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Abstract 

This research investigates software failure and fault analysis through data-driven machine 

learning approaches. Faults can happen in any software system and may hugely impact 

system reliability and user experience. Log data, the machine-generated data that records 

the system status, is often the primary source of information to track down a fault. This 

study aims to develop automated systems that recognize recurring faults by analyzing the 

system log data. The methodology developed in this research applies to the Ford SYNC 

vehicle infotainment system as well as other systems that produce similar log data. 

Log data has been used in manual examination to help trace and localize a fault. This 

manual process can be effective and sometimes the only feasible way of troubleshooting 

software faults. However, as the amount of log data increases significantly with the 

growing complexity and scale of software, the manual workload can get overwhelming. 

During the system-level validation tests, all system components are producing log data, 

resulting in tens of thousands of lines of log messages in just a few minutes. Therefore, 

automated diagnosis has been a promising approach for log data analysis. 

Three machine learning approaches are investigated in this research to tackle the fault 

diagnosis problem: 1) the data mining approach; 2) the statistical feature approach; and, 

3) the deep learning approach. The first method attempts to mimic human experts to 

examine log data. Log sequences representing a fault are extracted through data mining 

techniques and used to identify anomalies. The method is effective when applied to a 

small volume of data, but computational efficiency can be an issue when scaling to larger 
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datasets. As its name suggests, the second method involves an examination of the log 

data’s statistical and numerical features and adapting a machine learning model for 

decision making. The use of numerical features to describe log data has significant 

computational efficiency improvement over working directly with sequences. The last 

approach adopts deep learning models that process the log data in sequential format, 

enabling more sophisticated feature extraction that often exceeds human capability.  In 

this research, all three methods are implemented and evaluated in a controlled testing 

environment, and their strengths and weaknesses are comparatively evaluated. 

This study also reports on a novel finding that the time information in a log sequence 

plays an important role in distinguishing a faulty condition from a normal one. For most 

software systems, the log sequences are unevenly spaced, meaning that the timestamps 

associated with log data are nonuniform. Existing log analysis studies generally 

overlooked the time information while emphasizing log sequences. This research 

proposes a novel deep learning structure to unify the processing of timestamps and log 

sequences. The timestamps are integrated through interpolation at an intermediate layer of 

a neural network. Testing results demonstrate that the inclusion of timestamps makes a 

significant contribution to identifying a fault, and that models using time stamps can push 

the performance to a higher level.  
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Chapter 1 Introduction 

Data analytics has been receiving increasing attention from both industry and academia 

for the past decade. It has become one of the most important emerging areas of interest in 

various fields, including finance, computing and software, and manufacturing. The rise of 

this field is mainly due to people and organizations realizing the value of extracting the 

information contained in massive amounts of data, which in turn stimulates extensive data 

collection. For example, a recent survey on corporate finance found that companies with 

comprehensive analytics are more likely to make effective decisions and achieve top 

financial performance [1]. The benefits of information buried in data are not limited to 

finance and marketing. As new tools and methodologies are being developed for data 

analytics, new areas of interest start to emerge in both industry and academia. 

The major challenges to transform the data into financial benefits often come from the 

sheer volume of data to be analyzed. Based on a survey in 2018, the volume of data 

created, captured, copied, and consumed worldwide is at the zettabyte level, i.e. 1021 

bytes, and is ever increasing [2]. The vague term Big Data is widely known to describe 

this phenomenon. The newly generated data mainly comes from the digitalization of 

existing non-digital information, such as books, and sensor-enabled data-collecting 
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devices, such as in autonomous vehicles [3]. Although human beings are exceptionally 

capable of data comprehension, many modern datasets are too large to be analyzed by 

humans manually. Computers are widely adopted to assist with the analysis, but often 

they still remain ineffective in processing large or complex data because of the way data 

is gathered. These emerging opportunities of Big Data are the driving force of data 

analysis research. The newly developed methods rely on Artificial Intelligence (AI) and 

bring a new perspective to problem solving. 

The analysis of digital images is a good example of the changes brought by the large 

volume of data. Recognizing objects from an image has been a common task in computer 

vision research. It is a simple task for human beings, while automation using computer 

programs is a difficult task. Systematic studies have been emphasizing the extraction of 

distinct features that are often explicitly specified, such as using staircase patterns to 

identify buildings in a satellite image [4]. Although the progressive achievements 

accumulated over decades has been comprehensive, it is the very recently developed deep 

convolutional neural networks [5] that completely reshaped the research. This new subset 

of machine learning methods is specifically designed to utilize an extremely large amount 

of data and learn implicit feature patterns from them. Based on this concept, various 

models have pushed computer-object-recognition to human-level performance and 

effectively made this technology commercially viable. Such innovation and progress will 

not happen without the abundance of data and data-driven methodologies being 

developed. 
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The development of AI-based data analytics is often related to specific domains. In the 

above example, it is for image processing, but for other areas different strategies and 

methods are needed. The various data types, although appearing differently, can be 

broken down into four fundamental categories: continuous, discrete, ordinal, and nominal, 

as shown in Figure 1.1.1. Continuous and discrete data are represented in a numerical 

form, such as the temperature of a day and the colour values of an image pixel. The 

ordinal and nominal data are represented in categories, such as the days in a week and the 

words from a written language. Packing the basic data types in a structured form 

constitutes complex data types. For example, the digital colour images are represented by 

a 3D matrix of discrete integer values. A vector is another common construction that 

appears in many applications. In electromechanical systems, a voltage sensor produces 

numerical data points in discrete time intervals that is known as time series. In natural 

language processing, a piece of text can be viewed as a sequence of words and 

punctuations which is a nominal type of data.  

 

Figure 1.1.1 Statistical data types. 

The structured data contains meaningful information about the system that produces 

them. The time series of sensor measurements can tell the operational state of an engine; 
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the text sequence reveals an author’s sentiment when writing an article. The task of 

recognizing the underlying features and associating them to a category is often referred to 

as classification. It has a wide range of applications including fault diagnosis, object 

recognition, fraud detection and social media fact-checking.  

This thesis will focus on the classification task through the analysis of categorical 

sequence data. Methodologies involving pattern searching, feature characterization, and 

classification models will be explored and discussed. The study originates from a project 

of analyzing system logs from a vehicle infotainment software, while the methodologies 

developed in this research can potentially be extended or adapted to other systems and 

applications as well.  

1.1 Research Objectives 

This research mainly focuses on investigating the log data from the Ford SYNC system 

for fault diagnosis purposes. The SYNC is an operating system running on embedded 

platforms. It features entertainment and communication functionalities, such as hands-

free telephone calls, audio control, and air conditioning. As such systems evolve rapidly 

to include new functionalities, such as WiFi and cellular network connectivity and driver 

assistance technologies, the software’s size and complexity continues to grow. 

Developing and maintaining the SYNC system requires collaborative work from a large 

team and an integrated testing process.  

Testing is an essential aspect of software development to ensure quality by verifying that 

the product meets design requirements. From a low to a high level, these include unit 
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testing, integration testing, system testing, and acceptance testing. This study is concerned 

with acceptance testing, which comes at the very last stage of development. In the Ford 

SYNC development scenario, the acceptance testing is performed with the whole system 

functionally ready on a hardware test bench or mule vehicle. All software components are 

individually tested through the lower level testing and most faults are resolved. However, 

even if software configuration items pass unit tests, it does not ensure the functionality of 

the whole system as system level faults may occur due to incomplete or missing software 

requirements.  Often system level functional faults are only discovered during 

development or acceptance testing, where they can propagate to failures.  

When unexpected software behaviour is found during acceptance testing, the first task is 

to synthesize and localize the fault. This is no easy task, especially for large-scale 

software that requires a whole team of developers to maintain. In order to trace the origin 

of a fault, the software under test is instrumented with diagnostics features that record its 

status during tests. A type of machine-generated form of condition monitoring data is 

called “system logs”. In software condition monitoring, examination of the system logs is 

the first step to identifying potential faults. 

Manually examination of the system logs is a time-consuming process because of the 

large volume of log data that is normally generated continuously for condition 

monitoring. This generates a large workload for the software testing team. In particular, 

many reported anomalies turn out to be caused by the same fault, but they still require 

manual inspection of the logs. The objective of this research is to address recognizing the 
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reoccurring faults in an automated manner. Specifically, a fault identification system is 

expected to: 

- identify reoccurring faults that are conventionally being identified manually; 

- perform the diagnosis mainly through analyzing system logs as the main source of 

data; and, 

- perform the task without the availability of source code. 

Note that the intention is not to perform a complete end-to-end diagnosis, but rather to 

speed up the process by screening the reported anomalies and finding out the reoccurring 

ones. Faults that have not been previously manually diagnosed still need attention from 

human experts. The source code is generally not available for the use case of this 

application, so one of the assumptions is that the software logging instrumentation is able 

to trace the propagation from a fault to a failure. This is reasonable because if the 

assumption does not hold, even a manual process could not locate the fault. The detailed 

introduction of the acceptance testing at Ford and the use case of an automated diagnosis 

system is provided in Chapter 2. 

1.2 Analysis Approaches 

Fault diagnosis methods in general include two categories: model-based and signal-based 

approaches. The model-based approach requires a system model to be available. A 

deviation in the system response compared to the expected output generated by the model 

would signal a fault condition and is used for fault detection and diagnosis. In software 

systems, the models can be constructed directly through the analysis of source code (the 
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static analysis) or by tracing the output of software execution while given a known test 

input (the dynamic analysis). Both methods require the availability of source code.  

The fault localization problem as presented by Yousefi [6] is an example of the system 

modelling approach. In the study, the test cases and test oracles – the mechanism of 

determining whether a test output is correct – are all known. The source code is 

instrumented such that each method in the source code produces an explicit tracing 

message during execution. By analyzing the tracing that pinpoints a certain block of code 

in the program, the method is able to create an execution tree model for a software test 

case. When a test produces a faulty output, the model is able to locate the branch that 

deviates from regular execution. 

Alternatively, the signal-based approach attempts to model the system behaviour through 

analysis of the system output data without modelling how the system works internally. A 

self-learning system attempts to generalize distinguishing features from the data and gives 

a classification output. This method often requires a large amount of data and manual 

feature engineering effort in order to extract meaningful information from the data. It can 

work without the availability of source code, so it has different use cases than the model-

based approach. 

In the Ford system log analysis case, the task of recognizing reoccurring faults has a 

different setting from a typical software diagnosis application. At the initial stage of bug 

inspection (referred to as the triage process as later introduced in Chapter 2), the source 

code is unavailable or impractical to decipher due to its large size. Meanwhile, the system 
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log trace is abundant and comprehensive, such that they can be understood by human 

testers. As a result, the signal-based approach is more preferred. 

In this study, multiple machine learning approaches are investigated to perform fault 

identification through analyzing the system log data. Note that the term machine learning 

has different definitions. In general, it refers to the algorithms that can self-adjust their 

parameters to fit the given data (signals) from a system. Meanwhile in some literature, the 

machine learning methods refer to a narrow band of models that take numerical input and 

produce a regression or classification output. These models are often called traditional 

machine learning models, to distinguish from the later developed deep learning models. 

Both definitions are used in this dissertation and the meaning is indicated when it is 

referred to. 

The general framework of self-learning diagnosis systems is shown in Figure 1.2.1. A 

training stage is required for the system to discover and learn feature patterns from the 

data, while the diagnosis stage is carried out after a model is trained. The processing 

workflow is shown from left to right. The log data in the time-ordered message sequence 

format first go through the feature discovery process to obtain distinctive patterns that 

belong to a fault. Then a learning model fits on the feature patterns in order to produce the 

fault classification. The same feature discovery process and the trained model are used to 

process a new piece of log data and produce a diagnosis result. 
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Figure 1.2.1 The general framework of software fault diagnosis systems. 

Three different approaches are investigated under this self-learning framework, namely: 

1. data mining;  

2. statistical machine learning; and, 

3. deep learning.  

They range from intuitive to abstract, representing the progress of this research from a 

simple to a more complex level. Different feature discovery methods and learning models 

are used for each approach. They are briefly introduced as follows: 

1. The first proposed method is named Fault Diagnosis via Sequence Pattern Mining 

(FDSPM). The concept is intuitive and straightforward: the feature discovery 

mimics test engineers’ manual process of examining the log data by using data 

mining methods. Data mining refers to the algorithms and methods of finding 

patterns from a large dataset. In particular, the sequential data mining algorithm is 

selected for the pattern discovery process. The probabilistic weightings of the 

discovered patterns are determined by observing the training data. In the diagnosis 
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phase, a Bayesian inference model utilizes the pattern weightings and produces 

the likely fault with probability rating. 

2. The second method is called Fault Diagnosis via Statistical Machine Learning 

(FDSML). The concept is to use statistical representations to describe log 

sequences as vectors. This turns the data into a numerical form and renders many 

traditional machine learning classifiers applicable. It is the most practical 

approach in big data applications and possibly the most popular one in industry. In 

particular, a Multi-Layer Perceptron (MLP) model is investigated and evaluated 

on the Ford log data. 

3. Deep learning is the third approach presented in this research. Deep learning 

refers to the recent advancement of neural network development, which can be 

viewed as a complex version of machine learning models. The concept is also to 

convert categorical data as numerical, but with deep learning, the feature 

representation goes one step further by converting log sequences into 2D matrix 

features, a technique called embedding. Specialized deep learning models handle 

these matrix features and perform effective classification.  

Deep learning models can be highly flexible and capable of including various 

information, such as timestamps. This study also investigates the effect of time 

information on the analysis of log data and extends the existing deep learning models to 

incorporate such information.  
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1.3 Contributions and Novelty 

The contributions of this research are as follows. 

This study is the first work to examine Ford SYNC system log data for fault diagnosis 

purposes. The work provides guidelines on processing log data using AI methodologies to 

reduce repetitive workload during software development and testing. 

The second contribution is the novel application of sequential data mining to system log 

data. The proposed FDSPM method combines an effective mining algorithm and the 

Bayesian classifier to diagnose reoccurring faults. This intuitive method has demonstrated 

effectiveness even with a limited amount of data. 

The third contribution is the application of machine learning and deep learning 

approaches. These approaches use well-established methods, including log vectorization, 

logistic regression, word embedding, and neural networks. For the first time, this study 

brings these efficient methods together and applies them to the Ford SYNC log data.  

When investigating the log data, a novel finding reveals that the log sequence durations 

have distinctive distribution patterns between normal and faulty data, implying their 

usefulness in fault detection. Inspired by this discovery, the fourth contribution is a novel 

neural network structure called Ts model that incorporates the timestamp information of 

log sequences. The Ts models demonstrate improvement over the regular deep models, 

confirming the contribution of timestamps and the effectiveness of the proposed models.  
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1.4 Thesis Organization 

This dissertation is outlined as follows. 

Chapter 2 provides an overview of Ford’s defect management process and presents the 

fault identification and diagnosis problem in more details. The log data and the analysis 

workflow are also introduced. Chapter 3 gives a review of the literature related to system 

log data and software defect diagnosis. Chapter 4 presents the Fault Diagnosis via 

Sequence Pattern Mining (FDSPM) method and the data mining approach applied to the 

fault identification problem. Various data mining approaches are reviewed and one 

algorithm is selected for extracting the feature patterns for Ford SYNC log data. The 

Bayesian classification is used to extracted patterns. Chapter 5 presents the traditional 

machine learning approach using statistical features and proposes the Fault Diagnosis via 

Statistical Machine Learning (FDSML) method. Statistical features that are commonly 

seen in recent machine learning-based log analysis research are introduced. The FDSML 

is implemented and evaluated against the Ford SYNC log data and an augmented version 

of the dataset. Chapter 6 discusses a proposed deep learning approach and its application 

to system log data. The process of “embedding” that is a comprehensive vectorization 

method is introduced and implemented for system log data. Two deep learning models are 

then implemented to process the embedding vectors. Chapter 7 presents a novel strategy 

using time information in relation to log data. The significant differences brought by log 

timestamps are presented both statistically and descriptively. The novel deep learning 

structure that incorporates timestamps is proposed. The results are compared with the 
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regular deep learning models reported in Chapter 6. Chapter 8 presents the conclusions 

and future research directions.  

 

  



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

14 

 

 

 

Chapter 2 System Log Data Overview 

In modern computer software, system logs are generated constantly by various operating 

systems. These logs contain event traces and software running status, providing important 

information for developers to troubleshoot issues. The task of log data analysis requires 

domain expertise and therefore, is traditionally done by experienced software developers. 

However, it becomes increasingly more challenging as the systems grow in scale and 

complexity. The modern vehicle infotainment system, or in-vehicle entertainment system 

as an example, is one of such operating systems. It performs functions that include audio 

processing (radio/CD/auxiliary), navigation, USB and Bluetooth connectivity, Wi-Fi, and 

voice control. These systems have evolved over time with new features being 

continuously added and updated as consumers’ requirements evolve. 

This chapter takes Ford’s infotainment system as an example to provide an overview of 

what system log is, the role it plays in the software development process, and the benefits 

of automating log data analysis. The problem of defect diagnosis is stated in the end. 
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2.1 Definitions 

The terms defect, fault, error, and failure appear commonly in the literature, but their 

definitions depend on the type of the system as well as conventions. One general 

definition by Naik and Tripathy is as follows [7]: 

• A failure is used when the behaviour of a system does not conform to what is 

specified in the requirement or what the customer expects.  

• An error is a state of the system that could lead to a failure if not corrected. 

• A fault is the adjudged cause of an error. 

The definition of the term defect varies depending on the system. In mechanical or 

electronic systems, a defect often means a flaw or imperfection of a physical component. 

Typically, the causal chain is defect → fault → error → failure. Take the internal 

combustion engine system as an example, a fault can be the physical degradation of spark 

plugs that do not meet technical specifications. It may cause uneven combustion which is 

an error state. During this error state the system would have degraded performance which 

may be noticed by the driver or discovered by a technician. If no actions are taken, the 

engine would eventually fail due to no ignition or excessive vibration. The defect in this 

example, is a defective product (spark plug). However, a defect is not a must; a 

component can be free of defect and the fault caused by normal wear and tear. defects and 

faults often have clear definitions for such physical systems [8]. 

In software systems, a fault commonly refers to a program code that does not meet 

specifications. When the faulty code is executed, it brings the program to an error state. 
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The error may or may not show up immediately – the latter is called latent error. The 

error state eventually presents in the form of a failure by customers or by testers. For 

example, a faulty block of code leads to a user interface widget in an error state. When 

interacting with a user, the widget causes the software application to crash (fail). Unlike 

physical systems, many software failures are not as evident and may go unnoticed for a 

long time. The term defect in software systems does not have a clear definition equivalent 

to a physical system. In fact, the IT industry often uses the term defect equivalently as 

fault. In this chapter, the two terms are used interchangeably as required. 

Figure 2.1.1 [9] shows the relationship between faults, errors, failures and logs in a 

software system. The chain of faults, errors, and failures does not always happen, so the 

failures are a subset of errors and errors are a subset of faults. When the failure 

propagation happens, the log data may directly report it, such as the crash logs always 

capturing the crash events. In this case the failure is evident and the fault can be traced; 

otherwise, the diagnosis is not feasible because of a lack of evidence. 

A comprehensive diagnostics tool aims to capture as much valuable information about a 

failure as possible, effectively increasing the size of “event log” oval in Figure 2.1.1. As a 

result, the event log not only contains errors and failures, it also records a large amount of 

regular executions. The richer the information in the log data record, the more likely they 

can capture the propagation of a failure. The unreported failures are not considered in this 

study. 
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When a fault exists and a failure occurs, the troubleshooting process often includes 

detection and diagnosis. Detection is the process of observing and uncovering the 

abnormal behaviour of a system. Diagnosis is to determine the root cause – the actual 

fault. The term Fault Detection and Diagnosis (FDD) is commonly used in physical 

systems, while software systems use a different convention. In software systems, failure 

detection is an important task as the failures can happen without being noticed, so quick 

detection and resolution are of great benefit to system maintenance. On the other hand, 

software fault diagnosis refers to finding the root cause in the source code. It is also 

called fault localization. A general approach is to trace the code execution using the 

evidence provided by log data. This is possible because log messages are often directly 

linked to the source code. 

This study investigates fault detection and diagnosis. Since the source code is unavailable 

due to corporate confidentiality, a thorough fault diagnosis that pinpoints the fault codes 

is not feasible. Instead, the focus is to identify reoccurring faults that 1) are previously 

known and manually diagnosed and, 2) leave traces in the log data. The term fault 

diagnosis or defect diagnosis is used throughout this thesis. However, it should be noted 

that when using this term, it only applies to the eligible faults that satisfy the above two 

conditions.  
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Figure 2.1.1. The fault-error-failure chain in software systems [9]. 

2.2 Ford System Log Data and Software Defect Diagnosis 

In Ford Motor Company, the infotainment system, i.e. the Ford SYNC® 3 – and the 

SYNC® 4 by the time that this dissertation is finished – is based on the QNX system, a 

Unix-like real-time operating system. To assist software development, a data analytics 

team has developed and maintains a logging framework for defect diagnosis and 

management purposes. The framework provides data logging functionality during the 

development phase. After product release, the same framework may also provide 

analytics data and serve customer support to help troubleshoot user complaints. The 

current process of defect diagnosis is elaborated in the following subsections. 

2.2.1 User Acceptance Test 

In the software development life cycle, the user acceptance test is the stage that follows 

after all subsystems are integrated and before product release. This stage is mainly 

concerned with system integration and is to make sure that different software and 

hardware modules function properly when working together. System-level validation tests 

and real-world use cases are performed to identify possible issues and bugs before the 
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product is released to the market. This stage includes alpha testing and beta testing, 

referring to the software versions being tested: alpha and beta. The alpha testing is 

performed by testers within the organization. After its completion, the beta testing is 

carried out by selected end-users outside of the organization. The overview in this chapter 

mainly concerns alpha testing, though many facts also apply to beta testing. 

Alpha testing of the SYNC system is mainly achieved through two means: the bench test 

and the road test. Either way, the test is performed by a tester who is a trained testing 

engineer. In the road test, the tester will drive the vehicle and use the infotainment system 

in a similar way as a regular consumer, such as driving on highways while using hands-

free functions to make a phone call. The software under development carries a bug report 

module that constantly writes the log data in a buffer. When a suspected failure is 

observed – this could be as simple as something not feeling right – the tester would flag it 

through the SYNC’s touchscreen interface. The log data in the buffer are saved, along 

with a snapshot of the system’s current status, including a screenshot, date and time, and 

the vehicle ID. This set of records is called a bug report. It is automatically uploaded to 

the organization’s server for further processing. 

2.2.2 Bug Report Triaging 

The automatically created bug report usually captures the fault to failure propagation – 

details elaborated in Section 2.2.3 – but it does not contain explicit information about the 

encountered failure. It also could contain false reports that the tester mistakenly triggers. 

For example, a tester may misunderstand the requirement and reports a fault. In other 

words, the bug reports are not complete. Therefore, annotations are often manually added 
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to assist post-analysis. The tester would describe the use case and the experienced 

anomaly in the form of voice recording or text and append them to the bug report. This 

annotation process also helps to remove the reports that are falsely triggered. 

The bug report is then assigned to the triage team through a defect management system. 

The task of triaging is to pre-examine and categorize the bug reports. Instead of sending 

bug reports directly to the software developers for troubleshooting, this intermediate 

triaging process is necessary for several reasons. First, multiple function teams work in 

parallel to maintain one large system like the SYNC, each focusing on its own software 

module, which is also known as a software component or subsystem. A bug report needs 

to be categorized before being sent to the right function team. Secondly, multiple bug 

reports can relate to the same fault. This is caused by a tester reproducing the same 

anomaly and creating several reports, or the same issue reported by more than one tester. 

Grouping these bug reports as one defect helps reduce redundancy. Lastly, the triaging 

process determines the defect severity level and filters out false alarms, which optimizes 

the allocation of the software development work. 

2.2.3 Software Defect 

A software defect as explained in Section 2.1, is the root cause of unexpected software 

behaviours. In the Ford case, an unknown defect causes a failure that is perceived by the 

tester, and a bug report is created to initiate the process of defect diagnosis. 

After the triaging process of sorting and allocating bug reports, the team has a better 

understanding of what the defect is and how it behaves. This defect is called identified. 
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An identified defect is documented with a defect ID along with many details, such as the 

description, ways to reproduce, linked bug reports, severity, and priority. A well-

documented defect is then assigned to a software developer in the corresponding function 

team. The developer’s responsibility is to find the root cause and implement code changes 

to fix the defect. 

A defect record is a live document as shown in Figure 2.2.1. New bug reports could be 

added to an existing defect if they have the same root cause. The developer may in turn 

request test engineers to produce more bug cases to confirm an error is reproducible. A 

defect management system is utilized to track and report the status of defects and bug 

reports. Figure 2.2.2 illustrates the forward workflow of the bug reporting process. 

 

Figure 2.2.1 The anatomy of a software defect in the defect management system. 

 

Figure 2.2.2 The workflow of software defect management. 
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2.3 Log Data Overview 

Among the masses of relatable information within a bug report, the system log data is the 

“heart and soul” – quoting from the software engineers – for the task of triaging. This is 

because the descriptions and annotations from the testers only scratch the surface. The 

underlining erroneous module often needs to be traced down through the log data.  

The log data can appear in vastly different formats depending on the logging purpose and 

how the logging framework is designed. The SYNC system maintains several log buffers 

for various purposes, such as the network status, the memory usage, and the status of 

external devices. Each of them has a unique logging format, some are hardly readable for 

non-experts in the domain. Fortunately for the triaging task, the most used – and probably 

the only useful one – is the software debug log, which records the operations of each 

function module. It comprises a sequence of readable messages in the order of 

timestamps. In the following discussion, the wording “log file” or “log data” refers to the 

software debug log, unless otherwise noted.  

The software debug log generated by the SYNC system is the typical Unix style system 

log. The log data consist of individual log messages. When the system is running, log 

messages are constantly buffered in the background. Each message contains a timestamp, 

logging module and process, and a text message. Figure 2.3.1 shows a typical log 

message that contains semantic texts. 
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Figure 2.3.1 An example log message from the SYNC system. 

The buffer has a fixed size (measured in Megabytes), containing a fixed number 

(thousands) of messages. When the system user triggers a bug report, the log buffer’s 

content is saved as a text file. Depending on the software workload at the time, the file 

can record up to an hour of runtime. This duration is usually sufficient to capture the fault 

to failure propagation chain. 

The log message itself contains rich information for debugging purpose. It shows which 

software module produces the message, pinpointing the line of code of the source file. A 

detailed breakdown of a log message is shown in Figure 2.3.2. These fields include: 

- Timestamps containing both date and time, accurate to milliseconds. 

- Message Counter that is an incremental counter, which resets after reaching a max 

limit. 

- Zone ID that is a hard-coded number for each task. 

- Process name that represents the software feature. It often corresponds to software 

function teams. 

- Source function/file and line number location in the source code that prints this 

message.  

- Text message that is the output of the log printing command. It is often semantic, 

while in some rare cases encrypted. 
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Figure 2.3.2 The structure of one log message. 

2.4 Problem Description 

Defect diagnosis, or identifying the defect during the triaging process, is one of the 

challenges in the defect management workflow. The engineers need to closely examine 

the bug reports – mostly including reading the log messages line-by-line – in order to 

identify the defect. Deciphering the sequence of log messages not only requires domain 

knowledge, but also finding evidence from tens of thousands of log lines can also be 

time-consuming and tedious.  

The challenge also comes from the growing size of the software as more and more 

features are added. This requires extensive tests to ensure the system meets customer 

satisfaction, likely leading to more bug reports to be analyzed. Additionally, as the 

acceptance test rolls into beta stage, the clients instead of testers will take the lead and 

carry out the tests. The amount of bug reports increases significantly and many of them 

are likely associated with the same defect, meaning heavier and more repetitive work for 

the triage team. 
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Some software tools are adopted to improve the efficiency of the manual process of 

identifying a potential defect, such as using a text viewer with convenient searching 

functions. Keyword searching can be effective to locate some errors if they are directly 

printed out in the logs. However, in most cases, the indication of a defect is implicit. 

More commonly a sequence of special log messages, often referred to as the log pattern, 

is the key to identifying a defect. The individual messages may appear benign, but an 

experienced triage engineer is able to identify the software actions behind the patterns and 

correctly diagnose a defect. In these cases, simple keyword matching does not function 

properly. 

An automated defect diagnosis tool would be beneficial to the triaging process. This tool 

is expected to analyze the bug report – specifically the system log data – and detect and 

identify potential defects within the system. If such a program is put into place, the triage 

engineer would see suggestions of possible defects before examining a bug report. This 

would be much relief as the engineer would only need to verify the suggested defect, 

instead of looking aimlessly into the bug report and log data.  

The following assumptions are made regarding the defect and system log data: 

- when a defect is triggered, it leaves traces in the log record, i.e. the defect is 

observable through the log data; and 

- the defect’s trace is captured within the recording buffer period.  

Defects that do not conform to these assumptions are excluded. They may include 

cosmetic defects of the Graphical User Interface (GUI), such as a misalignment of a touch 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

26 

 

button, or the defects taking too long to reveal, such as bad memory management causing 

the out-of-memory error after the system is used extensively.  

In this dissertation, a few approaches for this software defect diagnosis problem are 

considered, ranging from intuitive methods, that mimic the engineer, to machine learning 

methods using highly abstract feature patterns. The next chapter presents a literature 

review on troubleshooting using system log data. 
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Chapter 3 Log Data Analysis Literature 

This chapter reviews various system log data and common analysis approaches in 

automated failure detection and fault diagnosis studies. Log data are essentially 

unstructured or semi-structured text data in a sequential format. The appearance of system 

logs evolves over time as newly developed systems bring more complicated logging 

functionality and a significantly larger amount of log data. Methodologies developed for 

an earlier system may not perform well on the later systems and their log data; one reason 

being the recent systems often log extra information that requires special handling. 

Therefore, the types of log data need to be introduced before discussing methodologies. 

An overview of various types of log data commonly seen in industry is presented in 

Section 3.1. 

Automated failure detection and fault diagnosis through data analysis are typical 

classification problems that are commonly approached with machine learning [10]. The 

detection and diagnosis can be viewed as a supervised task, where a learning model 

trained on labelled data produces classification results. Alternatively, the problem can be 

handled in an unsupervised way, where the model analyzes the patterns of unlabelled data 

and detects failure conditions as outliers [11]. The classification strategies currently being 
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used show a clear trend of development: earlier works tend to focus on the sequential 

order of log messages and are referred to as path-based methods; the more recent 

methods of machine learning are based on statistical features that are extracted from log 

samples; the emerging deep learning models directly handle log sequences, capable of 

incorporating variables within the log messages as well. These works are reviewed in 

Sections 3.3 through 3.5, respectively.  

Note that existing research regarding log data analysis also involves other topics, such as 

logging mechanism [12], [13], infrastructures [14], security [15], and log filtering [16]. 

These topics are beyond the scope of this review. 

3.1 Types of System Log Data and Their Applications 

According to the survey paper in [17], the research published on work related to the topic 

of log data analysis shows a growing trend over the past two decades as shown in Figure 

3.1.1. According to this survey, the first publication on log data analysis dates back to 

1997, while a more rapid uptake of research in this area starts around 2014. Note that this 

survey was published in mid 2020, so the publication counts for the year 2020 is likely 

incomplete. The log data research has an upward trend to date and is likely to keep 

growing. 
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Figure 3.1.1. The evolution trend from 1997 to 2020. (Year 2020 is likely incomplete.) 

