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Lay Abstract 

 The origin of biological life can be traced back by looking at the common themes 

between modern cellular processes. The role of RNA polymers seems to be of great 

importance, making us believe that an RNA world existed leading up to life’s origin. During 

this time, RNA would act as both a genetic material and a catalyst. To examine this theory in 

more detail, we use computational modeling to recreate and explore the various potential 

chemistries and conditions on the early Earth. Specifically, we explore the problems that exist 

for the replication and production of RNA polymers. Our results can be used to guide future 

theoretical and experimental research of the RNA world. 
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Abstract 

 The universal traits of cellular expression and replication in modern life point to the 

existence of an ancient RNA world. Leading up to the origin of life, this stage of evolution 

utilized RNA as the genetic material, and as a catalyst in the form of ribozymes. Although it 

is expected that a polymerase ribozyme was required for the efficient replication of RNA, it is 

also likely that the earliest form of replication took place under non-enzymatic conditions. 

There are several problems with the current scenarios depicting non-enzymatic RNA 

replication, thus we aim to examine them in more detail using computational models. We first 

consider the relationship between the thermodynamics of RNA base pairing and non-

enzymatic nucleotide addition in an attempt to model the rate of primer extension. Our 

predicted rates reveal the model parameters to be too simple to produce reliably accurate 

results. For now, we should simply use available experimental rate data, until we have access 

to more data and less unknown parameters. Nevertheless, the model indicates that the primer 

extension rate does depend on thermodynamics of base pairing, and a more accurate model 

can be of great use when creating realistic complex models of RNA world scenarios. In 

chapter 3, we investigate non-enzymatic RNA replication under temperature cycling using 

computer simulations. When starting with a diverse mixture of sequences, partially matching 

sequences can reanneal in configurations that allow continued strand growth. This is in 

contrast to the case of having multiple copies of matching sequences, where reannealing 

occurs quickly upon cooling. We find that, starting with short oligomers, strands can grow 

over multiple cycles to produce long sequences over 100 nucleotides in length. The small 

strand extension per cycle does not produce replicates of any one specific sequence. This 

relates to the work done in chapter 4, where we look for the presence of a virtual circular 
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genome within our simulations. In a virtual circle, short overlapping RNA sequences will 

make up a mutually catalytic set. Within the diversity of our simulation, virtual circles are 

rare, and require a specific level of starting mixture diversity along with no input of new 

sequences. Continued replication of the diverse sequence mixture and emergence of long 

strands may eventually lead to the creation of rolling circles and ribozymes.  
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Chapter 1: Introduction  

When discussing the origin and development of primitive life on Earth, it is important 

to consider the emergence of the first metabolically active cells. In the modern biological 

world, the cells of all living organisms share a similar biochemistry, suggesting the presence 

of a last common ancestor (LCA)1.  The LCA can be comparable to early unicellular 

microbial life. Thus, it was already quite complicated and was likely preceded by a much 

simpler kind of protocell. To fully understand how life originated, we must obtain a clear 

picture of how abiotic processes on the primitive earth could have led to the emergence of 

such a cell. A defining component of living organisms is their ability to propagate genetic 

information through an interconnected network of macromolecules. Specifically, DNA stores 

the genetic information to be passed on through the help of functional proteins, which are 

synthesized using the genetic code and an RNA intermediate. The complex interconnected 

DNA-RNA-protein network we study today was likely not present on the early Earth. 

Alternatively, there is reason to believe that a much simpler RNA world preceded the DNA-

RNA-protein world. The transition between some primitive biochemical world and 

contemporary organisms constitutes the evolution of life.  Thus, the development of life is 

dependent on some biochemical self-contained system capable of evolution. The RNA world 

theory proposes that the early origins of life revolved around RNA’s potential for both storing 

information, as well as replicating this information while allowing for mutations and 

evolution through natural selection2.  
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1.1 Basis for the RNA World Theory for the Origin of Life 

The phylogenetic tree of life connects three domains, these being Archaea, Bacteria, 

and Eukaryote. The LCA is positioned as the ancestor to the three domains between the 

Bacteria and Archaea-Eukaryote branches, making Eukaryotes more closely related to 

Archaea than to Bacteria3. This idea allows us to make connections between traits seen within 

modern biology and be poised in assuming their presence within the LCA. With this in mind, 

we should start to think about the fundamental characteristics that all modern life relies on. 

The central dogma of molecular biology explains the flow of information from DNA to 

functional proteins in modern life4. It is a universal trait, thus some form of this should have 

been present in the LCA. The precise transfer begins at the DNA and is then sent to an RNA 

intermediate through transcription. RNA is translated to functional and structural proteins 

which are essential cellular components. From this, we see RNA only being useful as a 

temporary carrier of information, and rather expendable when compared to DNA. A deeper 

look, however, reveals several other important roles, especially regarding the translation of 

proteins.  

Indeed, RNA shows a somewhat close connection to protein in modern life. Similar to 

how proteins hold information which can interact in functional and useful ways, RNA can 

fold and interact in a variety of useful mechanisms. Its broad range of functions are important 

for regulating gene expression, and assisting protein translation, and it can enact some of its 

functions through catalytic properties. These catalytic RNA are referred to as ribozymes. A 

well-known and universally conserved example of a modern ribozyme is positioned within 

the ribosome as the active site for catalyzing the synthesis of proteins5. Another universally 

conserved function shown in ribozymes is that of cleavage. Specifically, RNase P is shown as 
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being vital in translation, catalyzing the cleavage of the pre-tRNA backbone6. During DNA 

replication, it is observed that initiation is done through the synthesis of an RNA primer7. 

This counterproductive step is interesting as the switch to DNA primers would save the many 

resources required in the removal of primers and additional extension of DNA at the ends of 

genomes8. With more discoveries regarding the various roles of RNA, we can postulate its 

importance within the cellular ancestry as an important macromolecular precursor. 

More recent discoveries show the synthesis of DNA nucleotides depending on the 

initial synthesis of RNA nucleotides. Enzymatic processes subsequent to ribonucleotide 

synthesis via specialized proteins must occur to allow for the conversion of the 2’ hydroxyl 

group and uridine to thymine9. In addition to DNA nucleotides, many important coenzymes 

are also derived from RNA, namely NADH, FADH2, CoA, and ATP. All these various traits 

mentioned point to an important place for RNA as an early and important macromolecule 

during the origin and development of early life. If we assume that a much simpler molecular 

interplay existed before the evolution of complex macromolecular cooperation, it is 

reasonable to assume RNA emerged as the first important macromolecule. Its many 

connections to both proteins and DNA enable RNA to take on a variety of roles. Also, its role 

as derivatives of important molecules may signify their absence at an early evolutionary 

point, in turn making the presence of RNA primers, coenzymes, and even ribozymes in 

modern biology a sort of relic of an ancient RNA world. It can be postulated that previous 

forms of ribosomes were made up exclusively from RNA, and later evolved to have 

surrounding proteins10. The hammerhead ribozyme, a modern ribozyme which catalyzes self-

cleavage through a transesterification reaction, is another example. This ribozyme has been 

found to be ubiquitous among genomes of several different kingdoms, and said to be a relic 
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from the RNA world11. So then, the time of the RNA world is made in reference to when 

RNA acted as both the molecule responsible for storing genes, and catalyzing reactions10,12.  

1.2 The Emergence and Phases of an RNA World 

The different stages of the RNA world, as well as the transitions between these stages, 

each contain their own set of challenges. To start, we must consider the synthesis of 

nucleosides and their components, which then need to polymerize through de novo, and later 

templated mechanisms. Where we start seeing signs of “life” is when RNA polymers begin 

self-replication and increase this rate exponentially due to evolutionary selection mechanisms. 

This can be considered a “chemical evolution” event since it does not yet meet the 

qualifications for biological life13. 

1.2.1 Synthesis of RNA Nucleotides 

 Nucleotide synthesis requires an abundance of starting material on the prebiotic Earth 

capable of forming the key components of RNA, namely ribose and the four nitrogenous 

bases. There are studies discussing plausible routes for the prebiotic synthesis of these 

components, but more challenging is the synthesis of nucleotides from these molecules. 

Although synthesis mechanisms remain unknown, there are two main domains of thought 

regarding this topic. The top-down perspective argues for the creation of RNA nucleotides 

through modern mechanisms, except without the initial help from enzymes14. The bottom-up 

perspective argues for a different set of reactions that the ones in modern life, which would 

have later came about through evolution15. The universal method for RNA nucleotide 

synthesis has been shown to possibly exist under non-enzymatic conditions, given the 

presence of iron and other metals16–18. These reactions can be enhanced later through the help 
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of ribozymes. In contrast, RNA may have instead used simpler precursors than the ones used 

universally in modern life. Many studies have shown the synthesis of nucleobases and ribose 

sugars from simple reagents, as well as their presence in meteorites19–21. Some problems 

remaining with regards to RNA nucleotide synthesis is its impure chemical production, 

resulting in many undesired side products22. Along with this, the problem of chirality must be 

solved, requiring us to justify the transition to a homochiral right-handed ribose mixture from 

a heterochiral prebiotic mixture of nucleotides. Although it is generally accepted that RNA 

nucleotides were scarce on the primitive Earth, there is evidence showing the synthesis of 

nucleotides through the help of ribozyme activity23. However, a major challenge still lies 

within the context of prebiotic chemistry. Before we can consider the emergence of 

ribozymes, we must think about how RNA could have been synthesized prebiotically. 

1.2.2 Synthesis of RNA Polymers 

There are a variety of factors and challenges to be considered for each prebiotic 

synthesis reaction step of RNA. To start, we need to consider whether RNA was synthesized 

in a one-pot reaction or a sequence of reactions taking place in different environments24. 

Sequential synthesis of RNA can be considered advantageous since it reduces the likeliness 

of producing an intractable mixture compared to the one-pot alternative24. However, some 

promising studies have shown success with one-pot reactions, alongside other interesting 

observations such as multiple beneficial functions emerging from a single molecule, e.g. 

phosphate25. The importance of phosphate plays into the requirement of the RNA world 

following the synthesis of nucleotides, namely RNA polymerization. We can generally 

classify RNA polymerization into three classes. First is the synthesis of RNA through 

spontaneous ligation of nucleotides or oligomers, resulting in random sequences26. The 
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process of forming strands of RNA is generally thought to require activation of monomers. 

Along with this, there are many other proposed methods for decreasing the activation energy 

of nucleotide ligation non-enzymatically25. For example, the spatial position and orientation 

of monomers can be a contributing factor. Studies have shown the use of templating to be 

especially effective at producing polymers. The use of montmorillonite clay as a catalyst has 

shown success in binding RNA to produce long polymers27. Guiding monomers into the 

optimal position for monomer backbone interactions seems to be one of the most effective 

ways of lowering the activation energy. The use of a complementary RNA template to 

polymerize RNA is thought to be the second class of polymerization. The third class is 

differentiated from the second through the addition of a polymerase ribozyme.  

During random spontaneous polymerization, there exists an equilibrium distribution 

of lengths. Since bond formation is reversible, we can expect a distribution where the 

concentrations of polymers decrease by a constant ratio for every nucleotide increase in the 

length28. This constant relies on the rate of bond formation and generally predicts a low 

concentration of long polymers in prebiotic aqueous environments. In fact, without the use of 

activated monomers, even short polymers are rare29. For this reason, alternatives 

environmental conditions have been proposed. Examples include the previously mentioned 

use of clay, as well as lipid and salt environments. Lipids have been shown to limit the 

available space of nucleotides in a dry phase, driving polymerization due to ordering the 

nucleotides in a desirable orientation. Salt crystals formed in dry phase also have a similar 

effect. From this, wet-dry phases can be shown to generate polymers up to 300 nucleotides in 

length without requiring activation of nucleotides30,31. Overall, the wet-dry conditions 
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promote a higher rate of forming long polymers, but at the cost of requiring a less common 

type of environment.   

RNA synthesis using a complementary RNA template sequence classifies an 

important stage in the emergence of life. For transfer of information to occur, RNA must 

replicate whether it be through non-enzymatic or ribozyme catalyzed mechanisms. Both have 

shown to hold their own challenges. One possibility is that random spontaneous RNA 

synthesis eventually leads to the emergence of a specific ribozyme, at which point replication 

would begin. This scenario skips past replication in non-enzymatic conditions. Experimental 

studies have shown functional self-replicating RNA ribozymes. RNA ligase ribozymes have 

shown replication by interacting with two specific sequence substrates and catalyzing their 

ligation32,33. Similarly, other RNA ribozymes have been discovered which can self-replicate 

through the assembly of specific oligomers34,35. The issue with this type of replication is with 

their reliance on inputs of specific sequence substrates, which would be rarely formed 

spontaneously. Polymerase ribozymes have also been worked on for quite some time, aiming 

to catalyze primer extension reactions similar to modern protein polymerases. Up to now, 

there have been many advancements in creating a minimized polymerase ribozyme capable of 

binding generic RNA sequences and achieving high rates of synthesis36–38. However, these 

ribozymes lack the ability to self-replicate, limiting their usefulness. It seems that being able 

to replicate under non-enzymatic conditions may be necessary to allow for the emergence of 

different ribozymes and a variety of available sequence substrates. RNA synthesis through 

non-enzymatic addition of monomers or oligomers has been shown experimentally39,40, 

providing a way of quickly synthesizing long strands along with the transfer of information. 

One main problem is the difficulty in separating double stranded RNA products without a 
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catalyst41. Multiple rounds of replication seem impossible with longer templates but can still 

be done under conditions that allow for temperature cycling to drive strand separation. 

