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ABSTRACT 
 
Forests provide important ecosystem services and play a dominant role in the global 

carbon and hydrologic cycles. These ecosystems are becoming more vulnerable to climate 

change-related threats such as extreme temperature and precipitation events, drought and 

wildfires. In addition, forest ecosystems have also undergone land use changes and a 

significant reduction in cover area, specifically in North America. There has been 

renewed realization to restore and rehabilitate forest ecosystems because they are a major 

carbon sink and play a key role in sequestering atmospheric carbon dioxide. In response, 

plantation forests are being widely established to sequester carbon, increase biodiversity, 

secure water resources and generate economic revenue when harvested. Forest managers 

employ different  management practices such as thinning or retention harvesting to 

enhance growth, plant structural and species diversity within forest plantations, with the 

ultimate goal of emulating the characteristics and benefits of natural forests. However, the 

influence of these forest management practices on the growth, productivity and 

specifically water cycling in plantation forests is not well studied and reported in the 

literature.  

 

This experimental study investigated the effect of four different variable retention 

harvesting (VRH) treatments on evapotranspiration and water balance in an 83-year-old 

red pine (Pinus resinosa) plantation forest in the Great Lakes region in Canada. These 

VRH treatments included 55% aggregated crown retention (55A), 55% dispersed crown 

retention (55D), 33% aggregated crown retention (33A), 33% dispersed crown retention 
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(33D) and unharvested control (CN) plot. Tree-level experimental work was conducted in 

the control plot and showed that most of the water transport (65%) occurred in the 

outermost sapwood, while only 26% and 9% of water was transported in the middle and 

innermost depths of sapwood, respectively. These results help to avoid overestimation of 

transpiration, which may cause large uncertainties in water budgets in pine forests. Study 

results further showed that the 55D treatment had the highest tree-level transpiration 

followed by 33D, 55A, 33A and CN plots. During periods of low precipitation, vapor 

pressure deficit (VPD) was the main driver or control on transpiration in VRH treatments. 

However, transpiration was more closely coupled with photosynthetically active radiation 

(PAR) in the control plot. Moreover, the 55D treatment resulted in on average 58% of 

total water loss from canopy as transpiration and 42% from the understory and ground 

surface as evapotranspiration. These findings suggest that dispersed or distributed 

retention of 55% basal area (55D) provides the optimal environmental conditions for 

forest growth with reduced competition of trees for water as shown by enhanced 

transpiration. This study will help researchers, forest managers and decision-makers to 

improve their understanding of thinning impacts on water and carbon exchanges in forest 

ecosystems and select and adopt viable forest management practices to enhance their 

carbon sequestration capabilities, water use efficiency and resilience to climate change.  
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study. 
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CHAPTER 1: 
 

INTRODUCTION 
 

1.1 Climate Change and Water 
 

The earth has experienced natural fluctuations in climate over time, however, in recent 

decades anthropogenic greenhouse gas emissions have been linked to the unprecedented 

rate at which global air temperatures are rising (IPCC, 2021). Greenhouse gases such as 

carbon dioxide (CO2), trap long-wave radiation and influence the global carbon cycle. 

Mean global concentrations of CO2 have increased from 280 parts per million in the year 

1750 to 414.3±0.1 parts per million in 2020 (Joos and Spahni 2008, NOAA Global 

Monitoring Laboratory 2021).  Consequently, Earth’s global mean air temperature has 

increased by 0.8°C to 1.2°C and is on track to reach or exceed 1.5°C in the next 30 years 

(IPCC 2021). The impacts of global warming differ according to geographic location and 

level of development, but it is widely predicted that changes in climate will lead to sea-

level rise, more extreme weather events and altered precipitation regimes. 

The earth’s climate and the global water cycle are intricately linked systems. Climate 

change alters the dynamics of the water cycle and impacts on water supply and demand 

are expected to worsen over the coming years (Ellison et al. 2017, Sheil 2018). In some 

regions, warmer temperatures are expected to be met with less precipitation and may lead 

to droughts, wildfires, food shortages and water scarcity. Other regions are expected to 

experience more variable and extreme precipitation events such as flooding, hurricanes 

and hail storms (IPCC 2021). These impacts will unarguably have adverse effects on both 
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marine and terrestrial ecosystems and the biodiversity they sustain.  

 

1.2 Forest Ecosystems 

Globally, forests cover 30% of the Earth’s land surface (Bonan 2008) and provide a wide 

range of biodiversity, climate and water-related ecosystem services. Forests play a key 

role in the terrestrial water, energy and carbon cycles. Globally, forests sequester 20% of 

total anthropogenic carbon each year (Pan et al. 2011) and 10% of terrestrial carbon is 

held in temperate forests (Bonan 2008).  Despite the high carbon sequestration rates of 

these forests, deforestation and increasing annual temperatures are turning many of these 

carbon sinks into carbon sources (Bonan 2008, Hadden and Grelle 2016, Baccini et al. 

2017, Gatti et al. 2021).  

