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Lay Abstract 

Effective infrastructure asset management systems are critical for organizations that 

own, manage, and operate infrastructure assets. Infrastructure asset management 

systems contain main components (e.g., engineering, project management, 

resourcing strategy) that are dependent on information and data. Inherent within 

this system is the potential for failures to cascade throughout the entire system 

instigated by such dependence. Within asset management, such cascading failures, 

known as systemic risks, are typically caused by stakeholders not using the same 

information for decision making or being overwhelmed by too much information. 

This thesis employs analytics strategies including: i) descriptive analytics to present 

only relevant and meaningful information necessary for respective stakeholders, ii) 

predictive analytics to forecast the resilience key performance indicator, rapidity, 

enabling all stakeholders to make future decisions using consistent projections, and 

iii) prescriptive analytics to optimize the asset management system by introducing 

additional information connections between main components. Such analytics 

strategies are shown to mitigate the systemic risks within the asset management 

system and enhance the resilience of infrastructure in response to an unplanned 

disruption.   
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Abstract 

The effective implementation of infrastructure asset management systems within 

organizations that own, operate, and manage infrastructure assets is critical to 

address the main challenges facing the infrastructure industry (e.g., infrastructure 

ageing and deterioration, maintenance backlogs, strict regulatory operating 

conditions, limited financial resources, and losing valuable experience through 

retirements). Infrastructure asset management systems contain connectivity 

between major operational components and such connectivity can lead to systemic 

risks (i.e., dependence-induced failures). This thesis analyzes the asset management 

system as a network of connected components (i.e., nodes and links) to identify 

critical components exposed to systemic risks induced by information asymmetry 

and information overload. This thesis applies descriptive and prescriptive analytics 

strategies to address information asymmetry and information overload and 

predictive analytics is employed to enhance the resilience. Specifically, descriptive 

analytics was employed to visualize the key performance indicators of 

infrastructure assets ensuring that all asset management stakeholders make 

decisions using consistent information sources and that they are not overwhelmed 

by having access to the entire database. Predictive analytics is employed to classify 

the resilience key performance indicator pertaining to the forced outage rapidity of 

power infrastructure components enabling power infrastructure owners to estimate 

the rapidity of an outage soon after its occurrence, and thus allocating the 

appropriate resources to return the infrastructure to operation. Using predictive 
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analytics allows decision-makers to use consistent and clear information to inform 

their decision to respond to forced outage occurrences. Finally, prescriptive 

analytics is applied to optimize the asset management system network by increasing 

the connectivity of the network and in turn decreasing the exposure of the asset 

management system to systemic risk from information asymmetry and information 

overload. By analyzing an asset management system as a network and applying 

descriptive-, predictive-, and prescriptive analytics strategies, this dissertation 

illustrates how systemic risk exposure, due to information asymmetry and 

information overload could be mitigated and how power infrastructure resilience 

could be enhanced in response to forced outage occurrences.    
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Chapter 1  

INTRODUCTION 

1.1. MOTIVATION 

Infrastructure forms the backbone of human society, allowing for the distribution 

of resources and essential services to the general public. There are many different 

types of infrastructure that perform varying functions including power, water, 

sewage, transportation, telecommunications, facilities/housing, airports, marine 

ports, and agriculture. The quality and the operational effectiveness of such 

infrastructure systems impacts people’s quality of life, the health of social systems, 

and the stability of economic and business activities (Uddin et al. 2013). For these 

reasons it is critical to have well maintained and well operating infrastructure 

systems. The Canadian Infrastructure Report Card (2019) graded the state of eight 

public infrastructure categories to be poor and the current state of infrastructure in 

the United States, as graded by the American Society of Civil Engineers (ASCE) in 

2021, was a C- on average among 17 different infrastructure categories (American 

Society of Civil Engineers 2021). The ASCE 2021 report specifies that the total 

infrastructure investment gap to maintain a state of good repair among the 17 

categories and earn a B grade is $2.59 trillion over 10 years (American Society of 

Civil Engineers 2021). That number increased from $2.1 trillion over 10 years as 

specified in the ASCE 2017 report. These condition assessments and investment 

gap for infrastructure across Canada and the United States highlight the need for 
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effective management strategies considering whole lifecycle infrastructure 

spending to ensure the limited available resources are optimally allocated. Both the 

ASCE and the Canadian Infrastructure Report Card specify effective asset 

management (AM) practices as critical to address the main challenges faced by 

infrastructure asset owning organizations (e.g., infrastructure ageing and 

deterioration, maintenance backlogs, strict regulatory operating conditions, limited 

financial resources, and losing valuable experience through retirements) (Canadian 

Infrastructure Report Card 2019; American Society of Civil Engineers 2021).  

1.2. ASSET MANAGEMENT 

AM is a strategic discipline that provides thoroughness and accountability to an 

organization in the decisions made throughout the whole lifecycle of infrastructure 

assets (Lloyd 2010). AM involves an integrated approach for forecasting into the 

future and inspecting the past to balance the needs of all stakeholders from the 

inception of an asset to its eventual disposal (Lloyd 2010). The Institute for Asset 

Management (IAM) presented a model of AM that connects major components of 

Strategy & Planning, Asset Management Decision-Making, Lifecycle Delivery, 

Asset Information, Organization & People, and Risk & Review as shown in Figure 

1-1 (Institute for Asset Management 2015). The Federation of Canadian 

Municipalities and the National Research Council of Canada present AM as the 

combination of management, financial, economic, engineering, operational and 

other practices applied to physical assets with the objective of providing the 
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required level of service in the most cost-effective manner (Federation of Canadian 

Municipalities and National Research Council 2005). These definitions of AM are 

applicable to all types of infrastructure asset owning, operating, and managing 

organizations and describe the system-nature of AM as each AM component is 

reliant on one or multiple component’s information (International Organization for 

Standardization 2014; Canadian Network of Asset Managers 2018; United Nations 

2021). To address the connectedness between AM components, organizations that 

own, manage, and operate infrastructure assets typically implement AM systems to 

achieve their organizational strategic plan and objectives (Hodkiewicz 2015).  

 

Figure 1-1. IAM's six-box model for infrastructure AM (Institute for Asset 

Management 2015).  
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An AM system is a set of interrelated and interacting elements within an 

organization, whose function is to establish the AM policy and AM objectives, and 

the processes needed to achieve those objectives (International Organization for 

Standardization 2014). An AM system is composed of components contributing to 

the functionality to the AM system (e.g., engineering, project management, 

operations, maintenance, strategic planning) (First State Investments 2010; Institute 

of Asset Management 2014). In order for an AM system to be efficient and 

effective, each component must fully deliver its intended function and value (Pell 

et al. 2015). When a component becomes dysfunctional and does not provide its 

intended value, an AM system ceases to operate as originally intended and does not 

provide the intended functionality for an organization (de la Pena et al. 2016).  

1.3. SYSTEMIC RISK 

Within the financial system a systemic risk is when one or multiple components of 

a system have the potential to fail, leading to potentially larger cascading failures 

throughout the system (López-Espinosa et al. 2015; Miller 2017). Any complex 

system that includes connected components is exposed to systemic risks. For 

example systemic risks were explored in bridge interconnection systems (Alzoor et 

al. 2021) and the power grid interconnection systems (Ezzeldin and El-Dakhakhni 

2019). Such applications enable decision-makers to identify critically vulnerable 

components and develop strategies to mitigate systemic risks. Organizations that 

own, operate, and manage infrastructure assets have challenges that induce such 
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systemic risks within their AM system, including information asymmetry between 

AM stakeholders and among the major components of an AM system, and 

information overload among AM stakeholders. Information asymmetry occurs 

when one party in a relationship has more or better quality information than anther 

(Bergh et al. 2019). Within an AM system, information asymmetry includes 

stakeholders that use different information to support their decision-making, not 

responding to other stakeholders’ decisions promptly, and the isolation of AM 

system components due to inadequate information-sharing procedures or protocols. 

Information overload can also occur when a stakeholder is overwhelmed by the data 

and information resources accessible, and they have difficultly identifying the 

correct information needed to make a decision and therefore they do not make a 

decision or make a poor decision using the wrong information. Both situations may 

lead to a systemic risk situation as hindered or wrong decisions may instigate other 

connected AM system components using missing or incorrect information to make 

decisions and further cascading the dysfunctionality throughout the AM system. An 

example of a systemic risk in an AM system it that if the engineering component of 

the AM system were to become dysfunctional because it used incorrect future data 

projections, then the AM system would cease to operate as it was originally 

intended, as other components within the AM system are reliant on the information 

provided by the engineering component (e.g., capital project delivery and 

maintenance).  
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Numerous resources outline the main components that form a typical AM 

system (Federation of Canadian Municipalities and National Research Council 

2005; Global Forum on Maintenance and Asset Management 2014; Institute for 

Asset Management 2015) while others highlight the importance of organizing AM 

as a system of connected components (First State Investments 2010; Hodkiewicz 

2015; Institute for Asset Management 2015; United Nations 2021). However, to the 

best of the author’s knowledge, a connected AM system network model to identify 

systemic risk associated with information asymmetry and information overload 

within an AM system does not exist. Therefore, the identification and reduction of 

systemic risk within an AM system necessitates: i) the development of a typical 

AM system model as a network of connected components (i.e., nodes and links), 

which is essential for the identification of systemic risks within the AM system; and 

ii) the deployment of analytics strategies to mitigate the information asymmetry and 

information overload effects within a typical AM system.   

1.4. ASSET MANAGEMENT SYSTEM MODEL 

There is not a one-size-fits-all approach to infrastructure AM, but the Institute for 

Asset Management (IAM) developed the guideline Asset Management – An 

Anatomy to help individuals better understand the AM discipline, where to find 

more information, and what to do next in their AM journey (Institute for Asset 

Management 2015). In addition, Asset Management – An Anatomy was developed 

to help organizations with deciding whether to adopt AM and/or to improve their 
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AM capability (Institute for Asset Management 2015). The IAM is the international 

professional body for AM professionals that generates AM knowledge and 

resources, best practice guidelines, and awareness of the benefits of the AM 

discipline for individuals, organizations, and wider society (Institute for Asset 

Management 2021).The IAM’s approach to view infrastructure AM as a system of 

connected subject areas is widely deployed within infrastructure owning, operating, 

and managing organizations around the world (Zuashkiani et al. 2014; CIGRE WG 

C1.38 2020).  

The IAM’s Anatomy can be represented as the six-box model as shown in 

Figure 1-1. Each component of the six-box model is a major division of an AM 

system within an organization (i.e., Strategy & Planning, Asset Management 

Decision-Making, Lifecycle Delivery, Asset Information, Organization & People, 

and Risk & Review). Strategy & Planning develops a plan which aligns the 

organization's AM activities and all AM stakeholders toward a common goal. Asset 

Management Decision-Making makes AM strategies and evaluates challenges 

related to each aspect of an asset’s lifecycle including asset acquisition/creation, 

operation, maintenance, and end of life disposal, decommissioning, or renewal. 

Lifecycle Delivery involves the delivery of an asset’s service and value over its 

lifespan, from acquisition/creation, through operation/maintenance, and finally, to 

end of life disposal, decommissioning, or renewal. Asset Information involves the 

standards, strategy, management, and systems used for information and data that is 

employed by the other AM divisions. Organization & People involves a review of 
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the organizational structure, roles, responsibilities, and contractual relationships. 

Risk & Review identifies the risks related to an asset’s lifecycle delivery, 

understands and manages such risks, and continues the improvement and 

development of AM activities according to the strategy and plan. 

The six major divisions are further broken down by the Global Forum’s 

Asset Management Landscape into 39 subject areas (i.e., Figure 1-2) that describe 

the breadth of activities within the scope of AM, the relationships between 

activities, the need to integrate such relationships, and the critical role for AM to 

align with and deliver the strategic goals of an asset-intensive organization (Global 

Forum on Maintenance and Asset Management 2014; Institute for Asset 

Management 2015). It is these AM subject areas that form the main components of 

a typical AM system within an organization.   
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Figure 1-2. 39 AM subject areas illustrating the extent of AM activities within an 

AM system. 

 

1.5. RESILIENCE 

For the purposes of this thesis, resilience of infrastructure components will be 

discussed and quantified with respect to their goals (i.e., robustness and rapidity) as 

well as their means (i.e., redundancy and resourcefulness) (Bruneau et al. 2003; 

Panteli and Mancarella 2015b; Gholami et al. 2018; Salem et al. 2020). In this 

respect, robustness is defined as the ability of a component to maintain operation 

while experiencing disruptions;  rapidity is the time taken to recover from such 

disruptions and return to the normal (or near normal) operation levels; redundancy 

is the capability to deliver the intended function provided that some components 
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have experienced a disruption, degradation, or loss of functionality; and finally, 

resourcefulness is the capacity to restore service such that the component could 

return to a normal operation level (Bruneau et al. 2003; Bie et al. 2017). The 

relationship among the resilience goals is presented in Figure 1-3, where the 

resilience trapezoid indicates the robustness as the percentage of the remaining 

functioning components and the rapidity as the total time to return to the pre-

disruption operation level (Jufri et al. 2019). 

 

Figure 1-3. Resilience trapezoid.  

1.6. ANALYTICS IN INFRASTRUCTURE ASSET MANAGEMENT  

Analytics involves the systematic computational analysis of data for the discovery, 

interpretation, and communication of meaningful insights to enable effective 

decision-making (Barker et al. 2017; Delen and Ram 2018; Haggag et al. 2021; 

Tsai et al. 2015). In recent years, organizations have transformed their decision-

making from traditional experience-based to data-driven in an attempt to drive 
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improved value for their organizations (Delen et al. 2018; O’Neill and Brabazon 

2019; Scheibe et al. 2019). Leveraging data-driven analytics methods for decision-

making has allowed AM maintenance processes to employ predictive or 

preventative maintenance as opposed to reactive maintenance (Bertling Tjernberg 

2018). This means that maintenance decisions are driven by the data the asset is 

producing and the condition of the asset as opposed to a standardized schedule or 

when the asset fails (Mehairjan 2017; Qiu et al. 2013). Using and applying analytics 

effectively to make useful decisions requires good data sources as erroneous data 

can lead to bad decisions even when the same analytics methods are employed 

(Koziel et al. 2021). Therefore, the first step all organizations looking to implement 

analytics for improved data-driven decision-making need to make is to invest time 

and resources to ensure the data they use is high quality and is measuring the correct 

features (Levene et al. 2018; de Sousa et al. 2018). Once a quality data source is 

obtained, analytics is often described as either descriptive, predictive, or 

prescriptive and each will be described in the following sections (IBM Watson IoT 

2017). This thesis primarily focuses on power infrastructure analytics applications 

in AM.  

1.6.1. DESCRIPTIVE ANALYTICS 

Descriptive analytics collects, organizes, and presents current or historical data in 

a way that is easily understood (Vesset 2018). Primarily descriptive analytics 

focuses on what has occurred in the past or what is currently happening with the 
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data (Delen et al. 2018). Organizations typically have key performance indicators 

(KPIs) that illustrate their critical metrics used to measure the performance of their 

organizations and the assets they own, manage, and operate. Often descriptive 

analytics leverages visual applications to display such KPIs, allowing for the 

resulting insights to be accessed by a wide audience (IBM Watson IoT 2017). 

Insights obtained from descriptive analytics illustrate past performance and allow 

an organization to measure and investigate such past performance to identify areas 

that are performing well or areas that need improvement or change (Delen and Ram 

2018). These performance insights should be easy to obtain within a well designed 

descriptive analytics application as opposed to searching for results through tables 

or poorly designed figures (Levene et al. 2018). For example, within power 

infrastructure applications, descriptive analytics has been deployed to investigate 

the reliability metrics of transmission power assets (Bian et al. 2014; Ekisheva et 

al. 2016, 2018; Ekisheva and Gugel 2015a; b; Papic et al. 2014, 2017, 2018; 

Schaller 2012; Schaller and Ekisheva 2016), the statistical properties of transformer 

forced outages (Abdelfatah et al. 2013), and weather event influence on power 

infrastructure outages (Black et al. 2018; Mukherjee et al. 2018). Within each of 

the power infrastructure application examples, descriptive analytics was deployed 

to identify historical KPI performance to support decisions where investment was 

needed to improve performance and identify assets that were exceeding or 

performing according to expectations.  
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1.6.2. PREDICTIVE ANALYTICS 

Predictive analytics is the process by which trends and patterns in historical data 

are formulated in a mathematical model to predict future outcomes (IBM Watson 

IoT 2017). Primarily, predictive analytics builds machine learning models that use 

past historical performance and other influencing feature data to forecast possible 

outcomes and the likelihood of such outcomes (Goyal et al. 2016; Heng et al. 2016). 

These machine learning models are generally classified as supervised (i.e., 

developing a mathematical function that maps the relationship between input-

output pairs) or unsupervised (i.e., categorizing the dataset based on similarity, 

without specifying any certain outputs) (Zumel and Mount 2020). A predictive 

analytics methodology is known as classification if the output feature is a 

categorical feature, otherwise it is known as regression (e.g., numerical output 

features) (Delen and Ram 2018). Complete and informative input data is necessary 

to train a machine learning model to predict a specified numerical or categorical 

output feature (Hastie et al. 2009). Such input data includes informative 

contributing features to the output feature (e.g., climatic conditions, economic 

conditions, geographic locations, asset characteristics, and maintenance history) 

and past historical performance of related KPI values (Haggag et al. 2021). For 

example in power infrastructure applications, predictive analytics has been 

deployed to predict specific KPI including the number of power outages (Dokic et 

al. 2019; Nateghi 2018), the number of customers without power (Nateghi 2018), 

the distribution infrastructure outage durations (Eskandarpour et al. 2017), and the 
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power outage severity (Mukherjee et al. 2018). Each study used a unique set of 

input features, based on the accessible data, within their machine learning model to 

predict the indicated output feature. The predictions from a machine learning model 

can be used by decision-makers as proactive information on potential future 

scenarios, enabling a more data-driven approach to future decision-making (IBM 

Watson IoT 2017).  

1.6.3. PRESCRIPTIVE ANALYTICS 

Prescriptive analytics is the process that explores a set of possible actions and 

decisions and suggests the optimal result based on the analysis of the available 

complex data (Barker et al. 2017). Specifically, prescriptive analytics leverages the 

advanced capabilities of optimization and mathematical models to propose 

recommended actions and decisions and the reasons why such actions and decisions 

are recommended and any implications resulting from implementation (IBM 

Watson IoT 2017). Prescriptive analytics is the most complex of the analytics 

options, but when implemented correctly, it can provide the greatest value to 

decision-makers (Delen and Ram 2018). For example in AM infrastructure 

applications, prescriptive analytics has primarily been used to optimize the 

schedule, risk, and cost for repair, restoration, or rehabilitation of infrastructure 

assets (Abu-Samra et al. 2020; Goyal et al. 2016) and in maintenance planning and 

scheduling (Chen et al. 2015). Prescriptive analytics has the potential to offer the 

most benefit to AM decision-makers by sifting through solution spaces that are too 
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large or complex to be understood without an analytics application, but it also 

requires the highest quality data to obtain results that can be relied upon to support 

decision-making (IBM Watson IoT 2017).  

1.7. RESEARCH OBJECTIVES 

The main goal of the work presented in this dissertation is to present analytics 

strategies that can be used to mitigate the information asymmetry and information 

overload systemic risks that plague an AM system and to enhance the resilience of 

infrastructure in response to unplanned disruptions. These analytics strategies 

describe a descriptive analytics approach to improve the presentation of data and 

information while also ensuring stakeholders are not overwhelmed by large 

volumes of information, a predictive analytics approach to forecast a resilience KPI 

for future scenario planning ensuring that all AM stakeholders make decisions 

using common forecasted models, and a prescriptive analytics approach for 

minimizing the exposure of an AM system to systemic risk by adding additional 

information connections throughout the AM system. As such, the scope of the thesis 

has been set to achieve the following objectives: 

• Develop a network model including the major subject areas of a typical AM 

system and present descriptive analytics for the critical AM subject areas 

and associated KPIs to reduce the exposure of AM stakeholders to 

information asymmetry and information overload. 
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• Develop a predictive analytics framework that could be deployed to enhance 

the resilience of power infrastructure organizations by classifying the 

resilience metric rapidity of a power infrastructure component forced outage 

soon following the outage occurrence. 

• Develop a prescriptive analytics model that minimizes the exposure of an 

AM system to systemic risk from information asymmetry and information 

overload by increasing the information connections throughout the AM 

system network.  

1.8. THESIS ORGANIZATION 

This section summarizes the content of each of the five chapters in this 

dissertation: 

• Chapter 1 provides the background required for this research, an overview 

of the objectives, and a description of the thesis organization. 

• Chapter 2 introduces a toolbox that can be used by asset-owning 

organizations in the development and implementation of their AM system 

to enhance the capability of the AM system and reduce the expose of the 

AM system to systemic risk. The five tools are: 1) Dependence 

identification and network modelling; 2) Network centrality analysis; 3) 

Descriptive analytics of critical subject area paired KPI; 4) KPI-based 

predictive analytics; and 5) Prescriptive analytics for optimal network 

configuration. The utility of the developed toolbox is shown for Tools 1, 2, 
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and 3 using a real AM system network and the KPI from power transmission 

infrastructure outages. The chapter shows how the toolbox improves the 

information symmetry within the AM system—subsequently mitigating the 

dependence-induced systemic risk. 

