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Abstract

Various longitudinal clustering approaches are discussed and compared on an ap-

plication to a seroprevalence study. The data contains information about the be-

haviours of individuals throughout the course of the COVID-19 pandemic. First,

a review of the various longitudinal clustering methods compared throughout this

thesis is discussed. Longitudinal k-means, growth mixture models, latent class

growth analysis and a two-step approach involving growth curve models and k-

means are reviewed. Longitudinal model-based clustering based on a modified

Cholesky decomposition of a Gaussian mixture and Gaussian linear means are

also reviewed. The BIC is used as the primary criterion to determine the num-

ber of components, and the ARI is used to determine cluster similarity between

models. The various clustering approaches are then compared as they attempt to

identify gathering patterns within the population of the seroprevalence dataset.
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Chapter 1

Introduction

Longitudinal data, sometimes referred to as panel data, can be described as

collecting observations from the same subjects over multiple time measures. This

data can be very useful in tracking changes over time, or trends/behavioural pat-

terns, depending on the type of study conducted. This type of data is popular in

a wide variety of fields such as economics, finance, sociology, epidemiology and/or

medical studies and more. These studies can range from tracking stock market

trends to evaluating the survival rate of a disease. A more comprehensive review

of longitudinal experimental design, data collection and analysis can be found in

Menard (2007) and Lynn (2009).

Clustering, involves the task of grouping observations so that the observations

in any such grouping are more similar than observations in other groupings. This is

also referred to as unsupervised learning, as there are no labels on the observations

we attempt to cluster. A more detailed review of clustering can be found in Everitt

et al. (2011).

In recent years, there have been an increasing number of methods that can be

used to analyze longitudinal data. Our focus herein will be on clustering methods

for longitudinal data. While there are a multitude of approaches available, some

more common than others, there is still little information on which methods are

most effective under certain conditions.

For the past year-and-a-half the world has been battling the unprecedented

COVID-19 pandemic. In this thesis we will use data collected regarding the be-
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haviours of individuals throughout the course of the pandemic. From this data

we hope to gain an understanding of which individuals were most adherent to the

social distancing protocols along with those who were the least adherent.

The data used throughout this thesis comes from a study conducted by the

research group of Dr. Dawn Bowdish. A study was conducted of approximately

300 people over the course of the pandemic. Data used in this thesis were collected

from May 2020 to January 2021. The dataset includes the observations from

a monthly survey sent to participants asking them questions surrounding their

social distancing behaviours. These behaviours include things like frequency of

hand-washing, gatherings attended, hours spent in a workplace, etc.

When the study was originally conducted, the hypothesis was that age and

health could affect individuals adherence to safety protocols and hence their social

distancing behaviours. This could ultimately lead to over/under estimates of which

age groups/health conditions make people more susceptible to contracting COVID-

19.

To test this hypothesis, the goal of the analysis was to determine if there

was a statistically significant difference in the total social distancing score for

individuals of different ages and health conditions. We also hoped to determine if

there was a difference in the behaviour of individuals throughout different stages

of the pandemic (i.e., as there were differences in government mandates and case

levels).

Using longitudinal clustering algorithms we attempt to analyze the different

gathering patterns of individuals throughout the course of the pandemic. Through

the process of identifying these patterns we are also given the opportunity to

compare and contrast the different clustering algorithms and determine which

algorithms perform well under the conditions of our data. With this work we

hope to add to the existing knowledge by illustrating how each method is able to

perform on the given data.

The longitudinal clustering methods explored throughout this thesis include

mixture-model based methods, k-means, growth mixture models and latent growth

class analysis, along with a two-step clustering method.

2
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In Chapter 2 a background and description of methodology used is introduced.

Each of the longitudinal clustering methods used is described. In Chapter 3 the

data is introduced and described, and a preliminary analysis is performed. In

Chapter 4 the clustering methods are applied to the data, models are compared

and contrasted. Then analysis pertaining to the type of individual (i.e., age,

health status) in each cluster is conducted. Finally, Chapter 5 includes concluding

statements and discussions of future work.

3



Chapter 2

Methodology

2.1 Clustering

Clustering can also be regarded as the unsupervised sub-species of classifica-

tion. Classification can be generally defined as assigning unlabelled observations

to a group. The idea is that those observations within a group are more similar

than to those outside of the group. The three types of classification include super-

vised, semi-supervised and unsupervised (clustering). With n observations and k

labelled observations, where k < n we can define each type of classification as fol-

lows. Supervised classification uses k labelled observations to determine the n− k

unlabelled observations. Semi-supervised classification uses all n observations to

determine the n−k unlabelled observations. On the other hand, unsupervised clas-

sification (i.e., clustering) assigns group labels with no prior knowledge of group

membership (i.e., data is completely unlabelled).

Clustering broadly includes a multitude of methods that work to solve the same

problem. The process in which this problem is solved and similarity within groups

is decided varies across clustering approaches and will be discussed throughout

this chapter.

4
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2.2 Mixture-Model Based Methods

2.2.1 Finite Mixture Models

The first methods we will discuss are referred to as model-based clustering

methods. Before we define and explain these methods, we first discuss the connec-

tion between clustering and mixture models. McNicholas (2016b) states that the

idea of defining a cluster in terms of a component in a mixture model was given in

a paper by Tiedeman (1955) who built on previous works by Pearson (1894) and

Rao (1952). This work was used to encourage what we now know as clustering.

McNicholas (2016b) makes the mixture-model based clustering definition given by

Tiedeman (1955) more specific by stating:

A cluster is a unimodal component within an appropriate finite

mixture model.

McNicholas (2016b) clarifies that the appropriate finite mixture model here is

the one that is appropriate for the data, i.e. the model with the flexibility to fit

the data. With this established, we now move to discuss model-based clustering.

Model-based clustering is the use of finite mixture models to perform clustering.

We can define a finite mixture model as follows: for a random variable X and p-

dimensional data the probability density function for the model withG components

is

f(x|ϑ) =
G∑
g=1

πgfg(x|θg),

where we have πg as the gth mixing proportion with πg > 0 and
∑G

g=1 = 1, fg(x|θg)

as the gth component density and ϑ = (π1, . . . , πg,θ1, . . . ,θg) as the vector of

parameters. It is common for the component densities f1(x|θ1), . . . , fg(x|θg) to

all be of the same type. The most frequently used component density is the

Gaussian. This will be discussed more later on. A more in depth review of finite

mixture models can be found in McNicholas (2016a,b).

5
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2.2.2 Modified Cholesky Decomposition

Benôıt (1924) founded the Cholesky decomposition which is used to decompose

a matrix into the product of a lower triangular matrix and its transpose. Pourah-

madi (1999, 2000) used a modified version of this Cholesky decomposition which

was applied to the covariance matrix Σ of a random variable. This obtains,

TΣT′ = D ⇐⇒ Σ−1 = T′D−1T, (2.1)

where we have T as a unique unit lower triangular matrix and D as a unique diag-

onal matrix containing only positive entries. As per Pourahmadi (1999), T and D

can be interpreted as generalized linear autoregressive parameters and innovation

variances respectively. Due to this, we are able to predict a measurement taken at

time t using those measurements taken at previous time points. So, we see that

the linear least squares predictor of Xt based on Xt−1, . . . , X1 is as below:

Xt = µt +
t−1∑
s=1

(−ϕ)(Xs − µs) +
√
dtεt,

where ϕ are the lower triangular elements of T, dt are the diagonal elements of D

and ε ∼ N(0,1).

