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LAY ABSTRACT

Caustics are signatures of singularities in a classical geometrical ray theory which
are best exemplified by bright lines of focused light, like those at the bottom of a
swimming pool or the cusp inside a coffee cup. Caustics also appear in the theories
of hydrodynamics and gravitational lensing, and are described by the mathematics of
catastrophe theory.

In this thesis we focus on the formation of caustics in dynamics of quantum many-
body systems out of equilibrium, determine how they are organized by symmetry, and
identify their presence as a type of universality in these systems. Attention is also
paid to their existence (or lack thereof) when many-body quantum chaos is present.
We make use of an object known as the out-of-time-ordered correlator (OTOC), which
we show can yield caustics, and address how care must be taken by identifying ‘false

flags’” of chaos.
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ABSTRACT

We explore the dynamics of integrable and chaotic quantum many-body systems with
a focus on universal structures known as caustics, which are a type of singularity
categorized by catastrophe theory.

Papers I and II study light cones in quantum spin chains, which we show are
caustics and therefore inherits specific functional forms. For integrable systems, the
edge of the cone is a fold catastrophe, making the wavefunction locally of Airy form.
We also identify the cusp catastrophe in the XY model, thus the secondary light cone
is a Pearcey function. Vortex pairs appear in the dynamics, are sensitive to phase
transitions, and permit the extraction of critical scaling exponents. In paper II we use
a Gaussian wavefront form to distinguish integrable and chaotic models. Writing the
wavefront as exp[—m(z)(x — vt)? + b(z)t], the scaling of coefficients m(z) and b(z) is

the diagnostic. The local Airy function description in free models leads to a power-law
—n/3

—CT

~ T scaling, while for the chaotic case the scaling is exponential ~ e
In Paper I1I, we study the function F,(t) = ((A(¢t)B)"), a generalization of the
four-point out-of-time ordered correlator (OTOC) Fy(t), for an integrable system and
show that the function F),(t) can be recast as the return amplitude of an effective time-
dependent chaotic system, exhibiting signals of chaos such as a positive Lyapunov
exponent, spectral statistics consistent with random matrix theory, and relaxation.
In Paper IV we perform a comprehensive investigation of caustics in many-body
systems in (141)- and (2+1)-dimensional Fock space and time. We show how a
hierarchy of caustics appear in the dynamics of many-body models, using two- and
three-mode Bose-Hubbard models as guiding systems. We show that, in the case of
the trimer, high dimensional caustics appear and are organized by the catastrophe

Xy.
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CHAPTER

INTRODUCTION

One of the most valued keystones of modern physics is the concept of universality:
common signatures of natural phenomena which occur independent of microscopic
details. Perhaps the classic and most heavily studied example of universality is the
second-order equilibrium phase transition, which gives rise to universal scaling ex-
ponents and emergent scaling symmetries. At the heart of each of these universal
features is a singularity; correlation lengths, susceptibilities, and relevant time scales
diverge as the system is tuned through the transition. In this way, different models,
both classical and quantum, can be categorized according to universality classes which

obey the same macroscopic behaviour.

Our goal in this thesis is to study universal features in non-equilibrium many-
body quantum dynamics. Like in the case of phase transitions, many of the dynamical
structures we discuss here also have their origins in a singularity, which in our case will
turn out to be an intense focusing of classical trajectories resulting in a caustic. As we
will discuss later, a caustic is a universal type of singularity which appears in optics,
hydrodynamics, and even astrophysics, and which is described by the mathematics
of catastrophe theory. Although caustics have been studied in quantum systems
to some degree before, our goal is to examine how they appear in a many-body
second-quantized context, in which regime we associate them with the name quantum

catastrophes.

In this thesis, we also pay particular attention to the study of an object known
as the out-of-time-ordered correlator (OTOC). A generalization of a dynamical two-

point correlation function, the OTOC is a popular tool in systems for studying phase
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transitions, but also the onset of scrambling and chaos in many-body quantum sys-
tems. In the case of systems with local (in our case, nearest neighbour) interactions,
we pay particular attention to the edge of the OTOC, which is itself a caustic. We
also demonstrate that generalizations of the OTOC can lead to typical predictors for
chaos in completely regular systems, indicating that these types of functions should
be treated with some care.

We motivate many of the problems studied in this thesis in the context of ex-
perimental trapped ultracold atomic [1| and ionic |2| systems. These types of setups
provide a robust testing platform for quantum quenches in many-body quantum sys-
tems and quantum simulation, that is, the ability to simulate a model Hamiltonian
with another quantum system that is easy to control. Since the first realization of
the Bose-Einstein condensate (BEC) in 1995 [3-5], techniques in controlling ultra-
cold atoms have improved dramatically to include the control of multiple condensates
trapped in a lattice [1], and spinor condensates [6],7] with tuneable interactions [8].
For the specific systems we study in this thesis, simulations of dynamics of Bose-

Hubbard [9-12] and spin chain 13| models are particularly relevant.

Overview of this Thesis

This first chapter will attempt to introduce the important topics required for each of
the papers in Chapters 2-5 (Papers I-IV, respectively). In Section , we give a rapid
overview of quantum many-body dynamics, starting from the foundations of quantum
many-body theory, to the introduction of the types of models relevant to this thesis,
including both quantum and classical treatments. We finish the section with a discus-
sion of light cones and how perturbations propagate information in quantum systems.
In Section [1.2], we attempt to explain the important theorems of catastrophe theory,
including Thom’s classification theorem, without a formal mathematical treatment.
We show analytically and geometrically where many of the elementary catastrophes
(and beyond) come from, and their connection to a physical optics context in the form
of diffraction integrals. Finally, Section [1.3|will present an overview of some important
concepts of classical and quantum chaos. We introduce the necessary details of ran-
dom matrix theory, followed by a presentation of the out-of-time-ordered correlator
and its applications. We end the chapter with a brief overview of a publication where
out-of-time-ordered correlators were used to detect phase transitions in a two-mode
Bose-Hubbard system.

Chapters 2-5 will consist of four publications, each featuring a summary and state-

ment by the author on contributions to each work. Chapter [2 (Paper I) applies catas-
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trophe theory to quenches in spin chains by identifying the light cone-like structures
in theses systems as examples of quantum caustics. A description of these light cones
in terms of special functions with associated scaling laws follows. Chapter |3| (Paper
IT) extends the work of the previous chapter by considering how the structure of light
cones is altered by the inclusion of chaos. We verify via a Gaussian wave approx-
imation that the catastrophe nature of the light cone changes in a chaotic system.
Chapter {4 (Paper III), addresses signatures of chaos in quantum many body systems
from the perspective of a generalized two-time correlation function. Signatures which
are typically associated with chaotic systems are shown also appear in integrable
systems under certain conditions. Chapter |5 (Paper IV) provides an investigation of
higher-dimensional caustics which appear in quenched many-body systems. A demon-
stration of the formation of corank-2 catastrophes such as the hyperbolic and elliptic
umbilics, and their organization within a catastrophe known as Xy is presented. In
this and previous chapters, we argue that caustics form a type of universality in quan-
tum many-body systems. Chapter 6 presents a final summary, conclusions, and an

outlook to future work.

Many-body Quantum Dynamics

The focus of Chapters are either caustics, which we introduce in detail in Section
[1.2] or flags of chaos, outlined in Section [I.3] This Section, however, lays the founda-
tions for understanding each of the models and their dynamics. We begin from basic
quantum many-body theory, proceed to introduce each model individually, along with
quantum and mean-field equations of motion and finish with a discussion of quantum

light cones (a quantum speed limit).

Many-body Quantum Theory

A standard formulation of many-body quantum mechanics begins with the many-body

wavefunction W (xy, X, ..., X, t) which is governed by the time-dependent Schrédinger

equation ,,
9 N N N

n? . OV
—%ZVZZ—FZU(Xi,Xj)—i-ZV(Xj) qf:lha (1.1)

i=1 i<j i=1

A~

where we assume that the interaction between particles is at most two-body (U),

and the wavefunction is subject to some external potential V. There exist very few
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exact analytic solutions to this equation. Even for a single electron, the solution of
the Hydrogen atom with a stationary proton is considered a triumph, while the only
slightly more complicated Helium atom requires approximation methods. Nearly all
N-body problems therefore require some form of approximation, for example relying
on U to be reduced to contact interactions and localized wavefunctions (the tight-
binding approximation), and mean-field theory.

Under so-called first quantization, which involves the study of the many-body
wavefunction directly, variables and coordinates are promoted to the status of opera-

tors [16]. For example, in the position representation,

. 0
FE — H =1ih— 1.2
— lhat (1.2)
p—p=—ihV (1.3)
X—>X=u1x, (1.4)

while the Poisson bracket is replaced with a commutator [158|,

(o= 3] (1)

where the commutator is defined to be [A, B} = AB — BA.

In order to develop an intuition for the models studied in this thesis, we shall briefly
review the idea of second quantization. This treats quantum many-body systems in
terms of quantum fields and elevates the wavefunction to an operator-valued function,
which we call a ‘field operator’ |16}/17],

U(x) = U(x) (1.6)

The field operator \i/(x) annihilates a particle at the point x while its Hermitian
conjugate @T(x) creates a particle at x. In the case of bosonic particles, the field

operators obey,
D), U1(y)| = ox—) . (L7)

This formalism was introduced by Jordan and Wigner |18|. For Fermionic particles,

the anticommutator is required,

{960, 0(v)} = ox ). (18)

A

where {A, B} — AB+ BA (note the lack of subscript to distinguish from the Poisson

bracket). In order to understand how to construct a many-body theory, we consider

4
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a the representation,

V(x) =) mthm(x) (1.9)

m
W(x) = ) ahur,(x) (1.10)
m
where {1, } is an orthonormal basis of single-particle wavefunctions, or modes. The
operators a'h) destroy (create) a particle in state m with amplitude @Z)ﬁz)(x) We can
also define an occupation number operator N, = al a,, which counts the number of
particles in mode m.

The next step is to represent one-body operators such as the kinetic energy opera-
tor T' = 3", p2/2m and the external potential U = 3, U(#;) and note that these types
of operators are simply sums of operators acting on each particle 7, so that O, = > 05
The representation of such operators in a general basis is [17] (see Appendix A for a

proof),

0, = Y (ilolj)ila, (111)

where we have dropped the subscript on 6 since each single-particle operator is iden-

tical. Similarly, for a two-body operator,
Oy = (ijlo|kt)alalasa, (1.12)
ijkt

One can invert the relationships from Egs. (1.9))-(1.10) to rewrite the Hamiltonian in

second-quantized form,
= [ dxdy ¥160) x|y () (113)

. V2 . . . .
=[xt |5+ V0| B0 + [ dxdy 9T60¥ U (x5 U0 B()
(1.14)
Particularly important are potentials of the form U(x,y) = U(x —y) (e.g. the

Coulomb potential). We can also write the Hamiltonian in its representation using

creation/annihilation operators directly,
H=Y>"GIT]j) aa]—i-z iV9iyala; + Y (ij|Ulk€)alalaya, (1.15)
1<J gkl

This form of the Hamiltonian is widely studied as the tight-binding representation
of an interacting Hamiltonian 17| (we have neglected the spin indices o, o’ from

common definitions of Eq. (1.15) when studying e.g. electrons, as they only serve to

5
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add to the complexity of the model, and we will not be using them in this thesis).
T

The name ‘tight binding’ arises from when the operators a; create Wannier states,
which approximate localized wavefunctions and are tightly bound to lattice positions

in a condensed matter system.

Two-Mode Bose-Hubbard Model

As it currently stands, Eq. is still quite complicated, since each matrix element
involves integrals over many wavefunctions in states 7, j, ... etc. A particularly common
approximation in the tight-binding model assumes that the sites are separated by
large enough distances that the wavefunction overlap is small between sites [16}/17]
and that the rate of tunnelling is exponentially suppressed as the distance between

sites increases, leading to the Hubbard Model,
H=-TY dla;+Y &N;+U Y N?. (1.16)
(ig) i i

In this definition, we have therefore assumed that (ij|U|kf) = Ud;x, (i|V]i) = €, and
set (i|T|j) = T provided i and j are nearest neighbours, denoted (ij).

Chapters [4 and [f] study the two- and three-mode Hubbard models, respectively,
()

such that the operators a;'’ correspond to bosonic degrees of freedom. In these papers,
the physical systems in mind correspond to trapped Bose-Einstein condensates (BEC)
which either have access to different spatially separated modes (like the Wannier
states), or internal modes of a single trapped BEC (for example, a spinor condensate).
At low temperatures and in dilute systems, we approximate the interatomic potential

with a contact interaction of the form [19],

Ux,y) =go(x—y) . (1.17)

In doing so, the short-wavelength degrees of freedom have been eliminated in favour of
an effective interaction under the assumption that the typical distance between bosons
is much larger than the interaction range. The interaction strength is g = % (in
three dimensions), where m is the atomic mass and a is the s-wave scattering length
which can sometimes be tuned via Feshbach resonance to give attractive or repulsive
interactions.

For the two- and three-mode models, we also truncate the field operator expansions
at the appropriate order. In the two-mode model, let us suppose that the modes
correspond to BEC modes which occupy left (L) and right (R) wells of a double-well

potential, and so we truncate at second-order:

A

Wy(x) = arypr(x) + arr(x) - (1.18)

6
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The energy eigenstates of the non-interacting double-well system are symmetric 14(x) =
\%WL(X) + ¥r(x)] and antisymmetric 1, (x) = \%wL(X) — 1r(x)] combinations [20],
however the left/right picture is more useful for the scenario we consider. Inserting
this into the Hamiltonian using the contact interaction gives,

1 ~ ey, + endlyin — J (ahay + ajan) + U (ahahanan +alalaar)  (1.19)

where,
cum= [ ax via) |50 V0 vayalo) (1.20
J= — /dx U1 R(%) {—%VQ - V(x)] Yr/L(x) (1.21)
U=y [ dxlinmol (1.22)

We have ignored interaction terms in which include cross terms of ¥, r(x),
since we expect that the overlap of the wavefunctions in different modes to be very
small [20,)21], and have assumed that the interaction energy is well-independent. By
making use of the identity N = dTL&L + dk&R, defining the half-number-difference
operator n = (d}r{dR — &TLdL)/Q, the imbalance or tilt Ae = er — €7, and neglecting

terms which only provide a constant shift in energy,
Hy=Un>—J (agaL + dTLaR> + Aen (1.23)

A convenient representation of the two-mode Bose-Hubbard Hamiltonian ((1.23) in-
volves replacing the bosonic operators with SU(2) spin operators, called the Schwinger

boson representation [2223|,

L1

8 =3 <a;aL + a}aR> (1.24)
~ 1 /7.4 b

Sy = 5 ( b, — aTLaR> (1.25)
L1

8. =3 (AE&R - a}&L) (1.26)

noting that the SU(2) relation [ga, 35] = ieaﬁ”fé'% with «, 8,7 € {z,y, 2} and e*#7
is the completely antisymmetric tensor, holds. In this representation, the two-mode
Bose-Hubbard model becomes a model of spins of total angular momentum S = N/2

and quantum number m, such that spin states can be written as,

T @) @) e e

|S,m5> =

7
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such that |S,m,) are the simultaneous eigenstates of S, and 82 = 52 + S’Z + 52 We
define the critical parameter A = UN/2J, and write the Hamiltonian scaled by the

hopping energy,
Hy, 2A o A€ s

e S T S, . 1.28
J TN (1.28)
This Hamiltonian takes the form of an infinite-range Ising model with a transverse
field via,

SR e

Sa=13 ZU“ , (1.29)

where ¢!, are Pauli operators acting only on site 1.

The Hamiltonian H, describes a bosonic Josephson junction (BJJ) [21], (so-named
since it consists of two weakly-coupled macroscopically quantum states, like a super-
conducting Josephson junction), which has been realized experimentally both by using
spatially linked BECs [9-11},24,125] formed by splitting a single condensate or by in-
ternal spin states of a single BEC [26] using 3’Rb atoms. The BJJ has also been more
recently realized [27] using two spatial modes of an **K atomic condensate. In addition
to analogues of ac and dc Josephson effects |24], the BJJ also displays a phenomenon
known as macroscopic quantum self-trapping [20}28,[29], where a population imbal-
ance between the wells is maintained, provided the initial number difference between
the wells is above a critical value.

By tuning A, the system described by H, can be brought to different regimes [30]:

(i) Rabi (A < 1): Tunnelling term alay + ! ar dominates, atoms display nearly

single-particle harmonic oscillations
(ii) Josephson (1 < A < N?): Neither term dominates, relatively rich dynamics.

(iii) Fock (N? < A): Number-difference term n* dominates, eigenstates are approx-

imately Fock states, n|n) = n|n)

Furthermore, when Ae = 0, the system undergoes a Zs symmetry-breaking quantum
phase transition [32,33] below A, = —1 (attractive interactions), where the bosons
‘select’ a well to occupy macroscopically. It should be noted that self-trapping is
different from the symmetry-breaking transition, since it occurs for A > 0 (repulsive

interactions).

Bose-Hubbard system coupled to an atomic quantum dot

The system studied in Paper III makes use of the model in Eq. (1.28)), coupled to a
trapped atomic quantum dot (AQD). In such a system, we require that the AQD be

8
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distinguishable from the BEC atoms, and so we need to introduce a new field operator

d which we also truncate to two modes,
O = dydu(x) + dada(x) (1.30)

where now the two levels are labelled according to the up (u) and down (d) states of
the two-level AQD. The AQD operators can be rewritten using an SU(2) Schwinger

representation, where since N = 1 the operators are simply the Pauli spin operators,

1/ e s

o =3 (ded + deu> (1.31)
1 /e s

o =5 (ded - dj,du> (1.32)
1 /m o s

5= (deu - d;dd) (1.33)

In its second-quantized form, the action of the AQD amounts to a coupling of the
Hilbert spaces of the condensate and the dot, hence the end result is that operators
which couple condensate-dot degrees of freedom therefore take the form S, @ 0. In
the case of an AQD whose states couple only to the hopping energy of the bosons,

the Hamiltonian becomes,

A 2AJ - A A l1+0.
N S
s 1SZ Sy + a5, + S, (14+35,) — A 5 (1.35)

where in the second line we have redefined a, = 2J — 8 and a, = Aec in order to

establish consistency with Paper III. The imbalance between the AQD modes is,

A= [[axon0) |50+ V00 6~ [ ax0i) |59+ V00 )
(1.36)

while the new coupling parameter is given by,

5= [ ax b0 |~ o2+ V0| ) nsnl)

- [ v 0660 | -5 9 VO a0 (130

Similar Hamiltonians have been studied which model an impurity atom or ion [31H35]
embedded in the condensate, where interaction terms such as S.o, and bare o, terms
exist. By including these terms, the integrability of the system is broken, and the
impurity interactions will act as a weak source of chaos in the system [32] (See Section
. By only including the terms proportional to ¢, and S.6, (see Section ,

9
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no energy is allowed to exchange between the BEC and the AQD, thus the model
remains completely regular.

In the model we consider in Paper III, rather than an impurity embedded in the
BEC, a closer picture might be that the AQD sits between the wells, such that it has
negligible interaction energy between the modes 9/, but can affect the tunnelling
rate. A similar setup was studied in Ref. [36], where an experiment was proposed
such that a single TYb ion acting as a two-level system can act as a control switch

for the tunnelling of the BEC across the junction.

Three-mode Bose-Hubbard model

In Paper IV, we study the Bose-Hubbard model with three modes. The inclusion of
the extra mode adds a great deal of complexity to the dynamics, as we shall soon see.

In this case, we truncate the field expansion at the third mode,

U3(x) = arthy (X) + aatda(x) + dst)s(x) (1.38)
which we insert into Eq. again using the contact interaction, assuming that the
modes 1;(x) are each localized in one of three potential wells which can be written as
a linear superposition of the hopping eigenmodes of the non-interacting system [37],
much like in the double-well. This time, there are far more cross terms, which we
again assume are negligible due to small overlap. We have a resulting three-mode

Hamiltonian,

A

Hy = — Kp(alas + aba) — Kr(adas + alas) — Kx(alay + alas) (1.39)

U 3 3

where now,
o= vt |-pv|u (1.40)
Ky = = [ax i[5 o) (1.41)
U =29 [ dx oo (1.42)

where now the hopping amplitudes correspond to K = K15 = K1, K = Koz = K39,
and Kx = K3 = Kj3;. The factor of 2 in the definition of U is simply to fit with
existing literature [38H45]. Unlike the dimer, the trimer has the capacity to model

different well geometries by adjusting hopping strengths. The two geometries we will

10
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primarily be interested in are the triangular case (K, = Kr = Kx), and the linear
trimer (K, = Kg with Kx = 0). Through a Schwinger-type map, there exists an
SU (3) representation of the three-mode model [23,46|47], which is given by,

A 1 /.4 e
Q1= 5 <a§a1 - a£a2> (1.43)
A 1 /... i i

2= 3 <a§a1 + aba, — 2a£a3> (1.44)
Je =i (ala; - ala) (1.45)
Py = afa; +alay, (1.46)

where k = 1,2,3 and j = (k + 1)mod3 + 1, for which the Hamiltonian ([1.39)) (for

¢; = 0) can be succinctly written,
2 3 3 5 U (142 42
Hjz = _KLPZ_KRPB_KXP1+Z (4Q1+3Q2> (1.47)

however we will only be making use of the boson representation in Paper IV.

The Bose-Hubbard trimer has been studied theoretically in a wide variety of set-
tings, including as a model for adiabatic passage [38,48-50], where a coherent transfer
of particles is achieved between left and right wells (in the system’s linear configu-
ration) while the population in the center well remains exponentially suppressed. In
the triangular geometry, particles have the ability to ‘low’ in a closed loop, and for
this reason the trimer has also been studied as a minimal model for a superfluid cir-
cuit [44.51,52|. The three-mode model is also the shortest chain which exhibits signals
of chaos [41}/42,53]54], becoming nonintegrable for U # 0.

