

Z
d3k

(2⇡)3

h
a1(k,k; t) � a2(k,k; t)

i

=

Z
d3k

(2⇡)3|k|


� cos(|k|t) sin(|k|t) � g̃2

2⇡�
sin2(|k|t)

�
. (3.63)

The integral on the right-hand side diverges in the ultraviolet, which we regulate using a momentum

cuto↵ |k| < ⇤, leading to the result

N (t) = exp

✓
C0 �

g̃2⇤2t

16⇡3�
� �

16⇡2t
sin(2⇤t) +

g̃2

16⇡3�t
sin2(⇤t)

◆
, (3.64)

where C0 is the integration constant. In terms of the initial condition N (0) = N0, where N0 is the

normalization of the free-vacuum state, we have

N0 = exp

✓
C0 �

�⇤

8⇡2

◆
, (3.65)

and so

N (t) = N0 exp

⇢
⇤

8⇡2


� g̃2⇤t

2⇡�

✓
1 � sin2(⇤t)

(⇤t)2

◆
+ �

✓
1 � sin (2⇤t)

2⇤t

◆��
. (3.66)

The significance of the divergences in the time-dependence of N (t) is discussed further in §3.4.
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3.3 Equal-time �-correlator

This section uses the reduced density matrix for � computed in the previous section to calculate the

h��i two-point function. Comparison of the result with the Wightman function given in §2 provides

a check on the domain of validity of the Nakajima-Zwanzig late-time evolution.

The correlator evaluated at t = t0 is convenient because it has a simple representation in terms

of the reduced density matrix. This is because the only evolution operators that appear are the ones

that convert between Heisenberg, interaction and Schrödinger pictures:

Tr
h
�H(t,x)�H(t,x0) ⇢0

i
= Tr+

h
�(t,x)�(t,x0)�(t)

i
= Tr+

h
�S(x)�S(x0)�S(t)

i
, (3.67)

where Tr+ in the second two terms denotes a trace only over the � sector of the Hilbert space.

The calculation based on the field-representation of the Schrödinger-picture reduced density matrix

evaluates the trace using a partition of unity written as a functional integral over the field eigenstates,

Tr+

h
�S(x)�S(x0)�S(t)

i
=

Z
D' h'(·)|�S(x)�S(x0)�S(t)|'(·)i (3.68)

=

Z
D' '(x)'(x0)�S[','; t] ,

with �S['1,'2; t] given in terms of the kernels Aj and B as in (3.39). Our focus here is in particular

on the � and g̃ dependent parts of the density matrix, since Appendix A.3 verifies that the above

functional integral correctly reproduces the free-field Wightman function inasmuch as it shows that in

the limit � = g̃ = 0 eq. (3.68) reproduces the usual expression

hvac|�(t,x)�(t,x0) |vaci =
1

4⇡2|x � x0|2 . (3.69)

Eq. (3.68) shows that only the diagonal part of the reduced density matrix is required to compute

the equal-time Wightman function. Explicitly, this is given by

�S[','; t] = N (t) exp

✓
� 1

2

Z
d3x

Z
d3x0 M(x,x0; t)'(x)'(x0)

◆
, (3.70)

where

M(x,x0; t) := 2Re
h
A1(x,x0; t) + B(x,y; t)

i
, (3.71)

and we use the symmetry (3.41). Evaluating the gaussian integrals then implies

Tr+[�S(x)�S(x0)�S(t)] = N (t)

Z
D' '(x)'(x0) e�

1
2

R
d3z1

R
d3z2 M(z1,z2;t)'(z1)'(z2)

= M�1(x,x0; t) , (3.72)

where M�1(x,x0; t) is the inverse of M(x,x0; t), in the sense that
R

d3z M�1(x, z; t)M(z,x0; t) =

�3(x � x0). The components M�1(x,x0) are computed explicitly in Appendix A.2 using (3.71) and

the perturbative solutions for Aj and B given earlier. Using the result in (3.72) then gives

Tr+[�S(x)�S(x0)�S(t)] =
1

4⇡2|x � x0|2 � �

16⇡3(|x|2 � |x0|2)


1

|x0| ⇥(t � |x0|) � 1

|x| ⇥(t � |x|)
�

+
g̃2

32⇡3�|x||x0| ⇥(t � |x|) �(|x| � |x0|) . (3.73)

Specializing to the forward light cone of the switch-on of couplings — i.e. to t > |x| and t > |x0| —

the above becomes

Tr+[�S(x)�S(x0)�S(t)] ' 1

4⇡2|x � x0|2 � �

16⇡3|x| |x0|(|x| + |x0|) +
g̃2

32⇡3�|x||x0| �(|x| � |x0|) . (3.74)
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Comparison with Heisenberg picture

Expression (3.74) is to be compared with the Wightman function computed in Heisenberg picture,

whose expansion at linear order in � and g̃2 is quoted in (2.17) and whose equal-time limit is given in

(2.19), reproduced for convenience here:

W�(t,x; t,x0) ' 1

4⇡2|x � x0|2 � �

16⇡3|x||x0|(|x| + |x0|) (3.75)

� g̃2

64⇡2�2|x||x0| sinh2
h
⇡
� (|x| � |x0|)

i +
g̃2

16⇡4(|x|2 � |x0|2)2 .

Although the free and the �-dependent terms here agree with those in (3.74), the same is in general

not true for the g̃2-dependent terms. This need not be a problem since they should only be expected to

agree within the domain of validity of both, and (3.74) is derived under more restrictive assumptions.

Recall in particular that the derivation within the Schrödinger picture approximated the Nakajima-

Zwanzig equation (3.22) using a Markovian limit in which �(t�s)�(t�s,0) ' �(t)�(t,0) is used under

the integral sign. Doing this assumes both �S and � vary very slowly on the time-scale � for which

the thermal �a correlator was sharply peaked (see the discussion surrounding eq. (3.23)). This is only

valid if the UV cuto↵, ⇤, for the �-field modes satisfies �⇤⌧ 1, since only in this EFT is the field �

su�ciently slowly varying.

Within this regime the term involving the hyperbolic function has a microscopic width and so

approaches a delta function. To see this explicitly it is easier to work in momentum space, in which

case (3.75) is given by the following mode sum

W�(t,x; t,x0) ' 1

4⇡2|x � x0|

Z 1

0

dp sin(p|x � x0|) � �

16⇡3|x||x0|

Z 1

0

dp e�ip|x0| sin
⇥
p(|x| + |x0|)

⇤

+
g̃2

64⇡4|x||x0|

Z 1

0

dp p

(
cos
⇥
p(|x| + |x0|)

⇤
+

2 cos
⇥
p(|x| � |x0|)

⇤

e�p � 1

)
. (3.76)

Because p < ⇤⌧ ��1 we can expand the temperature-dependent last term using �p ⌧ 1,

g̃2

64⇡4|x||x0|

Z 1

0

dp p

⇢
cos
⇥
p(|x| + |x0|)

⇤
+


2

�p
� 1 +

�p

6
+ O(p3�3)

�
cos
⇥
p(|x| � |x0|)

⇤ �
, (3.77)

and perform the momentum integrals term-by-term, giving

g̃2

64⇡4�|x||x0|

⇢
� 1

(|x| + |x0|)2 +


2⇡

�
�(|x| � |x0|) +

1

(|x| � |x0|)2 � �

6
�00(|x| � |x0|) + . . .

��
. (3.78)

Using this in the Wightman function gives

W�(t,x; t,x0) ' 1

4⇡2|x � x0|2 � �

16⇡3|x||x0|
�
|x| + |x0|

� (3.79)

+
g̃2

32⇡3�|x||x0| �
�
|x| � |x0|

�
+

g̃2

16⇡4
�
|x|2 � |x0|2

�2 + O(�) .

Notice that the leading term in this expansion indeed matches the Schrodinger-picture calculation.

This comparison reveals more explicitly the long-wavelength domain of validity inherent in the Marko-
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vian limit,5 revealing it to depend on both an expansion in powers of g̃2 and on taking long wavelengths

compared to the thermal length scale �.

3.4 Decoherence

Earlier sections explore the behaviour of the �-field state by computing its reduced density matrix

once the hotspot fields �a are all integrated out. It was there argued that the kernel B(x,x0; t) — or

equivalently b(k,q; t) — provides a diagnostic of whether the state is pure or mixed (because pure

states seem to require B = b = 0.)

That is what makes eqs. (3.57) and (3.61) so interesting; they quantify the rate with which deco-

herence accumulates when hotspot couplings are turned on with � prepared in its vacuum state. These

equations show in particular the growth of decoherence at early times has a momentum-independent

universal rate, set by g̃2/(2⇡�). Since all momenta start to decohere with the same rate, the accumu-

lated decoherence should be dominated by the highest momenta, for which there is the most available

phase space. It is for this reason that measures of integrated decoherence – such as the purity diag-

nostic computed explicitly below – tend to diverge in the ultraviolet, at least so long as the cuto↵

remains below the characteristic hotspot temperature, as assumed for the Markovian approximation

above.

3.4.1 Purity

To pin down the decoherence process more precisely it is useful to have a practical diagnostic for state

purity. A standard choice for this is often Tr+[�2
S] since this is unity if and only if the state is pure

(in which case �2
S = �S).

This trace can be computed as a function of the state kernels Aj and B, as follows:

Tr[�2
S] =

Z
D'1

Z
D'2 h'1|�S(t) |'2i h'2|�S(t) |'1i

= N (t)2
Z

D'1

Z
D'2 exp

⇢
�1

2

Z
d3x

Z
d3y


2 Re

h
A1(x,y; t)

i⇣
'1(x)'1(y) + '2(x)'2(y)

⌘

+4 Re
h
B(x,y; t)

i
'1(x)'2(y)

��
(3.80)

= N (t)2
⇢

det


1

2⇡

✓
2 Re[A1(t)] 2 Re[B(t)]

2 Re[B(t)] 2 Re[A1(t)]

◆���1/2

.

In the last line we write quantities B(x,y) as matrices, with rows and columns labelled by position.

In this notation the matrix Re[B(t)] is symmetric, since the identity B⇤(x,y; t) = B(y,x; t) means

Re[B](x,y; t) =
B(x,y; t) + B⇤(x,y; t)

2
=

B(x,y; t) + B(y,x; t)

2
, (3.81)

a fact that has been used in writing the last line of (3.80).

This result can be further simplified using the following identity6 that applies for any two square

matrices X and Y :

det

✓
X Y

Y X

◆
= det(X � Y ) det(X + Y ) . (3.82)

5At least in the way it is derived here. A Markovian limit with a broader domain of validity might also be possible,

such as if only �S(t � s) is expanded in powers of s without also expanding �(t � s). Examples along these lines are

seen in some simpler examples involving qubits interacting with fields [28].
6To see this, take the determinant of both sides of

⇥
I I
0 I

⇤ ⇥
X Y
Y X

⇤ ⇥
I �I
0 I

⇤
=

h
X+Y 0

Y X�Y

i
.
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This leads to

Tr[�2
S] = N (t)2

⇢
det


1

⇡

⇣
Re[A1(t)] � Re[B(t)]

⌘�
det


1

⇡

⇣
Re[A1(t)] + Re[B(t)]

⌘���1/2

(3.83)

=
det
h

1
⇡

⇣
Re[A1] + B(t)

⌘i

r
det
h

1
⇡

⇣
Re[A1(t)] � Re[B(t)]

⌘i
det
h

1
⇡

⇣
Re[A1(t)] + Re[B(t)]

⌘i (3.84)

which uses

N (t)2 = det


1

⇡

⇣
Re[A1] + B(t)

⌘�
= det M(t) . (3.85)

Notice that this last relation verifies that B(x,y) = 0 implies Tr[�2
S] = 1, so B = 0 is su�cient to

ensure that �S describes a pure state.

These expressions can be made even more explicit by switching to momentum space and evaluating

them using the above perturbative solution near the free vacuum. In this case repeated use of the

identity det = exp Tr log leads to

Tr[�S(t)2] = exp

Z
d3k

⇡

|k| · 2g̃2b(k,k; t)

(2⇡)4
+ O(g̃4)

�

= exp


� g̃2t

16⇡4�

Z
d3k

|k| + O(g̃4)

�
(3.86)

= exp


� g̃2⇤2t

8⇡3�
+ O(g̃4)

�
,

revealing the divergence described above. These ultimately arise because the Markovian derivation

required ⇤ ⌧ 1/�. Presumably the same calculation would not have diverged if ⇤ could have been

taken larger than the temperature, though we have not succeeded yet in capturing this evolution in a

fuller calculation.

Notice that the purity starts out at 1 since the initial vacuum state is pure, and then drops

monotonically as time passes. A strictly perturbative calculation would only have been able to capture

the leading contribution in powers of g̃2, and so would have given

Tr[�S(t)2] ' 1 � g̃2⇤2t

8⇡3�
+ O(g̃4) (perturbative) , (3.87)

with the linear secular growth with t eventually causing the perturbative calculation to break down.

It is the deviation of Nakajima-Zwanzig equation from straight-up perturbation theory that allows the

resummation of the secularly growing terms to all orders in g̃2t into the exponential form visible in

(3.86), along the lines also seen in simpler examples (such as in [27–29, 76]). This allows us to see that

it approaches 0 for late times, corresponding to a maximally mixed state (in D-dimensional quantum

mechanics, a maximally mixed state has purity 1/D and in the present instance D ! 1).