This modified Cholesky decomposition has come to be very useful for a mul-

titude of longitudinal methods, as we will see later with our Gaussian mixture

modelling of longitudinal data (McNicholas and Murphy, 2010).

2.2.3 Gaussian Mixture Modelling of Longitudinal Data

McNicholas and Murphy (2010) provided a Gaussian mixture model with a

modified Cholesky decomposed covariance structure for each component in order

to model longitudinal data. For our purposes in this thesis, will we focus on the

model-based clustering applications of this model. To illustrate, we consider a

6
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Gaussian mixture model, which can be defined as

f(x|ϑ) =
G∑
g=1

πgφ(x|µg,Σg),

where we have the probability density function of a multivariate Gaussian distri-

bution

φ(x|µg,Σg) =
1√

(2π)p|Σg|
exp−1

2
(x− µg)′Σ−1g (x− µg),

and we have µg as the mean, Σg as the covariance matrix. As per McNicholas and

Murphy (2010), utilizing the decomposition in (2.1) we can rewrite this as

φ(x|µg, (T′gD−1g Tg)
−1) =

1√
(2π)p|Σg|

exp

{
−1

2
(x− µg)′T′gD−1g Tg(x− µg)

}
,

where Tg and Dg are the p × p unit lower triangular matrix and p × p diagonal

matrix that follow from the modified decomposition of Σg.

We find that 8 Gaussian mixture models result from the different constraints

imposed. There is the option to constrain one of or both of Tg and Dg to be

equal across components along with the option to impose the isotropic constraint

given by Dg = δgIp. Throughout this thesis we will denote this family of Gaussian

mixture models as CDGMM (Cholesky-decomposed Gaussian mixture models)

as was done in McNicholas (2016a). We note these CDGMM’s seem to fit the

longitudinal data very easily as we notice the following patterns. Constraining

Tg = T results in the autoregressive relationship between all time points being

the same among components. This means that the correlation structure of the

longitudinally recorded data values is the same for all the clusters. By constraining

Dg = D we get that the variability at each time point is the same across all

components. And finally, we see that the isotropic constraint Dg = δgIp gives

that the variability is the same at each time point within the component, i.e., the

noise is the same at all time points. The eight models and their corresponding

constraints can be seen in Table 2.1.

7
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Table 2.1: The different covariance structures along with the number of free co-
variance parameters for each member of the CDGMM family.

Model Tg Dg Dg Free Covariance Parameters
EEA Equal Equal Anisotropic p(p− 1)/2 + p
VVA Variable Variable Anisotropic G[p(p− 1)/2] +Gp
VEA Variable Equal Anisotropic G[p(p− 1)/2] + p
EVA Equal Variable Anisotropic p(p− 1)/2 +Gp
VVI Variable Variable Isotropic G[p(p− 1)/2] +G
VEI Equal Equal Isotropic G[p(p− 1)/2] + 1
EVI Equal Variable Isotropic p(p− 1)/2 +G
EEI Equal Equal Isotropic p(p− 1)/2 + 1

2.2.4 Linear Means

McNicholas and Subedi (2012) showed that the CDGMM family can also model

the means µg using a linear combination. They defined

µg = Qβg =

1 1 1 · · · 1

t1 t2 t3 · · · tp

′ ag
bg

 ,
where bg is the slope and ag is the intercept. This gives us the following likelihood:

L(ϑ) =
n∏
i=1

G∏
g=1

[πgφ(xi|Qβg, (T′gD−1g Tg)
−1)].

This method models the mean using a line of best fit. In general, this is not

always the most desirable approach as most data does not necessarily follow a

linear pattern. We note that the modelling of the mean can be extended to other

situations such as quadratic curves or other polynomial combinations.

2.2.5 EM Algorithm for Model-based Clustering

The EM algorithm (Dempster et al., 1977) is an iterative process that works to

find the maximum likelihood estimate in the case of missing or incomplete data.

The algorithm consists of two steps. The expectation (E) step and the maximiza-

tion (M) step. The E-step is used to compute the expected value of the complete

8
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data log-likelihood. The M-step maximizes the expected value of complete data

log-likelihood. These two steps are repeated until we reach a convergence point.

Here, complete data refers to the combination of the observed and unobserved

data. When looking at a clustering problem, we see that the observed data are

given by x1, . . . ,xn while the unobserved data is given by the unknown labels,

z1, . . . , zn. We use zi to denote the group membership of the ith observation and

zig is an indicator variable that is used to represent whether xi belongs to group

g, as shown below. We note that zi = (zi1, . . . , zig), where

zig =

1 if xi belongs to component g,

0 otherwise.

In model-based clustering, our main goal is to estimate zig.

2.2.6 Convergence Criterion for EM Algorithm

There are several approaches when it comes to a stopping criterion for the EM

algorithm, all mainly centered around determining when there is a lack of progress

in the log-likelihood. More explicitly we can write this as

l(k+1) − l(k) < ε, (2.2)

where we have l(k+1) and l(k) as the likelihood at the k + 1 and kth iteration

and ε to be some very small value. This method is generally very effective where

the log-likelihood continues to increase until it reaches a plateau point, as that

plateau would be easily identified. However, this is not always the case, as there

are instances where the log-likelihood can increase in more of a staircase fashion

which would make this method potentially ineffective (McNicholas et al., 2010).

As a result, we may want to consider another approach. Following McNicholas

et al. (2010) we can consider another convergence method based on Aitken’s accel-

eration (Aitken, 1926). This approach works to estimate the asymptotic maximum

log-likelihood at each iteration of the EM algorithm and decide on whether con-

9
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vergence has been achieved. Aitken’s acceleration at iteration k can be written

as

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
,

where l(k+1), l(k) and l(k−1) are the log-likelihoods from iterations k+1, k and k−1

respectively.

We see that the asymptotic log-likelihood at iteration k + 1 (Böhning et al.,

1994) is given by

l(k+1)
∞ = l(k) +

1

1− a(k)
(l(k+1) − l(k)).

There are several methods that can be used to determine convergence (stopping

criterions). The first is given by Böhning et al. (1994): |l(k+1)
∞ − l(k)∞ | < ε. The next

is given by Lindsay (1995): l
(k)
∞ − l(k) < ε. In both, ε is a very small value.

Alternatively, McNicholas et al. (2010) proposes that the stopping criterion is

met when

l(k+1)
∞ − l(k) < ε, (2.3)

for a small value for ε, provided this difference is positive. This criterion was shown

to be just as strict as the criterion given by Lindsay (1995) by McNicholas et al.

(2010) since l(k+1) ≥ l(k). McNicholas et al. (2010) also showed the that criterion

in (2.3) was just as strict as the criterion in (2.2). The criterion in (2.3) will be

used in this thesis.

