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Abstract 

Modern societies are fully dependent on critical infrastructures networks to support 

the economy, security, and prosperity. Energy infrastructure network is of 

paramount importance to our societies. As a pillar of the economy, it is necessary 

that energy infrastructure networks continue to operate safely and be resilient to 

provide reliable power to other critical infrastructure networks. Nonetheless, 

frequent large-scale blackouts in recent years have highlighted the vulnerability in 

the power grids, where disruptions can trigger cascading failures causing a 

catastrophic regional-level blackout. Such catastrophic blackouts call for a systemic 

risk assessment approach whereby the entire network/system is assessed against 

such failures considering the dynamic power flow within. However, the lack of 

detailed data combining both topological and functional information, and the 

computational resources typically required for large-scale modelling, considering 

also operational corrective actions, have impeded large-scale resilience studies. 

 In this respect, the research in the present dissertation focuses on 

investigating, analyzing, and evaluating the vulnerability of power grid 

infrastructure networks in an effort to enhance their resilience. Through a Complex 

Network Theory (CNT) lens, the power grid robustness has been evaluated against 

random and targeted attacks through evaluating a family of centrality measures. 

The results shows that CNT models provide a quick and potential indication to 

identify key network components, which support regulators and operators in 

making informed decisions to maintain and upgrade the network, constrained by 

the tolerable risk and allocated financial resources. 

Furthermore, a dynamic Cascade Failure Model (CFM) has been employed 

to develop a Physical Flow-Based Model (PFBM). The CFM considers the 

operational corrective actions in case of failure to rebalance the supply and demand 

(i.e., dispatch and load shedding). The CFM was subsequently utilized to construct 

a grid vulnerability map function of the Link Vulnerability Index (LVI), which can 
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be used to rank the line maintenance priority.  In addition, a Node Importance Index 

(NII) has been developed for power substations ranking according to the resulting 

cascade failure size. The results from CNT and CFM approaches were compared to 

address the impact of considering the physical behavior of the power grid. The 

comparison results indicate that relying solely on CNT topology-based model could 

result in erroneous conclusions pertaining to the grid behavior. Moving forward, a 

systemic risk mitigation strategy based on the Intentional Controlled Islanding (ICI) 

approach has been introduced to suppress the failure propagation. The proposed 

mitigation strategy integrated the operation- with structure-guided strategies has 

shown excellent capabilities in terms of enhancing the network robustness and 

minimizing the possibility of catastrophic large-scale blackouts.  This research 

demonstrates the model application on a real large-scale network with data ranging 

from low to high voltage. In the future, the CFM model can be integrated with other 

critical infrastructure network systems to establish a network-of-networks 

interaction model for assessing the systemic risk throughout and between multiple 

network layers. Understanding the interdependence between different networks 

will provide stakeholders with insight on enhancing resilience and support 

policymakers in making informed decisions pertaining to the tolerable systemic risk 

level to take reliable actions under abnormal conditions.  
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Chapter 1 : INTRODUCTION 

 BACKGROUND AND MOTIVATION 

Virtually all pivotal economic and societal functions rely on the secure, resilient, 

and reliable operation of energy, water, transportation, communication, and other 

critical infrastructure networks (CINs) (Rome et al. 2014). These critical 

infrastructure networks are necessary for public safety and the people’s well-being. 

However, with expanded benefits came expanded risks. This is because such CINs 

are not isolated but interdependent in different ways. Although these 

interdependencies enhance the overall network-of-networks efficiencies, 

interdependences also increase CIN vulnerabilities, where a disruption in one 

network can propagate from a local (intra-dependence) to a global (inter-

dependence) scale, leading to large scale cascading failures. As a result, simulating 

infrastructure networks has attracted the interest of researchers from different 

domains to enhance the latter’s performance through comprehensive decision 

support systems. In particular, energy infrastructure networks are at the forefront of 

CINs for modern societies (Panteli and Mancarella 2017) as the ramifications of 

energy infrastructure network failure extend to the communication, transportation, 

water, banking and finance, and other CINs that have become increasingly 

dependent on power grids to energize and control their operations (Amin 2001). In 

this respect, power grids are one of the most critical, challenging, and interesting 

complex networks to study (Gasser et al. 2019).  
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The occurrence of several worldwide catastrophic events, such as the 2003 

North American outage, 2004 Atlantic hurricane season, 2011 Japan earthquakes, 

and 2012 hurricane Sandy events have directed the spotlight on the vulnerability of 

CINs (Ouyang 2014). Notably, power grids are exposed to damage from numerous 

weather/ climate events. For example, extreme weather events have wreaked havoc 

on the distribution and transmission lines across Canada’s coasts (Lemmen 2016).  

power transfer and transmission infrastructure components extend for thousands of 

kilometers and making them vulnerable to a multitude of natural hazards, such as 

lightning strikes, avalanches, storm surge, and hurricanes. In addition to climate-

induced hazards, the ageing of power grid components coupled with increased 

energy demands exacerbate the risk of failure and poses a severe threat to grid 

operations. Furthermore, anthropogenic hazard (e.g., cyber-attacks) presents 

additional challenges and thus necessitates the need to investigate, analyze, and 

evaluate the vulnerability of these networks to enhance their resilience. 

Although power grids are intended to be robust, previous events have shown 

that a disruption in key network components may lead to overload on other 

components and thus a possible initiation of a chain of cascading failures, which 

propagate throughout the network causing catastrophic system-level cascade 

failure—systemic risks (Ezzeldin and El-Dakhakhni 2019). The most recent 

example of such failures is the 2021 Pakistan blackout that plunged all of Pakistan’s 

major cities into darkness, including the capital, and affected about 200 million 

people (90% of the country’s population). Another example is the Northeast 
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blackout in 2003, which started with a local failure that propagated to most of the 

power grid and affected approximately 55 million people in Ontario and eight U.S. 

states (Andersson et al. 2005). In addition to the above examples, there are 

numerous other major blackout examples worldwide that have affected millions of 

people, including those in Indonesia 2019 (120 million), Argentina 2019 (48 

million), Venezuela 2019 (30 million), Pakistan 2015 (140 million), Bangladesh 

2014 (150 million), India 2010 (120 million), Brazil 2009 (60 million), Indonesia 

2005 (100 million), and Italy 2003 (56 million) (Schäfer and Yalcin 2019). 

Consequently, understanding the nature of power grid systemic risks 

supports decision-makers in making better choices regarding the degree of risk and 

financial resources. Identifying the critical power grid components is particularly 

crucial to evaluate network robustness and subsequently enhance the grid resilience 

against random and targeted/cyberattacks. Traditionally, Complex Network Theory 

(CNT) has been used to construct a topology-based model for simulating 

infrastructure networks based solely on their topological and connectivity 

properties. Such models disregard flows and physical properties of/within the 

network, and instead represent the underlying network in an abstract manner, as a 

set of nodes and links (i.e., static). Although abstract in nature, such topology-based 

models can nonetheless provide indications of network behavior and vulnerability, 

albeit while lacking the ability to draw a complete picture of the real infrastructure 

behavior since all infrastructure networks are governed by the laws of physics and 

are subjected to constraints pertaining to demand and supply (Hines et al. 2010a; 
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Salama et al. 2021). As such, a dynamic cascade failure physical flow-based model 

is preferable to consider actual power flow, component capacities, as well as 

dynamic power flow redistribution. Furthermore, to maintain the acceptable level 

of electricity that is necessary for basic safety during crises, there is a critical need 

to provide effective mitigation strategies to suppress the failure propagation and 

reduce the network failure, thus enhance grid resilience by reducing the restoration 

time. 

 RESILIENCE OF ENERGY INFRASTRUCTURE NETWORK  

The concept of resilience emerged possibly for the first time from materials science 

in the early nineteenth century, while the word itself comes from Latin word 

resilire, which means bounce back (Alexander 2013). Several studies have 

attempted to define energy infrastructure network resilience (Panteli and 

Mancarella 2017). The National Infrastructure Advisory Council, USA (Berkeley 

III et al. 2010), provide the following definition for resilience: “Infrastructure 

resilience is the ability to reduce the magnitude and/or duration of disruptive 

events. The effectiveness of resilient infrastructure or enterprise depends upon its 

ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially 

disruptive event”. Therefore, energy infrastructure network resilience can be 

assessed based on four main attributes: Resist, Restabilize, Rebuilt, and Reconfigure 

(Ezzeldin and El-Dakhakhni 2019; Gasser et al. 2019). These latter attributes form 

the core of resilience engineering that focuses on “draw-down” and “draw-up” 
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behaviours (Heinimann and Hatfield 2017). The resist and re-stabilize attributes 

represent the “draw-down” phase, which focus on the network ability to handle a 

disruptive event. The “draw-down” phases can be evaluated by vulnerability 

analysis and modelling of failure propagation to quantify the network robustness. 

The recovery behaviours in the “draw-up” phase represent both the rebuilt and 

reconfigure resilience attributes.  Therefore, the smaller performance loss “draw-

down” and the faster the bounce back “draw-up” of the network after a disruptive 

event, the higher its resilience is (Gasser et al. 2019). The main resilience attributes 

can be further explained as: 

• Resist (robustness): The ability to withstand and keep operating in the face of 

(or the insensitivity to) disruptive events. Robustness requires redundancy or 

substitute systems that can replace the damaged or non-functioning component.  

• Re-stabilize (resourcefulness): The capacity to provide enough resources to 

adsorb and effectively manage damage to ensure critical system functionality 

survives. Resourcefulness includes identifying options and priority as to what 

should be implemented to control and mitigate damage. 

• Rebuild (recovery): The ability to restore the system back to its normal 

operation condition rapidly. It includes contingency plans, emergency 

operations, and getting the right resources and people to the right places. 

• Reconfigure (adaptability): The ability to learn and apply new lessons from 

catastrophes by modifying plans, revising procedures, and developing and 

deploying new technologies to improve robustness, resourcefulness, and 

recovery abilities in the face of future anticipated disruptions. 
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 METHODS AND APPROACHES 

The current research focuses on the "draw-down" phase of power grid infrastructure 

to enhance network resilience by increasing its ability to withstand disruptive 

events (i.e., robustness). First, CNT topological network characteristics, network 

metrics, and several centrality measures are reviewed. After describing different 

classes of infrastructure network-based models, the infrastructure network 

simulation opportunities based on network models are discussed. It is concluded 

that using CNT models present a promising framework to simulate and reveal CIN 

characteristics, evaluate their interdependence, quantify their resilience, and 

mitigate their systemic risks. In addition, findings indicate that energy infrastructure 

networks are at the leading of critical infrastructure networks as the operations of 

most other CINs such as water, communication, transportation, finance, and other 

CINs depend on an adequate and reliable power supply. Therefore, providing a 

resilient power grid supports modern societies by reducing the potential 

consequences to other CINs. 

Secondly, the CNT topology centrality measures have been integrated with 

the grid operating conditions (i.e., power flow) to recognize the relative importance 

of network components. The considered grid robustness to random and targeted 

attack scenarios based on the centrality measures are evaluated. By knowing these 

critical components, a mixed strategy that aims to systematically isolate the critical 

system components from attacks can be implemented. As such, an improvement in 
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network robustness by applying the proposed mixed strategy to limit attacks is 

identified. Afterwards, it is recommended to incorporate physics governing the 

behavior of the considered network to yield high-fidelity models. 

Thirdly, the dynamic Cascade Failure Model (CFM) is developed through 

adopting a Direct Current (DC) power flow model to establish a Physical Flow-

Based Model (PFBM) to evaluate the network performance in case of 

contingencies. The CFM considers the actual power flow, transmission line 

electrical properties, and generator supply and capacity limits. This model has been 

used to calculate two vulnerability indices, the Link Vulnerability Index (LVI) and 

the Node Importance Index (NII). As such, the LVI is used to construct a 

transmission line vulnerability map of the power grid. Furthermore, the NII is used 

to present the consequences of (sub)station failure in the whole network behavior, 

NII outputs are compared to classic topology measures of network centrality to 

address the adequacy of using CNT solely in identifying the critical network 

components.  

Finally, a risk mitigation strategy to improve network robustness by 

suppressing the cascade failures and reducing the vulnerability is proposed. By 

integrating operation- and structure-guided strategies, the work focuses on 

mitigating the risk of such cascade failure (i.e., systemic-risk) to minimize the 

possibility of catastrophic large-scale blackouts. The operation-guided strategy was 

implemented through dispatch and load shedding to rebalance demand and supply 

after disruptive events. On the other hand, the structure-guided strategy adopted an 
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Intentional Controlled Islanding (ICI) approach by employing a Constrained 

Spectral Clustering (CSC) algorithm. Overall, the research helps to better 

understand the vulnerability of power grids and highlights the criticality of different 

network components, which provides some clues toward constructing a more 

resilient power grid. 

The following subsections present a brief introduction pertaining to the 

main used approaches. 

1.3.1. COMPLEX NETWORK THEORY 

Recent advances in complex network theory have provided powerful tools to 

simulate several complex networks, from the world wide web to biological and 

infrastructure networks. In addition, the significant development in CNT measures 

(Barabási and Pósfai 2016; Newman 2010b) has led to the ability to model more 

complex and diverse sets of networks. Within the context of CNT, the core 

components of any network are its corresponding nodes and links (Newman 

2010b). More specifically, the nodes simulate the main elements comprising the 

network (i.e., substations in power grids), while the links represent the 

interdependency between these nodes within the same network (i.e., transmission 

lines in power grids). This simulation facilitates a better understanding of the 

interdependency between the nodes comprising the network. Subsequently, the 

analysis of this network does not only demonstrate its topological characteristics, 

but also identifies its most influential nodes and links (Barabási and Pósfai 2016; 
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Tang et al. 2010b). In addition, more complex characteristics, such as network 

resilience, can be evaluated by subjecting the network to progressive damage 

(Motter and Lai 2002; Wang and Rong 2009, 2011). Moreover, systemic risk, 

optimization, and multiple other processes related to complex networks depend on 

the network topology/structure (Motter 2004; Stergiopoulos et al. 2015; Wang 

2013a, 2013b). Therefore, utilizing complex network analysis to model the power 

grids will provide fundamental insight into these networks, reveal their critical 

points and help developing effective risk mitigation strategies to suppress the 

cascading failures and reduce the vulnerability of such networks.  

1.3.2. CASCADE FAILURE MODEL  

Unlike CNT models based solely on topology, high-fidelity cascade failure models 

of power grid should take into consideration the real power flow, the transmission 

lines electrical properties, and the generation actual supply and capacity limits 

(Ouyang 2014; Pagani and Aiello 2013b). Despite the recent advance in conceptual 

modelling of cascade failure propagation (Ju 2018; Li et al. 2018; Yan et al. 2015; 

Zhao et al. 2018), a major obstacle still remains due to the lack of high-resolution 

data, which is typically restricted for security reasons. In the absence of such data, 

it is very unlikely a realistic network vulnerability analysis can be provided to 

ensure the reliability and resilience of power grids. Such cascade failure physical 

flow-based models usually require significant computational time and more data to 

simulate the functionality of network components, compared to their topology-
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based model counterparts. In particular, infrastructure network resilience analysis 

based on CFM is more realistic when considering physical flow within such 

complex networks (i.e., PFBM). In this respect, the current research has been 

extended to simulate the cascade failure propagation based on dynamic CFM, 

which considers actual power flow, demand, supply, components capacities, and 

power flow redistribution. Furthermore, the results for the CFM have been 

compared with the previous results from CNT models to indicate to what extent the 

CNT models can be used to assess power grid vulnerability. 

1.3.3. INTENTIONAL CONTROLLED ISLANDING 

ICI is a corrective control action for a grid under a severe contingency (i.e., 

loss/failure of power grid components, such as transmission lines, generators, or 

transformers) to prevent the cascade failure propagation. ICI essentially splits the 

grid into several isolated sub-grids. This technique is key following instabilities as 

it can supress the grid from becoming uncontrollable (Ding et al. 2018). In this 

respect, the CSC algorithm has been employed as a mitigation strategy based on 

ICI approach for the power grid to determine a set of transmission lines to be 

disconnected across the network to create stable functioning sub-grids (islands). A 

high-fidelity CFM of the power grid that was previously developed has been used 

to evaluate the effectiveness of the proposed mitigation strategy through the 

cascade failure model on a realistic large-scale network. 
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 RESEARCH OBJECTIVES 

This research aims at utilizing the latest developments in complex network theory 

and physical flow-based modeling approaches to simulate CINs, especially, the 

power grid infrastructure networks. The research objectives can be summarized in 

the following: 

• Review the advances in CNT, with a focus on network-based models and 

approaches of CINs. 

• Model the power grid based on CNT. This model takes advantage of the 

complex network centralities measures to provide the fundamental insight 

into the networks including revealing its vulnerabilities and key 

components. By knowing these critical components, a mixed strategy 

approach can be implemented to improve network robustness against 

cyberattacks. 

• Model the cascade failure propagation in power grid by using a dynamic 

CFM through physical flow-based network model. The dynamic CFM is 

subsequently used to evaluate the performance in case of contingencies 

by providing two vulnerability indices, namely the link vulnerability 

index, and the node importance index. 

• Introduce an effective systemic risk mitigation strategy to suppress the 

cascade failures, enhance the robustness, and reduce the vulnerability in a 

power grid.  
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This research will also open the gate for further investigations under the 

theme of Intelligent Energy Systems within the Department of Civil Engineering at 

McMaster University. 

 THESIS ORGANIZATION 

This section summarizes the content of each of the six chapters in this dissertation.  

Chapter 1 provides research background, concepts pertaining to the 

resilience of energy infrastructure, an overview of CNT, CFM, ICI, research 

objectives, and a description of the thesis organization. 

Chapter 2 provides a review of complex network theory characteristics and 

modelling approaches. Specifically, fundamental network topological 

characteristics (i.e., reachability, length, distance) are presented. In addition, the 

chapter reviews the different centrality measures (i.e., degree, closeness, 

betweenness) that can be utilized to identify the most critical nodes and links in a 

networks. Furthermore, different graphical representation techniques of networks 

are summarized. This chapter describes different classes of infrastructure network-

based models, which can be classified into three groups: topology-based-, flow-

based-, and physics-based models. Moreover, opportunities and applications in 

transportation, power, and water infrastructure networks simulations are presented. 

Chapter 3 focuses on the "draw-down" phase of power grid resilience 

considering different centrality measures to evaluate the robustness of power grids 

against cyberattacks. At the network-level, this chapter considers two network 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

13 

 

representations for the grid based on the network’s topological/connectivity (i.e., 

unweighted network) and the network’s power flow information (i.e., weighted 

network). At the nodal-level, various centrality measures are considered to identify 

and rank key network components. This chapter includes modeling large power 

grids by integrating both their topology and their operating (i.e., power flow) 

conditions to identify the relative importance of network components and evaluate 

their impact on network robustness. Next, the considered grid robustness is 

evaluated to random and targeted cyberattack scenarios based on the centrality 

measures. Subsequently, by knowing these critical components, implementing the 

proposed mixed strategy that aims to isolate critical system components from 

cyberattack impacts. 

Chapter 4 assesses the power grid vulnerability and robustness through 

simulating cascade failure propagations using a dynamic CFM. The CFM model 

adopts a DC power flow model to redistribute power through network after 

disruptions by considering the real network component properties. As such, the 

proposed CFM is a physical flow-based model that simulates the cascade failure 

under different initial failure scenarios and evaluates the network robustness based 

on its topological and functional characteristics. This chapter develops and 

demonstrates the utility of a LVI for constructing power transmission line 

vulnerability maps; as well as a NII for power (sub)stations ranking according to 

the resulting cascade failure size. Furthermore, the results of NII from the cascade 

failure model are compared to those of the CNT model discussed in Chapter 3.  
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Chapter 5 focuses on mitigating the risk of such cascade failure to minimize 

the possibility of catastrophic large-scale blackouts by integrating operation- with 

structure-guided strategies. The operation-guided strategy is implemented through 

dispatch and load shedding, while the structure-guided strategy adopts a ICI 

approach by employing a CSC algorithm. To evaluate the effectiveness of the 

proposed mitigation strategy, a real power scale grid was modelled under different 

cascade failure scenarios to compare the cascade failure size with and without the 

proposed algorithm for different sub-grid numbers. 

Chapter 6 provides a reflective summary of the research, draws out the 

overall implications of the research and key findings, and offers dynamic 

recommendations for the possibility of future work. 
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Chapter 2 : Temporal Networks: A Review and Opportunities for 

Infrastructure Simulation 

ABSTRACT 

Complex network theory (CNT) has been providing the platform to simulate, 

analyze, and visualize different complex interconnected networks, from the world 

wide web to biological and infrastructure networks. Despite the successes of 

simulating and analyzing infrastructure networks based on their static topological 

characteristics using CNT, there remain some challenges pertaining to considering 

the temporal variation within such networks. This is an important aspect, especially 

that most infrastructure (e.g., ¬transportation and power) networks are dynamic 

(i.e., evolve over time) and vary not only spatially but also temporally. Therefore, 

neglecting the time dimension of such networks may result in misleading 

interpretation of network behaviors. In this respect, the current study focuses on 

first presenting a review of temporal network characteristics and modeling 

approaches. Specifically, key temporal network topological characteristics (e.g., 

temporal scale and path length) are presented and discussed. In addition, the study 

reviews the different centrality measures that can be utilized to identify the most 

critical nodes and links in temporal networks. The different graphical representation 

techniques of temporal networks are also summarized and compared to their static 

counterparts. Finally, the study highlights the fact that considering the time 
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dimension in simulating complex networks is a relatively new research field that 

presents new research frontiers for breakthrough opportunities in simulating 

complex interdependent infrastructure networks. 

 

Keywords: complex network theory, dynamic network, infrastructure networks, 

temporal network, time-varying graphs, temporal centrality. 
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 INTRODUCTION 

The use of complex network theory (CNT) analysis techniques has extended to a 

wide spectrum of applications in different fields (Costa et al. 2011). Within the 

context of CNT (Newman 2010a), the main components of the network are 

simulated by nodes (e.g., bus stops in transit networks and substations in power 

networks), whereas links represent the interdependencies between these nodes 

within such a network (e.g., bus routes in transit networks and transmission lines in 

power networks). In other words, links mimic the relational connections among the 

nodes (Ouyang 2014). Such links can be related to physical, cyber, geographical 

location, or logical interdependencies between nodes (Rinaldi et al. 2001). For 

example, the link may indicate a physical connection between two nodes, or that 

two nodes sharing the same resources or are managed/controlled by the same 

entities. 

Such an elegant simulation approach facilitates the quantification of the 

interdependency between the components comprising such networks. CNT 

analyses also facilitate the identification of the underlying network topological 

characteristics, and its most influential nodes and links (Tang et al. 2010c; Wang et 

al. 2017b). In addition, other characteristics, such as network robustness, can be 

evaluated by subjecting the underlying network to dynamic stress tests (Barabási 

and Pósfai 2016; Wang et al. 2010b; Wang and Rong 2009), within which, the 
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systemic risk (e.g., domino-type cascade failure possibility) would mainly depend 

on the network topology (Wang 2013a).  

Most published research studies have focused on simulating and analyzing 

networks using static approaches. Such approaches assume that the network nodes 

and links remain unchanged over time (Barabási et al. 2000; Guimerà et al. 2005; 

Latora and Marchiori 2002; Sen et al. 2003). However, most real networks evolve 

over time, where their links can emerge and decline over time. This can be 

exemplified by the temporal nature of social media (Sanlı and Lambiotte 2015), 

phone call (Saramäki and Moro 2015), email (Eckmann et al. 2004), biology 

(Holme 2016) and infrastructure networks (Borgnat et al. 2013; Rocha 2017). For 

all such networks, the links may only be present for a small duration (i.e., according 

to the corresponding application), and their statuses always fluctuate (Holme and 

Saramäki 2012). As such, neglecting the time dimension in studying such networks 

may result in erroneous interpretations of network behaviors (Pan and Saramäki 

2011; Tang et al. 2013; Wu et al. 2014). Accordingly, several recent studies have 

focused on extending static network approaches to simulate the dynamic network 

behavior.  

Such studies however generated multiple nomenclatures and evaluation 

approaches for similar network characteristics. To name but one example, the term 

temporal networks have been used interchangeably with dynamic networks 

(Caceres et al. 2011), time-varying graphs (Nicosia et al. 2012; Tang et al. 2010d), 
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temporal graphs (Wu et al. 2014), dynamic graphs (Kim and Anderson 2012), or 

evolving graphs (Xuan et al. 2003).  

The current study thus focuses on reviewing temporal network metrics, 

simulation approaches and applications in infrastructure by adopting the following 

structure subsequent to this introduction section: Section 2.2 reviews several critical 

topological temporal network characteristics; Section 2.3 introduces and analyzes 

temporal centrality measures reported in literature; Section 2.4 outlines the different 

graphical representations of temporal networks; Section 2.5 describes different 

classes of infrastructure network-based models; Section 2.6 highlights 

infrastructure networks simulation opportunities; and, finally, the study summary 

and overall conclusions are provided in Section 2.7. 