1.3 Mechanisms of Non-Enzymatic Template-Directed RNA Synthesis 

The commonly cited reactions involved in the de novo synthesis of a single RNA 

strand are the activation of nucleotides, followed by the interaction between the 3’-hydroxyl 

and the 5’-phosphate of two RNA molecules10. Some of the plausible forms of activated 

nucleotides include nucleoside 5’-polyphosphates, and nucleoside 5’-phosphoramidates. A 

major problem to consider with regards to non-enzymatic polymerization is the rate of the 

ligation reaction when compared to the hydrolysis rate, or the rate at which polynucleotides 

break down. For example, a polyphosphate activation group would not be able to compete 

with hydrolysis in a non-enzymatic setting, and thus would not be an ideal activation 

mechanism in this context. In contrast, the phosphoramidate activated nucleotides, usually in 

the form of nucleoside 5’-phosphorimidazolides, are more plausible and used frequently in 

experimental models. As mentioned previously, the use of a templating substrate is likely to 

have been involved in non-enzymatic polymerization. As mentioned in a review by Szostack, 

there are eight major challenges standing in the way of an experimentally reproducible 

prebiotic RNA replication cycle41. One of these challenges is that oligomerization of RNA 

tends to produce more 2’-5’ linkages compared to the 3’-5’ linkages that we observe in 

modern RNA. On the other hand, using montmorillonite clay as a template seems to produce 

mainly 3’-5’ linked oligomers, likely because of the way it orients the RNA prior to 

ligation27. Other minerals should also be tested to examine their effectiveness as templates 

compared to montmorillonite. Additionally, we can consider the use of RNA templates in this 

regard. The use of a specific activation method using 5’-phosphor-2-methyl-imidazolide (2-
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MeImp) has been shown to maintain strict regiospecificity of 3’-5’ linkages, although only 

for a polymerization of oligo-G’s on a poly-C template42. Metal ions such as Zn2+ can also be 

used as catalysts to drive increased formation of 3’-5’ linkages43. Nevertheless, obtaining 

complete regiospecificity is difficult and rare, even under such conditions. Experimental 

exploration of regiospecificity still remains limited due to the difficulty of producing mixed 

2’-5’ and 3’-5’ linkages. However, experiments on the effect of ribo/deoxyribo backbone 

heterogeneity on ribozyme structure and function have so far shown minimal deviations41. 

The implication that backbone heterogeneity may not limit prebiotic RNA replication is 

promising, but the evidence is limited.  

A more severe challenge is the high melting temperature of long RNA duplexes, 

making strand-separation an unlikely event in most primordial Earth conditions. This is one 

challenge which we will focus on, along with the problems of fidelity and strand reannealing. 

If we assume that an RNA complementary strand can synthesize on a template with little 

error, then the resulting duplex product would be at a dead-end unless there is some 

separation mechanism. Increasing the error rate could act as such a mechanism for strand 

separation, since more mismatches would mean greater destabilization41. On the other hand, 

propagation of advantageous information relies on replication with good fidelity. The error 

rate required for this is approximated to be less than the reciprocal of the number of 

functionally important bases41. This would mean that as the genome size increases, the 

minimum fidelity must also increase. A study by Leu et al. proposes that the transition from 

RNA to DNA is important since DNA would decrease the error rate by about half44. 

However, with RNA they report an average error rate of about 17%. The topic of fidelity 

needs to be explored further to understand more robust mechanisms for decreasing RNA 
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replication error rate. Using well established free energy parameters for duplex stability based 

on nearest-neighbor interactions, estimates of error rates have been shown to correlate with 

experimental observations44. Additionally, the parameters account for the GU wobble pairs, a 

mismatch having similarities to Watson-Crick pairing, resulting in a greater base-pair stability 

compared to other mismatches. An effect of mutations during polymerization is the decrease 

in RNA addition rate following a mismatch base pair. Studies have shown that further 

extension is stalled in both enzymatic and non-enzymatic systems45. However, this is seen to 

have a positive impact on overall sequence fidelity. The stalling effect results in faster 

complete polymerization of strands with fewer errors. Therefore, high fidelity strands are 

more readily available for future replication, and the average fidelity is increased41.  

With regards to strand separation, it might be possible that temperature cycling in 

certain primordial Earth environments played an important role. For example, high 

temperatures could emerge temporarily in a body of water from hydrothermal vents. As the 

hot water dissociated into neighboring lakes or ponds, a subsequent cooling event would 

allow the separated strands to bind and synthesize new complementary products46. Generally, 

it is thought that low product strand concentrations must be maintained to allow formation of 

new strands. Once a high enough concentration of strands is reached, complementary strand 

reannealing would occur faster than primer binding and extension47. A few alternative 

mechanisms of non-enzymatic RNA replication have been proposed to solve the problem of 

strand separation and reannealing. These include strand displacement and rolling circle 

replication. In strand displacement, short oligonucleotides are said to bind and displace a part 

of the existing RNA duplex, creating a branch point where further extension of the oligomer 

can create a replicate while displacing the old complement48. However, this process can also 
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be quite slow as the invade oligonucleotide can also be displaced and separated as the existing 

complement reanneals again. The rolling circle replication mechanism, common to viroids, 

overcomes this by assuming a circular strand that does not require a new oligomer to invade. 

The complementary sequence continues to grow and displace itself, eventually being cleaved 

to produce a new replicate47.  

Regardless of the mechanism, non-enzymatic extension of RNA on a template should 

be reasonably efficient and processive to compete against hydrolysis and other potential 

mechanisms of strand loss. Different activation methods have shown improved primer 

extension kinetics and product yield, like the use of 2-aminoimidazole activated nucleotides49. 

Replication has also been shown using ligation of tetramers instead of monomer addition, 

allowing the formation of long RNAs quickly50. Nucleotides have been used in more recent 

studies as activating groups. The mechanism involves the formation of an imidazolium-

bridged dinucleotide intermediate which binds next to the primer51. The primer extends by 

one nucleotide and displaces the activated nucleotide. This can improve the rate of monomer 

addition, and potentially the fidelity of replication due to the increased base pairing stability 

of dinucleotide binding compared to a single nucleotide. Additionally, these mechanisms 

have been shown to form replicate strands within model prebiotic vesicles50,52. For replication 

within vesicles, the selective membrane barrier would likely only allow oligonucleotides 

shorter than tetramers to pass through53. This means longer strands would have to be 

synthesized within the vesicle or encapsulated from the outside environment during vesicle 

formation. The benefits of compartmentalizing sequences within vesicles partly comes from 

its function in concentrating the components within. This can assist in driving catalytic 

reactions54. The increase in concentration of other substances, such as Mg2+ ions have also 
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been shown to drive both non-enzymatic and ribozyme based replication mechanisms36,52. 

Lastly, the division of a genotype between several vesicles can be beneficial in the repression 

of short parasitic RNA which can inhibit the replication of genomic sequences, ultimately 

destroying the genome55. Once a genome or a set of useful genetic sequences have emerged, 

their maintenance would be essential for prolonged replication and the potential for selection 

and evolution.  

1.4 Virtual Circular Genomes 

 The idea of a virtual circular genome was proposed by Zhou et al. with the aim of 

solving some of the persisting difficulties facing long genomic sequences in the RNA 

world56. Namely, we have already mentioned uncertainties regarding strand elongation over 

long template sequences, strand separation, and strand reannealing. Furthermore, a constant 

input of defined RNA primers is required for continuous replication, even for short strands. In 

a circular genome, this is not an issue since there is no specific replication starting point. 

Though, circular strands require mechanisms for cleavage and re-circularization, usually 

requiring the help of a catalyst or ribozyme57. In response, Zhou et al. propose a virtual 

circular genome, where the circular sequence on both complementary strands is split into a set 

of overlapping oligonucleotide sequences comprising all or most possible start and stop 

sites56. Genome replication could occur through template-directed primer elongation 

mechanisms. We can likely assume a decrease in the concentration of strands as RNA length 

increases, but this interestingly results in an advantageous property for the virtual genome 

hypothesis. It can be shown that elongation of all sequences in the mixture using genomic 

templates by as little as one nucleotide may result in replication of the entire set of genomic 

strands.  
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 Replication is still limited to environments that can allow for strand separation, 

namely through temperature cycling. Over many cycles, strands can bind in various 

conformations eventually leading to at least a small increase in length for all genomic RNA 

sequences. The presence of a specific set of complementary sequences means every sequence 

will always have a template for continued growth, which also drives the potential for full 

replication of the genomic set. Although this process is intriguing, it is important to 

contemplate how such a mixture could emerge or be maintained. The authors mention two 

potential ideas with regards to the emergence of a virtual circular genome. First, 

encapsulation of a high concentration of RNA polymers within vesicles could eventually lead 

to spontaneous emergence of a genomic set. Second, the set of oligonucleotides could emerge 

over time using a long circularized physical sequence as a template56. With regards to 

maintenance of the genome, it was proposed that this would be dependent mainly on the copy 

number of the different sequences. A high copy number would make it quite unlikely for 

parts of the genome to be lost in the case of vesicle division. 

 Within this scheme, RNA sequences encoding ribozymes would have to be assembled 

from the set of shorter strands in order to function. The main mechanism mentioned by Zhou 

et al. involves fast ligation of oligonucleotides assisted by complementary splints56. Evolution 

of ribozymes is mentioned to be dependent on copy number of genomic strands. A high copy 

number would make it difficult for random mutations to manifest their effects. However, it is 

stated that over several random sequence segregation events during vesicle division, mutant 

sequences could become fixed and demonstrate their impact56. Lastly, the emergence of an 

efficient polymerase ribozyme over the evolutionary period could result in the transition away 

from a virtual circular genome, possibly to a more sophisticated physical genome structure. 
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The complexity of this hypothesis poses a challenge for experimental investigation. Synthesis 

of virtual genome sets, and construction of the appropriate vesicles and environmental 

conditions can be quite tedious and expensive. Using a theoretical modelling approach can 

guide future experiments by providing insight into potential outcomes.  

1.5 Realistic Computational Modelling of RNA Replication 

 Computational modelling can be of great help in uncovering uncertainties regarding 

non-enzymatic RNA replication which would be difficult to do through experiments. This is 

mainly resulting from the lower requirement for time and cost, producing predictive insights 

which can lead to future productive experiments. We will be focusing on constructing 

realistic models of RNA replication. These models are generally built upon parameters 

provided through experimental data. They can provide understandable results which can 

guide short-term research, overall becoming a powerful form of utility for RNA world 

research as the amount of experimental data increases. Simulations are constructed mainly 

following the rules of thermodynamics and chemical kinetics. Randomized algorithms such 

as the Monte Carlo or Gillespie algorithms can be used to generate stochastic reaction events 

involved in RNA replication, such as base pairing, ligation, polymerization, strand separation, 

and hydrolysis. The probability of reaction events depends on their rates which can be 

directly obtained or predicted from experimental research.  

 Thermodynamic parameters for RNA folding stabilities are available from studies that 

use nearest neighbor prediction methods58. These predictions are mostly derived from optical 

melting data from experiments, and account for the stabilizing effect of stacking interactions 

between adjacent base pairs59. They have been determined for free energy and enthalpy 
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changes of Watson-Crick helices and GU pairs60, which can be used for predicting the 

probability of nucleotide base pairing during non-enzymatic template-directed RNA 

polymerization. These thermodynamic parameters can be useful in modelling primer 

extension rates during non-enzymatic RNA replication. Alternatively, there are available data 

for experimentally measured primer extension rates by single nucleotides, which can be 

directly implemented44,61. Though, this could limit the outcome of simulations based on the 

experimental error or constrained amount of data. 

1.6 Thesis Aims 

 Within this thesis, we aim to construct computational models to investigate non-

enzymatic RNA replication and provide insights regarding the emergence of long RNA 

polymers. Generally, we are focusing on the transition from the non-enzymatic to the 

enzymatic RNA world, so we assume the availability of nucleotides containing the four 

nitrogenous bases present in modern RNA: adenosine (A), cytosine (C), guanosine (G), and 

uracil (U). Specifically, we look at models of non-enzymatic template-directed RNA 

synthesis, as a potential source of creating long RNA sequences and propagating information 

through replication. 

 In chapter 2, we consider the relationship between RNA primer extension rate on a 

template and thermodynamic parameters of base pairing. We utilize a database containing 

nearest neighbor free energy parameters for Watson-Crick and GU base pairs60. These 

thermodynamic parameters are used in our model to predict non-enzymatic primer 

polymerization rates, depending on the base being added. We assume that the stability of base 

pairing of the incoming nucleotide is the limiting factor during polymerization. Using 
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experimentally measured nucleotide addition rates, we tried to fit our unknown parameters. 

We find that extension rates do depend on thermodynamics, but we cannot be certain about 

the accuracy of our model to predict RNA primer extension rates. Simply, there are too many 

unknown parameters and not enough experimental rate data to construct a reliable predictive 

model.  

In chapter 3, we construct computer simulations of non-enzymatic RNA replication 

starting with a diverse mixture of short oligomers. Our goal involves revisiting the strand 

reannealing problem during RNA replication when using temperature cycling. We find that in 

our more complex model, reannealing does not occur due to the high sequence diversity and 

numerous potential helix configurations. Small extension of strands over many cycles 

produces long RNA sequences, even at low polymerization and high mutation rates. This 

illustrates a possible scenario where sequences long enough to act as ribozymes can emerge. 

In chapter 4, we discuss the hypothesis put forth by Zhou et al. regarding virtual 

circular genomes and contemplate their plausibility within the context of our simulations. We 

find that our simulations are unlikely to converge onto a specific set of sequences capable of 

encompassing a virtual genome. If we start with a random mixture of sequences, the diversity 

needs to be just right in order to create a specific path of overlapping sequences. Too much 

diversity creates many branching paths unindicative of a specific virtual sequence, and too 

little diversity cannot create long enough genomes capable of carrying useful information. 

