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ABSTRACT 

Biomarkers provide the opportunity to identify subclinical disease states before 

development of the disease and apply preventative measures, facilitate research 

and understanding of disease mechanisms, and allow for the assessment of 

therapeutic measures. However, a major challenge in the field of biomarker 

research is to discern cause and effect, and as a result, association has often been 

mistaken for causation. Additionally, the pathogenesis behind chronic diseases is 

extremely complex, resulting from several modifiable and unmodifiable risk factors 

and often caused by an interaction of many biomarkers simultaneously. 

Furthermore, biomarker levels show marked differences across ethnicities and it is 

difficult to distinguish whether this is a result of environmental or genetic factors. 

Through longitudinal, genetic, multi-biomarker studies, these barriers can be 

partially overcome. This thesis addresses how advancements in genetic and 

biomarker research may help to gain novel insights into both known and novel 

biomarkers of cardiovascular disease, inform and guide clinical decision-making 

and validate potential disease target pathways.  

Using a variety of statistical approaches, we analyzed 4,147 participants of the 

Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial measured for 

237 biomarkers and followed for an average of 6.2 years, to investigate the genetic 

effects on biomarkers and their relation to cardiovascular diseases. Specifically, 

we applied Mendelian randomization (MR) analyses to identify novel, causal 

mediators of coronary artery disease (CAD) and chronic kidney disease (CKD). 

Additionally, we used admixture mapping to explore the impact of ancestry on 

serum biomarker levels in the Native Latin ORIGIN population and identified genes 

conferring differential risk across ancestries. We identified macrophage colony-

stimulating factor 1 (CSF1) and stromal cell-derived factor (CXCL12) as novel, 

causal mediators of CAD using MR. Similarly, MR analysis also revealed 

uromodulin (UMOD) and human EGF receptor 2 (HER2) as new mediators of CKD. 
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Through admixture mapping, we have demonstrated the importance of ethnicity 

across a comprehensive panel of biomarkers and shown a novel method for 

inferring the contribution of ethnicity to phenotypic traits in admixed individuals.  

By applying two major statistical methods employed in genetic epidemiology we 

have revealed important insights into the role of biomarkers in health and disease. 

Taken together, this thesis implicates new biomarkers for CAD and CKD which are 

potential therapeutic interventions for prevention and treatment. Furthermore, this 

work indicates the importance of ancestry in disease, and paves the way for clinical 

treatment which is tailored to ethnicity. Future studies may adopt the novel 

approaches presented here to identify additional causal markers of disease and 

biological pathways and processes which are influenced by ancestry. 
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1 GENERAL INTRODUCTION 

1.1 Background 

1.1.1 Burden of Cardiovascular Disease 

Cardiovascular disease (CVD) represents a class of disorders that involve the 

heart and blood vessels, and includes a wide array of diseases such as 

atherosclerosis, hypertrophy, heart failure, myocardial infarction (MI), stroke and 

coronary artery disease (CAD)1. CVD is caused by a complex interaction of 

genetic, environmental and behavioral risk factors that is not fully understood. The 

underlying pathological mechanisms vary depending on the disease in question, 

however atherosclerosis is a common feature among many cases2. Much of CVD 

is thought to be preventable through risk management of modifiable factors such 

as smoking, physical inactivity, obesity, high blood pressure and diabetes3–5. 

Despite this, CVD remains the leading cause of chronic disease morbidity and 

mortality in developed countries and the prevalence is steadily increasing around 

the globe1. Canadians are at a particularly high risk of CVD, with over 80% carrying 

at least one major risk factor. As a consequence, CVD represents the underlying 

cause for 1 in 3 deaths in Canada6. Furthermore, the increasing prevalence of 

modifiable risk factors is expected to reduce life expectancy in the coming years7. 

Diabetes is emerging as one of the most important of these risk factors for CVD8–

11. Additionally, CVD is the most common cause of mortality in those with diabetes, 

accounting for over 60% of all deaths12. While epidemiological studies have shown 

that this relationship is independent of common risk factors such as hypertension, 

obesity and chronic kidney disease (CKD)13, the pathophysiology underlying this 

observation remains unclear. Therefore there is a need to further characterize this 

relationship in an effort to reduce the overall burden of CVD.  
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1.1.2 Cardiovascular Biomarkers 

With the prevalence of CVD on the rise, prevention and risk stratification are major 

public health priorities14. Accurate and early identification of individuals at an 

increased risk for CVD allows clinicians to apply preventative measures before the 

progression of the disease15. Substantial data suggests that CVD is a life-long 

disease, occurring through an evolution of risk factors and resulting in subclinical 

disease states that often go undetected in routine appointments16,17. Biomarker 

measurement and evaluation is one tool to combat this ongoing issue and offers 

tremendous potential for early diagnosis, better treatment and improved 

management of patients at a relatively low-cost and in a non-invasive manner18. A 

biomarker is defined as a characteristic that is objectively measured in a patient 

and used as an indicator of normal biological processes or pharmacological 

responses to interventions19. Identification of such biological mediators has proven 

to be an extremely valuable research endeavor. For instance, the discovery of risk 

factors of CVD, such as hypertension, hypercholesterolemia and BMI, have not 

only led to an increased understanding of the disease biology, but also many 

clinical advances20–22. Many biomarkers, such as C-reactive protein (CRP), 

interleukin-6, and troponin, have been studied in the context of CVD23–25. However, 

despite much research we have a relatively poor understanding of the exact role 

these biomarkers play in the disease. Results among studies are often inconsistent 

and lack conclusive findings likely due to the fact that CVD is a complex disorder 

resulting from an interaction of genetic and environmental factors and many 

biomarkers in parallel26. Therefore, longitudinal studies in large sample sizes are 

often needed to elucidate conflicting findings.  

1.2 Genetics for Biomarker Discovery and Understanding 

1.2.1 Mendelian Randomization 

Overview of MR in cardiovascular disease 
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Understanding disease aetiology and identifying novel opportunities for treatment 

and prevention remains the sole objective and purpose for scientific and clinical 

research. Motivated by these central goals, epidemiological studies have 

investigated numerous traits and biomarkers for associations with a vast array of 

cardiometabolic outcomes27–29. Although numerous markers have been robustly 

identified, even the strongest epidemiological associations preclude drawing 

conclusions about the causality or effect direction in the underlying relationship due 

to inherent limitations and biases, including residual confounding and reverse 

causation30. As a result, many of the associations found in epidemiological 

analyses are mere markers of disease risk, rather than causal factors directly 

involved in disease progression, and are therefore poor choices for therapeutic 

targets. Indeed, many putative causal biomarkers have been subsequently tested 

in randomized control trials (RCTs) where blockade through pharmaceutical 

intervention conferred no benefit, in contrast to the findings predicted by 

epidemiological models31. Such discordant findings between RCTs and 

observational studies are commonplace and suggest a non-causal link between 

the modifiable factor and outcome under study. While well designed and conducted 

RCTs remain the gold-standard for causal inference, they are exceedingly 

expensive, time-consuming, may not be feasible or ethical, and have high failure 

rates32,33. Therefore, given the complexity of cardiometabolic disorders, the 

number of biomarkers at large, and the cost of drug development programmes, it 

is essential to employ cost-effective methods which provide preliminary evidence 

on promising therapeutic targets34.  

In genetic epidemiology, Mendelian randomization (MR) studies are powerful and 

useful tools which are able to provide information on the causality of known and 

novel relationships in the absence of trial data, shedding light on potential 

biomarkers for future drug development35–39. MR studies harness the fundamental 

principles of genetic inheritance to infer whether a biomarker is causally related to 

a disease. This is made possible since genetic variants are inherited independently 
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of each other, randomly determined, and thus unrelated to other confounding 

factors. In this regard, MR studies act as “natural” RCTs which make use of the 

unmodifiable, random allocation of genetic variants at meiosis, and are therefore 

able to mitigate traditional sources of bias due to confounding and reverse 

causation. Specifically, in MR studies, genetic variants are used as instrumental 

variables (IVs), or proxies, for a modifiable intermediate phenotype to investigate 

its risk on a disease. In other words, a valid set of IVs, that mimic the effect of an 

exposure causally linked to a disease, should also be associated with risk of 

disease, proportional to the effect of the IVs on the exposure40. This paradigm is 

analogous to that of a RCT, where stronger doses of drugs have a greater effect 

on the levels of the causal biomarker and the resultant effect on the outcome is 

also greater41 (Figure 1-1). For instance, many independent trials have shown 

statins to reduce low-density lipoprotein cholesterol (LDL-C) levels and risk of 

coronary artery disease (CAD), proportional to the dose of the statin, owing to the 

causal link between LDL-C and CAD42.  

 
Figure 1-1: Comparison of Mendelian randomization studies to randomized 

controlled trials. 

The use of MR has become an increasingly common technique to infer causal 

relationships in health-related research which has led to several major discoveries 



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

16 
 

and validations in the field of cardiometabolic disorders. MR analyses have been 

particularly important in providing insights into the role of LDL-C on CAD 

development. Using all known genetic variants associated with LDL-C as 

instruments, the causal role of LDL-C was confirmed through MR43. Furthermore, 

MR models have also had success predicting the effect of specific LDL-C lowering 

drugs by restricting the analysis to the gene target of the drug in question44–46. For 

example, the cardiovascular benefit of ezetimibe, which lowers LDL-C through 

inhibition of Niemann-Pick C1-like 1 (NPC1L1), was once a question of debate 

which was in part resolved through MR studies. By restricting the analysis to 

genetic variants at the NPC1L1, to mimic the effect of ezetimibe, researchers 

provided strong evidence for inhibition of NPC1L1 to decrease risk of CAD47. 

Subsequently, this question was investigated in a randomized trial where 

consistent and conclusive evidence confirmed the longstanding hypothesis that 

ezetimibe, indeed, prevents future cardiovascular events48. Moreover, MR studies 

have also encouraged the development of novel drugs, such as PCSK9 inhibitors, 

which have been recently shown to reduce cardiovascular events in phase III 

clinical trials49,50. Applications of MR extend beyond that of assessing the intended 

effect of a drug, to revealing potential adverse or favorable side effects. For 

instance, such studies were again successful in replicating trial data showing an 

on-target effect of statins on increased risk of type-2 diabetes (T2D)51,52. Similarly, 

MR studies have found that other LDL-C lowering drugs are likely to exert a similar 

effect on T2D risk53–56. In addition to elucidating the complex relationship of LDL-

C and CAD, MR studies have also revealed many other notable associations in 

CAD including a causal effect of blood pressure, diabetes, adiposity and alcohol57–

60, and have convincingly excluded a causal role for C-reactive protein (CRP) and 

high-density lipoprotein cholesterol61–63. These findings, among many others, have 

increased our understanding of the aetiology and pathophysiology of 

cardiometabolic disorders and paved the way for improved treatments and 

prevention. 
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Methodology and study design 

The wealth of information provided by MR studies has been made possible by both 

the increased precision and decreased price of genotyping platforms interrogating 

single nucleotide polymorphisms (SNPs) across the entire genome. Historically, 

this data has been used in genome-wide association studies (GWAS) to 

systematically assess the relationship between millions of common genetic 

variants (SNPs) and a single trait64–67. While the MR framework relies on this same 

genetic data, the fundamental aim is qualitatively different with far greater 

implications. However, the linchpin of a MR analysis, to correctly infer a causal 

relationship, depends on the use of genetic variants as IVs for the exposure of 

interest. To be used as a valid IV, the genetic variant(s) must follow three important 

assumptions: (1) the instrument must be associated with the exposure of interest, 

(2) the instrument must not be associated with confounding factors in the exposure-

outcome association, and (3) the genetic variant must only affect the outcome 

through the exposure variable68. 

The first assumption can be easily tested by evaluating the strength of association 

between the instrument and the exposure. Although the second assumption cannot 

be proven for all possible confounders, instruments should be tested against likely 

and measured confounders. On the other hand, the second assumption is valid 

even in the absence of such tests according to Mendel’s second law of random 

assortment. The third assumption, however, is likely the most problematic for MR 

studies. Because it is extremely difficult to distinguish the exact biological effect of 

a single genetic variant, it is nearly impossible to prove for certain that the genetic 

instrument affects the outcome only through the exposure variable. A violation of 

this assumption, whereby the genetic variant(s) has affects beyond those on the 

exposure, is known as pleiotropy69. Pleiotropy can occur in two forms: horizontal 

and vertical. Horizontal pleiotropy refers to situations where the genetic variant(s) 

has effects through another pathway or trait independent to the one under 
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investigation. Vertical pleiotropy, on the other hand, occurs when the genetic 

variant(s) affect multiple exposures on the same pathway as interest, and does not 

bias results70. A number of promising strategies have been developed to mitigate 

bias due to horizontal pleiotropy. If the exposure of interest is a protein then the 

optimal instrument(s) would be genetic variants lying within or near the gene coding 

for the protein itself. In this way, the presumed effect of the instrument on the 

outcome can only possibly be through the exposure. Often, however, there are no 

valid genetic instruments near a relevant gene or the exposure under study is not 

a protein with a gene directly responsible for its expression (e.g. alcohol 

consumption and BMI). In this case, an alternative solution is to use multiple 

genetic variants across the genome and look for a homogenous affect across all 

instruments71.  

Provided the core assumptions are satisfied and adequate statistical power, 

estimating the causal relationship between and an exposure and an outcome is 

straightforward. The conventional approach is to compare the effect from the SNP-

outcome relationship (βoutcome) to the effect from the SNP-exposure relationship 

(βexposure) to derive a causal estimate which corresponds to a unit increase in the 

exposure variable72. This is known as the ratio method and can be used for a single 

SNP or multiple SNPs in combination. More precisely, the causal estimate is given 

by the estimate obtained by regressing βoutcome onto βexposure, with an intercept 

forced through the origin. A common variation of this method is the inverse-

variance weighted (IVW) estimate to account for the strength of the βoutcome 

relationship73. The IVW method, as the name suggests, weights each instrument 

according to the inverse variance of gene-outcome association. Other adaptations 

and extensions to the ratio method have also been developed to deal with 

pleiotropic bias. The Egger method, for example, allows for relaxation of the IV 

assumption requiring of a direct effect of the genetic instrument on the outcome74. 

Specifically, MR-Egger takes a similar approach as Egger regression, designed to 

mitigate small study bias in clinical trials, and allows the y-intercept to float rather 
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than be fixed to zero75. In this case, a deviation from the origin would suggest the 

presence of pleiotropy. Additionally, because pleiotropic effects are absorbed, into 

the y-intercept, the resulting slope is a reliable causal estimate even in the 

presence of pleiotropy, under certain assumptions74. Alternative MR models to 

mitigate bias caused by invalid instruments include the simple median and 

weighted median estimates76. The simple median estimate is the median ratio 

estimate when ratios from each instrument are arranged from the smallest to 

largest. This method suffers from limitations by excluding all instruments except 

one (or two if the number of genetic variants is odd) and is said to be inefficient. 

Conversely, the weighted median estimate retains all variants, weighting each ratio 

by its proximity to the median location, such that ratios falling in the middle of the 

distribution receive the highest weight. However, all these MR methods rely on 

comparing the association of the IV(s) with both the exposure and the outcome of 

interest. Assuming no bias caused by pleiotropy, the IVW is the best choice due to 

highest statistical power. In situations where the assumptions may be violated, 

other techniques should be employed as a sensitivity analysis to ensure results are 

consistent between models.  

Ordinarily, the exposure, outcome and genetic instrument(s) have all been 

measured in a single sample. However, recently many studies have adapted a two-

sample MR design where βoutcome and βexposure are ascertained in independent 

samples77–80. This design offers many advantages over the typical one-sample 

design, as obtaining all the necessary data for a MR analysis in a single, large 

sample can be both expensive and time-consuming81. Additionally, this design is 

free of the weak IV bias plaguing one-sample designs, which states that weak 

instruments lead to biased estimates towards the causal association82. Conversely, 

when genetic effects are obtained from independent samples, weak instruments 

lead to a bias towards the null hypothesis83. This two-sample MR framework, has 

another important implication as summary-level data from large, publicly-available 

collaborations can be used for either the instrument-exposure or the instrument-
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outcome relationship. In fact, depending on the question of interest, both estimates 

can be obtained from published GWAS, requiring no data to be physically collected 

to conduct the MR analysis. As genetic researchers continue to pool resources 

across GWAS, increasing sample sizes, statistical power and the number of 

genome-wide significant loci, our ability to detect causal associations through MR 

will undoubtedly increase as well. These efforts allow researchers to interrogate 

numerous causal relationships at a very low cost with relatively limited resources. 

Therefore, MR promises to provide an extremely valuable and efficient resource to 

identify novel causal markers of cardiometabolic traits, which will in turn help 

prioritize future drug targets and ultimately result in improved treatment and 

prevention of disease. 

Considerations 

Several potential caveats should be considered when conducting a MR analysis. 

First, and arguably the most important limitation to MR studies, is the issue of 

pleiotropy, whereby a genetic instrument has effects beyond its effect on the 

exposure of interest. In the presence of pleiotropy, MR studies can be easily 

misinterpreted, giving rise to both false positive and false negative results. 

Specifically, pleiotropic effects can counteract an effect of the variant on the 

disease acting via the causal biomarker, and thus lead to a null association, when 

in fact there is a causal relationship. On the other hand, pleiotropic effects can lead 

to a false positive association between a variant and disease that can result in a 

mistaken causal interpretation between a biomarker and disease. For example, the 

known causal effect of LDL-cholesterol on CAD can lead false-positive MR findings 

showing a protective effect of HDL-cholesterol and CAD if the genetic instrument(s) 

used has pleiotropic effects by both decreasing HDL-cholesterol and increasing 

LDL-cholesterol levels. In this case, the causal factor is known through functional 

experiments and RCTs, however often it is unclear which biomarker is responsible 

for the observed effects. Confounding due to pleiotropy is least likely when genetic 
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instruments are used that lie near the gene for the exposure under study. In 

situations where there is no possible instrument or there is no single gene 

responsible for the exposure of interest (e.g. BMI), then many instruments across 

the genome can be used to evaluate the relationship in an MR analysis. Pleiotropy 

is unlikely to be confounding the relationship if all instruments show a strong, 

consistent, directional effect on the exposure and outcome of interest. 

Genetic loci in close proximity on a given chromosome tend to be inherited 

together. This observation is known as linkage disequilibrium (LD), and can result 

in misinterpretations of MR results, similar to pleiotropic bias. For example, a SNP 

affecting the expression of gene A may be in LD with a SNP affecting the 

expression of gene B. If biomarker B, encoded by gene B, exerts a causal effect 

on the disease, then a MR analysis investigating the effect of the biomarker 

produced by gene A on a disease could result in false positive findings. In this 

scenario, biomarker B is a causal factor, while biomarker A is merely a bystander 

with no causal effect. To properly evaluate the effect of biomarker A, genetic 

instruments should be used that show no LD with variants in gene B that may 

circumvent the relationship. This phenomenon is especially problematic in gene 

clusters, as it is often impossible to disentangle the causal biomarker unless all 

biomarkers for each gene in the cluster are measured.  

Limited statistical power can influence the ability of a MR study to inform on a 

causal relationship between an exposure and an outcome. Specifically, the effect 

of SNP on a phenotype (both exposure and outcome) can be difficult to ascertain. 

First, there are usually multiple genetic and environmental factors influencing the 

variability of a trait and consequently, the effect of a single SNP can be very small. 

Secondly, risk factors often act together to exert their effect on a disease such that 

a causal biomarker may only be responsible for a portion of the resulting outcome. 

For example, while LDL-cholesterol is a known causal risk factor for CAD, rarely 

are elevated cholesterol levels sufficient to lead to CAD. Indeed, most CAD cases 
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display a combination of risk factors, such as obesity, smoking, older age, among 

others. Therefore, to properly evaluate causal associations through MR, a 

sufficiently large sample size is needed, particularly to detect relationships with 

small effects.  

1.2.2 Admixture Mapping 

Classic epidemiological studies have demonstrated differential risk between ethnic 

groups for numerous diseases, but it is difficult to infer whether this is a 

consequence of genetic or environmental factors. Admixture mapping is a powerful 

tool used in genetic epidemiological studies that overcomes this challenge and 

allows mapping of genes conferring differential risk.  Genetic admixture occurs 

when two or more previously independent populations interbreed, resulting in the 

introduction of new genetic lineages. Admixture mapping is a method applied to 

recently admixed populations used to localize disease causing genetic variants that 

differ in frequency across ancestral groups84. Most genetic variation is shared 

between populations, but allele frequencies can vary substantially. For instance, 

the null Duffy antigen has frequencies of ~100% in West African populations and 

~0% in populations outside of Africa85. The approach is based on the assumption 

that increased proportion of ancestry from the population with a greater risk of the 

disease will be observed in patients near a disease-causing gene. In this way, 

differential risk across ancestral groups can be observed at specific genetic loci86. 

Traditional association mapping techniques indirectly measure recombination 

across many generations, as far back as the most recent common ancestor for the 

entire sample. Similarly, in admixture mapping studies, recombination is assessed 

to localize genetic signals, however, most admixture studies involve recent 

admixture (<20 generations). Therefore, the resolution of admixture mapping is 

inferior to genome-wide association studies (GWAS), but superior to linkage 

analysis. Admixture mapping has been an effective technique, particularly in 

African Americans, in identifying novel loci involved in disease, namely, 6q21 for 
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hypertension87, 8q24 for prostate cancer88 and MYH for focal segmental 

glomerulosclerosis89. 

Admixture mapping studies offer the unique advantage over single-ancestry 

studies at identifying genes conferring differential risk between populations. 

Additionally, such studies are able to inform on the genetic factors that contribute 

to observed ancestry-level differences versus differences due to socio-economic 

and lifestyle factors90. Indeed, this is a worthwhile investigation as clinical 

diagnostic and prognostic measures are often determined from European 

populations and applied broadly among other ethnic groups. However, specific cut-

off values and prognostic measures likely apply to various populations, and should 

therefore be implemented accordingly. Indeed, little is known about the 

generalizability of these markers among other ethnic groups. While differences in 

biomarkers levels have been observed between ethnic groups, the reasons for 

these differences has not been elucidated. Admixture mapping studies may shed 

light on these observations and pave the way for better informed, ethnic specific 

defined cut-offs91. 

1.3 Study Population 

1.3.1 ORIGIN-Trial 

The ORIGIN (Outcome Reduction with an Initial Glargine Intervention) trial was an 

international outcomes multicenter, two-arm, randomized control trial designed and 

led by researchers at McMaster University. The study population included 12,537 

participants from 40 countries with either prediabetes or early type 2 diabetes. The 

goal of the study was to determine whether cardiovascular events and other clinical 

outcomes, could be reduced in a population with dysglycemia by: (1) normalizing 

fasting glucose levels with basal insulin glargine (versus standard glycemic 

control), and/or (2) a 1 gram omega-3 fatty acid supplement (versus placebo)92. 

The results of the trial are published in two articles in the New England Journal of 
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Medicine, in which it was reported that both interventions had a neutral effect on 

CVD outcomes93,94. The ORIGIN data is a well characterized global population that 

was followed for approximately 6 years for the development of a number of health 

outcomes. Three blood samples were taken and stored in a subset of participants 

at baseline, follow-up and end of study for future analysis. All clinical data collected 

in this trial is currently being stored at the ORIGIN Project Office at the Population 

Heath Research Institute (an organization jointly connected with McMaster 

University and Hamilton Health Sciences) in Hamilton, Ontario. A subset of 8,494 

ORIGIN participants consented to the collection and storage of blood samples for 

future analyses. After completion of the trial, baseline samples for these 

participants were analyzed for a comprehensive panel of biomarkers. The results 

from this project have been published in Circulation where a novel panel of 

biomarkers was identified for an independent association with cardiovascular 

outcomes beyond classical risk factors95. Additionally, genotyping has been 

performed on 5,433 ORIGIN participants who consented to genetic analysis and 

provided a sample suitable for DNA extraction. The ORIGIN genetic population will 

serve as the study population for the current project where we propose to 

investigate the relationship between biomarkers, genetic variants, and 

cardiovascular events.  

1.3.2 Quality Control and Processing of Genetic Data 

Genome-wide association studies (GWAS) are used to identify common single 

nucleotide polymorphisms (SNPs) that influence human traits. However, the ability 

of a GWAS to detect true genetic associations directly depends on the quality of 

the data96. Improper data cleaning can compromise the results of simple 

association tests, leading to both false-positive and false-negative associations97. 

Typically, GWAS involve large sample sizes to detect extremely small effects in 

hundreds of thousands of polymorphisms; therefore, even small artifactual 

differences can result in false-positives. Likewise, false-negatives can be 
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increased due to failure to control various experimental factors, such as low quality 

samples, poorly-performed SNP assays, and sample ID error; these factors lead 

to “noise” and reduce the power of the association test96.  

Quality control (QC) measures have been discussed and reported on in a number 

of manuscripts, and are usually completed using a combination of procedures96–

100. Seven main steps were followed: (1): removal of non-informative SNPs, (2) 

examination of individual samples and SNPs for genotyping completeness, (3) sex 

check, (4) ethnicity check, (5) relatedness, (6) Hard-Weinberg deviation and (7) 

minor allele frequency. Table 1-1 illustrates a summary of the QC steps taken in 

the ORIGIN study. PLINK (version 1.07)101 was used for the majority of the quality 

control procedures, R (version 3.5)was used for simple data manipulation and 

formatting, and Genome-wide Complex Trait Analysis (GCTA, version 1.91.3)102 

was used for ethnicity check and relatedness. Other pre-processing steps included 

principal component calculation for population adjustment, imputation of non-typed 

genotypes using IMPUTE2103 and computation of local and global ancestry for 

admixture mapping.  

Table 1-1: Summary of quality control steps in the ORIGIN genetic data. 

No. Step 
Number of 
Samples 
Removed 

Number of 
SNPs 

Removed 
Samples 

Remaining 
SNPs 

Remaining 

1  Initial Population NA NA 5,078 545,555 

2  MAF = 0 - 3,011 5,078 542,544 

3  > 10% missingness/SNP - 13,903 5,078 528,641 

4  >10% missingness/sample 109 - 4,969 528,641 

5  > 5% missingness/SNP - 10,707 4,969 517,934 

6  > 5% missingness/sample 16 - 4,953 517,934 

7  > 1% missingness/SNP - 41,641 4,953 476,293 

8  > 1% missingness/sample 97 - 4,856 476,293 
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9  Sex check 21 - 4,835 476,293 

10  Centers > 20% sex error rate 40 - 4,795 476,293 

11  Samples without reported ethnicity 1 - 4,794 476,293 

12  Ethnicity check 129 - 4,665 476,293 

13  Estimated relatedness > 0.2 88 - 4,577 476,293 

14  Ethnicities n < 250 187 - 4,147 476,293 

15  Hardy Weinberg (in any ethnicity) - 851 4,147 475,442 

16  MAF < 0.01 (in all ethnicities) - 191,418 4,147 284,024 

Removal of Non-informative SNPs 

Firstly, all SNPs with a minor allele frequency (MAF) of 0 were removed, as they 

have no ability to provide any additional information on explaining the variation of 

an outcome of event. A SNP with a MAF of 0 is known as a monomorphic SNP 

and signifies that all individuals in the study sample have the same genotype at 

that location. In ORIGN, 3,011 SNPs had a MAF of 0 and were removed.  

Genotyping Completeness and Accuracy 

Current genotyping technology is very reliable and accurate, producing data with 

high call rates and high accuracy97. However, it is still essential to consider both 

these measures, as reagents and instruments may vary between labs. Individual 

samples and individual SNPs were checked for completeness in parallel. Missing 

call rate is a measure of data completeness, but more importantly it is also a 

measure of data quality because genotype missingness is often non-random96. 

Samples with high missing rates often imply poor DNA quality and are therefore 

removed. Similarly, SNPs with high missing rates are often a result of poor primer 

design and non-specific DNA binding to a SNP probe, such SNPs must be 

removed96. SNPs with greater than 10% missing genotypes were removed first, 

followed by samples with greater than 10% missing genotypes. This process was 
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then repeated for a threshold of 5% and 1% (steps 2-8). Following this procedure, 

all SNPs and samples remaining exceeded a 99% genotype completion rate, which 

is the standard for GWAS. Originally, this process was reversed, such that low-

genotyped samples were removed first, followed by SNPs, and repeated at each 

threshold. However, this order resulted in removing 399 samples (7.9%) versus 

only 222 (4.4%) with the current order. In total, 66,251 SNPs were removed over 

the three thresholds.  

Sex Check 

A sex check was performed which compares the genetic sex of individuals to their 

self-reported sex. Sex checks are important in identifying cases of individual 

misrepresentation, careless error or possible sample mix-ups96. The sex check 

procedure consists of two steps. Firstly, individuals whose genetic sex did not 

match their reported sex were removed. PLINK assigns a genetic sex to each 

individual using the heterozygosity rates on the X-chromosome. If the X-

chromosome homozygosity rate is greater than 0.8, a male call is made; 

conversely, if the homozygosity rate is less than 0.2, a female call is made. If the 

homozygosity rate falls between 0.2 and 0.8, the genetic sex is said to be 

ambiguous. Samples who had an ambiguous genetic sex given by PLINK, were 

also compared to the sex assigned by the Illumina chip in the lab. If the Illumina-

assigned sex was inconsistent with the self-reported sex, they were removed. In 

total, 21 samples were removed due to inconsistences between self-reported and 

genetic sex. Secondly, the rates of these inconsistencies were examined for each 

data collection center. Data from centers with greater than 20% sex error rates in 

either sex were discarded. This was done to combat the likelihood of an individual 

reporting error or mix-up not being detected, by using sex alone as a metric. An 

additional 40 samples were removed due to one center having unexplainably high 

sex error rates.  

 



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

28 
 

Ethnicity Check 

A similar concept was followed for the investigation of population structure, which 

involved comparing the genetic ancestry with the self-reported ancestry. To do this, 

principal component analysis (PCA) was performed using the software GCTA102. 

PCA is a complex mathematical procedure used on multi-dimensional data which 

reveals the internal structure of the data through dimensionality reduction104. An 

algorithm is followed in such a way to preserve as much of the variance and 

information in the data as possible105. This is accomplished by identifying directions 

in the data where the variation is maximal, these directions are known as principal 

components106. The number of principal components is always less than or equal 

to the number of original variables or dimensions, in genotype data this is equal to 

the number of SNPs. The principal components, or axes of variation, are by 

definition orthogonal, and therefore uncorrelated107. Through the use of orthogonal 

transformation, a set of possibly correlated M samples can be converted into a set 

of values of K uncorrelated variables.  The first principal component (PC1) 

accounts for as much of the variability in the data as possible105. Each succeeding 

component must be uncorrelated to all preceding components while still explaining 

as much variance as possible. Each sample is mathematically projected onto each 

principal component resulting in a new data set of M samples and K projections. 

When investigating population structure, it is often sufficient to only consider the 

first two principal components because they have captured a significant portion of 

the variability in the data set106. This conveniently reduces the dimensionality 

considerably such that a large amount of the variability in the data can be viewed 

on an x-y axis by plotting PC1 against PC2, where each point is a sample in the 

data set. Individuals with similar inferred genetic ancestry will cluster together on 

the plot. By color-coding the plots based on self-reported ethnicity, those whose 

self-reported ethnicity differs from their inferred genetic ancestry can be 

identified107.  
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Prior to performing PCA on the ORIGIN data, one sample was removed because 

it had no associated reported ethnicity. Following this, the data was prepared for 

PCA. When investigating population structure, reference samples of known 

ethnicities should be selected and used as a control to ensure that PCA is 

computed correctly and that the study sample follows a reasonable structure108. 

This is accomplished by comparing the results of the two independent samples, 

such that the graphs (PC1 versus PC2) should exhibit similar patterns. The publicly 

available International HapMap Project data109 was selected as the reference for 

ORIGIN. Only SNPs common between HapMap and ORIGIN were chosen for the 

analysis to guarantee an accurate comparison. PCA was then executed using 

GCTA102 on 179,842 SNPs in 1,184 HapMap samples and 4,794 ORIGIN samples. 

As anticipated, the results of the HapMap PCA displayed clear, distinct clusters for 

each ethnicity (Figure 1-2). Likewise, the ORIGIN PCA displayed clusters of 

ethnicities, although not nearly as distinct (Figure 1-3). These results suggest that 

samples exist whose self-reported ethnicity was inconsistent with their genetic 

ethnicity. Therefore, samples that fell three standard deviations away from the 

mean of principal component one or two of their self-reported ethnicity were 

considered to have ancestral inconsistencies between genetics and self-

identification and were consequently removed; 129 samples were removed at this 

step. The clusters became more distinct after removing these individuals (Figure 

1-4). 
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Figure 1-2: Hap Map PCA. 
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Figure 1-3: Origin PCA pre-filtering 
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Figure 1-4: Origin PCA post-filtering. 
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and q are the frequencies of the two alleles (denoted A and a), respectively, and 

p2 and q2 represent the expected genotype frequencies for the homozygotes, AA 

and aa, and 2pq is the expected genotype frequency for the heterozygotes, Aa110. 

Departure from this equilibrium can be indicative of selection, mixture of 

heterogeneous populations, unexplained relatedness (such as an inbreeding 

population), population stratification, or genotyping errors (either misclassification 

or discriminatory drop of a given allele)97,111.  There is no universally recognized 

HW p-value threshold, but typically they range from 10-5 to 10-7, where a p-value 

smaller than the selected threshold indicates significant deviation from HW 

equilibrium. In ORIGIN, a threshold of 10-7 was used, and 851 SNPs significantly 

deviated from HW equilibrium and were consequently removed.  

