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ABSTRACT

Wastewater treatment plants (WWTPs) face increasingly stringent effluent quality

constraints as a result of rising environmental concerns. Efficient operation of the

secondary clarification process is essential to be able to meet these strict regulations.

Treatment plants can benefit greatly from making better use of available resources

through improved automation and implementing more process systems engineering

techniques to enhance plant performance. As such, the primary objective of this

research is to utilize data-driven modeling techniques to obtain a representative model

of a simplified secondary clarification unit in a WWTP.

First, a deterministic subspace-based identification approach is used to estimate a

linear state-space model of the secondary clarification process that can accurately

predict process dynamics, with the ultimate objective of motivating the use of the

subspace model in a model predictive control (MPC) framework for closed-loop control

of the clarification process. To this end, a low-order subspace model which relates a

set of typical measured outputs from a secondary clarifier to a set of typical inputs is

identified and subsequently validated on simulated data obtained via Hydromantis’s

WWTP simulation software, GPS-X. Results illustrate that the subspace model is

able to approximate the nonlinear process behaviour well and can effectively predict

the dynamic output trajectory for various candidate input profiles, thus establishing

its candidacy for use in MPC.

Subsequently, a framework for forecasting the occurrence of sludge bulking—and con-

sequently clarification failure—based on an engineered interaction variable that aims

to capture the relationship between key input variables is proposed. Partial least

squares discriminant analysis (PLS-DA) is used to discriminate between process con-

ditions associated with clarification failure versus effective clarification. Preliminary

results show that PLS-DA models augmented with the interaction variable demon-

strate improved predictions and higher classification accuracy.
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Chapter 1

Introduction

1.1 Motivation

Wastewater treatment plants (WWTPs) are facing increasingly stringent requirements

and effluent quality constraints due to ever increasing environmental protection con-

cerns, which has in turn brought increased attention to understanding WWTP op-

eration through mathematical models. A good quantitative understanding of the

wastewater treatment process (a model) is essential for the implementation of reliable

and efficient monitoring and control methods that can enable plants to better manage

resources and meet certain specs. In practice, there are two main modeling techniques:

first-principles (mechanistic) models and data-driven models. First-principles models

are built using explicit knowledge of the process mechanisms and invoke fundamental

physical and chemical laws that describe the system, often utilizing algebraic, or-

dinary, or partial differential equations. Conversely, data-driven models exclusively

utilize available measured process data to identify parameters for a model structure

chosen a priori.

A fairly comprehensive library of first-principles models exist in the general area of

wastewater treatment, such as the activated sludge model (ASM) family [Henze et al.,
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2006; Von Sperling, 2007a] and models which describe the sedimentation processes

[Takács et al., 1991; Jeppsson, 1996; Jeppsson and Diehl, 1996]. While they have

proven valuable in capturing the general trends of the process, the high complexity

and nonlinearity of the wastewater treatment process prevents first-principles models

from truly predicting variable behaviour precisely. Moreover, the task of building,

maintaining and calibrating these first-principles models to specific process units (and

to the treatment process as a whole) remains challenging due to the large number

of model parameters that must be identified [Hauduc et al., 2009; Dürrenmatt and

Gujer, 2012]. The applicability of first-principles models is further limited by the very

specific conditions under which these models are constructed (and therefore valid for)

[Sánchez, 2004]. These limitations imply that first-principles models cannot be used to

reliably describe or tightly control the wastewater treatment process, in turn limiting

the plant’s ability to meet the tight specifications imposed.

The limitations of existing first-principles models in combination with increasing avail-

ability of data and continually improving computational capabilities have motivated

the use of increasingly popular data-driven modeling techniques. Data-driven ap-

proaches aim to construct a simpler—often linear—model from measured process

data and, as such, do not require a detailed prior knowledge of the system itself.

Many data-driven modeling approaches exist which largely differ in model structure

and intrinsic computation, among which include latent variable-based methods and

subspace-based identification methods.

Subspace identification is a two-step statistical-based approach that utilizes measured

input-output data to first estimate a state trajectory and then compute the model

parameters for a linear time-invariant (LTI) state-space model of the process [Moo-

nen et al., 1989; van Overschee and de Moor, 1995; de Moor et al., 1999]. The key

advantage of subspace identification is its conceptual and computational simplicity;

subspace methods are fast (noniterative), numerically stable algorithms that obtain

2
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models useful for predicting process variable behaviour and subsequently as the ba-

sis for feedback control [van Overschee and de Moor, 1996]. Subspace identification

methods have proven a useful tool in many engineering applications and have histor-

ically been utilized to model and control various industrial processes [Favoreel et al.,

2000; Meidanshahi et al., 2017; Misra and Nikolaou, 2003; Bastogne et al., 1997] and

for designing effective fault detection and isolation systems [Basseville et al., 2000;

Ding et al., 2009; Wei et al., 2010; Shahnazari et al., 2018].

Partial least squares (PLS; also referred to as projection to latent spaces)—another

statistical-based method—is classified as a latent variable multivariate regression

(LVMR) method in which data of high dimensionality is projected into lower-dimensional

latent variable subspaces to obtain a static linear multivariate model. PLS is an ex-

tremely useful tool for understanding and identifying important relationships between

process inputs and outputs, as well as for predicting a set of response variables from

a set of predictor variables [Corbett and Mhaskar, 2016]. Arguably one of the most

recognized and widely used data-driven approaches, PLS has been applied in practice

extensively for purposes such as predicting variable information, monitoring and con-

trolling industrial processes, optimizing process operation and product quality, and

also as a general dimensionality reduction technique [Dunn, 2010; Dong and Qin,

2015]. PLS is most commonly used in the area of chemometrics – largely for analyt-

ical instrument calibration and for deriving quantitative structure-property relations

(QSPR), quantitative structure-activity relations (QSAR) and comparative molecu-

lar field analysis (CoMFA) models from molecular data [Wold et al., 2001]. More

generally, PLS has also been applied for steady-state process modeling, dynamic pro-

cess modeling, and process monitoring [Qin, 1993; Lakshminarayanan et al., 1997;

Kresta et al., 1991; Kresta, 1992]. Partial least squares discriminant analysis (PLS-

DA) is a variant of PLS regression that is used as a discrimination method when

the response (output) data is categorical. PLS-DA is a versatile modeling approach

but is most often used to discriminate between two or more predefined class labels

3



M.A.Sc. Thesis - E. Hermonat; McMaster University - Chemical Engineering

and predict the class membership of observations based on corresponding measured

input data. Like PLS regression, the use of PLS-DA is quite prominent in the field of

chemometrics and has been used in fields such as multivariate image analysis, medical

diagnostics, soil science, food analysis, metabolomics and other general omics data

analyses, and much more [Ruiz-Perez et al., 2018; Chevallier et al., 2006; Ballabio and

Consonni, 2013; Tan et al., 2004; Worley and Powers, 2013].

Owing to the fact that wastewater treatment plants can benefit from making better

use of available resources through improved automation and the incorporation of

process systems engineering techniques, the integration of data-driven modeling tools

has garnered much interest in the wastewater treatment field. In particular, data-

driven techniques have been explored for the purposes of process monitoring and

fault detection, variable prediction, and advanced automated control of the treatment

process [Corominas et al., 2018; Newhart et al., 2019].

The use of subspace methods—which are by design suited for model-based control—in

the general area of wastewater treatment is limited to date. Lindberg [1997] utilizes

subspace identification to obtain a model relating the concentrations of nitrate and

ammonium in the last aerated zone of an activated sludge process to three process

inputs and three measured disturbances. The identified subspace model is subse-

quently used in the design of a multivariable feedforward controller with the aim of

maintaining nitrate and ammonium concentrations as close to their desired set-points

as possible. This study demonstrates the ability of the subspace model to effectively

predict nitrate and ammonium levels and highlights the importance of equipping the

controller with a reliable model capable of accurate predictions. Similarly, Sánchez

and Katebi [2003] utilize a model estimated via subspace identification to design a

model predictive controller to control dissolved oxygen (DO) levels in an activated

sludge WWTP. Sotomayor et al. [2003] investigates the performance of various sub-

space identification methods for modeling a complex activated sludge process with two

4
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inputs, four disturbances and two outputs. The described studies are excellent ex-

amples illustrating potential value of using subspace identification methods to model

and control the wastewater treatment process and prompt further exploration of ap-

plying subspace-based approaches to additional treatment units, quality variables and

control implementations.

In the field of wastewater treatment, PLS is often used to build a predictive model

relating a set of input variables (e.g, initial water quality, plant operational infor-

mation and design characteristics) to a set of output variables (often effluent water

quality properties). Specifically, PLS has been used as a successful variable predic-

tion and process monitoring tool in WWTPs [Rosen and Olsson, 1998; Choi and

Lee, 2005; Aguado et al., 2006; Woo et al., 2009], and for water quality estimation

and monitoring via soft-sensors developed from measured ultraviolet-visible (UV-Vis)

spectroscopy data [Langergraber et al., 2003; Lourenço et al., 2008; Platikanov et al.,

2014]. On the other hand, the use of PLS-DA in WWTPs seems to be quite narrow,

with most results aimed at characterizing and discriminating between samples taken

at either different locations within a WWTP or between different WWTPs entirely

[Singh et al., 2005; Perez-Lopez et al., 2021; Yotova et al., 2019]. Perez-Lopez et al.

[2021] apply PLS-DA to evaluate and characterize the wastewater microbiome at dif-

ferent stages in the treatment process. More specifically, this study utilizes PLS-DA to

discriminate among water samples taken at three different points in the WWTP—the

influent, the anoxic reactor (denitrification), and the final effluent—based on changes

in the concentrations of various peptides and proteins detected at the sample loca-

tions. The PLS-DA model is able to identify the most relevant peptides and proteins

present at the three location and subsequently classify the samples according to their

point in the treatment process. The use of PLS-DA here shows promise as a tool to

highlight composition differentiation and help indicate WWTP performance based on

bacterial activity and proteomics variability over the course of the treatment process.

Wang et al. [2017] shows that PLS-DA can also be used to discriminate between dry

5
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and wet climate conditions based on data describing the seasonal variation of WWTP

influent characteristics in cold climate regions. In this study, PLS-DA is used to clas-

sify WWTP influent as deriving from either wet or dry climate conditions based on

measured data for the influent flow rate, water temperature and chemical composition

of the wastewater during both the warm and cold seasons. The model is able to attain

a classification accuracy of 91%, which prompts the authors to explore the develop-

ment of a scenario-based soft sensor to survey and control WWTPs as a subject of

future work. Existing studies which employ PLS-DA to characterize the treatment

process and discriminate various operating conditions and wastewater compositions

highlight the utility of PLS-DA and motivates further exploration of potential uses

for discriminatory models in WWTPs. One potential application of classification

in WWTPs is failure analysis and maintenance management, the goal of which is

to construct a model that can classify and predict process failure modes (either for a

specific treatment unit or the overall WWTP). Classification models can be a valuable

condition monitoring and fault detection tool for WWTPs [Bertolini et al., 2021].

Data is continuously being collected at WWTPs but has yet to be used to its full

potential. As such, data-driven approaches which exploit the available data are ex-

tremely attractive to WWTPs, providing opportunities to improve and optimize treat-

ment performance by building better models and designing more efficient data-driven

monitoring and control systems.

1.2 Research problem statement

This research explores the application of data-driven modeling techniques—both dy-

namic and static—to the secondary clarification unit within a wastewater treatment

process. The aim of this work is twofold:

6
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1. Dynamic modeling

Utilize subspace-based model identification to estimate a representative linear

time-invariant state-space model of the secondary clarification process from sim-

ulated data. The objective of this piece is to construct a suitable linear model

that can describe the nonlinear process dynamics of the secondary clarifier and

accurately predict the output variable trajectories for multiple candidate input

profiles.

2. Static modeling

Utilize partial least squares discriminant analysis to identify a linear static model

from simulated steady-state data that can be used to predict the occurrence of

clarification failure based on key input variables and parameters in the wastew-

ater treatment process. The objective of this piece is to discriminate various

clarifier operational conditions which result in failure of the clarification unit,

with a focus on defining a relevant interaction variable that can improve predic-

tions and enhance classifier performance.