 

Approximately 61% of the 117,600 km3 of annual global precipitation is derived from the 

land (Schneider et al. 2017) and more than 50% of this atmospheric moisture originates as 

transpiration from vegetation (Jasechko et al. 2013; Wei et al. 2017; Sheil 2018). It is 

widely accepted that forests return more water vapour to the atmosphere than any other 

vegetation type (Katul et al. 2012). Terrestrial evapotranspiration is a major component of 

the hydrologic cycle and is closely linked with precipitation and surface temperatures. 

Forests also act as a “biotic pump” – drawing in moist air from areas with low leaf area 

(Sheil 2018). This condensation-driven theory of wind suggests that air rises in high 

evaporation areas creating a low pressure zones where moist air from the surrounding 

area is drawn. Hence, these areas may experience local precipitation (Makarieva et al. 
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2013, Sheil 2018). In addition to this influx of moisture, forests have high transpiration 

rates – a process which generates rainfall, reduces sensible heat and increases cloud cover 

(Pokorny et al. 2010, Sheil 2018, Ellison et al. 2017). While carbon sequestration and 

storage have been regarded as the primary benefits of forests, many scientists argue that 

the water-related ecosystem services they provide are equally, if not more important 

(Ellison et al. 2017). 

 

Global deforestation removes 18.7 million acres of forest each year (FAO, 2016). Some 

researchers estimate these alterations to terrestrial land cover have caused a 5-6% 

reduction in atmospheric moisture at a global scale (Sterling et al. 2013). This issue has 

recently attracted global attention at the COP26 climate summit, where the leaders of 110 

countries committed to ending deforestation by the year 2030 (UN Climate Change 

Conference UK 2021). As a direct measure to address deforestation and the rising levels 

of atmospheric carbon dioxide, afforestation and reforestation practices have been widely 

adopted to enhance carbon sequestration and mitigate climate change (Pan et al. 2011, 

Law et al. 2018, Domke et al. 2020). When compared to natural stands, plantation forests 

are characterized by a more homogenous age distribution and lower species diversity, 

which decrease their resilience to climate change-related threats such as drought, wildfire 

and invasive species (Hemery 2008, Dale et al. 2010). Ecological forest management 

practices have been developed and applied to plantation stands to increase structural 

diversity, emulate characteristics of natural stands and therefore, increase their resilience 

to climate change.  
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1.3 Forest Management 

Various forest management practices are employed worldwide to achieve ecological and 

economic goals. Silviculture, the practice of manipulating forest stands, is strongly rooted 

in European forest practices and recognizes four regeneration harvest methods: clearcut, 

seed-tree, shelterwood and selection (Smith 1986, Franklin et al. 1997). Thinning 

provides economic revenue from harvested timber, while regulating competition between 

trees in a stand, providing the remaining trees with greater access to resources required 

for productivity. In addition to growth of the remaining trees, the opening of the canopy 

results in changes to the microclimate within and above the forest stand. Parameters like 

radiation and intercepted rainfall are altered, along with wind flow, air temperature and 

vapour pressure deficit (Vesala et al. 2005).  

 

More recently, research has shown thinning can reduce mortality and increase resiliency 

to drought and other threats exasperated by climate change (Powers et al. 2010, Knapp et 

al. 2021). Drought-related stress and mortality is increasingly being documented in 

temperate, boreal and tropical ecosystems, forecasting the impacts on forests globally 

(Adams et al. 2009, Dai 2013, Allen et al. 2015, Law et al. 2015, Clark et al. 2016). These 

studies often provide the basis for policy and management decisions like thinning 

prescriptions and what species to plant following disturbance. 
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Of the four recognized regeneration harvesting methods, the selection method is most 

appropriately used in uneven-aged stands (Smith 1986). While there are several adaptions 

to this method, the VRH method has been widely applied in managed Canadian forests 

for the past 30 years (Beese et al. 2019).  VRH aims to maintain structural elements of the 

pre-harvest stand by retaining live and dead trees of various sizes. This method 

emphasizes the importance of structural complexity for preserving ecosystem function 

and supporting biological diversity (Beese et al. 2019). The long-term retention of trees 

which vary in size and age leads to a more structurally diverse and resilient stand 

(Franklin et al. 2018).  While research supports the use of VRH to decrease tree mortality, 

future studies should examine the complex linkages between soil, vegetation and 

atmosphere in these ecosystems.  

 

1.4 Study Site Description 

This dissertation consists of research conducted at three forest sites in the Turkey Point 

Observatory (TPO), located within the St. Williams Conservation Reserve (SWCR) near 

Lake Erie in Ontario, Canada. The study sites consist of two white pine (Pinus strobus L.) 

plantation forests, planted in 1939 and 1974 (referred to as CA-TP39 and CA-TP74, 

respectively); and one red pine (Pinus resinosa) site, referred to as CA-TP31. The 

abbreviation CA-TP refers to ‘Canada-Turkey Point’ and the number corresponds to the 

year in which the stand was planted. All three forest sites are located within a 3-km radius 

of one another and are subjected to similar edaphic and climate conditions. In 2014, CA-

TP31 was subjected to thinning following a variable retention harvesting (VRH) 
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treatment. The four different VRH treatments included 55% aggregated crown retention 

(55A), 55% dispersed crown retention (55D), 33% aggregated crown retention (33A), 

33% dispersed crown retention (33D) and unharvested control (CN) plot. The Turkey 

Point Observatory is part of the Global Water Futures (GWF) program and FLUXNET. 