Minor Allele Frequency 

For the final quality control step, SNPs were filtered based on minor allele 

frequency. This is a crucial step to ensure adequate statistical power when 

performing the association analyses37. For rare SNPs, alternative statistical 

methods must be utilized as power to detect a genome-wide association is 

extremely low even for large effect sizes (OR between 1.3 and 1.7) and with a 

reasonably sized dataset (n=10,000)97. (Analysis of rare SNPs will be explored as 

an independent project.) The threshold for the MAF filter varies based on sample 

size and expected effect size96. In ORIGIN, a threshold of 1% was used. Because 

MAF can vary depending on ancestral background, SNPs were only removed if 

they had a MAF less than 1% in all three ethnicities, rather than just a single ethnic 

group. This is done to preserve as many of the SNPs as possible. However, it is 

important to mention that association signals at SNPs with MAFs less than the 

specified threshold (1%) in any ethnic group will be interpreted with caution. The 

MAF filter removed 191,418 SNPs. This completed the quality control steps. The 

final dataset for association analyses contained 4,390 individuals and 284,024 

SNPs. 
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Final PCA Calculation for Adjustment 

Principal components were recalculated for all remaining study participants to use 

as adjustment covariates in the logistic and linear regression models. Before this 

computation, the number of SNPs and the choice of which SNPs to include must 

be determined. This decision is not straightforward. It is possible, albeit 

conceptually demanding, to include all SNPs in the database and would use all 

available information to infer genetic ancestry, as was the case with ethnicity 

check. However, this is not necessarily the best option at this step. A database 

which has been constructed using a whole-genome array will contain clusters of 

highly correlated SNPs and as a result may have a very strong influence on certain 

principal components, limiting their ability to detect and control for population 

structure96. This has been noted previously in a number of studies112,113. For this 

calculation, precise derivation of the individual principal components is crucial, as 

they are used to adjust for differences within ethnic groups96. Therefore, SNPs 

were pruned for linkage disequilibrium with a pairwise threshold of r2=0.5. 

Conversely, with ethnicity check, PCA is merely used to gain an understanding of 

the ethnic groups in the study population and confirm that genetic ancestry is 

relatively consistent with the reported ethnicity, therefore pruning is not necessary. 

Imputation 

Imputation is a method to statistically infer untyped genotypes to expand the set of 

SNPs available for association testing. It is accomplished through the use of a 

reference panel of individuals genotyped at a dense set of SNPs to predict 

unobserved genotypes in the study population, which was genotyped at only a 

subset of these SNPs28. The 1000 Genomes Project114 was used as the reference 

panel for ORIGIN. Imputation was performed using the software IMPUTE2115. Over 

10 million SNPs were imputed, allowing for comprehensive coverage of known 

genetic variants and the opportunity to meta-analyze with external studies 
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2 GENERAL HYPOTHESIS, OBJECTIVE, & APPROACH 

2.1 General Hypothesis 

We hypothesize that analysis of the three-way relationship between genetic 

variants, biomarkers and clinical events will identify novel biological pathways 

involved in cardiovascular disease and other health outcomes and posit that 

genetic analysis of an admixture population will provide new insights into the 

involvement of ancestry in health and disease. 

2.2 General Objective 

The overall objective of this PhD thesis is to identify novel biomarkers for 

cardiovascular disease and determine the impact of ancestry on biomarkers, in 

general.  

2.3 Rationale and Approach 

By combining information on genetic markers, plasma biomarkers, and clinical 

events there is an unprecedented opportunity to identify both novel and causal 

determinants of cardiovascular outcomes. Furthermore, there is opportunity to 

identify biomarker interactions and pathways given the extensive number of 

biomarkers analyzed. Currently, there is a relatively poor understanding of the 

biological role of many biomarkers, and there is much insight to be gained by 

studying biomarkers in parallel rather than individually. The proposed PhD project 

will therefore investigate the relationship between genetic variants, plasma 

biomarkers and clinical events using the ORIGIN data. We will use Mendelian 

randomization to identify causal mediators of disease (Chapter 3 and 4). Significant 

findings will be further investigated to understand the biology underlying the 

identified relationships and will also be verified where possible using independent 

cohorts and epidemiological analyses. Finally, we will employ admixture mapping 



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

48 
 

techniques to identify the role ancestry plays in determining biomarker levels and 

investigate the clinical implications of these findings (Chapter 5).     
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3.1 Forward 

Identification of causal markers of coronary artery disease (CAD) has led to 

tremendous advances in both prevention and treatment. While epidemiological 

studies have identified numerous biomarkers associated with CAD, these 

associations are limited by reverse causation and confounding such that it is often 

impossible to distinguish true causal biomarkers. Mendelian randomization (MR) is 

able to overcome these challenges by taking advantage of the random allocation 

of alleles from parents to offspring and is often used to confirm causality of known 

biomarkers. We adopted an innovative approach to identify novel, causal 

biomarkers of CAD by screening a comprehensive panel of 237 biomarkers in 

4,197 ORIGIN participants using MR.  

Our MR analysis identified six biomarkers to be associated with CAD. While four 

of these biomarkers have been previously linked to CAD, we provide the first report 

establishing blood colony stimulating factor 1 (CSF1) as a causal mediator of CAD 

and the first MR analysis of stromal cell derived factor 1 (CXCL12) as a novel 

biomarker for CAD. The MR results were corroborated through epidemiological 

association of CSF1 and CXCL12 levels with prospective MACE in ORIGIN 

(n=8,197), and analysis in the large UKBiobank cohort (n=343,735), whereby 

genetically elevated CSF1 and CXCL12 were both associated with increased risk 

of CAD. Both biomarkers are linked to inflammatory processes characteristic of 

atherosclerosis and consistent with previous reports, including results from the 

CANTOS study, showing that an intervention aimed at decreasing inflammation 

through interleukin-1 beta (IL-1β) inhibition can lead to lower rates of recurrent 

cardiovascular events. Notably, IL-1β is known to be an important upregulator of 

CSF1 levels, which we also confirmed using MR. Finally, we also showed a causal 

effect of CSF1 on CRP levels, again consistent with results of the CANTOS trial. 

Together these results suggest that canakinumab may work in part by reducing 

CSF1 levels.  
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3.2 Abstract 

BACKGROUND: Identification of biomarkers that cause coronary artery disease 

(CAD) has led to important advances in prevention and treatment. Epidemiologic 

analyses have identified many biomarker-CAD relationships, however, these 

associations may arise from reverse causation and/or confounding and therefore 

may not represent true causal associations. Mendelian randomization (MR) 

analyses overcome these limitations. 

OBJECTIVE: We sought to identify causal mediators of CAD through a 

comprehensive screen of 237 biomarkers using MR.  

METHODS: MR was performed by identifying genetic determinants of 227 

biomarkers in ORIGIN (Outcome Reduction with Initial Glargine Intervention) trial 

participants (N=4,147) and combining these with genetic effects on CAD from the 

CARDIoGRAM consortium (60,801 cases and 123,504 controls). Blood 

concentrations of novel biomarkers identified by MR were then tested for 

association with incident major adverse cardiovascular events (MACE) in ORIGIN.  

RESULTS: Six biomarkers were found to be causally linked to CAD after 

adjustment for multiple hypothesis testing. The causal role of four of these is well 

documented, whereas macrophage colony-stimulating factor 1 (CSF1) and stromal 

cell-derived factor 1 (CXCL12) have not previously been reported, to the best of 

our knowledge. MR analysis predicted an 18% higher risk of CAD per SD increase 

in CSF1 (OR=1.18, 95% CI 1.08 to 1.30; p=2.1x10-4) and epidemiologic analysis 

identified a 16% higher risk of MACE per SD (HR=1.16, 95% CI 1.09 to 1.23; 

p<0.001). Elevated CXCL12 levels were also identified as a causal risk factor for 

CAD with consistent epidemiological results. Furthermore, genetically predicted 

CSF1 and CXCL12 levels were associated with CAD in the UK Biobank 

(n=343,735).  



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

53 
 

CONCLUSIONS: We identified CSF1 and CXCL12 as causal mediators of CAD in 

humans. Understanding the mechanism by which these markers mediate CAD will 

provide novel insights into CAD and could lead to new approaches to prevention. 

Our results support targeting inflammatory processes and macrophages, in 

particular, to prevent CAD, consistent with the recent CANTOS (Canakinumab 

Antiinflammatory Thrombosis Outcome Study) trial. 
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3.3 Condensed Abstract 

Identification of causal markers of CAD has led to tremendous advances in both 

prevention and treatment. Using Mendelian randomization analyses, we identified 

CSF1 and CXCL12 as two new, causal biomarkers of CAD. These markers point 

to inflammation and macrophages, in particular, as important actors for CAD. Our 

results are consistent with previous reports, including results from the CANTOS 

study, showing that an intervention aimed at decreasing inflammation leads to 

lower rates of recurrent cardiovascular events. Our study supports a role for 

CXCL12 and CSF1 for both risk stratification and as therapeutic targets. 

FUNDING: Sanofi, Canadian Institutes of Health Research. 

KEYWORDS: Mendelian randomization; biomarker; coronary artery disease; 

genetics; CSF1; CXCL12 

clinicaltrials.gov: NCT00069784 
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3.4 Introduction 

Identification of the biological mediators of a disease can both increase our 

understanding of its pathogenesis and suggest novel ways to prevent and/or treat 

it. For example, recognition that both blood pressure and LDL-cholesterol levels 

are causally related to coronary artery disease (CAD) has led to major advances 

in prevention.(1, 2) Epidemiological studies have identified numerous biomarkers 

associated with CAD. However, even strong associations obtained from 

observational studies are not guaranteed to be causally related to CAD because 

of the risk of reverse-causation and confounding.(3)  

Mendelian randomization is a powerful genetic methodology that can be used to 

identify causal risk factors for CAD.(4) It is based on the principle that genetic 

variants are inherited randomly and independently of other risk factors for disease. 

If the levels of a particular risk factor (e.g. a biomarker) are affected by the presence 

of a genetic variant and if that variant also affects the incidence of a disease, the 

variant may be causing the disease by modulating the levels of the risk factor. The 

random distribution of the genetic variant at birth minimizes the possibility of 

confounding or reverse causation as explanations for the link between the 

biomarker and disease in the same way that the random allocation of a therapy in 

a randomized controlled trial minimizes this possibility.(5) These principles have 

allowed MR techniques to confirm LDL-cholesterol, interleukin-6 receptor, and 

lipoprotein(a) as causal biomarkers of CAD.(6–8)  

To date, MR methodology has been used to determine whether or not a particular 

biomarker is causally related to a clinical outcome. However, when combined with 

a large panel of biomarkers measured in a prospective study which accrued many 

clinical outcomes, it can also be used to identify new, unsuspected but causally 

related biomarkers. We therefore sought to identify such novel mediators of CAD 

by applying MR techniques to a comprehensive panel of 227 serum biomarkers 

covering cardiovascular, metabolic and inflammatory processes within the recently 
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completed Outcomes Reduction with an Initial Glargine Intervention (ORIGIN) 

trial.(9)  

3.5 Methods 

3.5.1 Study Group - ORIGIN 

The design and findings of the ORIGIN trial have been described in detail. Briefly, 

12,537 people with established cardiovascular risk factors who also had diabetes, 

impaired glucose tolerance, or impaired fasting glucose were studied. After random 

allocation to 2 therapies using a factorial design (basal insulin glargine versus 

standard care and omega 3 fatty acid supplements versus placebo) they were 

followed for a median of 6.2 years for cardiovascular events and other health 

outcomes. The ethics committee at each participating site approved the trial, and 

all participants provided written informed consent. As previously described(10) 

biomarker levels were analyzed in the serum of 8,401 people that was drawn at 

the beginning of the study. The analysis was done using a customized human 

discovery multi-analyte profile (MAP) on the Luminex 100/200 platform and the 

biomarkers were selected based on their implication in physiologic processes 

related to cardiovascular diseases.  

A subset of 5,078 ORIGIN individuals who consented to genetic analyses were 

genotyped on Illumina's HumanCore Exome chip. Standard quality control 

measures were assessed. After quality control, the sample consisted of 4,147 

participants and 284,024 SNPs from two ethnic groups (European and Latin 

American). Imputation was then performed on the post QC data through to predict 

unobserved genotypes in the study group. Over 30 million SNPs were imputed 

(using 1000Genomes data), allowing for comprehensive coverage of known 

genetic variants (a detailed description of quality control and imputation procedures 

is in the supplement). The summary level data, analytic methods, and study 

materials have been made available to other researchers for purposes of 
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reproducing the results or replicating the procedure. Key clinical characteristics of 

the study populations are shown in Supplementary Tables 1 to 3. 

3.5.2 CARDIoGRAM Consortium Data 

Genetic data on coronary artery disease and myocardial infarction (MI) was 

obtained and contributed by CARDIoGRAMplusC4D investigators and have been 

downloaded from www.CARDIOGRAMPLUS -C4D.org. Specifically, we used the 

most recent CARDIoGRAM genome-wide association data (released October 

2015), a meta-analysis of 48 genome-wide association studies with 60,801 cases 

and 123,504 controls, primarily of European descent (approximately 77%).(11) 

CAD outcome was defined by an inclusive CAD diagnosis, including MI, coronary 

stenosis >50%, chronic stable angina or acute coronary syndrome.(11)  

3.5.3 Statistical Analysis 

SNP association with biomarkers and CAD 

The analysis was restricted to biomarkers that are directly encoded by a gene(s) 

on the autosomal chromosome (i.e. chromosome 1-22). Five biomarkers were 

removed because they are products of genes on the X chromosome. An additional 

five biomarkers from our panel were hormones which are not a direct gene product 

(e.g. cortisol) and were also removed, leaving 227 biomarkers for analysis. SNP 

selection was then carried out in four steps. First, for each of our 227 biomarkers, 

we restricted our analysis to SNPs within 300 Kb of the gene(s) encoding the 

corresponding protein (or a protein component), thereafter referred to as cis 

associations (Supplementary Figure 1). The corresponding gene names for each 

biomarker in the ORIGIN panel were identified (a list of all biomarkers and their 

genes is found in Supplementary Table 4) and subsequently used to filter to only 

cis genotypes (a detailed description of the process is found in the supplement). 

After filtering, there were 1,067,955 SNP/biomarker cis pairs.  
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Second, association of cis SNPs with biomarker and CAD were determined. After 

removing SNPs not found in the CARDIoGRAM database or with minor allele 

frequency below 0.05, 397,140 SNPs were tested for association with their 

corresponding cis biomarker in ORIGIN. Linear regression of each SNP with each 

biomarker was performed, with biomarker concentration as the dependent 

variable. The regression models were first computed in each ethnic group 

separately, adjusting for age, sex, and the first five principal components, using 

SNPtest.(12) The ethnic specific models were meta-analyzed across the two 

ethnicities using fixed effects models to minimize the risk of confounding caused 

by population stratification.    

Third, cis SNPs with biomarker association p<0.01 were selected. Finally, SNPs 

were pruned for linkage disequilibrium at a stringent threshold of r2<0.1 using the 

1000 Genomes data (Europeans) to ensure associations retained for Mendelian 

randomization analysis were non-redundant (using PLINK(13)). SNPs were 

selectively prioritized based on the significance of the association with their 

biomarker. For each biomarker, the cis SNP with the most significant association 

with the biomarker was first retained and all SNPs in linkage (r2>0.1) with that SNP 

removed. This process was then repeated for any remaining SNPs. 1,880 cis 

SNP/biomarker associations remained after pruning (see Supplementary Figure 2 

for schematic of SNP and biomarker selection).  

Identification of blood mediators of CAD using Mendelian randomization  

A two sample MR was performed on 205 of the remaining 227 biomarkers, 

retaining only those biomarkers which had at least one significant cis SNP (p<0.01) 

and was also found in the CARDIoGRAM data. This threshold of p<0.01 for SNP 

associations with biomarkers was chosen in an effort to include all possible valid 

instruments. According to our two-sample MR, a less stringent threshold can be 

applied without increasing the risk of type-1 error.(14)  In other words, this 

threshold was selected to balance potential false-positive SNP-biomarker 

associations which will bias our results towards the null in a two-sample MR design, 
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versus including as much genetic variance as possible, which will increase 

power. For each biomarker, we used (1) the effect of the SNPs on their cis 

biomarker (calculated in ORIGIN), and (2) the effect of the SNPs on CAD from the 

CARDIoGRAM consortium as input variables for the MR analysis (Figure 3-1, 

Central Figure). MR associations were performed using the inverse-variance 

weighted (IVW) fixed effects method by regressing genetic effect estimates for 

CAD (dependent variable) on genetic effect estimates of biomarkers. To determine 

significance, a bootstrap method was used under the null hypothesis that the ratio 

of genetic effect estimates for CAD on genetic effect estimates for biomarkers is 0 

for all SNPs. Predicted effects on CAD were sampled from a normal distribution 

with mean and standard deviations as determined from CARDIoGRAM. A two-

tailed p-value was calculated using a z-test from 100,000 random simulations. 

Biomarkers were deemed significant after adjusting for multiple testing hypothesis 

(p<0.05/205). The MR association with MI was also assessed using MI specific 

estimates from CARDIoGRAM.  

Replication of MR findings in the UKBiobank 

Novel MR findings were replicated using a weighted genetic risk score (GRS) in 

the UKBiobank (UKB)(15) using 343,735 unrelated British individuals. Specifically, 

the allelic dosage at each variant site was weighted by the predicted change in 

biomarker level conferred per additional effect allele. Subsequently, the weighted 

contribution at each variant site was summed to create an overall score. Using 

these biomarker’s GRS, the association between CAD and genetically elevated 

biomarkers was tested using a logistic regression model with age and sex as 

covariates (see supplementary material for more details).  

Association of biomarker levels with MACE in ORIGIN 

Once significant biomarkers were identified by the MR analysis, we tested whether 

biomarker levels showed a consistent association with major adverse 

cardiovascular events (MACE) in ORIGIN, defined as nonfatal MI, nonfatal stroke 
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or cardiovascular death. This was assessed using Cox proportional-hazards 

models in all ORIGIN participants with biomarker data (i.e. individuals with and 

without genetic data were included). Incident MACE was used as the dependent 

variable and biomarker concentration as the independent variable of interest. 

Models were adjusted for age, sex and ethnicity to remain consistent with MR 

model adjustment. We also tested models further adjusting for traditional CAD risk 

factors as a sensitivity analysis, namely prior type 2 diabetes, body mass index 

(BMI), serum cystatin-c, current smoker, diagnosis of hypertension, and LDL. We 

removed individuals without specific ethnicity information resulting in a final sample 

of N=8,197. Subgroup analyses were performed to test heterogeneity between 

groups using logistic models adjusted for age, sex and ethnicity (where 

appropriate).  

Mendelian randomization association of biomarkers with other endpoints 

To explore the relationship between the biomarkers that were identified and 

established clinical risk factors for CAD we conducted additional MR analyses. 

Using publicly available consortia (Supplementary Table 5) we obtained genetic 

estimates for 11 CAD risk factors including: BMI, chronic kidney disease (CKD), 

diastolic blood pressure (DBP), systolic blood pressure (SBP), type 2 diabetes, 

fasting glucose, glycated hemoglobin (HbA1c), HDL-cholesterol, LDL-cholesterol, 

and triglycerides. MR associations were obtained using the same method as for 

CAD (described above). Additionally, CSF1 and CXCL12 SNPs were tested for 

their effect on the 236 remaining biomarkers using MR. In other words, for both 

CSF1 and CXCL12, 236 MR models were used to assess their causal effect on the 

236 remaining ORIGIN biomarkers. Specifically, the input variables for each MR 

were (1) the effect of SNPs on their cis biomarker (CSF1 and CXCL12) as the 

independent variable and (2) the effect of the same set of SNPs on an additional 

biomarker as the dependent variable. Statistical analyses were performed using R 

(version 3.0.1), unless stated otherwise. 
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Figure 3-1: Central Figure - CSF1 and CXCL12 as Causal Mediators of CAD 

Using MR. 

(Top) Mendelian randomization (MR) design. This study used MR to perform a 
comprehensive screen of 237 blood biomarkers for a causal effect on coronary 
artery disease (CAD). MR takes advantage of the random allocation of alleles from 
parents to offspring to inform on the causality of exposures on disease by using 
genetic variants as instrumental variables. It is robust to reverse causation and 
confounding, which often affects epidemiological associations. Specifically, the 
associations of [A] and [B] were used to estimate the causal effect of each 
biomarker coronary artery disease, represented by association [C]. (Bottom) 
Proposed mechanism for the beneficial effect of canakinumab on CAD. Using MR, 
our study identified blood colony-stimulating factor 1 (CSF1) and stromal cell–
derived factor 1 (CXCL12) as new, causal mediators of CAD, findings that were 
corroborated through epidemiological association of CSF1 and stromal cell–
derived factor 1 levels with prospective cardiovascular events in ORIGIN (Outcome 
Reduction With Initial Glargine Intervention). Results from the recent CANTOS 
(Canakinumab Antiinflammatory Thrombosis Outcome Study) trial have shown 
interleukin-1 beta inhibition with canakinumab leads to a reduction in both 
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cardiovascular events and C-reactive protein levels. In light of these findings, we 
confirmed the known up-regulating effect of interleukin-1 beta on CSF1 levels by 
using MR. Subsequent MR analyses also revealed CSF1 to be an up-regulator of 
C-reactive protein levels, again consistent with trial results. Taken together, these 
results point to CSF1 as a potential mediator of canakinumab’s beneficial effect. 
The figure shows a tentative mechanism for the beneficial effect of canakinumab, 
mediated in part through CSF1, where the red arrows represent novel associations 
and the black lines represent known relationships. Epi = epidemiological 
association. 

3.6 Results 

3.6.1 Identification of CAD biomarkers using Mendelian randomization 

Two-hundred twenty-seven serum biomarkers were tested for an association with 

CAD using a Mendelian randomization approach. After removing biomarkers 

without any significant cis SNP association, 205 biomarkers were retained for 

downstream analysis. In other words, for each of these 205 biomarkers there was 

at least one SNP within 300 Kb of the gene(s) encoding that same biomarker that 

was significantly associated (p<0.01) with biomarker levels. When the relationship 

between each of these SNPs and CAD was assessed using the CARDIoGRAM 

database, six biomarkers were significantly associated with CAD after Bonferroni 

correction for multiple hypothesis testing (p<0.05/205) (Table 3-1).  Four of these 

six (lipoprotein(a), apolipoprotein E, apolipoprotein C3 and interleukin-6 receptor) 

have been previously linked to CAD in many studies (6, 8, 16, 17), consistent with 

our findings. However, to the best of our knowledge, we report the first CAD MR 

study performed on stromal cell-derived factor 1 (CXCL12) and identified 

macrophage colony-stimulating factor (CSF1) as a novel mediator of CAD. As 

noted in Figure 3-2 and Supplementary Figure 3, the MR analysis suggested a 

deleterious effect of CSF1 (OR=1.18 per SD; 95% CI 1.08 to 1.30; p=2.1x10-4) and 

CXCL12 (OR=1.69 per SD; 95% CI 1.40 to 2.05; p=6.2x10-8) on CAD. Consistent 

estimates were also obtained using the IVW fixed-effects model using the ‘MR-

base’ package in R (see supplementary material). The CSF1 and CXCL12 MR 
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models included seven and two independent SNPs as instrumental variables (IVs) 

(p<0.01 and FDR<0.1), respectively. Although nominal to weak associations with 

each individual SNP were observed in CARDIoGRAM (see Supplementary Tables 

6 and 7), by pooling multiple, independent signals together in an IVW-MR design, 

significant estimates were obtained analogous to the pooling of effects across 

studies in a meta-analysis. MR associations of CSF1 and CXCL12 with MI were 

consistent with CAD estimates (Table 3-2). Regional plots of SNP associations 

with serum CSF1 and CXCL12 at the CSF1 and CXCL12 loci, respectively, are 

depicted in Supplementary Figure 4. Results remained significant when tested in 

each ethnic group separately and at a MAF threshold of 0.01 (see supplementary 

material).  

Table 3-1: Summary of top Mendelian Randomization results with CAD 
(p<0.05/205). 

 
OR per 1 SD increase in biomarker.  

Table 3-2: MR Association of CSF1 and CXCL12 serum levels with CAD risk 
factors and related endpoints. 

 

Biomarker Number 
of SNPs 

OR  (95% CI) P-value 

Lipoprotein(a) (LPA) 18 1.22 (1.20, 1.25) <1.00E-50 

Apolipoprotein E(APOE) 24 0.86 (0.84, 0.88) 1.92E-32 
Interleukin-6 receptor (IL6R) 29 0.94 (0.92, 0.95) 5.83E-18 
Stromal cell-derived factor 1 (CXCL12) 2 1.69 (1.40, 2.05) 6.16E-08 
Apolipoprotein C3 (APOC3) 6 1.17 (1.08, 1.26) 9.35E-05 
Macrophage colony-stimulating factor 1 (CSF1) 7 1.18 (1.08, 1.30) 2.07E-04 
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OR per 1 SD increase in biomarker.  

 
Figure 3-2: Association of CSF1 and CXCL12 with risk of CAD using MR. 

 
Variable CSF1 (per SD) CXCL12 (per SD)  

OR (95% CI) P-value OR (95% CI) P-value 
MI (yes/no) 1.21 (1.10, 1.34) 0.0001 1.59 (1.29, 1.95) <0.0001 
CKD (yes/no) 1.05 (0.89, 1.24) 0.56 0.72 (0.55, 0.96) 0.02 
Diabetes (yes/no) 1.08 (0.96, 1.21) 0.21 1.00 (0.80, 1.26) 0.99 
 β (95% CI) P-value β (95% CI) P-value 
Fasting Glucose (mmol/L) 0.04 (-0.001, 0.08) 0.06 -0.005 (-0.07, 0.06) 0.88 
HbA1c (%) 0.002 (-0.03, 0.04) 0.90 0.01 (-0.06, 0.07) 0.80 
HDL-cholesterol (SD) -0.07 (-0.12, -0.02) 0.007 0.02 (-0.06, 0.12) 0.58 
LDL-cholesterol (SD) 0.03 (-0.03, 0.08) 0.35 -0.04 (-0.14, 0.05) 0.31 
Triglycerides (SD) 0.01 (-0.04, 0.06) 0.78 0.01 (-0.07, 0.10) 0.73 
SBP (mmHg) -0.08 (-1.11, 0.96) 0.88 -1.65 (-3.47, 0.16) 0.07 
DBP (mmHg) -0.18 (-0.83, 0.48) 0.60 -1.72 (-2.88, -0.57) 0.003 
BMI (kg/m2) 0.02 (-0.02, 0.06) 0.24 -0.001 (-0.07, 0.07) 0.98 
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Forest plots depict a summary of the MR results for (A) CSF1 (A) and (B) CXCL12. 
A single SNP MR was conducted for each independent SNP (pairwise r2< 0.1). 
ORs were determined by the Wald method by regressing the effect estimates from 
the CAD association (from CARDIoGRAM) on the biomarker association (from 
ORIGIN). A two-tailed p-value was calculated using a z-test from 100,000 random 
simulations. The two SNPs in (B) were significantly different (p<0.05). 

An important assumption in MR studies is that the genetic variant does not affect 

the outcome other than through its influence on the exposure. Therefore, to assess 

for the presence of unmeasured horizontal pleiotropy (i.e. effects of the genetic 

variants beyond those on the biomarkers of interest), we utilized the MR-Egger(18) 

method where the y-intercept is allowed to float, rather than be fixed at zero. This 

method is only suitable when three or more SNPs are used as IVs and was 

therefore only applied to the CSF1 MR. We found no evidence of pleiotropy as 

determined by the significance of the y-intercept (p>0.05). As a sensitivity analysis, 

we used a leave-one-out strategy in which MR analyses were repeated, excluding 

one variant at a time. This technique may also only be applied to MRs with three 

or more SNPs. When applied to CSF1 data, consistent estimates were obtained 

for each SNP excluded (see Supplementary Table 8). To further explore the effect 

of these SNPs on their respective biomarkers, we tested them for expression 

quantitative trait loci in the GTEx dataset (www.gtexportal.org)(19). Notably, 2 of 

the 7 CSF1 SNPs included in the MR (rs9429558 and rs11579145) were 

significantly associated (p<0.05) with CSF1 expression in the aorta, with consistent 

direction of effects. We did not identify any associations in other relevant tissues. 

3.6.2 Validation of MR findings using UKBiobank 

All CSF1 and CXCL12 variants used in the original MR analyses were also imputed 

at high quality in the UKB cohort with average INFO score (as defined by IMPUTE2, 

where values near 1 indicate that a SNP was imputed with high certainty) 0.97 and 

0.98 for CSF1 and CXCL12 variants, respectively. No imputed variants had an 

INFO score below 0.9. MR results were corroborated using genetically predicted 

biomarker levels in the UKB with estimates obtained from ORIGIN. Genetically 
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elevated CSF1 and CXCL12 were both associated with an increased risk of CAD 

in UKB (CXCL12: 1.41 per SD, 1.13 to 1.76, p=0.002; CSF1: 1.12 per SD, 1.03 to 

1.22, p=0.01), consistent with MR findings using ORIGIN and CARDIoGRAM 

estimates. Consistent estimates were obtained after removing 17,203 individuals 

with diabetes (CXCL12: 1.36 per SD, 1.11 to 1.79, p=0.004; CSF1: 1.09 per SD, 

0.99 to 1.19, p=0.08). 

3.6.3 Association of CSF1 and CXCL12 concentration with MACE in 
ORIGIN 

The MR-generated hypothesis that these biomarkers promoted CAD was then 

tested using the ORIGIN data. We therefore assessed the epidemiological 

relationship of baseline CSF1 and CXCL12 with MACE. We found that increased 

levels of blood CSF1 and CXCL12 were significantly associated with an increased 

risk of incident MACE in models adjusting for age, sex, ethnicity (CSF1: hazard 

ratio (HR)=1.30 per SD; 95% CI, 1.23 to 1.37; p<0.0001 and CXCL12: HR=1.15 

per SD; 95% CI, 1.08 to 1.21; p<0.0001). Consistent results were also observed in 

models fully adjusted for CAD risk factors provided in the supplementary material. 

To understand potential thresholds for risk stratification, we performed receiver 

operating characteristic (ROC) curves and determined the optimal threshold for 

each biomarker. Our analysis revealed optimal thresholds of 0.72 ng/mL and 3.45 

ng/mL for CSF1 and CXCL12, respectively (Figure 3-3 and Supplementary Figure 

5). Both CSF1 and CXCL12 improved discrimination of MACE in a model adjusting 

for the same co-variates included in the fully adjusted model (i.e. age, sex, 

ethnicity, prior diabetes, BMI, smoking status, hypertension and 

hypercholesterolemia) (CSF1: Net Reclassification Index (NRI)=0.235, p<0.0001; 

CXCL12: NRI=0.084, p=0.004). As a sensitivity analysis, we also tested for 

association after removing non-fatal stroke from the MACE composite to create a 

better proxy for coronary outcomes, with similar results for both CSF1 (HR=1.18 

per SD; 95% CI, 1.11 to 1.26; p<0.0001) and CXCL12 (HR=1.10 per SD; 95% CI, 
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1.03 to 1.16; p=0.003). We tested for an interaction between the ORIGIN treatment 

arms and the effect of CSF1 and CXCL12 on MACE, and did not identify significant 

interaction for either biomarker with either treatment arm in a survival model 

adjusting for age, sex, and ethnicity (pinteraction >0.05). Finally, we performed 

subgroup analyses to assess the consistency of the association of CSF1 and 

CXCL12 concentration with MACE. No significant difference among subgroups 

was observed after adjustment for multiple hypothesis testing (Figure 3-4).   

 
Figure 3-3: Kaplan-Meier curve for MACE-free survival according to CSF1 and 

CXCL12 levels. 

Groups are defined as concentration above or below median biomarker level 0.72 
ng/mL and 3.45 ng/mL for CSF1 and CXCL12, respectively. These thresholds were 
chosen to maximize discrimination based on ROC analysis. Number at risk for 500 
day intervals are presented below each plot. Figure represents MACE survival 
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curves for CSF1 (panel A) and CXCL12 (panel B) using unadjusted models. HR 
(95% CI)  indicates the unadjusted risk of biomarker level above threshold versus 
below. MACE was defined as nonfatal myocardial infarction, nonfatal stroke or 
cardiovascular death. 

 

 
Figure 3-4: Subgroup analysis for association of CSF1 and CXCL12 levels with 

risk of MACE. 

Models are adjusted (where appropriate) for age, sex and ethnicity. Subgroups 
were as follows: age (=<65, >65), sex (male, female), baseline diabetes status 
(yes/no), obese (BMI>=30, BMI<30), current smoker, hypertension diagnosis, and 
hypercholesterolemia (LDL-cholesterol >4.5 mmol/L, LDL-cholesterol=<4.5 
mmol/L). 

 

3.6.4 Association of CSF1 and CXCL12 with CAD risk factors and other 
biomarkers using Mendelian randomization 

We assessed whether CSF1 and CXCL12 affect the concentration of other 

biomarkers or CAD risk factors using MR analysis. We identified an association 

between CSF1 and C-reactive protein (CRP), whereby increased CSF1 leads to 
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increased CRP levels (0.47 SD CRP per 1 SD CSF1; 95% CI, 0.21 to 0.73, 

p=0.0002). No other biomarkers were significant for CSF1 or CXCL12 in the MR 

analysis. We also tested the effect of CSF1 and CXCL12 on 11 cardiovascular risk 

factors and endpoints (Table 3-2). We found no significant associations after 

adjusting for multiple hypothesis testing (p<0.05/11). Because CSF1 is known to 

be upregulated by interleukin-1 beta (IL-1β)(20–23) and in light of the protective 

effect of IL-1β antagonist canakinumab on CAD in the CANTOS trial(24), we also 

tested for a causal effect of blood IL-1β on CSF1 and CXCL12 using MR. Using 

genetic variants at the IL1B locus as IVs in the MR, we identified a nominal 

association between IL-1β and CSF1 (0.31 SD CSF1 per 1 SD IL-1B; 95% CI, -

0.03 to 0.64, p=0.07) suggestive of a causal role for IL-1β in regulating CSF1 levels. 

However, statistical power was limited as IL-1β levels were below the detection 

threshold in 93% of ORIGIN participants. We did not identify an association with 

CXCL12 (p=0.22).  