1.3 Outline of the thesis

The thesis is comprised of five chapters covering the application of both dynamic and

static data-driven modeling techniques to a simplified secondary clarification system.

The thesis is organized as follows:

Chapter 2 provides an overview of the conventional municipal wastewater treatment

process with a focus on the importance of the secondary clarification unit to the overall

treatment performance and effluent quality. A review of the key data-driven mod-

eling approaches used in this work—subspace-based model identification (dynamic

modeling methodology) and partial least squares discriminant analysis (static-based

7
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classification methodology)—is also given.

Chapter 3 explores the application of subspace identification to the secondary clarifi-

cation unit. The objective of this chapter is to identify an appropriate model which

captures the dynamic behaviour of the clarification process and can effectively predict

variable information, ultimately motivating candidacy of the subspace model for use

in a model predictive control scheme. It is in this chapter that a description of the

simplified secondary clarification unit is given and the data collection and simulation

processes used throughout the thesis are detailed.

Chapter 4 focuses on the identification and classification of input variable condi-

tions which lead to clarification failure using static modeling techniques. To this

end, PLS-DA is used to discriminate between potential clarification failure and nor-

mal effective clarifier operation. In this chapter, we explore the effect of augmenting

the X-space with an engineered interaction variable on discrimination results. A

third-order interaction term that aims to explain the relation between the input vari-

ables and how they ultimately affect response classification is defined and incorporated

as an additional predictor in the PLS-DAmodel structure. The value of the interaction

term is established via comparison of classifier performance for the base-case PLS-DA

model (without interaction) and the PLS-DA model which includes the third-order

interaction term.

Finally, a summary of the key contributions of this work along with some recommen-

dations for potential future directions are presented in Chapter 5.

8



Chapter 2

Preliminaries

2.1 Overview of wastewater treatment process

Wastewater can be defined as any water that has been contaminated via human

activity. More specifically, wastewater is contaminated water sourced from a combi-

nation of domestic, industrial, commercial and agricultural activities, as well as any

leachate, stormwater, surface run-off and sewer infiltration [Volcke et al., 2020]. The

overall objective of the wastewater treatment process is to remove and dispose of any

contaminants present in the influent wastewater so that the resultant water is clean

enough to be discharged out to a surrounding body of water, such as a nearby lake or

river. Influent wastewater enters the WWTP as a mixture of liquid and solid wastes,

contaminated with varying concentrations of dissolved and suspended organic and

inorganic solids, nutrients, and microorganisms such as pathogenic viruses, bacteria,

algae and fungi [Von Sperling, 2007b]. Though these contaminants comprise only

roughly 0.1% of raw wastewater, failure to remove them before discharging the water

back to the environment would have detrimental effects on existing ecosystems and

aquatic life and pose serious health risks to humans [Von Sperling, 2007b].

Figure 2.1 shows a schematic of the conventional municipal WWTP. The treatment

process is typically comprised of four levels of treatment: preliminary treatment, pri-

9
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mary treatment, secondary treatment and tertiary (or advanced) treatment. Each

successive level of treatment targets the removal of various pollutants, further purify-

ing the water in order to reach the required effluent quality discharge standards.

Grit RemovalRaw Influent 
Wastewater 

Screening

Primary 
Clarifier

 

Aeration Tank

Oxygen

Secondary 
Clarifier

Waste Activated Sludge (WAS)

Tertiary 
Treatment

Final Treated Effluent
(Discharged to Environment)

Return Activated Sludge (RAS)
Primary Sludge

Sludge Processing 
and Disposal

Figure 2.1: Schematic of conventional municipal wastewater treatment plant.

Preliminary treatment is the first phase of the treatment process. Preliminary treat-

ment focuses on the removal of coarse solids from influent wastewater in preparation

for subsequent stages and to avoid consequent damage or clogging of downstream

equipment. As such, influent wastewater first goes through a screening process to re-

move any large objects such as plastics, metals, paper and wood, before being subject

to a grit removal process which allows sand, small stones and food waste to settle out

of the water based on density differences.
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The objective of the primary treatment stage is to reduce the solids load for down-

stream units via the physical removal of organic materials that either float (scum) or

readily settle out by gravity (sludge) [MetCalf & Eddy, Inc. et al., 2014]. Gravita-

tional separation of solid matter from liquid is carried out in large primary clarifiers

(also referred to as sedimentation or settling tanks) to partially remove settleable sus-

pended solid matter from preliminarily treated wastewater. It is typical for WWTPs

to have at least two primary clarifiers, with the exact number of tanks depending

largely on plant influent flow, influent wastewater characterizations and size limita-

tions. Clarification tanks reduce the velocity of the incoming wastewater and maintain

an average hydraulic detention time of about 1–2 hours [MetCalf & Eddy, Inc. et al.,

2014], thereby allowing heavier, more dense solids to settle to the bottom of the tank

and other less-dense materials, such as oil and grease, to rise and form a layer of scum

at the surface of the tank. The accumulated solids, called primary sludge, is pumped

from the tank for subsequent processing and disposal, while scum is removed via me-

chanical skimmers and disposed of. In general, the primary treatment stage is able

to remove about 50–70% of settleable suspended solids and 25–40% of biodegradable

organic matter (as measured by biochemical oxygen demand; BOD) from the water

[Von Sperling, 2007b]. The remaining partially treated wastewater exits the clarifier

as primary effluent and continues on the secondary treatment stage.

Secondary treatment often employs biological treatment processes and further gravita-

tional sedimentation to remove most of the residual solid and organic matter present

in primary effluent. The first step of this treatment stage involves the biological

degradation of pollutants by microorganisms through a suspended growth process

known as the activated sludge process. In contrast to the predominantly physical

mechanisms employed in the preliminary and primary treatment levels, the acti-

vated sludge process uses millions of single-celled microorganisms—mostly aerobic

and heterotrophic—to metabolize organic matter in the wastewater and convert it

into biomass, carbon dioxide, water and other inorganic end-products, thus effectively
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reproducing [Von Sperling, 2007a]. In large aeration tanks, wastewater is mixed with

bacteria-rich activated sludge and loaded with oxygen (or air) to facilitate and ac-

celerate the digestion of organic matter by the bacteria. The mixture of water and

activated sludge within the aeration tank is referred to as a mixed liquor. The mixed

liquor is pumped to a secondary clarification tank where the microbial suspension

settles and is separated from the clarified water by gravity in a manner similar to

primary sedimentation. The biomass that settles and accumulates at the bottom of

the tank is known as activated sludge. A portion of this activated sludge is recycled

to the aeration tank as return activated sludge (RAS) to maintain a high microbe

concentration in the aeration tanks and further aid biodegradation. Due to this recir-

culation, aeration tanks have a relatively short hydraulic detention time around 6–8

hours, but a much longer solids retention time (i.e., the average time biomass remains

in the system) anywhere from 1–18 days [MetCalf & Eddy, Inc. et al., 2014]. The

remaining sludge leaves the clarifier as waste activated sludge (WAS) and is stabilized

before being mixed with primary sludge for further processing and disposal. Clarified

water exits the secondary clarifier either as final effluent for discharge to the receiv-

ing body of water or as secondary effluent for further, more rigorous purification in

the tertiary treatment stage. In general, the secondary treatment stage can remove

roughly 80–95% of settleable solids and up to 99% of biodegradable organic matter

[Von Sperling, 2007a; Henze, 2002].

Tertiary (advanced) treatment is considered to be any additional treatment process be-

yond secondary treatment and is often used to enhance effluent quality when secondary

effluent is not of sufficient quality for discharge to a sensitive environment. Tertiary

treatment can also be utilized to remove specific (often toxic or non-biodegradable)

pollutants, such as nitrogen, phosphorus, heavy metals, and pathogenic bacteria.

Common tertiary treatment methods include: filtration; chemical, UV, and ozone

disinfection; carbon adsorption; chemical precipitation; distillation; reverse osmosis;

and electrodialysis [U.S. EPA, 2004; MetCalf & Eddy, Inc. et al., 2014].
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2.1.1 Importance of secondary clarification unit

As previously discussed, the two main functions of the secondary clarifier are clar-

ification and thickening. The physical process of separating solids from liquid via

gravitational sedimentation combined with mechanical mechanisms such as sludge

scrapers and scum skimmmers employed by clarifiers allow for the continuous removal

of solids. Figure 2.2 shows a cross-sectional diagram of a typical circular secondary

clarification tank. In this configuration, influent wastewater enters the clarifier via an

inlet feedwell located in the center of the tank and is distributed radially throughout.

As suspended solids particles settle, sludge is collected via a slow-moving mechanical

Figure 2.2: Cross-sectional diagram of a circular flat-bottom clarifier.

scraper rotating around the tank’s central axis and subsequently removed through a

separate pipe. Scum that accumulates at the surface of the tank is similarly removed

by a rotating skimmer arm. Finally, clarified water exits the top of the tank overtop

overflow weirs and is collected for discharge. Weirs are often also fitted with a baffle

to prevent any floating solids particles from exiting the clarifier in the effluent.
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One key indication of clarification performance is the concentration of total suspended

solids (TSS) remaining in the final effluent. By definition, effluent TSS quantifies the

amount of non-filterable particles suspended in the water that are larger than two

microns in size and do not settle out by gravity during the treatment process. Effec-

tive operation of the secondary clarifier ensures that secondary effluent maintains an

acceptable total suspended solids (TSS) concentration, as outlined by effluent quality

standards set by government-imposed regulations [Environment Canada, 2012]. It is

important to measure and regulate effluent TSS concentrations. A high concentration

of suspended solids in the effluent can negatively impact the receiving body of water—

harming water quality, the aquatic ecosystem and even affecting human health. Be-

yond just decreasing water clarity, high suspended solids concentrations can block

sunlight from penetrating the water and reduce (or in extreme cases, entirely inhibit)

photosynthesis in submerged vegetation [Sorensen et al., 1977]. A reduction in plant

and algae productivity directly corresponds to decreased dissolved oxygen (DO) levels.

Suspended solids particles can also absorb heat from the sunlight, thereby increasing

surface water temperatures and further depleting DO. Aquatic ecosystems are quite

sensitive to changes in DO and a sustained decrease in DO levels can cause oxygen-

dependent species, such as fish and other aquatic biota, to die off due to critical oxygen

shortage [Sorensen et al., 1977; Bilotta and Brazier, 2008]. In addition, high TSS con-

centrations can facilitate the transport of harmful contaminants and toxins sorbed to

suspended solids particles—such as heavy metals, halogenated organic compounds,

inorganic nutrients (i.e., nitrogen and phosphorus), and pathogenic microorganisms

(i.e., bacteria, viruses, parasites, etc.)—through the water system, which can cause

ecological damage and be hazardous to human health [Sorensen et al., 1977; Akpor

and Muchie, 2011].

The potential deleterious effects of high TSS effluent are manifold. For this reason,

secondary clarification is widely considered the most critical and sensitive step of the

treatment process and is often referred to as the bottleneck of treatment performance
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as it commonly serves as the final process unit in a WWTP [Ji et al., 1996; Griborio,

2004]. A successful model of the secondary clarification process can be used to predict

effluent TSS levels and construct control applications which optimize clarification

efficiency and ensure the solids concentration is maintained within the prescribed

range. As such, the secondary clarifier is chosen as the representative process unit for

this research.

2.2 Overview of subspace identification methods

Subspace identification refers to a class of model identification methods that aim

to construct low-order state-space models from measured input-output data. The

basic idea of these methods is to utilize linear regression to estimate a subspace

from which a state variable sequence can be extracted and subsequently fit to the

state-space model structure [Ljung and McKevey, 1996; Huang et al., 2005; Qin,

2006]. Subspace identification methods rely heavily on matrix factorization techniques

such as singular value decomposition (SVD) and QR-decomposition to estimate the

state variable sequence. The three most prominent subspace-based approaches are:

canonical variate analysis (CVA) [Larimore, 1990], numerical subspace state-space

system identification (N4SID) [van Overschee and de Moor, 1994], and multivariable

output-error state-space (MOESP) [Verhaegen and Dewilde, 1992].