The conditions for achieving and maintaining a virtual genome seem to be too idealistic, 

leading us to favor a physical genome structure, such as rolling circles.  
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Chapter 2: Predictive Model of Non-Enzymatic Primer Extension using 

Thermodynamics of Base Pairing 

2.1 Methods 

Considering an RNA template-primer duplex, the model assumes a primer extension 

rate governed by hydrogen bond formation of incoming nucleotides to the complementary 

template. The regions of importance included in the model are the last base pair of the helix 

and the potential base pair formed through addition of a nucleotide to the first open template 

base. We consider two main parameters, the fraction of time the incoming nucleotide is base-

paired, and the ligation reaction rate. Let the net rate of extension, 𝑅𝑒𝑥𝑡(𝑋|𝑍𝑊, 𝑌), be equal to 

the product of the kinetic and thermodynamic terms:  

𝑅𝑒𝑥𝑡(𝑋|𝑍𝑊 , 𝑌) = 𝑅𝑙𝑖𝑔(𝑍𝑊 , 𝑋𝑌) ∗ 𝑓(𝑍𝑊 , 𝑋𝑌),  

where ZW is pair 1, XY is pair 2, 𝑅𝑙𝑖𝑔(𝑍𝑊, 𝑋𝑌)is the ligation rate given that X is annealed to 

the template, and 𝑓(𝑍𝑊 , 𝑋𝑌) is the fraction of time X is annealed to the template. Assuming 

a template strand with a primer growing in the 5’ to 3’ direction, ZW is the final bound 

nucleotide pair and XY is the incoming nucleotide (X) onto the open template base (Y), 

adjacent to W. This results in a (ZW , XY) base stacking interaction which contributes to the 

thermodynamic stability of the base pair. 𝑓(𝑍𝑊,𝑋𝑌) is determined using an updated nearest-

neighbour (NN) stacking energy dataset60. 𝑅𝑙𝑖𝑔(𝑍𝑊 , 𝑋𝑌) is assumed to be some constant 

which we will approximate using experimental data.  
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We assume that monomer binding and unbinding is much faster than ligation, 

creating an equilibrium between the off and on rates of monomers binding next to the end of 

the primer. Therefore, the fraction of time monomer X is bound to the template is 

approximated as:  

𝑓(𝑋|𝑍𝑊 , 𝑋𝑌) ≈ 
[𝑋]𝑒

(−
∆𝐺𝑍𝑊,𝑋𝑌

0

𝑅𝑇
)

1+[𝑋]𝑒
(−

∆𝐺𝑍𝑊,𝑋𝑌
0

𝑅𝑇
)

 , 

where [X] is the concentration of nucleotide X in solution, R is the universal gas constant, T is 

the temperature in Kelvin, and  ∆𝐺𝑍𝑊,𝑋𝑌
0  is the standard free energy of monomer binding. The 

NN stacking energies are known for every correct Watson-Crick set of pairs ZW and XY, as 

well as for GU pairs. However, the observed free binding energy is roughly one kcal less 

stable, meaning less negative, than the NN estimate62, and so we will refer to this difference 

as ∆𝐺𝑃𝑎𝑟𝑡𝑖𝑎𝑙(𝑍𝑊,𝑋𝑌)
0 . This gives us:  

∆𝐺𝑍𝑊,𝑋𝑌
0  = 𝑁𝑁(𝑍𝑊,𝑋𝑌) + ∆𝐺𝑃𝑎𝑟𝑡𝑖𝑎𝑙(𝑍𝑊,𝑋𝑌)

0 . 

We consider the current model to have one free parameter for fitting the Rlig(ZW , XY) 

constant. This means that Rlig is a single constant klig which is independent of ZW and XY. In 

other words, the incoming nucleotide base will not determine the rate of the phosphodiester 

bond formation reaction. Here, we assume that the net extension rate is being dominated by 

thermodynamics, and that variations between the Watson-Crick and mismatched base pairs 

are accounted for in the free energies of stacking. Also, increasing the number of parameters 

runs the risk of overfitting and minimizing the real-world application of the model. We would 

not want to fit the noise and experimental error of the observed rates, but rather a universal 
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constant. Since the NN stacking free energies are unavailable for non-Watson-Crick base 

pairs, we also left this as a variable parameter to be fit using experimental data. We used data 

from the results of two studies that measured the extension rate for each possible XY pair 

using similar experimental procedures44,61. These experimental rates are shown in Table 2.1. 

We assigned values for the variable parameters based on the minimum residual sum of 

squares between the experimental and theoretical extension rates. To compare our predicted 

theoretical rates, we plotted them on a log scale against the experimental rates from both 

studies. Our theoretical outputs took into consideration the experimental conditions44. Free 

energy calculations were converted from the original temperature of 37 to 22 degrees Celsius. 

We also used the same primer-template complex base pairs and included four times the U 

base nucleotide concentration. For the calculation of change in free energy, the neighbouring 

base pair ZW was set to GC.  

2.2 Results 

 Using available data of RNA base pair stacking energies and experimentally obtained 

primer extension rates, we created a model to predict primer extension rates based on 

thermodynamic parameters. The rates were calculated for every possible base pair. Our 

theoretical extension rates are compared to the experimental rates in figure 2.1 for each base 

pair between the incoming nucleotide and the template. A perfect prediction of the 

experimental rates is shown by a line where each measured rate equals the theoretical rate. 

Many of the measured experimental rates fall below the line of reference. The unlabelled 

group of points to the left are the mismatched base pairs for which thermodynamic free 

energies were unknown. A single parameter value was set for these mismatched pairs. The 

four unlabelled mismatches with higher predicted rate values are the base pairs where U was 
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the incoming base and was set to four times the concentration of other nucleotides. Values for 

extension rates reported in the two studies44,61 and our estimated rates are listed in table 2.1 

corresponding to each unique base pair interaction. 

 

Figure 2.1. Comparison of experimentally measured and theoretical monomer extension rates (h-

1) obtained from our model centered on thermodynamic base pairing stability. Data points are 

labelled with incoming nucleotide and template nucleotide bases, respectively. Unlabelled 

points include all non-Watson-Crick mismatched base pairs except for GU pairs. The dotted 

line indicates a perfect fit and acts as a point of reference, where estimated and measured 

rates are identical.  

 

For the Watson-Crick and GU base pairs, the difference in rate values do not follow a 

similar trend between the estimated rates compared to the measured rates. GU and AU base 
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pairs have comparable rates in the measured case but are quite different in the estimated rates 

specifically with G binding to U being much slower. C binding to G is also at a relatively 

high rate in the measured case, whereas its only slightly higher than the G to C binding case 

in the estimated rates. In both cases, the increase in extension rate follows the same trend, 

except for the switch between the U/G and A/U base pairing. The model predicted a higher 

extension rate when A binds to U compared to U binding G, whereas the opposite is true for 

the measured rates. Overall, the extension rates predicted by thermodynamics are generally 

higher for the Watson-Crick and GU base pairs compared to the experimental rates. Lastly, in 

the case of our fitted thermodynamic parameter used for mismatched base pairs, we observe a 

higher extension rate when U is the incoming nucleotide base. The measured rates do not 

show such a drastic increase in the rate for U binding.   
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Table 2.1. Comparing predicted primer extension rates after fitting of free parameters with 

experimental data of extension rates from studies by Leu et al.44 and Bapat et al.61.  

Template Incoming 
Nucleotide 

Theoretical Rate (h-

1) 
Experimental Rate (h-

1) from Leu et al. 
Experimental Rate (h-1) 
from Bapat et al. 

C G 8.2258 2.3 1.58 

C U 0.0843 0.0078 0.021 

C C 0.0211 0.0035 0.022 

C A 0.0211 0.0075 0.017 

G C 12.324 20 9.03 

G U 4.7219 0.91 0.48 

G G 0.0211 0.25 0.16 

G A 0.0211 0.035 0.04 

A U 5.606 1.1 0.53 

A C 0.0211 0.078 0.08 

A G 0.0211 0.12 0.17 

A A 0.0211 0.016 0.07 

U A 1.8618 0.55 0.92 

U C 0.0211 0.011 0.38 

U G 0.4987 0.35 0.12 

U U 0.0843 0.073 0.017 

 

 

2.3 Discussion 

   In general, our results show that based on the thermodynamic parameters used, 

estimated extension rates tend to be higher than the experimental rates for Watson-Crick and 

GU base pairs. These base pairs are the only ones for which we were able to obtain the NN 

thermodynamic parameters. Our fitted free energy stability parameter for the non-Watson-
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Crick pairs produced an extension rate which is somewhat close to the average measured rate 

for mismatches, which is about 0.065h-1. However, the mismatched measured rates fall within 

quite a large range, with the lowest being about 0.0035h-1 for C to C binding and the highest 

at 0.55h-1 for A to U binding. In a realistic model, this variation should be accounted for. 

Thus, we would require the thermodynamic parameters to be provided as they have now for 

GU pairs, or we would need to include extra parameters to account for the rate variation. Note 

that for this model, we only allowed one parameter klig to account for the rate of ligation 

between bound nucleotides. One way to obtain an overall closer fit to the experimental data 

would be to increase the number of parameters that define the ligation rate. If we increase the 

number of free parameters to two, we could account for a different rate of ligation depending 

on whether the bound base pair is a Watson-Crick base pair or not. This assumes that 

Watson-Crick base pairs sit differently compared to mismatches and would be in a more 

optimal position to drive the ligation reaction. Following this idea, the most complex case 

would include a different parameter for each base pair and each neighboring base pair, 

resulting in 256 free parameters. This case would not be possible since we would require 256 

observed rates within the experiment. Additionally, when we increase the number of 

parameters, we end up creating a model which would only be good at predicting the rates 

within the experimental condition. Rather, we would like to generalize the model be used in 

simulations which contain a variety of sequences and conditions not used in the experiment. 

Also, there are quite a few uncertainties regarding the thermodynamic parameters, which 

could likely account for the differences in the measured rates.  

 The individual NN parameter predictions for Watson-Crick and GU base pairs are 

reported for dimer base pairs. Since we consider monomer addition in our model, it is 
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probable that the NN stacking energies would not directly translate to this case. There are 

other NN parameters which are reported, like for the initiation of a duplex, or when dealing 

with helices ending in an AU base pair59. These parameters were not considered since it was 

uncertain if they would be relevant in the case of monomer addition. We mainly wanted to 

test a simple model to understand the dependence of extension rate on the thermodynamics of 

base pairing. It seems that this relationship does exist, but without the inclusion of more 

parameters from a greater amount of experimental data, the applicability of this model 

remains inconclusive. It may be true that the predictions can get close to the experimental 

data if we were to fit a greater number of parameters. However, we should consider that 

implementing the experimental rate data directly within a realistic computational model 

would be simpler and more accurate.  

It is also clear that the rates obtained from the experimental studies do not encompass 

a fully reliable sample. Apart from the low number of data points, there seems to be large 

differences in the rates obtained between the studies. Both studies follow the same 

experimental protocol and conditions, which means there may have been some considerable 

room left for experimental error due to the protocol design. They used ImpN activation of 

their RNA nucleotides, and specific concentrations to achieve detectable primer extension. 

Fitting extra parameters to only this sample set would not allow the model to achieve a 

universal applicability. Overall, the experiments have their limitations, and more data is 

necessary to make a reasonable model of this nature. 

Being able to predict primer extension rates with reasonable accuracy can allow for 

complex modelling of non-enzymatic RNA replication. Realistic models could be constructed 

involving base pairing configurations different than those measured in the experiments. This 
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could let us make predictive observations of RNA replication outcomes in a variety of 

theoretical conditions and on a larger time scale compared to experiments. For example, free 

energy of base pairing can be extended to dimer or oligomer binding, allowing the prediction 

of extension rates by these longer strands. The prediction of monomer addition can be used in 

complex models involving polymerization via monomer addition. These scenarios would 

include mixtures of various random sequences giving rise to different base pairing 

configurations and would be difficult to produce experimentally. A simulation of RNA 

template-directed synthesis using such mechanisms is shown in chapter 3, but experimental 

rates are implemented directly. An accurate predictive model could allow for quantitative and 

realistic results from the simulation, given that the other parameters are reasonably set 

according to experimental or early prebiotic Earth conditions. Overall, this study has 

accentuated the necessary interplay between theoretical and experimental frameworks 

required for the future of RNA world research. 
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Chapter 3: Computer Simulations of Non-Enzymatic Template-Directed RNA Synthesis 

Driven by Temperature Cycling 

3.1 Methods 

We carry out stochastic simulations which follow the steps of RNA synthesis in a 

finite volume of solution containing monomers and RNA strands. The simulation 

incorporates inflow of monomers and short oligomers created by random polymerization, 

pairing of complementary strands, strand growth via primer extension, nucleation of new 

primers from monomers on a template, ligation of neighbouring strands bound to the same 

complementary strand, melting of paired strands driven by temperature cycling, and loss of 

strands via outflow. At any given point, the program stores the sequences of all strands 

present, the positions of all helices connecting strands, and the number of available single 

monomers of each type of nucleotide. Rates of all possible reaction steps are calculated, and 

the Gillespie algorithm is used to select one possible reaction step with a probability 

proportional to its rate. A summary of the simulation parameters, along with their standard 

value used is shown in Table 3.1.  

The system begins with an initial number of monomers, N0 = 5000, of each nucleotide 

A, C, G and U, and an initial number, Ninit = 500, of oligomers of lengths in the range 4-10. 