 TOPOLOGY AND CHARACTERISTICS OF TEMPORAL 

NETWORKS 

The analysis of static networks mainly relies on specific characteristics pertaining 

to the network topology. In the current chapter, the authors give specific attention 

to various characteristics and performance measures of temporal networks, as 

applied to infrastructure systems. For example, most infrastructure systems such as 

power grid or transportation networks can be modeled by nodes and links, networks 

within that continuously evolve over time (Borgnat et al. 2013; Rocha 2017), 

regardless of the underlying applications (Holme 2015; Holme and Saramäki 2012). 
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In addition, centrality measures, as will be shown in the next section,  highlight the 

role played by certain key nodes in networks, while, the significance of this role is 

translated according to the corresponding application (Nicosia et al. 2013; Tang et 

al. 2010c). As such, this section presents the extension of such network 

characteristics from their static simulation approach to considering the time 

dimension within the temporal simulation approach.  

2.2.1. TIME WINDOW AND TEMPORAL SCALE 

A temporal network can be simulated as a sequence of static network snapshots. 

Each snapshot represents the network nodes and links within a specific time interval 

referred to as the time window (Tang et al. 2010a). The selection of the time window 

is key when simulating temporal networks. For example, if a network is analyzed 

using an overly coarse resolution (i.e., too large a time window), the temporal 

variations of the nodes and links may not be properly identified. Nonetheless, the 

use of too fine a resolution (i.e., too small a time window) may result in only a very 

few changes within the selected time window (Caceres et al. 2011; Caceres and 

Berger-Wolf 2013). Accordingly, the appropriate time window is based on the 

underlying application, the availability of data, and the required level of the study 

(Holme 2015; Li et al. 2017). For example, Borgnat et al. (2013) selected a time 

window of two hours in studying the temporal behavior of a France shared bicycle 

system to detect communities in the network and evaluate their weekly dynamical 
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behavior. In case of evaluating the system performance at failure propagation or 

restoration process, the time window needs to be short enough (e.g., seconds or 

minutes) to capture the accelerated dynamic of network topology. In particular, 

studying power grid outages involves various dynamics with different timescales. 

Line tripping due to overload or the load shedding usually last a few seconds, 

whereas, the overhead lines outages due to vegetation contact or overheat usually 

last for a few minutes (Yao et al. 2015). 

The main criterion for selecting an optimal time window to analyze 

temporal networks is to maintain the balance between the degree of resolution and 

the target outputs. For this reason, several studies have proposed different 

approaches to select the optimal time window of the networks based on their 

underlying applications. For example, Tang et al. (2013) selected the time window 

according to the maximum available resolution of the data. This approach can be 

appropriate for some networks, where their dynamic (flow) data are collected at 

intervals coincident with the corresponding interactions between the nodes. 

However, substantial recent advances in data collection and storage have resulted 

in high-resolution dynamic information that requires optimizing the framework 

considered to select the appropriate time window. Moreover, the study by Sulo et 

al. (2010) revealed that there are various appropriate temporal scales, each scale 

demonstrates distinct measure for the same network.   

2.2.2. REACHABILITY  
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Reachability is also key for simulating the structure of any static or temporal 

network. In general, reachability describes the connectivity between any two nodes. 

For example, node F is directly reachable from node A, if and only if there is one 

direct link, without any bridge nodes, between nodes F and A. If node F is 

connected to node A through other bridge nodes, then node F is indirectly reachable 

to node A (Nicosia et al. 2013).  

The time dimension significantly influences the reachability between nodes, 

when the status of links (i.e., emergent or declining over time) is considered (Holme 

and Saramäki 2012; Nicosia et al. 2013). This is a key aspect in simulating temporal 

networks that is typically not considered in their static counterparts (Grindrod et al. 

2011). As shown in Figure 1(a), node A is not connected to node F due to the time 

order of the links; however, the same two nodes appear connected if the focus is 

only on the aggregated static network, as shown in Figure 1(b). This explains the 

potential overestimate of the reachability when only the static state of a network is 

considered. 

2.2.3. TEMPORAL PATH, LENGTH, AND DISTANCE 

The definition of reachability is geared towards the notion of path. In static 

networks, the path represents the set of links traversed to reach from one node to 

another. The length of such a path is evaluated as the number of traversed links. 

Thus, the temporal path can be defined as the sequence of links that exist in an 
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ascending time order (Göbel et al. 1991; Kempe et al. 2002; Nicosia et al. 2013).  

The temporal path length can be described through two different approaches 

(Nicosia et al. 2013). First, similar to the definition of the path length in static 

networks, the topological length is the number of links in the path between any 

pairs of nodes. From a static network perspective, the shortest path is the one that 

contains the minimum number of links (i.e., minimum topological length). 

However, in many temporal networks, the time taken to transfer from one node to 

another becomes more critical than the minimum number of links between these 

nodes (i.e., how quick a bus can move from one station to another throughout the 

transportation network). Second, the temporal length can be evaluated as the 

duration of the path in terms of the number of time windows, w. For example, in 

Figure 1(a), there are several temporal paths from node A to node E (A-B-E, A-D-

C-E, A-B-D-C-E). The first path A-B-E has the smallest topological length (i.e., 

two links), while its temporal length is equal to 4w. The second path A-D-C-E has 

the smallest temporal length (i.e., 2w), while its topological length is equal to three 

links. 

Several definitions for the shortest/minimum temporal path have been 

introduced based on the underlying applications (Nicosia et al. 2013; Pan and 

Saramäki 2011; Tang et al. 2009, 2010a; Wu et al. 2014; Xuan et al. 2003). For 

example, Xuan et al. (2003) presented three definitions of a minimum journey (i.e., 

path): 1) shortest journey (minimum hop count); 2) foremost journey (earliest 
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arrival date); and 3) fastest journey (minimum duration). The same authors termed 

temporal graphs as a sequence of subgraphs (i.e., timed snapshots) and provided 

algorithms to evaluate temporal paths. Other research studies (Pan and Saramäki 

2011; Tang et al. 2009, 2010a) defined the shortest temporal path between two 

nodes as the temporal path with the minimum duration (e.g., path A-D-C-E between 

nodes A and E in Figure 2.1). More recently, Wu et al. (2014) investigated four 

different measures to evaluate the temporal path: 1) shortest path (minimum 

distance); 2) fastest path (minimum duration); 3) earliest-arrival path; and 4) latest-

departure path. Unlike the work of Xuan et al. (2003) that only considered the hop 

count, the latter four measures take into consideration the traversal time (e.g., phone 

call duration or flight duration) in quantifying the shortest path.  

Hence, the temporal distance or latency, 𝑑𝑖𝑗, is the duration for the shortest 

temporal path between nodes i and j (Nicosia et al. 2013; Pan and Saramäki 2011). 

Subsequently, the average temporal distance between all pair of nodes can be 

expressed by calculating the characteristic temporal path length (Tang et al. 2009) 

in the network as: 

𝐿 =  
1

𝑁 (𝑁 − 1)
  ∑ 𝑑𝑖𝑗

𝑖 ≠ 𝑗

                                                (1) 

where, 𝑁 is the total number of nodes in the network. 
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According to Eq. 1, if two nodes are disconnected, their temporal distance 

is infinity. Such infinite value influences the characteristic temporal path length 

quantification and subsequently yields unrealistic results. To address this issue, the 

definition of temporal global efficiency, as shown in Eq. 2 is the inverse of temporal 

distance, becomes more practical (Tang et al. 2010d).  

𝜀 =  
1

𝑁 (𝑁 − 1)
  ∑

1

𝑑𝑖𝑗
𝑖 ≠ 𝑗

                                               (2) 

As a summary, Table 2.1 lists previous research studies that presented definitions 

of the shortest/minimum temporal path.  

 TEMPORAL CENTRALITY MEASURES 

CNT is not only concerned with evaluating the complex interdependence between 

nodes through links, but also with revealing the influences of different nodes on the 

overall network behavior. For this reason, several network centrality measures have 

been widely utilized in different applications to identify critical nodes in the 

relevant networks. Such applications range from identifying influential individuals 

in social networks (Kempe et al. 2003) to bottlenecks in transportation networks 

(Hossain and Alam 2017; Zhao et al. 2017). As such, several studies recently 

extended the different static centrality measures to temporal networks and 

subsequently compared their correlation to static network applications (Pan and 

Saramäki 2011; Tang et al. 2010c; Taylor et al. 2017). This section summarizes the 
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most common centrality measures within both static and temporal networks.  

For notational consistency, the temporal network measures discussed next 

are based on a set of nodes, N, connected by a set of links, L, where links change 

over time. This network also has a finite time interval that starts and ends at tstart 

and tend, respectively. The temporal network can be represented by a set of static 

graphs [G1, G2, … Gm], where each graph captures some network information for 

specific duration of time, referred to as the time window size, w. The number of the 

time intervals or the number of the snapshots, m, equals to the integer value of the 

quotient ((tend - tstart) /w). 

2.3.1. DEGREE CENTRALITY 

For static networks, the degree centrality of a node is the total number of links 

connected directly to this node normalized (divided) by the maximum number of 

links that can be connected to the same node (Freeman 1978), as presented in Eq. 

3. In directed networks, there are two types of degrees: an in-degree and an out-

degree. According to the degree centrality, the node with the highest degree is the 

most central node (i.e., hub) (Barabási and Pósfai 2016). 

𝐷𝐶𝑆
(𝑖) =  

1

 (𝑁 − 1)
 ∑ L𝑖𝑗

𝑗

            (3) 

where, L𝑖𝑗 = 1 if, and only if, there is a link between nodes i and j, and L𝑖𝑗 = 0 

otherwise.  
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To extend the degree centrality measure to temporal networks, Kim and 

Anderson (2012) developed a time-ordered graph that facilitates evaluating the 

centrality measure for such networks. The time-ordered graph simulates the 

temporal network topology as a static network with directed flows, as shown in 

Figure 2.2. Accordingly, the temporal degree centrality of a node can be evaluated 

first from this graph as the sum of all the in and out links connected to this node in 

a time interval (i.e., from tstart to tend). Subsequently, this summation is normalized 

through dividing by 2𝑚(𝑁 − 1), as presented in Eq.4. In other words, the temporal 

degree centrality of a node is the average value of its in- and out-degrees over a set 

of the snapshots, m. 

𝐷𝐶𝐼
(𝑖) =  

1

2𝑚 (𝑁 − 1)
 ∑(K𝑖𝑛 +  K𝑜𝑢𝑡) 

𝑡

            (4) 

where, K𝑖𝑛 and K𝑜𝑢𝑡 are the number of in and out links connected to the node, 

respectively. 

2.3.2. CLOSENESS CENTRALITY 

The closeness centrality measures how close a node is to other nodes in the same 

network. In static networks, the closeness centrality of a node is evaluated as the 

inverse of the average static distances from this node to all other nodes (Freeman 

1978), as expressed in Eq. 5. Where the static distance S𝑖𝑗 is the minimum number 

of the links that connects nodes i and j. 
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𝐶𝐶𝑆
 (𝑖) =  

1

𝑁 − 1
 ∑

1

𝑆𝑖𝑗
𝑗

                                                     (5) 

Tang et al. (2010c) extended the concept of closeness centrality to temporal 

networks by replacing the static by the temporal distance. Therefore, the temporal 

closeness centrality can be expressed in terms of the average of the total shortest 

temporal distances from a given node to all other nodes: 

𝐶𝐶𝐼
 (𝑖) =  

1

𝑚 (𝑁 − 1)
 ∑ 𝑑𝑖𝑗

𝑗

                                              (6) 

Again, having disconnected nodes in the network would lead to an infinite 

temporal distance value, and therefore, the closeness centrality can be defined as 

(Pan and Saramäki 2011):   

𝐶𝐶𝐼𝐼
 (𝑖) =  

1

𝑚 (𝑁 − 1)
 ∑

1

𝑑𝑖𝑗
𝑗

                                                (7) 

Tang et al. (2010c) demonstrated that the closeness centrality of a node is 

useful to identify the most influential spreaders throughout the network. For 

example, an infected individual (node) with high a closeness centrality value 

(compared to other exposed individuals) is potentially the most effective distributor 

for spreading virus or cascade systemic risks throughout the network. In the case of 

infrastructure networks, closeness centrality provides a potential indicator to the 

critical nodes that are, for example, responsible for blackouts in power networks or 
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traffic jams in transportation networks. In addition, Pan et al. (2011) emphasized 

that some nodes might appear too close in a static network; however, considering 

the temporal dimension, such nodes might actually not be even connected or have 

a long temporal path. Therefore, in a temporal network, some nodes might possess 

low closeness centrality values relative to their counterparts when the same network 

is evaluated as a static network.  

Moreover, Kim and Anderson (2012) proposed a formula to calculate the 

closeness centrality of a node by considering the shortest temporal path distance for 

all time intervals from t to tend (i.e., tstart ≤ t < tend), as presented in Eq. 8. This 

definition differs from that presented in Eq. 7 that focused only on the overall time 

interval (i.e., from tstart to tend).   

𝐶𝐶𝐼𝐼𝐼
 (𝑖) =  

1

𝑚 (𝑁 − 1)
 ∑ ∑

1

𝑑𝑖𝑗[𝑡, 𝑡𝑒𝑛𝑑]
            (8)

𝑗𝑡

 

where 𝑑𝑖𝑗[𝑡, 𝑡𝑒𝑛𝑑] is the shortest temporal distance between nodes i and j within a 

time interval from t to tend.  

Table 2.2 presents the closeness centrality values calculated according to 

Eqs. 7 and 8 (Kim and Anderson 2012; Pan and Saramäki 2011) to facilitate a direct 

comparison. As can be seen in Table 2.2, nodes B, C, D, and E have the same 

closeness centrality value according to Eq. 7 suggested by Pan et al. (2011). 

Conversely, according to Eq. 8 proposed by Kim and Anderson (2012), node C 
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possesses a unique large value over nodes B, D, and E. This difference in closeness 

centrality values is mainly attributed to the variation of temporal paths as the time 

increases. More specifically, according to Eq. 7, the temporal centrality is governed 

by the shortest temporal path within the overall time interval [tstart, tend] and all 

other interactions are ignored. While, according to Eq. 8, all possible time intervals 

[t, tend] are considered to include the dynamics of temporal paths between nodes.  

2.3.3. BETWEENNESS CENTRALITY 

The betweenness centrality measure identifies nodes that play a central role 

between other nodes in the network (Lazega et al. 1995). In a static network 

(Freeman 1977), this measure is calculated as:  

𝐶𝐵𝑆
 (𝑖) =  

∑ 𝜎𝑗𝑘(𝑖)𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘𝑖≠𝑗≠𝑘
                               (9)  

where 𝜎𝑗𝑘(𝑖) is the total number of shortest paths between nodes j and k that passes 

through node i, while 𝜎𝑗𝑘 is the total number of shortest paths between nodes j and 

k. 

The definition in Eq. 9 can be extended to temporal networks by considering 

the temporal paths in lieu of the static paths (Tang et al. 2010c). In a similar way, 

the temporal betweenness centrality of node i can be defined as the ratio between 

the number of shortest temporal paths between all pairs of nodes that pass through 

node (i) and the total number of the shortest temporal paths between all nodes in 
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the network. Tang et al. (2010c) proposed an expression to calculate the temporal 

betweenness centrality to consider the waiting time (e.g., the difference between 

arrival and departure time at the bus station in a transit network). In this respect, the 

betweenness centrality of node i at time t can be expressed as:  

𝐶𝐵 (𝑖, 𝑡) =  
1

(𝑁 − 2)(𝑁 − 1)
∑ ∑

𝑢 (𝑖, 𝑡, 𝑗, 𝑘)

𝜎𝑗𝑘𝑘≠𝑖
𝑘≠𝑗

𝑗≠𝑖

                 (10)  

where, 𝑢 (𝑖, 𝑡, 𝑗, 𝑘) is the number of the temporal shortest paths between nodes j and 

k that passes through node i at a time equals to or less than t. Hence, the betweenness 

centrality of node i over all time intervals is defined as: 

𝐶𝐵𝐼
 (𝑖) =  

1

𝑚
∑ 𝐶𝐵 (𝑖, 𝑡)

𝑡

                       (11) 

 GRAPHICAL REPRESENTATION OF TEMPORAL NETWORKS 

Graphical representation of temporal networks is a critical aspect to visualize the 

network structure. This section provides a review of the different representation 

techniques proposed in previous studies to visualize temporal network data (e.g., 

links time, links order and duration). 

2.4.1. TIME-LABELED GRAPH 

A simple technique to represent a temporal network is by using a time-labeled 

graph (Kempe et al. 2002), in which each link is labeled with the time of contact 
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between its pair of nodes, as shown in Figure 2.3. Therefore, the temporal path is 

strictly committed to follow an ascending order through these labels (Kempe et al. 

2002). Such a graph is also referred to as contact sequences (Holme 2005) or time 

series of contacts (Holme 2015). Holme (2005) used this graph to illustrate the 

spreading processes in directed temporal networks. This representation technique 

illustrates the temporal data in a single graph, thus taking advantage of the static 

network layouts.  

2.4.2. SEQUENCE OF STATIC GRAPHS 

Another technique to represent temporal networks is to show the evolving network 

over time by a set of subgraphs, where each subgraph captures the network 

information at a specific time (Ferreira 2004; Tang et al. 2009), as shown in Figure 

2.1(a). Such a graph also termed graph sequences (Holme 2015) or time-varying 

graph (Nicosia et al. 2012; Nicosia et al. 2013). Such a representation depends 

mainly on the selected time window, as discussed earlier. One drawback of using 

this technique lies in its inability to consider the time spent to transfer the 

information (i.e., contact duration) within the same time window. For example, in 

Figure 2.1(a), node B can connect to node E in one-time step through nodes D and 

C without any consideration to the time needed to reach from one node to another.  

2.4.3. TIME-ORDERED GRAPH 

Another powerful technique to represent temporal networks is the time-ordered 
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graph introduced by (Kim and Anderson 2012). This graph has also been termed 

directed acyclic graph (Speidel et al. 2015; Takaguchi et al. 2016), time-unfolded 

network (Pfitzner et al. 2013), static expansion (Michail 2016), or time-node graphs 

(Holme 2015). The concept behind this graph is to represent the temporal network 

by a single static network with directed links, as shown in Figure 2.2. This facilitates 

analyzing and visualizing any large temporal network using a simple organized 

equivalent static network (Kim and Anderson 2012). This technique considers the 

contact duration, where no more than one interaction can occur at one-time step for 

each path.  

2.4.4. TIMELINE GRAPH 

Timeline graph is an effective technique to illustrate the link status/evolution over 

time, where one axis represents the time and the other represents the nodes of the 

network, as shown in Figure 2.4 (Holme 2015). This technique provides a distinct 

visualization of the network, where the temporal path can be followed. However, 

the technique is limited to small networks as the graph can become too complex for 

networks with a large number of nodes.  

2.4.5. GRAPHING/VISUALIZATION TOOLS 

It is difficult to utilize the aforementioned visualization techniques for large 

networks without practical/efficient tools. The difficulty stems from the fact that 

the corresponding network graphs would become very dense and, subsequently, it 
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would be challenging to visualize the temporal nature of the underlying networks. 

To address this matter, there are several temporal network visualization tools that 

are either stand-alone software packages, or available within different programming 

languages such as C/C++, R, and Python. Table 2.3 lists some of the several 

software packages and libraries for temporal network analysis. 

 INFRASTRUCTURE NETWORK-BASED MODEL CLASSES  

After highlighting the main differences in the previous sections between static and 

temporal networks, it is important to relate these two network models to different 

infrastructure network simulation applications. In general, studies that focused on 

evaluating infrastructure system performance, resilience and robustness can be 

broadly classified into three groups: topology-based-, flow-based-, and physics-

based models (LaRocca et al. 2015; Ouyang 2014).  

2.5.1. TOPOLOGY-BASED MODELS 

Topology-based models would simulate an infrastructure network based only on 

the former’s topology and connectivity properties. Such models disregard flows and 

physical properties of/within the network, and instead represent the underlying 

network in an abstract manner, as a set of nodes and links, without differentiation 

between the component physical functions/roles within the network (LaRocca et al. 

2015; Ouyang 2014). For example, when modeling a power grid, key stations 

would be treated simply as nodes with no distinction between generation-, 
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distribution-, or sub-stations (Rosato et al. 2007). Some studies however adopted 

topology-based models with additional consideration for node heterogeneity (e.g., 

the different functions between network components) (Albert et al. 2004). Another 

example is the work of Kaluza et al. (2010) that investigated the global maritime 

transportation network, where ports were represented by nodes that were linked by 

ship paths.  

Although abstract in nature, topology-based models can provide a general 

indication of network behavior and vulnerability, albeit such models lack the ability 

to give a complete picture of infrastructure behavior. This is because all 

infrastructure networks are governed by the law of physics and subjected to 

constraints pertaining to their supply and demand capacities (Hines et al. 2010b). 

2.5.2. FLOW-BASED MODELS 

Unlike network models based solely on topology, flow-based models consider also 

the flow or service delivered through the infrastructure network (Ouyang 2014). In 

other words, such models combine the network topology with network flow models 

to represent loads, demands, and capacities within the network. However, these 

models do not incorporate real dynamic flow modeling (e.g., power flow analysis 

in power grid or hydraulic flow model in water network). For example, many 

network flow models proposed to consider power load and capacity according to 

shortest paths or centrality measures in studying power grid vulnerability and 
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resilience (Ezzeldin and El-Dakhakhni 2019; Fang et al. 2014; Motter and Lai 2002; 

Wang and Rong 2009, 2011).  

Based on this concept, some studies focused on infrastructure networks and 

their interdependencies provided a more realistic simulation approach. For 

example, Lee and Wallace (2007) utilized a mathematical representation of network 

flow to model interdependence within infrastructure networks. Although such 

modeling approach considered different types of interdependencies to analyze and 

simulate network post-disruption and restoration processes, it only focused on a 

single level of the decision-making (i.e., the selection of components to repair or 

install  to restore the network service). Such mathematical models can be integrated 

with optimization algorithms to incorporates the restoration planning and 

scheduling decisions (Cavdaroglu et al. 2013; Nurre et al. 2012). Nonetheless, high-

fidelity models have to consider real system components properties, dynamics 

physical flow, and capacities especially for modeling the dynamics of cascade 

failure (Pagani and Aiello 2013a), systemic risk mitigation strategies, and resilience 

of infrastructure networks.  

2.5.3. PHYSICS-BASED MODELS 

The two network-based models described above do not fully captured the realistic 

dynamics physical flow within infrastructure systems (LaRocca et al. 2015). For 

example, a high-fidelity model of power grid should take into consideration the real 
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power flow, the transmission lines electrical properties, and the generations supply 

and capacity (Bernstein et al. 2014a; Li et al. 2018; Yang et al. 2017). Such physics-

based models usually require significant computational time and required more data 

to simulate the functionality of network components, compared to their topology- 

and flow-based model counterparts. In particular, infrastructure network resilience 

analysis based on physics-based models is more realistic when considering the 

dynamic behavior of such complex networks. In real-life, infrastructure networks 

continuously evolve due to the changing of service demand, topological 

adjustments, the growth of the interdependencies, in addition to the post-event 

improvements such as enhancements of component capacities, implementation of 

the new standards, the increase of situational awareness, and the integration with 

the new technologies (Goldbeck et al. 2019; Ouyang and Dueñas-Osorio 2012).  

In this respect, Ouyang and Dueñas-Osorio (2012) evaluated the resilience 

assessment processes of power infrastructure networks when the networks’ future 

evolving processes are considered. Moreover, González et al. (2016) provided a 

simulation-optimization framework to optimize the resource allocation and 

recovery strategy in the restoration planning for interdependent infrastructure 

networks. Furthermore, other studies focused on evaluating interdependent 

infrastructure networks resilience, through a dynamic network flow model 

(Goldbeck et al. 2019) or a multi-objective restoration model (Almoghathawi et al. 

2019), to maximize the network resilience while minimizing the total cost 
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associated. In summary, the integration between temporal network models with 

physics-based models yields more realistic analysis results, especially when 

simulating the dynamics of cascade failure, developing systemic risk mitigation 

strategies, and enhancing the resilience of infrastructure networks. 

In closure, real infrastructure networks experience temporal variations of 

their topologies as well as the flow or service provided through them (Goldbeck et 

al. 2019; Rocha 2017). Dynamics of network topology can be readily observed 

when evaluating failure propagation, recovery, systemic risk mitigation, as well as 

restoration and reconfiguration processes, whereas, the dynamics of flow are 

represented through the demand, supply, load, or service fluctuation through the 

network components (Hines et al. 2010b; Ouyang 2014). For example, in power 

grids or transportation networks, the network topology continuously varies due to 

maintenance scheduling of transmission lines or roads, closing roads or bridges due 

to accident or disruptive event, and/or failure propagation. Therefore, the temporal 

network approach provides a promising direction to model the dynamics of network 

topology. This approach can be also extended by an integration with physics-based 

models to also account for the dynamic of flow (Ouyang and Dueñas-Osorio 2012; 

Yang et al. 2017). 

 OPPORTUNITIES FOR INFRASTRUCTURE NETWORKS 

SIMULATION 
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Modern societies are fully dependent on physical- and cyberinfrastructure 

networks, that do not operate in isolation, but are instead interdependent on multiple 

levels (Ouyang 2014).  In fact, it can be argued that our prosperity and security rely 

on our future ability to understand and analyze not only the intra-dependence within 

each of such infrastructure networks but also their overall inter-dependence (Min 

et al. 2007). Although interdependence improves network efficiencies, it also 

increases their interdependence –induced vulnerability, which gives rise to systemic 

risk and may thus result in severe loss of functionality and recovery capability 

(Monsalve and de la Llera, Juan Carlos 2019). In reality, multiple independent, 

possibly noncooperative, decision-makers are responsible for managing 

infrastructure networks (Smith et al. 2017). Furthermore, various layers of 

complexity play a role related to operating, maintenance, and recovery of 

infrastructure networks especially in case of catastrophic failure.   