2.3 Growth Curve Models

Growth curve modelling, a term that covers many other similar or identical

approaches such as mixed effect models, latent curve modeling, etc. is used to

test hypotheses based on differences in individual trajectories between persons.

Conventional growth modeling assumes that individuals come from a single pop-

ulation and therefore a single growth trajectory is able to accurately depict the

entire population. They look to model the relationship between an explanatory

variable and a repeatedly measured outcome. The literature on these models is

extensive and more detail can be found in Burchinal et al. (2006) or Preacher et al.

10
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(2008).

We define k = 1, . . .K as the number of classes, t = 1, . . . , T as the time points,

and i = 1, . . . , N as the number of subjects. The equation for a single trajectory

growth curve model is

yit = (β0 + b0i) + (β1 + b1i)Xit + (β2 + b2i)X
2
it + εit, (2.4)

where yit is the measured outcome for individual or subject i at time t, Xit is the

predictor value for subject i at time t, β0, β1 and β2 are our fixed effects, b0i, b1i

and b2i are the random effects (allowing for differences between individuals and

the average trend), and εit represent the error, i.e., individual variability. In the

case of equidistant values of X (the outcome is measure at the same value of X

across all time points) this can simply be denoted by ti. The random effects and

errors follow a normality assumption, i.e., bji ∼ N(0, σbj), εit ∼ N(0, σεt). The

sum of the random effects and the error terms give us the difference between an

individual and the average trend. In (2.4), we are making the assumption that the

effect of X on y is given by a second order polynomial over time. However, in real

life applications this is not always the case and this model can be adapted to fit

higher order polynomials or constrained to fit a linear trend.

2.4 Growth Mixture Modelling

While conventional growth curve modelling can only model a single population

trajectory, growth mixture modelling (GMM) is able to consider different groups

within a larger population. It does this by allowing for multiple latent classes

with each having its own growth curve model (GCM). To do this, GMM relaxes

the assumption that all individuals are drawn from a single population with com-

mon parameters. It instead allows for differences in growth parameters across

unobserved subpopulations. This results in separate growth models for each la-

tent class. Each group follows a different mean trajectory, of possibly different

forms (i.e., linear vs. higher order polynomial) and each with unique estimates

11
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of variances and covariate influences. The flexibility in this model is what makes

the GMM unique (Muthen and Asparouhov, 2006). Random effects are used to

capture individual differences in trajectories within a class (Muthén and Muthén,

2000), since the outcome at the start (the intercept) and the rate of change (the

slope) may vary between individuals within a class. Therefore, the distance be-

tween the class-specific mean trend and the individual belonging to that class is

given by the sum of the random effect and the random error. Furthermore, the

random effects and errors follow the same assumptions as in GCM, but now per

latent class. The formula for GMMs is given by:

ykit = (βk0 + bk0i) + (βk1 + bk1i)Xit + (βk2 + bk2i)X
2
it + εkit, (2.5)

where all the parameters are the same as defined in the previous section for GCMs;

however, each parameter is class-specific to class k.

Since the number of classes is unknown, estimation is carried out conditionally

on a pre-specified number of classes. Estimates are found using maximum like-

lihood with the EM algorithm as was described in a previous section. As there

is a possibility of several local maxima for the likelihood (especially with more

complex models) it is beneficial to test several starting points before determining

that maximization has been reached.

2.5 Latent Class Growth Analysis

Latent class growth analysis (LCGA) models are a special type of GMM. They

assume no individual level random variation within each class. This means that

all individuals within a class share the same trajectory, i.e., are homogeneous.

They describe a longitudinal dataset in terms of a mixture of group trajectories,

without having regard for within-group variability (Nagin and Land, 1993; Nagin

and Odgers 2010). Individual deviations from the class specific trend are treated

as residual error, random effects are not factored in. Instead, it allows for discrete

individual differences by letting fixed effects (given by the trend) differ between
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classes (Pennoni and Romeo, 2017). We note that k represents the class, and

therefore all parameters are class specific. Each subject or individual within the

class is expected to follow the group trajectory, although this trajectory is different

between classes. The formula for LCGA is given by

ykit = βk0 + βk1Xit + βk2X
2
it + εkit, (2.6)

where we again have εit ∼ N(0, σεt), our error term under the normality assump-

tion. The group-based trajectory model (GBTM) is a popular special case of the

LCGA in which the error variance is assumed to be the same for all classes and

all time points (Nagin, 2005; Nagin and Land, 1993).

As LCGA exhibits no between-subject variability within a class, far fewer pa-

rameters need to be estimated. Therefore, it may be useful in cases of smaller

sample sizes or in the presence of more complex models that fail to converge, pro-

duce out of range estimates, or it may be used as an initial modelling step before

specifying a GMM (Jung and Wickrama, 2008).

2.6 K-means Clustering

Distance based methods optimize a global criteria based on the distance be-

tween patterns. A suitable distance function is used to measure the dissimilarity

between two subjects and then a clustering algorithm is applied to those distance

measurements. K-means clustering is an example of a distance-based clustering

method. Euclidean distance (Golay et al., 1998; Kos̆melj and Batagelj, 1990;

Policker and Geva, 2000) is used when performing K-means clustering. The algo-

rithm works as follows (MacQueen 1967; Genolini and Falissard 2010):

• Step 1: We choose K data points as the centers of each of our K clusters.

• Step 2: Next, the Euclidean distance between every data point and each

of the K cluster centres is computed. Every data point is assigned to the

cluster in which it is the smallest distance from the centre.
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• Step 3: Once this is complete for every data point, we re-calculate the mean

of each cluster, and the data point closest to that value is reassigned as the

center value.

• Step 4: The process in step 2 is then repeated.

• Step 5: Steps 2–4 are repeated until there is no longer any changes (move-

ment between clusters).

This process is similar when we refer to longitudinal K-means clustering. The main

difference is that in the longitudinal version the cluster centres are representative

of a group trajectory of a cluster. Subjects that are assigned to this cluster are

assumed to also follow this trajectory, which we may refer to as a vector µK .

2.7 Two-Step Clustering

The final approach considered is a two-step clustering approach that utilizes

both growth curve models (Laird and Ware, 1982) and k-means (MacQueen et al.,

1967), methods we have discussed earlier in this chapter. This method has been

described and reviewed in Twisk and Hoekstra (2012) along with Den Teuling

et al. (2020).

To start, the dataset is expressed as a single group trajectory by the growth

curve model. This is known as the fixed effects. Each individual within the dataset

is described by their deviation from this trajectory (the random effects) using a

polynomial of the kth order (Nagin and Odgers, 2010). This trajectory and those

random effects are given by

yij =
K∑
k=0

βkit
k
ij + εij, (2.7)

where

βki = αk + ξki,

αk represents the kth order coefficient of the polynomial trajectory, ξki represents

the between-subject variability (random effect) for subject i for the kth coefficient,
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εij denotes our error term (i.e., within subject variability). Our error terms are

assumed to be independent and normally distributed, N ∼ (0, σ). The random

effects are also assumed to be normally distributed with mean 0, uncorrelated, but

with the possibility of an unstructured (i.e., unconstrained) variance-covariance

matrix.