Before the term system log was widely used, studies investigated the alarm messages in 

large-scale communication networks with the goal of identifying system faults back in the 

90s [18], [19]. In the example from IBM in [20], the alarm message describes the 

anomaly observed by a submodule in a network. These alarms provide information about 

who (the subsystem affected), what (the symptom of the fault), and when (time occurred). 

The fault identification task is to determine the where (the location of the fault) and why 

(the nature of the fault) factors. Diagnosing a fault often requires analyzing a series of 

alarms where the sequence information can be important. These alarm messages can be 

viewed as primitive log data as they are the trace of the system. The difference is that the 

alarm messages are often well-defined by communication protocols [21], [22], while log 

data are less organized and prone to change. Figure 3.1.2 shows the transition of two 

system states (indicated in the brackets) producing certain alarm messages (indicated 

above the arrow) defined by the IEEE 802.2 logic link control protocol [22].  
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Figure 3.1.2. Examples of state transitions and alarm messages [22]. 

With the prevalence of the World Wide Web, log data saw its biggest application on 

Internet service systems, where the term log was widely used. Examples include e-

commerce websites [23], peer-to-peer systems [24], and voice service applications [25]. 

The associated data are often called request logs, where the term request means the one-

way or two-way communication between a user and a subsystem, or two subsystems. The 

request logs are echoes of the software variables, so the log message is in a structured or 

semi-structured format. A sample log message from an e-commerce web application [26] 

is shown in Figure 3.1.3. The two variables – Machine and RequestType – and their 

values are well-defined and easy to understand. 

 

Figure 3.1.3. Analyzing the request log using a tree-based method [26] 
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The more recent and complicated log data are from various large-scale systems, including 

supercomputers [27] and cloud computing infrastructure [28]. The form of log data 

becomes less structured – many of them being completely unstructured free text and only 

meant for human developers to read – posing increasing difficulty for automated analysis. 

This form of log data needs to be converted into a structured form, such as extracting the 

log message template and log variables. This process is called log parsing. This 

dissertation reviews parsing research in later chapters where related.  

An example of a cloud computing system is the Hadoop Distributed File System (HDFS) 

log that is shown in Figure 3.1.4 [29]. This log message describes an action related to a 

storage block (identified by the ID blk_801792886545481534) and an IP address. 

These two parameters are easy to extract for this example, but log messages describing 

different actions often have different sentence structures. Precisely extracting the useful 

information is a critical step to analyzing such logs. 

 

Figure 3.1.4. A typical HDFS system log message [29]. 

The log data from many operating systems are semi-structured, such as the event logs 

from the BlueGene/L supercomputer [30] shown in Figure 3.1.5. In this snapshot, the first 

half of each entry is structured, including id, type, facility, severity, and timestamp. The 

rest of the log message is unstructured: note that each line has a different sentence 

template.  
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Figure 3.1.5. A snapshot of the BlueGene/L supercomputer performance log [30]. 

Despite different applications, the logs from operating systems and cloud infrastructures 

share a lot of similarities in terms of the format. In fact, many modern software systems 

have a similar log appearance [27], [31], including the Ford SYNC system log shown 

previously in Figure 2.3.1. This indicates that a method developed for one application is 

likely to be applicable to other systems, though the performance may vary.  

3.2 Rule-Based Analysis 

Detecting a system failure based on a set of manually specified rules is called the rule-

based approach. Although not the intention of this review, the rule-based approach needs 

to be mentioned as it is the most intuitive and widely used method in industry. It often 

comes in the form of an expert system, where a human expert establishes a set of rules 

using regular expressions [32]. The ruleset is used to match incoming log messages to 

detect failures or other specified events. Once the ruleset is defined, detection or 

diagnosis can be automated with various data processing tools, such as Swatch [33], SEC 

[34], and Logsurfer [35]. Its drawback is also evident: the expert system requires 

immense effort to make and maintain a comprehensive ruleset because of the fast 
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iteration of software and the rapid growth of log data. Academic researchers have 

generally steered away from this approach.  

3.3 Path-Based Analysis 

The path-based approach investigates the explicit software execution path to determine a 

failure in the system. This approach is also intuitive, as unsuccessful executions of a 

program often produce log messages that reveal deviations from the regular execution 

path. Each log message is treated as an identifier – in some cases, the logs are already 

uniquely identified [22] – and a workflow model is created by observing log sequences. 

Based on how the data is utilized, these studies fall into two categories: modelling regular 

workflows and modelling failure workflows.  

3.3.1 Modelling Regular Workflows 

Figure 3.3.1 shows a regular program workflow with a loop [36], where nodes 𝑠0 through 

𝑠4 represent system states and links A – D represent the transitions recorded by log data. 

Specifically, when the system transitions from state 𝑠0 to 𝑠1, it produces a trace that is 

recorded by log message A. The notation 𝜀 indicates that the transition leaves no trace in 

the logs. The detection is performed by checking if a new log sequence obeys this 

workflow. Without the source code, the system states are unavailable or hard to obtain 

[37], so the workflow model needs to be constructed by observing sequences of logs, i.e., 

the conditions A – D in Figure 3.3.1. 
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Figure 3.3.1. Workflow model constructed  from log sequences [36] 

The Finite State Machine (FSM), or Finite State Automata (FSA) is a common candidate 

to model such system workflows. Researchers in the 1980s [38]–[40] studied the 

modelling of computer networks using FSMs, where the nodes were system states and 

links were the messages defined by a communication protocol. Fault detection was also 

investigated. Bouloutas et al. [22] applied an FSM model to detect faults in 

communication networks. However, these early works assumed that the FSMs were either 

pre-defined or could be obtained from some well-defined sources, such as standards and 

requirements documents. 

In many modern software systems, the FSM for the program workflow is often 

unavailable and needs to be synthesized from log sequences. One popular method to infer 

an FSM from input-output data is the kTail algorithm originally presented in the 1970s 

[41]. The kTail and its variations use a tree representation of sequences and iteratively 

merge new branches to reach a final automaton. It is still a popular choice for generating 

workflow FSMs in the log literature. The challenge presented by log data is the 

interleaving sequences, a result of multi-threaded tasks generating log messages at the 

same time [36]. Some publications refer to this interleaving log data as heterogeneous 

logs [42]. Various adaptations of the kTail are developed to remove the false 

dependencies caused by interleaving sequences [43], [44]. New algorithms are also 

proposed, such as constructing an FSM using n-grams [45]  (n-gram refers to using a 
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sequence of n elements as one unit, introduced in Section 3.4) and refining FSMs with an 

emphasis on temporal dependencies [36].  

The log data used to generate FSMs are preferred to be regular log data generated by 

error-free task executions. However, the log data inevitably contain incomplete 

workflows and traces of fault propagations. Using these noisy data to generate a 

deterministic FSM could lead to an inaccurate representation. Probabilistic models are 

investigated to address this issue, such as probabilistic FSMs [46]. One special case of the 

probabilistic FSM is the Hidden Markov Model (HMM), where the future state only 

depends on the current state. In particular, Yamanishi and Maruyama [47] constructed 

multiple HMMs and proposed a dynamic model selection method to pick the best result. 

Lim et al. [48] proposed a clustering model for known faults using the Hidden Markov 

Random Field (HMRF) approach. 

Without an FSM, the path-based methods are few. Invariant mining is a kind not relying 

on an FSM [49], [50]. It implicitly models the system execution paths in the form of 

linear relationships (invariants) of the logs. Take the workflow in Figure 3.3.2 as an 

example; the letters A to G represent the program states, which generate corresponding 

log messages. If the paths represented in the figure are complete, the count of each log 

message will meet certain conditions. For example, the counts of A, B, and G should be 

the same, and the count of B should equal the sum of C, E, and F. Obtaining this set of 

linear relationships effectively models program execution workflows in a numerical form. 

An anomaly is detected if a new log sequence does not comply with this set of linear 

rules.  



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

36 

 

 

Figure 3.3.2. A program workflow example with if-conditions [51] 

3.3.2 Modelling Failure Workflows 

The path-based approach does not necessarily model the entire program in order to 

perform automated failure detection. The opposite way is to only learn the faults’ 

behaviours by collecting and observing faulty log sequences. One example is to use the 

decision trees [26], where the branches represent the failure execution conditions. This 

simple technique is proven to be effective to detect failures in an online system [51].  

Additionally, extracting partial workflow paths that represent some characteristics of a 

system can also be effective in fault diagnosis. In other words, the segments of a 

workflow path can be a distinguishing representation of the workflow. In particular, Yu et 

al. [52] extracted distinctive sequence segments and used a graph-based approach to 

represent various execution paths. 

3.3.3 Discussion 

There are several differences between modelling regular workflows and failure 

workflows. First, regular workflow models are mainly used for detection, whereas failure 

workflows provide classification or diagnosis capability. Secondly, the classification 

tasks typically require labelled failure log data, hence it is a supervised learning task. 
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Modelling regular workflows is largely unsupervised, only requiring regular log data. 

Additionally, working directly with failures generally shows higher accuracy compared to 

the regular workflow approaches. In practice, however, obtaining the failure samples can 

be difficult as faults are often rare and unpredictable. Lastly, the use of failure workflows 

is only limited to detecting and classifying known issues. Unseen failures cannot be learnt 

without sufficient prior knowledge. This is not an issue for regular workflow models, 

which can theoretically detect all failures as outliers. 

It is worth noting that many path-based approaches introduced in this section are applied 

to relatively simple log datasets, as one shown previously in Figure 3.1.3. Recent large 

log datasets are few, potentially because scaling up these models causes complexity or 

efficiency issues. 

3.4 Statistical Feature Extraction and Machine Learning Approach 

With the drastic increase in the quantity and complexity of log data files in recent 

software systems, such as in cloud computing and operating systems, the path-based 

approach can become less efficient or even infeasible as logs from different workflows 

are interleaved [36]. The relatively new analysis approaches use statistical features 

instead of sequential features. Figure 3.4.1 shows a general representation of this 

approach’s workflow [17]. It typically includes four steps: 1) log partition to divide 

consecutive log data into samples for training; 2) feature extraction to turn each sample 

into a numerical representation; 3) a machine learning model to train on numerical 
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features; and, 4) detection as performed by the trained model to process new log 

sequences. 

 

Figure 3.4.1. A general workflow of the feature extraction and machine learning 

approach[17] 

The key process in the pipeline is the feature extraction step. Specifically, a set of 

quantitative metrics are generated to describe the sequential log data. The feature sets are 

typically much smaller than the original log sequence. Thanks to the numerical form of 

the extracted features, many well-known machine learning algorithms are good 

candidates, such as logistic regression and k-means clustering. Both feature extraction and 

machine learning model training are generally very efficient, so this approach is often 

used for processing of data that are too massive to manually inspect. Some may call it log 

mining for this reason [53], but the methodologies have generally diverted away from the 

traditional data mining area. Existing studies mainly emphasize the feature extraction 

process and the choice of machine learning models.  

Feature extraction is the crucial step of these applications, as the statistical indicators 

must be carefully picked to appropriately represent the log data, otherwise, important 

information can be lost during the process. On the other hand, the choice of machine 
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learning models can be arbitrary and less constrained by the type of features. The 

following paragraphs present a few examples in this research domain. 

In the special case where the log data are structured and in a numerical form, such as the 

performance indicators log in [54], the feature design can be relatively straightforward. 

Bodik et al. [54] defined a log feature vector called fingerprint, condensed from the 

performance log of a datacentre. The performance log in this application is the numerical 

metrics that monitor the system’s health. Statistical metrics, such as medians and other 

quantiles, are used to describe a chunk of log data. The processed fingerprint feature is a 

2D matrix shown in Figure 3.4.2. Similarly, in an application analyzing anomalies of a 

large-scale data analytics engine [55], the feature set contains readily available or easily 

extracted values, such as memory usage, task duration, and total elapsed time. 

 

Figure 3.4.2. The fingerprint feature [54] condensed from log data, where each row is a 

time window, each column is a particular metric. 

In a more common setting, the logs are unstructured similar to the HDFS log shown 

previously in Figure 3.1.4. Each log message contains the constant part, a.k.a. log 

template, and the variable part, including timestamp and other log variables. Xu et al. 

[56] constructed a series of complicated metrics, such as the count, frequency, and ratios 
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of the log templates and variables, to describe such log sequences. Similarly, Liang et al. 

[57] used the count of events in a time window as log features. This included new event 

counts, accumulative counts, the change of event counts, the elapsed time since the last 

fatal failure, and the log template count. Furthermore, the feature extraction work from 

Kimura et al. [58] emphasized the periodicity and burstiness of log data.  

A more general feature construction technique to is the n-gram model [59] and its special 

case, the bag-of-words model. These notions originate from computational linguistics and 

information retrieval research [60], [61]. In the case of the text document, an n-gram is a 

sequence of n words from the text. Table 3.1 shows an example of extracting word 

unigrams (n=1) and bigrams (n=2) from a simple text document. The n-gram terms are 

defined as the fundamental elements to describe the document. Unigram terms are unique 

individual words and bigram terms are unique phrases consisting of exactly two words as 

shown in the second and third column of Table 3.1. A model describing the terms’ 

statistical characteristics is called an n-gram model. In the special case of n=1, it is called 

a bag-of-words model. The frequency characteristics can be as simple as the count of the 

n-gram, while complex weights are more common and better at describing the document. 

Specifically, Term Frequency (TF) represents the number of occurrences of an n-gram 

term, and Document Frequency (DF) represents the number of documents that contain the 

n-gram term. A popular combined metric, the Term Frequency-Inverse Document 

Frequency (TF-IDF) weighting, is to assign a higher weight to the term with higher TF 

and lower DF. 
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Table 3.1 Examples of n-grams extracted from a piece of text. 

Text document Unigram terms Bigram terms 

“The quick brown fox jumped over the lazy dog.” 

the, 

quick, 

brown, 

fox, 

jumped, 

over, 

lazy, 

dog 

the quick, 

quick brown, 

brown fox, 

fox jumped, 

jumped over, 

over the, 

the lazy, 

lazy dog 

   

The n-gram models can apply to letters, words, speech phonemes, as well as log 

messages. A general approach to model log data is to treat each unique log message as a 

word in a text document. Then the bag-of-word model and TF-IDF-like weighting 

methods are applicable and shown to be an effective feature extraction approaches [62], 

[63]. 

A machine learning model then processes these features for classification. The machine 

learning models can be either supervised or unsupervised depending on whether labelled 

log samples are available. Common unsupervised techniques include Principle 

Component Analysis (PCA) [56] and similarity clustering [62]. Supervised models can be 

logistic regression [54] and Support Vector Machine (SVM) [58], [63], [64]. Many of 

these machine learning models can be used interchangeably, as demonstrated in a 

comparative study in [51]. 

The biggest advantage of the feature extraction and machine learning approach is its 

efficiency in processing a large volume of log data. This meets the growing demand for 

modern system logs. On the downside, the feature extraction process can only be 

performed on the sequences with a certain length. As a result, the log data need to be 
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segmented either by time windows or by log sequence lengths, and the detection or 

classification is performed based on segments. Setting a longer window or larger 

segmentation tends to produce better accuracy, but increases the response time for system 

maintenance. Additionally, most feature extraction methods treat the log sequences as a 

collection of log messages, losing the time and order information that could be valuable 

for detection and diagnosis.  

3.5 Deep Learning Approaches 

Neural network models are the new candidates in the log analysis area. Despite their early 

appearance in the 1940s, neural networks only saw their full potential after the very 

recent breakthroughs in computational capability [65]. The term deep learning and neural 

networks are strongly related, as deep learning refers to the recent form of neural 

networks with an emphasis on a large number of layers and the ability to train such a 

model. Deep learning models are highly versatile in terms of processing various types of 

data. Two representative models are the Convolutional Neural Network (CNN) and 

Recurrent Neural Network (RNN). CNN is the most popular choice in image processing 

applications [5], [66], while RNN is preferred in natural language processing [67], [68]. 

Both methods are explained in more details in Chapter 6. 

The deep learning models capable of processing sequences are called sequential models. 

They are being investigated in many areas, such as text classification, machine 

translation, and time series prediction. Their applications to log sequences mainly have 

two approaches: 1) using the model as a predictor, then reporting an anomaly if the actual 
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log message deviates from the model output; 2) using the model as a classifier, which 

directly outputs a failure decision after processing a sequence of logs. Generally, the 

second approach achieves higher detection accuracy, while the first method is more 

suitable for online real-time applications. 

3.5.1 The Predictor Approach 

The predictor approach requires item-by-item processing of the log sequence, so a 

majority of the studies adopt the RNN model. Figure 3.5.1 shows a typical RNN structure 

in the predictor setup. The data flow from left to right represents the progression of time, 

each step 𝑡 − 1, 𝑡, 𝑡 + 1, 𝑡 + 2, … is called a timestep. The input log sequence is broken 

down and processed by the RNN one log message each timestep. The RNN cell 

highlighted in the middle includes a memory called the hidden state and a series of 

calculations to update the hidden state. When progressing over time, the cell’s hidden 

state is updated by the input and produces an output at each timestep. The RNN cells are 

trained in a way that the output vector represents the next value in the sequence, 

effectively predicting the next item in the sequence. Since the number of outputs equals 

the number of inputs, this is called a many-to-many structure. 

Zhang et al. (2016) were one of the early adopters of the RNN predictor approach. In this 

work, the log data are segmented by time windows. Each time segment is treated as one 

unit, and a vector of TF-IDF features is extracted from it. An LSTM model processes the 

feature vectors in time and generates an output that represents the feature pattern of the 

next time window. This approach utilizes the similar – if not the same – statistical 

features introduced in Section 3.4. The sequential order of time window segments is 
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successfully captured. However, the log messages within a time window are represented 

statistically rather than sequentially. 

 

Figure 3.5.1. The predictor style RNN (also called sequence-to-sequence structure) [69] 

A more common and effective way to utilize RNN is to treat individual log messages as 

the basic sequence elements. Du et al. [70] and Frank et al. [71], [72] first converted the 

log messages into tokens, then mapped them into embeddings in the numerical form so 

that they could be processed by an LSTM model. The embeddings, also known as word 

embeddings or word vectors, are the numerical representation of a set of categorical data 

in a high dimensional space. The methodology to obtain the embeddings originates from 

language modelling research [73]. The output of LSTM in these studies is also an 

embedding that represents possible log tokens. Failure detection is achieved by 

monitoring the upcoming log message, which would be flagged as an anomaly if it 

deviates from the LSTM’s outputs. Both [70] and [71] further included a separate LSTM 

model to process timestamps, which were in the form of delta time between log messages. 

However, the timestamp model is detached from the log-processing LSTM detector, 
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meaning that the timestamps and the log messages are no longer associated. The benefit 

of timestamps processing is unclear and not evaluated in these works. 

Xia et al. [74] adopted the latest generative adversarial network (GAN) – which was 

originally used to produce image variables – to generate fake log event sequences. These 

artificially generated log sequences helped to address the lack of abnormal samples. An 

LSTM model was trained to discriminate the fake sequences from the real ones. 

Timestamps were used to segment log sequences before input into an LSTM model, but 

were not directly used by the model. 

3.5.2 The Classifier Approach 

The classifier models directly output a classification label, such as normal – 0 and failure 

– 1. Take the example in Figure 3.5.1, instead of producing one output at each timestep, a 

classifier approach only requires the last hidden state to produce one output, which is 

trained to match the classification labels. This setting is therefore referred to as the many-

to-one RNN structure. 

Zhang et al. [75] adopted this approach with a bi-directional LSTM structure, another 

variation of RNN. The study also developed a novel vectorization method called semantic 

vectorization, which was based on the individual words in a log message instead of word 

embeddings used in almost all other studies. This strategy uniquely addresses unseen log 

messages because unseen messages are constructed by known words. Unseen log 

messages are rare in the real world, so the study has to artificially inject anomalies to 

amplify the effect.  
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One advantage of the classifier approach is that it is not limited to RNN. The CNN 

sequential model can also be very effective. This variation of CNN, called 1D-CNN, has 

convolutional kernels that sweep in one direction. Lu et al. [76] proposed a failure 

detection model that utilizes three 1D-CNN layers in parallel as the backbone structure. 

He argued that the CNN model was easier to tune than the LSTM equivalent. These 

classifier approach studies ignored the log timestamps as well. 

3.6 Discussion 

Three automated approaches – the path-based, statistical feature based, and deep learning 

– were discussed in this review. Most of them could potentially apply to the defect 

diagnosis problem described in Chapter 2, with adaptations to various extents. In the 

meantime, few studies have investigated the log data from operating systems, let alone a 

vehicle infotainment system. Therefore, investigating the Ford data can be a good 

supplement to the current literature, in addition to the benefits of automating the fault 

diagnosis process. 

In the next three chapters, detection and classification models corresponding to the above 

mentioned three approaches are proposed and implemented. This includes a path-based 

model that utilizes data mining to find anomaly sequences in Chapter 4, a feature 

extraction model in Chapter 5, and two deep learning models in Chapter 6. Additionally, 

Chapter 7 addresses the use of timestamp information that is largely ignored by existing 

studies. 
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Chapter 4 Data Mining and Bayesian Classifier 

This chapter proposes a method for Fault Diagnosis with Sequential Pattern Mining 

(FDSPM). In this method, a workflow-based model is used to automatically detect and 

diagnose software faults. This approach is based on the intuition that faulty software 

workflows produce distinguishing log patterns. The model’s framework is similar to that 

of a typical machine learning model, comprising a learning or training phase and a 

prediction or classification phase. The learning phase uses data mining techniques to 

discover representative sequence patterns from historical faulty data. The classification 

phase produces detection and diagnosis results based on Bayesian probability theory. The 

model showed effectiveness in the evaluation using the Ford SYNC log dataset. 

This chapter is organised as follows. Section 4.1 introduces the motivation of the work 

and the overview of the approach. Section 4.2 describes the processing needed to prepare 

sequence data. Sections 4.3 and 4.4 presents the pattern discovery algorithm and the 

classification method, respectively. Section 4.5 discusses the test preparation and Section 

4.6 experiments with different model configurations. Section 4.7 concludes this chapter. 
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4.1 Motivation 

The FDSPM is an attempt to mimic to the manual process of software defect triaging as 

described in Section 2.2. As a recap, triaging is the intermediate process between the 

discovery of a bug and the identification of a fault in the source code. The triaging 

process recognizes the fault from bug reports and categorizes it. The relationship among a 

software fault, bug report, and log data is shown in Figure 4.1.1. Given a bug report, the 

task of triaging is to determine whether it contains a fault and which fault it corresponds 

to through analyzing the log data. 

 

Figure 4.1.1 The anatomy of a software defect in the defect management system. 

The manual triage process mainly relies on software testing know-how and experience in 

the system. According to software engineers in the triage team, keyword search is an 

effective way to pinpoint a failure, using words like “fatal” and “crash”. However, this 

simple technique only covers no more than one third of all bug report cases. More details 

must be uncovered through closely examining the log messages: reoccurring sequences of 

log messages are good indicators of many defects, especially when they rarely appear in 

regular program execution. The individual messages in these distinguishing sequences 

may appear benign, but a certain permutation of them should raise the investigator’s 
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attention. Figure 4.1.2 shows a reoccurring pattern that indicates a Bluetooth connectivity 

fault in the SYNC system. The top and bottom blocks of log messages are from two 

different recordings of the same Bluetooth issue. The first five lines of each block are 

nearly identical. The “Line ID” field highlighted in the boxes further confirms the 

observation (various log message fields are detailed in Section 4.2). This repetition is one 

of the signature patterns for a Bluetooth fault and shows up in every log recording 

whenever the fault occurs. 

The intuition is to directly obtain such sequence patterns and make use of them for 

diagnosis purposes. An expert system approach is to explicitly specify a set of patterns 

based on the knowledge of subject matter experts. But such an approach is shown to be 

expensive and cumbersome based on related literature reviewed in Chapter 2. The data-

driven approach is to obtain these patterns from existing faulty log data that have been 

diagnosed. This process is referred to as pattern discovery. Each distinctive log line is 

represented by an identifier, referred to as a token. Pattern discovery is to find the token 

patterns that reoccur in different log sequence samples. The problem is called sequence 

mining in the data mining area.  

 

Figure 4.1.2 Example of reoccurring patterns in log data. 
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The patterns extracted can be used to match new log data for failure detection and fault 

diagnosis. Although it appears simple to determine a fault using the pattern-matching 

result, the problem becomes difficult when there are large numbers of patterns and faults. 

Often times there are multiple patterns extracted for each fault, denoted as 𝑃1, 𝑃2, … , 𝑃𝑚, 

and multiple faults to diagnose, denoted as ℎ1, ℎ2, … , ℎ𝑛 (ℎ for hypothesis). Using 

thresholds and rules to determine a possible fault quickly becomes complicated as 𝑚 and 

𝑛 vary. A better way to approach this classification problem is to use Bayesian learning. 

Specifically, a Bayesian classifier can infer the most probable hypothesis ℎ𝑗  based on the 

occurrences of each pattern 𝑃𝑖 in a given data sample. The requirement of applying 

Bayesian classifier is the prior knowledge of the conditional probability of every pattern 

under every fault, which can be obtained by observing the training data. Obtaining this set 

of prior knowledge, referred to as the knowledge base, is included in the learning process. 

In the diagnosis phase, a new log sample is pattern-matched by the extracted patterns, and 

the Bayesian classifier gives a classification result with a probability rating using the 

knowledge base. 

This chapter proposes the FDSPM model that takes the sequence mining approach and 

addresses the pattern matching concern. Figure 4.1.3 shows the overview of FDSPM. The 

dashed line separates the training (learning) process from the detection (diagnosis) 

process. The learning process includes the following three modules. 

• Data preprocessing: converts log data into token representation. 
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• Pattern discovery: extracts fault patterns using appropriate sequence mining 

algorithms. 

• Knowledge base: obtains conditional probabilities for the discovered patterns. 

The detection process shown below the dashed line is how the model performs fault 

diagnosis when deployed. Two important modules are included in this process. 

• Pattern matching: examines a new log sequence against the sequence patterns 

from the pattern discovery process. If a match is found, the knowledge base gives 

the pattern’s conditional probabilities.  

• Bayesian classifier: produces a classification score (probability rating) for each 

fault using the pattern matching results and probabilities. The classifier then 

selects the fault with the highest score as the diagnosis output. 

Defect 3 patterns:

    (48000137, 9600703)

    (9600703, 48000562)

    ...

    (xxxxxxx, 

xxxxxxxxxx)

Defect 2 patterns:

    (48000137, 9600703)

    (9600703, 48000562)

    ...

    (xxxxxxx, 

xxxxxxxxxx)

Log Files in Jira Pattern Discovery

Defect 1

 

Defect 2

Defect 3

Defect 1 patterns:

    (48000137, 9600703)

    (9600703, 48000562)

    ...

    (xxxxxxx, xxxxxx)

 

Conditional Probabilities

P1|h1: xx

P1|h2: xx

P1|h3: xx

... Knowledge Base

New Log Instance

Pattern Matching Result:

P1: True

P2: True

P3: False

Defect 1: 80%

Defect 2: 5%

Defect 3:  

...

Pattern Matching Bayesian Classification

Training / Learning Phase

Detection / Diagnosis Phase

 

Figure 4.1.3. Overview of the FDSPM framework. 
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The processes in this framework are presented in the following subsections. 

4.2Data Preparation 

The FDSPM is a supervised learning task requiring labelled data for training and 

evaluation purposes. The log data and labels can be generated and are assumed to be 

available from a typical defect management system, which stores software defects, bug 

reports, and log data in the structure shown in Figure 4.1.1. The proposed FDSPM uses 

general nomenclature in machine learning: the term log sample represents a log file from 

the bug report, and a label or class represents the software defect ID. 

Not all faults and log data stored in the defect management system are eligible or readily 

available for the training or testing process. Eligible data need to be selected, cleaned, and 

preprocessed for the following reasons. 

- Training and evaluation require a minimum number of samples. For each fault, at 

least two log samples are required to capture the reoccurring patterns. This is only 

a bare minimum – as a pattern cannot reoccur with one sample. The evaluation 

requires at least one additional sample. As a result, a fault eligible for training and 

testing should contain a minimum of three bug reports. Faults that do not contain 

enough bug reports are not considered. This study has to work with a small 

number of samples due to a lack of available data. The intent is to demonstrate the 

effectiveness of the algorithms. More data samples than the bare minimum should 

be collected in an actual application for better results. 
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- Data cleaning is necessary. A vast majority of log messages within a log file are 

not related to the fault being analyzed. Removing unrelated log messages based on 

the fault category can improve the accuracy of pattern extraction and reduce the 

computational requirement.  

- Log sequences need to be converted into token format, such that a pattern 

discovery algorithm can be performed.  

The details of these data preparation steps are provided in the following subsections.  

4.2.1 Data Selection and Cleaning 

Because of the scale of the SYNC operating system and the time limitation of the study, it 

is not realistic to examine all defects in every module. The Bluetooth related log defects 

are selected in this study. The choice is made based on the fact that Bluetooth is one of 

the most troublesome modules and has the most defects and bug reports available in its 

associated defect management system.  

Each eligible software defect should have at least three bug reports linked to it: two for 

training, one for testing. This requirement seems effortless to meet, as the testing vehicles 

and benches are producing log data all the time. In practice, however, the defect 

management system is designed to track the most valuable information, instead of storing 

a large quantity of data. As a result, amongst all Bluetooth-related faults associated with 

the Ford Sync system described in Section 2.2.3, only eight of them meet this criterion.  

The details of eight selected defects and their 42 linked log samples are shown in Table 

4.1. The “Defect ID” is assigned by the fault management system. The “Summary” 
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column is the description quoted directly from the defect management system. The 
Table 4.1 The Bluetooth related defects and log data files. (Filenames are partially 

removed due to confidentiality) 

Class 
Label 

Defect ID Summary Filenames 

1 
FORDSYNC3

-40557 

LW_EVENT_PROCESS_C

RASH in mm-ipod 

QUIP_A0A815-------------------------- 
QUIP_7E8D25-------------------------- 
QUIP_8C6E2C-------------------------- 
QUIP_99FDA6-------------------------- 
QUIP_87B4AD-------------------------- 
QUIP_3B9EE6-------------------------- 
QUIP_057E38-------------------------- 
QUIP_1D6BD5-------------------------- 

2 
FORDSYNC3

-40026 

Initiating BT pairing from 

Sync displays the pin on 

Sync but not on device 

QUIP_9B39A7-------------------------- 
QUIP_7E37BD-------------------------- 
QUIP_2D2D28-------------------------- 

3 
FORDSYNC3

-38112 

Blank screen appears on 

Phone screen when make an 

outgoing call 

QUIP_2E42E5-------------------------- 
QUIP_8EEFD9--------------------------  
QUIP_A710F3-------------------------- 
QUIP_A85045-------------------------- 

4 
FORDSYNC3

-37158 

Voice command to make a 

phone call, throws error 

Contacts download not 

complete 

QUIP_E72A76-------------------------- 
QUIP_8D3505-------------------------- 
QUIP_1C0491-------------------------- 

5 
FORDSYNC3

-32240 

Wrong Bluetooth Streaming 

MetaData Displayed 

QUIP_5F9359-------------------------- 
QUIP_7FC81A-------------------------- 
QUIP_52B417-------------------------- 
QUIP_209C9E-------------------------- 

6 
FORDSYNC3

-28906 

Random Bluetooth 

disconnection and re-

connection, Fatal 

Error:0x12. 