Another layer of complexity that needs to be tackled relates to the socio-

technical aspects— the interface between the social networks with the underlying 

physical infrastructure networks. Specially, infrastructure networks are not only 

affected by physical components but also by human behavior, regulatory agencies, 

stakeholders, and government/private enterprise (Barrett et al. 2004). Recently, the 

work of Guidotti et al. (2019) highlighted the consequences of neglecting such 

interdependence between the social systems and physical infrastructure networks. 

It was concluded that disregarding the information from human response models 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

45 

 

 

may result in misleading conclusions including lower estimate of population 

dislocation; higher estimates demands on physical network components; and slower 

recovery process. Therefore, it is imperative to consider decentralized decision 

making in modeling and simulation interdependent infrastructure networks. 

Moreover, it is quiet challenging to develop informative and computationally high-

fidelity modeling, especially with consideration of both time dynamics and 

interdependencies. 

Another promising research area involves data-driven and game theory 

applications, especially for large scale network analysis. For instance, Dueñas-

Osorio and Kwasinki (2012) used the historical restoration curves through a time 

series method to quantify coupling strength and interdependencies between 

infrastructure networks. Furthermore, Monsalve and Juan Carlos (2019) presented 

a data-driven model to simulate the restoration process of interdependent 

infrastructure networks after a disruptive event. Some studies proposed data-driven 

models to generate a linear recovery operator from numerous disaster and failure 

scenarios (González et al. 2017). This operator can be used later to provide the 

optimal recovery strategies associated with any damage scenario. For consideration 

of multiple independent, utility network controllers, and decisionmakers, game 

theoretic approaches have been used to resolve such crossed interactions between 

numerous players. Smith et al. (2017) proposed a game theoretic recovery model to 

address the decentralized related to infrastructure networks decisionmakers.  
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The following subsections highlight temporal network modeling research 

efforts in and potential opportunities in transportation-, power-, and water 

distribution infrastructure networks. Overall extensive research is needed to 

simulate and analyze the infrastructure networks based on the temporal variation 

within the networks, rather than only the static topological characteristics. 

Especially when assessing infrastructure resilience, where the network topologies 

are evolving due to increase of service demand, retrofit, reconfiguration, and 

restoration processes (Goldbeck et al. 2019; Ouyang and Dueñas-Osorio 2012). 

2.6.1. TRANSPORTATION NETWORKS 

Transportation networks possess one of the most vivid temporal behavior in 

infrastructure networks. Recent computational advances coupled with the 

availability of detailed data that describes real-time interactions have also boosted 

the field of transportation network dynamical behavior research (Gallotti and 

Barthelemy 2015). For example, the data collected by smart card systems can 

include accurate information about the corresponding time and space domains. A 

shared bicycle/car system is also a common example of a temporal network 

constructed using data from smart cards (Borgnat et al. 2013).  

Air traffic networks present another mode of transportation that strongly 

evolves over time. Rocha (2017) provided a review of air traffic networks, where 

airports were represented by nodes and flights were represented by links between 
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each pair of nodes. Studying such networks from a temporal perspective can 

demonstrate how flight delays propagate. This can be subsequently used to enhance 

network efficiency and connectivity by reducing the total travel time, optimizing 

resources, and maximizing profits. Moreover, Sun et al. (2015) studied the temporal 

evolution of air traffic networks within the European context. In their study, 

different network centrality measures have been analyzed over time to identify the 

hub nodes. It was found that these air traffic networks are dominated by seasonal 

(time) variation. Such results would assist stakeholders in managing and enhancing 

the performance of their air traffic networks.  

Additional studies focused on other modes of transportation. For instance, 

Ducruet and Notteboom (2012) investigated the network structure for vessel 

movement data covering about all of the world’s container fleets in 1996 and 2006. 

The study also analyzed the relative position of ports (i.e., centrality) in the global 

network with mapping the changing of ports centrality through time. In addition, 

Williams and Musolesi (2016) investigated the performance of four transport 

networks in the time and space dimensions. The same authors evaluated the 

behavior of these networks under random failures and targeted attacks.  

In term of specific opportunities considering that, transportation networks 

usually encompass multi modes that require different types of nodes and/or links, 

there remains a significant lack of understanding of multilayer temporal 

transportation networks. Multilayer (multiplex) networks include multiple layers 
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representing the connectivity and the types of interactions between nodes. A 

comprehensive review pertaining to static multilayer networks have been discussed 

by Domenico et al. (2013) and Kivela et al. (2014). Furthermore, it is worth 

mentioning that one way to reveal more complexity and provide a deep 

understanding of transportation infrastructure networks is to combine different 

concepts in simulation. For example, spatio-temporal networks typically integrate 

both space and time dimensions. These networks can develop a more accurate 

representation of several infrastructure networks, especially when multi-modal 

transit systems are analyzed (George and Kim 2013; Goforth et al. 2019). Another 

example, adaptive dynamic networks combine the dynamics of nodes and/or links 

and their influences on the temporal network topology, where, links shift adaptively 

according to the network status. This leads to a dynamical interplay (Gross and 

Sayama 2009) between the topology and the operation state of the transit network, 

especially in disaster situations and emergency traffic management. 

2.6.2. POWER NETWORKS 

The temporal behavior of power networks can be easily observed in two aspects. 

First, power networks are typically subjected to load balancing between supply and 

demand. The supply may change frequently due to the fluctuation of renewable 

energy sources such as wind. In addition, power storage infrastructure has only 

limited capacities to store electric power, thus, any overproduced electric power 
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must be transferred and consumed within the large power network (grid). 

Moreover, the demand for electricity continuously varies throughout the day 

(Nardelli et al. 2014) and based on numerous factors including weather conditions. 

Subsequently, the electric loads on power stations and transmission lines vary 

continuously over time. Second, a blackout is a typical example of the dynamic 

nature of power networks (Carreras et al. 2001). A blackout can be initiated by 

several causes including those attributed to weather conditions, network component 

failures, or human errors. It should also be noted that a small disruption in some 

key components may lead to overload on other components and start a chain of 

cascade failures, which can spread throughout the network (Bernstein et al. 2014a; 

Costa et al. 2011).  

Several studies have investigated cascade failures by simulating failure 

propagation on power networks (Crucitti et al. 2005; Fang et al. 2014; Kinney et al. 

2005; Motter and Lai 2002; Pagani and Aiello 2013a; Sun et al. 2008; Wang et al. 

2010b; Wang and Rong 2009, 2011). For example, Motter et al. (2002) studied the 

cascade failures due to targeted attacks on several real undirected networks, 

including power networks. It was concluded that power networks have high 

robustness to random attacks, but once a node with high load fails, network-level 

cascade failures may be triggered, affecting the performance of the entire network. 

In addition, Rosato et al. (2007) analyzed power networks of Spain, Italy, and 

France to identify their critical links (i.e., transmitting lines) and improve the 
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network connectivity (e.g., robustness and redundancy) by adding new links. 

Moreover, Wang et al. (2009) studied the vulnerability of the US power network. 

Different attack scenarios have been applied through the removal of nodes in 

ascending or descending orders (in terms of their loads). The initial load of a node 

was assumed by integrating a node degree and its neighbors’ degrees. After a node 

is successfully attacked and thus removed, the load is redistributed to that node’s 

neighbors according to their initial loads. Although this research work contributed 

to the understanding the US power network behavior and evaluating its robustness 

under different attack scenarios, the model in the study by Wang and Rong (2009) 

did not consider actual power distribution, where the initial load of a node was 

assumed according to its corresponding degree. In addition, the model did not 

account for the overload on the links. Bernstein et al. (2014a) modeled the cascade 

failure for US western interconnected with considering power flow distribution to 

identify the most vulnerable locations in the grid. Recently, Yang et al. (2017) 

provided a large-scale model for the US – South Canada power network to 

investigate network vulnerability. The model was characterized by its large scale, 

the physical properties of power flow and a large amount of temporal data 

representing a wide range of system conditions over time. 

Most previous research studies have focused only on cascade modeling, 

while a limited number of studies developed risk mitigation and resilience 

enhancement strategies. For example, Motter (2004) proposed a cascade control 
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method based on minimal alterations to the network structure. These alterations 

consisted of removing a few selected nodes or links after the initial attack and prior 

to the propagation of cascade failures (e.g., similar to the function of the circuit 

breakers). Another risk mitigation strategy has been introduced by Wang (2013a) 

to suppress the cascade propagation through load redistribution from the overloaded 

nodes to other neighboring nodes. This redistribution maintains the overloaded 

nodes’ normal and efficient function.  

Overall, there is an opportunity for temporal/dynamic behavior of power 

networks to be adopted in simulating changes in both network topology (i.e., 

cascade failures) and network flow. Such an approach would facilitate better 

understanding of network behavior and developing real-time defense and risk 

mitigation strategies of actions prior to and during cascade failures. 

2.6.3. WATER DISTRIBUTION NETWORKS 

A limited number of studies has been conducted on water networks using CNT. For 

example, Xu et al. (2008) utilized different network topological characteristics 

(e.g., betweenness centrality and path distance) to identify the key nodes within a 

water distribution network. These key nodes can be used to accommodate sensors 

to detect contamination locations within the network. Furthermore, the same 

authors used the concept of reachability to formulate the receivability, which 

indicates the set of nodes that has paths to a certain node in a directed network. The 
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receivability measure is useful to simulate the different risk scenarios and the 

corresponding mitigation strategies following any contamination events. Dueñas et 

al. (2007) also investigated the water distribution networks, where tanks and 

pipelines were represented by nodes and links, respectively. Their work illustrated 

the network topology to evaluate the network vulnerability under both targeted and 

random disruptions. However, the network has been studied as an undirected 

network without any consideration to the flow direction. Furthermore, Yazdani and 

Jeffrey (2011) investigate four water distribution networks using several 

measurements to quantify the network's vulnerability and robustness. Finally, 

Perelman and Ostfeld (2011) used the network topology and connectivity analysis 

to study strongly- and weakly-connected clusters in directed water distribution 

networks.  

In closure, water distribution networks are becoming more complex with 

the introduction of large-scale infrastructure components such as tanks, pumping 

stations, hydrants, valves, and pipelines. It is thus challenging to predict the network 

performance in case of failure scenarios or provide an efficient contaminant spread 

risk mitigation strategy (Perelman and Ostfeld 2011). However, the use of temporal 

network modeling approaches might facilitate tackling such challenges. For 

example, temporal centrality could help enhancing water security by detecting 

contamination sources and highlighting critical locations to place sensors.  

 DISCUSSION AND CONCLUSION 
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The recent revolution in collecting network-type data has boosted CNT studies and 

applications. In addition, current available datasets collected for example by mobile 

devices, sensors, or smart cards, include many details about the temporal (i.e., 

dynamic) behavior of the underlying network. In this respect, the current study 

provided a review and a fundamental background of the temporal simulation 

approach of complex networks. The static network topological characteristic 

extensions to temporal networks were also outlined. In addition, several temporal 

centrality measures and graphical representation techniques were discussed and 

investigated. Finally, opportunities and applications of infrastructure networks 

simulation using CNT were presented.  

Previous studies demonstrated that temporal measures provide more 

realistic and accurate results compared to static measures. Therefore, the temporal 

network simulation approach can be considered a more appropriate framework to 

simulate and analyze infrastructure networks. However, there remains several gaps 

that need to be addressed. For example, the current review showed that, to date, 

there is no consensus among researchers about the definition of some temporal 

metrics, with previous studies providing several definitions to the same measure 

(e.g., the shortest temporal path). It is also clear that the temporal closeness 

centrality measure can be evaluated by two different approaches: one that considers 

only the overall time interval, while the other considers all possible time intervals. 

The results of the two approaches were significantly different for the same nodes. 
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Although there is a significant amount of literature related to the robustness 

of infrastructure networks from a static perspective, a limited number of studies has 

been conducted considering the temporal nature of these networks. Furthermore, 

despite the significant progress in modeling cascade failures, there is still a lack of 

large-scale models for infrastructure networks that consider the dynamical changes 

in the network topology. For example, most previous studies consider power 

networks merely as undirected networks without any physical or electrical 

properties of actual infrastructure network. In addition, most of the proposed 

models do not account for the actual loads on the nodes and links (i.e., the power 

pass-through stations and transmitting lines), and the subsequent real load 

redistribution when any component fails. Developing such model remains an 

intriguing research area.  

Overall, the current study indicates that using the temporal network as a 

simulating approach for infrastructure complex networks presents a promising 

framework to simulate and reveal complex infrastructure network characteristics, 

evaluate their interdependence, quantify their resilience, and mitigate their systemic 

risks. 
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 TABLES 

Table 2.1: Temporal path definition according to different studies. 

Ref. Temporal path Definition Application 

Xuan. et al. 

(Xuan et al. 2003) 

- Shortest journey 

- Foremost journey 

- Fastest journey 

- Minimum hop count. 

- Earliest arrival time. 

- Minimum duration. 

- Non specific 

Tang et al. (Tang 

et al. 2009) 

Pan et al. (Pan 

and Saramäki 

2011) 

- Shortest path - Minimum duration. - Mobile and 

email 

networks 

Wu. et al. (Wu et 

al. 2014) 

- Shortest path 

- Fastest path 

- Earliest-arrival path 

- Latest-departure 

path 

- Minimum distance. 

- Minimum duration. 

- Earliest arrival time. 

- Latest departure 

time. 

- Applied to 

twelve real 

temporal 

networks  

 

 

 

Table 2.2: Comparison between different approaches to calculate Closeness 

centrality. 

 Node 

Ref. A B C D E F 

Pan and Saramaki (Pan 

and Saramäki 2011) 
0.150 0.200 0.200 0.200 0.200 0.125 

Kim and Anderson 

(Kim and Anderson 

2012) 

0.221 0.196 0.371 0.363 0.325 0.175 
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Table 2.3: Software packages for network analysis. 

Software Stand-alone 

software 

Software 

package 

used 

Features Web-address 

Visualization Analysis 

 

Cytoscape ✓   ✓  ✓  http://www.cytoscape.org 

Gephi ✓   ✓  ✓  https://gephi.org 

Graphviz ✓   ✓   http://www.graphviz.org 

Igraph  
Python, R, 

C/C++ 
✓  ✓  http://igraph.org 

NetworKit  Python ✓  ✓  https://networkit.iti.kit.edu 

Networkx  Python ✓  ✓  http://networkx.github.io 

NodeXL 

SNAP 
 

Microsoft 

Excel, 

Python 

✓  ✓  
https://archive.codeplex.com 

http://snap.stanford.edu 

Pajek ✓   ✓  ✓  
http://mrvar.fdv.uni-

lj.si/pajek/ 

SOCNETV ✓   ✓  ✓  http://socnetv.org 
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 FIGURES 

 

Figure 2.1: A network consists of six nodes: (a) temporal network presentation with 

four snapshots; and (b) static network presentation with one graph. 
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Figure 2.2: The time-ordered graph of the network presented in Figure 2.1. 
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Figure 2.3: The time-labeled graph of the network presented in Figure 2.1. 

 

 

Figure 2.4: The timeline graph of the network presented in Figure 2.1. 
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Chapter 3 : Mixed Strategy for Resilience Enhancement of Power 

Grid under Cyberattack 

ABSTRACT 

Power infrastructure networks continue to be at risk under natural and 

anthropogenic hazard events. Minor disruption in key network components may 

lead to overloading others and subsequently triggering network-level cascade 

failures. Cyberattacks targeting power grids aim at magnifying the impacts of such 

attacks through damage propagation to other dependent infrastructure network. As 

such, there is a growing push to adopt ‘retro’ technologies (i.e., replacing some 

automated systems with low-tech redundancies) as a defensive strategy against 

cyberattacks. Such mixed (automation plus manual control) strategies seek to 

thwart sophisticated cyber-adversaries by strategically protecting key network 

components to mitigate cascade, systemic, risks. In this respect, through a complex 

network theoretic lens, the current study focuses on the "draw-down" phase of 

power infrastructure network resilience considering different centrality measures to 

evaluate the robustness of power grids against cyberattacks. At the network-level, 

the study considers two network representations for the grid based on the network’s 

topological/connectivity (i.e., unweighted network) and the network’s power flow 

information (i.e., weighted network). At the nodal-level, various centrality 

measures are considered to identify and rank key network components. In addition, 
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the closeness and betweenness centralities, respectively calculated based on both 

the shortest paths and the electric current flow, were evaluated.  Finally, the study 

utilizes the evaluated measures to improve network robustness under cyberattacks, 

through considering (or not) the mixed strategy. In general, simulated cyberattacks 

led to the dysfunctionality of the network components that in turn led to rapid 

diminishing of the functional network size. Based on the analyses, network-level 

vulnerability is quantified considering five different scenarios (i.e., guided by either 

the degree, Eigenvector, PageRank, betweenness, or the closeness centralities) 

through evaluating two key performance metrics—Topology and Functionality 

indices. Subsequently, the considered grid was found to be highly vulnerable to 

targeted cyberattacks especially if the attackers targeted the hubs based on the 

current flow betweenness centrality. Nonetheless, applying the proposed mixed 

strategy to limit the hacker’s access to the network hubs would boost the overall 

grid robustness. 

 

Keywords: Centrality measures, Complex network theory, Cyberattacks, Mixed 

strategy, Robustness, Vulnerability analysis. 
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 INTRODUCTION 

In March 2019, hackers exploited firewall vulnerabilities to cause periodic "blind 

spots" for grid operators in the western US for approximately 10 hours (NERC 

2019), where firewalls were facing consecutive rebooting leading to cut 

communication between control centers and generation sites (Sussman 2019). 

Subsequently, the U.S. government announced a surprise move to secure power 

grids through considering "retro" technologies (O'Flaherty 2019). These 

technologies are to limit hackers’ attacks and to make it more strenuous, by 

adopting a mixed strategy through replacing some automated systems with low-

tech redundancies (e.g., analogue and manual control technologies). As the risk of 

targeted cyberattacks on the critical power grid components poses a severe threat 

to grid operations and may cause a large-scale blackout, identifying critical power 

grid components is crucial to evaluate grid robustness and enhance grid resilience.  

The previous studies of power infrastructure network resilience described 

resilience using four functions: resist, re-stabilize, rebuild, and reconfigure (Gasser 

et al. 2019). These functions form the core of physical resilience engineering that 

focuses on “draw-down” and “draw-up” behaviors (Heinimann and Hatfield 2017), 

as shown in Figure 3.1. The resist and re-stabilize function represent the “draw-

down” phase, which focuses on the network's ability to handle the disruptive event. 

The “draw-down” phases can be evaluated using vulnerability analysis and 
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modelling of failure propagation to quantify the network robustness. On the other 

hand, the recovery behavior in the “draw-up” phase represents both the rebuild and 

reconfigure resilience functions.   

The current study focuses on the "draw-down" phase of power infrastructure 

network by using a family of complex network theory centrality measures to 

evaluate the robustness of power grids against random and targeted cyberattacks, 

starting by identifying critical substations which have the highest impact on the 

network performance. Overall, the study facilitates better understanding of power 

grid vulnerability and provides guidance to enhance the overall grid resilience 

under cyberattacks using a mixed strategy. 

Complex network theoretic (CNT) strategies have been providing powerful 

tools to understand the behavior of different real complex networks. Within a CNT 

context, the core components of any network are its corresponding nodes and links 

(Newman 2010a), whereas the  nodes simulate the main components comprising 

the network (e.g., substations in power grid), and the links represent the 

interdependency between these network nodes (e.g., transmission lines in power 

grid). Some substations, based on their position and operation conditions, are more 

essential for grid operation than others, which in turn makes their continued 

functionality and security more imperative. In this respect, vulnerability analysis 

refers to identifying key substations and assessment of their role in the robustness 

of the power grid (Shahpari et al. 2019). Simulation of power grids based on CNT 
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strategies facilitates a better understanding of the interdependence between the 

components comprising this network. Subsequently, network analysis does not only 

demonstrate the network’s topological characteristics, but should also identify its 

most influential nodes and links (Barabási and Pósfai 2016). Subsequently, more 

complex characteristics such as network robustness can be evaluated by subjecting 

the network to different targeted attack and random failure  scenarios (Motter and 

Lai 2002; Wang and Rong 2009, 2011).  

Several research studies have adopted CNT in analyzing power grid 

vulnerability (Pagani and Aiello 2013b) . A significant part of these studies focused 

on only the topological characteristics and the basic measures of a network, which 

typically ignore the directions and the magnitude of the real power flow (Albert et 

al. 2004; Ezzeldin and El-Dakhakhni 2019; Motter and Lai 2002; Rosato et al. 

2007). Specifically, the two essential aspects of power grid vulnerability analysis 

are (i) the network topology: substations and their interconnections through the 

transmission lines; (ii) the operating conditions: governed by supply and demand 

distributions (Cetinay et al. 2018). Network topology is typically static in power 

grids, whereas network operation condition is usually dynamic and depends on how 

power flow is distributed over the grid   (Shahpari et al. 2019). Topology-based 

measures could provide a potential indication of network behavior and 

vulnerability, albeit with such models incapable of fully simulating infrastructure 

behavior as governed by laws of physics and subjected to constraints pertaining to 
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their supply and demand capacities. Consequently, models based solely on topology 

could result in misleading conclusions that may not reflect the real physical 

behaviors of the network (Hines et al. 2010c; Salama et al. 2020).  

Based on the above, the current study focuses on modeling large power 

grids by integrating both their topology and their operating (power flow) conditions 

to identify the relative importance of network components and evaluate their impact 

on network robustness. Next, the study evaluates the considered grid robustness to 

random and targeted cyberattack scenarios based on the centrality measures. 

Subsequently, by knowing these critical components, implementing the proposed 

mixed strategy aims to introduce new manual devices to isolate critical system 

components from cyberattack impacts. This mixed strategy was inspired from the 

2015 cyberattack on Ukraine’s power grid, which left most of the country without 

power. Ukraine’s grid operators were able to quickly bypass its compromised 

controls by switching to manual controllers. In fact, the consequences of this attack 

could have been much worse if the grid has been entirely reliant on automatic 

control (Lee et al. 2016).   

Following this Introductory section, Section 3.2 presents the considered 

power grid both as a simple network and a weighted network; Section 3.3 

introduces different centrality measures and their extensions for the weighted 

network; Section 3.4 presents the distribution and correlation between the five 

centrality measures; Section 3.5 evaluates the network robustness to random and 
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targeted cyberattack scenarios based on the centrality measures; and, finally, the 

study summary and overall conclusions are provided in Section 3.6. 

 NETWORK REPRESENTATIONS OF A POWER GRID 

In order to demonstrate the application of the proposed approach, the power grid 

supplying the Canadian province of Ontario will be considered hereafter. The 

Ontario power grid delivers the power to 14 million customers by coordinating 

about 160 TWh of annual demand and supply across 51 cities within the Province 

of Ontario (Ezzeldin and El-Dakhakhni 2019). This section describes the 

representations of the grid as a simple network and weighted network.  

Table 3.1 summarizes most of the previous studies on power grid 

vulnerability analysis based on CNT. From these studies, it can be concluded that 

each power grid has its unique topology that results in a significant effect on its 

robustness, which requires a particular vulnerability analysis for each distinct 

network. Additionally, it can be observed that most published studies focused on 

the USA, the European, or synthetics power grids (Fang et al. 2016; Pagani and 

Aiello 2011; Pu and Wu 2019; Xu et al. 2014), whereas only a single study, 

Ezzeldin and El-Dakhakhni (2019), focused on the Ontario power grid. 

Nonetheless, the study by Ezzeldin and El-Dakhakhni (2019) provided only 

potential indications of network behavior and vulnerability, as the corresponding 

network model did not consider power flow data within all transmission lines 
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represented as unweighted undirected links. In contrast, the enhanced model in the 

current study simulates the power grid as a weighted network with each link is 

assigned with a weight and a direction according to the power flow value and 

direction. In addition to the unweighted and weighted centrality measures, the 

current flow centrality measures have been computed as explained in section 3.3. 

Furthermore, the Ontario power grid in the current study includes the network from 

low to high voltage, in contrast to the simplified model by Ezzeldin and El-

Dakhakhni (2019) that considered only the high voltage transmission network (i.e., 

118 to 500 kV). Furthermore, the current study develops a network robustness band 

against random cyberattacks, without and with mixed strategy to track the 

improvement in network robustness with transfer from fully automatic control to a 

mixed strategy.  

3.2.1. POWER GRID AS A SIMPLE NETWORK 

A power grid network model with undirected and unweighted links is based 

only on the grid topology and connectivity properties. Such simplified models does 

not consider the flows and physical properties of/within the network, and instead 

represent the underlying network in an abstract manner (Rosato et al. 2007). The 

power grid is simulated as a network 𝐺(𝑁, 𝐿) that consists of 𝑁 nodes (e.g., 

substations in power networks) and 𝐿 links represent the interdependencies between 

these nodes within such a network (e.g., transmission lines in power networks). The 

interconnection pattern of the network can be summarized on 𝑁 𝑥 𝑁 adjacency 
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matrix 𝐴, where 𝑎𝑖𝑗 = 1 if, and only if, there is a link between nodes i and j, and 

𝑎𝑖𝑗 = 0 otherwise. The Ontario power grid was modeled as 3,653 nodes and 4,503 

links, as shown in Figure 3.2.  