Quantum Equations of Motion

The dynamics of the BH dimer and trimer in the basis of Fock states can be calculated
via a set of coupled differential equations. We begin with the dimer and write a general

state in the Fock basis,

(1) =) Cult)n) (1.48)

where n|n) = n|n) are the eigenstates of the number difference operator 7, and the
time dependent coefficients C,, () are generically complex. The Fock basis here only

needs a single index n when we assume total particle number is conserved. We insert

11
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this expansion into the time-dependent Schrédinger equation,
lh— Z Co(t)|n) = [(m? .y (aLaL + eﬁLaR) + Aeﬁ} Z O, (t)]n) (1.49)

— ;Cn(t [Un2|n <\/— +—=—-n2—nln+1) (1.50)

N2 N
+\/T+§_n2+n|n_1>> —|—Aen!n)] :

We then assert that the relationship between the right- and left-hand sides must hold

true for all members of the sum since the eigenfunction expansion must be unique.

Thus, term-by-term,

2
ihQCn(t) = (Un*+Aen)C, (1) — { 1 ( \/— + — —n?2+n+Chyq(t) \/N +—-—n?2—n

ot
(1. 51
We will be referring to the set of N + 1 coupled differential equations, and their
three-mode counterparts, as the Raman-Nath equations for the dimer. This is due
to their resemblance with the original Raman-Nath equations [55] for the dynamical
diffraction of light. In fact, under circumstances when n < N, we can approximate

the square root terms,

N2 N N>1 N
A < 1.52
\/4—|—2 n®4+n 5 (1.52)

assuming that the dynamics are dominated by states where the wells are macroscopi-
cally occupied, set Ae = 0, and change variables to C,, — (—1)"C,, to recover a set of
equations equivalent to Raman and Nath’s original set. Unless otherwise noted, we
will not be approximating the full Raman-Nath equations given by Eq. .

In the case of the BH dimer, one can alternatively numerically diagonalize the
Hamiltonian and use the eigenstates to find the dynamics. The Raman-Nath equa-
tions do, however, allow for a time-dependent Hamiltonian without the need of diago-
nalization at each time step, so the optimal method is situationally dependent. Exact
diagonalization is usually much harder for spin chains with local interactions which
has a Hilbert space of size 2V, whereas for the all-to-all situation represented by the
BH dimer the Hilbert space has size N + 1. Practically speaking, this means that in
the dimer, system sizes can be of the order N ~ 10* bosons before they are as slow
or memory-intensive as an Ising model even with N = 16 spins.

For the Bose-Hubbard trimer, we can again derive a set of Raman-Nath equa-

tions in the exact same way, however the number of coupled differential equations is

12
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increased. We begin as before by taking a general time-dependent Fock state,

(U(1)) = Y Cuinx(t) [n2,nx) (1.53)

n2,nx

where now we have selected nxy = n; — n3 to be the number difference between wells

1 and 3. Inserting this into the time-dependent Schrédinger equation,

. 0 e At Afa o ata Afa o ata
ih Z aC’n%nX (t) Ing,nx) = |:—KL(CLJ{GQ + abay) — Kg(abas + alay) — Kx(aha, + alas)

nz,nx
(1.54)
U 3
+5 > (i — 1) + Zeml} D Crgny (t) [n2,nx)
=1 =1 ng,nx
The diagonal terms are fairly straightforward,
£ 2 1 2
nini,ng) = Z(N —ng +nx)° |ny,ns) (1.55)
3 |1, ) = n3 |ng,ns) (1.56)
. 1
N3 [y, ng) = Z(N —ny —nx)? |1, ns) (1.57)
while the hopping terms are slightly more complicated,
1
(alas + aban) [na, nx) = Emu\r —ng +nx +2)|ng — Lny +1) (1.58)
1
+ E\/(N —ng+nx)(na+ 1) ng + 1,ny — 1)
1
(abas + aas) o, nyx) = Emv —ny —nx)(ng+ 1) |ng + 1,nx +1) (1.59)

1
+E\/n2<N—n2—nx+2) ]n2—1,nx—1>

i i 1
(agal + ayag) |ng, nx) = 5\/(]\7 —ng +nx)(N —ng —nx +2) |ng,nx — 2)

1
—|—5\/(N—n3—nx)(N—n2+nX+2)|n2,nx+2> :

Since again we must ensure that the eigenfunction expansion is unique we equate each

term in the sum, which amounts to relabelling terms like,

CnQ,nX (t)\/ng(N — No + nx + 2) ’ng — 1, nx + 1> — C’n2+1,nx_1(t)\/(n2 + 1)(N — No + TLX) ‘77@,71)()
(1.60)
etc. Finally, we make a change of variables, dny = ny — N/3 so that our Fock space

variables are centred around the origin, |dng,nx) = [0,0). Hence our three-mode
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Raman-Nath equations are,

0 K
171&05”27”)( (t) = — Tg (% + 0ng + 1) (% — ong + nX)Can2+1,nX—1

K
N

_ % (F + 0n2) (35 — 6ng — nx + 2)Crpg—1,nx-1

_ % (X 4 65+ 1) (2 — 6n5 — 1) Csnstnx 41 (1.61)
_ % (% —0ng +nx + 2) (% — 0ny — nX)Cénz’"X”

_ % (2 — 6y — nx +2) (2 — g + 1x) Cog -

€1

9 (’I’LX — 6”2) + 625712 — 6—3 (TLX + 5TL2) C5n27nX .

U
+Z[35ng+n§+ 5

The number of coupled differential equations (and thus the size of the Hilbert space)

(NHZM. The corresponding approximation which assumes that the wells are

all macroscopically occupied will approximate each of the square roots as N/3 (again,

1S NOW

unless otherwise noted, we will not be making use of this approximation). Fock
space for the triple-well is triangular due to particle number conservation, and since
six hopping terms are possible, it is visually ideal to tile the full two-dimensional
Fock space with hexagons representing individual states with well-defined particle

numbers as in Fig. [I.1] In Paper IV, we colour the states according to the amplitude
|C5n2,nx (t) |2'

Mean-field theory

The mean-field theory description of each of the models studied above is approached
in the same way. Starting from the Hamiltonians written in the original dj basis,
one can use the ‘Heisenberg substitution rules’ [28[29,[57-61] to replace the bosonic

operators with complex numbers,

i; — /Nie® il = /Nye 0 (1.62)

where now NV; is a real number representing the (classical) number of particles in well

1, and 6; is an associated phase.
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57”&2

o

wl=

Figure 1.1: Fock space of the triple-well, where the entire Fock space is triangular due
to total particle number conservation and the six possible hopping directions allow us
to tile the space with hexagons. Zoomed-in portion is from Paper IV (Ref. [56]).

Classical two-mode system

After this substitution, it is relatively straightforward to show that the classical limit

of the two-mode model can thus be written (for Ae = 0),

H A, 5
N_J:HQ—EZ —V1—2%2cos¢ (1.63)

where, as before A = UN/2J, and we have defined the scaled number-difference
z = (Ng — Np)/N and the phase difference ¢ = ¢r — ¢r. The variables z now lies
in the range [—1, 1], such that each extremal value corresponds to all of the particles
in the left and right wells, respectively. The Hamiltonian corresponds to a
nonrigid pendulum [28|, where the number difference z plays the role of an angular
momentum, the phase difference ¢ becomes the angle of the pendulum, and the length
is o< /1 — 22. Given that z and ¢ are canonically conjugate, one can make use of

Hamilton’s equations,

_oH
06

. OH
=%

(1.64)

(1.65)

to therefore find the classical equations of motion for Ho,

2= —+V1—22%2sin¢ (1.66)
2 CoS ¢

Y PERACLE
R

(1.67)
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The classical solutions of these equations in various regimes of the Bose-Josephson
Junction have been studied in Ref. [25,29]. By making the approximation z < 1 (i.e.
both wells macroscopically occupied), which corresponds to /1 — 22 &~ 1, we return

to the rigid pendulum Hamiltonian,

A
Hp = §z2 —cos ¢ (1.68)

This model gives dynamics which are analogous to the Josephson equations [29], and
can yield small-amplitude oscillations (¢) = (z) = 0, called “plasma" oscillations.

There exist modes which oscillate around (z) # 0, indicating the onset of macro-
scopic quantum self-trapping: bosons tend to clump in one well and only perform
small oscillations about the original number difference. These exist above the separa-
trix: the energy contour separating the states where the pendulum oscillates around
the bottom and those for which the pendulum swings completely around. Above a
critical A, however, there exists motion that is unique to the non-rigid pendulum pic-
ture, particularly oscillations about (¢) = 7 but (z) = 0. These trajectories, called
m-oscillations are analogous to a pendulum which is oscillating about its upright po-
sition.

Although the rigid pendulum approximation does not allow for m-oscillation tra-

jectories, one can derive an improvement on the ‘potential” term in the pendulum case

Refs. [29,58], by first linearizing Eqgs. (1.66))-(1.67) in z,

Z= —sing (1.69)
¢ =Az+ zcosd (1.70)

Taking the time derivative of Eq. (1.70)) gives ¢ = Az + % cos ¢ — zsin ¢¢. Inserting %

and ¢ and keeping terms of only order less than 22 gives,

¢ = —Asin ¢ — sin ¢ cos ¢ (1.71)

which, integrating over ¢ gives an effective potential term. Combining the above with
the fact that the moment of inertia is 2/A, the effective Hamiltonian which reproduces
the m-oscillations is,

He = %22— %coszqﬁ—comb. (1.72)
Compared to Hp, this new Hamiltonian has an additional local minimum around
¢ = m, effectively “trapping" systems which do not have enough momentum z to
escape. This local minimum only exists for A < 1, by tuning to A > 1 there are no

possible m-oscillations, however microscopic quantum self trapping is still possible.
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Classical two-mode system with an AQD

The AQD modes can be included identically to the boson modes using the substi-
tution rule above. Since a single two-level system is entirely characterized by two
real numbers (i.e. two angles on the Bloch sphere), the mean-field theory of the dot
becomes quantitatively exact . From (1.35)), we have,

2 k. , 5 A Y 5 Yy
HD—NH— 2z —a,V1—z cosgb+azz—N<1+2>+5v1—z COS¢<1(—§%3>

where now the classical variable y comes from the substitution,
1 /s s s 1
6= (dld, — d}da) — Sy =1 (1.74)

and we can simply call the absent conjugate phase variable ¢,. Hamilton’s equations

of motion follow,

s= T _ —ax\/l—z2sin¢+ﬁ\/1—z2sm¢<1+%) (1.75)

¢
. O’H 2 COoS ¢ 2 CoS ¢ Y
. OH
=5, =0 (1.77)
_OH B 5 A
=5 = \/1 — 2% cos ¢ — N (1.78)

Classical three-mode system

For the triple-well, we again replace each boson operator with a corresponding complex

number a; — /N;e%, the classical Hamiltonian is,
NHz = —2K+\/ning cos(6y — 01) — QKR\/TLQ’IY{; cos(f3 — 6s) (1.79)

3
—QKX\/ngnl COS 91 an n; 1)—}-262711 .
i=1

The process of determining the conjugate coordinates is not as simple as in the
double-well case. In Ref. , Mossman and Jung use as conjugates (¢r, ¢r, p2) <>

(n1,ns, N), where ¢, = 61 —0y and ¢r = 03 —05. Therefore, in this coordinate system,

OH )

= —
(of course N = 0 due to particle conservation).

17



PhD. Thesis - W. Kirkby
CHAPTER 1. INTRODUCTION Dept. of Physics - McMaster University

However, following our quantum analysis want to use nx and ns as our coordinates,
and so we must derive the appropriate conjugate phases, which we shall define to be
¢x and ¢¢, respectively. The remaining classical number coordinate will be N/3,
which is of course a constant, meaning its conjugate phase © does not affect the
dynamics at all (in fact it does not even appear in the Hamiltonian).

Begin by taking,

... 0H OH\  (0H OH\ _ 0H L8l
win—in=—gi - () == (3 o) =m0

By the chain rule, we can replace the derivatives with respect to ¢ /g,

oH B OH 0¢x OH O¢c (9_H 00
0¢rr  00x 0prr  O0pc 0prr 0O Opr/r

(1.82)

The derivatives (37}’; — %) from Eq. (1.81) must, by definition of the conjugate
OH . OH

variable @y, not contain any terms with derivatives of the form 900 O 36 and hence

) 9 . . .. o
(,;%I( = é%l( (8‘% — 8%’;), for which a possible solution is that ¢x = %((bL — ¢r). We

can double check that this works out via,

_ oL —or _1<8H 6H> 1 9H <8nx 8nx> _ OH

_ - 2y = — 1.
2 2 \0n; Ons 20nx \ Ong ons onx (1.83)

dx

Hence nx <> ¢x are conjugate.

Next, consider,
OH OH OH
T T 50, T Gon . dec (184
Similarly to what we used above, we require that by definition of the conjugate coor-

dinate ¢¢, all other derivatives of the Hamiltonian with respect to the other angles.

OH _ OH 9% 0 . S _ 1
Hence o = Bog (—&Tf — ﬁ), for which a solution is ¢c = —3(¢L + ¢r), we then

check,

2 2

) 0; + Og 1(8H 8H) 18H(8n2 anz) oH
S _

L ) == = 1.
0n1 8713 2 6712 6TL1 + E)n3 6712 ( 85)

since ng = N —n; — ng. Hence ¢¢ <> ny are conjugate coordinates. Since particle
number is conserved, there is no need to consider the remaining coordinates, however
for completeness, we simply state that they are N/3 <> ©, where the angle © =
01 + 05 + 05 does not appear in the Hamiltonian and therefore N = 0.

We can take the classical Hamiltonian ((1.79)), replace n; = (N — ny + nx)/2,

ns = (N — ny — nx)/2 and using our new angle coordinates, ¢x = (6; — 63)/2
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and ¢pc = —(01 + 205 — 05)/2. We can define a set of normalized number difference
coordinates z; = ny/N and zx = nx /N analogous to the double well’s z. Finally, we
shift to the coordinate dzo = z5 — 1/3 and define U=UN ,

My = — V2K\/ (1 — 2 + 2x) cos (¢x — ¢c) — V2Kr\/2(1 — 2 — 2x) cos (¢x + ¢c)
(1.86)

U
- KX\/(I — 29)% — 2% cos (2¢x) + 5 [325 — 225 + 2% ]

The classical equations of motion for the trimer are therefore,

ZX :—KL\/2 (%—f—(SZQ) (% —522+Zx) Sin(¢X —gbc) —KR\/2 (%""622) (% _522 —Zx)

X sin (¢ox + ¢c) — 2KX\/(§ — 22)2 — 2% cos (20x) (1.87)
622 =K17/2 (3 +62) (2 — 62 + 2x) sin (6x — éc) (1.88)
— K2 (L4 62) (2 — 62 — 2x) sin (éx + 6c) (1.89)
by :%ZX K, (5 + 922) cos(px — ¢c) LK (3 + 022) cos(dx + ¢c)
V2 (5 +02) (23— 02+ 2x) V2 (5 +02) (202 — 2x)

zx cos(2¢x)
JE-62) -
be :7(522 _x (5 — 202 + 2zx) cos(dpx — ¢c) K. (3 — 2620 — zx) cos(dx + dc)
V2 (5 +02) (B —ons + 1) V2 (5 +02) (202 — 2x)
(2 — 022) cos(2¢x)
Ve

In Paper IV, the classical Hamiltonian and equations are left in terms of ny and dns

+ Kx

(1.90)

+ Ky (1.91)

in an effort to reduce the confusion of too many changes of variables, however there
is also some benefit to making contact with the conventions we used previously in
the dimer. If one wanted to make the analogy even more explicit, we could scale the

Hamiltonian again by some hopping parameter K, x /g, hence defining a three-mode

analogue to A.

Between Mean-Field and Many-Body Theory

Next, we can consider a regime in which we wish to extend the classical theory de-
scribed above to include wave effects, resulting in an intermediate regime which is a
continuized version of the full quantum many-body theory, valid as N — oo (semiclas-

sical regime). To do so, we promote the number difference z — 2 and phase difference
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¢ — ¢ coordinates to operators obeying [¢E, Z] = 2i/N, hence in this wave theory
N~! becomes a parameter which plays the role of h. In the phase representation, this

means we can make the correspondence,

6— ¢ (1.92)
2i 0
Let us apply this quantization procedure to Eq. (1.68)),
N 2N 0?2
Hp:—ﬁaﬁ&—COS(b. (194>

which is sometimes called the quantum phase model [58,[59]. We can apply Hp to a
mean-field wavefunction ¢ (¢), such that the time-independent Schrodinger equation
flw = FEi can be rearranged to,

N2 N?
" - o —
¢+(2AE+2ACOS¢>¢ 0. (1.95)
Which is the Mathieu equation |63, Eq. 28.2.1|,
y" + (a — 2qcos(2z))y = 0 (1.96)

the solutions to which are even y = C(a, ¢, z) and odd y = S(a, q,x) Mathieu func-
tions. Thus, the wavefunction solutions are a superposition of these,
N?E N? N2E N?
_ o - 1.97
where C; and C5 are constants.

Performing a similar quantization procedure on Eq. (1.72]), we have,

- 2A 02 1 9

Hﬂ:—m@—ﬁcos ¢ —cos . (1.98)
This has been dubbed the ezact quantum phase model [58|, and can also be derived
by making use of an overcomplete set of ‘Bargmann’ phase states in the limit of large
N.

The corresponding Schrédinger equation can be rearranged in the form,
N? N? N?

V"(0) + {m cos® 0 + BTN cos 6 + e (2AF — 1)1 P(#) =0, (1.99)

In this type of differential equation, the potential V'(6) is sometimes referred to as the
trigonometric Razavy potential [62]. In its current form, Eq. (1.99) is a differential
equation known as the Whittaker-Hill equation |63, Eq. 28.31.1],

2/{:2
Y+ (A - CT + Bcos2x — c*k? cos? 21’) y=0, (1.100)
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which is also related to the Ince equation [64,65| through a change of variables, and

can thus be solved by Ince polynomials.

Spin chains

Models of spin—% chains can also be put into a form which mimics a tight-binding model
by mapping spin degrees of freedom to fermionic operators using the Jordan-Wigner
transformation [16}/18]. The correspondence is relatively simple, an “up” state can be
represented by a vacant single-particle state while a “down” state can correspond to
a filled state,

[ 1) < 1) = ¢'0) | 1) < 10) (1.101)

and since the notion of a doubly-occupied state would make no sense in the spin
language, we require that the operators are fermionic: {cg, ¢} = 6;;. Unfortunately,
naively replacing spin operators with linear combinations of éj and ¢; will fail to
reproduce the fact that angular momentum operators on different sites commute.

Thus, the anti-commutative property of fermionic operators must be countered by a
i

string operator '™ 25<i % which counts the fermion occupancy and ensures the system
is symmetric under exchange on different sites. Following Sachdev’s [66] convention
that the down and up states in the 6% basis correspond to occupied and empty states,

respectively, we can then define,

o =1—2c¢;. (1.102)
oV =i(¢; — ) H(l - QCjcj) =i(¢; — c})e”zﬂic;q (1.103)
j<i
0f= —(ci+cl) H(l — ZC}C]') =—(c;+ c})e”zﬂ'@c;q . (1.104)
j<i

This transformation is particularly useful for mapping spin chains into non-interacting
fermion models |67], which we will outline here for the transverse-field Ising model
(TFIM) (the XY model is outlined in the appendices of Paper I). The TFIM with

neareast-neighbour interactions is,
Hrrm = —JZUfoH - hZUf , (1.105)
i i

where J corresponds to a spin-spin interaction (ferromagnetic for J > 0) and h an
applied external field. This Hamiltonian was originally considered by de Gennes 68|

in 1963 as a low-energy model of proton modes in KHySOy4, and was first treated as
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a model for magnetism and solved by Pfeuty [69] using the Jordan-Wigner transfor-

mation in 1969. By making the replacements ({1.102)-(|1.104)), we get,

Hyppa = —J ) (c}c}H +clejpn +cle + cirac — 2gc}cj> (1.106)
J

where g = h/J. In transforming from Eq. (1.105) to (1.106]), many terms have been

simplified using identities of fermionic operators, (1 — 2c}cj)2 = c}c} = cjc; = 0,
and dropping constant shifts in energy oc N. Now we have a Hamiltonian which is
entirely quadratic in fermion operators, however it includes terms which do not con-
serve fermion number. Since the original model is translation-invariant, momentum
becomes a good quantum number. Hence, it is more convenient to work in momentum

space by defining,

G=——= Y ce ", (1.107)

where a is the lattice spacing. With this, the Hamiltonian can be written conveniently

in matrix form,

. B o g — cos(ka) —isin(ka) C
Hrena = J; (CL C_k> < isin(ka) —(g— cos(ka))) <5T—k> (1105

The final step is to make use of the Bogoliubov transformation [70| (originally de-
veloped for the theory of superfluidity with bosonic operators 71|, but extended to
fermions via BCS theory [72]),

where the fermionic anticommutation rules {EL,ék/} = O, and up, = u_g, vy =
—v_j, require that ui + v = 1, allowing us to define u, = cos(¢y/2) and v, =

sin(¢y/2). Then, by ensuring the off-diagonal elements of the Hamiltonian vanish in

the Bogoliubov basis, we require that tan ¢, = sin(ka)/(cos(ka) — g), and thus,

N ~i 1

k

with e, = 2J4/¢% — 2g cos(ka) + 1, and the sum over k runs from —Z to £ — 2% The
resulting Hamiltonian represents free fermions in a ‘rotated’ operator basis, meaning
the corresponding position-space Bogoliubov fermions b; can only hop lattice sites
and do not interact. Because of the rotation, a direct interpretation of the position
space fermions in terms of spin operators is not simple, however we can view them

as quasiparticle excitations of the system which travel through the chain. Thus,
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perturbing a spin chain at some position z; amounts to the creation of one (or more)
quasiparticles IA)Z which propagate at a finite velocity and spread information of the
perturbation throughout the system.