Further site details including instrumentation are reported in the individual chapters.  

 

1.5 Methods Overview 

This research utilized thermal dissipation sap flow sensors and eddy covariance 

instrumentation to quantify components of forest evapotranspiration. Lab-constructed sap 

flow sensors followed the Granier (1987) method, where two probes containing 

thermocouples were inserted into the xylem tissue of a tree. The upper probe was 

positioned vertically from the other, heated at a constant rate and the difference in 

temperature between both probes was measured. These values are then scaled up to sap 

flow, sap flux density and transpiration. Sap flow measurements have been used to 

quantify and examine physiological and environmental controls on transpiration in 

individual trees and forest stands for the past four decades (Wullschleger et al. 1998, 

Wilson et al. 2001b, Oishi et al. 2008, Poyatos et al. 2016). Given the heterogeneity of 

forest stands, the sap flow technique provides important insight into the dynamic 

interactions that occur at the soil-plant-atmosphere boundary of these ecosystems.  

 

The eddy covariance (EC) method is widely used to quantify the exchange of carbon, 

water and energy between the land surface and the atmosphere at larger spatial scales 
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(Baldocchi et al. 1988, Baldocchi 2020). Several studies have used EC to measure these 

fluxes in the boundary layer above forest canopies which are typically characterized by 

sufficient turbulence. Eddy covariance is the most widely used method to measure mass 

and energy fluxes above forest canopies and is the foundation for global, standardized 

networks such as FLUXNET (Baldocchi 2001). The method is based on the theory that 

rotating parcels of air (eddies) transport quantities of water vapour, carbon dioxide and 

other trace gases. Several studies have also successfully used EC below/within a forest 

canopy to capture the contributions of soil and understory vegetation to the ecosystem 

carbon and water balance (Baldocchi and Meyers 1991, Baldocchi 1997, Saugier et al. 

1997, Wilson and Meyers 2001a, Paul-Limoges et al. 2017). This study collected carbon, 

energy and water flux measurements using EC instrumentation situated above the forest 

canopy at the two white pine sites (CA-TP39 and CA-TP74) and below/within the canopy 

at the red pine site (CA-TP31). In addition to EC and sap flow measurements, soil and 

meteorological measurements were also collected at each site including air temperature, 

relative humidity, photosynthetically active radiation, net radiation, precipitation, soil 

temperature and soil moisture. Additional details about instrumentation are provided in 

each of the respective individual chapters.  

 

1.6 Study Objectives 

This study examined physical and biological components of forest evapotranspiration 

and the impact of variable retention harvesting on these processes. The primary 

objectives of this study were: 
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1) Quantify hydraulic flow through the xylem sap wood of red pine trees to reduce 

uncertainties when scaling sensor measurements to the tree-level 

2) Investigate the environmental drivers of evapotranspiration and compare these 

controls between variable retention harvesting (VRH) treatments 

3) Examine the effect of VRH treatments on tree-level transpiration of the dominant 

canopy species in a red pine plantation 

4) Partition evapotranspiration into dominant components: canopy transpiration and 

understory soil and vegetation and compare the contribution of these components 

between VRH treatments 

This research may be of interest to those involved in decision-making related to forest 

management strategies, and to forest researchers studying the adaptation of these 

ecosystems to future climate. Additionally, the results of this work may provide a better 

understanding of the various processes contributing to canopy-scale ET and help in the 

improvement of land-surface models 
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CHAPTER 2: 
 

RADIAL VARIATIONS IN XYLEM SAP FLUX IN A TEMPERATE RED 
PINE PLANTATION FOREST 

 

Abstract 

Scaling sap flux measurements to whole-tree water use or stand-level transpiration is 

often done using measurements conducted at a single point in the sapwood of the tree and 

has the potential to cause significant errors. Previous studies have shown that much of 

this uncertainty is related to (i) measurement of sapwood area and (ii) variations in sap 

flow at different depths within the tree sapwood. This study measured sap flux density at 

three depth intervals in the sapwood of 88-year-old red pine (pinus resinosa) trees to 

more accurately estimate water-use at the tree- and stand-level in a plantation forest near 

Lake Erie in Southern Ontario, Canada. Results showed that most of the water transport 

(65%) occurred in the outermost sapwood, while only 26% and 9% of water was 

transported in the middle and innermost depths of sapwood, respectively. These results 

suggest that failing to consider radial variations in sap flux density within trees can lead 

to an overestimation of transpiration by as much as 81%, which may cause large 

uncertainties in water budgets at the ecosystem and catchment scale. This study will help 

to improve our understanding of water use dynamics and reduce uncertainties in sap flow 

measurements in the temperate pine forest ecosystems in the Great Lakes region and help 

in protecting these forests in the face of climate change.  
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2.1 Background 

Forests provide essential water-related ecosystem services through the regulation of the 

hydrologic cycle. Quantitative assessments of these ecosystem services have traditionally 

focused on direct water availability, failing to recognize the role of forests in moisture 

recycling from a supply, or ‘green water’ perspective (Falkenmark and Rockstrom 2004, 

Ellison et al. 2017, Casagrande et al. 2021). At a global scale, 61% of atmospheric 

moisture is derived from terrestrial environments (Schneider et al. 2017), more than half 

of which comes from plant-transpiration (Jasechko et al. 2013, Wei et al. 2017). A 

thorough understanding of these processes may help to better characterize the complex 

linkages between forest ecosystems and climate change. Furthermore, the accurate 

quantification of these green water processes is becoming increasingly important for the 

development of terrestrial ecosystem and hydrologic models (Guswa et al. 2014) as well 

as climate models (Marotzke et al. 2017).  