QUIP_F0F926--------------------------  
QUIP_4DCCAF-------------------------- 
QUIP_F088FA-------------------------- 
QUIP_957930-------------------------- 

7 
FORDSYNC3

-28578 

Bluetooth did not connect 

automatically upon entering 

the car even though device 

BT is turned ON 

QUIP_9A1E68-------------------------- 
QUIP_83272C-------------------------- 
QUIP_6C94AF--------------------------  
QUIP_7DECAE--------------------------  
QUIP_F67D03-------------------------- 
QUIP_D85B75-------------------------- 
QUIP_E30A9A-------------------------- 
QUIP_E30CDC-------------------------- 

8 
FORDSYNC3

-28414 

Music went silent while 

playing BT audio and track 

timer continued 

QUIP_6D76F5--------------------------  
QUIP_3C01A6-------------------------- 
QUIP_7B38B3-------------------------- 
QUIP_3B8413-------------------------- 
QUIP_370925--------------------------  
QUIP_0A9440-------------------------- 
QUIP_05A657-------------------------- 
QUIP_09D4D4-------------------------- 
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“Filenames” column refers to the log data files. Note that each defect may have a 

different number of log samples. These data files are referred to as faulty log samples. 

As introduced in Chapter 1, each log file contains ~70,000 log messages. A vast majority 

of them are unrelated to the defect being diagnosed. For example, when a Bluetooth 

failure is encountered, there is very little chance that it relates to the air conditioning 

module logs. Therefore, cleaning the log data based on the general category of the issue is 

unlikely to reduce the valuable information and can effectively reduce the size of log 

data. This is achieved by filtering the log messages by their “Module Name”, a 

structured field that exists in every log message as shown in Figure 4.2.1 (reiteration of 

Figure 2.3.1).  

 

Figure 4.2.1 The structure of one log message. 

4.2.2 Tokenization 

As mentioned in Chapter 3, extracting structured information from log data in its 

unstructured free-text format is called parsing. Specifically, in this path-based approach, 

parsing is to extract symbolic identifiers to represent log messages. This identifier is 

commonly referred to as a token and the process is called tokenization. Tokenization 
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converts the log message sequence into a token sequence. Figure 4.2.2 shows an example 

of tokenizing a piece of Ford log messages sequence. Each line of log message is 

represented by a token as indicated on the left column. Note that the same log messages 

have the same token. After tokenization, this log sample is represented by the list: 

[178801199, 48000562, 48000562, 48000137, …]. Each integer in the list is an 

identifier rather than having an arithmetic meaning. The process of generating the token 

sequence is detailed in this section. 

Parsing can be very sophisticated for some types of log data that have a completely 

unstructured format. Fortunately for the SYNC log, the structured fields within each log 

message provide enough information to identify individual logs. These fields are: 

Process Name; Source Function; and, Line Number, as previously shown in 

Figure 4.2.1. When a software process is running and the logging event happens, the log 

messages record the exact line of code being executed in the form of source function and 

line number. Therefore, a combination of process identifier, function identifier and the 

line number can uniquely represent each log message.  

The available log data in this study contain a total of 3962 different (source) functions 

from all modules. A unique integer function key is assigned to each function. The values 

of function keys range from 0 to 3961. The line number is available from the log 

message; its value is always less than the total lines in a source code file. A single source 

file rarely exceeds 100,000 lines, so a range of 0 to 99,999 is sufficient to cover all 

possible line number values. Combining the function key and line number, the token 

value is produced using the following equation:  
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TokenValue = FunctionKey × 100,000 + LineNumber 

Generating and interpreting tokens are simple with this method. Take the first line of 

Figure 4.2.2 as an example, the SortTable function has a function key of 1788, and the 

message is from line number 1199, so the token for this message is 178801199. When 

interpreting a token, the last five digits represent the line number, and the higher digits 

represent the function key.  

The mapping of function keys and function names is stored and updated as an external 

database, separated from the log tokenization process.  

 

Figure 4.2.2 Tokenization: converting log messages into tokens. 

After cleaning and tokenization, each log file is converted into a token sequence sample 

using the process shown in Figure 4.2.2. After data selection, cleaning, and tokenization, 

the Bluetooth fault dataset comprises the sequence samples and their fault labels. 
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4.3 Pattern Discovery 

Pattern discovery is a crucial process in the FDSPM framework. Specifically, it extracts a 

series of sequence patterns 𝑃 = [𝑃1, 𝑃2, … ] from the log sequence samples 𝑆 = [𝑆1, 𝑆2, … ] 

that contain the same fault. The sequence patterns 𝑃 is also called reoccurring patterns, 

common subsequences, or distinguishing patterns of a fault. This intuition comes from the 

manual process of looking for unusual log patterns to infer a fault. A few facts need to be 

considered when searching sequence patterns 𝑃. First, the log messages often follow 

specific orders during fault propagation, as observed from the example shown previously 

in Figure 4.1.2 as well as the rest of the dataset. As a result, the sequence pattern 𝑃 should 

preferably retain the order information. Secondly, the absolute positions of the patterns in 

the log sequence are not significant, as the fault can occur any time when the system is 

running. Lastly, the patterns are often short – no more than a few tokens – based on the 

observation of existing data. The length should be larger than or equal to 2, otherwise it 

becomes a keyword search problem. 

4.3.1 Selecting a Mining Approach 

Discovering patterns from a large dataset is the definition of data mining [77]. 

Specifically, given a set of sequence samples with the same label, data mining algorithms 

discover the reoccurring patterns that appear frequently in the set. There are two strategies 

for finding the reoccurring patterns: frequent pattern mining and contrast pattern mining. 
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4.3.1.1 Frequent Patterns 

Take the following two sequences 𝑆1 and 𝑆2 as an example. A, B, and C represent the 

tokens that make up the sequences. In this simplified example, the evident longest 

common sequence pattern is AAC, because it appears in both sequences. Another common 

pattern is CB. If both 𝑆1 and 𝑆2 belong to the same class, then AAC and CB are likely the 

sequence pattern for this class.  

𝑆1: ...A A C A C B... 

𝑆2: ...B A A C B A... 

This type of sequence pattern is usually seen in bioinformatics research [78], where the 

terminology frequent pattern [79] or sequence motif [80] is commonly used. An example 

is the Deoxyribonucleic Acid (DNA) genome, consisting of four nucleotides represented 

by the letters A, C, G, and T. Searching the frequent patterns from the genome sequences 

that have the same gene expression helps researchers understand and identify the 

interested genome. 

There have been no studies investigating the frequent pattern mining techniques on log 

sequences applications. The bioinformatics-based methods theoretically work on the log 

data, but there are several limitations. First, the methodologies are mostly developed for 

biological sequences, where the elements (tokens) constructing the sequences are few. 

DNA nucleotides only have four types. Meanwhile, the software system log, such as the 

SYNC system, contain thousands of unique tokens. Secondly, the operating system is 

likely to multitask most of the time, creating interleaving log messages. This implies that 

when the sequence pattern shows up in the logs, it may be interrupted by other tokens and 
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contain gaps in its presentation. Lastly and practically, the lack of available data (only a 

few samples for each fault) may have a negative effect on the accuracy of frequent pattern 

mining. 

4.3.1.2 Contrast Data Mining 

To address the lack of data issue, the contrast data mining approach can be adopted to 

incorporate log data from regular executions. Specifically, the normal system logs that 

contain no failures or faults are used as a contrast set. The data samples containing a fault 

are called a target set. The patterns extracted from the target set, i.e., the frequent 

patterns, may not be accurate and contain false patterns. These false patterns would be 

rejected if they also appear in the contrast set. As a result, the extracted patterns are more 

accurate in representing the fault. 

In the following example, the two sequences 𝑆1 and 𝑆2 are in the target set containing a 

certain fault, while the sequences 𝑆1
′  and 𝑆2

′  are in the contrast set containing normal 

executions. The frequent patterns based on the target set are AAC and CB, as concluded in 

the previous section. However, since the pattern CB also appears in 𝑆2
′  which occurs under 

a normal condition, it should not be considered as a fault pattern. Therefore, the correct 

pattern for this fault is AAC only. The patterns extracted using two opposing datasets like 

the ones shown in this example are called distinguishing patterns or contrast patterns 

[81]. The contrast patterns are a subset of – and more accurate than – the frequent 

patterns. 
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Target set: Contrast set: 

...A A C A C B... 

...B A A C B A... 

...B C A B... 

...A B A C B... 

The gap constraint is introduced to address the interleaving issue when extracting contrast 

patterns. This means that the pattern 𝑃 may be interrupted by other tokens when 

appearing in a sequence. Take the previous example where 𝑃1 = AAC, it may show up in 

the form of A[*]A[*]C in a sequence, where [*] represents a gap that can be any tokens. A 

g-gap constraint specifies the number of tokens g allowed in the gap [*]. If g = 1, then the 

pattern ABABC is considered a valid appearance of 𝑃1. Adding gap constraint will 

inevitably increase the computation complexity, and a larger g is likely requiring more 

computation. Note that previously in the log data selection process, only Bluetooth related 

modules are chosen. The interleaving effect is likely minimized during the selection 

process. Nevertheless, it is worth investigating the gap constraint to confirm whether it 

affects the detection or diagnosis performance. 

In either the frequent or contrast mining approach, a pattern may not be perfectly showing 

up in every sample of the dataset, so a threshold is required to determine if a pattern 

should qualify as a “common pattern”. The support count of a pattern 𝑃 is defined as how 

many samples in the sequence set [𝑆1, 𝑆2, … ] match the pattern 𝑃. Support ratio is the 

support count divided by the total number of samples. For frequent mining, a Support 

Ratio Threshold (SRT) is often manually specified. A pattern 𝑃’s support ratio must be 

greater than the SRT in order to qualify as a common pattern. In the contrast mining case, 

there are two support ratios, i.e., the ratio of 𝑃 in the target set and the ratio of 𝑃 in the 
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contrast set. As a result, two SRTs are specified. An eligible contrast pattern 𝑃 must 

satisfy: 1) P’s support ratio in the target set is greater than a minimum SRT and, 2) P’s 

support ratio in the contrast set is less than a maximum SRT. The effects of both SRTs are 

investigated in the experiments section.  

4.3.2 Contrast Data Mining with Gap Constraint 

One particular data mining algorithm, the ConSGapMiner [82], addresses the two 

considerations above. The ConSGapMiner is short for Contrast Sequences with Gap 

Miner. It is relatively efficient considering its capability of incorporating gap constraint. 

The algorithm is briefly introduced as follows. 

• The framework. The algorithm performs a depth-first search using a prefix tree 

as shown in Figure 4.3.1. The tree starts with a root node of NULL, as indicated 

by the curly brackets {} in the figure. Every other node on the branches represents 

an element from the token alphabet. The tree grows in lexicographic order one 

branch at a time. A pattern 𝑃 is represented by traversing from the root node to a 

leaf node. 

• Growing the tree. When adding a node, a new pattern is generated. Its support 

ratios are calculated and stored at the node. Two SRTs – the minimum SRT and 

the maximum SRT – between 0 and 1 are set to determine whether a pattern 

should be qualified as a contrast pattern. If the new pattern satisfies both ratio 

thresholds, it is selected as a candidate pattern and the branch stops growing. In a 

deterministic setting, the minimum threshold for the target set is 1.0, meaning all 
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samples in the target set must contain the pattern 𝑃, and the maximum threshold 

for the contrast set is 0.0, meaning the pattern 𝑃 cannot appear in the contrast set.  

• Efficiency measures. The most computationally intensive process is the 

calculation of the two support ratios when a new node is created. The 

ConSGapMiner algorithm uniquely utilizes a bitset array representation to 

describe and calculate the occurrences of one sequence within another.  For 

example, the bitset representation of a pattern 𝑃 = AB occurring in sequence 𝑆 = 

BACACBCCB is a binary code 000001001, which has the same length as 𝑆. In the 

binary code, a “1” is turned on at the final position where the pattern AB could be 

embedded (this example considers the gap constraint). The efficiency 

improvement mainly attributes to turning the sequence searching operation into 

binary shifts and logical operations, while addressing the gap constraint at the 

same time. 

• Other optimization techniques. The maximum depths can be set manually to 

prevent irrationally long patterns and reduce computation time. The algorithm also 

comes with an early stopping mechanism by pruning the branches. 

{ }

A B C

AA AB AC

AAA AAB AAC

......

...

.........  

Figure 4.3.1 The prefix tree structure used in contrast data mining. (alphabet = {A,B,C}) 
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A detailed explanation of the algorithm can be found in Chapter 6 of Dong and Pei [81]. 

The pseudo-code referred from the source can be found in the Appendix. 

4.3.3 Implementation 

The log data cleaning, tokenization, and pattern mining algorithm are implemented using 

Python on Windows 10. The source code for ConSGapMiner is not available from the 

original publication, so a Python version is implemented based on the pseudo-code 

provided with the paper. In the implementation, the gap constraint, maximum and 

minimum support thresholds, and maximum pattern length are configurable.  

An overview of the pattern discovery process is illustrated in Figure 4.3.2. The process is 

carried out one defect (fault label) at a time. The tokenization process first converts the 

faulty log files into token sequence samples. These are samples that contain faults, so they 

are the target set for the pattern mining algorithm. The contrast set is created similarly 

using the regular log data. Then the contrast sequence mining algorithm finds the feature 

patterns 𝑃 = [𝑃1, 𝑃2, … ] using the target and contrast sets. The process is carried out for 

all the defects and produces a list of contrast patterns for each defect listed in Table 4.1. 

These extracted patterns of each defect should be different, unless two defects are closely 

related or exhibit similar behaviour. 
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Figure 4.3.2 The workflow of feature pattern discovery 

Ideally, the contrast set should be made of regular execution log files. Log data are 

constantly generated under normal conditions, but collecting them turns out to be a 

problem. Normally the data are collected using the defect management system described 

in Section 2.2, in the form of a bug report. However, collecting a large amount of normal 

data in this way would flood the bug report system with non-fault-related items, hindering 

the software teams’ daily work. A workaround is to use existing data in the defect 

management system. In the management system, some bug reports are determined as 

“Expected behavior”, “Incomplete”, or “Won’t fix” after triaging. This means that the 

developers could not find enough evidence to prove a defect exists, or could find minor 

defects but which are not worth fixing. Although these data are not perfectly error-free, 

they could be used as the contrast set as they contain no clear patterns recognizable by the 

human experts. In this study, they are treated as normal log samples. In total, 72 normal 

log samples are uncovered. It is worth noting that the use of exiting non-fault data is only 

a workaround. Using a comprehensive healthy log dataset as the contrast set is the best 

practice and likely to produce more accurate contrast patterns. However, due to the 
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limitation of resources and access to the data, constructing such a dataset is difficult 

within a reasonable timeframe, if feasible at all. 

4.4 Fault Classification 

After the pattern discovery process, a list of contrast patterns is obtained for every fault. 

To diagnose a new log sample, these contrast patterns are used to pattern-match the new 

sequence. A fault can be determined if a pattern shows a match. However, this simplistic 

approach has several drawbacks. First, the appearance of a fault may vary under different 

operating conditions. Concretely, pattern discovery for fault 1 produces a number of 

contrast patterns 𝑃 = [𝑃1, 𝑃2, … ], but not all of which appear in every sample of fault 1. 

In other words, a subset of 𝑃 may be sufficient to determine fault 1 in a log sample. 

Secondly, the extracted patterns may not be accurate or complete, due to the lack of 

comprehensiveness of available datasets. Additionally, each fault has a different number 

of patterns, determining a pass-fail threshold for the pattern-matching can be tricky. 

Therefore, directly using the pattern-matching result to determine a fault can be 

ineffective in this multi-class, multi-pattern setting. The FDSPM utilizes the Bayesian 

approach to tackle this classification problem.  

4.4.1 Naïve Bayes Classifier 

In machine learning, Bayesian learning is a probabilistic approach to infer classification. 

In this diagnosis scenario, denote a log sample as 𝐷 and a set of hypotheses as 𝐻 =

[ℎ1, ℎ2, … , ℎ𝑛], each ℎ𝑖 represents a possible fault, the task is to infer the maximally 

probable hypothesis, or maximum a posteriori (MAP) hypothesis by observing data 𝐷: 
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 ℎ𝑀𝐴𝑃 = argmax
ℎ𝑗∈𝐻

𝑃(ℎ𝑗|𝐷) (4.1) 

The log sample 𝐷 can be represented by the pattern-matching result 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑚], 

where 𝑝𝑖 denotes whether the pattern 𝑃𝑖 occurs or not. This process of examining feature 

patterns in log sample 𝐷 is referred to as observation in statistics. Note that the 

observation result 𝑝 is in lowercase, and fault patterns 𝑃 is in uppercase. While the 

expression 𝑃( ) with brackets represents a probability function. The MAP definition can 

be written as: 

 ℎ𝑀𝐴𝑃 = argmax
ℎ𝑗∈𝐻

𝑃(ℎ𝑗|𝑝1, 𝑝2, … , 𝑝𝑚) (4.2) 

With the Bayes theorem 𝑃(ℎ|𝐷) =
𝑃(𝐷|ℎ)𝑃(ℎ)

𝑃(𝐷)
, the MAP hypothesis of the log pattern 

matching is represented as follows: 

 ℎ𝑀𝐴𝑃 = argmax
ℎ𝑗∈𝐻

𝑃(𝑝1, 𝑝2, … , 𝑝𝑚|ℎ𝑗)𝑃(ℎ𝑗)

𝑃(𝑝1, 𝑝2, … , 𝑝𝑚)
 (4.3) 

Here 𝑃(𝑝1, 𝑝2, … , 𝑝𝑚) represents the observation result of all patterns [𝑃1, 𝑃2, … 𝑃𝑚] in the 

given log sample 𝐷. Clearly this value remains constant because the log sample being 

examined do not change, so the denominator can be omitted: 

 ℎ𝑀𝐴𝑃 = argmax
ℎ𝑗∈𝐻

𝑃(𝑝1, 𝑝2, … , 𝑝𝑚|ℎ𝑗)𝑃(ℎ𝑗) (4.4) 

In this representation, the term 𝑃(𝑝1, 𝑝2, … , 𝑝𝑚|ℎ𝑗) represents the probability of a pattern-

matching combination [𝑝1, 𝑝2, … , 𝑝𝑚] given the hypothesis ℎ𝑗  holds, i.e., the j-th fault 

occurs. The term 𝑃(ℎ𝑗) represents the unconditional probability of the j-th fault. 
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The value of 𝑃(𝑝1, 𝑝2, … , 𝑝𝑚|ℎ𝑗) needs to be obtained from the training data, i.e. the data 

used for the pattern extraction process. However, explicitly finding the condition 

𝑝1, 𝑝2, … , 𝑝𝑚|ℎ𝑗 is infeasible, because the available log samples cannot possibly cover the 

huge number of possible combinations [𝑝1, 𝑝2, … , 𝑝𝑚] in any way. Assumptions need to 

be made to proceed with the deduction and, result in different methods, one of them being 

the naïve Bayes classifier. 

The naïve Bayes classifier assumes that all feature attributions – in this case, the 

occurrences of extracted patterns 𝑝1, 𝑝2, … , 𝑝𝑚 – are conditionally independent given the 

target hypothesis ℎ𝑗 . As a result, the probability of observing the combination 

𝑝1, 𝑝2, … , 𝑝𝑚 equals the product of the probabilities of observing individual patterns: 

𝑃(𝑝1, 𝑝2, … , 𝑝𝑚|ℎ𝑗) = ∏ 𝑃(𝑝𝑖|ℎ𝑗)𝑚
𝑖=0 . The MAP hypothesis then becomes naïve Bayes 

classifier: 

 ℎ𝑁𝐵 = argmax
ℎ𝑗∈𝐻

𝑃(ℎ𝑗) ∏ 𝑃(𝑝𝑖|ℎ𝑗)

𝑚

𝑖=0

 (4.5) 

Where 𝑃(𝑝𝑖|ℎ𝑗) is the conditional probability, and 𝑃(ℎ𝑗) is called prior probability. 

4.4.2 Learning and Classification 

In equation (4.5), given a piece of log sequence and the observed patterns 𝑝 =

[𝑝1, 𝑝2, … , 𝑝𝑚], 𝑃(ℎ𝑗) and 𝑃(𝑝𝑖|ℎ𝑗) are required to obtain a fault classification. 𝑃(ℎ𝑗) is 

the unconditional probability of the fault 𝑗 occurring. This can be approximated by the 

frequency of fault 𝑗 occurring in the available data, i.e., the number of samples with fault 

𝑗 among all faulty samples. 𝑃(𝑝𝑖|ℎ𝑗) is the conditional probability of pattern 𝑝𝑖 when 
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fault 𝑗 occurs. This again can be obtained from the training data: it equals the frequency 

of observing a pattern 𝑝𝑖 given a fault ℎ𝑗  holds. Since a pattern does not necessarily 

appear in every fault, 𝑃(𝑝𝑖|ℎ𝑗)  has a value between 0 and 1.  

The obtained 𝑃(𝑝𝑖|ℎ𝑗) commonly has zero values, because some patterns do not show up 

at all in the data samples of some faults. For example, the pattern 𝑃𝑘 is one of the 

extracted sequence patterns for fault 𝑘, and it does not occur in any data samples for the 

fault ℎ𝑞. Then 𝑃(𝑝𝑘|ℎ𝑞) = 0. In the classification process using equation (4.5), if 𝑃𝑘 is 

observed in a log sequence, it will bring the sum of product ∏ 𝑃(𝑝𝑖|ℎ𝑞)𝑚
𝑖=0  directly to 

zero, giving a zero probability for fault ℎ𝑞, even though there may exist other patterns 

that contributes to ℎ𝑞. This is likely caused by the limited amount and variety of the 

training data, from which the extraction of pattern 𝑃𝑘 was unsuccessful or imprecise. In 

practice, to avoid the flushed-by-zero problem, the zero values of 𝑃(𝑝𝑖|ℎ𝑞) are replaced 

with an arbitrarily small value, such as 0.1.  

Given 𝑚 features and 𝑛 hypothesis, the set of conditional probabilities 𝑃(𝑝𝑖|ℎ𝑗) is in 

matrix form as shown in Figure 4.4.1. The matrix has 𝑚 rows and 𝑛 columns, and each 

entry (𝑖, 𝑗) corresponds to 𝑃(𝑝𝑖|ℎ𝑗). It is the learnt result from training data, and is 

therefore referred to as knowledge base in Figure 4.1.3. The probability matrix and the 

prior probabilities are sufficient to calculate the classification result using equation (4.5), 

given the pattern-matching observation of a new log sample. 
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Figure 4.4.1 The conditional probabilities matrix (knowledge base). 

In the detection/diagnosis process, the pattern matching results [𝑝1, 𝑝2, … 𝑝𝑚] are obtained 

from observing a new log sequence. The conditional probabilities 𝑃(𝑝𝑖|ℎ𝑗) are looked up 

from the knowledge base. The classification result is then obtained by equation (4.5). 

4.4.3 Discussion on the Validity of the Assumption 

The assumption that all extracted sequence patterns are conditionally independent given a 

fault barely holds. It is very much possible that two abnormal patterns always occur 

together, and one pattern triggers the logging action of the other. The contrast data mining 

is by no means to remove such dependencies. In fact, many naïve Bayes classification 

applications proceed with this inaccurate assumption, such as text classification [10]. 

Somewhat surprisingly, the naïve Bayes learners perform reasonably well in these 

applications as well as in this study, despite the inaccuracy of this assumption. Domingos 

and Pazzani [83] investigated this phenomenon and found that a naïve Bayes classifier 

“does not depend on attribute independence to be optimal”, which explains its exceptional 

performance despite the inaccurate assumption. 
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4.5 Implementation 

A total of 104 log samples are collected for the experiment. This includes 42 faulty log 

samples as listed in Table 4.1 in Section 4.2.1 and 72 normal log samples as explained in 

Section 4.3.3. The normal samples are labelled as 0 and the faults are labelled from 1 to 8 

as shown in Table 4.2. The data samples are split into training and testing set at a ratio of 

0.5:0.5. Note that some fault labels contain an odd number of samples, and as a result, the 

training set would contain one sample more than the testing set due to rounding. After 

splitting, the number of samples for training and testing, the associated division is 58 and 

56, respectively. 

Table 4.2 The available data and train-test split. 

Class 
Label 

Fault ID Total Samples 
Samples for 

Training 
Samples for 

Testing 

0 No Identifiable Fault 72 36 36 

1 FORDSYNC3-40557 8 4 4 

2 FORDSYNC3-40026 3 2 1 

3 FORDSYNC3-38112 4 2 2 

4 FORDSYNC3-37158 3 2 1 

5 FORDSYNC3-32240 4 2 2 

6 FORDSYNC3-28906 4 2 2 

7 FORDSYNC3-28578 8 4 4 

8 FORDSYNC3-28414 8 4 4 

 Total 114 58 56 

     

The implementation flowchart of the proposed FDSPM framework is depicted in Figure 

4.5.1, where the training and testing phases are shown on the left and right, respectively. 

The inputs to the training phase are the normal samples with label 0 in Table 4.2 and the 

ones with a certain fault label ℎi. They are used as the contrast and target sets for the 

pattern discovery process. Each fault label is processed separately, so a total of 8 pattern 
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discovery processes are carried out. All discovered feature patterns are combined in one 

list [𝑃1, 𝑃2, … , 𝑃𝑚]. The conditional probabilities matrix 𝑃(𝑝𝑖|ℎ𝑗) and the prior probability 

𝑃(ℎ𝑗) are obtained by observing the frequencies of patterns in the training data.  

In the testing phase, a pattern-matching process is first carried out to determine whether a 

pattern is observed. Given a new sample of token sequence, every extracted pattern in the 

list [𝑃1, 𝑃2, … , 𝑃𝑚] is searched within the sample. If a match is found, the matching result 

𝑝𝑖 is set to 1, otherwise, it is set to 0. The pattern-matching results are represented as a list 

[𝑝1, 𝑝2, … , 𝑝𝑚]. Then the conditional probability 𝑃(𝑝𝑖|ℎ𝑗) of an observed pattern 𝑝𝑖 is 

looked up from the knowledge base matrix as previously shown in Figure 4.1.3. Using the 

naïve Bayes classifier represented in equation (4.5), the classification results and their 

probabilities are obtained.  

Apply sequence 

pattern mining 

(Section 4.3.3)

Calculate pattern 

frequencies in 

training data

(Section 4.4.2)

Pattern matching 

(Section 4.4.1)
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Figure 4.5.1 The FDSPM model flowchart. 
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A few parameters are configurable and remain to be investigated in this model. These 

include the maximum feature pattern length, whether gaps are allowed in the feature 

patterns, the occurrence counts of feature patterns, and the probability threshold to 

determine whether and output should be considered faulty. The effects of these 

parameters are discussed in the experiments section. 

The program is implemented in Python 3.6 on Windows 10. The link to the source code is 

listed in Appendix B. The hardware to run the experiments includes an Intel i7 processor 

and 32GB memory. This set of hardware is fully capable in terms of performing the 

calculations. The contrast pattern mining is computationally the heaviest process. Once 

the patterns are obtained, calculating conditional probabilities and classification are 

relatively fast, requiring minimal computation time and resources. 

4.6 Experiments 

The parameters configured during the data mining process can largely affect the quality 

of extracted patterns and the classification accuracy. These parameters are introduced in 

Section 4.3 and are reiterated as follows: 

- the gap constraint specifies whether the patterns are allowed to have gaps when 

extracted from the sequence samples and the maximum gap allowed. Allowing 

patterns to have gaps increases the tolerance for interleaving sequences, but may 

also introduce false positive patterns. 

- the maximum length configures the longest pattern length during the extraction.  
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- the minimum and maximum Support Ratio Thresholds (SRT) specify the 

criteria of eligible contrast patterns as introduced in Section 4.3.1. The pattern 

must occur in the target dataset with a support ratio higher than the minimum SRT 

and occur in the contrast dataset with a support ratio lower than the maximum 

SRT in order to be considered as an eligible contrast pattern. Setting strict SRTs 

(values close to 0 or 1) improves the quality of extracted patterns, but also reduces 

the total number of patterns extracted.  

Another parameter to be manually configured is the probability threshold during the 

classification process. The naïve Bayes classifier produces the most likely class with a 

probable rating, but the output classes exclude label 0, i.e., the classifier does not detect 

normal samples that contain no faults. In practice, an arbitrary probability threshold is set 

to perform the detection functionality. If the most likely class has a probable rating lower 

than the probability threshold, the sample is considered to be normal with a class label 0. 

The effects of varying these parameters are examined in a series of tests elaborated in this 

section. To produce consistent results, all tests use the same train-test split setting. As 

mentioned in Table 4.2, the testing set contains 36 normal samples with label 0 and 20 

faulty samples with 8 other labels. Three metrics used in evaluation are: 1) the detection 

accuracy on faulty samples, also called True Positive rate (TP rate), recall, or sensitivity; 

2) the detection accuracy on normal samples, also called True Negative rate (TN rate) or 

specificity; 3) the classification accuracy on faulty samples. The first two metrics are for 

evaluating detection performance, while the third one is for diagnosis.  
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4.6.1 The Gap Constraint 

This set of tests specifies a series of gap values during the pattern extraction phase. The 

whole training and testing process, including pattern extraction, probability calculation, 

and classification, are individually performed for each test. The train-test data split and all 

other parameters are kept constant throughout this set of tests. The mining parameters are: 

maximum SRT=0.05, minimum SRT=0.6, maximum length=2. Note that these values are 

empirical values that yield reasonable results and by no means are intended to be optimal. 

The purpose of this set of tests is to examine what effect the gap constraint would impose. 

With different gap settings, the extracted sequence patterns differ. This difference is 

shown in Table 4.3. In general, more patterns are extracted as the gap constraint 

increases, as demonstrated by the larger numbers in the bottom rows of the table. This is 

reasonable because a larger gap constraint allows a pattern to be present with a higher 

variety. The only outlier of this observation is fault 2, whose number of patterns does not 

change in the same way as the gap does.  

Table 4.3 Number of extracted patterns with different gap settings*. 

  Number of patterns extracted for each fault label 

Test #  fault 1 fault 2 fault 3 fault 4 fault 5 fault 6 fault 7 fault 8 Total 

1 gap=0 15 0 15 6 1 18 2 0 57 

2 gap=1 27 1 27 11 2 32 5 2 107 

3 gap=2 36 1 42 14 3 51 6 4 157 

4 gap=3 49 0 52 17 5 58 7 4 192 

5 gap=4 59 1 57 22 9 70 11 5 234 

6 gap=5 77 0 67 24 13 83 11 6 281 

*All tests in this table use these mining parameters: maximum SRT=0.05, minimum SRT=0.6, 

maximum length=2. 
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The average processing time to extract patterns for a fault is about two minutes using the 

performance PC mentioned above. The computation time increases by 5% to 10% for 

every increment of the gap setting. However, the memory usage increases at a faster rate 

and relates to the total number of patterns being extracted.  

Table 4.4 shows the detection and classification accuracies of different gap settings. The 

detection accuracy column is evaluated on all test samples, including both normal and 

faulty ones. It is effectively the combination of true positive rate and true negative rate. 

The classification accuracy is evaluated on 20 faulty samples with 8 different labels – 

therefore the percentage figures have an increment of 5%. According to this table, both 

metrics show no distinctively correlation with the increase of gap values. The best-

performing settings in terms of detection are gap-4 followed by gap-0, while in terms of 

classification, the winning configurations are gap-3 and gap-5.  

Based on this observation, larger gaps tend to produce more sequence patterns, but the 

contribution of the extra patterns is not always beneficial, sometimes they even lower the 

performance. 

Table 4.4 The performance with different gap settings. 