• Chapter 3 outlines a framework that describes the process of employing a 

consistent data source to predict a resilience KPI, ensuring that all decision-

makers use the same forecasted information in future decision-making. 

Specifically, the framework could be deployed by power utilities to classify 

the KPI rapidity of power infrastructure component forced outages soon 

after their occurrence. To demonstrate the framework applicability, it is 

deployed using transmission power infrastructure forced outage data from 

the Canadian Electricity Association (CEA). Rapidity classification results 

are obtained specific to five individual power utilities annually for five 

predicted years. The validity of the framework is confirmed as an all 

categorical input feature set was able to accurately classify the categorical 

rapidity output feature. 

• Chapter 4 presents a method for reduction in systemic risk within an AM 

system caused by information asymmetry and information overload. The 

AM system is represented as a network of connected components (i.e., 

nodes and links) with the functionality of each component (i.e., link weight) 

as the number of ISO 55001 clause connections to each component. 

Optimized AM system network configurations are found for multiple 
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centrality measures based on a specified number of link additions allowable 

using a genetic algorithm approach. The optimal network configurations 

reduce the exposure of an AM system to systemic risk by increasing the 

resilience of the network.   

• Chapter 5 provides a summary of this research, the overall contributions, 

and suggestions for future work.  

It should be noted that Chapters 2, 3, and 4 represent standalone manuscripts that 

are already published, submitted, or prepared for publishing as journal articles. 

These chapters collectively describe the research body as outlined in the research 

objectives of the introduction chapter of this dissertation. However, some overlap 

may exist between chapters for the completeness of each manuscript for its 

acceptance as a standalone journal paper. 

1.9. ACRONYMS 

ASCE American Society of Civil Engineers 

AM  Asset Management 

CEA  Canadian Electricity Association 

KPI Key Performance Indicator 

IAM  Institute for Asset Management  

ISO  International Organization for Standardization 
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Chapter 2  

NETWORK ANALYTICS FOR INFRASTRUCTURE ASSET MANAGEMENT 

SYSTEMIC RISK ASSESSMENT 

ABSTRACT 

The ever-increasing investment gap in deteriorating infrastructure has necessitated 

the development of more effective asset management (AM) strategies. However, 

information asymmetry between AM stakeholder silos has been recognized as a key 

challenge in implementing effective AM strategies. The connectivity within the 

AM system introduces systemic risks (possibility of dependence-induced cascade 

failure) to the entire AM system operation when information asymmetry occurs. 

This study describes a toolbox to enable AM stakeholders to assess such systemic 

risks through a network analytics approach. The network, representing the AM 

system, is examined through its centrality measures to identify the most critical AM 

subject areas within the AM system. These subject areas are subsequently paired 

with assets’ key performance indicators (KPIs). Within the developed toolbox, 

descriptive analytics provide transferrable KPI insights between stakeholders to 

reduce key asset information asymmetry. In parallel, predictive analytics forecast 

KPIs, ensuring stakeholder awareness of future asset performance to allow for 

appropriate preparation. Subsequently, prescriptive analytics employs heuristic-

based optimization for optimal configuration of the AM network. The five tools 

are: 1) Dependence identification and network modelling; 2) Network centrality 
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analysis; 3) Descriptive analytics of critical subject area paired KPI; 4) KPI-based 

predictive analytics; and 5) Prescriptive analytics for optimal network 

configuration. The utility of the developed toolbox is demonstrated for Tools 1-3 

using a real AM system network and KPIs associated with power transmission 

infrastructure outages. Based on the analyses, managerial insights are drawn to 

illustrate the utility of the developed approach in improving the information 

asymmetry within the AM system—subsequently mitigating dependence-induced 

systemic risks.  

KEYWORDS: analytics, information asymmetry, infrastructure asset management, 

key performance indicators, network analysis, systemic risk, transmission outages. 
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2.1. INTRODUCTION 

The infrastructure assets in Canada and the United States continue to deteriorate 

each year, widening the gap in infrastructure spending needed to improve the asset 

conditions to serviceable levels (Infrastructure Canada 2018; McBride and Moss 

2020). The American Society of Civil Engineers (ASCE) (2021) report gave 

America’s infrastructure an overall grade of C-, up from a D+ in 2017. Although 

this improvement was partially attributed to asset owners adopting asset 

management (AM) techniques to prioritize spending constrained by the limited 

funding resources, the lingering low grade is attributed to massive maintenance 

backlogs, deteriorating infrastructure condition, and a lack of comprehensive asset 

inventory and consistent condition data (ASCE 2021). The Canadian Infrastructure 

Report Card (2019) states that most infrastructure used daily by Canadians is more 

than 20 years old and deteriorating rapidly. This report also outlined effective AM 

plan implementation and operationalization within asset-intensive organizations as 

critical to maximizing the impact of limited resources. In this respect, Uddin et al. 

(2013) concluded that infrastructure AM encompasses the systematic and 

coordinated planning and programming of investments, design, construction, 

maintenance, operation, and in-service evaluation of physical infrastructure and 

associated components. Additionally, Ross (2019) concluded AM can be described 

as the collective term for the structured decision-making and execution of plans to 

optimize a balance between infrastructure performance, efforts, and risk through 

the use of available and procurement of future assets.  
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2.1.1. ASSET MANAGEMENT SYSTEM MODEL 

The Institute for Asset Management (IAM) developed the conceptual AM model in 

2014 as a guide for AM professionals to implement and operate an AM approach 

in their organizations (Institute for Asset Management 2015). The IAM is the 

international professional body for AM professionals and generates AM 

knowledge, best practice guidance, and awareness of the benefits of the AM 

discipline for individuals, organizations, and wider society (Institute for Asset 

Management 2021). The AM system model has also been referred to as the Six Box 

Model as there are six connected AM divisions (i.e., Strategy & Planning, Asset 

Management Decision-Making, Life Cycle Delivery, Asset Information, 

Organization & People, and Risk & Review), as shown in Figure 2-1 (Institute for 

Asset Management 2015).  Strategy & Planning aligns the organization's AM 

activities to fit within a consistent plan that has been developed and approved by 

all stakeholders. Asset Management Decision-Making reviews the challenges and 

makes decisions regarding how each of these stages occurs within the main areas 

of an asset’s life: asset acquisition/creation; operation; maintenance; and end of life 

disposal, decommissioning, or renewal. Life Cycle Delivery involves the entire 

lifespan of the asset, from acquisition/creation, through operation/maintenance, and 

finally, end of life disposal, decommissioning, or renewal. Asset Information is 

typically input to an AM process, created or modified by a process, or the output of 

a process. Organization & People involves a review of the organizational structure, 

roles, responsibilities, and contractual relationships. Risk & Review identifies the 
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risks related to an asset’s life cycle delivery, understands and manages such risks, 

establishes a feedback mechanism within the organization to allow for input on the 

AM objectives, strategy and plan, and supports the continued improvement and 

development of AM activities.   

 

Figure 2-1. IAM conceptual model from (Institute for Asset Management 2015). 

Overall, there are 39 AM system subject areas, outlined by the Global 

Forum’s Asset Management Landscape (2014), across the six AM system divisions, 

as shown in Figure 2-2. The 39 subject areas were designed to illustrate the breadth 

of activities within the scope of AM, the interrelationships between activities and 
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the need to integrate them, and the critical role for AM to align with and deliver the 

strategic plan goals of an asset-intensive organization (Institute for Asset 

Management 2015). The connectivity among the AM subject areas within the AM 

system introduces systemic risks (possibility of dependence-induced cascade 

failure). This might occur when functionality failure(s) through either one or more 

AM subject areas, nodes, or information flow, links, cascade throughout the 

remaining functional AM subject areas, thus hindering relevant decision making 

abilities. 

 

Figure 2-2. IAM conceptual model subject areas from (Institute for Asset 

Management 2015). 

2.2. BACKGROUND 

Key to effective AM is the collective and coordinated effort that involves 

collaboration between multiple stakeholders (e.g., engineering department, 
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operations department, AM department, finance department, project management 

department, and owner). These AM stakeholders form silos in the absence of 

necessary collaboration. Such stakeholder silos have been shown to be the major 

hurdle in the implementation and operation of an effective AM system within an 

asset-intensive organization (Pell et al. 2015; de la Pena et al. 2016; Golightly et al. 

2018). The AM implementation and operation failures typically occur when 

stakeholders experience information asymmetry because of inadequate 

information-sharing protocols and/or not readily sharing key information that could 

mutually benefit their infrastructure’s AM system (Brunetto et al. 2014; Xerri et al. 

2015; Golightly et al. 2018).  

Information asymmetry occurs when one party in a relationship has more or 

better quality real-time or historical information than another (Bergh et al. 2019). 

Such information asymmetry creates systemic (i.e., dependence-induced) risks 

within the AM system due to stakeholders not timely realizing (and thus responding 

to) the impact of different stakeholders’ decisions within the implementation and 

operation of their AM system. In other words, they are precluded from using real-

time or historical information to support their decision-making (Bergh et al. 2019). 

This, in turn, causes isolation of an AM subject area node or breaks some of its 

information flow links to other nodes, potentially inducing a cascade failure 

throughout the AM system network. An example of systemic risk in a different 

industry is in international banking where in 2008, the failure of the Lehman 

Brothers caused the collapse of the global banking sector and, without government 
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bailouts to other major banking institutions, the cascade collapse would have been 

far greater (López-Espinosa et al. 2015; Miller 2017). In this example, there was 

information asymmetry in the mortgage-backed securities where risky mortgages 

were packaged as high-quality debt leading to the seller having better information 

than the buyer (Tarver 2020). In this study through a network analytics lens, the 

systemic risks involved with implementing and operating an AM system pertain to 

information asymmetry due to either node failure(s), which represent a specific AM 

subject area losing functionality and thus its ability to contribute to the overall (AM 

system) network, or link failure(s), which represent an interruption in the 

information flow between AM subject area nodes.  

It is also important to understand that organization structure can be either 

decentralized (i.e., the organization is divided into smaller teams in charge of 

specific aspects of the organization and decision-making occurs at various levels 

within the organization (Graybeal et al. 2018)) or centralized (i.e., one or a select 

few individuals make the important decisions (e.g., resource allocation) and provide 

the strategic direction for the organization (Graybeal et al. 2018)). A decentralized 

structure offers many benefits in quick decision and response time and skilled and 

specialized management. Johnson & Johnson, for example, has successfully 

adopted this management structure across their over 200 operating companies 

(Weldon 2008; Mohamad et al. 2017). However, drawbacks of a decentralized 

structure include coordination issues between teams working towards a company’s 

strategic goal, and each team prioritizing their own goals over the organization's 
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goals (i.e., teams operating as silos) (Vantrappen and Wirtz 2017). The benefits of 

a centralized organization structure include clarity in decision-making, streamlined 

implementation of policies and initiatives, and control over the strategic direction 

of the organization (e.g., Apple) (Graybeal et al. 2018). The disadvantages include 

employees having difficulty providing feedback on operations and the limited 

flexibility among the lower management levels to influence changes (Vantrappen 

and Wirtz 2017). Decentralized decision-making in infrastructure restoration was 

shown to be an effective approach by Crowther (2008) as well as Talebiyan and 

Dueñas-Osorio (2020). The AM system is typically decentralized with AM 

stakeholders in charge of and making decisions pertaining to specific AM subject 

areas (Golightly et al. 2018). Thus, the current study views and analyzes the AM 

stakeholders as a decentralized system while still proposing a centralized 

information database solution that addresses the main challenge of information 

asymmetry between AM stakeholders and ensures AM stakeholders are not 

overwhelmed with too much information. 

A decentralized system can be represented as a network consisting of 

connected nodes and links, representing a web of connected components (Barabási 

2016). The nodes simulate the components of a system, whereas the links represent 

the dependency between these nodes. Networks are often analyzed using specific 

measures related to either system components (i.e., node-based or link-based) or 

the entire connected system (i.e., network-based). Node-based measures focus on 

centrality analysis as it relates to the node's importance in the network by assessing 
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the connectedness of that node to other network nodes. There are different centrality 

measures applied in a wide variety of applications (Derrible 2012; Lee et al. 2013; 

Estrada and Knight 2015; Das et al. 2018; Ezzeldin and El-Dakhakhni 2019; 

Goforth et al. 2020).  

Analytics facilitates the realization of business objectives through reporting 

of data to analyze trends (i.e., descriptive analytics), creating prediction models for 

forecasting (i.e., predictive analytics), and optimizing processes to enhance 

performance (i.e., prescriptive analytics) (Tsai et al. 2015; Delen and Ram 2018). 

Analytics have been applied in various studies within multiple infrastructure 

industries to improve AM processes. Descriptive analytics applications focus on 

deriving insights into performance trends, from complex data, mainly through 

visualizations (Abdelfatah et al. 2013; Barker et al. 2017; Black et al. 2018; 

Mukherjee et al. 2018). Predictive analytics applications use historical data within 

machine learning models to predict an output (e.g., health index, condition, outage 

severity, or asset remaining life) (Zhou et al. 2016; Dehghanian et al. 2019; Yang 

et al. 2019; Piryonesi and El-Diraby 2020). Prescriptive analytics applications 

attempt to optimize intervention and maintenance planning and scheduling (Qiu et 

al. 2013; Chen et al. 2015; Heng et al. 2016; Abu-Samra et al. 2020). Such 

applications showed the benefits of employing analytics to improve the specific 

subsets of AM, but there remains a disconnect between the use of the analytics and 

the bigger picture view that considers systemic risks within the infrastructure AM 

system.  
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In addition, although studies have shown that analytics provides a 

competitive edge when integrated into business processes (Delen et al. 2018; 

Scheibe et al. 2019; O’Neill and Brabazon 2019; Hassan 2019) it is critical to first 

identify the key hubs within an organizational structure, through which information 

flows, for the organization to operate effectively (McDowell et al. 2016). This 

concept has been studied in organizational networks identifying key stakeholders 

(e.g., companies, people, or departments) that are critical to the functionality and 

effective operation of the organization (Barão et al. 2017; Ujwary-Gil 2019; 

Eisenberg et al. 2020). Nonetheless, to the best of the authors’ knowledge, the 

identification of AM systemic risks with a method to reduce the information 

asymmetry within the AM system subject areas (i.e., hubs) is yet to be developed. 

As such, in this study, a toolbox is created to integrate network analysis and data 

analytics for an AM system model that incorporates the decentralized nature of the 

AM stakeholders and subject areas and presents a centralized database whereby 

AM subject area-specific information will be displayed for the necessary 

stakeholders responsible for such AM subject areas. This approach will ensure 

consistency across all AM subject areas while also preventing AM stakeholders 

from being overloaded with too much information, allowing them to focus on only 

the information necessary to make decisions within the AM subject areas they are 

responsible for (Herrera et al. 2011; Prajogo et al. 2018). 

This paper first outlines the study goals and objectives, followed by a 

description of the considered network measures. Subsequently, the developed 
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toolbox is presented to describe five distinct tools that identify critical AM system 

subject areas using network analysis and employ analytics with infrastructure asset 

key performance indicators (KPIs) to reduce the systemic risks caused by 

information asymmetry between dependent AM subject areas. In the current study, 

due to data restrictions, the utility of the toolbox is demonstrated using only the first 

three of five tools considering an AM conceptual model developed by the IAM and 

power transmission infrastructure outage KPIs. Finally, managerial insights are 

drawn to illustrate how asset managers can reduce the systemic risks within an AM 

system. 

2.3. STUDY GOAL AND OBJECTIVES 

The study goal is to mitigate systemic risks, within an AM system, created by 

information asymmetry between dependent AM subject areas. This study attempts 

to break down the silos that infrastructure stakeholders operate within, allowing 

decisions to be made using the same information ensuring cohesiveness among 

stakeholders working towards their AM goals and objectives with a set of described 

tools. The described tools will enable AM stakeholders to identify the network 

structure of an AM system—achieved by modelling the complex connections 

within such a system. In addition, the described tools will allow for AM 

stakeholders to analyze the resulting network to identify dependence-induced 

systemic risks to implementing and operating an effective AM system—achieved 

by identifying the critical subject areas within the network using network measures 
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(e.g., node- and link-based centralities) specific to the AM system network 

structure. Finally, the described tools will employ descriptive, predictive, and 

prescriptive analytics using infrastructure KPIs (e.g., average outage duration, 

bridge condition index, and the number of water main failures per 1000 km) and 

the AM network structure, specific to the organization owning, managing and 

operating the infrastructure assets to reduce the information asymmetry—thus 

ensuring risk-informed and effective decision-making. This concept, applied on a 

manufacturing operational performance study by Prajogo et al. (2018), illustrated 

that good information management practices within an organization can have a 

significant impact on the overall business performance. The latter was 

accomplished through sharing information, using information technology tools 

within an organization, and sharing information with supply chain partners. As 

such, Prajogo et al. (2018) emphasized that organization management must look for 

ways to facilitate the sharing and centralized management of information across 

internal and external organizational boundaries. 

2.4. NETWORK MEASURES 

Complex network theory allows for the modelling of complex system connections 

through a network of nodes and links (Boccaletti et al. 2006; Barabási 2016; Salama 

et al. 2020). This section provides a background of some relevant node- and 

network-based measures. Within the context of this study, nodes represent the main 

AM system subject areas and links represent the connections between the subject 

areas. The links within the network are directed, indicating information, 
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documentation, knowledge, and/or policy being transferred from a source node to 

a target node, and unweighted, as each connection is viewed as equally important 

(unless otherwise specified) to the overall operation of the AM system. The level 

of connectedness within an AM system necessitates a network-based model to 

understand each node's importance to the AM system. An adjacency matrix (A) can 

be formed that describes the connectivity and disconnection between the AM 

system network nodes. Each element of the adjacency matrix, 𝐴𝑖𝑗, is either 1, 

illustrating a direct connection between nodes i and j (𝑖 ≠ 𝑗), or 0 otherwise 

(Barabási 2016). Specific node-based centrality measures that relate to the AM 

network model include:  

Betweenness centrality identifies nodes that play a central role in connecting to 

other nodes in the network (Freeman 1977). The betweenness centrality of node 

(𝐵𝐶𝑖) measures the total number of shortest paths passing through node i as 

expressed in Eqn. 1. 

 
𝐵𝐶𝑖 = ∑

𝜌𝑗𝑘(𝑖)

𝜌𝑗𝑘
𝑗≠𝑖≠𝑘

 (2-1) 

where 𝜌𝑗𝑘 = number of shortest paths connecting node j to node k and 𝜌𝑗𝑘(𝑖) = 

number of shortest paths connecting node j to node k that traverse node i in the 

network.  

Closeness centrality represents how close a node is to all other network nodes 

(Estrada and Knight 2015). The closeness centrality of node i (𝐶𝐶𝑖) is determined 

by finding the shortest path using either weighted or unweighted links for node i as: 
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𝐶𝐶𝑖 =

𝑁 − 1

∑ 𝑑(𝑖, 𝑗)𝑗
 (2-2) 

where 𝑑(𝑖, 𝑗) are the shortest path distances between nodes i and j and N is the total 

number of network nodes.  

Degree Centrality assesses the relative influence of nodes as the number of degrees 

(links) that a node directly shares with other nodes (Estrada and Knight 2015). As 

such, the degree centrality of a node i (𝐷𝐶𝑖) is defined using the adjacency matrix 

𝑨 = ( 𝑎𝑖,𝑗 )  as: 

 

𝐷𝐶𝑖 = ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

 (2-3) 

This centrality measures the direct influence of a node on its connected nodes.  

Eigenvector centrality quantifies the extent of node connectedness to other 

important (i.e., high degree centrality) nodes (Thai and Pardalos 2012). The relative 

centrality score of node i (xi) for adjacency matrix 𝑨 = ( 𝑎𝑖,𝑗 ) is: 

 
𝑥𝑖 =

1

𝜆
∑ 𝑎𝑖,𝑗𝑥𝑗

𝑗

 (2-4) 

where λ is a constant eigenvalue and the equation could be rearranged in vector 

notation as the eigenvector equation 𝑨𝒙 = 𝜆𝒙. This centrality indicates node 

importance as its connection to other important nodes and non-connection to 

unimportant nodes in the network.  

In addition to node failures, links might also fail, representing information 

asymmetry between nodes. Therefore, it is important to understand the importance 

of each link to the functionality of the network. A centrality metric related to the 
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importance of information flow in a network is the link betweenness 

centrality (LBC) (Teixeira et al. 2016), defined as the number of shortest paths that 

traverse the link (Freeman 1977). Practicality, the LBC is a measure of how central 

a link is to the network, and in the case of the AM system network, it measures the 

criticality of a specific link to information asymmetry. High ranking links 

contribute systemic risks to the network as their failure would lead to a cascading 

failure throughout the network. Although, the links within this study are specified 

as unweighted, future extensions of this toolbox might incorporate link types and 

weights that relate to the type or criticality of information that is passed between 

nodes (e.g., raw, pre-processed, figures, decisions, or connections to AM 

standards).  

In addition to the aforementioned node- and link-based centrality measures, 

there are also network-based measures that quantify the connectedness of the 

overall network structure (Estrada and Knight 2015; Opdyke et al. 2017; Valentin 

et al. 2018). The most relevant to the AM network include:  

Network density (ND) represents the ratio of actual links within a network to the 

potential links that could be formed within the network if the network were fully 

connected (Barabási 2016). It can be calculated using the following equation for a 

directed network: 

 
𝑁𝐷 =

𝑙

𝑁(𝑁 − 1)
 (2-5) 
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where l is the number of links in the network and N is the number of nodes in the 

network. The network density is a measure of the network's health and 

effectiveness. The ratio has values ranging from 0 (i.e., a completely unconnected 

network) to 1 (i.e., a fully connected network). In AM applications, it can assess 

the level of connectedness between all subject areas in sharing information and 

indicate the susceptibility to network failure (for low values).  