4 Mean-field methods

One of our goals is to explore the nature of nonlocality in open systems, in hopes that this can shed

light on whether nonlocality can also arise near horizons for black holes. Nonlocality in this context

traditionally means the extent to which the e↵ective action (or Hamiltonian) is not simply the integral
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of a Hamiltonian density that depends only on fields and their derivatives at a single point (a property

normally held by Wilsonian actions as a consequence of cluster decomposition and microcausality

[78]).

Locality is a question for which the language of open quantum systems used above is less well

adapted because it frames its predictions in terms of the evolution of the reduced density matrix that is

obtained after tracing out any dependence on unmeasured sectors of the Hilbert space, as given by the

Nakajima-Zwanzig equation [51, 52]. Although entanglement and information exchange ensure this

equation naturally involves nonlocality (particularly in time), the absence of an e↵ective Hamiltonian

or action in this approach makes its lessons relatively obscure.

To help understand the issues that are at play this section sets up the mean-field approximation

for the hotspot system, since the mean-field limit provides a natural definition of an e↵ective hamilto-

nian (and e↵ective action) that can provide a good approximation to the system’s evolution in some

circumstances even for open systems [9]. Part of the purpose is to identify the kinds of nonlocality that

can emerge for the mean-field Hamiltonian, but at the same time also to identify precisely when the

mean-field description is a good approximation to the full dynamics. The hotspot provides a relatively

simple test laboratory for exploring these ideas.

4.1 Definitions

The essence of the mean-field approximation is that averages in the unmeasured (or ‘environment’)

part of the open system dominate the fluctuations in this sector, allowing an informative expansion

in powers of small deviations from the mean. There is some freedom in how to set up this expansion

when working beyond the leading order, which we first summarize before computing how things look

specifically in the hotspot example.

We use, as before, the ‘double-bracket’ notation

hhO ii := Tr�
h
⇢� O

i
where ⇢� := I+ ⌦ %� (4.1)

with %� being the thermal state appearing in (2.10) and the partial trace running only over the

environmental sector of the Hilbert space (which in the hotspot example is the sector spanned at the

initial time by the �a fields). For example, for O =
P

n An ⌦ Bn expanded in terms of a basis of

operators acting in the � and �a sectors,

hhO ii =
X

n

An Tr�
h
%� Bn

i
=
X

n

An

⌦
Bn

↵
�

. (4.2)

In particular, hhO ii is an operator that acts only in the measured sector (i.e. the � sector of the

hotspot example).

4.1.1 Mean-field evolution

For a perturbative analysis it is worth specializing to the interaction picture, for which expectation

values for observables evolve according to

A(t) := Tr
h
⇢S(t) OS

i
= Tr

h
⇢I(t)OI(t)

i
= Tr

h
⇢I(0)V ?(t)OI(t)V (t)

i
, (4.3)

where V (t) = U?
0 (t)U(t) is the interaction-picture evolution operator for the state ⇢I(t). In what

follows we drop the subscript ‘I’ for interaction-picture quantities.

For the observables that only measure the � sector the Schrödinger picture operator has the

factorized form OS = OS+ ⌦ I�. This factorization remains true in the interaction picture provided
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that the free part of the Hamiltonian does not couple the two sectors to one another. That is, if

H = H0 + Hint where H0 = H+ ⌦ I� + I+ ⌦ H�, then

U0(t) := exp
h
�iH0t

i
= U+(t) ⌦ U�(t) , (4.4)

and so in the interaction picture

O(t) := U?
0 (t) OS U0(t) = O+(t) ⌦ I� (4.5)

with O+(t) = U?
+(t) OS+ U+(t).

Now comes the main point: in the mean-field approximation the interaction-picture evolution

operator is well-approximated within the observable sector by the operator

V (t) := hhV (t) ii (4.6)

= I � i

Z t

0

d⌧ hhHint(⌧) ii +
1

2
(�i)2

Z t

0

d⌧1

Z ⌧1

0

d⌧2 hhHint(⌧1) Hint(⌧2) ii + · · · ,

where Hint(t) denotes the usual interaction-picture interaction Hamiltonian Hint(t) = U?
0 (t)HintU0(t).

Writing the full evolution operator as a mean-field part plus the rest (with the rest here called the

‘di↵use’ evolution, in analogy to optics)

V (t) =: V (t) ⌦ I� + V(t) , (4.7)

the mean-field approximation is a good one when contributions of the di↵use evolution operator, V(t)

are parametrically small.

The point of defining the mean-field evolution using V (t) (as opposed to simply averaging the

Hamiltonian, say) is that this ensures that for any observable of the form (4.5) there is no cross-

interference – to all orders in perturbation theory – between the mean field evolution and di↵use

evolution. That is, computing the expectation of O(t) using (4.7) gives

Tr
h
⇢(t) O(t)

i
= Tr

h
V (t)⇢(0)V ?(t) O(t)

i
= Tr+

h
V (t)⇢+V

?
(t) O+(t)

i
+Tr

h
V(t)⇢(0) V?(t)O(t)

i
, (4.8)

with the first trace being only over the measured (�) sector, and we assume the uncorrelated initial

conditions (2.9) and (2.10). Notice the absence of any cross terms involving both V and V, which

vanish because (4.6) and (4.7) together imply hhV(t) ii = 0.

4.1.2 Mean-field Hamiltonian

Given the mean-field evolution, the mean-field interaction Hamiltonian, H int(t), is defined as the

operator that generates V (t), or equivalently is related to V (t) by the usual iterative expression

V (t) = I � i

Z t

0

d⌧ H int(⌧) +
1

2
(�i)2

Z t

0

d⌧1

Z ⌧1

0

d⌧2 H int(⌧1) H int(⌧2) + · · · . (4.9)

Comparing this with (4.6) we read o↵

H int(t) = hhHint(t) ii � i

Z t

0

d⌧ hh �Hint(t) �Hint(⌧) ii + · · · , (4.10)

where the ellipses represent terms at least third order in �Hint and

�Hint(t) := Hint(t) � hhHint(t) ii . (4.11)
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Notice that starting at second order in �Hint the mean-field Hamiltonian need not be hermitian,

since H int(t) = H(t) + i I(t) with

H(t) = hhHint(t) ii �
i

2

Z t

0

d⌧ hh
⇥
�Hint(t) , �Hint(⌧)

⇤
ii + · · ·

and I(r) = �1

2

Z t

0

d⌧ hh
�
�Hint(t) , �Hint(⌧)

 
ii + · · · . (4.12)

The failure of unitarity for V (t) that arises in this way merely reflects the relatively artificial nature

of the mean-field/di↵use split, since ‘di↵use’ interactions with fluctuations in the environment can

deplete probability from the mean-field description.

These di↵use interactions are themselves described perturbatively by

V(t) ' �i

Z t

0

d⌧ �Hint(⌧) + · · · , (4.13)

where ellipses now represent terms second-order in Hint. (Recall that knowing V at linear order su�ces

to compute observables to second order because expressions like (4.8) depend quadratically on V.) It

is only the total evolution (with mean-field and di↵use contributions combined) that must be unitary,

and this can be expressed as a generalization of the optical theorem, relating the imaginary part of

H int to the rate of di↵use scattering [9]. This makes the relative size of the imaginary and real parts

of H int a proxy for the relative importance of di↵use and mean-field evolution.

4.1.3 Domain of validity

Broadly speaking, mean-field descriptions arise as good approximations for real systems in two common

ways, depending on whether or not hhHint ii is zero. The simplest case is when hhHint ii 6= 0, because

then perturbation theory alone can justify the mean-field approximation. This can be seen because the

leading (linear) contribution in powers of Hint is necessarily a mean-field result (because V first enters

expressions like (4.8) at second order). Neutrino interactions with matter inside the Sun or Earth

provide practical examples of this type, for which the mean-field description follows as a consequence

of the extreme feebleness of the weak interactions [79, 80].

Things are more subtle when hhHint ii = 0, however, because then the leading contribution of V (t)

to eq. (4.8) arises at the same order in �Hint as does the di↵use contribution V(t). This is typically

what happens for the interactions of photons with transparent dielectric materials, for example, and in

this case perturbation theory in �Hint itself is insu�cient for mean-field methods to dominate.7 This is

also the regime appropriate to the hotspot, and in what follows we identify possible control parameters

for mean-field methods by comparing for the hotspot the relative size of the real and imaginary parts

of H int.

4.2 Application to the hotspot

The above is made concrete by specializing to the specific hotspot interactions of the previous sections.

Consider first the case of non-negligible hotspot size, ⇠, where the underlying coupling has the form

given in (2.7):

Hint(t) =

Z

S⇠

d2x Ga �
a(t,x)�(t,x) , (4.14)

7For photons it is instead a large-N argument based on coherence that justifies mean-field methods (see e.g. [9]).
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with S⇠ the 2-sphere of radius ⇠ centred on the origin. For the purposes of the present discusion the

coupling G� �
2 can be regarded as part of the unperturbed Hamiltonian because it does not couple

the � and �a sectors to one another.

4.2.1 Nonlocal mean-field Hamiltonian

Since h�ai = 0 in the thermal bath the mean of the interaction Hamiltonian vanishes, hhHint(t) ii = 0,

and so the leading term in (4.10) is the second-order contribution, giving

H int(t) ' �i eG2

Z t

0

d⌧

Z

S⇠

d2x

Z

S⇠

d2x0 W�(t,x; ⌧,x0)�(t,x)�(⌧,x0) , (4.15)

where (as before) hh�a(t,x)�b(⌧,x0) ii = �ab W�(t,x; ⌧,x0) and eG2 := GaGb �
ab = NG2 is the coupling

after summing over environmental fields. Evaluating the correlator using (2.20) gives the explicit form

W�(t,x; ⌧,x0) =
1

8⇡�|x � x0|

⇢
coth


⇡

�
(t � ⌧ + |x � x0| � i�)

�
(4.16)

� coth


⇡

�
(t � ⌧ � |x � x0| � i�)

��
,

Expression (4.15) for the mean-field interaction Hamiltonian is explicitly nonlocal, in two di↵erent

ways. First, it is nonlocal in space because the correlator h�a(t,x)�b(t0,x0)i has support for arbitrary

pairs of points x and x0 on the localized interaction region S⇠. No interactions at all (local or nonlocal)

arise in H int(t) away from S⇠ as a consequence of the absence of �a fields anywhere in R+ away from

the interaction surface. This does not preclude the field � from acquiring nontrivial autocorrelations

away from S⇠ in response to these interactions, however, such as those seen in (2.16). The spatial

nonlocality has a relatively simple form in the limit where the times of interest are more widely

separated than the light-crossing time for the hotspot itself: |t � ⌧ | � |x � x0| � 2⇠. In this case

eq. (4.16) shows that the e↵ective interaction (4.15) becomes

H int(t) '
ig̃2

4�2

Z t

0

d⌧ �̂`=0(t, ⇠) �̂`=0(⌧, ⇠) csch2


⇡

�
(t � ⌧ � i�)

�
, (4.17)

which uses the relation (2.4) (i.e. ga = 4⇡⇠2Ga) and defines the projector onto the ` = 0 spherical

harmonic of the field �(x, t)

�̂`=0(t, ⇠) :=
1

4⇡

Z 4⇡

0

d2⌦ �(t, r = ⇠, ✓,') , (4.18)

with the integration d2⌦ being over 4⇡ solid angle. This form, local in angular-momentum space (and

so nonlocal in position space), is also seen in other applications [81].

The second source of nonlocality is in time, although this dies o↵ exponentially quickly once

⇡|t � ⌧ | � �. This nonlocality is only consistent with the approximation that led to (4.17) if � � ⇠

since otherwise it is impossible to satisfy both |t � ⌧ | <⇠ �/⇡ and |t � ⌧ | � 2⇠. It should be noticed

in this context that in the black hole analogy � = 4⇡⇠ and so choosing |t � ⌧ | � 2⇠ would also imply

|t � ⌧ | � �/⇡.

Both of these sources of nonlocality have their roots in the fluctutation of �a and so exist only in

regions where the �a’s have support. This is why all of the nonlocality mentioned above is restricted to

the world-tube swept out by the interaction surface S⇠, from the point of view of an external observer

in R+.
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The leading contribution to the di↵use evolution describing deviations from the mean-field limit

is given by (4.13), which (because hhHint ii = 0 in the present instance), becomes

V(t) ' �i

Z t

0

d⌧ Hint(⌧) = �i

Z t

0

d⌧

Z

S⇠

d2x Ga �
a(⌧,x)�(⌧,x) . (4.19)

As mentioned above, second-order contributions from this generically compete with first-order contri-

butions from (4.15) since both arise at second order in Hint.

4.2.2 The local limit

The above mean-field interaction simplifies and becomes approximately local in the special case that ⇠

and � are both microscopic scales, showing how locality ultimately re-emerges in the long-wavelength

limit. To examine this limit explicitly we use small ⇠ to integrate out the hotspot’s spatial size, leading

to the e↵ective point-like coupling given in (2.8). Using this to compute the mean-field Hamiltonian

then gives

H int(t) =
�

2
�2(t,0) � ig̃2�(t,0)

Z t

0

ds W�(s)�(t � s,0) , (4.20)

where (as before) h�a(t,0)�b(t � s,0)i = �ab W�(s), with

W�(s) := � 1

4�2
csch2


⇡

�
(s � i�)

�
. (4.21)

Two simplifications follow from the observation that W�(s) is peaked exponentially sharply around

s = 0, with width of order �/⇡. First, the upper integration limit can be taken to infinity at the expense

of errors that are ⇠ e�2⇡t/� and so are exponentially small in the regime t � �/⇡. Second, for fields

varying on scales long compared with � we can expand �(t � s,0) ' �(t,0) � s @t�(t,0) + · · · inside

the integrand to get

H int(t) =
�

2
�2(t,0) + A�2(t,0) + B �@t�(t,0) + . . . , (4.22)

where

A = �ig̃2

Z 1

0

ds W�(s) and B = ig̃2

Z 1

0

ds s W�(s) , (4.23)

and so on.