Test #  Detection accuracies on all samples Classification accuracies on faulty 

samples 

1 gap = 0 62.5% 45% 

2 gap = 1 60.7% 45% 

3 gap = 2 58.9% 35% 

4 gap = 3 55.4% 50% 

5 gap = 4 64.3% 45% 

6 gap = 5 57.1% 50% 
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4.6.2 The Maximum Length 

The effect of patterns’ length is examined in this set of tests. The maximum length 

parameter is specified in the pattern extraction process. This value can be as small as 1, 

but then it would become a simple keyword search problem. Therefore, the selection of 

lengths starts from 2. Table 4.5 shows the number of patterns extracted for each fault 

using different length settings. The mining parameters for this set of tests are: maximum 

SRT=0.05, minimum SRT=0.6, gap=0. Again, these values do not mean to represent the 

optimal setting. 

According to this table, the number of patterns for each fault always increase in the same 

way as the maximum length does, and the increment becomes smaller for larger length 

values. Another important observation is that the sequence patterns for some faults are 

always greater than 2. Take fault 2 as an example, no pattern is found with a length of 2, 

but with a length of 3, one pattern is extracted. It means that the only sequence pattern for 

fault 2 has a length of 3. This finding is significant, indicating that a small length setting 

could miss valuable information during the pattern extraction process. 

The monotonical increment of patterns can be explained based on the algorithm. In the 

mining algorithm presented in Section 4.3.2, the maximum length equals the depth of the 

search tree. If all other parameters are kept constant, the tree would always grow in the 

same way. Therefore, the patterns extracted using a larger length setting automatically 

include the ones extracted using a smaller setting.  
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Table 4.5 Number of extracted patterns with different length settings*. 

Test # 
Max 

Length 

Number of patterns extracted for each fault label 

fault 1 fault 2 fault 3 fault 4 fault 5 fault 6 fault 7 fault 8 Total 

7 2 15 0 15 6 1 18 2 0 57 

8 3 16 1 19 6 2 21 3 0 68 

9 4 21 1 20 6 2 22 3 0 75 

10 5 22 1 20 6 2 22 4 0 77 

11 6 22 1 20 6 2 22 4 0 77 

12 7 22 1 20 6 2 23 4 1 79 

*All tests in this table use these mining parameters: maximum SRT=0.05, minimum SRT=0.6, 

gap=0. 

           

The processing time increases very little as the maximum length is set higher, and the 

memory usage varies in a small range. This can be explained from the search tree 

perspective, as the tree grows, a majority of branches fail the contrast pattern thresholds 

and therefore are pruned. The growth only happens at a small number of branches. As a 

result, the computation and memory increment are insignificant.  

Table 4.6 shows the detection and classification accuracies using different length settings. 

The detection accuracy has a positive correlation with the maximum length parameter, or 

equivalently, the total number of extracted patterns. It shows that the additional longer 

patterns – especially patterns having a length of 3 and 4 – have a positive effect on the 

detection performance. In terms of classification, this effect is less obvious. The better 

performing length setting is 3, 7, and 8. Considering both metrics, a maximum length of 7 

or 8 is the best choice, followed by a value of 3. 

As a short conclusion for this section, this set of tests demonstrates that the sequence 

patterns for some faults are longer than 2. These longer patterns have a positive 
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contribution to the detection performance. This means that when choosing an effective 

mining configuration, a higher maximum length is preferred. 

Table 4.6 The performance with different length settings. 

Test # 
 Detection accuracies  

on all samples 

Classification accuracies  

on faulty samples 

7 Max length = 2 69.6% 45% 

8 Max length = 3 71.4% 50% 

9 Max length = 4 73.2% 40% 

10 Max length = 5 73.2% 40% 

11 Max length = 6 73.2% 40% 

12 Max length = 7 73.2% 50% 

13 Max length = 8 73.2% 50% 

    

4.6.3 The Support Ratio Thresholds 

The maximum and minimum SRTs are examined together in this set of tests. The 

minimum SRT is used to determine if a pattern occurs frequently enough in the training 

data to be considered as a common pattern. The minimum SRT is relatively easy to 

configure, because a majority of faults only have two training samples, as indicated in 

Table 4.2. This means that a pattern’s support in training samples, i.e., the pattern’s 

occurrence count, is either 1 or 2. Then the minimum support ratio is either 0.5 or 1.0. 

The maximum SRT is used to determine if a pattern occurs too much in contrast set that it 

should no longer be considered as a distinguishing pattern. Since there are a lot more 

samples in the contrast set, i.e., the samples containing no faults, the maximum SRT 

values are selected empirically. The range from 0 to 0.25 is put into test, with an 

increment of 0.5. In total there are 12 combinations of selected maximum and minimum 

SRTs. 
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Table 4.7 shows the number of extracted patterns with different SRT combinations. Note 

the first 6 rows (tests #14-19) use a minimum SRT value of 0.6, which is effectively 

equivalent to 0.5 because the support count is rounded to integer values. All 12 tests in 

the table uses the mining parameters of maximum length=7 and gap=0, which are the 

preferred values as the previous subsection has concluded. According to this table, a 

smaller maximum SRT produces fewer patterns under each fault, while a smaller 

minimum SRT has the opposite effect. This is expected as a small maximum SRT close to 

0.0 and a large minimum SRT close to 1.0 both means stricter thresholds to determine 

eligible contrast patterns.  

Table 4.7 Number of extracted patterns with different SRT settings. 

Test 

# 

Min 

SRT 

Max 

SRT 

Number of patterns extracted for each fault label 

fault 

1 

fault 

2 

fault 

3 

fault 

4 

fault 

5 

fault 

6 

fault 

7 

fault 

8 
Total 

14 0.6 0.0 1 0 11 0 1 12 0 0 25 

15 0.6 0.05 16 1 19 6 2 21 3 0 68 

16 0.6 0.1 73 1 31 14 17 43 8 11 198 

17 0.6 0.15 84 3 47 17 20 75 9 23 278 

18 0.6 0.2 110 4 59 21 20 85 12 26 337 

19 0.6 0.25 122 4 62 26 22 89 14 31 370 

20 1.0 0.0 0 0 11 0 1 12 0 0 24 

21 1.0 0.05 0 1 19 6 2 21 0 0 49 

22 1.0 0.1 31 1 31 14 17 43 0 0 137 

23 1.0 0.15 37 3 47 17 20 75 0 1 200 

24 1.0 0.2 48 4 59 21 20 85 0 1 238 

25 1.0 0.25 53 4 62 26 22 89 0 1 257 

*All tests in this table use these mining parameters: maximum length=7, gap=0. 

            

In terms of computation, the training time of the 12 tests shows no significant difference. 

The memory usage is related to the number of patterns being extracted, but the total usage 

is within the hardware’s capability in all cases. 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

81 

 

Table 4.8 shows the performance difference among tests #14-25. As minimum SRT fixed 

and maximum SRT increases, the detection and classification accuracies generally show 

an upward trend, then settle or decrease. The highest detection accuracy occurs at 

maximum SRT=0.1, and the highest classification accuracy occurs at maximum 

SRT=0.2, regardless of the value of minimum SRT. A minimum SRT value of 0.6 seems 

to exhibit a smaller variance in terms of accuracy values. Other than that, the minimum 

SRT has little effect on the performance. A short conclusion from these observations is 

that a maximum SRT between 0.1 and 0.2 is preferred, and the minimum SRT can be any 

value greater than 0.5. 

Table 4.8 The performance with different SRT settings. 

Test 

# 

Min 

SRT 

Max 

SRT 

Detection accuracies on all 

samples 

Classification accuracies on faulty 

samples 

14 0.6 0.0 71.4% 35% 

15 0.6 0.05 69.6% 50% 

16 0.6 0.1 76.8% 55% 

17 0.6 0.15 76.8% 50% 

18 0.6 0.2 71.4% 60% 

19 0.6 0.25 73.2% 55% 

20 1.0 0.0 67.9% 25% 

21 1.0 0.05 69.6% 30% 

22 1.0 0.1 76.8% 45% 

23 1.0 0.15 75.0% 60% 

24 1.0 0.2 75.0% 60% 

25 1.0 0.25 75.0% 60% 

     

4.6.4 The Probability Threshold 

The probability threshold is used to determine whether the output of the classifier should 

be treated as a fault. For example, if the threshold is set to 0.9 and the classifier shows 

that fault 1 has the highest probable rating of 0.85, then the sample would be considered 
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as normal and free of fault. Given a trained model, a larger probability threshold generally 

results in more samples being classified as normal, leading to a higher True Negative rate 

(TN rate, the accuracy on normal samples). However, the True Positive rate (TP rate) 

generally reduces in the meantime. Setting a smaller threshold has the opposite effect. 

Therefore, configuring the probability threshold balances the performance metrics and is 

often based on practical concerns. Changing the threshold does not alter the 

characteristics of a model, but it provides a comprehensive view of the performance. 

In the previous subsections, the accuracy results are obtained by manually setting best-

performing probability thresholds, whose values are absent in the tables to avoid 

confusion. This section takes the tests #14-25 in Table 4.7, Section 4.6.3 and examines 

the threshold’s effect in detail. When the threshold changes, the two accuracy values – the 

TP rate and the TN rate – also change accordingly. A set of TP and TN values is obtained 

as the threshold sweeps from 0.0 to 1.0. Plotting the two variables on a 2D graph gives 

the True-Positive-True-Negative (TPTN) curve. It is an adaptation of the more commonly 

known Receiver Operating Characteristic (ROC) curve, which plots TP rate vs False 

Negative (FN) rate. The TPTN curve is chosen for presentation because these two metrics 

are more intuitive in this study. 

Figure 4.6.1 shows the TPTN curve from tests #14-25. The figure on the left and right 

present the tests with maximum SRT=0.6 and 1.0, respectively. Each circle on the curve 

represents a threshold value. Its x and y coordinates are the TP rate and TN rate. The 

curves start at (1.0, 0.0), where the threshold is 0.0. At this point all samples are classified 

as faulty, so the TP rate is 1.0 and the TN rate is 0.0.  As the threshold increases, the 
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curve traverse through the unit square towards (0.0, 1.0), where the threshold is 1.0. 

Higher values for both metrics are preferred, so the curves that bend towards the upper 

right corner (1.0, 1.0) are considered as having good character. To measure this character, 

the Area Under Curve (AUC) metric is often used. In this demonstration, AUC is 

observed instead of precisely calculated. 

For both graphs, the minimum SRT values in the range of [0.1, 0.25] perform better than 

the values in the range of [0.0, 0.05] in terms of AUC. This coincides with the 

observation from Table 4.8. Comparing the two graphs side by side, the curves in the 

right graph (maximum SRT=1.0) show slightly larger AUC than the ones on the left. This 

is a new finding that can hardly be obtained from examining accuracy tables. Only 

relying on AUC, the best-performing configurations are minimum SRT=0.15 and 0.25 

with maximum SRT=1.0. However, since the curve with a larger AUC does not fully 

cover the smaller ones, it is better to consider multiple curves when picking a value for a 

certain application. 

  

Figure 4.6.1 The effect of probability thresholds. 
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In general, the points closer to (1.0, 1.0) on the TPTN graph are considered as good 

configurations that have a balanced performance. If certain metrics are strictly required, 

the graphs can help quickly determine the best setting. For example, if a TN rate of 80% 

is required, the highest possible TP rate can be found by using Figure 4.6.1. On the left 

figure, the eligible configuration is at (0.6, 0.84) on the curve of maximum SRT=0.6, 

minimum SRT=0.2, the green plot. On the right figure, the eligible configuration is at 

(0.5, 0.86) on the curve of maximum SRT=1.0, minimum SRT=0.2, also the green plot. 

Clearly the former configuration is better as it provides 10% higher TP rate while 

satisfying the TN rate requirement. Therefore, multiple curves and graphs should be 

considered when choosing the best model configurations. 

4.6.5 Discussion 

This section examines the effects of gap constraints, maximum lengths, and SRTs in the 

pattern extraction process, as well as the probability thresholds in the detection process. 

An empirical tuning approach is developed, and the best-performing configurations in 

terms of AUC are maximum pattern length=7, gap=0, maximum SRT=1.0, minimum 

SRT=0.15 or 0.25. This best-performing configuration might vary case by case in 

practice, but the tuning approach can be adopted universally.  

It is worth noting that the absolute values presented in this section are dependent on the 

dataset. There is a serious lack of training data issue in this study, especially the number 

of samples in each label. Given the fact that a majority of the faulty labels contain only 

two training samples, an overall >70% (greater than 70%) detection rate and >50% 

(greater than 50%) classification rate is more than sufficient to demonstrate the 
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effectiveness of the methodology. There is a large potential for improvement if more 

training data are available. 

In terms of computation, despite the ConSGapMiner mining algorithm showing great 

efficiency when the configuration values change, the training process is still time-

consuming. The pattern discovery is likely to cost more time and memory if more training 

data and faults are included. The detection phase is relatively lightweight and costs little 

time when testing on the performance PC. However, if deploying on a mobile platform or 

perform online detection, the pattern-matching operation during the detection phase may 

potentially pose a significant computational overhead. 

4.7 Conclusion and Discussion 

This chapter presents the FDSPM diagnosis model. FDSPM is the first to incorporate 

contrast mining algorithms – in this case, the ConSGapMiner – to extract fault patterns 

from log token samples. The number of patterns can be large depending on the mining 

configuration, presenting the multi-feature, multi-class classification problem. FDSPM 

uniquely solves the problem by rating the features through knowledge base and applying 

a naïve Bayes classifier. The FDSPM has demonstrated acceptable detection and 

classification performance, using a minimal amount of training data. 

Numerous parameters need to be properly configured in order to achieve better 

performance. The effect of each individual parameter is closely examined in a series of 

comparison tests. A comprehensive tuning method is developed and gradual improvement 

is observed over the tuning process. The obtained parameters can be case-specific, 
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meaning that when additional data are available for training, re-tuning using the same 

method is required. 

One practical concern of the FDSPM is the computation requirement. Although the 

mining algorithm has demonstrated good efficiency, learning each fault can still take 

minutes. This makes the already cumbersome tuning process even more time-consuming. 

The pattern-matching operation during the detection phase can also pose computational 

issues on mobile platforms with limited processing power. 

The next chapter will examine a different machine learning approach using statistical 

features instead of sequence patterns, which would address the efficiency issue and 

simplify the tuning process. 
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Chapter 5 Statistical Features and Machine Learning 

The previous chapter presents a fault diagnosis system through mining sequence patterns 

within log data. Although intuitive, it requires a cumbersome sequence-based pattern 

searching process. This chapter introduces a different diagnosis approach using statistical 

features and numerical machine learning models. The framework is called Fault 

Diagnosis with Statistical Machine Learning (FDSML). The FDSML framework 

incorporates a process called vectorization, which converts the log sequences from the 

token format into numerical feature vectors. A machine learning model then processes the 

numerical features and produces a classification of possible faults. Both the vectorization 

and machine learning process have plenty of methods to choose from, making the 

FDSML a flexible framework for diagnosis. 

The feature vectorization process emphasises the statistical features of the log sequences. 

A number of such techniques are demonstrated in existing studies including [51]–[59], 

[61]–[63] reviewed previously in Section 3.4. The vectorization method used in this study 

originates from textual analysis and is elaborated in Section 5.2.2. 

Machine learning as a general term refers to a computer program whose performance at 

certain tasks improves through training experience [10], such as the processing of a 
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dataset. Based on this definition, all methods presented in this thesis are under the broad 

category of machine learning. However, conventionally when referring to machine 

learning, people think of it as the narrow category of using numerical models to 

approximate a function that describes a given dataset. Moreover, the recently developed 

deep neural networks (also referred to as deep learning), which originates from and shares 

many common methodologies with the narrow term of machine learning, are generally 

regarded as a different topic. The sections in this chapter follow this convention when 

using the term machine learning wherever applicable. The machine learning models for 

the FDSML framework are introduced in Section 5.2.3. 

5.1 Why Moving to Numerical? 

As concluded in Chapter 4, one of the drawbacks of using sequential patterns and naïve 

Bayes classifier is the long execution time. Pattern searching is shown to be a 

computationally heavy process even with efficient data mining algorithms. The log 

sequences being categorical sequences in nature render many efficient numerical methods 

inapplicable. If the log sequences are converted into numerical representations, there 

would be an abundance of candidate machine learning models available to apply or 

extend upon. In other words, the representative features for software faults can be 

numerical and they are not necessarily constrained to a sequential format. 

Vectorization is the process that converts categorical tokens into numerical vectors. Most 

of these techniques require little computational resources. Many methods mentioned in 

the literature [56], [57], including the count and frequency of tokens, can be obtained with 
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one scan of the sequence, i.e., the process has a constant-time complexity 𝒪(1). This is 

unsurprising because these techniques are developed for big data applications with an 

emphasis on efficiency. For example, some text processing applications successfully 

applied vectorization techniques to the whole English Wikipedia dataset, which 

comprises over two million samples [84]. Traditional data mining approaches like the one 

introduced in Chapter 4 would be infeasible for such a large amount of data.  

Machine learning algorithms are often very efficient as well. The forward propagation of 

a machine learning model, i.e., taking a data sample as input and producing an output, is 

essentially a one-time computation of a numerical function. The training process of such 

models is a numerical optimisation problem where many solutions apply. On the other 

hand, the models that work directly with sequence data, such as the Finite State Machine 

(FSM) and Bayesian network, are far from efficient. The improvement in computation 

efficiency can also save time for the model tuning process. 

The FDSML framework consists of two phases: the training phase and the diagnosis 

phase, as shown in Figure 5.1.1. The log sequence goes through the tokenization and 

vectorization process to obtain their feature vectors. These vectors are used to train a 

numerical machine learning model which, after training, is deployed to detect and 

diagnose system faults from log data. The methods in each process are elaborated in 

Section 5.2 and the implementation is explained in more detail in Section 5.3. 
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Figure 5.1.1 The overview of fault diagnosis with vectorization and machine learning. 

5.2 Methodology 

The three main processes of the FDSML framework are tokenization, feature 

vectorization, and classification using a machine learning model. They are introduced in 

the following subsections. 

5.2.1 Tokenization 

The log samples are first converted into token sequences, a process called tokenization, 

the same as the one introduced in the previous chapter. The tokenization method from 

Section 4.2.2 is used in this research. After tokenization, the log sample is represented by 

a sequence of tokens represented by numbers. 

5.2.2 Vectorization 

The term vectorization means, literally, converting a data sample into a vector. This 

vector is also called a feature vector, representing some abstract features of the data 

sample. By convention, a feature vector is a column vector with a size of 𝑚. Each feature 

value – the value of each row – has a definitive meaning. These definitions are often pre-
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defined and remain consistent across all data such that different samples’ feature vectors 

are comparable. The following subsections introduce a few generic vectorization methods 

for sequence data. These vectorization processes can be viewed as using manually 

specified rules to extract features from data and therefore, they are also called feature 

engineering. 

5.2.2.1 Term Count 

Term count is a simple technique that counts the occurrences of each unique token within 

a sample sequence. The unique token is commonly referred to as a term in information 

retrieval literature. The terminologies token and term are used interchangeably in this 

section. In a term count vector, each row value represents the count of a term. Take the 

sequence “ABCDA” as an example in Figure 5.2.1. Define each row as the count of terms 

A, B, C, and D, the term count vector is then 𝒗tc = [2, 1, 1, 1]′. The term A occurs twice 

and all the rest terms occur once. 

 

Figure 5.2.1 Example of the term count vector. 

The order of terms in a term count vector must be pre-defined and remain unchanged 

throughout the process. This is necessary to ensure the conversion is consistent across all 

sequence samples. If a term does not occur at all, it would have a count of 0 instead of 
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being omitted. Applying the same conversion to the sequence “BBCCCA”, the term 

counter vector is then [1, 2, 3, 0]′. Note that regardless of the length of the sequence, 

vectorization always produces an output with the same length equal to the total number of 

unique tokens. 

One-hot vectorization is another common method similar to the term count. For the terms 

with non-zero counts, the one-hot vector simply assigns a value of 1 instead of counting 

the occurrence. The resulting vector consists of either 1 or 0 values, as shown in Figure 

5.2.1. The term one-hot originates from digital circuits where the bit values are either ‘1’ 

(hot) or ‘0’ (cold). One-hot vector is effective to indicate which tokens are present in the 

sequence and in the meantime, avoids issues that may be caused by large term counts. 

However, in machine learning research where floating points are widely used, restricting 

the values to binary tend to limit the potential of feature extraction. 

5.2.2.2 Term Frequency 

The absolute values of a term count vector may be less meaningful when a large number 

of occurrences exist, especially when the sequence samples have different lengths. For 

example, if a sequence sample 𝑆1 is 10 times longer than another sample 𝑆2, the term 

counts of 𝑆1 are likely a lot larger than that of 𝑆2. As a result, the same values of a term in 

𝑆1 and 𝑆2 would mean differently, because the sample length is different. Term 

Frequency (TF) is defined as the count divided by the total number of tokens in a 

sequence sample. It is therefore a better representation than the term count in many cases. 

Given the term count vector 𝒗tc, the TF vector 𝒗tf can be represented as: 
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 𝒗tf =
𝒗tc

∑ 𝒗tc,𝑖
𝑛
𝑖=0

 (5.1) 

The TF vectors of the two previous sequence examples are shown Figure 5.2.2. The TF 

vector scales down a term count vector to a range of [0, 1]. This gives a better statistical 

description of the data. Since the large values are absent, the TF feature is also preferable 

by machine learning models, as larger values may cost the training more time to reach 

convergence with a gradient based algorithm that is explained later in this section.  

 

Figure 5.2.2 Example of the term frequency vector. 

Although the term count and TF vectors are relatively simple, they are effective 

techniques. The combination or adaptation of both can be found in many log data analysis 

studies [56]–[58]. 

5.2.2.3 Inverse Document Frequency 

If treating the feature vector as an importance rating of the tokens, the TF vector implies 

that all terms are inherently equally important. As a result, more attention is drawn to the 

terms with a higher TF value, which is directly linked to more occurrences. However, a 

higher TF value does not necessarily mean higher importance. It is very likely that tokens 

occurring more in a sequence represent a less meaningful feature. For example, a 

frequently executed task under normal conditions can leave a large number of duplicated 
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log traces, creating large values in the TF vector. These large values are less desired in a 

fault diagnosis setting because they represent a normal execution and benign log tokens. 

The actual fault patterns tend to appear less frequently but more distinctive among faulty 

samples. 

To address this issue, terms that occur too often across the dataset need to be attenuated 

from the TF vector. The document frequency (DF) feature is defined as the number of 

samples in the dataset that contains a term (token) 𝑡. The DF value of a term 𝑡 is then: 

 df𝑡 =
number of samples containing 𝑡

number of total samples
 (5.2) 

Using the same example in the previous subsection, assuming the dataset contains only 

two sequence samples shown in Figure 5.2.3. The term A, B, and C appears in both 

samples, so they have a DF value of 1.0. The term D only occurs in the first sequence, so 

it has a DF value of 0.5. the DF vector of all terms is also shown in Figure 5.2.3. Note 

that only one DF vector is produced for each dataset, instead of each sample. 

 

Figure 5.2.3 Example of the inverse document frequency vector. 

In a DF vector, the larger value represents higher occurrences in the dataset. The opposite 

is more useful. In other words, the terms that occur rarely should have a higher weighting. 

Inverse Document Frequency (IDF) is introduced to flip the polarity. A common 

definition also includes logarithms to scale down the unexpected large values: 
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 idf𝑡 = log
1

df𝑡
 (5.3) 

The IDF feature in a vector format is expressed as: 

 𝒗idf = [

idf1

idf2

idf3

…

] (5.4) 

The IDF vectors in the previous example are also shown in Figure 5.2.3. 

5.2.2.4 TF-IDF Feature 

The term-frequency-inverse-document-frequency (TF-IDF) vector combines the best of 

two previous features. Specifically, for each sample, the TF-IDF vector is obtained by 

element-wise product of the sample’s TF vector and the dataset’s IDF vector: 

 𝒗tf−idf
(𝑖)

= 𝒗tf
(𝑖)

⊙ 𝒗idf (5.5) 

where ⊙ denotes element-wise multiplication, or Hadamard product. The superscript (𝑖) 

denotes the i-th samples in the dataset.  

Using the same examples as before, the TF-IDF vectors of two sequences are shown in 

Figure 5.2.4. Their TF and IDF vectors are copied from the previous two figures. The TF-

IDF vector’s values capture a term’s frequency in a sequence as well as its scarcity 

among all sequence samples. Specifically, the term “D” only appears in sequence 1, so it 

has a value of 0.06 in the first TF-IDF vector, while its value is zero for the second TF-

IDF vector. 

Applying TF-IDF vectorization to the log sequences, each sample is converted into a 

feature vector 𝒙(𝑖) with a fixed length 𝑚 that equals the total number of unique tokens. 
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This vector is used as the input feature for the machine learning process introduced in the 

following section. 

 

Figure 5.2.4 Example of the TF-IDF vector. 

5.2.3 The Machine Learning Classification Model 

The machine learning classification model is the final step of the automated diagnosis 

framework. The input of the model is the feature vectors and the output is a classification 

category, i.e., the possible faults within the log sample. As a machine learning model, a 

training process is required. Training means the model adjusts its parameters to fit 

available data. After the model is trained, it is expected to produce reasonable 

classifications or predictions. 

Machine learning algorithms are divided into supervised learning and unsupervised 

learning, depending on whether class labels are required. In this study, the class labels are 

the predefined faults as shown in the previous chapter. Unsupervised learning does not 

require such labels, eliminating the need for manual labelling. The unsupervised approach 

is therefore much attractive to the applications where the dataset is too large to manually 

label. However, unsupervised learning can produce unpredictable results when applying 

to multi-class problems. For example, the k-means clustering algorithm, a popular 
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unsupervised learning method, requires a pre-defined number of class labels and isotropic 

distributed data to generate meaningful results, otherwise it may generate clusters that 

achieve theoretical optimality but are practically unusable [85]. Therefore, unsupervised 

learning more commonly applies to anomaly detection problems through finding isolated 

outliers rather than diagnosis problems. 

Supervised learning methods utilize the label information during the training process. 

Each training sample has a label indicating the ground truth, which in this study is the 

actual fault. The labels act as guidance during the training process, as the supervised 

learning model adjusts its parameters to get the output as close to the ground truth as 

possible. As a result, a supervised learning method is almost always better than an 

unsupervised learning method, especially in a multiclass classification scenario. This 

section introduces some common supervised learning methods and applies them to the 

fault diagnosis problem. 

5.2.3.1 Linear Regression 

Linear regression attempts to fit a linear equation to the training data 𝒙 such that the 

outcome approximates the ground truth 𝒚. The ground truth 𝒚 is a continuous numerical 

value instead of a categorical one, so the linear regression is called a prediction model. It 

therefore does not apply directly to the fault classification problem. However, as the 

fundamental component of logistic regression and artificial neural networks, the detail of 

linear regression is worth to be elaborated here. 
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Denote the whole training data containing 𝑚 samples as 𝒙 = [𝒙(1), 𝒙(2), 𝒙(3), … , 𝒙(𝑚)] . 

Each sample 𝒙(𝑖) is a column vector, such as the 𝒗tf−idf vector in Section 5.2.2.4. Denote 

the ground truth values as 𝒚 = [𝑦(1), 𝑦(2), 𝑦(3), … , 𝑦(𝑚)]. For the i-th sample, 𝒙(𝑖) =

[𝑥1
(𝑖)

, 𝑥2
(𝑖)

, 𝑥3
(𝑖)

, … ]
𝑇

 are the feature values. A linear regression fits a set of parameters 𝒘 =

[𝑤0, 𝑤1, 𝑤2, … ]𝑇 using a linear equation ℎ(𝒙(𝑖), 𝒘): 

 ℎ(𝒙(𝑖), 𝒘) = 𝑤0 + 𝑤1𝑥1
(𝑖)

+ 𝑤2𝑥2
(𝑖)

+ ⋯ (5.6) 

 ℎ(𝒙(𝑖), 𝒘) = 𝒘𝑇𝒙(𝑖) (5.7) 

Equation (5.7) is the matrix representation of (5.6). Note that strictly, because of the term 

𝑤0 in (5.6), the right side of equation (5.7) should be 𝒘𝑇[1, 𝒙(𝑖)]. Here for simplicity, the 

term 𝒙(𝑖) represents the modified sample data [1, 𝒙(𝑖)] for the rest of this chapter where 

applicable. In the literature, a different way of writing equation (5.7) is ℎ(𝒙(𝑖), 𝒘, 𝑏) =

𝒘𝑇𝒙(𝑖) + 𝑏, which uses a separate term 𝑏 called bias to replace 𝑤0 in order to 

differentiate itself from the weight vector 𝒘. The mathematics remains the same in both 

representations. 

In machine learning, the parameters 𝒘 are also called weights, the model’s output 

ℎ(𝒙(𝑖), 𝒘) is commonly denoted as �̂�(𝑖). A graphical representation of the linear 

regression model is shown in Figure 5.2.5 using a sample 𝒙(𝑖) with three features. 
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Figure 5.2.5 Example of the linear regression model. 

The approximation of �̂�(𝑖) with respect to 𝑦(𝑖) is measured by a cost function  𝐽(𝒘). A 

commonly used measurement is the Mean Square Error (MSE) between the model output 

and the ground truth for all 𝑚 samples: 

 𝐽(𝒘) =
1

𝑚
∑

1

2
[�̂�(𝑖) − 𝑦(𝑖)]

2
𝑚

𝑖=1

 (5.8) 

where the 1/2 term within the summation is to facilitate partial derivative calculation.   

A common method to find the optimal 𝒘 is gradient descent. It starts with a random 𝒘, 

which produces a non-optimal 𝐽(𝒘). The algorithm incrementally moves the current 𝒘 

towards the opposite direction of the gradient ∇𝐽(𝒘). Since the gradient is the direction 

and rate of fastest increase, the method gets its name as gradient descent. The update of 𝒘 

is done iteratively with a small step 𝛼, referred to as the learning rate. The gradient 

descent algorithm can be expressed as: 

 𝒘(𝑘+1) ≔ 𝒘(𝑘) − 𝛼∇𝐽(𝑘)(𝒘) (5.9) 

The operator ≔ is colon equals, meaning the term on the left is defined as the term on the 

right. The subscript in a bracket (𝑘) indicates the iteration step. 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

100 

 

Explicitly, when the sample 𝒙(𝑖) is being trained, the gradient at point 𝒘 can be calculated 

as follows based on equations (5.7) and (5.8): 

 ∇𝐽(𝒘) =
𝜕𝐽(𝒘)

𝜕𝒘
=

1

𝑚
∑[�̂�(𝑖) − 𝑦(𝑖)]

𝑚

𝑖=1

⋅ 𝒙(𝑖) (5.10) 

Note that this equation specifies the gradient for one sample. One update of 𝒘 is made 

when processing each 𝒙(𝑖) according to this equation. This implementation is called 

Stochastic Gradient Descent (SGD). Correspondingly, there is batch gradient descent. 

Batch gradient descent performs one update of 𝒘 when processing the whole training 

dataset 𝒙. The gradient ∇𝐽(𝒘) in (5.10) is the average of all samples’ gradients. Batch 

gradient produces smoother and possibly faster convergence than SGD, but larger 

datasets may lead to memory shortage because every calculation uses the whole dataset. 

Mini-batch gradient descent is the compromise between the two, using a certain number 

(mini-batch) of samples to calculate ∇𝐽(𝒘) and update 𝒘. Mini-batch and stochastic 

gradient descent are two of the most commonly used optimization algorithms for machine 

learning applications.  