Average degree centrality (ADC) is the ratio of the summation of the degree 

centrality values for all nodes to the total number of nodes in the network (Barabási 

2016). It can be calculated using the following equation for all i nodes: 

 
𝐴𝐷𝐶 =

∑ 𝐷𝐶𝑖

𝑁
 (2-6) 

where DCi is the degree centrality for node i and N is the total number of nodes in 

the network. This measure indicates how quickly disruptions can diffuse throughout 

the network. Within the context of AM, this measure refers to network dependence 

and highlights the systemic risk due to the cascading effects of failed AM system 

subject areas. 

2.5. NETWORK ANALYTICS TOOLBOX 

To address the study goal and objectives, the following five tools were developed, 

as shown in Figure 2-3: 1) Dependence identification and network modelling – 

where the AM network structure is identified and modeled; 2) Network centrality 

analysis – to identify the critical AM subject areas causing systemic risk; 3) 

Descriptive analytics of critical subject area paired KPI – to develop targeted 
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visualizations that focus on only the necessary information for decision-making 

relevant to specific AM subject areas; 4) KPI-based predictive analytics – to 

forecast KPI metrics to enable more proactive decision-making; and 5) Prescriptive 

analytics for optimal network configuration – to minimize AM network systemic 

risks. Each of these tools will be further described in detail later in the paper as to 

how each tackles the study goal and objectives. 

 

Figure 2-3. Overview of the asset management network analytics toolbox. 

2.5.1. TOOL 1: DEPENDENCE IDENTIFICATION AND NETWORK 

MODELING 

Tool 1 describes the process for identifying the network structure of an AM system. 

The first step in implementing Tool 1 involves modeling an organization’s AM 

system in terms of its specific subject areas that describe the implementation and 

operation of its AM system as a network. In this respect, the connections between 

AM Subject 

Area

AM 

Division

Betweeness 

Centrality

Closness 

Centrality
Degree

Eigenvector 

Centrality

AM1 AMD1 0 0.21 5 0.39

AM2 AMD3 374.09 0.26 19 1.00

AM3 AMD2 0 0.23 7 0.75

AM4 AMD4 275.09 0.3 13 0.88

AM5 AMD2 242.91 0.33 9 0.49

AM6 AMD3 378.03 0.31 9 0.43

AM7 AMD1 267.48 0.35 5 0.14

AM8 AMD4 83.15 0.3 5 0.13

AM9 AMD1 99.52 0.28 13 0.31

AM10 AMD2 34.48 0.28 10 0.26
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AM7 AM8

AM9

AM10
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Tool 3: Descriptive Analytics of 
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subject areas are identified based on expert AM knowledge. The links between 

nodes are representative of a decision, information or data transfer, strategy, or 

policy that is passed from one node (i.e., source node) to another (i.e., target node). 

It is these links that define the dependence between subject areas to form the AM 

system network. These links are indicated in the adjacency matrix, as illustrated in 

Figure 2-4, where a link presence is indicated by a 1 and its absence is indicated by 

a 0. As mentioned earlier, the links do not have an associated weight value as the 

link represents the presence of a connection in the form of a decision, information 

or data transfer, strategy, or policy that is passed from one source node to another 

target one. The adjacency matrix can then be used to visualize the network, as 

illustrated in Figure 2-4. For example, Figure 2-4 shows ten AM subject areas in 

the adjacency matrix and an illustrative network of a potential AM network model 

with nodes representing subject areas and links representing the connections 

between subject areas. 

 

Figure 2-4. Tool 1: Dependence identification and network modelling of asset 

management subject areas. 
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2.5.2. TOOL 2: NETWORK CENTRALITY ANALYSIS 

Tool 2 describes the process for analyzing the resulting network to identify 

dependence-induced systemic risks to implementing and operating an effective AM 

system. The AM network layout, as generated using Tool 1, is employed by Tool 2 

to calculate the centrality measures—identifying the importance of each AM 

subject area within an AM system. Such centralities, illustrated in Figure 2-5, 

highlight potential node/link systemic risk in the AM system where the centralities 

are converted to a ranked list of node/link importance. In this respect, the 

betweenness centrality is a measure of the importance of the subject area to the 

overall implementation of the AM system within an organization. The closeness 

centrality is a measure of indirect AM information flow between the not-directly 

connected nodes. The degree centrality is a measure of the criticality of AM subject 

areas to the dependent subject areas. The eigenvector centrality is a measure of node 

connectedness and importance to other highly connected nodes, identifying subject 

areas that have a strong influence on other important AM subject areas. An 

organization would need to determine the most relevant centrality measure to their 

implementation strategy. For example, an organization conducting a preliminary 

screening of their AM structure would utilize the eigenvector centrality to 

determine subject areas that influence other highly influential subject areas, 

allowing the organization to focus their attention on a few subject areas to maximize 

the impact of improvement in their AM system. When the calculated node- or link-

based centrality measures are high, there is a greater likelihood of the AM network 
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failing if such an important subject area or link were to become dysfunctional. 

Therefore, the importance ranking identifies the most critical subject areas and links 

exposed to the dependence-induced systemic risk involved with the implementation 

and operation of an AM system. 

 

Figure 2-5. Tool 2: Asset management network centrality analysis and subject 

area importance ranking. 
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Tool 3 when paired with infrastructure-industry-specific KPIs. Tool 3 

visualizations are designed to draw their information from a centralized database 

and only display KPI information directly related to an AM subject area. Tool 3 

visualization are designed to ensure stakeholders focus only on the pertinent 

information necessary to make decisions within that AM subject area instead of 

being overwhelmed by all AM information from the centralized database. For 

example, the subject area outage management is paired with the KPI avg. outage 

duration year-over-year and the trend in the avg. outage duration as shown in 

Figure 2-6.  Figure 2-6 presents an example of two KPIs and their evolving values 

with time. It should be noted that only the KPI values are expected to continue to 

change with time (i.e., dynamic) as new information becomes available, whereas 

their pairing to the systemic risk-critical AM subject areas is expected to remain 

largely the same (i.e., static) as the AM system network is not expected to change 

with time.  

Infrastructure KPIs are metrics of a specified asset or overall infrastructure 

network performance. KPIs can be continuous or discrete, and can also be 

qualitative (e.g., low, medium, high) or quantitative (e.g., 50-70%) in nature. 

Although the KPI are paired to the AM subject areas, making them static in terms 

of their evaluation approach, their values are nonetheless expected to be dynamic 

as they continuously change with time under different conditions (e.g., climate). 

For example, the pavement industry uses pavement condition index and 

international roughness index, the bridge industry uses bridge condition index, the 
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power industry uses system average interruption frequency index, system average 

interruption duration index and mean outage duration, and the water and wastewater 

industry uses the number of breaks per year, the number of failures per 1000 km, 

and leakage of water per year (Alzoor et al. 2021; Uddin et al. 2013). As the KPIs 

differ between infrastructure industries, Tool 3 pairs the critically dependent subject 

areas of the AM system with the relevant KPIs. Descriptive analytics can then be 

used to illustrate these paired KPIs, as illustrated in Figure 2-6. Descriptive 

analytics often includes building a KPI-tailored dashboard that allows user 

interaction to gain useful KPI insights (Wexler et al. 2017). Tool 3 facilitates clear 

dashboards to be circulated between stakeholders to ensure every stakeholder 

would be informed on the KPIs related to the important AM subject areas. Huang 

et al. (2019) showed that when stakeholders can see the impact of their work, they 

are more likely to develop trust in the management processes and therefore share 

information internally more readily. Therefore, Tool 3 facilitates clear 

visualizations to be circulated among stakeholders that manage the key AM subject 

areas, ensuring that these stakeholders only see the necessary information related 

to the decisions they need to make within the AM subject area they are responsible 

for. Tool 3 applications, in turn, allow for AM stakeholders to monitor their impact 

on the AM system for their specific AM subject areas and ensure all decisions 

specific to each AM subject area are made using consistent information.  
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Figure 2-6. Tool 3: Descriptive analytics to inform critical asset management 

subject areas using paired KPIs. 
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Tool 4 describes the process for implementing predictive analytics for infrastructure 
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outlines the process for this tool by including historical KPI performance within a 

machine learning model to output forecasted KPI metrics. Machine learning models 

Top Ranked Subject Areas 

Descriptive Analytics

KPI

Key Performance 

Indicator (KPI)

KPI1

KPI2

KPI3

KPI4

KPI5

KPI6



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

53 

 

are typically classified as either supervised (i.e., developing a mathematical 

function that maps the relationship between specific input-output pairs) or 

unsupervised (i.e., categorizing the dataset based on similarity, without pre-

specifying outputs) (Zumel and Mount 2020). Examples of machine learning 

models include decision trees, artificial neural networks, and support vector 

machines (Aggarwal 2015).   

Input data is employed to train the machine learning model to predict a 

numerical or categorical output based on the provided contributing features (Hastie 

et al. 2009). This allows a decision-maker to predict a KPI output value based on 

contributing features (e.g., climatic conditions, economic conditions, geographic 

location, asset characteristics, time, and maintenance history) and past historical 

KPI values (Haggag et al. 2021). Any additional input features would be 

infrastructure industry-specific, therefore the organization would need to establish 

which features would be accessible before building a KPI predictive analytics 

model. Other research studies have successfully predicted specific infrastructure 

KPI within different industries in isolation (Zhou et al. 2016; Dehghanian et al. 

2019; Yang et al. 2019; Piryonesi and El-Diraby 2020), therefore a summary of 

some key techniques deployed in those studies to meet the goals of Tool 4 is 

provided below.  

For example, Figure 2-7 is presented as an illustration of this tool to show a 

forecasted 5-year period for the average outage duration KPI used by the power 

industry. The input features include contributions to the outage (e.g., outage cause, 
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failure mode, and climatic information) and component or system characteristics 

(e.g., voltage, affected component/system, time of the outage, and geographic 

location). As to be expected, the outputs from Tool 4 applications are only good for 

AM decision-making if the information used for inputs is of high quality and pertain 

to meaningful data. Koziel et al. (2021) investigated the impact of using faulty data 

in AM decision-making and found that there were significant implications on 

optimal replacement schedules. Therefore, high-quality data must be gathered 

related to each AM subject area-paired KPI to facilitate reaching the most effective 

AM decisions. The two lines in Figure 2-7 (i.e., orange and blue) indicate different 

organizations and their forecasted KPI. The KPI predictive analytics model would 

forecast future performance, allowing stakeholders to be informed and able to 

prepare plans for more effective AM. Tool 4 applications improve the information 

asymmetry in that all stakeholders are aware of and striving towards a clear 

performance goal for their critical AM KPIs and ensure consistency among 

stakeholders that manage the AM subject areas in that they make decisions based 

on consistent predictive models built specifically to each AM subject area-paired 

KPI. 
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Figure 2-7. Tool 4: Predictive analytics to forecast future KPI performance using 

historical input features. 
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(Thai and Pardalos 2012). The optimization problem would include a constraint on 

the number of allowable links to add to the network before it becomes too 

centralized or non-functional and there would be a cost per link addition in terms 

of new information, policy, or decision that would be transferred. The optimization 

would minimize the systemic risks in the AM network by reducing the impact of 

failure related to high centrality nodes or links through the addition or subtraction 

of links in the network while still maintaining the functionality of the AM system 

network. Such optimization would employ, for example, genetic algorithms or 

other heuristics, where a population of solutions is generated and evolves until a 

(near) optimal solution is obtained (Goldberg 1989). Each solution within the 

population represents a single realization of the input features (i.e., individual). 

New individuals are reproduced through special evolutionary operators including: 

1) elitism, where individuals with greater fitness are replicated; 2) crossover, where 

sets of two individuals (i.e., parents) are selected based on predefined criteria (e.g., 

random selection or a selection based on the fitness value) and subsequently mixed 

to produce new individuals; and 3) mutation, where single parents are altered 

randomly to produce new individuals (Nearchou 2004; Scrucca 2013; Yosri et al. 

2021). Within the AM system network optimization, each link would be 

represented as a feature within the individual and the values would be either 1, 

indicating a link presence, or 0, indicating link absence. The application of Tool 5 

would present an optimized configuration of the AM system such that the systemic 
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risks would be minimized, as illustrated in the new network configuration shown 

in Figure 2-8. 

 

Figure 2-8. Tool 5: Prescriptive analytics for optimal AM system network 

configuration. 
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utilities and industrial partners from across Canada (CEA 2020). The toolbox was 

applied in this setting to display its application within the asset-intensive 

transmission power industry. 

2.6.1. PROJECT DESCRIPTION 

The IAM conceptual model was used for building the infrastructure AM network. 

To show the connection between important AM subject areas and industry-specific 

KPIs, a transmission infrastructure asset outage dataset was obtained from the CEA, 

covering the period from 1978-2018. The transmission infrastructure network is 

critical to the reliable delivery of power from generators to substations and 

ultimately customers. Therefore, the effective and efficient management of 

transmission infrastructure assets is critical for safe and reliable power delivery. 

The transmission equipment outage data is for equipment operating at high voltages 

of 60 kV and above (CEA 2018). The outages are recorded for transmission 

infrastructure components including transmission lines, cables, transformer banks, 

circuit breakers, synchronous compensators, static compensators, shunt reactor 

banks, shunt capacitor banks, and series capacitor banks. The KPIs recorded and 

published by the CEA in their annual report are shown in Table 2-1 along with a 

definition of each KPI metric. This demonstration of the toolbox will involve the 

application of Tools 1 to 3 only, as the data needed for implementation of Tools 4 

and 5 is restricted by transmission infrastructure owner/operator for their internal 

use. As such, the demonstration will focus on describing the utility of the toolbox 
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for the identification of AM subject areas that are most critical to induce systemic 

risk within an AM system.  

Table 2-1. KPIs calculated and published by the CEA in their annual report. 

Key Performance Indicator 

(KPI) 
Definition 

Frequency (per 100 km.a) The number of outages divided by kilometre 

years divided by 100. 

Frequency (per a) The number of outages divided by component 

years 

Number of Outages The number of major component-related forced 

outages. 

Total Outage Duration (h) Total forced unavailable time (i.e., the time 

required to completely restore a component to 

service) of the component-related outages.  

Average Outage Duration (h) Total outage duration divided by the number of 

outages. 

Median Outage Duration (h) 50% of the forced unavailability times are 

greater than this value. 

Unavailability (%) The product of frequency and average outage 

duration in years. It is expressed as a 

percentage of the component’s population. 

 

2.6.2. NETWORK ANALYSIS 

Based on available details from the IAM’s conceptual model subject areas and the 

connections between subject areas as outlined by the Global Forum’s Asset 

Management Landscape, the adjacency matrix, shown in Appendix S1, was 

developed (Global Forum on Maintenance and Asset Management 2014).  The 

connections were specified within the report for each subject area as related subjects 

and artefacts. The colors of the subject areas in the adjacency matrix (Appendix S1) 

correspond to the AM divisions from Figure 2-2. Tool 1 uses the adjacency matrix 
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to develop the network model shown in Figure 2-9. A transmission utility AM 

system would typically include the AM subject areas from Figure 2-2 and Figure 

2-9. The node colour refers to the AM division of the subject area. The network is 

directed as typically subject areas pass knowledge, information, and policy in only 

one direction (i.e., from source to target nodes). The link colour is the same as the 

source node. Using colour as a distinguishing feature allows for the identification 

of clusters of AM division-based subject areas. This is shown in Figure 2-9, where 

the Asset Information (purple) and Organization & People (red) division subject 

area nodes are highly interconnected within their clusters. Conversely, the Strategy 

& Planning (gold) division subject areas are not only clustered amongst themselves 

but instead are highly connected with other subject areas.  

 

Figure 2-9. AM system network. 
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Network modelling is useful for viewing node connections, whereas node-, 

link-, and network-based centrality analyses are needed to identify the highly 

dependent nodes/links that induce systemic risk to the AM network. Figure 2-10 

shows the top ten subject areas for each of the previously described centrality 

measures. Of note are the Strategy & Planning division subject areas of Asset 

Management Strategy and Planning, Asset Management Planning, and Strategic 

Plan. These AM subject areas all rank high for betweenness centrality, degree 

centrality, and eigenvector centrality. This indicates that for an organization to 

implement an effective AM system, it must have a strong AM plan and objective 

targets. In addition, the Operation and Maintenance Decision-Making and 

Resourcing Strategy of the Asset Management Decision-Making division were 

high-ranking subject areas among the centrality measures.  
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Figure 2-10. Top ten asset management subject areas ranked by centrality 

measures: (a) Betweenness Centrality, (b) Closeness Centrality, (c) Degree 

Centrality, and (d) Eigenvector Centrality. 
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The links shown in Table 2-2 illustrate the critical links contributing to 

systemic risks within the AM system. The betweenness centrality of each link was 

found as per the network measure previously described. The links are ordered based 

on their criticality, which indicates their importance to the network functionality. 

Of note within Table 2-2, the Resourcing Strategy and Asset Management Planning 

nodes have multiple important links suggesting that it is particularly important for 

these AM subject areas to have excellent communication with the connected AM 

subject areas. 

Table 2-2. Top ten AM network links by betweenness centrality. 

Source Node Target Node 
Betweenness 

Centrality 

Asset Management Planning Resourcing Strategy 283 

Resourcing Strategy Resource Management 282 

Strategic Planning 
Asset Management 

Planning 
248 

Asset Management Strategy 

and Objectives 
Stakeholder Engagement 241 

Maintenance Delivery Reliability Engineering 138 

Operations and Maintenance 

Decision-Making 
Maintenance Delivery 133 

Resource Management Competence Management 133 

Stakeholder Engagement 

Operations and 

Maintenance Decision-

Making 

114 

Asset Management Strategy 

and Objectives 
Strategic Planning 112 

Stakeholder Engagement 
Asset Management 

Planning 
110 

 

In addition to the node-based centrality measures, the network-based 

measures are important to evaluate the overall resilience of the network to potential 
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failures (Barabasi, 2016). The average degree centrality of the AM subject area 

network is 3.15 and the network density is 0.08, meaning that only 8% of the 

potential links of a fully connected network connect the AM subject areas. This 

implies that the network is vulnerable to systemic risk because if one or more of the 

previously identified critical nodes/links were to be disrupted, the AM system 

would be greatly impacted.  

2.6.3. DESCRIPTIVE ANALYTICS 

Three of the critically dependent subject areas, as determined from the node-based 

centrality analysis in Figure 2-10, are used to illustrate the use of descriptive 

analytics for subject area-paired KPI analysis. Asset Management Strategy and 

Objectives, Asset Management Planning, and Operations and Maintenance 

Decision-Making were chosen for illustration as these subject areas ranked high in 

the centrality importance measures previously analyzed. Three of the thirty-nine 

subject areas were chosen to illustrate the use of Tool 3 for the sake of brevity, but 

organizations should employ descriptive analytics to pair each subject area to at 

least one infrastructure AM KPI. It should be noted that insights into multiple 

subject areas can be taken from the same figure, as illustrated below. 

Figure 2-11 illustrates the Asset Management Strategy and Objectives 

subject area focused on developing a long-term plan for managing an organization’s 

infrastructure assets (Institute for Asset Management 2015). Figure 2-11 shows 

how the organization can see their AM KPIs (e.g., median outage duration in hours 

and number of outages) compared to other organizations. In this context, the term 
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organization, shown in Figure 2-11, indicates anonymized transmission utilities 

that contributed outage data for all shown years. Figure 2-11 contains three main 

sections where a stakeholder can glean information after selecting the asset type in 

the view from the menu (i.e., titled: Component): 1) The top bar graph indicates the 

KPIs from the period as selected on the side slider menu along with the median KPI 

value among all organizations over the selected period (e.g., 2014-2018); 2) The 

line graph shows the changing KPI for each organization (colour) over the period 

indicated by the side slider menu; and 3) The bottom point graph is based on the 

organization selected by the menu (titled: Organization) and is broken down by 

voltage class to highlight the long-duration outage events with an option to select a 

specific point to display the outage features. Descriptive analytics in this application 

will allow the key stakeholders to track the objective KPIs while also investigating 

the long-duration outages to understand and remedy them.  
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Figure 2-11. Descriptive analytics for Asset Management Strategy & Objectives 

subject area including Median Outage Duration and Number of Outages KPIs for 

transmission line assets. 

 Figure 2-12 illustrates the KPI related to two important subject areas in 

Asset Management Planning and Operations and Maintenance Decision-Making. 

The Asset Management Planning subject area focuses on achieving the AM 

objectives and identifying related risks arising from previous asset failures whereas 

the Operations and Maintenance Decision-Making subject area focuses on ensuring 

a predictable and acceptable level of service throughout the asset’s life (Institute for 

Asset Management 2015). Figure 2-12 illustrates both subject areas and contains 
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two sections: 1) The bar graph shows current year performance (blue) compared to 

previous year performance (grey), which can be changed using the arrow selector 

on the right side of the dashboard; and 2) The sparkline shows the specified 

subcomponent (selected from the drop-down menu: Subcomponent Group) KPI 

over the years specified in the side menu (titled: Year). This descriptive analytics 

application allows an organization to monitor the year-over-year changes in 

average outage duration to analyze previous asset failures and develop mitigation 

plans to ensure the issues do not arise again. In addition, the service level and 

trending performance of the specified asset subcomponent can be monitored to 

ensure that an acceptable level of service is being provided by that subcomponent 

and to view the impact of operations and maintenance decisions. For example, the 

trending performance, indicated by the sparkline, for transformer banks shows a 

decrease in average outage duration. This would indicate that the operations and 

maintenance decisions being made are positively affecting the performance. This 

descriptive analytics application would then be distributed to all AM stakeholders 

to see the positive impact of their coordinated effort in improving the operations 

and maintenance decisions.  
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Figure 2-12. Descriptive analytics for Asset Management Planning and 

Operations and Maintenance Decision-Making subject area and Average Outage 

Duration KPI for each transmission asset component. 