These reveal the coe�cient A to be a renormalization of the e↵ective coupling �, while the co-

e�cient B multiplies a new e↵ective interaction proportional to �@t�. This last interaction plays

no role in the physics to follow because (depending on the operator ordering) it either involves the

commutator of � with its canonical momentum (and so is a divergent contribution to an irrelevant

field-independent piece in H int) or it involves a total time derivative, @t�
2 (and so can be eliminated

using an appropriate canonical transformation).

The integrals giving the coe�cients A and B can be evaluated explicitly to give

A = �g̃2


1

4⇡2�
+

i

4⇡�

�
+ O(�) and B = ig̃2


1

4⇡2
log

✓
2⇡�

�

◆
� i

8⇡

�
+ O(�) , (4.24)

where the infinitesimal � is meant to be taken to zero. The divergences arise because W� ⇠ s�2 as

s ! 0, and so can be regarded as being ultraviolet in origin. They arise here as divergences when � ! 0,

which just means that this infinitesimal – which was introduced for other reasons – is playing double
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duty; providing here also a near-hotpsot regularization for the singular integration (which could indeed

have been regulated in other ways). To the extent that they contribute to non-redundant interactions

these divergences can be renormalized into e↵ective couplings, such as �, thereby underlining that

such self-couplings are generically always present in the e↵ective theory.

What is not simply a small change to the e↵ective description, even in the local limit, is the

generation of an imaginary part of A seen in (4.24). This cannot be absorbed into � without changing

the reality properties of �, and its appearance is a manifestation of the general probability loss away

from the mean-field sector into its ‘di↵use’ complement. Since the relative size of g̃2/� to � provides a

measure of the relative importance of the real and imaginary parts of this coupling we should also only

expect the mean-field description to be a good approximation when �� g̃2/�. The above discussion

also suggests that if the � self-coupling � at the hotspot is ultimately induced by the microscopic �–�

coupling, then its natural size is � ⇠ g̃2/⇠. If true, this would suggest the mean-field limit should

appear to work best in the regime ⇠ ⌧ �.

A more explicit expression for the real part of H int is given by

H(t) :=
1

2

h
H int(t) + H

?

int(t)
i

' �

2
�2(t,0) � ig̃2

2

Z t

0

ds
⇣
W�(s)�(t,0)�(t � s,0) � W ⇤

� (s)�(t � s,0)�(t,0)
⌘

=
�

2
�2(t,0) � ig̃2

2

Z t

0

ds Re[W�(s)]
h
�(t,0) ,�(t � s,0)

i
(4.25)

+
g̃2

2

Z t

0

ds Im[W�(s)]
n
�(t,0) ,�(t � s,0)

o

=
�

2
�2(t,0) +

g̃2

4⇡
I+

Z t

0

ds Re[W�(s)] �0(s) +
g̃2

8⇡

Z t

0

ds �0(s)
n
�(t,0) ,�(t � s,0)

o

where the last equality uses the free-field commutator, [�(t,x) ,�(t0,x)] = i�0(t�t0)I+/(2⇡), computed

in (B.12), and that the imaginary part of the free thermal Wightman function is Im[W�(t)] = �0(t)/(4⇡),

as computed in (B.27).

Integrating by parts, the above formula becomes (noting that the �(t) factors vanish for t > 0)

H(t) =
�

2
�2(t,0) +

g̃2

4⇡
I+

✓
� Re[W�(0)] �0(0) � Re[W 0

�(0)]

◆
(4.26)

� g̃2

8⇡

✓
�(0) · 2�2(t,0) + �(t,0)@t�(t,0) + @t�(t,0)�(t,0)

◆
.

For the present purposes we may drop any terms that are proportional to I+, since these do not

contribute to the dynamics because they drop out of commutators with fields. We can also (as always)

omit redundant operators like �@t� — see the logic given below equation (4.24) — and after doing so

we have

H(t) ' 1

2


�� g̃2

2⇡
�(0)

�
�2(t,0) , (4.27)

showing once more how the real part of the mean-field Hamiltonian serves to renormalize8 the self-

interaction parameter �, with

� ! �R := �� g̃2

2⇡
�(0) . (4.28)

8Note that the shift shown in (4.27) matches the shift in (4.24), when one interprets �(0) = 1/(⇡�) (which follows

from writing 1
x�i�

= 1/x + i⇡�(x).
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As usual we henceforth suppress the subscript ‘R’.

The imaginary part of Hint(t) is similarly given by

I(t) :=
1

2i

h
H int(t) � H

?

int(t)
i

= � g̃2

2

Z t

0

ds
⇣
W�(t � s)�(t,0)�(s,0) + W ⇤

� (t � s)�(s,0)�(t,0)
⌘

. (4.29)

Although this can also be written in terms of commutators and anti-commutators of �, it turns out to

be less useful to do so. After renormalizing the self-interaction parameter using (4.28) and combining

terms, the complete mean-field Hamiltonian can therefore be written as

H int(t) = H(t) + i I(t) (4.30)

=
�

2
�2(t,0) � ig̃2

2

Z t

0

ds
⇣
W�(t � s)�(t,0)�(s,0) + W ⇤

� (t � s)�(s,0)�(t,0)
⌘

.

4.3 Mean-field � correlation function

The virtue of the hotspot model is that it can be solved exactly, making a comparison with mean-field

predictions instructive about the latter’s domain of validity. This comparison is most easily made

using the h��i correlation function, since this has a known form [23] — given explicitly at late times

by (2.17) in the perturbative limit. To make this comparison we now evaluate the h��i two-point

function within the mean-field limit.

4.3.1 Mean-field contribution

Keeping in mind that the similarity transformation relating the Heisenberg and interaction pictures

is �H(t,x) = V ?(t)�(t,x) V (t) where V (t) = U�1
0 (t) U(t) (as before), the correlation function can be

written

Tr
h
�H(t,x)�H(t0,x0)⇢H

i
= Tr

h
V ?(t)�(t,x) V (t) V ?(t0)�(t0,x0) V (t0)⇢(0)

i
, (4.31)

in which we also use that the two pictures agree at the initial time, so ⇢H = ⇢(0) given by (2.9). The

mean-field result is obtained by using in this expression the approximate form

V (t) ' V (t) ⌦ I� (4.32)

with V (t) given by (4.6).

With this replacement – and using the initial conditions (2.9) and (2.10) – the mean-field corre-

lation function reduces to an in-in expectation in the observed � sector, of the form

Tr
h
�H(t,x)�H(t0,x0)⇢H

i
MF

:= Tr+


V

?
(t)�(t,x)V (t)V

?
(t0)�(t0,x0)V (t0) ⇢+

�

= hvac| V ?
(t)�(t,x)V (t)V

?
(t0)�(t0,x0)V (t0) |vaci (4.33)

where the interaction-picture state is evaluated at t = 0. Evaluating H int using (4.20), we have

V (t) ' I+ � i

Z t

0

d⌧ H int(⌧) ' I+ � i

Z t

0

d⌧
h
H(⌧) + i I(⌧)

i
, (4.34)
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where real and imaginary parts of H int(t) are given by (4.30). Inserting (4.34) into (4.33) and working

to leading nontrivial order in H int then yields the quantity to be evaluated:

Tr
h
�H(t,x)�H(t0,x0)⇢H

i
MF

' hvac|�(t,x)�(t0,x0) |vaci (4.35)

+i

Z t

0

d⌧ hvac|
h
H(⌧),�(t,x)

i
�(t0,x0) |vaci + i

Z t0

0

d⌧ hvac|�(t,x)
h
H(⌧),�(t0,x0)

i
|vaci

+

Z t

0

d⌧ hvac|
n

I(⌧),�(t,x)
o
�(t0,x0) |vaci +

Z t0

0

d⌧ hvac|�(t,x)
n

I(⌧),�(t0,x0)
o

|vaci .

4.3.2 Aside: V
?

vs V
�1

We pause the main line of development here to settle a side issue that might bother the reader at this

point. The issue is this: equation (4.35) is derived by substituting the mean-field expression (4.32)

into the general correlator definition (4.31). For the full theory unitarity ensures V ? = V �1 but the

same is not true for the mean-field limit, since we have seen V
? 6= V

�1
. So although nothing changes

if we replace V ? ! V �1 in (4.31), making the replacement (4.32) in the result instead leads to

U(t,x; t0,x0) := hvac| V �1
(t)�(t,x) V (t)V

�1
(t0)�(t0,x0) V (t0) |vaci (4.36)

which di↵ers from the right-hand side of (4.33). Using (4.36) would change (4.35) by replacing the

anticommutators {I, (·)} with commutators [I, (·)] – an important di↵erence in practice because the

commutator is much easier to evaluate (as we do for completeness in Appendix B.1).

Which is right? This is partially a matter of definition, since it hinges on how the full result

gets spit into mean-field and di↵use parts. The guiding principle in §4.1 is to make this split so that

observables like (4.8) break into a sum of mean-field and di↵use pieces, with no interference terms. The

same principle tells us to define the mean-field correlator using (4.33) rather than (4.36). Specialized

to t = t0 both equations have the same form as (4.8), and it is only for (4.33) that mean-field and

di↵use parts cleanly split, because V ? = V
?

+ V? divides linearly while V �1 does not.

4.3.3 Equal-time Limits

With the mean-field/di↵use split in mind, we next specialize the correlation function to equal times

(t = t0), so that (4.31) agrees with (4.8) with the choice O(t) = �(t,x)�(t,x0). As described above,

this ensures the equal-time correlation function nicely splits into the sum of mean-field and di↵use

parts

Tr
h
�H(t,x)�H(t,x0)⇢H

i
= Tr

h
�H(t,x)�H(t,x0)⇢H

i
MF

+ Tr
h
�H(t,x)�H(t,x0)⇢H

i
di↵

(4.37)

where we define the (equal-time) mean-field correlations as9

Tr
h
�H(t,x)�H(t,x0)⇢H

i
MF

:= hvac| V ?
(t)�(t,x)�(t,y)V (t) |vaci (4.38)

= hvac|�(t,x)�(t,x0) |vaci + i

Z t

0

d⌧ hvac|
h
H(⌧),�(t,x)�(t,x0)

i
|vaci

+

Z t

0

d⌧ hvac|
n

I(⌧),�(t,x)�(t,x0)
o

|vaci

c.f. (4.34), while the di↵use part of the correlations is

Tr
h
�H(t,x)�H(t,x0)⇢H

i
di↵

:= Tr
h
V?(t)�(t,x)�(t,y)V(t)⇢H

i
. (4.39)

9Note that this is not the same as taking t = t0 in the formula (4.34), since V (t)V
?
(t) 6= I+.
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4.3.4 Equal-time mean-field correlation

This section explicitly evaluates the equal-time mean-field correlation (4.38), ending with a final form

that reduces the mode sums to a single integration over explicit elementary functions.

The terms involving the real part H of the mean-field Hamiltonian involve commuators are simplest

and so all integrals can be evaluated explicitly. The quantity to be evaluated is

i

Z t

0

d⌧ hvac|
h
H(⌧),�(t,x)�(t,x0)

i
|vaci =

i�

2

Z t

0

d⌧ hvac|
h
�2(⌧,0),�(t,x)�(t,x0)

i
|vaci (4.40)

(which is why we could ignore terms in H(t) proportional to the I+ in (4.27)). Using the single-field

commutator h
�(⌧,0),�(t,x)

i
=

i

4⇡|x|

✓
�
⇥
⌧ � (t � |x|)

⇤
� �
⇥
⌧ � (t + |x|)

⇤◆
I+ , (4.41)

evaluated in Appendix A.3 allows this term to be written

h
�2(⌧,0),�(t,x)

i
=

i

2⇡|x|

✓
�
⇥
⌧ � (t � |x|)

⇤
� �
⇥
⌧ � (t + |x|)

⇤◆
�(⌧,0) , (4.42)

which in turn implies

h
�2(⌧,0),�(t,x)�(t,x0)

i
=
h
�2(⌧,0),�(t,x)

i
�(t,x0) + �(t,x)

h
�2(⌧,0),�(t,x0)

i

=
i

2⇡|x|

✓
�
⇥
⌧ � (t � |x|)

⇤
� �
⇥
⌧ � (t + |x|)

⇤◆
�(⌧,0)�(t,x0) (4.43)

+
i

2⇡|x0|

✓
�
⇥
⌧ � (t � |x0|)

⇤
� �
⇥
⌧ � (t + |x0|)

⇤◆
�(t,x)�(⌧,0) .