For clarity, only the high voltage transmission network (i.e., the substations 

and transmission lines with a base voltage equal to 220 and 500 kV) are shown in 

Figure 3.3. As expected, a large cluster of stations is in proximity to the highly 

populated regions (e.g., the cities of Toronto and Ottawa) in the South-East of 

Ontario. In contrast, the Northern parts of Ontario, which is less populated, have a 

much fewer number of substations, as shown in Figure 3.3.  

3.2.2. POWER GRID AS A WEIGHTED NETWORK 

In contrast to a simple network model, the grid can also be simulated as a weighted 

network where to each link a weight and a direction according to the power flow 

value and direction are assigned. This hypothesis assumes that transmission lines 

that carry more flow have more influence than the lines that carry the smaller flow. 

It should be noted that the node connectivity in the power grid with other nodes is 

not only related to how many links connected to it but also related to the connection 

strength of each link (Wang et al. 2010a); and the power flow of each link reflects 

this strength. In addition, the network considers node heterogeneity where the nodes 

have been classified into three groups, namely: supply-station nodes “generator”, 

demand-station nodes “load”, and switching-station nodes “junction”, as shown in 
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Figure 3.4. The transmission lines have been classified into three groups: AC lines, 

and two- and three winding transformers. AC lines connected to two stations at the 

same voltage, while two and three winding transformers connected with two or 

three stations different voltage. In the current network, the three winding 

transformers are visualized as three links intersecting at one junction node, as 

shown in Figure 3.4. 

The power flow was calculated using the Direct Current power flow model 

(DC power model). The DC power model is widely used as an approximation 

method for the Alternating Current (AC power model) to simplify power flow 

analysis in power networks (Bernstein et al. 2014b; Pahwa et al. 2014; Yan et al. 

2015). The DC power model is used wherever repetitive and fast load flow 

estimations are required, whereas this method is non-iterative and absolutely 

convergent. The Power System Simulator for Engineering (PSSE) software 

(Siemens PTI 2015) has been used to compute the transmission lines power flow. 

In DC power model, nonlinear equations of AC power model are simplified 

to a linear form based on the following assumptions (Pahwa et al. 2014): 

• Line resistance is negligible compared to line reactance ( 𝑅𝑖𝑗 ≪  𝑥𝑖𝑗  ). 

• The voltage profile is flat (i.e., Magnitudes of node voltages are set to 1.0 

per unit). 

• Voltage angle differences between nodes are small (i.e., sin(𝛿𝑖𝑗) = 𝛿𝑖𝑗 and 

cos(𝛿𝑖𝑗) = 1). 
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As such, based on the above assumptions, the power at each node 𝑓𝑖 is equal to all 

the “in” and the “out” power flows, as:                          

𝑓𝑖 =  ∑ 𝑓𝑖𝑗   =  {

𝑆𝑖 ,        𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒𝑠
−𝐷𝑖  ,                    𝐿𝑜𝑎𝑑 𝑛𝑜𝑑𝑒𝑠
0 ,              𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒𝑠 

        (1) 

where, 𝑓𝑖𝑗 is the power flow for the link from node 𝑖 to node 𝑗, 𝑆𝑖 and 𝐷𝑖 is 

the given power at generator and load nodes, respectively. 

To calculate the power flow, the following equations are applied from Pahwa et al. 

(2014).  

𝑓𝑖𝑗 =  
𝛿𝑖𝑗

𝑥𝑖𝑗
                                                                         (2) 

where,  𝛿𝑖𝑗 =  (𝛳𝑖 – 𝛳𝑗) is the difference in the phase angle between node 

𝑖 and node 𝑗, and 𝑥𝑖𝑗 is the transmission line reactance. The phase angle difference 

𝛿𝑖𝑗  of a line is the phase shift between the voltage of the start node 𝑖 and the end 

node 𝑗. The transmission line reactance is the opposition to the power flow. 

Therefore, the value and direction of power flow for each transmission line 

𝑓𝑖𝑗 have been assigned to the link that represent this transmission line in the 

network. 

 CENTRALITY MEASURES 

Centrality measures reveal the influences of different nodes on the overall network 

behavior. This section presents a family of centrality measures adopted to rank the 
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importance of nodes. The most commonly used CNT centrality measures were 

examined to provide a comprehensive comparison and to cover all different 

centrality measures employed in previous studies, as shown in Table 3.1. Although 

the classical centrality measures are based solely on topological information (i.e., 

simple network), it is beneficial to extend these measures by including the link 

weight information and the power flow calculations (i.e., simulating a weighted 

network). This section summarizes five topological centrality measures and 

explains their extensions to consider the power flow.  

3.3.1. DEGREE CENTRALITY 

One of the key measures to identify node importance is its degree centrality. The 

degree centrality of a node is the total number of links connected directly to this 

node, as shown in Eq. 3.  

𝐷(𝑖) =   ∑ 𝑎𝑖𝑗

𝑁

𝑗

                                                              (3) 

According to the degree centrality, the node with the highest degree is the 

most central node (i.e., hub) (Barabási and Pósfai 2016). Figure 3.5 illustrates the 

degree centrality distribution of the Ontario power grid, where the 𝐷(𝑖) values vary 

between 𝐷(𝑖) = 1 and 𝐷(𝑖) = 22,  which are the degree centrality of the least and 

most connected nodes, respectively. Most of the network nodes (≈92%) have low 
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degree centrality values (i.e., ≤ 3), while the few remaining nodes are the degree 

hubs (i.e., high degree nodes). 

The degree centrality has been extended to sum the weights of links 

connected directly to the node (Opsahl et al. 2010), as presented in Eq. 4. Therefore, 

a large value of weighted degree centrality 𝐷(𝑖)𝑤 corresponds to larger values of 

power flow reaching node, which indicates a good connection between node and its 

neighboring nodes. 

𝐷(𝑖)𝑤 =    ∑ 𝑓𝑖𝑗 ∗ 𝑎𝑖𝑗

𝑁

𝑗

                                                   (4) 

3.3.2. EIGENVECTOR CENTRALITY 

Based on the idea that a node is more central if it is connected with other central 

nodes (Ruhnau 2000), the Eigenvector centrality of a node not only depends on the 

number of its adjacent nodes, but also on the centrality of the adjacent nodes. 

Therefore, Bonacich (1987) defines the Eigenvector centrality 𝐸(𝑖) of a node 𝑖 as 

positive multiple of the sum of adjacent centralities, as shown in Eq. 5. 

𝐸(𝑖) =
1

𝜆𝑚𝑎𝑥
 ∑ 𝑎𝑖𝑗

𝑁

𝑗

 𝐸(𝑗)                                               (5) 

This equation can be written in matrix form as 𝐴 𝐸 =  𝜆 𝐸. Accordingly, the 𝐸 is 

equal to the eigenvector of the maximal eigenvalue 𝜆𝑚𝑎𝑥 of the adjacency matrix 

𝐴. 
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The weighted Eigenvector centrality is influenced by the power flow of all 

transmission lines connected to its neighbors, their neighbors and so on. Therefore, 

the weighted Eigenvector centrality 𝐸(𝑖)𝑊 is equal to the 𝑖𝑡ℎ component of the 

eigenvector corresponding to the largest eigenvalue 𝜆𝑚𝑎𝑥𝑤
 of the weighted 

adjacency matrix 𝐴𝑤 , as shown in Eq. 6. 

𝐸(𝑖)𝑊 =
1

𝜆𝑚𝑎𝑥𝑤

 ∑ 𝑎𝑖𝑗𝑤

𝑁

𝑗

 𝐸(𝑗)𝑤                                  (6) 

3.3.3. PAGERANK CENTRALITY  

The PageRank centrality is an algorithm used originally by the Google search 

system to rank web pages (Brin and Page 1998). The essence of the PageRank 

algorithm is that the rank of a node is high if this node is linked from a high-ranked 

node. Li et al. (2014) provided a method to evaluate the importance of power grid 

nodes based on the PageRank algorithm by comparing the similarities between the 

internet and power grid topology. In the power grid, PageRank centrality estimated 

the importance of each (sub)station given the importance of substations connected 

to it and their output lines. The iterative formula of the PageRank algorithm is 

defined as follows: 

 

𝑃𝑅(𝑖) = (1 − 𝑑) + 𝑑  ∑
𝑃𝑅(𝑗)

𝐿(𝑗) 
𝑗 ∈𝑁𝑖

                            (7) 

where, 𝑑 is a damping factor which can be set between 0 and 1. It is usually set to 
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0.85 (Li et al. 2014). 𝐿(𝑗) is defined as the number of out links from node 𝑗. 𝑁𝑖 are 

set of nodes that have at least one directed link to node 𝑖. 

For the weight PageRank 𝑃𝑅(𝑖)𝑊, the number of out links 𝐿(𝑗) in the 

formula will be altered by the total out power flow 𝑓𝑗𝑜𝑢𝑡 from node 𝑗. 

𝑃𝑅(𝑖)𝑊 = (1 − 𝑑) + 𝑑  ∑
𝑃𝑅(𝑗)𝑊

𝑓𝑗𝑜𝑢𝑡  
𝑗 ∈𝑁𝑖

                     (8) 

3.3.4. BETWEENNESS CENTRALITY 

The betweenness centrality measure is one of the most widely used measures to 

indicate the node importance. This measure identifies nodes that play a central role 

between other nodes in the network (Opsahl et al. 2010). The betweenness 

centrality measure of node 𝑖 is calculated as the number of shortest paths between 

pairs of other nodes that pass through node 𝑖 (Freeman 1977; Opsahl et al. 2010), 

as presented in Eq. 9. 

 To extend the definition of betweenness centrality to nodes in a weighted 

power grid network, the formula has been modified by considering the weighted 

shortest path (i.e., each link weight by 1
𝑓𝑖𝑗

⁄ ), as presented in Eq. 10. This 

hypothesis assumed that the shortest path is not only related to the number of links 

but also how much power flow is passing through that path.  
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𝐵(𝑖) =  
∑ 𝜎𝑗𝑘(𝑖)𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘𝑖≠𝑗≠𝑘
                                                   (9) 

𝐵(𝑖)𝑊 =  
∑ 𝜎𝑗𝑘(𝑖)𝑊

𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘
𝑊

𝑖≠𝑗≠𝑘
                                              (10) 

where, 𝜎𝑗𝑘(𝑖) is the total number of shortest paths between nodes j and k 

that passes through node i; 𝜎𝑗𝑘 is the total number of shortest paths between nodes 

j and k; and 𝜎𝑗𝑘(𝑖)𝑊 and 𝜎𝑗𝑘
𝑊 are calculated considering the weighted shortest 

paths.  

In general, unweighted and weighted betweenness centralities assume that 

the power flow passes through the nodes via the unweighted and weighted shortest 

paths, respectively. Nonetheless, these shortest paths-based centrality measures 

ignore the power flow splitting among different paths when the current flow transfer 

from supply to demand node. In this respect, the “current flow betweenness 

centrality” addresses the node importance by considering Kirchhoff’s and Ohm’s 

laws (Brandes and Daniel 2005; Cetinay et al. 2018). The current flow betweenness 

centrality 𝐵(𝑖)𝐶𝐹 can be evaluated as total flow passing through a node when a unit 

current flow transfers from a supply node to a demand node over all possible 

supply-demand pairs, as shown in Eq.11.  
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𝐵(𝑖)𝐶𝐹 =  
∑ 𝑓𝑖

(𝑠 → 𝑑)
𝑠≠𝑑

0.5 (𝑁 − 1) (𝑁 − 2)
                 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑠 →  𝑑) ∈ 𝑁          (11) 

where, 𝑓𝑖
(𝑠 → 𝑑)

 is the power flow passing through node 𝑖 when a unit current 

flow is injected at a supply node 𝑠 and extracted from a demand node 𝑑. And, 𝑁 is 

the total number of network nodes. 

3.3.5. CLOSENESS CENTRALITY 

The closeness centrality measures how close a node is to other nodes in the same 

network. The closeness centrality of a node is evaluated as the inverse of the 

average distances from this node to all other nodes (Freeman 1978), can be 

expressed as  

𝐶(𝑖) =  
1

𝑁 − 1
∑

1

𝑆𝑖𝑗

𝑁

𝑗

                                               (12) 

where the distance S𝑖𝑗 is the number of links in the shortest path that 

connects nodes i and j. To adapt the definition of closeness centrality to nodes in a 

weighted power grid, the weighted distance S𝑖𝑗
𝑊 is defined as the sum of links 

weight (i.e., each link weight by 1 𝑓𝑖𝑗
⁄ ) in the weighted shortest path that connects 

nodes i and j. The weighted distance depends not only on the shortest path, but also 

on how much power flows through this path. Therefore, the corresponding 

weighted closeness centrality can be calculated as follows: 
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 𝐶(𝑖)𝑊 =   
1

𝑁 − 1
 ∑

1

𝑆𝑖𝑗
𝑊

𝑁

𝑗

                                            (13) 

The two previous closeness centrality measures are calculated based on the 

shortest path (considering unweighted or weighted links). However, the current 

flow closeness centrality is calculated using alternative distances based on the 

effective resistance (Brandes and Daniel 2005; Cetinay et al. 2016), defined as the 

voltage difference between node 𝑖 and node 𝑗, when the power is injected at node 𝑖 

and extracted from node 𝑗. The effective resistance were calculated by the algorithm 

proposed in Brandes and Daniel (2005). Therefore, the current flow closeness 

centrality 𝐶(𝑖)𝐶𝐹 of node i is calculated as the reciprocal of the summation of 

effective resistance from node i to all other nodes in the network, as shown in Eq.14. 

𝐶(𝑖)𝐶𝐹 =   
𝑁 − 1

∑ 𝑉𝑖
(𝑖 → 𝑗) − 𝑉𝑗

(𝑖 → 𝑗)
𝑗

                                             (14) 

where, 𝑉𝑖
(𝑖 → 𝑗) is the voltage of node i when the power is injected at node i 

and extracted from node j. 

Finally, Table 3.2 summarizes the different centrality measures used in the 

current study for both cases: simple and weighted network model. 

 GRID COMPONENT CENTRALITY-BASED RANKING  

Different centrality measures have been used to rank the relative importance of 

stations in the power grid. For better comparison, all the mentioned centrality 
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measures in the previous section are normalized to ensure that the largest value 

equals to 1, while the smallest value equals to 0, as presented in Eq. 15.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑖) =  
𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦(𝑖) − 𝑀𝑖𝑛 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦

𝑀𝑎𝑥 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 − 𝑀𝑖𝑛 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦
          (15) 

Figure 3.6 and Figure 3.7 present the distribution and correlation between 

the five centrality measures in both cases: unweighted and weighted network. It can 

be observed that for most centrality distributions, the majority of nodes have low 

centrality values whereas only a few nodes (i.e., the hubs) have high values— 

potentially impacting network performance the most (Barabási and Pósfai 2016). 

Conversely, failure of nodes with low centrality values may cause negligible 

reduction to the network due to the limited node failure extent (cascade) following 

the former’s failures. It should however be noted that, closeness and current flow 

closeness centralities have different distribution patterns from that of the remaining 

centralities. This discrepancy is attributed to the fundamental difference between 

the closeness and other centralities measures, whereas the closeness centrality ranks 

each node based on its relationship to all other nodes in the network (i.e., distance 

from the node to all network nodes), while other centralities rank each node based 

on its relation to its neighbor nodes (i.e., directly connected nodes) (Golbeck 2013). 

As such, the difference between the highest closeness centrality nodes and average 

closeness centrality nodes reflects the distance from the node to its nearest higher 

closeness centrality. For example, in Figure 3.8, node 1 has higher closeness 
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centrality than that of node 2, however, the main difference between the two nodes 

in calculating the closeness centrality is the distance from node 2 to node 1. 

Subsequently, the node closeness centrality  values will be in close to each other and 

this in turn will result in the distribution pattern in Figure 3.6 and Figure 3.7.  

In addition, a weak, and sometimes even a negative correlation between 

different centrality measures can be observed, whereas each measure ranks the 

network nodes depending on different approaches, as explained in the previous 

section. For example, a node with a high degree centrality may not necessarily 

possess a high closeness, betweenness, or eigenvector centrality. Nonetheless, there 

is a good correlation between the degree and PageRank centrality as shown in 

Figure 3.6. This can be explained by examining the formula of the PageRank 

centrality presented in section 3.3. The PageRank node centrality considers three 

factors: (i) the number of the adjacent nodes connected to the node; (ii) the link 

propensity of the adjacent nodes; and (iii) the centrality of the adjacent nodes 

(Hansen et al. 2020). The first factor reflects the fact that the more links a node 

attracts, the more important it is perceived. The second factor indicates that the 

value of the link depreciates proportionally to the number of links given out by the 

adjacent nodes (i.e., the links coming from low degree nodes are worthier than those 

emanated by high degree ones). Finally, the third factor reflects that fact that links 

from central nodes are more valuable than those from peripheral ones. The first 

factor is directly related to the node degree centrality which resulted in the high 
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correlation between the degree and PageRank centralities. However, in the case of 

weighted network, there is a poor correlation between these two centralities. This 

is because the degree weighted centrality depends on how much flow reaches a 

node, whereas PageRank depends on the number of the adjacent nodes connected 

to the node and the total power flowing out of the adjacent nodes.  

In addition, it can be observed in Figure 3.9 that nodes with high unweighted 

betweenness centrality value 𝐵(𝑖) are not the same nodes with high weighted 

betweenness centrality value 𝐵(𝑖)𝑤. Therefore, the two measures are uncorrelated, 

which indicates the sensitivity of the centrality measures to the weight and direction 

of the links. To quantify centrality, which represents the most critical nodes in the 

network, the network is stress tested by removing the nodes by descending order 

according to different centrality measures (i.e., targeted cyberattacks based on 

nodes centrality).  

 ROBUSTNESS ASSESSMENT   

The network robustness against cyberattacks can be assessed through the 

performance of the network due to the failure of some nodes randomly (i.e., random 

cyberattack) or systematically (i.e., targeted cyberattack) (Cetinay et al. 2018). In 

this section, first, two performance indices have been introduced to quantify both 

the topology and service loss as a result of components removal. Second, a 

comparison between the effect of different targeted cyberattack scenarios based on 
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the previously described centrality measures has been discussed.  

3.5.1. PERFORMANCE INDICES 

The removal of critical nodes from the network can split the grid into isolated 

islands (i.e., disconnected sub-grids).  The size and the total power flow of the giant 

component are the two performance indices that have been used to evaluate both 

the topological and functional characterization of the network. The giant 

component is the connected component that contains the largest set of nodes 

(Barabási and Pósfai 2016).  

3.5.1.1 TOPOLOGY INDEX  

Performance index based on the topology 𝑃𝑡 can be calculated as the percentage of 

the number of the nodes in the giant component 𝑁𝐺  with respect to the total number 

of nodes N, as presented in Eq.16. 

𝑃𝑡 =  
𝑁𝐺

𝑁
                                                                             (16) 

A network with high 𝑃𝑡 value indicates that most of its nodes are fully 

connected through a giant component, where the failure of some components does 

not result in a major impact on the network performance. In contrast, a low value 

of 𝑃𝑡 indicates that the failure of some components divided the network into 

separate sub-grids and impacted the entire network performance. 

3.5.1.2 FUNCTIONALITY INDEX  
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Performance index based on the functionality 𝑃𝑓 can be calculated as the ratio 

between the summation of the power flow carried by links to the giant component 

and the summation of the power flow of the network at the initial status (i.e., the 

stability of the power grid prior to failure), as presented in Eq. 17. Therefore, this 

performance index not only considers the size of the giant component but also the 

power flow which indicates the grid demands and supplies. 

𝑃𝑓 =  
∑ 𝑓𝑙𝑙 ∈ 𝐿𝐺

∑ 𝑓𝑙𝑙 ∈ 𝐿
                                                                   (17) 

where, 𝑓 is the power flow of link 𝑙, 𝐿 is the set of network links at the initial 

status, and 𝐿𝐺  is the set of links in the giant component.  

3.5.2. RANDOM CYBERATTACKS 

The random cyberattacks failure represents the hackers' random attacks to the 

stations in the grid. This scenario has been used to evaluate the improvement in 

network robustness with transfer from being under full automatic control (i.e., 

random cyberattack for any nodes in the network) to being only partially 

automatically controlled (i.e., excluded some nodes from random cyberattack 

selection set). The second case represents the grid with the mixed strategy adopted 

to systematically isolate the critical stations to limit hackers’ access. 

Four random sample sizes have been used to compute the average random 

failure scenario (i.e., run the random failure for 10, 20, 50, and 100 scenarios). 
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Figure 3.10 presents the average result of the four random sample sizes. The 

Kolmogorov-Smirnov Test (KS Test) (Conover 1998) was used to compare 

between the average result of the four sample sizes to select the appropriate one. 

KS Test computes the max of difference between the cumulative distribution 

function of two sample sizes, as presented in Eq. 18. 

𝐷𝑛,𝑚 = 𝑚𝑎𝑥|𝐹(𝑥) − 𝐺(𝑥)|                                             (18) 

where, the first sample has size 𝑚 with a cumulative distribution function 

of 𝐹(𝑥) and that the second sample has size 𝑛 with a cumulative distribution 

function of 𝐺(𝑥). The null hypothesis is rejected at level 0.05 if 𝐷𝑛,𝑚 >  𝐷𝑛,𝑚,∝ . 

The null hypothesis is that the curves of the two samples are similar.  

𝐷𝑛,𝑚,∝ = 1.36 ∗ √
𝑚 + 𝑛

𝑚𝑛
                                                (19) 

 Table 3.3 summaries the KS test results. The average results of sample size 

10, 20, and 50 have been compared to average result of sample size 100 (i.e., n = 

10,50, or 50 while m = 100). The null hypothesis is accepted for same size 20 where 

𝑃 − 𝑣𝑎𝑙𝑢𝑒 >  0.05 and 𝐷𝑛,𝑚 <  𝐷𝑛,𝑚,∝. It was concluded that that there is no 

significant difference between the average results of sample size 20, 50, and 100 

(i.e., the difference is less than 5%). Therefore, the average of 20 random failure 

scenarios was found to be statistically adequate to provide a good representation 

for the random failure behavior of the grid. Subsequently, a total of 20 random 
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attacks were considered and the average value is used hereafter to compare network 

robustness considering (or not) the mixed strategy. 

3.5.2.1 RANDOM CYBERATTACKS WITHOUT MIXED STRATEGY 

Figure 3.11 shows the performance indices of the grid under random failure based 

on 20 different scenarios. It can be noticed that following random removal of about 

25% of the nodes, the grid is divided into numerous isolated islands and almost lost 

its functionality. As shown in these figures, to account for the variability, the 

network robustness can be represented as a band. For example, after removing 15% 

of the network nodes, the topology index 𝑃𝑡 ranges from 0.05 to 0.60 with an 

average value of 0.33, while the functionality index 𝑃𝑓 is in the range from 0.63 to 

0.17 with an average value of 0.45.   

3.5.2.2 RANDOM CYBERATTACKS CONSIDERING MIXED 

STRATEGY 

The grid robustness can be significantly enhanced by protecting the critical network 

components against random cyberattacks. In this respect, the simulation of the grid 

under the random cyberattacks has been modified by excluding some key nodes 

from the random removal set. These excepted nodes represent the substations 

protected from random cyberattacks by systemic isolation from automatic control 

(i.e., mixed strategy). The protected nodes have been selected based on their 
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centrality values (i.e., the highest weighted degree or current flow betweenness 

centrality). These two centrality measures have been chosen because they are the 

most effective centralities to identify the key network nodes for the grid as would 

explain in the discussion section later.  

Figure 3.12 presents the grid robustness against random cyberattacks 

considering (or not) the mixed strategy. The figure tracks the improvement in 

network robustness through systemic isolation of the critical network substations 

from automatic control. It can be inferred that there is a significant enhancement to 

the grid robustness especially in terms of protecting the top 20 current flow 

betweenness hubs. Furthermore, Figure 3.12 (right) illustrates the enhancement of 

network robustness measured by the topology index based on the current flow 

centralities with different numbers of protected nodes 𝑁𝑝. As expected, with 

increased 𝑁𝑝, the network robustness continues to be enhanced. For example, after 

removing 15% of the network nodes, the topology index 𝑃𝑡 rises from 0.33 in case 

of random failure without any protected nodes to 0.48, 0.53, and 0.57 for cases of 

protected the top 20, 50, and 100 current flow betweenness hubs, respectively. 

Regarding the functionality index, it can be observed from Figure 3.13 that there is 

a similar improvement in grid robustness when considering node protection based 

on the current flow betweenness hubs; however, there is no signification change 

considering the top 20 weighted degree hub protections. Overall, protecting the 
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network hubs from random attacks has a considerable effect in boosting the grid 

robustness. 