2.7. MANAGERIAL INSIGHTS 

The described network analytics toolbox and the subsequent demonstration yields 

managerial insights that can reduce the information asymmetry between AM 

subject areas by targeting corresponding systemic risks within the AM system 

network. The following subsections coincide with the main AM divisions Strategy 

& Planning, Asset Management Decision-Making, Lifecycle Delivery, Asset 

Information, Organization & People, and Risk & Review. The insights will be 
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presented from the viewpoint of an asset manager within an infrastructure asset-

intensive organization and are transferable across infrastructure AM industries. The 

application of Tools 1 and 2 would be organization-specific whereas Tools 3 to 5 

would have industry-specific KPIs, and additional features, as outlined in the 

respective tool descriptions.  

2.7.1. STRATEGY & PLANNING  

Based on the centrality measures analyzed in the demonstration of the AM network, 

it was shown that some Strategy & Planning subject areas were very important to 

the successful implementation and operation of an AM system. This can be used as 

evidence that the most critical aspect of a successful AM system is the development 

of a clear and precise strategy and plan. This ensures information symmetry 

between stakeholders as all stakeholders are guided by the same clearly defined 

strategy and plan and not overwhelmed by too much information. This will allow 

all other dependent lifecycle stages and decisions that follow to be guided by a clear 

strategy.  

2.7.2. ASSET MANAGEMENT DECISION-MAKING 

Key subject areas, based on the centrality measures, important to the effective 

decision-making within an AM system are Resourcing Strategy, Capital Investment 

Decision-Making, Operations and Maintenance Decision-Making, and Lifecycle 

Value Realization as shown in Figure 2-10. These critical AM subject areas 

highlight the necessity for all AM stakeholders to be making decisions based on the 
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same information. Descriptive analytics applications showed how stakeholders 

could stay informed of current information and see the effects of their decisions on 

the AM KPIs. Figure 2-12 illustrated this concept by showing the KPI variation 

related to the specified AM subject areas, allowing stakeholders to view the impact 

of their AM decisions on the KPI of the assets.  

2.7.3. LIFECYCLE DELIVERY 

The lifecycle of assets includes acquisition, operation, maintenance, and disposal. 

This cycle is continuously operating within an infrastructure asset-intensive 

organization as infrastructure assets are at different stages of their lifecycle. As is 

shown in Figure 2-10, the Lifecycle Delivery subject areas are important for the 

closeness centrality measure indicating that these subject areas are important to the 

indirect information flow within the AM system. This means that information is not 

passed through a direct connection to a node, but through one or multiple other 

nodes. The nodes that pass information to other nodes typically process such 

information so that it can be readily used by the following node. For example, 

Figure 2-10 shows that the subject area Fault and Incident Response processes the 

information from the Contingency Planning and Resilience Analysis subject area 

before passing it onto the Risk Assessment and Management subject area. 

2.7.4. ASSET INFORMATION 

Digital data related to the KPIs for infrastructure assets is critical to implement the 

network analytics toolbox. Asset information is most valuable in a digital format so 
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that it can be used to track KPIs and implement the tools to improve the value assets 

provide throughout their lifecycle. The Asset Information subject areas are highly 

connected, as shown in Figure 2-9 and Table S1, indicating that if one were to be 

disrupted, then the others would also be disrupted. An asset manager should note 

that the design and development of a robust asset information collection, reporting, 

and storage system is critical to the development of informative results on asset 

performance, which in turn is necessary to evaluate the effectiveness of the AM 

plan being implemented. Throughout the lifecycle of an asset, the KPIs associated 

with an asset’s performance is critical to be collected and stored consistently so that 

the KPIs can be monitored on the timeline tailored to a specific infrastructure asset 

(e.g., monthly, yearly, or every 5 years). This will enable Tools 3-5 to be deployed 

effectively to improve the AM system. In addition, having a consistent asset 

information reporting method allows stakeholders to have access to the same 

information, therefore reducing the information asymmetry. 

2.7.5. ORGANIZATION & PEOPLE 

The Organization & People subject areas were also clustered in the AM network, 

suggesting that most subject areas within this division are connected and if there is 

a disturbance in one then it will affect all the others. The asset manager should use 

this insight to ensure all stakeholders are clear of the AM strategy, goals, and 

implementation plan, to reduce the potential for information asymmetry between 

stakeholder silos. The stakeholder buy-in to implementing an AM system is critical. 

There needs to be strong organizational management so that stakeholders can see 
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the positive effects of information symmetry on infrastructure asset KPIs following 

the implementation of an AM system.  

2.7.6. RISK & REVIEW 

The risk and review process is critical to the evaluation of the effectiveness of the 

AM plan within an organization. The use of descriptive analytics allows asset 

managers to efficiently evaluate the KPIs for the organization’s assets. The targeted 

descriptive analytics applications to specified critical AM subject areas allow asset 

managers to concentrate on detailed information quickly to minimize the time 

needed to search for the result they are looking for. Descriptive analytics also allows 

for rapid consultation amongst stakeholders, therefore improving the review 

process and necessary collaboration. Deploying Tool 3 also allows for automatic 

updates to occur in the figures so that a stakeholder does not need to continuously 

update figures for use in reports. This allows all stakeholders to have access to the 

same information, allowing them to make decisions with the most accurate and up-

to-date information. 

2.8. CONCLUSION 

Global infrastructure assets are continuously deteriorating, and the current 

condition of infrastructure is poor in both Canada and the United States. To 

maximize the value of each dollar spent on infrastructure for repair, rehabilitation, 

replacement, and maintenance, effective and efficient asset management (AM) 

practices are needed. One of the main challenges in implementing and operating an 
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effective AM system within an organization is the systemic risks caused by 

information asymmetry between dependent AM system subject areas. This study 

presents a network analytics toolbox to identify the systemic risks induced within 

an AM system and reduce the information asymmetry by using key performance 

indicator (KPI) analytics paired with the critical AM subject areas. The five tools 

described include: 1) Dependence Identification and Network Modelling; 2) 

Network Centrality Analysis; 3) Descriptive Analytics of Critical Subject Area 

Paired KPI; 4) KPI-Based Predictive Analytics; and 5) Prescriptive Analytics for 

Optimal Network Configuration. Tool 1 describes how to build an AM network 

from an organization’s AM system. The connections between the AM system 

subject areas are used to develop an adjacency matrix and the adjacency matrix is 

then used to build an AM system network. Tool 2 employs node- and network-

based centrality measures to determine the most critical nodes to the operation of 

the AM system network. Tool 3 takes the critical AM subject areas, identified from 

the node-based centrality measures, and uses descriptive analytics to track KPIs that 

directly relate to the important AM subject areas. Tool 4 uses historical KPI values 

and additional influencing features within a machine learning model to predict 

future KPIs. Tool 5 uses the existing AM network structure and applies 

optimization to generate the optimal AM system network configuration to minimize 

the systemic risks.  

The toolbox was subsequently deployed to demonstrate three of the five 

tools using the Institute for Asset Management’s conceptual model and 
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transmission infrastructure asset outage KPIs. Critical AM subject areas were 

identified through the node- and link-based centrality measures and descriptive 

analytics was deployed so that transmission utilities would be able to track their 

KPIs as they directly relate to the important subject areas. The AM subject areas 

were described using descriptive analytics applications. Key managerial insights 

for systemic risk identification associated with the AM system and reduction in 

information asymmetry between AM stakeholders were highlighted as they related 

to each of the major AM divisions.  

Understandably, the implementation of the tools described within the study 

requires active participation among all AM stakeholders to be effective. As in all 

data-driven models, high-quality input data is necessary to achieve a useful output. 

Specific, and expected, limitations of Tool 1 relate to its dependency on an 

organization’s record-keeping of its AM system and/or an organization’s level of 

understanding of how the AM subject areas are linked together. For Tool 2, if any 

component (i.e., node or link) changes due to organization restructuring, then all 

centrality values would need to be revised. Tool 3 requires an infrastructure 

industry-specific expert to pair AM subject areas with relevant KPIs and there needs 

to be relevant data to generate KPIs within the existing database. Tool 4 is 

influenced by the features available for inputs to the machine learning model (e.g., 

if all available features are categorical then there is a limited number of machine 

learning models that can be used, and the output will also be categorical). Finally, 

the ability of Tool 5 to provide an exact (or near exact) solution might be affected 
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by the complexity of the objective function and constraints, indicating that users 

might resort to heuristics, for example, to reach a solution. In addition, it is expected 

that organizations would implement the described tools in sequential order as 

indicated and become comfortable with using each tool implementation before 

implementing the next tool. By adopting the toolbox presented in this study, it is 

expected that stakeholders can reduce the systemic risks within an AM system using 

AM subject area-specific Tool 3 outputs that display information from a centralized 

database, thus ensuring that an AM subject area’s information is not siloed from the 

overall AM system. This also ensures that AM stakeholders make decisions using 

a consistent information source, reducing the likelihood of stakeholders acting in 

silos and causing information asymmetry. 
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2.10.  NOTATIONS 

𝐴𝑖𝑗 Adjacency matrix with elements for nodes i and j 

𝐵𝐶𝑖 Betweenness centrality of node i 

𝜌𝑗𝑘 Number of shortest paths connecting node j to node k 

𝜌𝑗𝑘(𝑖)  

 

Number of shortest paths that connect node j to node k that traverse 

node i 

𝐶𝐶𝑖 Closeness centrality of node i 

𝑑(𝑖, 𝑗) Shortest path distance between nodes i and j 

N Total number of network nodes 

𝐷𝐶𝑖 Degree centrality of node i 

xi Relative eigenvector centrality score 

λ Eigenvalue 

ND Network density 

l Number of links in the network 

ADC Average degree centrality 
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2.11.  ACRONYMS 

AM Asset management 

ASCE  American Society of Civil Engineers 

CEA Canadian Electricity Association 

IAM Institute for Asset Management  

KPI  Key performance indicator 

LBC Link betweenness centrality 
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2.12. SUPPLEMENTAL MATERIALS 

 

         Adjacency matrix indicating interconnections between asset management subject areas.

Asset Management Policy 1

Asset Management Strategy and Objectives 1 1 1 1

Demand Analysis 1 1

Strategic Planning 1 1 1 1

Asset Management Planning 1 1 1

Capital Investment Decision Making 1 1 1 1 1

Operations and Maintenance Decision Making 1 1 1

Lifecycle Value Realization 1 1 1 1 1

Resourcing Strategy 1 1 1

Shutdown and Outage Strategy 1 1 1

Technical Standards and Legislation 1 1 1 1

Asset Creation and Acquisition 1

Systems Engineering 1

Configuration Management 1

Maintenance Delivery 1 1 1 1

Reliability Engineering 1 1 1 1

Asset Operations 1 1

Resource Management 1 1 1 1 1 1

Shutdown and Outage Management 1 1 1 1 1

Fault and Incident Response 1 1

Asset Decommissioning and Disposal 1 1 1 1

Asset Information Strategy 1 1 1 1

Asset Information Standards 1 1 1

Asset Information Systems 1 1 1

Data and Information Management 1 1 1

Procurement and Supply Chain Management 1 1 1

Asset Management Leadership 1 1 1 1

Organizational Structure 1 1 1 1

Organizational Culture 1 1 1

Competence Management 1 1 1

Risk Assessment and Management 1 1 1 1

Contingency Planning and Resilience Analysis 1

Sustainable Development 1 1 1 1 1 1

Management of Change 1

Asset Performance and Health Monitoring 1 1

Asset Management System Monitoring 1 1

Management Review, Audit, and Assurance 1 1

Asset Costing and Valuation 1 1 1 1 1

Stakeholder Engagement 1 1 1 1 1 1 1

Source
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Chapter 3  

RAPIDITY PREDICTION FOR POWER INFRASTRUCTURE FORCED 

OUTAGES: A DATA-DRIVEN APPROACH  

ABSTRACT 

Power infrastructure is essential for the operation of almost all other critical 

infrastructure systems, including water, transportation, and telecommunication. 

Recently, there has been an increase in forced power outage frequency and extent 

due to infrastructure aging, extreme weather events, and deliberate attacks. To 

combat forced power outage risks, researchers have been focusing their attention 

on improving the resilience of different power infrastructure systems. A key aspect 

of infrastructure resilience is the rapidity, defined as the time required to return to 

normal operation levels following functionality disruptions. This study develops a 

machine learning-based framework to predict the rapidity of power infrastructure 

following forced outages.  The framework includes classification models such as 

bagging, random forests, and artificial neural networks to accommodate the 

categorical nature of typical power infrastructure component outage features. The 

framework also includes a genetic algorithm for optimized selection of such 

features in order to facilitate the model’s best prediction performance. The utility 

of the developed framework is demonstrated using actual transmission line forced 

outages data. Within the demonstration application, the rapidity is split into two 

classes indicating short and extended outages and the random forest classification 
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model is found to have the best rapidity prediction performance. In addition, key 

features pertaining to outage classification are explored using partial dependence 

analysis. Finally, insights for resilience-guided asset management are presented. 

The developed framework enables infrastructure stakeholders to predict forced 

outage rapidity classes soon after the occurrence of the former —subsequently 

enabling rapid identification of appropriate resources needed to promptly restore 

infrastructure functionality and thus ensuring infrastructure resilience. 

KEYWORDS: classification, machine learning, outage analysis, power 

infrastructure, rapidity, resilience 
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3.1. INTRODUCTION 

Continuously operating power infrastructure is crucial for the functionality of 

almost all other critical infrastructure systems (e.g., water, transportation, and 

telecommunication) (Haggag et al. 2020). The frequency and severity of major 

outages impacting power infrastructure have been consistently increasing over the 

past few decades due to aging, operation errors, severe climatic changes, and 

deliberate attacks (Bhusal et al. 2020; Haggag et al. 2021b). As such, enhancing the 

resilience of power infrastructure continues to be on the forefront of infrastructure 

research efforts (Idaho National Laboratory 2010; Preston et al. 2016; Canadian 

Electricity Association 2016; Raoufi et al. 2020). In power system applications, 

resilience has been defined using different aspects, but most definitions include the 

ability to quickly recover/rebound from adverse events (Panteli and Mancarella 

2015a; Ciapessoni et al. 2019; Gholami et al. 2018).  

 For the purposes of this study, resilience will be discussed and quantified 

with respect to its goals (i.e., robustness and rapidity) as well as its means (i.e., 

redundancy and resourcefulness) (Bruneau et al. 2003; Panteli and Mancarella 

2015b; Gholami et al. 2018; Salem et al. 2020). In this respect, robustness is defined 

as the ability of a component to maintain operation while experiencing disruptions;  

rapidity is the time taken to recover from such disruptions and return to the normal 

(or near normal) operation levels; redundancy is the capability to deliver the 

intended function provided that some components have experienced a disruption, 
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degradation, or loss of functionality; and finally, resourcefulness is the capacity to 

restore service such that the component could return to a normal operation level 

(Bruneau et al. 2003; Bie et al. 2017). The relationship between the resilience goals 

is presented in Figure 3-1, where the resilience trapezoid indicates the robustness 

as the percentage of the remaining functioning power components and the rapidity 

as the total time to recover following disruptions (Jufri et al. 2019). Improving 

power infrastructure resilience therefore involves minimizing the area of the 

resilience trapezoid through maximizing the robustness and minimizing the rapidity 

following forced outages. However, the development of an effective resilience 

enhancement strategy necessitates first the accurate estimation of the robustness 

and rapidity following such forced outages (Bhusal et al. 2020). This study focuses 

on predicting the resilience metric of rapidity, using predictive analytics (i.e., data-

driven models), which is key to enhance the response of the utility owner 

immediately following outages through quick allocation of the necessary resources 

to restore service.  
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Figure 3-1. Component resilience concept and goal metrics. 

 Analytics involves collecting, cleaning, processing, visualizing, and 

analyzing related datasets, and subsequently gaining informative insights to make 

effective decisions (Aggarwal 2015). Owing to the large volume of spatio-temporal 

data generated by utility companies, it is challenging to develop pertinent usable 

insights for predicting power infrastructure key performance indicators (Zhou et al. 

2016; Zhang et al. 2019). Predictive analytics has shown promise in deriving 

insights from data through the development of machine learning models (Goyal et 

al. 2016; Delen and Ram 2018; Davila Delgado et al. 2020). Such models are 

generally classified as supervised (i.e., developing mathematical functions that map 

the relationship between input-output pairs) or unsupervised (i.e., categorizing 

dataset observations based on similarity without specifying any certain outputs) 

(Zumel and Mount 2020).  
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The application of predictive analytics to estimate resilience goal metrics for 

power infrastructure has mainly focused on predicting the outage occurrence and 

severity (i.e., robustness) under natural disasters and adverse events. For example, 

Nateghi (2018) built an ensemble model for a power distribution network in the 

Central Gulf Coast Region of the U.S. to predict the number of outages, customers 

without power, and cumulative outage duration in each distribution cell under a 

simulated hurricane Katrina scenario. Eskandarpour et al. (2017) developed a 

support vector machine (SVM) model to predict distribution power grid outages 

due to hurricanes. Mukherjee et al. (2018) integrated climatic, electricity 

consumption, customers served, economic characteristics, population, and land and 

water mass information within an SVM model to classify the distribution power 

outage severity and subsequently used a random forest model to identify major risk 

factors. Dokic et al. (2019) used logistic regression with input features of weather 

data and spatial characteristics of transmission lines and substations to predict the 

outage occurrences. Omran and El Houby (2020) classified the type of electrical 

disturbances in North America by integrating feature selection with five machine 

learning models for classification, including k-nearest neighbour, artificial neural 

network, decision tree, logistic regression, and naïve Bayes. Xie et al. (2020) 

presented a review of machine learning methods used to assess and control the 

power network stability and restore the system to operation level following adverse 

events.  
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Although the above studies highlighted the suitability of machine learning 

approaches for the prediction of outage occurrences and severity (i.e., robustness) 

for power infrastructure components, a systematic machine learning-based 

framework to predict the rapidity metric of resilience is yet to be developed and 

tested. Therefore, this study presents a framework that can be deployed using power 

infrastructure component forced outage data, if such data is available, to classify 

the rapidity of a forced outage based on its contributing features that are known 

soon after an outage occurrence. The paper first describes the study goal and 

objectives, then outlines the features of the framework and describes the unique 

nature of the features within the databases. Subsequently, the framework utility is 

illustrated using actual transmission line forced outage data. A classification model 

is developed to predict the rapidity classes. The importance of the contributing 

features is further explored as they relate to extended forced outages. Finally, 

managerial insights are drawn with respect to the resilience-guided asset 

management based on the results of the feature importance and rapidity 

classification. 

3.2. STUDY GOAL AND OBJECTIVES 

The study goal is to present a framework to predict the rapidity of forced power 

infrastructure outages using key contributing features known soon after the onset 

of such outages. To achieve this goal, the study objectives include: 1) Developing 

machine learning models to classify the rapidity following a forced outage using 
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only categorial input features that would be known by a utility soon after the onset 

of the outage; and 2) Identifying key rapidity-critical features, allowing utilities to 

adjust their asset management strategy to mitigate the impact of such risks in the 

future; and 3) Employing historical datasets pertaining to transmission 

infrastructure forced outage events to demonstrate the applicability of the 

aforementioned objectives and draw relevant managerial insights. 

3.3. FRAMEWORK DEVELOPMENT 

The developed framework, shown in Figure 3-2, summarizes the steps of a data-

guided strategy to classify the rapidity of power infrastructure components based 

on existing databases (Step 1).  For example, two of the main transmission outage 

databases in North America are produced by the Canadian Electricity Association 

(CEA) and the North American Electric Reliability Corporation’s Transmission 

Availability Data System (NERC TADS). CEA and NERC TADS started recording 

outage events in 1978 and 2008, respectively (Papic et al. 2016), and several studies 

have employed these databases to estimate the reliability metrics of power 

transmission assets (Schaller 2012; Papic et al. 2017; Bian et al. 2014; Papic et al. 

2014; Ekisheva and Gugel 2015a; Ekisheva and Gugel 2015b; Ekisheva et al. 2016; 

Schaller and Ekisheva 2016; Papic et al. 2018; Ekisheva et al. 2018). The CEA 

database includes a record of all forced outage events from participating utilities 

across Canada for transmission components with an operating voltage of 60 kV and 

above (CEA 2018). Specific components include: transmission lines, cables, circuit 
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breakers, synchronous and static compensators, as well as transformer-, shunt 

reactor-, shunt capacitor-, and series capacitor-banks. Similarly, the NERC TADS 

database includes a record of forced outage events for transmission components 

that operate at AC and DC voltages ≥ 200 kV (North American Electric Reliability 

Corporation 2007). The transmission components include AC circuits (overhead 

and underground), transformers, AC/DC back-to-back converters, and DC circuits. 