Only �-functions with singularities at the retarded times t � |x| and t � |x0| contribute in the

regime of interest, so

i

Z t

0

d⌧ hvac|
h
H(⌧),�(t,x)�(t,x0)

i
|vaci

= � �

4⇡

Z t

0

d⌧

✓
�
⇥
⌧ � (t � |x|)

⇤

|x| hvac|�(⌧,0)�(t,x0) |vaci +
�
⇥
⌧ � (t � |x0|)

⇤

|x0| hvac|�(t,x)�(⌧,0) |vaci
◆

= � �

4⇡|x| ⇥(t � |x|) hvac|�(t � |x|,0)�(t,x0) |vaci � �

4⇡|x0| ⇥(t � |x0|) hvac|�(t,x)�(t � |x0|,0) |vaci

= � �⇥(t � |x|)
16⇡3|x|

�
� (�|x| � i�)2 + |x0|2

� � �⇥(t � |x0|)
16⇡3|x0|

�
� (|x0| � i�)2 + |x|2

� (4.44)

In the limit that the transients have passed – i.e. once t� |x| > 0 and t� |x0| > 0 – this simplifies to

i

Z t

0

d⌧ hvac|
h
H(⌧),�(t,x)�(t,x0)

i
|vaci = � �

16⇡3|x||x0|
�
|x| + |x0|) (4.45)

which agrees with the �-dependent part of equal-time correlation functions computed in (2.19) and

(3.74), (evaluated using the renormalized coupling � = �R).
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The more complicated contribution involves the imaginary part of H int, in which we evalaute I

using (4.29) to get

Z t

0

d⌧ hvac|
n

I(⌧),�(t,x)�(t,x0)
o

|vaci (4.46)

= �
Z t

0

d⌧

Z ⌧

0

d⌧ 0 hvac|
⇢

g̃2
⇣
W�(⌧ � ⌧ 0)�(⌧,0)�(⌧ 0,0) + W ⇤

� (⌧ � ⌧ 0)�(⌧ 0,0)�(⌧,0)
⌘

2
,�(t,x)�(t,x0)

�
|vaci

= � g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|
n
�(⌧,0)�(⌧ 0,0),�(t,x)�(t,x0)

o
|vaci ,

where the last equality changes integration variables ⌧ $ ⌧ 0 in one of the two terms and uses the

property W ⇤
� (t) = W�(�t) of the Wightman function. The formula (4.38) therefore takes the final

form

Tr
h
�H(t,x)�H(t,x0)⇢H

i
MF

' 1

4⇡2|x � x0|2 � �

16⇡3|x||x0|
�
|x| + |x0|) (4.47)

� g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|
n
�(⌧,0)�(⌧ 0,0),�(t,x)�(t,x0)

o
|vaci

in the regime t� |x| > 0 and t� |x0| > 0 (after transients have passed from the switch-on of couplings

at t = |x| = 0).

The matrix element in this last expression is evaluated in Appendix B.2 with the result

Tr
h
�H(t,x)�H(t,x0)⇢H

i
MF

' 1

4⇡2|x � x0|2

1 � g̃2

4⇡2

✓
⇣(3)t

⇡�3
�
Z 1

0

dp p
dD�(p, �)

dp

◆�

� �

16⇡3|x||x0|
�
|x| + |x0|) � g̃2

16⇡4|x||x0|

Z 1

0

dp sin(k|x|)
Z 1

0

dk sin(k|x0|) (4.48)

⇥
⇢C�(p) + C�(k)

p + k
sin
⇥
(p + k)t

⇤
� D�(p, �) + D�(k, �)

p + k

h
1 + cos

⇥
(p + k)t

⇤i�

where the Riemann-Zeta function evaluates to ⇣(3) ' 1.202 and the functions C� and D� are given by

C� =
p

4⇡
coth

✓
�p

2

◆
and D� =

p

2⇡2
log

✓
2⇡e��

�

◆
+

p

2⇡2
Re


 (0)

✓
�i

�p

2⇡

◆�
, (4.49)

where  (0) is the digamma function defined by  (0)(z) = d
dz log�(z), and where � is (as usual) to be

taken to zero at the end (after renormalization).

Although the g̃2-independent terms in (4.48) agree with the perturbative and Markovian results

(2.19) and (3.74), those that include g̃2 do not. This di↵erence is due to the contributions of the

di↵use evolution first entering at this order, as we now show.

4.3.5 Including di↵use correlations

The above calculation omits the di↵use correlations (4.39), and to the order we work it su�ces to use

the lowest-order expression (4.13) for V:

V(t) ' �i

Z t

0

d⌧ �Hint(⌧) = �i

Z t

0

d⌧ ga �(⌧,0) ⌦ �a(⌧,0) . (4.50)
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Using this in (4.39) then gives

Tr
h
�H(t,x)�H(t,x0)⇢H

i
di↵

' g̃2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|�(⌧,0)�(t,x)�(t,x0)�(⌧ 0,0) |vaci .

(4.51)

We now show that adding (4.51) to the mean-field result (4.47) reproduces the perturbative ex-

pression for the full correlator given in (2.19). Summing these mean-field and di↵use contributions

gives the result

Tr
h
�H(t,x)�H(t,x0)⇢H

i
' 1

4⇡2|x � x0|2 � �

16⇡3|x||x0|
�
|x| + |x0|) + I�(t,x,x0) (4.52)

where the last term is given by the following combination of matrix elements

I�(t,x,x0) := � g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|
n
�(⌧,0)�(⌧ 0,0),�(t,x)�(t,x0)

o
|vaci (4.53)

+g̃2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|�(⌧,0)�(t,x)�(t,x0)�(⌧ 0,0) |vaci .

These can be usefully (but tediously) re-written as a double commutator plus a remainder,

I�(t,x,x0) = P�(t,x,x0) + Q�(t,x,x0) (4.54)

where the double commutator is

P�(t,x,x0) := �g̃2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|
h
�(⌧,0),�(t,x)

ih
�(⌧ 0,0),�(t,x0)

i
|vaci (4.55)

while the remainder becomes

Q�(t,x,x0) :=
g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac|
✓h
�(⌧,0),�(t,x)

i
�(⌧ 0,0)�(t,x0)

��(⌧,0)
h
�(⌧ 0,0),�(t,x)

i
�(t,x0) + �(t,x)

h
�(⌧,0),�(t,x0)

i
�(⌧ 0,0) (4.56)

��(t,x)�(⌧,0)
h
�(⌧ 0,0),�(t,x0)

i◆
|vaci .

These integrals evaluate (see Appendix B.3) in the regime t � |x| > 0 and t � |x0| > 0 to

P�(t,x,x0) = � g̃2

64⇡2�2|x||x0| sinh2
h
⇡
� (�|x| + |x0| � i�)

i , (4.57)

and

Q�(t,x,x0) =
g̃2

64⇡4|x||x0|


1

(|x| � |x0| + i�)2
� 1

(|x| + |x0|)2
�

. (4.58)

When we use these in (4.52) the overall correlation function is therefore

Tr
h
�H(t,x)�H(t,x0)⇢H

i
' 1

4⇡2|x � x0|2 � �

16⇡3|x||x0|
�
|x| + |x0|) (4.59)

� g̃2

64⇡2�2|x||x0| sinh2
h
⇡
� (�|x| + |x0| � i�)

i +
g̃2

16⇡4

1

(|x|2 � |x0|2)2 .

This last expressions agrees perfectly with the perturbative Heisenberg-picture result computed in

[23], once this is evaluated in the equal-time limit – see eq. (2.19) – inside the future light-cone of the

event at t = |x| = 0 where the coupling switches on.
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4.3.6 Domain of validity of mean-field methods

We see from these calculations that the mean-field correlator does not in general agree with the

Heisenberg-picture result, even if this comparison is only made at leading order in � and g̃2. The

comparison of the previous section shows that the di↵erence between the mean-field and Heisenberg-

picture answers is precisely given by the di↵use contribution that must be small for mean-field methods

to apply.

The di↵erence between mean-field result (4.48) and the corresponding Heisenberg-picture answer

(4.59) lies completely in their g̃2 dependence; the term involving the self-coupling � is identical in both

cases. Since g̃ and � both have dimensions of length, another scale must appearin the comparison of

� and g̃2, and the explicit evaluation – e.g. (4.59) – shows this scale to be either � or a combination

of |x| and |x0|.
Because our interest is typically where |x| and |x0| are much larger than � the relative size of the

�-dependent term and the largest of g̃2 corrections is set by the relative size of � and g̃2/�, suggesting

that mean-field methods provide a reliable approximation in the regime �� g̃2/�.

In summary, we see that mean-field methods can apply to the hotspot problem, but only in

some parts of parameters space such as when � � g̃2/�. Where it does apply the resulting e↵ective

Hamiltonian can be nonlocal, both in the angular directions of S⇠ and in time, due to the nonlocality

of the � correlations with which the external � field interacts.
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A Useful intermediate steps

This appendix gathers together many intermediate steps not given in the main text, including the

evaluation of several of the integrals encountered there. Our goal is to be as explicit as possible.

A.1 Kernel equations for the gaussian ansatz

This section evaluations the implications of the master equation (3.37) for the gaussian kernels in the

ansatz (3.39).

First we compute the time-derivative of the above ansatz

@�S(t,'1,'2)

@t
=


@tN (t)

N (t)
�
Z

d3x

Z
d3y

⇢
1

2
@tA1(x,y; t)'1(x)'1(y) (A.1)

+
1

2
@tA2(x,y; t)'2(x)'2(y) + @tB(x,y; t)'1(x)'2(y)

��
�S(t,'1,'2) .
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and we note the RHS of equation (3.37)

RHS of (3.37) = � i

2

Z
d3x


� �2

�'1(x)2
+
��r'1(x)

��2 +
�2

�'2(x)2
�
��r'2(x)

��2
�
�S(t,'1,'2) (A.2)

� g̃2

4⇡�

�
'1(0) � '2(0)

�2
�S(t,'1,'2) �

i�

2

�
'1(0)2 � '2(0)2

�
�S(t,'1,'2) .

We first need to compute the functional derivative

��S[t,'1,'2]

�'1(x)
=

✓
�
Z

d3y
⇥
A1(x,y; t)'1(y) + B(x,y; t)'2(y)

⇤◆
�S[t,'1,'2] (A.3)

which assumes the symmetry Aj(x,y; t) = Aj(y,x; t). From there we have

�2�S[t,'1,'2]

�'1(x)2
=

 
�A1(x,x; t) +

⇢Z
d3y

⇥
A1(x,y; t)'1(y) + B(x,y; t)'2(y)

⇤�2
!
�S[t,'1,'2]

=

✓
� A1(x,x; t) +

Z
d3y

Z
d3z

⇥
A1(x,y; t)'1(y) + B(x,y; t)'2(y)

⇤
(A.4)

⇥
⇥
A1(x, z; t)'1(z) + B(x, z; t)'2(z)

⇤◆
�S[t,'1,'2] .

Since B is not symmetric, the other '2-derivative di↵ers slightly from (A.4) (note the variable being

integrated in B here) where

�2�S[t,'1,'2]

�'2(x)2
=

✓
� A2(x,x; t) +

Z
d3y

Z
d3z

⇥
A2(x,y; t)'2(y) + B(y,x; t)'1(y)

⇤
(A.5)

⇥
⇥
A2(x, z; t)'2(z) + B(z,x; t)'1(z)

⇤◆
�S[t,'1,'2] ,

which implies that

RHS of (3.37)

�S(t,'1,'2)
= � i

2

Z
d3x


A1(x,x; t) � A2(x,x; t) + |r'1(x)|2 � |r'2(x)|2

�
(A.6)

+

Z
d3x

Z
d3y

Z
d3z

✓
i
⇥
A1(x,y;t)'1(y)+B(x,y;t)'2(y)

⇤⇥
A1(x,z;t)'1(z)+B(x,z;t)'2(z)

⇤
2

� i
⇥
A2(x,y;t)'2(y)+B(y,x;t)'1(y)

⇤⇥
A2(x,z;t)'2(z)+B(z,x;t)'1(z)

⇤
2

◆

+

✓
� g̃2

4⇡�
� i�

2

◆
'1(0)2 +

g̃2

2⇡�
'1(0)'2(0) +

✓
� g̃2

4⇡�
+

i�

2

◆
'2(0)2 .

We next need to collect the terms that are proportional to the various possible powers of '1(x) and

'2(x) and so on (note that we re-label some integration variables here):

RHS of (3.37)

�S(t,'1,'2)
= �

✓
g̃2

4⇡�
+

i�

2

◆
'1(0)2 +

g̃2

2⇡�
'1(0)'2(0) �

✓
g̃2

4⇡�
� i�

2

◆
'2(0)2 (A.7)

� i

2

Z
d3x


A1(x,x; t) � A2(x,x; t)

�
� i

2

Z
d3x

✓
|r'1(x)|2 � |r'2(x)|2

◆

+
i

2

Z
d3x

Z
d3y

Z
d3z

⇥
A1(z,x; t)A1(z,y; t) � B(x, z; t)B(y, z; t)

⇤
'1(x)'1(y)

+i

Z
d3x

Z
d3y

Z
d3z

⇥
A1(z,x; t)B(z,y; t) � B(x, z; t)A2(z,y; t)

⇤
'1(x)'2(y)

+
i

2

Z
d3x

Z
d3y

Z
d3z

⇥
� A2(x, z; t)A2(x, z; t) + B(z,x; t)B(z,y; t)

⇤
'2(x)'2(y)
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Note that the above is equal to the quantity (with the time-derivative we computed above)

LHS of (3.37)

�S(t,'1,'2)
=
@tN (t)

N (t)
+

Z
d3x

Z
d3y

⇢
� 1

2
@tA1(x,y; t)'1(x)'1(y) (A.8)

�1

2
@tA2(x,y; t)'2(x)'2(y) � @tB(x,y; t)'1(x)'2(y)

�

and so we need to get the RHS into this form. We then use integration by parts (twice) to write
Z

d3x |r'1(x)|2 = �
Z

d3x '1(x)r2
x'1(x)

= �
Z

d3x

Z
d3y �3(x � y)'1(y)r2

x'1(x) (A.9)

= �
Z

d3x

Z
d3y '1(x)'1(y) r2

x�
3(x � y)

which gives

RHS of (3.37)

�S(t,'1,'2)
= � i

2

Z
d3x


A1(x,x; t) � A2(x,x; t)

�
(A.10)

+

Z
d3x

Z
d3y '1(x)'1(y)

⇢
i

2
r2

x�
3(x � y) �

✓
g̃2

4⇡�
+

i�

2

◆
�3(x)�3(y)

+
i

2

Z
d3z

⇥
A1(z,x; t)A1(z,y; t) � B(x, z; t)B(y, z; t)

⇤�

+

Z
d3x

Z
d3y '2(x)'2(y)

⇢
� i

2
r2

x�
3(x � y) �

✓
g̃2

4⇡�
� i�

2

◆
�3(x)�3(y)

+
i

2

Z
d3z

⇥
� A2(x, z; t)A2(y, z; t) + B(z,x; t)B(z,y; t)

⇤�

+

Z
d3x

Z
d3y '1(x)'2(y)


g̃2

2⇡�
�3(x)�3(y) + i

Z
d3z

⇥
A1(z,x; t)B(z,y; t) � B(x, z; t)A2(z,y; t)

⇤�
.