 Random Cyberattacks Robustness Algorithm: 

 Input: Network 𝑁 nodes, L links, 𝑓𝑙 Link weight 

 Output: Fraction of the removed nodes 𝑘, Topology index 𝑃𝑡, Functionality index 𝑃𝑓 

1 Start 

2 Build Network: 𝐺(𝑁, 𝐿) 

3 Calculate the sum of weight links:  𝐼𝑛𝑡. 𝐹 =  ∑ 𝑓𝑙𝑙 ∈ 𝐿  

4      While (𝑃𝑡 > 0 &  𝑃𝑓 > 0) 

5               𝑁𝑖 ∈ 𝑁 ; 𝑁𝑖   Randomly select Node 𝑖 
6               Delete the selected node: G = delete_vertices (G, 𝑁𝑖) 

7               Calculate the network clusters: G.components = clusters (G) 

8               Select the Giant connected component: Cluster that contains the largest set of nodes 

9               Calculate the number of nodes in Giant component 

10               Calculate the Topology index: 𝑃𝑡(𝑘) =  
𝑁𝐺

𝑁
  (Eqn.16) 

11               Calculate the sum of weight links in the Giant component: 𝑆𝑡𝑒𝑝. 𝐹 =  ∑ 𝑓𝑙𝑙 ∈ 𝐿𝐺
   

12               Calculate the Functionality index: 𝑃𝑓(𝑘) =
𝑆𝑡𝑒𝑝.𝐹

𝐼𝑛𝑡.𝐹
=  

∑ 𝑓𝑙𝑙 ∈ 𝐿𝐺

∑ 𝑓𝑙𝑙 ∈ 𝐿
    (Eqn.17) 

13               𝑘 =   (𝑘 + 1)/𝑁 
14       End While 

15   Return 𝑃𝑡(𝑘); 𝑃𝑓(𝑘) 

16 End 

 

3.5.3. TARGETED CYBERATTACKS  

A targeted cyberattack represents the hacker’s intentional attacks to the high 

centrality stations in the grid. Different cyberattack scenarios have been used to 

assess the network robustness and provide a comparison between different 

centrality measures. Both unweighted and weighted centrality measures have been 

applied as node attack scenarios for the power grid. For each centrality measure, 
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the network has been exposed to a stress test by sequentially removing the nodes 

according to the descending order of their centrality value. After each node 

removal, the two performance indices have been calculated to evaluate the grid 

robustness. The current study focuses on the instant impact of node removal on the 

topology and function of the grid without consideration of the cascade failure effect 

(i.e., the failure of overloaded transmission lines due to power flow redistribution).  

Figure 3.14 and Figure 3.15 present the robustness of the network with 

sequentially removing the nodes (i.e., targeting nodes with the highest centrality 

measure). It is observed that the Eigenvector centrality in both the weighted and 

unweighted network cases is the least effective attack scenarios. In other words, 

targeted cyberattacks according to eigenvector centrality disrupts the network 

slower than the other attack scenarios. Conversely, the network is vulnerable to the 

targeted cyberattacks based on the degree, PageRank or betweenness centrality, 

which can maximize the network separation into isolated islands and disrupt its 

functioning. For example, in Figure 3.14 (left), after removing 1% of the network 

nodes, the topology performance index 𝑃𝑡 is 0.85, 0.20, 0.16, and 0.25 for targeted 

cyberattacks based on eigenvector 𝐸(𝑖), degree 𝐷(𝑖), PageRank 𝑃𝑅(𝑖), and 

betweenness 𝐵(𝑖) centrality, respectively. Also, in Figure 3.14 (right), after 

removing 1% of the network nodes, the topology performance index 𝑃𝑡 is 0.73, 

0.30, 0.05, and 0.24 for targeted cyberattacks based on weighted eigenvector 𝐸(𝑖)𝑤, 

weighted degree 𝐷(𝑖)𝑤, weighted PageRank 𝑃𝑅(𝑖)𝑤 , and betweenness 
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𝐵(𝑖)𝑤 centrality, respectively. Furthermore, it is worth to mention that the current 

flow betweenness centrality is the most effective cyberattack scenario. As can be 

inferred from Figure 3.14 and Figure 3.15, cyberattacks based on the current flow 

betweenness centrality is the first attack scenario that results in zero topology and 

functional index. In other words, by only removing 1% of the network nodes, based 

on their current flow betweenness centrality, the network is fully disrupted. 

In addition, from Figure 3.14 and Figure 3.15, it can be observed that the 

three targeted cyberattack scenarios (degree, PageRank, and betweenness) are 

analogical in the case of the unweighted network, while they are distinguished in 

the case of the weighted network. The simplification considering unweighted 

network (i.e., neglection the link weight and direction) may result in misleading 

interpretation of network behaviors. Furthermore, the trend similarity between the 

attacks based on the degree and PageRank centrality is attributed to the high 

correlation between these both centralities in case of unweighted network. For the 

target cyberattacks based on the closeness centrality, it can be observed that the 

network is slightly robust when removing fewer nodes, but suddenly the robustness 

diminished rapidly with the increase of the nodes removals. For example, the 

topology performance index 𝑃𝑡 dropped from 0.99 to 0.5 when the fraction of the 

removed nodes changes from 0.47% to 0.49% in the case of the unweighted 

network, and dropped from 0.77 to 0.55 when the fraction of the removed nodes 

changes from 0.9% to 1.0% in the case of the weighted network. These performance 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

106 

 

 

drops indicate how a node -even if not the highest centrality node- becomes critical 

and highly effective in network performance, since its failure impacts almost the 

entire network. Identifying these critical nodes in real-time is quite an important 

task to avoid the failure propagation through the network. 

 Targeted Cyberattacks Robustness Algorithm: 

 Input: Network 𝑁 nodes, L links, 𝑓𝑙 Link weight 

 Output: Fraction of the removed nodes 𝑘, Topology index 𝑃𝑡, Functionality index 𝑃𝑓 

1 Start 

2 Build Network: 𝐺(𝑁, 𝐿) 

3 Calculate the sum of weight links:  𝐼𝑛𝑡. 𝐹 =  ∑ 𝑓𝑙𝑙 ∈ 𝐿  

4 Calculate the centrality based on equations in section 3.3. 

5      While (𝑃𝑡 > 0 &  𝑃𝑓 > 0) 

6               𝑁𝑖 ∈ 𝑁 ; 𝑁𝑖   select Node 𝑖 with the highest centrality value 
7               Delete the selected node: G = delete_vertices (G, 𝑁𝑖) 

8               Calculate the network clusters: G.components = clusters (G) 

9               Select the Giant connected component: Cluster that contains the largest set of nodes 

10               Calculate the number of nodes in Giant component 

11               Calculate the Topology index: 𝑃𝑡(𝑘) =  
𝑁𝐺

𝑁
  (Eqn.16) 

12               Calculate the sum of weight links in the Giant component: 𝑆𝑡𝑒𝑝. 𝐹 =  ∑ 𝑓𝑙𝑙 ∈ 𝐿𝐺
   

13               Calculate the Functionality index: 𝑃𝑓(𝑘) =
𝑆𝑡𝑒𝑝.𝐹

𝐼𝑛𝑡.𝐹
=  

∑ 𝑓𝑙𝑙 ∈ 𝐿𝐺

∑ 𝑓𝑙𝑙 ∈ 𝐿
    (Eqn.17) 

14               𝑘 =   (𝑘 + 1)/𝑁 
15       End While 

16   Return 𝑃𝑡(𝑘); 𝑃𝑓(𝑘) 

17 End 

 

 

 

3.5.4. DISCUSSION 
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In order to present a clear comparison between the different targeted 

cyberattack scenarios, the average of the topology and the functional performance 

indices have been calculated by normalizing the sum of the size and the flow of the 

giant component over successive targeted cyberattacks.  Therefore, the average 

topology performance index 𝑃𝑡
′ can be calculated as follows: 

 

𝑃𝑡
′ =  

∑ 𝑃𝑡(𝑀)𝑀

𝑀
                                                 (20) 

where, 𝑃𝑡(𝑀) is the topology performance index after 𝑀 successive attacks. 

Similarly, the average functional performance index 𝑃𝑓
′ can be calculated as 

follows: 

𝑃𝑓
′ =  

∑ 𝑃𝑓(𝑀)𝑀

𝑀
                                                (21) 

Therefore, the average topology 𝑃𝑡
′ and functional 𝑃𝑓

′ performance indices 

are estimated between 0 and 1. High robust networks, where its robustness to the 

targeted cyberattacks and the node removals have a slight effect on its performance, 

show values close to 1. On the other side, a low average performance value 

indicates a destructive cyberattack scenario, whereas, after a few successive node 

removals, the network performance is highly negatively affected. Figure 3.16 

presents the average topology and functional performance indices for the grid 

following five cyberattack scenarios for the unweighted and weighted network. It 
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can be observed that the targeted cyberattacks based on degree and current flow 

betweenness centrality are the most destructive attack scenarios which destroy the 

network faster than other cyberattack scenarios. Furthermore, Figure 3.16 shows 

the attack scenario based on the current flow betweenness have the lowest average 

topology index and second least average functional index. 

The main observations from evaluating the grid robustness to targeted 

cyberattack scenarios, based on considered different centrality measures, can be 

summarized as follows: 

• The node degree centrality focuses directly on the local connectivity with 

its neighboring nodes, with the weighted degree centrality extending it by 

considering the coupled strength of the links. Nonetheless, these centralities 

reflect the local network topology, removing degree hubs nodes have a large 

global effect in the overall network performance. For example, the results 

of the grid robustness analysis illustrated that targeting nodes based on the 

degree and weighted degree are one of the most destructive cyberattack 

scenarios. 

• The Eigenvector centrality in both unweighted and weighted network is not 

successful to identify the key nodes in comparison with the other four 

presented centrality measures. On the other hand, the targeted cyberattacks 

based on the Eigenvector centrality and the weighted eigenvector centrality 

are the least destructive cyberattack scenarios. 
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• The PageRank centrality and the betweenness centrality measures generally 

come at the second place after degree centrality and current flow 

betweenness centrality to identify the most critical nodes in the grid, and 

thus, removing nodes based on these centralities seems to destroy the 

network faster than targeted cyberattack scenarios based on closeness or 

Eigenvector centrality measures. 

• Depending on the number of hops, the betweenness and the closeness 

centralities rank node importance. The number of hops may not discriminate 

the peripherical nodes, or nodes with high load but with low number of 

shortest paths. However, in case of weighted network, these centralities 

consider the weighted shortest path according to power flow not the 

minimum hops, which reflects the physical properties of the network. 

• The current flow betweenness calculated the importance of the node based 

on the power flow passing through it. Therefore, it addressed the limitations 

related the shortest paths-based centrality such as ignoring the power flow 

splitting among different paths and not discriminating the peripherical 

nodes. The results concluded that targeted cyberattack based on the current 

flow betweenness centrality is the most destructive attack scenarios which 

destroy the network faster than other cyberattack scenarios. 

Overall, the centrality measures provide an effective and quick indication to 

rank the importance of the substations. Subsequently, identifying the critical 
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substations in advance can support the power grid operator to improve the grid 

robustness by upgrading, protecting, and monitoring the vulnerable substations and 

applying the mixed strategy to limit the hacker’s access to key network substations.  

 

 CONCLUSION  

The study focused on using complex network theory to analyze the robustness and 

evaluate the vulnerability of the considered grid to different cyberattack scenarios. 

In this respect, two different network models have been presented: a simple and 

weighted network. Subsequently, based on these network models, a family of 

centrality measures has been calculated to recognize the key network components. 

The basic centrality measures focused only on the topology, while the weighted 

centrality measures consider the operating conditions of the grid such as the power 

flow allocation for each transmission line according to the DC power flow model. 

Therefore, two performance indices have been introduced to quantify the grid 

robustness by removing the nodes sequentially based on their centrality values. The 

robustness of the grid has been evaluated for both random and targeted 

cyberattacks. For random cyberattacks, it can be noticed that applying the proposed 

mixed strategy by limit the hacker’s access to only 20 current flow betweenness 

hubs boost the grid robustness about one and half time compared to random 

cyberattacks without mixed strategy. For targeted cyberattacks, it can be concluded 

that the grid considered is highly vulnerable to targeted cyberattacks, whereas in 
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the current simulation, the topology and the functional performance indices are 

almost zeros (i.e., the network is completely disrupted) by removing 1% of the 

network nodes according to their current flow betweenness centrality value. 

Overall, understanding the criticality of different network components will provide 

insights to design and maintain a resilient power network against cyberattacks, and 

support policymakers and regulators in making informed decisions pertaining to the 

tolerable degree of risk and constrained by allocated financial resources. 

Future studies would extend the current study to include the cascade failure 

propagation due to power overload by considering the power flow redistributions 

and the components capacity. Therefore, building a high-fidelity physics-based 

cascade failure model which considers the actual power flow, the transmission 

lines’ electrical properties, and the generators’ supply and capacity is a promising 

direction for the future work extension. Such model is expected to provide risk 

mitigation strategy and corrective action to suppress the cascade failure 

propagation. Subsequently, future studies should cover others resilience metrics 

(i.e., Rebuild and Reconfigure) to address the “draw-up” resilience phase. 

 ACKNOWLEDGMENT 

This research was supported by the Canadian Nuclear Energy Infrastructure 

Resilience under Systemic Risk (CaNRisk) – Collaborative Research and Training 

Experience (CREATE) program of the Natural Science and Engineering Research 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

112 

 

 

Council (NSERC) of Canada. Additional support through the INTERFACE 

Institute and the INViSiONLab of McMaster University is acknowledged. 

 REFERENCE 

Albert, R., I. Albert, and G. L. Nakarado. 2004. "Structural vulnerability of the 

North American power grid." Physical review E, 69(2): 25103. 

https://doi.org/10.1103/PhysRevE.69.025103. 

Barabási, A.-L., and M. Pósfai. 2016. Network science, Cambridge United 

Kingdom: Cambridge University Press. 

Berkeley III, A. R., W. Mike, and C. Constellation. 2010. "A framework for 

establishing critical infrastructure resilience goals.", Final Report and 

Recommendations by the Council, National Infrastructure Advisory Council. 

Bernstein, A., D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman. 2014. "Power 

Grid Vulnerability to Geographically Correlated Failures - Analysis and Control 

Implications." In Proc., IEEE INFOCOM 2014 - IEEE Conference on Computer 

Communications: 2634–2642. https://doi.org/10.1109/INFOCOM.2014.6848211. 

Bonacich, P. 1987. "Power and centrality: A family of measures." American journal 

of sociology, 92(5): 1170–1182. https://doi.org/10.1086/228631. 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

113 

 

 

Brandes, U., and F. Daniel. 2005. "Centrality measures based on current flow." In 

Annual symposium on theoretical aspects of computer science: 533–544: Springer, 

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31856-9_44. 

Brin, S., and L. Page. 1998. "The anatomy of a large-scale hypertextual web search 

engine.". https://doi.org/10.1016/S0169-7552(98)00110-X. 

Cetinay, H., K. Devriendt, and P. van Mieghem. 2018. "Nodal vulnerability to 

targeted attacks in power grids." Applied network science, 3(1): 34. 

https://doi.org/10.1007/s41109-018-0089-9. 

Cetinay, H., F. A. Kuipers, and P. van Mieghem. 2016. "A topological investigation 

of power flow." IEEE Systems Journal, 12(3): 2524–2532. 

https://doi.org/10.1109/JSYST.2016.2573851. 

Conover, W. J. 1998. Practical nonparametric statistics: Chapter 6: Statistics of the 

Kolmogorov-Smirnov Type: John Wiley & Sons. 

Ezzeldin, M., and W. E. El-Dakhakhni. 2019. "Robustness of Ontario power 

network under systemic risks." Sustainable and Resilient Infrastructure: 1–20. 

https://doi.org/10.1080/23789689.2019.1666340. 

Fang, J., C. Su, Z. Chen, H. Sun, and P. Lund. 2016. "Power system structural 

vulnerability assessment based on an improved maximum flow approach." IEEE 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

114 

 

 

Transactions on Smart Grid, 9(2): 777–785. https://doi.org/10.1109/ 

TSG.2016.2565619. 

Freeman, L. C. 1977. "A Set of Measures of Centrality Based on Betweenness." 

Sociometry, 40(1): 35. https://doi.org/10.2307/3033543. 

Freeman, L. C. 1978. "Centrality in social networks conceptual clarification." 

Social Networks, 1(3): 215–239. https://doi.org/10.1016/0378-8733(78)90021-7. 

Gasser, P., P. Lustenberger, M. Cinelli, W. Kim, M. Spada, P. Burgherr, S. 

Hirschberg, B. Stojadinovic, and T. Y. Sun. 2019. "A review on resilience 

assessment of energy systems." Sustainable and Resilient Infrastructure: 1–27. 

https://doi.org/10.1080/23789689.2019.1610600. 

Golbeck, J. 2013. "Network Structure and Measures." In Analyzing the Social Web: 

25–44: Elsevier. https://doi.org/10.1016/B978-0-12-405531-5.00003-1. 

Hansen, D. L., B. Shneiderman, M. A. Smith, and I. Himelboim. 2020. "Calculating 

and visualizing network metrics." In Analyzing Social Media Networks with 

NodeXL: 79–94: Elsevier. https://doi.org/10.1016/B978-0-12-817756-3.00006-6. 

Heinimann, H. R., and K. Hatfield. 2017. "Infrastructure resilience assessment, 

management and governance–state and perspectives." In Resilience and risk: 147–

187: Springer. 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

115 

 

 

Hines, P., E. Cotilla-Sanchez, and S. Blumsack. 2010. "Do topological models 

provide good information about electricity infrastructure vulnerability?" Chaos: An 

Interdisciplinary Journal of Nonlinear Science, 20(3): 33122. 

https://doi.org/10.1063/1.3489887. 

Lee, R.M., M.J. Assante, and T. Conway. 2016. "Analysis of the cyber attack on 

the Ukrainian power grid." SANS Industrial Control Systems, Washington, DC, 

USA, Tech. Rep., 

Li, C., W. Liu, Y. Cao, H. Chen, B. Fang, W. Zhang, and H. Shi. 2014. "Method 

for evaluating the importance of power grid nodes based on PageRank algorithm." 

IET Generation, Transmission & Distribution, 8(11): 1843–1847. 

https://doi.org/10.1049/iet-gtd.2014.0051. 

Motter, A. E., and Y.-C. Lai. 2002. "Cascade-based attacks on complex networks." 

Physical review. E, Statistical, nonlinear, and soft matter physics, 66(6 Pt 2): 65102. 

https://doi.org/10.1103/PhysRevE.66.065102. 

NERC. 2019. "Lesson Learned: Risks Posed by Firewall Firmware 

Vulnerabilities.", North American Electric Reliability Corporation 

<https://www.eenews.net/assets/2019/09/06/document_ew_02.pdf>. 

Newman, M., ed. 2010. Networks: an introduction: Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780199206650.001.0001. 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

116 

 

 

O'Flaherty, K. 2019. "U.S. Government Makes Surprise Move To Secure Power 

Grid From Cyberattacks.", Forbes <https://www.forbes.com/sites/ 

kateoflahertyuk/2019/07/03/u-s-government-makes-surprise-move-to-secure-

power-grid-from-cyber-attacks/#5fddd4d53191>. 

Opsahl, T., F. Agneessens, and J. Skvoretz. 2010. "Node centrality in weighted 

networks: Generalizing degree and shortest paths." Social Networks, 32(3): 245–

251. https://doi.org/10.1016/j.socnet.2010.03.006. 

Pagani, G. A., and M. Aiello. 2011. "Towards decentralization: A topological 

investigation of the medium and low voltage grids." IEEE Transactions on Smart 

Grid, 2(3): 538–547. https://doi.org/10.1109/TSG.2011.2147810. 

Pagani, G. A., and M. Aiello. 2013. "The power grid as a complex network: a 

survey." Physica A: Statistical Mechanics and its Applications, 392(11): 2688–

2700. https://doi.org/10.1016/j.physa.2013.01.023. 

Pahwa, S., M. Youssef, and C. Scoglio. 2014. "Electrical networks: an 

introduction." In Networks of networks: the last frontier of complexity: 163–186: 

Springer. https://doi.org/10.1007/978-3-319-03518-5_8. 

Panteli, M., and P. Mancarella. 2017. "Modeling and evaluating the resilience of 

critical electrical power infrastructure to extreme weather events." IEEE Systems 

Journal, 11(3): 1733–1742. https://doi.org/10.1109/JSYST.2015.2389272. 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

117 

 

 

Pu, C., and P. Wu. 2019. "Vulnerability Assessment of Power Grids Based on Both 

Topological and Electrical Properties." arXiv preprint arXiv:1909.05789. 

Rosato, V., S. Bologna, and F. Tiriticco. 2007. "Topological properties of high-

voltage electrical transmission networks." Electric Power Systems Research, 77(2): 

99–105. https://doi.org/10.1016/j.epsr.2005.05.013. 

Ruhnau, B. 2000. "Eigenvector-centrality—a node-centrality?" Social Networks, 

22(4): 357–365. https://doi.org/10.1016/S0378-8733(00)00031-9. 

Salama, M., M. Ezzeldin, W. El-Dakhakhni, and M. Tait. 2020. "Temporal 

networks: a review and opportunities for infrastructure simulation." Sustainable and 

Resilient Infrastructure: 1–16. https://doi.org/10.1080/23789689.2019.1708175. 

Shahpari, A., M. Khansari, and A. Moeini. 2019. "Vulnerability analysis of power 

grid with the network science approach based on actual grid characteristics: A case 

study in Iran." Physica A: Statistical Mechanics and its Applications, 513: 14–21. 

https://doi.org/10.1016/j.physa.2018.08.059. 

Siemens PTI. 2015. Power System Simulator for Engineering (PSSE): PSSE 34.0.1, 

Siemens Industry, Inc., Siemens Power Technologies International. 

Sussman, B. 2019. "Critical Infrastructure: Revealed: Details of 'First of Its Kind' 

Disruptive Power Grid Attack.", SecureWorld 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

118 

 

 

<https://www.secureworldexpo.com/industry-news/first-U.S.-power-grid-attack-

details>. 

Wang, J.-W., and L.-L. Rong. 2009. "Cascade-based attack vulnerability on the US 

power grid." Safety Science, 47(10): 1332–1336. 

https://doi.org/10.1016/j.ssci.2009.02.002. 

Wang, J.-W., and L.-L. Rong. 2011. "Robustness of the western United States 

power grid under edge attack strategies due to cascading failures." Safety Science, 

49(6): 807–812. https://doi.org/10.1016/j.ssci.2010.10.003. 

Wang, Z., A. Scaglione, and R. J. Thomas, eds. 2010. Electrical centrality measures 

for electric power grid vulnerability analysis: IEEE. 

https://doi.org/10.1109/CDC.2010.5717964. 

Xu, Y., A. J. Gurfinkel, and P. A. Rikvold. 2014. "Architecture of the Florida power 

grid as a complex network." Physica A: Statistical Mechanics and its Applications, 

401: 130–140. https://doi.org/10.1016/j.physa.2014.01.035. 

Yan, J., Y. Tang, H. He, and Y. Sun. 2015. "Cascading failure analysis with DC 

power flow model and transient stability analysis." IEEE Trans. Power Syst., 30(1): 

285–297. https://doi.org/10.1109/TPWRS.2014.2322082. 

 

  



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

119 

 

 

 TABLES 

Table 3.1: Summary of literature on power grid vulnerability and robustness based 

on CNT centrality measures. 

Reference Geography Nodes Links 
Network 

Representation 

CNT Centrality Measures 

Degree Eigenvector PageRank Betweenness Closeness 

(Motter and Lai 

2002) 

western U.S. 4941 - Undirected, 

Unweighted  ✓     

(Albert et al. 

2004) 

North 

American 

14099 19657 Undirected, 

Unweighted  ✓     

(Rosato et al. 

2007) 

Italian, 

French, 

Spanish 

 

127, 

146, 

98 

171, 

223, 

175 

Undirected, 

Unweighted  
✓     

(Wang et al. 

2010a) 

New York  

 

2935 6567 Undirected, 

Weighted  
✓ ✓   ✓ 

(Hines et al. 

2010c) 

40 control 

areas in 

Eastern U.S. 

336 – 

1473 

- Directed, 

Unweighted ✓   ✓  

(Pagani and 

Aiello 2011) 

 

Netherlands 663, 

4185 

683, 

4574 

Undirected-

Unweighted, 

Undirected-

Weighted 

✓   ✓  

(Li et al. 2014) IEEE 118-

bus 

118  Directed, 

Weighted 
  ✓ ✓  

(Xu et al. 2014) Florida 84 200 Undirected, 

Unweighted 
✓     

(Fang et al. 

2016) 

Western 

Danish 

- - Directed, 

Weighted 
   ✓  

(Liu et al. 2017) IEEE 30-

bus, IEEE 

57-bus 

30, 57  Directed, 

Weighted  ✓  ✓  

(Cetinay et al. 

2018) 

5 power 

girds of 

European 

countries  

35 – 

449 

43 - 

613 

Undirected-

Unweighted, 

Directed-

Weighted 

✓ ✓  ✓ ✓ 

(Shahpari et al. 

2019) 

Iran 68 98 Directed, 

Weighted 
  ✓   
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Reference Geography Nodes Links 
Network 

Representation 

CNT Centrality Measures 

Degree Eigenvector PageRank Betweenness Closeness 

(Pu and Wu 

2019) 

 

IEEE 118-

bus, IEEE 

145-bus, 

IEEE162-

bus 

118,1

45,16

2 

- Directed, 

Weighted 

✓     

(Ezzeldin and 

El-Dakhakhni 

2019) 

Ontario 1000 1210 Undirected, 

Unweighted ✓   ✓ ✓ 

Current Study Ontario 3653 4503 Undirected-

Unweighted, 

Directed-

Weighted 

✓ ✓ ✓ ✓ ✓ 

 

 

Table 3.2: Summary of different centrality measures used in the current study. 