In general, given a process with p inputs and q outputs, subspace identification es-

timates an nth-order discrete-time LTI state-space model of the system, represented

mathematically by the following set of difference equations:

xk+1 = Axk +Buk +wk

yk = Cxk +Duk + vk

(2.1)
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where k is the current sampling time, xk ∈ IRn is the process state vector, uk ∈ IRp and

yk ∈ IRq represent the process inputs and outputs respectively, matrices A ∈ IRn×n,

B ∈ IRn×p, C ∈ IRq×n and D ∈ IRq×p are the system matrices, and vectors wk ∈ IRn

and vk ∈ IRq are unobserved, stationary white noise vector sequences of zero mean

and respectively denote process and output measurement noise.

Subspace identification methods can be broadly categorized as deterministic, stochas-

tic and combined deterministic-stochastic methods, with the key distinction between

the three being how process noise and disturbances are handled. For simplicity, the

present work utilizes the deterministic subspace identification approach presented in

Moonen et al. [Moonen et al., 1989], in which neither process nor measurement noise

are considered by the model (i.e., wk ≡ 0, vk ≡ 0). The algorithm utilized to deter-

mine the state vector sequence and system matrices is briefly summarized next.

The algorithm first establishes a valid state vector sequence as the intersection of the

row spaces of two block Hankel matrices constructed from the input-output data. The

output block Hankel matrices (i block rows, j columns) are defined as:

 Yp

Yf

 =



yk yk+1 · · · yk+j−1

yk+1 yk+2 · · · yk+j

...
...

. . .
...

yk+i−1 yk+i · · · yk+j+i−2

yk+i yk+i+1 · · · yk+j+i−1

yk+i+1 yk+i+2 · · · yk+j+i

...
...

. . .
...

yk+2i−1 yk+2i · · · yk+j+2i−2



(2.2)

whereYp represents past outputs andYf represents future outputs, both with respect

to the current time step k. Hankel matrices Up and Uf are similarly constructed for
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the past and future system inputs respectively. Matrices H1 and H2 are thereby

defined as the concatenation of the past output and input blocks and the future

output and input blocks, respectively, as described by the following expression.

H1 =

 Yp

Up

 , H2 =

 Yf

Uf

 (2.3)

The overall Hankel matrix, H, which captures both the past and future inputs and

outputs is thus given by the concatenation of H1 and H2.

H =

 H1

H2

 (2.4)

A valid state vector sequence, X, is identified as the intersection of the row spaces

of H1 and H2 and can be obtained via successive SVDs performed on matrix H.

Mathematically, the identified state trajectory is given as

X =
[

xk+i xk+i+1 · · · xk+i+j−1

]
(2.5)

Finally, once the state trajectory X is determined, the system matrices (i.e., A, B, C

and D) are easily obtained as the least-squares solution to the below overdetermined

system of linear equations describing the process.

 xk+i+1 xk+i+2 . . . xk+i+j−1

yk+i yk+i+1 . . . yk+i+j−2

 =

 A B

C D

 xk+i xk+i+1 . . . xk+i+j−2

uk+i uk+i+1 . . . uk+i+j−2


(2.6)
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2.3 Overview of partial least squares discriminant

analysis

Discriminant analysis is a statistical tool used to classify observations into two or more

discrete, mutually exclusive groups or categories which are known a priori [Morrison,

1969]. A classification boundary based on a linear combination of the independent

(predictor) variables that best discriminates between the groups is identified with

the general goal of maximizing the between-group variance relative to within-group

variance [Morrison, 1969; Huberty, 1975]. The classification boundary is determined

from a training data set for which group membership is known (i.e., the model is

calibrated), typically for the purpose of predicting the group membership of new

observations.

Partial least squares discriminant analysis (PLS-DA) is a supervised linear classifi-

cation method based on PLS regression, combining both dimensionality reduction

(i.e., PLS component construction) and discriminant analysis in a single algorithm

[Lee et al., 2018]. Similar to standard PLS, PLS-DA relates a set of response vari-

ables (Y) to a set of predictor variables (X); however, in PLS-DA, the Y block is

instead comprised of dummy variables containing the class membership information

for each class G in binary form (i.e., +1 if an observation belongs to group G, 0 if it

does not), as illustrated in Figure 2.3 [Lee et al., 2018]. When only two classes are

considered (G = 2), class membership information is encoded within a single dummy

vector y in which observations belonging to the first class (i.e., class G = 1; often

called the POSITIVE class) are given a y-value of 1 and remaining observations are

given a value of 0 (i.e., class G = 2; often called the NEGATIVE class). Multi-class

problems (G > 2) utilize a dummy matrix Y with G columns which correspond to

each class label. In this work, we focus only on PLS-DA for binary classification

problems.
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Figure 2.3: Response data encoding for binary PLS-DA (single dummy vector y) and
multi-class (dummy matrix Y) PLS-DA problems. Adapted from Lee et al. [2018].

2.3.1 Model building

At its core, PLS-DA is essentially PLS regression applied to categorical response

data. Mathematically, PLS-DA employs the same algorithm as PLS and, as such,

the objective of PLS-DA is also to optimally explain the variation in both the X and

Y-spaces individually, as well as provide the strongest possible relationship between

X and Y [Dunn, 2010]. For a binary PLS-DA problem with M predictor variables

and N observations, the two fundamental model equations are:

X = TP′ + E

y = Uq′ + f
(2.7)

where X (N × M) is the input data matrix, y (N × 1) is a vector containing class

membership information, T (N × A) and U (N × A) are the scores of X and y,

P (M × A) and q (1×A) are the loadings of X and y, and E (N ×M) and f (N ×1)
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are the residuals (error) associated with X and y, respectively. The above equations

represent the joint decomposition ofX and y. A schematic of the vectors and matrices

defined for PLS-DA is given in Figure 2.4.

Figure 2.4: Matrices and vectors used in the PLS-DA algorithm for binary
classification problems. Adapted from Geladi and Kowalski [1986].
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A training dataset for which both the input data X and corresponding class mem-

bership vector y are known a priori is used to calibrate the PLS-DA classification

model. The PLS-DA algorithm used in this work — which follows the nonlinear

iterative partial least-squares (NIPALS) algorithm developed by H. Wold [1975] for

computing sequential principal components — is described next [Jackson, 2005; Dunn,

2010]. Note that X is assumed to be appropriately preprocessed (i.e., mean-centered

and scaled). We also select the response vector y to be the initial estimate for vector

u during the calculation of the first component.

(1) Compute weight vectorw, which represents the slope coefficients from regressing

each column m of X onto the score vector u.

w =
1

u′u
·X′u (2.8)

The weight vector is typically normalized to unit length so that we can maximize

the covariance of y and the projection of X onto the direction w.

w =
w√
w′w

(2) Compute X-scores, t, which represent the slope coefficients from regressing each

row n of X onto w.

t =
1

w′w
·Xw (2.9)

(3) Compute y-space loadings vector q, which represents the slope coefficients from

regressing vector y onto w.

q =
1

t′t
· y′t (2.10)
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(4) Compute y-space score vector u, which represents the slope coefficients from

regressing each row n of y onto q.

u =
1

q′q
· yq (2.11)

These four steps are iterated until u has reasonably converged, at which point the

values of w, t, q and u define the ath component. With this, we can compute the

X-space loadings p for the ath component as the slope coefficients from the regression

of each column m of X onto t.

p =
1

t′t
·X′t (2.12)

From here, X must be deflated to remove variability explained by the computed

component [Dunn, 2010]. The variation in X captured by the ath component is

quantified by computing the predicted X̂ matrix as the product of X-scores, t, and

newly calculated X-loadings, p. The residuals matrix E for the X-space can then be

determined as the difference between the X matrix used to calculate the component

and the predicted X̂ matrix. Mathematically,

X̂ = tp′ (2.13)

E = X− X̂ (2.14)

Matrix E represents the remaining variance in the X-space left to be explained by

additional components. Deflation of y and computation of the y-space residuals

vector, f , is carried out in the same manner. As such, E and f are used in place of X

and y, respectively, to calculate the next component (i.e., Xa+1 = E and ya+1 = f).

ŷ = tq′ (2.15)

f = y − ŷ (2.16)
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Cross-validation (CV) can be employed to avoid overfitting and determine the optimal

number of components to retain in the final PLS-DA model. This work employs a

k-fold cross-validation methodology that randomly divides the training data into k

groups and iterates through calibrating a PLS-DA model on k − 1 groups and then

testing the model on the remaining group, until each group has acted as the test set

once [Wold, 1978]. A visual representation of a simple cross-validation procedure using

k = 3 CV groups is shown in Figure 2.5. The optimal number of model components

is chosen as that which yields the highest average R2 value (i.e., fraction of variation

modeled by the component) while also minimizing the predicted residual error sum

of squares (PRESS) for each of the k prediction groups. The PRESS statistic is

used to quantify the predictive ability of a candidate PLS-DA model structure and is

mathematically expressed as:

PRESS =
k∑

i=1

(yi − ŷi)
2 (2.17)

The Q2 statistic, which represents the predictive quality of the model on a test set or

cross-validation group, should also be taken into account when selecting the number of

components. Unlike R2, Q2 is not inflationary—rather, Q2 will initially increase before

either stabilizing or decreasing beyond a certain number of components. The point

where Q2 starts to decrease thus defines a threshold for the number of components,

after which the model’s predictive power will no longer improve [Dunn, 2010]. In

general, there exists a trade-off between a model’s fit (i.e., R2) and its predictive

abilities (i.e., Q2); cross-validation helps determine the optimal balance between the

two [Dunn, 2010; Esbensen and Geladi, 2010].
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Figure 2.5: Graphical representation of a simple k-fold cross-validation procedure
with k = 3 cross-validation groups. Adapted from Dunn [2010].
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2.3.2 Predicting class membership

Once a PLS-DA model has been calibrated, the class membership for a new set of

observations can be estimated via the following prediction equation:

ŷ = Xnewβ (2.18)

where ŷ is a vector containing the predicted class labels, Xnew is the new input data

matrix, and β is the regression coefficient vector containing information on how each

input variable contributes to class membership [Lee et al., 2018]. Mathematically, β

is defined as:

β = W(P′W)−1q′ (2.19)

Though class information is encoded in a binary manner during calibration, the

PLS-DA model will not produce perfect binary predictions. Thus, a classification

threshold (σ) must be defined such that observations with a predicted ŷ-value greater

than σ are assigned to class G = 1 and observations with predicted values less than

σ are therefore assigned to class G = 2 [Ballabio and Consonni, 2013]. The classifica-

tion threshold is particularly sensitive to datasets with skewed class distributions. As

such, σ is often strategically selected to minimize the number of false positives (i.e.,

observations incorrectly assigned to class G = 1) and false negatives (i.e., observations

incorrectly assigned to class G = 2) [Ballabio and Consonni, 2013].

2.3.3 Assessing model performance

A confusion matrix can be used to visualize the performance of a classification model.

Figure 2.6 depicts a standard confusion matrix for a binary classification problem and

summarizes the four potential outcomes of classification:
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• True Positive (TP) quantifies the number of observations correctly predicted

as POSITIVE by the model.

• False Positive (FP) quantifies the number of observations incorrectly pre-

dicted as POSITIVE by the model (i.e., observations that actually belong to

NEGATIVE but were predicted as POSITIVE).

• False Negative (FN) quantifies the number of observations incorrectly pre-

dicted as NEGATIVE by the model (i.e., observations that actually belong to

POSITIVE but were predicted as NEGATIVE).

• True Negative (TN) quantifies the number of observations correctly predicted

as NEGATIVE by the model.

Figure 2.6: Standard confusion matrix for a binary classification model.
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A variety of classification metrics can be readily determined from the confusion ma-

trix including: accuracy, balanced accuracy, balanced error rate (BER), sensitivity,

specificity, and the Matthews Correlation Coefficient (MCC) [Tharwat, 2020; Chicco

and Jurman, 2020]. These metrics serve as model performance indicators to assess

the prediction accuracy of the classification model.