Setting LHS = RHS gives four equations. The constant piece gives

1

N (t)

@N
@t

= � i

2

Z
d3x


A1(x,x; t) � A2(x,x; t)

�
, (A.11)

while coe�cient of '1(x)'1(y) gives

@A1(x,y; t)

@t
= �ir2

x�
3(x � y) +

✓
g̃2

2⇡�
+ i�

◆
�3(x)�3(y) (A.12)

+

Z
d3z

⇥
� iA1(z,x; t)A1(z,y; t) + iB(x, z; t)B(y, z; t)

⇤
,

the coe�cient of '2(x)'2(y) gives (the first term in the integral has used the symmetry of A2)

@A2(x,y; t)

@t
= ir2

x�
3(x � y) +

✓
g̃2

2⇡�
� i�

◆
�3(x)�3(y) (A.13)

+

Z
d3z

⇥
iA2(x, z; t)A2(y, z; t) � iB(z,x; t)B(z,y; t)

⇤
,

and the coe�cient of '1(x)'2(y) gives

@B(x,y; t)

@t
= � g̃2

2⇡�
�3(x)�3(y) +

Z
d3z

⇥
� iA1(z,x; t)B(z,y; t) + iB(x, z; t)A2(z,y; t)

⇤
. (A.14)
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A.2 The Calculation of M�1(x,x0; t)

We here compute the matrix M�1(x,x0; t) appearing in the correlator (3.72). We do so by going to

momentum space and perturbing in the interactions. Defining the momentum-space version of M
using the expression

M(x,x0; t) :=

Z
d3k

(2⇡)3

Z
d3q

(2⇡)3
e+ik·xM(k,q; t)e�iq·x0

(A.15)

for which the inverse-matrix conditionZ
d3z M�1(x, z; t)M(z,x0; t) = �3(x � x0) (A.16)

takes the form Z
d3p

(2⇡)3
M�1(k,p; t)M(p,q; t) = (2⇡)3�3(k � q) , (A.17)

where M�1(k,q; t) denotes the momentum-space components of M�1(x,x0; t).
To solve for M�1(k,q; t) we perturb about the free-vacuum solution, writing

M(p,q; t) = 2(2⇡)3|p|�3(p � q) + m(p,q; t) (A.18)

M�1(k,q; t) =
(2⇡)3

2|k| �
3(k � q) + i(k,q; t) ,

where in both lines the first term is just the free-field result — see Appendix A.3 — and the second

term is the perturbation that is to be solved to linear order in g̃2 and �. Inserting these into the

relation (A.17) gives at linear order

1

2|k| · m(k,q; t) + i(k,q; t) · 2|q| ' 0 (A.19)

and so i(k,q; t) ' �m(k,q; t)/(4 |k| |q|). Using expression (3.71) giving M in terms of Aj and B,

together with the solutions (3.59) through (3.61), then implies

i(k,q; t) = � 1

2|k| |q|Re

"✓
�� ig̃2

2⇡�

◆
1 � e�i

�
|k|+|q|

�
t

|k| + |q|

#
� 1

2|k| |q|Re

"
ig̃2

2⇡�
· 1 � e�i

�
|k|�|q|

�
t

|k| � |q|

#
. (A.20)

The desired position-space inverse is now found by Fourier transforming:

M�1(x,x0; t) =

Z
d3k

(2⇡)3

Z
d3q

(2⇡)3
e+ik·xM�1(k,q; t) e�iq·x0

=
1

4⇡2|x � x0|2 +

Z
d3k

(2⇡)3

Z
d3q

(2⇡)3
e+ik·x i(k,q; t) e�iq·x0

(A.21)

where the first term is the free result computed in §A.3. The angular integrals are simple because

i(k,q; t) depends only on |k| and |q|, and so
Z

d3k

(2⇡)3

Z
d3q

(2⇡)3
e+ik·x i(k,q; t) e�iq·x0

=
1

4⇡4|x||x0|

Z 1

0

dk

Z 1

0

dq

✓
� 1

2kq
Re

✓
�� ig̃2

2⇡�

◆
1 � e�i(k+q)t

k + q

�

� 1

2kq
Re


ig̃2

2⇡�
· 1 � e�i(k�q)t

k � q

�◆
k sin(k|x|)q sin(q|x0|)

= � �

8⇡4|x||x0| Re
⇥
I1(x,x0, t)

⇤
+

g̃2

16⇡5�|x||x0| I2(x,x0, t) (A.22)
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where we define the integrals

I1(x,x0, t) :=

Z 1

0

dk

Z 1

0

dq
1 � e�i(k+q)t

k + q
sin(k|x|) sin(q|x0|) (A.23)

and

I2(x,x0, t) :=

Z 1

0

dk

Z 1

0

dq

✓
� sin

⇥
(k + q)t

⇤

k + q
+

sin
⇥
(k � q)t

⇤

k � q

◆
sin(k|x|) sin(q|x0|) . (A.24)

To compute I1 we use the Schwinger parametrization trick, which uses the identity

1

p
=

Z 1

0

d⇣ e�p⇣ , (A.25)

for any parameter p > 0 to rewrite the factor of (k + q)�1 in the integrand. This gives

I1(x,x0, t) =

Z 1

0

d⇣

Z 1

0

dk

Z 1

0

dq (1 � e�i(k+q)t) sin(k|x|) sin(q|x0|)e�(k+q)⇣

=

Z 1

0

d⇣

⇢Z 1

0

dk e�k⇣ sin(k|x|)
�⇢Z 1

0

dq e�q⇣ sin(q|x0|)
�

(A.26)

�
Z 1

0

d⇣

⇢Z 1

0

dk e�k(⇣+it) sin(|x|k)

�⇢Z 1

0

dq e�q(⇣+it) sin(|x0|q)
�

=

Z 1

0

d⇣

⇢ |x|
⇣2 + |x|2

�⇢ |x0|
⇣2 + |x0|2

�
�
⇢ |x|

(⇣ + it)2 + |x|2
�⇢ |x0|

(⇣ + it)2 + |x0|2
��

leaving an elementary integral over ⇣. Performing this integral we find that I1 evaluates to

I1(x,x0, t) =
|x||x0|

|x|2 � |x0|2
✓

i

|x0| log

����
1 + t/|x0|
1 � t/|x0|

����+
⇡⇥(t � |x0|)

2|x0| � i

|x| log

����
1 + t/|x|
1 � t/|x|

�����
⇡⇥(t � |x|)

2|x|

◆
. (A.27)

Only the real part of this expression

Re
⇥
I1(x,x0, t)

⇤
=

|x||x0|
|x|2 � |x0|2


⇡

2|x0| ⇥(t � |x0|) � ⇡

2|x| ⇥(t � |x|)
�

(A.28)

appears in (A.22).

To compute I2 it proves easier to first di↵erentiate with respect to t, leading to

@I2(x,x0, t)
@t

= 2

Z 1

0

dk

Z 1

0

dq sin(tk) sin(tq) sin(|x|k) sin(|x0|q)

=
1

2

Z 1

0

dk

✓
cos
⇥
(t � |x|)k

⇤
� cos

⇥
(t + |x|)k

⇤◆
(A.29)

⇥
Z 1

0

dq

✓
cos
⇥
(t � |x0|)q

⇤
� cos

⇥
(t + |x0|)q

⇤◆

=
⇡2

2

✓
�(t � |x|) � �(t + |x|)

◆✓
�(t � |x0|) � �(t + |x0|)

◆

where the last line uses the real part of the Fourier transform of a Heaviside step function. Since

�(t � |x|) = �(t � |x0|) = 0 for t > 0, |x| > 0 and |x0| > 0 this simplifies to

@I2(x,x0, t)
@t

=
⇡2

2
�(t � |x|)�(t � |x0|) =

⇡2

2
�(t � |x|)�(|x| � |x0|) . (A.30)
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Integrating with respect to t with the initial condition I2(0,x,x0) = 0 (from the definition (A.24))

then gives

I2(x,x0, t) =
⇡2

2
⇥(t � |x|)�(|x| � |x0|) . (A.31)

Putting everything together gives

M�1(x,x0; t) =
1

4⇡2|x � x0|2 � �

8⇡4|x||x0| Re
⇥
I1(x,x0, t)

⇤
+

g̃2

16⇡5�|x||x0| I2(x,x0, t)

=
1

4⇡2|x � x0|2 � �

16⇡3(|x|2 � |x0|2)


1

|x0| ⇥(t � |x0|) � 1

|x| ⇥(t � |x|)
�

(A.32)

+
g̃2

32⇡3�|x||x0| ⇥(t � |x|)�(|x| � |x0|) .

This is the expression quoted in (3.73) of the main text.

A.3 Schrödinger-picture equal-time free-field correlator

In this Appendix we compute the h��i correlator for free fields at equal times t = t0, as a check on

Schrödinger picture methods. Using the field basis and the vacuum wave-functional the equal-time

Wightman function is given by the functional integral

hvac|�S(x)�S(x0) |vaci =

Z
D['(·)] h'(·)|�S(x)�S(x0) |vaci hvac|'(·)i

=

Z
D['(·)] '(x)'(x0)h'(·)|vacihvac|'i (A.33)

= N0

Z
D' '(x)'(x0) e�

1
2

R
d3x

R
d3y 2E(x�y)'(x)'(y)

= [2E ]�1(x � x0)

where we use the free Gaussian solution in the second-last line, where E(x� x0) =
R

d3k
(2⇡)3 |k|ei(x�x0)·k

given in (3.33). In order to perform the Gaussian integral we use the standard gaussian results

Z 1

�1

Y
d⇠r ⇠r1

⇠r2
e�

1
2
P

r,s Krs⇠r⇠s = det
⇣

K

2⇡

⌘�1/2

(K�1)r1r2
(A.34)

Z 1

�1

Y
d⇠r e�

1
2
P

r,s Krs⇠r⇠s = det
⇣

K

2⇡

⌘�1/2

(A.35)

The latter formula determines N0 =
q

det( 2E
2⇡ ). Now we need to invert the “matrix” 2E here, where

the matrix [2E ]�1 is defined by

Z
d3z [2E ]�1(x � z)2E(z � x0) = �3(x � x0) , (A.36)

We solve the above in Fourier space, by writing [2E ]�1(x�x0) =
R

d3k
(2⇡)3 Ikei(x�x0)·k for some function

Ik in momentum space which we solve for here. The above equation then implies

2|k|Ik = 1 , (A.37)
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which means that Ik = (2|k|)�1. We Fourier transform this to position space to find that

[2E ]�1(x � x0) =

Z
d3k

(2⇡)3


1

2|k|

�
ei(x�x0)·k =

1

4⇡2|x � x0|

Z 1

0

dk sin(k|x � x0|) (A.38)

= � 1

4⇡2|x � x0| · Im

Z 1

�1
dk ⇥(k)e�i|x�x0|k

�

From here we use Weinberg’s formula (6.2.15) in [78] for the Fourier transform of a Heaviside step

function, where (in the limit � ! 0+)

⇥(x) = �i

Z 1

�1

dy

2⇡
· e+iyx

y � i�
()

Z 1

�1
dx ⇥(x)e�iyx =

�i

y � i�
(A.39)

which gives us

[2E ]�1(x � x0) = � 1

4⇡2|x � x0|

✓
� 1

|x � x0|

◆
, (A.40)

which tells us that the free correlation function is

hvac|�S(x)�S(x0) |vaci = +
1

4⇡2|x � x0|2 , (A.41)

which is the correct answer for the Wightman function (for equal times t = t0).

B Mean-field details

This appendix collects various intermediate steps encountered in the mean-field calculations of §4.

B.1 Correlators using V
�1

We first compute the mean-field correlator of eq. (4.36) that would have been obtained if the transition

to mean field methods had been done using V �1 rather than V ? in (4.31).