3.7 Discussion 

In the current report, we used Mendelian randomization to screen a comprehensive 

panel of 227 blood biomarkers to identify potential causal mediators of CAD. We 

identified blood macrophage colony-stimulating factor 1 and stromal cell-derived 

factor 1 as mediators of CAD, and confirmed a role for lipoprotein(a), interleukin-6 

receptor, apolipoprotein C3 and apolipoprotein E. Increased serum CSF1 and 

CXCL12 were found to be associated with an increased risk of CAD and these 

findings were corroborated in UKB using genetically predicted biomarker levels 

against CAD events. We further showed a consistent association between serum 

concentrations of both novel biomarkers and MACE in ORIGIN, confirming their 

deleterious effects. Our results suggest increased CSF1 and CXCL12 

concentration are causally related to cardiovascular events, paving the way for 

both risk stratification and therapeutic intervention in susceptible patients.  
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Macrophage colony-stimulating factor 1 is a cytokine and a hematopoietic growth 

factor which regulates macrophage survival, differentiation, proliferation and 

migration from precursor hematopoietic stem cells. Blood CSF1 is detectable under 

normal conditions and is expressed by several cell types, including endothelial 

cells, macrophages and smooth muscle cells.(25) Multiple studies have shown 

CSF1 to play a role in atherosclerosis formation and to be actively expressed in 

atherosclerosis lesions.(26, 27) Additionally, osteopetrotic (op/op) mutant mice 

lacking functional CSF1 have been shown to be dramatically protected against 

atherosclerosis.(28) These models have also demonstrated CSF1 as being 

involved in monocyte recruitment and survival in atherosclerosis plaque(29). More 

recently, a large scale proteomic analysis identified CSF1 as a new risk marker for 

ischemic stroke in two large, independent studies(30), consistent with our findings 

in ORIGIN. Together with our results, these data suggest a causal, pro-

inflammatory role for CSF1 in the development of CAD. Indeed, recent results from 

the CANTOS trial have identified inflammation as being an important and 

independent actor in cardiovascular disease. Specifically, canakinumab, an IL-1β 

inhibitor with anti-inflammatory effects, was associated with significantly lower 

rates of recurrent cardiovascular events(24). Remarkably, independent studies 

have shown IL-1β to be an important upregulator of CSF1 levels(20–23) which is 

consistent with our MR findings. Our MR analysis also points to CSF1 as being a 

causal regulator of CRP levels, consistent with this notion and the inhibitory effect 

of canakinumab on CRP. These results point to CSF1 as a tentative link between 

IL-1β and the protective effect of canakinumab and suggest that individuals with 

high CSF1 are at increased risk for CAD (Figure 3-1, Central Figure). 

Stromal cell-derived factor 1 (CXCL12) is a chemokine which binds to the receptor 

encoded by CXCR4 and has a prominent role in leukocyte recruitment and 

hematopoietic stem cell functions.(31) CXCL12 has been thoroughly examined in 

the context of atherosclerosis and has been shown to be highly expressed by 

several cell types of importance in CAD such as smooth muscle cells and 
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endothelial cells of atherosclerotic plaques.(32, 33) However, current experimental 

data in mice is inconclusive regarding the biological effect of CXCL12 and its ligand 

(CXCR4) in atherosclerosis, suggesting a complex cell and context-specific 

role.(34) Genetic studies have identified the CXCL12 locus as a novel region in 

CAD, with risk increasing alleles being also associated with increased CXCL12 

gene expression and levels.(35) The top CXCL12 SNP previously associated with 

CAD (rs1746048) was not included in the MR analysis present here because it did 

not pass our significance threshold (p<0.01), although it was nominally associated 

with CXCL12 levels (p=0.03). However, we report two novel CXCL12 SNPs 

independent of those previously identified (r2<0.1 for both SNPs), which show 

consistent effects with CAD according to our MR. Additionally, consistent 

associations have been reported between increased serum CXCL12 and incident 

myocardial infarction and CAD, and also recurrent events in patients with CAD.(36, 

37) Taken in combination with our MR estimates, these data support the causal 

association of higher CXCL12 levels with development of CAD and MI.  

There are limitations to our study which need to be taken into consideration. First, 

there may be issues of statistical power. Although we can be confident in the six 

associations found, we cannot rule out a causal role of other biomarkers with CAD. 

For example, we did not detect a significant association between ApoB and CAD 

after adjusting for multiple hypothesis testing in our MR analysis (p=0.029). This 

relationship has been seen and replicated in other, larger, MR studies.(38) One 

explanation for this observation could be due to our two sample MR study design, 

where genetic estimates were obtained from independent populations. In such a 

design, weak IVs (in this case weak associations of genetic variants with ApoB) 

results in estimates which are biased toward the null hypothesis, reducing the 

likelihood of type 1 error, and as a consequence, decreasing power.(39) Also, while 

our results point to a causal role of CSF1 and CXCL12 in CAD, the results do not 

specifically address in which tissue the effect may be mediated.  Additionally, 

genetic pleiotropy is a major consideration and limitation to Mendelian 
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randomization studies. This phenomenon occurs when a genetic variant has other 

effects beyond its effect on the biomarker being studied. If present, interpretation 

of results can be difficult. We mitigated this source of bias by limiting our 

investigation to variants at or near the gene coding for the biomarker of interest. 

Furthermore, associated loci were individually inspected for proximity to other 

potential genes. We found no nearby genes to the CSF1 and CXCL12 loci which 

were plausible sources of pleiotropy and MR-Egger revealed no significant source 

of pleiotropic bias in the CSF1 MR. However, we were unable to test CXCL12 in 

the MR-Egger framework as only two IVs were utilized in the MR. Finally, it is worth 

noting that the MR analysis investigated CAD as the primary endpoint while our 

corroborated epidemiological associations were on prospective MACE. Although 

the estimates from the two models were directionally consistent, the magnitudes 

were different, specifically for CXCL12. This may be a result of confounding in the 

epidemiological association, difference in the study groups, or due to the 

differences in the two outcomes analyzed.  

Identification of CAD risk factors is instrumental to further our understanding of the 

disease, evaluate its risk and guide treatment. Using Mendelian randomization, we 

have investigated a comprehensive panel of biomarkers for involvement in CAD. 

Our study presents the first MR analysis of CXCL12 and identifies CSF1 as a novel 

causal mediator of CAD, consistent with previous model systems and the 

inflammatory role of these biomarkers. Notably, the CANTOS trial has recently 

shown that an intervention aimed at decreasing inflammation leads to lower rates 

of recurrent cardiovascular events(24, 40). Indeed, our results suggest CSF1 

mediates, at least in part, the beneficial effect of canakinumab on CAD identified 

in CANTOS. Increased serum CSF1 and CXCL12 concentrations represent 

independent mechanisms leading to CAD, which can be assessed through a 

simple blood test. Future research should be aimed at identifying the causal 

mechanisms and whether interventions targeted at reducing the CSF1 and CXL12 

levels can reduce CAD.  
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3.8 Concluding Remarks 

3.8.1 Competency in Medical Knowledge 

Identification of causal markers of CAD has led to tremendous advances in both 

prevention and treatment, however epidemiological studies are limited by reverse 

causation and confounding such that it is often impossible to distinguish true causal 

biomarkers. Mendelian randomization, however, is immune to these limitations. A 

comprehensive investigation of 237 biomarkers identified CXCL12 and CSF1 as 

causal CAD markers using Mendelian randomization.  

3.8.2 Translational Outlook 

Our results suggest the clinical utility of CXCL12 and CSF1 for risk stratification 

and the development of interventions targeted to lower these biomarkers for 

prevention and reduction of CAD. Our data also point to CSF1 as a potential 

mediator of the protective effect of canakinumab on CAD. 
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4.1 Forward 

There are limited options to slow the progression of chronic kidney disease (CKD). 

Inhibition of the renin-angiontensin aldosterone system (RAAS) remains the 

primary intervention to preserve kidney function, yet the exact mechanism is not 

fully understood. In this report, we propose an innovative approach to identify 

novel, causal biomarkers of CKD by screening a comprehensive panel of 237 

biomarkers in ORIGIN participants using Mendelian randomization (MR). 

Our MR analysis identified human epidermal growth factor receptor 2 (HER2) as a 

causal mediator of CKD. Further MR exploration of the HER2 pathway also 

revealed ACE as a regulator of HER2 levels. Both MR findings were then 

corroborated in epidemiological analyses using blood HER2, incident CKD and BP-

lowering medication data in ORIGIN. Taken together, our findings implicate HER2 

as a mediator of ACE-inhibitors’ protective effect on CKD and as a marker which 

may help reveal patients likely to benefit from ACE-inhibition. Furthermore, these 

findings suggest HER2-inhibition as a potential novel treatment for CKD, which 

may be applied through the use of HER2-inhibitors (e.g. gefitinib). We also 

identified uromodulin (UMOD) as a causal factor of CKD. Additional exploration of 

UMOD concentration in an independent sample of healthy nephrectomy donors 

found a nearly halving of plasma UMOD after transplant, compared with before. As 

GFR is preserved in these donors, these findings position UMOD as the first blood 

biomarker of kidney mass, to the best of our knowledge.  

In summary, we found strong evidence for a causal relationship of UMOD and 

HER2 on CKD using a novel MR-based approach. Our results implicate HER2 as 

the mediator by which ACE-inhibitors are involved in CKD prevention, paving the 

way for novel therapeutic options as HER2 inhibitors are already clinically 

available. We further found UMOD to be a first blood marker of kidney mass. This 

manuscript was published in the Journal of the American Society of Nephrology in 

April 2018, Volume 29, Issue 4 (PMID: 29511113). Hertzel Gerstein and Guillaume 
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4.2 Abstract 

BACKGROUND: Identification of biomarkers for chronic kidney disease (CKD) 

may lead to important advances in both prevention and treatment, particularly if 

they are causally linked. Many biomarkers have been epidemiologically linked with 

CKD, however, the possibility that such associations may be due to reverse 

causation or confounding limit their utility. This limitation can be overcome using a 

Mendelian randomization (MR) approach. We therefore used this technique to 

identify novel, causal mediators of CKD.   

METHODS: MR was performed by first identifying genetic determinants of 227 

protein biomarkers assayed in 4,147 ORIGIN trial (Outcome Reduction with Initial 

Glargine Intervention) participants with early or pre-diabetes, and assessing effects 

of these biomarkers on CKD in the CKDGen consortium (N=117,165, 12,385 

cases) using the Wald method. The relationship between the serum concentration 

of each biomarker identified using this approach and incident CKD in ORIGIN 

participants was then estimated.  

FINDINGS: Uromodulin (UMOD) and  human epidermal growth factor receptor 2 

(HER2) were identified as novel, causal mediators of CKD using MR (UMOD: 

OR=1.30 per SD; 95% CI 1.25 to 1.35; p<5x10-20; HER2: OR=1.30 per SD; 95% 

CI 1.14 to 1.48; p=8.0x10-5). Consistent with the MR findings, blood HER2 was 

also associated with CKD events in ORIGIN (OR=1.07 per SD; 95% CI, 1.01 to 

1.13; p=0.01). Additional exploratory MR analyses identified Angiotensin 

converting enzyme (ACE) as a regulator of HER2 levels (β=0.13 per SD, 95%CI 

0.08 to 0.16, p=2.5x10-7). This latter finding was corroborated by an inverse 

relationship between ACE-inhibitor use and HER2 levels (0.25 SD decrease with 

ACE-inhibition, 95%CI -0.30 to -0.20, p<5x10-16). 
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INTERPRETATION: UMOD and HER2 are independent causal mediators of CKD 

in humans, and HER2 levels are regulated in part by ACE. Both these biomarkers 

are potential therapeutic targets for CKD prevention.  
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4.3 Introduction 

Chronic kidney disease (CKD) is a growing public health problem that increases 

the risk of cardiovascular disease, kidney failure and other complications1. 

Whereas glucose lowering, blood pressure lowering, and therapies that target the 

renin-angiotensin-aldosterone system (RAAS)2 can slow progression of CKD, the 

mechanism(s) by which they work are not fully understood. Elucidation of these 

and other CKD-related mechanisms may identify novel therapies, and the 

identification of causal biomarkers for CKD represents one promising approach. 

Unfortunately, candidate biomarkers identified using traditional epidemiological 

approaches may be confounded with, or caused by other unmeasured biomarkers 

or mechanisms. Under a strict set of assumptions, Mendelian randomization (MR) 

can overcome these problems3.   

MR is a powerful genetic methodology that is based on the principle that genetic 

variants are inherited randomly and independently of other risk factors for disease. 

If the levels of a particular biomarker are affected by the presence of a genetic 

variant, and if that variant also affects the incidence of a disease, the variant may 

be causing the disease by modulating the levels of the risk factor. The random 

distribution of the genetic variant at birth minimizes the possibility of confounding 

or reverse causation as explanations for the link between the biomarker and 

disease, in the same way that the random allocation of a therapy in a randomized 

controlled trial minimizes this possibility.4 These principles have been successful 

in identifying risk factors that are causal for CVD and biomarkers identified using 

MR have been validated in randomized trials of therapeutic agents5. Specifically, 

MR techniques have confirmed LDL-cholesterol, interleukin-6 receptor, and 

lipoprotein(a) as causal biomarkers of coronary artery disease.6–8 Whereas there 

are fewer examples of MR in the field of nephrology, this approach has recently 

identified a causal effect of lower iron and ferritin levels on decreased kidney 
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function and has ruled out a causal relationship between fetuin-A and mortality in 

patients on dialysis9,10. 

MR methodology has traditionally been used to determine whether or not a 

candidate biomarker is causally related to a clinical outcome. However, when 

combined with a large panel of biomarkers measured in a prospective study which 

accrued many clinical outcomes, it can also be used to identify new, unsuspected 

biomarkers that are likely to be causally related to the clinical outcome. We 

therefore sought to identify such CKD biomarkers by applying MR techniques to a 

comprehensive panel of 237 biomarkers covering cardiovascular, metabolic and 

inflammatory processes within the recently completed Outcomes Reduction with 

an Initial Glargine Intervention (ORIGIN) trial that was performed in people with 

type 2 diabetes or pre-diabetes.11  

4.4 Results 

4.4.1 Identification of CKD biomarkers using MR 

Two-hundred twenty-seven serum biomarkers were tested for an association with 

CKD using a MR approach. After removing biomarkers without any significant cis 

SNP associations with MAF>0.05 (according to CKDGen), 197 biomarkers were 

retained for downstream analysis. After MR analysis, two biomarkers were found 

to be significantly associated with CKD after Bonferroni correction for multiple 

hypothesis testing (p<0.05/197), namely  uromodulin (UMOD) and human 

epidermal growth factor receptor 2 (HER2). As noted in Figure 4-1, the MR analysis 

suggested a deleterious effect of UMOD (odds ratio (OR)=1.30 per SD; 95% CI 

1.25 to 1.35; p<5x10-20, number of SNPs=17) and HER2 (OR=1.30 per SD; 95% 

CI 1.14 to 1.48; p=8.0x10-5, number of SNPs=5) on CKD. All SNPs used in the MR 

models had p<0.01 and FDR<0.05 for the SNP-biomarker associations 

(Supplemental Tables 1 and 2). Regional plots of SNP associations with serum 

UMOD and HER2 at the UMOD and ERBB2 loci, respectively, are depicted in 
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Supplementary Figure 1. To assess for the presence of unmeasured horizontal 

pleiotropy, we utilized the MR-Egger12 method where the y-intercept is allowed to 

float, rather than be fixed at zero. We found no evidence of pleiotropy as 

determined by the significance of the y-intercept (p>0.05). As a sensitivity analysis, 

we use a leave-one-out strategy in which MR analyses were repeated, excluding 

one variant at a time and consistent estimates were obtained for each SNP 

excluded (see Supplemental Tables 3 and 4 material for full results).  

 
Figure 4-1: Association of UMOD and HER2 with risk of CKD using MR. 

UMOD and HER2 identified as novel markers of CKD using MR. Forest plots depict 
a summary of the MR results for UMOD (A) and HER2 (B) at the UMOD and 
ERBB2 locus, respectively. A single SNP MR was conducted for each independent 
SNP (pairwise r2<0.1). ORs were determined by the IVW method by regressing 
the effect estimates from the CKD association (from CKDGen) on the biomarker 

A

B
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association (from ORIGIN). A two-tailed p-value was calculated using a z-test from 
100,000 random simulations.   
 

4.4.2 Association of UMOD and HER2 concentration with CKD in ORIGIN 

The MR-generated hypothesis that these biomarkers promoted CKD was then 

tested using the ORIGIN data. We therefore assessed the epidemiological 

relationship of baseline UMOD and HER2 with incident CKD. We found that 

increased levels of blood UMOD was significantly associated with decreased with 

risk in CKD, while increased levels of blood HER2 were associated with an 

increased risk of incident CKD in models adjusting for age, sex, and ethnicity 

(UMOD: OR=0.83 per SD; 95% CI 0.78 to 0.88; p<0.0001 and HER2: OR=1.07 per 

SD; 95% CI, 1.01 to 1.13; p=0.01). Consistent results were also observed in 

models fully adjusted for CKD risk factors and are provided in the supplementary 

material. We performed subgroup analyses to assess the consistency of the 

association of UMOD and HER2 concentration with CKD. No significant interaction 

across subgroups was observed after adjustment for multiple hypothesis testing 

(Figure 4-2). 

 

                                                                   Odds of CKD According to HER2 Level
Subgroup

Age
   =<65
   >65
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   Male
   Female

Diabetes
   No
   Yes

Obese
   No
   Yes

Current smoker
   No
   Yes

Hypertension
   No
   Yes

Hypercholesteremia
   No
   Yes

Overall

N

4673
3524

5419
2778

1503
6694

4476
3713

3460
4737

1729
6468

7521
557

8197

CKD (%)

0.19
0.22

0.20
0.20

0.15
0.22

0.20
0.21

0.20
0.21

0.17
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0.20
0.19
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1.10 [1.02, 1.18]
1.04 [0.95, 1.13]

1.11 [1.04, 1.18]
1.00 [0.91, 1.10]

0.99 [0.85, 1.15]
1.08 [1.02, 1.15]

1.09 [1.01, 1.17]
1.04 [0.96, 1.12]
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1.07 [1.01, 1.13]
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P−value
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Heterogeneity
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0.91

0.79

0.9 1 1.1 1.2 1.3
OR

Odds of CKD According to UMOD Level
OR [95% CI]

0.82 [0.76, 0.88]
0.84 [0.77, 0.92]

0.84 [0.78, 0.90]
0.82 [0.75, 0.90]

0.81 [0.70, 0.95]
0.84 [0.79, 0.90]
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0.83 [0.76, 0.90]

0.84 [0.77, 0.91]
0.82 [0.76, 0.89]

0.82 [0.72, 0.94]
0.84 [0.79, 0.89]

0.83 [0.79, 0.88]
0.87 [0.70, 1.08]

0.83 [0.88, 0.78]
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6.03e−07

3.61e−03
6.08e−08
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Heterogeneity

0.62

0.71

0.68

0.96

0.77

0.75

0.70
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OR
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Figure 4-2: Subgroup analysis for association of UMOD and HERs levels with risk 

of CKD in ORIGIN. 

Subgroup analysis for the epidemiological association of serum UMOD and HER2 
levels with risk of CKD in ORIGIN.  Models are adjusted (where appropriate) for 
age, sex and ethnicity. Subgroups were as follows: age (=<65, >65), sex (male, 
female), baseline diabetes status (yes/no), obese (BMI>=30, BMI<30), current 
smoker, hypertension diagnosis, and hypercholesterolemia (LDL-cholesterol >4.5 
mmol/L, LDL-cholesterol=<4.5 mmol/L). 

 

4.4.3 Association of UMOD with kidney mass in healthy nephrectomy 
patients 

We assessed for the possibility that reverse causation could play a role in the 

apparent discrepant epidemiological association of UMOD with CKD (OR=0.83) 

and the evidence for UMOD as a CKD risk factor found in the MR (OR=1.30). 

Because UMOD is exclusively synthesized in the kidney, we hypothesized that 

UMOD is linked to a reduced kidney mass, and therefore lower UMOD expression, 

in CKD patients. Therefore, the hypothesis that UMOD concentration is a marker 

of kidney mass, rather than CKD progression, was explored in 10 healthy kidney 

donors. Briefly, participants had to meet clinical criteria for kidney donation, 

namely, normal blood pressure, non-smoker,  eGFR>80mL/min and absence of 

major chronic disease. Mean age was 49.9 years and 30% were male (see 

supplementary material for further details). Indeed, UMOD blood levels were 

almost halved after uninephrectomy as compared to the pre-surgery period 

(𝜇=217.7 ng/mL, SD=75.6 vs 𝜇=129.5, SD=39.1; p=7.6x10-5, paired samples t-test) 

(see Figure 4-3). We also tested UMOD levels in urine (indexed to creatinine) and 

found a significant positive, correlation between blood and urine levels (R2=0.29, 

p=0.018). 
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Figure 4-3: Difference between UMOD concentration pre and post nephrectomy 

in otherwise healthy patients. 

Decreased serum UMOD concentration observed after nephrectomy compared 
with before. Figure A depicts concentration of blood UMOD concentration (ng/mL) 
in 10 otherwise healthy nephrectomy patients, before (left) and after (right) surgery. 
Notably, every patient showed a decrease in UMOD after nephrectomy, (paired t-
test p=7.6x10-5). Figure B illustrates the box-plot of UMOD levels at the two time-
points. 

4.4.4 Identification of regulators of UMOD and HER2 using MR 

To explore the mechanism by which UMOD and HER2 exert their effect on CKD, 

we tested the for a causal effect of all other biomarkers on UMOD and HER2 levels 

using MR. Specifically, we investigated whether any of the other biomarkers play 

a causal role in the regulation of UMOD and HER2 through a similar MR analysis 

using cis SNPs for the biomarker under study (where possible) as instrumental 
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variables. Significant cis regulators (p<0.001) were identified for 169 biomarkers 

(decreased from 197 due to the more stringent threshold) and were thus tested for 

their effect on UMOD and HER2. No significant biomarkers were found as 

regulators of UMOD (p<0.05/169). However, after adjusting for multiple hypothesis 

testing (p<0.05/169), angiotensin-converting enzyme (ACE) was identified as a 

causal regulator of serum HER2 levels (β=0.13 per SD, 95%CI 0.08 to 0.16, 

p=2.5x10-7). We identified 16 cis ACE SNPs which were associated with ACE 

levels at p<0.001 to be used as instrumental variables in the MR analysis. We also 

tested for pleiotropic effects of UMOD and HER2 with other CV traits using MR, 

but found no significant associations after multiple hypothesis testing (data not 

shown). 

Following the identification of ACE as a causal mediator of HER2, we decide to 

further explore this relationship by investigating the effect of  different classes of 

blood pressure (BP) lowering medications on HER2 and ACE concentration 

ORIGIN. The following medications were assessed as dichotomous (yes/no) 

variables: ACE-inhibitors or angiotensin-II receptor blockers (ARB), diuretics 

(grouped as one variable), aldosterone inhibitors, beta-blockers, calcium channel 

blockers (CCBs). Specifically, a linear model was used, with HER2 or ACE 

concentration as the dependent variable, and use of medication (yes/no) as the 

independent variable (Table 4-1). The models were adjusted for age, sex, ethnicity, 

hypertension diagnosis, and prior renal disease, HER2 models were further 

adjusted for serum ACE levels. We identified a significant association between use 

of ACE-inhibitors/ARBs and HER2 concentration, indicating lower levels of HER2 

in patients using ACE-inhibitors or ARBs (β=0.25 SD decrease with ACE-inhibition, 

95%CI -0.30 to -0.20, p<5x10-16), consistent with our MR findings indicating ACE 

increases HER2 levels. Conversely, no other BP medication was associated with 

lower levels of ACE after adjusting for multiple hypothesis testing (p<0.05/5), in 

fact, diuretics showed a marginal increase in HER2 levels consistent with an 

activation of the renin-angiotensin system with diuretics. Additionally, ACE-
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inhibitors/ARBs, diuretics, and beta blockers were associated with increased levels 

of ACE, consistent with the RAAS inhibitory feedback loop. Aldosterone blockers 

and CCBs showed no effect on ACE levels after adjusting accounting for test 

multiplicity (p<0.05/5). A summary of ACE/HER2 findings and their effect on CKD 

risk can be seen in Figure 4-4. 

Table 4-1: Epidemiological association of blood pressure medications on HER2 
serum levels. 

Medication No. on Medication β (95% CI) P-value 
ACE-inhibitors/ARBs 5641 -0.25 (-0.30, -0.20) <5x10-16 

Diuretics 1309 0.08 (0.02, 0.13) 0.0096 
Aldosterone 
antagonists 275 0.12 (0.008, 0.24) 0.037 

Beta blockers 4426 -0.04 (-0.09, 0.001) 0.054 
Calcium channel 
blockers 1561 -0.02 (-0.07, 0.04) 0.54 

Estimates are given for medication use (yes/no) using HER2 concentration as a 
dependent variable. Models were adjusted for age, sex, ethnicity, hypertension, 
prior renal disease, and blood ACE levels.  

β given as difference between those on medication compared to those not on 
medication. 
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Figure 4-4: Summary of ACE/HER2 findings. 

Summary of ACE/HER2 findings and their effect on CKD risk. Flow chart shows 
summary of ACE/HER2 results, red lines depict epidemiological associations, and 
blue lines depict MR associations. Black lines indicate previously known 
relationships. 

4.5 Discussion 

Using MR to screen a comprehensive panel of 227 blood biomarkers, we identified 

blood uromodulin and human epidermal growth factor receptor 2 as causal 

mediators of CKD. Uromodulin, also known as Tamm-Horsfall protein, is a kidney-

specific protein ubiquitously expressed by the epithelial cells of the thick ascending 

loop of Henle. Under normal physiological conditions, UMOD is the most abundant 
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protein found in urine. Despite much research following its discovery more than 50 

years ago, the role of UMOD in renal physiology remains unclear. Clinical and 

experimental studies implicated UMOD in several forms of bacteria clearance from 

the urinary tract and inflammatory kidney disease, although these findings were 

inconsistent13.  

With the advent of large GWAS, UMOD has emerged as an important locus in both 

CKD and hypertension14–16. A meta-analysis by Olden et. al identified a SNP in the 

UMOD promoter to be strongly associated with UMOD urinary levels, confirming 

the role of variants at the UMOD locus in UMOD excretion17. Furthermore, this 

same allele was previously identified to be associated with increased CKD risk18. 

These results indicate a positive relationship between urinary UMOD and CKD, 

consistent with our MR findings in blood. Notably, Trudu and colleagues have 

demonstrated that UMOD overexpression in transgenic mice led to salt-sensitive 

hypertension and activation of the renal sodium co-transporter NKCC2, this is 

consistent with their data in humans where pharmacological inhibition of NKCC2 

was found to be more effective in lowering BP in patients homozygous for UMOD 

risk variants19. These findings establish a link between uromodulin, hypertension 

and CKD. Together with our results, these data point to uromodulin as a 

therapeutic target for lowering blood pressure and preserving renal function. 

However, it should be noted that it is impossible to know from these results if 

UMOD is acting through urine, blood or possibly an intra-cellular mechanism to 

exert its risk on CKD. In our epidemiological analysis, however, increased UMOD 

levels were associated with a decreased risk of incident CKD, consistent with other 

studies20–22. Possible explanations for the divergent direction of effect between the 

MR and epidemiological association include confounding and reverse causation. 

While adjustment for relevant risk factors did not alter conclusions, our analysis in 

healthy nephrectomy patients revealed almost halving of UMOD blood levels after 

uninephrectomy in healthy donors, consistent with previous studies23. Although we 

cannot rule out other biological and statistical explanations, including residual 
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confounding, these results suggest the protective epidemiological finding may be 

a result of reverse causation, reflective of loss of nephron mass in progressive 

kidney disease. 

HER2 is a member of the human epidermal growth factor receptor (EGFR) family 

which are key regulators of cellular proliferation. The EGFR family has been 

implicated in CKD previously as EGFR signaling is involved in renal physiology 

through nephrogenesis, tissue repair and electrolyte balance. Numerous 

experimental studies have shown that pharmacological and genetic blockade of 

the EGFR system inhibits renal deterioration and fibrosis in animal models of 

kidney damage24. Additionally, in three independent cohorts of CKD patients, low 

urine excretion of EGF predicted accelerated loss of kidney function25. The authors 

suggested that urine low EGF excretion reflect reserved concentration in the 

tubules and represent a key factor in CKD progression. EGFR has also been 

shown to play a role in hypertensive and diabetic nephropathy26,27. For instance, 

EGFR expression is increased in the kidneys of hypertensive rats. Similarly, 

administration of gefitinib, an EGFR-tyrosine kinase inhibitor, improves renal 

function in rats with hypertension-induced renal disease28. Furthermore, significant 

reduction of diabetes-associated glomerular hypertrophy and renal enlargement 

has been seen upon blockade of EGFR signaling29. These animal studies are 

consistent with our MR and with epidemiological findings suggesting a causal effect 

of HER2 on CKD progression and development. Currently, HER2-inhibitors are 

used clinically in EGFR-mediated cancers30,31. Our data suggest to explore those 

drugs in models of kidney disease, as others have suggested32.  

We identified ACE as a positive regulator of HER2 levels, consistent with the 

observation of increased EGFR activity in hypertensive rats. Furthermore, we 

identified a lower concentration of HER2 in patients on ACE-inhibitors or ARBs 

versus those not on these medications, consistent with the hypothesis that ACE 

does increase HER2 levels. Moreover, as medication control we found no evidence 
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of other BP-lowering medications to have an effect on lowering HER2 levels. 

Together these results implicate HER2 as a mediator by which ACE-inhibitors and 

ARBs exert their protective effect on CKD patients, beyond that of other classes of 

antihypertensive drugs33,34. These results signify that blockade of RAAS through 

ACE-inhibitors and ARBS does indeed reduce HER2, and also suggest that HER2 

levels may be able to guide RAAS inhibition. Finally, as noted previously, HER2 

inhibitors are commonly used to treat EGFR-mediated cancers. Therefore, given 

these findings, it is possible that inhibition of ACE would decrease cancer risk by 

decreasing HER2 levels. Indeed, a very large, cross-sectional, cohort study, of 

nearly 300,000 individuals, identified a lower cancer risk in individuals on ACE-

inhibitors and ARBs as compared to those not on these medications35. While these 

results should be cautiously interpreted and may be confounded, they do suggest 

a novel application of ACE-inhibitors which should be explored in future studies.  

These findings are limited by the two sample MR study design, where genetic 

estimates were obtained from independent populations. In such a design, weak 

instrumental variables lead to estimates which are biased toward the null 

hypothesis, which reduced the likelihood of type 1 error but decreases power.36 

Thus not all of the causal biomarkers may have been identified. Additionally, the 

genetic variants studied may have other effects beyond its effect on the biomarker 

being studied (i.e. genetic pleiotropy). We mitigated this source of bias by limiting 

our investigation to variants at or near the gene coding for the biomarker of interest. 

Furthermore, associated loci were individually inspected for proximity to other 

potential genes and we did not identify any genes near the UMOD and ERBB2 loci 

that were plausible sources of pleiotropy.  

Identification of CKD risk factors is instrumental to further our understanding of the 

disease, evaluate its risk and guide treatment. Using MR, we have investigated a 

comprehensive panel of biomarkers for involvement in CKD. Our study presents 

the first MR analysis of blood UMOD and identified HER2 as a novel causal 
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mediator of CKD, consistent with previous model systems and the known biological 

role of these biomarkers. We also found compelling evidence to suggest HER2 as 

a mediator through which ACE inhibitors and ARBs protect again CKD progression 

and development. Increased serum UMOD and HER2 concentrations represent 

independent mechanisms leading to CKD, which can be assessed through a 

simple blood test. These findings pave the way for risk stratification and therapeutic 

interventions and provide important insights into the pathophysiology of CKD, and 

its relation to the current clinical practice of ACE-inhibitors and ARBs in CKD 

treatment. Future research should be aimed at identifying the causal mechanisms 

and whether interventions targeted at reducing UMOD and HER2 levels can 

reduce CKD. 

4.6 Concise Methods 

4.6.1 Study Population - ORIGIN 

The design and findings of the ORIGIN trial have been described in detail11,37. 

Briefly 12,537 people with established cardiovascular risk factors who also had 

diabetes, impaired glucose tolerance, or impaired fasting glucose were studied. 

After random allocation to 2 therapies using a factorial design (basal insulin 

glargine versus standard care and omega 3 fatty acid supplements versus placebo) 

they were followed for a median of 6.2 years for cardiovascular events and other 

health outcomes. The ethics committee at each participating site approved the trial, 

and all participants provided written informed consent. As previously described38, 

a subset of 8,401 participants from the ORIGIN-trial consented to further biological 

analysis and were therefore included in the biomarker ORIGIN sub-study. 

Biomarker levels were analyzed using the serum that was drawn at the beginning 

of the study (a detailed description of biomarker measurement and quality control 

is found in the supplement and a complete list of biomarkers analyzed is found in 

Supplemental Table 5). 
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4.6.2 CKDGen Consortium data 

Genetic data on SNPs associations with CKD (defined as eGFRcrea < 60 ml min -

1 per 1.73 m2) were obtained from the CKDGen database and downloaded from  

https://www.nhlbi.nih.gov/research/intramural/ 

researchers/ckdgen. Specifically, we used the most recent meta-analysis 

(released in 2015) of 43 genome-wide association studies (GWAS) with  up to 

117,165 individuals for CKD (12,385 cases), of European descent39.  

4.6.3 SNP association with biomarkers and CKD 

The analysis was restricted to biomarkers directly encoded by a gene(s) on 

autosomal chromosomes (i.e. chromosome 1-22). Thus, removal of five 

biomarkers because they are products of genes on the X chromosome, and five 

biomarkers because they were not a direct gene product (e.g. cortisol), left 227 

biomarkers for analysis.  

SNP selection was carried out in four steps. First, as noted in Supplementary 

Figure 2, we restricted our analysis for each of the 227 biomarkers to SNPs within 

300 Kb of the gene(s) encoding the corresponding protein or protein component, 

hereafter referred to as cis associations. This process identified 1,067,955 

SNP/biomarker cis pairs (note that some SNPs are in cis with multiple biomarkers). 