 

 

Centrality 

Measure 

Simple Network Weighted Network  

Degree 𝐷(𝑖) =   ∑ 𝑎𝑖𝑗
𝑁
𝑗   𝐷(𝑖)𝑤 =    ∑ 𝑓𝑖𝑗 ∗ 𝑎𝑖𝑗

𝑁
𝑗   

 

Eigenvector 𝐸(𝑖) =
1

𝜆𝑚𝑎𝑥
 ∑ 𝑎𝑖𝑗

𝑁
𝑗  𝐸(𝑗)  𝐸(𝑖)𝑊 =

1

𝜆𝑚𝑎𝑥𝑤
 ∑ 𝑎𝑖𝑗𝑤

𝑁
𝑗  𝐸(𝑗)𝑤  

 

PageRank 𝑃𝑅(𝑖) = (1 − 𝑑) + 𝑑  ∑
𝑃𝑅(𝑗)

𝐿(𝑗) 𝑗 ∈𝑁𝑖
  𝑃𝑅(𝑖)𝑊 = (1 − 𝑑) + 𝑑  ∑

𝑃𝑅(𝑗)𝑊

𝑓𝑗𝑜𝑢𝑡 𝑗 ∈𝑁𝑖
  

 

  Weighted Shortest path Based Current-Flow Based 

Betweenness 𝐵(𝑖) =  
∑ 𝜎𝑗𝑘(𝑖)𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘𝑖≠𝑗≠𝑘
  𝐵(𝑖)𝑊 =  

∑ 𝜎𝑗𝑘(𝑖)𝑊
𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘
𝑊

𝑖≠𝑗≠𝑘
  𝐵(𝑖)𝐶𝐹 =  

∑ 𝑓𝑖
(𝑠 → 𝑑)

𝑠≠𝑑

0.5 (𝑁−1) (𝑁−2)
  

Closeness 𝐶(𝑖) =  
1

𝑁−1
∑

1

𝑆𝑖𝑗

𝑁
𝑗   𝐶(𝑖)𝑊 =   

1

𝑁−1
 ∑

1

𝑆𝑖𝑗
𝑊

𝑁
𝑗   𝐶(𝑖)𝐶𝐹 =   

𝑁−1

∑ 𝑉𝑖
(𝑖 → 𝑗)−𝑉𝑗

(𝑖 → 𝑗)
𝑗
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Table 3.3: KS Test results for different random sample sizes. 

  Topology Index Functionality Index 

 D(n,m,∝) D P-Value D P-Value 

Random Sample 10 0.45 0.07 0.045 0.05 0.24 

Random Sample 20 0.33 0.04 0.5 0.03 0.66 

Random Sample 50 0.23 0.03 0.75 0.02 0.99 
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Figure 3.1: Resilience attributes. 

 

 

 

 

 

 

 

 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

123 

 

 

 

 

 

 

 

Figure 3.2: Topology of low to high voltage of the Ontario power grid. 
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Figure 3.3: Topology of high-voltage transmission Ontario power grid network. 

The blue color is for transmission lines and switching stations of 220 kV, while the 

red color for 500 kV. 
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Figure 3.4: Schematic diagram presents a portion of a power grid. a) Single line 

diagram from PSSE software; and b) Portion of the topology illustration of the 

network. The stations presented as nodes that have been classified into three groups: 

supply nodes (in green), load nodes (in red), and switching nodes (in blue). Whiles 

the AC lines, two winding transformers, and three winding transformers presented 

as links. 

 

 

 

 

(b) 

(a) 
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Figure 3.5: The degree centrality distribution of the Ontario power grid. 
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Figure 3.6: The distribution of different centrality measures and the correlation 

between them for the unweighted network. 

 
Figure 3.7: The distribution of different centrality measures and the correlation 

between them for the weighted network. 
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Figure 3.8: The topology of Ontario power grid where the nodes color and size 

changes gradually to indicate the normalized closeness centrality value 𝐶(𝑖). 
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Figure 3.9: The topology of Ontario power grid where the nodes color and size 

changes gradually to indicate the normalized betweenness centrality value; 

unweighted betweenness centrality 𝐵(𝑖) (left), unweighted betweenness centrality 

𝐵(𝑖)𝑤 (right). 

 

 

 

High Betweenness centrality 𝐵(𝑖) ---- Low Weighted Betweenness 

𝐵(𝑖)𝑤 
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Figure 3.10: The robustness of the grid against random cyberattacks with different 

number of random scenarios evaluated by the topology index (left) and the 

functionality index (right). 

 

 

 

Figure 3.11: The robustness of the grid against random cyberattacks evaluated by 

the topology index (left) and the functionality index (right). 
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Figure 3.12: The robustness of the grid against random cyberattacks with mixed 

strategy evaluated by the topology index.  Selected the top 20 weighted degree and 

current flow betweenness hubs as protected nodes (left) and selected the top 20, 50, 

and 100 current flow betweenness hubs as protected nodes (right) 

 

 

Figure 3.13: The robustness of the grid against random cyberattacks considering 

the mixed strategy evaluated by the functionality index.  Selected the top 20 
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weighted degree and current flow betweenness hubs as protected nodes (left) and 

selected the top 20, 50, and 100 current flow betweenness hubs as protected nodes 

(right). 

 

 

Figure 3.14: The topology performance index with removal of the nodes based on 

different targeted cyberattack scenarios for the unweighted network (left) and the 

weighted network (right). 

 

 

Figure 3.15: The functional performance index with removal of the nodes based on 

different targeted cyberattack scenarios for the unweighted network (left) and the 

weighted network (right). 
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Figure 3.16: The average topology performance index (left) and the average 

functional performance index (right) for weighted and unweighted network against 

different targeted attack scenarios. 
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Chapter 4 : Dynamic Network Flow Model for Power Grid 

Systemic Risk Assessment and Resilience Enhancement 

ABSTRACT 

Power infrastructure networks are susceptible to performance disruptions induced 

by natural or anthropogenic hazard events. For example, extreme weather events or 

cyberattacks can disrupt the functionality of multiple network components 

concurrently or sequentially, resulting in a chain of cascade failures throughout the 

network. Mitigating the impacts of such system-level cascade failures (systemic 

risks) requires analyzing the entire network considering the physics of its dynamic 

power flow. The current study focuses on the "draw-down" phase of power 

infrastructure network resilience—assessing the power grid vulnerability and 

robustness, through simulating cascade failure propagations using a dynamic 

cascade failure physics-based model. The study develops and demonstrates the 

utility of a link vulnerability index, for constructing power transmission line 

vulnerability maps; as well as a node importance index, for power (sub)stations 

ranking according to the resulting cascade failure size. Overall, understanding the 

criticality of different network components provides stakeholders with the insights 

for building resilience and subsequently managing it within the context of power 

grids, and supports policymakers and regulators in making informed decisions 
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pertaining to the tolerable degree of systemic risk constrained by available 

resources. 

Keywords: Complex network theory, Dynamic cascade failure, Power 

infrastructure networks, Vulnerability analysis, Physical flow model. 
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 INTRODUCTION 

National economy and public safety relies on the continuous operation of critical 

infrastructure networks that are “essential for the maintenance of vital societal 

functions, health, safety, security, economy or social well-being of people, and the 

disruption or destruction of which would have a significant impact as a result of the 

failure to maintain those functions” (Rome et al. 2014). Power grids are at the 

forefront of critical infrastructure networks for modern societies (Panteli and 

Mancarella 2017) as the operations of most other critical infrastructure network 

(e.g., communication and transportation) depend on an adequate and reliable power 

supply. As such, the risk of a large-scale blackout poses a serious threat to other 

power-dependent critical infrastructure networks—affecting the overall national 

economy and citizens wellbeing. A blackout can be initiated by different causes, 

including those attributed to weather conditions, component failures, human errors, 

deliberate physical, or cyberattacks, whereas most reported blackouts occurred 

because of extreme weather events (Haggag et al. 2021). Although designed to be 

robust, past events have shown that even a small disruption in some key network 

components may lead to overload on other components and thus a chain of cascade 

failures, which can rapidly spread throughout the network causing catastrophic 

system-level cascade failure (systemic risks) (Bernstein et al. 2014b; Costa et al. 

2011). For example, The Northeast blackout of 2003 started with local failure 

whereby the failure of one transmission line due to contact with a tree, combined 
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with an alarm system malfunctioning, propagated to a large part of the connected 

network and affected more than 50 million people in Canada and the US’ North 

East (Andersson et al. 2005).   

Natural hazard events (e.g., the 2011 Japan earthquake and tsunami, and 

2012 hurricane Sandy) have highlighted the vulnerability of critical power 

infrastructure networks (Ouyang 2014). Anthropogenic hazard (e.g., cyber-attacks) 

poses yet another challenge in the era of smart grids.  For example, in March 2019 

hackers exploited firewall vulnerabilities to cause periodic ‘blind spots’ for grid 

operators in the western US for about 10 hours (NERC 2019). In addition to natural 

and anthropogenic hazard events, the risk of failure due to the aging of power 

infrastructure components and/or asset mismanagement coupled with the increased 

demand on power due to population growth necessitate the need to investigate, 

analyze, and evaluate the vulnerability of these networks in an effort to enhance 

their resilience.  

In general, studies focused on evaluating power grid infrastructure 

resilience have broadly adopted either topology- or physical flow-based network 

models (Ouyang 2014; Salama et al. 2020). Topology-based models simulate 

infrastructure networks based solely on their topological and connectivity 

properties. Such over simplified models inherently disregard flows and physical 

properties of/within the network, and instead represent the underlying network in 

an abstract manner, as a set of nodes and links (Rosato et al. 2007) including those 
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by (Albert et al. 2004; Crucitti et al. 2005; Rosato et al. 2007; Wang et al. 2010b). 

In addition, some studies model cascade failures by assuming power flow and load 

redistribution based on network component topology properties (Fang et al. 2014; 

Kinney et al. 2005; Motter and Lai 2002; Sun et al. 2008; Wang and Rong 2009, 

2011), whereas other studies proposed risk mitigation strategies without 

considering actual power flow characteristics (Motter 2004; Wang 2013a). 

Although abstract in nature, topology-based models can nonetheless provide 

indications of network behavior and vulnerability, albeit such models lack the 

ability to draw a complete picture of infrastructure real behavior since all 

infrastructure networks are governed by the laws of physics and are subjected to 

constraints pertaining to demand and supply (Hines et al. 2010a; Salama et al. 

2021).  

Unlike network models based solely on topology, high-fidelity models of 

power grid should take into consideration the real power flow, the transmission 

lines electrical properties, and the generation actual supply and capacity limits 

(Ouyang 2014; Pagani and Aiello 2013b). Despite the recent advance in conceptual 

modeling of cascade failure propagation (Ju 2018; Li et al. 2018; Yan et al. 2015; 

Zhao et al. 2018), a major obstacle still remains due to the lack of high resolution 

data, which is typically restricted for security reasons. In the absence of such data, 

it is very unlikely to provide a realistic network vulnerability analysis to ensure the 

reliability and resilience of power grids. In this respect, Yang et al. (2017) provided 
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a large-scale model for the US power grids to investigate their vulnerability. 

Furthermore, compared to their topology-based counterparts, such physical flow-

based models usually require significant computational time and more data to 

simulate the functionality of network components. Several studies have assumed 

transmission line properties and the demand/supply at each node to calculate the 

power flow (Schäfer and Yalcin 2019), whereas other studies assumed transmission 

line capacities to check the overloaded network components (Bernstein et al. 

2014b).  

 OBJECTIVES 

The current research focuses on the "draw-down" phase of power infrastructure 

network resilience to assess power grid vulnerability and robustness by simulating 

the cascade failure propagation based on a physical power flow model. The 

developed cascade failure model was subsequently used to construct transmission 

line vulnerability map of a demonstration power grid application. In addition, the 

study estimated the node importance index (NII) based on both cascade failure 

effect and the nodal centrality measures. There are four main contributions of the 

current study. First, the study proposes a high-fidelity dynamic cascade failure 

physics-based model of power grid that consider the actual power flow, the 

transmission lines’ electrical properties, and the generators’ typical supply and 

capacity limits. Second, the dynamic cascade failure model adopted the DC flow-
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based model to consider power redistribution through network after disruptions. 

Third, the cascade failure model considers the operational corrective actions in case 

of failure to rebalance the supply and demand (i.e., implement dispatch and load 

shedding). Subsequently, the cascade failure model is used to construct 

transmission line vulnerability map of the power grid and estimate the node 

importance index based on both cascade failure effect and the nodal centrality 

measures. Finally, the study demonstrates the model application on a real large-

scale network with data ranging from low to high voltage. 

Following this section, the vulnerability assessment framework, cascade 

failure model procedures, explanation, and assumptions are presented in Section 

4.3. Section 4.4 then provides a brief description of the power grid used to 

demonstrate the developed model application. Subsequently, the results from the 

cascade failure model to assess the network links vulnerability and node importance 

index are presented. Finally, concluding remarks are provided in Section 4.5. 

 VULNERABILITY ASSESSMENT FRAMEWORK 

The proposed framework focuses on evaluating the vulnerability of power grids by 

simulating cascade failure propagation throughout the network components. The 

proposed vulnerability assessment framework consists of power grid dynamic 

cascade failure physics-based model. The model is then applied to construct grid 

vulnerability map and compute component (node) importance index for a 
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demonstration power grid. 

Within the context of CNT (Newman 2010a), the main components of the 

network are simulated by nodes (e.g., substations in power networks), whereas links 

represent the interdependencies between these nodes within such a network (e.g., 

transmission lines in power networks). The model considers node heterogeneity 

where the nodes have been classified into three groups, namely: supply station 

nodes ‘generator’, demand station nodes ‘load’, switching station node ‘junction’. 

The transmission lines are classified into three groups: AC lines, and two- and three 

winding transformers. AC lines connect two stations at the same voltage, whereas 

two- and three winding transformers connect two or three stations with different 

voltages. The three winding transformers are visualized as three links intersecting 

at one junction node. 

4.3.1. DYNAMIC CASCADE FAILURE MODEL  

Figure 4.1 illustrates a flowchart for the dynamic cascade failure propagation model 

for power networks. Within the context of the current study, the dynamic modelling 

approach refers to power flow redistribution and supply-demand balancing 

following each loop in the cascade failure model. The parameters for the cascade 

failure model are described in detail next. 

4.3.1.1 INITIAL FAILURE 
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Recently, the increased frequency and magnitude of various disasters, such as 

hurricanes, ice storms, earthquakes, and cyberattacks have significantly increased 

the potential failures of power networks, through failure of multiple links (Wu et 

al. 2016). In addition, the initial failure of a node (e.g., a substation) can result in a 

system-level (systemic) impact on the network performance due to the subsequent 

impact on the different links connected to the failed node (Yan et al. 2015). 

Therefore, the study implements both potential failure types: initial failures of a 

single or multiple links, or initial failure of a node (Figure 4.1). Once a failure is 

initiated, the cascade failure model procedure starts with dispatch and load 

shedding, flow redistribution, followed by checking overloaded components until 

network stability. 

4.3.1.2 DC POWER FLOW MODEL 

The developed cascade failure model is a physics-based network flow model which 

calculates the actual power flow using a direct current (DC) power flow model. DC 

power models are widely used to simplify alternating current (AC) power flow 

analysis in power grids (Bernstein et al. 2014b; Pahwa et al. 2014; Yan et al. 2015). 

The DC power model is used wherever repetitive and fast load flow estimations are 

required, whereas this method is non-iterative and absolutely convergent. The 

Power System Simulator for Engineering (PSSE) software (Siemens PTI 2015) has 

been used to compute the transmission lines power flow. However, there are some 
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limitations to the proposed DC power flow model due to using the linear equations 

instead of the nonlinear equations of the AC power model. For example, the outage 

of the transmission lines may not result in direct thermal overload, but may 

otherwise cause system failures due to voltage and/or transient instability during 

the transient period. In the DC power model, nonlinear equations of the AC power 

model are simplified to a linear form based on the following assumptions: 

• Line resistance 𝑅𝑖𝑗 is negligible compared to line reactance 𝑥𝑖𝑗 (i.e.,  𝑅𝑖𝑗≪ 𝑥𝑖𝑗 

). 

• The voltage profile is flat (i.e., magnitudes of node voltages are set to 1.0 per 

unit). 

• Voltage angle differences between nodes are small (i.e., sin(𝛿𝑖𝑗) = 𝛿𝑖𝑗 and 

cos(𝛿𝑖𝑗) = 1). 

As such, based on the above assumptions, the power at each node 𝑓𝑖 pertains to all 

the “in” and the “out” power flows, as:                          

𝑓𝑖  = ∑ 𝑓𝑖𝑗   = {
𝑆𝑖 ,              Generation nodes

-𝐷𝑖  ,                       Load nodes

0 ,                      Junction nodes 
            (1) 

where, 𝑓𝑖𝑗 is the power flow for the link from node 𝑖 to node 𝑗, 𝑆𝑖 and 𝐷𝑖 is 

the given power at generator and load nodes, respectively. 

To calculate power flow, the following equations are applied from ref. (Pahwa et 

al. 2014). 
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𝑓𝑖𝑗  = 
𝛿𝑖𝑗

𝑥𝑖𝑗
                                                                                    (2) 

where,  𝛿𝑖𝑗  = (𝛳𝑖 - 𝛳𝑗) is the difference in the phase angle between node 𝑖 

and node 𝑗, and 𝑥𝑖𝑗 is the transmission line reactance.  

4.3.1.3 DISPATCH AND LOAD SHEDDING 

Dispatch and load shedding describe the process to rebalance demand and supply 

after disruptive events (Yan et al. 2015). Each iteration in the simulation starts by 

tripping the overloaded transmission lines. Following their removal, the network is 

checked if it remains as one connected grid or is separated into isolated sub-grids 

(i.e., islands). For each sub-grids, the dispatch and load shedding procedures are 

implemented in the following order of importance: 

• For each isolated island, the generator with the largest capacity is selected to be 

the “slack bus” (i.e., the generator with power output that can be adjusted from 

zero to the generator’s capacity which is necessary to apply the DC power flow 

model). 

• For each isolated island, in case that ( ∑ 𝑃𝑠 > ∑ 𝑃𝑑  ) , scale down the generators’ 

output until the balance point between demand and supply is realized. 

• For each isolated island, in case that ( ∑ 𝑃𝑠 < ∑ 𝑃𝑑  ), scale up the generators’ 

output accordingly. If the generators reached its maximum capacity prior to 

achieving load balance, scale down the demand to the balance point (i.e., load 

shedding).”   

The dispatch and load shedding process is summarized in a flowchart, shown in 

Figure 4.2. 

4.3.1.4 NETWORK PERFORMANCE MEASURES 
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The network performance following cascade failure development is evaluated 

through both its topological and functional characteristic, assessed at the conclusion 

of failures. Two measures for cascade failure sizes are assumed which describing 

the loss of service, as follows: 

• Cascade size based on the topology 𝑆𝑙 can be calculated as the percentage of 

the failed links 𝑁𝑓 (i.e., out of service transmission lines due to initial failure 

and the overloaded lines) to the total number of links N. 

𝑆𝑙 = 
𝑁𝑓

𝑁
                                                                                  (3) 

• Cascade size based on the power flow 𝑆𝑝 can be calculated as the percentage of 

the loss of demand load to the original load of the network. 

𝑆𝑝 =  
∑ 𝑃𝑑− ∑ 𝑃𝑑 

′

∑ 𝑃𝑑
                                                                   (4) 

where, ∑ 𝑃𝑑 is the total original load, and ∑ 𝑃𝑑  
′
 is the total demand load at 

the end of cascade failures. 

4.3.2. NETWORK VULNERABILITY ANALYSES 

The dynamic cascade failure model is used to estimate the vulnerability of links 

(i.e., link vulnerability index) and the importance of nodes (i.e., node importance 

index) in the network. The link vulnerability index indicates the probability of 

failure for each link in the network due to an initial failure of a random set of links. 

On the other hand, the node importance index ranks the nodes' influence according 

to the cascade failure size triggered by initial node failure.      

4.3.2.1 LINK VULNERABILITY INDEX 
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The cascade failure model is used to evaluate the link vulnerability index and thus 

construct the grid vulnerability maps through Monte Carlo simulation (Zio 2013) 

by tripping 𝑛𝑖 randomly selected transmission lines and compute the probability of 

failure for each link in the grid after repeating the cascade failure simulation for 𝑁 

times. The 𝑛𝑖 random lines initial failures represent transmission lines outages due 

to disruptive events such as extreme weather (natural hazard) or due to inadequate 

maintenance (anthropogenic hazard). The 𝑛𝑖 initial lines failures were selected 

completely randomly (i.e., transmission lines were selected randomly based on a 

uniform distribution). After repeating this random initial failure and the cascade 

failure model for 𝑁 times, the Kolmogorov-Smirnov Test (KS Test) (Conover 

1998) is employed to ensure the validity of the number of repeated simulations, 𝑁, 

needed to provide a representative failure probability for each transmission line. 

The proposed link vulnerability index can thus be used to evaluate the failure 

probability of any line in the grid under the different scenarios. Selecting the initial 

failure process to be fully random is justified as this removes any bias in the failure 

probability evaluation that would be introduced through selecting only pre-

specified lines. Following this approach, the model highlights the primary and 

secondary failed lines where the primary failed lines are the lines that tripping due 

to overloaded condition (i.e., the automatically switching off the overloaded lines 

to prevent permanent damage). The secondary failed lines on the other hand are the 

lines that do not carry flow at the end of the cascade failure model (i.e., out of 
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service lines due to the outage of other lines). Therefore, three failure probabilities 

for each link in the network are stored: primary 𝑃𝑙𝑓_𝑃; secondary 𝑃𝑙𝑓_𝑆; and total 

𝑃𝑙𝑓_𝑇 (i.e., the summation of the primary and secondary failure probability for each 

link, 𝑃𝑙𝑓_𝑇 = 𝑃𝑙𝑓_𝑃+ 𝑃𝑙𝑓_𝑆 ). The purpose of evaluating line failure probabilities is to 

identify the lines that are more prone to failure because they either operate near 

their capacity limits or they are at the center of flow distribution and are thus more 

susceptible to disruption instigated by the different cascade failure scenarios. 

Accordingly, the developed grid vulnerability map can be used to rank the line 

maintenance priority, whereas the lines with high failure probability should also 

receive a correspondingly higher upgrade priority. 

4.3.2.2 NODE IMPORTANCE INDEX  

The Node Importance Index NII is useful for ranking the relative importance of 

stations in the power grid, which will latter support regulators and decision-makers 

to optimize the upgrade schedule constrained by available resources. In this section, 

NII is estimated according to two methods. The first method relies on the cascade 

failure model whereas the second one relies on centrality measures of network 

topology with considering both weighted and unweighted links (i.e., links weight 

according to the power flow).  Subsequently, the NIIs from the two methods are 

compared to indicate to what extent the topology-based model can use to assess 

power grid vulnerability.  
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4.3.2.2.1 NII: Based on Cascade Failure Effect 

The influences of different nodes on the overall network behavior (i.e., Node 

Importance Index NII) is evaluated using the proposed cascade failure model. NII 

can be estimated according to the cascade failure size that results in the network 

due to the initial failure of this node. For example, the node with the highest cascade 

failure size considers as the node with the most influence on the overall network 

behavior (i.e., having the highest NII).  

4.3.2.2.2 NII: Based on Centrality Measures 

In topology-based network studies, the centrality measures were typically used to 

indicate the node importance index. There are different measures for centrality that 

can be used according to the underlying application. In some cases, the importance 

of a node is related to the number of connections between this node and other nodes 

in the same network (i.e., the degree centrality). In other cases, the importance is 

related to the total number of shortest paths that traverse through this node (i.e., the 

betweenness centrality).  

Degree Centrality: One of the key measures to identify node importance is 

its degree centrality. The degree centrality of a node is the total number of links 

connected directly to this node (Opsahl et al. 2010), as presented in Eq. 5. In 

topology-based models, power grids are modeled as directed-weight networks, with 

the weight and the direction of network links assumed according to the power flow 

value and direction at the initialization power grid state. This approach implicitly 
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assumes that transmission lines that carry more flow have more influence than the 

lines that carry lower level of power flow. However, node connectivity in the power 

grid with other nodes is not only related to how many links connected to it but also 

related to the connection strength of each link (Wang et al. 2010a); and the power 

flow of each link reflects such strength. 

In weight networks, the degree centrality has been extended to sum the 

weights of links connected directly to the node (Opsahl et al. 2010), as presented in 

Eq. 6. For a better comparison, the degree centrality is normalized to 1.0 as 

presented in Eq. 7. According to the degree centrality, the node with the highest 

degree is the most central node (i.e., hub) (Barabási and Pósfai 2016).  

𝐶𝐷(𝑖)𝑈𝑛𝑊= ∑ 𝐿𝑖𝑗𝑗                                                                 (18) 

𝐶𝐷(𝑖)𝑤=  ∑ 𝑓𝑖𝑗   𝐿𝑖𝑗𝑗                                                            (19) 

Normalized (𝐶𝐷(𝑖)) = 
𝐶𝐷(𝑖)−Min 𝐶𝐷

Max 𝐶𝐷−Min 𝐶𝐷
                             (20) 

where, 𝐿𝑖𝑗 = 1 if and only if there is a link between nodes i and j, 0 otherwise.  

Betweenness Centrality: This centrality measure is one of the most widely 

used measures to indicate the node importance in topology-based network studies. 

This measure identifies nodes that play a central role between other nodes in the 

network (Opsahl et al. 2010). The betweenness centrality measure of node i is 
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calculated as the number of shortest paths between pairs of other nodes that passes 

through node i (Freeman 1977; Opsahl et al. 2010), as presented in Eq. 8. 