Once the growth curve model and random effects are established, we can com-

mence the second step. In this step the outcome can be predicted for each subject

over time and passed into the longitudinal K-means algorithm. These predicted

outcomes are passed into the longitudinal K-means algorithms as subject trajec-

tories. The longitudinal K-means algorithm is then carried out as described in the

previous section.

2.8 Model Selection

Throughout this thesis, all models in a family will be fitted through a range of

values of groups. There are several ways to determine which model size is deemed

“best”. Here, we will consider the BIC, short for Bayesian Information Criterion

(Schwarz et al., 1978). This is the criterion of choice in most model-based clustering

applications. The BIC will be used to select the “best” model (e.g. covariance or

scale decomposition) and the number of components. The BIC is given by:

BIC = 2l(x, ϑ̂)− p log n,

where l(x, ϑ̂) is the maximized log-likelihood, ϑ̂ is the log-likelihood estimate of

ϑ, p is the number of free parameters and n is the number of observations.

The model with the largest BIC is selected as the best model. It is worthy

of mention to note that the BIC does not always select the best model from the

point of view of the classification performance. There have been many comparative

studies performed (for example, Steele and Raftery, 2010), but there has not been a

method that has emerged and shown to do better than the BIC across model-based

clustering applications.
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For completeness we will also consider the AIC (Akaike’s information criterion;

Akaike, 1998) and the ICL (integrated completed likelihood; Biernacki et al., 2000).

The model with the largest AIC or ICL is selected as the best model. Their

formulas are given below:

AIC = 2l(x, ϑ̂)− 2p,

ICL ≈ BIC + 2
n∑
i=1

G∑
g=1

MAP(ẑig) log(ẑig),

where

MAP(zig) =

1 if g = arg maxh(ẑih)

0 otherwise.

2.9 Measuring Similarity

The adjusted Rand index, often referred to as the ARI, (Hubert and Arabie,

1985) is used to compare the clustering results from the different longitudinal clus-

tering methods used throughout the thesis. The ARI can measure the similarity

between true classes and predicted classes. However in our case it will be used

to measure similarity between two clustering results. This measurement adjusts

the Rand index (Rand, 1971) to consider randomness. Here an ARI of 1 indicates

perfect class agreement while an ARI of 0 means that the clustering result is sim-

ilar to the result of a random class assignment. We can also achieve a negative

ARI value which indicates that the clustering result is worse than the expected

performance of randomly classifying results.
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Chapter 3

Seroprevalence Data

3.1 Research Ethics

Participants from the Greater Hamilton Area who had previously provided

consent to contact were asked if they would be interested in participating in the

study. Informed consent was obtained and participants provided demographic data

and filled out questionnaires by email. Participants were provided with a study

number and only the research coordinator had access to de-identifying information.

All analysis was done using de-identified data. The protocol was approved by the

Hamilton Integrated Research Ethics Board (HiREB 10757).

3.2 Background

In this chapter we introduce the data collected from the study conducted by

the research group of Dr. Dawn Bowdish. We have just over 300 individuals

who responded to surveys from May 2020 to January 2021 on many categories

of behaviour throughout this time period. Participants also completed a baseline

survey providing information such as age, race, health conditions, prior working

situations, etc. The response rate for all of the monthly surveys was approximately

87%.

A social distancing score was derived by considering 7 different categories of

behaviour: gathering, hand-washing, care, volunteering, visiting, public transit,
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and workplace. The data contains responses from individuals regarding their be-

haviour within the past two weeks in each category used for the social distancing

score. Individuals were then given a score based on their response for each of the

seven categories and those scores were summed together to obtain the total social

distancing score for that two-week period.

Each category can be described as follows:

• Gathering: the number of gatherings the individual attended in the past two

weeks. Includes things like visits with family and friends, trips to the mall

or movies, sports games or practices, school, etc.

• Hand-washing: the individual reported on average how many times per day

they washed their hands throughout the past two weeks.

• Care: how many times in the past two weeks the individual received any

sort of care in which they were in contact with another person not from their

own household.

• Volunteering: the number of hours an individual spent volunteering (not

including virtual hours) within the past two weeks.

• Visiting: the amount of times within the last two weeks the individual visited

a long-term care or retirement facility.

• Public transit: the number of times within the last two-weeks an individual

used public transportation.

• Workplace: the number of hours within the past two weeks an individual

spent physically at their workplace.

The score is on a scale from 0–14, with 14 being the highest attainable score.

The higher the score, the better social distancing practices individuals have. A

breakdown of the points earned from each category is shown in Table 3.1.
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Table 3.1: Breakdown of point system used to calculate social distancing score
by category, where the first column indicates the criterion and the second column
indicates points earned.

Breakdown Points
Gather

Gathering events = 0 times/week 2
Gathering events ≥ 1 & < 5 times/week 1

Gathering events ≥ 5 times/week 0
Hand-washing

Hand-washing ≥ 3 times/day = 0 times/day 2
Hand-washing ≥ 1 & < 3 times/day 1

Hand-washing = 0 times/day 0
Care

Receiving care = 0 times/week 2
Receiving care ≥ 1 & < 3 times/week 1

Receiving care ≥ 3 times/week 0
Volunteering

Volunteering = 0 hours/week 2
Volunteering > 0 & ≤ 10 hours/week 1

Volunteering > 10 0
Visiting

Visiting = 0 hours/week 2
Visiting > 0 & ≤ 10 hours/week 1

Visiting > 10 0
Public Transportation

Public transportation = 0 times/week 2
Public transportation ≥ 1 & ≤ 4 times/week 1

Public transportation > 4 times/week 0
Work Away From Home (WAFH)

WAFH = 0 hours/week 2
WAFH ≥ 1 & ≤ 31 hours/week 1

WAFH 31 hours/week 0

3.3 Preliminary Analysis of Data

First, we are looking to determine if the varying government restrictions or case

levels had an impact on individuals social distancing score. To do so, we will look

at social distancing score through different “stages” of the pandemic. Each stage

is defined as a period of time where government rules/regulations were different

from the previous time period. These stages were defined as follows:
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Stage 1: week of May 11th – week of June 15th

Stage 2: week of June 22nd – week of July 20th

Stage 3: week of July 27th – week of September 28th

Stage 4: week of October 5th – week of December 21st

Stage 5: week of December 28th – week of January 18th

Again centered around when public guidelines changed surrounding gathering lim-

its, restaurants and other businesses opening and closing, etc.

Table 3.2: Average social distancing scores by stage.
Stage 1 2 3 4 5

Average Score 10.666667 10.142857 9.621622 9.563492 10.206897

Figure 3.1: Boxplot illustrating social distancing score by stage.