In practice, accuracy is the most commonly used metric to evaluate classification

model performance and is defined as the proportion of all observations that have been

correctly classified according to their known label.

Accuracy =
TP + TN

TP + TN + FP + FN
=

TP + TN

P +N
(2.20)

where P and N represent the total number of POSITIVE and NEGATIVE observations,

respectively. Accuracy values span the interval [0, 1], with 0 indicating no correct

classification and 1 indicating perfect classification. The popularity of the accuracy

metric is largely due to its computational simplicity and easy interpretation; however,

accuracy is sensitive to data with skewed class distributions and may be unreliable

and misleading when applied to imbalanced class data [Chicco and Jurman, 2020].

As an alternative to the standard accuracy measure, balanced accuracy (BA) can be

used evaluate true classification accuracy when dealing with class imbalance. Balanced

accuracy is defined as the average classification accuracy attained for either class and

assumes an equal cost of misclassification between the classes [Brodersen et al., 2010].

Like accuracy, BA values also span [0, 1] and can be interpreted in the same manner.

BA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(2.21)
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Derived from balanced accuracy, the balanced error rate (BER) is a measure of the

proportion of observations that are misclassified by the PLS-DA model. As such, the

balanced error rate also spans the interval [0, 1] and can be interpreted inversely to

balanced accuracy, with a low BER indicating more accurate classification.

BER =
1

2

(
FP

FP + TN
+

FN

FN + TP

)
= 1−BA (2.22)

Sensitivity—also known as the true positive rate (TPR)—and specificity—also known

as the true negative rate (TNR)—are essentially measures of accuracy for the POSITIVE

and NEGATIVE classes, respectively; sensitivity evaluates the ability of the model to

correctly predict POSITIVE observations, while specificity evaluates the ability of the

model to correctly predict NEGATIVE observations [Tharwat, 2020].

Sensitivity (TPR) =
TP

TP + FN
(2.23)

Specificity (TNR) =
TN

TN + FP
(2.24)

Sensitivity and specificity values both range from 0 to 1 and can be interpreted similar

to the accuracy ; however, sensitivity and specificity are not sensitive to imbalanced

class distributions [Tharwat, 2020].

The false positive rate (FPR) and false negative rate (FNR) can be derived from

sensitivity and specificity and are defined in Equations 2.25 and 2.26, respectively.

FPR complements specificity and represents the proportion NEGATIVE observations

incorrectly classified as POSITIVE. Similarly, FNR complements sensitivity, represent-

ing the proportion POSITIVE observations incorrectly classified as NEGATIVE. Both

the FPR and FNR also range between 0 and 1; however, contrary to sensitivity and
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specificity, low values are desired as they indicate a low rate of misclassification.

FPR = 1− TNR =
FP

FP + TN
(2.25)

FNR = 1− TPR =
FN

FN + TP
(2.26)

Finally, Matthews correlation coefficient (MMC) is a reliable measure of the corre-

lation between actual and predicted class values and is comparable to the Pearson’s

correlation coefficient between two variables [Matthews, 1975; Chicco and Jurman,

2020]. The MCC accounts for both true and false positive and negatives, summa-

rizing the entire confusion matrix in a single parameter via the following expression:

MMC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.27)

MCC values range between -1 and +1, with -1 indicating perfect misclassification,

0 indicating completely random prediction, and +1 indicating perfect classification

[Chicco and Jurman, 2020]. Matthews correlation coefficient is especially useful be-

cause it is one of the only metrics that accounts for not only the entire confusion

matrix, but also the ratio between each element in the confusion matrix [Chicco,

2017]. MCC is therefore considered to be unaffected by skewed class distributions.

In other words, MCC will only produce a high score if the classification model is

predicting both POSITIVE and NEGATIVE class observations exceptionally well [Chicco

and Jurman, 2020].
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Chapter 3

Application of subspace

identification to secondary clarifier

3.1 Description of the simulation model

This work focuses on a simplified version of the secondary clarification unit within the

wastewater treatment process, as presented in Figure 3.1. Recall that the secondary

clarifier serves two main functions: clarification and solids thickening. As such, in-

fluent wastewater at a certain flow rate QINF and TSS concentration XINF is fed

into the clarifier with the objective of removing solid particulates and producing a

clear effluent. Once clarified, effluent exits the tank for discharge at a flow rate QEFF

and TSS concentration XEFF , while settled sludge is pumped from the bottom for

disposal at a flow rate QWAS and TSS concentration XWAS.

Dynamic simulations of the described clarification system are carried out in GPS-X,

a wastewater treatment plant simulator developed by Hydromantis ESS, Inc. The

process employs a ten-layer (each of equal thickness) circular flat-bottom settling tank

with a surface area of 100 m2 and a water depth height of 3.0 m. Influent wastewater

enters at a feed point height of 1.0 m from the bottom of the tank. A simple one-

dimensional (Simple-1D) nonreactive sedimentation model based on the solids flux
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concept is used to simulate the clarification process, in which biological reactions in the

settler are ignored and the only numerically integrated variable is the suspended solids

concentration. The sedimentation model employed considers only vertical flow in the

settler and assumes that incoming solids are distributed instantaneously and uniformly

across the entire cross-sectional area of the feed layer, as depicted in Figure 3.2.

Simulations utilize the comprehensive MANTIS2LIB model library in which fifty-two

state variables are available. Greater detail on the model library and sedimentation

models employed by GPS-X are available in the Hydromantis ESS, Inc. [2019]. Note

that the simulator is built using state-of-the-art dynamic modeling tools developed

by Hydromantis and therefore captures the process nonlinearities and complexities

fairly realistically. Thus, this simulator is being used as the test bed to demonstrate

the applicability of subspace-based modeling techniques to the problem of wastewater

treatment. The specific goal of this work is to build a model that is able to provide

accurate predictions for output variables XEFF and XWAS based on measured data

for input variables QINF , XINF and QWAS.

Figure 3.1: Schematic of secondary clarification unit in a WWTP.
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Figure 3.2: Diagram of one-dimensional sedimentation model depicting
stream flows. Figure adapted from Hydromantis ESS, Inc. [2019].

3.2 Database generation

The three inputs considered for this system are: the influent flow rate of wastewater to

the secondary clarifier (QINF ), the influent TSS concentration (XINF ), and the flow

rate of secondary sludge removed from the clarifier (QWAS). Input data is generated

using a pseudo-random binary sequence (PRBS) and is subsequently used as the

inputs to dynamic process simulations in GPS-X to collect corresponding output data

for the TSS concentrations in both the clarified effluent (XEFF ) and the secondary

sludge (XWAS). The inputs are constrained within the considered ranges listed in

Table 3.1.
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Table 3.1: Typical input variable operating ranges compared to reduced
ranges considered during data generation for subspace model identification.

Input Variable Typical Range Considered Range Unit

QINF 240 - 4800 1500 - 3500 m3/d

XINF 1500 - 3500 1500 - 3500 mg/L

QWAS 240 - 4800 1500 - 3500 m3/d

A PRBS signal is used to randomly generate input data for QINF and QWAS by

perturbing the system various distances away from the midpoint of their valid ranges

(computed from the considered ranges of the corresponding input variable). There

are nine possible perturbation “levels” for the PRBS to take:

Levels =
[
− 1 −0.75 −0.50 −0.25 0 0.25 0.50 0.75 1

]
where -1 represents the lower bound, 0 is the midpoint and 1 is the upper bound of

the variable’s valid range. Values of QINF and QWAS are constrained such that

QINF = QEFF +QWAS

where QEFF denotes the effluent flow rate from the secondary clarifier.

Remark 3.1. The validity range of the subspace identification technique was

explored and it was observed that utilizing larger input variable ranges gener-

ally resulted in a less effective predictive subspace model. This is to be expected

as subspace identification inherently builds a linear model and thus the validity

of the resultant model should always be checked via cross-validation to assess

how well the model is able to generalize to a new dataset. If the entire range

of operation is of interest, multiple subspace models can be built and connected
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such that each individual model is valid within a certain range of input variable

values and is employed when the plant is operating in said range. Moreover, it

is possible to identify certain key operating points via ‘indicator variables’ that

allow you to split the data into various bins based on the value of the indicator

variable and build separate working models for each bin. It is also possible that

the connection between these individual models be automated, thereby enabling

the switch between models to be done online. The development and connection

of multiple models remains the subject of future work.

Input data for XINF is generated such that the corresponding solids loading rate

(SLR) falls between 50–100 kg/m2d (typical range is approximately 10–150 kg/m2d).

The SLR represents the amount of solids that can be removed per unit of clarifier

surface area per day and is considered when generating input data for XINF to ensure

normal clarifier operation during process simulations. XINF is related nonlinearly to

SLR via the following relation:

SLR =
QINF ·XINF

A
(3.1)

where A represents the surface area of the clarifier. Thus, for every value of QINF

determined by the PRBS signal, it is ensured that XINF is chosen such that the

SLR in turn falls within the prescribed range. To achieve this, values for XINF are

generated in a manner similar to QINF and QWAS; however, the allowable range for

XINF is updated for each observation based on the value of QINF at that point. It is

ensured that a unique combination of values for all three input variables is generated

over the dataset to avoid repetition between training observations. Note that the

SLR expression presented here is valid only for the simplified secondary clarification

process we are considering; systems including aeration must also account for the RAS

recycle flow [MetCalf & Eddy, Inc. et al., 2014].
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The input and output datasets generated are considered to be corrupted by mea-

surement noise to reflect the presence of sensor-induced noise inherent to real-life

processes. The noise is assumed to be Gaussian white noise with zero mean and a

distribution spread according to the standard deviation values given in Tables 3.2 and

3.3, which are chosen based on the variable ranges.

Table 3.2: Noise parameters for input variables.

Input Variable σnoise Unit

QINF 5.0 m3/d

XINF 5.0 mg/L

QWAS 5.0 m3/d

Table 3.3: Noise parameters for output variables.

Output Variable σnoise Unit

XEFF 0.075 mg/L

XWAS 10.0 mg/L

The input profiles constructed for both the training and validation datasets are pre-

sented in Figure 3.3. Input data is generated over seven days (10,080 minutes) for

the training dataset, which is used to identify the subspace model, and over two days

(2880 minutes) for the validation dataset, which is used to evaluate the quality of

the model and its predictions. Both the training and validation input sequences are

generated using a sampling time of ∆t = 5 minutes and hold the inputs constant for

8-hour time periods. The corresponding training and validation output trajectories

obtained via GPS-X simulations are shown in Figure 3.4.
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Prior to model identification, a standard moving average filter with a window size of

five observations is employed to mitigate the effect of the noisy signals on the estimated

model. The effect of both the added measurement noise and the implemented filter

is demonstrated on the validation data in Figures 3.5 and 3.6.
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Figure 3.3: Input variable profiles for (a) training and (b) validation datasets.
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Figure 3.4: Output variable profiles for (a) training and (b) validation datasets.
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Figure 3.5: Effect of added measurement noise (red) and moving average
filter (blue) on generated validation input profiles (black).
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Figure 3.6: Effect of added measurement noise (red) and moving average
filter (blue) on simulated validation output profiles (black).
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3.3 Identification of subspace model

This work employs the deterministic subspace identification method proposed in Moo-

nen et al. [1989], as outlined in Section 2.2. This algorithm makes heavy use of Hankel

matrices and SVD to establish a state trajectory from input-output data before cal-

culating the system matrices as the least-squares solution to the set of linear system

equations describing the process (Equation 2.1). The number of block rows (i) and

columns (j) in the Hankel matrices are user-defined parameters which are chosen to be

relatively large such that j ≫ i to capture sufficient system information. In practice,

it is common to set i = n+ 1 so that the number of block rows is at least larger than

the number of states we want to identify. We also choose j = N − 2i+ 1 to ensure

that all N training observations are used [van Overschee and de Moor, 1996].