In weighted networks, each line weight is multiplied by 1/𝑓𝑖𝑗 which results 

in shorter paths for higher power lines, as presented in Eq. 9.  Subsequently, nodes 

central to high power lines will be also central to shortest paths, and will thus have 

high betweenness centrality values. This hypothesis assumed that shortest path is 

not only related to the number of links but also the level of power flow passing 

through that path. Eq. 10 represented the normalization betweenness centrality to 

insure the values between 0 and 1. 

𝐶𝐵(𝑖)𝑈𝑛𝑊 = 
∑ 𝜎𝑗𝑘(𝑖)𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘𝑖≠𝑗≠𝑘
                                          (21) 

𝐶𝐵(𝑖)𝑊 = 
∑ 𝜎𝑗𝑘(𝑖)𝑊

𝑖≠𝑗≠𝑘

∑ 𝜎𝑗𝑘
𝑊

𝑖≠𝑗≠𝑘
                                           (22) 

Normalized (𝐶𝐵(𝑖)) = 
𝐶𝐵(𝑖) − Min 𝐶𝐵

Max 𝐶𝐵 − Min 𝐶𝐵
                               (23) 

where 𝜎𝑗𝑘(𝑖) is the total number of shortest paths between nodes j and k that passes 

through node i, while 𝜎𝑗𝑘 is the total number of shortest paths between nodes j and 

k, with 𝜎𝑗𝑘(𝑖)𝑊 and 𝜎𝑗𝑘
𝑊 calculated based on the weighted shortest paths. 

 APPLICATION DEMONSTRATION 

To demonstrate the application of the proposed approach, the Ontario power grid 

was modelled as 3,653 nodes and 4,503 links. The initial demand in the case study 
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was based on the Ontario power grid data through the Independent Electricity 

System Operator (IESO) Summer Case scenario. Following a disruptive event (i.e., 

initial failure), the dispatch and load shedding process is initiated to rebalance 

demand and supply. Subsequently, the model checks the transmission line capacity 

against the recalculated power flow due to such event. For a typical Ontario summer 

operating scenario, the predicting thermal overloads 15-minute limited time ratings 

are used. In general, thermal ratings are based on pre-load, ambient temperature, 

and wind speed. For clarity, only the high voltage transmission network (i.e., the 

stations and transmission lines with base voltage equal to 220 and 500 KV) are 

presented.  

4.4.1. LINK VULNERABILITY INDEX  

Following the procedures in previous section, it was possible to construct the links 

vulnerability map for the Ontario power grid.  In the current study, the initial failure 

was assumed as a failure of any three random AC transmission lines (i.e. 𝑛𝑖 = 3 ) 

(Yang et al. 2017).   

The cascade failure model has been repeated for different numbers N (i.e., 

sample sizes) to compute the line failure probability (i.e., run the cascade failure 

model for 1500, 3000, 4000, and 5000 random scenarios). Figure 4.3 presents the 

total line failure probability based on the four sample sizes. It can be inferred that 

the line failure probability values are close to each other regardless of the sample 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

152 

 

 

size and converge between 4000 and 5000. The Kolmogorov-Smirnov Test (KS 

Test) (Conover 1998) was used to compare between the lines failure probability 

result of the four sample sizes to select the appropriate one. KS Test computes the 

maximum difference between the cumulative distribution function of two sample 

sizes, as presented in Eq. 11. 

𝐷𝑛,𝑚 =  max|𝐹(𝑥) − 𝐺(𝑥)|                  (11) 

Whereas the first sample has size 𝑚 with a cumulative distribution function 

of 𝐹(𝑥) and that the second sample has size 𝑛 with a cumulative distribution 

function of 𝐺(𝑥).  

The null hypothesis is rejected at level 0.05 if 𝐷𝑛,𝑚 > 𝐷𝑛,𝑚,∝ . The null 

hypothesis is that the curves of the two samples are similar.  

𝐷𝑛,𝑚,∝ = 1.36 x √
𝑚 + 𝑛

𝑚𝑛
                            (12) 

Table 4.1 summaries the KS test results. The lines failure probability of 

sample size 1500, 3000, and 4000 have been compared to lines failure probability 

of sample size 5000 (i.e., n = 1500, 3000, or 4000 while m = 5000). The null 

hypothesis is accepted for sample size 4000 where 𝑃 − 𝑣𝑎𝑙𝑢𝑒 >  0.05 and 𝐷𝑛,𝑚 <

 𝐷𝑛,𝑚,∝. It was concluded that that there is no significant difference between the line 

failure probability of sample size 4000 and 5000 (i.e., the difference is less than 
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5%). Therefore, the 5000 runs scenarios for the cascade failure model were found 

to be statistically adequate to provide a good representation to compute the line 

failure probability. 

Based on the above analyses, the simulation explained in link vulnerability 

index subsection repeated 5,000 times (i.e., 𝑁 = 5,000). For clarity, Figure 4.4 only 

presents the high-voltage transmission lines vulnerability map of the Ontario power 

grid. 

Any failure probability under 0.5% was neglected and assumed as no failure 

indicated at the relevant link. According to the links vulnerability map for the whole 

power grid, it was found that about 12%, 5%, and 8% of the AC transmission lines 

and two- and three winding transformers underwent a primary failure, respectively. 

The number of lines underwent secondary failures were on average three times the 

primary ones for the whole network. Figure 4.5 presents the primary and secondary 

failure probability for the whole network lines after excluding lines with failure 

probability less than 0.5%. It can be inferred that number of lines underwent the 

secondary failures is much higher than number of lines underwent primary failures. 

In total, 36% of all links have 𝑃𝑙𝑓_𝑇 > 0.5%, and the maximum 𝑃𝑙𝑓_𝑇  noted was 

12%. The links vulnerability map can be used to rank the link maintenance priority, 

whereas the links with high probability failure have a higher priority to get updated 

or changed in the network upgraded schedule. 
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4.4.2. NODE IMPORTANCE INDEX 

Figure 4.6 presents the NII according to two cascade failure size measures: the 

percentage of the failed links  𝑆𝑙  and the percentage of the load loss 𝑆𝑝  at the end 

of the cascade failure model.  

As can be inferred, the highest cascade failure sizes caused due to initial 

failure of one switching station were 𝑆𝑙 =  30%, and 𝑆𝑝 =  70%. This switching 

station is connected to ten high voltage transmission lines (i.e., 500 KV) and 

disconnected of this node leads to a significant redistribution of power flow 

followed by extensive overloaded lines in the network which results in dividing the 

networks to many isolated islands. Failure propagation through the network can be 

observed in Figure 4.7, with the number of failed lines and the load loss are 

presented step by step in Figure 4.8.  

In addition, Figure 4.9 presents the NII based on two centrality measures: 

degree centrality  𝐶𝐷(𝑖)  and betweenness centrality 𝐶𝐵(𝑖). 

4.4.3. NII MEASURE CORRELATIONS 

To test the extent to which the topology-based model can accurately reflect power 

grid vulnerability, the NIIs based on the cascade failure model have been compared 

with that based on the centrality measures. All measures were normalized between 

0 and 1 to facilitate the comparison, as shown in Figure 4.10. The NII is divided 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

155 

 

 

into four class from high to low based on the normalized load loss % 𝑆𝑃 at the end 

of the cascade failure model. It can be inferred that the correlation between NII 

based on the centrality measures and based on the cascade failure model is poor.  

The low correlation between topology-based indices and others based on the 

cascade failure model, demonstrate how both approaches consider different 

information and thus yield different insights. For example, the nodes with high 

centrality measures based solely on topology model may be of less influence on 

cascade failure propagation in comparison to other nodes with low centrality 

measures. Topology-based indices rank nodes (and sometimes links) based on 

centralities measures which typically employ static network structure 

characteristics (i.e., number of links, or shortest paths) as explained earlier in the 

manuscript. On the other hand, indices generated using cascade failure models rank 

nodes (e.g., substations) and links (e.g., transmission lines) based on power flow, 

redistribution and failure propagation in order to assess the grid vulnerability. 

Although topology-based indices provide a rapid indication of the important 

components (e.g., substations) in the grid (Hines et al. 2010a; Salama et al. 2021), 

such indices lack the ability to represent a complete picture of real power grid 

vulnerabilities as they do not consider the underlying physics governing the grid 

behavior. As such, physics-based vulnerability indices based on cascade failure 

models, although more complex to evaluate, provide more comprehensive 

measures as they consider the dynamic failure propagation, power redistribution, 
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dispatch and load shedding processes throughout the grid. Furthermore, cascade 

failure model-based indices evaluate both substation importance levels (i.e., 

through the node importance index) and transmission line vulnerabilities (i.e., 

through the link vulnerability index). 

 CONCLUSION  

This chapter developed a dynamic cascade failure simulator to assess the power 

grid vulnerability and evaluate its performance under disruptions triggered by 

component failures. The model adopted the DC flow-based model to consider 

power redistribution through network after disruptions. To demonstrate its 

application, a real low to high voltage power network was analysed. The network 

data included the actual electric characteristics of the network components 

including the transmission lines impedance and rating capacity, real power at 

supply nodes, the capacity of supply nodes, and the power demand at load nodes. 

The model simulates the cascade failure propagation in the network due to initial 

failure regardless of what caused such failure, including natural and anthropogenic 

hazard sources. In this respect, two initial case failure scenarios have been 

implemented in the model: failures of multiple transmission lines, or failure of a 

network component (e.g., substation). The model subsequently computes the link 

vulnerability index and node importance index. The link vulnerability index was 

used to generate a vulnerability map of the power grid which indicates both primary 
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and secondary probability of failure for each link in the network. The node 

importance index is estimated according to the cascade failure size that results in 

the network due to the failure of an initiating node. Furthermore, the results of node 

importance index from the two different modelling approaches were compared. 

Overall, the developed approach facilitates identifying critical power grid 

components crucial to evaluate the grid robustness and enhancing their resilience 

against random failure and targeted attacks.  

Future studies can possibly extend the current work to include maintenance 

scenarios based on the developed indices and other more conventional ones, and 

subsequently compare the level of grid resilience improvements. In addition, future 

studies may consider covering other resilience metrics (i.e., Rebuild and 

Reconfigure) to address the “draw-up” resilience phase. 
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 TABLES 

Table 4.1: KS Test results for different sample sizes. 

  𝑷𝒍𝒇_𝑻  𝑷𝒍𝒇_𝑷  𝑷𝒍𝒇_𝑺  

 D (n, m, ∝) D D D 

Sample size 1500 0.040 0.084 0.033 0.010 

Sample size 3000 0.031 0.051 0.022 0.061 

Sample size 4000 0.029 0.027 0.07 0.028 
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 FIGURES 

 

Figure 4.1: Flowchart of the Dynamic Cascade Failure Model procedures. 
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Figure 4.2: Flowchart of the Dispatch and Load shedding procedures. 
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Figure 4.3: The total line failure probability based on different sample sizes (i.e., 

1500, 3000, 4000, and 5000). 
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Figure 4.4: Links Vulnerability Index map for the high-voltage transmission lines 

of Ontario power grid. (A) the total failure probability 𝑃𝑙𝑓_𝑇. (B) the primary failure 

probability 𝑃𝑙𝑓_𝑃. (C) the secondary failure probability 𝑃𝑙𝑓_𝑆. The transmission line 

color changes gradually to indicate the failure probability 𝑃𝑙𝑓 which represents the 

link vulnerability index (Black links represent the lines with less than 0.5% failure 

probability). 
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Figure 4.5: The primary and secondary line failure probability. 

 

 

 
Figure 4.6: Node Importance Index map based on cascade failure effect for the 

high-voltage transmission lines of Ontario power grid. (A) NII measures by the 

failed lines% 𝑆𝑙 at the end of the cascade failure model. (B) NII measures by the 

load loss% 𝑆𝑝 at the end of the cascade failure model (Nodes color and size change 

gradually to indicate the cascade failure size which represents the node importance 

index). 
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Figure 4.7: Illustration of cascade failure propagation step by step until network 

stability due to initial failure of the highest NII switching station. The transmission 

line color changes gradually to represent the step in which the lines faulted (Black 

links represent the lines that remain in service until the model analysis stops). 
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Figure 4.8: Cascade failure size step-by-step evolution until network stability due 

to initial failure of the highest NII switching station. (A) Load loss% 𝑆𝑃 , while (B) 

Failed lines% 𝑆𝑙. 
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Figure 4.9: Node Importance Index map based on centrality measures for the high-

voltage transmission lines of Ontario power grid. (A) NII measures by unweight 

degree centrality 𝐶𝐷(𝑖)𝑈𝑛𝑊. (B) NII measures by weight degree centrality 𝐶𝐷(𝑖)𝑊. 

(C) NII measures by unweight betweenness centrality 𝐶𝐵(𝑖)𝑈𝑛𝑊. (D) NII measures 

by weight betweenness centrality 𝐶𝐵(𝑖)𝑊(Nodes color and size changes gradually 

to indicate the normalized centrality measure which represents the node importance 

index). 
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Figure 4.10: Correlation between NII based on load loss and different centrality 

measures (Node color indicated which class the node belongs to according to the 

normalized load loss% 𝑆𝑃). 
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Chapter 5 : Intentional Controlled Islanding and Flow Rebalance 

for Power Grid Systemic Risk Mitigation 

ABSTRACT 

Power grids are prone to damage induced by natural or anthropogenic hazard events 

that might disrupt the functionality of multiple grid components concurrently, 

resulting in a chain of cascade failures throughout. Through integrating operation- 

with structure-guided strategies, the current study focuses on mitigating the risk of 

such cascade failure (known as systemic-risk) to minimize the possibility of large-

scale catastrophic blackouts. The operation-guided strategy is implemented through 

dispatch and load shedding to rebalance demand and supply after disruptive events. 

On the other hand, the structure-guided strategy adopted intentional controlled 

islanding approach through employing a constrained spectral clustering algorithm. 

Introducing the algorithm within the cascade failure model facilitated identifying 

the optimal cut-set lines to separate the grid into functioning sub-grids following 

initial failure and prior to failure propagation. To assess the effectiveness of the 

mitigation strategy, a real power scale grid was modelled under different systemic 

risk scenarios to compare the cascade failure size with and without the proposed 

strategy for different number of sub-grids. The simulations demonstrate that a well-

developed controlled islanding strategy can effectively boost grid robustness and 

mitigate blackout systemic risks.  
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 INTRODUCTION 

The ever-evolving interconnectedness and complexity of power grids have 

increased their vulnerability to disruptions. Furthermore, the growing energy 

demand has been forcing operators to push power grids near their operational limits 

(LIN et al. 2016). In the last 20 years, the number of major blackouts has increased 

significantly, sometimes leading to catastrophic socio-economic consequences 

(Kyriacou et al. 2018).  

Cascade failure is a chain of failures initiated by a disruption in key network 

components (e.g., tripping of overloaded transmission lines), thus overloading other 

components and, as a result, propagate throughout the network (Bernstein et al. 

2014b; Yang et al. 2017). Furthermore, the growth in the networks’ complexity, 

interconnectedness, and interdependency leads to extending the risk from 

component- to systems-level failure (i.e., systemic risk). As such, there has been 

pressing demands to provide mitigation strategies to suppress failure propagation 

and reduce the possibility of system-level failures, thus increasing the grid ability 

to withstand and keep operating in the face of disruptive events (i.e., grid 

robustness). Power grid risk mitigation strategies can be categorized into three main 

categories: device-guided (i.e., smart devices like FACTS devices to control 

network transmission line power flow, voltage and/or PSS devices), operation-

guided (e.g. dispatch and load shedding, and load rejection), and structure-guided 
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(e.g., redesigning critical components, adding redundancy, and intentional 

controlled islanding) (Ahangar et al. 2020). 

Previous studies (Ahangar et al. 2020; Li et al. 2010) have shown that grid 

separation into a number of controlled functioning islands (intentional controlled 

islanding) can be an effective defence strategy to save them from a large-scale 

uncontrolled blackout. However, such separation must be performed diligently, or 

it can introduce even further destabilization in the grid, potentially boosting the 

cascade failure, which it is expected to suppress. Intentional Controlled Islanding 

(ICI) aims to split the grid into stable and functioning sub-grids in an optimized 

way to minimize the power flow disruption or minimize the power flow imbalance 

(Ding et al. 2014; Quirós‐Tortós et al. 2015).  ICI can identify the optimal set of 

transmission lines to be disconnected to protect the resulting islands from the 

disturbance. 

In an attempt to solve the network cluster problem, some researchers used 

approaches, including graph search (Aghamohammadi and Shahmohammadi 2012; 

Maharana and Swarup 2010), heuristic search methods (Theodoro et al. 2012; 

Trodden et al. 2013), neural network (Wang 2005; Wang and Chang 1994), and 

spectral clustering (Ding et al. 2014; Quirós‐Tortós et al. 2015).  To minimize the 

power flow disruption, the ICI can be modelled as the graph-cut problem, which 

can be solved efficiently using complex network theoretic techniques such as 

spectral clustering approach (Kyriacou et al. 2018). Spectral clustering has the 
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advantage of providing a deterministic solution in a polynomial time (Luxburg 

2007). Generally, spectral clustering uses the eigenvalues and eigenvectors 

associated with a weighted network, that represents the power grid, to solve the 

graph-cut problem.  

Most previous studies (Ahangar et al. 2020) focused on determining the 

optimal splitting algorithm considering solution time variation, number of clusters 

and/or controlled constraints, without testing these algorithm capabilities in 

suppressing the failure propagation considering a dynamic cascade failure model.  

As such, there is a lack of integration between large-scale failure propagation 

simulations and intentional controlled islanding solutions to evaluate the 

effectiveness of ICI as a risk mitigation strategy.  

This chapter focuses on providing and testing a strategy for suppressing 

power grid cascade failure propagations by integrating operation- and structure-

guided mitigation strategies. First, operation-guided strategy is implemented by 

dispatch and load shedding to rebalance demand and supply after disruptive events. 

Second, structure-guided strategy is introduced by embedding the Constrained 

Spectral Clustering (CSC) algorithm in the cascade failure model to intentionally 

split the power grid. Following this section, CSC algorithm description, 

explanation, and assumptions are presented in Section 5.2. Next, a brief description 

of the cascade failure model that has been used to evaluate the improvement in 

network performance due to the use of CSC is provided in Section. Subsequently, 
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the results of applying the mitigation strategy utilizing actual power grid cascade 

failure simulations are presented in Section 5.4. Finally, concluding remarks are 

provided in Section 5.5. 

 INTENTIONAL CONTROLLED ISLANDING (ICI) 

ICI is a corrective control action for grid under a severe contingency (i.e., loss / 

failure of power grid components such as transmission lines, generators, or 

transformers) to prevent the cascade failure propagation. ICI essentially splits the 

grid into several isolated sub-grids as a defences strategy following instabilities and 

prior to the grid becomes uncontrollable (Ding et al. 2018). ICI techniques focus on 

determining, in real-time, the set of transmission lines to be disconnected to create 

stable functioning sub-grids. Specifically, the optimal ICI solution, that will result 

in a minimal power flow disruption, can be determined similar to the graph-cut 

problem using spectral clustering (Goubko and Ginz 2019). Therefore, CSC can be 

viewed as an extension of the spectral clustering method by introducing a constrain 

matrix to exclude some transmission lines from the clustering solution.  

CSC is an efficient complex network theoretic technique that enables 

splitting the network using the network eigenvalues and eigenvectors that represent 

the power grid. The CSC algorithm used in the current study has been proposed by 

Wang et al. (2014). This section presents relevant complex network theoretic 
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metrics, Laplacian matrix, eigenvalues, constrain matrix, the objective function, 

and CSC algorithm description  

 

5.2.1. POWER GRID AS A COMPLEX NETWORK 

Within a complex network theory context, A power grid can be represented by 

weighted and undirected network 𝐺(𝑁, 𝐿) with 𝑁 nodes (e.g., substations in power 

networks) and 𝐿 links represent the interdependencies between these nodes within 

such a network (e.g., transmission lines in power grids) (Salama et al. 2020). The 

𝑁 nodes have been classified into three groups, namely: 𝑁𝑆 ∈ 𝑁  supply-station 

nodes “generator”, 𝑁𝐷 ∈ 𝑁  demand-station nodes “load”, and  𝑁𝐽 ∈ 𝑁  switching-

station nodes “junction”. In a weighted network, each link is assigned a weight 

based on the power flow value. This approach assumes that transmission lines that 

carry more flow have more influence than the lines that carry the smaller flow. 

Therefore, a link weight 𝑤𝑖𝑗  represents the weight factor associated with the link 

𝐿𝑖𝑗 is calculated as follows: 

 

𝑤𝑖𝑗 =  𝑤𝑗𝑖 =  {
|𝑓𝑖𝑗| + |𝑓𝑗𝑖|

2
           𝑖𝑓   𝐿𝑖𝑗 ∈ 𝐿 

           0                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

            (1) 
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Where, 𝑓𝑖𝑗 is the power flow in the transmission lines from substation 𝑖 to 

substation  𝑗. The power flow can be calculated based on the Direct Current power 

flow model (DC power model). The DC power model is widely used as an 

approximation method for the alternating current power model to simplify the 

power flow analysis in the power network (Pahwa et al. 2014; Salama et al. 2021). 

Therefore, 𝐴 is weight adjacency 𝑛 𝑥 𝑛 matrix of the network 𝐺. 𝐴 matrix 

is symmetric and non-negative computed as follows: 

𝐴 =   {

𝐴𝑖𝑗 =  𝑤𝑖𝑗

𝐴𝑗𝑖 =  𝑤𝑗𝑖  

𝐴𝑖𝑖 =  0   

                                                           (2) 

The diagonal matrix 𝐷 is called the degree matrix of network 𝐺 computed 

as follows: 

𝐷𝑖𝑖 =  ∑ 𝐴𝑖𝑗

𝑁

𝑗=1

                                        (3) 

5.2.2. LAPLACIAN MATRICES/EIGENVALUES  

Laplacian matrices are the basis for network spectral clustering (Luxburg 2007). 

Typically, there are two types of Laplacian matrices: the ‘unnormalized’ Laplacian 

matrix 𝐿𝑢𝑛 and the ‘normalized’ Laplacian matrix 𝐿𝑛. The unnormalized Laplacian 

matrix 𝐿𝑢𝑛  of network 𝐺: 

𝐿𝑢𝑛 = 𝐷 − 𝐴                                                (4)  
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While the normalized Laplacian matrix 𝐿𝑛 of network 𝐺: 

𝐿𝑛 = 𝐷−
1
2 𝐿𝑢𝑛 𝐷−

1
2                                     (5) 

Previous studies (Quirós‐Tortós et al. 2015; Wang et al. 2014) showed that 

the normalized Laplacian matrix 𝐿𝑛 results in better solution compared with the 

unnormalized for weighted networks. Hence, the below algorithm uses the 

eigenvectors associated with the eigenvalues of the normalized Laplacian matrix.  

5.2.3. CONSTRAINT MATRIX 

Constraint matrix 𝑄 contained two main types of constraints: ‘Must-Link’ ML and 

‘Cannot-Link’ CL (Luxburg 2007).  ML (I, j) constraint indicates that node 𝑖 and 

node 𝑗 must be in the same cluster, while CL (I, j) constraint indicates that node 𝑖 

and node 𝑗 cannot be clustered together. Therefore, ML constraint represents the 

transmission lines that must exclude from the islanding solution (i.e., transmission 

lines that are important for network stability). 

𝑄𝑖𝑗 =  𝑄𝑗𝑖 =   {
+1            if (i, j)     𝑀𝐿

−1            if (i, j)     𝐶𝐿 
   0                Otherwise  

                  (6)   

Therefore, the normalized constraint matrix is: 

𝑄𝑛 = 𝐷−
1
2 𝑄 𝐷−

1
2                                                           (7)    
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5.2.4. OBJECTIVE FUNCTION  

Shi and Malik (2000) demonstrated that the eigenvectors of the normalized 

Laplacian matrix are related to the normalized min-cut of the network 𝐺.  Therefore, 

the objective function can be written as:  

𝑎𝑟𝑔𝑚𝑖𝑛   𝑉𝑇𝐿𝑛 𝑉                (8)  

Subjected to:  

𝑉𝑇𝑄𝑛 𝑉 ≥  0                     (9) 

𝑉𝑇 𝑉 = 𝑣𝑜𝑙                      (10) 

𝑉 ≠   𝐷
1
2 1                      (11) 

Where, 𝑉 is the eigenvector of the normalized Laplacian matrix, 𝑣𝑜𝑙 is the 

volume of the network 𝐺 (𝑣𝑜𝑙 =  ∑ 𝐷𝑖𝑖)
𝑁
𝑖=1 . 

 𝑉𝑇𝐿𝑛 𝑉 represents the cost of the cut, which is the power flow disruption due to 

network splitting. The objective function in Eq.8 is to get the optimal (𝐾 − 1) 

eigenvectors 𝑉∗
 to cluster the nodes in a way minimizing the power flow disruption 

(i.e., select the top 𝐾 − 1 in term of minimizing 𝑉𝑇𝐿𝑛 𝑉). 𝐾 is the number of the 

clusters. The first constrain represents the constraint matrix Q, the second constraint 

normalizes the eigenvectors, and the third constraint removes the trivial eigenvector 

solution. Therefore, the optimal cluster indicator vector 𝑢∗ can be calculated as: 

𝑢∗ =  𝑘𝑚𝑒𝑎𝑛𝑠 (𝐷
1
2 𝑉∗, 𝐾)               (24)  
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The optimal cluster indicator vector identifies which cluster each node in 

the network will belong to. Based on the optimal cluster indicator, the optimal cut-

set lines (i.e., the set of lines to be removed/switch off to separate the grid into 

functioning sub-grids) will be selected.  