5.2.3.2 Logistic Regression 

For classification problems, the training data 𝒙 = [𝒙(1), 𝒙(2), 𝒙(3), … , 𝒙(𝑚)] have the same 

format as regression problems, but the labels 𝒚 contain only categorical values that are 

called classes. For example, the binary classification requires the class to be either 0 or 1. 

One way to adapt the linear regression to fit the classification problem is to scale the 

output value to the range of (0,1), and then apply thresholding to obtain a class label of 
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either 0 or 1. The logistic function is a common way of mapping continuous values to a 

certain range. Specifically, the sigmoid function, a form of the logistic function, is 

defined as follows: 

 𝑆(𝑧) =
1

1 + 𝑒−𝑧
 (5.11) 

The sigmoid function has a characteristic S-shaped curve and 𝑆(𝑧) has an upper limit of 1 

and a lower limit of 0. Applying the sigmoid function to the linear regression model’s 

output, the logistic regression model is defined as follows: 

 

𝑧 = 𝒘𝑇𝒙(𝑖) 

�̂� = 𝑆(𝑧) =
1

1 + 𝑒−𝑧
 

(5.12) 

The output �̂� is within the range of (0,1). It can be interpreted as the probability of a class 

label of 1 for the given sample 𝒙(𝑖). A graphical representation of the logistic regression is 

shown in Figure 5.2.6. 

 

Figure 5.2.6 Example of the logistic regression model. 

A cost function is defined for logistic regression as well. Because the error term �̂�(𝑖) −

𝑦(𝑖) is always less than 1, directly using the MSE becomes less effective. Therefore, the 

logarithm is used in the cost function. Specifically: 
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 𝐽(𝑖)(𝒘) = {
− log(�̂�(𝑖)) , 𝑦(𝑖) = 1

− log(1 − �̂�(𝑖)) , 𝑦(𝑖) = 0
 (5.13) 

In this way, the cost function amplifies the error term and is always non-negative. This 

loss function is called categorical cross-entropy loss or log loss. Note that in this equation 

only one sample is calculated, as indicated by the superscript (𝑖). A compact form of 

writing the cross-entropy loss is: 

 𝐽(𝑖)(𝒘) = −𝑦(𝑖) log �̂�(𝑖) − (1 − 𝑦(𝑖)) log(1 − �̂�(𝑖)) (5.14) 

The average log loss for the whole dataset is: 

 𝐽(𝒘) =
1

𝑚
∑[−𝑦(𝑖) log �̂�(𝑖) − (1 − 𝑦(𝑖)) log(1 − �̂�(𝑖))]

𝑚

𝑖=1

 (5.15) 

The gradient descent algorithm in (5.9) also applies to logistic regression. The gradient 

term can be obtained using the derivative chain rule: 

 ∇𝐽(𝒘) =
𝜕𝐽(𝒘)

𝜕𝒘
=

𝜕𝐽(𝒘)

𝜕�̂�
 
𝜕�̂�

𝜕𝒛

𝜕𝒛

𝜕𝒘
 (5.16) 

5.2.3.3 Multiclass Logistic Regression 

The logistic regression algorithm presented in the previous chapter applies to binary 

classification only. In a multiclass scenario with 𝐾 different class labels, a “one-vs-all” 

approach can be adopted. Each class label is treated individually and processed by a 

separate logistic regression model. Concretely, for the sample 𝒙(𝑖): 
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�̂�1
(𝑖)

=
1

1 + 𝑒−𝒘1
𝑇𝒙(𝑖) 

�̂�2
(𝑖)

=
1

1 + 𝑒−𝒘2
𝑇𝒙(𝑖) 

… 

�̂�𝐾
(𝑖)

=
1

1 + 𝑒−𝒘𝐾
𝑇 𝒙(𝑖)

 

(5.17) 

Therefore, the output of the “one-vs-all” model is now a vector �̂�(𝑖) =

[�̂�1
(𝑖)

, �̂�2
(𝑖)

, … , �̂�𝐾
(𝑖)

]
𝑇

instead of a single value. Each value in the vector �̂�(𝑖) represents the 

probability of a class. The weights for the whole model 𝒘 = [𝒘1, 𝒘2, … , 𝒘𝐾] are now a 

2D matrix. Writing in the matrix format, the formula for multiclass logistic regression is: 

 �̂�(𝑖) =
1

1 + 𝑒−𝒘𝑇𝒙(𝑖) (5.18) 

Correspondingly, the class labels 𝒚 are converted to one-hot vectors (similar to the one-

hot vector in Section 5.2.2 Vectorization) to match the format of the model’s output �̂�. An 

example of the conversion is shown in Figure 5.2.7. In this example, a label 𝑦(𝑖) = 3 is 

represented by the vector [0, 0, 1, 0]𝑇. 

 

Figure 5.2.7 Converting class label into one-hot vector. 

Now the logistic regression model’s multiclass outputs match the one-hot class labels. 

However, each probable value in the output vector �̂�(𝑖) only accounts for the class itself. 
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As a result, there could be multiple classes all having high probable scores higher than 

0.5, which defies the purpose of probable scores. The output vector needs to be 

normalized such that each value properly represents the probability of an output class. 

This is achieved through a normalized exponential function, or softmax function: 

 𝜎(𝒛)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (5.19) 

where 𝒛 = [𝑧1, 𝑧2, … 𝑧𝐾] is the input vector with length 𝐾 and 𝝈 =

[𝜎(𝒛)1, 𝜎(𝒛)2, … , 𝜎(𝒛)𝐾] is the normalized vector. 

The multiclass logistic regression model with softmax normalization is represented as 

follows. It is also called multinomial logistic regression. 

 

𝒛 = 𝒘𝑇𝒙(𝑖) 

�̂�(𝑖) = softmax(𝒛) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 
(5.20) 

A graphical representation of this model is shown in Figure 5.2.8. 

 

Figure 5.2.8 Example of the multiclass logistic regression model. 

The loss function for the multiclass setting is also the categorical cross-entropy. For the 

sample 𝒙(𝑖) and the model output �̂�(𝑖) and the ground truth label in one-hot form 𝒚(𝑖), the 

loss is defined as: 
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 𝐽(𝒘)(𝑖) = − ∑ 𝑦𝑘
(𝑖)

log �̂�𝑘
(𝑖)

𝐾

𝑘=1

 (5.21) 

For the whole dataset, the loss function in a batch form is: 

 𝐽(𝒘) = −
1

𝑚
∑ ∑ 𝑦𝑘

(𝑖)
log �̂�𝑘

(𝑖)

𝐾

𝑘=1

𝑚

𝑖=1

 (5.22) 

Note that these equations also apply to the special case of binary classification 

represented by equation (5.14). The gradient can be obtained using the derivative chain 

rule as well. 

5.2.3.4 Artificial Neural Network 

Both linear and logistic regression models are curve fitting techniques that use a function 

�̂� = 𝑓(𝒘, 𝒙) to approximate the actual process that describes the data points. The actual 

process can be very complex that the model’s weights are not sufficient to produce a 

near-optimal function. In such cases, a more complex model is required. 

Each binary logistic regression model can be viewed as a unit as shown in Figure 5.2.9, 

taking an input vector of a pre-defined size and producing an output. A large number of 

these units can interconnect to create a network to approximate more complex functions. 

The result is a structure called an Artificial Neural Network (ANN), and each unit is a 

neuron. The logistic function is called the activation of a neuron. This naming convention 

was meant to simulate the functioning of the human brain. However, more recent 

development of ANN has generally deviated away from biological imitation. For 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

106 

 

example, many models adopt simpler activations other than logistic functions to reduce 

computational complexity. 

 

Figure 5.2.9 Illustration of a single neuron. 

Multi-Layer Perceptron (MLP) is a common way of organising neurons by layers as 

shown in Figure 5.2.10. Each layer contains a certain number of neurons, whose input and 

output are connected to the previous layer’s output and the next layer’s input, 

respectively. Each neuron is connected to every neuron in the neighbouring layer, so an 

MLP is also called a fully connected network. The layers that are not adjacent have no 

connections at all. The output layer contains the same amount of neurons as the number 

of class labels (given a classification setting). A softmax activation is used in the same 

way as in the multiclass logistic regression model. In an MLP, the number of layers and 

the number of neurons in each layer are configurable to achieve a better fit for the data. 

Therefore, such a model is highly versatile for complex problems. 

 

Figure 5.2.10 Example of a Multi-Layer Perceptron (MLP) model. 
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The mathematical representation for a 𝑑-layer MLP can be written layer by layer as 

follows: 

 

𝒛1 = 𝑆(𝒘1
𝑇𝒙(𝑖)) 

𝒛2 = 𝑆(𝒘2
𝑇𝒛1) 

𝒛3 = 𝑆(𝒘3
𝑇𝒛2) 

… 

�̂�(𝑖) = 𝒛𝑑 = softmax(𝒘𝑑
𝑇𝒛𝑑−1) 

(5.23) 

where 𝒛1 through 𝒛𝑑 are the output of each corresponding layer’s neurons in a vector 

form, 𝒘1 through 𝒘𝑑 are the weight matrices of each corresponding layer’s neurons, 𝑆 is 

the choice of activation function for that layer. The last layer’s activation is a softmax 

function for classification purposes. 

An ANN’s input and output are the same as the multiclass logistic regression model, so 

the categorical cross-entropy loss in equation (5.22) and the gradient term in equation 

(5.16) are also applicable to the ANN model. 

5.3 Implementation 

As the software tools for machine learning are becoming increasingly available and 

versatile, choosing an off-the-shelf software package is more practical and less error-

prone than building one from scratch. This section overviews the current popular machine 

learning tools and presents the diagnosis model structure. 
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5.3.1 Software Tools 

The data processing, model training and testing are implemented in Python. Although 

there are other programming languages popular in academia, such as C++, R, and Julia, 

Python remains the most supported choice in terms of third-party libraries. As of writing 

this dissertation, the mainstream Python library packages for machine learning and deep 

learning are Scikit-learn, TensorFlow, and PyTorch. All of them are open-sourced. 

- Scikit-learn [86] is a high-level machine learning package containing many 

statistical models, such as regression, classification, clustering, and dimension 

reduction. It also provides templates and guidelines for customizing models. Many 

high-quality and useful tools for dataset processing, feature extraction, and test 

validation are also available in this library. Scikit-learn has been emphasizing 

machine learning models, although it lacks support for various neural network 

variations, especially the recent deep learning development. Scikit-learn only 

supports Python programming language as of writing. 

- TensorFlow [87] is a machine learning library with a focus on ANNs. It was 

developed by Google and later became opensource. There are two major versions. 

TensorFlow 1.x has established an efficient computation framework for training 

various neural networks, but its API remains low-level and requires significant 

machine learning expertise to use. Keras, another library that provides high-level 

API to developers, was created to act as a user-friendly interface for TensorFlow. 

TensorFlow 2.x, released in 2019 and the main version available as of writing, 

integrated Keras within its package and improved its API. TensorFlow excels in 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

109 

 

its multi-platform support including mobile and embedded devices, attracting 

attention from both academia and industry. It is also available in many other 

programming languages such as JavaScript, R, and Julia. 

- PyTorch [88] is a machine learning library developed by Facebook similar to 

TensorFlow. It is primarily interfaced with Python. PyTorch is simpler, easier to 

use, and more prevalent in academia in comparison to TensorFlow, but from a 

high-level perspective, the differences between the two are nuanced.  

Scikit-learn is the primary choice for traditional machine learning while TensorFlow or 

PyTorch are the best candidates for deep learning. There are other libraries such as the 

Cognitive Toolkit (CNTK) developed by Microsoft and Apache MXNet developed by 

Amazon, but these are less influential and more related to the companies’ own products 

and services. 

Matlab also has its own packages for machine learning and deep learning. It has the 

advantage of well-maintained help documents and expert support. However, Matlab being 

a proprietary software lacks the versatility of building a deeply customized model 

compared to PyTorch and TensorFlow. 

For the fault diagnosis model implemented in this chapter, the Scikit-learn package is 

used for the vectorization process and the TensorFlow 2.x package is used for building 

and training a model. The program is implemented in Python 3.6 on Windows 10. The 

computer hardware includes an Intel i7 processor and 32GB memory. 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

110 

 

5.3.2 Available Data 

The Bluetooth fault dataset comprising log samples and fault labels is the same as the 

previous chapter. The available fault classes and data samples are shown in Table 5.1. 

This train-test split setting is also the same as in the previous chapter. 

Table 5.1 The available data and train-test split. 

Class 
Label 

Fault ID Total Samples 
Samples for 

Training 
Samples for 

Testing 

0 No Identifiable Fault 72 38 34 

1 FORDSYNC3-40557 8 4 4 

2 FORDSYNC3-40026 3 2 1 

3 FORDSYNC3-38112 4 2 2 

4 FORDSYNC3-37158 3 2 1 

5 FORDSYNC3-32240 4 2 2 

6 FORDSYNC3-28906 4 2 2 

7 FORDSYNC3-28578 8 4 4 

8 FORDSYNC3-28414 8 4 4 

 Total 114 60 54 

     

5.3.3 The Diagnosis System Framework 

An overview of the FDSML framework is shown in Figure 5.3.1. Each log sample is first 

converted into a token sequence, a process identical the one in the data mining approach. 

Then the token sequence goes through the vectorization process to obtain its TF-IDF 

feature vector as explained in Section 5.2.2.4. There are in total 1482 unique tokens in the 

dataset, so the length of the TF-IDF vector is 1482. The vectorization converts each token 

sequence into a 1482×1 vector, denoted by 𝒙(𝑖). This feature vector is the input and 

training data for a machine learning model. The model’s output 𝒚(𝑖) is a 9 × 1 vector, 

each value of 𝒚(𝑖) representing the probability of one class label (the regular sample has a 

label of 0). The highest value of 𝒚(𝑖) is the diagnosis result of the model. An MLP as 
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explained in Section 5.2.3.4 is chosen because of its versatility and the complexity of this 

problem. After the model is trained until its loss value converges, it is evaluated against 

the test data specified in Table 5.1. 
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Figure 5.3.1 The structure of fault diagnosis with feature vectorization and machine 

learning. 

5.4 Experiments 

In this set of experiments, the detection accuracy and classification accuracy are used for 

evaluation. Detection means the model correctly identifies a sample as being regular or 

faulty, i.e., the label 0. Classification means the model correctly produces the fault 

classes, i.e., the non-zero labels.  

The tunable parameters in an MLP include the number of layers, the number of neurons 

in each layer, and the choice of activation. They are individually examined in the 

following subsections. 

5.4.1 The Training Process 

Training is the process of a machine learning model adjusting its weights to fit the 

labelled data. Specifically, the training dataset is fed into the model repeatedly, while an 
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optimisation algorithm, such as the SGD, updates the weights iteratively. Processing one 

cycle of the training data is called one epoch. The loss value is expected to decrease over 

epochs. The model’s accuracy on training samples should have an opposite trend to the 

loss curve. The training should be stopped at the time when the loss converges. 

When training a machine learning model, especially ANNs, the issue of underfitting or 

overfitting can occur. Overfitting is the phenomenon when a model fits extremely well 

training data, but loses generalization over new or unseen data. An overfitting model 

produces lower accuracies on the test data than the training data. Conversely, underfitting 

is when a model cannot generalize well on the training data and the loss converges at a 

high value. An underfitting model often produces higher accuracies on the test data than 

the training data. Both issues are caused by the inadequate structure and sizing of the 

network. In general, a slightly overfit model is preferred over an underfitting one. This is 

because overfitting can be suppressed by specifying early stopping of the training, while 

underfitting can only be addressed by reconfiguring the model structure. Ideally, an 

additional validation dataset can be used to make the underfitting or overfitting easier to 

observe. However, due to the lack of available data, this study does not adopt a validation 

set. The test data in this experiment section is used effectively as the validation data.  

As a demonstration, the training process of a 3-layer MLP is shown below. Table 5.2 

shows the configuration of the network comprising an input layer, one hidden layer, and 

an output layer. The sizes of the input and the output layers are specified by the size of 

the sample vector and the number of class labels, respectively. The size of the hidden 

layer is chosen arbitrarily as 64. 
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Table 5.2 The configuration of a 3-layer MLP. 

Layer Configuration Output Shape 
Number of 
Parameters 

Input None 1482 0 

hidden_1 size=64, sigmoid 64 94,912 

Output size=9, softmax 9 585 

 Total Parameters: 95,497 

    

The network was trained using SGD. The loss value and accuracy during the training 

process are shown in Figure 5.4.1. As expected, the loss value has a decreasing trend until 

settling to a small value. The accuracy has an opposite trend and settles at 98%. It takes 

1500 epochs and 87 seconds to reach convergence. Note that the training can keep on to 

drive the loss even lower, but it is unnecessary as the accuracy has plateaued.  

 

Figure 5.4.1 Loss and accuracy during the training process. 

The test accuracy was produced by evaluating the model on the test dataset. The test 

accuracy for this trained model was 60.7%, significantly lower than the training accuracy. 

This indicates an overfitting issue. Therefore, a training accuracy threshold was set to 

stop the training in an early stage and alleviate overfitting.  
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5.4.2 Early Stopping of the Training 

In a separate training experiment, a threshold of 70% was selected to be slightly higher 

than the test accuracy. The training process is shown in Figure 5.4.2. This time it only 

takes 350 epochs to reach target accuracy. The new model produced a test accuracy of 

62.5%, which is better than the highly overfit model. This demonstrates that overfitting 

can lead to loss of generality and lower performance than the model should be.  

 

Figure 5.4.2 Training loss and accuracy with an early-stopping threshold of 70%. 

5.4.3 Batch Gradient Descent 

In addition to the SGD that uses the gradient with regard to one sample to update the 

network weights, batch gradient descent using the average gradient of a batch of samples 

is also tested. Table 5.3 shows the time and number of epochs needed to train the model 

to a training accuracy of 70%. The number of epochs grows with the size of the batches, 

but the training time shows a slight increase. This means for larger batch sizes, each 

training epoch costs less amount of time. The time reduction of each epoch is because the 

batch algorithm processes multiple samples at a time. However, the acceleration of each 
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epoch has little contribution to the overall training time. Therefore, SGD is selected as the 

default training method. 

Table 5.3 The effect of batch gradient descent. 

Batch size 
Number of epochs 

to reach 70% training accuracy 
Training Time 

to reach 70% training accuracy 

1 (SGD) ~350 ~20s 

2 ~750 ~22s 

4 ~1500 ~26s 

8 ~2600 ~26s 

   

Another character brought by the batch processing is smoothing out the loss curve. The 

training curves with a batch size of 8 are shown in Figure 5.4.3. Comparing with Figure 

5.4.2, the most noticeable difference is the smoothed-out loss curve. Batch gradient 

descent could be beneficial when the training curve contains too much clutter that hinders 

convergence, but this is not an issue for this study. Therefore, the rest of experimentation 

would use the SGD without batch processing. 

 

Figure 5.4.3 Training loss and accuracy with a training batch size of 8. 
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5.4.4 The Size of the Network 

The number of layers and the number of neurons within each layer are configurable to 

accommodate the complexity of the problem. In this set of experiments, three layer 

settings and multiple neuron settings are tested to examine how network size affects 

performance. The models’ configurations are shown in Table 5.4. The layer settings start 

from 2. A 2-layer neural network contains only an input layer and an output layer, with no 

hidden layer in-between, making it effectively a multiclass logistic regression model. The 

3-layer and 4-layer models contain one and two hidden layers, respectively. The number 

of neurons in the hidden layer refers to the size of the hidden layer. This method of 

finding the best configuration is called grid search. In total, there are 14 configurations. 

Table 5.4 MLP models with different sizes. 

 2-layer 
(Multiclass logistic 

regression) 
3-layer 4-layer 

Hidden 

layer 

size 

N/A 

32 

64 

128 

256 

16, 16 

16, 32 

16, 64 

32, 16 

32, 32 

32, 64 

64, 16 

64, 32 

64, 64 

    

The metric to evaluate the performance is the detection accuracy and classification 

accuracy, same as the previous chapter. Detection accuracy is defined by the number of 

correct detections divided by the total number of samples. Classification accuracy is the 

number of correctly classified faults divided by the total number of faulty samples. The 

performance of all 14 models evaluated on the test set is shown in Table 5.5. Each entry 
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in this table takes an average of 12 individual runs to account for the randomness during 

the train-test split and network initialization processes. 

Table 5.5 The performance of models with different configurations. 

Model ID 
Total Number 

of Layers 
Size of 

Hidden Layer  
Detection Accuracy 

(average) 
Classification Accuracy 

(average) 

1 2 N/A 60.7% 46.7% 

2 3 32 59.0% 47.1% 

3 3 64 60.3% 48.8% 

4 3 128 60.7% 46.7% 

5 3 256 62.8% 45.8% 

6 4 16, 16 58.3% 50.0% 

7 4 16, 32 57.7% 50.0% 

8 4 16, 64 55.8% 47.5% 

9 4 32, 16 57.1% 47.5% 

10 4 32, 32 58.3% 48.7% 

11 4 32, 64 56.4% 46.2% 

12 4 64, 16 58.3% 47.5% 

13 4 64, 32 57.7% 47.5% 

14 4 64, 64 57.7% 46.2% 

     

According to Table 5.5, a 3-layer MLP with 256 neurons in the hidden layer (Model 

No.5) achieves the highest detection accuracy, while a 4-layer MLP with both hidden 

layers’ sizes of 16 gets the best classification accuracy. It can be hard to directly observe 

the trend of the other rows in such a large table, so a scatter plot is produced in Figure 

5.4.4. The x and y coordinates of each dot represent a model’s performance in terms of 

detection and classification accuracy, respectively. The dots closer to the upper right 

corner are preferred. From the clusters, using the 4-layer setting tends to produce lower 

detection accuracy, although some configurations have better classification. The 3-layer 

setting has an opposite tendency. A balance between both metrics is the 3-layer setting 

with a hidden size of 64 (Model No.3) and the 4-layer setting with both hidden sizes of 16 
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(Model No.6). Therefore, these two configurations should be selected as the machine 

learning model for this fault diagnosis application. 

 

Figure 5.4.4 The performance of MLP models with different configurations. 

5.4.5 Discussion 

Comparing with the data-mining approach introduced in the previous chapter, the biggest 

advantage of using statistical features and an MLP model is the efficiency. Each training 

process in this section takes less than one minute, whereas the sequence feature discovery 

in the previous chapter took on average two hours. The saved time means that shorter and 

easier parameter tuning for the training process. When deployed, this machine learning 

method will impose a shorter computation overhead such that online diagnosis could be 

possible. 

However, the performance metrics of the MLP model are relatively lower than the 

previous naïve Bayes classifier, which produces around 75% detection and 60% 
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classification accuracy. This may be due to the lack of training data. An MLP contains 

thousands of trainable parameters to converge. The fact that each fault class only contains 

an average of three training samples is far from adequate. The lack of training data likely 

caused the model to converge on an ill-defined optimal point. The data-mining method on 

the other hand used contrast mining approach as a way of enriching the training data, 

reduced the requirement for training samples. 

To evaluate a properly trained MLP model’s performance, artificially augmented log data 

with sufficient samples are created. The next section presents how this dataset is created 

and how the model performs on the dataset. 

5.5 Experiments Using Augmented Data 

The artificially created dataset is to evaluate a model’s performance in the real-world 

scenario, therefore the dummy samples in the dataset must be as close to the original log 

as possible. The samples are made by injecting fault patterns into normal log sequences, 

both of which are from real log data. Two fault classes are selected with fault IDs 

FORDSYNC3-28507 (fault 1) and FORDSYNC3-17456 (fault 2), representing the 

Bluetooth connection pairing failure and the Bluetooth fatal error, respectively. Their 

faulty patterns are confirmed by subject matter experts. The patterns are inserted 

randomly into normal sequences to create a faulty sequence sample, as shown in Figure 

5.5.1. The original data segments in the figure are log sequences from normal system 

execution containing no known faults. 
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Figure 5.5.1 Creating artificially injected fault samples. 

The data to construct the artificial dataset are the 72 samples with label 0 in Table 5.1. 

Their sequences are randomly broken down into shorter segments. Each segment has an 

average length of around 500, which is significantly longer than the fault patterns. This 

creates 370 dummy samples, every one of them is unique and authentic. Then one-third 

are injected with the patterns for fault 1, one-third are injected with fault 2, and the rest 

are used as normal samples with class label 0. The artificial dataset is split into a training 

set and a test set with a 50:50 ratio. 

5.5.1 Evaluation Using the Artificial Dataset 

The previous section has concluded that a 3-layer MLP is a good candidate for the scale 

of this diagnosis problem, so a 3-layer MLP is used as the model for this evaluation using 

the artificial dataset. Three sizes of the hidden layer – 64, 128, and 256 – are tested in 

order to find a better model configuration. Similar to the previous experiments, each 

training is individually performed 12 times to take account of the random variations in the 

training process. All the models are trained until the loss converges. 

Original data segments

Sample 1

Sample 2

Sample 3

Sample 4

 

Fault 
Pattern
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The average performance of these models on the test set is shown in Table 5.6. All three 

models achieved over 80% accuracies on both detection and classification tasks, a boost 

of almost 30% greater than the models trained in the previous section. Models with larger 

hidden layer sizes can push the detection accuracy closer to 90%, while the classification 

accuracy remains around 85%. These results indicate that a properly trained model can be 

very effective at diagnosing faulty samples that contain faulty sequence patterns. A larger 

network tends to provide better detection, while the classification is less affected. 

Table 5.6 The MLP performance trained on the artificial dataset. 

Model ID 
Size of 

Hidden Layer 
Detection Accuracy 

(average) 
Classification Accuracy 

(average) 

1 64 83.78% 86.18% 

2 128 87.39% 85.37% 

3 256 88.65% 85.37% 

    

5.5.2 Results with Reoccurring Patterns 

Sometimes the fault pattern can occur multiple times in a faulty sample, as observed from 

the historical log data. To simulate this scenario, a new dummy dataset is created with 

each fault pattern injected twice for every sample. The new dataset is used to train and 

evaluate the same MLP models and the test settings are the same as the previous 

subsection. 

These models show a higher accuracy around and above 90% both in terms of detection 

and classification, as shown in Table 5.7. This is a significant increase from the previous 

test. The performance shows a positive correlation with the size of the network. The 

largest network with a hidden layer of 256 achieved the best results with a detection 

accuracy of 91.89% and a classification accuracy of 90.24%. These results demonstrate 
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that the MLP models are more effective when the fault patterns have multiple 

occurrences, confirming the capability of these models. 

Table 5.7 The MLP performance trained on the artificial dataset with multiple fault 

pattern occurrences. 

Model ID 
Size of 

Hidden Layer 
Detection Accuracy 

(average) 
Classification Accuracy 

(average) 

4 64 90.09% 89.97% 

5 128 90.81% 89.70% 

6 256 91.89% 90.24% 

    

5.6 Conclusion 

This section presents an automated software diagnosis framework, the FDSML, that 

incorporates the statistical feature vectorization of the log sequences and machine 

learning models. The vectorization module uses numerical features to describe log 

samples. The machine learning model processes the feature vectors and produces possible 

fault classes with probability ratings. The framework is versatile in terms of the choice of 

vectorization and machine learning methods, as long as they are numerical methods. 

In particular, the TF-IDF feature vectorization, the logistic regression model, and the 

MLP model are developed and implemented. The detection system is trained and 

evaluated using the Ford SYNC log dataset. A grid search is implemented to find the 

optimal network configuration for the MLP model. 

The MLP model trained on the SYNC dataset shows some effectiveness in terms of 

detection and classification accuracy, however it is lower than the data mining approach. 

The issue is found to be due to the lack of training data. Additional tests show that the 

MLP models exhibit a 30% accuracy improvement when trained on an artificially 
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enriched dataset. Multiple occurrences of the fault patterns would drive the models' 

performance even higher. 

Computational efficiency is the biggest advantage of FDSML framework comparing to 

the data mining approach in the previous chapter. With the training time only a fraction of 

the previous method, the application of the new system is capable of including a large 

amount of data, reducing the effort of tuning, and possibly applying to online detection 

and diagnosis. 

One drawback of this approach is within the vectorization process, which focuses on the 

statistical representation of individual tokens. Such vectorization mostly disregards the 

sequential order and timestamp information. The next chapter will explore the deep 

learning methodology that addresses these concerns. 
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Chapter 6 Deep Learning Methods 

This chapter presents a deep learning approach to the automated log analysis and fault 

diagnosis problem. A deep learning model is similar to a traditional machine learning one 

in the way that both use numerical representations of the log samples to perform 

classification tasks. Instead of extracting sequence-based features like the TF-IDF vector 

introduced in the previous chapter, the deep learning approach learns the token-based 

features. This preserves the sequential information and results in large feature matrices to 

represent token sequences. To fit these features requires a specialized neural network 

model with potentially a large number of layers – a deep learning model. This deep 

learning approach is able to extract and process more information from the log data than a 

traditional machine learning one. 

Deep learning, or deep neural networks, is a subset of machine learning based on artificial 

neural networks. A Multi-Layer Perceptron (MLP) model is often referred to as a shallow 

neural network, as it typically comprises a small number of layers. The total number of 

parameters in an MLP quickly adds up as the size of the network grows. This causes the 

training to be inefficient and easily overfit. Another drawback of an MLP is that it only 

processes input in a vector format. Recent deep learning development includes new 
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network architectures such as convolutional neural networks and recurrent neural 

networks, which allow deeper networks – more layers without compromising training – 

and adapt to various types of input data. Many areas have seen successful applications of 

using the deep learning models to perform classification tasks, such as image recognition 

and natural language text comprehension.  

Previous chapters have concluded that the lack of data being the bottleneck of machine 

learning based detection and diagnosis systems. In this chapter, open datasets are 

considered for training and evaluation of the deep learning system [89]. The Hadoop 

distributed file system (HDFS) is one that produces similar unstructured logs as the Ford 

system. HDFS is a data storage solution that manages data on cluster machines. The 

dataset collects the runtime log of the HDFS and is manually labelled as normal or faulty. 

The amount of data is abundant, so it is ideal for training and evaluating a deep learning 

model. In fact, a few studies on log analysis have been using this dataset, including 

machine learning methods and deep learning. The HDFS dataset is introduced in Section 

6.1. 

In this study, two deep learning models are proposed for fault detection using system log 

data. An overview of the system framework is introduced in Section 6.2. The embedding 

process that numerically represents the tokens and sequences is explained in Section 6.3. 

Section 6.4 elaborates the details of two deep learning classification models. The model 

implementation and evaluation are presented in Sections 6.5 and 6.6, respectively. 

Section 6.7 concludes this chapter. 
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6.1 The HDFS Dataset and Data Preparation 

The Hadoop distributed file system (HDFS) is a data storage and management system that 

runs on a cluster of computers. The cluster comprises a server – formally known as the 

NameNode – and a large number of data-storing computing blocks – formally known as 

the DataNode. When a request is sent to the server, it communicates with its fellow data 

blocks to perform certain tasks. This process creates log information. Failures can happen 

within the computing blocks, causing the system execution to enter a faulty state. The log 

messages related to a certain block effectively create a log sequence, which could be used 

to infer the health condition of the block. This resembles the Ford log as the SYNC 

system has multiple modules, a fault would occur to one module, resulting in abnormal 

behaviour of the log sequences related to that module.  

The HDFS log benchmark dataset was originally introduced in [29] and openly available 

from [90]. The healthy status of each data block is labelled as normal or faulty. The 

original form of this dataset is a single 1.47 GB text file with 11.2 million log lines, 

recording 38.7 hours of the HDFS system runtime. The log lines are essentially 

unstructured text. Figure 6.1.1 shows a screenshot of a few log lines from the original 

data file. The fields in each long line include the timestamp, message ID, message 

category, and a descriptive statement. Unlike the Ford logs, the HDFS logs do not contain 

an explicit identifier (such as the token value introduced in Section 4.2.2) that can be used 

to distinguish and tokenize log messages. Therefore, a rather complicated parsing process 

is required before the dataset can be used for training. 
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Figure 6.1.1 Raw log data in text format. 