Before considering an example of dynamics in the system, we note that the Bo-
goliubov transformation is model-dependent since u; and v depend implicitly on the
interaction and field strengths. The nature of the transformation also requires that
the vacuum in the Jordan-Wigner basis also be different from the vacuum in the

Bogoliubov basis since,

0w =0, then, l;k‘())JW = <UkEL + iv/ﬁ%) 10);w = Ukéu())Jw #0.
(1.111)
thus one must construct the Bogoliubov vacuum |0)g. In order to do this, choose
an ansatz [0), = (a; + auélé ) |0) jw (motivated by the vacuum having zero net
momentum), then enforcing 0 = by |0)p gives as/ay = vy /ug, hence,
.t ik gt Gt
0)g = H (uk + wkchT_k) 10) ;5 = Huk ek F R 0) v - (1.112)
k>0 k>0

One must take care here, since if the momenta had been selected such that they are

in pairs +|k| over the entire Brillouin zone, there is a double counting problem which

leads to
b0y = (s — it ) TT (e + ivwddl ) 10) (1.113)
k/
—iveutel, T (we+ivedley, ) 10) #0. (1.114)
k' Ak

If the product is chosen to run only over half the Brillouin zone, k' € [0,7/a), then
the double counting problem is eliminated.

Before we discuss the dynamics of spin-chains, let us first briefly examine how the
procedure outlined above affects more general spin systems. The Heisenberg XXZ

model is [16,223],

A~

Hy = _JZ [&fﬁfﬂ +‘3?6?+1] - Jzz6f&f+1 , (1.115)

In this case, however there is no transformation which eliminates all fermion interac-
tions, and we are left with[l] [16],

N e Jz B B o
Hy = Zwkc};ck ~~ Z cos(qa)cz_qck/ﬂck/ck (1.116)
k kK \q

ITo arrive at this form of the Hamiltonian, it is more convenient to choose a Jordan-Wigner
basis such that o7 = 2&361» — 1, etc. See Coleman [16] Chapter 4. The principle and process remains
the same.
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where now the second sum now indicates that the quasiparticles are interacting. This
model remains integrable, however, but must be solved using the Bethe ansatz |73|/74].
In the limit J, = 0 the model reduces to an XY chain (studied in Paper I with an
additional transverse field), the quasiparticles no longer interact, and therefore the
system can again be solved using the methods above. In the XY limit, no Bogoliubov
transformation is required, and thus this additional step is only necessary in the
presence of a transverse field.

The addition of a longitudinal (i.e. in the same direction as the spin-spin interac-

tion) magnetic field term,
Hyrpma = —JZUfoJrl—hZUf—bZof ; (1.117)

breaks the integrability of the TFIM, and similarly with Heisenberg models. This
system cannot be solved with either the Jordan-Wigner transformation nor the Bethe

ansatz, and is chaotic [75].

Light-cones and the Lieb-Robinson Bound

In 1972, Elliot Lieb and Derek Robinson demonstrated [77] that operator growth
across quantum systems which obey the Schrodinger equation has a speed limit ac-

cording to,
|[4w.5]

This limit is called the Lieb-Robinson (LR) bound. A(t) and B are operators with

local support on A and B, respectively, ¢ and ¢ are model-dependent constants, ¢ is

‘ < cexp [—q (dist(A, B) — viglt])] - (1.118)

time, and vy is the Lieb-Robinson velocity. The operator norm ||O|] is defined by,
10]| = sup [ |<U|OTO|U>} (1.119)

which, for our purposes, is equal to the square root of the largest eigenvalue of 0.
The function dist(A, B) measures the shortest distance between sets A and B. For
example, in a spin chain, let’s say the set A contains only site i, and B contains the
sites i+ 5 through i+ 10, dist(A, B) = 5. For a relatively lucid proof of the LR bound,
see Ref. |76].

The main consequence of Eq. is that for systems which have interactions
which are sufficiently short range, there is a maximal, non-universal model-dependent,
speed at which physical perturbations can propagate, above which they will be ex-

ponentially suppressed. The exact nature of what it means to be ‘sufficiently’ short
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ranged was originally an exponential decay of interactions |77, which must result in
a linear ¢t = x /vy bound for this region, or a quantum light cone. Recently, exten-
sions of the LR bound to include long-range inverse-power-law interactions, which
can either result in a linear light cone |78-81] or a curved light cone with speed be-
tween t ~ logx and t ~ z¢ [7882], where 0 < £ < 1, which implies that there is an
acceleration of the causal boundary.

When we concern ourselves with models which can be mapped to free-particles
with dispersion ¢, such as the cases with the Bogoliubov fermions in the TFIM or
XY models, then one can straightforwardly calculate vz by maximizing the group
velocity of the quasiparticles [83],

Oey,

ok

This will provide us with a motivation to connect quantum light cones with caustics

(1.120)

VL, r — IMmax
k

in Paper L.

Experiments with ultracold atoms and ions have demonstrated the presence of
light cones in quantum systems. In Ref. [12], Cheneau et al. demonstrate that a long
Bose-Hubbard chain at half-filling can be quenched from the Mott-insulator phase to
a superfluid phase, inducing pairwise doublon-holon quasiparticles which propagate
through the system as a light cone. Other experiments 1384 with ions demonstrate
the presence of linear cones, flared non-linear cones, and the absence of cones in as the

interactions are tuned to the long-range limit in one-dimensional quantum systems.

Catastrophe theory and caustics

Chapters , , and p| (Papers I, II, and IV, respectively)are concerned with caustics in
the dynamics many-body systems. A caustic is an envelope of classical rays, which,
when considering the geometrical theory of light, corresponds to bright regions of
intense focusing. Caustics are everyday events, and can be seen as the cusp at the
bottom of a cup, as bright lines at the bottom of swimming pools, and rainbows [85|.
Caustics have been studied for centuries, with the earliest surviving drawing of a
cusp caustic appearing in a journal by Leonardo da Vinci in c¢. 1508 [86], and even
an early (albeit incorrect) attempt to describe a fourfold-cusped caustic later known
as ‘Leonardo’s cross’ [87], but we shall come to understand that is the high-order
catastrophe Xgy. Non-optical examples include ship’s wakes [88], shock waves and
sonic booms [89], and more recently the formation of caustics in a BEC through

aberrated lenses [90] and in atom optics experiments [91-95].
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In contrast to the cases considered above, we are interested in the existence of
caustics as a quantum many-body phenomenon. In the systems we study in Papers
I, II, and IV, the caustics exist in Fock space, and the overlying diffraction patterns
become true many-body fringes in a fundamentally discrete space. We posit that these
caustics are a for of universality in quantum dynamics, whose appearance, structure,

and stability are governed by catastrophe theory.
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Figure 1.2: da Vinci’s caustic drawings . The left drawing corresponds to the
earliest known portrayal of a caustic formed by a geometric ray theory of light. The
right image features a sketch of a fourfold cusped shape ‘Leonardo’s cross’, formed by
light focusing through a bubble.

The mathematical foundations for the categorization of these caustics were laid
by Ren¢ Thom and Vladimir Arnol’'d in the late 1960s and early 1970s [97,[98] via
catastrophe theory (CT). In general, focusing events can be stable or unstable, and
it is the stable ones which are more generic in nature and hence shall be of greater
interest to us. Here, we outline the necessary details of CT which we will need to
study the systems mentioned in the previous section. The full derivations of many
proofs in CT are far beyond the scope of this thesis, however we will present in-
structive examples while making use of its core results. Most importantly, we will be
making use of Thom’s theorem, which guarantees universal local forms of functions
around a degenerate stationary point. When considering gradient maps, these degen-
erate stationary points are often sources of singularities, for example, the failure of
the WKB approximation around a turning point or at a region of focused classical

rays. Finally, building on the work of Thom and Arnol’d, Michael Berry and John
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Nye applied CT to physical optics, paving the way for ‘catastrophe optics’ [85,99],
which ultimately introduces a hierarchy of diffraction patterns which smooth out the

catastrophe singularities.

Key theorems

For some function f: R"™ — R, we say the point x* is a stationary point of f if,

_9f

x* 81‘1

Vf

T ox,,

0 (1.121)

* *
ol fied

The stationary point x* is a degenerate stationary point if the above is true and,

det [H f

] =0 (1.122)

where the Hessian matrix of f is defined,

O f

(1.123)

In one dimension (n = 1), such a point is typically called a point of inflexion, which

occurs when two stationary points (a maximum and a minimum) merge.

The implicit function theorem
Suppose there exists a function f(x): R" x R™ — R, then [89],

Theorem. For some smooth function f(x,y) : R" x R™ — R, if f(xo,y,) = 0 and
Vflizoy, # 0 (i-e. the Jacobian matriz is invertable), then f(xo,y) is locally the
graph of a smooth function y = j(x).

Practically speaking, the implicit function theorem simply gives the conditions
under which one can write y = ¢, meaning that under the appropriate smooth change
of variables, one can locally write f as a linear function in a neighbourhood of this
point [96]. Furthermore, under this appropriate change of variables, there is only one
direction that has a nonzero gradient. Since in physics, the function f typically is
represented by an action or potential, the condition f(xq,y,) = 0 is achieved by a

translation of the origin which does not affect the dynamics.

The Morse lemma

Lemma. For some non-degenerate stationary point x* of the smooth function f :

R™ — R, there exists a local coordinate system in a neighbourhood of x* such that
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si(x*) =0 and,

f=f(@)—si—s5— .. —s;+Spq+...Fs5. (1.124)

Also implicitly included is the fact that under the smooth change of variables, the
coefficients which would naturally arise from the Taylor series around the stationary
point are absorbed into the new coordinates s; such that now each coefficient is simply
+1. The signs of the coefficients indicates whether the we are in a local maximum
(¢ = n), minimum (¢ = 0), or saddle (0 < ¢ < n). Again, in physical problems, f
typically represents some potential or action, hence a global coordinate change will
effectively set f(x*) = 0.

The splitting lemma and Thom’s theorem

If x* is a degenerate stationary point, i.e. if det [H f| .] = 0, then a generalization of

the Morse lemma is required.

Lemma. For a smooth function f : R" — R with Df

rank r at x*, then under an appropriate smooth change of variables,

- = 0, and with a Hessian of

f=dsT+ . £+ Pyy(si1,.,50) - (1.125)
Here, ®nyr is a ‘non-Morse’ function.

Essentially, the lemma states that we can take the r coordinates contributing to
the non-degenerate part and write them in a quadratic form (this quadratic form
is sometimes called ‘Morse’ form), while moving the n — r coordinates contributing
to degeneracy to some as-of-yet unknown function ®yy. This allows the important
behaviour of the critical point to be studied by only considering n —r variables, rather
than all n coordinates.

Finally, Thom’s theorem [96,97| states that at a degenerate critical point, the
only structurally stable non-Morse functions are the ‘catastrophes’ listed in Table

Each of these contains a catastrophe germ and a perturbation,
Py = Pg(s; C) = Germ(s) + Pert(s, C) . (1.126)

The catastrophe germ is only a function of the local coordinates s and contains infor-
mation about the degree of degeneracy of the stationary point, hence it is the source of
the singularity. The perturbation corresponds to terms which together ‘stabilize’ the

catastrophe function, and is a function of both s and a set of coordinates called ‘state
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Catastrophe | Symbol | Corank | @ Dp(s; C)
Fold A, 1 1 s+ Cs
Cusp As 1 2 st + Cys? 4+ O s
Swallowtail Ay 1 3 s5 + Cy5° + Cys? + Cs
Butterfly As 1 4 s+ Cyst 4+ O35% + Oys%2 + Oy s
Hyperbolic
Ul’IlbIhC DI 2 3 S? + S% + 038182 + 0282 + 0181
Elliptic _ 9 3 5 . 9
Umbilic D; 2 3 | 3sisg — s34+ Cs(st+ 83) + Case + C154
Parabolic D 5 4 Sy + 5789 + Cys3 + Css7
Umbilic 5 +C5s9 + C154

Table 1.1: Thom’s seven elementary catastrophes, their symbols, and generating func-
tions ®¢(s; C), organized by corank n, and codimension ). This table has been
adapted from the Paper IV (Ref. [56]).

variables” C. The process of including the perturbation is called the ‘unfolding’ of the
singularity. The number of state variables is called the codimension of the catastro-
phe, which we indicate by (), and depends directly on the degree of degeneracy of the
non-Morse stationary point. Important note for Papers I and IV: we take a slightly
different notation such that the corank is labeled by n, since we’re not interested in
the r extra coordinates.

Thom’s theorem is powerful: it states that local to a degenerate critical point, we
can approximate a function entirely by a quadratic piece and a universal non-Morse
piece which is uniquely determined by the nature of the singularity. It is, however,
qualitative in that it does not tell us the exactly which appropriate coordinates to
choose from, and that different functions with the same type of singularity will locally
be equivalent under this classification [96] (however again, the coordinate transfor-
mations may vary). Each catastrophe is given a group-theoretic symbol according to
its connection to reflection-generated groups as introduced by Vladimir Arnol’d [98].
We will simply use these symbols as identifiers for catastrophes which do not have
widely-accepted names.

The list of seven elementary catastrophes in Table was considered by Thom,
however, Arnol’d showed it can be extended for higher codimension ¢) > 5, higher
corank n — r and higher dimension of codomain for f (i.e. for f : R" — R™ with
m > 1). Arnol’d classified all non-Morse germs for @ < 10, (Q +m + 1) < 16 and
m < 2 [96]. We shall only make use of a few of these, however, we list many of
them in Table For catastrophes beyond () = 5, there begin to exist germs which
contain an extra parameter which is not a member of the control space C. This

extra parameter, called a ‘modulus’, cannot be scaled away by any smooth change
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Symbol | Corank Dy (s; C)
Ager 1 sOt2 4 391 O
D$+1 2 S? + 8183 + OQJrng + Z,LQ:_; CZSzl + 0182
Eg 2 53 + 85 + Cs5185 + Cys535 + C38150 + Casy + C15
o 5 s34+ 8155 + Cgsy + Csss + Cysa
+0381$2 + 0281 + 0182
g 5 57 + 85 + Crs185 + Cgs155 + Csss
8 +C48182 + 0583 + 0281 + 0182
Sy + Ks1s3 £ 51+ Crs381 + Cgsas7
X 2 +C5(s3 + s1) + Cu(s3 — s})
"—038251 + 0282 + 0181

Table 1.2: Higher-order catastrophes beyond Thom’s seven appearing in Table
General cuspoids and umbilics are listed as Agy; and Dg +1, respectively. This table
has also been adapted from the Paper IV (Ref. [56]).

of variables and is first found in the Xy catastrophe [85,[100] corresponding to the
variable K. As we shall see, different values of K can lead to structurally distinct
sections of the catastrophes.

We note that precise definition of each catastrophe function varies, up to a smooth
change of variables, generally according to the author’s taste. For example, sometimes

catastrophes are defined with different coefficients,

1

D) = 553 +Cs (1.127)
1 1
(I)Q = 184 + 50252 + 018 (1128)

or by a rotation of coordinates, like the Hyperbolic Umbilic, which can also be written,
(DgH = 8%82 + S% -+ 0383 + 0282 + 0181 (1129)

In this thesis we shall use those listed in the Tables unless otherwise noted.

Geometry of catastrophes

In this section, we will examine the structure of each of Thom’s elementary catastro-
phes, with the exception of the butterfly and parabolic umbilic since (i) the general
procedure is unchanged, and (ii) they will not be appear for the remainder of the
thesis. We will also introduce and examine the high-order catastrophe Xy. We begin
with the cuspoids, which are corank-1 catastrophes whose catastrophe germs are s9+2

with successively higher codimension Q).
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Fold

The generating function of the fold is,

d; =5+ Cs. (1.130)
The first derivative gives,
dd, 9
— =3 C 1.131
o o5t (1.131)
and the second derivative,
e (1.132)
ds?
Solving % = % = 0 gives a singular point x = C' = 0. The equation (|1.131]) reveals

that the bifurcation set is a single point, C' = 0, which divides the full control space
into two regions: a region where two stationary points of the generating function exist
(C < 0), and a region where no such points exist (C' > 0), see Fig. [1.3]

(131 ! (Dl i P 1 i
S S S

<0 >0

Figure 1.3: Geometry of the fold. Snapshots of generating function ®; are plotted at
three different points over the control space. The stationary points of the generating
function coalesce and annihilate at s = 0 as the point C' = 0 is crossed.

The fold is the simplest and most common catastrophe. Examples of the fold
include rainbows, ships’ wakes, and as we will discuss in Papers I and II, quantum
light cones. In the case of rainbows, classical light rays exist for an observer looking
between roughly 40° — 42° (depending on the colour) and the ground, while none
exist above, where the no rays exist [85]. The ray which marks the fold is called the

‘Descartes ray’ and is the brightest point in the rainbow.

Cusp

The cusp generating function is,
By = s+ Cys* + 5. (1.133)
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With caustic conditions,
dd,

d_ :483+2018+02 :0 (1134)
S
and,

42, )

5 =128 +20, =0 (1.135)

Eq. (1.135)) yields the condition s = +4/C5/6, and inputting into Eq. (1) gives,

/8
C,=+ 2—7(—02)3/2 (1.136)

which gives a cusped curve in the control space, shown in Fig. [I.4 Away from the
origin, the curves described by Eq. (1.136)) indicate where a pair of stationary points
in the generating function coalesce (and hence describe fold lines), and it is only at the

highly singular origin C'; = Cy = 0 where the fold lines meet and all three stationary

v ol
\V+V/ ,Jr%

points annihilate.

Figure 1.4: Geometry of the cusp. The generating function ®, is plotted as insets
over the now two-dimensional control space. As the fold lines are crossed, pairs of
stationary points of the generating function coalesce and annihilate, leaving a single
stationary point outside the cusp. At the cusp point C; = Cy = 0, all three critical
points coalesce.

The cusp is readily visible when light is shone onto a semi-cylindrical surface down
onto a screen. For example, the reflection off the side of a coffee cup onto the bottom
forms a cusp. Inside the cusp, three light rays meet at each point and the region is

bright, while the darker outer region only has one light ray hits each point.

Swallowtail

The swallowtail generating function is,

(I)g = 85 -+ 0353 + 0282 -+ 018 (1137)
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The process for finding the caustic structure is identical to above, however now we

are faced with finding simultaneous solutions to,

dd
d—3 = 55t 4+ 3C35% +2Cas + Cy = 0 (1.138)
S
and,
R ,
d52 = 20s =+ 6038 =+ 202 =0. (1139)

Although these solutions are possible to find analytically, they are cumbersome to
write down and offer little insight. The three-dimensional caustic structure is shown
in Fig. [L.5| (a). The grey shading is the bifurcation set, which is now a fold surface
which is ‘pinched’ at the bottom by cusp lines. Intersections of the caustic surface
with planes of constant Cj, are also shown for C3 < 0 (b) and C3 > 0 (c). Crossing any
line in the C3 = const. plane results in the creation/annihilation of pairs of stationary
points in the generating function (insets), while for C5 < 0 there exist two cusp points
in the lower-half plane where three stationary points annihilate. Only at the origin
(Cy = Cy = C3 = 0) do these cusps and the self-intersection line meet and all four

stationary points of ®3 become degenerate.

i
TN AT

Figure 1.5: Geometry of the swallowtail. Panel (a): The full three dimensional
caustic surface in the control space. Panel (b): Section of the swallowtail for C3 < 0,
with the generating function ®3 shown as insets. The bifurcation set is shown as a
thick black line, clearly showing a pair of cusps in the lower half-plane and a self-
intersection in the upper half plane. Panel (c): Similar to panel (b), now with for
03 > 0.

Hyperbolic and Elliptic Umbilics

The umbilic catastrophes are so-named since at the centre of their classification lies

the notion of cubic forms, which describe local curvature near umbilic points: points
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on a surface which are locally spherical. A general surface with localized umbilic point
at the origin can be written [85],
1 1
flz,y) = 5[((352 +9°) + 6 (ax3 + 3bz*y + 3cxy® + dyg) + ... (1.140)
where the constants a = f,,4,(0,0), b = f3.,(0,0), ¢ = f1,,,4(0,0), d = f,,,(0,0), form
what is sometimes called the ‘Monge cubic’, which describes the local perturbations
to the spherical curvature of the surface near the umbilic point. By defining the

discriminant |101],
D¢ = 4(ac — b*)(bd — ¢*) — (ad — bc)? , (1.141)

the umbilic point is elliptic if De > 0 and hyperbolic if Do < 0. If Dg = 0 we
encounter a parabolic umbilic point, which is related to a catastrophe we will not
study here. The germs of the hyperbolic and elliptic umbilic catastrophes correspond
to cubic forms with the appropriate discriminant D¢ to their classification.