These oligomers are assumed to be generated by random polymerization without a template 

and consist of random sequences of the four nucleotides. We suppose the oligomer length n 

has an exponential distribution, with a probability distribution 𝑃(𝑛) = 𝐴𝑛−4
, where  = 1/2 

and A is the constant necessary to normalize the distribution. This is the equilibrium length 

distribution likely to be achieved under spontaneous random RNA polymerization28. We cut 
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off this distribution at a maximum of 10, because longer sequences are very rare, and to make 

clear that sequences longer than 10 originate by templating reactions, not random 

polymerization. We assume that length l0 = 4 is the shortest length of primer that is stable 

long enough to initiate new strand growth. Dimers and trimers will also be present in the 

mixture, but we ignore them in this simulation because we assume that their rate of detaching 

from a template will be high, and that detaching is likely to occur before addition of new 

monomers to the primer. If dimers and trimers were included, there would be many on and 

off reaction steps that would change nothing but would slow down the program considerably. 

The mean length of the initial oligomers is 

 

    𝑛𝑖𝑛𝑖𝑡 =
∑ 𝑛𝑛−4𝑛=10

𝑛=4

∑ 𝑛−4𝑛=10
𝑛=4

 = 4.94.     (1) 

 

 

Table 3.1. Standard values of the parameters used in the simulations. 

Parameter Standard 

Value  

Meaning 

N0 5000  Initial number of monomers of each type (A, C, G and U) 

Ninit 500 Initial number of random oligomers 

 0.05 Fractional flow rate = fraction of strands lost at the end of each cycle 

Ninflow 25 Number of random oligomers flowing in per cycle 

l0 4 Minimum possible length of primers and helices 

 0.5 Parameter controlling exponential distribution of primer lengths 

knuc 0.1h-1 Nucleation rate constant per hour at the initial nucleotide concentration. 

kann 10 h-1 Annealing rate constant per hour per window pair 

kadd 10 h-1 Rate constant for monomer addition at the initial nucleotide 

concentration. 

klig 1 h-1 Ligation rate constant 

kmelt 1 h-1 Melting rate of a helix of length l0 

G/kT 2 Stacking free energy per base pair, relative to kT. 

e 0.01 Rate constant for each incorrect base addition as a fraction of kadd 

Tgrow 6 h Length of growth phase 
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Strands in the mixture may be connected by double stranded regions (helices). New 

helices may be formed by nucleation of monomers on an existing strand, or by annealing two 

existing strands with complementary sequences. The minimum allowed helix length is l0 = 4. 

The probability of a new helix nucleating on a given strand is proportional to the number of 

unpaired windows of length l0 on this strand. For a sequence i of length ni the number of 

windows is 𝑤𝑖 = 𝑛𝑖 − 𝑙0 + 1 at the beginning of each cycle when there are no other helices 

already present. This number is reduced when helices form because each helix blocks the 

formation of further overlapping helices. The program keeps track of the number of available 

windows on each strand. For each available window, the nucleation rate is 

 

               𝑟𝑛𝑢𝑐 = 𝑘𝑛𝑢𝑐
𝑁1𝑁2𝑁3𝑁4

𝑁0
4 ,      (2) 

 

where knuc is the nucleation rate constant, and N1, N2, N3, and N4 are the number of available 

monomers of the required type to form the new tetramer. The tetramer is assumed to be 

exactly complementary to the template strand. At the beginning of the simulation, the number 

of each monomer in the system is N0. Thus, according to equation 1, the nucleation rate is 

equal to knuc per window when the monomers are at their initial concentration, and it 

decreases in proportion to monomer concentration to the power 4 when the monomers are 

used up by the polymerization process. When a new tetramer is formed, the corresponding 

monomers are removed from the count of free monomers. 

 To form a new helix by annealing existing strands, there must be an available window 

of length 4 on two different strands. We define the attempted rate of annealing per pair of 

windows as 𝑟𝑎𝑛𝑛 = 𝑘𝑎𝑛𝑛/𝑁0. For any given available window, let the total number of other 
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windows in the system that are potential partners for pairing be wtot. The total attempted rate 

of annealing to the first window is  

 

            𝑟𝑎𝑛𝑛
𝑡𝑜𝑡 = 𝑘𝑎𝑛𝑛𝑤𝑡𝑜𝑡/𝑁0.       (3) 

 

There are initially N0 monomers of each type of nucleotide. If all these monomers were 

turned into tetramers, then wtot would be N0. Thus, by scaling the annealing rate by 1/N0 we 

keep the total rate of annealing to one window proportional to the total concentration of 

sequence windows in the system. Note that the above rate is an attempted rate of annealing. 

We choose random pairs of available windows at this attempt rate, but the annealing only 

occurs if the sequences are complementary. 

 If a helix forms in the middle of two sequences, the ends of the sequences are single-

stranded tails which cannot grow (as in Figure 3.1A). When the 3' end of a strand is at the end 

of a helix (as in Figure 3.1B, orange sites), monomer addition can occur (i.e., primer 

extension occurs). Monomer addition is directional and only occurs at 3' ends. When the 5' 

end of a strand is at the end of a helix (as in Figure 3.1C, green sites), monomer addition 

cannot occur, but this 5' end can be ligated to the 3' end of another strand if the end of the 

other strand grows to be adjacent to this point.  
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Figure 3.1. Examples of structures that form via annealing of strands. (A) If a helix forms 

in the middle of the strands, so that the ends of the strands are in single-stranded tails, 

then no growth is possible at these ends. (B) If the 3' end of a strand is the last base in a 

helix (orange squares), this is a site for monomer addition. If the 5' end of a strand is the 

last base in a helix (green squares), we assume that monomer addition cannot occur, but 

this is a potential site for ligation, if the 3' end of another strand grows to be adjacent to 

this site. (C) Connection of multiple strands forms branching clusters with many tails and 

many potential points of sequence growth. We assume that formation of an additional 

helix is not possible between strands that are already in the same cluster. This prevents 

unrealistic loops and knots forming within a cluster.  

 Whenever there is a 3' end that is paired and the next site on the template is unpaired, 

monomer addition can occur at a rate  

 

             𝑟𝑎𝑑𝑑 = 𝑘𝑎𝑑𝑑𝑁1/𝑁0,       (4) 

 

where N1 is the number of bases in solution of the type that are complementary to the 

template. We scale the rate by the initial number of monomers, N0. Thus, the addition rate is 

kadd when the monomer concentration is equal to the initial monomer concentration and 

decreases in proportion to the monomer concentration that remains available when the 
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monomers get used up. Initially, we consider the limiting case where there is perfect pairing 

between template and the growing complementary strand, i.e., there is zero error rate. In this 

case, the only type of nucleotide that can be added is the one complementary to the template. 

We later allow for non-zero error rates of monomer addition where a templated strand can 

grow by a non-complimentary base at a lower rate.  

 Whenever there is a 3' end that is paired and the next site on the template is paired to 

the 5' end of another strand, then ligation can occur at rate klig. This rate is constant, 

independent of the concentration of monomers and strands. 

 We keep track of clusters of sequences that are connected by helices. At the 

beginning of each growth phase, each strand is defined to be in its own cluster. When two 

sequences are connected, they are placed in the same cluster. We impose the restriction that a 

new helix can be formed between two strands only if they are not already in the same cluster. 

This means that all the clusters that form have a branching tree structure (as in Figure 3.1C). 

In an early version of this program in which this restriction was not imposed, we found that 

multiple connections formed between sets of sequences that were already in the same cluster. 

This resulted in a dense structure of entangled knots and loops. Such a structure would be 

impossible to achieve in three-dimensional space with real molecules because of excluded 

volume restrictions and the finite length and flexibility of strands. Our simulation does not 

account for excluded volume and three-dimensional coordinates of the strands. We impose 

the branching cluster rule as a simple way of preventing the formation of unrealistic loops 

and knotted structures.  

 Melting of helices can occur during the growth phase. When this occurs, the two 

strands forming a helix separate, and the cluster containing the helix is divided into two 



Master’s Thesis − P. Chamanian; McMaster University − Biology and Astrobiology 

 32 

separate clusters. The melting rate for a minimum-length helix of length l0 = 4 is kmelt. The 

melting rate for a longer helix of length l is  

 

               𝑟𝑚𝑒𝑙𝑡(𝑙) = 𝑘𝑚𝑒𝑙𝑡 exp (−
(𝑙−𝑙0)∆𝐺

𝑘𝑇
),      (5) 

 

where G is the average stacking free energy per additional base pair in the helix. For 

simplicity, we treat stacking free energy using a single average value, and we do not consider 

sequence-specific stacking parameters.  

 Each growth phase lasts for a time of Tgrow = 6 hours. At the end of this time, the high 

temperature phase occurs. All helices are melted immediately. Flow occurs into and out of the 

system with a fractional flow rate . Each strand is lost from the system with a probability . 

A fraction  of monomers of each type are lost from the system. New monomers and primer 

strands are then added at the initial concentration. Thus, N0 monomers of each type are 

added, and Ninflow = Ninit new oligomers are added with the same exponential length 

distribution as the initial sequences. 

 

3.2 Results 

We wanted to understand whether template-directed RNA synthesis mechanisms 

could lead to the creation of longer sequences, rather than just being limited to the replication 

of the longest template strand. Figures 3.2 and 3.3 show the results of four separate 

simulation with four different values of the monomer addition rate kadd. All other parameters 

take the standard values in Table 3.1. The data is plotted at the end of each growth phase 

before melting of helices and loss of strands via outflow. We observe an increase in mean and 
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maximum sequence length over time due to primer extension and ligation reactions. The 

mean length begins at ninit = 4.94, which is about the mean length of inflowing oligomers. 

There is a constant increase in mean length until a stationary value where the loss of old 

(long) strands is balanced by the inflow of new (short) oligomers. For the highest kadd, the 

mean length of sequences reaches up to 50 nucleotides in length, which is substantially higher 

than ninit. For the lowest value of kadd, the mean length still increases significantly to about 9 

(Figure 3.2A). Increase in the monomer addition rate clearly increases the sequence length via 

a higher rate of RNA extension, but with greatly diminishing returns. We also show the 

maximum sequence length in the population at each cycle (Figure 3.2B). The maximum 

lengths reach a substantially higher scale compared to the mean lengths. Limited by memory 

storage in the program, we store the sequence length in an array with a maximum length of 

300, so sequences longer than this are not permitted. This limit is briefly reached in the 

highest kadd case. The lowest kadd value shows a peak maximum sequence length of about 90, 

and as kadd increases, we can see this peak reach a length of over over 200 nucleotides. The 

increase in the peak maximum length also seems to correlate with an increase in the range of 

maximum lengths over the different cycles. We also measured the number of sequences in the 

mixture, Nseq (Figure 3.2C). In each run, Nseq begins at the initial value Ninit = 500. It rises 

rapidly for the first few cycles and then falls to a steady state value where the increase in 

strands due to inflow and nucleation is balanced by the outflow. The lower kadd value 

correlates with a higher number of sequences within the system. Note that new sequences can 

only be added through nucleation on an open template or inflow of random oligomers, which 

is at a constant rate Ninflow = Ninit.  
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Figure 3.2. Comparing the change in (A) mean and (B) maximum sequence lengths, and (C) total 

number of sequences over 500 cycles of four separate simulations varying the monomer addition 

rate value kadd. 

 

To better understand the distribution of the RNA sequence lengths, we measured the 

lengths of each strand at the end of the growth period of each cycle. In Figure 3.3A, we 

averaged this data over the last 250 cycles of the simulation runs, which lasted 500 cycles. 

Note that all the data points for the rest of Figure 3.3 were also averaged using the last 250 

cycles. We show the steady state length distribution N(n) over the lengths up to 100 (Figure 

3.3A). Past the 100-length mark, the sequences had a low sample size which resulted in large 

fluctuations of their distributions. The measured distribution of lengths is decreasing with n 

somewhat at a negative exponential rate. Yet, this rate is much slower than our set length 

distribution of starting sequences arising from random polymerization. Also, it does not seem 

to correspond to a single exponential. In the three higher monomer addition rate values, we 

see a considerable number of long strands in the 50-100 nucleotide range. The smallest kadd 
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value still produced some long sequences as well, but mainly resulted in a much larger 

population of short to medium length strands.  

We were interested in knowing what the growth rate per cycle looked like in terms of 

the specific change in sequence length. We calculated the mean increase in length of a strand 

in one cycle as n, defined as the length at the end of the cycle minus the length at the start of 

the cycle. We show these data as a function of the length at the start of the cycle (Figure 

3.3B). Expectedly, n is larger overall for higher values of kadd. Regardless, n is quite small 

even for the largest addition rates. For kadd = 1000 h-1, n is close to 5 for short sequences 

(tetramers and pentamers) and decreases to around 1 for longer sequences of length 100. For 

kadd = 1 h-1, n is around 0.3, and is almost independent of n. We were also interested to see 

the number of helices being formed on templates, since we were allowing multiple strands to 

bind and form clusters. We measured the mean number of separate helices h(n) in which a 

sequence is bound and show it as a function of the length of the sequences at the end of the 

growth period. We observe an h(n) close to 1 for short sequences, followed by a linear 

increase with n. For the two higher kadd values of 100 h-1 and 1000 h-1, h(n) falls close to 3 at 

n = 100. Lower kadd values show higher number of helices up to about 5-7 for medium to long 

strands. Overall, the number of helices increases proportional to the strand length, meaning 

that longer strands bind several helices and the mean length of each helix stays constant.  
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Figure 3.3. Distribution of (A) sequence lengths, (B) mean increase in length per cycle and (C) 

mean number of helices per cycle as a function of RNA strand length for four simulations varying 

by the monomer addition rate value kadd. 