6.1.1 Parsing  

The log messages contain valuable related information, such as the block ID and event 

types in the descriptive statement by the end of each line, but they are difficult for a 

machine to interpret. These statements are meant for human developers and come in 

various formats or templates that are not evident. Interpreting this part of log messages is 

necessary for creating sequence samples and tokenization. 

Extracting useful information from the descriptive statement and sorting them into 

categories is a topic called log parsing. A few researchers have well studied this topic and 

achieved good parsing accuracy [37], [56], [61], [91]–[94]. In particular, the Drain 

algorithm [92] uses a tree structure to parse the event types in an unsupervised manner. 

This method is chosen for preprocessing because of its accuracy and efficiency 

demonstrated in an evaluation study [95].  

From a high-level overview, the Drain method creates a fixed depth tree using all 

available log statements. The tree’s leaf nodes represent a log statement template. The 

tree’s internal nodes contain specially designed rules to branch out the search, such as the 

number of words in the statement, the starting word, and the second word. If a log 

statement matches the branches and successfully traverses to a leaf node, it belongs to the 
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template represented by the leaf. Otherwise, a new branch is added to the tree, creating a 

new template.  

A general description of the parsing process is shown in Figure 6.1.2. The top box lists 

three log messages, and the bottom box shows the correct parsing result. The main output 

is the template that represents log statement. For example, the first row in the bottom box 

extracts the template that matches the first log message and leaves variables as 

placeholders indicated by start sign *. This template, or specifically an event template, is 

the main output of the parsing process. Another output is the string “blk_****”. It 

represents the physical element (a data block) that can be either regular or faulty. 

 

Figure 6.1.2 Overview of Parsing HDFS logs using the Drain method. [92] 

A detailed parsing result is shown in Figure 6.1.3. It shows ten parsed log messages in a 

structured format. The columns listed in the figure are as follows. 

- Date, Time, Pid, Level, Component are directly obtained from the beginning of a 

log message shown in Figure 6.1.1. 

- Content is the descriptive statement, the second half of a log message. 
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- EventTemplate is template representing a logging event. It is extracted by the 

Drain method explained in the previous paragraph. 

- EventId is the unique ID for each EventTemplate. It can be treated as the token of 

the log message. 

- Another critical piece of information, the block ID, a string “blk_****” extracted 

from the Content column using a regular expression match. 

  

Figure 6.1.3 Structured log data after parsing. 

As a result of parsing, a log message is represented by three fields: 

- the timestamp, a combination of the “Date” and “Time” columns. 

- block ID, extracted from the “Content” column. 

- event type (token), the “EventId” column. 

Figure 6.1.4 shows the final parsing result using the three fields for one log message. In 

this example, the token “d38aa58d” represents the event described in the original log 

statement, and this event occurred at the data block indicated by the block ID. Apart from 

these three fields, the rest of the columns in Figure 6.1.3 are removed as they are either 

duplicates or providing little useful information. 
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Figure 6.1.4 An example of parsing the HDFS log message. 

6.1.2 Sequencing 

Since the failures in the HDFS system are associated with data blocks, logs events that 

have the same block ID are grouped. An example of the grouping is shown in Figure 

6.1.5. The log events in this group effectively form sequences: one token sequence and 

one timestamp sequence, and the block ID represents the sequence being formed. As 

expected, the total number of sequences equals the number of blocks in an HDFS system.  

 

Figure 6.1.5  An example of creating log sequences. 

Each sequence is then labelled as either 0 or 1, corresponding to the state of the block of 

regular or faulty. This labelling information is available from the HDFS log dataset. A 
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snapshot of the sequencing outcome is shown in Figure 6.1.6. The columns list the block 

ID, its label, and the event token sequence.  

  

Figure 6.1.6 Sequenced and labelled log data. 

Furthermore, the block ID column in Figure 6.1.6 is discarded as it is not relevant to the 

detection system. The label and token sequence are used as samples for training and 

evaluation purposes. The timestamp sequence is set aside for now – the next chapter will 

discuss the integration of timestamps. 

6.1.3 Overview of the Sequence Dataset 

After parsing and sequencing, the original 11.2-million-line log file is converted into a 

dataset containing 575,061 labelled sequence samples. These sequences consist of 48 

unique tokens, representing 48 different software events. A majority of these samples 

have lengths between 10 to 40, with an average of 19.43. The histogram of sequence 

length is shown in Figure 6.1.7. Some outliers with lengths up to 298 are not displayed in 

this graph. 
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The dataset is an imbalanced one containing more normal samples than faulty ones. The 

number of faulty samples is 16,838, less than 3% of the total samples. Such a dataset is 

called an imbalanced dataset. The histograms of faulty and normal samples are shown in 

Figure 6.1.8. One interesting observation is that the short samples with a length less than 

10 are most likely to be faulty. For sample lengths of more than 10, there is little 

distributive difference between faulty and normal datasets. Although the short samples 

could be easily filtered out by a rule-based detector, this study did not exclude them in 

order to assess the machine-learning-based models in a comprehensive way. 

 

Figure 6.1.7 Histogram of sequence lengths (full dataset). 

 

Figure 6.1.8 Histogram of sequence lengths by label. 
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6.2 The Failure Detection Framework 

The automated failure detection and fault diagnosis framework is shown in Figure 6.2.1. 

As a typical machine learning system, it contains a training phase as indicated on the 

upper half and a detection/diagnosis phase as shown on the lower half. The raw log data 

in text format, whether they are from SYNC or HDFS system, first go through the parsing 

process to obtain the token sequence samples. A deep learning model directly processes 

the token sequences for training or diagnosis. Note that there is no need for a dedicated 

preprocessing step, such as the feature vectorization process in the FDSML framework 

introduced in the previous chapter. Instead, integrated within the deep learning model is 

an embedding process which converts token sequences into numerical representations. 

The classification part of the deep learning model handles the numerical representations 

and produces an output. The embedding and classification model are introduced in 

Sections 6.3 and 6.4, respectively. 

 

Figure 6.2.1 The overview of deep learning detection and diagnosis system. 
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6.3 Sequence Embedding 

The log samples in the token sequence form need to be represented in numerical form in 

order for a machine learning or deep learning model to process. In the previous chapter, 

various vectorization methods were introduced to extract manually defined feature 

vectors from a sequence. In the deep learning models, the conversion to vectors is still 

necessary, but there are two differences: 1) the process applies to individual tokens 

instead of a whole sequence, 2) the features are obtained through self-learning methods, 

instead of manually defined. This conversion to numeric process is called embedding. The 

embedding represents a sequence in a 2D matrix and preserves the sequential information 

in the meantime. The following subsections elaborate on this method and its 

implementation as part of the neural network model. 

6.3.1 One-hot Encoding 

Encoding for symbolic data refers to the process of converting symbols (tokens) into 

numerical vectors. The term can be used to refer to the process of conversion as well as 

the result of the conversion. One-hot encoding is a simple form of encoding. Similar to 

the one-hot vectorization introduced in Chapter 5, the length of the encoded vector equals 

the total number of unique tokens. The term one-hot means only one value is 1 and all 

others are 0 in the vector. Take the example of token sequence “ABCDAE”, the second 

columns of Table 6.1 shows the one-hot encoding of each token of the sequence. The 

encoding vector’s shape is 1×5 as there are 5 different tokens in this set. Note that the 

token “A” appears twice in the sequence and the two appearances both have the same 

encoding. The converted vectors are then stacked in the same order as the original 
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sequence. Therefore, the encoding of the sequence is effectively a 6×5 matrix where the 

progression of rows represents the order of the sequence. 

Table 6.1 Encoding of the sentence. 

Sequence 
 

One-hot Encoding 
 Reduced Encoding 

with Autoencoder 

A  [1  0  0  0  0]  [2.2   1.9] 

B  [0  1  0  0  0]  [-2.2 -0.1] 

C  [0  0  1  0  0]  [1.7  -1.1] 

D  [0  0  0  1  0]  [-0.9  2.6] 

A  [1  0  0  0  0]  [2.2   1.9] 

E  [0  0  0  0  1]  [-1.1 -2.9] 

     

One-hot encoding is simple to implement and interpret. However, its disadvantages are 

also clear: the encoded matrix can get very large and sparse. The HDFS log data in this 

study has 48 unique tokens; the Ford log contains more than a thousand. The inflated size 

takes more memory and demands more computational resources, making the network 

training less efficient. Another limitation is that one-hot encoding assumes no correlation 

between different tokens, i.e., any two different encoding vectors are orthogonal. The 

encodings are merely to differentiate the tokens rather than associate them. 

For the sparsity problem, various dimensionality reduction techniques are applicable. 

Autoencoder is one of the learning-based candidates. In its simplest form, an Autoencoder 

is a neural network that tries to replicate the input as the output. Its input side is purposely 

made symmetrical to the output, as shown in Figure 6.3.1. The network has an odd 

number of hidden layers whose sizes are typically smaller than the input or output layers. 

Once trained, the output values are identical or very close to input values. As a 

feedforward neural network, knowing the values of any hidden layer can propagate 
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forward to obtain the outputs that approximate the input. In other words, every hidden 

layer contains all the information to reconstruct the input. The smallest hidden layer, 

which is often the layer in the middle, is used as a reduced encoding of the input. 

 

Figure 6.3.1 Autoencoder network with one hidden layer, from [96]. 

As an example, an autoencoder is applied to the one-hot vector example in Table 6.1. The 

autoencoder with a hidden layer of size 2 is trained and achieves zero loss. The reduced 

encoding is shown in the third column of Table 6.1. In this ideal example, these 

encodings can fully reconstruct the original one-hot vectors using the trained weights, 

therefore they can be used equivalently to one-hot vectors. Plotting the two values of the 

reduced encodings as x and y coordinates gives Figure 6.3.2. The locations of words are 

split apart evenly, indicating that they have little correlation with one another. Note that 

the result in this example is not deterministic, the network may converge on a different set 

of weights and encodings that can fully reconstruct the input. 
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Figure 6.3.2 Reduced encodings obtained by the autoencoder. 

6.3.2 Word Embedding 

Embedding is an advanced type of encoding that has the semantic meaning of the 

symbolic tokens embedded into the vector. Word embedding addresses both the sparsity 

problem and the lack of correlation in the one-hot vector. The technique originates from 

Natural Language Processing (NLP) research investigating the numerical representation 

of words and texts, hence it is more commonly referred to as word embedding. In the text 

analysis research, the equivalency of a token and a sequence is a word and a document, 

respectively. The collection of words is called vocabulary and the whole text dataset is a 

corpus. The following description uses terminologies from NLP and log data 

interchangeably. 

In the language modelling field, the semantic and syntactic meanings of a word can be 

and should be captured in multi-dimensional vectors. In human language, many words 

can be used interchangeably; swapping words with synonyms may make little change to 

the meaning of a sentence. Therefore, the encodings of synonyms should be similar, or 
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visually, their locations should be close together on a multidimensional plot. Figure 6.3.3 

shows the concept of embedding using a few common words based on their semantic 

meanings. Note that compared to Figure 6.3.2, words of the same category are close 

together. Words describing fluids, such as water, milk, and juice have similar embedding 

values, while words from different parts of a sentence are generally split apart. This 

example is only a simplified case with a few words represented by a vector with length 2. 

The actual language model could include thousands of words in a much higher 

dimensional space. Each dimension represents some association among the words. 

Different words could be close by in one dimension, while apart in another. 

Software logs may not have the semantic complexity as human languages, but they still 

follow certain rules. Log tokens are dependent on one another and their correlations can 

be complicated. Learning the log token’s embeddings could improve performance by 

introducing more information to the classification model.  

 

Figure 6.3.3 Word embeddings to capture semantic meanings 
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Finding the associations among words, or equivalently obtaining the word embeddings is 

one important task in language modelling. One intuitive method is to find how frequently 

two words occur together in a large corpus, which is obtained by iterating through all text 

sequences and accumulate co-occurrence counts of the vocabulary. If there are 𝑉 words in 

the vocabulary, then the co-occurrence matrix would have a size of 𝑉 × 𝑉. Singular Value 

Decomposition (SVD) can then be used to reduce dimensionality and select the dominant 

singular vectors as embeddings. The SVD based methods are capable of capturing 

semantic and syntactic information effectively [97], but it lacks the flexibility of 

incorporating adjacent words with a distance of more than 1. Moreover, the low 

computational efficiency, including both memory and time, limits the use of this method. 

6.3.3 Neural-Network-Based Embedding Methods 

Neural-network-based methods or learning-based methods, such as the word2vec [98], 

achieves better results than SVD while addressing efficiency. The concept of word2vec is 

to use a neural network model – similar to an autoencoder – to predict context words 

given a centre word, or vice versa. Unlike the autoencoder, the word2vec approach no 

longer aims to reconstruct its input, but to predict the surrounding words instead.  

In a simple setting, a word2vec model takes the form of an autoencoder. Training such a 

model uses the word pairs – two words occurring next to each other – from the dataset, 

one word called centre word 𝑢𝑐 and the next one called outside word 𝑢𝑜. The one-hot 

encodings of 𝑢𝑐 and 𝑢𝑜 are used as input and target output for training, respectively. 

Since there can be many possible 𝑢𝑜for a word 𝑢𝑐 within any proper document, the model 
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would never predict precisely the next word. Instead, the trained model outputs a vector 

representing the most possible next word 𝑢𝑜 and the probability scores 𝑃(𝑢𝑜|𝑢𝑐). 

Training such a model is similar to a multiclass regression model using a categorical 

cross-entropy loss function introduced in the previous chapter. The vector value of the 

middle layer of the trained model is the embedding representation of the input word. 

In a more realistic approach, this model is extended to include multiple context words, 

including the words before and after 𝑢𝑐 and with a distance of more than 1. When training 

the model, the target output is an average of the context words. This setting is called a 

skip-gram model. A skip-gram setting with four context words – two words before the 

centre word 𝑢𝑜,−1, 𝑢𝑜,−2 and two words after the centre word 𝑢𝑜,1, 𝑢𝑜,2 – is shown on the 

right of Figure 6.3.4. Alternatively, using the context words as input and the centre word 

as output is called the continuous-bag-of-word (CBOW) model, as shown on the left of 

Figure 6.3.4. In a CBOW model, the value of the middle layer is the embedding of the 

output word. Both models have far better computational efficiency than the SVD based 

methods and can achieve similar or better performance. The performance difference 

between skip-gram and CBOW is minimal.  In practice, choosing between the two 

models depends on the amount and the importance of infrequent words. 
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Figure 6.3.4 Neural network models to train word vectors. (from [98]) 

More advanced methods using deep neural networks with more layers, Global Vectors for 

Word Representation (GloVe) [99] as an example, can achieve better performance than 

word2vec in certain tasks, such as word analogy. However, in terms of system logs with a 

much smaller vocabulary, the word2vec solutions should be sufficient. 

6.3.4 Implementation 

In this study, a skip-gram model shown on the right of Figure 6.3.4 is trained using the 

HDFS dataset. It has an input size of 48, which equals the size of one-hot encoding and 

the number of unique log tokens. The size of the middle layer, or the embedding size 𝑁 = 

16, meaning that each token is represented by a vector with a length of 16. After training, 

only the first half of the model is needed, i.e. the mapping from the input token to the 

embedding vector. 

Figure 6.3.5 visualizes the first two values of the embedding vectors of all 48 tokens in 

the HDFS dataset. To give a better visual presentation, the size of each bubble represents 

the occurrences of a log token. Specifically, it is proportional to log(token_count). In 
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this graph, certain tokens cluster together and others split apart to some extend. This 

implies that the underlying correlations are being extracted. Most vector values being 

within (-1, 1) is another desirable result as this range is preferred for neural network 

training.  

 

Figure 6.3.5 The first two dimensions of the log token embeddings. 

After the embedding process, the numerical representations of log tokens are obtained in 

the form of an 𝑁 × 1 vector 𝑥𝑖. A token sequence is then represented as a vector sequence 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑀] with a shape of 𝑀 × 𝑁 is created by stacking the embeddings of each 

token. The embedding process effectively creates a 2D matrix as shown by an example in 

Figure 6.3.6. This embedding matrix represents both sequential and sematic features of 

the token sequences and is ready to be processed by a classification model. 
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Figure 6.3.6 The embedding process applied to a token sequence. 

6.4 Classification models 

Deep learning models, or deep neural networks, are based on the concept of Artificial 

Neural Networks (ANN). While neural network research dates back to the 1940s [65], it 

is only the recent breakthroughs in computational capability that has unleashed some of 

its potentials. The recent development of various neural networks is mostly under the 

name of deep learning in order to differentiate from the older research. A traditional 

ANN, such as the Multi-Layer Perceptron (MLP) examined in the previous chapter, is 

less effective when dealing with data samples with large sizes or more than one 

dimension. Data in 2D matrices such as the one in this study, or 3D matrices such as a 

colour image, are difficult to fit the shape of an MLP’s input. The recent development of 

neural networks addresses these issues and has quickly become the dominant approach 

for many problems. 

Two deep learning structures are selected and examined in this study to perform 

classification tasks: 1) a Recurrent Neural Network (RNN) that processes a sequence of 
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vectors in order [100] and, 2) a Convolutional Neural Network (CNN) that searches for 

2D patterns from the vector sequence. 

6.4.1 Recurrent Neural Networks 

RNN applies recurrence to the neurons or layers in a neural network. The typical structure 

is based on the form of a layered neural network – an MLP – and the recurrence is applied 

to the intermediate layers. While an MLP is able to process an input vector 𝑥1 of 𝑁 × 1, 

an RNN iteratively processes a sequence of such vectors [𝑥1, 𝑥2, … , 𝑥𝑀] with a shape of 

𝑀 × 𝑁. It does so by retaining the hidden layers’ values ℎ and adding them back to the 

same layer for the next vector in the sequence. For example, the forward propagation of 

an MLP with 2 hidden layers using an input vector 𝑥1 is represented as: 

 

ℎ1,1 = 𝑆(𝑊𝑥,1𝑥1 + 𝑏1) 

ℎ2,1 = 𝑆(𝑊𝑥,2ℎ1,1 + 𝑏2) 

�̂�1 = 𝑆(𝑊𝑥,3ℎ2,1 + 𝑏3) 

(6.1) 

where ℎ1,1, ℎ2,1, and �̂�1 are the values of two hidden layers and model output, 

respectively. 𝑊’s and 𝑏’s are the weights and biases of the full connections. The first 

subscript refers to the number of layers and the second subscript refers to the sequential 

order of calculation, called the timestep. In the MLP case, only 1 calculation is performed, 

while RNN has 𝑀 timesteps of calculations. The function 𝑆 is the choice of the activation 

function.  



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

145 

 

Equation (6.1) also applies to the first iteration of an RNN, i.e., processing the first vector 

𝑥1 of the input. When processing the second input 𝑥2 during the second timestep, the 

previous values of hidden layer ℎ1 and ℎ2 are added with another set of weights 𝑊ℎ: 

 

ℎ1,2 = 𝑆(𝑊𝑥,1𝑥2 + 𝑊ℎ,1ℎ1,1 + 𝑏1) 

ℎ2,2 = 𝑆(𝑊𝑥,2ℎ1,2 + 𝑊ℎ,2ℎ2,1 + 𝑏2) 

�̂�2 = 𝑆(𝑊𝑥,3ℎ2,2 + 𝑏3)  

(6.2) 

For a length-𝑀 vector sequence, the processing is executed 𝑀 times until a final �̂� is 

produced. The recurrence of hidden layers effectively acts as a memory, retaining the 

information from the previous timestep. In other words, the values from every timestep 

have a contribution to the final output. 

This RNN is graphically presented in Figure 6.4.1. The iteration of each timestep is 

shown on the right side of the figure. The timesteps are unrolled in the horizontal 

direction, and for each timestep, the input 𝑥 propagates through two hidden layers in the 

vertical direction. Since the calculation in each timestep is the same, a compact 

representation omitting the timesteps is often used as shown on the left. For classification, 

the output vector 𝑦 is often processed by a full connection layer to further condense the 

output to the size of class labels.  
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Figure 6.4.1 Structure of a stacked 2-layer RNN. 

6.4.1.1 Variations of RNN Cell 

RNN research commonly uses the term cell to refer to the hidden layers in Figure 6.4.1. 

The calculation of a typical RNN cell described in the previous subsection can be written 

as follows:  

 ℎ𝑡 = tanh(𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏) (6.3) 

Compared to equation (6.1), this representation uses 𝑡 and 𝑡 − 1 to represent the current 

and previous timesteps. The tanh activation is a common choice for most RNN cells. 

RNN in this regular form has a critical issue called gradient vanishing when processing 

long sequences. The contribution of inputs of early timesteps are attenuated over the 

iteration and the gradients of these early timesteps become diminished when a sequence 

gets long. As a result, the training that relies on gradients would be ineffective. When the 

data sequence contains long-term dependencies, a regular RNN struggles to learn and fit 

the data [101]. Several RNN variations and training techniques are proposed to address 

this issue and the Long Short-Term Memory (LSTM) cell is one of the most successful.  
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The LSTM addresses this issue using a non-linear gating mechanism to regulate the 

information flow of the unit [102]. LSTM is built upon a regular RNN cell, containing a 

hidden state ℎ𝑡 that feeds back in the next timestep. Additionally, LSTM has a cell state 

parameter called 𝐶𝑡. For the current timestep 𝑡, the cell state candidate �̃�𝑡 is first obtained 

 �̃�𝑡 = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (6.4) 

Note that the calculation is the same as equation (6.3). The term 𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 is 

combined and written as 𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] for simplicity. 

The LSTM then incorporates three gates that throttle the cell state and new input. These 

are called the forget gate 𝑓𝑡, input gate 𝑖𝑡, and output gate 𝑜𝑡. These gates have weights 

that are adaptive to the current input 𝑥𝑡 and the previous hidden status ℎ𝑡−1. A sigmoid 

function is applied to produce an output between 0 and 1: 

 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (6.5) 

 𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (6.6) 

 𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6.7) 

The new cell state 𝐶𝑡 is the summation of the previous cell sate 𝐶𝑡−1 and the current 

candidate �̃�𝑡, with the gate throttling: 

 𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (6.8) 

where ⊙ denotes element-wise multiplication of matrices, or Hadamard product. 

The hidden state ℎ𝑡 is also throttled by the output gate: 
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 ℎ𝑡 = 𝜊𝑡 ⊙ tanh 𝐶𝑡 (6.9) 

Equations (6.4) - (6.9) describe the calculations within an LSTM cell. A graphical 

representation is shown in Figure 6.4.2. Because of the added gates and the cell state, an 

LSTM cell contains 3 times more parameters than a regular RNN. When stacking 

multiple LSTM layers as the structure in Figure 6.4.1, the hidden state ℎ is passed to the 

next layer, while the cell state 𝐶 is not. Therefore, from a high-level view, an LSTM has 

the same structure as a regular RNN like the one shown in Figure 6.4.1. 

6.4.1.2 The RNN Classification Model  

In this study, the fault detection for the HDFS system is a binary classification problem. 

The RNN model tailored for this problem is shown in Figure 6.4.3. The input log 

sequence is first converted into vector sequence using word embedding explained in 

Section 6.3. The result is an 𝑀 × 𝑁 embedding matrix, where 𝑀 is the length or timesteps 

of the sequence and 𝑁 is the number of embedding dimensions. The RNN layers then 

take the 𝑀 × 𝑁 matrix as input and output a vector �̂�. The output �̂� is then processed by a 

full-connection neural network to condense to the final output classes of normal or faulty. 

The output layer has a softmax activation function to obtain a probability distribution 

among the two labels. The model can be adapted to a diagnosis setting by changing the 

final layer to the number of faults, without major alteration of the structure. 
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Figure 6.4.2 The calculations of a regular RNN and an LSTM cell. 

 

Figure 6.4.3 The RNN classification model structure. 

6.4.2 Convolutional Neural Networks 

Another approach to process high dimensional data is the Convolutional Neural Networks 

(CNN). While RNN was created to handle temporal behaviours in sequences, the CNN 

was originally designed to capture spatial features from image data. Since CNN’s first 

successful application in recognizing hand-written digits [103], it quickly became the 

foundation of learning-based computer vision research. The trainable parameters in CNN 

are a set of kernels or filters, which are small matrices of a certain shape. In image 

classification tasks, the filters scan the entire image as a way of finding image features. 
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With some adaptation, the concept of convolution can be applied to sequential data as 

well, such as the embeddings of log tokens. 

6.4.2.1 Convolution in Image Processing 

The matrix convolution operation is commonly seen in image processing between a large 

matrix and a small one. The large matrix 𝑓 often represents an image, and the small one 

𝑤 is a kernel or filter. The convolution 𝑔 = 𝑓 ∗ 𝑤 is defined as: 

 𝑔𝑚,𝑛 = (𝑓 ∗ 𝑤)𝑚,𝑛 = ∑ ∑ 𝑤𝑖,𝑗𝑓𝑚−𝑗,𝑛−𝑘

𝑛

𝑗

𝑚

𝑖

 (6.10) 

where the subscript 𝑚, 𝑛 are indices of matrix elements.  

In other words, the convolution applies Frobenius inner product – the sum of products of 

corresponding elements in two same-sized matrices – between the kernel 𝑤 and a kernel-

sized portion of the large matrix 𝑓. Effectively, the kernel scans the whole image 

produces a filtered version of the original one. Note that this definition is for matrix 

convolution in the image processing field; convolution has different definitions in other 

areas such as signal processing. 

The upper part of Figure 6.4.4 illustrates the convolution of a 6×6 matrix 𝑓 and a 3×3 

kernel 𝑤. The highlighted portion indicates the first element of the convolved matrix 𝑔 

and the matrix elements for the calculation. If 𝑓 represents a grayscale image – where 

large values represent dark colours and a zero represents white, as shown in the lower half 

of Figure 6.4.4 – then the filter is effectively a vertical edge detector. It highlights the 

contrasting portion of the original image, which is the vertical line in the middle. Many 
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other formulations of kernels exist for various image processing purposes, such as edge 

detection, sharpening, and lowpass/blur. 

 

       

Figure 6.4.4 The convolution of a 6×6 matrix 𝑓 and a 3×3 kernel 𝑤. 

A CNN uses kernels as trainable parameters, meaning that the kernels are self-adapted to 

the training data in order to find the best configurations. An example of the CNN 

processing an infrared grayscale image is shown in Figure 6.4.5. Each convolutional layer 

consists of multiple same-sized kernels that convolve with the input matrix. The 

convolution generates a number of matrices of the same size, which are stacked and ready 

to be processed by another convolutional layer. A subsampling process, commonly 

known as a pooling layer, is often used after each convolution to reduce the size of the 

output matrix while keeping the significant values of the matrix. Multiple convolution-

pooling pairs are used in sequence to create a multi-layer CNN. After a number of 

convolutions, the feature matrix is flattened into a vector – by placing all elements in a 

single column – which is then processed by a full connection network to reduce to class 

labels. 
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Apart from handling high-dimensional data directly, the two main advantages of a CNN 

over an MLP are sparse connectivity and the ability to capture spatial relations. Take the 

image processing as an example, each kernel in a convolutional layer applies to the entire 

image, but has only one set of trainable parameters. This means the kernel has a sparse, 

rather than a full connection to every pixel of the input image, reducing the number of 

parameters for training. More importantly, because each kernel applies to the entire image 

in a 2D manner, the spatial features of an interesting object can be captured regardless of 

their locations across the image. Concretely, if a CNN is trained to recognize a person, it 

will detect the targets even if they appear in a different location. A full connection 

network is unable to infer such changes as the connections are tied to each pixel. 

 

Figure 6.4.5 A Typical 2-D CNN architecture. 

6.4.2.2 Sequential Convolution 

In almost all computer vision applications, the kernels have a square shape and scan the 

image in both horizontal and vertical directions. This is because the image features to be 

captured are in two dimensions. However, for sequential data such as the log sequences in 

this study, the data only show temporal behaviour in one direction. For example, for the 

embedding matrix with a shape of 𝑀 × 𝑁 – with 𝑀 timesteps and 𝑁 embedding 

dimensions – a kernel that scans along the 𝑀 timesteps would be sufficient. These kernels 
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have a width of 𝑁 same as the input matrix, and an arbitrary length smaller than the 

timesteps 𝑀. This setting is called one-dimensional (1D) convolution. A simple example 

with one 3 × 4 kernel convolving a 3 × 𝑀 sequence sample is shown in Figure 6.4.6. The 

kernel scans along the timestep direction and the convolution result is a vector. It is 

common to use multiple kernels, which result in multiple sequences. Then another layer 

of convolution can be applied. When constructing a neural network layer, stacking 

multiple convolution layers may help provide additional complexity to fit the data. 

 

Figure 6.4.6 Convolution in 1D. 

6.4.2.3 The CNN Classification Model  

The classification model using CNN for the fault detection task is shown in Figure 6.4.7. 

The sequence sample first goes through an embedding process same as the one in the 

RNN model. A number of CNN layers process these embeddings and produce a feature 

vector. The feature vector is finally reduced to class labels via a fully connected network. 

The size and number of convolutional layers and full-connection layers can be configured 

to scale with the detection or diagnosis problem.  



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

154 

 

 

Figure 6.4.7 The 1D-CNN classification model structure. 

6.5 Implementation 

Both RNN and CNN models are implemented in Python using the TensorFlow 2.x 

package. The main platform for testing was the Google Colab – a cloud computing 

environment for executing Python programs – and a local machine running Windows 10. 

The hardware available from the Colab platform includes the Intel Xeon processor, Tesla 

P100 GPU, and 24GB memory. The local machine has an Intel i7 processor, an NVidia 

RTX 2080Ti GPU, and 32GB memory. 

The vectorization model of log sequences are trained using the gensim package [104], a 

semantic modelling library that includes word2vec and other vectorization algorithms. 

The vectorization model produces embedding vectors of size 16. Training of the 

embeddings is separate from the detection model. Since the word2vec model is in a 

neural network form, the trained parameters are transferred to the detection model as the 

embedding layer as shown in Figure 6.4.3 and Figure 6.4.7. 
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6.5.1 Training Strategy for Imbalanced Dataset 

As mentioned in Section 6.1.3, the HDFS dataset is highly imbalanced with significantly 

more normal samples than faulty ones. Training a model directly using such a dataset will 

lead to imbalanced performance within the two labels. Specifically, a trained model tends 

to “favour” the normal label if there are more normal samples in the training data. In an 

extreme case, a model simply deciding all samples as normal would achieve more than 

97% overall accuracy, but it would be unusable for fault detection. Therefore, the model 

needs to be trained in a balanced way, and impartial metrics should be used in addition to 

the accuracy. 

There are two general approaches to balance the data for training: training with class 

weighting and dataset oversampling. Class weighting applies a weight factor to the 

gradients based on the sample’s class, effectively changing the learning rate. For 

example, a sample of the minority class would have a higher weight, meaning that the 

network parameters are updated in a faster way, while a sample of the majority class has a 

smaller contribution to the training. Depending on how the gradient is used, applying 

class weighting may require the training algorithm to make adaptations. Therefore, it may 

not be a universal method for balancing datasets. 