The hyperbolic umbilic catastrophe has the generating function
(I>3H = S? + Sg + 033152 + 0282 + 0151 (1142)

where now we have used the superscript “H” to differentiate it from the elliptic umbilic

and swallowtail. The caustic surface must now be determined by calculating the first-

derivatives,
oL )
= 381 + 20381 + Cl =0 (1143>
(981
and,
ol .
B = 382 + 20382 + OQ =0 (1144>
S2

while simultaneously ensuring that the Hessian determinant is zero,

25 H 2pH 2pH 2pH 1\ ?
“gmas) = (5) (5) - (300s) =10m s @aren=o

0s;0s; ds? Ds3 051059
(1.145)
The elliptic umbilic generating function is,
CI)? = 38%82 - Sg + Cg(S% + S%) + 0282 + 0181 (1146)

The corresponding caustic surface is determined by simultaneous solutions to,

DL
67 == 68182 + 20381 + Ol =0 (1147)
1
aq)g 2 2
8_ = 3(81 — 52) —+ 20382 + C2 =0 (1148)
52
82(1)5 2 2 2
]
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@)

st
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Figure 1.6: Geometry of the D, umbilic catastrophes. Panel (a): Full three-
dimensional hyperbolic umbilic caustic surface. Panel (b): Section of the hyperbolic
umbilic with fixed C3 > 0. The caustic is shown as a thick black line, which consists
of a cusp and a fold. Insets show contour plots of the generating function ®Z, with
minima/maxima indicated with red circles and saddle points indicated with blue tri-
angles Panel (c): Full three-dimensional elliptic umbilic caustic surface. Panel (d):
Section of the elliptic umbilic with fixed C'3 > 0, insets are as in panel (b). Panels (a)
and (c) are from Paper IV [56].

Like the swallowtail, we shall make no effort to solve the set of equations for the
D, catastrophes, however we can still visualize them. For convenient parametrization
of the surfaces, see Refs. [89,/102]. The hyperbolic and elliptic umbilic catastrophe
surfaces are shown in Fig. [1.6] panels (a) and (c), respectively. Panel (b) shows a
section of the hyperbolic umbilic cut through the surface at fixed C3 > 0 (although
it is symmetric for £C3). For corank-2 catastrophes, the generating function @
becomes two-dimensional, and so now the insets are contour plots where we have
labeled the maxima/minima as red circles, and the saddle points are blue triangles.
Starting from the bottom of the image, no saddles or local extrema are present. As
one crosses the lower fold surface, a local extremum is created plus a saddle point.

As one crosses the inner cusp line, a second saddle is created with another extremum
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of opposite type so that there is one local minimum, one maximum, and two saddles
present inside the cusp. At C; = Cy = C5 = 0 (not shown), only the germ is present,
and the corresponding surface consists of two pairs of superimposed fold lines meeting
at a right angle (no longer a cusp).

A cut through the elliptic umbilic at C5 > 0 (again symmetric for £C3) is shown in
panel (d). The contour plots highlight how the overall structure of the elliptic umbilic
differs from its hyperbolic cousin. Everywhere outside of the tri-cusped surface, two
saddle points can be found. As one crosses into the inner region, a third saddle point
is created along with a lone local extremum. In both the hyperbolic and elliptic
umbilics, how one chooses to cross the surface affects the way each stationary point is
created. Crossing folds, which are planes in 3D catastrophes, extra stationary points
are produced such that they arise from doubly-degenerate points, while if one crosses
a cusp, which exist as lines in this three-dimensional space, the extra stationary points

are produced from a triply-degenerate stationary point.

The Catastrophe X,

The only catastrophe we consider in this thesis which exists beyond Thom’s elemen-
tary list is known by its group-theoretic symbol, Xy. In Paper IV, we shall find that
this catastrophe acts as an organizing centre for caustics in the three-mode Bose-
Hubbard model.

The generating function is [85],

OF = 55+ Ks2s2 4 57 + Crsisy + Cgsgst + Cs(s3 + 52)
+ Cy(s3 — 53) + Css951 + Casy + Cisy (1.150)

As a corank-2 catastrophe, the generating function is still only two-dimensional, how-

ever the control space is relatively enormous, with 7 control parameters. The germ,
sy + Ksis5 & 5] (1.151)

contains an additional parameter, the modulus K, which cannot be transformed away
by any smooth change of variables, thereby increasing the dimensionality to 8. Be-
cause of the sheer size of the space in which the caustic is embedded, a complete
analysis is not only laborious, but also impossible to visualize. Thus, we shall ex-
amine only three unfoldings of Xy with codimension 3 which have practical physical
applications, and provide some interesting connections to lower-order caustics.

For the remainder of this section, we shall be concerned with the family X,
which corresponds to the ‘+’ choice in Eq. . It can be further divided into two
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sub-families [85.(100],

°Xg K>-2 and K #2

(1.152)
Xy K< -2

where K = 42 is excluded because it gives an unstable singularity. The K = 2 case is
particularly interesting however, and has relevance to physical problems, so we shall
also examine it further, even if it cannot be classified as a true catastrophe. Since
the method of finding the caustic surfaces is identical to the umbilic cases above, we
simply state the generating functions below and will not show the sets of simultaneous
equations to be solved for each unfolding.

The first we shall examine is a K = —6 partial unfolding, called the ‘elliptic’
unfolding by Berry [103],

O = 55 — 65755 + 57 + Cs(53 + 55) + Casy + Cy51 . (1.153)

Like in the case of the umbilics, we show the full three-dimensional caustic surface
in Fig. (a). This unfolding of Xy can be seen as a generalization of the elliptic
umbilic catastrophe D, due to an extra saddle point in the generating function. As
shown in the centre of panel (b), there are four saddle points surrounding the local
extremum in the generating function. As one crosses the fold surfaces from inside to
outside, an extremum and a saddle point coalesce and annihilate, while at each cusp
line, however, two saddles and the extremum merge as one to form a single saddle.
The result in both cases is the same: only three saddle points exist outside the fourfold
cusped structure. One should note that at C5 = Cy = €} = 0 the singularity only
appears fivefold degenerate in this reduced space. Since more unfolding terms would
have been possible, it is a singularity of codimension eight. Although we do not
identify this particular unfolding in Paper IV, this caustic appears in optics [85}/104]
(it is Leonardo’s cross [87]), and it is instructive to notice that the appearance of
additional cusps (compared to, say the elliptic umbilic) is a signature of Xj.
Next, there is the ‘hyperbolic’ K = 6 unfolding,

f = 55 + 65755 + 57 + Cy(s3 — 53) + Casy + 151 . (1.154)

Now the full caustic surface is shown in panel (c) of Fig.[L.7 Sections of this unfolding
are complicated, shown in panel (d) at fixed Cy. Outside the entire surface, there is
only one minimum in ®f. Crossing the fold line parallel to the Cy axis, into the
pointed ellipse (‘vesica piscis’-like) central section, a new saddle and minimum is
created. Inside the small kite-shaped region (shaded, left, in panel (d)) as one crosses

the cusp, there are two maxima, one minimum, and two saddles, created either in
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pairs or as a triad depending on whether one has crossed the fold surface or cusp line,
respectively. Finally there exist long, thin regions (shaded, right) between fold lines
which have again two minima and one saddle. This unfolding is seen in Paper IV,
when we consider a quench of the Bose-Hubbard trimer with a linear geometry.

The last partial unfolding of Xy we consider is the rotationally symmetric K = 2
case,

B — 58+ 25258 + 51+ Ca(s3 + 52) + oo + Cust (1.155)

Fig. [1.7] (e) shows the full caustic surface, from which its alternate name ‘spun cusp’
becomes clear, since it is a circularly symmetric version of the cusp catastrophe. This
is in fact not a ‘true’ catastrophe since it contains an unstable axial caustic along
the C; = Cy = 0 axis. The insets of Fig. [I.7] demonstrate that anywhere along
the axial caustic, the function ®§™ contains a local maximum, surrounded by a ring
(i.e. an infinite amount, hence why this part of the caustic is sometimes said to have
infinite codimension) of local minima, denoted on the figure as a purple ring. Since
any perturbation of infinitesimal size will destroy this ring, producing two extrema
and one saddle, which are in different locations depending on the perturbation, this
cannot represent a ‘true’ catastrophe since it is unstable.

Although not a member of the Xy unfoldings, it is still instructive to treat the
K = 2 case as one, since it has applications in real-world problems where we can
sometimes engineer near-perfect symmetry. Furthermore, although a perturbation to
P& destroys the axial caustic, it will not so drastically destroy the outer circular
cusp, where an extremum and saddle point coalesce. The circular unfolding of Xg is
highly relevant to caustics formed via the focusing of light by spherical sources, such

as water droplets [104], and gravitational lensing [85].

Catastrophe properties

Stability

Catastrophes exhibit structural stability, they can therefore be distorted in many
ways without destroying their overall structure. It is for this reason that the K = +2
unfoldings of Xy are technically excluded from this classification, since it contains an
unstable singularity. In a similar vein, other structures such as the line of stationary

2 are unstable, since any perturbation ey, y? etc.

points generated from f(x,y) = x
for any ¢ will immediately destroy the ‘valley’ of stationary points.
All non-degenerate (i.e. Morse) stationary points are stable, while degenerate

(i.e. non-Morse) stationary points are all unstable [105]. Take, for example, a one
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Figure 1.7: Geometry of three partial unfoldings of Xg. All insets on the right column
are as in Fig. contour plots of @9, with red circles representing local extrema and blue
triangles for saddle points. Panel (a): Caustic surface of the elliptic unfolding (K = —6)
caustic surface from X{* Panel (b): Section of the elliptic unfolding caustic at fixed C > 0.
Panel (c): Caustic surface for the hyperbolic unfolding X{!. Panel (d): Section of the
hyperbolic caustic at fixed Cy > 0. Panel (e): Caustic surface for the circular (excluded)
unfolding X§*. Panel (f): Section of X§* at fixed C5 < 0. The inset for the contour
plot at the axial caustic indicates an unstable ring of minima, indicated by the purple circle.
Panels (c¢) and (e) are from Paper IV (Ref. )
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dimensional function f at a non-degenerate stationary point. By the Morse lemma,
in some coordinate system we can write it as f(z) = z%. Let us then perturb the
function by g(x) = ex. By including the perturbation, the stationary point moves
from 2* = 0 to * = —¢/2, which is a smooth translation of the stationary point. Le.
for any 6 > 0, you can select an € such that x* < §. Also important is that z* is of
the same type, i.e. it remains Morse.

It is by this line of reasoning that the unfolding terms are necessary: catastrophe
germs are degenerate stationary points, and hence unstable. A function with a doubly-
degenerate critical point is f(x) = x3. Now a perturbation of ez will move the
stationary point smoothly to j:\/?/i)), however the type has changed: it has split
from a single non-Morse point to either two Morse points or zero, no matter the
size of € and is thus unstable. This point is, however, stable under perturbations of
g(z) = ez* (and similar higher-order perturbations), since a quick calculation shows
that the non-Morse critical point remains at x = 0, and a new one has been added at
x* = —3/(3¢), which is arbitrarily far away and hence not locally relevant.

Catastrophes, which form a family of functions which are tuned by their control
parameters, are stable to the kinds of perturbations mentioned above, and extended
to arbitrary dimensions. The proof is due to Thom [97], and is beyond the scope of
this thesis, but the result of the above analysis still applies. A catastrophe function
f:R"xR? — R is equivalent, in a topological sense, to f +¢ : R® x R? — R, where
g is the perturbation, and hence is stable.

Consider the cusp catastrophe, Eq. (1.133)). First, any perturbation of ez® is
irrelevant since by redefining the origin, one can ‘depress’ the quartic and eliminate
the cubic term by a smooth change of variables. Next, let us consider a quintic

perturbation,

O =cr®+ a2t + Cor® + Cix (1.156)

For simplicity, let us set C; = 0 and C5 < 0 so that we lie inside the canonical cusp
along the axis (we know any linear perturbation amounts to a translation of C, so

this is fine). At lowest order in €, the stationary points are,

[ C [ C 4
=0 ap= —72 ot = — —72 Ty == (1.157)

We see that x7, x5, and x% are all the expected cusp stationary points, of the same
type, while the remaining point x; can again be made arbitrarily far away from any

of these points by a small enough perturbation. Hence, the cusp is stable.
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Projections

Another important feature of catastrophes is that those of higher-order tend to include
those of lower order. We have already encountered many examples of this in our
exploration of the various catastrophe geometries. A generating function of high
order can still exhibit locations where a single pair of stationary points coalesce and
annihilate, which can give rise to fold lines (in 2D), fold surfaces (in 3D), and so on.
Similarly, if anywhere in the control space of a high-order catastrophe, three stationary
points coalesce into one, then this becomes a cusp line (3D). In higher dimensions,
these would become hypersurfaces of dimension D — g where D is the dimension of
control space and ¢ is the dimension of the embedded (i.e. lower-order) catastrophe.

Catastrophes of higher-order are not guaranteed to contain all of those of lower
order. The catastrophes Ag,1, called the cuspoids, contain one another in succession,
and Dj; (the parabolic umbilic) contains Dy. Exiting the elementary catastrophes,
however, there are complicated relationships between them which are best visualized
in so called ‘bordering’ or ‘abutment’ diagrams [85,96|. A bordering diagram adapted
from Nye [85] for Xg can be found in Fig. 15 of Paper IV, showing that different

families of Xy can contain different sub-catastrophes.

Wave catastrophes

Historically, the application of catastrophe theory to physical problems has been dom-
inated by optics. In the vicinity of a caustic, a geometric ray theory of light breaks
down and the effects of diffraction are required to ensure that the intensity at the
caustic is finite. In the late 20th century this sparked the emergence of ‘catastrophe
optics’, spearheaded by Nye [85] and Berry [99,106|, in which catastrophe theory was
combined with a classical wave theory of diffraction to describe the wave nature of

focusing events. Mathematically, this corresponds to a local description of a wave

A\ _—
Uo(C;\) = (%) /.../ds M PQ(s:C) (1.158)

where @ (s; C) is a catastrophe function which depends on the nature of the focusing

near a caustic as,

event, n is the corank of the catastrophe, and A is the wavelength. We will refer to
the integral as a diffraction integral which describes a wave catastrophe.
From a quantum-mechanical perspective, one can view Eq. as a Feynman
path integral,
Vo, x(t);t) =y S0l (1.159)

Paths z(+)
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where § is an action functional and the paths z(-) run from z(0) = zo to x(¢). From
this perspective, the catastrophe function ®¢ plays the role of an action, and the
paths being focused are no longer optical paths, but classical paths which the parti-
cle takes through phase space. A WKB approximation of the quantum-mechanical
path integral breaks down at a caustic [107], and a semiclassical treatment of the

wavefunction necessitates the use of diffraction integrals as a local approximation.

Canonical diffraction integrals

Here we demonstrate diffraction integrals associated with each wave catastrophe. The
special functions described here will correspond to Eq. with A = 1, however
we shall see that catastrophe diffraction integrals obey scaling identities which allows
us to restore the wavelength.

The wave catastrophe of the fold is described by the Airy function [108],

1 ° :
Ai(C) = T / ds el(s"+C9) (1.160)
which is a solution to the Airy equation,
d?y(x
dx(2 ) _ Cy(z)=0. (1.161)

We plot the Airy function in Fig. [I.8 The caustic is a single point at C' = 0, however
we show it as a dotted line for clarity. Due to the fold catastrophe permitting two
solutions for C' < 0, this is sometimes called the ‘bright’ region since it will be where
two light rays exist. Conversely, since no solutions exist for C' > 0, this is sometimes
called the ‘dark’ region. The wavefunction on this side is exponentially suppressed,
relevant to early-growth behaviour in light cones.

The next wave catastrophe corresponds to the diffraction integral for the cusp,

known as the Pearcey function [109]

1 o[> .
Pe(Ca, 1) = o / ds el(s"+C2s*+Cus) (1.162)

T J-

The Pearcey function is in general complex and hence the simplest wave catastrophe
to have both an amplitude and a phase, so we show both in Fig. [[.9) The Pearcey
diffraction pattern dresses the classical cusp, which is shown as a black dashed line.
This 2D pattern is distinct from, say, a fold extended into a line pattern, which would
only give striped Airy fringes rather than the much more complex fringes seen here.

The addition of a phase also introduces us to the notion of dislocations in wave

catastrophes which come in the form of phase singularities, i.e. vortices, where the
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Figure 1.8: Airy function. The caustic lies at C' = 0, which we have shown as a dotted
line.

phase takes all values € [0,27) and hence is undefined. Phase singularities appear
commonly in optics, for example in Laguerre-Gauss beams [110], in fluid dynamics
under rotation, and they even appear in tides as amphidromic points [111]. In order to
preserve the single-valuedness of the wavefunction, they occur when the wavefunction
has zero amplitude. Furthermore, the phase of the wavefunction winds along a closed

contour around these points. For ¥ = pe'?,

j{dqb = j{dr Vo =+2mm (1.163)
c c

where C is some closed contour containing one vortex, and m is the topological charge
of the vortex, which counts the number of times the phase winds around. As shown in
Fig. (b), the Pearcey function is populated with a lattice of vortices, mostly con-
tained within the classical cusp. The vortices come in pairs of opposite phase-winding,
and so we call these vortez-antivorter pairs. The phase winding around multiple phase
singularities corresponds to the sum of the individual topological charges m; times
27, meaning that a closed contour around a vortex-antivortex pair will contain no net
phase winding. A pair of vortices from the Pearcey function are shown in Fig.
(c).

Vortices are subwavelength structures, and hence represent the finest level of struc-
ture in a wave catastrophe, smaller than the fringes and the course classical caustic
seen at largest scales. In Paper I, we see that second quantization introduces an addi-
tional layer of structure for caustics in Fock space. Vortices in second-quantization no
longer correspond to phase singularities: the integral becomes a sum across
sites on a chain and the vortices become ‘phase kinks’ (similar to dark solitons).

The remaining catastrophe functions we study in this thesis (which we shall not
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Figure 1.9: Pearcey function. Panel (a): Amplitude of the Pearcey function. The
diffraction pattern dresses the classical cusp (shown as a dashed line). Panel (b):
Phase of the Pearcey function. A lattice of vortex-antivortex pairs, indicated as black
dots, populate the area between the caustic and line the outside. Panel (c): A
sample vortex-antivortex pair drawn from the Pearcey function.

specially list because they do not have specific designations) are all of the form given in
Eq. with A — 1. Since they are three-dimensional, it is impossible to properly
visualize the entire pattern at once, so we show relevant two-dimensional sections
of each. For these three-dimensional diffraction catastrophes, the phase singularities
become generalized to lines of vortices, which have been studied in the case of the
elliptic and hyperbolic [114] umbilic catastrophes. We will not be concerned
with dislocation lines for now, although they present an interesting extension to our
present work.

Fig.[[.10]shows diffraction patterns for sections of the umbilic catastrophes. Panels
(a) and (b) correspond to sections of the hyperbolic umbilic catastrophe, while panels
(c) and (d) are sections of the elliptic umbilic. In every panel, the caustic is shown as
a dashed black line, which becomes dressed by an interference pattern. The section
shown in panel (a) is along the plane C3 = 0, where two pairs of overlapping fold
lines meet at a right angle. This unique section of the elliptic umbilic corresponds to

a product of Airy functions, since the cross-term containing C3 vanishes [114]. Panel
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(b) shows C5 > 0, with the familiar cusp with a Pearcey-like interference pattern
surrounded by a fold line which generates additional Airy fringes.

Panel (c) shows the diffraction pattern of the elliptic umbilic in the C5 = 0 plane,
also called the focus, since the classical catastrophe is simply a point here (the germ).
Like in the hyperbolic case, this triple-forked pattern also corresponds to a unique
section of the elliptic umbilic integral which can be decomposed directly in terms
of Airy functions [112]| (in this case the decomposition also involves Airy’s second
solution, Bi(z)), or a complicated product of ‘one-sided Airy functions’ [103]. In
the C5 > 0 unfolding, shown in panel (d), the threefold cusp gives three interfering

Pearcey-like diffraction patterns within the caustic.
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Figure 1.10: Diffraction integrals for the D, catastrophes. The classical caustics are
shown as dashed lines in each image. Panel (a): C3 = 0 plane of the hyperbolic
umbilic. Panel (b): C3 = 3 plane, with both the cusp and fold lines separate. Panel
(c): Elliptic umbilic focus, corresponding to the C3 = 0 plane. Panel (d): C5 = 6
plane, showing the threefold Pearcey-like interference pattern.

Finally, in Fig. [L.11] we show diffraction patterns for the three sections of Xy men-
tioned above. Panel (a) shows the focus of the elliptic unfolding, from the generating
function ®f with Cs = 0. In this plane, the function becomes a complicated prod-
uct of ‘one-sided Pearcey functions’ [103|, and appears to have an apparent eightfold
symmetry. Panel (b) shows a fully-unfolded X§ catastrophe diffraction pattern at

Cs = 12, which, due to the four cusps, a fourfold version of a Pearcey diffraction
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integral is immediately noticeable.

Panel (c) corresponds to the focal plane (Cy = 0) of the hyperbolic unfolding of
Xy, with generating function ®f. This function separates simply into a product of
Pearcey functions [103|, which is readily seen by a rotating C, Cy coordinates by 7 /4.
In panel (d), we show the C;y = 7 plane. The fold lines on the top and bottom give
rise to Airy fringes inside, while the outward-facing cusps give rise to Pearcey-like
fringes pointing in the £C directions.

Panel (e) shows the focal plane (C5 = 0) of the circular unfolding of Xy from
&, Apart from the origin, there are no distinguishing features of this focus. After
unfolding into the C5 = —14 plane, we see the circular nature of the caustic, with
fringes inside the classical caustic and none outside. Furthermore the unstable axial
caustic at C; = Cy = 0 remains the brightest (in this color scheme, it is dark) part of
the diffraction catastrophe.

A note on numeric evaluation of these caustics: as one attempts to evaluate the
diffraction integrals for systematically higher-order catastrophes, the numerical evalu-
ation of the integrals rapidly becomes more unstable and resource-expensive. For this
reason, some of the Xy caustic patterns are not as sharply defined as the lower-order

caustics.