 

Forest ecosystems play a dominant role in the transfer of ground water to the atmosphere 

through transpiration (Bonan 2008). Precise measurement of transpiration in forest 

ecosystems is essential to improve our understanding of their water-use and hence 

regional water resources. It will help to determine how forests may respond to future 

climatic changes, where future climate scenarios suggest increased air temperatures, more 

frequent and severe droughts and longer growing seasons (Zhang et al. 2019), which may 

have a major impact on the transpiration and water-use in forest ecosystems.  
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Over the past 40 years scientists have developed several methods for estimating 

transpiration such as the water balance method, soil water budget, isotopes and sap flow 

(Kool et al. 2014). The latter describes a technique of estimating the water flux through 

the conductive tissue of a plant (Vandegehuchte and Steppe 2013). There are several 

different methods to measure sap flow including the heat-pulse (Swanson and Whitfield 

1981, Cohen et al. 1981, Green and Clothier 1988) and thermal-dissipation (Granier 

1987) techniques. Both methods measure the difference in temperature between a heated 

and non-heated probe and create a dimensionless flow index (K). This flow index is then 

used to calculate sap flux density (Js; g H2O m-2 sapwood s-1), the flow rate per 

conductive area (Vandegehuchte and Steppe 2013). To estimate whole-tree water use 

from Js, the mass flow of sap in the conductive xylem sapwood (F) is calculated as the 

product of Js and the sapwood area (As) of the stem cross-section (F = Js As).  

 

When scaling point-measurements to the whole-tree or stand level, many studies have 

identified within-tree variations in sap flow as one of the largest sources of error (Hatton 

et. al 1995, Oren et al. 1998, Clearwater et al. 1999, Wullschleger and King 2000, Zhang 

et al. 2015). To accurately understand whole-tree water use in the forest stand, scientists 

rely not only on the accuracy of these point-measurements but also on the methods used 

to scale-up the results to the tree- and stand-level (Clearwater et al. 1999). This includes 

an accurate estimation of sapwood depth and an understanding that Js varies radially 

throughout the sapwood. Failure to take into consideration these radial differences has 

been shown to lead to errors as large as 300% when reporting whole-tree transpiration in 



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

17 
 

the literature (Nadezhdina et al. 2002, Ford et al. 2004b).  

 

In addition to variability throughout a cross-section of a tree, the sap flow method is 

subject to errors associated with uncertainties in the sapwood area. This is often due to the 

destructive nature of methods such as coring to determine sapwood depth. These errors 

can lead to insufficient contact area of the sampling probes in the sapwood and 

inaccuracies when scaling up point-measurements to the tree-level (Vandegehuchte and 

Steppe 2013, Lu et al. 2004). Few studies using sap flow methods to estimate tree- and 

stand-level transpiration characterize a radial profile within the sapwood (Ford et al. 

2004b). Berdanier et al. (2016) examined studies published between 2013 and 2016 in 

which authors scaled-up sap flow measurements and found 58% of studies assumed 

uniform flow throughout the sapwood, resulting in a large margin of error.  

 

This study addresses many of the aforementioned uncertainties in sap flow measurements 

with the aim of decreasing error in the scaling-up process and further highlighting the 

importance of characterizing a radial profile of water conductance within the sapwood. 

The specific objectives of this study are (i) to measure the spatial (radial) variability in 

sap flow within the xylem sapwood of the red pine trees; (ii) to determine if a species-

specific relationship exists between tree diameter and sapwood area; and (iii) to quantify 

errors associated with up-scaling of single point sap flow measurements to the whole tree 

level. We hypothesize that sap flux will be greatest closer to the cambium and decrease 

substantially toward the heartwood, where it is considered to be zero. The study results 
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will help to develop a better understanding of the hydraulic conductivity of sapwood and 

help in up-scaling sap flow to the tree- and ecosystem levels.  

 

Furthermore, this study is one of the first to study spatial variation in sap flow in red pine 

(Pinus resinosa) - an important plantation species in the region of southern Ontario. It is 

estimated that 70% of plantation forests in southern Ontario are comprised of red pine, a 

species which delivers valuable economic revenue from harvested timber (Kim 2020). 

These red pine plantations produce lumber which is extensively used for pulp wood and 

utility poles, and are also considered a principal solution for the restoration of wastelands 

into forests (LRC 2005). 