The described framework from Figure 3-2 can be deployed on any power 

infrastructure forced outage database that includes details similar to those described 

in the previously presented examples.  

Step 2 of the Figure 3-2 framework presents feature processing that may 

include data cleaning, imputation, and preparation as the historical databases are 

not readily available in a format that can be directly employed within a suitable 

machine learning classification model. Data cleaning involves the removal of 

missing observations or replacing them with a representative statistic (e.g., mean or 

median) (Fujikawa and Ho 2002). The latter process is typically referred to as data 

imputation and can be applied in an unsupervised fashion through clustering the 

data and replacing the missing values accordingly (Li et al. 2005; Patil et al. 2010). 

Following data cleaning and missing values imputation, the data should be 

organized using appropriate feature labels so that the features can be tracked 

throughout the modeling process. Finally, the feature values must be in a format 

compatible with the machine learning models to be developed (e.g., categorical or 

numerical).  
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Figure 3-2. Framework for developing machine learning classification models for 

forced outage rapidity prediction considering categorial input and output features. 

Step 3 in the Figure 3-2 framework is the scope definition, considering that 

the framework was developed so that utility companies are able to predict the 

rapidity of outages soon after their occurrence. Step 4 of the framework involves 

filtering the data based on the scope definition. Some features recorded for each 

outage are not influencing inputs per se, and therefore those features should be 

excluded when the classification model is developed. For example, the year of the 
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outage is an irrelevant input feature for classification as each year starts a new set 

of outages and there is no correlation between a given year to the real-time 

prediction of the outage. Instead, the month, day, and hour can be included as time-

indication input features.  

Typical power infrastructure forced outage databases (e.g., CEA and NERC 

TADS) are distinctive in that they include mostly categorical features in 

conjunction with the actual duration of the forced outage. This type of dataset 

presents a unique challenge as correlation between features cannot be evaluated 

through classical measures (e.g., Pearson, Kendall, and Spearman correlation 

coefficients), as such measures are not applicable when categorical features are of 

interest. Therefore, Step 5 in the framework performs exploratory data analysis 

using descriptive analytics to provide the analyst with preliminary insights on 

feature values and trends in the data based on associated categorical features. For 

example, descriptive analytics might involve investigating the population 

descriptions and distribution of the output feature (e.g., rapidity density curve) or 

analyzing the association between the outage characteristics and contributing 

conditions (e.g., cause, location, failure, and fault) (Abdelfatah et al. 2013; Barker 

et al. 2017; Mukherjee et al. 2018; Black et al. 2018). 

Once the input feature set has been filtered and descriptive analysis has been 

applied on the output feature, the output feature can be categorized into classes 

related to the rapidity of each forced outage instance. Databases typically do not 

directly define a rapidity metric, nonetheless the outage duration can be used to 
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reflect the rapidity as it reflects the time spent by the utility to restore the service of 

the component following forced outage events. Therefore, the numerical values 

associated with forced outage durations are mapped to rapidity classes because all 

other features in typical power infrastructure forced outage databases are 

categorical. Step 6 of the framework involves identifying the number of classes for 

the rapidity feature with specific reference to the project objective. For example, 

the framework application demonstration to follow splits the rapidity into two 

classes, with 75% of the data in one class and 25% in the other, as the demonstration 

goal is to correctly predict the outages in the second class (i.e., the extended forced 

outages). While predicting the actual rapidity value is crucial, this is challenging 

particularly when the input features are entirely categorical (e.g., CEA and NERC 

TADS databases), as inputs would need to be mapped into continuous dummy 

counterparts in order to relate them to rapidity in a regression fashion. Alternatively, 

as adapted in the current study, forced outage durations (i.e., rapidity following a 

forced outage) can be classified into short or extended classes, where an accurate 

prediction of the outage class can help the service providers to efficiently allocate 

their resources and thus reduce the expected rapidity. 

Step 7 in the Figure 3-2 framework requires identifying the training and 

testing subsets for each data-contributing organization. This is a key step as typical 

power infrastructure forced outage datasets contain multiple organizations’ outage 

records, and thus it is important to separate each organization’s outages in order to 

develop more relevant machine learning models. This step is also important as each 
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utility operates in a different geographic area with different climatic and operation 

conditions. In addition, the infrastructure assets may have been constructed at 

different times with different systems, manufacturers, and maintenance practices—

yielding key differences between the data-contributing organizations that 

subsequently necessitates the creation of a model specific to each organization. 

3.3.1. MACHINE LEARNING METHODS FOR CLASSIFICATION 

Step 8 in the Figure 3-2 framework specifies that machine learning classification 

models be identified that can handle the entirely categorical input and output feature 

set. Classification is a supervised learning method where input and output pairs are 

used for developing, testing, and validating the machine learning model. 

Specifically, a classification model aims at using input features to predict the output 

feature values (e.g., rapidity) (Aggarwal 2015). This framework presents decision 

tree-based ensemble machine learning models (i.e., bagging and random forest) and 

artificial neural network models as methods for handling categorical feature sets.  

It should be highlighted that other machine learning methods (e.g., support vector 

machines, Naïve Bayes, and boosting) can be used for classification modelling 

using categorical feature sets; however, the methods employed in the present study 

were chosen because their performance has been confirmed in similar applications 

involving categorical feature sets (Chi et al. 2012; Aggarwal 2015; Gondia et al. 

2020; Zumel and Mount 2020; Haggag et al. 2021a; Haggag et al. 2021b). 
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Decision trees rely on hierarchical tree-like decisions based on the values of 

the input features (Zumel and Mount 2020). Each decision tree split is based on the 

full set of input feature values and is specific to one or multiple input feature values. 

On their own, decision trees do not often capture the output feature values 

accurately; therefore, ensemble methods are often used to improve the performance 

of a decision tree-based classification model (James et al. 2013). The framework 

presented in this study discusses only bagging and random forests ensemble 

methods for brevity; however, other ensemble methods are provided in detail in 

Aggarwal (2015). Bagging employs sampling with replacement from the training 

data to generate t bootstrapped classifiers (Zumel and Mount 2020). The final 

classification result is the average of the k classification processes. Random forests 

are an improvement to bagging as they de-correlate the resulting prediction by only 

allowing the model to split the decision tree using a specified number of features, 

m (Zumel and Mount 2020). For classification problems, the initial value of m is 

√𝑞, where q is the number of features in the dataset. This initial m value is then 

adjusted iteratively in order to improve the model performance. 

Artificial neural networks are machine learning models developed based on 

the human nervous system. A network is composed of an input layer, one or more 

hidden layers, and an output layer and a set of neurons are allocated to each hidden 

layer and are connected to subsequent and following layers through synapses. Each 

neuron receives inputs from subsequent neurons, performs computations on these 

inputs, and then passes them along to the following neurons (Aggarwal 2015). The 
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computation occurring at each neuron is defined by the input connection weights, 

each of which can be seen as the strength of the synapse connection. A training 

dataset is typically used to incrementally change the weights whenever incorrect 

classifications occur to ultimately produce a model that has the best classification 

performance (Hastie et al. 2009). It is noteworthy that the greater the number of 

hidden layers and neurons used, the greater the risk of model overfitting (Aggarwal 

2015). Overfitting refers to the model being able to efficiently replicate the training 

subset albeit with limited generalizability to other subsets. Therefore, it is highly 

recommended to start developing a neural network model with one hidden layer 

containing two or three neurons and gradually increase the network complexity 

only if the model performance is not satisfactory to the project goal. 

3.3.2. MACHINE LEARNING MODEL SELECTION 

Step 9 involves testing machine learning models, suitable to handle categorial 

features, employing the previously selected input features to predict the identified 

output feature for observations not used during the model training. A feature 

selection process is then applied in Step 10 to identify the most important input 

features. Feature selection is the process by which the number of input features is 

reduced, minimizing the redundant and noisy information produced by correlated 

and unnecessary inputs, respectively (Aggarwal 2015). Several feature selection 

approaches have been developed over the past few decades and are typically 

classified into filters and wrappers. Filter approaches require predefining an 
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evaluation measure (e.g., correlation coefficient between the inputs and outputs) 

and subsequently eliminating the inputs based on a specified threshold. On the other 

hand, in wrapper approaches, a search technique is adopted to identify the most 

important input features based on the performance of the corresponding data-driven 

model. The developed framework employs a genetic algorithm wrapper technique, 

the application of which starts by randomly assuming a population of solutions that 

evolves continuously until an optimal solution is obtained (Goldberg 1989). Each 

solution (i.e., individual) within the population represents a single realization of the 

set of input features used within the machine learning model and is assigned a 

fitness value based on the model performance. New individuals are reproduced 

through special evolutionary operators including: 1) elitism, where individuals with 

greater fitness are replicated; 2) crossover, where sets of two individuals (i.e., 

parents) are selected based on a predefined criteria (e.g., random selection or a 

selection based on the fitness value) and subsequently mixed to produce new 

individuals; and 3) mutation, where single parents are altered randomly to produce 

new individuals (Nearchou 2004; Scrucca 2013; Yosri et al. 2021). Individuals are 

reproduced continuously until a predefined termination criterion is met, such as the 

number of generations, computational time, an acceptable fitness threshold, or a 

cost function that combines some or all of the aforementioned criteria.  

In some cases, quantification of the overall performance of a machine 

learning model may not adequately reflect large errors if they occur in only small 

portions of the data set. Therefore, a cross-validation process should be applied to 
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assess the generalizability of a model to an independent data set (Rohani et al. 

2018). Multiple cross-validation methods have been developed to date (e.g., 

holdout, k-fold, and bootstrap) and each method has its own limitations, biases, and 

computational costs (Kohavi 1995). The current study uses a k-fold cross-validation 

during the feature selection process as described by Borra and Di Ciaccio (2010). 

In addition, the classification model’s performance was assessed using annual 

datasets specific to each data-contributing organization (i.e., using multiple smaller 

subsets of the whole dataset). 

3.3.3. MACHINE LEARNING MODEL PERFORMANCE METRICS 

Step 11 of the Figure 3-2 framework specifies that the classification model 

performance should be evaluated, for example by using the following confusion 

matrix-based metrics:  

    Predicted Class 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 = 

  True False 

Actual Class 

True TP FN 

 False FP TN 

 

(3-1) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(3-2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3-3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3-4) 
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where TP (True Positive) is the number of instances correctly classified as positive, 

TN (True Negative) is the number of instances correctly classified as negative, FP 

(False Positive) is the number of instances incorrectly classified as positive (i.e., 

Type I error), and FN (False Negative) is the number of instances incorrectly 

classified as negative (i.e., Type II error). 

The accuracy is the ratio of correctly predicted instances to the total number 

of observations and is a valuable metric for consideration only when the dataset is 

symmetrical (i.e., there are an equal number of instances in each class). The 

precision is the ratio of correctly predicted positive instances to the total number of 

positive predicted instances. The recall is the ratio of correctly predicted positive 

instances to the total number of instances in its actual class. Although the accuracy, 

precision, and recall are all important to evaluating the classification model 

performance, the final classification model should be selected (Step 12) using the 

performance metrics most important to the utility stakeholder’s project goal. For 

example, a model with the greatest recall value might be selected if the project goal 

is to minimize Type II error and a model with the greatest precision might be 

selected if the project goal were to minimize Type I error. Once the optimal machine 

learning model is selected, Step 13 includes analyzing the organization-specific 

classification model results using the performance metrics described through 

Equations 3-1 to 3-4. 
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3.3.4. RAPIDITY-CRITICAL FEATURE IMPORTANCE 

Step 14 highlights the importance of understanding how the input features affect 

the classification of the output feature. This is especially important with ensemble 

models where the decision tree structure can no longer be visualized clearly (James 

et al. 2013). Feature importance analyses are typically employed to identify the 

features that can significantly improve the model performance (i.e., enhance the 

predictability of the output feature). Several measures can be used to express the 

feature importance (e.g., node impurity, mean decrease in accuracy), and a feature 

importance plot for such measures can be used to rank the input features in the order 

of their contribution to correctly classify the output. This study adopts the mean 

decrease in accuracy as a feature importance measure as this metric is based on the 

efficiency of predicting the out of bag samples when the selected input feature is 

excluded from the model (Hastie et al. 2009). The feature importance plot would 

rank the input features in order of their contribution for outage rapidity 

classification.  

Step 15 of the Figure 3-2 framework outlines that to further understand the 

effect of input features, a partial dependence plot (PDP) is generated to examine the 

relative influence of input feature values to the output classification prediction 

(Molnar 2021). For classification models, the relative influence of a specified input 

feature value x, controlling for all the other input features, is found using the 

following equation: 
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𝑓𝑘(𝑥) =  log[𝑝𝑘(𝑥)] −  
1

𝐾
∑ log[𝑝𝑗(𝑥)], 𝑗 = 1,2, … , 𝐾

𝐾

𝑗=1

 (3-5) 

where 𝑓𝑘(𝑥) is the relative influence on the log probability values for the input 

feature x (Hastie et al. 2009), 𝑝𝑘(𝑥) and 𝑝𝑗(𝑥) are the probabilities of input feature 

x for classes k and j, respectively, and K is the number of classes in the output 

feature. It should be emphasized that is the 𝑓𝑘(𝑥) values are used to develop PDPs 

for classification models (Greenwell 2017). The PDP axis for the value of 

Equation 3-5 presents how the log-odds for class k (i.e., feature influence) depends 

on different subsets of the predictor features (Greenwell 2017). The PDP, in turn, 

indicates a positive, negative, or neutral feature influence on the correct 

classification of the output feature. 

Following the development of PDPs, the final step of the Figure 3-2 

framework is to identify resilience-guided asset managerial insights specific to the 

influence of feature values to the extended outages. The insights would present 

actionable items that could be performed by a utility to address the atypical 

performance of key feature values. Typically, identifying such insights would 

involve investigation into some aspects of the utility’s asset management plan in 

order to minimize the extended outage key contributing features in the future (e.g., 

reviewing maintenance practices for a specific location on a transmission line or 

proposing a shorter timeframe between tree trimmings).   
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3.4. FRAMEWORK APPLICATION DEMONSTRATION 

To demonstrate the utility of the developed framework shown in Figure 3-2, it was 

deployed using transmission line outages from the CEA database, as per Step 1 of 

the framework. Following Step 2 of the framework, 24 features are collected by the 

CEA for each transmission line outage as shown in Table 3-1. The study goal (i.e., 

to predict the rapidity of an outage soon following its occurrence) dictated that only 

14 useful features (indicated by * in Table 3-1) could be employed as inputs to the 

machine learning classification model, as per Step 3 of the framework. Step 4 of 

the framework included extracting the dataset for the years 2005-2018 as the CEA 

included two additional descriptive features for each outage starting in 2005. 

However, these two additional features also created a challenge as they each 

included more than 53 separate sub-categorical levels. Some levels of the primary 

cause name and subcomponent name features were thus merged to reduce the 

complexity of the classification model and enable the development of a meaningful 

model using available packages in the R language (Liaw and Wiener 2002). The 

subcomponents of a transmission line component include external elements 

associated with the major component. For example, the subcomponents of a wood 

pole major component are a conductor, structure, joints and dead-ends, insulation 

system, ground wire, and hardware. These updates were primarily used to change 

a level name that included the word “other” at the end of the label to be added to 

the main heading (e.g., “Equipment Failure Other” was converted to “Equipment 

Failure”).  In addition, only the sustained outages (i.e., outages with a duration 
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greater than one minute) were included in the dataset as the focus of this 

demonstration is to predict forced outages with a measurable outage duration.  

Table 3-1. The 24 features collected by the CEA for transmission line forced 

outages (* indicates selected as model input feature). 

Feature Type 

Year Numeric 

Outage period Binary 

Contributor Categorical 

Event ID Categorical 

Common mode Categorical 

Common tower Categorical 

Major component code Categorical 

Voltage * Categorical 

Outage duration Numeric 

Outage start date Time/Date 

Primary cause group * Categorical 

Primary cause name *  Categorical 

Subcomponent group * Categorical 

Subcomponent name * Categorical 

Type of failure * Categorical 

Type of fault * Categorical 

Component Categorical 

Conductors per phase * Categorical 

Ground wires * Categorical 

Structure * Categorical 

Circuit per tower * Categorical 

Month * Categorical 

Day * Categorical 

Hour * Categorical 

 

Step 5 of the framework included preliminary data analysis of the output 

feature. The statistical behavior of rapidity was investigated, as shown in Figure 

3-3, in order to identify an appropriate rapidity class split (i.e., the time after which 
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an outage is considered an extended event). Rapidity was found to exhibit a right-

skewness which shows that the forced outages in transmission lines are mostly 

characterized by shorter durations. Accordingly, 480 minutes (i.e., eight hours) was 

chosen as the limit of extended outage events as approximately three-quarters of 

the durations are less than 480 minutes and one-quarter are longer. This limit was 

also chosen as it represents a typical full-workday for repair crews and any value 

longer than eight hours would limit the ability of a utility to assign appropriate 

resources within a typical shift. Following Step 6 of the framework, the output 

feature considered herein is the rapidity class (i.e., classified as either 1-480 minutes 

or >480 minutes). The distribution between forced outage classes is shown in 

Figure 3-4.  

 

Figure 3-3. Density plot for log-transformed forced outages. 
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Figure 3-4. Population split of forced outages among all contributing 

organizations between rapidity classes from 2005-2018. 

3.4.1. CLASSIFICATION RESULTS  

To follow Step 7 of the framework, the forced outage dataset from 2005 to 2018 

was divided into training (from 2005 to 2013) and (from 2014 to 2018) testing 

subsets. Five of the seven utility organizations provided outage data for all the years 

from 2005-2018, therefore these five organization-specific datasets were used in 

the following model development. The training and testing subsets were created 

separately for those datasets, as displayed in Table 3-2. Consistent with Step 8 of 

the framework, the selected features of the CEA database are all categorical. As 

explained earlier, this situation presents a unique challenge limiting the machine 

learning classification models that could be deployed. The current demonstration 

application specifically employed bagging, random forests, and artificial neural 

networks as the machine learning classification techniques.  
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Table 3-2. Organization-specific training and testing data sets indicated as the 

number of forced outage instances in each set. 

Organization Training (2005-2013) Testing (2014-2018) 

Org 1 357 (59%) 253 (41%) 

Org 2 2,521 (71%) 1,018 (29%) 

Org 3 1,261 (67%) 612 (33%) 

Org 4 697 (56%) 540 (44%) 

Org 5 2,254 (65%) 1,236 (35%) 

A schematic for the classification process is presented in Figure 3-5, where 

the inputs and output have been previously described in detail. The hyperparameters 

of a machine learning model represent critical components as their values control 

the learning process, model performance, and time to converge (Feurer and Hutter 

2019). Selecting such values is typically carried out through an iterative process, 

either manually (Kuhn 2019) or using an optimization technique (Claesen and De 

Moor 2015). In this study, the hyperparameters of the bagging, random forest, and 

single hidden layer artificial neural network were adjusted manually until highly 

performing models were obtained (Kuhn 2019). Three machine learning models for 

classification were developed in the present study, as per Step 9 of the framework, 

including: 1) Model 1: bagging (500 trees and m = 14); 2) Model 2: random forest 

(500 trees and m = 4); and 3) Model 3: artificial neural network (200 iterations, 4 

neurons, and 5×10
 4

 weight decay). A genetic algorithm-based feature selection 

was also embedded within the classification models, as per Step 10 of the 

framework, with the goal to maximize the recall; however, the model performance 

was not significantly improved by reducing the number of input features. During 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

115 

 

the feature selection process, a 5-fold cross-validation was incorporated to assess 

the result generalizability on independent data sets. Embedding the 5-fold cross 

validation within the feature selection process ensured that the most important 

features were obtained to generate the best performing and most generalizable 

classification model. This implied that all of the 14 features are important in 

distinguishing extended forced outages from shorter ones.  

 

Figure 3-5. Classification model schematic showing implementation of 

framework previously described. 

According to Step 11 of the framework, confusion matrix metrics (i.e., 

precision and recall) were compared considering the testing subset using 

Equations (3-2) and (3-3), as shown in Figure 3-6. The accuracy was not included 

in the comparison as the output feature is not symmetrical. It can clearly be seen 

from Figure 3-6 that Model 3 (i.e., artificial neural network) did not perform well 

in comparison to Models 1 and 2. The precision and recall values from Model 3 

were consistently lower than Models 1 and 2, except in the case of Org 1, where all 
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models classified the outages almost perfectly. The better performance of Models 1 

and 2 compared to Model 3 might be attributed to: 1) the ensemble nature of the 

bagging and random forest approaches that enable combining multiple classifiers 

in order to produce a superior one (Polikar 2012); 2) the nonparametric nature of 

bagging and random forest approaches, which enhances their ability to capture the 

relationship between categorical features (Molnar 2021); and, 3) the typical 

procedures of developing artificial neural networks that includes the optimization 

of a set of numerical weights and biases, which is difficult to achieve for categorical 

inputs and outputs (Molnar 2021). There is less than 1% difference between the 

precision and recall values of Models 1 and 2. Therefore, to accomplish Step 12 of 

the framework, Model 2 was chosen as the preferred model, as a random forest 

model requires lower computational resources, which further reduced the variance, 

as the model is also more resistant to noise and outliers (Aggarwal 2015).  
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Figure 3-6. Average performance metrics for Models 1, 2, and 3 as implemented 

on the testing dataset for each of the five organizations. 