Table 3.2 shows the average social distancing scores in each stage. As we can

see the scores between stages are all quite similar, with a slight dip in the middle

stages. Based on the boxplots shown in Figure 3.1 it appears that stages 2–4

appear to have the same distribution while stages 1 and 5 are different. This is
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Figure 3.2: Six histograms illustrating the distribution of observed social distanc-
ing scores within each stage.

confirmed in Figure 3.2 where we see the individual histograms breaking down the

distribution for each stage. Since all 5 stages do not follow the same distribution we

cannot safely use a test such as the Kruskal-Wallis. However, pairwise comparisons

between stages 2, 3 and 4 can be made using Dunn’s test. This tells us that there

is no statistically significant differences between social distancing scores in any of

the three stages. Overall, we notice that social distancing scores are highest in

stages 1 and 5 when restrictions were tightest, and lowest in stages 3 and 4 when

restrictions were loosest.
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Figure 3.3: Number of gatherings attended per two weeks by stage.

Table 3.3: Average gatherings per two weeks by stage.

Stage 1 2 3 4 5
Average # gatherings 0.6811594 2.1493056 3.4925094 2.5218477 1.0833333

Table 3.3 and Figure 3.3 show that more gatherings were attended in stages 2–

4, when there were looser restrictions imposed by the government, along with lower

case numbers. Stages 1 and 5 average the least number of gatherings attended.

This is when government restrictions were strongest. Individuals attended some-

where between 1.5–2.5 more gatherings per two weeks on average in stages 2–4

than they did in stages 1 and 5. Figure 3.4 gives histograms illustrating the dis-

tribution of each stages social distancing scores. The distributions between stages

are not the same, and we cannot safely perform a non-parametric test to determine

if there is a significant difference between means. The histograms provide another

visualization of the differences between gathering numbers in the middle stages

and the outer ones. Specifically, in stage 3 it is clear how much more gathering

occurred as compared to the other stages.

Next, we grouped the individuals within the study into 6 groups: “Young and

sick”, “young and healthy”, “middle-aged and sick”, “middle-aged and healthy”,

“elderly and sick”, “elderly and healthy”. Young people were considered to be
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Figure 3.4: Six histograms illustrating the distribution of the number of gatherings
attended per two weeks by stage.

those younger than 40. Middle-aged were those between the ages of 40 to 65. The

elderly were those over 65. A person was deemed “sick” if they had at least one

pre-existing or current condition from the following list: asthma, COPD, ILD,

lung disease, diabetes, high blood pressure, cancer, organ failure, autoimmune

disorder, pneumonia, or any other “long-term” health condition. The mean social

distancing scores for each group are shown in the Table 3.4.

Table 3.4: Average social distancing score by group.

Group Y&H Y&S M&H M&S E&H E&S
Average Score 9.738636 9.333333 9.990291 9.940000 11.384615 9.714286
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Figure 3.5: Boxplot illustrating social distancing score by group.

Figure 3.6: Six histograms illustrating the distribution of observed social distanc-
ing scores between groups made based on age and health status.

In Table 3.4 we see that the elderly have the highest social distancing scores,

followed by the middle-aged and then young. The elderly and healthy have the

highest average social distancing score by approximately a point and a half. We
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then look to see if the distributions are the same between groups using Figure 3.6.

From the histograms in Figure 3.6 it appears we can only safely conclude that

Y&H and M&H have the same distribution. This allows us to perform a pairwise

Dunn Test between the two groups where we found that there was no significant

difference in score. We should note that it was difficult to interpret the young

and sick group, as it had by far the smallest sample size. We then compared the

average number of gatherings attended per week for each group. The results are

shown in both Table 3.5 and Figure 3.7.

Table 3.5: Average gatherings attended per 2 weeks by group.

Group Y&H Y&S M&H M&S E&H E&S
Average # gatherings 2.876126 2.734043 2.555556 2.398589 1.542169 1.553734

Figure 3.7: Number of gatherings attended per 2 weeks by group.

Right away we notice that the number of gatherings attended seems to be

similar for the E&H and E&S group. The numbers for the remaining four groups

are also similar. In Figure 3.8 we see the histograms illustrating the distribution

of observations for each group. Based on these histograms it is fair to conclude

that E&H and E&S follow the same distribution. It also appears that Y&H and
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Figure 3.8: Six histograms illustrating the distribution of the number of gatherings
attended based on group.

M&H also follow the same distribution. Since all distributions are not the same

we cannot safely perform a non-parametric test.

After running a pairwise test to determine if there is a significant difference

in the mean gathering numbers of E&H vs. E&S and Y&H and M&H, we found

that there was no significant difference in both cases. We note that using Table

3.5 and Figure 3.7 we can observe that the E&S and E&H averaged the lowest

number of gatherings per two weeks. On the other hand, the M&H and Y&H

groups gathered most frequently per two weeks. M&S and Y&S appear to fall in

the middle of the pack, although do have more outliers, as compared to the other

groups.
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Chapter 4

Analysis

4.1 Introduction

An analysis of the performance of several longitudinal clustering methods will

be performed on the same seroprevalence data described in the previous chapter.

We will apply longitudinal k-means, growth mixture models, latent class growth

analysis, two-step clustering and a variety of mixture-based longitudinal clustering

approaches. These include both the Gaussian method and the Gaussian method

with linear means.

From the seroprevalence data we will be specifically looking at gathering num-

bers throughout the pandemic. We hope to be able to cluster groups based on

differences in activity levels over the observed time period. For example, it may

be natural to assume there were people who rarely/never attend gatherings, while

others disregard guidelines and gather more than one may find favorable.

By clustering subjects into these behavioural groups, we can then hope to

uncover more information on what type of individual is most common in each

setting. For example: average age, number of medical conditions, etc.

Participants provided the gathering information on a monthly basis. Within

the monthly survey, individuals were asked to disclose how many gatherings they

attended within the past two weeks. These questions were broken up into 11 parts

with individuals inputting the number of each type of gathering they attended.

Some of categories included family gatherings, sports and recreation, shopping
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and movies, religious gatherings, meetings (work or otherwise), restaurants, etc.

There was also an “other” category. Responses from each category were then

added together to obtain the total number of gatherings per two weeks for each

individual.

4.2 Missing values

It is important to note that there are instances of missing data as sometimes

individuals missed their monthly questionnaire once or twice. To handle said

missing data a carry forward method was used, where the number of gatherings

attended listed in the previous month for that individual was slotted into that

missing months slot. If the individual had a missing value for the first month of

data collection (May 2020), a 0 was inputted to replace the missing NA value.

This was done as 0 was the most common response in May 2020.