 

2.2 Methods 

2.2.1 Experimental site description 

This study was conducted in a temperate red pine (Pinus resinosa) plantation forest 

located in the St. Williams Conservation Reserve (SWCR) (42°42’N, 80°21’W), 3.0 km 

north of Lake Erie, in southern Ontario, Canada. This 14-ha plantation stand is part of the 

Turkey Point Observatory or Turkey Point Flux Station (TPFS) and is referred to as 

TP31, where 31 represents 1931 when the stand was planted. Soils in this region are 

sandy and well-drained, with a low to moderate water holding capacity (McLaren et al. 

2008; Beamesderfer et al. 2020). The TPFS consists of three different-aged coniferous 

plantations referred to in the literature as TP39, TP72 and TP02, one mixed deciduous 

site, TPD, one red pine plantation stand, TP31(this study site) and an agricultural site 
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(TPAg), where eddy covariance flux measurements have been made. These sites are also 

associated with the Global Water Futures Program and FLUXNET. Further details of 

TPFS are given in Restrepo and Arain (2005), Peichl et al. (2010) and Beamesderfer et al. 

(2020).  

 

TP31 was established by planting red pine seedlings in furrowed rows, 2 m apart. In early 

2014 the plantation was subject to a variable retention harvesting (VRH) regime to 

convert or restore this conifer plantation to a native mixed forest. VRH treatment included 

the division of the stand into 1-hectare plots, and the application of different harvesting 

patterns to the plots.  This study was conducted in three trees in the non-harvested 

(control) plots of this plantation. These trees are part of much larger VRH study where 

sap flow is being measured in 80 trees in 15 one-hectare plots comprising five 

management regimes or treatments. Because TP31 is a monoculture plantation stand with 

very small difference in tree DBH and structure, measuring radial difference in sap flow 

in three trees was adequate for this study.      

 

2.2.2 Meteorological information 

The climate in southern Ontario is temperate with warm, humid summers and very cold 

winters. The region receives on average 1036 mm of precipitation per year, of which 

approximately 13 % falls as snow (Environment and Climate Change Canada, Norms at 

Delhi, ON).  
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Local micrometeorological conditions were measured from two flux towers located at the 

white pine (Pinus strobus) plantation sites (TP39, TP74) within a 3-km radius of TP31. 

These towers are instrumented with eddy-covariance systems and weather stations, where 

continuous year-round measurements of sensible heat, latent heat, CO2 and air 

temperature, humidity, photosynthetically active radiation (PAR), soil temperature and 

soil moisture are conducted, respectively.   

 

2.2.3 Sap flow measurements 

Sap flow sensors were installed in three sample trees selected from a control 

(unharvested) plot at TP31 (Table 2.1). The sensors were self-manufactured, Granier-

style thermal-dissipation sensors following Matheny et al. (2014) and Pappas et al. 

(2018). Each sensor consisted of two hollow needles, 20 mm in length, each containing a 

fine-wire, type T thermocouple at the midpoint (10 mm) of each needle. One of the 

needles was wrapped with insulated, constantan wire, which provided constant heating 

when connected to the self-made circuit board and supplied 12V power. The needles were 

coated with thermal grease and inserted into a hollow, metal tube on the north side of the 

tree at breast height (1.3 m above the ground). The heated probe was installed 10 cm 

vertically above the non-heated probe.  

 

 In each tree, one sensor was installed in the outer-most 0-20 mm of sapwood (from the 

edge of the cambium to 20 mm depth); a second sensor was installed from 20-40 mm 

depth and the third sensor was installed at a depth of 40-60 mm in to the trunk. Each 
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sensor was vertically staggered and located 15 cm from each other on the north side of the 

tree. A dimensionless flow index (K), was calculated from the difference in temperature 

(T) measured between the two probes following Granier (1987) and can be expressed as: 

 

𝐾 = D#$%&'D(
D(

           (1) 

 

K values were calculated by determining zero-flow conditions using the open-source 

software Baseliner (Oishi et al. 2016). Measurements were collected continuously from 

14 August to 20 August 2019 and averaged into half-hour intervals. 

 

Sap flux density (mL m-2sapwood s-1) was calculated following Granier (1987) and using the 

original coefficients, as a species-specific calibration was not conducted. Js was then 

scaled up to whole-tree water use (L d-1) by multiplying by the cross-sectional sapwood 

area (As).  

 

To estimate error, whole-tree water use was calculated both accounting for radial 

variation (Qr) and assuming uniform Js (Qu). When calculating Qu, only the sap flux 

density measurements made in the outermost depth interval (0-20 mm) were used to 

scale-up to the whole-tree level.  

 

2.2.4 Determining sapwood depth 
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Sapwood depth, heartwood depth and total xylem depth (from the pith to the xylem edge) 

were measured using a 5.15 mm increment borer and identified visually based on 

colouration changes between sapwood and heartwood. A total of 34 cores were taken in 

17 trees. Each tree was cored twice to obtain average depth per tree. Cores were collected 

from trees not instrumented with sap flow sensors to prevent disruption to the hydraulic 

conductivity of the sapwood.   