A linear subspace model of the described secondary clarification system is identified

from the training dataset, which is preprocessed to zero mean and unit variance. A

system order of n = 5 is selected based on a five-fold cross-validation procedure imple-

mented on the training data in combination the model’s prediction accuracy given a

separate unique test set. Cross-validation results report similar cumulative prediction

error values anywhere from five to nine subspace states, with only a small difference

in error between each. As such, the lowest number of states with an acceptably small

cumulative error value is chosen to avoid the possibility of overfitting. With this, a

unique dataset is used to test the model predictions to further confirm a fifth-order

model is acceptable for this system.

Remark 3.2. The choice of system order is particularly important for fitting

a relevant LTI to process data. For linear systems in particular, overfitting

during model construction can be avoided by examining the singular values of

the Hankel matrix H, which can be obtained via SVD. Arranged in descending

order, model order can be approximated by computing and comparing the ratio
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between consecutive singular values and then setting the model order equal to

the index number corresponding to the maximum ratio value. The singular

values of H provide a clear metric for determining the appropriate number of

states for linear processes—even before cross-validation—and help to visual-

ize the value that additional states add to the process model. The wastewater

treatment process considered in this work, however, is significantly nonlinear

and, consequently, there is no drastic ”drop-off” observed in the singular val-

ues. As such, this approach was used as a starting point to find a reasonable

range for the model order before performing cross-validation and selecting the

number of states that minimizes prediction error.

Model quality is evaluated by comparing the model response to the observed process

outputs for the same input profile. To this end, the subspace model outputs are

computed accordingly for each observation k by evaluating the linear output equation

ŷk = Cxk +Duk utilizing the identified C and D matrices. Figure 3.7 shows how the

subspace model (orange) fits to the process data (black) used to train the model.

Identification error is quantified by calculating the root mean squared error (RMSE)

between the process outputs y and model responses ŷ for both output variables.

RMSE is calculated via the following equation:

RMSE =

√∑N
i=1 (yi − ŷi)

2

N
(3.2)

where N represents the number of measurements in the dataset. RMSE values mea-

suring the error between the observed process outputs and the identified model are

presented in Table 3.4. Note that the reported error values are dimensionless as

the RMSE is quantified using the standardized values for both the process data and

predictions, prior to returning the data to its original scale and units.
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Table 3.4: RMSE values for identification results.

Output Variable RMSE

XEFF 0.0149

XWAS 0.0070

Remark 3.3. It is important to note that the present system does not directly

consider purely manipulated inputs—rather, the ability to build an effective

subspace model that can be utilized in future work to model the wastewater

treatment process in the context where manipulated inputs are considered. In

practice, current input variables QINF and XINF frequently fluctuate based

on the load and composition of influent wastewater to the plant from the sur-

rounding community. QWAS, however, may possibly be treated as a manipu-

lable variable and is often determined as a percentage of the wastewater flow

rate entering the clarifier such that the sludge accumulated at the bottom of the

tank does not exceed a certain critical level. Future work will look at building

subspace models with additional manipulated inputs and instead treating the

current inputs as disturbances to still exploit the important information and

relationships captured by these variables.
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Figure 3.7: Model identification results; process outputs are in black and subspace model
responses are given by the orange dashed line.
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3.4 Model validation and prediction results

The identified model must be tested on a new, unique dataset to evaluate how accu-

rately the subspace model is able to reproduce the dynamic system behaviour. Note

that the identified model is a state-space model, where the number of states is typ-

ically higher than the number of measured outputs and, as such, the initial value of

the states cannot be directly calculated from the measured outputs alone. Thus, the

method requires some initial observations from a new dataset in order to estimate the

states of the subspace model before being able to predict further.

Prior to prediction, the model must be initially calibrated to measured process data

using a state observer. The use of a state observer essentially allows the subspace

model to be continuously calibrated as new measurement data becomes available.

This calibration period continues until the model’s predicted outputs have reasonably

converged to the measured outputs, after which the model is allowed to predict the

output variable behaviour for a candidate input trajectory. In this work, a standard

Luenberger observer is employed as the state observer in order to estimate the sub-

space state trajectory. During the calibration period, the state estimation equation is

corrected with feedback from the estimation error between the measured outputs yk

and predicted outputs ŷk, as described by the following modified system equations.

x̂k+1 = Ax̂k +Buk + L(yk − ŷk)

ŷk = Cx̂k +Duk

(3.3)

where L is the observer gain matrix and is designed such that (A− LC) is stable and

the observer poles are placed appropriately in the unit circle. Present work considers

the Luenberger observer to have converged if model predictions are within 2.5% of the

process, after which the observer is “deactivated” and the subspace model is allowed

to predict the output trajectories for the remainder of the validation input profile.
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Remark 3.4. The need for a state estimation period is not a limitation of

the current subspace identification approach used in this work. While it is

entirely possible to identify an ARX (Auto-Regressive with eXogenous vari-

ables) or RNN (Recurrent Neural Network) model from the available data,

neither model structure offers an express advantage over the current subspace

approach. ARX models are simple input-output models used to describe process

dynamics by relating current output observations to past input and output data

via a least-squares regression. Bypassing the need for state variables entirely,

the ARX model structure necessitates the collection of past input and output

measurements to ensure prediction accuracy and thus still requires a calibra-

tion period similar to subspace models prior to prediction. RNN models, on

the other hand, use a set of internal states to process a sequence of inputs in

order to recursively update the states and predict the output trajectory. Similar

to linear subspace identification, the states in an RNN model have no physical,

interpretable meaning and thus require state initialization in order to predict

effectively. Therefore, neither ARX nor RNN models have a definitive ad-

vantage over subspace identification regarding the necessary calibration period

prior to predicting.

The predictive ability of the subspace model is evaluated by comparing the model

predictions to the observed process outputs for the same input signal. The state

observer estimations are found to converge to the process outputs reasonably after

roughly 36 time-steps (around 3.0 hours). Figure 3.8 shows the predicted output

trajectories using the identified subspace model from three different instances: (a)

after 3.0 hours at time-step k = 36 (blue), (b) after 13.0 hours at k = 156 (green)

and (c) after 23.0 hours at k = 276 (red). One of the primary goals of this work is to

construct a subspace model capable of producing accurate multi-step predictions. A

good predictive model is imperative for building successful model predictive control
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(MPC) schemes. An effective MPC formulation internally utilizes the model and a

candidate future input profile to predict the future process outputs over a specified

prediction horizon and subsequently computes and implements an appropriate control

action to drive the process toward a desired objective or operating point. As such,

the state estimation loop is opened at three different instances to demonstrate the

ability of the subspace model to predict dynamic process behaviour over a specified

prediction horizon — ten hours (120 time-steps) — from various points in the process.

Figure 3.8 demonstrates the success of the subspace model in predicting future output

trajectories for multiple candidate input profiles throughout the validation dataset and

motivates its candidacy for use in MPC applications.

Model effectiveness—reflected via prediction error—is quantified by calculating the

RMSE between the process outputs y and the subspace model predictions ŷ for both

output variables. Prediction error is calculated from the end of the calibration period

onward and is scaled to reflect the number of observations in the prediction set. The

RMSE values for the validation results are presented in Table 3.5. Note that the

reported error values are once again dimensionless as the RMSE is calculated using

standardized data.

Table 3.5: RMSE values for validation results.

Calibration Period
RMSE

XEFF XWAS

3.0 hours 0.143 0.098

13.0 hours 0.144 0.073

23.0 hours 0.159 0.071

The validation RMSE values are sufficiently low for both output variables, indicating

that the subspace model is able to predict the dynamic variable behaviour effectively.
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The validation results presented here demonstrate the viability of using the developed

subspace model for feedback control. The ability of the subspace model to predict

the process behaviour appropriately each time the state observer loop is opened ade-

quately illustrates the potential utility of this model within an MPC framework.

Remark 3.5. Improving subspace model predictions via hybrid modeling strate-

gies is an attractive approach to account for the available process knowledge

captured by existing first-principles models. First-principles models can either

be used in series with data-driven models [Anderson et al., 2000]—in which

a data-driven model is used to determine the parameters of a first-principles

model—or in parallel [Ghosh et al., 2019]—in which a dynamic data-driven

model is built around the residual error between measured process outputs and

the first-principles model outputs. Hybrid modeling allows for the nonlinear

process behaviour to be captured through first-principles relations, with the

remaining dynamics described by the subspace model. In addition, the incor-

poration of first-principles models via hybrid models can help ensure that any

physical process constraints are taking into consideration. Hybrid models offer

many advantages over purely data-driven approaches and will be explored in

future work.
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Figure 3.8: Predicted output trajectories by subspace model with three different
calibration period durations: (a) 3.0 hours (red), (b) 13.0 hours (green), and

(c) 23.0 hours (blue). Process outputs are given in black.
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3.5 Summary of contribution

The application of subspace identification for estimating an appropriate dynamic

model of the secondary clarification unit in a wastewater treatment plant was ex-

plored in this chapter. It has been shown that it is possible to estimate a relevant

linear time-invariant state-space model of the secondary clarification process that is

able to effectively predict the total suspended solids concentrations in both the final

effluent and the waste sludge streams from the secondary clarifier with minimal pre-

diction error, as illustrated by the validation results. Results also highlight the ability

of the subspace model to produce accurate multi-step output trajectory predictions

for multiple candidate input profiles and, as a result, establish the candidacy of the

identified subspace model for use in a model predictive control framework.

49



Chapter 4

Application of PLS-DA for

predicting clarifier failure

4.1 Failure of clarification unit

Clarifier failure occurs when an excessive amount of suspended solids are present

in the clarifier effluent. The occurrence of high effluent suspended solids (ESS)—

and therefore clarifier failure—can often be linked to poor settling performance of

secondary sludge [Torfs et al., 2016].

There are typically four distinct types of settling that take place within the secondary

clarifier: discrete (Type I), flocculent (Type II), hindered (Type III) and compression

(Type IV); each differing in sedimentation rate based on the size, density, concentra-

tion, and degree of interaction between suspended solids particles [Water Environment

Federation, 2005]. Figure 4.1 depicts the four settling zones that occur during the sed-

imentation process and shows how the height of the sludge interface progresses with

time during a standard batch column settling test.

Type I (discrete) and Type II (flocculent) settling describe the actual separation of

solids particles from the water and therefore largely contribute to the clarification

function of the secondary clarifier. Type I settling describes the tendency of solids
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Figure 4.1: Sedimentation profile showing evolution of sludge interface height with
time and corresponding observable settling regions during a column settling test.

particles to settle independently at their individual terminal velocity, free from phys-

ical interaction with other particles [Water Environment Federation, 2005]. Type I

settling predominantly occurs in the upper region of the clarifier due to the consid-

erably low solids concentration present here. Type II (flocculent) settling occurs in

the region just below Type I near the influent well as particles start to interact and

coalesce to form larger flocs, thus increasing the settling velocity of the aggregate

[Water Environment Federation, 2005]. Type III (hindered) settling takes place in

somewhat of a transitional region, in which particles start to settle collectively as a

matrix at the same velocity. It is here that a distinct solids-liquid interface starts

to form, below which characterizes the sludge blanket [Torfs et al., 2016]. Finally,

Type IV (compression) settling takes place at the bottom of the clarifier, where TSS

concentrations are so high that the sludge blanket is forced to compact and thicken

by compression under the weight of the above solids particles [Torfs et al., 2016]. As

such, Type III and Type IV settling dominates the thickening function of the clarifier.
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Settling failure can be attributed to factors such as a high sludge blanket height, floc-

culation problems, and poor hydrodynamics [Water Environment Federation, 2005;

Torfs et al., 2016]. If the rate of sludge removal from the clarifier is too low with

respect to the influent flow rate, the sludge blanket will propagate to the surface

of the tank and cause solids to exit through the effluent. Moreover, a high sludge

blanket in combination with a low solids removal rate will promote the formation of

anaerobic conditions and ultimately lead to denitrification and sludge flotation [Wa-

ter Environment Federation, 2005]. Similarly, dispersed solids particles that fail to

flocculate during sedimentation lack the critical mass necessary to settle and subse-

quently thicken, consequently escaping with the effluent. Hydraulic instability due to

excessive turbulence (often caused by high flows) can also impact the settling process

by breaking up existing flocs and cause solids particles to redistribute and resuspend

throughout the clarifier.