 Following Step 13 of the framework, Figure 3-7 was developed to better 

understand the annual classification performance (i.e., recall and precision) specific 

to each organization, viewing extended outages correctly predicted by Model 2 as 

true positives. Each performance metric (i.e., precision and recall) is important 

since outage misclassification would result in either excessive/unnecessary 

resources being sent to an outage location (i.e., precision) or inadequate 

resources/quick enough response provided (i.e., recall). Each tested year used the 
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classification model trained based on the 2005-2013 outage data specific to each 

organization. The validity of Model 2 to correctly classify extended outages is 

demonstrated through the high precision and recall values for each organization-

specific tested year, as shown in Figure 3-7. Org 1’s classification results can be 

seen to be perfect from 2014-2017 with a reduction in recall in 2018 (7.7% 

misclassification), as shown in Figure 3-7. The model for Org 2 had perfect recall 

from 2014-2018 whereas there was 1.4% and 3.4% precision error in 2016 and 

2018, respectively, otherwise it yielded perfect performance. Org 3 had the same 

precision and recall values from 2014-2017 indicating that there were the same 

number of misclassifications between rapidity classes in those years. Org 4 had 

perfect precision for all tested years whereas the recall values were the lowest 

among all five organizations. This would suggest that within Org 4, the features 

recorded do not fully capture the differences between short and extended outages 

and additional years would thus be necessary to be evaluated as perfect 

classification occurred in 2018. Org 5 had precision and recall values ranging from 

95% to 100%, indicating that the selected features made it feasible to distinguish 

the two rapidity classes. These classification results prove the viability of applying 

the developed framework to classify future forced outages recorded in the CEA 

database soon after their occurrence. The accurate classification of forced outages 

would allow utilities to quickly respond with appropriate resources to return the 

transmission line component back to service rapidly.  
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Figure 3-7. Annual Model 2 performance using testing dataset specific to each 

organization according to Table 3-2. 
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3.4.2. FEATURE IMPORTANCE 

Following Step 14 of the framework, Figure 3-8 ranks the input feature list in terms 

of importance, indicating the usefulness of features in distinguishing between the 

rapidity classes. The list uses the mean decrease in accuracy as the ranking metric 

as described previously. As indicated in Figure 3-8, the two most important features 

for all but Org 2 are primary cause name and subcomponent name. Org 2 has 

primary cause group as their second ranked input feature. These features, because 

of their importance ranking, can be viewed as critical to the correct classifications 

of the extended forced outages. To further investigate these features, PDPs were 

generated to view the importance of the feature values to the extended forced outage 

classification, as per Step 15 of the framework. PDPs are presented only for Org 1 

and Org 4 for illustration, as Org 1 had near perfect classification and Org 4 had 

the greatest misclassification in terms of recall.  

 

Figure 3-8. Input feature importance to extended forced outage classification for 

each organization. 

 Figure 3-9 shows the PDP investigating the feature values for primary cause 

name for Org 1 and Org 4. The x-axis indicates the relative influence of the feature 
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according to Equation 3-5 and the numerical label indicates the number of outages 

specific to that primary cause and organization within the dataset from 2005-2018. 

Positive relative influence values indicate the importance of that feature value to 

the classification of extended outages whereas negative values indicate the 

importance to the correct classification of short outages. Among feature values that 

occurred more than once per year, Org 1’s top two feature values contributing to 

extended outages were contact by trees and deterioration due to age. Similarly, Org 

4’s top two feature values that occurred more than once per year were deterioration 

due to age and equipment failure, with each occurring more than five times per 

year, on average. The low numerical values corresponding to some higher-ranked 

features, indicate that the latter do not occur frequently; however, when they do, 

there is a greater likelihood of the outage being an extended outage.   
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Figure 3-9. Primary cause name feature PDP for extended outage classification 

for Org’s 1 and 4. 

 Figure 3-10 shows the PDP for Org 1 and Org 4 to investigate the feature 

values for subcomponent name. Org 1’s PDP indicates the critical features as the 

transmission line structure and hardware as subcomponents where extended 

outages commonly occur. Org 4’s PDP indicates more than one extended outage 
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per year, on average, occurred within the transmission line structure and in the 

ground wires. Figure 3-10 also shows that outages occurring in the insulation 

system are not often leading to extended outages, as indicated by the relative 

influence for both Org’s 1 and 4. There are also several subcomponents where 

outages are not frequent; however, if they do occur, there is again a higher 

likelihood of them being an extended outage.  

 

Figure 3-10. Subcomponent name feature PDP for extended outages classification 

for Org’s 1 and 4. 
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3.5. INSIGHTS FOR RESILIENCE-GUIDED POWER INFRASTRUCTURE 

ASSET MANAGEMENT  

The demonstration application goal was to show the utility of the 

classification framework in terms of accurately distinguishing extended and short 

outages, soon after forced outage occurrence. This was demonstrated/exhibited 

using five organization-specific datasets from the CEA database. The 

demonstration application illustrated that a utility company could quickly and 

accurately predict the rapidity following a forced outage, indicating the 

applicability of the proposed framework. In addition to the demonstration of the 

rapidity-classification model, critical features were identified as they strongly 

influenced the correct classification of the extended outages.  

These extended outage-critical features yield valuable information that can 

enable utilities to plan their intervention and maintenance strategies as part of their 

asset management plan. For example, Figure 3-9 showed that primary causes of 

equipment failure, deterioration due to age, and contact by trees were critical to the 

specific utilities viewed in that figure. Org 1 should thus review their tree trimming 

practices and make sure there are not lapses in the coverage or too long a period 

between trimmings, therefore mitigating the future occurrence of such extended 

outages. Alternatively, Org 4 had equipment failure as a key primary cause of 

extended outages, indicating a need to review their maintenance practices on their 

transmission line assets. Both Org 1 and Org 4 had deterioration due to age as a 

key primary cause for extended outages, calling for a possible review of their 
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intervention plan for their transmission line assets. Focus on the intervention and 

maintenance strategies for the transmission line structure subcomponents should 

occur as this was a key feature in the location of many extended outages for both 

reviewed organizations. These are some of the asset managerial insights that can be 

seen from the PDPs in Figure 3-9 and Figure 3-10.  

 The application of this framework was limited to the available databases 

that currently collect power infrastructure outages, but it is highly recommended to 

collect additional feature values for each forced outage to obtain even more 

managerial insights. This could include collecting the age of the component when 

the outage occurs, the date and type of the last maintenance event, the geographic 

location of the asset, and the future impacts of climate change. For example, 

important features from Figure 3-9 were deterioration due to age and equipment 

failure and having more detail on these features would be beneficial to utilities. 

Therefore, adding geographic features would be beneficial to the organizations that 

contribute the outage data as they span all over Canada or North America, 

depending on if using the CEA or NERC TADS databases, respectively. These 

additional features could provide valuable insights for utilities when they prepare 

asset management plans and reports for regulatory approval and evaluate the future 

impacts of climate change on their infrastructure assets.  

3.6. CONCLUSION 

Recently, there has been an increasing number of forced power outages, 

necessitating the need for accurate prediction of resilience key performance 
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indicators to improve the ability of a utility to rapidly return to normal operation 

levels following forced outages. This study presented a framework to classify the 

rapidity metric of resilience following power infrastructure component forced 

outage occurrences. The utility of the framework was demonstrated using actual 

transmission line forced outages data. The rapidity was split into two classes, 1-480 

mins for short outages and >480 mins for extended outages. Specific datasets were 

then created for five outage data-contributing organizations and these datasets were 

subsequently split into training and testing sets for developing and validating the 

machine learning classification model, respectively. Bagging, random forest, and 

artificial neural network models were developed for each organization-specific 

dataset, with the random forest model having the best performance among all other 

models. The latter model was then deployed to classify forced outages and the 

results were displayed annually for the precision and recall metrics. It was found 

that the random forest model efficiently classified the forced outages for all five 

organizations, demonstrating the utility of the developed framework. Specific to 

each organization, the important features for rapidity classification were identified 

with primary cause name and subcomponent name being the most influential. These 

features were further explored using partial dependence analysis to investigate the 

feature value influence on extended outage prediction. Finally, asset managerial 

insights were presented based on the influential feature values. The demonstration 

application illustrated the capability of the described framework in classifying 

forced outages soon after their occurrence, allowing utilities and other power 
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infrastructure stakeholders to proactively prepare and respond rapidly to outage 

risks. The application of this framework was limited to the available data currently 

collected by existing databases, but the authors recommend that additional features 

related to the resilience metric of resourcefulness (e.g., staff and spare components 

available) be collected and incorporated into the prediction model to provide a 

better representation of an organizations resilient response to forced outages.  
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3.8. NOTATIONS 

t Number of bootstrapped classifiers 

m Number of features employed at a decision tree split 

q Number of features in the dataset 

𝑓𝑘(𝑥) 

 

Relative influence on the log probability values for the input feature x 

for class k 
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x Input feature 

𝑝𝑘(𝑥) Probability of input feature x in class k 

𝑝𝑗(𝑥) Probability of input feature x in class j 

K Number of classes in the output feature 

3.9. ACRONYMS 

CEA Canadian Electricity Association 

FN False negative 

FP  False positive 

NERC North American Electric Reliability Corporation 

PDP Partial dependence plot  

SVM Support vector machine 

TADS Transmission Availability Data System 

TN: True negative 

TP: True positive 
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Chapter 4  

INFRASTRUCTURE ASSET MANAGEMENT SYSTEM OPTIMIZED 

CONFIGURATION: A GENETIC ALGORITHM-COMPLEX NETWORK 

THEORETIC APPROACH 

ABSTRACT 

An effective infrastructure asset management (AM) system is crucial for utilities, 

city managers, governments, and other asset-owning organizations to navigate the 

numerous challenges associated with operating and managing infrastructure assets. 

In this paper, the AM system is represented as a network (comprised of nodes and 

links) that describes the major components necessary for operating an AM system 

within an organization and the information connections between such components. 

The ISO 55001 standard specifies the requirements for an AM system and outlines 

the criticality levels of different AM system components—reflected in the AM 

system network by the link weights. The main challenges of operating and 

managing an AM system pertain to information asymmetry between AM system 

components (e.g., not using the correct information for decision-making) and 

information overload within AM system components (i.e., too much information 

flow undermining stakeholders’ ability to identify the correct information needed 

for decision-making). These challenges cause systemic risks (possibility of 

dependence-induced disruptions) within the AM system network due to the 

connectedness of AM system components. Systemic risks can be mitigated through 
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built-in network resilience by adding AM system connections. This network re-

configuration is a complex problem with multiple potential solutions depending on 

the number of connections to be added to the AM system. For this reason, this study 

employs a genetic algorithm approach to solve for the optimal network 

configurations considering multiple objective functions based on average centrality 

values (i.e., betweenness-, closeness-, eigenvector-centrality, vulnerability index, 

and a weighted combination of the four centralities) for the most critical 15 AM 

subject areas. The considered objective functions are evaluated for only one to 

fifteen link additions to limit AM network over-connectedness which could 

otherwise lead to information overload. Managerial insights are outlined to explain 

how the optimization results can be deployed to mitigate the systemic risks within 

an organization’s AM system based on the different objective function evaluations.  

 

KEYWORDS: centrality analysis, complex network theory, genetic algorithm, 

infrastructure asset management, ISO 55001, systemic risk, vulnerability index.  
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4.1. INTRODUCTION 

Organizations that own and manage infrastructure assets face many challenges in 

operating their businesses, including infrastructure ageing, evolving (usually more 

strict) regulatory operating conditions, limited renewal financial resources, and 

losing valuable experience through retirements (Canadian Construction 

Association et al. 2016; American Society of Civil Engineers 2021). A well-defined 

asset management (AM) program can offset and minimize the impacts of these 

organizational challenges (Bertling Tjernberg 2018; Infrastructure Canada 2018; 

Canadian Infrastructure Report Card 2019; American Society of Civil Engineers 

2021). AM is the structured decision-making and execution of plans developed to 

achieve a balance between asset performance and risk through the optimal 

allocation of available resources and the procurement of additional resources 

(Uddin et al. 2013; Ross 2019). Organizations that own, manage, and operate 

infrastructure assets typically implement AM systems to achieve their 

organizational strategic plan and objectives (Hodkiewicz 2015). An AM system is 

a set of interrelated and interacting elements of an organization, whose function is 

to establish the AM policy and AM objectives, and the processes needed to achieve 

those objectives (International Organization for Standardization 2014a). 

As outlined by the Institute of Asset Management’s (IAM) Asset 

Management Anatomy document, a typical AM system is composed of six divisions 

and 39 subject areas (Institute for Asset Management 2015), as shown in Figure 
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4-1. Each of the 39 AM subject areas was designed to illustrate the breadth of a 

certain set of activities within an AM system, the relationships between these 

activities and the need to integrate them, and the critical role for AM to align with 

and deliver the strategic plan of an asset-intensive organization (Institute for Asset 

Management 2015). As such, each AM subject area is a functional component 

necessary for the implementation and operation of an AM system within an 

organization that owns and manages infrastructure assets. For a detailed description 

of each AM subject area, the authors refer to the Asset Management Anatomy guide 

developed by the IAM (Institute for Asset Management 2015). Goforth et al. (2021) 

introduced the concept explaining how a typical AM system can be viewed as a 

network of connected components with nodes as AM subject areas from the IAM 

(2015) and links as information flow between/connecting nodes as defined by the 

Global Forum on Maintenance and Asset Management (2014).  
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Figure 4-1. The AM divisions and subject areas as defined by the Institute for 

Asset Management (2015). 

The ISO 55001 standard Asset management—Management systems—

Requirements specifies requirements for the AM system within the context of an 

organization (International Organization for Standardization 2014b). This standard 

was designed to be applied to all asset types and by all types and sizes of 

organizations (International Organization for Standardization 2014b). ISO 55001 

groups the main requirements of an AM system according to the context of the 

organization, leadership, planning, support, operation, performance evaluation, and 

improvement (International Organization for Standardization 2014b). There are 

currently only 27 ISO 55001 certified organizations in North and South America 

indicating that they meet or exceed the specifications for an AM system as outlined 

in the standard (International Organization for Standardization 2021). 
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Planning
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S3. Demand Analysis

S4. Strategic Planning

S5. Asset Management Planning
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Organizations use the principles and guidelines described within the ISO 55001 

standard to improve their AM system operations (Woodhouse 2014; Hodkiewicz 

2015; Konstantakos et al. 2019).  

An efficient AM system must include strong information flow between the 

connected subject areas as miscommunication can lead to system dysfunction. In 

addition, an effective AM system minimizes the exposure of AM stakeholders to 

information overload caused by having access to too much information and data 

(Herrera et al. 2011; Prajogo et al. 2018). An AM system may be influenced by 

systemic risks (i.e., dependence-induced disruptions) specifically related to 

information asymmetry caused by the malfunction of one or multiple specific 

subject areas or the interruption of information flow between multiple subject areas 

(Goforth et al. 2022). Systemic risks might also be induced by information overload 

within an AM subject area where there is too much information flow, and an AM 

stakeholder is overwhelmed and unable to make decisions (Goforth et al. 2022). 

Examples of information asymmetry in an AM system include stakeholders that use 

different information to support their AM subject area-specific decision process, 

not responding to other stakeholders’ decisions promptly, and the isolation of AM 

subject areas due to inadequate information-sharing procedures or protocols (Bergh 

et al. 2019). These examples of information asymmetry and information overload 

are critical challenges for the effective operation of an AM system within an 

organization and can potentially initiate cascading disruptions throughout an AM 

system (Brunetto et al. 2014; Xerri et al. 2015; Pell et al. 2015; de la Pena et al. 
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2016; Golightly et al. 2018). However, such challenges and their associated 

systemic risks can be mitigated by increasing the network resilience to dependence-

induced disruptions through re-configuration of the connections between the 

different AM subject areas (Barabási 2016; Goforth et al. 2022). 

Improving the resilience of a network to dependence-induced disruptions 

(i.e., systemic risks) is a complex problem that requires the use of heuristic-based 

optimization techniques as there are multiple solutions depending on the number of 

links to be added to the network, the length of those links, and the targeted reduction 

in systemic risk levels (Barbosa et al. 2018; Bhavathrathan and Patil 2018; Nozhati 

et al. 2019; Morshedlou et al. 2021; Vishnu et al. 2021). Several studies have been 

conducted in other fields to enhance a system network’s resilience through adding 

new connections between its different components (Parotsidis et al. 2015; Papagelis 

2015; Crescenzi et al. 2016; Ohara et al. 2017). While introducing additional 

connections within a system may provide faster information transfer (Parotsidis et 

al. 2016; Medvet and Bartoli 2021), determining an optimal number and 

configuration of added connections is an onerous task. The connection addition 

process has thus been formulated as an optimization problem, where previous 

studies have deployed greedy algorithms (Parotsidis et al. 2015; Crescenzi et al. 

2016; Parotsidis et al. 2016; Ohara et al. 2017), path screening techniques 

(Papagelis 2015), and a heuristic-based genetic algorithm (GA) (Zhao et al. 2018; 

Pizzuti and Socievole 2018; Paterson and Ombuki-Berman 2020; Medvet and 

Bartoli 2021), albeit for different system applications (e.g., transportation and social 
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networks) and not for optimizing the AM system to reduce its vulnerability to 

systemic risks.  

Therefore, the objective of the present study is to identify optimal link 

configurations to be added to the AM system network, such that the expected 

systemic risks due to information asymmetry and information overload would be 

significantly mitigated. This study first explains the structure of the AM network 

and its relation to ISO 55001. Next, a description of the network centrality measures 

used to determine the most critical AM subject areas in the AM system network is 

presented. Subsequently, the application procedure of the GA is described for 

different centrality measure-based objective functions. Results are then presented 

in terms of optimal link configurations to satisfy the different objective functions 

and the practical implications of the link additions to a real AM system. Finally, 

managerial insights are presented to allow for the comparison between the different 

link configuration scenarios according to the different centrality measures 

investigated.  

4.2. THE ASSET MANAGEMENT NETWORK STRUCTURE 

Goforth et al. (2021) conceptualized the AM system as a network of connected 

nodes to facilitate its analysis. Building on this methodology, a typical AM system, 

proposed by the IAM, is represented in this study by a weighted, directed network 

as shown in Figure 4-2. This AM system network consists of 39 nodes, each 

representing a specific AM subject area. Node labels in Figure 4-2 correspond to 
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the AM subject areas shown in Figure 4-1, where the node color indicates the AM 

division. This study specifies the criticality of each AM network subject area as the 

number of ISO 55001 clauses that are related to it as defined by the Institute for 

Asset Management (2015). These relationships are shown in Figure 4-3, with the 

total number of connected ISO 55001 clauses (i.e., the AM subject area weight) in 

the bottom row.  

 

Figure 4-2. The AM network structure based on the AM subject areas presented in 

Figure 4-1. 
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Figure 4-3. ISO 55001 clauses mapped to AM subject areas as defined by the 

Institute for Asset Management (2015). 

Links between node pairs are defined according to the Global Forum on 

Maintenance and Asset Management (2014) that describe each AM subject area 

and identifies its connections to others. Such connections are essential to provide 

information necessary to make decisions within each AM subject area and thus the 

overall AM system. Links in the AM network are directed and weighted, as 

information transfer occurs from the source to target nodes, where the link weight 

is defined as the source node weight. In Figure 4-2, link direction is represented by 

an arrowhead at the target node, and link thickness reflects the corresponding 

weight, where thicker links indicate a greater ISO 55001 influence and therefore 

greater criticality to the overall AM system operation. The AM network shown in 

Figure 4-2 is represented mathematically through an adjacency matrix A, which can 

ISO 55001 Clause
AM Subject Area

4.1 Understanding the organization and its context X X X X X

4.2 Understanding the needs and expectations of stakeholders X X X X X

4.3 Determining the scope of the AM system

4.4 AM system X

5.1 Leadership and commitment X X X X

5.2 Policy X X

5.3 Organizational roles, responsibilities, and authorities X X X X X X

6.1 Actions to address risks and opportunities for the AM system X X X X X X X X X

6.2.1 AM objectives X X X X X X X X X

6.2.2 Planning to achieve AM objectives X X X X X X X X X X X X X X X X X X X X X X

7.1 Resources X X X

7.2 Competence X X X

7.3 Awareness X X X

7.4 Communication X X X

7.5 Information requirements X X X X X X X

7.6 Documented information X X X X X

8.1 Operational planning and control X X X X X X X X X X

8.2 Management of change X X X X X X X X X

8.3 Outsourcing X X X X

9.1 Monitoring, measurement, analysis, and evaluation X X X X X

9.2 Internal audit X

9.3 Management review X

10.1 Nonconformity and correction action X X

10.2 Preventative action X X

10.3 Continual improvement X X X X

Total ISO 55001 Clause Connections 4 5 3 1 4 7 3 4 3 4 3 3 6 3 3 3 2 2 3 3 3 2 2 1 2 2 4 3 2 3 5 1 5 7 4 1 1 3 5
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be found in Appendix S1, with entries ai,j that reflects the link weight and direction 

between nodes i and j. 

4.3. CENTRALITY MEASURES 

The betweenness centrality is a metric that identifies the criticality of a specific 

node as the fraction of shortest paths passing through it (Freeman 1977). The 

betweenness centrality of a node i (𝐵𝐶𝑖) is thus calculated as: 

 
𝐵𝐶𝑖 = ∑

𝜌𝑗𝑘(𝑖)

𝜌𝑗𝑘
𝑗≠𝑖≠𝑘

 (4-1) 

where 𝜌𝑗𝑘 is the weighted length of all shortest paths connecting nodes j and k and 

𝜌𝑗𝑘(𝑖) is the weighted length of these shortest paths that traverse node i. Regarding 

the AM network, the BCi values reflect the importance of the corresponding AM 

subject area to the operation of the whole AM system and can thus be used to reflect 

its influence on the information flow throughout the AM system.  