Second, after removing SNPs not found in the CKDGen database and those with 

a minor allele frequency below 0.05 according to CKDGen, we estimated the 

relationship between the remaining SNPs and their corresponding cis biomarker(s) 

in ORIGIN, by regressing each SNP against the concentration of its cis biomarker 

(with biomarker concentration as the dependent variable and SNP dosage as the 

independent variable). In other words, for each biomarker we only tested SNPs 

near the respective encoding gene(s). The regression models were first computed 

in each ethnic group separately, adjusting for age, sex, and the first five principal 

components, using SNPtest.40 The ethnic specific models were then meta-
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analyzed across the two ethnicities using fixed effects models to minimize the risk 

of confounding caused by population stratification.  Third, cis SNPs with a 

biomarker association of p<0.01 were selected. Finally, SNPs were pruned for 

linkage disequilibrium at a stringent threshold of r2<0.1 using the 1000 Genomes 

data (Europeans) to ensure associations retained for MR analysis were non-

redundant. SNPs were selectively prioritized based on the significance of the 

association with their biomarker. For each biomarker, the cis SNP with the most 

significant association with the biomarker was first retained and all SNPs in linkage 

(r2>0.1) with that SNP removed. This process was then repeated for any remaining 

SNPs. 1,307 cis SNP/biomarker associations remained after pruning. SNP 

Filtering was performed in R (version 3.0.1) and PLINK was used to calculate R2 

statistics in 1000G. A summary of the SNP and biomarker selection can be found 

in Supplemental Figure 3.  

4.6.4 Identification of blood mediators of CKD using MR  

A two sample MR was performed on the 197 biomarkers which had at least one 

significant cis SNP (p<0.01) and that was also found in the CKDGen data. Input 

variables for the MR analysis for each biomarker, were (1) the beta coefficients of 

the SNPs on their cis biomarker that were estimated using the regression models 

above, and (2) the beta coefficients of the SNPs on CKD that were estimated from 

the CKDGen consortium (Supplementary Figure 4). MR associations were 

performed using the inverse-variance weighted method by regressing genetic 

effect estimates for CKD (dependent variable) on genetic effect estimates of 

biomarkers41. To determine significance, a bootstrap method was used under the 

null hypothesis of no effect between CKD and biomarkers. Predicted effects on 

CKD were sampled from a normal distribution with mean and standard deviations 

as determined from CKDGen. A two-tailed p-value was calculated using a z-test 

from 100,000 random simulations. In other words, CKD estimates for each SNP 

were sampled 100,000 times and regressed onto the corresponding beta estimates 
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from ORIGIN (this procedure is equivalent to the IVW fixed-effect method). 

Biomarkers were deemed significant after adjusting for multiple testing hypothesis 

(p<0.05/197).  

4.6.5 Association of biomarker levels with incident CKD in ORIGIN  

Once significant biomarkers were identified by the MR analysis, we tested whether 

biomarker levels showed a consistent association with incident CKD in 8,197 

ORIGIN participants with ethnicity information and biomarker levels. CKD was 

defined as the composite of either doubling of serum creatinine, worsening in 

albuminuria category, renal replacement therapy, or death due to end stage renal 

failure. This was assessed using logistic models with incident CKD as the 

dependent variable and biomarker concentration as the independent variable of 

interest. Models were adjusted for age, sex and ethnicity to remain consistent with 

MR model adjustment. We also tested models after further adjusting for prior type 

2 diabetes, prior renal disease, BMI, current smoker, diagnosis of hypertension, 

baseline eGFR, and LDL. Subgroup analyses were performed to test for 

heterogeneity between groups using models adjusted for age, sex and ethnicity 

(where appropriate). 

4.6.6 Identification of regulators of CKD-biomarkers using MR  

To gain further biological insights regarding the novel CKD biomarkers, a second 

set of MR analyses were then performed to explore whether the levels of the novel 

CKD-causing biomarkers were determined by any of the other biomarkers. 

Specifically, we tested all biomarkers for an effect on both UMOD and HER2 levels 

(i.e. the novel biomarkers identified in the CKD MR), where the input variables for 

each MR were (1) the effect of SNPs on their cis biomarker as the independent 

variable (where possible) and (2) the effect of the same set of SNPs on the novel 

CKD biomarkers as the dependent variable. Due to the fact that both these 

estimates were obtained from ORIGIN (i.e. one-sample), a more conservative 
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significance threshold of p<0.001 (or F>10) was applied for the inclusion of SNPs 

into the MR model as weak instruments can bias results towards false-positives42. 

Statistical analyses were performed using R (version 3.0.1), unless stated 

otherwise. A summary of the analysis plan can be seen in Figure 4-5.  

 

Figure 4-5: Overview of analyses conducted. 

Flow chart depicts a summary of the four analyses conducted and their respective 
sample sizes. 

 

4.7 Concluding Remarks 

4.7.1 Significance Statement 

Inhibition of the renin-angiotensin-aldosterone system by angiotensin-converting 

enzyme (ACE) inhibitors is one of the best established strategies to reduce the 

decline of kidney function in CKD. This study, which uses a novel Mendelian 

randomization–based approach, identifies human EGF receptor 2 (HER2) and 

uromodulin (UMOD) as potential causal mediators of CKD, and ACE as a potential 

regulator of HER2 levels. These findings implicate HER2 as a mediator of ACE 

inhibitors’ protective effect on CKD and as a marker which may help reveal patients 

(1) Identification of causal 
biomarkers for CKD using two-

sample MR design (n=4147 
from ORIGIN, n=117,165, from 

CKDGen) (Figure 2). 

(2) Association of biomarker 
levels from (1) with incident 
CKD in ORIGIN (n=8197) 

(Figure 3).

Significant 
biomarkers 

(p < 0.05/197)

(3) Identification of biological 
regulators of novel biomarkers 
from (1) using a one-sample 

MR design (n=4147).

(4) Corroboration of MR 
findings from (3) using 
epidemiological models 

(n=8197) (Table 1).

Significant 
biomarkers 

(p < 0.05/169)
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likely to benefit from ACE inhibition. Both UMOD and HER2 inhibition represent 

potential novel targets for interventions to slow progression of CKD. 
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5.1 Forward 

Disease risk is known to vary significantly between ethnic groups, but the clinical 

significance and implications of these observations is not well understood. 

Investigating ethnic differences within the human proteome may shed light on the 

impact of ancestry on health and disease, as the proteome offers a direct window 

into biological processes. However, through epidemiological studies alone, it is 

very difficult to resolve the involvement of genetics versus environmental factors in 

ethnic disparities. Using a genetic approach known as admixture mapping, it is 

possible to overcome these barriers and ascertain the biological, unconfounded, 

and genetic differences between populations. In this study, we used admixture 

mapping to explore the impact of ancestry on a large, comprehensive panel of 

biomarkers in the ORIGIN-trial.  

Our results revealed that 0.19 of biomarkers are affected by genetically-predicted 

ancestry. Notably, our strongest association was C-peptide, whereby 0.31 of the 

variation in C-peptide levels was attributed to genetic ancestry. Additional analyses 

revealed that a genetic risk score of ancestry determined C-peptide levels was 

associated with an increased risk of type-2 diabetes and measures of insulin 

resistance. Together, these results point to an effect of C-peptide on diabetes risk 

effect mediated through insulin resistance rather than b-cell dysfunction. Our 

results also revealed novel loci involved in regulating biomarker levels and 

demonstrate that specific genetic polymorphisms may partially explain the 

observed differences in biomarker concentrations between populations. These 

results may have implications regarding the interpretation of clinical markers in 

different ethnic groups. 

This manuscript is currently under review by co-authors with plans to submit to the 

American Journal of Human Genetics. Guillaume Paré conceptualized and 

designed the study. Jennifer Sjaarda designed the analysis plan, conducted all 
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statistical analysis, and wrote the manuscript. All authors contributed to the 

interpretation of findings and to the critical reading and revision of the manuscript.  

5.2 Abstract 

BACKGROUND: Disease risk varies significantly between ethnic groups, but the 

clinical significance and implications of these observations is poorly understood. 

Investigating ethnic differences within the human proteome may shed light on the 

impact of ancestry on health and disease. However, it is difficult to determine if 

ethnic disparities are a result of genetic or environmental factors. Admixture 

mapping is a powerful method of gene mapping which overcomes these barriers 

and may help elucidate the impact of genetics on ethnic differences and identify 

genes conferring differential risk.  

METHODS: Admixture mapping was used to explore the impact of ancestry on a 

comprehensive panel of 237 biomarkers in 2,216 Latin American participants within 

the ORIGIN-trial (Outcome Reduction with Initial Glargine Intervention). We 

developed a variance component model to determine the proportion of variance 

explained by local ancestral differences, and applied this model to the ORIGIN 

biomarker panel. Multivariable linear regression was used to identify and localize 

genetic loci affecting biomarker variability between ethnicities.  

RESULTS: Variance component analysis revealed 0.05 of biomarkers to have a 

significant effect of ancestry, after adjusting for multiple hypothesis testing (p < 

0.05/237), including C-peptide, apolipoprotein-E and intercellular adhesion 

molecule 1. We also identified 46 regional associations across 40 different 

biomarkers. An independent analysis revealed 34 of these 46 regions were 

associated at genome-wide significance (p < 5x10-8) with their respective 

biomarker in either ORIGIN Europeans or Latins. Additional analyses revealed that 

a genetic risk score based on ancestral differences of C-peptide levels was 
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associated with an increased risk of diabetes (OR=4.47 per SD, 95% CI 1.70 to 

11.76, p=0.002) and measures of insulin resistance. 

DISCUSSION: Our results demonstrate the importance of ancestry on biomarker 

levels, suggesting some of the observed differences in disease prevalence likely 

has a biological basis, and that use of reference intervals for those biomarkers 

should be tailored to ancestry. Specifically, our results point to a role of ancestry in 

insulin metabolism and diabetes risk.  
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5.3 Introduction 

The human proteome plays a principal role in biological processes such as 

signaling, transport, growth, repair, and defense against infection. These proteins 

represent intermediate phenotypes and are often directly and causally involved in 

disease pathophysiology. Indeed, many biomarkers are measured clinically and 

used as a non-invasive marker of a patient’s overall health, guiding diagnosis, 

prognosis and treatment management1. However, biomarker profiles have been 

shown to vary widely between ethnic groups and the clinical significance and 

implications of these observed differences is poorly understood2. Furthermore, it is 

unknown whether these differences correspond to ethnic-specific susceptibility to 

disease. Disease risk varies significantly between ethnic groups as well. For 

instance, Mexican, Latin American and African populations have a higher risk of 

type 2 diabetes (T2D) compared to European ancestries3–5. This disparity in risk 

has been hypothesized to be due, at least in part, to genetic and biological factors 

rather than confounding6,7. These findings suggest that other phenotypes may 

similarly harbor genetic variants that account for differences between ancestries. 

Biomarker differences that exist between populations may also lead to clinical 

challenges. Consistent differences have been reported for many biomarkers used 

in patient management, including C-reactive protein, vitamin D binding protein and 

many circulating adipokines8–12. Clinical interpretation of these markers are based 

on reference intervals which are defined using population values. However, for 

biomarkers that are markers of disease, this might lead to erroneous diagnosis if 

ancestry leads to differences in concentrations. For biomarkers that are causal 

mediators, this might lead to wrongful evaluation of risk if ancestry leads to 

increased risk through that mediator. Ideally, these intervals should be determined 

from a random sample of healthy individuals from a population similar to the 

patient. Traditionally, reference intervals have been determined using 
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predominantly Caucasian reference intervals, which do not necessarily extend to 

other ethnic groups13.  

While differences in biomarkers levels have been observed between ethnic groups, 

the reasons for these differences are difficult to determine through classic 

epidemiological studies.  Admixture mapping is a powerful tool used in genetic 

epidemiological studies that may shed light on these observations. Genetic 

admixture occurs when two or more previously independent populations 

interbreed, resulting in the introduction of new genetic lineages. This has occurred 

in Latin Americans, for instance, which are an admixed population from Native 

American, European and African ancestors. Admixture mapping is a method 

applied to recently admixed populations used to localize disease causing genetic 

variants that differ in frequency across ancestral groups14. The approach is based 

on the assumption that increased ancestry from the population with a greater risk 

of the disease will be observed in patients near a disease causing gene. In this 

way, differential risk across ancestral groups can be observed at specific genetic 

loci15. This approach has been particularly effective in African Americans in 

identifying novel loci for various diseases16–18. Most recently, this technique has 

been used to reveal novel susceptibility loci in atherosclerosis and albuminuria19,20.  

In this report, we used admixture mapping to investigate the impact of ancestry on 

health and disease through a comprehensive investigation of a multiplex biomarker 

panel. Specifically, we evaluated the effect of genetic ancestry on 237 serum 

biomarker concentrations measured in the Latin American population from the 

recently completed ORIGIN (Outcomes Reduction with an Initial Glargine 

Intervention) trial21. Although ethnicity has been determined to be a strong predictor 

of biomarker concentrations, few studies have leveraged the known genetic 

admixture of Latin Americans to assess the impact of ancestry on biomarker 

variability and discover novel regions associated with their levels that may, in turn, 

impact their risk of disease. Furthermore, admixture mapping studies offer the 
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unique advantage over single-ancestry genetic studies at identifying genes 

conferring differential risk between populations. By examining a large, 

comprehensive panel of serum biomarkers, we sought to explore the broad impact 

of ancestry in human health and disease. The human proteome provides an ideal 

paradigm for such an investigation as it provides a direct window into biological 

processes. 

5.4 Methods 

5.4.1 Study Population - ORIGIN 

The design and findings of the ORIGIN trial have been described in detail. Briefly 

12,537 people with established cardiovascular risk factors who also had T2D, 

impaired glucose tolerance, or impaired fasting glucose were studied. After random 

allocation to 2 therapies using a factorial design (basal insulin glargine versus 

standard care and omega 3 fatty acid supplements versus placebo) they were 

followed for a median of 6.2 years for cardiovascular events and other health 

outcomes. As previously described22 biomarker levels were analyzed in the serum 

of 8,401 people that was drawn at the beginning of the study. The analysis was 

done using a customized human discovery multi-analyte profile (MAP) on the 

Luminex 100/200 platform and the biomarkers were selected based on their 

implication in physiologic processes related to cardiovascular diseases. 

Between September 2003 and December 2005, 578 clinical sites in 40 countries 

screened 15,374 individuals and randomized 12,537 participants for the original 

ORIGIN trial21. A subset of 8,401 participants provided consent for collection and 

storage of a blood sample for future measurement and analysis were included in 

the ORIGIN biomarker study (66% men; mean age 63.7 years).22 A further subset 

of 5,078 participants consented to genetic analyses and 4,147 (1,931 Europeans 

and 2,216 Latins) passed quality control. Study characteristics were similar across 

the two groups. 
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5.4.2 Genotyping 

A subset of 5,078 ORIGIN individuals who consented to genetic analyses were 

genotyped on Illumina's HumanCore Exome chip. Standard quality control 

measures were assessed. SNPs were excluded on the basis of low call rate 

(<99%), deviation from Hardy-Weinberg (p<10-6), and low minor allele frequency 

(MAF<0.01 in all ethnic groups). Samples with low call rates (<99%), sex or 

ethnicity mismatches, or cryptic relatedness were also removed. We also removed 

ethnicities with small sample sizes (n<100). All quality control steps were 

performed using PLINK23 and GCTA.24 After quality control, the sample consisted 

of 4,390 participants and 284,024 SNPs from three ethnic groups (European, Latin 

American and African). Imputation was then performed on the post QC data 

through to predict unobserved genotypes in the study population. Over 30 million 

single nucleotide polymorphisms (SNPs) were imputed, allowing for 

comprehensive coverage of known genetic variants. The 1000 Genomes Project25 

was used as the reference panel for ORIGIN imputation and was performed using 

the software IMPUTE226,27. We removed SNPs imputed with low certainty (info 

<0.6, as defined by IMPUTE2)27. patients. For the current report, participants of 

self-reported Latin American ancestry comprised the primary analysis (n=2,216) 

and Europeans were used for validation and replication analyses (n=1,931). 

5.4.3 Genetic Ancestry Estimation 

We used phased, consensus data from the 1000 Genomes Project to create 

reference panels for Europeans (CEU, FIN, GBR, IBS and TSI), Africans (ASW, 

LWK and YRI), and Asians alleles (CHB, CHS and JPT; which were used as a 

proxy for Native American ancestry, as previously described15). After removing 

ambiguous SNPs and phasing ORIGIN genotypes using Beagle28, we inferred the 

local ancestry at 259,778 SNPs in 2,216 Latin Americans using RFMix15.  

Probabilities of Native American, European and African ancestry were derived for 

each SNP, thus accounting for uncertainty in ancestry ascertainment. Probabilities 
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at each SNP ranged from 0 to 2, where a value of 2 for the European local 

component at given SNP would represent both alleles having European ancestry, 

for example. The procedure has been described in detail elsewhere15. To calculate 

individual-level ancestries, a set of minimally pruned sites was generated 

according to an LD correlation matrix based on local SNP European ancestry 

components, in R (pairwise r2 < 0.95). Specifically, a square matrix was 

constructed for each chromosome containing the Pearson’s r2 correlation 

coefficient between all site (i.e. pairwise correlation). For example, for any two sites 

(x and y) the r2 was calculated between the local Asian components at sitex and 

sitey. The resulting matrix was pruned agnostically at a threshold of r2 <0.95. 

Currently, there is no standard method for pruning local admixture signals, and this 

threshold was chosen to reduce redundant (identical) associations while retaining 

as much ancestry information as possible. Pruning using genotype LD (rather than 

local ancestry LD is not sensible here, as admixture regions are much larger than 

haplotype blocks across the genome. Therefore, this threshold was selected in an 

effort to balance over-pruning, and ultimately losing local admixture signals, and 

under-pruning, resulting in redundant signals. Following pruning, 7,246 local 

components remained. This set was used for all subsequent analyses. Individual-

level (global) ancestry was then obtained for each individual by averaging the 

ancestry at each of the retained sites. Thus, following this procedure, each 

individual had three local ancestry components (1 for each of the three ancestral 

ethnicities) for each site ranging from 0 to 2 and three global ancestry components 

ranging from 0 to 2 representing the average of all locally derived estimates. 

5.4.4 Genetic Association Models to Determine Contribution of Local 
Ancestry on Phenotypic Variation 

We evaluated the performance of genetic association models to capture the 

phenotypic variance explained by local ancestry using simulations. Because 

associations with global ancestry may represent confounding by environmental or 
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societal factors rather than a true biological difference, we sought to distinguish 

between local and global effects to determine the variance explained according to 

biological differences (i.e. local ancestry) between ethnic groups. Continuous 

phenotypes were simulated for each of 2,216 Latins in ORIGIN using the derived 

local and global ancestry components as predictors. We explored various 

parameters for their impact on estimated local ancestry variance, including: effect 

of non-directional versus directional local effects (i.e. restricting local effects to be 

positive for a given ancestry in the directional case), number of causal loci 

associated with the simulated trait, and presence and absence of a global ancestry 

effect. Local directional effects were evaluated to test the model’s ability to 

distinguish between many local signals exerting an effect in the same direction 

versus a single global (confounding) effect. Total trait variance and mean were set 

at 1 and 0, respectively, in all simulations. For each simulation, a pre-specified set 

of causal loci ranging from 1 to 10 (1, 2, 3, 5, and 10) were randomly selected from 

a stringently pruned set of 46 local components (r2 <0.05) to ensure independent 

regions were selected. The genetic effect of each causal locus was proportionally 

set according to the number of causal loci specified and a pre-defined, unobserved, 

true local variance ranging from 0 to 0.05.  Similarly, the effect of each global 

component was standardized and fixed according to a pre-defined overall variance 

value of either 0 or 0.05. The remaining phenotypic variance was randomly 

determined. The effect of each locus on the simulated trait was evaluated using 

adjusted linear models.  

Because ancestry tends to be highly correlated over longer regions of the 

chromosome as opposed to genotype data, the number of independent tests 

estimated is small despite the inclusion of genome-wide level ancestry data in the 

model. Therefore, to determine an appropriate significance level, we performed 

10,000 simulations under the null hypothesis, assuming no effect of local ancestry 

on the simulated phenotype. For each simulation, a continuous phenotype was 

derived with no effect of local ancestry and both with and without an effect of global 
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ancestry. Next, using European ancestry as a reference, each local Asian and 

African component were tested independently in a linear model adjusted for global 

Asian and global African components. In other words, for each simulation, 14,492 

(7,246 loci times 2 ethnicities) linear models were tested for an association with the 

simulated trait. The lowest p-value from the 14,492 independent tests was 

recorded (pminimum). We did not identify any difference in distribution of pminimum with 

and without a global effect. We selected a p-value threshold which corresponded 

to < 1% of the pminimum resulting in a significance threshold level of p <1.13 x 10-6.  

For each set of conditions, 100 simulations were completed and both the effect of 

local ancestry and global ancestry on trait variance estimated. We used variance 

component (VC) models to assess the overall effect of ancestry on the simulated 

trait using the mmer2 function in the sommer R package29. Genetic related 

matrices (GRMs) were calculated for each ancestry using local ancestry estimates 

at the remaining 7,246 sites after pruning (described above). The local ancestry 

matrices (2,216 x 7,246) were scaled to have mean of 0 and standard deviation of 

1. Next, the GRM was calculated as the cross-product of the scaled local 

ancestries. Global Asian and African ancestry were each included in the model as 

fixed effects. Proportion of variance explained by global and local ancestry (both 

together and separately) was then estimated for each model and compared to the 

value specified for each simulation. Global ancestry variance was estimated using 

the regression coefficients from the fixed effect estimates in the VC model. The 

mmer2 function provided variance-covariance components for each random effect 

(i.e. the two local ancestry GRMs and residual variance) and were used to estimate 

local and residual variance accordingly. Total trait variance was estimated as the 

sum of global, local and residual variance estimates. Next, we calculated the 

proportion of variance explained due to local, global and the sum of local and global 

ancestry as their respective estimated variance divided by total trait variance. 

Estimates were recorded for each simulation and the average (±SD) of each set of 
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conditions was calculated and compared to their unobserved, true, respective 

values.  

We sought to identify the individual loci selected for a causal association with the 

simulated trait. Specifically, each local ancestry component for both Asian and 

African ethnicities was independently tested in a linear model with the simulated 

trait as the dependent variable, adjusted for global Asian and global African 

components. A forward-selection approach was then used to identify the local 

components that independently and cumulatively predicted the dependent 

variable, with a p-value for inclusion set at the pre-specified threshold according to 

simulations under the null (p <1.13 x 10-6). The minimum p-value of each of the 

14,492 models representing all local ancestry components for both African and 

Asian ancestries was evaluated, and if it fell below the threshold for inclusion, the 

respective local component was added in the predictive model in addition to global 

African and global Asian components. This process was repeated until no local 

component association p-value fell below 1.13 x 10-6. Because 45 of the 

biomarkers were analyzed as ordinal variables, all simulations were repeated using 

a simulated ordinal trait to test the models ability to perform with a non-continuous 

dependent variable. 

We then evaluated the proportion of identified loci that matched the randomly 

selected causal loci for a given simulation (i.e. true positives). When a locus was 

identified by our algorithm that was not randomly selected to have an effect on the 

simulated phenotype, we evaluated if it was a false positive or near a true, 

unobserved, causal locus, representing a regional association. We used a 

threshold of r2 >0.8 with a causal locus, to define a regional association. Identified 

loci with r2 <0.8 with all randomly selected causal loci were classified as false 

positives. 
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5.4.5 Estimation of Effect of Local Ancestry on Serum Biomarkers in 
ORIGIN  

The variance component model and forward selection process described above 

were then performed on the 237 measured biomarkers in ORIGIN to determine the 

proportion of variance explain by local ancestry for each serum biomarker. A 

predictive model was constructed for each biomarker according to the following 

procedure. First, biomarkers were linearly residualized for age and sex. Second, 

VC models were used to assess the proportion of trait variance explained by local 

ancestry with global components as fixed effects (as in simulations). Third, linear 

models were used to test each local component independently for an effect on the 

residualized biomarker, in a model adjusted for global Asian and global African 

components. As described above, the minimum p-value of all local component was 

assessed and if less than our inclusion threshold (p < <1.13 x 10-6), was added to 

the predictive model. This process was then repeated until no p-values were less 

than 1.13 x 10-6. Therefore, for each biomarker, one VC model was used to assess 

overall local and global variance and a linear predictive model was constructed, 

including global African and global Asian components in addition to local 

components selected from the forward selection algorithm. This forward selection 

process revealed specific genetic regions which were independently associated 

with serum biomarkers, residualized for age and sex. Associations were classified 

as in cis if the identified locus had R2 < 0.8 with any SNP ± 3000 KB for the 

respective gene.  

We sought to further elucidate identified local ancestry associations by testing 

genotype associations in European and Native Latin ORIGIN samples (n=1,931). 

For each identified local ancestry association we implemented the following 

process. First, an investigation window surrounding the local ancestry signal was 

created according pairwise r2 of European local ancestry data. Pairwise r2 was 

examined both up and down stream of the identified locus until a local ancestry 

estimate had r2 <0.8 with the identified locus to create a window of association. 
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Second, the association of each SNP in this window was tested in ORIGIN 

Europeans with the respective biomarker using a linear model, adjusted for age, 

sex and the first five principal components. Third, the association of each SNP in 

this window was also tested in ORIGIN Native Latins with the respective biomarker 

using a linear model, adjusted for age, sex, global ancestry and the corresponding 

local ancestry components for the SNP under investigation. SNPs with MAF <0.01 

or INFO <0.6 were removed. 

5.4.6 Prediction of Global Ancestry Using Biomarker Score  

We sought to determine the ability of the 237 serum biomarker to predict global 

ancestry components in ORIGIN. Participants were randomly divided into model 

building and model assessment groups composed of 1,477 people (i.e. 0.67) and 

739 people (0.33), respectively. Using the model building subset, those biomarkers 

that independently predicted global European and global Asian components were 

identified using a multivariate analysis approach after accounting for age and sex. 

To assess the significance of each biomarker, a multivariate ANOVA was used to 

account for the two outcomes (African and Asian global ancestry components) 

comparing a multivariate model with and without each biomarker. Similar to the 

method to determine local ancestry variance, a forward-selection approach was 

used to identify those biomarkers that independently and cumulatively predicted 

global ancestry according to the multivariate ANOVA, with a p-value for inclusion 

set below 0.05 divided by 237 (p <0.00021), to account for the 237 comparisons. 

The biomarkers identified to independently predict global ancestry components in 

the model building group was then validated in the model assessment group and 

the resulting correlation for each model were compared. All statistical analysis was 

done in R. 
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5.5 Results 

5.5.1 Evaluation of Genetic Association Models Using Simulations 

We evaluated the performance of our variance component models to estimate the 

phenotypic variance explained by local admixture associations. In these 

simulations, we assumed that varying number of loci (1, 2, 3, 5, 10) had an ancestry 

effect on the quantitative trait and that the proportion of variance explained was 

0.00, 0.01, 0.02, 0.03, 0.04, and 0.05. We then tested conditions with and without 

a directional condition on the causal ancestry effects (i.e. all effects greater than 0 

for a given ancestry) and with and without an effect of global admixture. When a 

global effect was specified, it was split evenly over the two components (African 

and Asian), each with a proportion of variance explained of 0.025. Our simulations 

show that total variance attributed to local and global ancestry can be determined 

using VC models (Figure 5-1). Similarly, our simulations show that it is possible to 

derive unbiased estimates of local variance using VC models (Figure 5-2). These 

estimates are stable both with a directional local effect and in the presence of a 

global effect. However, local estimates were lower in the directional scenarios 

compared to non-directional. For instance, considering a scenario with 10 causal 

loci and local variance specified at 0.05, 2-way ANOVA revealed significant 

differences between directional and non-directional simulations (Figure 5-2, panels 

A and B versus panels C and D, p <5 x 10-16) and no difference between 

simulations with and without a global effect (Figure 5-2 panels A and C versus 

panels B and D, p = 0.73). This is likely due to the fact that it is difficult for the 

model to distinguish a global effect from a directional local signal, particularly when 

many causal loci are present.  

We also sought to determine the ability of the model to select the true, unobserved 

causal loci. The proportion of causal SNPs selected increased as specified local 

variance increased (Figure 5-3) number of and did not vary significantly across 

conditions. When only one SNP was specified to have an effect on the phenotype, 
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the algorithm performed well, and identified this locus greater than 95% of the time 

when local variance was greater than 0.05. Conversely, as number of causal loci 

increased, the resulting effects were diluted across the randomly selected SNPs, 

and power to detect individual loci decreased. Consequently, the algorithm was 

unable to detect all of the true, causal SNPs. This pattern was apparent for all 

conditions, however this was strongest in the presence directional local effect 

(panels C and D). For example, in the simulations with 10 causal loci and local 

variance specified at 0.05, ANOVA showed significant differences in the proportion 

of causal loci selected between those with and without a global effect (Figure 5-3 

panels A and B versus C and D, p <5 x 10-16). Similar results were found by 

simulating an ordinal rather than a continuous phenotype (see supplementary 

material). 
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Figure 5-1: Estimated proportion of variance explained by local and global 

ancestry under various conditions. 
 

Average (±SD) estimated local and global variance explained under various 
simulated conditions. The sum of the true, unobserved local and global variances 
were pre-specified. Global variance was set at either 0 (panel A and C) or 0.05 
(panel B and D) and local varied as 0.01, 0.02, 0.03, 0.04 and 0.05 as determined 
by 1, 2, 3, 5, or 10 causal SNPs. The sum of the two variances is shown on the x-
axis. Each bar represents an average of 100 simulations, error bars show ±SD. 
Panels A and B illustrates simulated conditions with no directional condition, while 
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panels C and D restrict local effects to be greater than 0. Panel A and C illustrate 
simulated conditions with no global effect, and Panel B and D have a pre-specified 
global effect.  

 
Figure 5-2: Estimated proportion of variance explained by local ancestry under 

various conditions. 

Average (±SD) estimated local variance explained under various simulated 
conditions. True, unobserved local variances were pre-specified at 0, 0.01, 0.02, 
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0.03, 0.04 and 0.05 (x-axis) as determined by 1, 2, 3, 5, or 10 causal SNPs. Each 
bar represents an average of 100 simulations, error bars show ±SD. Panels A and 
B illustrates simulated conditions with no directional condition, while panels C and 
D restrict local effects to be greater than 0. Panel A and C illustrate simulated 
conditions with no global effect, and Panel B and D have a pre-specified global 
effect.  

 
Figure 5-3: Proportion of causal SNPs selected under various conditions. 

Proportion of selected SNPs which were causal or regional selected by the forward 
selection algorithm under various simulated conditions. Proportion of causal SNPs 
(y-axis) was calculated as: (number of selected causal SNPs + number of selected 
regional SNPs) / (number of true, unobserved causal SNPs). True, unobserved 
local variances were pre-specified at 0, 0.01, 0.02, 0.03, 0.04 and 0.05 (x-axis) as 
determined by 1, 2, 3, 4, or 5 causal SNPs. Panels A and B illustrates simulated 
conditions with no directional condition, while panels C and D restrict local effects 
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to be greater than 0. Panel A and C illustrate simulated conditions with no global 
effect, and Panel B and D have a pre-specified global effect.  

 

5.5.2 Estimation of Effect of Local Ancestry in ORIGIN 

The VC and forward selection models tested through simulations were then 

performed on the 237 ORIGIN biomarkers. A model was built for each biomarker 

comprising of global Asian and African components in addition to local components 

selected according to the forward selection algorithm. The proportion of variance 

attributed to local variance was estimated from the VC model and evaluated and 

the individual associated loci (p < 1.13e-06) identified in the linear model were 

inspected. VC models revealed 11 biomarkers to have a significant proportion (p < 

0.05/237) of variance explained by both local ancestries ranging from 0.11 to 0.24 

(Table 5-1). The global associations and estimated variance were also evaluated 

as fixed effects from the VC model (Figure 5-4). We identified 23 and 6 global 

African and Asian associations, respectively, after adjusting for multiple hypothesis 

testing (p < 0.05/237), representing 0.12 of biomarkers (29/237 biomarkers) (Table 

5-2).  
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Figure 5-4: Global ancestry QQ plot. 

QQ plot of association statistics of the effect of African (red) and Asian (blue) global 
ancestry on biomarker levels. Variance component models were used to assess 
the effect of global ancestry, with local ancestry included as random effects. 
Biomarker levels were first residualized for age and sex.  
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Table 5-1: Summary of biomarkers with significant proportion of variation explained 
by local ancestry in using VC analysis (p < 0.05/237). 
 
Biomarker Both African Asian 

 
Proportion 
explained 
(95% CI) 

P-value 
Proportion 
explained 
(95% CI) 

P-value 
Proportion 
explained 
(95% CI) 

P-value 

C-Peptide 0.24  
(0.16, 0.32) 1.6E-11 0.02  

(-0.02, 0.06) 9.9E-12 0.22  
(0.15, 0.29) 0.13 

Eotaxin-3 0.22  
(0.14, 0.29) 5.0E-10 0.19  

(0.12, 0.25) 0.02 0.03  
(0.00, 0.07) 8.1E-09 

Clusterin 0.18  
(0.11, 0.25) 2.2E-08 0.02  

(-0.01, 0.06) 1.6E-08 0.16  
(0.10, 0.22) 0.10 

Fatty acid-
binding protein 

liver 
0.13  

(0.07, 0.19) 2.4E-06 0.02  
(-0.02, 0.06) 1.3E-06 0.11  

(0.06, 0.16) 0.13 

Intercellular 
adhesion 

molecule-1 
0.14  

(0.08, 0.21) 3.1E-06 0.06  
(0.01, 0.11) 0.00018 0.08  

(0.03, 0.13) 0.0042 

Apolipoprotein 
E 

0.14  
(0.07, 0.20) 4.0E-06 0.03  

(-0.01, 0.08) 9.4E-06 0.10  
(0.05, 0.15) 0.05 

Fas ligand 0.14  
(0.08, 0.20) 4.6E-06 0.06  

(0.02, 0.11) 0.00030 0.08  
(0.03, 0.12) 0.0037 

Alpha-2 
macroglobulin 

0.12  
(0.06, 0.18) 1.2E-05 0.09  

(0.04, 0.14) 0.038 0.03  
(0.00, 0.06) 0.00010 

Apolipoprotein 
A-IV 

0.12  
(0.06, 0.18) 3.2E-05 0.05  

(0.00, 0.09) 0.00039 0.07  
(0.03, 0.12) 0.017 

Interleukin-2 0.12  
(0.06, 0.18) 4.0E-05 0.02  

(-0.02, 0.06) 1.1E-05 0.11  
(0.06, 0.16) 0.22 

Paraoxanase-1 0.11  
(0.05, 0.17) 8.7E-05 0.04  

(-0.01, 0.08) 0.00028 0.07  
(0.03, 0.12) 0.048 

Biomarkers were residualized for age and sex. 