 

To further understand the simulation outcomes with regards to varying parameters, 

we ran four separate simulations differing only in the nucleation rate knuc and keeping all 

other parameters as standard. This is similar to our analysis above, except we wanted to 

observe how varying the nucleation rate would impact our measured variables. We later 

repeat these analyses with only varying the strand annealing rate kann. When looking at 

changes in mean lengths of sequences over time, we observe that a lower primer nucleation 

rate results in an increased mean sequence length (Figure 3.4A). At a knuc value of 0 h-1, the 

mean sequence length is increased up to nearly a length of 40 nucleotides. This is the most a 

change in knuc can contribute to increasing sequence length, but also comes at the cost of 

never synthesizing more sequences than the starting population number. On the other hand, 

increasing knuc steadily lowers the mean length increase over time. With regards to the change 

in maximum sequence length, there is the same correlation to varying knuc as seen with the 
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mean length, but the difference between the results of knuc values is not as significant (Figure 

3.4B). With increasing knuc values, the number of sequences present over time also increases, 

both at the initial peak and steady state concentrations (Figure 3.4C). It is important to note 

that at a knuc value of 0 h-1, the number of sequences is maintained roughly at the initial strand 

number Ninit of 500.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Comparing the change in (A) mean and (B) maximum sequence lengths, and (C) total 

number of sequences over 500 cycles of four separate simulations varying by the nucleation rate 

value knuc. 

 

Figure 3.5 shows the results for the variables measured over sequence lengths up to 

100, as previously shown with varying kadd values. We show the average length distributions, 

length increases, and helices formed. With regards to the sequence length distributions, the 

difference in outcome between varying nucleation rates is seen prior to the sequence length of 

40 (Figure 3.5A). There is a major increase in the number of short oligomers of length 10 and 

under as knuc is increased. Eventually, at longer lengths, the length distributions do not seem to 
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depend much on the rate of nucleation. This trend is also somewhat apparent when looking at 

the mean increase in lengths per cycle over varying starting lengths. In figure 3.5B, we see 

that the average length increase n is higher for lower knuc values, but the four lines begin to 

converge at longer sequence lengths above 60. At these greater lengths, the n values are 

roughly in the 0.5-1.5 range. At the highest knuc value of 10 h-1, the mean increase in length 

per cycle is less than one across almost all lengths. Note that the fluctuations in n at higher 

lengths are due to the smaller sample population of these strands resulting in less reliable 

averages. As we increase the knuc value we also observe a steady increase in the average 

number of helices formed, with an increasing disparity between the results as we move to 

longer length strands (Figure 3.5C). The impact of nucleation rate is not as significant for 

short to medium strands, but at sequence lengths of 80 and above, we see an h(n) value of 

about 3-4 at the lowest knuc value of 0 h-1 and an h(n) of about 6-7 for the highest knuc value of 

10. Overall, from this case of varying primer nucleation rates, and the previous case of 

varying monomer addition rates, we see a relationship between sequence length, average 

length increase, and average number of helices formed per cycle. Smaller average increases in 

length seem to correlate with production of shorter sequence lengths, but an increase in the 

number of helices produced per cycle. Interestingly, this relationship does not appear as 

evidently when looking at varying strand annealing rates. 
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Figure 3.5. Distribution of (A) sequence lengths, (B) mean increase in length per cycle and (C) 

mean number of helices per cycle as a function of RNA strand length for four simulations varying 

by the nucleation rate value knuc. 

 

Initially, we consider the changes in mean and maximum sequence length, and 

number of sequences present over time while varying the strand annealing rate kann. Over 

time, these variables follow the same general trend as seen with previous results when 

varying the kadd and knuc parameters. A clear observation with the annealing rate is that strands 

do not grow longer than the initial sequence lengths set at the beginning of the simulation. 

This is evident from the unchanging mean and maximum sequence lengths for a kann equal to 

0 h-1 (Figure 3.6A-B). The mean length of strands stays fairly constant at the ninit value of 4.94 

and the maximum length is maintained at exactly 10, which was the limit set for the length of 

starting oligomers produced by random polymerization. At increased kann values, we see an 

increase in the mean sequence length, as well as an increase in the rate at which the sequences 

reach their equilibrium mean length. This is evident by the increase of the slope for lines 

representing the higher kann values (Figure 3.6A). In contrast to the steady change in mean 
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lengths when varying the nucleation rate, the increase in mean lengths seems to diminish as 

the annealing rate reaches higher values. The highest kann value of 100 h-1 results in a mean 

sequence length of about 35. Although a kann of 1 h-1 is lower than the value we report in our 

standard parameters, we still see a significant growth in sequence length with the mean length 

reaching up to 18 and the maximum length reaching almost 200 nucleotides long at its peak. 

The maximum sequence lengths for the higher kann values are mostly similar, except for a 

large peak for the highest kann value which temporarily reaches the maximum allowed length 

of 300 (Figure 3.6B). It can be said that, although the effect of sequence annealing rate on the 

maximum length of strands is not great, it is still significant. With regards to the number of 

sequences, Nseq, we see an increase in all four simulations, and higher kann values correlate 

with a greater increase and steady state number of sequences over time. Note that Nseq does 

not have the dip that occurs in all our previous simulations when kann is set to 0 h-1. Also, the 

increase in kann increases the rate at which the dip in Nseq occurs. There seems to be a strong 

correlation between the changes in mean sequence length and number of sequences over time 

between the four simulations. This is the case for the simulations varying in kadd, knuc, and 

kann.  
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Figure 3.6. Comparing the change in (A) mean and (B) maximum sequence lengths, and (C) total 

number of sequences over 500 cycles of four separate simulations varying by the annealing rate 

value kann. 

 

The sequence length distributions for varying kann values show a somewhat different 

outcome compared to previous length distribution results. Firstly, at a kann of 0 h-1, the length 

distribution is almost the same as the distribution initialized for the randomly polymerized 

oligomers at the start of the simulation. In this case, there are no sequences that exceed the 

starting maximum length of 10 (Figure 3.7A). The number of sequences exceed 1000 for the 

shortest sequence lengths, but we restrict the scale to better analyze the results for the higher 

annealing rate simulations. The two middle values of kann of 1 h-1 and 10 h-1 show a negative 

exponential distribution as we have previously seen. However, for a kann value of 100 h-1, we 

see an interesting difference for the length distribution of shorter sequences below the length 

of 15 nucleotides. The peak of the distribution has shifted from the normal starting length to 

roughly 15 nucleotides in length, and there is a steep negative exponential distribution of 

lengths as strands get shorter (Figure 3.7A). In this regime, the population of the shortest 
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strands (length 4-5) are comparable to that of long strands of about length 70. From the length 

of 20 and onwards, N(n) follows the same trend as the other non-zero annealing rate results. 

When looking at the mean length increase per cycle, there does not seem to be a dependence 

on the sequence annealing rate for longer sequences. Yet, for sequences of roughly length 10 

and smaller, a higher kann greatly increases the average n (Figure 3.7B). The n is always 0 

when kann is 0 h-1 and sits fairly consistently at around 1 for the other kann values after length 

30. The trend is slightly different for a kann value of 1 h-1, since the n for the smallest 

sequences under length 10 is lower than for the longer lengths. With a sequence annealing 

rate of 0 h-1, we observe a mean number of helices formed per cycle of roughly 0.1 for 

lengths up to 10. There is an almost linear increase of mean helices formed as length 

increases and this trend is similar for the three non-zero annealing rate simulations (Figure 

3.7C). The lines for these three simulations seem to slightly converge, in contrast to the 

previous simulations varying addition and nucleation rates, where the lines diverged. Overall, 

a higher kann value increases the average number of helices made for lengths up to about 70. 

However, past a kann of 10 h-1, h(n) does not seem to significantly dependent on this 

parameter. 
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Figure 3.7. (A) Distribution of sequence lengths, (B) mean increase in length per cycle and (C) 

mean number of helices per cycle as a function of RNA strand length for four simulations varying 

by the annealing rate value kann. 

 

We explored the parameters of monomer addition, primer nucleation, and sequence 

annealing in the simplest version of our simulation to understand whether template-directed 

RNA synthesis was plausible using our theoretical model. More specifically, we wanted to 

address a range of chemical reaction rates to account for the ambiguous conditions present on 

the early Earth environment. Within the mechanism of non-enzymatic RNA replication, we 

must certainly also account for the occurrence of mutations. We were curious whether the 

results from our simulations using standard parameters would change significantly with the 

inclusion of error rates. We included the error rate parameter e as the rate of monomer 

addition for a non-complimentary nucleotide determined as a fraction of the non-error 

addition rate, kadd. We also included a simple condition to account for the stalling of RNA 

growth as a result of a mutation. In this version, we just prevent any further growth of a 

strand once it incurs a mutation. In a later set of simulations, we also look at a case where 

A B C 



Master’s Thesis − P. Chamanian; McMaster University − Biology and Astrobiology 

 44 

growth is still allowed after a mutation at a much lower rate. The same six variables as with 

previous results were measured for four separate simulations only varying in the error rate e. 

All other parameters were set to the standard parameters summarized in table 3.1. Overall, 

these simulation results followed trends like the case of varying kadd. 

 The mean and maximum sequence lengths over time decreased with increasing error 

rate, while the number of sequences increased (Figure 3.8). However, this is not the case 

when e is equal to 0.01, which translates to a 1% error rate for each incorrect nucleotide base 

pair. In terms of growth, the mean length is decreased significantly at e values of 0.05 and 

0.1, but the changes in maximum length show a lot of overlap, thus weakening their 

correlation to error rate. The mean length increases at the same rate in all four cases but 

reaches a steady state length of 20 when there is a 10% error rate, compared to length 30 for 

the non-error and 1% error rate simulations (Figure 3.8A). Although the maximum length 

peaks are lower for e values of 0.05, and 0.1, an e of 0.01 shows a higher peak than the non-

error simulation with maximum lengths of about 260 and 240, respectively (Figure 3.8B). 

The number of sequences in the chamber over time show the same spike up to 2500 for all 

four simulations. After about 60 cycles, Nseq reaches its equilibrium value of roughly 600 for 

an e value of 0 and 0.01, 700 for an e of 0.05, and 850 for an e of 0.1 (Figure 3.8C). 
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Figure 3.8. Comparing the change in (A) mean and (B) maximum sequence lengths, and (C) total 

number of sequences over 500 cycles of four separate simulations varying by the error rate value 

e. 

 

With regards to distribution of lengths, we see comparable results from all four 

simulations past a sequence length of about 30. For shorter sequences below length 30, there 

are significantly more sequences as e increases to 0.05 and 0.1 (Figure 3.9A). Generally, the 

results for the non-error and 1% error simulations are almost non-distinguishable for the 

variables measured in figure 3.9. Up to a sequence length of about 70, the simulation results 

all show the same downward trend for mean increase in sequence length per cycle. For an e 

value greater than 0.01, the mean length increase n is lowered as e is increased. This n is 

quite small regardless, ranging from 0.5 to 2 in all cases combined (Figure 3.9B). After a 

length of 70, there are large fluctuations in n due to lower sample size of sequences, making 

it difficult to judge its correlation with regards to error rate. A higher error rate showed an 

increase in the mean number of helices formed per cycle, mainly because of a greater rate of 

increase of h(n) over increasing lengths (Figure 3.9C). For the highest e value of 0.1, h(n) was 
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about 6 for long sequences over length 80, compared to about length 4 in the non-error and 

1% error cases. All simulations followed the same linear relationship of increasing average 

helix number for longer length sequences. Overall, it seems that more helix formation 

correlates with a lower average length increase per cycle, which was also observed in the 

previous simulation results.  

 
Figure 3.9. (A) Distribution of sequence lengths, (B) mean increase in length per cycle and (C) 

mean number of helices formed per cycle as a function of RNA strand length for four simulations 

varying by the error rate value e. 

 

The inclusion of mutation rates allowed us to observe the outcome of our RNA 

synthesis model with greater complexity and accuracy. We wanted to continue implementing 

components which we thought could be important factors for non-enzymatic template-

directed RNA synthesis. So far, we included theoretical monomer addition rates which were 

only dependent on whether the incoming nucleotide was a correct match or not. We wanted to 

understand the impact of having varied rates for each nucleotide, rather than the same rates 

like in our simpler models. In the next set of simulations, we replace the theoretical addition 
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rates with experimentally obtained rates for each possible nucleotide base addition. The rates 

are averaged from two separate studies44,61, previously referred to in chapter 2, and the 

averages used are listed in Table 3.2. Due to the four times increase in concentration of U 

nucleotides in the experiments, the rates used in our simulation are divided by four when U is 

being added. We initially consider a case where the occurrence of a mismatch stops any 

further growth of the respective strand. We then consider the case where growth can continue 

after an error at a constant combined addition rate, kmismatch = 1 h-1, for all four possible 

nucleotides, meaning an effective addition rate of each nucleotide base of 0.25 h-1. However, 

two errors in a row will still terminate growth of the respective strand. In this regime, we also 

allow mismatches to occur during annealing of two strands at a maximum of one consecutive 

error. The results of this post-error growth implementation are only shown for the simulations 

that use experimental rates. 

 

Table 3.2. Average experimental primer extension rates from two separate studies varying upon 

nucleotide base pairing.   
Base added   

A C G U 

 

Template base 

A 0.043 h-1 0.079 h-1 0.145 h-1 0.20375 h-1 

C 0.01225 h-1 0.01275 h-1 1.94 h-1 0.0036 h-1 

G 0.0375 h-1 14.515 h-1 0.205 h-1 0.17375 h-1 

U 0.735 h-1 0.014 h-1 0.365 h-1 0.024125 h-1 

 

 

It is important to note that these rates are much higher for CG base pairs compared to 

AU base pairs. To compare our results from these experimental rates to those using the 

standard theoretical rates, we scaled up the experimental rates to match the average correct 

standard nucleotide addition rate of 10 h-1. The average rate of Watson-Crick base additions 
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in the experiments is 4.35 h-1, therefore we multiply all the rates by a factor of 10 / 4.35 = 2.3. 