Starting with (4.36) leads to the following expression at leading nontrivial order in H int:

U(t,x; t0,x0) ' hvac|�(t,x)�(t0,x0) |vaci + i

Z t

0

d⌧ hvac|
h
H int(⌧),�(t,x)

i
�(t0,x0) |vaci

+i

Z t0

0

d⌧ hvac|�(t,x)
h
H int(⌧),�(t0,x0)

i
|vaci (B.1)

where only terms linear in H int are kept. The first term in (B.1) is simply the free Wightman function

hvac|�(t,x)�(t0,x0) |vaci =
1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤ , (B.2)

while the commutator in the subleading terms is evaluated in Appendix §B.1.2, giving

h
H int(⌧),�(t,x)

i
=

i�

4⇡|x|


�
�
⌧ � (t � |x|)

�
� �
�
⌧ � (t + |x|)

��
�(⌧,0)

+
g̃2

4⇡|x|


⇥(t � |x|)⇥

�
⌧ � [t � |x|]

�
W�

�
⌧ � [t � |x|]

�
(B.3)

�⇥
�
⌧ � [t + x]

�
W�

�
⌧ � [t + x]

��
�(⌧,0)

+
g̃2

4⇡|x|


�
�
⌧ � (t � |x|)

�
� �
�
⌧ � (t + |x|)

�� Z ⌧

0

d⌧ 0 W�(⌧ 0)�(⌧ � ⌧ 0,0) .
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Using this in (B.1) we get, after some manipulations,

i

Z t

0

d⌧ hvac|
h
H int(⌧),�(t,x)

i
�(s,x0) |vaci = ��⇥(t � |x|)

4⇡|x| hvac|�(t � |x|,0)�(s,x0) |vaci

+
ig̃2⇥(t � |x|)

4⇡|x|

Z |x|

0

d⌧ 0 W�

�
⌧ 0
�
hvac|�(⌧ 0 + t � |x|,0)�(s,x0) |vaci (B.4)

+
ig̃2⇥(t � |x|)

4⇡|x|

Z t�|x|

0

d⌧ 0 W�(⌧ 0) hvac|�(t � |x| � ⌧ 0,0)�(s,x0) |vaci

and so the mean-field correlation function becomes

U(t,x; t0,x0) ' 1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤

��⇥(t � |x|)
4⇡|x| hvac|�(t � |x|,0)�(t0,x0) |vaci � �⇥(t0 � |x0|)

4⇡|x0| hvac|�(t,x)�(t0 � |x0|,0) |vaci

+
ig̃2⇥(t � |x|)

4⇡|x|

Z |x|

0

d⌧ W�(⌧) hvac|�(t � |x| + ⌧,0)�(t0,x0) |vaci

+
ig̃2⇥(t � |x|)

4⇡|x|

Z t�|x|

0

d⌧ W�(⌧) hvac|�(t � |x| � ⌧,0)�(t0,x0) |vaci (B.5)

+
ig̃2⇥(t0 � |x0|)

4⇡|x0|

Z |x0|

0

d⌧ W�(⌧) hvac|�(t,x)�(t0 � |x0| + ⌧,0) |vaci

+
ig̃2⇥(t0 � |x0|)

4⇡|x0|

Z t0�|x0|

0

d⌧ W�(⌧) hvac|�(t,x)�(t0 � |x0| � ⌧,0) |vaci .

This expression simplifies further in the regime where all of t� |x|, |x|, t0 � |x0| and |x0| are much

greater than �, because in this case the narrowness of the Wightman function — W�(⌧) / e�2⇡⌧/�

for ⌧ � � — makes it a good approximation to approximate the upper integration limits by 1 (with

only exponentially small error). Under these assumptions we also know ⇥(t � |x|) = ⇥(t0 � |x0|) = 1

and so get

U(t,x; t0,x0) ' 1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤

� �

4⇡

 hvac|�(t � |x|,0)�(t0,x0) |vaci
|x| +

hvac|�(t,x)�(t0 � |x0|,0) |vaci
|x0|

�
(B.6)

+
ig̃2

4⇡|x|

Z 1

0

d⌧ W�(⌧)


hvac|�(t � |x| + ⌧,0)�(t0,x0) |vaci + hvac|�(t � |x| � ⌧,0)�(t0,x0) |vaci

�

+
ig̃2

4⇡|x0|

Z 1

0

d⌧ W�(⌧)


hvac|�(t,x)�(t0 � |x0| + ⌧,0) |vaci + hvac|�(t,x)�(t0 � |x0| � ⌧,0) |vaci

�
.

The integrals involving W�(⌧) above are computed in Appendix B.1.3. These contain a divergence

from the ⌧ ! 0 limit, but this has the same structure as does the second line of (B.6) so the divergence

can be absorbed into �. Once this is done, and using the explicit form (B.2) for the free Wightman
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function, we find

U(t,x; t0,x0) ' 1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤

+
�

32⇡3|x||x0|


� 1

t � t0 + |x| + |x0| � i�
+

1

t � t0 � |x| � |x0| � i�

�
(B.7)

� g̃2

128⇡2�2|x||x0| sinh2
h
⇡
� (t � t0 + |x| + |x0| � i�)

i � ig̃2

64⇡4�2|x||x0| Im  (1)
h
1 +

i(t � t0 + |x| + |x0|)
�

i

+
g̃2

128⇡2�2|x||x0| sinh2
h
⇡
� (t � t0 � |x| � |x0| � i�)

i +
ig̃2

64⇡4�2|x||x0| Im  (1)
h
1 +

i(t � t0 � |x| � |x0|)
�

i
,

where  (1)(z) := (d/dz)2 ln�(z) is the polygamma function of order 1. Recall that the derivation of

(B.7) assumes |x| , t � |x| , |x0| , t0 � |x0| � �.

The equal-time limit of eq. (B.7) is given by

U(t,x; t,x0) ' 1

4⇡2|x � x0|2 �
✓
�� ig̃2

2⇡�

◆
1

16⇡3|x||x0|
�
|x| + |x0|

� (B.8)

where the assumption |x|+|x0| � � used in the above derivation allows use of the large-z approximation

Im[ (1)(1 + iz)] ' �1/z. Notice that the g̃2 term in this expression does not satisfy the hermiticity

condition U⇤(t,x; t,x0) = U(t,x0; t,x) because the density matrix is evaluated at t = 0 and the g̃2

contributions ensure the e↵ective mean-field hamiltonian that evolves to general t is also not hermitian.

We next evaluate the commutators required in the above, starting with the unequal-time commu-

tator of the field itself.

B.1.1 Field commutators at unequal times

For later use in Appendix B.1.2, we here compute the commutator [�(t,x),�(t0,y)] of interaction-

picture fields at unequal times. This can be done using the standard field expansion in terms of

creation and annihilation operators, but it is simpler to obtain it directly from the Wightman function

given in (B.2). This can be done because the commutator of two free fields is a c-number, and so is

equal to its expectation value in the vacuum, giving

h
�(t,x),�(t0,x0)

i
=
⇣
hvac|�(t,x)�(t0,x0) |vaci � hvac|�(t0,x0)�(t,x) |vaci

⌘

=
1

4⇡2


1

�(t � t0 � i�)2 + |x � x0|2 � 1

�(t � t0 + i�)2 + |x � x0|2
�

(B.9)

=
1

8⇡2|x � x0|


1

(t � t0) + |x � x0| � i�
� 1

(t � t0) � |x � x0| � i�

� 1

(t � t0) + |x � x0| + i�
+

1

(t � t0) � |x � x0| + i�

�

where a factor of the unit operator, I+, is implicit everywhere on the right-hand side.

Using the Sochocki-Plemelj identity (z � i0+)�1 � (z + i0+)�1 = 2i⇡�(z) for infinitesimal and

positive 0+, the above becomes

h
�(t,x),�(t0,x0)

i
=

i

4⇡|x � x0|


�
�
t � t0 + |x � x0|

�
� �
�
t � t0 � |x � x0|

��
I+ , (B.10)
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which reduces when t = t0 to the standard equal-time commutator when x 6= x0:
h
�(t,x),�(t,x0)

i
= 0 . (B.11)

Specializing (B.9) to the commutator for two fields at di↵erent times but with x = x0, instead gives

h
�(t,x),�(t0,x)

i
=

1

4⇡2


� 1

(t � t0 � i�)2
+

1

(t � t0 + i�)2

�
I+ =

i

2⇡
�0(t � t0) I+ (B.12)

where the limit � ! 0 is taken in the last equality and �0(x) denotes the derivative of the Dirac delta

function with respect to its argument.

B.1.2 The Commutator
⇥
H int(⌧),�(t,x)

⇤

The next intermediate step required is the commutator with � of the local mean-field Hamiltonian

H int(t) defined in (4.20):

h
H int(⌧),�(t,x)

i
=

1

2
�
h
�2(⌧,0),�(t,x)

i
� ig̃2

Z ⌧

0

ds W�(⌧ 0)
h
�(⌧,0)�(⌧ � s,0),�(t,x)

i
. (B.13)

Using h
�2(⌧,0),�(t,x)

i
= ��(⌧,0)

h
�(t,x),�(⌧,0)

i
�
h
�(t,x),�(⌧,0)

i
�(⌧,0) (B.14)

with the result (B.10) we have

h
�2(⌧,0),�(t,x)

i
=

i

2⇡|x|


�
�
⌧ � (t � |x|)

�
� �
�
⌧ � (t + |x|)

��
�(⌧,0) . (B.15)

Similarly

h
�(⌧,0)�(⌧ � s,0),�(t,x)

i
=

i

4⇡|x|


�
�
s � [⌧ � (t � |x|)]

�
� �
�
s � [⌧ � (t + |x|)]

��
�(⌧,0) (B.16)

+
i

4⇡|x|


�
�
⌧ � (t � |x|)

�
� �
�
⌧ � (t + |x|)

��
�(⌧ � s,0)

and so

⇥
H int(⌧),�(t,x)

⇤
=

i�

4⇡|x|


�
�
⌧ � (t � |x|)

�
� �
�
⌧ � (t + |x|)

��
�(⌧,0) (B.17)

+
g̃2

4⇡|x| �(⌧,0)

Z ⌧

0

ds W�(s)


�
�
s � [⌧ � (t � |x|)]

�
� �
�
s � [⌧ � (t + |x|)]

��

+
g̃2

4⇡|x|


�
�
⌧ � (t � |x|)

�
� �
�
⌧ � (t + |x|)

�� Z ⌧

0

ds W�(s)�(⌧ � s,0) .

Performing the s-integrals using the delta functions gives
Z ⌧

0

ds W�(s) �
�
s � [⌧ � (t � |x|)]

�
= ⇥(t � |x|)⇥

�
⌧ � [t � |x|]

�
W�

�
⌧ � [t � |x|]

�
, (B.18)

where the step functions express the conditions under which the delta function has support within the

integration range: 0 < ⌧ � (t � |x|) < ⌧ , which in turn implies ⌧ > t � |x| > 0. Similarly
Z ⌧

0

ds W�(s)�
�
s � [⌧ � (t + |x|)]

�
= ⇥

�
⌧ � [t + x]

�
W�

�
⌧ � [t + x]

�
. (B.19)

Putting the above terms together gives the result (B.3).
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B.1.3 The W� Integrals

This section computes the integrals

J1(t,x, t0,x0) :=

Z 1

0

d⌧ W�(⌧)


hvac|�(t�|x|+⌧,0)�(t0,x0) |vaci+hvac|�(t�|x|�⌧,0)�(t,x0) |vaci

�
,

(B.20)

and

J2(t,x, t0,x0) :=

Z 1

0

d⌧ W�(⌧)


hvac|�(t,x)�(t0�|x0|+⌧,0) |vaci+hvac|�(t,x)�(t0�|x0|�⌧,0) |vaci

�
,

(B.21)

which appear in eq. (B.6) above. Writing the free Wightman function (B.2) as a mode sum yields

hvac|�(t,x)�(t0,x0) |vaci =
1

4⇡2
⇥
� (t � t0 � i�)2 + |x � x0|2

⇤

=
1

8⇡2|x � x0|


1

t � t0 + |x � x0| � i�
� 1

t � t0 � |x � x0| � i�

�
(B.22)

=
i

8⇡2|x � x0|

Z 1

0

dp


e�ip(t�t0+|x�x0|�i�) �

Z 1

0

dp e�ip(t�t0�|x�x0|�i�)

�

=
1

4⇡2|x � x0|

Z 1

0

dp e�ip(t�t0�i�) sin
�
p|x � x0|

�
,

which allows (B.20) to be written as

J1(t,x, t,x0) =

Z 1

0

d⌧
W�(⌧)

4⇡2|x0|

Z 1

0

dp


e�ip(t�|x|+⌧�t0�i�) sin(p|x0|) + e�ip(t�|x|�⌧�t0�i�) sin(p|x0|)

�

=
1

4⇡2|x0|

Z 1

0

dp e�ip(t�|x|�t0�i�) sin(p|x0|)

C�(p) + iK�

�
(B.23)

with the definitions

C�(p) := 2

Z 1

0

d⌧ Re [W�(⌧)] cos(p⌧) and K� := 2

Z 1

0

d⌧ Im [W�(⌧)] cos(p⌧) . (B.24)

The first integral C� was computed in [27, 29] and gives

C�(p) =
p

4⇡
coth

✓
�p

2

◆
. (B.25)

Meanwhile to compute K� (which turns out to be divergent as well as p-independent), note that the

imaginary part of W� actually vanishes if ⌧ is fixed but nonzero as � ! 0, since it can be written as

Im [W�(⌧)] =
i

8�2

⇢
1

sinh2
h
⇡
� (⌧ � i�)

i � 1

sinh2
h
⇡
� (⌧ + i�)

i
�

(B.26)

and so the complete contribution comes only from the regime near ⌧ ! 0, for which

Im [W�(⌧)] ' i

8⇡2


1

(⌧ � i�)2
� 1

(⌧ + i�)2

�
! 1

4⇡
�0(⌧) , (B.27)

as � ! 0, which follows from the the Sochocki-Plemelj identity. The required integral then is

K� = 2

Z 1

0

d⌧
�0(⌧)
4⇡

cos(p⌧) = � 1

2⇡
�(0) (B.28)
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which displays a divergence that ultimately gets absorbed into the coupling parameter �.