 
Table 5-2: Summary of biomarkers with significant global ancestry association for 
either African or Asian global ancestry (p < 0.05/237). 

Biomarker Global African Ancestry Global Asian Ancestry 

 b  
(95% CI) 

P-value b  
(95% CI) 

P-value 

Kallikrein 5 -0.33  
(-0.40, -0.25) < 5E-10 0.21  

(0.02, 0.40) 0.027 

Vitronectin -0.29  
(-0.33, -0.25) < 5E-10 0.07  

(-0.45, 0.59) 0.79 

Factor VII -0.24  
(-0.27, -0.21) < 5E-10 0.03  

(-0.19, 0.25) 0.81 

Insulin-like growth factor binding 
protein 5 

0.17  
(0.13, 0.22) 1.8E-15 -0.15  

(-0.50, 0.20) 0.40 
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Immunoglobulin M 0.24  
(0.18, 0.30) 5.3E-15 0.00  

(-0.31, 0.31) 0.98 

Apolipoprotein B -0.74  
(-0.93, -0.55) 6.2E-14 0.04  

(-0.33, 0.40) 0.84 

Monocyte chemotactic protein 4 0.54  
(0.39, 0.69) 1.6E-12 0.08  

(0.02, 0.14) 0.011 

Interleukin-12 subunit p40 -0.08  
(-0.10, -0.06) 3.2E-12 0.01  

(-0.22, 0.24) 0.95 

Resistin 0.34  
(0.24, 0.44) 1.3E-11 0.01  

(-0.20, 0.22) 0.95 

Hepatocyte growth factor 
receptor 

-0.27  
(-0.35, -0.18) 1.3E-09 0.10  

(-0.34, 0.55) 0.65 

Ficolin-3 -0.13  
(-0.17, -0.09) 9.0E-09 -0.19  

(-0.48, 0.09) 0.19 

Protein S100-A4 0.55  
(0.35, 0.75) 7.3E-08 0.07  

(-0.04, 0.17) 0.22 

Cortisol -0.41  
(-0.58, -0.25) 6.5E-07 -0.13  

(-0.38, 0.13) 0.33 

6Ckine -0.27  
(-0.38, -0.16) 1.1E-06 -0.18  

(-0.39, 0.02) 0.080 

Immunoglobulin E 0.37  
(0.22, 0.52) 1.4E-06 0.45  

(0.16, 0.74) 0.0020 

Hepatocyte growth factor -0.46  
(-0.65, -0.26) 3.2E-06 -0.18  

(-0.37, 0.02) 0.073 

Ferritin -0.36  
(-0.52, -0.20) 1.5E-05 -0.03  

(-0.36, 0.30) 0.86 

Adrenomedullin -0.62  
(-0.90, -0.33) 2.0E-05 -0.23  

(-0.54, 0.07) 0.13 

Creatine kinase-MB -0.61  
(-0.89, -0.32) 3.0E-05 -0.10  

(-0.48, 0.28) 0.61 

Prostatic acid phosphatase -0.26  
(-0.38, -0.14) 3.4E-05 -0.07  

(-0.17, 0.02) 0.13 

Methylglyoxal -0.50  
(-0.74, -0.25) 6.8E-05 -0.05  

(-0.54, 0.44) 0.83 

Glucose-6-phosphate isomerase 0.40  
(0.20, 0.60) 8.1E-05 0.17  

(-0.37, 0.71) 0.54 

Sex hormone-binding globulin 0.26  
(0.13, 0.40) 0.00015 0.17  

(-0.11, 0.45) 0.24 

Mesothelin 0.25  
(-0.01, 0.52) 0.064 0.22  

(0.14, 0.29) 3.2E-08 

Thrombospondin-1 0.00  
(-0.24, 0.24) 0.99 0.12  

(0.08, 0.17) 
1.21E-

07 
Pulmonary and activation-

regulated chemokine 
0.27  

(-0.08, 0.62) 0.13 0.25  
(0.16, 0.35) 5.4E-07 

T lymphocyte-secreted protein I-
309 

0.23  
(0.05, 0.41) 0.014 -0.07  

(-0.11, -0.04) 1.9E-05 

Pigment epithelium derived 
factor 

-0.01  
(-0.15, 0.14) 0.92 -0.26  

(-0.39, -0.14) 4.6E-05 

Chemokine CC-4 0.00  
(-0.09, 0.09) 0.98 -0.53  

(-0.79, -0.27) 5.5E-05 
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b per SD increase in global ancestry. Global ancestry included as fixed effects in 
variance component model. Biomarkers were residualized for age and sex. 

Using the fixed effect forward selection framework, 0.17 (40/237) of biomarkers 

were found to have at least one significant local association, 5 of these 40 

biomarkers overlapped with the 11 associations identified using VC analysis. A 

total of 46 local components were associated with these biomarkers (i.e. some 

biomarkers were associated with more than one local component). Of the 46 local 

ancestry associations identified, 0.55 (25/46) were in trans and 0.45 (21/46) were 

in cis with the gene encoding the corresponding protein or protein component of 

the biomarker for which an association was found. Five biomarkers investigated 

were not a direct gene product (e.g. cortisol), and therefore could not have any cis 

associations by this definition. One local association identified with Asian ancestry, 

on chromosome 14, was with one such biomarker, methylglyoxal (included in the 

25 trans associations). The number of local associations was similar across 

ethnicities, with 21 and 25 African and Asian associations, respectively. Replication 

in ORIGIN Europeans revealed that 33 of these 46 regions had genotype 

associations at genome-wide significance with their corresponding biomarkers (p 

< 5x10-8), 9 in trans and 24 in cis. Notably, five biomarkers were significantly 

associated with rs12075, located in the ARCK1 gene which encodes Duffy antigen 

receptor responsible for the Duffy blood group system. Replication in ORIGIN 

Native Latin participants, revealed an additional cis association at genome-wide 

significant. Therefore, only 34 local associations had no corresponding GW-

significant association in either European or Native Latin participants. A summary 

of local associations and their corresponding genotypic associations in European 

and Native Latins can be found in supplementary Tables 2-4. 
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5.5.3 Evaluation of the Role of C-Peptide in Disparities of Diabetes Risk 
Among Ethnic Groups 

Our analysis revealed C-peptide as the most significant biomarker with 

involvement of ancestry in determining its levels. Specifically, we found that 0.24 

(95% CI 0.16 to 0.32, p=2.6x10-11) of the variance of C-peptide is due to local 

ancestry in Latin Americans, largely due to an effect of African ancestry. We also 

identified two local ancestry components associated with its levels (Figure 5-5). 

Furthermore, C-peptide has direct medical relevance because of its physiological 

importance as a marker of insulin production, and also as a biomarker used 

clinically in the diagnosis and categorization of diabetes into type 1 and 2. Because 

diabetes risk is well known to vary between ethnicities, we sought to explore the 

role of C-peptide and genetic ancestry in the context of T2D to further elucidate 

this relationship. First, we sought to determine the impact of including a glycemic-

related weighted genetic risk score (GRS) as a fixed effect in the VC model. Using 

estimates from public consortia, we tested a GRS for T2D, HBA1C, fasting glucose, 

fasting insulin, and 2-hour glucose30,31. The effect of local ancestry remained 

significant in all models (data not shown). Next, we evaluated if any SNPs in the in 

local ancestry window derived using admixture LD were associated with T2D and 

glycemic traits in DIAGRAM or MAGIC databases30,31. After adjusting for multiple 

hypothesis testing, no significant associations were found. Third, we tested the 

effect of the two C-peptide local components for an association with baseline T2D, 

HOMA-IR and HOMA-b in ORIGIN, both separately and using a weighted local 

ancestry GRS. The GRS was derived using estimates from a linear model including 

both local components (scaled from 0 to 1), age and sex, and C-peptide levels as 

the dependent variable. The C-peptide local ancestry GRS was found to be 

significantly associated with an increased risk of T2D (OR=4.47 per SD, 95% CI 

1.70 to 11.76, p=0.002) and HOMA-IR (b=2.73 per SD, 95% CI 0.95 to 4.51, 

p=0.003), but not with HOMA-b (p>0.05) after adjusting for age, sex and global 

ancestry. Models assessing local associations independently demonstrated that 
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the African local estimate at rs4149261 was similarly associated with T2D 

(OR=6.07 per percent increase in African ancestry, 95% CI 1.44 to 25.56, p=0.01) 

and HOMA-IR (b=2.86, 95% CI 0.93 to 4.80, p=0.004), but not HOMA-b. However, 

African local estimates at rs3769050 were not associated with T2D, HOMA-IR or 

HOMA-b (p>0.05). Finally, we investigated if variants previously linked to diabetes 

in a Mexican population were associated with C-peptide and metabolic traits in 

ORIGIN. We found that African local ancestry at the SLC16A11 locus reported by 

Williams et al. and Hara et al. was inversely associated with C-peptide (b=-0.25 

SD per percent increase in ancestry, 95% CI -0.49 to -0.02, p=0.03), fasting plasma 

glucose (b=-0.80 mmol/L, 95% CI -1.39 to -0.20, p=0.009), and risk of diabetes 

(OR=4.47, 95% CI 1.70 to 11.76, p=0.002), in models adjusted for age sex and 

global ancestry6,7. These results are inconsistent with the findings in these reports, 

as Williams et al. identified a risk haplotype common to African populations which 

increases diabetes risk. Other novel SNPs in these reports showed no association 

in ORIGIN.  

 
Figure 5-5: Manhattan plot of admixture mapping of C-peptide protein. 

Mirror Manhattan plot of the association between local Asian ancestry (top) and 
local African ancestry (bottom) with C-Peptide using the additive estimated model 
as determined by the forward selection algorithm. In other words, each point 
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represents the association between a single local component and C-Peptide, after 
residualizing for age and sex, adjusted for global African and Asian ancestry and 
the three significant SNPs falling above (for African) or below (for Asian) the 
selected threshold (shown in red), based on experiment-wide adjusted p-vale 
(1.13x10-6). Negative log 10 P-values are plotted against each local component’s 
respective position on each chromosome. The blue line corresponds to nominal 
significance of p=1x10-4. Local components in LD (r2 > 0.8) with any SNP within 
300KB of the gene encoding c-peptide protein are shown in green. 

 

5.5.4 Prediction of Global Ancestry Using Serum Biomarkers in ORIGIN 

The forward-selection multivariate algorithm revealed 31 biomarkers significantly 

and independently predictive of global ancestry European and Asian components, 

after adjusting for multiple hypothesis testing (p < 0.05/237) according to the 

multivariate ANOVA test. A multivariable linear model was then computed in the 

model building set for each global ancestry component using two independent 

linear models, with global ancestry as the dependent variable and age, sex and the 

31 predictive biomarkers as the independent variables. The resulting correlation 

was 0.69 (0.66, 0.71) and 0.64 (0.62, 0.67) for European and Asian global 

ancestry, respectively. These models were then tested in model assessment group 

revealing consistent estimates, with the proportion of variance explained 0.67 

(0.63, 0.71) and 0.62 (0.57, 0.66) for European and Asian global ancestry, 

respectively. Fitted versus actual values can be seen in Figure 5-6. 



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

140 
 

 
Figure 5-6: Global fitted versus true estimates. 

Scatter plot illustrates fitted global components based on biomarker levels versus 
true global components for European (A) and Asian (B) ancestries. Line of best fit 
is shown in blue and the corresponding 95% CI is shaded. 

 

5.6 Discussion 

Marked regional differences in biomarker profiles have been investigated and 

previously reported2. However, these observations have not been fully elucidated 

and causes may include genetic, lifestyle or socio-economic factors. In this 

report, we sought to explore the impact of ancestry on the human proteome and 

its implications on health and disease. We first developed a model to investigate 

phenotypic variation among admixed individuals. Through simulations, we show 

that an unbiased proportion of variance due to local admixture can be elucidated 

using a VC model and a highly specific forward selection model can be used to 

reveal causal loci associated with biomarker levels. Using these models, we found 

that local ancestry affects at least 0.19 (46 of 237) of biomarkers with 0.05 of 
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biomarkers having more than 0.10 of phenotypic variance explained by local 

ancestry in Latin Americans. Additionally, 0.12 biomarkers had a significant global 

association, however, these associations may be confounded due to legacy effects 

across the entire genome. Local associations, conversely, represent true biological 

effects and implicate genomic regions involved in phenotypic variance.  

C-peptide was identified to have a significant effect of ancestry, almost entirely due 

to an effect of African ancestry. C-peptide is a well-established clinical biomarker 

most commonly used to distinguish type 1 and 2 diabetes, among other uses32. 

Indeed, diabetes is well known to exhibit differential risk patterns among ethnic 

groups, consistent with these findings3–5. Similarly, we also identified two African 

local components to have an effect on C-peptide. A GRS using these local ancestry 

components was associated with an increased risk of diabetes and increased 

HOMA-IR. Our findings shed light on the complex influence of ancestry on T2D, as 

C-peptide is a strong marker of insulin secretion. Together, these findings point to 

insulin resistance rather than b-cell dysfunction as a mediator of this relationship. 

While both local components showed that increased levels of C-peptide leads to 

increased risk of T2D and higher HOMA-IR, the ancestry specific effect on C-

peptide levels were inconsistent. In other words, African ancestry increased C-

peptide levels at one locus and decreased C-peptide levels at another locus. 

Therefore, more studies are needed to further resolve the disparity in diabetes risk 

among ethnic groups.    

The genetics of biomarker concentrations have been extensively investigated in 

the context of genome-wide association studies (GWAS)34. Numerous loci have 

been identified for many biomarkers and these loci have also been linked to 

disease, suggestive of causal relationships and potential drug targets. However, 

few studies have leveraged genetic admixture as a complimentary approach to 

discover novel chromosomal regions impacting biomarker levels. Our analysis 

revealed 46 regions linked to biomarker concentration, many of which are novel. 

Specifically, we identified an association of local Asian ancestry ACE levels, and 
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further genotypic mapping suggests this is an effect at the ACE locus. ACE has a 

well-established role in regulating blood pressure and is also used to diagnose 

sarcoidosis. Response to ACE-inhibitors has been shown to differ between ethnic 

groups raising the possibility that current guidelines may not be applicable to non-

Caucasian ethnicities35–37. Additionally, we identified 5 biomarkers associated with 

rs12075 within the Duffy antigen receptor gene, which encodes for the 

glycosylated membrane protein and is non-specific receptor for several cytokines. 

This gene exhibits known genetic admixture, and variation in this gene are 

responsible for the Duffy blood group system38. The association of the ARCK1 

variant with multiple protein levels replicates previous findings results, 

substantiating a potential role for DARC in the regulation of serum cytokines39. 

Understanding the impact of genetics on biomarker profiles also has clinical 

implications. Predictive thresholds for each specific ethnic group are necessary for 

accurate risk stratification. Otherwise, there is potential for misclassification of risk 

and inappropriate use of pharmacotherapies. Notably, we found that 0.05 of 

biomarkers are affected by local ancestry after multiple hypothesis testing, and 

0.30 showed nominal significance (p < 0.05), ranging from 0.05 to 0.31 proportion 

of variation due to an effect of ancestry. These findings suggest that these 

biomarkers harbor true biological inter-ancestry differences in concentration that 

are genetically determined. These differences may lead to differences in disease 

risk and clinical diagnosis. We also identified local associations with clinically-

relevant biomarkers, including vitamin-D binding protein, apolipoprotein-E, and 

vascular endothelial growth factor. These results are consistent with previous 

reports and demonstrate that specific genetic polymorphisms may partially explain 

the observed differences in concentrations between populations40,41. These 

findings may have implications for the interpretation of clinical markers across 

different ethnic groups.   

A few limitations are worth mentioning. First, for the 11 biomarkers for which we 

identified a significant effect of local ancestry, we did not identify a specific genetic 
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locus contributing to the variation of 6 of these biomarkers. These results are 

consistent with the polygenic model of inheritance, hypothesized to underlie many 

complex traits. According to this model, a large number of loci of small effect sizes 

together explain the variation of a single trait, such as a biomarker. If hundreds of 

genetic variants contribute to the observed differences between Asian and African 

ancestry for a single biomarker, relative to European ancestry, then the proportion 

of Asian and African ancestry in Latins will act as a proxy for the overall contribution 

of variants. However, identification of any specific variant will require an 

appropriately large sample size. Indeed, our simulation have shown that even with 

10 loci the power to detect local associations was very weak, particularly in the 

presence of directional associations. Second, we identified a local association for 

0.17 (40/237) biomarkers, however the VC models identified only 0.05 biomarkers 

to have a significant effect of ancestry after multiple hypothesis testing. These 

results suggest that power was limited in our VC analysis compared to the linear 

model, and larger studies are needed to identify additional markers with an effect 

of ancestry using VC analysis. Finally, we were not able to identify a significant, 

corresponding genotype association in either Europeans or Native Latins for all 

local associations identified. This could be because multiple causal variants 

account for the local association for which we were underpowered or the causal 

variant was not well tagged in our study. Likewise, in the Native Latin GWAS, the 

causal variant(s) could be perfectly correlated with ancestry, and therefore 

impossible to distinguish from local ancestry itself.  It is also worth noting that we 

did not have access to an African or Asian cohort to assess these genotypic 

relationships in these ancestries.  

Genetically admixed populations provide a powerful model to dissect the 

contribution of genetics to difference in biomarker concentrations between 

populations. Studying Latin Americans within the framework of a large, 

international study, we provide evidence for an effect of genetic ancestry on 

biomarker variability. Our results show that ancestry has plays a role in the 
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concentration of at least 0.05 of biomarkers, although this is likely a lower bound. 

This has many implications, namely that differences in disease prevalence likely 

has a biological basis in many cases, and that use of reference intervals for those 

biomarkers should be tailored to ancestry. These results highlight the need for 

specific cutoff values and prognostic measures for each ethnicity and implemented 

accordingly. Finally, we also show that some loci appear to have pleiotropic 

ancestry effects and therefore appear to be of particular importance. As serum 

proteins are frequently dysregulated in disease, identification of factors that 

determine protein variability is a clinical priority. These findings shed light on the 

contribution of ancestry in disease and pave the way for better informed, ethnic 

specific defined cut-offs. Further research will be needed to identify specific factors 

responsible for these differences and gain a better understanding of underlying 

biological mechanisms. 
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6 CONCLUSION 

6.1 General Overview 

Identification of biological mediators of disease is a valuable research endeavor. 

Biomarkers are widely used clinical measures as they can be measured both cost-

effectively and non-invasively.  These measurements provide the opportunity to 

identify subclinical disease states before the development of disease and apply 

preventative measures, facilitate research and understanding of disease 

mechanisms, and allow for the assessment of therapeutic measures. However, 

due to innate complexities of many chronic diseases, a single biomarker is often 

unsuitable to both estimate risk and serve as a valid pharmacological target. 
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Indeed, the pathogenesis behind chronic diseases results from a number of 

modifiable and unmodifiable risk factors and is caused by an interaction of many 

biomarkers simultaneously. Therefore, a major challenge in the field of biomarker 

research is to discern cause and effect, and as a result, association has often been 

mistaken for causation. Furthermore, biomarker levels show marked differences 

between ethnic groups, and it is difficult to distinguish whether this is a result of 

environmental or genetic factors. Longitudinal, genetic, multi-biomarker studies, 

offer a valid approach to ameliorate these challenges. Cumulatively, the thesis 

addresses how advancements in genetic and biomarker research may help to gain 

novel insights into both known and novel biomarkers of cardiovascular disease, 

inform and guide clinical decision-making and validate potential disease target 

pathways. This section briefly summarizes the main research findings, the clinical 

implications, biologic significance, current challenges and future directions of 

biomarker research for cardiovascular disease. 

6.2 Chapter 3 Summary 

Mendelian randomization (MR) was employed to identify novel, causal mediators 

of coronary artery disease in the ORIGIN-trial. The MR analysis revealed six 

biomarkers to be causally associated with CAD. Four of these biomarkers 

(lipoprotein(a), interleukin-6 receptor and apolipoprotein E, apolipoprotein C3) had 

been previously linked to CAD, however, blood colony stimulating factor 1 (CSF1) 

and stromal cell derived factor 1 (CXCL12) were established as novel CAD 

markers. These MR results were then corroborated through epidemiological 

association of CSF1 and CXCL12 levels with prospective MACE in ORIGIN. 

Furthermore, analysis in the large UKBiobank cohort revealed that genetically 

elevated CSF1 and CXCL12 were also associated with increased risk of CAD. Both 

biomarkers have been previously linked to inflammatory processes characteristic 

of atherosclerosis and consistent with previous reports, including results from the 

CANTOS study, showing that an intervention aimed at decreasing inflammation 
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through interleukin-1 beta inhibition can lead to lower rates of recurrent 

cardiovascular events. Together, these results support a role for CXCL12 and 

CSF1 for both risk stratification and as therapeutic targets. 

6.3 Chapter 4 Summary 

MR was used to reveal new mediators of chronic kidney disease (CKD) in the 

ORIGIN-trial. Human epidermal growth factor receptor 2 (HER2) and uromodulin 

(UMOD) were both identified as causal mediators of CKD. Further MR exploration 

of the HER2 pathway also revealed ACE as a regulator of HER2 levels. These 

findings were then corroborated in epidemiological analyses using blood HER2, 

incident CKD and BP-lowering medication data in ORIGIN. These results implicate 

HER2 as a mediator of ACE-inhibitors’ protective effect on CKD and as a marker 

which may help reveal patients likely to benefit from ACE-inhibition. Furthermore, 

these findings suggest HER2-inhibition as a potential novel treatment for CKD, 

which may be applied through the use of HER2-inhibitors (e.g. gefitinib). Additional 

exploration of UMOD concentration in an independent sample of healthy 

nephrectomy donors found a nearly halving of plasma UMOD after transplant, 

compared with before. Therefore, in addition to its causal effect on CKD revealed 

in ORIGIN, UMOD also represents a blood biomarker of kidney mass. In summary, 

UMOD and HER2 were found to be causally involved in CKD and potential 

therapeutic targets for CKD prevention. 

6.4 Chapter 5 Summary 

Admixture mapping was used to explore the impact of ancestry on a 

comprehensive panel of 237 biomarkers in 2,216 Latin American participants within 

the ORIGIN-trial. We first  determined the proportion of European, Asian and 

African ancestry of each participant using genotypes and global ancestry was 

obtained for each individual by averaging the ancestry across the genome. Next, 

we determined the proportion of variance explained by these local ancestral 
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differences using variance component models, revealed 11 biomarkers to have a 

significant effect of ancestry, after adjusting for multiple hypothesis testing (p < 

0.05/237). Among these findings, included clinically relevant markers such as C-

peptide, apolipoprotein-E and intercellular adhesion molecule 1. Additionally, 

multivariable linear regression was used to identify specific genetic regions 

associated with biomarker levels, whereby 46 regional associations including 40 

different biomarkers were identified. An independent analysis revealed 34 of these 

46 regions were associated at genome-wide significance (p < 5x10-8) with their 

respective biomarker in Europeans within ORIGIN. These results demonstrate an 

importance of ancestry on determining biomarker levels. This has many 

implications, namely that differences in disease prevalence likely has a biological 

basis in many cases, and that use of reference intervals for those biomarkers 

should be tailored to ancestry. 

6.5 Clinical and Research Implications 

6.5.1 Novel Drug Targets 

In our analysis investigating novel mediators of CAD, we identified both CSF1 and 

CXCL12 as two new causal markers of CAD. Further analysis using 

epidemiological models and genetically predicted biomarker levels, confirmed their 

deleterious effects1. These results position both CSF1 and CXCL12 as potential 

therapeutic targets, suggesting that pharmacological inhibition and subsequent 

lowering of blood levels would function to decrease risk of CAD. However, these 

findings should be explored further. Future research should be aimed at identifying 

the causal mechanisms behind these observations and if interventions which 

reduce CSF1 and CXL12 levels can reduce CAD.  

Similarly, we established both HER2 and UMOD as mediators of CKD and potential 

therapeutic targets for CKD treatment2. HER2-inhibitors have been designed and 

tested previously, and are currently used in cancer treatment3,4. These 



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

154 
 

interventions may be extended to CKD treatment following proper evaluation 

through a well-designed RCT. Therefore, future studies should investigate the 

impact of HER2 inhibitors to reduce the risk of CKD and also explore the effects of 

lowering UMOD and its impact on CKD. 

6.5.2 Inform Treatment Decisions 

Our MR analysis investigating novel markers for CKD, revealed important insights 

into the mechanism by which ACE-inhibitors exert their protective effect on CKD. 

Upon identifying HER2 as a novel CKD mediator, subsequent MR-analyses 

revealed ACE as a regulator of HER2 levels. Further epidemiological analyses 

using BP-lowering medication data show that blockade of RAAS through ACE-

inhibitors and ARBS reduces HER2.  These findings not only implicate HER2 as a 

potential mediator of ACE-inhibitors’ known protective effect on CKD, but also as 

a marker which may be able to guide RAAS inhibition. Specifically, these results 

suggest that individuals with high HER2 levels may be more likely to benefit from 

RAAS inhibition. However, these findings should be tested in future studies to 

confirm these observations. A well designed RCT which randomizes individuals to 

HER2-guided RAAS inhibition versus standard care would shed light on the clinical 

utility of HER2 to inform RAAS inhibitor treatment. 

6.5.3 Validate Targeting of Known Pathways 

Our MR analysis of the effects of biomarkers on CAD demonstrated that 

lipoprotein(a), interleukin-6 receptor and apolipoprotein E, and apolipoprotein C3 

are important actors in CAD, consistent with previous reports5–8. These findings 

support investigating these markers for use therapeutically to reduce risk of CAD. 

Similarly, we identified CSF1 and CXCL12 as novel biomarkers involved in CAD 

development. Both biomarkers are involved in inflammation and macrophage 

proliferation and survival. Notably, the CANTOS trial has recently shown that an 

intervention aimed at decreasing inflammation leads to lower rates of recurrent 
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cardiovascular events, consistent with our findings in ORIGIN9. Furthermore, our 

findings point to CSF1 as a potential mediator of the beneficial effect of 

canakinumab on CAD shown in CANTOS. These results validate the importance 

of inflammation in CAD, among other previously implicated pathways. Given this 

compelling evidence presented here and in previous studies, these biomarkers 

should be explored further to see if pharmacological modification of their levels is 

a safe and effective way to reduce CAD. 

6.5.4 Clinical Interpretation of Laboratory Results 

Our admixture mapping analysis in Native Latins has revealed the importance of 

ancestry in biomarker variability and more generally, in health and disease. These 

results have both research and clinical implications. Our findings suggest that 

predictive thresholds for each specific ethnic group are necessary in many cases, 

for accurate risk stratification. Otherwise, there is potential for misclassification of 

risk and inappropriate use of pharmacotherapies. Notably, we found that 0.05 of 

biomarkers are affected by local ancestry after multiple hypothesis testing, and 

0.30 showed nominal significance (p <0.05). These differences may lead to 

differences in disease risk, clinical diagnosis and response to medical 

interventions. These findings suggest that these biomarkers harbor true biological 

inter-ancestry differences in concentration that are genetically determined. These 

results pave the way for better informed, ethnic specific defined cut-offs. Further 

research will be needed to identify specific factors responsible for these differences 

and gain a better understanding of underlying biological mechanisms. 

6.5.5 Extension to Other Diseases and Biomarkers 

The statistical approaches and tools employed in this thesis have revealed 

important insights into the role of biomarkers in health and disease. However, these 

methods can easily be extended to other data sets, biomarkers and diseases for 

further biomarker discovery, validation and scientific insights. Indeed, additional 
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biomarker measurement is currently ongoing within the ORIGIN dataset and other 

databases under the supervision of Dr. Pare. This thesis has laid the groundwork 

for many future projects, paving the way for new, exciting scientific findings. Our 

work in admixed individuals may be applied to other admixed populations in an 

effort to determine the impact of ancestry on marked ethnic differences among both 

clinical phenotypes and biomarker levels. Additionally, our biomarker discovery 

framework using MR has proven to be a valuable technique to agnostically screen 

a comprehensive panel of markers for causal evidence with a disease, which can 

be performed in other studies where genotypes have been measured in addition 

to a biomarker panel. 

6.6 Limitations and Considerations 

MR provides a unique tool for assessing causality, however the analysis requires 

that the following assumptions be met: (1) the instrument must be associated with 

the exposure of interest, (2) the instrument must not be associated with 

confounding factors in the exposure-outcome association, and (3) the genetic 

variant must only affect the outcome through the exposure variable10. If these 

assumption are not met, there are potential limitations that threaten the validity of 

the results. First, is the issue of pleiotropy, whereby a genetic instrument has 

effects beyond its effect on the exposure of interest. In the presence of pleiotropy, 

both false positive and false negative results can occur. Confounding due to 

pleiotropy is least likely when genetic instruments are used that lie near the gene 

for the exposure under study11. Second, linkage disequilibrium (LD) can result in 

misinterpretations of MR results, similar to pleiotropic bias12. For example, a SNP 

affecting the expression of gene A may be in LD with a SNP affecting the 

expression of gene B. If biomarker B, encoded by gene B, exerts a causal effect 

on the disease, then a MR analysis investigating the effect of the biomarker 

produced by gene A on a disease could result in false positive findings. In this 

scenario, biomarker B is a causal factor, while biomarker A is merely a bystander 
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with no causal effect13. This phenomenon is especially problematic in gene 

clusters, as it is often impossible to distinguish the true, causal biomarker unless 

all biomarkers for each gene in the cluster are measured. Third, population 

stratification can bias results if not properly taken into consideration. For instance, 

if differing genotype frequencies and risk of disease exists in ethnic 

subpopulations, false positive findings may occur if the prevalence of the variant 

allele parallels the incidence of the study outcomes14. Fourth, MR may be 

confounded by canalization, which is a developmental compensation where a 

phenotype is selected despite the genetic variability. Finally, limited statistical 

power can influence the ability of a MR study to inform on a causal relationship 

between an exposure and an outcome. Specifically, the effect of SNP on a 

phenotype (both exposure and outcome) can be difficult to ascertain. There are 

usually multiple genetic and environmental factors influencing the variability of a 

trait and consequently, the effect of a single SNP can be very small. Additionally, 

risk factors often act together to exert their effect on a disease such that a causal 

biomarker may only be responsible for a portion of the resulting outcome.  

Based on these aforementioned limitations, there are some issues to address in 

our Mendelian randomization analyses. The genetic variants studied may have 

other effects beyond its effect on the biomarker being studied (i.e. genetic 

pleiotropy). However, we mitigated this source of bias by limiting our investigation 

to variants at or near the gene coding for the biomarker of interest. Furthermore, 

each novel, causal marker was individually inspected for proximity to other relevant 

genes which may have biased our results and none were identified for the causal 

biomarkers presented in this thesis. We also employed sensitivity analyses where 

possible to assess the presence of pleiotropy (MR-Egger), which were non-

significant in all cases15. There may also be issues of statistical power. Although 

we can be confident in the associations we did find, we cannot rule out a causal 

role of other biomarkers investigated. For example, we did not detect a significant 

association between ApoB and CAD after adjusting for multiple hypothesis testing 
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in our MR analysis (p=0.029), although this relationship has been seen and 

replicated in other, larger, MR studies16. One possibility for this observation is our 

two sample MR study design, where genetic estimates were obtained from 

independent populations. In such a design, weak genetic instruments results in 

estimates which are biased toward the null hypothesis, reducing the likelihood of 

type 1 error, and as a consequence, decreasing power17. 

There are also limitations to the admixure analysis that are worth mentioning. While 

we identified 46 genetic loci associated with 40 serum biomarkers, we did not 

identify a specific genetic locus contributing to the variation of 197 biomarkers 

despite having identified a significant local association for 11 of these using the VC 

model. These results are consistent with the polygenic model of inheritance, 

hypothesized to underlie many complex traits. According to this model, a large 

number of loci of small effect sizes together explain the heritability of a single trait, 

such as a biomarker or disease. If hundreds of genetic variants contribute to the 

observed differences between Asian and African ancestry for a single biomarker, 

relative to European ancestry, then the proportion of Asian and African ancestry in 

Latins will act as a proxy for the overall contribution of variants. However, 

identification of any specific variant will require an appropriately large sample size. 

Additionally, admixture studies are limited by low resolution in comparison to 

genotype studies. This is due to the fact that genetic studies indirectly measure 

recombination back to the most recent common ancestor. Because admixed 

populations are a relatively recent (<20 generations), the resolution of admixture 

mapping is inferior to genome-wide association studies (GWAS)18. We were 

therefore unable to pinpoint the causal gene involved in the 46 regional 

associations identified.  

Finally, all analyses presented in this thesis were limited to the biomarkers 

included on the customized Human Discovery Multi-Analyte Profile (MAP) 250+ 

panel on the LUMINEX 100/200 platforms measured by Myriad RBM Inc. Indeed, 
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other biomarkers not included here may be causally relevant in CAD and CKD and 

also harbor true ancestry-dependent biological differences, not due to 

confounding. As technology continues to advance and measurement of larger 

panels becomes more cost effective, larger, more comprehensive panels will shed 

additional light on these research questions. Additionally, these findings were 

based on analyses of people with moderate degrees of dysglycemia at baseline 

and may not apply to normoglycemic individuals, younger individuals, or those at 

low risk for CV outcomes. However, MR results were generated using public 

consortia in addition to the ORIGIN data, which was not limited to dysglycemic 

individuals and therefore the results extend beyond dysglycemia to a more 

generalizable population. Additionally, because genetic variants are determined at 

birth, they are immune to reverse causation biases that easily plague observational 

studies, limiting their generalizability. Furthermore, our successful replication in 

UKB, in the case of the CAD MR, provides strong evidence for application of these 

findings beyond a dysglycemic population as the UKB cohort represents a healthy 

population from the UK. 