The closeness centrality is a metric that identifies nodes that are key to 

rapidly process and relay information to other nodes in the network (Estrada and 

Knight 2015). The closeness centrality of a node i (𝐶𝐶𝑖) is evaluated as:  

 
𝐶𝐶𝑖 =

∑ 𝑑(𝑖, 𝑗)𝑗

𝑁
 (4-2) 

where 𝑑(𝑖, 𝑗) is the shortest path length between nodes i and j and N is the total 

number of nodes in the network. When applied to the AM network, the closeness 

centrality can be used to identify the AM subject areas that are critical for the rapid 

processing and transferring of information to other AM subject areas. 
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The eigenvector centrality is a metric that identifies nodes that are highly 

connected to influential nodes within the network (Thai and Pardalos 2012). The 

eigenvector centrality of a node i (ECi) is: 

 
𝐸𝐶𝑖 =

1

𝜆
∑ 𝑎𝑖,𝑗𝐸𝐶𝑗

𝑗

 (4-3) 

where λ is the maximum eigenvalue of the adjacency matrix A. For the AM 

network, a greater value of ECi indicates that the corresponding AM subject area is 

connected to other highly influential AM subject areas and is thus critical to the 

information transfer within the AM system.  

The vulnerability index is related to the size of the network’s giant 

component (i.e., the largest connected set of nodes), and is used to identify the 

critical nodes that are highly sensitive to disruptions by quantifying the fraction of 

non-operational nodes when a specific node is triggered to fail (Ezzeldin and El-

Dakhakhni 2019). The vulnerability index of node i (𝑉𝐼𝑖) is given by: 

 
𝑉𝐼𝑖 =  

𝑁 − 𝑁′

𝑁
 (4-4) 

where N’ is the total number of operational nodes in the network’s giant component 

after node i was triggered to fail. It should be noted that the value of VIi is estimated 

considering the cascading disruption effect within the network as follows: 1) once 

a node i is triggered to fail, information moving through the network is redistributed 

based on the shortest paths available; 2) following the redistribution, nodes are 

considered operational when they can sustain their original information share in 

addition to those transferred from other nodes; and 3) the redistribution process 
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continues until all nodes in the network are functional and the corresponding 𝑁′ 

value is then obtained. Therefore, calculating the values of VIi necessitates adopting 

the concept of overflow modelling.  

Several studies have adopted the concept of overflow modelling in different 

fields, where the flow is simulated by the exchange of a single unit between node 

pairs along the shortest path connecting these nodes (Motter and Lai 2002; Ezzeldin 

and El-Dakhakhni 2019; Goforth et al. 2020; Alzoor et al. 2021). Within the AM 

network, this flow is the information or data shared between two AM subject areas. 

The betweenness centrality has been extensively employed as a metric for how 

much flow is transmitted through a specific node (Kinney et al. 2005; Kourtellis et 

al. 2013; Mahyar et al. 2018). As such, the same methodology is adapted in this 

study, where the BCi is assumed to be equivalent to the amount of information 

shared by node i (𝐿𝑖). In addition, the maximum amount of information (i.e., the 

capacity) that can be managed by a node i (𝐶𝐴𝑃𝑖) is assumed to be linearly 

proportional to its initial load 𝐿𝑖(0), as:  

 𝐶𝐴𝑃𝑖 =  𝛼𝐿𝑖(0) (4-5) 

where α is a design capacity tolerance that represents the ability of a node to sustain 

additional information due to any disturbance in the network. The information 

overload of a node can be represented through Equation 4-5. Therefore, within an 

AM system, the VIi represents the susceptibility of an AM subject area to 

information overload. 
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4.4. CRITICAL SUBJECT AREAS IN THE ASSET MANAGEMENT 

NETWORK 

The centrality measures described previously were evaluated for the AM system 

network shown in Figure 4-2. Figure 4-4 presents the BCi, CCi, ECi, and VIi for the 

top 15 nodes (i.e., AM subject areas) as these were the most critical nodes to AM 

system operation. Such nodes represent the most critical nodes within the typical 

AM system proposed by the IAM that can facilitate the systemic risk propagation 

within the AM system. The AM subject areas that are critical based on all four 

centrality measures considered include Strategic Planning (S4), Resource 

Management (L3), and Lifecycle Value Realization (A4). This observation is well 

aligned with the definition of AM as the structured decision-making and execution 

of plans (i.e., strategic plan) developed to optimize a balance between asset 

performance and risk (i.e., lifecycle value realization) using available resources or 

the procurement of additional resources (i.e., resource management). The AM 

subject areas identified within the top 15 based on three centrality measures include 

Asset Management Planning (S5), Operations & Maintenance Decision-Making 

(A5), Stakeholder Engagement (R1), Maintenance Delivery (L1), Shutdown & 

Outage Strategy (A2), and Shutdown & Outage Management (L4), whereas those 

identified based on two centrality measures include Asset Management Strategy & 

Objectives (S2), Asset Performance & Health Monitoring (R2), Asset Information 

Strategy (I2), Sustainable Development (R5), Asset Costing and Evaluation (R9), 

Procurement and Supply Chain Management (S2), Technical Standards & 
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Legislation (S2), Capital Investment Decision-Making (O1), Risk Assessment & 

Management (R4), and Asset Operations (L2). It should be noted that the AM 

subject areas that have greater centralities for multiple measures are very critical 

for the functionality of the AM system as they can instigate cascade disruptions 

when they become dysfunctional. Therefore, adding new connections (i.e., links) 

between the AM subject areas (i.e., nodes) can enhance the resilience of the network 

to systemic risks (Goforth et al. 2022). 

 

Figure 4-4. The top 15 AM subject areas based on (a) betweenness centrality, (b) 

closeness centrality, (c) eigenvector centrality, and (d) vulnerability index. 
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4.5. LINK ADDITION METHODOLOGY 

The link addition process is formulated here as an optimization problem with the 

objective of identifying new connections that can reduce the criticality of highly 

important AM subject areas and therefore minimize the systemic risk within the 

AM system. There are 1359 links that do not already exist in the AM system 

network so there are 1359Cr possible added link configurations, where r is the 

specified number of links added to the AM system network. As such, identifying 

the optimal configuration of added links is challenging and classic linear and 

nonlinear optimization techniques may trap in local optima. Therefore, GA is 

employed in the present study to solve the optimization problem, with the objective 

of minimizing the average centrality of the most critical AM subject areas. 

Accordingly, the following optimization problem has been formulated: 

 

min
𝑥

(
𝑎

𝑁𝑡
∑

𝐵𝐶𝑖(𝐺, 𝑥)

𝐵𝐶𝑖(𝐺)
+  

𝑏

𝑁𝑡
∑

𝐶𝐶𝑖(𝐺, 𝑥)

𝐶𝐶𝑖(𝐺)

𝑁𝑡

𝑖=1

𝑁𝑡

𝑖=1

+ 

𝑐

𝑁𝑡
∑

𝐸𝐶𝑖(𝐺, 𝑥)

𝐸𝐶𝑖(𝐺)

𝑁𝑡

𝑖=1

+
𝑑

𝑁𝑡
∑

𝑉𝐼𝑖(𝐺, 𝑥)

𝑉𝐼𝑖(𝐺)

𝑁𝑡

𝑖=1

) 

(4-6) 

subject to: 

 𝑥 ∉ G (4-7) 

 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1 (4-8) 

where Nt is the number of critical nodes to be considered, G is the directed graph 

representing the typical AM system network (shown in Figure 4-2) before adding 

the new set of links Lad with indices x, and a, b, c, and d are the weighting factors 
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of the betweenness centrality, closeness centrality, eigenvector centrality, and 

vulnerability index, respectively. The objective function is defined by Equation 4-

6 and the constraints are defined by Equations 4-7 and 4-8. The decision variable is 

the link index vector x which represents the set of newly added links (Lad) to the 

AM system network to minimize the objective function.  Equations 4-6, 4-7, and 4-

8 were developed in such a way to ensure that 1) the original AM system nodes are 

always present in the optimal network configuration and directed links Lad are only 

added to the original AM system nodes and 2) the AM system still provides the 

intended functionality of managing the organization’s objectives, processes, and 

assets. It should be noted that the optimization problem represented by Equations 

4-6, 4-7, and 4-8 can be solved for either an individual centrality (i.e., betweenness 

centrality, closeness centrality, eigenvector centrality, or vulnerability index) or a 

weighted centrality measure. When the former is of interest, the weighting factor 

corresponding to the considered centrality is 1.0 whereas those corresponding to 

other centrality measures are zero. When the latter is of interest and a minimized 

weighted centrality is desired, a, b, c, and d should be chosen according to the 

desired weighting scheme.  

The application of the GA starts with defining the desired number of links 

to be added (i.e., the size of the set Lad). A population of individuals is subsequently 

generated randomly, where each individual contains the possible link indices x to 

be added. Each individual is then assigned a fitness value based on its ability to 

achieve the objective presented in Equation 4-6. Individuals are evolved continually 
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through a set of reproduction mechanisms, including: 1) elitism, where individuals 

with high fitness values are replicated in the following generations; 2) crossover, 

where two individuals are selected based on their fitness and subsequently mixed 

to produce two offspring; and 3) mutation, through which the entries of a single 

individual are changed randomly. The reproduction process continues until a 

termination criterion is achieved. Such criterion may be a maximum number of 

generations, a certain fitness value, a specific computational time, or a combination 

of two or more criteria.  

In this study, the GA was applied for different link addition configurations 

with up to 15 links to assess the optimal combination of link additions that yielded 

the most improved centrality measure. It should be emphasized that adding links 

increases the information connectivity within the AM system network but can also 

lead to information overload for AM stakeholders and possibly a breakdown in 

system functionality (Herrera et al. 2011; Prajogo et al. 2018). Up to 15 added links 

were chosen as a representative number to illustrate the impact on centrality 

reduction with respect to links added to the AM system network in order to develop 

a Pareto Front. As the number of added links increased, a larger population and a 

higher number of maximum generations were employed to enhance the likelihood 

of achieving a globally optimal solution. It should be noted that the GA 

convergence to a globally optimal solution is primarily governed by the population 

size and the maximum number of generations employed (Yosri et al. 2021). 

Therefore, the global optimality of a GA solution can be evaluated through: 1) 
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employing initial populations with different sizes for the same maximum number 

of generations and subsequently evaluating the variability across the obtained 

solutions; 2) utilizing different values for the maximum number of generations for 

the same initial population and compare the resulting solutions; or 3) using fixed-

sized sets of randomly generated initial populations and assessing the variability in 

resulting solutions for the same maximum number of generations. The third 

approach has been employed in this study to evaluate the global optimality of the 

GA solutions, where the largest population size employed was 5,500 when 15 links 

were added and the most generations used was 32. Convergence was defined when 

the evaluated function changed by less than 1x10-3 from the previous GA iteration.  

4.6. ANALYSIS RESULTS 

Figure 4-5 shows the average centrality value of the most critical 15 AM subject 

areas (i.e., Nt = 15) for the different numbers of added links when the betweenness 

centrality, closeness centrality, eigenvector centrality, and vulnerability index are 

considered individually in the objective function defined as Equation 4-6. To 

identify the true optimum, a balance between the link addition cost and the 

improvement in the objective function would need to be obtained as described 

previously. The cost of a link addition would be in terms of resources (e.g., money, 

people, data, and technology) needed to establish an information connection which 

would be provided by an organization, but such cost details are proprietary to 

specific organizations at the time of the development of this study. Therefore, 

Figure 4-5 presents a Pareto Front with respect to the objective function value and 
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the number of added links, and the following discussion identifies commonalities 

across different link addition scenarios for each centrality measure used to define 

the objective function. A full Pareto Analysis would be completed internally by a 

specific AM organization using link addition costs unique to their organization.  

 

Figure 4-5. Optimization results specific to the number of links added to the AM 

system network for (a) betweenness centrality, (b) closeness centrality, (c) 

eigenvector centrality, and (d) vulnerability index. The values above the data 

points indicate the percent difference from the previous centrality value. 
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4.6.1. BETWEENNESS CENTRALITY 

Figure 4-6 presents the connections that were identified to be added to the typical 

AM system for up to six added links when minimizing the systemic risk due to 

critical betweenness centrality AM subject areas is of interest, and Appendix S2-1 

provides the labeled connections in a table for one to fifteen link additions. In 

particular, including just four additional links (i.e., increasing the number of links 

in the typical AM system from 123, as suggested by the IAM, to 127) would 

decrease the mean betweenness centrality of the most critical 15 AM subject areas 

by 38%. The information connection formed between Asset Management Strategy 

& Objectives (S2) and Resource Management (L3) is an optimal link addition for 

one to four link additions and the information connection formed between Demand 

Analysis (S3) and Management Review, Audit, & Assurance (R8) is included in the 

optimal set when adding two, three, and four links. This indicates that the S2→L3 

and S3→R8 links are critical in reducing the average betweenness centrality in the 

highly critical AM subject areas when only up to four link additions are available 

to implement. Beyond four added links, the S2→L3 and S3→R8 links are replaced 

by a combination of other links that stem from similar source nodes. The S2→L3 

and S3→R8 connections would be feasible for introducing an information or data 

sharing process in a real AM system. For example, the AM strategy and objectives 

would specifically provide information on how the resources of the organization 

should be managed and the analysis of asset demand would provide information 

related to the review, audit, and assurance processes.    
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Figure 4-6. Link additions according to the betweenness centrality (labels are 

defined in Figure 4-1). 

4.6.2. CLOSENESS CENTRALITY 

Figure 4-7 presents the connections that were identified to be added to the typical 

AM system for up to six added links when reducing the systemic risk due to nodes 

with high closeness centrality values is desired, and Appendix S2-2 provides the 

labeled connections in a table for one to fifteen link additions. The information 

connection formed between the Strategic Planning (S4) and Asset 

Decommissioning & Disposal (L11) areas is optimal among all link addition 

scenarios from one to six. All optimal link additions identified originate from the 

Strategic Planning (S4) subject area, highlighting the importance of links 
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originating from this node in reducing the average closeness centrality within the 

AM system (i.e., reducing the average distance of the 15 critical AM subject areas 

to the other AM subject areas in the AM system network). The S4→L11 link would 

be feasible within a working AM system if the strategic plan provided additional 

information to describe the process and the feedback required for asset 

decommissioning and disposal. Adding the three links identified as optimal within 

the typical AM system decreases the average closeness centrality of the most 

critical 15 AM subject areas by 30%, whereas adding the six links identified as 

optimal provides a 52% reduction. Both scenarios provide a large reduction in the 

closeness centrality-based objective function without greatly increasing the number 

of links, and therefore the possibility of information overload, within the AM 

system network.  
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Figure 4-7. Link additions according to the closeness centrality (labels are defined 

in Figure 4-1). 

4.6.3. EIGENVECTOR CENTRALITY 

Figure 4-8 presents the connections that were identified to be added to the typical 

AM system for up to six added links when reducing the systemic risk due to the 

eigenvector centrality is the focus, and Appendix S2-3 provides the labeled 

connections in a table for 1 to 15 link additions. An 18% reduction in the systemic 

risk due to the disruption of AM subject areas with high eigenvector centralities can 

be obtained by adding just four links to the AM system network. The information 

connection formed between the Risk Assessment & Management (R4) and 

Sustainable Development (R5) areas is optimal for each link addition scenario in 
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Figure 4-8 and the information connection from Risk Assessment & Management 

(R4) and Stakeholder Engagement (R1) areas is optimal among all link addition 

scenarios from two to six. Such occurrences highlight the criticality of each link in 

the reduction in eigenvector centrality-based systemic risk (i.e., reducing the 

reliance of the AM system on information transfer through important AM subject 

areas connected to other important AM subject areas). Both the R4→R5 and the 

R4→R1 added links are feasible to be implemented in an AM system if appropriate 

information or data transfers were available. For example, the risk assessment and 

management process could provide details on a risk-based plan for sustainable 

development and for engaging with AM stakeholders. The Risk Assessment & 

Management (R4) subject area is a common source node for many links in Figure 

4-8, indicating its importance to the reduction in eigenvector centrality-related 

systemic risk of the most critical AM subject areas.  
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Figure 4-8. Link additions according to the eigenvector centrality (labels are 

defined in Figure 4-1). 

4.6.4. VULNERABILITY INDEX 

Figure 4-9 presents the connections that were identified to be added to the typical 

AM system for up to six added links when reducing the systemic risk due to the 

average vulnerability index of the top 15 subject areas is the only goal, and 

Appendix S2-4 provides the labeled connections in a table for 1 to 15 link additions. 

The α value from Equation 4-5 was specified as 0.05, indicating that if a node’s 

information load exceeded its capacity by 5%, the node was considered to be in a 

state of information overload. 5% was chosen as a representative value to illustrate 

the application of the previously described methodology and it has been used in 
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other vulnerability index applications (Ezzeldin and El-Dakhakhni 2019; Goforth 

et al. 2020). The optimal added links presented in Figure 4-9 do not have significant 

commonalities among each of the six link addition scenarios. There are only three 

links (i.e., L1→R1, L5→R8, and L8→S4) that are optimal among two consecutive 

link addition scenarios. This lack of link addition commonality highlights the 

importance of applying this optimization methodology when looking to reduce the 

systemic risk related to vulnerability index (i.e., reducing the potential for 

information overload scenarios within the AM system network), as a small number 

of specific links do not provide a consistent reduction as was the case with the 

previous centrality measures. There is still great value in implementing the 

proposed link addition configurations as adding the identified four optimal links 

can lead to a 49% decrease in the average vulnerability index of the most critical 

15 AM subject areas.  
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Figure 4-9. Link additions according to the vulnerability index (labels are defined 

in Figure 4-1). 

4.6.5. WEIGHTED COMBINATION 

While the previously described applications considered minimizing each of 

betweenness centrality, closeness centrality, eigenvector centrality, and 

vulnerability index separately, minimizing a weighted combination of such metrics 

is also crucial as each centrality measure evaluates a different aspect of the 

network’s exposure to systemic risks. As such, the values of a, b, c, d in Equation 

4-7 were each assumed as 0.25 and the resulting objective function evaluations are 

shown in Figure 4-10 for link additions from 1 to 15. Figure 4-11 presents the 

connections that were identified to be added to the typical AM system for up to six 
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added links and Appendix S2-5 provides the labeled connections in a table for 1 to 

15 link additions. The information connection between the Strategic Planning (S4) 

and Resource Management (L3) areas is common among most link addition 

scenarios, highlighting its importance in reducing the combined systemic risk 

according to the weighted objective function (19% reduction). The importance of 

the S4→L3 link is also consistent with the criticality of each AM subject area, as 

both S4 and L3 are critical for all centrality measures as determined from Figure 

4-4. Adding just four links can provide a 40% reduction in the weighted objective 

function value from the original AM system network. This large reduction in the 

objective function evaluation further highlights the impact of a small number of 

added links in reducing systemic risk within the AM system network.  

 

Figure 4-10. An equal weighted combination of betweenness centrality, closeness 

centrality, eigenvector centrality, and vulnerability index according to Equation 4-

6 evaluated for different link additions. The values above the data points indicate 

the percent difference from the previous centrality value. 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

167 

 

 

Figure 4-11. Link additions based on an equal weighted combination of 

betweenness centrality, closeness centrality, eigenvector centrality, and 

vulnerability index (labels are defined in Figure 4-1). 

4.7. MANAGERIAL INSIGHTS 

In each of the cases above, it was found that adding only a small number of links 

(less than 5) provided large reductions in each of the evaluated objective functions 

(18% (EC) to 49% (VI)). This result is valuable for AM organizations as they could 

reduce their systemic risk exposure with minimal added links and therefore 

minimize the exposure of their AM stakeholders to information overload. However, 

there is little commonality in added links among each of the individual centrality-

based objective functions. This highlights the importance for organizations and 

managers, within such organizations, to evaluate the relative importance of each 
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centrality-based systemic risk to their organization and run the optimization 

methodology accordingly.  

The added links associated with the weighted combination, outlined in 

Figure 4-11, were similar to the optimal links for the closeness and eigenvector 

metrics. Specifically, the Strategic Planning (S4) to Resource Management (L3) 

link was important for the reduction in closeness centrality and it was also important 

to the weighted combination reduction. Additionally, the links that originated from 

the Risk Assessment & Management (R4) subject area were critical for the reduction 

in the weighted combination as was similar in the eigenvector centrality reduction. 

This demonstrates how evaluating a weighted combination of the described metrics 

allows individual organizations to optimize their own AM system network for their 

desired systemic risk reduction focus. This facilitates implementation of this 

optimization methodology in AM organizations across all infrastructure classes.  