Caustics from water droplet lenses

As mentioned earlier in this section, caustics can be seen in many real-world situa-
tions. In this section, we will briefly demonstrate how caustics can be viewed relatively
simply even with a simple experimental setup. This setup is inspired by the works
of Berry, Nye, Marston and collaborators [104},[112}/115-117|, in which they demon-
strate that light shone through a single water droplet can yield visible caustics when
projected onto a screen.

A relatively simple setup is demonstrated in Fig. [[.12] A glass slide was covered
with electrical tape which has been cut to form a small hole. A water droplet is
carefully placed so that it resides entirely in the hole without spilling onto the tape.
The shape of the droplet is determined by the shape of the hole (boundary conditions)
and the surface tension [104]. In turn, the droplet geometry influences how light is
focused as it passes through, therefore acting as a control for the types of caustics
one can see. The shape can be further influenced by how the slide is oriented: gravity
will distort the droplet shape, but surface tension will keep it attached to the slide.
A simple portable laser was carefully arranged such that it shines light through the
back of the slide, through the droplet and onto a screen. In the case of Nye [104], the
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Figure 1.11: Diffraction integrals for Xg catastrophe unfoldings. The classical caustics
are shown as dashed lines in each image. Panel (a): Cs = 0 plane of the elliptic
unfolding. Panel (b): C5 = 12 plane, showing the full fourfold symmetric Pearcey
pattern. Panel (c): Hyperbolic unfolding Cy = 0 focus plane. Panel (d): Hyper-
bolic unfolding in the Cy = 7 plane. Panel (e): Circular unfolding C5 = 0 plane.
Panel (f): Circular unfolding in the C5 = —14 plane. The central axial caustic
continues to dominate the diffraction pattern.

droplets were on the order of 1-8mm in size, and caustics were photographed through
a microscope. To capture the images in Fig. and Fig. 1 of Ref. (Paper 1V,
Chapter [5]), we used a droplet of approximately 1lmm across, however, rather than
using a microscope, we place a screen approximately 1m behind the droplet, from

which the patterns can be photographed.
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Figure 1.12: Schematic setup for water droplet experiment. The left image shows a
glass slide covered in electrical tape, except for a small triangular hole, in which a
water droplet is placed. The experimental setup is then shown on the right.

Fig. shows three caustics formed using the setup described above using three
different laser colours on different droplets. Panel (a) shows a clear Pearcey diffraction
pattern, while panel (b) shows an apparent elliptic umbilic catastrophe which has been
slightly distorted. The distorted, yet unmistakable interference pattern reinforces the
notion that catastrophes are stable to perturbations. Panel (c¢) shows the distinctive
triple fork diffraction pattern, which is indicative of the focus of the elliptic umbilic
catastrophe. This experiment demonstrates the genericity of the caustic patterns we

have explored above.

Figure 1.13: Caustics generated by water droplet lenses. Each image is from a different
droplet, and the colours correspond to different laser colours used in the experiments.

A lens analogy can be extended to the systems we study in Chapter |5 (Paper V),
where the rays correspond to classical paths through Fock space, and the focusing lens
becomes the Hamiltonian itself. Each trajectory corresponds to a classical configura-
tion of the many-body problem. In both the double- and triple-well Bose-Hubbard
models, unless the interactions are sufficiently attractive, the Hamiltonian discourages

particles to all clump in one well and tends to encourage a roughly equal distribution
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of particles in each well. This means that classical rays are ‘focused’ away from the
edges and towards the centre of Fock space, leading to the formation of caustics from
imperfect focusing events. In each of these cases, one can view the optical axis as
time ¢, and the water droplet becomes the local energy surface. We also show that
the circular symmetry of the quantum phase model gives rise to the circular unfold-
ing of Xy in (2+1)-dimensional Fock space and time, but perturbations destroy the
circular symmetry and lead to bright patches corresponding to valleys of the local
energy surface. Small water droplets evaporate quickly, and thus change the shape of
the caustic which is projected onto a screen. This effect has been used to track the
shape of the droplet as they evaporate [118], and in the same spirit, caustics formed
by quantum many-body systems can in principle be a tool to study the nature of the

Hamiltonian.

Measures of Chaos

Chaos corresponds to an extreme sensitivity of a system to its initial conditions: the
butterfly effect. A quantitative tool for demonstrating exponential sensitivity to initial
conditions, and therefore a diagnostic of classical chaos, is the Lyapunov exponent.

Given a dynamical system in D-dimensions,

dx
= _ 1.164
> ) (1164)
with initial condition xy, we consider a second trajectory with an initial condition
perturbed by some small amount 4, so that the distance between these two trajectories
is |0(t)|. There exists a Lyapunov exponent defined by [119],
.1 [6(1)]
A= lim —In—+ 1.165
o ) (16)

5(0)—0

In fact, one can consider the linearized motion of the dynamical system around the

perturbation,

dé
%= M-§ (1.166)

where M = 0f/0x is the Jacobian matrix, to define a set Aq,..., Ap ordered such
that Ay > Ay > ... > Ap. This set of exponents represents the exponential deviation
of trajectories in the direction of the eigenbasis of M around xy. The individual \;
can be positive or negative, but at least one must be zero [119]. For most purposes,
however, the definition given in Eq. is sufficient because at long enough times,
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the spectrum is dominated by the largest exponent, A\; = A, and this is sufficient
to diagnose the exponential sensitivity of trajectories. Related to the exponential
sensitivity of chaotic systems is the resulting lack of (quasi)periodicity in the long-
term dynamics [120] (of closed systems), however, systems which do exhibit long-
term periodic dynamics can also be transiently chaotic, such as in the famous Lorenz
system [121].

A naive attempt to extend the notion of exponential sensitivity of initial condi-
tions to quantum systems fails: the unitarity of quantum mechanics ensures that the
distance between quantum states is preserved in time. Furthermore, the inherent dis-
creteness of quantum spectra results directly in periodicity in closed quantum systems.
For this reason, M. Berry proposed the existence of quantum ‘chaology’ rather than
chaos [122] to indicate the study of semiclassical systems whose classical counterparts
are chaotic. Modern language surrounding the discussion of chaos in the quantum
regime is less prudent than Berry would likely have hoped; the terms ‘quantum chaos’
and ‘quantum chaotic systems’ are in widespread use to mean systems which would
have fallen under the ‘chaology’ umbrella. We shall continue the tradition by using
these terms interchangeably. Quantum chaos is argued to be the mechanism for ther-
malization [123,|124], and is therefore a condition for the validity of the Eigenstate
Thermalization Hypothesis (ETH).

In this section we shall review signatures of chaos in quantum systems in the
following sense: (i) spectra for chaotic systems will follow random matrix theory
predictions, and/or (ii) the out-of-time-ordered correlator, which acts as a quantized
version of the Poisson bracket, gives ‘Lyapunov-like’ behaviour. In each case there

are exceptions and subtleties, which is a source of a great deal of ongoing research.

Random matrix theory

Random matrix theory (RMT) concerns itself primarily with matrices whose elements
obey certain probability distributions, and often will use these probability distribu-
tions in order to make statements particularly about the eigenvalues of those matrices.
In Paper III, we will make use of RMT in order to identify quantities in a regular
system which are typically associated with flags of chaos, and so here we present the
relevant background details for those flags.

The use of spectral statistics to distinguish regular and chaotic models is rooted in a
pair of conjectures. First, the Berry-Tabor conjecture [125], which states that a generic
quantum integrable model will have an eigenspectrum spacing distribution which is

Poissonian. Second, the Bohigas-Giannoni-Schmit (BGS) conjecture |126] argues that
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the spectra of quantum systems with a chaotic classical counterpart have spectral
statistics which obey the ‘Wigner surmise’, and are described by Gaussian ensembles of
RMT. In the following section, we shall examine the statistical difference between the
spectra of a matrix (which physically might describe a Hamiltonian) whose elements
are randomly drawn from a probability distribution and a set of random numbers.
Attempts have been made to prove the Berry-Tabor [128] and BGS [129] conjectures,
at least in some limiting cases where there exists a clear classical limit, such as the
quantum billiard. However it isn’t clear how to include models which do not have a
definite classical analogue [130L/131], such as the Sachdev-Ye-Kitaev model [132-134].

Wigner and Poisson Statistics

As a motivation, we consider here the example originally considered by E. P. Wigner
[135] in order to characterize the spectral statistics of heavy nuclei. A particularly

useful reference for the basics of RMT can be found in Ref. [136]. Suppose we have a

X = (xl 333) (1.167)
Trs T2

where the elements are drawn from a Gaussian ensemble A (p1, %), which comes from

real, symmetric random matrix,

the probability distribution,

1 2
po(x) = o 2 (5" (1.168)
oV 2w

with mean p and variance 2. For this example, suppose x1, x5 ~ N(0,1) and z3 ~
N(0,1/2). The eigenvalues A\; o are therefore real because X is a real, symmetric
matrix. The goal is to compute the probability density function (PDF) of the spacing
s = Ay — Ay where A, is the largest eigenvalue and \; is the smallest. Since the original
entries are random variables, the object s is therefore a random variable.

The eigenvalues of the matrix are,

1
)\1,2 = 5 |:Z'1 + ) + \/(561 + $2)2 — 4<LL’1$2 — I%) (1169)

thus,

s = \/(xl — Z9)? + 423 (1.170)
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Hence,

P(s) = /OO dzydxedrs pl(xl)pl(@)p%(xg)é (s - \/(:cl —19)2 + 4:6%) (1.171)

—0o0

_ T

:gse = Py(s) (1.172)

The fact that z3 had a variance of 1/2 rather than 1 simplified the results dramatically,
and the resulting PDF P(s) would have contained a Bessel function. The distribution
in Eq. is named “Wigner’s surmise”. Note that for s — 0, the probability goes to
zero, meaning that the odds of finding degeneracies goes to zero, leading to the notion
of level repulsion. This is quite striking, since the entries of the matrices themselves
are independent, while the eigenvalue spacing is correlated. Note this doesn’t mean
that it’s actually impossible to have matrices with degenerate eigenvalues, but that
the set of such objects has measure zero.

For completeness, let us compare with what would occur not with a random
matrix, but rather a set of independent and identically distributed random vari-
ables. These variables {\,...,A\xy} are described by a probability P(A,...,Axy) =
p(A1)p(A2)...p(An), meaning that the variables do not depend on one another (since
the joint PDF is a product), and they are all governed by the same single-variable

PDF, p(x). We now introduce the cumulative distribution function,

F(\) = /A d\ p(\N) (1.173)
which is the probability that any random variable takes a value smaller than \. Let us
suppose we have a random variable at a given value A; = A and another at a position
At = A+ s with no variables in between. The probability of this event occurring is
the simultaneous occurrence of the probabilities p(A; = ), p(Ax = XA + s) and the
probability that there is no A\; between. Furthermore, if we want this to be true for any
of the random variables {Aq, ..., Ay}, we sum over N. The (conditional) probability

of this event is,
P(slany A\; = \) = Z pNpA+5)[1— (F(A+s)—FO\))V 2 (1.174)
= NpA)pA+8)[1 — (F(A+5) — FA)V 2 (1.175)

where the quantity in the square brackets is the probability that there is no A; in the
gap between A and A\ + s for each of the remaining N — 2 random variables. Now,

we no longer want the condition that any particular variable must sit at A\, so we
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integrate,

Pu(s) = /d)\ P(slany A\ = ) (1.176)

- N/ dX p(A)p(A + 5) [L4+ F(\) — F(A + )]V 2 (1.177)

where o is the support (domain) of p(A).

Consider now the case where ¢ is not infinite, such as a restriction on the total
maximum energy of a system. Then, as N increases, the typical spacing must shrink
since more \; must fit in the same domain. To counter this, we make a local change

of variables,

~ Np(A)

which scales away the number of samples from our distribution and the local density

(1.178)

of random samples. This process of rescaling the gap is sometimes called ‘unfolding’
(unconnected to the unfolding of catastrophes), so that the mean level spacing is
equal to unity across the spectrum, regardless of the size of N, which we will now

take to be very large. We can expand the F' ()\ + ( )> piece in a Taylor expansion,
F <)\ + m) ~ F(\) + WF’()\) ..., and note that F’(\) = p(A\) which cancels

the denominator of the change of variables. The term in the square brackets becomes

[1-£] N=2 N220 =5 If we also only retain leading order in p(A+ s) ~ p(\), we have

Pnsa(s N/d)\p )2es (1.179)

and now we use the rule of change of variables for a PDF |P(z) = P(y = :p)j—g for some
PDF P defined on the domain of  and some other PDF P defined on the domain of

yl, giving,

~ _ S ds 1
Pys1(5) = Pysa (s =5 (A)) i NN/d/\p p(A)e (1.180)
=e¢* = Pp(3) (1.181)
where we used % = W and [dX p(\) = 1. So in the scaling limit of N > 1, the

PDF of the spacing in local units of NV p()\) is an exponential.

This so-called “Poissonian” result is strikingly different from the Wigner surmise
in the limit of small s, indicating that for random matrices spectral repulsion is
common and for non-random matrix models, there is no spectral repulsion. While
this analytic example only applies directly the 2x 2 example, these results generalize to
N x N matrices with real entries. The Wigner surmise applies only to matrices

33



PhD. Thesis - W. Kirkby
CHAPTER 1. INTRODUCTION Dept. of Physics - McMaster University

with real entries drawn from Gaussian distributions. If the matrix is populated with
complex entries, then the expression changes somewhat (see the following section
for a more general expression). In general the unfolding of the spectrum should be
performed if we wish to check to see whether a matrix obeys Poisson or Wigner-Dyson

statistics.

1.0

S~o
~~—e

Figure 1.14: Panel (a): Wigner surmise, given in Eq. (1.172)) is shown as a solid line,
while the Poisson distribution from Eq. (1.181]) is plotted as a dashed line.

There exist systems which are neither fully chaotic nor completely regular, but
are of mixed type in their classical limits. In fact, these types of systems are ‘generic’
in that they are the more typical case in nature. The level spacing statistics function
is therefore an interpolation of the Wigner and Poisson result, which is commonly
known as the Berry-Robnik distribution [137],

Pgr(s,q) = (q + %W(l — q)s) exp (—qs — %(1 — q)SQ) (1.182)

where ¢ € [0, 1] is an interpolation parameter between Wigner and Poisson results in
the semiclassical regime (A — 0). In the small s limit, level repulsion in the chaotic
regime follows a linear power, such that Py(s) oc s. However, systems with localized
chaotic eigenstates exhibit fractional power-law repulsion between the nearest energy
levels [138-140] (localized in the sense that the classically chaotic components occupy
less phase space than the regular components). In these cases P(s) o< s® with 0 < B <

1, and other measures of level-spacing statistics include the Brody distribution [141],

Ps(s) = (B+1) {r (g—ﬁ)rﬂ s5 exp {— {F (g—if)rH 55“} , o (1.183)

where ['(z) is the Gamma factorial function, and the Izrailev distribution [142],

P(s)=A (W—S>Bexp [—1—1687r232 — (B — iﬂ'B)S] (1.184)
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where A and B are constants determined by normalization of P(s) and sP;(s). When
dealing with diagnostics of chaos and spectral statistics in Paper III, we shall only be
concerned with entirely chaotic or entirely regular systems, in which case the mixed-
type distributions are not used. The three-mode Bose-Hubbard model discussed in
Paper IV does however exhibit mixed-type behaviour described by the Berry-Robnik
distribution [41], so this discussion is relevant for that model. Finally, we note that
there exist integrable quantum Hamiltonians which can exhibit the Wigner spacing
distribution, however this is either due to fine-tuning such that perturbations destroy
the Wigner distribution [143|, or finite-size effects [144].

Classification of Ensembles

Suppose we are given a random matrix,

X=1: - (1.185)
N1 ... INN

characterized by a certain joint probability density for the entries P(x1y,...,zyn). In
order to study ‘physical’ problems in this thesis, we will be restricting the class of
available joint probability density functions from which the entries can be drawn. If
the random matrices represent Hamiltonians, such that the eigenvalues correspond to
the eigenspectrum of the system, then the first major restriction is natural: X has
a real spectrum, {A1,..., Ay} € R. Therefore, the matrices studied can be classified
into three ensembles which are commonly distinguished by a number $ known as the

“Dyson index” of the ensemble:
e Real-symmetric (5 =1)
e Complex Hermitian (8 = 2)
e Quaternion self-dual (8 = 4).
In physical problems, two further restrictions are often imposed:

(i) The matrices/Hamiltonians have independent entries, indicating that the joint
PDF is a product of the PDF for each entry,

P(x11, -y xnn) = p11()pr2(z)..onn(T) (1.186)

For example, this includes the addition of random interactions or disorder in a

system.
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(ii) The joint PDF is invariant under rotations (change of basis),
P(X)dzy1dzyz...deyy = P(X)de) dal,y...daly v (1.187)

for some transformation X’ = UXU~!. This is crucial for physical systems, since
the eigenspectrum cannot depend on choice of basis. If X is real symmetric,
then U is orthogonal. If X is complex Hermitian, then U is unitary. If X is

quaternion self-dual, then U is symplectic.

The Porter-Rosenzweig theorem [135]145] states that the joint PDF of the matrix X

is therefore restricted to,
P(X) = exp [—a tr(X?) + btr(X) + c} (1.188)

where a,b,¢c € R and a > 0. That is, the joint PDF must be Gaussian. Returning
to the 2 x 2 example, note that P[X]| ~ exp [—% tr(XQ)], which required the off-
diagonal elements to be drawn from a Gaussian distribution with half the variance of
the diagonal elements.

Thus, the classification of relevant ensembles studied in the context of chaotic mod-
els is typically reduced to the following ensembles which satisfy the Porter-Rosenzweig

condition,
e Gaussian Orthogonal Ensemble (GOE) (8 = 1)
e Gaussian Unitary Ensemble (GUE) (5 = 2)
e Gaussian Symplectic Ensemble (GSE) (8 = 4)

For the purpose of this thesis, we will not concern ourselves with the GSE. Returning
to the Wigner surmise in Eq. (1.172]), we can write it explicitly for the 2 x 2 case,

which becomes,

1
(AL, As) = 5(3—%(*?“3>|A1 — s (1.189)

In generic ensembles and N x N matrices, the formula becomes [135],

PO Az, ooy An) oc e 2 ZATT A — Al (1.190)

i<k

The product over all |A\; — Ag| (known as a Vandermonde determinant) is somewhat
remarkable: it indicates that all eigenvalues are connected to each other, since the
product will contain terms like (A\; — Ay). Furthermore, this result is intimately
connected with edge physics, for example, it can be shown that Eq. can be
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reinterpreted as the partition function for the Brownian-motion of a harmonically-
trapped 2D Coulomb gas [146]. For each ensemble, the level-spacing distribution

generalizes as follows [136],

e GOE:
T w2
pi(s) = 55¢ a8 (1.191)
o GUE:
32, a.
pa(s) = —se n (1.192)
m
* GSE 218 64 .2
pa(s) = 263 ste on® (1.193)

Henceforth, we will refer to the distributions in Eqs. — as ‘Wigner-Dyson’
distributions for level spacings. p;(s) and ps(s) are plotted in Fig. [1.15 panels (a)-(b),
respectively, along with the eigenvalue spacings for a single matrix from each ensem-
ble. The most noticeable distinction between each is the different integer exponent
representing power-law repulsion, s, at low spacing size. In each case, an ‘unfold-
ing’ of the spectrum is required to match the curves with the data by dividing the
numerically calculated eigenvalues by their local density.

The average spectral density py(\), which measures the distribution of the eigen-
values of an NV x N random matrix is generally impossible to compute for finite V.
However, as N — oo, it follows Wigner’s semicircle law, which we shall simply state

here, .
oM B) = 5-V/25 =2 (1.194)

where again [ is the Dyson index of the ensemble. For a proof of the semicircle law,
see Appendix A. The semicircle law is displayed in Fig.|1.15| (c) for both the GOE and
GUE ensembles and compared to a randomly generated matrix from each ensemble.

Oganesyan and Huse introduced a useful method of characterizing each spacing
distribution function in terms a single number which does not require ‘unfolding’ of
the spectrum, the consecutive spacing ratio [148|,

min [S,,, Sp_1]

1 D

max [Sy,, Sp—1]

which sums the ratios of all the gaps in the spectrum: s, = A\,41 — A,, with Hilbert
space dimension D. The analytic values for the ratio r have been calculated for each

ensemble, including for a Poisson spectrum [149,(150]:

e Poisson: rp =2In2 — 1 =~ 0.38629
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Figure 1.15: Eigenvalue statistics for GOE and GUE matrices. In every panel, a
single square matrix of size N = 10* was generated for each ensemble. Panel (a):
Eigenvalue spacing for the GOE. The Wigner-Dyson distribution p;(s) is plotted as
a dashed line over the histogram. Panel (b): Eigenvalue spacing for the GUE. The
Wigner-Dyson distribution py(s) is plotted as a dashed line. Panel (c): Semicircle
law for the average spectral density in both the GOE (blue) and GUE (red). Eq.
(1.194) is plotted as a dashed line for both ensembles, showing excellent agreement
even for a single matrix.

e GOE: 7 = 4 — 24/3 ~ 0.53590

o GUE: ry = 273 - % ~ 0.60266
o GSE: 1y =328 1 ~0.67617

This ratio therefore allows for a precise statistical test for proximity to a particular
ensemble, which we use in Paper III.