The sludge volume index (SVI) is one of the most commonly used means of monitoring

and characterizing sludge settleability in the secondary clarifier. SVI is is a physical

parameter of the sludge that is determined via simple laboratory tests and is defined

as the volume occupied by one gram of sludge after allowing a one-litre sample of

wastewater to settle in a settleometer (typically a 1 or 2-L graduated cylinder) for 30

minutes [Dick and Vesilind, 1969]. Mathematically, SVI is calculated as:

SVI

(
mL

g

)
=

Volume of Settled Sludge (mL
L
)

Suspended Solids Concentration (mg
L
)
× 1000

mg

g
(4.1)

In general, lower SVI values indicate good sludge settleability, with an SVI range of

80–150 mL/g typically used as the benchmark to produce high quality effluent [Henze,

2002; Medora Corporation, 2016]. SVI values lower than 80 mL/g usually indicates

a dense secondary sludge (often old and over-oxidized). Sludge at this low SVI tends

to initially settle quite rapidly; however, the dense solids particles often cannot form
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large flocs as they settle, thereby preventing the formation of a uniform sludge blanket

and resulting in excessive turbidity in the supernatant water [Medora Corporation,

2016]. Conversely, sludge at SVI values greater than 150 mL/g is typically much less

dense and appears to be light and fluffy. This sludge is able to form some flocs during

settling; however, they tend to settle very slowly (or not at all) and compacts poorly

at the water-solids interface [Medora Corporation, 2016]. It is important to note that

while SVI is more an intrinsic parameter that largely depends on the properties of the

sludge itself, it can be controlled by manipulable variables such as the waste sludge

rate or the rate of sludge recycle in a conventional activated sludge process.

Clarifier performance as a whole is most often described in terms of effluent solids

concentration. The solids removal efficiency of a clarifier can be calculated as

Solids Removal Efficiency (%) =
XINF −XEFF

XINF

× 100% (4.2)

where XINF and XEFF are the influent and effluent TSS concentrations respectively.

For the purpose of this work, clarifier failure is defined in terms of effluent TSS.

More specifically, the clarifier is considered to have failed if process simulations return

an effluent solids concentration greater than or equal to 50 mg/L (i.e., a separation

efficiency less than 97%).

4.2 Database generation

This work utilizes the same secondary clarifier layout as presented in Figure 3.1.

Process data for this system is also generated in a manner similar to the approach

previously introduced in Section 3.2, albeit with a few modifications to reflect the

new problem. In particular, we are no longer generating dynamic data, rather static

points which represent steady-state conditions.
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This system considers four process inputs — QINF , XINF , QWAS and SVI — and a

single measured output — XEFF . A PRBS signal is once again used to randomly

generate input data for QINF and QWAS by perturbing the system various distances

away from the midpoint of their valid ranges, as outlined in Table 4.1. Compared

to the previous chapter, larger variable ranges are utilized here to include conditions

that are sure to effect clarifier failure.

Table 4.1: Typical input variable ranges compared to the reduced ranges considered
during data generation for the PLS-DA classification model.

Input Variable Typical Range Considered Range Unit

QINF 240 - 4800 240 - 4800 m3/d

XINF 1500 - 3500 1500 - 3500 mg/L

QWAS 240 - 4800 240 - 4800 m3/d

SVI 50 - 400 a 100 - 200 mL/g

a Sourced from Torfs et al. [2016]

There are 21 possible perturbation “levels” for the PRBS to take in the range [−1, 1],

where -1 represents the lower bound, 0 is the midpoint and 1 is the upper bound of

the variable ranges.

Levels =
[
− 1 −0.9 −0.8 · · · 0 · · · 0.8 0.9 1

]
Note that the values of QINF and QWAS remain constrained such that the influent

flow rate is equal to the sum of the effluent and waste sludge flows. Input data

for XINF is also generated using a PRBS; however, due to its nonlinear relation to

QINF through the SLR (recall Equation 3.1), the valid range for XINF is updated for

each observation based on the chosen QINF values such that the SLR falls between

10–150 kg/m2d.
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A unique combination of QINF , XINF and QWAS are generated for each SVI value

considered between 100–200 mL/g, increasing in increments of 10 mL/g. 1200 data

points are created at each individual SVI level (1000 for training, 200 for testing),

resulting in a total of 13,200 data points generated.

Steady-state simulations of the clarifier are carried out in GPS-X utilizing the same

process conditions and clarifier parameters described in Section 3.1 to obtain output

data for XEFF which corresponds to the generated inputs. Each individual data point

specifies the input conditions for a discrete GPS-X simulation which is allowed to reach

steady-state over a span of eight days; thus, essentially 13,200 unique simulations are

executed. A four-dimensional scatter plot is presented in Figure 4.2 to visualize the

effects of input variables QINF (x-axis), XINF (y-axis) and QWAS (z-axis) on the

effluent TSS concentration (colour) for a representative SVI value of 150 mL/g.

Using the obtained XEFF data, each observation is classified either as FAILED or

NORMAL operation based on whether or not XEFF exceeds 50 mg/L. Figure 4.3 com-

plements Figure 4.2 and presents a four-dimensional scatter plot showing how the

effects of QINF (x-axis), XINF (y-axis) and QWAS (z-axis) on an observation’s class

label (colour), again at a representative SVI value of 150 mL/g.

Table 4.2 summarizes the number of observations classified as FAILED (i.e., clarifica-

tion failure) and NORMAL (i.e., effective clarification) in the datasets used to train and

test the PLS-DA classification model at each of the considered SVI values between

100–200 mL/g.
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Figure 4.2: 4D scatter plot showing effect of inputs QINF (x-axis), XINF (y-axis),
and QWAS (z-axis) on XEFF (colour) at a representative SVI value of 150 mL/g.
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Figure 4.3: 4D scatter plot showing effect of inputs QINF (x-axis), XINF (y-axis),
and QWAS (z-axis) on the classification of observations as being either FAILED (red)

or NORMAL (blue) at a representative SVI value of 150 mL/g.
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Table 4.2: Summary of the number of observations classified as FAILED and NORMAL

in the training and test sets at each SVI value considered.

SVI Data Set
Clarifier Failure

(FAILED )

Effective Operation

(NORMAL )

100
Train 96 904

Test 20 180

110
Train 108 892

Test 17 183

120
Train 126 874

Test 31 169

130
Train 140 860

Test 33 167

140
Train 171 829

Test 26 174

150
Train 168 832

Test 38 162

160
Train 188 812

Test 38 162

170
Train 189 811

Test 38 162

180
Train 220 780

Test 35 165

190
Train 243 757

Test 55 145

200
Train 284 716

Test 65 135
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4.3 Defining an interaction term

The secondary clarification process is a complicated system in which many variables

interact and are interdependent. In order to fully understand and capture the ef-

fect of these interactions on the system, interaction terms (sometimes referred to as

moderators) can be constructed from the original set of measured input variables. In

general, it is common for multivariate latent variable regression models to expand the

X-space by augmenting the predictor matrix with engineered variables derived from

the raw data [Dunn, 2010]. The process of transforming predictor variables is known

as feature engineering. Feature engineering is of particular importance in predictive

modeling applications as the nonlinear transformation of predictors can help linear

models better capture the effects of predictor interactions on the response [Kuhn and

Johnson, 2019]. Pairwise-interaction is the most common type of engineered variables

considered in statistical modeling and is defined as the pairwise product or pairwise

division of each main predictor variable [Kuhn and Johnson, 2019].

Interaction plots are a useful tool to evaluate whether the effect of a certain predictor

variable on the system response is also dependent on the value of another predictor.

Figure 4.4 presents the interaction plots showing the pairwise interaction effects be-

tween each possible pair of main predictor variables. In general, variables that do not

interact are characterized by parallel lines on an interaction plot. The absence of any

parallel lines in any of the interaction plots suggest that notable interaction effects

exist between each predictor pair. Therefore, it can be said that the effect of any one

input variable on XEFF is also dependent on the other predictors. Moreover, we can

see that QWAS is the only predictor variable with an inverse relationship to XEFF

in that low QWAS values are associated with high XEFF values (and promptly clar-

ifier failure) seemingly regardless of the corresponding QINF and XINF levels. This

contrasts the interaction effects seen in QINF and XINF .
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Figure 4.4: Interaction plots for effluent TSS (XEFF ) showing pairwise
interactions between main predictors (QINF , XINF and QWAS) for a

representative SVI of 150 mL/g.
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In order to effectively capture the interaction between all three of the main predictors,

we define the interaction term (denoted R) as

R =
QINF ·XINF

QWAS

(4.3)

Physically, this variable represents the ratio of the TSS flow into the clarifier to

the flow rate of sludge exiting the clarifier bottoms. A high value of R is therefore

indicative of secondary clarifier failure, attributable to clarifier overload due to either

excessive inlet solids or an extremely low rate of sludge removal. The goal of this

new feature is thus to adequately describe the interaction between QINF and XINF

(i.e., the influent solids flow, represented by the product of QINF and XINF ) and also

how these variables interact with QWAS (accounted for via the division by QWAS).

Moreover, because the interaction plots show that XEFF (and therefore the prevalence

of clarifier failure) increases for low values ofQWAS, we hope that in dividing byQWAS,

a greater discrepancy between observations associated with effective clarification and

those associated with clarification failure can be achieved.

The following section explores the effect of the interaction term R on classification

performance and provides a comparison between the base-case PLS-DA model (i.e.,

without any interaction terms) and the PLS-DA model with interaction.

Remark 4.1. It should be noted that effect of standard pairwise-product and

pairwise-division interactions on PLS-DA performance was also evaluated and

compared to the interaction variable R defined above. It was found that stan-

dard pairwise-interactions had a less significant impact on model performance

and resulted in higher degrees of misclassification in the test set.
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4.4 Prediction of clarifier failure

4.4.1 Model calibration

PLS-DA model calibration with a seven-fold cross-validation procedure is performed

in Aspen ProMV®, a multivariate analysis software developed by AspenTech, Inc.

Two PLS-DA models are constructed for each SVI value—a base-case model which

simply uses QINF , XINF , and QWAS as input variables (henceforth referred to as

Model A) and a second model which considers the previously described interaction

term, R, as an additional input variable (Model B), thereby resulting in a total of 22

PLS-DA models. In general, M − 1 components (where M is the number of input

variables) are retained in both Model A (2 components) and Model B (3 components).

Recall that each PLS-DA model is trained on 1000 of the 1200 data points collected

at each SVI value, with the remaining 200 data points reserved for testing.

The classification threshold (σ) for each PLS-DA model is determined such that both

sensitivity (true positive rate) and specificity (true negative rate) are maximized,

thereby also maximizing the balanced accuracy score and minimizing the false pos-

itive and false negative rates. In general, the value of σ at which the sensitivity

and specificity scores are equal gives an acceptable threshold value. In the case of

identifying secondary clarification failure, it is particularly important to minimize the

number of false negatives, as classifying a FAILED observation as NORMAL has more

detrimental repercussions than classifying a NORMAL observation as FAILED. As such,

a moderate preference for maintaining a sensitivity score slightly greater than or equal

to specificity was implemented to ensure a low number of false negative classifications.

A threshold plot can be used to visualize the effect of σ on the sensitivity and speci-

ficity scores and determine the optimal threshold value. Figure 4.5 presents example

threshold plots for both PLS-DA Models A and B at a representative SVI value of 150
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mL/g, showing the optimal threshold values which occur at approximately σ = 0.191

and σ = 0.165, respectively. It should be noted that the threshold value is determined

during model calibration and is thus computed based on the predicted y-values ob-

tained from applying the calibrated PLS-DA model to the same data used to train

the model. Therefore, the threshold determined during model calibration is the same

threshold used for discrimination when the PLS-DA model is applied to new data. For

the sake of conciseness, the results presented in this section focus only on the PLS-DA

models constructed at SVI = 150. Similar results are seen at each SVI value; there-

fore, the results given here are considered to be representative of the entire system.