On the other hand, the oversampling technique reconstructs the training dataset instead of 

changing the training algorithm. The samples of the minority class are duplicated and 

added to the training set, such that the ratio between the two classes achieves 50:50. The 

new balanced dataset is then shuffled and used as a regular dataset for training. The 

alteration of the training set means that the training metrics no longer represent the actual 
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performance. A different set of data with the correct class ratio, such as a validation set, is 

needed to monitor the training process. Nevertheless, the oversampling technique does 

not affect the training process and therefore a safer choice when experimenting with 

different optimization algorithms. It is therefore used in this study to train the model 

using the HDFS dataset. 

Because of the imbalance, the accuracy metric is no longer sufficient to properly 

represent a model’s performance. Precision and recall scores provide a better description 

when evaluating individual classes. The F1 score which combines precision and recall is 

also used during the evaluation. These metrics are explained in more detail in Section 6.6. 

6.5.2 Data Selection 

As mentioned in Section 6.1.3, the sequence samples processed from the HDFS dataset 

have variable lengths as well as durations. These variations represent the difference in 

executing various tasks. Since the dataset was collected with an arbitrary start and end 

timing, some sequences may contain more than one task execution. The labels only 

reflect the status of a sample by the end of the data collection, but the time when a failure 

or fault is inflicted is unsure for these samples. As a result, long sequences may contain 

perfectly normal segments before exhibiting faulty behaviour. These normal patterns may 

potentially confuse the models as they are part of a faulty sample. Moreover, the deep 

learning models must have a definite input size, longer sequences have to be trimmed in 

order to fit the model’s input. This may induce further problems as the trimming risks 

cutting away faulty log patterns. Without extended knowledge of the HDFS system log, 

the safer option is to ignore the long sequences from the dataset.  
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Furthermore, the removal of long sequences is based on time duration, rather than length. 

This is from the practical consideration that automated fault detection systems are often 

based on the data collected from a certain period of time. In this study, a duration 

threshold 𝑇max is set to select eligible samples for training and evaluation. A list of values 

varying from 2 minutes to 30 minutes is experimented to evaluate the models’ 

performance on the sequence samples with different lengths. A larger 𝑇max means more 

samples and longer ones are selected. 

After data selection, the samples are split into training, validation, and testing sets with a 

ratio of 64%:16%:20%. The split is done with stratification, meaning that the class ratio is 

kept constant across all three sets. 

6.5.3 Model Tuning 

Tuning a deep learning model, or hyperparameter tuning, refers to the process of finding 

the best network configuration that produces the best performance. The hyperparameters 

of a neural network model include the number of layers, the size of each layer, the 

activation functions, and other layer configurations. The tuning process is carried out 

empirically through trial and error using the training set and validation set. The testing set 

is reserved and only shown to the model during the testing process. 

The best network configurations for RNN and CNN are shown in Table 6.2 and Table 

6.3, respectively. In each table, a forward pass is listed from top to bottom. The input of 

the models is the token sequence with a length of 250. Shorter samples are padded with a 

placeholder token in the front, and long samples are excluded in the training and 
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evaluation process. An embedding layer with the pre-trained weights converts these token 

sequences into vector sequences, i.e., a 2D matrix, with a length of 𝑀 = 250 and a width 

of 𝑁 = 16. Next, an RNN model processes the embeddings with an LSTM layer, while 

the CNN model uses a convolution-pooling pair. The output of LSTM and convolution 

layers are both feed into full-connection layers to concentrate to class labels. The RNN 

model uses one full-connection layer, while the CNN model uses two. The final layer of 

both models is a single neuron with sigmoid activation. This is because the HDFS dataset 

is a detection problem, one activation value is enough to represent the likelihood of a 

fault. In the cause of a multiclass problem such as diagnosis, the final layer would contain 

a certain number of neurons with a softmax activation. 

Table 6.2 The RNN model configuration. 

Layer Configuration Shape 

Input  (250) 

Embedding 16 units (250, 16) 

LSTM layer 64 units, tanh activation (64) 

Full-connection 32 units, tanh activation (32) 

Output layer 1 unit, sigmoid activation (1) 

Total weights: 22,849 / 23,633  

   

Table 6.3 The CNN model configuration. 

Layer Configuration Shape 

Input  (250) 

Embedding 16 units (250, 16) 

1D convolution 32 kernels, size=4, stride=1 (81, 32) 

Global max 

pooling 
 (32) 

Full-connection 32 units, ReLU activation (32) 

Full-connection 32 units, ReLU activation (32) 

Output layer 1 unit, sigmoid activation (1) 

Total weights: 6,273 / 7,057  
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Although the structures of CNN and RNN models look similar, the detailed 

configurations are quite different. In fact, all layers are different other than the input, the 

output, and the embedding layers. A few interesting observations during the 

hyperparameter tuning process are: 

1) In both models, one specialized layer – the LSTM layer or convolutional layer – is 

sufficient to obtain a decent result. This indicates that the dataset is relatively 

simple. Although the models are not particularly “deep”, they can be easily 

expanded with more layers and larger sizes to fit more complex datasets. 

2) The RNN model prefers one full-connection layer before the output with long-tail 

activation functions such as tanh or sigmoid, while the CNN model produces 

better results with two full-connection layers with Rectified Linear Unit (ReLU) 

activations.  

3) Global max pooling layers are used in the CNN model after convolution. Global 

max pooling is aggressive subsampling that represents a matrix by its largest 

element. It is different from image processing common practices that use regular 

max pooling, which is subsampling at a certain rate. This change results in a lower 

amount of weights, but produces better accuracy. 

4) Advanced gradient-based training algorithms are experimented, such as the Adam 

[105] and RMSprop [106]. Both methods produce quick and smooth convergence. 

Adam tends to train slightly faster than RMSprop, but the difference is 

insignificant.  
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The training of both models is very fast on GPU-enabled hardware. The typical training 

time until convergence is less than 10 minutes for both models.  

6.6 Evaluation 

For binary classification tasks, common evaluation metrics include accuracy, precision, 

recall, and F1 score. The latter three are particularly useful when evaluating a model 

using an imbalanced dataset.  

6.6.1 Evaluation Metrics  

For a sample with a label of either 0 – normal or 1 – faulty, the model’s detection result is 

defined as: 

- True positive, the sample has a label of 1 and the model detects correctly. 

- True negative, the sample has a label of 0 and the model detects correctly.  

- False negative, the sample has a label of 1 and the model detects as class 0. 

- False positive, the sample has a label of 0 and the model detects as class 1. 

For a testing set, the number of true positives, true negatives, false positives, and false 

negatives are denoted as 𝑛𝑇𝑃, 𝑛𝑇𝑁 , 𝑛𝐹𝑃, 𝑛𝐹𝑁, respectively. The four evaluation metrics are 

defined as follows: 

- Accuracy: 𝛼 =
𝑛𝑇𝑁+𝑛𝑇𝑃

𝑛𝑇𝑁+𝑛𝐹𝑃+𝑛𝐹𝑁+𝑛𝑇𝑃
 

- Precision: 𝑝 =
𝑛𝑇𝑃

𝑛𝐹𝑃+𝑛𝑇𝑃
 

- Recall: 𝑟 =
𝑛𝑇𝑃

𝑛𝐹𝑁+𝑛𝑇𝑃
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- F1 score: 𝐹1 =
2×𝑝×𝑟

𝑝+𝑟
 

While the accuracy indicates the overall performance, it shows little discrimination 

between the two classes. Precision and recall emphasize false positives and false 

negatives, respectively. F1 score is the combination of precision and recall, and therefore 

a better overall metric than the accuracy in an imbalanced dataset setting. All four metrics 

are demonstrated in this evaluation. 

6.6.2 Evaluation Result  

In this test, the data selection described in Section 6.5.2 uses a max duration 𝑇max = 120s, 

giving a total of 101,245 samples for training and evaluation. Among them there are 

6,422 faulty samples. An RNN and a CNN model are trained using the same training set. 

A testing set containing 20% of all samples is used to evaluate both models. The testing 

set has an imbalanced ratio between normal and faulty samples, the same as the training 

set. The probability threshold to determine whether a prediction is normal (0) or faulty (1) 

is 0.5, the default threshold. Table 6.4 shows the performance of both models at the 

default threshold. Note that the values in this table are not definitive as the model’s final 

weights are subject to random initialization during the training process. Test results that 

are most reproducible are selected to display in this table. 

Table 6.4 Model performance on the test dataset. 

 Accuracy Precision Recall F1-score 

RNN 99.96% 99.46% 99.92% 99.69% 

CNN 99.96% 99.46% 99.84% 99.65% 
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Based on Table 6.4, both models achieve very high accuracy of over 99%. There is no 

performance difference between CNN and RNN in terms of accuracy. When examining 

class-specific metrics, the RNN produces marginally better recall than the CNN. The 

99.92% recall means that only one false negative is produced. As a result, the RNN’s F1-

score is slightly better than the CNN, however, the difference is insignificant. Note that 

the F1 score gives a different perspective from the accuracy and distinguishes between 

the two models. 

6.6.3 Evaluation with Long Sequences 

With the max duration 𝑇max set to larger values including 240s, 480s, 960s, and 1920s, 

more data samples are selected for evaluation. A set of CNN and RNN models are trained 

using the selected samples. Their performance in terms of accuracy and F1 scores are 

shown in Table 6.5. With the increase of sequence duration, both models see a decrease in 

their performance. The decrease is less evident using the accuracy metrics, as both CNN 

and RNN show over 99% accuracy for all sequence durations. However, the decrease is 

clearly revealed with the F1 score. For the sequences that last up to 32 minutes (1920 

seconds), the F1 score is only 95% and 91% for CNN and RNN, respectively.  

Table 6.5 Model performance using longer sequence samples 

𝑻𝒎𝒂𝒙 
Accuracy on testing set F1 score on testing set 

CNN RNN CNN RNN 

120s 99.96% 99.96% 99.65% 99.69% 

240s 99.84% 99.74% 98.90% 97.80% 

480s 99.84% 99.52% 98.59% 95.51% 

960s 99.61% 99.39% 96.32% 93.64% 

1920s 99.56% 99.32% 95.19% 91.69% 
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The difference between accuracy and F1 score is caused by the imbalance of the dataset. 

The accuracy metric treats both true positive and true negative equally, whereas precision 

and recall emphasize true positives. Because in this imbalanced dataset, positive samples 

– i.e. faulty samples – are scarce, false detections drag down the precision, recall, and F1 

scores more quickly than they do to the accuracy. Therefore, the table reveals that the 

models are getting fewer true positives for longer sequences, which is worth further 

investigation as the true positives are more important than true negatives in a detection 

task. 

6.7 Conclusion 

This chapter takes a deep neural network approach towards the automated log analysis 

problem. This recently developed branch of machine learning is capable of processing 

matrices in two or more dimensions, enabling more complex feature engineering for the 

log data. Specifically, the word embedding method, one of the innovations in language 

modelling, is adapted for log data.  

Two classification models, a CNN model using 1D convolution and an RNN model using 

LSTM cell are constructed, implemented, and fine-tuned. A training process with an 

emphasis on the imbalance of the dataset is completed. Both models show exceptional 

performance in terms of both accuracy and F1 score using the HDFS log samples up to a 

certain duration. 

However, evaluation using longer samples reveals a decrease in performance for both 

models. The models produce fewer true positives and F1 scores when longer sequence 
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samples are included in the training. It is clear that both models still have room for 

improvement. The next chapter explores new neural network structures to utilize the 

timestamp information from log data. 
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Chapter 7 Irregular Timestamp Integration 

The methodologies presented in the previous chapters focus on the log events – 

represented by the log tokens – and a sequential combination of such elements. However, 

the timestamp as an important element of the log messages is unused. Most studies in the 

field have also opted to drop the log messages’ timestamps. This may be attributed to the 

preconception that timestamps generally contain less important information than the log 

events, but no studies have shown such evidence. In fact, the timestamps in log data 

generally have irregular intervals, meaning that the time difference between a log 

message and the previous one varies depending on the task execution. These time 

intervals between log messages potentially reflect the health status of the software. 

The utilization of timestamps can be difficult because of their irregular intervals. For the 

data mining and statistical feature methods, a lot of information is discarded – such as the 

sequential order – in the feature extraction process for efficiency purposes. Including 

timestamps information in these processes is difficult and rarely seen in existing studies. 

On the other hand, some of the deep learning research utilizing RNN models has included 

the timestamps when structuring their models [70], [71]. In these studies, the time elapsed 

between log messages, i.e., the delta time, forms a sequence that is processed by a 
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separate RNN, in addition to the model that processes the token sequence. However, there 

are several issues with these studies. First, the reason to use timestamps is not discussed 

and the contribution of such information is unclear. Secondly, using a separate RNN 

classification model means that the time sequence is decoupled from the log token 

sequence, the timestamp pattern may be less meaningful without its correspondence to 

certain tokens. Lastly, the method of processing timestamps through delta time has only 

been investigated on RNN models and can be difficult to generalize to other deep learning 

structures, such as the CNN. 

In this chapter, a novel method to incorporate irregular timestamps information in a 

unified model is proposed to address the aforementioned issues in the existing study. The 

models formulated using this approach are called Timestamp-integrated models (Ts 

models). Ts models treat the timestamped token sequences as digital signals in multi-

dimensions – the first of its kind in the field – and apply interpolation to uniform the time 

intervals. The implementation of the interpolation takes the form of a neural network 

layer, so Ts models apply to both CNN and RNN structures.  

This chapter is organized as follows. The systematic observation of timestamps showing 

their significance is presented in Section 7.1. The method to unify both timestamps and 

token sequences is introduced in Section 7.2. The method implementation is detailed in 

Section 7.3. Section 7.4 evaluates the proposed models and compares them with the base 

neural network models in the previous chapter.  
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7.1 Data Observations with Timestamps 

The observations are based on the HDFS dataset previously introduced in Section 6.1. 

The following subsections examine the data from the statistical and microscopic 

perspectives. 

7.1.1 Statistical Overview of the Log Sequences 

As mentioned in the previous chapter, the HDFS dataset contains log sequence samples 

consisting of 48 unique tokens. A majority of the sequence samples have lengths between 

10 to 40, with an average of 19.43. The distribution of sequence sample lengths does not 

show a clear pattern as shown in Figure 7.1.1 (reusing Figure 6.1.7). There is little 

distributive difference between the faulty and normal samples as shown in Figure 7.1.2 

(reusing Figure 6.1.8), other than the short samples with a length less than 10 most likely 

being faulty. 

 

Figure 7.1.1 Histogram of sequence lengths (full dataset). 
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Figure 7.1.2 Histogram of sequence lengths by labels. 

However, if the timestamps are taken into consideration, the distributions show a vastly 

different picture. The duration of each sample ranges from 0.5 to 54,000 seconds, where a 

majority of them lie within 120 seconds. A histogram of all sequence durations, is shown 

in Figure 7.1.3. The distribution follows a clear bimodal pattern in the 0 – 120s range as 

shown on the top graph. A majority of the samples follow a Gaussian distribution with a 

mean of 40 seconds. A smaller amount of short-lived sequences clutter around the very 

left of the graph. The contrast with the length distribution indicates that the execution 

time reflects the dynamics of software tasks that may not be captured using the event 

sequences only.  

Noticeably there are quite a number of samples having longer durations up to 54,000 

seconds as shown at the bottom of Figure 7.1.3. These samples are distributed randomly 

and clearly not outliers. Since the sequence samples are associated with block identifiers 

in the HDFS system, these longer samples are likely caused by the “busy” blocks getting 

multiple requests over the data collection period. In other words, they are possibly 

multiple sequences being joined together.  
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Figure 7.1.3 Histogram of sequence duration (full dataset). 

Figure 7.1.4 shows the sequence durations histograms of normal and faulty samples. An 

interesting contrast can be observed compared to Figure 7.1.2. The normal data appears to 

be two Gaussian distributions with means at about 3s and 40s. In contrast, most faulty 

samples are short-lived and cluster within the 0 to 10 seconds range. There is a similar 

amount of faulty and normal samples within the 10 seconds limit. Longer faulty samples 

with a duration of more than 10 seconds do exist, but they are only a few and are barely 

distinguishable on the histogram. 
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Figure 7.1.4 Histogram of sequence durations by labels. 

As explained in the previous chapter, the sequential neural network models require a pre-

defined input size that cannot be arbitrarily long. A general approach is to trim the longer 

sequence to the model’s input, but it is not suitable for this study. This is because the 

timing of a fault inflicted is unknown, trimming the sequence risks cutting away faulty 

patterns. Therefore, the long samples are disregarded. A threshold 𝑇max is set to select 

samples for training and evaluation. The effect of varying 𝑇max is discussed in Section 6.6 

as well as the rest of this chapter.  

7.1.2 Microscopic observation 

From a microscopic view, the difference between a sequence with and without 

timestamps is also significant. Figure 7.1.5 picks a normal sample with 12 data points, 

and plots it both even spaced (left) and by timestamps (right). Note that the absolute 

values of data points are meaningless, as they are categorical tokens created from the log 

messages. Because the timestamps have irregular intervals, some data points are closer 

together and some are separated away on the timestamp plot. For example, the timestamp 

plot clearly shows that there is a long span between the third and the fourth data points, 

which is not captured by the left plot. The appearance that some specific data points 
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clustering or separating away may contain valuable information that contributes to the 

behaviour of a fault. 

 

Figure 7.1.5 Sequence token plot of a healthy sample 

As a summary of this section, the timestamps of a log sequence contain extra information 

in addition to the token sequence. This additional information can be revealed through 

both statistical and microscopical observation of the data. The difference between normal 

and faulty samples’ histograms further shows that the conditions and the durations are 

correlated, indicating that the time information may potentially be utilized to improve a 

fault diagnosis system. 

7.2 The Detection and Diagnosis Framework with Timestamps 

To utilize the irregular timestamps along with the log sequences, the structure of deep 

learning models needs to be modified. One way of including this information in existing 

studies is to use an RNN to process the time difference between neighbouring token 

sequences, i.e., the delta time. Studies [70], [71] used the delta time to create a numerical 

sequence, which is handled in an RNN model parallel with the token processing model. 

While this method may be effective – the related study did not mention the contribution 
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of this additional RNN – the time sequence itself is less meaningful without correlating to 

the token sequence. This section gives an overview of the proposed Ts models, which 

handle the irregular timestamps by resampling the token sequence. Timestamp processing 

is integrated with token processing in the one unified Ts model without adding a separate 

one. 

7.2.1 Resampling as A Layer 

Resampling is often applied to achieve time interval uniformity of a numerical sequence. 

The difficulty of applying resampling to the log sequence is evident: the tokens are 

categorical and cannot be used directly for calculations. Therefore, common resampling 

techniques requiring computation between neighbouring data points do not apply. 

Fortunately, since the deep learning models introduced in the previous chapter commonly 

include the embedding process that represents tokens as numerical vectors, resampling 

can be carried out at the embeddings level. Specifically, as an example shown in Figure 

7.2.1, a token sequence with a length of 𝑀 = 5 is first converted into an 𝑀 × 𝑁 

embedding matrix, where 𝑁 is the embedding size. The elapsed time between the column 

vectors are represented as gray spaces on the graph. Due to the nature of log data, these 

time intervals between the neighbouring column vectors are nonuniform. If treating the 

embedding sequence as a signal, an up-sampling process can be applied to each row of 

the embedding sequence. The resampling produces a vector sequence with a shape of 

𝐾 × 𝑁 (𝐾 > 𝑀), where the time intervals between the neighbouring column vectors are 

equal.  
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Figure 7.2.1 Resampling applied at the embeddings level. 

While resampling a token sequence appears irrational, resampling the embedding vector 

sequence has its physical meaning. Since embedding is a process that represents tokens as 

points in a high dimensional space, the token sequence can be viewed as a signal 

consisting of these data points along the time dimension. Resampling these high 

dimensional signals and creating new data points in between the token points is therefore 

a reasonable process. An overview of the resample process is presented in Section 7.2.2 

and detailed explanation is provided in Section 7.3. 

7.2.2 Neural Network Model with Resample Layer 

The resampling introduced in the previous subsection needs to be performed at the 

embeddings level, so it is preferably implemented as a layer in the neural network model. 

The structure of proposed Ts models is shown in Figure 7.2.2. Compared to the RNN 

model (Figure 6.4.3) and the CNN model (Figure 6.4.7) in the previous chapter, the main 

addition is a resample layer between the embedding process and the sequential 

classification process. This layer performs resampling – specifically, interpolation and 
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extrapolation as introduced later in Section 7.3 – of the embedding vectors. As a result, 

the timestamps are required as input of the model. 

 

Figure 7.2.2 The overall model structure that integrates timestamps. 

Figure 7.2.3 illustrates an example of the embedding and resample process under the new 

structure. The token sequence and its timestamps are taken as separate inputs. Apparently 

for each sample, the number of tokens equals the number of timestamps. They are aligned 

and represented in a vector form with a size of 1 × 𝑀. The token sequence is non-

numerical, so it is first converted into an embedding matrix. Since the embedding process 

does not alter the columns, the embedding vectors with a size of 𝑁 × 𝑀 are still aligned 

with the timestamps, which have a size of 1 × 𝑀. Each row of the embedding can then be 

treated as a numerical signal and, with the timestamps provided, be processed with 

interpolation methods. The purpose of this interpolation is to take the nonuniform time 

intervals into consideration such that the output sequence (signal) reflects a correct 

temporal behaviour. The same interpolation process applies to every row of the 

embedding matrix, and the output of the resample process is a vector with a size 𝑁 × 𝐾, 
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where 𝐾 is determined by configurable parameters. Preferably 𝐾 should be larger than 𝑀 

to ensure no data points are lost during the process; hence the process being up-sampling. 

A 𝐾 smaller than 𝑀 represents down-sampling, which also achieves time-uniformity. 

 

Figure 7.2.3 The embedding and resample process. 

After resampling, the input samples with nonuniform intervals would have the same 

resolution and duration, so the timestamps are safely discarded. The interpolated vectors 

then proceed to an RNN or CNN model for classification, similar to the base models in 

Figure 6.4.3 and Figure 6.4.7 from the previous chapter. The output structure has the 

same configuration as the base models as well. It is clear that the addition of timestamp 

processing only changes the length of the embedding matrix and does not alter the 

classification part of the model. As a result, the method is universal to any network 

variations that process inputs in a sequential manner, such as the CNN and RNN to be 

introduced later in this chapter. 
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7.2.3 Fault Detection and Diagnosis Framework 

The overall structure of the fault detection and diagnosis system integrating timestamps is 

shown in Figure 7.2.4. Similar to the one presented in the previous chapter, it consists of a 

training phase shown on the top of the graph and a diagnosis phase on the bottom. The 

log data goes through a parsing process to obtain their token sequences as well as 

timestamps. The deep learning model refers to the one proposed in Figure 7.2.2, which 

includes a resample layer to handle timestamps. Once the model is trained on labelled 

data, it can be deployed to perform detection or diagnosis tasks.  

 

Figure 7.2.4 The Overview of Deep Learning Detection and Diagnosis System 

7.3 Resample Methods 

This section details the methods and implementation of resampling. As previously 

introduced, the resample process is preferably up-sampling since the intention is to 

extract finer details from the input. This means new data points are created between and 

after the existing embedding sequences. In other words, both interpolation and 

extrapolation are needed. Interpolation is more important as it reconstructs the dynamics 
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in between existing data points, while extrapolation in this case is merely padding the 

sequence such that the output size is unified. 

7.3.1 Interpolation 

Several interpolation methods are introduced as follows. For the signals in one dimension, 

an input time series is denoted as (𝑡, 𝑥): 

 

𝑡[𝑀] = [𝑡0, 𝑡1, … , 𝑡𝑀−1] 

𝑥[𝑀] = [𝑥0, 𝑥1, … , 𝑥𝑀−1] 
(7.1) 

where 𝑀 is the length of the sequence. An interpolation solves for a new series (𝑡′, 𝑥′): 

 

𝑡′[𝐾] = [𝑡0
′ , 𝑡1

′ , … , 𝑡𝐾−1
′ ] 

𝑥′[𝐾] = [𝑥0
′ , 𝑥1

′ , … , 𝑥𝐾−1
′ ] 

(7.2) 

where 𝐾 is the length of the interpolated sequence and larger than 𝑀. 

The original sequence tuple (𝑡, 𝑥) generally has irregular intervals. The output tuple 

(𝑡′, 𝑥′) has a fixed interval 𝑇𝑠, a.k.a. the sampling rate. The interpolation is achieved by 

solving a function 𝑃(𝑡) that goes through all input data points (𝑡𝑖, 𝑥𝑖). There are several 

interpolation methods for such numeric sequences [107]: 

1. Zero-Order Hold (ZOH), or piecewise-constant interpolation, is the simplest and 

fastest way to even out the timestamps. It takes the closest sequence data point as 

the output. The interpolation result is a discrete function expressed as follows: 

 𝑃(𝑡) = 𝑥𝑖, if   𝑡𝑖 < 𝑡 < 𝑡𝑖+1 (7.3) 
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2. Linear interpolation is a local interpolation method that calculates new sample 

points by fitting a linear function using the adjacent two data points. It produces a 

continuous function, although its first-order derivative is still discrete at the original 

data points: 

 𝑃(𝑡) =
𝑥𝑖+1 − 𝑥𝑖

𝑡𝑖+1 − 𝑡𝑖
𝑡 +

𝑥𝑖𝑡𝑖+1 − 𝑥𝑖+1𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
, if   𝑡𝑖 < 𝑡 < 𝑡𝑖+1 (7.4) 

3. For improved smoothness, cubic spline interpolation is another local interpolation 

option that fits a series of third-order polynomials (splines) 𝑠𝑖(𝑡) using four 

adjacent data points, while ensuring the whole function has continuous second-

order derivative at all input data points: 

 𝑃(𝑡) = 𝑠𝑖(𝑡), if   𝑡𝑖 < 𝑡 < 𝑡𝑖+1 (7.5) 

where the third order polynomial 𝑠𝑖(𝑡) = 𝑎𝑖 + 𝑏𝑖𝑡 + 𝑐𝑖𝑡
2 + 𝑑𝑖𝑡

3  satisfies: 

 

𝑠𝑖(𝑡𝑖−1) = 𝑥𝑖−1 

𝑠𝑖(𝑡𝑖) = 𝑥𝑖 

𝑠𝑖
′(𝑡𝑖) = 𝑠𝑖+1

′ (𝑡𝑖) 

𝑠𝑖
′′(𝑡𝑖) = 𝑠𝑖+1

′′ (𝑡𝑖) 

(7.6) 

4. Lagrange interpolation achieves continuity for all orders of derivatives by fitting a 

polynomial function with an order of 𝑀 − 1. One way to obtain the polynomial 

function is as follows: 

 𝑃(𝑡) = ∑ 𝑥𝑖𝐿𝑖(𝑡)
𝑀−1

𝑖=0
 (7.7) 

where 𝐿𝑖(𝑡) are the Lagrange basis polynomials and obtained as follows: 
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 𝐿𝑖(𝑡) = ∏
𝑡 − 𝑡𝑖

𝑡𝑖 − 𝑡𝑗

𝑀−1

𝑗=0,𝑗≠𝑖
 (7.8) 

After obtaining the interpolated function 𝑃(𝑡), the resampled sequence 𝑥′[𝐾] is 

calculated by: 

 𝑥𝑖
′ = 𝑃(𝑡𝑖

′),    𝑖 = 0,1, … , 𝐾 − 1 (7.9) 

The set of figures in Figure 7.3.1 show the examples of interpolating a short sequence 

from the dataset. These examples represent one dimension (row) of the embedding 

matrix. Figures (a) through (d) correspond to the results of using ZOH, linear, cubic 

spline and Lagrange methods, respectively. The ZOH interpolation in Figure 7.3.1a 

produces a discrete function that contains mainly staircase patterns. Linear interpolation 

in Figure 7.3.1b gives a continuous function, showing improved smoothness over the 

ZOH method. Visually this reveals more varied features than Figure 7.3.1a. The cubic 

spline interpolation in Figure 7.3.1c appears very smooth, and the values of the splines 

are within a reasonable range. The Lagrange interpolation in Figure 7.3.1d shows similar 

smoothness as Figure 7.3.1c, but does not seem to bring more distinct features. 

Meanwhile, the Lagrange method creates unexpectedly large values – the range of y-axis 

is exceptionally large – which is likely unreasonable from a practical point of view. 
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(a) Example of the ZOH interpolation. 

 
(b) Example of the linear interpolation.  

 
(c) Example of the cubic spline interpolation.  

 
(d) Example of the Lagrange interpolation.  

Figure 7.3.1 Examples of different interpolation methods. 
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Among the four methods, the ZOH and linear interpolation methods are selected for 

implementation and evaluation. ZOH is the most practical to implement and adds little 

computation overhead to the existing process. The linear method provides better 

smoothness and more distinct patterns than the ZOH method and appears to be a balance 

between feature richness and practicality. The Lagrange method is not preferred as its 

unexpectedly large values may cause unstable neural network training. The cubic spline 

interpolation appears to be a good candidate, but the computational requirement makes it 

less practical. The traditional method of calculating cubic splines of a size-𝑀 sequence 

requires solving an 𝑀 × 𝑀 tridiagonal linear system. Even with efficient algorithms 

[108], the cubic spline is still significantly more complex than the linear method. Since 

the computational requirement of the interpolation process can be quite demanding as 

discussed in Section 7.4, the cubic spline method is not chosen. 

7.3.2 Extrapolation 

The output of the resample layer is required to be a fixed size 𝐾, which is determined by 

the predefined sampling rate 𝑇𝑠 and duration 𝐷𝑠. Since the input timestamp sequences 

have varied durations, the interpolation result using 𝑇𝑠 may not match the fixed size 𝐾. 

Therefore, extrapolation is needed to extend the output sequence to the desired size by 

adding new data points at the end of the sequence. Extrapolation uses the same methods 

as interpolation and the feasible choices are ZOH and linear. Between the two, ZOH 

should be preferred rather than linear extrapolation, since the latter may lead to very large 

end values if the last two data points form a large slope. 
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An example of applying the described resampling – linear interpolation and ZOH 

extrapolation – to a timestamped sequence is shown in Figure 7.3.2. The original 

embedding value sequence with timestamps is shown on the left, and the resample result 

is on the right. A small enough 𝑇𝑠 is chosen to capture the change of values, but not too 

small to increase unnecessary computational overhead. After resampling, all data points 

have equal intervals and all sequences use the same 𝑇𝑠, so the timestamp sequence can be 

safely discarded. 

 

Figure 7.3.2 Example of linear interpolation with ZOH extrapolation. 

7.3.3 Resample Implementation 

The resample layer needs to be implemented in a batch form in order for it to be usable in 

neural network training. Each embedding matrix contains 𝑁 sequences to be interpolated; 

processing them one by one takes too much time – so much that the network training 

would be unrealistic. The solution is to utilize parallel computing, which performs 

calculations for the whole embedding matrix at once. Practically, this means 

implementing the interpolation and extrapolation through matrix calculations.  

Interpolation in the matrix form uses the same equations as single sequences presented in 

Section 7.3.1. The key is to prepare the variables as batches and avoid for loops in the 
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code implementation. Figure 7.3.3 shows the pseudo code for linear interpolation 

function. This function takes 𝑁 timestamped sequences as input and produces 𝑁 

interpolated sequences as output. Referring to equation (7.4), steps 1 to 3 prepares 

𝑡𝑖, 𝑡𝑖+1, 𝑥𝑖, 𝑥𝑖+1for the calculation. Note that they are all in the form of 𝑁 × 𝐾 matrix, 

therefore having different names 𝑡𝑠𝑙𝑜, 𝑡𝑠ℎ𝑖, 𝑠𝑒𝑞𝑙𝑜, 𝑠𝑒𝑞ℎ𝑖. Steps 4 and 5 carry out equation 

(7.4) using matrix addition and multiplication. 