 

2.2.5 Integration of non-uniform sap flux density 

Js (mL m-2sapwood s-1) was averaged at each depth interval between the three sample trees 

and a daily average was computed over the seven-day study period. We then calculated 

the area under each daily Js curve to get daily water flux (cm of water) at each of the three 

depth intervals. Once the average daily water flux was calculated at each depth within the 

sapwood, a fourth-order polynomial trend line was fit to the data. The following 

assumptions were made: i) no hydraulic flow within the heartwood and ii) flow at the 

edge of the cambium (not measured) is 70% of the measured velocity in the outermost 

depth interval. Assumption ii was based on similar findings from several Pinus species 

reported in Nadezhdina et al., (2002); and Ford et al. (2004b). Finally, the polynomial 

was integrated between 7 cm and 14 cm to represent the average daily volume transpired 

(cm3).  

 

2.2.6 Study Limitations 
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Limitations of our study include a small sample size (n=3) and temporally short duration 

of measurements. As mentioned earlier, this small subset of sensors reported in this 

article is part of a larger ongoing experimental study comparing transpiration between 

various forest management techniques. Due to uncertainties associated with the potential 

disruption of hydraulic flow in trees with multiple sensors, the sample size of this radial 

study was kept limited so as not to compromise the integrity of the larger study. The short 

duration of measurements was caused by disruption to the power supply for all sensors, 

lasting more than one month.   

 

2.3 Results 

 

2.3.1 Meteorological conditions 

The study period experienced average daily temperatures when compared to 30-year 

mean climate record for this region (Figure 2.1a). Precipitation occurred on August 17, 18 

and 20 (Figure 2.1a) with a total value of 25 mm during the study period. Js followed a 

similar diurnal pattern as air temperature and vapour pressure deficit, (VPD; Figure 2.1b) 

suggesting transpiration at this site is driven primarily by temperature and VPD.  

 

2.3.2 Relationship between sapwood area and diameter  

Previous studies have developed species-specific allometric equations relating sapwood 

area to tree diameter (Bovard 2005; Matheny et al. 2014; Skubel et al. 2017,) but no such 
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relationship is known for red pine or Pinus resinosa. This study developed an allometric 

equation (equation 2) relating sapwood area (As) to tree diameter at breast height (DBH).  

As = aDBHb      (2) 

The species–specific parameters (a,b) of the allometric equation, are displayed in Figure 

2.2 and report an R2 value of 0.92.  

 

2.3.3 Radial profiles of sap flux density 

As expected, sap flux density was greatest in the outermost 0-20 mm of sapwood and 

decreased toward the pith. Figure 2.3 illustrates the average of all sensors at each depth 

for the duration of the study period. All sensors exhibited the same diurnal pattern 

suggesting both a level of accuracy and similar timing of flow, regardless of depth. Js 

peaked between 12:00 and 14:00 each day of the study period. The difference in Js 

between each of the depth intervals was consistent, except for August 14 in which Js in 

the middle (20-40 mm) depth was not significantly different to the innermost (40-60 mm) 

depth. This could be due to a brief power issue, as it was seen among all sensors.  

 

The average daytime (between 8:00 and 20:00) Js was 14.8, 7.1 and 3.7 mL m-2 s-1 for the 

outer, middle and inner portions of the sapwood, respectively. The maximum Js in the 

outer depth was 31.4 mL m-2 s-1 on 20 August (13:00), while the innermost depth reached 

a maximum of 7.4 mL m-2 s-1 on the same day/time.  
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Figure 2.4 shows an average daily profile of water flux throughout the conductive tissue 

of the sapwood, showing the measurements at 9, 11 and 13 cm from the pith and 

assumptions made for both the sapwood-heartwood border and the edge of the cambium. 

The relationship is best described by a fourth order polynomial and indicates the highest 

flow at approximately 1 cm from the edge of the cambium.  

 

2.3.4 Errors associated with assuming uniform sap flux density 

On average, sap flux at the 20 to 40 mm, and 40 to 60 mm depths accounted for 

approximately 56 and 32% of that at the 0-20 mm depth, respectively. These results 

indicate that most of the water transport occurred in the outermost sapwood. 

By failing to account for radial variation in Js, the results show that whole-tree water use 

is overestimated by as much as 81% (Table 2.2). When possible, it is therefore favorable 

to measure Js at various points in the conductive sapwood to report whole-tree 

transpiration.  

 

2.4 Discussion 

The measurement of sap flow is a widely adopted technique to quantify transpiration and 

water use in vegetation ecosystems including forests. Sap flux density substantially varies 

within the sapwood of trees and among different forest species. Therefore, to better 

quantify ecosystem water fluxes, variations in hydraulic conductivity at the tree-level 

must be considered in forest ecosystems. Our study is one of the first to explore radial sap 

flux variability in the red pine (Pinus resinosa) forests. We found that most of the sap 
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flux occurred in the outermost sapwood, within 3 cm from the cambium, validating our 

proposed hypothesis. In the literature, Delzon et al. (2004) had explored a similar 

hypothesis in other species of pine and found that by neglecting the radial variation within 

the sapwood, transpiration was overestimated by up to 47%. Other studies have suggested 

that this overestimation can be as large as 300% (Nadezhdina et al. 2002, Ford et al. 