4.3 Model Comparisons

Throughout this analysis we will use the Gaussian and Gaussian linear means

mixture-model based methods. We will also look at longitudinal k-means, growth

mixture models, latent class growth analysis and a two-step method using growth

curve models and longitudinal k-means to analyze our seroprevalence data. We will

start by looking at the mixture-model based methods. The longclustEM function

from the R package longclust was applied to each method for component size

2-8. We can compare the resulting BIC and ICL scores for each of the 8 resulting

models of these two methods (16 total). Table 4.1 provides the BIC and ICL values

for each model in the CDGMM family. NA is used to represent the models that

could not be fit as their likelihood tended towards negative infinity. We see that the

CDGMM family selects the EVI model with 5 components as the selected model

in terms of both the BIC and the ICL. The EVI model has equal autoregressive

structure and variable, isotropic noise across groups. The selected model is shown

in Figure 4.1.
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Table 4.1: CDGMM family BIC and ICL scores for each model.
BIC

VVI VVA EEI EEA VEI VEA EVA EVI
2 -11607 NA -12823 -12626 -12690 -12516 NA -11474
3 -11265 NA -12618 -12689 -12750 -12535 NA -10973
4 -11341 NA -12515 -12752 -12714 -12469 NA -10921
5 -11573 NA -12740 -12816 -12955 -12743 NA -10912
6 -11570 NA -12792 -12879 -13014 -12702 NA NA
7 -11782 NA -12703 -12942 -13121 -12980 NA NA
8 -11980 NA -13003 -13006 -13275 -13013 NA NA

ICL
VVI VVA EEI EEA VEI VEA EVA EVI

2 -11626 NA -13239 -13030 -12692 -12646 NA -11495
3 -11277 NA -12634 -13334 -12761 -12667 NA -10993
4 -11365 NA -12528 -13572 -12718 -12483 NA -10951
5 -11613 NA -13321 -13790 -12969 -12842 NA -10948
6 -11594 NA -13486 -13972 -13026 -12748 NA NA
7 -11824 NA -13433 -14130 -13128 -13090 NA NA
8 -12005 NA -14038 -14266 -13326 -13142 NA NA

Figure 4.1: Selected model as per the BIC and ICL from CDGMM family. This
is the EVI model with 5 components where light blue represents component 1,
dark blue represents component 2, red represents component 3, black represents
component 4 and green represents component 5.
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Table 4.2: CDGMM Linear Means family BIC and ICL scores for each model.
BIC

VVI VVA EEI EEA VEI VEA EVA EVI
2 -11782 -11749 -12968 -12857 -12936 NA -11616 -11637
3 -11778 -11849 -12991 -12880 -12882 -12783 -11592 -11464
4 -11475 -11830 -13014 -12903 NA -12760 NA -11004
5 -11602 -12060 -13060 -12926 NA NA -11103 -10991
6 -11787 -12175 -13083 -12949 NA -12890 -11148 -11020
7 -11940 -12301 -13106 -12972 NA NA NA NA
8 -12019 NA -13003 -12995 NA NA -11130 NA

ICL
VVI VVA EEI EEA VEI VEA EVA EVI

2 -11801 -11762 -13403 -13235 -12943 NA -11629 -11661
3 -11822 -11877 -13624 -13460 -12886 -12789 -11637 -11499
4 -11498 -11854 -13867 -13721 NA -12813 NA -11031
5 -11630 -12089 -14035 -13902 NA NA -11132 -11061
6 -11812 -12203 -14143 -14028 NA -12915 -11199 -11083
7 -11998 -12329 -14271 -14141 NA NA NA NA
8 -12064 NA -14374 -14226 NA NA -11200 NA

Figure 4.2: Selected model as per BIC and ICL from the CDGMM family using
linear means. The EVI model with 5 components where light blue represents
component 1, dark blue represents component 2, black represents component 3,
red represents component 4, and green represents component 5.
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Next, we see Table 4.2 which provides the BIC and ICL values for the models

produced from the CDGMM family with linear means. Linear means selects the

EVI model with 5 components as the optimal model in terms of both the BIC

and the ICL. We see the optimal model in Figure 4.2 where we notice the main

difference in linear means is that our trajectories for each component are in fact

linear.

The CDGMM family performs the best in terms of both the BIC and ICL

across every component number and almost every model. We see that the linear

means applied to the CDGMM family performs similarly to the CDGMM family,

however most BIC and ICL values are slightly worse than those from the regular

CDGMM family. As we notice in Figure 4.3, this can be attributed to the fact

that linear means provides linear trajectories and the data we observe does not

appear to follow a linear path for the most part. There are a few instances (for

example the VVA model) where linear means does better than non-linear means.

The CDGMM family selects the EVI model with 5 components as the optimal

model in terms of both the BIC and the ICL. The CDGMM family with linear

means selects the same model.

Next we will consider the results found from models produced using the LCMM

package. Using this package we were able to produce models using latent class

growth analysis and growth mixture models. We will start by looking at the

results from the BIC and the AIC given for the models with 2-8 components by

latent class growth analysis as shown in Table 4.3.

Table 4.3: BIC and AIC results for the LCGA model.
BIC AIC

2 -14237.59 -14215.05
3 -13844.72 -133810.92
4 -13726.26 -13681.19
5 -13826.83 -13770.50
6 -13844.10 -13776.50
7 -13861.37 -13782.50
8 -13878.64 -13788.50

Table 4.3 shows that LCGA selects the model with 4 components as per both
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the BIC and the AIC. The optimal model with the class assignments highlighted

by colour are shown in Figure 4.3.

Figure 4.3: Selected model as per the BIC and AIC produced by LCGA. The model
has 4 components where black represents component 1, red represents component
2, green represents component 3 and blue represents component 4.

Table 4.4 shows both the BIC and AIC values given by the growth mixture

models from 2 to 8 components. We see that the BIC selects the model with 4

components while AIC actually selects the model with 8 components.

Table 4.4: BIC and AIC results for the GMM.
BIC AIC

2 -13786.26 -13756.22
3 -13673.46 -13628.39
4 -13625.19 -13565.09
5 -13633.75 -13558.64
6 -13655.47 -13565.33
7 -13678.50 -13573.34
8 -13674.56 -13554.38

Table 4.4 shows that the BIC selects the model with 4 components while AIC

actually selects the model with 8 components. However, in Figure 4.4 we see that
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at 4 components the increase in AIC that comes with an increase in components is

not significant. This supports the BIC results in that the model with 4 components

produced by the GMM is the model that optimizes both the AIC and BIC. This

model with the highlighted classes can be shown in Figure 4.5.

Figure 4.4: AIC for models from 2 to 8 components produced by GMM.

Figure 4.5: Selected model as per the BIC and AIC produced by GMM. The model
has 4 components, where black represents component 1, red represents component
2, green represents component 3 and blue represents component 4.
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Next we consider our longitudinal k-means approach using the KML package.

We will analyze the models produced for clusters from size 2-8 using both the BIC

and the AIC as is provided by the KML package.

Table 4.5: BIC and AIC results for the KML model.
BIC AIC

2 -14084.34 -14012.87
3 -13442.49 -13337.15
4 -13419.96 -13280.76
5 -13379.17 -13206.11
6 -13341.16 -13134.24
7 -13080.22 -12839.45
8 -13416.65 -13142.02

Table 4.5 shows that the BIC values given by the KML model. We also notice

that KML selects the model with 7 components as per the BIC and the AIC. The

selected model with its mean trajectories highlighted are shown in Figure 4.6.

Figure 4.6: Model with 7 components produced by KML, selected as per the BIC
and AIC. The components are labelled A through G with the mean trajectories
highlighted and labelled respectively.

Lastly, we see the results for our final approach, the two-step clustering method.