This way, we can isolate and examine the effects of non-uniform addition rates. We present 

simulation results which compare scaled experimental growth rates with and without growth 

after error, and standard uniform theoretical growth rates (kadd = 10  h-1) at 1% and 10% error 

rates. 

The experimental rates have a substantial overall impact on the RNA growth results. 

The sequences in the experimental rates case still managed to increase from a starting point of 

around 5 nucleotides to about 8 nucleotides in mean length. However, this is a lot less than 

what we saw in previous simulations where the mean length reaches about 30 for standard 

growth rates and an error rate e of 0.01. When growth is permitted after a mismatch in the 

experimental growth rates case, the mean length is increased up to about 13 nucleotides in 

length which is a significant improvement (Figure 3.10A). The maximum sequence lengths 

are also decreased greatly in the scaled experimental rates simulations compared to the 

standard rates. Using the experimental growth rates, the maximum length peaks just below 50 

nucleotides, whereas the simulations using the standard theoretical rates with an e of 0.01 

show strands with lengths of over 200 nucleotides (Figure 3.10B). In the simulation with 

growth permitted after error, the maximum sequence lengths overlap quite a lot with the 

results of the simulation with standard rates and 10% error. Growth after error allows for 

sequence lengths to increase up to 150 nucleotides. It even overlaps somewhat with the 

standard rates case with 1% error. Compared to the mean length variable, the inclusion of 

growth after error is much better for saving the maximum length growth after switching to 

experimental monomer addition rates. The number of sequences Nseq follows the opposite 

trend of mean lengths for each simulation. After the initial peak in Nseq, the number falls to 
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just under 2000 for the case with experimental rates, about 1200 with growth after error, and 

under 1000 for the simulations using standard growth rates (Figure 3.10C). 

 
Figure 3.10. Change in the (A) mean and (B) maximum sequence lengths, and (C) total number of 

sequences over 500 cycles of four separate simulations. Simulations vary by monomer addition 

rates, error rates, and whether growth after an error was permitted. 

 

The length distribution measured from the experimental rates simulation shows most 

of the sequences being shorter than 20 nucleotides, with longer length sequences having a 

significantly decreased N(n) value compared to the other simulations. The growth after error 

case shows a distribution close to the simulations using standard rates for lengths 20 and 

higher, but a higher N(n) for sequences shorter than 20 (Figure 3.11A). The mean increase in 

length per cycle becomes considerably low when using the experimental rates at around 0.1-

0.2 for medium length strands. This is increased to about 0.5 in the growth after error case but 

is still significantly lower than the n values for the simulations using the standard theoretical 

rates (Figure 3.11B). The mean number of helices formed per cycle does not seem to differ 

between the experimental rates when allowing or disallowing growth after error. This can 
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only be said for sequences of about length 40 and lower, since there are little to no sequences 

of greater length made in the case without growth after error. With standard theoretical rates, 

we see a decrease in the number of helices formed per cycle (Figure 3.11C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. (A) Distribution of sequence lengths, (B) mean increase in length per cycle and (C) 

mean number of helices per cycle as a function of RNA strand length for four simulations. 

Simulations vary by monomer addition rates, error rates, and whether growth after an error was 

permitted. 

 

 One main difference between our standard rates and the experimental rates is that the 

experimental rates are quite skewed compared to the uniform theoretical rates. We were 

curious to see how this impacted the presence of different bases in the sequences being made. 

We decided to measure the number of nucleotides present in the system at the end of each 

cycle. It would follow that, the more nucleotides that remained in the system, the less that 

nucleotide base was being incorporated into the growing sequences. We ran three 

simulations: one using the standard theoretical monomer addition rates, one with scaled 

experimental addition rates without growth after error, and one with scaled experimental 
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addition rates including growth after error. We expected to see a significant difference 

between these simulation with regards to the number of different nucleotides. 

 All three simulations follow a similar trend with a sharp decrease of the nucleotide 

number within the first 20 cycles. In the simulation using standard addition rates and a 1% 

error rate, all four nucleotide bases have near identical numbers per cycle (Figure 3.12A). 

After the initial dip, they rise back slightly to their steady state populations of about 1200, 

which are balanced by their use in growing strands and the constant inflow of new monomers. 

When experimental addition rates are used, the steady state nucleotide numbers are all 

different except for G and A. U base monomers are much higher at about 2600, while C base 

monomers are the lowest at about 1400 (Figure 3.12B). G and A base monomers are slightly 

higher at about 1600. The inclusion of growth after error only decreases the steady state 

number of U base monomers to about 2400. The C base monomer numbers do not change, 

but A base monomers are decreased in number to match the C base monomers at about 1300. 

The G base monomers are not affected (Figure 3.12C). It is important to note that the number 

of monomers in the system has a negative correlation with their use in growing RNA 

sequences.  
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Figure 3.12. Comparison of the total number of nucleotides of each of the four Watson-Crick 

bases over 500 cycles in three separate simulations. Simulations either used (A) the standard 

theoretical rates and an e value of 0.1, or (B) used the scaled experimental rates without 

growth after error and (C) with growth after error.  

 

3.3 Discussion 

 Our RNA synthesis model assumes simple non-enzymatic reactions between pre-

existing RNA nucleotides and oligomers, and environmental temperature cycling. We created 

and executed simulations that followed these reaction events. One of our goals was to 

understand whether templated RNA replication could ever lead to sequences which exceeded 

the length of the longest template. Previously, it was revealed that reannealing of 

complementary sequences would not allow for this outcome47. The fast rate of reannealing 

during the cool phase of temperature cycling creates dead-end products and limits the number 

of long available templates due to the low rate of separation. We hypothesized that a diverse 

sequence mixture would allow a greater chance of producing productive binding 

conformations. These conformations would lead to the lengthening of existing strands or new 

nucleated primers. In addition, we wanted to test the idea of increasing the maximum length 

A B C 
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of the sequences in the starting pool through rare, staggered binding conformations. We 

initially produced the simplest version of our simulation that allowed us to explore these 

ideas. This version included all the reactions that could allow RNA growth, but assumed no 

chance of mutations during sequence annealing, nucleation, and monomer addition. With this 

simple version, our goal was to observe an outcome under idealistic conditions and see 

whether varying reaction rates would greatly impact the results.  

 Since we do not have precise measurements of all the rates for the simulation 

reactions, the results we obtained using the standard set of parameters should be interpreted 

through a qualitative lens. We varied three parameters which would likely have the biggest 

impact on the measured variables. The three parameters were rates for monomer addition, 

primer nucleation, and strand annealing. Changing any of these rates impacted the growth of 

RNA strands. From our results, we show that RNA sequences grow under all the varying rate 

conditions, except when the annealing rate is zero. A low monomer addition rate also had a 

major impact on decreasing the amount of RNA growth. The growth is limited due to the 

finite time that each sequence remains in the reaction chamber, which is typically 1/, 

meaning 20 cycles in our case. On the other hand, a high monomer addition rate is also going 

to be limited by the finite number of monomers available. Therefore, having a low monomer 

addition rate is still going to produce long sequences if there is limited loss of existing strands 

and a reliable supply of nucleotides. The effect of changing nucleation on RNA strand growth 

is not as significant. Mainly, we show that a higher nucleation rate will limit RNA growth 

since it will lower the overall available template space for binding of existing strands. 

Successful nucleation of a short primer is generally thought to occur at a low rate compared 

to annealing of two existing strands. This is due to the low stability of monomers, dimers, and 
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trimers when bound to a template. However, primer nucleation is important for RNA 

replication for the maintenance and evolution of useful sequences. Also, a nucleation rate of 

zero does not show enough of a benefit to RNA growth for it to act as an advantage in an 

early non-enzymatic phase of the RNA. Even in the case of high nucleation rate, it seems that 

long sequence length is achieved, but significantly more short sequences are created. This is 

shown by the results measuring maximum length and distribution of lengths.  

 Sequence annealing rate seems to be almost as important as monomer addition rate in 

producing long sequences. In this model, sequences can only grow via template-directed 

monomer addition. Without annealing, you would only be able to grow nucleated primers, 

and sequences would never grow longer than the longest strand in the system. Meanwhile, if 

the rate of annealing was greater, we can expect more RNA growth because more sequences 

can be given a chance to bind with the desired conformation. In our simulation, we require 

perfect complementary binding of at least four nucleotides for annealing. One could envisage 

a case where annealing occurs at a higher rate depending on the helix stability and tolerance 

for imperfect binding, in turn allowing a higher rate of RNA growth.  

From our results, we should note that a greater rate of RNA growth corresponds to a lower 

sequence number. Having high sequence number can be beneficial in some cases, specifically 

early in the RNA world where greater diversification can result in the emergence of 

functional strands more quickly.  

 There are several factors which can influence the number of sequences. In our model, 

new sequences are introduced through nucleation, or inflow of new random strands. They are 

lost only through outflow. Since inflow of new strands is constant, we can say that the 

number of sequences is only affected directly by the rate of nucleation. We consistently 
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observe a lower steady state sequence number for simulations with lower RNA growth. This 

can be explained by how RNA nucleotides are distributed in different simulations. Generally, 

as the concentration of free monomers decreases, so does the nucleation rate and in turn, the 

number of sequences. This explains the initial rapid increase in sequence number at the start 

of the simulation when the monomer concentration is high. In the case of high monomer 

addition rate, the steady state nucleotide concentration is going to be lower and result in a 

lower number of sequences. We can clearly see the affect of nucleation rate on number of 

sequences when the nucleation rate is set to zero. Here, there is a balanced inflow and outflow 

of sequences with not other inputs, resulting in a stable number of sequences over time equal 

to the starting population. We also see the impact of nucleation rate on sequence number 

through the increased peak number of sequences as nucleation rate is increased. A lack of 

RNA growth shown in the case where annealing rate is zero shows no decrease in the number 

of sequences after the initial increase, since nucleotides are not being used for monomer 

addition. An increase in the monomer supply essentially increases the rates for both monomer 

addition and primer nucleation. The degree in which it affects these reactions can be further 

explored through simulations varying in monomer concentration and inflow. A change in 

binding stability could impact the nucleation rate since it would affect our l0 parameter for 

minimum possible primer and helix length. Yet, this could affect annealing rate as well which 

indirectly affects the monomer concentration. This is a limitation of our current simulations, 

but some interesting outcomes may come from the implementation of a more complex 

binding and separation model. 

 Increasing the number of sequences is not fully in line with sequence diversification. 

Full replication of an existing sequence following primer nucleation simply results in the 
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complementary sequence, making it difficult to see how a low diversity sequence population 

could ever diversify without introducing new random sequences. Indeed, quick diversification 

seems to depend mainly on the starting population diversity, the rate that new sequences are 

introduced, and the mutation rate. However, given that the initial sequence space is diverse 

enough, creating new RNA strands via nucleation can also lead to increased sequence 

diversity. Nucleated primers should only grow to replicate a part of the template sequence, 

after which they can separate and bind to a different template in the next cycle. This way, the 

initial nucleated primer would create a unique sequence from the combination of existing 

ones. Nucleation can be quite important for diversification, especially in cases where inflow 

of new sequences is limited. Drawing back to the results of our simulations, we should 

consider that greater RNA growth should not always be the desired outcome if it greatly 

restricts nucleation. Interestingly, the growth of long RNA strands must not necessarily 

depend on high monomer addition or annealing rates, as shown by measuring the average 

increase in sequence lengths per cycle. 

 In most of our simulation results, we find that a substantial number of long sequences 

are formed, even though the increase in length in any once cycle is quite small. This infers the 

growth of long sequence to come as a result of continued presence in the reaction chamber 

over many cycles. We can consider a general case for sequence growth assuming an 

exponential length distribution, N(n) = 𝐴𝜇𝑛, for some 𝜇. If the increase in length were n, 

independently of n, then the number of sequences of length n at the end of a growth phase 

would be equal to the number of sequences of length n-n at the beginning. As in the case of 

our simulations, if we assume a fraction  is lost at the end of a cycle, we need 𝐴𝜇(𝑛−∆𝑛)(1 −

) = 𝐴𝜇𝑛 to maintain a constant sequence number. Thus, ∆𝑛 =
ln (1−)

ln
. If we consider a 
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vesicle as the reaction chamber, where the contents double before the cell splits, then the 

dilution factor is  = ½ and  = 2, giving us a n = 1. However, the exponential distribution 

assumed here is not the case for our simulations. Regardless, this shows the possibility for 

generating long strands through temperature cycling and small increases in length per cycle, 

given that the sequence remains in the reaction chamber over many cycles. This point 

clarifies the significant growth of strands in cases of small monomer addition rate and high 

mutation rate. 