Combining the above into (B.23) yields

J1(t,x, t0,x0) =
1

4⇡2|x0|

Z 1

0

dp e�ip(t�|x|�t0�i�) sin(p|x0|)


p

4⇡
coth

✓
�p

2

◆
� i

2⇡
�(0)

�
(B.29)

The divergent term simplifies using (B.22), leading to

J1(t,x, t0,x0) = � i

2⇡
�(0) hvac|�(t � |x|,0)�(t,x0) |vaci (B.30)

� i

32⇡3|x0|

Z 1

0

dp p coth

✓
�p

2

◆
e�ip(t�t0�|x|+|x0|�i�) � e�ip(t�t0�|x|�|x0|�i�)

�

which can be integrated using
Z 1

0

dp p coth

✓
�p

2

◆
e�ip⌧�i� = � ⇡2

�2 sinh2
h
⇡
� (⌧ � i�)

i � 2i

�2
Im


 (1)

✓
1 +

i⌧

�

◆�
, (B.31)

where  (1)(z) := d
dz log

�
�(z)

�
is the Polygamma function of order 1 (for a derivation of this integral

see Appendix B.1.4). The final result found by inserting (B.31) into (B.30) is then

J1(t,x, t0,x0) = � i

2⇡
�(0) hvac|�(t � |x|,0)�(t0,x0) |vaci (B.32)

+
i⇡2

32⇡3�2|x0| sinh2
h
⇡
� (t � t0 � |x| + |x0| � i�)

i � 1

16⇡3�2|x0| Im


 (1)

✓
1 +

i(t � t0 � |x| + |x0|)
�

◆�

� i⇡2

32⇡3�2|x0| sinh2
h
⇡
� (t � t0 � |x| � |x0| � i�)

i +
1

16⇡3�2|x0| Im


 (1)

✓
1 +

i(t � t0 � |x| � |x0|)
�

◆�

and in an almost identical calculation the integral (B.21) evaluates to

J2(t,x, t0,x0) = � i

2⇡
�(0) hvac|�(t,x)�(t0 � |x0|,0) |vaci (B.33)

+
i⇡2

32⇡3�2|x| sinh2
h
⇡
� (t � t0 + |x| + |x0| � i�)

i � 1

16⇡3�2|x| Im


 (1)

✓
1 +

i(t � t0 + |x| + |x0|)
�

◆�

� i⇡2

32⇡3�2|x| sinh2
h
⇡
� (t � t0 � |x| + |x0| � i�)

i +
1

16⇡3�2|x| Im


 (1)

✓
1 +

i(t � t0 � |x| + |x0|)
�

◆�
.

Using these in (B.6) then gives the result (B.7).

B.1.4 One-Sided Fourier Transform of p coth(�p/2)

Here we derive the integral (B.31). To this end we use the identity coth
�
�p
2

�
= 1 + 2

e�p�1
to write the

LHS of (B.31) as
Z 1

0

dp p coth
⇣
�p

2

⌘
e�ip(⌧�i�) =

Z 1

0

dp pe�ip(⌧�i�) + 2

Z 1

0

dp
p cos(⌧p)

e�p � 1
+ 2i

Z 1

0

dp
p sin(⌧p)

e�p � 1
. (B.34)

where the limit � ! 0 can be safely taken in the latter two integrals (since they are both convergent

at ⌧ = 0). The first integral evaluates to
Z 1

0

dp pe�ip(⌧�i�) = � 1

(⌧ � i�)2
, (B.35)
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and the second integral is given in equation (3.951.5) of [82] (which converges for any Re[�] > 0)

Z 1

0

dp
p cos(⌧p)

e�p � 1
=

1

2⌧2
� ⇡2

2�2 sinh2
�
⇡⌧
�

� , (B.36)

and the third integral can be exactly evaluated as10

Z 1

0

dp
p sin(⌧p)

e�p � 1
= � 1

�2
Im


 (1)

✓
1 +

i⌧

�

◆�
(B.37)

where ⇣(3) ' 1.202. Putting the above altogether (in the limit � ! 0) gives formula (B.31).

B.2 Integrals appearing in the Equal-Time Correlator

Here we simplify the integral

M�(t,x,x0) := � g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac| {�(⌧,0)�(⌧ 0,0),�(t,x)�(t,x0)} |vaci (B.38)

appearing in the equal-time mean-field correlator (4.47).

B.2.1 Four-Point Wightman Functions

First we note the functional form of the four-point Wightman functions appearing in the above, where

hvac|�(t1,x1)�(t2,x2)�(t3,x3)�(t4,x4) |vaci (B.39)

=

Z
d3k

(2⇡)32Ek

Z
d3p

(2⇡)32Ep


e�iEk(t1�t4)+ik·(x1�x4)e�iEp(t2�t3)+ip·(x2�x3)

+e�iEk(t1�t3)+ik·(x1�x3)e�iEp(t2�t4)+ip·(x2�x4) + e�iEk(t1�t2)+ik·(x1�x2)e�iEp(t3�t4)+ip·(x3�x4)

�

where the commutation relations [ak, ap] = [a⇤k, a⇤p] = 0 and [ak, ap] = �3(k � p) have been used, as

well as the expectation values

hvac| âkâlâ
⇤
pâ⇤q |vaci = �3(k � q)�3(p � l) + �3(k � p)�3(q � l) (B.40)

hvac| âkâ⇤l âpâ⇤q |vaci = �3(k � l)�3(p � q)

In terms of free (two-point) Wightman functions, the above has the simple form

hvac|�(x1)�(x2)�(x3)�(x4) |vaci = hvac|�(x1)�(x4) |vaci hvac|�(x2)�(x3) |vaci (B.41)

+ hvac|�(x1)�(x3) |vaci hvac|�(x2)�(x4) |vaci
+ hvac|�(x1)�(x2) |vaci hvac|�(x3)�(x4) |vaci

using the shorthand xj = (tj ,xj).

10Note the integral representation  (1)(z) =
R1
0 dq q e�zq/(1� e�q) which follows from formula (5.9.12) of [83]. This

implies  (1)(1 + iy) =
R1
0 dq q e�iyq/(eq � 1), and then taking the imaginary part of this gives (B.37).
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B.2.2 One-Sided Fourier Transform of W�(t)

Here we compute the integrals

Z 1

0

d� W�(�)e±ip� =
1

2

✓⇥
C� + iK�

⇤
±
⇥
� S� + iD�

⇤◆
(B.42)

where the function C�(p) = p
4⇡ coth

�
�p
2

�
is given in (B.25) and the divergent constant K� = ��(0)/(2⇡)

is given in (B.28), and we furthermore define

S�(p) := 2

Z 1

0

d� Im [W�(�)] sin(p�)

D�(p, �) := 2

Z 1

0

d� Re [W�(�)] sin(p�)

The functions S� and D� have also been computed in [27, 29] (where � is replaced by either the Unruh

or Hawking temperatures). These functions take the form

S�(p) = � p

4⇡
, (B.43)

D�(p, �) =
p

2⇡2
log

✓
2⇡e��

�

◆
+

p

2⇡2
Re


 (0)

✓
�i

�p

2⇡

◆�
,

where � is the Euler-Mascheroni constant and  (0)(z) = �0(z)/�(z) is the digamma function. Note

that the function D� has a �-divergence, where � > 0 is the regulator appearing the correlation function

W�(�) = � 1

4�2 sinh2
⇣

⇡(��i�)
�

⌘ . (B.44)

Putting this all together in (B.42) we find that

Z 1

0

d� W�(�)e±ip� =


p

8⇡
coth

✓
�p

2

◆
� i

4⇡2�

�
(B.45)

±


p

8⇡
+ i

✓
p

4⇡2
log

✓
2⇡e��

�

◆
+

p

4⇡2
Re


 (0)

✓
�i

�p

2⇡

◆�◆�
.

B.2.3 The Integral M�

It turns out that it is easiest to express the integral M� in the nested-integral form of (4.46), where

M�(t,x,x0) = � g̃2

2

Z t

0

d⌧

Z ⌧

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac| {�(⌧,0)�(⌧ 0,0),�(t,x)�(t,x0)} |vaci (B.46)

� g̃2

2

Z t

0

d⌧

Z ⌧

0

d⌧ 0 W ⇤
� (⌧ � ⌧ 0) hvac| {�(⌧ 0,0)�(⌧,0),�(t,x)�(t,x0)} |vaci .

By expanding the anti-commutators above and also using [�(t,x),�(t,x0)] = 0, the above can be

manipulated into the form

M�(t,x,x0) = �g̃2

Z t

0

d⌧

Z ⌧

0

d� Re


W�(�)

✓
hvac|�(⌧,0)�(⌧ � �,0)�(t,x)�(t,x0) |vaci (B.47)

+ hvac|�(t,x)�(t,x0)�(⌧,0)�(⌧ � �,0) |vaci
◆�
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where the change of variable ⌧ 0 = ⌧ � � has also been made. Using the formula (B.39) the four-point

correlators can be written in momentum space as

hvac|�(⌧,0)�(⌧ � �,0)�(t,x)�(t,x0) |vaci + hvac|�(t,x)�(t,x0)�(⌧,0)�(⌧ � �,0) |vaci (B.48)

=

Z
d3p

(2⇡)32Ep

Z
d3k

(2⇡)32Ek

✓
2e�iEp�e+ik·(x�x0)

+2Re
h
e�iEpt+ip·xe�iEkt+ik·x0

e+i(Ep+Ek)⌧ (e�iEp� + e�iEk�)
i◆

.

With this, the integral M� splits into two pieces

M�(t,x,x0) = M(1)
� (t,x,x0) + M(2)

� (t,x,x0) (B.49)

where

M(1)
� (t,x,x0) := �2g̃2

Z
d3p

(2⇡)32Ep

Z
d3k

(2⇡)32Ek

Z t

0

d⌧

Z ⌧

0

d� Re


W�(�)e�iEp�e+ik·(x�x0)

�
(B.50)

and

M(2)
� (t,x,x0) := �2g̃2

Z
d3p

(2⇡)32Ep

Z
d3k

(2⇡)32Ek

Z t

0

d⌧

Z ⌧

0

d� Re[W�(�)] (B.51)

⇥Re
h
e�iEpt+ip·xe�iEkt+ik·x0

e+i(Ep+Ek)⌧ (e�iEp� + e�iEk�)
i

.

First we focus on simplifying M(1) above. The k-integration is easily done, and then integrating the

p-angles away yields

M(1)
� (t,x,x0) = � g̃2

8⇡4|x � x0|2
Z 1

0

dp p

Z t

0

d⌧

Z ⌧

0

d� Re


W�(�)e�ip�

�
. (B.52)

By switching the order of integration in the (⌧,�)-plane the above integral can be written as

M(1)
� (t,x,x0) = � g̃2

8⇡4|x � x0|2
Z 1

0

dp p

Z t

0

d�

Z t

�

d⌧ Re


W�(�)e�ip�

�

= � g̃2

8⇡4|x � x0|2
Z 1

0

dp p

Z t

0

d� (t � �)Re


W�(�)e�ip�

�
(B.53)

= � g̃2

8⇡4|x � x0|2
Z 1

0

dp p


t

Z t

0

d�

✓
Re[W�(�)] cos(p�) + Im[W�(�)] sin(p�)

◆

� d

dp

Z t

0

d�

✓
Re[W�(�)] sin(p�) � Im[W�(�)] sin(p�)

◆�

To simplify the integrals, we next assume that we probe times

t � � , (B.54)

so that the upper limit on the �-integrals can be taken to be ' 1 (since W�(�) / e�2⇡�/�). Upon

doing so the �-integrals in the above may be expressed in terms of the functions given in (B.42), where

M(1)
� (t,x,x0) ' � g̃2

16⇡4|x � x0|2
Z 1

0

dp p


t
�
C�(p) + S�(p)

�
� dD�(p, �)

dp
+

dK�(p, �)

dp

�
. (B.55)
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Note that @pK�(p, �) = 0 from the functional form (B.28). Furthermore, using the functional forms of

C� and S� we note the value of the integral

Z 1

0

dp p
�
C�(p) + S�(p)

�
=

Z 1

0

dp p2

2⇡(e�p � 1)
=

⇣(3)

⇡�3
(B.56)

where ⇣(3) ' 1.202 (with ⇣ the Riemann-Zeta function). With this we get

M(1)
� (t,x,x0) ' �

g̃2

✓
⇣(3)t

⇡�3
�
Z 1

0

dp p
dD�(p, �)

dp

◆

16⇡4|x � x0|2 (B.57)

where we note that the remaining momentum-integral appears to be ultraviolet divergent in the

momentum p.

Moving on to the second integral M(2), we first integrate away the angles in the momentum

integrals and simplify to get

M(2)
� (t,x,x0) = � g̃2

16⇡4|x||x0|

Z 1

0

dp

Z 1

0

dk

Z t

0

d⌧

Z ⌧

0

d� sin(|x|p) sin(|x0|k) (B.58)

⇥Re


e�i(p+k)te+i(p+k)⌧ (e�ip� + e�ik�)Re[W�(�)]

�
.