6.7 Conclusion 

Using two major statistical methods employed in genetic epidemiology we have 

revealed important insights into the role of biomarkers in health and disease. Taken 

together, this thesis implicates new biomarkers for CAD and CKD and also 

indicates the importance of ancestry in disease and paves the way for better 

research in complex admixed populations using our innovative approach to 

determine the impact of ancestry on human phenotypes. MR analysis identified 

both known and novel pathways for diseases and revealed individuals which are 

likely to benefit therapeutic treatment and can be easily applied in clinical settings. 

The admixture mapping analyses presented in this thesis have shown ancestry to 

have an important role in biomarker levels beyond confounding factors and also 

identified specific markers which should be re-examined regarding their clinical use 
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in non-European individuals. Despite these findings, more work is needed to further 

elucidate the pathophysiology and mechanisms behind these observations. 

However, with additional research, the results presented here have the potential to 

guide, inform and transform clinical practice, particularly in the context of 

cardiovascular disease. 
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Supplementary Appendix for Chapter 3 
 

Identification of blood CSF1 and CXCL12 as causal mediators of coronary artery 
disease using Mendelian randomization in the ORIGIN trial 

Biomarker Assay Methodology in ORIGIN 

At Myriad RBM Inc., the samples were thawed at room temperature (RT), vortexed, spun at 13,000g for 5 
minutes for clarification. An aliquot was removed into a master microtiter plate for analysis. Using automated 
pipetting, an aliquot of each sample was introduced into one of the capture microsphere multiplexes of the 
Human DiscoveryMAP. The mixtures of sample and capture microspheres were thoroughly mixed and 
incubated at RT for 1 hour. Next, multiplexed cocktails of biotinylated reporter antibodies for each multiplex 
were added robotically. After thorough mixing, they were incubated for an additional hour at RT. Multiplexes 
were developed using an excess of streptavidin-phycoerythrin solution which was thoroughly mixed into each 
multiplex and incubated for 1 hour at RT. The volume of each multiplexed reaction was reduced by vacuum 
filtration and then increased by dilution into matrix buffer for analysis. Analysis was performed in Luminex 
100 and 200 instruments and the resulting data stream was interpreted using proprietary data analysis software 
developed at RBM. For each multiplex, both calibrators and controls were included on each microtiter plate. 
Eight-point calibrators were run in the first and last column of each plate and 3-level quality controls were 
included in duplicate. Testing results were determined first for the high, medium and low controls for each 
multiplex to ensure proper assay performance. Unknown values for each of the analytes localized in a specific 
multiplex were determined using 4 and 5 parameter, weighted and non-weighted curve fitting algorithms 
included in the data analysis package. 

Determining the Distribution of Each Biomarker in ORIGIN 

Biomarkers were scrutinized in 5 steps. First, 26 biomarkers with undetectable levels in > 8409 (i.e. 99%) 
participants were excluded from further analyses. Second, scrutiny of the mean, median, and distribution of 
results and biologic literature pertaining to another 64 biomarkers with undetectable levels in > 1000 (i.e. 
12%) participants led to exclusion of a further 21, leaving 237 biomarkers for analysis. Third, those 
biomarkers with levels below the level of quantification in < 10% of participants (n=850) were assigned a 
level corresponding to the lower limit of quantification. Fourth, biomarkers with levels below the level of 
quantification in > 10% of participants were identified and analyzed as ordinal variables as follows. A level 
of 1 was assigned to the participants with unquantifiable levels, dividing the remaining participants into 4 
groups using quartiles. Values of 2, 3, 4 and 5 were assigned to participants within each progressively higher 
group. This approach was used to manage skewed biomarker distributions. Fifth, biomarkers with levels 
above the level of quantification were identified and those affected were assigned a level 1% above the upper 
limit of quantification. This approach led to 192 biomarkers for analysis as continuous variables and 45 
biomarkers for analysis as 5-level ordinal variables. 

The distributions of each of the 192 continuous biomarkers’ levels were then scrutinized to identify extreme 
outliers with levels more than 4 standard deviations above or below the mean; levels that met those criteria 
were assigned the value corresponding to the mean plus or minus the 4th standard deviation respectively. 
Subsequently, the levels of 125 biomarkers with distributions that were not normally distributed were log-
transformed using the natural logarithm. Finally, data from 93 participants in whom all 237 biomarkers were 
not analyzed due to insufficient volume of serum were excluded. 

Genotyping Quality Control and Imputation in ORIGIN 

SNPs were excluded on the basis of low call rate (<99%), deviation from Hardy-Weinberg (p<10-6), and low 
minor allele frequency (MAF<0.01). Samples with low call rates (<99%), sex or ethnicity mismatches, or 
cryptic relatedness were also removed. We also removed ethnicities with small sample sizes (n<500). All 
quality control steps were performed using PLINK(1) and GCTA.(2) The 1000 Genomes Project(3) was used 
as the reference panel for ORIGIN imputation and was performed using the software IMPUTE2.(4, 5) We 
removed SNPs imputed with low certainty (info<0.6, as defined by IMPUTE2).(5)  

Biomarker Gene Identification 
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A distance of 300Kb was chosen based on observation of regional associations extending several hundred 
kilobases (Kb) away from known loci.(6) Genes falling within 300 Kb of each SNP were identified using the 
Reference Sequence gene list compiled by the UCSC (University of California Santa Cruz) Genome Table 
Browser.(7) Gene names were identified through the GeneCards Encyclopedia.(8) 

Patient characteristics  

Between September 2003 and December 2005, 578 clinical sites in 40 countries screened 15,374 individuals 
and randomized 12,537 participants for the original ORIGIN trial(9). A subset of 8,401 participants were 
included in the ORIGIN biomarker study (66% men; mean age 63.7 years).(10) A further subset of 5,078 
participants consented to genetic analyses and 4,147 passed quality control, and were thus included in 
Mendelian randomization analyses. Study characteristics were similar across the three groups. Key clinical 
characteristics of these populations are shown in Supplementary Tables 1-3. 

Sensitivity MR analyses 

In addition to the bootstrap method employed, we have also tested CSF1 and CXCL12 in an IVW fixed-effect 
model using the ‘MR-base’ package in R, where consistent estimates were obtained (CSF1: OR=1.19 per SD; 
95% CI 1.08 to 1.30; p=2.0x10-4; CXCL12: OR=1.75 per SD; 95% CI 1.75 to 2.11; p=4.2x10-9). To the CSF1 
MR, we also performed a leave-one-out strategy to ensure that no single variant was driving the MR findings 
and found consistent results for each SNP excluded (Supplementary Table 8). This method was not applied 
to the CXCL12 data as three or more SNPs are required.  

MR analyses were also performed in each ethnic group separately to rule out sources of confounding due to 
population stratification. Results were consistent across the independent ethnicities for CXCL12 (European: 
OR=1.63 per SD; 95% CI 1.37 to 1.95; p=5.2x10-8, Latin: OR=1.75 per SD; 95% CI 1.43 to 2.13; p=5.6x10-

8) and CSF1 (European: OR=1.18 per SD; 95% CI 1.08 to 1.29; p=4.5x10-4, Latin: OR=1.18 per SD; 95% CI 
1.08 to 1.28; p=2.2x10-4).  

MR analyses were also performed at a MAF threshold of 0.01 (in addition to 0.05) and consistent 
estimates were obtained for the two novel biomarkers (CSF1: OR=1.18, 95% CI 1.10 to 1.27, 
p=6.0x10-6, CXCL12: OR=1.22, 95% CI 1.09 to 1.37, p=3.9x10-4). 
Replication of MR findings in the UKBiobank 

All analyses involving UKBiobank (UKB) were conducted under data application number 1525.  UKB is a 
prospective cohort study including more than 500,000 individuals (40-69 years) recruited from the United 
Kingdom during 2006-2010. Samples were genotyped on either the UK Biobank Array or the UK BiLEVE 
array. Phasing and imputation were performed using SHAPEIT3 and IMPUTE3, respectively, against a 
combined haplotype reference panel including UK10K and 1000 Genomes Phase 3. Of the 487,406 
individuals with imputed genotypes available, 343,735 unrelated British individuals remained for 
analyses after excluding based on non-British ancestry, excess heterozygosity, low call rates, gender 
inconsistencies, and relatedness with other study participants. Filtering criteria were determined by the 
"het.missing.outliers", "in.kinship.table", and "in.white.British.ancestry.subset" from the "ukb_sqc_v2.txt" 
bulk data download file containing sample quality control metrics.   

Genetic Risk Score (GRS) was calculated using the allelic dosage at each variant site was weighted by the 
predicted change in biomarker level conferred per additional effect allele (in ORIGIN). Subsequently, the 
weighted contribution at each variant site was summed to create an overall score for each individual in UKB. 
Using these biomarker GRS, the association between coronary artery disease and genetically elevated 
biomarkers was tested using a logistic regression model with age and sex as covariates. Coronary artery 
disease was defined based on a composite of UK biobank data fields including: 1) heart attack diagnosed by 
a doctor (data fields 3894 & 6150), and 2) relevant in-hospital ICD-10 diagnoses including unstable angina 
(ICD code I200), acute myocardial infarction (I210-I214,I219), silent myocardial ischemia (I256), and 
subsequent myocardial infarction (I220,I221,I228,I229) (data fields 41202 & 41204).  

Association of CSF1 and CXCL12 concentration with MACE in ORIGIN 

In addition to a minimally adjusted epidemiological model, we also tested models further adjusting for 
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traditional CAD risk factors as a sensitivity analysis, namely prior type 2 diabetes, BMI, serum cystatin-c, 
current smoker, diagnosis of hypertension, and LDL (mmol/L). Consistent with our minimally adjusted 
models, we found that increased levels of blood CSF1 and CXCL12 were significantly associated with an 
increased risk of incident MACE in models adjusting for age, sex, ethnicity (CSF1: hazard ratio (HR)=1.15 
per SD; 95% CI, 1.09 to 1.23; p<0.0001 and CXCL12: HR=1.08 per SD; 95% CI, 1.02 to 1.14; p=0.005).  
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Supplementary Table 1: Participant characteristics for the genetic and biomarker sub-study subsets 
of the ORIGIN study. 

Variable Genetic Study participants     
(n=4,147) 

All biomarker participants 
(n=8,197) 

Age (years), mean (SD) 63.45 (7.98) 63.72 (7.94) 
Gender (% male) 64.14 66.11 
Ethnicity (%)   

     European 46.56 55.41 

     Black 0 4.36 
     South Asian 0 5.49 
     South East Asian 0 0.46 
     Latin 53.44 34.28 
Current smoker (% yes) 55.79 57.79 
LDL (mmol/L) 3.07 (1.05) 2.89 (1.03) 
HDL (mmol/L) 1.17 (0.32) 1.18 (0.32) 
Fasting plasma glucose (mmol/L) 7.58 (2.17) 7.33 (2.02) 
Hypertension (% yes) 82.90 78.91 
Hypercholesterolemia (% yes)a 8.85 6.8 
HbA1c (%) 6.56 (0.98) 6.50 (0.95) 
Body mass index (kg/m2) 30.45 (5.33) 30.04 (5.27) 
Prior diabetes (% yes) 87.56 81.66 
Prospective MACE (% with event) 17.70 16.81 

Data are presented as mean (SD) unless stated otherwise.  aHypercholesterolemia defined as LDL-
cholesterol level >4.5 mmol/L. 

Supplementary Table 2: Participant characteristics for all individuals included in the ORIGIN-trial. 

 
  Overall Glargine Standard Care 

N N/Mean %/SD N/Mean %/SD N/Mean %/SD 
Categorical Variables 
--N.America + Australia 12537 1516 12.1 762 12.2 754 12.0 
--S.America 12537 3853 30.7 1925 30.7 1928 30.7 
--Europe 12537 6060 48.3 3027 48.3 3033 48.4 
--India 12537 390 3.1 194 3.1 196 3.1 
Prior CV Event 12533 7378 58.9 3712 59.3 3666 58.4 
Reported or measured Microalb/Alb 12537 3968 31.7 1984 31.7 1984 31.6 
Male 12536 8150 65.0 4181 66.8 3969 63.3 
Male>=55y or female >=65y 12537 8765 69.9 4432 70.8 4333 69.1 
Current Smoking 12533 1552 12.4 781 12.5 771 12.3 
Prior diabetes 12536 10321 82.3 5162 82.4 5159 82.2 
Hypertension 12533 9963 79.5 4974 79.5 4989 79.5 
Age 12537 63.54 7.82 63.55 7.79 63.54 7.85 
Continuous Variables 
--Cholesterol (mmol/L) 12521 4.90 1.20 4.91 1.20 4.90 1.20 
--LDL Cholesterol (mmol/L) 12328 2.90 1.03 2.91 1.04 2.90 1.03 
--HDL Cholesterol (mmol/L) 12471 1.19 0.32 1.19 0.32 1.20 0.32 
Outcome Variables 
Coprimary outcome 1 12537 2054 16.4 1041 16.6 1013 16.1 
Coprimary outcome 2 12537 3519 28.1 1792 28.6 1727 27.5 
Microvascular 12537 2686 21.4 1323 21.1 1363 21.7 
New Diabetes 12536 760 6.1 365 5.8 395 6.3 
Death 12537 1916 15.3 951 15.2 965 15.4 
A1C <6% at 2 year visit 11417 5729 50.2 3362 59.4 2367 41.1 
Diabetes duration 11081 5.41 5.98 5.49 6.05 5.33 5.92 
IFG or IGT 12537 1452 11.6 735 11.7 717 11.4 
Statins 12533 6740 53.8 3373 53.9 3367 53.7 
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ACE-I or ARB 12533 8681 69.3 4330 69.2 4351 69.4 
Beta blockers 12533 6598 52.6 3273 52.3 3325 53.0 
Antiplatelets 12533 1706 13.6 855 13.7 851 13.6 

Supplementary Table 3: Participant characteristics for all individuals included in biomarker sub-
study. 
 

  Overall Glargine Standard Care 
N N/Mean %/SD N/Mean %/SD N/Mean %/SD 

Categorical Variables 
--N.America + Australia 8401 1425 17.0 710 16.9 715 17.0 
--S.America 8401 2772 33.0 1388 33.1 1384 32.9 
--Europe 8401 3822 45.5 1903 45.4 1919 45.6 
--India 8401 382 4.5 191 4.6 191 4.5 
Prior CV Event 8400 4991 59.4 2513 60.0 2478 58.9 
Reported or measured Microalb/Alb 8401 2656 31.6 1330 31.7 1326 31.5 
Male 8401 5553 66.1 2834 67.6 2719 64.6 
Male>=55y or female >=65y 8401 5928 70.6 2997 71.5 2931 69.6 
Current Smoking* 8400 1050 12.5 525 12.5 525 12.5 
Prior diabetes 8401 6840 81.4 3422 81.6 3418 81.2 
Hypertension 8400 6638 79.0 3320 79.2 3318 78.8 
Age 8401 63.71 7.94 63.71 7.93 63.70 7.96 
Continuous Variables 
--Cholesterol (mmol/L) 8393 4.89 1.18 4.89 1.17 4.89 1.18 
--LDL Cholesterol (mmol/L) 8278 2.90 1.03 2.90 1.03 2.89 1.02 
--HDL Cholesterol (mmol/L) 8370 1.18 0.32 1.17 0.31 1.18 0.32 
Outcome Variables 
Coprimary outcome 1 8401 1405 16.7 727 17.3 678 16.1 
Coprimary outcome 2 8401 2435 29.0 1245 29.7 1190 28.3 
Microvascular 8401 1794 21.4 887 21.2 907 21.5 
New Diabetes 8401 550 6.5 259 6.2 291 6.9 
Death 8401 1340 16.0 672 16.0 668 15.9 
A1C <6% at 2 year visit 7668 4042 52.7 2389 62.7 1653 42.8 
Diabetes duration 7390 5.26 5.82 5.40 5.95 5.12 5.69 
IFG or IGT 8401 1008 12.0 510 12.2 498 11.8 
Statins 8400 4616 55.0 2302 54.9 2314 55.0 
ACE-I or ARB 8400 5793 69.0 2873 68.6 2920 69.4 
Beta blockers 8400 4526 53.9 2249 53.7 2277 54.1 
Antiplatelets 8400 1120 13.3 553 13.2 567 13.5 

 
 
 
Supplementary Table 4: List of all biomarkers tested and their corresponding genes. 

 Biomarker Gene  
1 6Ckine CCL21 
2 Adiponectin ADIPOQ 
3 Adrenomedullin ADM 
4 Agouti-Related Protein AGRP 
5 Aldose Reductase AKR1B1 
6 Alpha-1-acid glycoprotein 1 ORM1 
7 Alpha-1-Antichymotrypsin SERPINA3 
8 Alpha-1-Antitrypsin SERPINA1 
9 Alpha-1-Microglobulin AMBP 

10 Alpha-2-Macroglobulin A2M 
11 Angiogenin ANG 
12 Angiopoietin-2 ANGPT2 
13 Angiopoietin-related protein 3 ANGPTL3 
14 Angiotensin-Converting Enzyme ACE 
15 Angiotensinogen AGT 
16 Antithrombin-III SERPINC1 
17 Apolipoprotein A-I APOA1 
18 Apolipoprotein A-II APOA2 
19 Apolipoprotein A-IV APOA4 
20 Apolipoprotein B APOB 
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21 Apolipoprotein C-I APOC1 
22 Apolipoprotein C-III APOC3 
23 Apolipoprotein D APOD 
24 Apolipoprotein E APOE 
25 Apolipoprotein H APOH 
26 Apolipoprotein(a) LPA 
27 AXL Receptor Tyrosine Kinase AXL 
28 B cell-activating factor TNFSF13B 
29 B Lymphocyte Chemoattractant CXCL13 
30 Beta Amyloid 1-40 APP 
31 Beta-2-Microglobulin B2M 
32 Brain-Derived Neurotrophic Factor BDNF 
33 C-Peptide INS 
34 C-Reactive Protein CRP 
35 Cathepsin D CTSD 
36 CD 40 antigen CD40 
37 CD163 CD163 
38 CD40 Ligand CD40LG 
39 CD5 Antigen-like CD5L 
40 Cellular Fibronectin FN1 
41 Chemerin RARRES2 
42 Chemokine CC-4 CCR4 
43 Chromogranin-A CHGA 
44 Clusterin CLU 
45 Collagen IV COL4A1,COL4A2,COL4A3,COL4A4,COL

4A5,COL4A6 
46 Complement C3 C3 
47 Complement Factor H Related Protein 1 CFHR1 
48 Cortisol NA 
49 Creatine Kinase-MB CKM,CKB 
50 Cystatin-C CST3 
51 E-Selectin SELE 
52 EN-RAGE S100A12 
53 Endoglin ENG 
54 Endostatin COL18A1 
55 Eotaxin-1 CCL11 
56 Eotaxin-2 CCL24 
57 Eotaxin-3 CCL26 
58 Epithelial-Derived Neutrophil-Activating Protein 78 CXCL5 
59 Erythropoietin EPO 
60 Ezrin EZR 
61 Factor VII F7 
62 Fas Ligand FASLG 
63 FASLG Receptor TNFRSF6B 
64 Fatty Acid-Binding Protein adipocyte FABP4 
65 Fatty Acid-Binding Protein liver FABP1 
66 Ferritin FTL,FTH1 
67 Fetuin-A AHSG 
68 Fibroblast Growth Factor 21 FGF21 
69 Fibroblast growth factor 23 FGF23 
70 Fibulin-1C FBLN1 
71 Ficolin-3 FCN3 
72 Follicle-Stimulating Hormone FSHB,CGA 
73 Galectin-3 LGALS3 
74 Gastric inhibitory polypeptide GIP 
75 Gelsolin GSN 
76 Glucagon-like Peptide 1 total GCG 
77 Glucose-6-phosphate Isomerase GPI 
78 Glutathione S-Transferase alpha GSTA1,GSTA2,GSTA3,GSTA4,GSTA5 
79 Glycogen phosphorylase isoenzyme BB PYGB 
80 Granulocyte Colony-Stimulating Factor CSF3 
81 Growth differentiation factor 15 GDF15 
82 Growth Hormone GH1,GH2 
83 Growth-Regulated alpha protein CXCL1 
84 Haptoglobin HP 
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85 Heat-Shock protein 70 HSPA1A,HSPA1B,HSPA1L,HSPA2,HSPA
4,HSPA4L,HSPA5,HSPA6,HSPA8,HSPA9,
HSPA12A,HSPA12B,HSPA13,HSPA14 

86 Hemopexin HPX 
87 Hepatocyte Growth Factor HGF 
88 Hepatocyte Growth Factor receptor MET 
89 Hepsin HPN 
90 Human Epidermal Growth Factor Receptor 2 ERBB2 
91 Immunoglobulin A IGH 
92 Immunoglobulin E IGH 
93 Immunoglobulin M IGH 
94 Insulin INS 
95 Insulin-like Growth Factor Binding Protein 4 IGFBP4 
96 Insulin-like Growth Factor Binding Protein 5 IGFBP5 
97 Insulin-like Growth Factor Binding Protein 6 IGFBP6 
98 Insulin-like Growth Factor I IGF1 
99 Insulin-like Growth Factor-Binding Protein 1 IGFBP1 

100 Insulin-like Growth Factor-Binding Protein 2 IGFBP2 
101 Insulin-like Growth Factor-Binding Protein 3 IGFBP3 
102 Intercellular Adhesion Molecule 1 ICAM1 
103 Interferon gamma IFNG 
104 Interferon gamma Induced Protein 10 CXCL10 
105 Interferon-inducible T-cell alpha chemoattractant CXCL11 
106 Interleukin-1 beta IL1B 
107 Interleukin-1 receptor antagonist IL1RN 
108 Interleukin-10 IL10 
109 Interleukin-12 Subunit p40 IL12B 
110 Interleukin-16 IL16 
111 Interleukin-17 IL17A 
112 Interleukin-18 IL18 
113 Interleukin-2 IL2 
114 Interleukin-2 receptor alpha IL2RA 
115 Interleukin-23 IL23A,IL12B 
116 Interleukin-6 IL6 
117 Interleukin-6 receptor IL6R 
118 Interleukin-6 receptor subunit beta IL6ST 
119 Interleukin-7 IL7 
120 Interleukin-8 CXCL8 
121 Kallikrein 5 KLK5 
122 Kidney Injury Molecule-1 HAVCR1 
123 Lactoferrin LTF 
124 Lactoylglutathione lyase GLO1 
125 Latency-Associated Peptide of Transforming Growth Factor beta 1 LTBP1 
126 Lectin-Like Oxidized LDL Receptor 1 OLR1 
127 Leptin LEP 
128 Leptin Receptor LEPR 
129 Leucine-rich alpha-2-glycoprotein LRG1 
130 Luteinizing Hormone LHB,CGA 
131 Macrophage Colony-Stimulating Factor 1 CSF1 
132 Macrophage inflammatory protein 3 beta CCL19 
133 Macrophage Inflammatory Protein-1 alpha CCL3 
134 Macrophage Inflammatory Protein-1 beta CCL4 
135 Macrophage Inflammatory Protein-3 alpha CCL20 
136 Macrophage Migration Inhibitory Factor MIF 
137 Macrophage-Derived Chemokine CCL22 
138 Macrophage-Stimulating Protein MST1 
139 Matrix Metalloproteinase-1 MMP1 
140 Matrix Metalloproteinase-10 MMP10 
141 Matrix Metalloproteinase-3 MMP3 
142 Matrix Metalloproteinase-7 MMP7 
143 Matrix Metalloproteinase-9 MMP9 
144 Matrix Metalloproteinase-9 total MMP9 
145 Mesothelin MSLN 
146 Methylglyoxal NA 
147 MHC class I chain-related protein A MICA 
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148 Monocyte Chemotactic Protein 1 CCL2 
149 Monocyte Chemotactic Protein 2 CCL8 
150 Monocyte Chemotactic Protein 3 CCL7 
151 Monocyte Chemotactic Protein 4 CCL13 
152 Monokine Induced by Gamma Interferon CXCL9 
153 Myeloid Progenitor Inhibitory Factor 1 CCL23 
154 Myeloperoxidase MPO 
155 Myoglobin MB 
156 N-terminal prohormone of brain natriuretic peptide NPPB 
157 Neuronal Cell Adhesion Molecule NRCAM 
158 Neuropilin-1 NRP1 
159 Neutrophil Activating Peptide 2 PPBP 
160 Neutrophil Gelatinase-Associated Lipocalin LCN2 
161 Omentin ITLN1 
162 Osteocalcin BGLAP 
163 Osteopontin SPP1 
164 Osteoprotegerin TNFRSF11B 
165 P-Selectin SELP 
166 Pancreatic Polypeptide PPY 
167 Paraoxanase-1 PON1 
168 Pentraxin-3 PTX3 
169 Pepsinogen I NA 
170 Peptide YY PYY 
171 Periostin POSTN 
172 Peroxiredoxin-4 PRDX4 
173 Phosphoserine Aminotransferase PSAT1 
174 Pigment Epithelium Derived Factor SERPINF1 
175 Plasminogen Activator Inhibitor 1 SERPINE1 
176 Platelet-Derived Growth Factor BB PDGFB 
177 Progesterone NA 
178 Progranulin GRN 
179 Proinsulin Intact INS 
180 Proinsulin Total INS 
181 Prolactin PRL 
182 Prostasin PRSS8 
183 Prostatic Acid Phosphatase ACPP 
184 Protein S100-A4 S100A4 
185 Protein S100-A6 S100A6 
186 Pulmonary and Activation-Regulated Chemokine CCL18 
187 Receptor for advanced glycosylation end products AGER 
188 Receptor tyrosine-protein kinase erbB-3 ERBB3 
189 Resistin RETN 
190 Retinol-binding protein 4 RBP4 
191 Secreted frizzled-related protein 4 SFRP4 
192 Selenoprotein P SEPP1 
193 Serotransferrin TF 
194 Serum Amyloid A Protein SAA1,SAA2,SAA4,SAA3P 
195 Serum Amyloid P-Component APCS 
196 Serum Glutamic Oxaloacetic Transaminase GOT1,GOT2 
197 Sex Hormone-Binding Globulin SHBG 
198 Sortilin SORT1 
199 ST2 IL1RL1 
200 Stem Cell Factor KITLG 
201 Stromal cell-derived factor-1 CXCL12 
202 Superoxide Dismutase 1 soluble SOD1 
203 T Lymphocyte-Secreted Protein I-309 CCL1 
204 T-Cell-Specific Protein RANTES CCL5 
205 Tamm-Horsfall Urinary Glycoprotein UMOD 
206 Tenascin-C TNC 
207 Testosterone Total NA 
208 Tetranectin CLEC3B 
209 Thrombin-activable fibrinolysis inhibitor CPB2 
210 Thrombomodulin THBD 
211 Thrombospondin-1 THBS1 
212 Thyroid-Stimulating Hormone TSHB,CGA 
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213 Thyroxine-Binding Globulin SERPINA7 
214 Tissue Inhibitor of Metalloproteinases 1 TIMP1 
215 Tissue type Plasminogen activator PLAT 
216 TNF-Related Apoptosis-Inducing Ligand Receptor 3 TNFRSF10C 
217 Transthyretin TTR 
218 Trefoil Factor 3 TFF3 
219 Tumor Necrosis Factor alpha TNF 
220 Tumor necrosis factor receptor 2 TNFRSF1B 
221 Tumor Necrosis Factor Receptor I TNFRSF1A 
222 Tyrosine kinase with Ig and EGF homology domains 2 TIE1 
223 Urokinase-type Plasminogen Activator PLAU 
224 Urokinase-type plasminogen activator receptor PLAUR 
225 Vascular Cell Adhesion Molecule-1 VCAM1 
226 Vascular Endothelial Growth Factor VEGFA 
227 Vascular Endothelial Growth Factor C VEGFC 
228 Vascular endothelial growth factor D FIGF 
229 Vascular Endothelial Growth Factor Receptor 2 FLT1 
230 Vascular endothelial growth factor receptor 3 FLT4 
231 Visceral adipose tissue derived serpin A12 SERPINA12 
232 Visfatin NAMPT 
233 Vitamin D-Binding Protein GC 
234 Vitamin K-Dependent Protein S PROS1 
235 Vitronectin VTN 
236 von Willebrand Factor VWF 
237 YKL-40 CHI3L1 
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Supplementary Table 5: Summary of consortia used in MR analyses. 
 

Consortia Variable(s) used Study description Sample URL 

CARDIoGRAM(11) CAD, MI Meta-analysis of 48 GWAS, case status defined as 
CAD diagnosis (i.e. MI, acute coronary syndrome, 

chronic stable angina or coronary stenosis of >50%) 

60,801 CAD cases (approximately 70% MI) 
and 123,504 controls in predominantly 

Europeans (77%) 

http://www.cardiogramplusc
4d.org/ 

Diabetes Genetics Replication and 
Meta-Analysis (DIAGRAM)(12)  

Type 2 diabetes (T2D) Meta-analysis of 18 GWAS, reported as Stage 1 
GWAS, case status defined as T2D diagnosis 

26,676 T2D cases and 132,532 controls in 
Europeans 

http://diagram-
consortium.org/index.html 

Genetic Investigation of 
Anthropometric Traits (GIANT)(13) 

BMI Meta-analysis of 114 GWAS and metabochip studies 322,154 European individuals https://www.broadinstitute.o
rg/collaboration/giant/index.
php/GIANT_consortium_dat

a_files 
CKDGEN(14) CKD Meta-analysis of 43 GWAS, CKD defined as eGFRcrea 

< 60ml/min per 1.73 m2 
12,385 cases and 104,780 controls in 

Europeans 
https://www.nhlbi.nih.gov/re
search/intramural/researcher

s/pi/fox-caroline/datasets 
Meta-Analysis of Glucose and Insulin-

Related Traits Consortium 
(MAGIC)(15, 16) 

HbA1c, fasting glucose Meta-analysis of 23 GWAS for HbA1c and 21 GWAS 
for fasting glucose 

46,368 in HbA1c and 46,186 in fasting glucose, 
non-diabetic, Europeans 

http://www.magicinvestigato
rs.org/ 

Global Lipids Genetics Consortium(17) LDL-cholesterol, HDL-
cholesterol, triglycerides 

Meta-analysis of 60 GWAS  188,577 European individuals http://csg.sph.umich.edu//abe
casis/public/lipids2013/ 

International Consortium for Blood 
Pressure (ICBP)(18) 

SBP, DBP Meta-analysis of 29 GWAS  69,395 European individuals http://www.ncbi.nlm.nih.gov
/projects/gap/cgi-

bin/study.cgi?study_id=phs0
00585.v1.p1 
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Supplementary Table 6: Summary of 7 independent (R2<0.1) SNP associations at the CSF1 locus (+/- 300KB) located on chromosome 1. 
Association statistics provided for serum CSF1 (in ORIGIN) and CAD (from CARDIoGRAM). 

 
SNP Position MAF Effect 

allele 
Other 
allele 

CSF1 Beta CSF1 SE CSF1               
p-value 

CAD Beta CAD SE CAD                
p-value 

rs9429558 110495380 0.24754 A G 0.0717 0.0253 0.0046 0.007441 0.010906 0.495068 
rs875902 110425963 0.329648 T C -0.0641 0.0231 0.0055 -0.00819 0.009793 0.40297 

rs3768471 110612436 0.065892 A G 0.154 0.0445 0.00055 0.028094 0.019986 0.159827 
rs2050462 110472956 0.382667 G T 0.0836 0.023 0.00028 0.01877 0.009739 0.053929 

rs12089727 110461748 0.121566 T C 0.0815 0.0314 0.0095 0.01309 0.013877 0.345541 
rs11588387 110537864 0.076395 T C -0.1375 0.0455 0.0025 -0.0227 0.021329 0.287183 
rs11579145 110501597 0.469632 A G -0.1275 0.0211 1.67E-09 -0.02202 0.009439 0.019662 

 

MAF: minor allele frequency, SE: standard error. Beta coefficient corresponds to the risk coefficient for each SD increase in effect allele. 
Supplementary Table 7: Summary of 2 independent (R2<0.1) SNP associations at the CXCL12  locus (+/- 300KB) located on chromosome 10. 
Association statistics provided for serum CXCL12 (in ORIGIN) and CAD (from CARDIoGRAM). 

SNP Position MAF Effect 
allele 

Other 
allele 

CXCL12 Beta CXCL12 SE CXCL12 p-
value 

CAD Beta CAD SE CAD               
p-value 

rs880175 44854194 0.158794 T C -0.1107 0.0297 0.000198 -0.02919 0.014378 0.042309 
rs1482478 44596130 0.549291 A G -0.0672 0.0225 0.00290 -0.06117 0.009459 1.00E-10 

 

MAF: minor allele frequency, SE: standard error. Beta coefficient corresponds to the risk coefficient for each unit increase in effect allele. 
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Supplementary Table 8: Summary of leave-one-out sensitivity MR analysis for CSF1. 

 
SNP excluded OR 95% CI P-value 

rs9429558 1.18 (1.06, 1.33) 3.8x10-3 
rs875902 1.19 (1.08, 1.3) 3.7x10-4 

rs3768471 1.19 (1.08, 1.30) 3.2x10-4 
rs2050462 1.17 (1.06, 1.29) 1.3x10-3 

rs12089727 1.18 (1.08, 1.30) 5.8x10-4 
rs11588387 1.19 (1.08, 1.31) 2.8x10-4 
rs11579145 1.19 (1.09, 1.31) 2.3x10-4 

Overall 1.19 (1.08, 1.30) 2.0x10-4 
 
Supplementary Figure 1: Schematic representation of cis association.  

 

 
 
  

Gene A Gene B Gene C

Protein A Protein B Protein C

+/- 300 KB
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Supplementary Figure 2: Overview of SNP and biomarker selection.  
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Supplementary Figure 3: Illustration of Mendelian randomization association between CXCL12 and 
CAD (A) and CSF1 and CAD (2). 
 

 
 

 
Scatterplot showing the effect estimates of SNP-biomarker associations on the x-axis and SNP-CAD 
associations (95% CI, from CARDIoGRAM) on the y-axis for all SNPs used in the MR analysis. The 
continuous black line represents the MR fixed-effects IVW estimate (dashed lines represent 
corresponding 95% CI). 
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Supplementary Figure 4: Regional plots for CXCL12 and CSF1 associations. 
 