In a 1962 paper, Dyson objected to condition (i) above that each p;;(z) be sta-
tistically independent absent some physical motivation, since it is impossible to es-
tablish a uniform probability distribution on an infinite range (and hence some re-
striction on |z;;| is necessary). Thus, he proposed instead the introduction of ensem-
bles which replace the symmetric/Hermitian/self-dual matrix X with some orthogo-
nal/unitary /symplectic matrix U whose eigenvalues are distributed on a line/ring /circle.
For this reason, these ensembles are given the name ‘circular’ to replace ‘Gaussian’
above, and for shorthand will be called COE, CUE, and CSE, respectively. For our
purposes in Paper III, however, the results are easily transferable between ensembles,
indeed in the limit of large matrix dimension N they give identical behaviour [135],
and the relation U = exp[—iXt] is useful to keep in mind (although Dyson warns

against considering this relation to be strictly true).

The Out-of-time-ordered Correlator

In the study of chaos in quantum systems, the use of RMT is largely restricted to

static properties, i.e. properties of the spectrum, or relaxation values, and does not act
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as a dynamic diagnostic tool for chaos. For this purpose, we introduce a correlation

function known as the out-of-time-ordered commutator,

O(z,t) = < [A(:c, ), BT [A(x, 1), B} > , (1.196)

where the evaluation of the expectation value (...) = Tr [ ...] is dependent on the state
prepared for measurement, and is often labelled (...)s if p is a Gibbs thermal state
with inverse temperature 5. The commutator was first introduced by Larkin
and Ovchinnikov [151] in 1969, but has been more recently revived in the context of
quantum information scrambling [152-154] as a measure of chaos in conformal field

theory [155]. If the operators A and B are unitary and Hermitian, one can write,
C(z,t) =2 (1 — Re[F(x,1)]) (1.197)
where the out-of-time-ordered correlator (OTOC) if]
F(z,t) = (A(z,t)BA(z,t)B) . (1.198)

Typically, the operators A and B are also selected such that [A(SL’, 0), B} = 0. For
spatially extended systems, such as spin chains, where the operators fl(x,O) and
B only have local support, the OTOC can therefore be a measure of information
propagation across nonlocal degrees of freedom. The growth of F'(x,t) from 0 implies
that the support of both operators begins to mix after a certain amount of time, and

they lose their ability to commute.

Time Time
t A t Al
VAR VAR
e h e h e h e h
0 —B! 0 B
At)Bly) = e Ac™h Bly) BA(t)w) = Be' T A h |)

Figure 1.16: Visualization of the OTOC, with time on the vertical axis but application
of operators read left to right. On the left, we first apply B at time t = 0 followed by
A at time ¢. On the right, A is applied at time ¢, and then B is applied after returning
tot = 0. The OTOC is the overlap of these two scenarios.

A visualization of the correlator (1.198]) as a measure of sensitivity to perturbations
can be seen in Fig. [I.16f An OTOC can be thought to be an overlap of the states

2There is some indecision in the literature as to whether the acronym “OTOC” should refer
to the commutator in Eq. or the four-point correlation function in Eq. , since for
most operators, both give equivalent information. Here, we shall use the latter convention, unless
otherwise noted.
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A(t)B|t) (with the spatial degree of freedom suppressed for now) and BA(t)]¢). In
the first case, we apply B at time t = 0, evolve forward in time, apply fl, and then
backward in time. The second state requires time evolution first to time ¢, apply
operator fl, evolve back to ¢t = 0, and then apply B. Scrambling occurs when this
overlap is small, that is, the system is highly sensitive to the order of the operators
A and B on [¢) after forward and backward time-evolution [154}/157].

Classically, when we consider the exponential sensitivity of trajectories with re-
spect to initial conditions to define a Lyapunov exponent, we can replace the variation

with a Poisson bracket,

1) _ (a(t), o} (1.199)

8[)’20
where {A, B} = 29498 _ 0A 0B {gyever, if we are interested in some sort of phase-
’ 0z dpo Opo 9o ’

space average, then it is possible that although for chaotic models, 85;(? ~ e the

average is zero from cancellations due to some symmetries. Therefore it is preferable

to compute the square,

(52) =1 {al)m P~ (1.200)

and proceed to average over phase space. In general, we expect this behaviour to carry
over to functions of phase space parameters: |[{W (t), V}|> ~ ¢**. In the semiclassical
limit, the commutator of operators Aand B approaches the Poisson bracket of phase-
space functions A and B |158],

1

E[A(t),f}} "SSU A1), BY . (1.201)

Through this, one can define a quantum version of the Lyapunov exponent through
early-time exponential growth of the OTOC [152}|154}/157},159],

O(z,t) ~ et (1.202)

and hence a quantum analogue of the butterfly effect. This exponent, which is not
necessarily equal to (twice) its classical counterpart [156], is conjectured to have the
bound [154],

Ao < 45 (1.203)

where [ is the inverse temperature. Systems which saturate this bound are known as
‘fast scramblers’ [160}/161], and display a holographic duality to a black hole [154}(164)
165|, an example of which is the Sachdev-Ye-Kitaev model [162,|163]. The quantum
Lyapunov exponent is also conjectured to reach a maximum at a quantum critical
point [164].
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The existence of a nonzero Lyapunov exponent from an OTOC does not neces-
sarily imply a chaotic system, but rather an instability. For example, the inverted
harmonic oscillator will exhibit an exponential sensitivity to initial condition, since
a perturbation on either side of the unstable point will lead to drastically different
behaviour. This effect is replicated in the quantum inverted harmonic oscillator [16§],
but also in the Lipkin-Meshkov-Glick (LMG) model and the regular phase of the Dicke
model [166},/167]. The OTOC can also be exponentially sensitive in quantum systems
near a phase transition [169]. This indicates that the OTOC as a diagnostic tool must

be treated with some care to avoid ‘false flags’ in regular systems.

Time Scales

There are a number of important timescales which are relevant to chaotic models,
the details of which are still being studied and developed. We shall list a few of
the timescales relevant to the problems studied in the remainder of the thesis. In
particular, we make use of the early-growth time scales in Paper II, while in Paper
IIT we focus on the Thouless time and relaxation time scales for generalized OTOCs.

In the case of an OTOC for a system with spatial extent, there is an early-time
growth which is a power law,

1
Cla,t) ~ —t™ (1.204)

where a is a constant. This was originally demonstrated by Lin and Motrunich [170],
who argued that it follows directly from the Baker-Campbell-Hausdorff formula,

R A T a (115)2 n T oa A

Aty = A+t i, Al +5 A, A A+ (1.205)
Inserting this into the out-of-time-ordered commutator C(z,t), it becomes evident
that the first nonzero term will correspond to that for which the coefficient is %tm.
This time scale has been called the ‘perturbative’ regime [171] and the universal form
has been found to hold independent of integrability conditions |172H174].

Following the power-law growth, there is an “early growth” region which precedes

the light-cone described in Sec. [I.1.8] This early growth has been conjectured by Xu
and Swingle [171], and separately derived by Khemani et al. |[175] to be of the form,

(x/vp — )7

C(x,t) ~exp |—AL "

(1.206)

where vp is the ‘butterfly velocity’, which is a speed at which the OTOC wavefront
moves and may be (but not necessarily) equal to the Lieb-Robinson velocity vy g. The

exponent p corresponds to an index which depends on the integrability of the model
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under consideration. In Paper I, we demonstrate that the p = 1/2 case for integrable
models can be motivated by catastrophe theory arguments, since the local structure
of the wavefront is guaranteed to be an Airy function. One can perform an asymptotic
expansion in the ‘dark’ region of the Airy function to arrive at the analytic form in
Eq. . Models which exhibit p = 0 behaviour are ‘Lyapunov-like’ [175], since
there is en explicit exponential growth at x = vgt and hence one may be tempted to
designate such models as chaotic, however p = 0 is not necessarily guaranteed to be
the case for chaotic models [175], nor is there a well-agreed upon value for p in specific

regimes.
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Figure 1.17: Analytic survival probability for random matrices of size 1000 x 1000
in the GOE (blue, solid) and GUE (red, solid) ensembles, given by Eq. (1.208). The
corresponding Thouless times are shown as vertical dashed lines in the same colour of
the appropriate ensemble. Saturation values for each ensemble are shown as horizontal
dotted lines.

The next important timescale we consider is the Thouless time, ¢y, which is the
timescale at which the system begins to follow universal RMT forms. The Thouless
time was originally introduced to represent the timescale at which a particle can diffuse
through and reach the boundary of a disordered conductor [177]. In the context
of a return probability for a chaotic system, ¢ty corresponds to time at which the
bottom of the ‘correlation hole’ is reached [178-180|, and the survival probability
ramps towards its relaxation value predicted by RMT. In Ref. [182], it is shown that
the correlation hole is a feature which is an dynamical manifestation of the level
repulsion (i.e. correlations between the eigenvalues) in a chaotic model, as a result
of the presence of a ‘two-level form factor’ appearing in the return probability. In
Ref. [176], Alhassid and Levine show that for a Hamiltonian in a Gaussian ensemble,
the survival probability P(t) = [(¢)(t)|(0))]? is,

B+ 2

P(t) = % 2mpi(t) + " ~ b (%i—p)} (1.207)
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where N is the linear size of the Hilbert space, 3 is the Dyson index for the ensemble,
p is the average density of states, and by(x) is the two-level form factor, which is the
Fourier transform of Ys(w), the two-level cluster function which describes how two
eigenvalues ‘cluster’ in a random matrix [135].

If one chooses a Hamiltonian which consists of a full random matrix from a Gaus-
sian ensemble with an initial semicircular distribution, the density of states has width
V28BN times some characteristic energy scale call it E (the nature of E is irrele-
vant, since the matrix is completely random, populated elements drawn from nor-

malized Gaussian distributions). In this case, the survival probability becomes (for

N > 1) [178/[180],

P(t) =

L- P RWV2BNG <V25—Nt)} e (1.208)

N (V2BNt)? 2N

where P = (8 +2)/(Np) is the long-time average which is the middle term of Eq.
(1.207). The first term has now become oc JZ(v/2BNt)/t?, where Ji(x) is a Bessel
function of the first kind, from the Fourier transform of the semicircle [180}181]. This
term introduces oscillations in the return probability at early times, however the tail
end of this piece decays ~ 1/t> as one enters the correlation hole.

The relevant piece for the correlation hole is the term containing the two-level
form factor by. Assuming that N < v/Nt < 1, we approximate the two-level form
factor for small arguments (z < 1) |135}/176],

by(r) ~1—— (1.209)

g
and replace the Bessel function with its late time decay J(v/28Nt)/t* ~ 1/t%, so
that minimizing the return probability P(t) with respect to ¢ gives try, since it will
occur at the bottom of the correlation hole. For explicit details of this calculation
in the GOE ensemble, see Refs. [178,|180}/181]. The resulting Thouless times in each

ensemble are then (still in units of F),

3\ i
O = (—) (1.210)
T
GVE AL 1.211
t = [ — . .
@ (o) (1211)

Fig. shows the analytic P(t) for full random matrices in both the GOE and
GUE ensembles of size 1000 x 1000 as blue and red curves, respectively, with the

respective Thouless times shown as dashed lines in the same colour. From this figure,
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the geometric meaning of the correlation hole becomes clear, and after ¢y, is crossed,
the return probability ramps towards its saturation value.

The saturation values are, for N > 1,

PEOF ~ (1.212)

PCUE  — (1.213)

2l z]w

and are shown in Fig. [1.17] as horizontal dotted lines in blue and red, respectively.
In a more generic system, it is likely that any individual survival probability will
fluctuate relatively strongly around any of these curves, and so the average over many
realizations will converge to P(t) [180]. The relaxation time, tg is therefore the time
at which one would expect an observable such as the survival probability to fluctuate
about its saturation value. At this time, there is no analytic prediction for a value
that is independent of tuneable parameters |178|, however it appears to be on the
order ~ 10? where the solid curves and dashed horizontal lines meet.

In Paper II, rather than studying a chaotic system directly, we study how gener-
alizations of the OTOC can give the appearance of the markers of chaos mentioned
above, by rewriting the OTOC as a survival probability. We therefore use t1y, as an es-
timate for the time at which the generalized OTOC will falsely give a positive chaotic
result, and therefore be the time at which chaos ‘kicks in’ for our probe. The values for
the Thouless time — apply to the system we study, the Bose-Josephson
junction coupled to an atomic quantum dot, since the size of the Hilbert space is
o N. For systems which have an exponential Hilbert-space scaling, the expressions

(1.210)-(1.211) become no longer valid, and the Thouless time grows exponentially
with N, as will the relaxation time.

OTOCs as probes of phase transitions

In this final section we briefly describe some results from Ref. |[34]. This work brings
together elements from many previous sections by using the OTOC for a single two-
level impurity (qubit) connected to a Bose-Josephson junction as a dynamical probe

to measure an equilibrium phase transition. The Hamiltonian for the system is,
H=US?-2JS, — NJ%, +WS.6., (1.214)

where, as usual in the Schwinger prescription, the operators S, correspond to SU(2)
spin operators which act on the bosons from Eqgs. —, and the &, operators
correspond to operators which act on the single two-level system from Egs. —
. U and J correspond to interaction and hopping energies for the N bosons,
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Figure 1.18: OTOC for a qubit probe of the Bose-Josephson junction. Panel (a): The
long-time average of the OTOC (blue, solid) and long-time average of the two-point
correlator (black, dashed) as a function of a reduced critical parameter (A — A.)/|A.|.
Here, J* = W = J Panel (b): Out-of-time-ordered commutator C(t) = 2(1 — Re[F])
in A vs. W/J phase space. Eq. is shown as a white dashed curve denoting
the phase boundaries. In this panel, J* = J. Panel (c): Long-time average of the
OTOC as a function of the reduced critical parameter for different boson numbers .

The limit F'o_,_o is shown as a black dashed line. Here, J* = W = J.

respectively, while J¢ is the hopping energy for the qubit, and W is the boson-qubit
interaction energy.

Defining, as usual, the critical parameter A = UN/(2J), there is a Zsy symmetry
breaking transition at A = —1 where the bosons tend to clump in one well or another.
With the addition of the qubit, the critical point moves to [31],

W2
A=
4JjeJ
Here, we consider using the OTOC for the qubit,

~1 (1.215)

F(t) = (0:(1)02:04(t)0%) (1.216)

where 6, (t) = eftg el and the expectation value (...) here was taken with respect

to the ground state of H. We make use of the long-time average,

T—o00

_ 1 (T
F = lim —/ dt F(t) , (1.217)
0

to detect the quantum phase transition. As shown in Fig. [1.18| (a), the long-time
average of the OTOC is more sensitive than the two-point correlator (&, (t)é,), hence
is more sensitive in measuring the phase transition.

Panel (b) of Fig. shows the time averaged out-of-time-ordered commutator
C(t) = 2(1 — Re[F]), which carries identical information to the OTOC, in the phase
space of A and W. The OTOC clearly acts as a good probe for the phase transition

boundary described by Eq. (1.215]), since the OTOC changes drastically from F ~ 1
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for A > A, to F < 1 below. The OTOC lacks sensitivity near the W = 0 axis, but
this is expected since this would correspond to a qubit probe which is completely
uncoupled from the system (and hence is no probe at all). The remaining extremes
of this phase diagram can be explained in the following way. First, in the A — oo
limit, the Hamiltonian becomes dominated by the Sf term and since [I:I ,02] = 0, then
there is no dynamics. The OTOC becomes Fy_, o, = {(6,)*) = 1. In the opposite
extreme, A — —o0, the symmetry broken phase corresponds to <5‘Z> = +N/2, thus
since the OTOC is evaluated in the ground state of H, the effective Hamiltonian for
the qubit becomes H = —J*N&, -+ WN&.. It is possible to calculate F(t) from this
expression, and taking the long-time limit gives,
8J42(2J%2 — W?2)

J—— 42 L) (1.218)

Fig. shows that the long-time average of the OTOC saturates relatively quickly
to the two limits F'5_, 1o on either side of A., even for modest N, again demonstrating
the sensitivity of OTOCs to quantum phase transitions.

In order to deduce the long-time saturation value of the OTOC, we follow the

process outlined in Ref. [183]. Starting with,
F(t) = <‘IJO]eiméTefthATeimBeefimA]\Il@ : (1.219)

we insert a resolution of the identity, > [¥,) (V,[ = 1, where {|¥,)} are the eigen-

states of H , between each of the operators,

F(t)= ) (ol e [Wa) (Wa| B [Wg) (W] e W) (W, | AT [Ws) (05| € W) (T | BIT)

apByde(n
(1.220)
X (el e W) (W, | A W)
— Zeit(Eo—Eﬁ-l—Ea—Ec)(BT)OB(AT)B(SB&CACO (1.221)
B¢
Since we are using A=B= 0., and defining (6 )ap = Tap,
F(t) _ Z eit(EO_Ea+E6_EC)UOaUa(SO'(S(Ug() (1.222)

adC

In the normal phase, essentially all matrix elements except one are small. We can
take, for example, W < U, leading to a product state |¥y) = |¢g) 5 ® | X), where | X)
is the +1 eigenstate of ,. This leads to a normal phase where ooy ~ O(1), and all

other matrix elements < 1.
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The other extreme which leads to equilibration is that a large number of eigenstates
are coupled together in such a way that the phases completely decohere and F(t —
o0) = 0. This result is a fully ‘scrambled’ system [155], however it is not visible within
our model here, primarily due to the incredibly small backaction from a single qubit
on the N bosons. Although the system studied here is chaotic due to the impurity,
it is in a sense ‘weak’ chaos. Partial revivals occur for long timescales ~ O(10°)
(in units of J), and only a small number of central eigenstates obey Wigner-Dyson
statistics [32].

There are a number of questions as to how weak chaos can lead to equilibration
in this system by ensuring more eigenstates are coupled in Eq. (1.222). A natural
approach is to change the coupling strength W such that the qubit probe has a
stronger effect on the bosons. A convenient measure of how &, couples different

eigenstates together is the participation ratio,

PR(| W) = (Z \<\vn|&x\%>\4> . (1.223)

The participation ratio is also useful for predicting the long-time equilibration of the
survival probability in chaotic systems [184] when averaged over an entire basis, i.e.
>, PR(|¥,,)) = P, which we make use of in Paper III. PR(|¥;)) also reaches a
maximum in a chaotic system at the Thouless time ¢y, [178]. In this case, we use
it to quantify how many states are coupled by the operators ., and relate it to the

long-time average of the variance of the OTOC,

(AF) = Thj%ol /OT dt (F — F(t))” . (1.224)

In Fig. (a), we show the logged participation ratio, In[PR(|¥))], in the plane
of the interaction strength and critical parameter. For each W, there is a peak of the
participation ratio at some value of A. We plot all of these peaks in panel (b) along
with (AF)? at the same values of (A, W), and show that a high participation ratio
generally correlates to low fluctuations in the OTOC. Panel (c¢) shows a sample where
a relatively ‘ideal’ value of W = 7J corresponds to an OTOC with a small variation,
while a ‘non-ideal’ example choice of W = 50J has a much larger variation. The
choice with the smaller variance (W = 7.J), which we might expect to be closer to
equilibrium, does not oscillate around F(t) = 0 (i.e. scrambling), while the W = 50.J
case does.

One can attempt to deduce a Lyapunov exponent by evaluating the OTOC using

a thermal Gibbs ensemble at inverse temperature 3 to see how close the system comes
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Figure 1.19: Coupling of eigenstates by the OTOC. Panel (a): The logged partici-
pation ratio In[PR(]¥y))] as a function of A and W. Panel (b): Peak participation
ratio (selected along the W axis from panel (a)) and the variance (AF')? plotted on
the same axes. Panel (c): OTOC F(t) for two choices, one with a high participation
ratio (W = 7.J) and one with a low participation ratio (W = 50.J).

to the bound in Eq. In Fig. [1.20 (a), we show the Lyapunov exponent A;, as a
function of the critical parameter A (calculated in the same way as was performed in
Ref. for longer Bose-Hubbard chain) with W = J = J°, such that A, = —3/4,
and inverse temperature §J = 1. F(t) is shown for different A in panel (b). We see
that unlike in Ref. , there is no apparent approach of the bound proposed by
Maldacena et al. for a strong scrambler, reinforcing the notion that this system
is only weakly chaotic.

There are some remaining questions as to which diagnostics we have discussed
in this section are useful for general weakly chaotic systems. The Bose-Josephson
junction connected to a qubit provides an interesting testbed for these diagnostic

tools.
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Figure 1.20: Signals of weak chaos. Panel (a): Lyapunov exponent calculated from

the OTOCs in panel (b).

Panel (b): The OTOC F(t) for a variety of A at W =

J=J*=1, N =1000, and inverse temperature §J = 1. The decay from F(t) =1 is
used to calculate A according to the scheme outlined in Ref. [164].
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In Section we outlined a general procedure for diagonalizing one-dimensional
spin chains using fermion operators via the Jordan-Wigner and Bogoliubov transfor-
mations. Using this representation, it is possible to study how local perturbations
propagate through the system at a finite velocity as a consequence of the Lieb-
Robinson bound (Section , resulting in a ‘quantum light cone’. The Lieb-
Robinson speed, given by Eq. , is calculated by maximizing the quasiparticle

group velocity, which is mathematically identical to the caustic condition,

o 9*®

where ® = ¢, +/(k), € is the quasiparticle dispersion, ¢(k) is at most a linear function

of quasiparticle momentum k.

In this paper, we make use of the anisotropic XY model in two limits, and show
that catastrophe theory predicts the functional form of the quantum light cone. By

creating a single Bogoliubov fermion at a particular site (z = 0) and evolving forward
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in time, we show that the light cone takes the form of a diffraction integral,
(zle 151 |0) o / dk k) (2.2)

where now ®(k; z,t) = kx — € plays the role of a catastrophe function.