 In the study by Tupper and Higgs47 outlining the reannealing problem, similar 

conditions in our simulations would result in less potential growth of sequences and lower 

sequence number. However, we can see that in a diverse enough mixture of sequences, there 

is a high chance for partially matching helices to form. These binding configurations create 

the potential for long sequences to grow, as well as allowing more replication through 

nucleation. This idea is supported by our results showing an average helix number per cycle 

that increases for longer RNA strands. Short sequences do not have the template space to 

allow for formation of multiple helices. In comparison, long sequences can allow for 

branching clusters of helices, which is what we see in all our simulation results. This 

contrasts with forming long duplex structures as seen in the aforementioned study. With 

regards to the different parameters, we see a major impact on helix formation coming from 

varying nucleation and monomer addition rates. We can say that helix formation is dependent 

on the balance between these two rates. A higher nucleation rate will form more helices, and 

a low polymerization rate will limit the template space taken up by sequences. It is important 

to note when annealing rate is zero, there is a close to zero value for average helices per 

cycle. This shows that annealing is important for short strands to form helices, specifically 
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with longer templates. It also explains why the number of sequences seems to increase with 

length initially (up to length 20) in the case of high annealing rate. Whereas higher 

polymerization rate increases the overall growth of strands, higher annealing rate would 

specifically increase the rate of growth for shorter sequences. In this case, the increased 

growth rate comes at the cost of nucleating new strands since template space is being taken 

by existing strands. Nevertheless, long sequences will still grow at a rate independent from 

the annealing rate. This shows that achieving the binding configuration required for long 

sequences to grow is not the limiting step, but most likely the polymerization rate is. 

 In the most ideal and simple version of the simulation, we test a variety of rates to 

gauge the potential for this RNA synthesis model to produce long strands. There are many 

factors which can influence the reaction rates, one being the presence of error during 

replication. Error rate can be quite detrimental for passing on useful information through 

RNA replication. In our case, we are more concerned with producing a diverse set of long 

strands from which useful and functional RNA could first emerge from. Still, it has been 

observed that mismatches result in a stalling effect, decreasing the rate of subsequent 

monomer addition compared to that following a Watson-Crick base pair45. Although this has 

been said to help improve overall replication fidelity, the post mismatch stalling naturally 

limits the growth of sequences in the present scenario. Here we assume a mismatch will 

completely stop any further monomer addition. Even at quite high error rates, the decrease in 

growth is not as severe as having a low monomer addition rate. When there is a 1% error rate 

for each mismatch, meaning an overall error rate of 3%, we see no change from the case 

without error. This draws back to the low requirement for n per cycle. Even if a sequence 

grows by one nucleotide and stops due to a mismatch, the sequence can still grow to long 
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lengths if it remains within the system over many cycles. Indeed, we see long sequences over 

100 nucleotides even when the overall error rate is 30%. On average, experiments have 

shown a replication error rate of about 17%44, which we show to have only a small impact on 

our simulation results. This gives us some hope that high error rates would not be detrimental 

to synthesis of long strands in the early non-enzymatic RNA world. Implementing this simple 

error case helped in exploring whether the present model would be limited under less ideal 

conditions, which would more closely match the conditions present on the early Earth or in 

RNA replication experiments.  

 In this pursuit, we discovered a major limitation when implementing experimentally 

obtained rates from two non-enzymatic primer extension studies61,63. The rates were scaled by 

a factor of about 2.3 because they were much lower on average than our standard monomer 

addition rate. However, we cannot ascertain an accurate set of rates due to the limited amount 

of data, as shown in our chapter 2 results. The experimental rates are dependent on the 

experimental conditions. The real rates could certainly vary from these in part due to their 

dependence on nucleotide concentrations. We have considered various parameter values in 

the first part of the results to account for a range of outcomes. With the experimental errors, 

the goal was to compare a set of data with considerable variability between different addition 

rates. We choose to scale the rates so that the average rate of a correct pair addition is kadd, 

allowing a comparison to be made with our constant rates. Relative to the case with constant 

rates, a large variance in rate shows a slowing down of RNA growth. 

The RNA growth is even lower when using the experimental rates compared to using 

the lowest monomer addition rates of 1 h-1. Nevertheless, it is likely that the monomer 

addition rates were also dependent on the base of the incoming nucleotides during templated 
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non-enzymatic replication before the origin of life. If we assume an even number of each of 

the four bases present in the sequence space of the starting set of randomly synthesized RNA, 

then the template-directed strand growth will depend on an even chance between the addition 

of each nucleotide base. From the experimental rates used in our simulations, we can see that 

even after scaling, every monomer addition rate for the correct Watson-Crick base pairs is 

lower than our standard kadd of 10 h-1 except for the addition of C binding to G. This means 

that once there are little to no strands which can grow by a C base, the overall monomer 

addition rate is going to suffer. Additionally, the error rate for AU binding is much higher 

than CG binding, even though the average factor of error overall is about 0.0241. In the case 

with no growth after an error, if there are more potential monomer additions for A and U 

bases, then there is a much slower rate of addition alongside a higher chance of mismatch 

stalling compared to the case with uniform rates. This detrimental affect on RNA growth is 

saved considerably by allowing a small rate of growth after an error. This is likely due to 

decreasing the impact of high experimental error rates on limiting strand growth. The unequal 

incorporation of different nucleotides, specifically the U nucleotide in our case, shows a 

preference towards strands that contain less of the slow adding nucleotide base. It may be the 

case that in a system where there is only loss of strands, but no inflow of random oligomers, 

the sequence space would shift towards having more of the fast-growing nucleotide bases. As 

a result, overall growth rate would increase. This condition can be tested in future theoretical 

studies. Regardless, it is apparent that the many non-idealistic scenarios leading up to the 

origin of life make it difficult to ascertain the possibility of expanding a non-enzymatic RNA 

world. New and more accurate quantitative experimental measurements of non-enzymatic 

RNA synthesis reactions can help in exploring realistic outcomes for theoretical simulations 
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like these. These results could in turn allow for an understanding of necessary components of 

the stages leading up to the origin of life, such as environmental cycles, 

compartmentalization, or the presence of other important molecules. 
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Chapter 4: Exploring the Possibility of Virtual Circular Genomes 

 

4.1 Methods 

 

 As discussed within chapter 1, the presence of virtual circular genomes has been proposed 

to be of relevance to non-enzymatic RNA replication. Thus, we look at the sequences generated 

by our simulations in chapter 3 to see if anything resembling a virtual circle arises. One way to 

look for the presence of virtual circular genomes is to consider sequences of length k (k-mers) 

within the RNA formed in the simulation. The number of possible k-mers is 4k, and each k-

mer can be labelled by an integer i from 0 to 4k - 1. Let 𝑚𝑖 be the number of occurrences of k-

mer i in a mixture of sequences, counting all the overlapping k-mers within sequences of 

length k or longer. The frequency of k-mer i in the mixture is 𝑓𝑖 = 𝑚𝑖/ ∑ 𝑚𝑗𝑗 . We define the 

diversity of k-mers in a mixture of sequences, 𝐷𝑘, as the number of k-mers that are present at 

least once in the mixture.  

 We make use of 5-mers specifically. A particular 5-mer i can be written 𝑖 =

𝑛1𝑛2𝑛3𝑛4𝑛5, where each of the n's is a nucleotide base A, C, G or U. We will say that a word 

j follows from word i if the first 4 letters of j are the last four letters of i. Hence 𝑗 =

𝑛2𝑛3𝑛4𝑛5𝑛6. There are four possible following words from any given word, as there are four 

possibilities for 𝑛6. We define a transition matrix 𝑇𝑖𝑗 such that 𝑇𝑖𝑗 = 1 if word j follows word 

i and both i and j are present in the mixture, and 𝑇𝑖𝑗 = 0 otherwise. We say there is a path of 

length n steps from i to j if there is a series of n words that follow from each other that are all 

present in the mixture and gradually transform i into j. We define a path matrix, such that 

𝑃𝑖𝑗
𝑛 = 1 if such a path exists, and 𝑃𝑖𝑗

𝑛 = 0 if no such path exists. Clearly, 𝑃𝑖𝑗
1 = 𝑇𝑖𝑗. The path 
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matrices for larger numbers of steps can be calculated by straightforward iteration: 𝑃𝑖𝑗
𝑛+1 = 1 

if ∑ 𝑃𝑖𝑘
𝑛 𝑇𝑘𝑗 > 0𝑘 , otherwise 𝑃𝑖𝑗

𝑛+1 = 0.  

 For any given k-mer word i, the fraction of words in the mixture that are accessible by 

a path of length n is ∑ 𝑓𝑗𝑃𝑖𝑗
𝑛

𝑗 . We define the connectivity function 𝑋(𝑛) as the probability that 

two randomly chosen words from the mixture are connected by a path of length n: 

 

𝑋(𝑛) = ∑ ∑ 𝑓𝑖𝑓𝑗𝑃𝑖𝑗
𝑛

𝑗𝑖 . 

 

If 𝑃𝑖𝑖
𝑛 = 1, there is a circular path that returns to word i after n steps. We define the circularity 

function 𝐶(𝑛) as the fraction of words in the mixture which are part of a circular path of n 

steps:  

𝐶(𝑛) = ∑ 𝑓𝑖𝑃𝑖𝑖
𝑛

𝑖 . 

 

Furthermore, we define 𝑃𝑖𝑖
∗ = 1 if word i is part of a circular path of any length (i.e., there is 

at least one n for which 𝑃𝑖𝑖
𝑛 = 1). The fraction of words that are part of a circular path of any 

length is 

𝑝𝑐𝑖𝑟𝑐 = ∑ 𝑓𝑖𝑃𝑖𝑖
∗

𝑖 . 

 

 The relative frequency of the most common word that is accessible from word i by a 

path of length n in comparison to the total frequency of all accessible words is 
max

𝑗
𝑓𝑗𝑃𝑖𝑗

𝑛

∑ 𝑓𝑗𝑃𝑖𝑗
𝑛

𝑗
. If 

there is only one word that is accessible after n steps, then this relative frequency is 1. Thus, 

we say the initial word is completely specific of the word that follows. If there are many 
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accessible words, the initial word has low specificity. We define the specificity function of 

the mixture, 𝑆(𝑛), as the mean value of this relative frequency for all words in the mixture: 

𝑆(𝑛) = ∑ 𝑓𝑖

max
𝑗

𝑓𝑗𝑃𝑖𝑗
𝑛

∑ 𝑓𝑗𝑃𝑖𝑗
𝑛

𝑗
𝑖 . 

  

Suppose there is a virtual circular genome of length 10. There are 10 5-mers that can 

be formed from each strand of this genome. Thus, the diversity of 5-mers is 𝐷5 = 20, 

assuming that there are no repeated words in the sequence and that there are no words that are 

present in both strands of the genome. Figure 4.1A shows an example of one strand of this 

virtual circular genome, and a circular path of 10 words that are taken from this genome. 

Consider a perfect virtual circle mixture that contains all the words of this genome at equal 

frequency and no words that are not part of the genome. In this case, all words in the mixture 

are part of circular paths, so 𝑝𝑐𝑖𝑟𝑐 = 1, and all the circular paths are length 10, so 𝐶(10) = 1. 

There are also circular paths for any n which is a multiple of 10, but not for other lengths. 

Thus 𝐶(𝑛) = 0 when n is not a multiple of 10. For any word in this mixture there is exactly 

one word that can be reached by a path of length n steps. Therefore, the relative frequency of 

this word is 1. The perfect virtual circle mixture has specificity 𝑆(𝑛) = 1 for all n. Since there 

is only one word accessible by a path of length n from any starting word, the probability that 

a randomly chosen word is accessible is 1/20. Thus 𝑋(𝑛) = 1/20, for all n. It is important to 

note, however, that our simulation results in chapter 3 would not result in a virtual genome, 

but rather a fully connected graph. With a high enough diversity where every possible 5-mer 

is present, you would get 𝐶(𝑛) = 1 for every length n of 5 and greater. The same trend would 
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be present for 𝑋(𝑛) values. Meanwhile, the specificity of the mixture 𝑆(𝑛) would be 0 for all 

lengths of 5 or greater. 

 
Figure 4.1. (A) A circular path of 10 steps formed from words taken from a virtual 

circular genome of length 10. (B) A circular path of length 5 existing in a mixture in 

which all 5-mers are present. (C) and (D) Short circular paths arising when there is a 

repeating structure in the 5-mer sequence. 

 

 We used varying starting conditions and parameters of our simulation and measured 

the connectivity function 𝑋(𝑛), the specificity function 𝑆(𝑛), and the circularity function 

𝐶(𝑛) from the mixture of sequences produced after 500 cycles. We also constructed visual 

connectivity graphs for all the possible 5-mer sequences in the mixture. Nodes were set as 

nucleotide bases or sequences and lines were set as path connections with arrows indicating 

the path direction. Nodes and lines were marked red if the nucleotide was part of a circular 

path, and grey if it was part of a linear path. 

 

4.2 Results 

 

 Using the simulations from chapter 3, we hoped to understand whether virtual circular 

genomes could emerge through our proposed RNA synthesis model. We run simulations 

A) B) C) 

D) 
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using the standard set of parameters, but with varying starting conditions. We began with a 

case which would yield measurements corresponding to the presence of virtual circles. In this 

case we start with a mixture of 100 sequences in which a virtual circle of length 10 along with 

its complement are present. The circle also contains no repeated overlapping 5-mer sequences 

in either of its complementary regions. We compared two cases where the inflow of new 

random strands was either turned on or off. It seemed likely that introducing random strands 

would affect the maintenance of the virtual circle by increasing the sequence diversity. 

Without the inflow of new random sequences, we observed perfect maintenance of the virtual 

circle, showing a similar outcome as with the example given in the methods. The results show 

a specificity function (S) value of 1 and a connectivity function (X) value of 0.05 for every 

path length. The circularity function (C) shows a value of 1 for path lengths which are 

multiples of 10, and a value of 0 for all other lengths. The connection graphs show that there 

are only two virtual circles which exist and are complementary (Figure 4.2A). In contrast, the 

simulation which permitted the inflow of random strands resulted in a connection graph 

showing a scramble of paths. No clear virtual circle is present, although there are intertwined 

circular paths. We observe a decreasing S value as lengths increase which levels off close to 0 

past sequences of length 10. Meanwhile, the X and C values increase to 1 for all lengths of 

about 16 and longer (Figure 4.2B).  
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Figure 4.2. XSC functions and connection graphs of two simulations starting from a perfect 

virtual circle mixture of 100 strands. The simulations differ by either (A) disallowing or (B) 

allowing the inflow of new random sequences. 