The growth curve model was fit using R package lme4 and k-means was performed

using KML. Table 4.6 shows the BIC and AIC for the models produced from 2-8

clusters.
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Table 4.6: BIC and AIC results for the two-step model.
BIC AIC

2 -14357.66 -14316.35
3 -14028.10 -13968.01
4 -13656.80 -13577.93
5 -13603.97 -13506.32
6 -13428.00 -13311.57
7 -13302.59 -13167.38
8 -13083.38 -12929.40

From the results shown in Table 4.6 we see that both the BIC and the AIC

continue to improve as the number of clusters increase. This means that both

metrics select the model with 8 clusters. This continued significant decrease in

BIC and AIC as the number of clusters increase is different from the results we

have seen from the other methods. Ultimately, this method was not very effective

in identifying those with similar gathering patterns.

Because the BIC and ICL or BIC and AIC gave the same conclusions in the

tables above, we have compared all models by their BIC values in Table 4.7. We see

a variation in the number of components selected by the BIC from each method.

KML selects the model with 7 components, CDGMM and CDGMM with linear

means selects the model with 5 components, LCGA and GMM select the model

with 4 components, and the two-step method selects the model with 8 components.

The model with the best BIC overall is from the CDGMM family, the EVI model

with 5 components.

Table 4.7: Best BIC for each component number across methods.
BIC

KML LCGA GMM Two-Step CDGMM CDGMM-LM
2 -14084.34 -14237.59 -13786.26 -14357.66 -11474 -11616
3 -13442.49 -13844.72 -13673.46 -14028.10 -10973 -11464
4 -13419.96 -13726.26 -13625.19 -13656.80 -10921 -11004
5 -13379.17 -13826.83 -13633.75 -13603.97 -10912 -10991
6 -13341.16 -13844.10 -13655.47 -13428.00 -11570 -11020
7 -13080.22 -13861.37 -13678.50 -13302.59 -11782 -11940
8 -13416.65 -13878.64 -13674.56 -13083.38 -11980 -11130

However, both Table 4.7 and Figure 4.7 show that the difference in BIC for
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the CDGMM family from 3–5 components is very minimal. Same can be said for

the linear means model from 4–6 components. We also observe that the GMM

has a relatively steady BIC across the number of components, while the LCGA

has a slight peak at 4, with minimal difference between the BIC at 3 or 5 compo-

nents. Even KML has a relatively steady BIC until the slight spike at 7. When

determining which model is optimal we often choose the model that provides us

with the greatest leap of improvement from the previous model. Due to this, it is

reasonably to assume the CDGMM model with 3 or 4 components could perform

just as well as the model with 5 components when judging based on the BIC.

Figure 4.7: BIC by number of components for each method.

Figure 4.8 shows the models produced by the CDGMM family with 3,4 and

5 components. The models with 3 and 4 components suggest that each group

follows an almost linear trajectory, whereas the model with 5 components has 2

components that show a spike around time 4.
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(a) 3 Components (b) 4 Components

(c) 5 components

Figure 4.8: Models produced by CDGMM family for varying component numbers.

Beyond analyzing models using the BIC, we can also contrast models using ARI

and cross-tabulation tables. These will be used to evaluate the similarities between

clusters. We will start by looking at the cross-tabulation tables and between model

ARI’s for the models with the best BIC from the following categories: CDGMM

family, growth models and KML. This means we will compare the CDGMM model

with 5 components, the GMM model with 4 components and the KML model with

7 components to start. This is given in Tables 4.8, 4.9 and 4.10.
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Table 4.8: Cross-tabulation of CDGMM (1–5) and KML (A–G) clusters, this gives
an ARI of 0.2881164.

No. of clusters A B C D E F G
1 2 40 43 5 1 0 0
2 6 5 1 4 0 0 0
3 0 0 5 3 6 5 3
4 96 42 0 7 0 0 0
5 42 0 0 0 0 0 0

Table 4.9: Cross-tabulation of GMM (1–4) and KML (A–G) clusters, this gives an
ARI of 0.02691652.

No. of clusters A B C D E F G
1 4 1 1 2 0 0 0
2 106 62 31 11 3 4 1
3 4 0 4 0 0 0 0
4 32 24 13 6 4 1 2

Table 4.10: Cross-tabulation of GMM (1–4) and CDGMM (A–E) clusters, this
gives an ARI of 0.003258861.

No. of clusters A B C D E
1 2 1 0 5 0
2 62 9 13 101 33
3 2 1 1 3 1
4 25 5 8 36 8

In Tables 4.8 and 4.9 we notice that there are very few observations in clusters

5, 6 and 7 for our KML model. We also notice that according to our ARI the

similarity between clusters is very lacking. To confirm this statement we will

compare each model at 3, 4, and 5 components. This is because we see in Table

4.7 these components numbers average the lowest BIC.

First we will compare the CDGMM, GMM and KML models when each have

5 components. Both the ARI and cross-tabulation tables will give us an insight

into the similarity (or lack there-of) between clusters. These results are given in

Tables 4.11. 4.12 and 4.13. Even though we are now comparing each model type

with an equal number of components we do not see any improvement in our cluster

similarity (ARI values), as from when we were simply comparing the models with
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the best BIC values. We still notice that there are very few observations in the 4th

and 5th cluster for KML. However, the comparison between CDGMM and GMM

produces the worst results in terms of similarity with an ARI of -0.00457875. This

tells us the the results are even worse than simple randomization could obtain (in

terms of similarity between clusters).

Table 4.11: Cross-tabulation of GMM (1–5) and KML (A–E) clusters, this gives
an ARI of 0.03682972.

No. of clusters A B C D E
1 152 48 7 5 2
2 4 4 0 0 0
3 14 12 0 1 2
4 41 11 2 1 1
5 7 1 1 1 0

Table 4.12: Cross-tabulation of CDGMM (1–5) and KML (A–E) clusters, this
gives an ARI of 0.24931.

No. of clusters A B C D E
1 79 0 0 0 0
2 0 1 2 8 5
3 14 65 12 0 0
4 89 10 6 0 0
5 36 0 0 0 0

Table 4.13: Cross-tabulation of CDGMM (1–5) and GMM (A–E) clusters, this
gives an ARI of -0.004578785.

No. of clusters A B C D E
1 56 3 6 10 4
2 9 1 3 2 0
3 54 3 11 11 2
4 67 0 8 27 3
5 28 1 1 6 0

Secondly, we see our comparisons when each type of model has 4 components

in Tables 4.14, 4.15 and 4.16. The results show poor ARI scores, meaning there is

little similarity between clusters in each model comparison. We found the highest

ARI between the CDGMM and KML model, however it is still quite low around

0.36.
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Table 4.14: Cross-tabulation of GMM (1–4) and KML (A–D) clusters, this gives
an ARI of 0.0235861.

No. of clusters A B C D
1 7 1 0 0
2 156 49 6 7
3 4 4 0 0
4 53 21 5 3

Table 4.15: Cross-tabulation of CDGMM (1–4) and KML (A–D) clusters, this
gives an ARI of 0.3633604.

No. of clusters A B C D
1 35 62 0 6
2 148 1 0 2
3 36 0 0 0
4 1 12 11 2

Table 4.16: Cross-tabulation of CDGMM (1–4) and GMM(A–D) clusters, this
gives an ARI of -0.01074832.