Plots show association of SNPs with serum CSF1 levels at the CSF1 locus (A) and serum CXCL12 levels at 

the CXCL12 locus (B) +/- 300 KB along with recombination rates. The region defined as cis, +/- 300 KB of 

the CSF1/CXCL12 genes, is highlighted. –log10 P values (y axis) of the SNPs are shown according to their 

chromosomal positions (x axis). The most significant SNP in the analysis is labeled as a purple triangle. 

The color intensity of each symbol reflects the extent of LD with the top SNP, colored red (r2 > 0·8) 

through to blue (r2 < 0·2). SNPs with missing LD information are labeled grey. Genetic recombination rates 

(cM/Mb), estimated using 1000 Genomes European samples, are shown with a light blue line. Physical 

positions are based on build hg19 of the human genome. Also shown are the relative positions of genes 

mapping to the region of association.  
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Supplementary Figure 5: ROC curve of (A) CSF1 and (B) CXCL12 for MACE outcomes. 
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Supplementary Appendix for Chapter 4 
 

Blood HER2 and Uromodulin as causal mediators of CKD 
Biomarker Assay Methodology in ORIGIN 

At Myriad RBM Inc., the samples were thawed at room temperature (RT), vortexed, spun at 13,000g for 5 
minutes for clarification. An aliquot was removed into a master microtiter plate for analysis. Using automated 
pipetting, an aliquot of each sample was introduced into one of the capture microsphere multiplexes of the 
Human DiscoveryMAP. The mixtures of sample and capture microspheres were thoroughly mixed and 
incubated at RT for 1 hour. Next, multiplexed cocktails of biotinylated reporter antibodies for each multiplex 
were added robotically. After thorough mixing, they were incubated for an additional hour at RT. Multiplexes 
were developed using an excess of streptavidin-phycoerythrin solution which was thoroughly mixed into each 
multiplex and incubated for 1 hour at RT. The volume of each multiplexed reaction was reduced by vacuum 
filtration and then increased by dilution into matrix buffer for analysis. Analysis was performed in Luminex 
100 and 200 instruments and the resulting data stream was interpreted using proprietary data analysis software 
developed at RBM. For each multiplex, both calibrators and controls were included on each microtiter plate. 
Eight-point calibrators were run in the first and last column of each plate and 3-level quality controls were 
included in duplicate. Testing results were determined first for the high, medium and low controls for each 
multiplex to ensure proper assay performance. Unknown values for each of the analytes localized in a specific 
multiplex were determined using 4 and 5 parameter, weighted and non-weighted curve fitting algorithms 
included in the data analysis package. 

Determining the Distribution of Each Biomarker in ORIGIN 

Biomarkers were scrutinized in 5 steps. First, 26 biomarkers with undetectable levels in > 8409 (i.e. 99%) 
participants were excluded from further analyses. Second, scrutiny of the mean, median, and distribution of 
results and biologic literature pertaining to another 64 biomarkers with undetectable levels in > 1000 (i.e. 
12%) participants led to exclusion of a further 21, leaving 237 biomarkers for analysis. Third, those 
biomarkers with levels below the level of quantification in < 10% of participants (n=850) were assigned a 
level corresponding to the lower limit of quantification. Fourth, biomarkers with levels below the level of 
quantification in > 10% of participants were identified and analyzed as ordinal variables as follows. A level 
of 1 was assigned to the participants with unquantifiable levels, dividing the remaining participants into 4 
groups using quartiles. Values of 2, 3, 4 and 5 were assigned to participants within each progressively higher 
group. This approach was used to manage skewed biomarker distributions. Fifth, biomarkers with levels 
above the level of quantification were identified and those affected were assigned a level 1% above the upper 
limit of quantification. This approach led to 192 biomarkers for analysis as continuous variables and 45 
biomarkers for analysis as 5-level ordinal variables. 

The distributions of each of the 192 continuous biomarkers’ levels were then scrutinized to identify extreme 
outliers with levels more than 4 standard deviations above or below the mean; levels that met those criteria 
were assigned the value corresponding to the mean plus or minus the 4th standard deviation respectively. 
Subsequently, the levels of 125 biomarkers with distributions that were not normally distributed were log-
transformed using the natural logarithm. Biomarkers analyzed as continuous variables were then standardized 
to have mean 0 and standard deviation of 1. Finally, data from 93 participants in whom all 237 biomarkers 
were not analyzed due to insufficient volume of serum were excluded. 

Genotyping Quality Control and Imputation in ORIGIN 

SNPs were excluded on the basis of low call rate (<99%), deviation from Hardy-Weinberg (p<10-6), and low 
minor allele frequency (MAF<0.01). Samples with low call rates (<99%), sex or ethnicity mismatches, or 
cryptic relatedness were also removed. We also removed ethnicities with small sample sizes (n<500). All 
quality control steps were performed using PLINK1 and GCTA.2 The 1000 Genomes Project3 was used as the 
reference panel for ORIGIN imputation and was performed using the software IMPUTE2.4,5 We removed 
SNPs imputed with low certainty (info<0.6, as defined by IMPUTE2).5  
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Biomarker Gene Identification 

A distance of 300Kb was chosen based on observation of regional associations extending several hundred 
kilobases (Kb) away from known loci.6 Genes falling within 300 Kb of each SNP were identified using the 
Reference Sequence gene list compiled by the UCSC (University of California Santa Cruz) Genome Table 
Browser.7 Gene names were identified through the GeneCards Encyclopedia.8 

Measurement of Biomarkers in Sample of Healthy Kidney Donors 

To further explore the relationship of the novel markers found in the MR analysis, we assessed their 
concentration in ten healthy people before and after donor nephrectomy for renal transplantation at St. 
Joseph’s Healthcare, Hamilton, ON. Blood and urine samples were collected within 3-months prior to 
nephrectomy (pre-op) and 3 months after the operation (post-op), once kidney function had returned to normal 
according to eGFR. Participant samples were stored at -80 °C until required for further analyses. Plasma 
samples were thawed at room temperature and biomarkers were measured using a solid-phase sandwich 
enzyme-linked immunosorbent assay (ELISA). 90mL urine collection containers were thawed completely 
and mixed thoroughly. Approximately 1mL of urine was aliquoted from the collection container into 
Eppendorf tubes. The Eppendorf tubes were centrifuged at room temp for 7 minutes at 16,100 xg. 10uL from 
each Eppendorf was aliquoted into a 2nd tube with 190uL Calibrator diluent (referred to as dilution #1). All 
“dilution #1” tubes were vortexed thoroughly. These tubes were not centrifuged. 10uL from each “dilution 
#1” Eppendorf was aliquoted into a 3rd tube with 490uL Calibrator diluent (referred to as dilution #2). All 
“dilution #2” tubes were vortexed thoroughly, then centrifuged at room temp for 7 minutes @ 16,100 xg. 
Urinary uromodulin was indexed to creatinine as uromodulin-to-creatinine ratio in order to account for 
differences in urine concentration. ELISA was performed using the Human Magnetic Luminex Screening 
Assay for Uromodulin (BR64) from R&D according to manufacturer’s specifications. The biomarker 
concentration was determined using Bio-Rad Bio-Plex 200 system. The optical density was analyzed and 
exported for further analysis using BioPlex Manager 6.1. 

Association of UMOD and HER2 concentration with CKD in ORIGIN 

In addition to a minimally adjusted epidemiological model, we also tested models further adjusting for 
traditional CKD risk factors as a sensitivity analysis, namely prior type 2 diabetes, prior renal disease, BMI, 
estimate glomerular filtration rate (eGFR), current smoker, diagnosis of hypertension, and LDL (mmol/L). 
Consistent with our minimally adjusted models, we found that increased levels of blood HER2 was associated 
with an increased risk of incident CKD, while blood UMOD was associated with a decreased risk of incident 
CKD (HER2: odds ratio (OR)=1.07 per SD; 95% CI, 1.01 to 1.13; p=0.026 and UMOD: OR=0.86 per SD; 
95% CI, 0.81 to 0.92; p<9x10-7). 

Additional MR analyses 

In addition to the bootstrap method employed, we have also tested UMOD and HER2 in an IVW fixed-effect 
model using the ‘MR-base’ package in R, where consistent estimates were obtained (UMOD: OR=1.32 per 
SD; 95% CI 1.28 to 1.37; p=4.1x10-44; HER2: OR=1.30 per SD; 95% CI 1.15 to 1.48; p=4.4x10-5). We also 
performed a leave-one-out sensitivity analysis to ensure that no single variant was driving the observed causal 
effect and found consistent findings for each SNP excluded (Supplementary Table 3 and 4)
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Supplementary Table 1: Summary of 5 independent (R2<0.1) SNP associations at the ERBB2 locus (+/- 300KB) located on chromosome 17. 
Association statistics provided for serum HER2 (in ORIGIN) and CKD (from CKDGen). 

SNP Position MAF Effect 
allele 

Other 
allele 

HER2 
Beta 

HER2 
SE 

HER2               
p-value CKD Beta CKD SE CKD                

p-value 
rs11655584 38139024 0.080 T C 0.1023 0.0393 0.00925 0.041 0.028 0.15 
rs1565922 37831035 0.319 G A 0.1386 0.0226 9.42E-10 0.022 0.016 0.19 
rs17608925 38082831 0.148 C T 0.1443 0.036 6.08E-05 0.066 0.024 0.0068 
rs9892427 37804858 0.066 C T 0.1949 0.0444 1.15E-05 0.067 0.028 0.018 
rs9896218 37894463 0.085 C A 0.2731 0.0484 1.83E-08 0.052 0.033 0.11 

MAF: minor allele frequency (from CKDGen), SE: standard error. Beta coefficient corresponds to the risk coefficient for each SD increase in effect 
allele. 

Supplementary Table 2: Summary of 17 independent (R2<0.1) SNP associations at the UMOD locus (+/- 300KB) located on chromosome 16. 
Association statistics provided for serum UMOD (in ORIGIN) and CKD (from CKDGen). 

SNP Position MAF Effect 
allele 

Other 
allele 

UMOD 
Beta UMOD SE UMOD      

p-value CKD Beta CKD SE CKD               
p-value 

rs12917707 20367690 0.151 T G -0.7709 0.028 8.35E-154 -0.22 0.021 2.10E-25 
rs1155876 20522779 0.084 C T -0.128 0.0331 0.000110 -0.088 0.027 0.0012 
rs12446492 20408377 0.389 A T -0.3293 0.0235 1.05E-43 -0.100 0.016 3.20E-10 
rs12708631 20365697 0.075 A T -0.1312 0.0357 0.000241 -0.130 0.034 7.00E-05 
rs12920537 20421556 0.310 G A -0.236 0.0293 1.16E-15 -0.066 0.021 0.0017 
rs12920708 20407237 0.230 C A -0.3083 0.0257 1.50E-32 -0.067 0.019 4.00E-04 
rs12930599 20335325 0.219 A G -0.2183 0.0309 1.77E-12 -0.036 0.029 0.21 
rs4380062 20252959 0.086 T C -0.1215 0.0387 0.00172 -0.012 0.028 0.67 
rs4462596 20232265 0.261 G A -0.0935 0.0296 0.00159 -0.037 0.017 0.027 
rs4558425 20309215 0.058 A G -0.1138 0.0342 0.000876 -0.046 0.034 0.17 
rs6497445 20216617 0.133 C T 0.0886 0.0302 0.00331 0.020 0.022 0.37 
rs7187470 20419775 0.451 A G 0.1134 0.0293 0.000110 0.0022 0.022 0.92 
rs7192921 20129595 0.406 G T 0.0665 0.0222 0.00274 0.017 0.015 0.28 
rs7198000 20351937 0.124 A G 0.1804 0.0324 2.82E-08 0.062 0.024 0.0088 
rs7498776 20611149 0.080 C T 0.104 0.0325 0.00140 -0.034 0.027 0.21 
rs7499304 20564390 0.288 T G -0.1043 0.0284 0.000249 0.012 0.019 0.54 
rs8060932 20344077 0.315 G A 0.1586 0.0274 7.23E-09 0.044 0.019 0.017 

MAF: minor allele frequency (from CKDGen), SE: standard error. Beta coefficient corresponds to the risk coefficient for each unit increase in effect 
allele. 
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Supplementary Table 3: Summary of leave-one-out sensitivity MR analysis for UMOD. 
SNP excluded OR 95% CI P-value 

rs1155876 1.31 (1.26, 1.37) 1.24E-42 
rs12446492 1.31 (1.26, 1.37) 1.15E-35 
rs12708631 1.31 (1.26, 1.36) 1.36E-42 
rs12917707 1.30 (1.23, 1.38) 3.70E-20 
rs12920537 1.32 (1.27, 1.37) 5.89E-42 
rs12920708 1.33 (1.27, 1.38) 1.28E-41 
rs12930599 1.32 (1.27, 1.37) 6.23E-44 
rs4380062 1.32 (1.27, 1.37) 3.35E-44 
rs4462596 1.32 (1.27, 1.37) 3.57E-43 
rs4558425 1.32 (1.27, 1.37) 9.41E-44 
rs6497445 1.32 (1.27, 1.37) 6.11E-44 
rs7187470 1.32 (1.27, 1.37) 1.70E-44 
rs7192921 1.32 (1.27, 1.37) 7.82E-44 
rs7198000 1.32 (1.27, 1.37) 1.03E-42 
rs7498776 1.32 (1.27, 1.37) 5.98E-45 
rs7499304 1.32 (1.27, 1.38) 4.83E-45 
rs8060932 1.32 (1.27, 1.37) 6.09E-43 

Overall 1.32 (1.27, 1.37) 4.12E-44 
 
Supplementary Table 4: Summary of leave-one-out sensitivity MR analysis for HER2. 

SNP excluded OR 95% CI P-value 
rs11655584 1.29 (1.13, 1.47) 0.00012 
rs1565922 1.36 (1.17, 1.59) 6.38E-05 

rs17608925 1.26 (1.1, 1.44) 0.0010 
rs9892427 1.27 (1.11, 1.47) 0.00074 
rs9896218 1.34 (1.15, 1.55) 0.00012 

Overall 1.30 (1.15, 1.48) 4.39E-05 
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Supplementary Table 5: List of all biomarkers tested and their corresponding genes. 

 Biomarker Gene  
1 6Ckine CCL21 
2 Adiponectin ADIPOQ 
3 Adrenomedullin ADM 
4 Agouti-Related Protein AGRP 
5 Aldose Reductase AKR1B1 
6 Alpha-1-acid glycoprotein 1 ORM1 
7 Alpha-1-Antichymotrypsin SERPINA3 
8 Alpha-1-Antitrypsin SERPINA1 
9 Alpha-1-Microglobulin AMBP 

10 Alpha-2-Macroglobulin A2M 
11 Angiogenin ANG 
12 Angiopoietin-2 ANGPT2 
13 Angiopoietin-related protein 3 ANGPTL3 
14 Angiotensin-Converting Enzyme ACE 
15 Angiotensinogen AGT 
16 Antithrombin-III SERPINC1 
17 Apolipoprotein A-I APOA1 
18 Apolipoprotein A-II APOA2 
19 Apolipoprotein A-IV APOA4 
20 Apolipoprotein B APOB 
21 Apolipoprotein C-I APOC1 
22 Apolipoprotein C-III APOC3 
23 Apolipoprotein D APOD 
24 Apolipoprotein E APOE 
25 Apolipoprotein H APOH 
26 Apolipoprotein(a) LPA 
27 AXL Receptor Tyrosine Kinase AXL 
28 B cell-activating factor TNFSF13B 
29 B Lymphocyte Chemoattractant CXCL13 
30 Beta Amyloid 1-40 APP 
31 Beta-2-Microglobulin B2M 
32 Brain-Derived Neurotrophic Factor BDNF 
33 C-Peptide INS 
34 C-Reactive Protein CRP 
35 Cathepsin D CTSD 
36 CD 40 antigen CD40 
37 CD163 CD163 
38 CD40 Ligand CD40LG 
39 CD5 Antigen-like CD5L 
40 Cellular Fibronectin FN1 
41 Chemerin RARRES2 
42 Chemokine CC-4 CCR4 
43 Chromogranin-A CHGA 
44 Clusterin CLU 
45 Collagen IV COL4A1,COL4A2,COL4A3,COL4A4,COL

4A5,COL4A6 
46 Complement C3 C3 
47 Complement Factor H Related Protein 1 CFHR1 
48 Cortisol NA 
49 Creatine Kinase-MB CKM,CKB 
50 Cystatin-C CST3 
51 E-Selectin SELE 
52 EN-RAGE S100A12 
53 Endoglin ENG 
54 Endostatin COL18A1 
55 Eotaxin-1 CCL11 
56 Eotaxin-2 CCL24 
57 Eotaxin-3 CCL26 
58 Epithelial-Derived Neutrophil-Activating Protein 78 CXCL5 
59 Erythropoietin EPO 
60 Ezrin EZR 
61 Factor VII F7 
62 Fas Ligand FASLG 
63 FASLG Receptor TNFRSF6B 
64 Fatty Acid-Binding Protein adipocyte FABP4 
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65 Fatty Acid-Binding Protein liver FABP1 
66 Ferritin FTL,FTH1 
67 Fetuin-A AHSG 
68 Fibroblast Growth Factor 21 FGF21 
69 Fibroblast growth factor 23 FGF23 
70 Fibulin-1C FBLN1 
71 Ficolin-3 FCN3 
72 Follicle-Stimulating Hormone FSHB,CGA 
73 Galectin-3 LGALS3 
74 Gastric inhibitory polypeptide GIP 
75 Gelsolin GSN 
76 Glucagon-like Peptide 1 total GCG 
77 Glucose-6-phosphate Isomerase GPI 
78 Glutathione S-Transferase alpha GSTA1,GSTA2,GSTA3,GSTA4,GSTA5 
79 Glycogen phosphorylase isoenzyme BB PYGB 
80 Granulocyte Colony-Stimulating Factor CSF3 
81 Growth differentiation factor 15 GDF15 
82 Growth Hormone GH1,GH2 
83 Growth-Regulated alpha protein CXCL1 
84 Haptoglobin HP 
85 Heat-Shock protein 70 HSPA1A,HSPA1B,HSPA1L,HSPA2,HSPA

4,HSPA4L,HSPA5,HSPA6,HSPA8,HSPA9,

HSPA12A,HSPA12B,HSPA13,HSPA14 
86 Hemopexin HPX 
87 Hepatocyte Growth Factor HGF 
88 Hepatocyte Growth Factor receptor MET 
89 Hepsin HPN 
90 Human Epidermal Growth Factor Receptor 2 ERBB2 
91 Immunoglobulin A IGH 
92 Immunoglobulin E IGH 
93 Immunoglobulin M IGH 
94 Insulin INS 
95 Insulin-like Growth Factor Binding Protein 4 IGFBP4 
96 Insulin-like Growth Factor Binding Protein 5 IGFBP5 
97 Insulin-like Growth Factor Binding Protein 6 IGFBP6 
98 Insulin-like Growth Factor I IGF1 
99 Insulin-like Growth Factor-Binding Protein 1 IGFBP1 

100 Insulin-like Growth Factor-Binding Protein 2 IGFBP2 
101 Insulin-like Growth Factor-Binding Protein 3 IGFBP3 
102 Intercellular Adhesion Molecule 1 ICAM1 
103 Interferon gamma IFNG 
104 Interferon gamma Induced Protein 10 CXCL10 
105 Interferon-inducible T-cell alpha chemoattractant CXCL11 
106 Interleukin-1 beta IL1B 
107 Interleukin-1 receptor antagonist IL1RN 
108 Interleukin-10 IL10 
109 Interleukin-12 Subunit p40 IL12B 
110 Interleukin-16 IL16 
111 Interleukin-17 IL17A 
112 Interleukin-18 IL18 
113 Interleukin-2 IL2 
114 Interleukin-2 receptor alpha IL2RA 
115 Interleukin-23 IL23A,IL12B 
116 Interleukin-6 IL6 
117 Interleukin-6 receptor IL6R 
118 Interleukin-6 receptor subunit beta IL6ST 
119 Interleukin-7 IL7 
120 Interleukin-8 CXCL8 
121 Kallikrein 5 KLK5 
122 Kidney Injury Molecule-1 HAVCR1 
123 Lactoferrin LTF 
124 Lactoylglutathione lyase GLO1 
125 Latency-Associated Peptide of Transforming Growth Factor beta 1 LTBP1 
126 Lectin-Like Oxidized LDL Receptor 1 OLR1 
127 Leptin LEP 
128 Leptin Receptor LEPR 
129 Leucine-rich alpha-2-glycoprotein LRG1 
130 Luteinizing Hormone LHB,CGA 
131 Macrophage Colony-Stimulating Factor 1 CSF1 
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132 Macrophage inflammatory protein 3 beta CCL19 
133 Macrophage Inflammatory Protein-1 alpha CCL3 
134 Macrophage Inflammatory Protein-1 beta CCL4 
135 Macrophage Inflammatory Protein-3 alpha CCL20 
136 Macrophage Migration Inhibitory Factor MIF 
137 Macrophage-Derived Chemokine CCL22 
138 Macrophage-Stimulating Protein MST1 
139 Matrix Metalloproteinase-1 MMP1 
140 Matrix Metalloproteinase-10 MMP10 
141 Matrix Metalloproteinase-3 MMP3 
142 Matrix Metalloproteinase-7 MMP7 
143 Matrix Metalloproteinase-9 MMP9 
144 Matrix Metalloproteinase-9 total MMP9 
145 Mesothelin MSLN 
146 Methylglyoxal NA 
147 MHC class I chain-related protein A MICA 
148 Monocyte Chemotactic Protein 1 CCL2 
149 Monocyte Chemotactic Protein 2 CCL8 
150 Monocyte Chemotactic Protein 3 CCL7 
151 Monocyte Chemotactic Protein 4 CCL13 
152 Monokine Induced by Gamma Interferon CXCL9 
153 Myeloid Progenitor Inhibitory Factor 1 CCL23 
154 Myeloperoxidase MPO 
155 Myoglobin MB 
156 N-terminal prohormone of brain natriuretic peptide NPPB 
157 Neuronal Cell Adhesion Molecule NRCAM 
158 Neuropilin-1 NRP1 
159 Neutrophil Activating Peptide 2 PPBP 
160 Neutrophil Gelatinase-Associated Lipocalin LCN2 
161 Omentin ITLN1 
162 Osteocalcin BGLAP 
163 Osteopontin SPP1 
164 Osteoprotegerin TNFRSF11B 
165 P-Selectin SELP 
166 Pancreatic Polypeptide PPY 
167 Paraoxanase-1 PON1 
168 Pentraxin-3 PTX3 
169 Pepsinogen I NA 
170 Peptide YY PYY 
171 Periostin POSTN 
172 Peroxiredoxin-4 PRDX4 
173 Phosphoserine Aminotransferase PSAT1 
174 Pigment Epithelium Derived Factor SERPINF1 
175 Plasminogen Activator Inhibitor 1 SERPINE1 
176 Platelet-Derived Growth Factor BB PDGFB 
177 Progesterone NA 
178 Progranulin GRN 
179 Proinsulin Intact INS 
180 Proinsulin Total INS 
181 Prolactin PRL 
182 Prostasin PRSS8 
183 Prostatic Acid Phosphatase ACPP 
184 Protein S100-A4 S100A4 
185 Protein S100-A6 S100A6 
186 Pulmonary and Activation-Regulated Chemokine CCL18 
187 Receptor for advanced glycosylation end products AGER 
188 Receptor tyrosine-protein kinase erbB-3 ERBB3 
189 Resistin RETN 
190 Retinol-binding protein 4 RBP4 
191 Secreted frizzled-related protein 4 SFRP4 
192 Selenoprotein P SEPP1 
193 Serotransferrin TF 
194 Serum Amyloid A Protein SAA1,SAA2,SAA4,SAA3P 
195 Serum Amyloid P-Component APCS 
196 Serum Glutamic Oxaloacetic Transaminase GOT1,GOT2 
197 Sex Hormone-Binding Globulin SHBG 
198 Sortilin SORT1 
199 ST2 IL1RL1 
200 Stem Cell Factor KITLG 
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201 Stromal cell-derived factor-1 CXCL12 
202 Superoxide Dismutase 1 soluble SOD1 
203 T Lymphocyte-Secreted Protein I-309 CCL1 
204 T-Cell-Specific Protein RANTES CCL5 
205 Tamm-Horsfall Urinary Glycoprotein (Uromodoulin) UMOD 
206 Tenascin-C TNC 
207 Testosterone Total NA 
208 Tetranectin CLEC3B 
209 Thrombin-activable fibrinolysis inhibitor CPB2 
210 Thrombomodulin THBD 
211 Thrombospondin-1 THBS1 
212 Thyroid-Stimulating Hormone TSHB,CGA 
213 Thyroxine-Binding Globulin SERPINA7 
214 Tissue Inhibitor of Metalloproteinases 1 TIMP1 
215 Tissue type Plasminogen activator PLAT 
216 TNF-Related Apoptosis-Inducing Ligand Receptor 3 TNFRSF10C 
217 Transthyretin TTR 
218 Trefoil Factor 3 TFF3 
219 Tumor Necrosis Factor alpha TNF 
220 Tumor necrosis factor receptor 2 TNFRSF1B 
221 Tumor Necrosis Factor Receptor I TNFRSF1A 
222 Tyrosine kinase with Ig and EGF homology domains 2 TIE1 
223 Urokinase-type Plasminogen Activator PLAU 
224 Urokinase-type plasminogen activator receptor PLAUR 
225 Vascular Cell Adhesion Molecule-1 VCAM1 
226 Vascular Endothelial Growth Factor VEGFA 
227 Vascular Endothelial Growth Factor C VEGFC 
228 Vascular endothelial growth factor D FIGF 
229 Vascular Endothelial Growth Factor Receptor 2 FLT1 
230 Vascular endothelial growth factor receptor 3 FLT4 
231 Visceral adipose tissue derived serpin A12 SERPINA12 
232 Visfatin NAMPT 
233 Vitamin D-Binding Protein GC 
234 Vitamin K-Dependent Protein S PROS1 
235 Vitronectin VTN 
236 von Willebrand Factor VWF 
237 YKL-40 CHI3L1 
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Supplementary Table 6: Participant characteristics for the genetic and biomarker sub-study subsets 
of the ORIGIN study. 

Variable Genetic Study participants     
(n=4,147) 

All biomarker 
participants (n=8,197) 

Age (years), mean (SD) 63.45 (7.98) 63.72 (7.94) 

Gender (% male) 64.14 66.11 

Ethnicity (%)   

     European 46.56 55.41 

     Black 0 4.36 

     South Asian 0 5.49 

     South East Asian 0 0.46 

     Latin 53.44 34.28 

Current smoker (% yes) 55.79 57.79 
LDL (mmol/L) 3.07 (1.05) 2.89 (1.03) 
HDL (mmol/L) 1.17 (0.32) 1.18 (0.32) 
Fasting plasma glucose (mmol/L) 7.58 (2.17) 7.33 (2.02) 
Hypertension (% yes) 

82.90 78.91 
Hypercholesterolemia (% yes)a 

8.85 6.8 
Body mass index (kg/m2) 30.45 (5.33) 30.04 (5.27) 
Prior diabetes (% yes) 87.56 81.66 
EGFR (mL/min/1.73 m2) 75.91 (21.07) 77.51 (21.86) 
Prior renal disease (% yes) 6.75 5.83 
Prospective CKD (% with event) 21.41 20.47 

 

Data are presented as mean (SD) unless stated otherwise.  
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Supplementary Figure 1: Regional plots for UMOD and HER2 associations. 
 

 
 

 
Plots show association of SNPs prior to MR instrument selection with serum UMOD levels at the UMOD locus (A) 
and serum HER2 levels at the ERBB2 locus (B) +/- 300 KB along with recombination rates. –log10 P values (y axis) 
of the SNPs are shown according to their chromosomal positions (x axis). The most significant SNP in the analysis 
is labeled as a purple triangle. The color intensity of each symbol reflects the extent of LD with the top SNP, colored 
red (r2 > 0.8) through to blue (r2 < 0.2). SNPs with missing LD information are labeled grey. Genetic recombination 
rates (cM/Mb), estimated using 1000 Genomes European samples, are shown with a light blue line. Physical 
positions are based on build hg19 of the human genome. Also shown are the relative positions of genes mapping to 
the region of association.  
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Supplementary Figure 2: Schematic representation of cis association.  
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Supplementary Figure 3: Overview of SNP and biomarker selection.  
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Supplementary Figure 4: Schematic representation of the instrumental variable assumptions of Mendelian 
randomization study. Instrumental variable analyses use associations of A and B to estimate the causal effect 
of an intermediate phenotype (biomarker) on an outcome (CKD), represented by association C.  
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Supplementary Appendix for Chapter 5 
 

Influence of Genetic Ancestry on Human Serum Proteome  

Biomarker Assay Methodology in ORIGIN 

At Myriad RBM Inc., the samples were thawed at room temperature (RT), vortexed, spun at 13,000g for 5 
minutes for clarification. An aliquot was removed into a master microtiter plate for analysis. Using automated 
pipetting, an aliquot of each sample was introduced into one of the capture microsphere multiplexes of the 
Human DiscoveryMAP. The mixtures of sample and capture microspheres were thoroughly mixed and 
incubated at RT for 1 hour. Next, multiplexed cocktails of biotinylated reporter antibodies for each multiplex 
were added robotically. After thorough mixing, they were incubated for an additional hour at RT. Multiplexes 
were developed using an excess of streptavidin-phycoerythrin solution which was thoroughly mixed into each 
multiplex and incubated for 1 hour at RT. The volume of each multiplexed reaction was reduced by vacuum 
filtration and then increased by dilution into matrix buffer for analysis. Analysis was performed in Luminex 
100 and 200 instruments and the resulting data stream was interpreted using proprietary data analysis software 
developed at RBM. For each multiplex, both calibrators and controls were included on each microtiter plate. 
Eight-point calibrators were run in the first and last column of each plate and 3-level quality controls were 
included in duplicate. Testing results were determined first for the high, medium and low controls for each 
multiplex to ensure proper assay performance. Unknown values for each of the analytes localized in a specific 
multiplex were determined using 4 and 5 parameter, weighted and non-weighted curve fitting algorithms 
included in the data analysis package. 

Determining the Distribution of Each Biomarker in ORIGIN 

Biomarkers were scrutinized in 5 steps. First, 26 biomarkers with undetectable levels in > 8409 (i.e. 99%) 
participants were excluded from further analyses. Second, scrutiny of the mean, median, and distribution of 
results and biologic literature pertaining to another 64 biomarkers with undetectable levels in > 1000 (i.e. 
12%) participants led to exclusion of a further 21, leaving 237 biomarkers for analysis. Third, those 
biomarkers with levels below the level of quantification in < 10% of participants (n=850) were assigned a 
level corresponding to the lower limit of quantification. Fourth, biomarkers with levels below the level of 
quantification in > 10% of participants were identified and analyzed as ordinal variables as follows. A level 
of 1 was assigned to the participants with unquantifiable levels, dividing the remaining participants into 4 
groups using quartiles. Values of 2, 3, 4 and 5 were assigned to participants within each progressively higher 
group. This approach was used to manage skewed biomarker distributions. Fifth, biomarkers with levels 
above the level of quantification were identified and those affected were assigned a level 1% above the upper 
limit of quantification. This approach led to 192 biomarkers for analysis as continuous variables and 45 
biomarkers for analysis as 5-level ordinal variables. 

The distributions of each of the 192 continuous biomarkers’ levels were then scrutinized to identify extreme 
outliers with levels more than 4 standard deviations above or below the mean; levels that met those criteria 
were assigned the value corresponding to the mean plus or minus the 4th standard deviation respectively. 
Subsequently, the levels of 125 biomarkers with distributions that were not normally distributed were log-
transformed using the natural logarithm. Biomarkers analyzed as continuous variables were then standardized 
to have mean 0 and standard deviation of 1. Finally, data from 93 participants in whom all 237 biomarkers 
were not analyzed due to insufficient volume of serum were excluded. 

Biomarker Gene Identification 

A distance of 300Kb was chosen based on observation of regional associations extending several hundred 
kilobases (Kb) away from known loci.1 Genes falling within 300 Kb of each SNP were identified using the 
Reference Sequence gene list compiled by the UCSC (University of California Santa Cruz) Genome Table 
Browser.2 Gene names were identified through the GeneCards Encyclopedia.3 
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Supplementary Table 1: List of all biomarkers tested and their corresponding genes. 