 

  In the next set of simulations, we set the starting mixture of 100 sequences to be 

generated randomly. We wanted to observe whether virtual circles could emerge after 500 

cycles of RNA replication and growth. In this case, we disallowed the inflow of random 

sequences. Many of the simulations resulted in connection graphs like the one in Figure 4.3A. 

A 

B 
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There are several linear paths that connect 5-mers, but a lack of a diverse or long virtual 

circular genome. We see circular paths consisting of only a G or a C and circles of alternating 

bases. The longest unique sequence that is part of a circular path is of length four. We see 

these trends reflected in the C values fluctuating at lengths which are multiples of four. These 

peaks also include the circles at lengths of one and two. Interestingly, the X value here is 

constant and low, like the case in Figure 4.2A. The S value dips down to meet the peaks of 

the C values, which is again a trend we observed in the case starting with perfect virtual 

circles. We also show an example of a simulation which produced a connection graph 

showing several longer virtual circles of length 14, 18, 22, 26, and then for every multiple of 

2 afterwards, as shown by the C values (Figure 4.3B). The circle is shown as having a base 14 

nucleotide long sequence with added repeats of sequences in between, shown as the outwards 

rectangular paths. The S value decreases, and the X value increases with path length, starting 

to plateau once the lengths reach that of the virtual circle.  

   Lastly, we looked for virtual circles starting from a randomly produced mixture of 

500 sequences. Starting with this more diverse mixture, connection graphs showed many 

intertwined circular paths not dependent on the inflow of new strands. In the case without 

inflow of strands, there is visually a lower diversity of sequences compared to the case with 

inflow. Both cases show similar trends with regards to the X, S, and C values. There is a 

decrease of the S value, which initially begins at a higher point and decreases slower in the 

case without inflow of new sequences. Both cases result in an S value leveling off at 0. The X 

and C values increase together from 0 until 1 in both cases, with the rate of increase being 

slower in the case without sequence inflow (Figure 4.4). Overall, there are no specific virtual 

circles produced in these cases starting with 500 sequences, or in any cases which inflow of 
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random sequences was permitted. Starting with a lower mixture population and not 

introducing any new strands seemed to sometimes lead to the emergence of unique virtual 

circles.  

 

 

 

 

Figure 4.3. XSC functions and connection graphs of two simulations starting from a random 

mixture of 100 strands. Inflow of new strands was not allowed in either case. 

 

A 

B 
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Figure 4.4. XSC functions and connection graphs of two simulations starting from a random 

mixture of 500 strands. The simulations differ by either (A) disallowing or (B) allowing the inflow 

of new random sequences. 
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4.3 Discussion 

 The template-directed synthesis of RNA under the assumed mechanisms presented in 

the previous chapter shows potential for emerging long sequences against a strand loss rate. 

Achieving this increases the possibility that an RNA sequence will develop a useful function. 

We can think of an RNA genome to make up several of these useful genes, but there are some 

differing theories about how this genome is stored. Specifically, Zhou et al. has proposed the 

idea that the genome might not necessarily be stored in one long strand, but rather a 

collection of shorter strands56. These shorter strands would collectively contain all the 

sequences present in the genome. In addition, the idea of a circular genome has gained 

popularity mainly due to its advantages in replication64. Thus, the collection of overlapping 

sequences making up the genome are referred to as the virtual circular genome. The 

advantage of this type of genome is said to come from its ease of replication. Within a 

situation similar to that considered in our simulations, Zhou et al. states: “Assuming that 

shorter oligonucleotides were more abundant than longer ones, replication of the entire 

genome could occur by the growth of all oligonucleotides by as little as one nucleotide on 

average56.” Although we can agree that a doubling of sequences can occur through small 

increases in length per cycle, genome replication implies the presence of a specific set of 

sequences. In our case, it was likely that the sequence mixture contained a diverse mixture of 

random strands without any specific virtual circle.  

Indeed, it seems that sequence diversity is an important factor influencing the 

presence of virtual circles. There are several ways in which sequence diversity could vary. 

One point that seems clear is that the initial sequence diversity directly determines the 

possibility of a virtual circle. A large starting population of random sequences generally leads 



Master’s Thesis − P. Chamanian; McMaster University − Biology and Astrobiology 

 72 

to overlaps between many sequences, meaning there are no specific paths. If we consider a 

fully diverse mixture where every 5-mer is present with equal frequency, a circular path is 

possible with 5 steps from any initial word. This outcome is seen to some degree in Figure 

4.4. It seems that virtual circles can sometimes occur if the starting population has a low 

enough diversity. However, if it were possible for new strands to enter the mixture, this 

would again increase the diversity and eliminate the specificity of circular paths. 

Nevertheless, one could envisage a scenario in the early RNA world where a low diversity 

sequence population is encapsulated within a lipid vesicle impermeable to oligomers. We 

have shown that under our ideal simulation conditions, a pre-existing virtual circle mixture 

could be maintained, although its emergence may be a rare occurrence. 

Under the condition where the initial diversity is low enough and is maintained, it 

seems that the emergence of specific linear paths is quite likely, as well as simple short 

circular paths. This explains the difficulty of emerging a virtual circular genome. Too diverse 

of a mixture creates many non-specific and overlapping circular paths, while a non-diverse 

mixture makes it difficult for circular paths to exist. Nevertheless, over numerous emergent 

mixtures and after a long enough time, we cannot rule out the potential emergence of a 

specific virtual circular genome. Also, we have seen the presence of specific linear paths, 

suggesting that a virtual genome may not have to be circular. A single circular genome strand 

benefits greatly in replication compared to a linear strand because it is not limited to a 

replication starting point. This improves the rate of replication greatly in the case of a circular 

strand since all the replicates will be complete. However, this is not an important factor in a 

virtual genome that is broken up into overlapping linear strands. In either case, you replicate a 

genome by increasing the lengths of all existing strands using genomic templates. The rate of 
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replication is not as dependent on whether the genome is circular or linear. Due to its more 

common occurrences in low diversity mixtures, we should certainly consider the possibility 

of emerging a virtual linear genome. Multiple virtual linear sequences and their complements 

are produced as seen in Figure 4.3, showing the possibility for random emergence of long 

functional RNA in a mixture of short oligomers that can replicate reliably. Later, it would be 

interesting to see connection graphs done at different strand lengths, different time points, and 

to measure the sequence copy numbers. This would allow a better understanding of how well 

the sequence is maintained and amplified under ideal conditions.  

With regards to circular paths, it can be observed that the rarity may come from the 

difficulty in creating overlapping paths both to and from a starting sequence. This explains 

the great level of circular paths created from high diversity mixtures. Indeed, there is a 

minimum level of diversity required to even potentiate the emergence of a long and specific 

circular sequence. It should also be noted that longer sequence will have a greater chance of 

having repeated sequences at separate regions, ultimately allowing for shortcuts, and 

decreasing specificity. This outcome is seen in Figure 4.3B. The longest unique circular 

sequence length in this example is 22, but shortcuts are made between repeating sequences 

leading to a shorter 14 length sequence. Also, small circles of length 4 are made from a 

portion of the 5-mer sequences. These branching paths are also seen within linear virtual 

sequences. Ultimately, the branching paths introduce alternative sequences which could also 

be useful and worth maintaining. Though it seems unlikely that short or repeating sequences 

will be of much use. Nevertheless, a degree of branching paths can mean the emergence of 

alternative virtual sequences, whether circular or linear, and is the much more probable case 

compared to getting long non-branching virtual circles from random mixtures. 
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So far, we mentioned that virtual sequences could appear when the sequence diversity 

does not start high or increase over time. Although it may be plausible that mixture diversity 

is maintained within a semi-permeable lipid vesicle where new oligomer sequences cannot be 

introduced, it is not as certain whether diversity can be maintained following RNA mutations. 

Random mutation will create new sequences, and high enough mutation rates can cause new 

overlapping paths. This would decrease the specificity of the virtual paths, leading to similar 

results as seen when allowing inflow of new random strands. In general, if the mutation rate, 

or even inflow of new sequences is low compared to the copy number of genomic strands, 

then diversity could be maintained through some mechanism of strand loss. For example, 

vesicle splitting could remove new sequences from the mixture before they continue to 

mutate and amplify. A small mutation rate would be required for evolution of the genome, 

allowing a potential beneficial change in the genome sequence. In the future, it would be 

interesting to see the results of our virtual circle measurements in simulations including error 

rates during monomer addition. Our simulations naturally assumed the occurrence of a 

diverse sequence mixture in which strands can grow and replicate consistently but result in 

random strands with no specific virtual sequence. Limiting the diversity of the mixture as 

mentioned seems to sometimes allow for the emergence of virtual sequences, but it would be 

worthwhile to see how the restrictions impact the replication and growth of strands. Finally, 

even with ideal conditions in place, we should not expect the occurrence of specific virtual 

circular sequences, but rather virtual sequences that may be linear, and have branching paths 

creating a set of virtual sequences.   

 

 



Master’s Thesis − P. Chamanian; McMaster University − Biology and Astrobiology 

 75 

Chapter 5: Conclusions 

 

 In this thesis, we concerned ourselves with non-enzymatic replication in the RNA 

world, mainly investigating the possibility of RNA growth through template-directed 

polymerization. We specifically addressed the reannealing problem, which was thought to 

prevent the continuous replication of longer strands even with the presence of environmental 

cycling47. We found that the reannealing case was dependent on the type of RNA mixture, 

and that without sequence specificity, reannealing can still produce configurations where 

primer extension occurs meaning growth is not blocked. These diverse sequence 

environments were also able to produce long RNA sequences over time. The non-enzymatic 

replication mechanisms involved in this process have been discussed before in the context of 

a virtual circular genome56. Although, from our simulations it seemed that the diversity 

required for continuous replication and growth would not allow for such virtual genomes. In 

general, using computational modeling, we managed to expand our understanding of the 

outcomes of non-enzymatic replication in the RNA world. 

 Our aim in chapter 2 was built on the understanding that the addition of nucleotides 

next to a primer where likely based heavily on thermodynamic properties. Specifically, we 

hypothesized that different bases would extend at rates depending on their stability when 

paired on the template. We explored this relationship using thermodynamic parameters for 

base pairing predicted through experiments and observed our hypothesized relationship by 

comparing predicted rates to experimentally measured primer extension rates. The results 

were limited because of too many unknown parameters. We predicted rates that were not 

comparable enough to real rates in order for the model to be applicable to realistic 



Master’s Thesis − P. Chamanian; McMaster University − Biology and Astrobiology 

 76 

simulations. In the future, the model can be improved with the discovery of updated 

thermodynamic parameters, including accurate free energy of monomer binding and 

mismatch base pairs. This type of model can become quite useful for upcoming quantitative 

theoretical RNA world research. 

 Moving forward, we decided to approach the non-enzymatic RNA world with a more 

qualitative model, mainly to address the case where continuous rounds of RNA replication 

are driven by temperature cycling. Although temperature cycling is a plausible mechanism for 

strand separation on the early Earth, rapidly reannealing of complementary sequences is said 

to pose a great challenge. In chapter 3, we look at a detailed case using a complex computer 

simulation of non-enzymatic RNA replication. Considering a large mixture of random 

sequences, the possibility for nucleation of strands from templates, and the inflow of new 

random sequences, the numerous configurations of helices continuously allow for the 

extension of polymers. This eventually leads to the emergence of long RNA polymers 

through template-directed synthesis. It was mainly thought that long strands would emerge 

only through random spontaneous polymerization, specifically using wet-dry cycling 

mechanisms65, and that only amplification of long strands would be done through templated 

replication. Our findings show that templated replication can create long strands instead, but 

this is likely at the expense of maintaining a specific template sequence. Since sequences 

grow by only a few nucleotides each cycle, they usually will grow on multiple templates over 

time. This prevents the passing on of sequence information.  

 One way that sequence information can be maintained within this regime is through 

virtual circular genomes. However, our results from chapter 4 indicate that it would be 

unlikely for a random mixture to converge to a mixture containing a specific virtual genome 
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path. Even if we start with a virtual circle mixture, random mutations and inflow of new 

sequences would eventually increase the diversity and lead to a mixture of random sequences. 

One could make the argument that semi-permeable vesicles would not allow for inflow of 

random oligomers, but only monomers. Regardless, proposing the spontaneous emergence of 

a virtual circle mixture from random sequences seems extremely rare. It may be possible that 

a virtual circular genome emerged from a physical one, after replication of many short 

segments. This would be a case where continuous information transfer occurs with 

temperature cycling. This may still not be the most efficient route. Instead, we propose that 

useful genomic strands emerged as long physical sequences and were replicated through 

rolling circle or strand displacement mechanisms which do not require temperature cycling. 

This way, genome replication is not limited to only the environments where temperature or 

other environmental fluctuations take place.  

In a way, our findings point towards the importance of lipid vesicles since it would be 

beneficial for long sequences to eventually move to a lower diversity environment. This way, 

sequence information can be maintained within a confined space for a longer period, allowing 

for possible selection and evolution of beneficial strands. Although the naturally complex 

origin of life scenario provides many challenges, we should continue to expand our 

understanding piece by piece. Non-enzymatic replication was likely an important stage within 

the RNA world preceding the emergence of ribozymes. Through combined discoveries, we 

are forming a more complete picture of the ways in which this stage could have progressed 

and transformed leading up to life’s origins.  
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