No. of clusters A B C D
1 3 68 3 29
2 5 104 3 39
3 0 29 1 6
4 0 17 1 8

Finally we run our comparison at 3 components. The results are shown in

Tables 4.17, 4.18 and 4.19.

Table 4.17: Cross-tabulation of GMM (1–3) and KML (A–C) clusters, this gives
an ARI of 0.02771571.

No. of clusters A B C
1 4 4 0
2 160 52 6
3 62 23 5
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Table 4.18: Cross-tabulation of CDGMM (1–3) and KML (A–C) clusters, this
gives an ARI of 0.3517941.

No. of clusters A B C
1 17 65 11
2 49 0 0
3 160 14 0

Table 4.19: Cross-tabulation of CDGMM (1–3) and GMM (A–C) clusters, this
gives an ARI of -0.01115127.

No. of clusters A B C
1 4 63 26
2 2 39 8
3 2 116 56

Of the models with 3 components the KML and CDGMM had the most similar

clusters with an ARI of around 0.35. However, this is still a fairly low ARI and

lets us know the clusters produced by the two models are still largely dissimilar.

Throughout our entire ARI analysis we noticed that the CDGMM and KML mod-

els produced the most similar clusters, while the CDGMM and GMM seemed to

produce the least similar clusters. Overall, we see a huge lack of similarity between

the clusters found by the differing methods. None of the methods produced any

sort of truly similar clusters.

4.4 Further Exploration

The goal of our analysis to start was to see if we could extrapolate differing

gathering patterns found within our data. Based on the analysis we have done

in the previous section we have found evidence that models of different types and

sizes have performed “best” in terms of different metrics such as the BIC, AIC,

ICL or through our cross-tabulation tables.

In this section we hope to look further into the models we have produced. Using

a selected model we can analyze the individuals in each component, to determine

if there is any noticeable difference in the age or health conditions between the

different behavioural trajectories identified by our model.
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Here, we will analyze the CDGMM model with 3 components. For reference,

Figure 4.9 shows the highlighted components of our chosen model. Component 1

is black, component 2 is red, component 3 is green.

Figure 4.9: CDGMM family model with 3 components.

Table 4.20: Statistical Summary of ages of individuals by component.
1 2 3

Minimum 23 20 20
1st Quantile 37.00 52 40.25

Mean 50.17391 60.73469 53.05747
Median 48 65 56.5

3rd Quantile 63.25 71 65.00
Maximum 86 81 81

Std Deviation 14.95973 15.39315 14.69447

Based on Table 4.20 above we can see the descriptive statistics of the ages

of individuals in each component. The descriptive statistics mostly line up with

what one would assume to be true about each component. Component 1 has the

youngest average age at 48 and is the component where individuals gather the
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most often. Component 2 has the highest average age at 65 and is the component

where individuals gather the least, averaging between 0 and 1 for the entirety of

the pandemic. Component 3 is right in the middle in terms of gatherings attended

and average age at 56.5. We also notice that 50% of individuals in component 1 are

between the ages of 37 and 63.25 while 50% of the individuals in component 3 are

between the ages of 52 and 71. This information reinforces our original analysis,

younger individuals partook in voluntary gatherings much more frequently than

older individuals throughout this part of the pandemic. A visual representation of

these statistics are given in Figure 4.10.

Figure 4.10: Boxplot of age of inidividuals by component assigned by CDGMM
model with 3 components.

Next, we see the descriptive statistics of the number of conditions had by

individuals within each component in Table 4.21.
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Table 4.21: Statistical Summary of # of conditions of individuals by component.
1 2 3

Minimum 0 0 0
1st Quantile 0 0 0

Mean 0.9239130 1.3061224 0.9655172
Median 0.5 1.0 1.0

3rd Quantile 2 2 1
Maximum 4 5 6

Std Deviation 1.160084 1.417217 1.196800

Those in component 1, who gather the most frequently average the lowest

number of conditions at 0.9239130. Those in component 2, who gather the least

frequently, average the most number of conditions at 1.3061224. Component 3

again falls in the middle in terms of gathering attended on average and number of

conditions at 0.9655172. A visual representation of this is given in Figure 4.11.

Figure 4.11: Boxplot of number of conditions per inidividual by component as-
signed by CDGMM model with 3 components.
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Chapter 5

Conclusions

Throughout this thesis we worked with a seroprevalence dataset looking to

uncover information about the behaviours of individuals of different age and heath.

A preliminary analysis of our dataset confirmed that those who are younger and

healthier were worse social distancers than those who were older and sicker. It

also confirmed that people were better social distancers when there were tighter

government restrictions in place as opposed to when restrictions were looser.

We compared a multitude of longitudinal clustering methods on our dataset,

specifically looking to determine if we could find groups of different gathering pat-

terns among surveyed individuals. Gaussian and Gaussian linear means mixture

model-based methods were both considered. Also, growth mixture models, latent

class growth analysis, longitudinal k-means, and a two-step clustering method us-

ing growth curve models and k-means. We note that mixtures of t-distributions

(the CDtMM family; McNicholas and Subedi, 2012) were also attempted, although

convergence was not able to be achieved. The models were incredibly difficult to

fit despite best efforts and, therefore, were not included in this thesis.

We first looked at the BIC as a primary method of selecting the number of

components for each model. We found that most methods including the Gaussian

mixture model based methods, GMM and LCGA agreed that the selected model

had somewhere from 3—5 components based on the BIC. Longitudinal k-means

and the two-step method found the selected model had somewhere from 7—8

components.
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We then looked at the ARI between the models that produced the best BIC

within three groups: KML, the mixture models and the growth models. This led

us to compare the CDGMM model with 5 components, the KML model with 7

components and the GMM with 4 components using the ARI and cross-tabulation

tables. Ultimately, we found ARI scores close to 0, indicating there is almost no

similarity in clusters between the different methods.

Since each type of model had a different number of components give the min-

imized BIC we then compared the clusters for the models of each type with 3, 4

and 5 components. In each comparison we found poor ARI results, in terms of

similarity. Even with the same number of clusters there was no significant increase

in cluster similarity among methods. The CDGMM and KML had the highest ARI

(most similarity between clusters) hovering around 0.35 when the models had 3 or

4 components. The CDGMM and GMM models were the least similar, producing

ARIs closest to zero. ARI comparisons ultimately proved that the differing meth-

ods were producing very dissimilar clusters. This leads us to conclude that there

may be no definite groupings within this dataset. If this is the case, the reason is

likely sample size. It is possible that the dataset is simply too small, i.e. we do

not have enough data points to definitively identify clusters.

A further exploration was conducted on the CDGMM model with 3 compo-

nents. This model separated the participants into groups that gather rarely, some-

times and often consistently throughout the time of the year we considered. Un-

surprisingly, the average age of those in the components who gathered most often

was the youngest while the average age of those who gathered the least was the

highest.

In future work, it is still important to continue to perform longitudinal clus-

tering comparisons in a wider range of situations. This could be through datasets

of different types, or a large simulation involving multiple scenarios. This would

help to provide a clearer picture on the growing number of longitudinal clustering

methods and the situations in which they are most effective.
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