4.8. CONCLUSION 

Implementing a strong AM system is critical for organizations that own, manage, 

and operate infrastructure assets to ensure that their assets can provide the greatest 

lifecycle value and the best service to their customers or users. A well-defined asset 

management system can help organizations alleviate the challenges induced by 

infrastructure ageing, strict regulatory operating conditions, limited financial 

means, and losing valuable experience due to retirements. This study evaluated the 

AM system, developed by the IAM, as a network of connected components (i.e., 

nodes and links). Nodes within the network represent the AM subject areas, 
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whereas links simulate the information transfer between node pairs. The ISO 55001 

standard specifies the best practice for organizations in their implementation and 

operation of AM systems. Based on this, the AM system network link weights were 

defined in this study as the number of ISO 55001 clauses that pertain to the source 

node. The main challenges of AM system operation are caused by information 

asymmetry between AM system components (e.g., components not using consistent 

information for decision-making) and information overload within AM system 

components. These main challenges initiate systemic risks (i.e., dependence-

induced disruptions) within the AM system network which can lead to cascading 

disruptions throughout the AM system network. To address this, this study 

proposed a connection addition methodology that can be adopted to reduce the 

systemic risks within a typical AM system.  

The proposed methodology employs a GA optimization to identify the 

optimal connection configuration necessary for reducing the systemic risk. 

Betweenness centrality, closeness centrality, eigenvector centrality, and 

vulnerability index were used to evaluate the criticality of the different AM subject 

areas for facilitating the information transfer within the AM system. Identifying 

such AM subject areas is essential as their disruption can initiate a systemic risk 

situation within the AM system and may lead to a complete malfunction. A GA was 

deployed to reduce the systemic risk within the AM system through minimizing the 

four centrality measures considered. The objective function was evaluated to 

minimize the betweenness centrality, closeness centrality, eigenvector centrality, 
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and vulnerability index individually, and optimal link configurations were 

presented visually for one to six added links. To further extend the application of 

the proposed link addition methodology, another objective function was defined as 

a weighted combination of the four centrality measures, and the optimal added link 

configurations were again presented visually for one to six added links. Among all 

evaluations, it was found that adding a small number of links (less than 5) provided 

a large reduction in the objective function values (18% (EC) to 49% (VI)).  

Managerial insights were also presented highlighting that there were very 

few added link commonalities between the different evaluated objective functions, 

thus necessitating an organization to clarify their systemic risk reduction goals and 

highlighting the value of using a weighted combination of different metrics. 

Overall, organizations could use the results from this study to reduce the exposure 

of their AM system to systemic risks due to the potential cascading disruption of 

highly connected and critical AM subject areas. The connection addition 

methodology proposed in this study enhances the information transfer throughout 

the AM system while also ensuring that AM stakeholders are not overloaded with 

too much information. Future work would be to apply this connection addition 

methodology at different stages of AM deployment within organizations and with 

link addition costs, allowing a full Pareto analysis to minimize the centrality values 

while also minimizing the cost of adding new links to the AM system network.  
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4.10. NOTATIONS 

𝐵𝐶𝑖 Betweenness centrality of node i 

𝜌𝑗𝑘 Weighted length of all shortest paths connecting nodes j and k 

𝜌𝑗𝑘(𝑖) Weighted length of all shortest paths connecting nodes j and k that 

traverse node i 

𝐶𝐶𝑖 Closeness centrality of node i 

𝑑(𝑖, 𝑗) Shortest path length between nodes i and j 

N The total number of nodes in the network 

ECi Eigenvector centrality of node i 

A Adjacency matrix with elements 𝑎𝑖,𝑗 

λ The maximum eigenvalue of the adjacency matrix A 

𝑉𝐼𝑖 Vulnerability index of node i 

N’ 
The total number of operational nodes in the network’s giant 

component after node i was triggered to fail 

𝐿𝑖 Information load on node i 

𝐶𝐴𝑃𝑖 The maximum amount of information that can be managed by node i 
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α Tolerance for exceeding information load capacity  

r The specified number of links added to the AM system network 

Nt 
The number of critical nodes to be considered in the objective 

function 

G The directed graph representing the typical AM system network 

a Weighting factor for betweenness centrality 

b Weighting factor for closeness centrality 

c Weighting factor for eigenvector centrality 

d Weighting factor for vulnerability index 

x Indices for newly added links 

Lad The new set of added links 

4.11.  ACRONYMS 

AM Asset management 

GA Genetic algorithm 

IAM  Institute for Asset Management 

ISO International Organization for Standardization 
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4.12. SUPPLEMENTAL MATERIALS  

Appendix S1 – Weighted adjacency matrix. 

  

S1   Asset Management Policy 4

S2   Asset Management Strategy & Objectives 5 5 5 5

S3   Demand Analysis 3 3

S4   Strategic Planning 1 1 1 1

S5   Asset Management Planning 4 4 4

A1   Resourcing Strategy 7 7

A2   Shutdown & Outage Strategy 3 3

A3   Capital Investment Decision Making 4 4 4 4 4

A4   Lifecycle Value Realization 3 3 3 3 3

A5   Operations & Maintenance Decision Making 4 4 4

L1   Maintenance Delivery 3 3 3

L2   Asset Operations 3 3

L3   Resource Management 6 6 6 6 6 6

L4   Shutdown & Outage Management 3 3 3 3 3

L5   Technical Standards & Legislation 3 3 3 3

L6   Asset Creation & Acquisition 3

L7   Systems Engineering 2

L8   Configuration Management 2

L9   Reliability Engineering 3 3 3

L10   Fault & Incident Response 3 3

L11   Asset Decommissioning & Disposal 3 3 3 3

I1   Data & Information Management 2 2 2

I2   Asset Information Strategy 2 2 2 2

I3   Asset Information Systems 1 1 1

I4   Asset Information Standards 2 2 2

O1   Procurement & Supply Chain Management 2 2 2

O2   Competence Management 4 4 4

O3   Asset Management Leadership 3 3 3 3

O4   Organizational Structure 2 2 2 2

O5   Organizational Culture 3 3 3

R1   Stakeholder Engagement 5 5 5 5 5 5 5

R2   Asset Performance & Health Monitoring 1 1

R3   Contingency Planning & Resilience Analysis 5

R4   Risk Assessment & Management 7 7 7 7

R5   Sustainable Development 4 4 4 4 4 4

R6   Management of Change 1

R7   Asset Management System Monitoring 1 1

R8   Management Review, Audit, & Assurance 3 3

R9   Asset Costing & Valuation 5 5 5 5 5
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Appendix S2-1. Link additions according to the betweenness centrality (labels are 

defined in Figure 4-1). 

 

Appendix S2-2. Link additions according to the closeness centrality (labels are 

defined in Figure 4-1). 
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Appendix S2-3. Link additions according to the eigenvector centrality (labels are 

defined in Figure 4-1). 

 

Appendix S2-4. Link additions according to the vulnerability index (labels are 

defined in Figure 4-1). 
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Appendix S2-5. Link additions based on a weighted combination of betweenness 

centrality, closeness centrality, eigenvector centrality, and vulnerability index 

(labels are defined in Figure 4-1). 

  



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

177 

 

4.13.  REFERENCES 

Alzoor, F. S., Ezzeldin, M., Mohamed, M., and El-Dakhakhni, W. (2021). “Prioritizing 

Bridge Rehabilitation Plans through Systemic Risk-Guided Classifications.” Journal 

of Bridge Engineering, 26(7), 04021038. 

American Society of Civil Engineers. (2021). 2021 Report Card for America’s 

Infrastructure. 

Barabási, A.-L. (2016). Network Science. Cambridge University Press, Cambridge, UK. 

Barbosa, F., De Sousa, A., and Agra, A. (2018). “Topology design of transparent optical 

networks resilient to multiple node failures.” Proceedings of 2018 10th International 

Workshop on Resilient Networks Design and Modeling, IEEE, 1–8. 

Bergh, D. D., Ketchen, D. J., Orlandi, I., Heugens, P. P. M. A. R., and Boyd, B. K. (2019). 

“Information Asymmetry in Management Research: Past Accomplishments and 

Future Opportunities.” Journal of Management, 45(1), 122–158. 

Bertling Tjernberg, L. (2018). Infrastructure Asset Management with Power System 

Applications. Taylor & Francis Group, Boca Raton. 

Bhavathrathan, B. K., and Patil, G. R. (2018). “Algorithm to Compute Urban Road 

Network Resilience.” Transportation Research Record, 2672(48), 104–115. 

Brunetto, Y., Xerri, M., and Nelson, S. (2014). “Building a Proactive, Engagement Culture 

in Asset Management Organizations.” Journal of Management in Engineering, 

30(4), 04014014. 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

178 

 

Canadian Infrastructure Report Card. (2016). Informing the Future: The Canadian 

Infrastructure Report Card. 

Canadian Infrastructure Report Card. (2019). Monitoring the State of Canada’s Core Public 

Infrastructure: The Canadian Infrastructure Report Card 2019. 

Crescenzi, P., D’Angelo, G., Severini, L., and Velaj, Y. (2016). “Greedily improving our 

own closeness centrality in a network.” ACM Transactions on Knowledge Discovery 

from Data, 11(1), 1–32. 

Estrada, E., and Knight, P. (2015). A first course in network theory. Oxford University 

Press. 

Ezzeldin, M., and El-Dakhakhni, W. E. (2019). “Robustness of Ontario power network 

under systemic risks.” Sustainable and Resilient Infrastructure, Taylor & Francis, 1–

20. 

Freeman, L. C. (1977). “A Set of Measures of Centrality Based on Betweenness.” 

Sociometry, 40(1), 35–41. 

Global Forum on Maintenance and Asset Management. (2014). The Asset Management 

Landscape. Global Forum on Maintenance and Asset Management. 

Goforth, E., El-Dakhakhni, W., and Wiebe, L. (2022). “Network Analytics for 

Infrastructure Asset Management Systemic Risk Assessment.” Journal of 

Infrastructure Systems, In press. 

 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

179 

 

Goforth, E., Ezzeldin, M., El-Dakhakhni, W., Wiebe, L., and Mohamed, M. (2020). 

“Network-of-Networks Framework for Multimodal Hazmat Transportation Risk 

Mitigation: Application to Used Nuclear Fuel in Canada.” Journal of Hazardous, 

Toxic, and Radioactive Waste, 24(3). 

Golightly, D., Kefalidou, G., and Sharples, S. (2018). “A cross-sector analysis of human 

and organisational factors in the deployment of data-driven predictive maintenance.” 

Information Systems and e-Business Management, Springer Berlin Heidelberg, 

16(3), 627–648. 

Herrera, F., Chan, G., Legault, M., Kassim, R. M., and Sharma, V. (2011). The digital 

workplace: Think, share, do. Deloitte & Touche LLP. 

Hodkiewicz, M. R. (2015). “The development of ISO 55000 series standards.” Lecture 

Notes in Mechanical Engineering, 19, 427–438. 

Infrastructure Canada. (2018). Investing in Canada: Canada’s long-term infrastructure 

plan. Ottawa. 

Institute for Asset Management. (2015). Asset Management – an Anatomy. Bristol, UK. 

International Organization for Standardization. (2014a). ISO 55000 — Asset management 

— Overview, principles and terminology. Geneva. 

International Organization for Standardization. (2014b). “ISO 55001 Asset management 

— Management systems — Requirements.” International Organization for 

Standardization, Geneva. 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

180 

 

International Organization for Standardization. (2021). “Known Certified Organizations.” 

ISO/TC 251 Asset Management, <https://committee.iso.org/sites/tc251/social-

links/resources/known-certified-organizations.html> (Oct. 28, 2021). 

Kinney, R., Crucitti, P., Albert, R., and Latora, V. (2005). “Modeling cascading failures in 

the North American power grid.” European Physical Journal B, 46(1), 101–107. 

Konstantakos, P. C., Chountalas, P. T., and Magoutas, A. I. (2019). “The contemporary 

landscape of asset management systems.” Quality - Access to Success, 20(169), 10–

17. 

Kourtellis, N., Alahakoon, T., Simha, R., Iamnitchi, A., and Tripathi, R. (2013). 

“Identifying high betweenness centrality nodes in large social networks.” Social 

Network Analysis and Mining, 3(4), 899–914. 

de la Pena, C., Gonzalez Fernandez, D., and Rodriguez Gonzalez, J. (2016). “How analytics 

can improve asset management in electric power networks.” McKinsey & Company 

Electrical Power & Natural Gas, <https://www.mckinsey.com/industries/electric-

power-and-natural-gas/our-insights/> (Jun. 14, 2018). 

Mahyar, H., Hasheminezhad, R., Ghalebi, E., Nazemian, A., Grosu, R., Movaghar, A., and 

Rabiee, H. R. (2018). “Identifying central nodes for information flow in social 

networks using compressive sensing.” Social Network Analysis and Mining, 

Springer Vienna, 8(1), 1–24. 

Medvet, E., and Bartoli, A. (2021). “Evolutionary Optimization of Graphs with GraphEA.” 

AIxIA 2020 -- Advances in Artificial Intelligence, M. Baldoni and S. Bandini, eds., 

Springer International Publishing, Cham, 83–98. 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

181 
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Chapter 5  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1. SUMMARY 

Implementing and operating an asset management (AM) system within an 

organization is critical to address the many challenges associated with owning, 

managing, and operating infrastructure assets. An AM system was modeled as a 

network of connected nodes and links. Modeling the AM system network enabled 

the identification of systemic risks (i.e., dependence induced failures) within the 

AM system specifically associated with information asymmetry and information 

overload. Once identified, the systemic risks were mitigated by applying descriptive 

analytics to display only the necessary information to AM stakeholders, ensuring 

that they would not become overloaded with unnecessary information. 

Additionally, predictive analytics was employed to forecast a resilience key 

performance indicator (KPI) as a method to enable AM stakeholders to make 

decisions using consistent forecasted information. Finally, systemic risks within the 

AM system network were mitigated by employing prescriptive analytics to develop 

optimal configurations of the AM network links through minimizing the criticality 

of dependence-induced failures of important AM system components. Critical AM 

system components were defined using the ISO 55001 standard and the optional 

link configurations were evaluated using a genetic algorithm approach. The 

described descriptive and prescriptive analytics strategies mitigated the AM system 
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exposure to systemic risks related to information asymmetry and information 

overload and the predictive analytics strategy enhanced the resilience response of a 

power utility to forced outage occurrences.   

5.2. CONCLUSIONS AND CONTRIBUTIONS 

The AM system network model presented in this thesis has expanded the 

understanding of the criticality of specific components necessary for operation of 

an AM system within organizations that own, manage, and operate infrastructure 

assets. The research presented in this thesis assessed systemic risks induced by 

information asymmetry and information overload and presented mitigation 

strategies specific to such risks using descriptive and prescriptive analytics. In 

addition, this research presented a predictive analytics approach to enhance the 

resilience of a power utility to forced outage occurrences. Within this context, the 

following conclusions are described as they relate to the application of descriptive- 

and prescriptive analytics to mitigate the systemic risks caused by information 

asymmetry and information overload and predictive analytics to enhance the 

resilience. 

5.2.1. DESCRIPTIVE ANALYTICS STRATEGY FOR SYSTEMIC RISK 

MITIGATION  

Previous research identified that the main challenges with implementing and 

operating an AM system within an organization included information asymmetry 
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due to AM stakeholders using different or not consistent information to guide 

decision-making, and information overload where AM stakeholders were 

overwhelmed with data which caused challenges in identifying the correct data 

needed for decision-making.  The work presented in this thesis described these 

challenges as causes for systemic risks (i.e., dependence-induced failures) within 

an AM system. The AM system was modeled as a network of connected 

components to identify the AM subject areas (i.e., AM system components) that 

were most exposed to such systemic risks. Different centrality measures (i.e., 

betweenness-, closeness-, degree-, eigenvector-centrality, and vulnerability index) 

were employed to assess the varying criticality of each AM subject area and its 

exposure to systemic risks. The AM subject areas Strategic Planning and Lifecycle 

Value Realization were found to be among the most critical AM subject areas 

exposed to systemic risk according to each of the five previously identified 

centrality measures. The AM subject area Resource Management was found to be 

critical among four of the described centrality measures also indicating its critical 

exposure to systemic risks. These AM subject areas are particularly susceptible to 

initiating a cascading failure scenario throughout the AM system network. 

Therefore, the thesis also describes methods for mitigating the exposure to systemic 

risks which could cause cascading impacts throughout the AM system.  

Following the identification of critical systemic risk-exposed AM subject 

areas, Chapter 2 outlined the descriptive analytics approach that could be used to 

reduce the exposure of AM stakeholders to information overload. Tailored 
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dashboard visualizations were outlined that presented KPIs specific to each of the 

critical AM subject areas. By presenting only the information necessary to make 

decisions related to that AM subject area, an AM stakeholder would not be 

overwhelmed with access to all available information related to the AM system. 

These dashboards focus the attention of AM stakeholders and ensure that each AM 

stakeholder that makes decisions related to an AM subject area uses consistent 

information. Applying descriptive analytics as described ensures consistent 

information is used for decision-making across AM subject areas, minimizing the 

exposure of AM stakeholders to information asymmetry where different or not 

current information is used for decision-making. Therefore, by deploying 

descriptive analytics targeted to each critical AM subject area, the potential for 

systemic risks related to information asymmetry and information overload are 

reduced.  

5.2.2. PREDICTIVE ANALYTICS STRATEGY FOR RESILIENCE 

ENHANCEMENT  

A predictive analytics strategy was developed to forecast resilience KPI metrics 

ensuring that there were consistent future predictions employed by all AM 

stakeholders across an organization. Practically, the resilience KPI metric of 

rapidity was used as the duration of forced outages for power infrastructure asset 

components. A methodology was presented to allow an organization that owns, 

operates, and manages power infrastructure assets to predict a specified KPI metric 
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using a consistent data source. The study demonstrated that the described 

methodology was successful when using transmission line forced outage data to 

classify the rapidity of an outage soon after its occurrence. Having an accurate 

estimation of the rapidity of an outage enables a utility to rapidly respond to a forced 

outage with appropriate resources, therefore enhancing the resilience. By 

employing a structured methodology for KPI prediction, it ensures that the 

forecasted values are consistent across an organization’s AM subject areas, 

therefore minimizing the potential of AM stakeholders using different future KPI 

metric values and in turn reducing the potential for information asymmetry. In 

addition, the predictive analytics methodology, presented in Chapter 3, only 

employs data that is relevant to developing the machine learning model for the KPI 

feature value to be forecasted, ensuring information overload does not occur. 

5.2.3. PRESCRIPTIVE ANALYTICS STRATEGY FOR SYSTEMIC RISK 

MITIGATION  

Finally, prescriptive analytics strategies were employed to develop an optimized 

configuration of the AM system network through the addition of links to reduce the 

exposure of systemic risk-critical AM subject areas. ISO 55001 was used to indicate 

the functionality of each AM subject area to the performance of the AM system. 

Using ISO 55001 allowed for the criticality of the AM system functionality to be 

evaluated while optimal network configurations were obtained to reduce the 

exposure of the AM system to systemic risks. Links were added between AM 
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subject areas to improve the resilience of the AM network to cascading failure 

impacts due to information asymmetry and information overload. The added links 

provided additional paths for information to flow throughout the AM system 

network, therefore reducing the impact to the AM system if a critical AM subject 

area were to become dysfunctional due to information asymmetry or information 

overload.  

5.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

This section outlines additional research that could be conducted to build on the 

work presented in this thesis.  

1) Identify systemic risks for organizations at different stages of their AM 

journey. Not all organizations that own, manage, and operate infrastructure 

assets have a fully developed AM system as described in this thesis. 

Therefore, future research could explore organizations at different stages of 

AM system development and provide an optimal path for building out their 

AM system functionality. Such different AM implementation stages would 

require interviews with organizations to grade a scale to which they feel 

their organization is effective in each of the 39 AM subject areas and what 

connections exist between them. If organizations do not have all 39 AM 

subject areas developed, then this research would propose an optimal plan 

for improving their AM system by adding the remaining AM subject areas 

to enable organizations that do not have a fully developed AM system to 



Ph.D. Thesis – E. Goforth  McMaster University – Civil Engineering 

 

190 

 

have a standardized plan which they could follow to improve their AM 

system. Having a standardized plan for AM system development would 

enable organizations among all infrastructure industries to be consistent in 

their AM practices, therefore enabling a regulator of AM to evaluate the 

effectiveness of AM system performance more efficiently across all 

infrastructure industries.  

2) The AM system network should be integrated with infrastructure networks, 

enabling a multi-layered network approach investigating the impact of 

decisions within the AM system on the performance of the assets. In 

addition, different owners, levels of government, regulators, and political 

decisions should be incorporated into such an integrated approach. This 

could be accomplished using an agent-based modeling approach where 

decisions within the AM system could be simulated on the infrastructure 

network. Osman (2012) introduced this concept by modeling a road 

infrastructure network and including maintenance decisions. The proposed 

model would include all aspects of an AM system as shown in this thesis 

and incorporate their effects on the performance of the infrastructure 

network directly. This would enhance the capability of predictive modeling 

for investigating the effects of decisions on infrastructure performance in 

the future.  

3) Incorporate the other resilience metrics, resourcefulness, robustness, and 

redundancy, into AM decision-making. Resource strategy and resource 
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management were found to be critical components of an AM system and 

incorporating the concept of resourcefulness as presented in Chapter 3 into 

the resource strategy and management could benefit infrastructure asset 

owners in bouncing back following disruptive events. This could include 

optimizing the number of spare resources available for each asset 

component class. This is especially important given the supply chain issues 

that plagued the world in 2021 and the increase in disruptive weather events 

causing catastrophic damage. Having the resources both in terms of 

available people and infrastructure components to restore service is crucial 

to maintain critical infrastructure functionality. Incorporating a balance 

between each of the resilience metrics would enable AM decision-making 

to adapt to the changing environment (e.g., climate, supply chain) in which 

infrastructure assets operate within.  
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