Additional classification results for the remaining SVI values can be found in the

Supplementary Materials.

Figure 4.5: Threshold plots showing the effect of threshold on sensitivity (red) and
specificity (blue) for (A) Model A and (B) Model B (both at SVI = 150 mL/g). The
optimal threshold value (- - -) occurs at the point where sensitivity equals specificity.
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Figures 4.6 and 4.7 respectively present the score and loadings plots for the first

two components in both PLS-DA models. The first and second components (also

referred to as LV1 and LV2) respectively explain roughly 36.7% and 30.4% of the

total variation in the X-space for Model A and about 40.8% and 29.4% for Model

B. Score plots present the scores from the first two model components as a scatter

plot and are an excellent means of visualizing the separation between the classes. We

can see from the score plots in Figure 4.6 that the separation between FAILED and

NORMAL observations in the scores presents itself quite differently between Model A

and Model B ; FAILED observations generally have negative score values on LV1 in

Model A but larger positive scores on LV1 in Model B. Moreover, the spread of the

scores in Model A is very narrow in comparison to Model B and exhibit a greater

degree of overlap between the FAILED and NORMAL classes. Although it is clear that

the FAILED class concentrates at lower negative LV1 scores, there is no distinct line

of separation between the two classes. In contrast, we can see that Model B shows

a compact clustering of NORMAL observations at lower (mostly negative) score values

on LV1 and a more loose, wide spread of FAILED observations at large positive score

values on LV1.

Loading plots (Figure 4.7) closely relate to score plots, presenting the loadings (i.e.

direction of projection) that define the first two components as a scatter plot to por-

tray the significance of each predictor variable in discriminating between the classes

[Dunn, 2010]. In general, X-space loadings (green) located close to the origin indicate

that a predictor has a weak influence on the corresponding component, while loadings

located near a y-space loading (orange) are positively correlated with the correspond-

ing class label. The loading plots suggest that NORMAL observations are predominantly

characterized by higher values of QWAS given its proximity to the NORMAL loading on

both LV1 and LV2 in Model A and its proximity to NORMAL on LV1 in Model B. Sim-

ilarly, we can see that R positively correlates with clarifier failure in Model B and

that FAILED observations are thus characterized by high R values. These findings are
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Figure 4.6: PLS-DA score plots showing the separation between FAILED (red)
and NORMAL observations (blue) along the first two principal components for

(A) Model A and (B) Model B (both at SVI = 150 mL/g).

further corroborated by the regression coefficients for the FAILED class.

Figure 4.8 presents the regression coefficient values as a bar plot sorted by descending

contribution to the FAILED class. The negative coefficients for QWAS in both models

confirm that QWAS is the main variable contributing to the classification of NORMAL

observations. The positive regression coefficients for QINF and XINF in Model A

suggest contribution to FAILED classifications; however, the small magnitude of these

coefficients indicates that the influence of these variables on classification is quite

weak. The influence of QINF and XINF on model predictions is even weaker in Model

B with coefficient values both less than 0.1. Moreover, it is evident that R is extremely
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Figure 4.7: PLS-DA loading plots showing how inputs (green) relate to each
other and to the response (orange) along the first two principal components

for (A) Model A and (B) Model B (both at SVI = 150 mL/g).

important to classification in Model B, with a large positive coefficient signifying a

significant contribution to identifying observations that belong to the FAILED class.

The discriminatory power of the predictor variables can be measured using Variable

Importance to Projection (VIP). A VIP score is calculated for each individual variable

in the X-space and essentially quantifies the contribution of each variable to the

overall PLS-DA model. In general, higher VIP scores indicate higher importance,

particularly when also associated with a large regression coefficient (absolute) value

[Akarachantachote et al., 2014]. Variable Importance to Projection is often utilized as

a variable selection method when dealing with high-dimensional data, in which only

predictors with a VIP greater than or equal to one are retained by the model (although

Chong and Jun [2005] and Akarachantachote et al. [2014] have presented frameworks
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Figure 4.8: Regression coefficients for the FAILED class for (A) Model A
and (B) Model B (both at SVI = 150 mL/g), at a 95% confidence level.

for selecting proper VIP threshold values as an alternative to the strict ‘greater than

one’ rule); however, because the goal of current work is to demonstrate the validity

and utility of PLS-DA modeling to identify conditions that result in clarifier failure,

all input variables are retained regardless of VIP score. Instead, VIP is simply used to

analyze the contribution of each variable and better understand how the interaction

term R improves classification in Model B.

Figure 4.9 presents a bar plot of the VIP scores for each predictor variable in both

PLS-DA models, sorted by descending importance. It can be seen that PLS-DA

Model A heavily relies on QWAS for discrimination, with a VIP = 1.453. While QWAS

is still considered a variable of importance in Model B (VIP = 1.048), the additional

interaction term (R) has a much larger VIP score of 1.604 and indicates that R has the

greatest contribution to discrimination in Model B. Recalling the score and loading
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plots presented in Figures 4.6 and 4.7, we know that QWAS largely contributes to the

classification of NORMAL observations in both Models A and B (further confirmed by

the negative regression coefficient values in Figure 4.8). In contrast, variables QINF

and XINF both contribute positively to the classification of FAILED observations in

Model A; however, with VIP scores less than the conventional cut-off value, they

would typically be considered unimportant to the model and discarded. The high VIP

score associated with R in Model B, in combination with its large positive regression

coefficient and its location in the loading plot relative to the FAILED loading, indicates

that R contributes significantly to discrimination—particularly improving upon the

classification of FAILED observations.

Figure 4.9: VIP bar plots sorted by descending importance for (A) Model A
and (B) Model B (both at SVI = 150 mL/g), at a 95% confidence level.

The above analyses demonstrate the feasibility of the constructed PLS-DA models for

predicting the occurrence of clarifier failure for new data.
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4.4.2 PLS-DA predictions

Following calibration, each PLS-DA model is subsequently tested on the remaining 200

data points to evaluate the true predictive capability of the classification model. Table

4.3 presents the confusion matrices for Models A and B, summarizing the performance

of both models based on predicted class membership for the test set.

Table 4.3: Confusion matrices reporting test set classification results for (A) Model A
(base-case PLS-DA) and (B) Model B (PLS-DA with R), both at SVI = 150 mL/g.

Looking at the confusion matrices, we can see that Model B shows a significant im-

provement in the number of correct classifications compared to Model A, with the

number of false positive (FP) and false negative (FN) classifications decreasing dra-

matically. Minimizing the number of false negatives is of particular importance in the

application of PLS-DA to clarification failure classification—it is better raise alarms

for potential secondary clarifier failure than to miss the failure entirely. As such,

Model B is able to eliminate false negative classifications entirely while also decreas-

ing the number of false positives by 80%. A similar reduction in the number of FP
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and FN classifications between PLS-DA Models A and B is also seen at the remaining

SVI levels (see Supplementary Materials for additional classification results). Notably,

Model B is associated with a 100% decrease in the number of false negatives for all

but one SVI level—a 64% decrease in FN is seen in Model B at SVI = 200—and a

decrease in the number of false positives anywhere from 70–96%.

Figure 4.10 complements the confusion matrices, presenting a visualization of the pre-

dicted y-values and how the determined classification threshold (recall the threshold

plots in Figure 4.5) facilitates discrimination. The discrimination plots highlight the

difference in how the two PLS-DA models generate predictions, showing that the pre-

dicted y-values from Model A span a much smaller range (-0.47 to 0.58) than Model B

(-0.28 to 1.80), thereby resulting in a less defined separation between the two classes

and ultimately increasing the potential for misclassification. In contrast, Model B is

associated with a much narrower spread in the predicted values for NORMAL obser-

vations and a wider spread in the predicted values for FAILED observations, similar

to the trends observed in the score plots. The difference in the range and distribu-

tion of predicted values between the two models as illustrated by the discrimination

plots suggests that the incorporation of the interaction term in Model B enables the

PLS-DA model to produce more confident predictions that are able to better discrim-

inate between the classes.

Classification parameters such as the balanced accuracy (BA), balanced error rate

(BER), sensitivity (i.e., true positive rate), specificity (i.e., true negative rate) and

the Matthews correlation coefficient (MCC) are derived from the test set and used to

quantify PLS-DA model performance. Table 4.4 reports these metrics for both the

training and test set classification results for the PLS-DA model at SVI = 150. It can

be seen that model performance is comparable for both model fitting and validation;

thus, we can reasonably confirm that both PLS-DA Models A and B are stable and
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Figure 4.10: PLS-DA discrimination plots showing the predicted y-values and how the
classification threshold (- - -) discriminates between FAILED (red) and NORMAL (blue)

observations for (A) Model A and (B) Model B (both at SVI = 150 mL/g).

reliable for use on new data. A consistent improvement is seen in Model B across all

performance metrics. Note that values for the false positive and false negative rates

are not presented here as these metrics can be easily calculated from sensitivity and

specificity.

The following tables present a summary of the balanced accuracy (Table 4.5), sensi-

tivity (Table 4.6), specificity (Table 4.7) and Matthews correlation coefficient (Table

4.8) values obtained from test set classification results for both PLS-DA Models A

and B at all considered SVI values. The change in each metric due to Model B ’s

interaction term is also given, as well as the average metric values over all SVIs. A

similar summary of performance metrics obtained during model calibration can be
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found in Tables S2 to S5 in the Supplementary Materials. A consistent improvement

in the performance of Model B over Model A is observed for all classification metrics

at all SVI values, indicating that the defined interaction term is both significant and

valuable in facilitating effective discrimination by PLS-DA.

Table 4.4: PLS-DA model performance metrics for fitting and test set classification
results for both Model A and Model B at a representative SVI value of 150 mL/g.

BA BER TPR TNR MCC

Model A

Fitting 0.898 0.101 0.899 0.899 0.703

Test Set 0.888 0.112 0.868 0.907 0.713

Model B

Fitting 0.983 0.017 0.982 0.983 0.941

Test Set 0.994 0.006 1.000 0.988 0.969

Remark 4.2. It was observed that discrimination based solely on the value

of the defined interaction variable R also generates acceptable classification

results. The classification threshold is determined in a similar manner to the

PLS-DA models (i.e., find the value of R that maximizes the number of cor-

rect classification) with R values greater than the threshold indicating clarifier

failure and R values below the threshold represent effective clarifier operation.

In this case, the computed sensitivity scores are comparable to the sensitivities

for PLS-DA Model B; however, an general decrease in specificity is seen, with

an average specificity of 0.951 across all SVIs when predicting clarifier failure

using just R compared to 0.983 for PLS-DA Model B.
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Table 4.5: Comparison of balanced accuracy (BA) scores for Model A
(PLS-DA without R) and Model B (PLS-DA with R) test set class

membership predictions at each SVI value considered.

SVI
Balanced Accuracy (BA) Change

in BAModel A Model B

100 0.894 0.983 0.089

110 0.892 0.992 0.100

120 0.926 0.994 0.068

130 0.937 0.997 0.060

140 0.868 0.986 0.117

150 0.888 0.994 0.106

160 0.867 0.997 0.130

170 0.893 0.997 0.104

180 0.880 0.982 0.102

190 0.885 0.990 0.105

200 0.886 0.954 0.069

AVERAGE 0.890 0.988 0.098
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Table 4.6: Comparison of sensitivity scores for Model A and Model B
test set class membership predictions at each SVI value considered.

SVI
Sensitivity Change

in TPRModel A Model B

100 0.900 1.000 0.100

110 0.882 1.000 0.118

120 0.935 1.000 0.065

130 0.970 1.000 0.030

140 0.846 1.000 0.154

150 0.868 1.000 0.132

160 0.895 1.000 0.105

170 0.842 1.000 0.158

180 0.857 1.000 0.143

190 0.873 1.000 0.127

200 0.831 0.938 0.108

AVERAGE 0.882 0.994 0.113

Table 4.7: Comparison of specificity scores for Model A and Model B
test set class membership predictions at each SVI value considered.