We again can switch the order of integration in the (⌧,�)-plane giving us

M(2)
� (t,x,x0) = � g̃2

16⇡4|x||x0|

Z 1

0

dp

Z 1

0

dk

Z t

0

d�

Z t

�

d⌧ sin(|x|p) sin(|x0|k) (B.59)

⇥Re


e�i(p+k)te+i(p+k)⌧ (e�ip� + e�ik�)Re[W�(�)]

�
.

The ⌧ -integration can now be easily performed such that

M(2)
� (t,x,x0) = � g̃2

16⇡4|x||x0|

Z 1

0

dp sin(|x|p)

Z 1

0

dk sin(|x0|k)

Z t

0

d� (B.60)

⇥Re


ie�i(p+k)t

k + p
(e+ip� + e+ik�)Re[W�(�)] � i

k + p
(e�ip� + e�ik�)Re[W�(�)]

�
.

As noted above, we assume t � � and so the �-integrals can be expressed in terms of the functions

C� and D� where

M(2)
� (t,x,x0) ' � g̃2

16⇡4|x||x0|

Z 1

0

dp sin(|x|p)

Z 1

0

dk sin(|x0|k)

⇥Re


ie�i(p+k)t

k + p

�
C�(p) + iD�(p, �) + C�(k) + iD�(k, �)

�

� i

k + p

�
C�(p) � iD�(p, �) + C�(k) � iD�(k, �)

��

= � g̃2

16⇡4|x||x0|

Z 1

0

dp sin(|x|p)

Z 1

0

dk sin(|x0|k) (B.61)

⇥
✓C�(p) + C�(k)

p + k
sin
�
(p + k)t

�
� D�(p, �) + D�(k, �)

p + k

⇥
1 + cos

�
(p + k)t

�⇤◆
.
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B.3 Quantities entering with the di↵use correlator

This Appendix computes quantities that arise in §4.3.5 where the di↵use contributions to the Wight-

man function are computed.

B.3.1 The integral P�

First we compute the integral P� defined in (4.55). Using the commutator (4.41) we easily find that

(4.55) simplifies to

P�(t,x,x0) = �g̃2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0)
i�
�
⌧ � [t � |x|]

�

4⇡|x|
i�
�
⌧ 0 � [t � |x0|]

�

4⇡|x0| hvac| I2
+ |vaci

= +
g̃2

16⇡2|x||x0|⇥(t � |x|)⇥(t � |x0|)W�(�|x| + |x0|)

= �
✓

g̃2

64⇡2�2

◆
⇥(t � |x|)⇥(t � |x0|)

|x||x0| sinh2
h
⇡
� (�|x| + |x0| � i�)

i (B.62)

This is the result quoted as (4.57) in the main text, and it agrees precisely with the O(g̃2) part of the

correlator given in (2.19).

B.3.2 The integral Q�

Next we compute the integral Q�(t,x,y) defined in (4.56). Using the commutator (4.41) allows this

integral to be rewritten as

Q�(t,x,x0) =
g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac| i�[⌧�(t�|x|)]�(⌧ 0,0)�(t,x0)�i�[⌧ 0�(t�|x|)]�(⌧,0)�(t,x0)
4⇡|x| |vaci

+
g̃2

2

Z t

0

d⌧

Z t

0

d⌧ 0 W�(⌧ � ⌧ 0) hvac| i�[⌧�(t�|x0|)]�(t,x)�(⌧ 0,0)�i�[⌧ 0�(t�|x|)]�(t,x)�(⌧,0)
4⇡|x0| |vaci . (B.63)

Relabelling ⌧ and ⌧ 0 in the first term of each of the lines above allows this to be rewritten as

Q�(t,x,x0) =
g̃2

4⇡|x|

Z t

0

d⌧

Z t

0

d⌧ 0 Im[W�(⌧ � ⌧ 0)]�
⇥
⌧ 0 � (t � |x|)

⇤
hvac|�(⌧,0)�(t,x0) |vaci (B.64)

+
g̃2

4⇡|x0|

Z t

0

d⌧

Z t

0

d⌧ 0 Im[W�(⌧ � ⌧ 0)]�
⇥
⌧ 0 � (t � |x0|)

⇤
hvac|�(t,x)�(⌧,0) |vaci .

Performing the integrations over ⌧ 0 now gives

Q�(t,x,x0) =
g̃2⇥(t � |x|)

4⇡|x|

Z t

0

d⌧ Im
⇥
W�

�
⌧ � [t � |x|]

�⇤
hvac|�(⌧,0)�(t,x0) |vaci (B.65)

+
g̃2⇥(t � |x0|)

4⇡|x0|

Z t

0

d⌧ Im[W�

�
⌧ � [t � |x0|]

�
] hvac|�(t,x)�(⌧,0) |vaci ,

and using the explicit form for the free Wightman functions as well as Im[W�(t)] = �0(t)/(4⇡) makes

the integrand explicit:

Q�(t,x,x0) =
g̃2⇥(t � |x|)

64⇡4|x|

Z t

0

d⌧
�0
�
⌧ � [t � |x|]

�

�(⌧ � t � i�)2 + |x0|2 +
g̃2⇥(t � |x0|)

64⇡4|x0|

Z t

0

d⌧
�0
�
⌧ � [t � |x0|]

�

�(t � ⌧ � i�)2 + |x|2 .

(B.66)
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Integrating this by parts yields

Q�(t,x,x0) =
g̃2⇥(t � |x|)

64⇡4|x|


�
�
|x|
�

|x0|2 � �
�
t � |x|

�

�(|x| + i�)2 + |x0|2 �
Z t

0

d⌧ �
�
⌧ � [t � |x|]

� d

d⌧

⇢
1

�(⌧ � t � i�)2 + |x0|2

��

+
g̃2⇥(t � |x0|)

64⇡4|x0|


�(|x0|)
|x|2 � �(t � |x0|)

�(|x0| + i�)2 + |x|2 �
Z t

0

d⌧ �
�
⌧ � [t � |x0|]

� d

d⌧

⇢
1

�(t � ⌧ � i�)2 + |x|2

��
(B.67)

where boundary terms with �(|x|) factors never contribute (since |x| > 0). In the regime of interest,

t � |x| > 0 and t � |x0| > 0, the other boundary terms also do not contribute (since the Heaviside

functions all turn on).

All that is left is to perform the �-function integrations which gives the final result

Q�(t,x,x0) =
g̃2

64⇡4|x|


1

2|x0|
�
|x| � |x0| + i�

�2 � 1

2|x0|
�
|x| + |x0| + i�

�2
�

+
g̃2

64⇡4|x0|


1

2|x|
�
|x| � |x0| + i�

�2 � 1

2|x|
�
|x| + |x0| � i�

�2
�

(B.68)

=
g̃2

64⇡4|x||x0|


1

(|x| � |x0| + i�)2
� 1

(|x| + |x0|)2
�

,

where the last line safely takes � ! 0. This is the result quoted in (4.58).
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Chapter 5

Conclusions and Outlook

5.1 Summary

The aim of thesis is to motivate the use of Open EFT techniques for gravitational applications,

specifically to backgrounds which contain an event horizon (which the OQS framework naturally

applies to due to the way horizons separate quantum degrees of freedom). This was done by

studying two Open EFT toy models (both involving black holes) in the hopes that this helps pave

the way for more realistic calculations involving EFTs of gravity. As argued here (and explicitly

shown in the toy models studied), quantum systems interacting in gravitational backgrounds

are susceptible to secular growth breakdowns of perturbation theory, and the main focus in this

thesis has been in resumming these breakdowns in order to make reliable late time predications

(without resorting to solving the theory exactly).

The late time resummations performed have been a result of taking a Markovian limit which

is naturally a hierarchy of scales argument. We have paid especially close attention to when

the Markovian approximation is valid, and one of the main results of this thesis is that the

Markovian regime is surprisingly rigid, usually applying in a small region of available parameter

space. In the toy models considered here we find furthermore that there is no danger of straying

into positivity-violating regions of parameter space so long as one is careful to remain in the

domain of validity of approximations taken.

In §2, the late-time thermalization of a qubit is tracked as it hovers just outside the event

horizon of a Schwarzschild black hole. One of the main themes of this chapter is control over

approximations even though the mathematics in the Schwarzschild background are in general

very complicated — this is demonstrated by the way in which the qubit self-correlations can be
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simplified near the horizon, as well as in the manner in which the Markovian approximation is

constrained (under the assumption that the qubit reduced density matrix varies slowly compared

to the correlation time ∼ rs of the qubit self-correlations). The rigidness of the Markovian ap-

proximation was demonstrated here since this requires the qubit gap to be small compared to the

Hawking temperature, which moreover gave rise to state evolution which is positivity-preserving

for all times (not needing any extra approximations like the rotating-wave approximation often

used in the literature).

In §3 and §4 the hotspot model is studied, a solvable toy model of a black hole meant to em-

phasize the OQS features thought to be present in more authentic black hole backgrounds (like

Schwarzschild or Kerr).

In §3, PPEFT techniques are used to set up the hotspot model as an effective theory meant to

describe observables over macroscopically large distance scales compared to the size of the black

hole. Since the field theory is here Gaussian, the main focus in this chapter is in calculating

the correlation functions associated with the open system (aka. the quantum field correspond-

ing to the exterior of the toy black hole) and so §3 can be largely regarded as a detour from

Open EFT approximation techniques. Solving for the correlation functions requires some care

since the calculation involves small-distance “Colomb-like” singularities due to the point-particle

type interaction of the hotspot. The PPEFT framework is used to argue that any divergences

encountered do not end up contributing to physical observables (which is done by relating the

divergences to renormalization-group invariant quantities).

In the final paper of §4, Open EFT approximation techniques are applied to the open system

(ie. the exterior field) of the hotspot model. The mean-field approximation (describing evolution

using a non-local Hamiltonain) is shown to apply only when the hotspot interaction decouples,

and so happens to not be useful for this particular model. In contrast, the state of the exterior

field is shown to have a Markovian limit which agrees with the exact correlators of §3 only

for field modes with energies much smaller than the temperature set by the hotspot interior.

Decoherence of the open system is also observed, but in a way which leaves much to be desired

since the timescales for decoherence end up being (UV) cutoff dependent.

5.2 Future Work

The Open EFT approximations used in §4 give rise to decoherence timescales which are UV

cutoff dependent — this result heuristically suggests that the hotspot exterior decoheres, but
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lacks precision in that the nothing physical can depend on the cutoff of a theory. One line

of future work on the hotspot model is to find a way to take the Markovian approximation

which gives an unambiguous answer for the decoherence timescale. One possible way forward

is to use the spherical symmetry of the hotspot interaction and attempt a spherical harmonic

decomposition of reduced density matrix for φ, such that

%̂A =
⊗

ω,`,m

%̂
(ω,`,m)
A (5.1)

and derive a simpler equation of motion for each individual component %̂
(ω,`,m)
A . This is similar

to the strategy employed in [92], in which the reduced density matrix of the open system is split

apart according to momenta k (resulting from the spatial translation invariance of the interaction

studied there). It is likely that having a family of Nakajima-Zwanzig-type equations for each

component %̂
(ω,`,m)
A will contain far more information than the equation (3.22) examined in §4

(which studied of all the spherical harmonics at once) — furthermore, since the environment

correlations in the model are the same as those in [93] it is likely that the same methods might

apply and even non-Markovian effects in the evolution of %̂
(ω,`,m)
A can be studied so as to better

pin down a physical decoherence timescale.

Another project currently underway has to do with the theory of inflation described in equation

(1.2). As mentioned, the theory of inflation reproduces the observed density fluctuations in the

Cosmic Microwave Background (CMB) to a high degree of precision. However, one puzzle asso-

ciated with the measured spectrum of the CMB is to explain how the observed classical density

fluctuations could possibly have a quantum origin — in current work [94] this is resolved though

an Open EFT picture in which the observable modes are decohered through their interaction

with the unobserved modes (behind the de Sitter horizon) in this particular EFT of gravity (de-

scribed in [16]). The main result of our calculation is that the observable modes in the CMB have

decohered long ago (explaining why we see no quantum correlations in the sky) and that any

quantum corrections to the power spectrum are extremely small (ie. undetectable with current

technology). There have been many simliar calculations done along these lines: some for the

simpler problem of a spectator field living in de Sitter space and others which examine the full

EFT of inflation [96, 97, 98, 99, 100, 101, 102], however of particular interest in our work is the

derivation and assessment of the domain of validity of the derived Lindblad equations (and so

the late-time behaviour).
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5.3 Conclusions

As discussed in the introduction, standard EFTs are based on a hierarchy of energy scales, but

at each level of approximation energy is still conserved. Open EFTs are different in this regard in

that the division between the measured sector (the open system) and the unmeasured sector (the

environment) is not defined in terms of conserved quantities like energy, which is what results in

the emergence of unusual phenomena such as decoherence, dissipation and entanglement effects

normally not encountered in Wilsonian EFTs. To a large extent, this thesis is a step forward

towards a better understanding of these phenomena in EFTs of gravity, as well as reliably making

late time inferences.

In conclusion, the frameworks of Effective Field Theories and Open Quantum Systems are two

powerful tools which share the common ground of being able to describe EFTs of gravity with

horizons. Although a great deal of progress has been made in understanding these subjects

individually, this thesis aims to show that there is still much to be learned and utilized in their

merger in Open EFTs.
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