2004b). Although for many species sap flux density is highest near the cambium, Cermak 

et al. (1992) found a Gaussian distribution of sap flux density with depth in Norway 

spruce (Picea abies). Radial variation is, therefore, dependent on wood- and species-type 

(Berdanier et al. 2016) and is widely agreed that this variability needs to be addressed 

when scaling sap flow measurements to the tree- and stand-level. 

 

2.4.1 Variability in radial depth profiles 

Radial depth profiles have been shown to vary diurnally (Ford et al., 2004b; Poyatos et al. 

2007), and with changes in soil water content (Ford et al. 2004a). The study period in 

which our research was conducted did not show significant changes in soil water content 

(q; Figure 2.1d) to investigate the latter. In fact, studies have shown that depth profiles 

remained relatively constant during periods of stable soil moisture conditions (Lu et al. 

2000). Variability between trees and within a single tree has also been studied to 

determine the need to establish a depth profile for individual trees (Lu et al. 2000; Delzon 

et al. 2004; Kumagi et al. 2005). In our study, we do not examine differences in depth 

profile within an individual tree due to the highly symmetrical distribution of sapwood 

cross-sectionally in this plantation forest.  
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2.4.2 Relationship between basal diameter and sapwood area 

Our study developed an allometric relationship between tree diameter (DBH) and 

sapwood area for our red pine stand as shown by equation 2. Other studies have similarly 

established allometric equations for several other species (Matheny et al. 2014; Bovard et 

al 2005) but our study is one of the first for red pine forests. This relationship, which is 

highly species-specific, can be used in future studies when determining the positioning of 

sap flow sensors and scaling point-measurements to the tree-and stand-levels.   

 

2.4.3 Quantification of errors when scaling to tree level 

Studies in the literature have shown differences in radial depth profile depending on 

wood-type (Phillips et al. 1996). For instance, Cermak et al. (1992) found the radial 

profile in Norway spruce (Picea abies, non-porous) to be symmetrical, with sap velocity 

peaking at the midpoint of the sapwood depth. In contrast, they found an asymmetrical 

distribution of sap flow in oak (Quercus robur, ring-porous) (Cermak et al. 1992). 

However, Phillips et al. (1996) found sap flux density to decrease from the cambium to 

the pith in loblolly pine (Pinus taeda, non-porous), which more similarly reflects the 

results from our study. 

 

In Scots pine (Pinus Sylvestris) Nadezhdina et al. (2002) showed that the majority of sap 

flow occurred at a depth of 85 to 95% of the xylem radius. When positioning a single 

sensor at this depth, sap flow was greatly overestimated by as much as 300% 
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(Nadezhdina et al. 2002). Other studies on Slash pine (P. ellioti), shortleaf pine (Pinus 

echinata), longleaf pine (P. palustris) and Loblolly pine (P. taeda) (Ford et al. 2004a, 

2004b) have given a similar distribution of sap flow. Our study has shown that the 

majority of water flow in red pine trees occurs in the outer depth of sapwood, closest to 

the cambium. This pattern of sap flow is consistent with observations made on Scots pine, 

Slash pine and Loblolly pine as discussed above.    

 

Previous studies in the literature have also examined the variability in conductive tissue 

of the eastern white pine (P. strobus), which is a native conifer species naturally grown or 

planted in the Great Lakes region. They found that the non-symmetrical nature of 

sapwood area increased the margin of error associated with estimating the distribution of 

sap flow in white pine (McIntire 2018). As compared to red pine, white pine trees had 50-

70% less sapwood area (Matheny et al. 2014, McIntire 2018), which highlighted the 

importance of estimating the spatial variation of sapwood and hence sap flow in 

individual tree species. 

 

To achieve more accurate results when scaling up sap flux density measurements, it is 

ideal to have multiple measurements at various depths within the sapwood of each 

individual tree. However, due to time, financial and wounding constraints, in most sap 

flow measurement studies such an approach is not adopted. Zang et al. (1996) and Delzon 

et al. (2004) investigated radial variation in sap flow and developed a correction factor 

adjusting a single measurement to better reflect the actual sap flux on a given day. 
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However, research has shown there may be high temporal variations in radial depth 

profiles, indicating that radial depth profiles may change according to tree size (Ford et al. 

2004), soil water availability (Lu et al. 2000; Ford et al. 2004a; Nadezhdina et al. 2007) or 

evaporative demand (Ford et al. 2004b). Therefore, multiple measurements within the 

sapwood is a preferred methodology for more accurate sap flow results as suggested by 

the results of our study. 

 

In Canada, fast-growing red pine forests are an important source of softwood for the 

lumber industry and are widely planted. Red pine logs are straight, and are extensively 

used in the construction industry and for electricity poles (Nature Conservancy Canada). 

The red pine plantation forests in the Great lakes region and Eastern North America are 

susceptible to increasing temperatures and more frequent drought and heat events due to 

climate change (Bottero et al. 2017, Wang et al. 2014, Li et al. 2018). Therefore, the 

results of our study will help in the understanding of water use strategies of red pine 

forests. They will be useful to researchers, forest managers and ecological policy makers. 