 Biomarker Gene  
1 6Ckine CCL21 
2 Adiponectin ADIPOQ 
3 Adrenomedullin ADM 
4 Agouti-Related Protein AGRP 
5 Aldose Reductase AKR1B1 
6 Alpha-1-acid glycoprotein 1 ORM1 
7 Alpha-1-Antichymotrypsin SERPINA3 
8 Alpha-1-Antitrypsin SERPINA1 
9 Alpha-1-Microglobulin AMBP 

10 Alpha-2-Macroglobulin A2M 
11 Angiogenin ANG 
12 Angiopoietin-2 ANGPT2 
13 Angiopoietin-related protein 3 ANGPTL3 
14 Angiotensin-Converting Enzyme ACE 
15 Angiotensinogen AGT 
16 Antithrombin-III SERPINC1 
17 Apolipoprotein A-I APOA1 
18 Apolipoprotein A-II APOA2 
19 Apolipoprotein A-IV APOA4 
20 Apolipoprotein B APOB 
21 Apolipoprotein C-I APOC1 
22 Apolipoprotein C-III APOC3 
23 Apolipoprotein D APOD 
24 Apolipoprotein E APOE 
25 Apolipoprotein H APOH 
26 Apolipoprotein(a) LPA 
27 AXL Receptor Tyrosine Kinase AXL 
28 B cell-activating factor TNFSF13B 
29 B Lymphocyte Chemoattractant CXCL13 
30 Beta Amyloid 1-40 APP 
31 Beta-2-Microglobulin B2M 
32 Brain-Derived Neurotrophic Factor BDNF 
33 C-Peptide INS 
34 C-Reactive Protein CRP 
35 Cathepsin D CTSD 
36 CD 40 antigen CD40 
37 CD163 CD163 
38 CD40 Ligand CD40LG 
39 CD5 Antigen-like CD5L 
40 Cellular Fibronectin FN1 
41 Chemerin RARRES2 
42 Chemokine CC-4 CCR4 
43 Chromogranin-A CHGA 
44 Clusterin CLU 
45 Collagen IV COL4A1,COL4A2,COL4A3,COL4A4,COL

4A5,COL4A6 
46 Complement C3 C3 
47 Complement Factor H Related Protein 1 CFHR1 
48 Cortisol NA 
49 Creatine Kinase-MB CKM,CKB 
50 Cystatin-C CST3 
51 E-Selectin SELE 
52 EN-RAGE S100A12 
53 Endoglin ENG 
54 Endostatin COL18A1 
55 Eotaxin-1 CCL11 
56 Eotaxin-2 CCL24 
57 Eotaxin-3 CCL26 
58 Epithelial-Derived Neutrophil-Activating Protein 78 CXCL5 
59 Erythropoietin EPO 
60 Ezrin EZR 
61 Factor VII F7 
62 Fas Ligand FASLG 
63 FASLG Receptor TNFRSF6B 
64 Fatty Acid-Binding Protein adipocyte FABP4 
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65 Fatty Acid-Binding Protein liver FABP1 
66 Ferritin FTL,FTH1 
67 Fetuin-A AHSG 
68 Fibroblast Growth Factor 21 FGF21 
69 Fibroblast growth factor 23 FGF23 
70 Fibulin-1C FBLN1 
71 Ficolin-3 FCN3 
72 Follicle-Stimulating Hormone FSHB,CGA 
73 Galectin-3 LGALS3 
74 Gastric inhibitory polypeptide GIP 
75 Gelsolin GSN 
76 Glucagon-like Peptide 1 total GCG 
77 Glucose-6-phosphate Isomerase GPI 
78 Glutathione S-Transferase alpha GSTA1,GSTA2,GSTA3,GSTA4,GSTA5 
79 Glycogen phosphorylase isoenzyme BB PYGB 
80 Granulocyte Colony-Stimulating Factor CSF3 
81 Growth differentiation factor 15 GDF15 
82 Growth Hormone GH1,GH2 
83 Growth-Regulated alpha protein CXCL1 
84 Haptoglobin HP 
85 Heat-Shock protein 70 HSPA1A,HSPA1B,HSPA1L,HSPA2,HSPA

4,HSPA4L,HSPA5,HSPA6,HSPA8,HSPA9,
HSPA12A,HSPA12B,HSPA13,HSPA14 

86 Hemopexin HPX 
87 Hepatocyte Growth Factor HGF 
88 Hepatocyte Growth Factor receptor MET 
89 Hepsin HPN 
90 Human Epidermal Growth Factor Receptor 2 ERBB2 
91 Immunoglobulin A IGH 
92 Immunoglobulin E IGH 
93 Immunoglobulin M IGH 
94 Insulin INS 
95 Insulin-like Growth Factor Binding Protein 4 IGFBP4 
96 Insulin-like Growth Factor Binding Protein 5 IGFBP5 
97 Insulin-like Growth Factor Binding Protein 6 IGFBP6 
98 Insulin-like Growth Factor I IGF1 
99 Insulin-like Growth Factor-Binding Protein 1 IGFBP1 

100 Insulin-like Growth Factor-Binding Protein 2 IGFBP2 
101 Insulin-like Growth Factor-Binding Protein 3 IGFBP3 
102 Intercellular Adhesion Molecule 1 ICAM1 
103 Interferon gamma IFNG 
104 Interferon gamma Induced Protein 10 CXCL10 
105 Interferon-inducible T-cell alpha chemoattractant CXCL11 
106 Interleukin-1 beta IL1B 
107 Interleukin-1 receptor antagonist IL1RN 
108 Interleukin-10 IL10 
109 Interleukin-12 Subunit p40 IL12B 
110 Interleukin-16 IL16 
111 Interleukin-17 IL17A 
112 Interleukin-18 IL18 
113 Interleukin-2 IL2 
114 Interleukin-2 receptor alpha IL2RA 
115 Interleukin-23 IL23A,IL12B 
116 Interleukin-6 IL6 
117 Interleukin-6 receptor IL6R 
118 Interleukin-6 receptor subunit beta IL6ST 
119 Interleukin-7 IL7 
120 Interleukin-8 CXCL8 
121 Kallikrein 5 KLK5 
122 Kidney Injury Molecule-1 HAVCR1 
123 Lactoferrin LTF 
124 Lactoylglutathione lyase GLO1 
125 Latency-Associated Peptide of Transforming Growth Factor beta 1 LTBP1 
126 Lectin-Like Oxidized LDL Receptor 1 OLR1 
127 Leptin LEP 
128 Leptin Receptor LEPR 
129 Leucine-rich alpha-2-glycoprotein LRG1 
130 Luteinizing Hormone LHB,CGA 
131 Macrophage Colony-Stimulating Factor 1 CSF1 
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132 Macrophage inflammatory protein 3 beta CCL19 
133 Macrophage Inflammatory Protein-1 alpha CCL3 
134 Macrophage Inflammatory Protein-1 beta CCL4 
135 Macrophage Inflammatory Protein-3 alpha CCL20 
136 Macrophage Migration Inhibitory Factor MIF 
137 Macrophage-Derived Chemokine CCL22 
138 Macrophage-Stimulating Protein MST1 
139 Matrix Metalloproteinase-1 MMP1 
140 Matrix Metalloproteinase-10 MMP10 
141 Matrix Metalloproteinase-3 MMP3 
142 Matrix Metalloproteinase-7 MMP7 
143 Matrix Metalloproteinase-9 MMP9 
144 Matrix Metalloproteinase-9 total MMP9 
145 Mesothelin MSLN 
146 Methylglyoxal NA 
147 MHC class I chain-related protein A MICA 
148 Monocyte Chemotactic Protein 1 CCL2 
149 Monocyte Chemotactic Protein 2 CCL8 
150 Monocyte Chemotactic Protein 3 CCL7 
151 Monocyte Chemotactic Protein 4 CCL13 
152 Monokine Induced by Gamma Interferon CXCL9 
153 Myeloid Progenitor Inhibitory Factor 1 CCL23 
154 Myeloperoxidase MPO 
155 Myoglobin MB 
156 N-terminal prohormone of brain natriuretic peptide NPPB 
157 Neuronal Cell Adhesion Molecule NRCAM 
158 Neuropilin-1 NRP1 
159 Neutrophil Activating Peptide 2 PPBP 
160 Neutrophil Gelatinase-Associated Lipocalin LCN2 
161 Omentin ITLN1 
162 Osteocalcin BGLAP 
163 Osteopontin SPP1 
164 Osteoprotegerin TNFRSF11B 
165 P-Selectin SELP 
166 Pancreatic Polypeptide PPY 
167 Paraoxanase-1 PON1 
168 Pentraxin-3 PTX3 
169 Pepsinogen I NA 
170 Peptide YY PYY 
171 Periostin POSTN 
172 Peroxiredoxin-4 PRDX4 
173 Phosphoserine Aminotransferase PSAT1 
174 Pigment Epithelium Derived Factor SERPINF1 
175 Plasminogen Activator Inhibitor 1 SERPINE1 
176 Platelet-Derived Growth Factor BB PDGFB 
177 Progesterone NA 
178 Progranulin GRN 
179 Proinsulin Intact INS 
180 Proinsulin Total INS 
181 Prolactin PRL 
182 Prostasin PRSS8 
183 Prostatic Acid Phosphatase ACPP 
184 Protein S100-A4 S100A4 
185 Protein S100-A6 S100A6 
186 Pulmonary and Activation-Regulated Chemokine CCL18 
187 Receptor for advanced glycosylation end products AGER 
188 Receptor tyrosine-protein kinase erbB-3 ERBB3 
189 Resistin RETN 
190 Retinol-binding protein 4 RBP4 
191 Secreted frizzled-related protein 4 SFRP4 
192 Selenoprotein P SEPP1 
193 Serotransferrin TF 
194 Serum Amyloid A Protein SAA1,SAA2,SAA4,SAA3P 
195 Serum Amyloid P-Component APCS 
196 Serum Glutamic Oxaloacetic Transaminase GOT1,GOT2 
197 Sex Hormone-Binding Globulin SHBG 
198 Sortilin SORT1 
199 ST2 IL1RL1 
200 Stem Cell Factor KITLG 
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201 Stromal cell-derived factor-1 CXCL12 
202 Superoxide Dismutase 1 soluble SOD1 
203 T Lymphocyte-Secreted Protein I-309 CCL1 
204 T-Cell-Specific Protein RANTES CCL5 
205 Tamm-Horsfall Urinary Glycoprotein (Uromodoulin) UMOD 
206 Tenascin-C TNC 
207 Testosterone Total NA 
208 Tetranectin CLEC3B 
209 Thrombin-activable fibrinolysis inhibitor CPB2 
210 Thrombomodulin THBD 
211 Thrombospondin-1 THBS1 
212 Thyroid-Stimulating Hormone TSHB,CGA 
213 Thyroxine-Binding Globulin SERPINA7 
214 Tissue Inhibitor of Metalloproteinases 1 TIMP1 
215 Tissue type Plasminogen activator PLAT 
216 TNF-Related Apoptosis-Inducing Ligand Receptor 3 TNFRSF10C 
217 Transthyretin TTR 
218 Trefoil Factor 3 TFF3 
219 Tumor Necrosis Factor alpha TNF 
220 Tumor necrosis factor receptor 2 TNFRSF1B 
221 Tumor Necrosis Factor Receptor I TNFRSF1A 
222 Tyrosine kinase with Ig and EGF homology domains 2 TIE1 
223 Urokinase-type Plasminogen Activator PLAU 
224 Urokinase-type plasminogen activator receptor PLAUR 
225 Vascular Cell Adhesion Molecule-1 VCAM1 
226 Vascular Endothelial Growth Factor VEGFA 
227 Vascular Endothelial Growth Factor C VEGFC 
228 Vascular endothelial growth factor D FIGF 
229 Vascular Endothelial Growth Factor Receptor 2 FLT1 
230 Vascular endothelial growth factor receptor 3 FLT4 
231 Visceral adipose tissue derived serpin A12 SERPINA12 
232 Visfatin NAMPT 
233 Vitamin D-Binding Protein GC 
234 Vitamin K-Dependent Protein S PROS1 
235 Vitronectin VTN 
236 von Willebrand Factor VWF 
237 YKL-40 CHI3L1 
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Supplementary Table 2: Summary of 46 local admixture signals associated with residualized biomarker levels at p <1.13x10-6.  

Biomarker Ethnicity Chr BP Admixture 
region 

Top 
Admixture 

SNP 
Cis Beta SE P-value 

Angiotensin-Converting Enzyme Asian 17 60896263 59277614-
63476044 rs8077625 YES -0.49 0.09 4.4E-08 

Antithrombin-III African 11 124489274 123485444-
125255715 rs35569094 NO 0.82 0.15 1.3E-07 

Apolipoprotein(a) Asian 6 161136058 159822140-
162157860 rs4252105 YES -0.57 0.09 1.2E-10 

C-Peptide African 2 238769680 237573038-
240208154 rs3769050 NO -0.76 0.15 4.2E-07 

C-Peptide African 9 107678278 107045058-
108862046 rs4149261 NO 0.78 0.15 3.9E-07 

Cellular Fibronectin Asian 2 216141237 213413231-
217588017 rs10498034 YES 0.49 0.08 1.1E-08 

Chemokine CC-4 Asian 17 34450463 32917274-
35272788 rs9303700 NO -0.91 0.12 3.3E-14 

Clusterin African 8 127543114 126385776-
128617612 rs11990954 NO 0.77 0.15 1.9E-07 

Complement Factor H Related 
Protein 1 African 1 194377156 192323753-

198618707 rs4460614 YES -0.71 0.14 8.7E-07 

Complement Factor H Related 
Protein 1 Asian 1 199588458 195832997-

201081943 rs4612653 YES 0.60 0.08 4.6E-14 

Eotaxin-2 Asian 7 78544172 77614334-
80648073 rs1799022 NO -0.44 0.08 8.8E-08 

Eotaxin-3 African 6 100642867 99480633-
102642021 rs6570574 NO 0.93 0.15 1.3E-09 

Epithelial-Derived Neutrophil-
Activating Protein 78 African 1 159069211 157463366-

160580549 rs1894043 NO 1.28 0.14 9.4E-19 

Fetuin-A Asian 3 185951648 184173466-
186880956 rs4686753 YES -0.54 0.08 1.7E-11 

Galectin-3 Asian 14 56803764 55172429-
57657201 rs17091300 YES 0.46 0.09 1.9E-07 

Growth Hormone Asian 7 7813890 6780231-8356809 rs11771147 NO -0.48 0.09 2.4E-07 

Growth-Regulated alpha protein African 1 159069211 157463366-
160580549 rs1894043 NO 1.29 0.14 7.1E-19 

Insulin-like Growth Factor-Binding 
Protein 1 Asian 6 151327848 150727790-

152328616 rs505358 NO -0.49 0.10 8.4E-07 

Intercellular Adhesion Molecule 1 African 19 10219076 10000306-
11456271 rs11666402 YES -1.36 0.14 1.3E-21 
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Interferon-inducible T-cell alpha 
chemoattractant Asian 4 76769442 75170140-

78073655 rs924937 YES -0.42 0.08 6.1E-07 

Interleukin-16 Asian 15 81582868 80622567-
85437979 rs8031107 YES -0.58 0.09 2.8E-11 

Interleukin-2 African 9 36824086 36066385-
38639318 rs7848675 NO 0.72 0.14 4.5E-07 

Interleukin-6 receptor Asian 1 154551032 151316324-
156848946 rs3811450 YES 0.83 0.08 2.4E-27 

Interleukin-6 receptor subunit beta African 5 55422681 54038676-
55892384 rs321768 YES -0.92 0.16 1.2E-08 

Kallikrein 5 African 19 51455389 51173218-
51582163 rs2569522 YES -0.60 0.10 2.2E-09 

Lactoferrin African 3 46658737 42917047-
54407040 rs9832679 YES 0.77 0.14 2.3E-08 

Lactoylglutathione lyase African 22 27689956 27361465-
27957965 rs8136576 NO -0.78 0.15 4.4E-07 

Matrix Metalloproteinase-1 Asian 11 102460777 100718626-
103789461 rs1711399 YES -0.62 0.09 5.6E-12 

Methylglyoxal Asian 14 105163532 103784918-
107287663 rs7140154 NO -0.46 0.09 7.5E-07 

MHC class I chain-related protein A Asian 6 30347833 25292214-
32974268 rs9404964 YES 0.51 0.08 1.2E-09 

Monocyte Chemotactic Protein 1 African 1 159069211 157463366-
160580549 rs1894043 NO -0.86 0.15 1.5E-08 

Monocyte Chemotactic Protein 1 Asian 1 159069211 157463366-
160580549 rs1894043 NO -0.42 0.08 4.0E-07 

Monocyte Chemotactic Protein 2 Asian 17 32375998 32000619-
32944070 rs6505393 YES -0.67 0.10 1.2E-11 

Monocyte Chemotactic Protein 4 Asian 1 159069211 157463366-
160580549 rs1894043 NO -0.49 0.08 2.2E-09 

Myeloid Progenitor Inhibitory 
Factor 1 African 17 34450463 32917274-

35272788 rs9303700 YES -1.01 0.13 1.2E-13 

Omentin African 1 160696304 159751104-
162458412 rs503832 YES 0.90 0.14 4.4E-10 

Pigment Epithelium Derived Factor Asian 17 1673104 907315-2883607 rs11658342 YES -0.49 0.08 7.6E-09 
Sortilin African 11 79803310 78804058-

81223717 rs10897545 NO -0.85 0.17 3.6E-07 

T-Cell-Specific Protein RANTES African 1 159069211 157463366-
160580549 rs1894043 NO 1.12 0.15 5.0E-14 

T-Cell-Specific Protein RANTES African 5 17235998 16706530-
18833633 rs298528 NO 0.79 0.16 5.6E-07 

Tetranectin Asian 3 44347833 42166169-
53119703 rs11921568 YES -0.73 0.08 6.8E-22 

Vascular Endothelial Growth Factor Asian 6 44235690 43823689-
46045157 rs513688 YES -0.63 0.09 1.8E-13 
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Beta per 1% increase in associated ethnicity (corresponding to ethnicity column). Biomarkers residualized for age and sex. Association for biomarkers 
with more than one local association correspond to models with all local components included. Admixture region defined as r2 >0.8 with top admixture 
signal. Biomarker in cis if gene encoding biomarker is within admixture region. SE: standard error.  

  

Visceral adipose tissue derived 
serpin A12 Asian 14 94940717 94417541-

95360139 rs8021858 YES 0.56 0.10 8.6E-09 

Vitamin D-Binding Protein African 4 73821904 72405132-
76254408 rs13102676 YES -1.13 0.15 5.9E-14 

Vitamin D-Binding Protein Asian 4 72425863 71237421-
74909180 rs1453458 YES -2.48 0.24 4.9E-24 

Vitamin D-Binding Protein Asian 4 72801285 71509980-
75639740 rs17774208 YES 1.88 0.21 1.1E-18 



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

204 
 

Supplementary Table 3: Summary of genotypic associations in ORIGIN Europeans with the identified 46 local associations.  

Biomarker Ethnicity 
Top 

Admixture 
SNP 

European 
Associated 

SNP 
MAF Gene Effect 

Allele 
Other 
Allele Beta SE P-value 

Angiotensin-Converting Enzyme Asian rs8077625 rs4359 0.45 ACE C T -0.67 0.03 8.44E-96 

Antithrombin-III African rs35569094 rs1939923 0.09 OR6M1 G A 0.22 0.05 5.0E-05 

Apolipoprotein(a) Asian rs4252105 rs55730499 0.06 LPA T C 1.14 0.07 4.2E-54 

C-Peptide African rs3769050 rs744837 0.02 PER2 C T 0.40 0.12 5.7E-04 

C-Peptide African rs4149261 rs181981786 0.01 SLC44A1 A G -0.76 0.21 3.0E-04 

Cellular Fibronectin Asian rs10498034 rs12468524 0.24 FN1 T C 0.79 0.04 3.5E-100 

Chemokine CC-4 Asian rs9303700 rs112689088 0.08 CCL16 C T -1.41 0.07 8.0E-91 

Clusterin African rs11990954 rs2735974 0.15 FAM84B C T 0.17 0.04 5.5E-05 

Complement Factor H Related 
Protein 1 African rs4460614 rs149369377 0.22 SRGAP2D, 

FAM72C 
G A -1.34 0.04 5.3E-258 

Complement Factor H Related 
Protein 1 Asian rs4612653 rs149369377 0.22 SRGAP2D, 

FAM72C 
G A -1.34 0.04 5.3E-258 

Eotaxin-2 Asian rs1799022 rs12666387 0.35 SEMA3C G A 0.13 0.03 1.8E-04 

Eotaxin-3 African rs6570574 rs62420667 0.02 ASCC3 T C 1.64 0.34 1.0E-11 

Epithelial-Derived Neutrophil-
Activating Protein 78 African rs1894043 rs12075 0.44 SRGAP2D, 

FAM72C, ACKR1 
A G 0.31 0.03 2.2E-25 

Fetuin-A Asian rs4686753 rs1900618 0.32 AHSG T C 0.66 0.03 1.9E-88 

Galectin-3 Asian rs17091300 rs141460994 0.08 DLGAP5 G GA -1.22 0.06 1.7E-101 

Growth Hormone Asian rs11771147 7:7958913 0.25 RPA3OS A ACT 0.13 0.04 9.3E-04 

Growth-Regulated alpha protein African rs1894043 rs12075 0.44 SRGAP2D, 
FAM72C, ACKR1 

A G 0.37 0.03 3.4E-32 

Insulin-like Growth Factor-Binding 
Protein 1 Asian rs505358 rs9371198 0.22 PLEKHG1 C T 0.11 0.04 2.7E-03 

Intercellular Adhesion Molecule 1 African rs11666402 rs17852402 0.15 ICAM5 A G 0.24 0.05 1.3E-06 

Interferon-inducible T-cell alpha 
chemoattractant Asian rs924937 rs11947481 0.20 SOWAHB A G 0.17 0.04 1.3E-05 

Interleukin-16 Asian rs8031107 rs11556218 0.08 IL16 G T -0.97 0.06 1.4E-61 
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Interleukin-2 African rs7848675 rs138591782 0.02 FAM95C A G 5.46 0.67 1.1E-125 

Interleukin-6 receptor Asian rs3811450 rs2228145 0.36 SRGAP2D, IL6R, 
FAM72C 

C A 0.91 0.03 9.5E-164 

Interleukin-6 receptor subunit beta African rs321768 rs6875155 0.12 IL6ST A G 0.53 0.05 2.5E-28 

Kallikrein 5 African rs2569522 rs34227821 0.36 KLK5 A C 0.51 0.03 6.1E-51 

Lactoferrin African rs9832679 rs4683228 0.31 LTF A C 0.53 0.03 2.3E-55 
Lactoylglutathione lyase African rs8136576 rs5997202 0.13 LINC01422 A T -0.20 0.05 2.1E-04 

Matrix Metalloproteinase-1 Asian rs1711399 rs484915 0.44 WTAPP1 T A 0.49 0.03 6.5E-50 
Methylglyoxal Asian rs7140154 rs77844682 0.07 ZFYVE21 G C -0.19 0.07 2.8E-03 

MHC class I chain-related protein A Asian rs9404964 rs114528635 0.02 HLA-B A C 3.84 0.20 3.6E-82 

Monocyte Chemotactic Protein 1 African rs1894043 rs12075 0.44 SRGAP2D, 
FAM72C, ACKR1 

A G 0.52 0.03 5.6E-59 

Monocyte Chemotactic Protein 1 Asian rs1894043 rs12075 0.44 SRGAP2D, 
FAM72C, ACKR1 

A G 0.52 0.03 5.6E-59 

Monocyte Chemotactic Protein 2 Asian rs6505393 rs11342894 0.16 CCL8 C CA -0.69 0.05 1.2E-50 

Monocyte Chemotactic Protein 4 Asian rs1894043 rs12075 0.44 SRGAP2D, 
FAM72C, ACKR1 

A G 0.49 0.03 3.0E-52 
Myeloid Progenitor Inhibitory 

Factor 1 African rs9303700 rs8073184 0.19 CCL23 T C -0.68 0.04 8.8E-60 

Omentin African rs503832 rs1333062 0.32 SRGAP2D 
,FAM72C 

G T -0.76 0.03 3.8E-116 

Pigment Epithelium Derived Factor Asian rs11658342 rs4274475 0.30 SERPINF1 T C -0.31 0.03 3.1E-20 
Sortilin African rs10897545 rs201759795 0.08 TENM4 AT A 0.35 0.08 2.0E-05 

T-Cell-Specific Protein RANTES African rs1894043 rs12075 0.44 SRGAP2D, 
FAM72C, ACKR1 

A G 0.18 0.03 5.5E-09 

T-Cell-Specific Protein RANTES African rs298528 rs17549158 0.09 CDH18 A C -0.21 0.06 5.7E-04 
Tetranectin Asian rs11921568 rs3765173 0.41 CLEC3B T C -1.01 0.03 3.4E-211 

Vascular Endothelial Growth Factor Asian rs513688 rs9472168 0.44 C6orf223 G A -0.75 0.03 1.6E-117 
Visceral adipose tissue derived 

serpin A12 Asian rs8021858 rs61978271 0.25 SERPINA12 A T 0.79 0.04 7.0E-105 

Vitamin D-Binding Protein African rs13102676 rs222047 0.43 GC A C -1.26 0.03 <1E-250 
Vitamin D-Binding Protein Asian rs1453458 rs222047 0.43 GC A C -1.26 0.03 <1E-250 
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European associated SNP represents the strongest associated SNP in Europeans (n=1,931) within the admixture window, defined as r2 >0.8 with top 
admixture signal. MAF: minor allele frequency, SE: standard error. Beta coefficient corresponds to the risk coefficient for each unit increase in effect 
allele, adjusted for age and sex and the first five principal components.   

 

  

Vitamin D-Binding Protein Asian rs17774208 rs222047 0.43 GC A C -1.26 0.03 <1E-250 
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Supplementary Table 4: Summary of genotypic associations in ORIGIN Native Latins with the identified 46 local associations.  

Biomarker Ethnicity SNP 
Admixture GWAS SNP MAF Gene Effect 

Allele 
Other 
Allele Beta SE P-value 

Angiotensin-Converting Enzyme Asian rs8077625 rs4362 0.47 ACE T C 0.67 0.03 8.5E-108 
Antithrombin-III African rs35569094 rs11605596 0.07 PKNOX2 A G -0.23 0.06 0.00031 
Apolipoprotein(a) Asian rs4252105 rs6935921 0.43 PLG C T -0.34 0.03 1.4E-25 

C-Peptide African rs3769050 rs34371548 0.03 ILKAP G A -0.26 0.09 0.0037 
C-Peptide African rs4149261 rs111292742 0.01 ABCA1 C G 0.35 0.12 0.0031 

Cellular Fibronectin Asian rs10498034 rs2304573 0.36 FN1 G A 0.75 0.04 5.2E-77 
Chemokine CC-4 Asian rs9303700 rs79254649 0.03 CCL16 A C -0.97 0.09 7.4E-26 

Clusterin African rs11990954 rs6983561 0.05 PRNCR1 C A 0.23 0.08 0.0030 
Complement Factor H Related 

Protein 1 
African rs4460614 

rs7519501 0.13 
SRGAP2D,FAM7

2C G A -1.14 0.04 8.9E-184 
Complement Factor H Related 

Protein 1 
Asian rs4612653 

rs7519501 0.13 
SRGAP2D,FAM7

2C G A -1.14 0.04 8.89E-184 
Eotaxin-2 Asian rs1799022 rs757865 0.35 MAGI2 T C 0.08 0.03 0.0075 
Eotaxin-3 African rs6570574 rs9375894 0.08 FBXL4 A G 0.05 0.02 0.0094 

Epithelial-Derived Neutrophil-
Activating Protein 78 

African rs1894043 
rs12075 0.44 

SRGAP2D,FAM7
2C,ACKR1 G A -0.28 0.03 8.6E-25 

Fetuin-A Asian rs4686753 rs4918 0.37 AHSG G C -0.65 0.03 1.1E-87 
Galectin-3 Asian rs17091300 rs11125 0.06 LGALS3 T A -1.15 0.05 1.8E-94 

Growth Hormone Asian rs11771147 rs4236406 0.39 GLCCI1 G A -0.12 0.04 0.0045 
Growth-Regulated alpha protein African rs1894043 

rs12075 0.44 
SRGAP2D,FAM7

2C,ACKR1 G A -0.27 0.03 5.9E-21 
Insulin-like Growth Factor-Binding 

Protein 1 
Asian rs505358 

rs10484921 0.22 ESR1 A C -0.13 0.04 0.00026 
Intercellular Adhesion Molecule 1 African rs11666402 rs5491 0.02 ICAM1 T A -1.73 0.12 3.4E-48 
Interferon-inducible T-cell alpha 

chemoattractant 
Asian rs924937 

rs7685696 0.46 FAM47E A G 0.17 0.04 6.9E-05 
Interleukin-16 Asian rs8031107 rs11556218 0.13 IL16 C A -0.96 0.04 9.4E-95 
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Interleukin-2 African rs7848675 rs1885492 0.11 ALDH1B1 C T 0.06 0.02 0.00088 
Interleukin-6 receptor Asian rs3811450 

rs2228145 0.48 
SRGAP2D,IL6R,F

AM72C C A 0.88 0.03 4.3E-211 
Interleukin-6 receptor subunit beta African rs321768 rs2228046 0.02 IL6ST G A -1.48 0.15 1.9E-22 

Kallikrein 5 African rs2569522 rs2569522 0.44 KLK5 C T 0.48 0.03 1.0E-54 
Lactoferrin African rs9832679 rs1126478 0.42 LTF G A 0.48 0.03 8.6E-60 

Lactoylglutathione lyase African rs8136576 rs79136 0.48 LINC01422 A G -0.11 0.03 0.00096 
Matrix Metalloproteinase-1 Asian rs1711399 rs479095 0.41 WTAPP1 T C -0.43 0.03 4.3E-41 

Methylglyoxal Asian rs7140154 rs6575979 0.25 MARK3 A G -0.10 0.04 0.0051 
MHC class I chain-related protein A Asian rs9404964 rs2256175 0.34 MICA C T 0.61 0.04 4.5E-60 

Monocyte Chemotactic Protein 1 African rs1894043 rs12075 0.44 
SRGAP2D,FAM7

2C,ACKR1 G A -0.49 0.03 1.7E-55 

Monocyte Chemotactic Protein 1 Asian rs1894043 rs12075 0.44 
SRGAP2D,FAM7

2C,ACKR1 G A -0.49 0.03 1.7E-55 
Monocyte Chemotactic Protein 2 Asian rs6505393 rs12602195 0.26 CCL8 G A -0.66 0.03 7.3E-79 

Monocyte Chemotactic Protein 4 Asian rs1894043 rs12075 0.44 
SRGAP2D,FAM7

2C,ACKR1 G A -0.43 0.03 9.4E-44 
Myeloid Progenitor Inhibitory 

Factor 1 African rs9303700 rs1003645 0.27 CCL23 G A -0.53 0.03 3.1E-50 

Omentin African rs503832 rs1333062 0.30 
SRGAP2D,FAM7

2C T G 0.72 0.03 6.0E-127 
Pigment Epithelium Derived Factor Asian rs11658342 rs8074840 0.33 SERPINF1 C T -0.29 0.03 2.1E-19 

Sortilin African rs10897545 rs12289861 0.15 TENM4 C T -0.10 0.04 0.018 

T-Cell-Specific Protein RANTES African rs1894043 rs34599082 0.02 
SRGAP2D,FAM7

2C,ACKR1 A G 0.50 0.10 1.7E-06 
T-Cell-Specific Protein RANTES African rs298528 rs167214 0.32 BASP1 G A -0.09 0.03 0.0021 

Tetranectin Asian rs11921568 rs13963 0.47 CLEC3B A G -0.95 0.02 1.6E-302 
Vascular Endothelial Growth Factor Asian rs513688 rs7767396 0.49 C6orf223 A G 0.74 0.03 3.2E-140 

Visceral adipose tissue derived 
serpin A12 Asian rs8021858 rs4905214 0.18 SERPINA12 A G 0.66 0.04 1.2E-58 

Vitamin D-Binding Protein African rs13102676 rs705120 0.37 GC A C -1.12 0.02 <1E-250 
Vitamin D-Binding Protein Asian rs1453458 rs705120 0.37 GC A C -1.12 0.02 <1E-250 
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Native Latin associated SNP represents the strongest associated SNP in Europeans (n=2,216) within the admixture window, defined as r2 >0.8 with top 
admixture signal. MAF: minor allele frequency, SE: standard error. Beta coefficient corresponds to the risk coefficient for each unit increase in effect 
allele, adjusted for age, sex and corresponding local Asian and African components.   

 

Vitamin D-Binding Protein Asian rs17774208 rs705120 0.37 GC A C -1.12 0.02 <1E-250 
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Supplementary Figure 1: Estimated proportion of variance explained by local and global ancestry 
under various conditions with a simulated ordinal phenotype. 

 

 
 
Average (±SD) estimated local and global variance explained under various simulated conditions. The sum 
of the true, unobserved local and global variances were pre-specified. Global variance was set at either 0 
(panel A and C) or 0.05 (panel B and D) and local varied as 0.01, 0.02, 0.03, 0.04 and 0.05 as determined by 
1, 2, 3, 5, or 10 causal SNPs. The sum of the two variances is shown on the x-axis. Each bar represents an 
average of 100 simulations, error bars show ±SD. Panels A and B illustrates simulated conditions with no 
directional condition, while panels C and D restrict local effects to be greater than 0. Panel A and C illustrate 
simulated conditions with no global effect, and Panel B and D have a pre-specified global effect. 
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Supplementary Figure 2: Estimated proportion of variance explained by local ancestry under various 
conditions with a simulated ordinal phenotype. 

 

 
 

Average (±SD) estimated local variance explained under various simulated conditions. True, unobserved 
local variances were pre-specified at 0, 0.01, 0.02, 0.03, 0.04 and 0.05 (x-axis) as determined by 1, 2, 3, 5, or 
10 causal SNPs. Each bar represents an average of 100 simulations, error bars show ±SD. Panels A and B 
illustrates simulated conditions with no directional condition, while panels C and D restrict local effects to be 
greater than 0. Panel A and C illustrate simulated conditions with no global effect, and Panel B and D have a 
pre-specified global effect.  
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Supplementary Figure 3: Proportion of causal SNPs selected under various conditions with a 
simulated ordinal phenotype. 
 

 

 
Proportion of selected SNPs which were causal or regional selected by the forward selection algorithm under 
various simulated conditions. Proportion of causal SNPs (y-axis) was calculated as: (number of selected 
causal SNPs + number of selected regional SNPs) / (number of true, unobserved causal SNPs). True, 
unobserved local variances were pre-specified at 0, 0.01, 0.02, 0.03, 0.04 and 0.05 (x-axis) as determined by 
1, 2, 3, 4, or 5 causal SNPs. Panels A and B illustrates simulated conditions with no directional condition, 
while panels C and D restrict local effects to be greater than 0. Panel A and C illustrate simulated conditions 
with no global effect, and Panel B and D have a pre-specified global effect.   



Ph.D. Thesis – J. Sjaarda McMaster University – Medical Sciences 
 

213 
 

REFERENCES  
 
1. Paré G, Asma S, Deng WQ: Contribution of large region joint associations to complex traits 

genetics. PLoS Genet. 11: e1005103, 2015 
2. Hsu F, Kent JW, Clawson H, Kuhn RM, Diekhans M, Haussler D: The UCSC known genes. 

Bioinformatics 22: 1036–1046, 2006 
3. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D: GeneCards: a novel functional genomics 

compendium with automated data mining and query reformulation support. Bioinformatics 14: 
656–664, 1998 

 

 

 
 