By making use of catastrophe theory, we able to put on firm mathematical foot-
ing the local description of a light cone as an Airy function. Furthermore, to our
knowledge we are the first to correctly predict the functional form of a secondary
light cone in the XY model as a Pearcey function. Next, we identify an array of
phase dislocations contained within the light cone. In the continuum limit, these are
phase singularities (vortex-antivortex pairs), while in the second-quantized limit they
correspond to phase-jumps. These dislocations are sensitive to the equilibrium phase

transition, and we connect them to critical scaling exponents in a dynamic setting.
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‘We show that the light conelike structures that form in spin chains after a quench are quantum caustics. Their
natural description is in terms of catastrophe theory and this implies (1) a hierarchy of light cone structures
corresponding to the different catastrophes, (2) dressing by characteristic wave functions that obey scaling laws
determined by the Arnol’d and Berry indices, and (3) a network of vortex-antivortex pairs in space-time inside
the cone. We illustrate the theory by giving explicit calculations for the transverse field Ising model and the XY
model, finding fold catastrophes dressed by the Airy functions and cusp catastrophes dressed by the Pearcey
functions; multisite correlation functions are described by higher catastrophes such as the hyperbolic umbilic.
Furthermore, we find that the vortex pairs created inside the cone are sensitive to phase transitions in these spin
models with their rate of production being determined by the dynamical critical exponent. More broadly, this
work illustrates how catastrophe theory can be applied to singularities in quantum fields.

DOI: 10.1103/PhysRevResearch.1.033135

I. INTRODUCTION

According to Lieb and Robinson [1], there is a maximum
speed v g at which information can propagate in discrete
quantum systems that obey the Schrodinger equation and
have short range interactions. This is a powerful and generic
statement because it implies that, despite the fact there is
no intrinsic speed limit in the (nonrelativisitic) Schrodinger
equation, the response of these many-particle systems to a
sudden quench should be in terms of a light conelike time evo-
lution of spatial correlations [2]. Physically, the “light cone”
arises from the maximum group velocity of quasiparticles that
are excited by the quench and that subsequently propagate
through the sample [3]. Sophisticated methods of analysis
have been applied to these quench problems including confor-
mal field theory and tensor networks [3—16], and the theory
has been tested in experiments on ultracold atoms [17-19]
and ions [20,21] where quantum spin models [18,22-25], the
Bose-Hubbard (BH) model [26-29], 1D systems [30-32], and
quantum walks on a lattice [33,34] can all be realized. The
long coherence times of atomic systems make them particu-
larly suited to studying such dynamics [35,36], and the ability
to perform single-site manipulation and detection [37—40] has
enabled unprecedented preparation and visualization of the
relevant local observables.

In this paper, we show that light cones in quenched spin
chains are quantum caustics. These are quantum versions of
wave focusing phenomena that occur widely in nature in the
form of rainbows [41], ship wakes [42—44], tsunamis and tidal
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bores [45], and Cherenkov radiation [46] (including superfluid
analogs [47-49]). In the geometric ray theory, caustics occur
where two or more rays coalesce, giving regions in space
where the intensity diverges. By virtue of their singular nature,
the natural mathematical description of caustics is via catas-
trophe theory which partitions them into a hierarchy of equiv-
alence classes, each of which is structurally stable and has its
own set of scaling relations [50-52]. To show specifically how
this approach can be applied to spin chains, we consider the
exactly solvable 1D XY model [53,54], as well as the special
case of the 1D transverse-field Ising model (TFIM) [55,56].
While both cases display light conelike behavior, the more
general XY model allows for an anisotropic coupling giving
rise to a double cone [57,58]. Although we limit our calcula-
tions to these exactly solvable models, the structural stability
of catastrophes (insensitivity to small perturbations) guaran-
tees they must survive in the presence of weak nonintegrabil-
ity. This includes weak interactions between quasiparticles or
disorder and therefore our results also apply to more general
systems than just exactly solvable models.

Wave interference softens caustics and leads to structure
on three scales [52]: at large scales, we see divergent ray
caustics, whereas at wavelength scales interference smoothes
the divergences and dresses each caustic with a characteristic
wave function which in the simplest case of two coalescing
rays is the Airy function, and finally at subwavelength scales
there are networks of vortex-antivortex pairs. These robust
features, including vortex-antivortex networks, have been ob-
served in optical fields [41], and more recently in electron
microscopy [69]. They have also been discussed theoretically
in the context of Bose-Einstein condensates [73,74] and var-
ious aspects seen experimentally in these systems [70-72].
Furthermore, the association between the Airy function (and
its related kernels) and light cones has previously been noted
by various authors [8,14,15,59-64], and recent work has con-
jectured similar universal forms for wavefronts of out-of-time-
ordered correlators [65-68] by examining asymptotic limits of

73 Published by the American Physical Society
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TABLE I. The seven elementary catastrophes and their generating functions ®(s; C), organized by corank n, and dimension Q of control
space [86]. The associated Arnol’d exponents Sy and Berry exponents ¢, governing the scaling of the wave catastrophes’ amplitudes and

phase, respectively, are also listed.

Generating function

Scaling exponents

Catastrophe n (0] Dy(s; C) Bo {cm}

Fold 1 1 $3/3+Cs 1/6 c=2/3

Cusp 1 2 s*/4 + Cy8? /2 + Cys 1/4 a=3/4=1)2
Swallowtail 1 3 )54 C35°/3 4 o5 /2 +Cys 3/10 ¢ =4/5,¢6=3/5¢=2/5
Butterfly 1 4 58/6 + Cys* /4 + G357 /3 + Co5? /2 + Cis 1/3 c1=5/6,c2=2/3,c3=1/2,¢,=1/3
Hyperbolic Umbilic 2 3 $3/3 4+ 53/3 + Css150 + Casy + Cis 1/3 c1=2/3,6=2/3,c3=1/3
Elliptic Umbilic 2 3 3stsy — 83 4 C3(s3 + 83) 4+ Casy + Cisy 1/3 a1 =2/3,6=2/3,¢c3=1/3
Parabolic Umbilic 2 4 53 4 5352 + Cy53 + G352 + Casy + Cysy 3/8 c1=5/8,c=3/4c=1/2,¢c, =1/4

the Airy function. However, to the best of our knowledge, the
present paper is the first to study the hierarchy of universal
wave functions that dress light cones, of which the Airy
function is only the first, and also point out that light cones
should generically contain networks of vortices which in the
case of 1D chains appear as space-time vortices.

A fourth scale appears in quantum fields due to discretiza-
tion of excitations leading to “‘quantum catastrophes” [75-80]
(rippling mirrors give analogous effects [81]). Going to the
continuum (classical field) limit returns us to a wave catas-
trophe. As we shall show, light cones in spin chains have all
the features of quantum catastrophes, including discretized
versions of wave catastrophes and vortices which are regu-
lated by the lattice constant. Although the cone itself is mildly
affected by the presence of a quantum critical point (QCP) in
the spin models we study, we find by contrast that the vortices
are strongly affected and we use this feature to extract the
dynamical critical scaling.

The rest of this paper is organized as follows. In Sec. II, we
outline the relevant aspects of catastrophe theory, emphasizing
the hierarchy of structures and their scaling properties. In
Sec. I1I, we show that light cones are in fact (quantum) caus-
tics and hence their natural mathematical description is via
catastrophe theory. In Sec. IV, we introduce the XY and TFIM
spin chains focusing on the quasiparticle dispersion relation
which is the key ingredient we need to apply catastrophe
theory. This program is implemented in Sec. V where we
obtain the Airy and Pearcey functions for the wave functions
dressing the fold and cusp catastrophes/cones in these models.
In Sec. VI, we verify the self-similar scaling properties of
light cones that catastrophe theory predicts and in Sec. VII, we
describe how higher-order catastrophes arise in the context of
correlation functions. In Sec. VIII, we identify and discuss the
presence of vortex-antivortex pairs within light cones, while
in Sec. IX we touch on the relevance of the theory to quench
experiments, and in Sec. X we conclude with a discussion of
the broader significance of the results. In order to make this
paper self-contained, we have included in Appendices A—F
the specifics of quantum spin chain diagonalization methods
and various other details of our calculations.

II. GEOMETRIC AND WAVE CATASTROPHES

In what follows, we will not need the full mathematical
machinery behind catastrophe theory, but we will make use

of a number of key results and for this reason we give a brief
overview here. Our treatment is informal, but we emphasize
that these results can be proved rigorously. The main idea
can be stated simply: catastrophe theory classifies structurally
stable singularities of functions and shows that such singular-
ities can only take on certain characteristic shapes [50]. In up
to four dimensions, these are René Thom’s seven elementary
catastrophes which are listed in Table I.

Each catastrophe arises from two or more coalescing/
bifurcating stationary points of its generating function ®, the
normal forms for which are given in the table. In the physical
applications given in this paper, @ is the action functional
and stationary points therefore correspond to classical paths
or rays. From an optical/classical mechanics point of view a
catastrophe is a caustic, i.e., the locus of points where the ray
density diverges.

Thom’s theorem states that the local behavior of a function
near coalescing stationary points can always be mapped by a
smooth change of variables onto one of the catastrophes and
in this sense catastrophes are universal. There is also a second
sense in which catastrophes are universal: structural stability
means stability against perturbations and thus catastrophes do
not require special symmetry and hence occur generically in
nature. Perturbations do not qualitatively change catastrophes
and only quantitatively affect behavior up to the strength of
the perturbation.

The catastrophes in Table I are organized by the number n
of state variables (their corank), and by the dimension Q of
the control parameter space. Control space is the space where
the function with its singularities actually lives. The control
parameters C = {C;, G, ...} could be space and time coor-
dinates as well as any other parameters. The state variables
s = {s1, 52, ...} characterize the rays. The simplest catastro-
phes (the cuspoids) have n = 1 and their generating functions
are polynomials of the form

SQ+2 Q CmSm
St (1)

m=1

Do(s;C) =

with up to Q coalescing stationary points. The stationarity
condition reads
0Py
as
and corresponds physically to Hamilton’s principle of sta-
tionary action, while caustics arise from coalescing stationary

=0 2)
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points where the generating function is stationary to higher
order [52]

32Dy
—2-90 3
032 3)

In the examples, we provide in subsequent sections, we focus
primarily on the fold and cusp catastrophes, as well as a dis-
cussion of the hyperbolic umbilic in the context of correlation
functions. Folds and cusps are the only structurally stable
singularities in the 2D (x, #) control plane where light cones in
1D chains live, while the higher catastrophes (although they
may still exist in greater dimensions) can only be projected
onto the plane by way of cusps and folds. This property
is generic: catastrophes of higher order contain the lower
ones [51]. The cusp is the meeting of two fold lines, the
swallowtail contains two cusps, and so on.

The wave functions, or wave catastrophes, associated with
catastrophes can be obtained in a way analogous to Feynman
path integrals by exponentiating the generating function and
integrating over all paths,

00 00 .
\I/Q(C) x kn/zf f d"s & <1>Q(s;C)’ @)
—00 —00

where A plays the role of the wave number k£ or 1// in
quantum problems. In this form, the fact that the generating
function plays the role of the physical action becomes clear.
These functions are also known as diffraction integrals and
many of their properties have been tabulated [44]. We em-
phasize that standard approximations such as the method of
stationary phase where the integral over s is broken up into
a sum of independent gaussian integrals around each of the
stationary points are doomed to failure when the stationary
points coalesce. One must instead keep the full form of &,
to get a result which is uniformly correct through the coales-
cence regions and this is precisely why diffraction integrals
are crucial for treating bifurcation problems where solutions
appear or disappear.

The fold has a cubic action ®,(s;C) = §° /3 + Cs, where
in the case of a light cone in (1+1) dimensions C = C(x, t).
As the control parameter C is taken from positive values down
through zero the cubic changes its form so as to describe
two coalescing rays. The resulting wave catastrophe can be
recognized as the integral form of the Airy function,

U (C) x ar®AIM30). (3)

In the absence of any special symmetry, two fold lines gener-
ically meet at cusps. In the region near the cusp point the
appropriate action is quartic and features two control pa-
rameters ®,(s;Cy, C;) = 5*/4 4 Cr52/2 + Cys. This normal
form, which formally resembles the Landau free energy for a
continuous (second-order) phase transition, describes the co-
alescence of up to three rays and results in a wave catastrophe
known as the Pearcey function,

Uy (Cy, Co) o< QA /*)Pe(CiAY4, G2, (6)

which is a complex function of two variables. For our def-
initions/conventions for the Airy and Pearcey functions, see
Egs. (D5) and (C7), respectively. Plots of the absolute values
|Ai(C)| and |Pe(Cy, C3)| of the Airy and Pearcey functions are
given in Fig. 1.

(a)

iy

101 (b) E L a2
: 4::"‘ ol B

P
[
s

in

(R
oS
o
=

FIG. 1. The Airy and Pearcey functions are the first two wave
catastrophes in a hierarchy. (a) Modulus of the Airy function, as
defined in Eq. (D5), which dresses a fold catastrophe where two
rays coalesce. The location of the fold, or classical caustic, is at
C =0 and is indicated by the dashed line. For C < O there is
two-wave interference giving fringes whereas for C > 0 there is an
evanescent wave. (b) Modulus of the Pearcey function, as defined in
Eq. (C7), which dresses the classical cusp caustic C; = 2C§/2/(3«/§)
and which is shown as a black dashed line. The cusp is made of two
fold lines which meet at the cusp tip at C; = C, = 0. There are three
rays/waves inside the cusp and only one outside: two coalesce as we
cross either of the fold lines, but all three coalesce at the cusp tip
which is the most singular part of the classical caustic (a ray picture
of the cusp can be seen in Fig. 2(b) in Ref. [80]). However, wave
interference removes the classical singularities. The black dots show
the locations of vortices: there is a line of vortices outside either edge
of the cusp, and vortex-antivortex pairs inside.

The fact that the Pearcey function is a two-dimensional
complex function, with an amplitude and a phase at each
point, allows for the possibility of vortices. This turns out to
be the case: the black dots in Fig. 1(b) show the locations of
vortices, or more precisely their cores. There is an ordered
network of vortex-antivortex pairs inside the cusp and single
rows of vortices lining the outer edges. These are subwave-
length features that represent the finest layer of structure of
a wave catastrophe. We find the vortices by densely covering
the plane with loops around which we integrate the phase of
the Pearcey function: loops that contain vortices give a £27
phase change (the vortex cores also correspond to nodes of the
Pearcey function, although in principle not all nodes need be
vortices).
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An important feature of wave catastrophes is that they
exhibit self-similar scaling. If the parameter A is changed from
A’ to A the wave functions will retain their functional forms but
with rescaled coordinates,

a0\ Pe A\ S ,
‘I/Q({Cm};k)=<;> qu({(;) Cm};)‘«>. 7

We can understand this scaling as follows: the overall ampli-
tude scales as APe, where Bo is known as the Arnol’d index.
The distance between interference fringes is also rescaled,
but generally the scale factor is different in each direction
according to AS", where ¢, is the Berry index associated

with coordinate C,,. For the fold wave catastrophe, fa; = é

and ¢ = %, and for the cusp wave catastrophe, fp. = % and
¢ = {%, %}. A complete list of Arnol’d and Berry indices for
the seven elementary catastrophes is displayed in Table 1.

The sets of Arnol’d and Berry indices accompanying the
different catastrophes are reminiscent of the sets of critical
exponents which define universality classes of equilibrium
phase transitions. The underlying common cause of this sim-
ilarity is the presence of singularities, or more precisely non-
analyticity, in both cases. We emphasize that in the application
to light cones we study here, this universality occurs out of
equilibrium, and thus we have an example of universality in
quantum dynamics [79,85,87].

III. LIGHT CONES AS QUANTUM CAUSTICS

Our approach to the light cone problem is based upon the
idea that the build-up of correlations occurs through quasipar-
ticle propagation [3]; this is known to be the case in a broad
range of models including the BH, TFIM, and XY models.
The Lieb-Robinson bound can then be expressed in terms of
the maximal group velocity of quasiparticles [7,9]

d €

dk

VLR = Max , ®)
where ¢, is the dispersion relation for quasiparticles as a
function of quasimomentum k. It can be seen immediately that
this result is exactly equivalent to Egs. (2) and (3) which give
the conditions for a caustic (note that here we are implicitly
considering real solutions to the caustic conditions; imaginary
solutions correspond to phase velocity across the cone and are
discussed in Appendix D. This aspect has also been discussed
by Cevolani et al. in Ref. [16]). From this simple observation,
it follows that light cones are caustics and hence the results
and insights of catastrophe theory can be applied to them.

Let us focus on the case of a local quench where a single
quasiparticle is created at position x = 0 in the middle of
a spin chain (we briefly consider weakly nonlocal super-
positions of multiple quasiparticles in Sec. IX, and also in
Appendix E). Time evolving the state with the Hamiltonian
H , the state vector at time ¢ is

(W()) = e /b 10), )

where |0), is the Bogoliubov quasiparticle ground state and
the operator b! creates a quasiparticle at the site located at
position x. For the remainder of the paper, we use the subscript
“b” to distinguish Fock states in the Bogoliubov basis from the

Jordan-Wigner basis. Introducing the eigenstates |k) of H we
can write this as (see Appendix A for details)

200

VN

where N is the number of sites, and the phase 6(¢) =
t/(2h) )", € is not observable but is included here for com-
pleteness. Projecting onto the position basis, the wave func-
tion W(x,, t) = (x,|¥()) on the nth lattice site is

W) = —= > e k), (10)
k

eie([) w/a—Ak

Z eid)(km;xnat)’ (1)

kn=—7/a

W(x,,t) = N

where
D(k;x,t) = kx — et /h. (12)

In these expressions, n is an integer lying in the range
{—(N—-1)/2,...,(N —1)/2}, and the separation between
momenta in the sum is Ak = 27 /(aN).

In the continuum approximation (CA), the wave function
corresponding to Eq. (11) is (see Appendix A)

ﬁ ei9(t) /ﬂ/a

> dk %0, (13)

Wealx, 1) =
w/a

where a = L/N is the lattice constant for a lattice of length L,
and the quasimomentum k runs over the first Brillouin zone. A
comparison of the exact (discrete) and CA wave functions is
given in Fig. 8 in the Appendices. In the semiclassical regime,
where N is large, the dominant contributions to the integral
in Eq. (13) come from values of kK where & is slowly varying
which are the stationary and coalescence points (especially
the latter). By Thom’s theorem [50-52], we can therefore
map P onto one of the normal forms ®,. However, although
Thom’s theorem guarantees that this can be done by smooth
transformations, it does not tell us what these transformations
actually are. Figuring out the mapping is part of the challenge
in applying catastrophe theory to specific physical problems
and it is to this task that we now turn.

IV. XY AND TFIM SPIN CHAINS

Let us consider a 1D XY model describing spins on a
lattice interacting with a ferromagnetic coupling J, anisotropy
parameter y, and subject to an external field g/. The Hamilto-
nian is

(1+y) (1-1y)
H=_JZ< 5 Ol 0o — 8oy ),

(14)
where 0, a € {x, y, z}, are Pauli operators. When y = 1 this
Hamiltonian reduces to that of the TFIM. The XY Hamil-
tonian can be diagonalized via the Jordan-Wigner transform
followed by a Bogoliubov rotation, which maps spin operators
to spinless fermions [82]. As shown in Appendix B, this leads
to the free model H = Zk ek(B,tl;k — 1/2), where l;,(:) is the
annihilation (creation) operator for Bogoliubov modes with
quasimomentum k and dispersion

€ = ZJ\/(cos(ka) — g% + y2sin’(ka). (15)
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FIG. 2. (a) The exact quantum amplitude, obtained by numerically evaluating Eq. (11), for a single Bogoliubov fermion created at the
central lattice site, x = 0, and propagated under the XY Hamiltonian with y = 0.2 and g = 0.8. This model gives rise to a double light cone
whose boundaries are indicated by the black dashed (LR cone) and dot-dashed (inner cone) lines. (b) A zoom-in of (a) with only half the
lattice shown. At five select points (x,, t), we have overlaid plots of the generating function ®(k;x,,¢) [Eq. (16)] as a function of k. Green
dots show stationary points of ®(k;x,, t); there are four stationary points in the inner cone and two annihilate (red stars) each time we cross a
cone boundary. (c) We can isolate the part of W responsible for the inner cone by only including values of k,, in Eq. (11) that include the three
stationary points of & that are close to the center of the Brillouin zone (note also the change in timescale). As shown in Sec. V, the inner cone
is described by a Pearcey function transformed so as to give a straight cone boundary. Note that in order to keep these figures simple we have
not shown the vortices although they are present. See Fig. 3 below, and also Fig. 8 in Appendices, for plots of light cone wave functions with

vortices included.

Thus the phase/generating function in Eq. (12) takes the
specific form

dk;x, 1) = kx — %\/(cos(ka) — g + y2sin®(ka). (16)

An exact numerical evaluation of the wave function given
in Eq. (11) using the generating function ®(k;x,t) for the
XY model is plotted in Fig. 2. The fact that x, is discrete
means that the light cone actually corresponds to a quantum
catastrophe, for more discussion of quantum catastrophes in
a spin context see Ref. [80]. However, in the semiclassical
regime where N is large, the CA described by Eq. (13) works
well. In this case, ® has the same functional form but with
x and k taken as continuous variables, and the integral can
be evaluated analytically in terms of the Airy and Pearcey
functions as will be explained in the next section.

Dividing ®(k, x, t) as given in Eq. (16) by # we can identify
three control parameters: (x/¢, ¥, g) [we reserve the energy
scale J to play the role of k in Eq. (4)]. However, rays
propagate in the 2D (x, ¢) plane rather than the full 3D control
space and thus for generic values of the control parameters
catastrophe theory predicts we should see folds and cusps.
In fact, we find a double cone made of a cusp enclosed by
two folds as shown in Fig. 2 (double cones occur both in spin
systems and in coupled 1D gases [57,58]).