SVI
Specificity Change

in TNRModel A Model B

100 0.889 0.967 0.078

110 0.902 0.984 0.082

120 0.917 0.988 0.071

130 0.904 0.994 0.090

140 0.891 0.971 0.080

150 0.907 0.988 0.080

160 0.840 0.994 0.154

170 0.944 0.994 0.049

180 0.903 0.982 0.079

190 0.897 0.979 0.083

200 0.881 0.970 0.089

AVERAGE 0.898 0.983 0.085
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Table 4.8: Comparison of Matthews correlation coefficient (MCC) values for
Model A (PLS-DA without R) and Model B (PLS-DA with R) test set class

membership predictions at each SVI value considered.

SVI
Matthews Correlation Coefficient Change

in MCCModel A Model B

100 0.603 0.862 0.259

110 0.589 0.914 0.325

120 0.751 0.963 0.212

130 0.760 0.982 0.223

140 0.614 0.903 0.289

150 0.713 0.969 0.256

160 0.629 0.984 0.355

170 0.764 0.984 0.220

180 0.686 0.907 0.221

190 0.739 0.964 0.224

200 0.699 0.909 0.209

AVERAGE 0.686 0.940 0.254
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4.5 Summary of contribution

The utility of partial least squares discriminant analysis for identifying static condi-

tions that result in clarification failure was established in this chapter. In particular, a

novel third-order interaction term that aims to capture the relation between the three

input variables was engineered and incorporated as an additional predictor in the

X-space and the impact of the interaction term on PLS-DA prediction and discrim-

ination was explored. Discrimination results highlight the efficacy of the engineered

interaction term in improving PLS-DA predictions and reducing the prevalence of

misclassification, as demonstrated by a consistent improvement in all classification

metrics and PLS-DA model performance parameters considered in comparison to the

base-case PLS-DA model. PLS-DA with interaction shows potential as a useful pro-

cess monitoring tool to assist wastewater treatment plant operators in forecasting

clarification failure and responding accordingly.
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Chapter 5

Conclusions and recommendations

5.1 Conclusions

This thesis investigates the utility of both dynamic and static data-driven modeling

techniques for estimating a relevant model of the secondary clarification process in a

wastewater treatment plant.

The first part of the thesis explored the dynamic modeling piece—covering the appli-

cation of subspace model identification to a secondary clarification unit. The objective

of this work was to investigate the suitability of subspace identification for identifying

an appropriate LTI state-space model of the clarification process. To this end, a sub-

space model was trained and subsequently validated on simulation data obtained via

dynamic GPS-X simulations and subsequently corrupted with a random white noise

signal. Validation results were successful in demonstrating that a linear determinis-

tic subspace methodology was able to approximate the nonlinear process behaviour

reasonably well can therefore be accepted as a suitable model for the current system

and range of operation considered. It should be noted, however, that the continued

use of a linear deterministic model may need to be re-evaluated as process complexity

is increased and additional dynamics are considered in future work. Results showed

that the subspace model was able to effectively predict the dynamic behaviour of the
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two output variables—the effluent and waste sludge TSS concentrations—with min-

imal prediction error. Moreover, the subspace model was able to produce accurate

multi-step predictions for multiple candidate input profiles throughout the valida-

tion dataset and thus established its candidacy for use in a model predictive control

framework.

The second part of the thesis focused on the static modeling piece—exploring the ap-

plication of discriminative modeling to the secondary clarification unit for the purpose

of failure prediction. A framework for forecasting the occurrence of sludge bulking

(and therefore clarification failure) based on PLS-DA and an engineered interaction

variable was described and subsequently utilized to predict and discriminate process

conditions associated with clarifier failure from those associated with effective clarifi-

cation. Results showed that the interaction term—which nonlinearly relates all three

input variables—sufficiently captured the interaction between the predictors and con-

sistently reduced the rate of misclassification. A classification accuracy of 98.8% was

averaged across all PLS-DA models that augmented the predictor matrix with the

interaction term—an almost 10% improvement over the base-case PLS-DA models.

5.2 Topics for future research

The secondary clarification system considered in this work is of course a substantial

simplification of a very complex and notably nonlinear process. In the current work,

simplification was necessary to establish the utility and validity of the considered

data-driven modeling techniques at a base-case level and consequently motivate their

application to a more representative secondary clarifier layout and even to the wastew-

ater treatment process in general. As such, future work should focus on increasing

process complexity via the incorporation of additional key input and output vari-

ables that affect clarification performance, eventually using measured data (in place
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of simulated data) to model real-world secondary clarification processes. Additional

variables that could be considered include: temperature, percentage of sludge recycle

to secondary clarifier (i.e., RAS), pH, dissolved oxygen (DO) concentrations, nitrogen

and phosphorus concentrations, biological oxygen demand (BOD), and total organic

carbon (TOC), among many others.

Subspace model of secondary clarifier

Future directions for this work include: (i) increasing process complexity, (ii) in-

corporating the subspace model in a model predictive control framework, and (iii)

utilizing hybrid modeling strategies.

Process complexity

As previously mentioned, additional input and/or output variables should be consid-

ered to better represent real-life process conditions. Process complexity can also be

increased via the incorporation of additional wastewater treatment units. If data is

available from all of the various treatment units within the WWTP, a single model

can be built which relates a set of raw influent variables directly to key effluent qual-

ity variables, thus describing the entire wastewater treatment process as a whole.

Alternatively, it is also possible to construct multiple separate models for individual

treatment units that can be subsequently connected such that the output from one

process unit is used as the input to the next successive unit in the WWTP layout.

Model predictive control

The application of the identified subspace model for feedback control should be ex-

plored in future work. Current work establishes the ability of the subspace model to

produce quality multi-step predictions for multiple candidate input profiles, thereby

highlighting its viability for use in a model predictive control scheme. MPC im-
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plementations for the secondary clarification process should focus on controlling the

secondary clarifier effluent quality such that effluent quality standards are maintained

at a minimum cost.

Hybrid modeling

Future work should explore the use of hybrid modeling strategies to account for exist-

ing first-principles models and ultimately improve upon subspace model predictions.

Hybrid models offer many advantages—mainly the ability to account for already avail-

able process knowledge via well-known and established first-principles relations while

also still utilizing data-driven techniques to capture the remaining dynamics present

in the measured data. Moreover, subspace identification—an intrinsically data-driven

approach—may lose physical insight of the process and, as a result, identify a model

that does not necessarily respect physical constraints inherent to the process. Hy-

brid modeling strategies can resolve this limitation, ensuring that physical process

constraints are considered.

Predicting and classifying secondary clarification failure

Future directions for this work include: (i) increasing process complexity, (ii) employ-

ing alternative discrimination methods and (iii) fault classification and diagnosis.

Process complexity

As previously mentioned, additional input and/or output variables as well as addi-

tional treatment units can be considered in order to better represent real-life process

conditions. The incorporation of more predictor variables can enable a larger portion

of variation in both the X– and y–spaces to be explained by the PLS-DA model;

however, additional predictors will necessitate feature selection to retain only vari-
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ables that are useful in predicting the response and thus classifying conditions of

clarification failure.

Alternative discrimination methods

PLS-DA with the same number of principal components as predictor variables shows

only a slight improvement in model performance with regard to prediction and dis-

crimination as a result of the associated increase in the amount of X-space variation

that is captured by the PLS-DA model with the additional component. This there-

fore prompts the exploration of other discrimination methods that could better suit

the dataset such as linear discriminant analysis (LDA), k-nearest neighbours (KNN),

logistic regression and support vector machine (SVM).

Fault diagnosis

It is possible that the problem presented in this work be reformulated to instead focus

on fault-specific classification. Faults arise when a process variable deviates from its

acceptable operating range, potentially leading to unsatisfactory performance or even

process failure. To this end, we can construct a multi-class PLS-DA model aimed

at diagnosing and classifying common faults associated with clarification failure, con-

sequently also identifying important fault-specific features and patterns in the data.

The preliminary results presented in this thesis suggest that PLS-DA—particularly

PLS-DA with interaction—shows promise as a process monitoring tool to advise

decision-making in WWTPs. As such, the expansion of this work to target fault

classification can help operators respond appropriately upon fault detection.
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Supplementary materials

Additional PLS-DA results

Table S1: Summary of classification threshold values for Model A (base-case PLS-DA)
and Model B (PLS-DA with R) at each SVI value considered.

SVI
Classification Threshold (σ)

Model A Model B

100 0.147 0.211

110 0.155 0.201

120 0.174 0.171

130 0.175 0.168

140 0.192 0.167

150 0.191 0.165

160 0.185 0.145

170 0.181 0.152

180 0.186 0.120

190 0.182 0.127

200 0.173 0.118
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Figure S1: Score plot showing the separation between FAILED (red) and NORMAL

observations (blue) along the first and third principal components of PLS-DA
Model B (at SVI = 150 mL/g).
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Figure S2: Loading plot showing how the inputs (green) relate to each other and
to each class (orange) along the first and third principal components of PLS-DA

Model B (at SVI = 150 mL/g).
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Classification metrics for PLS-DA model calibration

Table S2: Comparison of balanced accuracy (BA) scores obtained during
calibration for Model A (PLS-DA without R) and Model B (PLS-DA with R)

at each SVI value considered.

SVI
Balanced Accuracy (BA) Change

in BAModel A Model B

100 0.882 0.976 0.094

110 0.876 0.980 0.104

120 0.888 0.976 0.088

130 0.897 0.980 0.083

140 0.894 0.986 0.092

150 0.898 0.983 0.084

160 0.903 0.979 0.075

170 0.893 0.989 0.096

180 0.900 0.985 0.085

190 0.916 0.980 0.064

200 0.918 0.963 0.045
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Table S3: Comparison of sensitivity (i.e., true positive rate) scores obtained during
calibration for Model A (PLS-DA without R) and Model B (PLS-DA with R) test

set class membership predictions at each SVI value considered.

SVI
Sensitivity (TPR) Change

in TPRModel A Model B

100 0.885 0.979 0.094

110 0.880 0.981 0.102

120 0.889 0.976 0.087

130 0.900 0.979 0.079

140 0.895 0.988 0.094

150 0.899 0.982 0.083

160 0.904 0.979 0.074

170 0.894 0.989 0.095

180 0.900 1.000 0.100

190 0.918 0.979 0.062

200 0.919 0.968 0.049
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Table S4: Comparison of specificity (i.e., true negative rate) scores obtained during
calibration for Model A (PLS-DA without R) and Model B (PLS-DA with R) test

set class membership predictions at each SVI value considered.

SVI
Specificity (TNR) Change

in TNRModel A Model B

100 0.879 0.973 0.094

110 0.873 0.979 0.105

120 0.888 0.976 0.088

130 0.893 0.981 0.088

140 0.894 0.984 0.090

150 0.899 0.983 0.084

160 0.903 0.979 0.076

170 0.893 0.989 0.096

180 0.900 0.969 0.069

190 0.914 0.980 0.066

200 0.918 0.958 0.041
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Table S5: Comparison of Matthews correlation coefficient (MCC) values obtained
during calibration for Model A (PLS-DA without R) and Model B (PLS-DA with R)

test set class membership predictions at each SVI value considered.

SVI
Matthews Correlation Coefficient (MCC) Change

in MCCModel A Model B

100 0.570 0.870 0.300

110 0.576 0.901 0.325

120 0.633 0.900 0.267

130 0.666 0.925 0.259

140 0.694 0.949 0.255

150 0.703 0.941 0.238

160 0.729 0.934 0.205

170 0.706 0.965 0.259

180 0.741 0.935 0.193

190 0.788 0.947 0.159

200 0.809 0.907 0.099
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Confusion matrices

Table S6: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 100 mL/g).

Table S7: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 110 mL/g).
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Table S8: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 120 mL/g).

Table S9: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 130 mL/g).
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Table S10: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 140 mL/g).

Table S11: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 160 mL/g).
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Table S12: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 170 mL/g).

Table S13: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 180 mL/g).
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Table S14: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 190 mL/g).

Table S15: Confusion matrices summarizing test set classification
results for Model A and Model B (both at SVI = 200 mL/g).
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