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Lay abstract

Climate change, industrial manufacture, and population growth have been exacerbating the
global water stress. Organic micropollutants (OMPs) are potentially toxic, persistent and
can exist even at trace levels, which have been increasingly discovered and identified in
natural and built systems. In this research, environmental chemistry of climate-change
impacted boreal peatland soils, and their mechanistic relationships to peat soil
hydrophobicity, organic substance transformations, micropollutant leaching, and impacts
to downstream potable water quality was investigated as a case study. Two different
innovative water treatment strategies were developed for restoring peatland resilience and
enhancing water resource sustainability including treating peatland phenolic
micropollutants. The first approach converted shallow layer wildfire- and drought-
damaged peats into value-added porous carbons for adsorption. The second approach
synthesized a novel reduced graphene oxide (rGO) nanocomposite membrane for process-
intensified flow-through separation. These solutions provide novel insights for source

water protection and wastewater treatment in adaption to climate change.
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Abstract

Organic micropollutants (OMPs) in climate change affected natural environment such as
wetlands, and engineered systems have brought serious concerns for water security and
public health. These issues have increased the demand for better managing water resources
and developing effective technologies for aqueous micropollutants removal. This thesis

investigated these subjects through the following five sub-research projects.

First, boreal peatland was used as a case study for understanding how peatland fires and
droughts impacts peatland resilience. Laboratory results suggested that heating and
moisture condition, coupled with peat organic hydrophobic transformations, influence peat
soil hydrophobicity and the resultant water-extractable pollutant leaching, which
potentially threatens peatland downstream receiving waters such as potable waters by high

organic loads.

Further, post-fire peat chemistry and their mechanistic relationships to leached pollutants
(total organic carbon (TOC), nutrients and phenols) were elucidated through a laboratory
leaching study. Increased contaminant loading was observed in post-heated peat leachates,
suggesting negative effects to water treatment efficiency and an increase of treatment costs

to surface waters as potable water source.

Next, peat soils damaged from extreme fires and droughts were upcycled for producing
high surface area, value-added porous carbons based on a rapid, facile chemical activation

approach. This application had the simultaneous benefit of peatland ecological restoration,
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protecting downstream communities from heavy run-off, and using the sustainable

damaged peats for effective environmental remediation though adsorption.

Moreover, a critical review of nano-enabled composite membranes for OMP removal (size-
exclusion, adsorption, charge interaction, and photo- and electro-catalysis) and their
respective benefits and limitations were discussed. This work brought new perspectives for

next-generation nanocomposite membranes for OMP removal.

Finally, a novel, hyperbranched polyethylenimine (HPEI) crosslinked iron doped reduced
graphene oxide (rGO) nanocomposite membrane was synthesized for process-intensified
flow-through separation of phenolic micropollutants. Mechanisms and separation

performance to phenolic micropollutant and azo dyes were investigated.
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1.1 Background

1.1.1 Organic micropollutant (OMP) pollution

Increasing water stress by chemical pollution in aquatic environment is a serious concern,
especially considering the rapid population growth competing for limited clean potable
water resource, climate change decreasing soil moisture and compromising water quality,
and growing human activities such as irrigated agriculture, food and energy industries
consuming large quantities of fresh water. The development of analytical chemistry has
allowed the detection and identification, and treatment of a large number of organic
substances to mitigate the acute vulnerability of water shortages and contamination.
However, there are still many emerging, trace contaminants, known as organic
micropollutants (OMPs), that are not readily removed or degraded, and thus have been
ubiquitously found in both treated wastewaters and natural waters. OMPs have complex
natural (e.g., forest fires) and anthropogenic origins, which have garnered substantial
attention all across the globe over the recent decade due to their continuous production and
discharge, potential (chronic) toxicity, bioaccumulation and persistency, even at trace

levels (ng/L to ug/L) [1].

For instance, phenolic micropollutants, mainly derived from consumer product use,
application of pharmaceutical drugs and pesticides, other industrial practices, and some
natural processes, have been pervasively found in surface waters and treated wastewater
effluents [2]. Phenols such as chlorophenols and nitrophenols can cause serious toxicity
and bioaccumulation effects in living organisms [2]. Phen