The above optimization problem can be solved by using CSC algorithm 

presented in (Wang et al. 2014) through applying the following steps:  

1. Generate candidates: Solve the generalized eigenvalue problem 

𝐿𝑛𝑉 =  𝜆 𝑄𝑛 𝑉  to establish all eigenvectors for the normalized 

Laplacian matrix and normalized constraint matrix.   

 

2. Find feasible set: Exclude eigenvector associated with negative 

eigenvalue to remove the trivial eigenvector solution and 

subsequently normalize the rest eigenvector such that 𝑉𝑇  𝑉 = 𝑣𝑜𝑙 

 

3. Choose optimal solution: Select the optimal (𝐾 − 1) eigenvectors 

𝑉∗ which minimizes the cut cost 𝑉𝑇𝐿𝑛 𝑉.  
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The CSC algorithm is implemented in the model as follows:  

 Constrained Spectral Clustering Algorithm: 

 
Input: Weighted network adjacency matrix 𝐴, Constrained matrix 𝑄, Number of 

Clusters K 

 Output: Optimal cluster vector 𝑢∗ 

1 Start 

2 Establish the degree matrix 𝐷𝑖𝑖 =  ∑ 𝐴𝑖𝑗
𝑁
𝑗=1  , Network volume 𝑣𝑜𝑙 =  ∑ 𝐷𝑖𝑖

𝑁
𝑖=1  

3 Establish the unnormalized Laplacian matrix  𝐿𝑢𝑛 = 𝐷 − 𝐴 

4 Establish the normalized Laplacian matrix  𝐿𝑛 = 𝐷−1/2 𝐿𝑢𝑛 𝐷−1/2  

5 Establish the normalized constrained matrix 𝑄𝑛 = 𝐷−1/2 𝑄 𝐷−1/2 

6 Solve the generalized eigenvalue problem  𝐿𝑛𝑉 =  𝜆 𝑄𝑛  𝑉 

7 Remove eigenvector associated with negative eigenvalues 

8 Normalize the rest of eigenvectors such that 𝑉𝑇 𝑉 = 𝑣𝑜𝑙  

9 Calculate the cost 𝑉𝑇𝐿𝑛 𝑉 for all rest eigenvectors 

10 

Choose the optimal (𝐾 − 1) eigenvectors 𝑉∗ which has the minimum cost calculated in 

the previous step 

11 Return the optimal cluster vector  𝑢∗ =  𝑘𝑚𝑒𝑎𝑛𝑠 (𝐷1/2 𝑉∗, 𝐾) 

12 End 

 
 

 SYSTEMIC RISK MITIGATION STRATEGY 

5.3.1. CASCADE FAILURE MODEL 

Cascade failure starts with a disruption in some key network components leading 

to overloading of other components and subsequently initiating a chain of failures, 

which can rapidly spread throughout the network, causing catastrophic failures 

(Bernstein et al. 2014b; Costa et al. 2011). A dynamic cascade failure model has 

been used to simulate failure propagation through the grid (Salama et al. 2022). The 
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model integrates the network topology with physics-based network flow that 

calculates the actual power flow using the DC power model. In the DC power 

model, nonlinear equations of alternating current power model are simplified to a 

linear form. The DC power model is used wherever repetitive and fast load flow 

estimations are required, whereas this method is non-iterative and absolutely 

convergent. 

 Following a disruptive event (i.e., initial failure), the dispatch and load 

shedding process is initiated to rebalance demand and supply. Subsequently, the 

model checks the transmission line capacity against the recalculated power flow 

due to disruptive event. Each iteration in the propagation simulation begins with 

tripping the overloaded transmission lines. Following each overloaded component 

removal, the network is examined to assess if it remains as one connected grid or is 

separated into isolated sub-grids (i.e., islands). The dispatch and load shedding 

process thus attempts to maintain the balance by scale up/down the generator’s 

output or scale down the demand according to the supply-to-demand unbalance. 

This process is the initial operational corrective to decrease grid instability (Yan et 

al. 2015). More explanation of the cascade failure model and dispatch and load 

shedding algorithm can be found in (Salama et al. 2022). At the conclusion of 

failure, the loss of service is quantified based on two measures: 

1. Cascade size based on the topology 𝑆𝑙,  calculated as the percentage of failed 

links 𝑁𝑓 (i.e., out of service transmission lines due to initial failure and the 

overloaded lines) to the total number of links N. 
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𝑆𝑙 =  
𝑁𝑓

𝑁
                                        (13)    

2. Cascade size based on the power flow 𝑆𝑝, calculated as the percentage of 

the loss of demand load to the original load of the network. 

𝑆𝑝 =  
∑ 𝑃𝑑− ∑ 𝑃𝑑 

′

∑ 𝑃𝑑
                          (14)           

where, ∑ 𝑃𝑑 is the total original load, and ∑ 𝑃𝑑  
′
 is the total demand load at the end 

of cascade failures. 

5.3.2. CASCADE FAILURE MODEL WITH CSC 

The CSC algorithm has been integrated within the cascade failure model described 

above in Section 5.3.1 to suppress the cascade failure based on ICI, as shown in 

Figure 5.1. The ICI shifts the cascade failure scenario to follow another path 

through the network. Noteworthy, the proposed strategy is different from network 

interdiction, which relies on reinforcement the weak components identified (i.e., 

redesign critical components and/or adding redundancy) (Salmeron et al. 2009). 

The proposed strategy is also distinguished by its direct implementation ability 

within a power grid network with less additional cost compared to network 

interdiction strategies. 
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The cascade failure model with CSC algorithm is implemented as follows:  

 Cascade Failure with CSC Algorithm: 

 
Input: Initial Grid State 𝐺(𝑁, 𝐿), Lines Capacity 𝐶𝑖𝑗, Lines Reactance 𝑥𝑖𝑗 , Number of 

Simulation 𝑡 = 1 

 Output: Final Grid State, Load demand ∑ 𝑃𝑑  
′
, 𝑡 

1 Start 

2 Compute Power Flow; 𝑓𝑖𝑗 (DC model) 

3 Introduce the initial failure (Contingency) 

4 Adjust demand and supply (Dispatch and Load Shedding Algorithm) 

5 Recompute Power Flow; 𝑓𝑖𝑗
𝑡
  (DC model) 

6 

   If: lines power flow 𝑓𝑖𝑗
𝑡
 < lines capacity 𝐶𝑖𝑗 

           Store final grid state and End 

           Else; CSC algorithm 

7 Adjust demand and supply (Dispatch and Load Shedding Algorithm) 

8 Recompute Power Flow; 𝑓𝑖𝑗
𝑡
  (DC model) 

9 

   While: Lines power flow 𝑓𝑖𝑗
𝑡
 > Lines capacity 𝐶𝑖𝑗 

            Find the set of overloaded lines 

            Trip the overloaded lines 

            Adjust demand and supply (Dispatch and Load Shedding Algorithm) 

            Recompute Power Flow; 𝑓𝑖𝑗
𝑡
  (DC model) 

            𝑡 = 𝑡 + 1 

10 Store final grid state; Load demand ∑ 𝑃𝑑  
′
, Number of steps until stability  𝑡 

11 End 

 

 MODEL APPLICATION DEMONSTRATION 

The Ontario power grid has been considered herein to demonstrate and assess the 

effectiveness of ICI technique based on CSC as a mitigation strategy to suppress 

the propagation of the failure in large-scale grid. Ontario power grid based on 

Independent Electricity System Operator (IESO) base case scenario was modelled 

as 3,653 nodes and 4,503 links. For clarity, only the high voltage transmission 
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network (i.e., the stations and transmission lines with base voltage equal to 220 and 

500 kV) are presented. 

The cascade failure model explained above in Section 5.3.1 has been used 

to identify the worst-case scenarios that cause the maximum damage in the network 

structure (i.e., maximum cascade failure size based on power flow loss 𝑆𝑝), as a 

result of single component failure (i.e., removal). Subsequently, the cascade failure 

model with CSC has been used to split the grid into sub-grids following initial 

failure triggering and prior to failure propagation for the same worst-case scenarios 

specified from the model without CSC.  Finally, the results of the two models were 

compared to assess the proposed approach effectiveness. Figure 5.2 illustrates the 

cascade failure propagation due to the worst-case initial single bus failure scenario 

without and with CSC implementation to split the grid into two or three sub-grids. 

In addition, the cascade failure size based on power flow 𝑆𝑃 (i.e., load loss) and 

based on topology 𝑆𝑙 (i.e., failed lines) are demonstrated in a step-by-step manner 

in Figure 5.3. It can be observed that the cascade failure size based on power flow 

𝑆𝑃 is reduced from 70% to 34% and 41% considering two and three sub-grids, 

respectively. This is double the network robustness relative to the failure scenario 

without the proposed mitigation strategy. Whereas the cascade failure size based 

on topology 𝑆𝑙 is reduced from 27% to 4% and 8% for case of two and three sub-

grids, respectively. In addition, it can be noticed that the number of cascade failure 

steps (i.e., the number of steps until the network reaches stability) are reduced for 
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both cluster cases. For example, the number of steps until stability without CSC is 

nine, whereas this value decreases to five and seven steps in the two and three sub-

grid cases, respectively. Therefore, the network in case of CSC algorithm reached 

stability earlier than the network without CSC, which results in yet another 

improvement in network robustness and systemic risk mitigation.      

To measure the robustness improvement under different failure scenarios, 

the top 15 worst-case initial single bus failure scenarios have been used to compare 

the cascade failure size without and with CSC. Figure 5.4 and Figure 5.5 present 

the cascade failure size 𝑆𝑝 and 𝑆𝑙, respectively for the top 15 worst-case failure 

scenarios. It can be noticed that there is a significant improvement in grid 

robustness (i.e., less cascade failure size in terms of load loss and failed lines) 

considering the CSC use with two sub-grids. It can also be observed that using CSC 

with three sub-grids was less effective in comparison to the CSC with two sub-

grids, further, it increased the failure in some scenarios. Accordingly, selecting a 

higher number of clusters (i.e., sub-grids), in the demonstrated power grid, leads to 

more lines being out of service, which may cause more damage to the network 

structure and introduce additional failures.  

Figure 5.6 presents the reduction in the cascade failure size due to the 

proposed mitigation strategy in case of using the CSC to split the grid into two or 

three sub-grids. It can be noticed that in case of using CSC with two sub-grids, most 

failure scenarios (i.e., twelve out of the top 15 worst-case) have a smaller cascade 
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failure size with an average reduction equals to 37% and 62% for 𝑆𝑝 and 𝑆𝑙, 

respectively. While, in case of using CSC with three sub-grids, the average 

reduction is 4% and 26% for 𝑆𝑝 and 𝑆𝑙, respectively. For example, using CSC with 

two sub-grids results in a reduction in the cascade failure size based on the topology 

(i.e., number of failed lines 𝑆𝑙) for all the cascade failures scenarios addressed here. 

While, in case of using CSC with three sub-grids, there are three failure scenarios 

that ended with a higher number of failed lines 𝑆𝑙 in comparison to the cascade 

model without the CSC. Moreover, regarding the reduction in the cascade failure 

size based on the power flow (i.e., load loss 𝑆𝑝), there is a significant reduction in 

the case of using CSC with two sub-grids except for three failures scenarios. While, 

in case of using CSC with three sub-grids, only five out of the 15 failures scenarios 

have less 𝑆𝑝 in comparison to the cascade model without the CSC. It can be 

concluded that there is a general improvement in network robustness with 

implementing CSC mitigation strategy; however, the CSC results are sensitive to 

the numbers of sub-grids and the constrained matrix. Therefore, it is important to 

diligently choose the constrain matrix and number of the clusters in CSC algorithm 

to exclude critical transmission lines from the cut-set to prevent introduce 

additional failure to the grid. The critical transmission lines can be identified by 

network topology (Salama et al. 2021), electric characteristics (Bai and Miao 2015), 

failure mechanism (Yang et al. 2017), and integrated methods (Wang et al. 2017a). 
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 CONCLUSION  

This chapter presented an effective mitigation strategy to suppress the cascade 

failure propagation in power grids through integrating operation-guided mitigation 

strategy (i.e., dispatch and load shedding) and the structure-guided mitigation 

strategy (i.e., intentional controlled island). The effectiveness of the mitigation 

strategy has been illustrated through the cascade failure model on a realistic large-

scale network with data ranging from low to high voltage. A high-fidelity physics-

based model of power grid that considers the actual power flow, the transmission 

lines’ electrical properties, and the generators’ supply and capacity has been used. 

The cascade failure model adopted the DC flow-based model to consider power 

redistribution through the network after contingencies.  

The cascade failure model employed the spectral constrained clustering 

algorithm to select the optimal cut-set lines to minimize the power flow disruption. 

The ICI is a low-cost corrective action that can directly apply to a power grid with 

the least additional cost. The numerical results emphasize that the ICI mitigation 

strategy is an efficient technique to boost the network robustness. However, the ICI 

of a power grid should be performed diligently, or it might add more destabilization 

in the grid. Moreover, the proposed strategy can be implemented automatically to 

any component failure in the network, not only in the worst-case scenario. 
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Accordingly, this strategy presents an adaptive control-oriented risk mitigation 

strategy.  

Nevertheless, further studies are required before an implementation of ICI 

scheme in real-life power grids. Future studies would extend the current CSC 

algorithm with multi-objective to minimize power flow disruption, minimize load 

shedding in each sub-grid, and fairly distributed the generators between the sub-

grids. Subsequently, future studies shall determine in a real-time manner, the 

suitable number of sub-grids, the most suitable time to implement the ICI into the 

grid, and the planning for grid reconfigure phase.  
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 FIGURES 

 

Figure 5.1: Flowchart of the Cascade Failure Model with CSC Mitigation Strategy  
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Figure 5.2: Illustration of cascade failure propagation until network stability due 

to the worst-case initial single bus failure scenario without and with CSC. The red 

links represent the out-of-service overloaded transmission lines, while the black 

links represent the in-service lines. 

 

  

Figure 5.3: Cascade failure size step-by-step evolution until network stability due 

to the worst-case initial single bus failure scenario without and with CSC. (A) 

Load loss% 𝑆𝑃 , while (B) Failed lines% 𝑆𝑙. 

(A) (B) 
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Figure 5.4: The load loss % 𝑆𝑃 due to different cascade failure scenarios without 

and with CSC. 

 
Figure 5.5: The failed lines % 𝑆𝑙 due to different cascade failure scenarios without 

and with CSC. 
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Figure 5.6: Change in Cascade failure size for different failure scenarios due to 

using CSC mitigation strategy. (A) CSC, K=2, while (B) CSC, K=3.  

 

  

(A) (B) 
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Chapter 6 : SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 SUMMARY 

The overarching goals of this dissertation were to enhance the energy infrastructure 

networks robustness and overcome the challenges facing the existing simplified 

topology-based models. This has been achieved through the development of a 

dynamic cascade failure physical flow-based model to simulate the failure 

propagation throughout a high-fidelity model, as well as provide a risk mitigation 

strategy to suppress the cascade failure propagation and mitigate the risk of 

catastrophic system-level cascade failures (systemic risks). As a first step in this 

endeavour, a comprehensive review has been presented to introduce the Complex 

Network Theory (CNT) metrics, topological network characteristics, and several 

centrality measures. Furthermore, this review described the different network-

based model classes and highlighted the need to consider the dynamics and physics 

behaviours in simulating the infrastructure networks.  

A CNT was utilized to evaluate the network vulnerability by identifying the 

critical network components considering unweight and weight network approaches. 

Network vulnerability is quantified considering five different scenarios (i.e., guided 

by either the degree, Eigenvector, PageRank, betweenness, or the closeness 

centralities) through evaluating two key performance metrics—Topology and 

Functionality indices. Therefore, the network robustness was evaluated by 
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subjecting the network to stress tests through removing nodes either randomly or 

specifically targeting them based on their centrality measures. Furthermore, the 

model implemented a mixed strategy to improve the network robustness by 

isolating the key components from the cyberattacks. 

The dynamic Cascade Failure Model (CFM) was subsequently established 

by adopting the Direct Current (DC) power flow model to provide a physical flow-

based model for the network representing the network physics behavior. The 

dynamic CFM has been utilized to provide two key vulnerabilities indices; Link 

Vulnerability Index (LVI), for transmission lines the failure probability according 

to different failure scenarios; as well as a Node Importance Index (NII), for power 

(sub)stations ranking according to the resulting cascade failure size. Furthermore, 

the LVI has been used to construct a power transmission line vulnerability map that 

can be utilized to rank the maintenance priority, whereas the transmission lines with 

high probability failure have a higher priority to get updated or changed in the 

network upgraded schedule. 

Finally, a systemic risk mitigation strategy was developed through 

integrating operation- with structure-guided strategies to minimize the 

consequences of catastrophic large-scale blackouts. The operation-guided strategy 

was implemented through dispatch and load shedding to rebalance demand and 

supply after disruptive events. The structure-guided strategy adopted an ICI 

approach by employing a CSC algorithm. To evaluate the effectiveness of the 
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mitigation strategy a real power scale grid was modelled under different cascade 

failure scenarios to compare the cascade failure size with and without the proposed 

algorithm for different sub-grid numbers. 

 CONCLUSIONS AND CONTRIBUTIONS 

The dissertation intensively investigated the previously outlined objectives of the 

research and studied the vulnerabilities and network robustness through utilizing 

CNT models, simulating cascade failure propagation based on a physical flow-

based model, and providing a systemic risk mitigation strategy. In light of the 

research findings reported in this dissertation, the following sections present the 

conclusions and contributions for Chapters 2 to 5.  

6.2.1. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 2 

Review of CNT characteristics and metrics are presented and discussed in both 

static and dynamic approaches. Afterward, simulation approaches and applications 

to infrastructure were presented to investigate the main challenges facing CIN 

studies and the opportunities of dynamic modelling in providing more accurate and 

realistic simulation for the infrastructure networks. The main conclusions and 

contributions from Chapter 2 are: 

• Static CNT models have numerous limitations that can result in an inadequate 

assessment of the vulnerability and robustness of the infrastructure networks. 



Ph.D. Thesis – M. Salama   McMaster University – Civil Engineering 

 

 

208 

 

 

• Dynamic network measures provide more realistic and accurate results 

compared to static ones. Therefore, the dynamic network simulation approach 

can be considered a more appropriate framework to simulate and analyze 

infrastructure networks. 

• Most previous studies simulate infrastructure networks based only on the 

connectivity and topology properties (i.e., topology-based model) with 

disregarding flow and physical properties within the network. Such simplified 

models lack the ability to capture the physics nature of these networks. 

• Physical flow-based models yield more realistic analysis results, especially 

when simulating the dynamics of cascade failure, developing systemic risk 

mitigation strategies, and enhancing the resilience of infrastructure networks. 

6.2.2. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 3 

The CNT models were developed considering unweighted and weighted network 

approach to study the network vulnerabilities and evaluate robustness against 

random and targeted cyberattacks. A family of centrality measures, including 

degree, Eigenvector, PageRank, betweenness, and the closeness centralities were 

calculated to identify the critical network components. Furthermore, a mixed 

strategy was introduced to assess the effectiveness of isolating key network 

components to the robustness. The main conclusions and contributions from 

Chapter 3 are: 
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• The CNT centrality measures provide a quick and initial indication to rank the 

importance of the network nodes (i.e., substations in case of power grids).  

• The power grid is highly vulnerable to targeted cyberattacks. Subsequently, 

recognizing the critical network components in advance can support the 

operators in enhancing network robustness by upgrading, protecting, 

monitoring the vulnerabilities, and limiting the hacker’s access to key network 

nodes. 

• For random cyberattacks, the proposed mixed strategy can boost the grid 

robustness by one and half times compared to random cyberattacks without the 

mixed strategy. 

• Between the various centrality measures that have been used to rank the 

substations importance, current flow betweenness centrality is the most 

representative for substation importance. Whereas targeted cyberattacks based 

on the current flow betweenness centrality are the most destructive attack 

scenarios. On the other side, the Eigenvector centrality in both unweighted and 

weighted networks is not successful in identifying the key nodes and 

cyberattacks based on it are the least destructive cyberattack scenarios. 

• However, the degree centrality depends on the local connectivity, removing 

degree hubs nodes has a sizeable global effect on overall network performance. 
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6.2.3. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 4 

The dynamic cascade failure model based on a physical flow-based model was 

developed to simulate the failure propagation through the network. Two 

performance measures were used to evaluate the network robustness through 

topological and functional characteristics. Afterward, the CFM has been 

utilized to compute two vulnerability indices related to the main network 

components (i.e., transmission lines and substations). The main conclusions and 

contributions from Chapter 4 are: 

• The dynamic cascade failure model is utilized to compute network components 

vulnerability indices: the vulnerability of links (i.e., link vulnerability index) 

and the importance of nodes (i.e., node importance index). 

• The link vulnerability index is used to construct the overall grid vulnerability 

map, which highlights the vulnerable grid transmission lines based on their 

probability of failure over different random scenarios. 

• For the demonstrated grid application, it was found that about 12% of the 

transmission lines underwent a primary failure. The number of lines that 

underwent secondary failures was on average three times the primary ones. In 

total, 36% of all links have total failure probability larger than 0.5%, and the 

maximum total failure probability noted was 12%.  
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• NII provides an effective way to rank the relative importance of the substations 

in the power grid based on the cascade failure size that results in the network 

due to the initial failure of this substation. Therefore, NII will support regulators 

and decision-makers to optimize the upgrade schedule constrained by available 

resources. 

• The correlation between NII based on the dynamic cascade failure model and 

based on centrality measures is poor. This low correlation indicates that 

neglecting the physics pertaining to power flow redistribution and failure 

propagation may provide misleading conclusions. 

6.2.4. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 5 

Utilizing the CFM developed in Chapter 4, a systemic risk mitigation strategy was 

introduced to enhance the network robustness and suppress the failure propagation. 

The proposed mitigation strategy is based on the ICI approach implemented using 

CSC to select the optimal network splitting that minimizes the power flow 

disruption. Furthermore, operation- and structure-guided strategies were integrated.  

The main conclusions and contributions from Chapter 5 are: 

• The proposed systemic risk mitigation strategy based on the CSC algorithm 

reduces the cascade failure size based on the power flow to the half for the 

worst-case failure scenario (i.e., boost the network robustness to the double). 

Also, the grid reaches the stability earlier by applying CSC for both cluster cases 
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in comparison with the grid failure scenario without CSC (i.e., the cascade 

failures steps are reduced), which in return reduces the restoration time and 

enhances the network response to the disruptive events. 

• A significant improvement in grid robustness can be noticed by applying the 

proposed systemic risk mitigation strategy to the top 15 worst-case failure 

scenarios in case of using the CSC with two sub-grids. While less effective 

improvement can be noticed by increasing the number of clusters to three. 

• The results emphasize that intentionally splitting for the power grid controlled 

by the proposed mitigation strategy is an effective strategy to suppress the 

cascade failure propagation. However, this ICI should be implemented 

diligently, or it might destabilize the grid.  

• The proposed mitigation strategy is a low-cost corrective action applicable for 

any failure scenarios not only the worst-case scenario and can be implemented 

directly without redesign, reinforcement, or additional redundancy required for 

the network interdiction strategies. 

 

 RECOMMENDATIONS FOR FUTURE RESEARCH 

The research in the present dissertation focuses on the “draw-down” phase of the 

infrastructure network resilience to analyze the power grid vulnerability and 

evaluate its performance under disruptions triggered by component failures. 
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Furthermore, the CNT centrality measures and vulnerability indices based on the 

CFM developed in this study represent an early effective indication tool that can 

support the grid operators and policymakers with quick and accurate predictions of 

network vulnerabilities and failure propagation, which enhance the network 

robustness under abnormal conditions. Moreover, the proposed mitigation strategy 

represents a line of defence to minimize the possibility of catastrophic large-scale 

blackouts. In light of the findings/results presented in this dissertation, this section 

presents possible research extensions that can be carried out to expand the current 

developed CFM model and the proposed mitigation strategy. 

• The CFM can be coupled with AC power flow model to analyze the transient 

stability and model sympathetic tripping. Furthermore, the model can be used 

to study other infrastructure networks that are subjected to repeated failures and 

cascade propagations, such as transportation networks. 

• The CFM can be extended to the “draw-up” resilience phase by including 

various maintenance scenarios based on the developed indices and other 

conventional ones to cover other resilience metrics (i.e., rebuild and 

reconfigure). 

• The dynamic in the CFM can be extended to account for the changing of service 

demand, topological adjustments, the growth of the interdependencies, in 

addition to the post-event improvements such as enhancements of component 

capacities, and the integration with the new technologies. 
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• Regarding the mitigation strategy, the CSC algorithm can be extended to 

consider multi-objective to minimize power flow disruption, minimize load 

shedding in each sub-grid, and distribute the generators between the sub-grids. 

Therefore, the enhancement algorithm can determine the suitable number of 

sub-grids and the most suitable time for implementing the ICI to the grid. 

• Finally, the developed CFM model can be integrated with other CIN models to 

simulate the interdependencies between the different infrastructure networks to 

enhance the network-of-network efficiencies. 
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