By the time of writing this dissertation, none of the common deep learning libraries 

(TensorFlow or PyTorch) does interpolations described in this chapter, so the resample 

layer is implemented for the first time. Specifically, the resample layer is programmed as 

a standard Keras layer class, and the interpolations are coded using TensorFlow’s 

Application Programming Interface (API). Packaging as a Keras class ensures the 

resample layer can be used seamlessly with many other layer classes provided by 

TensorFlow/Keras, while conforming matrix calculations with TensorFlow API 

automatically enables parallel computing. GPU acceleration can also be enabled when 

one is available. The link for the code implementation is provided in Appendix B. 
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Algorithm 1: Linear interpolation in matrix form 

function (𝑡𝑠, 𝑠𝑒𝑞): 

Input: 𝑁 timestamped sequences with length 𝑀. 𝑡𝑠 is an 𝑁 × 𝑀 matrix of time in 

seconds, 𝑠𝑒𝑞 is an 𝑁 × 𝑀 matrix of embedding values. 

Output: the interpolated sequence 𝑠𝑒𝑞𝐼𝑛𝑡𝑒𝑟𝑝 if size 𝑁 × 𝐾. 

1. Create equal-interval reference timestamps 𝑡𝑠𝑅𝑒𝑓 using the predefined duration 

and resample rate. 𝐾 denotes the length of 𝑡𝑠𝑅𝑒𝑓. 

2. Find 𝑖𝑑𝑥, the indices of 𝑡𝑠𝑅𝑒𝑓 values with regards to 𝑡𝑠. 𝑖𝑑𝑥 is an 𝑁 × 𝐾 matrix. 

3. Gather the values of 𝑡𝑠 and 𝑠𝑒𝑞 at given index 𝑖𝑑𝑥: 

    𝑡𝑠𝑙𝑜  = 𝑡𝑠 values at 𝑖𝑑𝑥 

    𝑡𝑠ℎ𝑖 = 𝑡𝑠 values at 𝑖𝑑𝑥 + 1 

    𝑠𝑒𝑞𝑙𝑜  = 𝑠𝑒𝑞 values at 𝑖𝑑𝑥 

    𝑠𝑒𝑞𝑙𝑜  = 𝑠𝑒𝑞 values at 𝑖𝑑𝑥 + 1 

    𝑡𝑠𝑙𝑜 , 𝑡𝑠ℎ𝑖, 𝑠𝑒𝑞𝑙𝑜 , 𝑠𝑒𝑞ℎ𝑖 are 𝑁 × 𝐾 matices. 

4. Calculate the slope of linear interpolation: 𝑠𝑙𝑜𝑝𝑒 =
𝑠𝑒𝑞 ℎ 𝑖 −𝑠𝑒𝑞 𝑙𝑜

𝑡𝑠ℎ 𝑖 −𝑡𝑠𝑙𝑜
  (equation 7.4) 

5. Calculate interpolated values: 𝑠𝑒𝑞𝐼𝑛𝑡𝑒𝑟𝑝 = 𝑠𝑒𝑞𝑙𝑜 +  (𝑡𝑠𝑅𝑒𝑓 − 𝑡𝑠𝑙𝑜 ) × 𝑠𝑙𝑜𝑝𝑒 

(equation 7.4). 

 
 

Figure 7.3.3 Pseudo code for linear interpolation in matrix form. 

7.3.4 Discussion on Interpolating Embeddings 

The underlying assumption for applying interpolations is that there exists an original 

continuous signal, from which the data points are discretely observed. In this study, the 

software execution is treated as the continuous process, and the log data are discrete 

observations. Deducing the optimal interpolation method would require analyzing the 

software process as signals, but few studies have investigated this topic and it is beyond 

the scope of this research. Therefore, this study takes an experimental approach. A series 

of tests are designed in Section 7.5 to compare the performance of different methods and 

determine the best one for the classification task.  
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7.4 Implementation 

The resample process is implemented in Python and packaged as a neural network layer 

that is compatible with the TensorFlow framework (refer to Appendix B for source code). 

Two parameters are pre-defined: the resample rate 𝑇𝑠 and the sample duration 𝐷𝑠. The 

choice of 𝑇𝑠 is preferably smaller than the shortest timestamp interval in the given 

sequence dataset, in the HDFS dataset it is set at 0.1s. Sample duration 𝐷𝑠 is set to be the 

same as the longest sequence sample in the dataset, such as 120s. 

Based on the proposed framework in Figure 7.2.2, two deep learning models are 

presented: the Ts-RNN and Ts-CNN. They are based on the RNN and CNN presented in 

the previous chapter. For each model, an ZOH and a linear variation are implemented. 

The cubic spline and Lagrange methods are not considered for the reasons explained in 

Section 7.3.1. As a result, there are in total six models to be evaluated: 

1. CNN model same as in Chapter 6, 

2. RNN model same as in Chapter 6, 

3. Ts-RNN-ZOH, timestamp RNN model with ZOH interpolation, 

4. Ts-CNN-ZOH, timestamp CNN model with ZOH interpolation, 

5. Ts-RNN-Lin, timestamp RNN model with linear interpolation, 

6. Ts-CNN-Lin, timestamp CNN model with linear interpolation. 

The models’ configurations are shown in Table 7.1 and Table 7.2, where the tables on the 

left show RNN and CNN base models copied from Table 6.2 and Table 6.3 in the 

previous chapter. The tables on the right show Ts models based on RNN and CNN. 



 

 

Ph.D. Thesis  McMaster University 

Yixin Huangfu  Department of Mechanical Engineering 

186 

 

Compared to the base models, the Ts models take an additional timestamp input 𝑡𝑠 and 

add a resample layer after embedding. The resample layer does not contain trainable 

parameters, so the total weights for the base model and the Ts model are the same. 

Table 7.1 The model configurations using RNN. 

 RNN    Ts-RNN  

Layer Configuration Shape 
 

Layer Configuration 
Shape 

𝒙, 𝒕𝒔 

Input  (250)  Input  (250), (250) 

Embedding 16 units (250, 16) 
 

Embedding 16 units 
(250, 16), 

(250) 

LSTM layer 
64 units, tanh 

activation 
(64) 

 
Resample 𝑇𝑠 = 0.1s (1201, 16) 

Full-connection 
32 units, tanh 

activation 
(32) 

 
LSTM layer 

64 units, tanh 

activation 
(64) 

Output layer 
1 unit, sigmoid 

activation 
(1) 

 
Full-connection 

32 units, tanh 

activation 
(32) 

Total weights: 22,849 / 23,633  
 

Output layer 
1 unit, sigmoid 

activation 
(1) 

    Total weights: 22,849 / 23,633  

       

Table 7.2 The model configurations using CNN. 

 CNN    Ts-CNN  

Layer Configuration Shape 
 

Layer Configuration 
Shape 

𝒙, 𝒕𝒔 

Input  (250)  Input  (250), (250) 

Embedding 16 units (250, 16) 
 

Embedding 16 units 
(250, 16), 

(250) 

1D convolution 
32 kernels, size=4, 

stride=1 
(81, 32) 

 
Resample 𝑇𝑠 = 0.1s (1201, 16) 

Global max 

pooling 
 (32) 

 
1D convolution 

32 kernels, size=8, 

stride=3 
(332, 32) 

Full-connection 
32 units, ReLU 

activation 
(32) 

 Global max 

pooling 
 (32) 

Full-connection 
32 units, ReLU 

activation 
(32) 

 
Full-connection 

32 units, ReLU 

activation 
(32) 

Output layer 
1 unit, sigmoid 

activation 
(1) 

 
Full-connection 

32 units, ReLU 

activation 
(32) 

Total weights: 6,273 / 7,057  
 

Output layer 
1 unit, sigmoid 

activation 
(1) 

    Total weights: 6,273 / 7,057  

       

All six models are trained and evaluated on GPU-enabled hardware platforms – a 

windows machine and the Google Colab cloud computing environment. Training Ts 
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models takes longer than the base models, which is expected as the interpolation is a 

rather heavy process. Table 7.3 shows such comparisons using a portion of the dataset as 

an example. The Ts-CNN-Lin requires 5 times more time per epoch than the regular 

models, while training Ts-RNN-Lin requires more than twice the time of training a Ts-

CNN-Lin. The processing time of Ts models is also directly related to the resample 

configuration – a longer duration leads to more computation time and memory usage. 

This is manageable when carrying out the tests in this chapter’s evaluation section, but 

may run into memory shortage when the network is configured to process very long 

samples. 

Table 7.3 Training comparison using a portion of the dataset. 

 Optimizer Time per epoch Total epochs Total time 

RNN RMSprop 1s 10 10s 

CNN Adam 1s 10 10s 

Ts-RNN-Lin RMSprop 13s 10 130s 

Ts-CNN-Lin Adam 6s 10 60s 

     

7.5 Evaluation 

All four models are evaluated using the HDFS system log dataset. The test settings are the 

same as the previous chapter with the addition of a new test in Section 7.5.3. The results 

of the RNN and CNN base models are listed in this section’s tables to compare with the 

Ts models. Classification metrics including the accuracy, precision, recall, and F1 score 

are used for evaluation. 
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7.5.1 Evaluation Results 

As mentioned earlier, a maximum duration 𝑇max = 120s is a common choice to select 

eligible data for evaluation, as most samples fall within this duration as shown in Section 

7.1. With 𝑇max = 120s, a total of 101,245 samples are selected for training and evaluation. 

Among them, there are 6,422 faulty samples. A testing set containing 20% samples is 

used to evaluate all four models. Table 7.4 lists the performance of all four models. Note 

that the values in this table are not definitive as the models’ final weights are subject to 

random initialization during the training process. Test results that are most reproducible 

are displayed in this table. 

Table 7.4 Model performance on the test dataset. 

 Accuracy Precision Recall F1-score 

RNN 99.96% 99.46% 99.92% 99.69% 

CNN 99.96% 99.46% 99.84% 99.65% 

Ts-RNN-ZOH 99.70% 97.81% 97.43% 97.62% 

Ts-CNN-ZOH 99.87% 97.94% 100.00% 98.96% 

Ts-RNN-Lin 99.71% 99.36% 96.03% 97.66% 

Ts-CNN-Lin 99.96% 99.46% 99.84% 99.65% 

     

From Table 7.4, the RNN, CNN, and Ts-CNN-Lin produce the best performance in terms 

of all four metrics and the difference is marginal. Ts-RNN-ZOH and Ts-RNN-Lin show 

the lowest F1 score, which is mainly attributed to a lower recall rate. It means the model 

gets more false negatives and misses some faulty samples. The contribution of 

timestamps seems to be insignificant to the detection tasks: Ts-CNN-Lin performs the 

same as CNN, while the two Ts-RNN models show degradation in performance. 

However, this is likely due to the models’ performance being already at a very high level 

such that further improvements would be harder to achieve. 
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7.5.2 Results with Varying Duration Threshold 

A list of larger 𝑇max values ranging from 120s to 1920s is chosen for additional testing.  

Higher 𝑇max gives longer samples that are shown to be difficult to classify in the previous 

chapter. A complete comparison is shown for the four models in Table 7.5 and Table 7.6, 

showing F1 score and accuracy respectively. Again, the most reproducible values among 

repeated tests are selected for presentation. In the F1 score table, Table 7.5 shows a 

distinctive difference among the tests. With more long samples (higher 𝑇max), the CNN 

and RNN base models both show decreased scores, while Ts-CNN-ZOH and Ts-CNN-

Lin produce consistently strong performance with little degradation. At the maximum 

sample length of 1920s, the best performing two Ts-CNN models show a 3% advantage 

over the second-place base model. The two Ts-RNN models on the other hand show some 

degradation compared to the base RNN model, but have better performance with longer 

samples above 480s. The accuracy scores in Table 7.6 support a similar observation, but 

the difference among tests is less significant. 

Table 7.5 Test F1 score with different 𝑇𝑚𝑎𝑥 

𝑻𝒎𝒂𝒙 

  F1 Score   

RNN 
Ts-RNN-

ZOH 

Ts-RNN-

Lin 
CNN 

Ts-CNN-

ZOH 

Ts-CNN-

Lin 

120s 99.69% 97.62% 97.66% 99.65% 98.96% 99.65% 

240s 97.80% 97.54% 95.14% 98.90% 99.31% 99.31% 

480s 95.51% 95.42% 92.02% 98.59% 99.02% 99.05% 

960s 93.64% 94.21% 95.54% 96.32% 98.88% 98.84% 

1920s 91.69% 92.00% 92.79% 95.19% 98.40% 98.40% 
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Table 7.6 Test accuracy with different 𝑇𝑚𝑎𝑥 

𝑻𝒎𝒂𝒙 

  Test Accuracy   

RNN 
Ts-RNN-

ZOH 

Ts-RNN-

Lin 
CNN 

Ts-CNN-

ZOH 

Ts-CNN-

Lin 

120s 99.96% 99.70% 99.71% 99.96% 99.87% 99.96% 

240s 99.74% 99.70% 99.40% 99.84% 99.92% 99.92% 

480s 99.52% 99.50% 99.10% 99.84% 99.89% 99.89% 

960s 99.39% 99.44% 99.56% 99.61% 99.88% 99.88% 

1920s 99.32% 99.34% 99.36% 99.56% 99.86% 99.86% 

       

7.5.3 Repeated Tests 

To further confirm these observations, each test setup in Table 7.5 is carried out 10 times. 

Every time the model is re-initialized with random weights. The accuracy results of each 

10 repeated tests are presented as a box-and-whisker plot in Figure 7.5.1 and Figure 7.5.2, 

for the CNN and RNN variations, respectively. The box-and-whisker plot is a common 

graphical description of quantitative data. The box in the graph represents the 

interquartile range (IQR), covering the data points whose values are between the 75th and 

25th percentiles, the middle 50%. The whiskers show the upper and lower 25th percentiles, 

except for the outliers that are indicated by individual dots. An outlier is determined if it 

lies on the outside of the 95% confidence interval of the distribution. The median 

performance is highlighted with a black cross mark and connected with dashed lines. 

The improvement of adding timestamps is clearly revealed evident in the CNN case, as 

shown in Figure 7.5.1. Ts-CNN-Lin presents the highest median, best-case and worst-

case F1 scores. Ts-CNN-ZOH underperforms for the 120s duration, but for the rest tests 

its performance is only marginally lower than the Ts-CNN-Lin.  The base CNN model 

gets overall the lowest numbers of the three. 
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Figure 7.5.1 F1 score box plot comparison, CNN vs Ts-CNN-ZOH (left),  

RNN vs Ts-RNN-Lin (right) 

For the RNN case, the addition of timestamps only shows its contribution for longer 

sequences, as shown in Figure 7.5.2. The repeated tests show that the base RNN has the 

lowest performance variation, while both Ts-RNN models have significantly larger 

values. The median performance of two Ts-RNN models is lower than the base RNN, 

other than for the longer sequence durations, i.e., the 960s and 1920s cases. 

   

Figure 7.5.2 F1 score box plot comparison, RNN and Ts-RNN-ZOH (left),  

RNN and Ts-RNN-Lin (right) 
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7.5.4 Summary 

The observation from tables and graphs in this section confirms that timestamps have a 

significant impact on distinguishing fault conditions. The temporal feature can be 

captured by the Ts-CNN variations, which improves upon the base CNN model. In 

particular, Ts-CNN-Lin demonstrates the best performance among all models tested. The 

RNN also benefits from the timestamps; however, it is only revealed through samples 

with longer durations. 

7.6 Conclusion 

This chapter investigated the effect of log timestamps on software fault diagnosis. The 

timestamps with irregular intervals are common in most types of log data, but few 

existing studies have examined or properly utilized them. Statistical and microscopic 

observations in this study reveal the major distributional differences when including 

timestamps, showing the potential of improving diagnosis performance. 

The difficulty of including time information with log analysis is that the log tokens are 

categorical while the timestamps are numerical. The novel Ts models are proposed to 

solve the problem by resampling the embedding matrix within a deep learning 

framework. Different interpolation and extrapolation methods are investigated to perform 

the resampling process. The resample computation is implemented as a standard layer 

that is universally applicable to all types of neural networks that handle sequential inputs. 

Two deep learning variations, Ts-CNN and Ts-RNN, are formulated under the Ts model 

structure. Each model can be configured to use ZOH or linear interpolations. The 
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evaluation results demonstrate a significant improvement compared to the base models 

from the previous chapter, namely RNN and CNN. Ts-CNN-Lin model gives the best 

performance amongst the tested, showing a 3% improvement of F1 score followed by 

CNN. Timestamps show their contribution in the Ts-RNN models as well, although not as 

evident as the CNN case. It can be concluded that the timestamps contain distinguishing 

features that contribute to the detection of faults. Such features are successfully captured 

by the proposed Ts-CNN-Lin model. 

One drawback of the Ts models, same as the sequential deep learning models in general, 

is that the data samples to be diagnosed must have a fixed duration. This is suitable for 

faults that exhibit complete faulty behaviour within a certain time period, but could be 

limited for latent conditions where the faulty behaviour takes a long time to present. The 

model’s input size can be set larger to include longer data samples and the decrease of 

performance has been significantly mitigated by using the Ts models, but the 

computational requirement is worth consideration. Large input size increases the load of 

resampling, which can add up the computational time for the Ts models. In practice, an 

appropriate time window that is long enough to capture the fault behaviour should be 

determined before configuring the diagnosis system. 
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Chapter 8 Conclusive Remarks 

The problem of log data analysis is an emerging topic under the big data phenomenon. 

The system logs appear to be unstructured text data, but underneath is a mixture of 

categorical and numerical sequences. The difficulty of analysis can be mainly attributed 

to the categorical nature of log tokens, but also includes the complications of combing 

with other types of data, such as the timestamps. The system log typically comes in large 

quantities, and predictably their volume will continue to grow. Therefore, the analysis 

approach must consider the functionality as well as efficiency in order to process the data 

in large amounts. 

Fault Detection and Diagnosis (FDD) is one important goal of data analysis. FDD 

systems can be roughly divided into two categories, namely model-based and signal-

based. The former approach requires the mathematical model of the monitored system. In 

many cases obtaining such models are impractical, either because they are costly to build, 

or the system is too complex. For the systems that produce abundant data, data-driven 

models have been a cost-effective choice with the development of self-learning methods. 

These methods, represented by the recent deep learning models, are the key driving force 

to uncover the value of a large quantity of data. In turn, the availability of these 
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technologies promotes the generation and harvesting of even more data as their benefits 

outweigh their development cost. 

The software fault diagnosis for the Ford SYNC system is one good example in the big 

data environment. The SYNC’s dedicated logging framework was developed to keep as 

much valuable information as possible and stores them as system logs. These log data 

play an important role in software development, especially customer acceptance testing 

and fault management. An automated fault diagnosis system using the system logs – as 

shown in this research – would be a great supplement to the current manual process and 

can improve the triage process. Other systems that produce log data could also benefit 

from such a diagnosis system, as demonstrated using the HDFS system log in this 

research.  

Various approaches have been investigated in the research to tackle the complication of 

the log data. The problem originates from a software application, but the methodology is 

universal to any similar type of data. During the course of the research, many inspirations 

were drawn from other disciplines, such as bioinformatics, text analysis, language 

modelling, and signal processing. The journey was interesting and produced exciting 

achievements. 

8.1 Investigated Methodologies 

A few learning-based methodologies were investigated during the course of the research. 

They all fall into the broad category of machine learning. Three different approaches to 

decipher the fault features from training data were investigated, namely: sequence pattern 
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mining (FDSPM), statistical machine learning (FDSML), and deep learning. They range 

from intuitive to abstract, representing the progress of this research from a simple to a 

more complex level.  The methodologies are also loosely related to the evolution of 

existing studies, where earlier studies focus on hard evidence and explicit sequential 

patterns and more recent works obtain highly abstracted features through deep learning. 

In addition, the timestamps being an essential part of the logs are also investigated. 

8.1.1 Fault Diagnosis via Sequence Pattern Mining (FDSPM) 

The first proposed method is called Fault Diagnosis via Sequence Pattern Mining 

(FDSPM) and is presented in Chapter 4. The FDSPM is a novel approach combining data 

mining for pattern extraction and Bayesian inference for classification, the first of its kind 

in log data analysis literature. The concept is rather intuitive: it mimics test engineers’ 

manual process of examining the log data by finding distinguishing log sequence patterns. 

Specifically, with log data samples that contain the same fault, the FDSPM looks for 

common patterns that occur across samples. The discovered patterns are then used to 

match the sequence in a new log sample. A pattern-based naïve Bayes classifier is then 

applied to determine the fault based on the matched patterns. 

The learning of representative sequence patterns is achieved through sequence data 

mining. Specifically, a mining algorithm that searches common patterns within a set of 

samples is required. Such algorithms are commonly used in bioinformatics, such as DNA 

sequence research, and can be ported to log token sequences with little adaptation. 

Moreover, to fully utilize available data from the Ford SYNC system, a contrast mining 

approach is adopted. The contrast mining not only searches for common patterns from a 
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set of faulty samples, but also excludes the patterns that appear in a contrast set. An 

algorithm called ConSGapMiner is selected for its efficiency and flexibility after 

reviewing various mining methods. It is implemented from scratch using Python codes 

and successfully produces the contrast patterns using the Ford log data. 

The number of patterns discovered for each fault condition may vary, and they likely 

contain false positives due to the deficiency of training data. As a result, the weighting of 

each pattern becomes important as they may not contribute to a fault condition equally. A 

knowledge base is constructed to represent these weightings. Specifically, it is a matrix 

containing the conditional probabilities 𝑃(𝑝𝑖|ℎ𝑖) for all patterns and all faults. The 

𝑃(𝑝𝑖|ℎ𝑖) values are obtained by observing the patterns’ appearances in the training 

dataset. The extracted patterns and the knowledge base are the outcome of the learning 

phase and are to be used for diagnosis. 

When diagnosing a sequence sample, a pattern-matching process is implemented to find 

the appearances of extracted patterns. The matching result – a list of true or false entries – 

is then utilized by a scoring mechanism to obtain the diagnosis result. Defining 

thresholding rules is applicable, but it turns out to be very complicated as there are 

multiple faults and a large number of patterns. Instead, the Bayesian classification is 

investigated to tackle the problem in a probabilistic approach. A naïve Bayes classifier is 

implemented to obtain the probability of a fault 𝑃(ℎ𝑖|𝑝1, 𝑝2, … ) using the conditional 

probabilities 𝑃(𝑝𝑖|ℎ𝑖) from the knowledge base. The output of the classifier is the fault 

candidate with the highest probability.  
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The FDSPM method evaluated on the Ford dataset demonstrates good performance in 

terms of detection and classification accuracy. The contrast mining strategy successfully 

addresses the lack of data issue – training each fault condition uses on three training 

samples on average and two in some cases. However, FDSPM’s shortcomings are also 

clear. Because the tokens are processed as symbols, the computational requirement is 

very high even with an efficient sequence mining algorithm selected. This limits the 

FDSPM’s ability to scale to a large amount of data samples and fault conditions. 

8.1.2 Fault Diagnosis via Statistical Machine Learning (FDSML) 

To address the efficiency issue, the Fault Diagnosis via Statistical Machine Learning 

(FDSML) approach is explored in Chapter 5. FDSML takes a completely different 

approach from the FDSPM method by using statistical features instead of explicit patterns 

to represent fault conditions. The statistical feature extraction turns the problem into a 

numerical domain and renders many machine learning classifiers applicable. This 

approach is not uncommon among log literature, but it was first applied to the Ford log 

data and revealed the lack of data issue. 

Converting token sequences into numerical vectors is a process called feature 

vectorization. It is a manually defined process that depends on the type of the system and 

log data. Most vectorization techniques have a small computation footprint, often with a 

constant-time complexity 𝒪(1). As a result, they are particularly suitable for large 

amounts of data. This study has found that the term-frequency-inverse-document-

frequency (TF-IDF) feature works ideally with the system log data. 
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The vectorization process converts the token sequences into fixed-length vectors, to 

which many well-established machine learning classification models can apply. 

Specifically, an MLP is implemented because of its flexibility to scale with the size of the 

input, i.e., the number of layers and the number of neurons within each layer are both 

configurable. A 3-layer MLP is found to produce the best accuracies on the available 

Ford log data. 

FDSML’s computational efficiency improvement is very high, requiring less than one 

hundredth (1/100) of the FDSPM to train using the same Ford dataset. The saved time 

means quicker parameter tuning and better scalability. However, the accuracy result is 

slightly less than the FDSPM. The reason is mainly due to the lack of training data. An 

MLP contains thousands of trainable parameters to converge. The fact that each fault 

class only contains an average of three training samples is far from adequate. To evaluate 

a properly trained MLP model’s performance, artificially augmented log data samples are 

created by inserting known fault patterns into real log sequences. Training a similar MLP 

model on the enriched dataset produces near 90% accuracies, a significant improvement 

from the original test. This demonstrates that FDSML can be highly effective, but 

requires a rich dataset to fully train the model. 

Despite FDSML’s satisfactory results, extracting statistical features from sequences loses 

apparent information: the samples are treated as a collection of tokens rather than a 

permutation. The sequential order is removed. To incorporate more information in the 

vectorization process, more sophisticated feature vectorization methods are needed, as 

well as machine learning models capable of processing such features. 
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8.1.3 Deep Learning 

Deep learning is the third approach investigated for the log data analysis problem in 

Chapter 6 to handle larger input features and include the order information. The main 

components are the embedding process for advanced feature vectorization and the 

sequential neural network model for classification. Deep learning is an emerging topic in 

many engineering areas including log analysis. This study was based on two network 

types – the CNN and the RNN – and extended upon them to process log tokens and 

perform the fault detection task. 

The embedding technique originates from language modelling research with the goal of 

capturing the semantics of words. Instead of extracting feature vectors from a whole 

sequence sample as used in the previous approach, embedding applies to each individual 

element of a sequence, such as a word in a paragraph. In this study, an adaptation of the 

embedding process is implemented for the log tokens. The tokens are represented by 

vectors in a high-dimensional space which, through visualization, reveals the statistics 

and relationships of the tokens. 

A traditional machine learning model, such as the regular neural network (the MLP), is 

unable to directly process 2D data, so a specialized deep learning model is required. In 

particular, Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) 

models were investigated, implemented, and fine-tuned. The HDFS open log dataset was 

used for training and evaluation, since the Ford SYNC system was unable to provide 

enough data due to logistic issues. Both models have demonstrated good performance but 

also showed some degradation for longer sequence samples. 
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8.1.4 Timestamp Integration 

Log data from both the Ford SYNC system and the HDFS log dataset contain timestamps 

with nonuniform intervals. This timestamp information appears to reflect some dynamics 

of the log data, but has been rarely investigated in related literature. Specifically, the 

histogram of the log sequences’ lengths does not reveal any meaningful pattern, but the 

distribution of the log tasks’ durations exhibits a clear bi-modal pattern. Based on this 

observation, a novel neural network layer that up-samples the log sequence is proposed to 

integrate log timestamp information. The up-sampling happens at the embeddings level 

and uses interpolation methods to even out the intervals between data points. The 

outcome of the up-sample layer is still in a 2D matrix form, so it is compatible with 

existing network structures, such as an RNN or a CNN, to carry out the classification 

task. 

The new models integrating timestamps, called Ts-RNN and Ts-CNN, have demonstrated 

a significant performance improvement over the base RNN and CNN models in terms of 

accuracy, precision, and recall metrics. This result shows that the timestamps indeed 

contain distinguishing information of the faults and can be captured by the proposed Ts- 

models to improve detection performance. 

The deep learning approach can be comprehensive as it is able to include a great amount 

of information from the log data, but there are limitations. The size of the model input 

must be pre-defined and cannot be arbitrarily long. The deep learning models are shown 

to have decreasing accuracy on longer samples, although this tendency can be improved 

by using the proposed time-stamped models. Time-stamped models may also encounter 
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computational issues when processing long samples, due to the relatively heavy 

interpolation operation. In a nutshell, the deep learning approach brings advantages 

compared to the two previous methods, but the computation requirement needs to be well 

planned before applying the methodology. 

8.2 Recommendations for Future Research 

The possible future research directions that can be extended from this study are as 

follows. 

During the course of the research, there was a shortage of data from the Ford SYNC 

system. Chapters 4 and 5 address the lack of data using carefully selected mining 

algorithms and data augmentation techniques. Cross-validation, another technique that 

helps relieve the lack of data issue, is also worth investigating as future work. Cross-

validation performs training a certain number of times; each time the dataset is split into 

training and test set differently. As a result, cross-validation can accurately estimate a 

model’s performance with a limited amount of data. 

The lack of data is partially due to the fact that the current fault management system is 

not designed to store a large amount of log data. The accessibility of the system from 

outside of the corporation is another impacting factor. Although the HDFS open dataset 

resembles the SYNC log in many ways and is used as a replacement, it could not match 

the complexity of the latter. Future work may consider streamlining the data collection of 

the SYNC system in order to meet the requirement of training large machine learning 

models. 
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Miscellaneous information in log messages, such as the variables in the log statement, 

were not considered in this study as they are not universal and their interpretation varies 

from system to system. They should be investigated as some distinctive features may be 

uncovered and may contribute to the diagnosis of system faults. However, it would 

require a more comprehensive dataset to verify and evaluate, again highlighting the bottle 

neck of data collection. 

By the time of finishing this dissertation, the transformer, a new type of sequential neural 

network, started to emerge. The original work on transformer [109] claimed higher 

accuracy and less training time than other existing models on language translation tasks. 

Further work could include adapting the transformer to log data analysis, comparing it 

with CNN and RNN, and integrating it with the Ts models proposed in this research. 

Implementing the diagnosis system on an embedded platform is another potential 

challenge. This is becoming a trend in many areas as intelligent devices are more 

computationally capable and commonly feature internet connectivity. Edge computing is 

an example that moves processing and computation of data from a central location, such 

as a server or the cloud, to a processor unit close to the system that is being monitored. 

Performing local diagnosis brings practical benefits when a large number of products are 

deployed and all generating data at the same time. Online learning of the diagnostic 

models can be carried out in a distributed form when a central model is difficult to 

generalize to all products. 
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The data-driven methodologies in this research are developed for analyzing system log 

data, which is a complex mixture of categorical sequence, numerical variables, and 

irregular timestamps. It would be interesting to apply the proposed methods in other 

domains using data of similar complexity and for applications that are not limited to 

software faults. 
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Appendix A ConSGapMiner Pseudo-code 

The following pseudo-code is referenced from Chapter 6 in [81]. SMDS in the context is 

short form Semi-Minimal Distinguishing Subsequence, the intermediate variables to store 

sequence patterns. 

A1. The wrapper function, ConSGapMiner(): 

 

A2. The recursive function to grow the prefix tree, SMDS_Gen(): 
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A3. Support calculation and gap checking function Support_Count(): 
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Appendix B Source Code for the Research 

 

All source codes are available online as GitHub repositories as follows. 

FDSPM in Chapter 4:  

- https://github.com/hfyxin/log-data-analysis-data-mining 

FDSML in Chapter 5: 

- https://github.com/hfyxin/neural-network-with-dummy-data 

Ts Models in Chapters 6 and 7: 

- short version: https://github.com/hfyxin/Ts-models-log-data-analysis 

- full version: https://github.com/hfyxin/time-sequence-alchemy-notebook 

 

 

https://github.com/hfyxin/log-data-analysis-data-mining
https://github.com/hfyxin/neural-network-with-dummy-data
https://github.com/hfyxin/Ts-models-log-data-analysis
https://github.com/hfyxin/time-sequence-alchemy-notebook
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