Mathematically speaking, the double cone arises because
Eq. (16) has up to four stationary points within the first
Brillouin zone, as shown by the green dots in the five overlays
plotted in Fig. 2(b). Near the origin in Fig. 2 all four stationary
points are present, but three are quasidegenerate so W is
locally dominated by a Pearcey-like function, which gives
the inner cone. As we cross the edges of the inner cone
two stationary points annihilate (indicated by red stars in the
overlays) leaving two rays which in turn annihilate at the
edges of the outer cone so that locally it is dominated by
the Airy function. Furthermore, the XY model has a QCP
at g = 1 — y?; as the critical regime is approached the inner

cone narrows and eventually collapses because the three inner
stationary points in the generating function coalesce at this
value of g. In the case of the TFIM (y = 1) [4,83,84], ® has
only two stationary points and one finds a single cone with
edges that are dressed by Airy functions. The insight from
catastrophe theory is that the single cone is nongeneric and
only occurs due to the special symmetry of the Hamiltonian
when y=1.

Due to the presence of four stationary points, the careful
reader might expect the XY model to show signatures of
the swallowtail catastrophe. Indeed, this would generically
be true, however it can be verified that the quadruple root
coalescence do not occur for real k. It is the periodic dis-
persion relation of the model which keeps us from physically
probing the highly singular swallowtail point. The cusp and
fold catastrophes that we observe here are however inherited
from the part of the swallowtail which is physically permitted.

V. AIRY AND PEARCEY FUNCTIONS

Let us now demonstrate explicitly how the Airy and
Pearcey catastrophe integrals emerge in the CA. Starting with
the Pearcey integral, consider first the triple stationary point
coalescence responsible for the inner cone, which we have
isolated in Fig. 2(c). One obvious difference between this
wave function and the Pearcey function shown in Fig. 1
is that the cone boundary in the former is straight rather
than the standard curved form of the cusp C; = =+ 4C23 /27.
Physically, this is due to the free propagation of the fermionic
quasiparticles. The required transformation to take us between
physical coordinates and those of the standard curved cusp is
similar to that used by Kaminski and Paris in Ref. [90]. In
Appendix C, we show that for our spin model it is

Ci = —v2x/[u(D)4], (17
C = —Vi(y? +g—1)/[VT(g— 1], (18)
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FIG. 3. (a) and (b) Modulus of exact wave function (11) W[x(C,, C3), t(C}, C>)] plotted in the scaled coordinates for the inner cone only
(vortices are present but not shown). It shows a remarkable qualitative resemblance to the Pearcey function (compare with Fig. 1), without
performing any approximations. Between (a) and (b), the interaction strength has been changed by a ratio of J'/J = 2, so that while the
classical ray caustic remains fixed (C; = £./4C; /27, red dashed line), the interference fringes of the wave-function scale according to the
Berry indices in the directions indicated. (c) |¥|? for the TFIM (blue shading truncated at 0.2 for clarity) is enclosed by the light cone (black,
dashed). Black dots mark the locations of vortices (see Sec. VIII). Slice along the time axis at x/a = 5. The local structure of the exact wave
function (11) (blue, solid) near the light cone is well-captured by the Airy-like representation of the wave function (21) (orange, dashed). Away
from the caustic the Airy function approximation gradually moves out of the phase with the exact result. This is because we have expanded the
generating function about the caustic and can be corrected by performing a uniform approximation.

(@12 43y +e(3 -2y )+ 4y’ —3))

where I' = and we have de-

12(g—1)3
fined the Ising velocity,
{2JT“g 0<lgl <1 (19)
1= )
Heo 1 <|gl

which is equal to v g in the TFIM limit (in principle, v g
can be analytically solved for in closed form for general y,

however, the expression is complicated, and little physical
insight is gained from writing it here).

To complete the diffraction integral we also need the
integration variable s. This reads s = \/Ea(tr)%k and results
in the Pearcey-like wave function Wp.(C, C;; J) written out in
Eq. (20). It rapidly tends to a true Pearcey function at longer
times when § = ﬁn(rl")% > 1.

1 1 3
1 (J(y*+g—1) 2/5 s Y SWEAY J\* J\?
Upe(C, Cos )~ — [ =222~ ds e # P25C.¢) S)prel(Z) . [2) &, 20
pe(C1, Co3J) 27{(hv1(g—1)C2 . se < \7) Pell7z) Cul7) @ (20)

ax

1
2=\ 2 M:
- . 1 2Jg7 Si
v=limi. 1y A g
v (CJ,J)szl/3< o ) /YMN
2

In order to display the close resemblance between Wp,
and the Pearcey function, we have plotted in Fig. 3 the wave
function of the inner cone from Eq. (11) without expansions
or approximations in terms of the transformed coordinates C;
and C,. This can be compared with the actual Pearcey function
plotted in Fig. 1. The only significant deviation is near C; = 0.
Since the limit of integration S tends to 0 as + — 0, the cusp
point itself becomes poorly defined, and we get a “smearing”
of the wave function as C; — 0. As a consequence, we cannot
get a Pearcey function exactly at the origin, since the initial
boundary condition requires the real-space wave function be
entirely localized here. As we move away from the cusp
point, however, the Pearcey function is indeed an excellent
approximation to the true wave function.

As (C; increases the Pearcey function can be approximated
by two back-to-back Airy functions as the cusp evolves into
two fold lines. Indeed, it is a general property of catastrophes
that the higher ones evolve into the lower ones as we move
away from the former’s most singular points. This provides
a rigorous explanation for why the Airy functions, which
are the simplest of the hierarchy of wave catastrophes, are

1 2
ds: e%%(s‘j;C") J[/g(»l ‘1 6Ai ‘1 3Cj . 21
J h h

commonly encountered in the asymptotics of light cones
[8,14,15,59-64].

To examine how the Airy function emerges in the CA,
we specialize to y = 1 (TFIM Hamiltonian). We stress that
the choice of y does not affect the presence of the fold
catastrophe (and thus Airy functions), only the simplicity of
the subsequent calculations. To this end, note that for any
g # 1 it can be readily checked that ®(y = 1) in Eq. (16) has
only two stationary points as a function of k. We can therefore
map onto the canonical fold generating function ®,(s; C) by
expanding @ to third order in s. In the CA, and up to a
global phase, we show in Appendix D that the correct control
parameter in this case is

CIl(x, 1) = 2(x /v — t)(& 7 /). (22)

The index j € {1,2} refers to cases g> 1, and g <1,

corresponding to above and below the QCP, respectively.

The integration variable s; = (¢%/t)%[ka — arccos(g> /)]

and integration limits s?’““ = —(g /)3 + arccos(g® /)]
Max

and )" = (¢27/1)!/*[r — arccos(g’~*/)] are also derived in
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Appendix D. The resulting wave function W}~ (C/;J) is
given in Eq. (21).

When y # 1 this process may be repeated around each
fold catastrophe, including for any inner cones, and will result
in the emergence of Airy functions with different defini-
tions of the control parameter, C. For example, a particular
limit of Eq. (21) has been conjectured to give a universal
form for the wavefront of out-of-time-ordered correlators
(OTOCs) [65-68]. According to catastrophe theory this is no
surprise. Furthermore, closer to the “brightest” parts of the
OTOC the hierarchy of catastrophes allows for more elaborate
structures beyond the Airy function.

VI. SCALING

The way the spin coupling strength J and the control
parameters C appear in combination on the right hand sides
of Eqgs. (20) and (21) shows that light cones have nontrivial
scaling properties: varying J is equivalent to rescaling the
amplitude and coordinates. More specifically, increasing J
causes the amplitude to increase at a rate determined by the
Arnol’d index, and the interference patterns to oscillate more
quickly in space and time at rates determined by the Berry
index for each particular direction. The overall picture is that
the fringes flow in towards the origin as J is increased and
in the (singular) classical limit, which occurs when J — oo,
all wave structure is pulled into the origin. There are other
choices we could have made for the scaling parameter since it
need only fill the role of A in Eq. (4): for the TFIM, we could
have alternatively chosen a or g, and in the case of the XY
model we could also have chosen either of these or even y. It
is usually necessary to keep some physics constant during the
scaling: we can keep the position of the classical ray caustics
constant as J is varied by tuning a or g to keep v; unchanged.

Numerical verification of the catastrophe theory predic-
tions for both the Arnol’d and Berry indices for the exact
wave function Eq. (11) is presented in Fig. 4. Panels (a)—(c)
show the scaling in the inner cone of the XY model: the fringe
scaling is obtained by measuring the distance between peaks
of the wave function along coordinates C; and C; as J is varied
and match the Pearcey scaling given in Table I to within 1%.
At first glance, it appears that panel (c) shows a contradiction
between the expected amplitude scaling of the catastrophe
integral and the wave function. However, a quick calculation
involving the prefactor of the wave function which ensures
that particle number is conserved shows that

_1 J -4
C, 2~ = , 23
S~ (5) @3)

which exactly cancels the Arnol’d scaling. This is a pecu-
liarity of our nongeneric initial condition of starting with a
completely localized initial state: when tracking a particular
fringe, it will move towards the origin but this normalization
factor means that its height does not scale with J.

Panel (d) of Fig. 4 shows the predictions in the TFIM for
the period T of oscillations near the caustic. Data are shown
both for the exact wave function, given in Eq. (11), and also
the “spin-flip” state Wy, given in Eq. (33), which is easier to
realize experimentally. Since the Berry index ¢ for the fold
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FIG. 4. Self-similar scaling of light cone wave functions. (a)
Fringe spacing in the C; direction within the inner cone of the
XY model scales as JS! with a Berry index ¢; &~ 0.743 £ 0.002
(a range of 1 < J/J' < 16 was used). The staircase pattern is due
to the discreteness of the lattice. (b) Fringe spacing scaling in
the C, direction of the XY model gives a Berry index of ¢, =
0.500 +0.001. (c) Wave function amplitude scaling of In |V | =
(—6 x 1077 & 4 x 1077)In(J), indicating that the amplitude near the
cusp has an incredibly weak scaling with J. This effect is explained
by Eq. (23), since the initial condition precisely cancels the Arnol’d
scaling to preserve particle number. (d) The oscillation period, 7', of
W(x,, t) for site x/a = 5 in the TFIM with g = 3; Eqgs. (11) and (33)
are plotted in blue circles and orange triangles, with blue-solid and
orange-dashed trendlines, respectively (a range of 1 < J/J' < 30
was chosen). Accounting for a geometric factor of sin[arctan(20)],
we find the Berry index to be 0.654 £ 0.003 and 0.646 £ 0.009 for
W and Wy, respectively.

defines scaling perpendicular to the caustic, a geometric factor
dependent on v g must be applied. Numerical agreement to
within 3% of Airy scaling given in Table I is found in both
cases even for finite-sized systems at finite times.

VII. CORRELATION FUNCTIONS AND HIGHER-ORDER
CATASTROPHES

Rather than the probability distribution associated with the
wave function itself, light cones are usually observed in corre-
lation functions [17-21]. The equal time site-site correlation
function is defined as

G, Xms 1) = (Db (1)) — (BL(@)) (bu(@)).  (24)

Because Bogoliubov fermions are conserved, (bjl @) =
(b (t)) = 0, and the last term vanishes. The remaining piece
is

(bhm(1)) = (W(O)|bibm|W(2))

1 . - s
= 5 D¢ T Olbybibuby [0}, (25)
kK

where we have used the state vector |W(¢)) given in Eq. (10).
Expressing all the operators in terms of quasimomentum (see
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TOJk

FIG. 5. (a) Correlation function amplitude |G(0, x,,, t)| for y =1,
and g = 0.5, where the blue shading has been truncated at 0.15 for
clarity. Black dots indicate vortices. (b) Same correlation function as
in (a), now with g = 0.9. Note that the number of vortices within the
cone decreases drastically near the critical point (see Sec. VIII).

Appendix A), we obtain

1 : : /
§ : —i(ex—ep )t /R itkx,,—k'x,
G(Xna Xm s t) = N_2 e ek —ew)t/ 6‘1( * )
k.k'

= W(p, 1)W(—Xy, —1). (26)

In Fig. 5, we plot G(0, x,,, 1) on the upper half of the spin
chain for two different values of g. It displays the same fea-
tures as the wave function: a light cone, interference fringes,
and vortices. In the CA, the equal time site-site correlation
function becomes

a w/a w/a ) L
Gealx. X' 1) = — / / dk dk’ ¢ (PED=2*.2))
(277) —n/aJ—m/a
= Wea(x, )Wea (=X, =), 27
and expanding around the cone boundaries gives
Gea(x, x', 1) = Wai(Cx, 1), HWA(C(—x', 1), —1),  (28)

where C(x, t) is the same function of x and ¢ as that given in
Eq. (22).

Measurements and calculations (based on doublon and
holon quasiparticles) on the BH model following a
quench also find a product of two Airy functions for
G(x,, xm, t) [8,17]. However, referring to Table I, generic
dimension three singularities (i.e., two spatial coordinates x,,
and x,,, as well as time t) of corank 2 (i.e., two integration
variables, like in the two-site correlation function) are the
elliptic umbilic, and hyperbolic umbilic catastrophes. The
elliptic umbilic diffraction catastrophe has been studied by
Berry, Nye, and Wright [88] via the optics of a triangular
water droplet lens, while the hyperbolic umbilic is a direct
consequence of the primary coma aberration [86] and has been
observed in matter waves using electron microscopy [69].
These catastrophes are generally more complicated than a
squared Airy function, however, we note that in a certain
plane the hyperbolic umbilic wave catastrophe does indeed
reduce to the product of two Airy functions. More precisely,
the hyperbolic umbilic wave catastrophe is given by [44]

+00
\IJHU(X y Z) — )u// dSldS2 ei)n(s‘?+Avg+C3slsz+Czsz+C]sl)
—00
(29)

and when C; = 0 this reduces exactly to

ax’as (A3 CoA3
Yhu(Cr, G2, 0) = 7;2 3Ai( ;,3>Ai< ;13). (30)

3

Thus, both the XY model and the BH model give rise to a
nongeneric special case.

What physical quantity could the C; control parameter
represent? Studying the form of Wyy given in Eq. (29) we
note that C; controls the coupling between the s; and s,
variables which in a spin chain correspond to the two quasi-
momenta k and k. For noninteracting quasiparticles, which
is the case for the exactly solvable models considered in this
paper, the two quasimomenta are uncoupled and thus Cs is
zero. Furthermore, the particular regime of the BH model
where Refs. [8,17] obtained a product of Airy functions also
corresponds to the free quasiparticle case. It is therefore clear
that Cs can be used to parametrize quasiparticle-quasiparticle
scattering, and we predict that a model with interacting quasi-
particles will give rise to light cones that sample hyperbolic
umbilic wave catastrophes. This feature could be verified in
an experiment where the strength of the coupling is varied for
then the scaling along C; should go as ¢3 = 1/3.

Other quantities, for example, the spin-spin correlation
function, %,, = (0;0,,) — (o;) {0;,), may also be calculated
exactly via the Jordan-Wigner and Bogoliubov transforma-
tions, and simplified using Wick’s theorem. The functional
forms of these quantities in the continuum approximation re-
main diffraction integrals, and thus will also display universal
behavior corresponding to catastrophes.

VIII. VORTICES AND CRITICALITY

As seen in Figs. 3 and 5, and also Fig. 8 in the Ap-
pendices, we find that light cones contain lattices of vortex-
antivortex pairs. Vortices form the fine structure of wave
catastrophes [86,89-91], and in a continuum are zeros of W
where the phase x = ArgW is undefined (takes all values) and
has the topological property

%d}( = +2r, (€18
c

where C is any closed path which contains a single vortex. On
a discrete lattice we can still use such circuits to find vortices,
but across lattice sites one must perform a sum instead of
integrating, meaning that their spatial position is only known
up to the lattice constant: in figures we place the vortices be-
tween lattice sites. Furthermore, vortices on a lattice need not
correspond to nodes or even phase singularities, but to points
where the phase difference between adjacent sites is £ (i.e.,
phase kinks or dark solitons). Thus, while phase interference
regulates the amplitude divergence of ray caustics, the effect
of alattice is to regulate the phase singularities of wave theory.
In recent work by some of the authors [80], the regularization
of phase singularities by a lattice has been considered in Fock
space.

Whereas the classical light cone changes smoothly at the
QCP [see, e.g., Eq. (19)], there is a sharp minimum in the
vortex density, i.e., many vortex-antivortex pairs annihilate,
see Fig. 6. In the CA, all vortices except those closest to
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FIG. 6. (a) Vortex density inside the TFIM light cone reaches
a sharp minimum at the QCP for both Eq. (11) and the spin-flip
state Eq. (33). We define vortex density as being the total number
of vortices that occur within a cone up to the time at which the light
cone hits the edge of the system, taking care to normalize for different
cone sizes at different values of g. (b) Numerical determination of
vortex pair creation times at a fixed point in space as g =g, =1 is
approached. In order to extrapolate to the critical point (inset), 30
data points (g, Jt/h) are fitted to a quadratic and then differentiated.
The resulting slopes are extrapolated to g. using a cubic and the
intercept gives vz = 0.9999 =+ 0.0004 (standard error on the fit). The
range 0.02 < |g— 1] < 0.12 of g was chosen to optimize the prox-
imity to the critical point along with data accuracy, since the wave
function becomes highly oscillatory as g — 1. Numerical errors are
smaller than the symbol sizes.

the central axis annihilate at the QCP, while on a discrete
lattice, more off-axis vortices survive but the same trend is
observed. At a fixed point in space, the time at which a
vortex is first detected increases as one approaches the critical
point, becoming infinite in the CA. This diverging timescale
7 is related to critical slowing and suggests a connection to
the dynamical critical exponent, z. According to the scaling
hypothesis of critical phenomena

T o &7, (32)

where £ = |g — g.|" is the correlation length and v is its
equilibrium critical exponent. Fig. 5(b) plots 7 as found from
the wave function Eq. (11) as g is tuned to the QCP. By
extrapolating the numerical data [Fig. 5(b) inset] to the critical
point we obtain vz = 1 and hence recover the known critical
scaling for the 1D TFIM [92,93]. For purposes of clarity, we
have only included the set of vortices which annihilate closest
to the axis x = 0. Vortices which annihilate farther off-axis
also display similar trends, which can be seen in Appendix F,
along with further figures which help with visualization of this
process.

While a more complete understanding of the nature of
the vortex-antivortex pairs within the light cone remains a
subject of future work, we wish to highlight that their presence
and scaling laws provide an interesting link between the
predictions of catastrophe theory and universality (in and out
of equilibrium). Due to the self-dual nature of the TFIM,
qualitative behavior for g > 1 is identical to that of the wave
function below the transition withg — 1/gand t — gf.

IX. EXPERIMENTAL REALIZATION: SPIN-FLIP STATE

The structural stability of catastrophes explains why they
occur so frequently in nature. Apart from the examples given
in the Introduction, they can also occur in disordered systems
such as at the Anderson transition where an evanescent Airy
function occurs [94], and it has also been shown that wave
catastrophes have the property of self-healing after being
disrupted [95]. There are, therefore, a broad range of initial
conditions and spin models which will give rise to caustics in
their dynamics.

So far we have used the initial condition of a localized
single quasiparticle, as given in Eq. (9). This is a nongeneric
initial condition and the reader may question how generic the
resulting light cones really are. In fact, all our analysis is stable
to perturbations around this initial condition. In particular, a
state which is naturally generated in trapped ion experiments
where individual ions can be addressed is a spin-flip state
which starts with all spins polarized in the x direction, except
for the central spin, say, which is flipped [21],

Wy (x, 1) = (x| e HM A% A5 ). (33)

It is important to realize that physical spins are in general
superpositions of multiple quasiparticles and vice versa. We
elaborate upon the mathematical details of this point in Ap-
pendix E. What we find is that as long as the quench is not too
close to the transition the number of quasiparticles created by
a spin flip is close to one and hence we are perturbing around
the single quasiparticle state given in Eq. (9). The evidence
for this statement can be found in Figs. 4(d) and 6(a), which
compare the results of using Wx with those of . We find that
the scaling properties are essentially identical in the two cases
whilst the behavior of the vortex density shows some finite
differences but is qualitatively the same.

X. DISCUSSION AND CONCLUSIONS

Caustics are a natural phenomenon that can be seen by
looking up in the sky on a rainy day. The primary bow of
a rainbow is a fold caustic and careful observation reveals
supernumerary arcs that are interference fringes described by
the Airy function. This is the first in a hierarchy of caustics
of increasing complexity whose underlying description is
via catastrophe theory. This hierarchy has previously been
explored in optics (particularly in the field of gravitational
lensing [41]), thermodynamics [96,97], laser physics [98,99],
hydrodynamics [43,45,100], and also cosmology [101,102].
By showing that light cones in many-body systems are also
caustics, we are able to open the door to the application of a
rigorous and unified mathematical framework for describing
the dynamics of these systems following a quench.
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The main conceptual result of this paper is that there is
a hierarchy of light cone structures. They are stable against
perturbations and dressed by characteristic wave functions
that scale according to the sets of exponents given in Table I.
The fold catastrophe and its attendant Airy function features
in the TFIM, but breaking the symmetry of the TFIM leads us
to the XY model and the second catastrophe, the cusp, which
is dressed by the lesser-known Pearcey function. Choosing
the spin coupling J as a tuning parameter, we show how the
scaling exponents lead to nontrivial scaling of these wave
catastrophes as J is varied.

The TFIM and XY models are exactly solvable and hence
their quasiparticles are noninteracting. However, the defining
feature of catastrophe theory is that it deals with structurally
stable singularities and hence the light cone caustics