 

2.5 Conclusions 

 

Our study results show that transpiration from dominant red pine trees contributed 

significantly to the overall water balance of the forest. Overall, 65% of water transport 

occurred in the outer 20 mm of the sapwood, while 26% and 9% of water transport 

occurred in the 20-40 mm and 40-60 mm depth intervals, respectively. Furthermore, our 
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study reveals that by failing to account for radial variability in sap flow, whole-tree water 

use may be over-reported by as much as 81%. These results suggest the best-practices for 

scaling sap flow measurements to the tree- and stand-level involve measuring hydraulic 

flow at various depths within the conductive tissue. Overestimating stand-level 

transpiration can have significant implications for hydrological processes and water 

budgets in red pine stands in the Great Lakes region and Eastern North America. Our 

study will help to identify physiological traits including water storage which may predict 

the response of the forest to extreme events such as drought. It will also help to improve 

the simulation of transpiration and its upscaling from tree- to ecosystem-level and 

regionally.  

 

List of Abbreviations 
As sapwood area [cm2] 
DBH Diameter at Breast Height [cm] 
F   sap flow [mL s-1] 
Js sap flux density [mL m-2sapwood s-1] 
Ha hectare 
K a dimensionless flow index describing the relationship between average flow 

and zero flow (nighttime) conditions   
PAR Photosynthetically Active Radiation [µmol m-2 s-1] 
Qr whole-tree water-use calculated by accounting for radial variation in sap flux 

density [L day-1] 
Qu whole-tree water-use calculated by assuming uniform flow throughout the 

sapwood [L day-1] 
SWCR  St. Williams Conservation Reserve 
T Temperature [°C] 
TPFS  Turkey Point Flux Station 
TP31 Turkey Point pine plantation forest planted in 1931 
TP39 Turkey Point pine plantation forest planted in 1939 
TP74 Turkey Point pine plantation forest planted in 1974 
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TP02 Turkey Point pine plantation forest planted in 2002 
TPD Turkey Point mixed deciduous forest stand 
VPD Vapour Pressure Deficit [kPa] 
VRH Variable Retention Harvesting  
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Table 2.1. Biometric characteristics of sampled trees. 

Sample 
No. 

Diameter at 
breast height 

(cm) 

Height 
(m) 

Crown 
area (m2) 

Sapwood 
depth (cm) 

Heartwood 
depth (cm) 

Sapwood 
area (cm2) 

1 31.7 25.5 145 7.5 7.9 549 
2 28.7 21.8 112 6.9 7.0 453 
3 32.2 26.4 168 7.7 7.9 568 

 
Mean 30.9 24.6 142 7.3 7.6 523 
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Table 2.2. Estimates of error in calculating daily whole-tree water use when assuming 
uniform sap flux density 

Sample No. Qr (L) Qu (L) Error (*+'*,
*,

) (%) Mean Error 
(%) 

1 13.09 20.63 57.6 61.4 
2 3.02 5.47 81.1 
3 8.79 12.78 45.4 
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Figure 2.1. Meteorological measurements of (a) air temperature (Ta) and precipitation 
(P), (b) vapour pressure deficit (VPD), (c) Photosynthetically Active Radiation (PAR) 
and (d) soil water content (q) from August 14 to 20, 2019. 
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Figure 2.2. A species-specific allometric equation relating sapwood area (As) to tree 
diameter measured at breast or 1.3 m height (DBH). 
  



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

41 
 

 
 
Figure 2.3. Average diurnal patterns of sap flux densities (Js) at different depth intervals 
within the sapwood from August 14 to 20, 2019.  
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Figure 2.4. Daily mean sap velocity at varying depth from the pith. On average, the 
heartwood extends approximately 7cm from the pith. At 7cm, the sapwood begins and 
extends to 14cm where it reaches the edge of the cambium.  
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CHAPTER 3: 

 

EFFECTS OF VARIABLE RETENTION HARVESTING ON CANOPY 

TRANSPIRATION IN A RED PINE PLANTATION FOREST 

 

Abstract 

Variable Retention Harvesting (VRH) is a forest management practice applied to enhance 

forest growth, improve biodiversity, preserve ecosystem function and provide economic 

revenue from harvested timber. There are many different forms and compositions in 

which VRH is applied in forest ecosystems. In this study, the impacts of four different 

VRH treatments on transpiration was evaluated in an 83-year-old red pine (Pinus 

resinosa) plantation forest in the Great Lakes region in Canada. These VRH treatments 

included 55% aggregated crown retention (55A), 55% dispersed crown retention (55D), 

33% aggregated crown retention (33A), 33% dispersed crown retention (33D) and 

unharvested control (CN) plot. These VRH treatments were implemented in 1-ha plots in 

the winter of 2014, while sap flow measurements were conducted from 2018 to 2020.  

Study results showed that tree-level transpiration was highest among trees in the 55D 

treatment, followed by 33D, 55A, 33A and CN plots. We found that photosynthetically 

active radiation (PAR) and vapor pressure deficit (VPD) were major controls or drivers of 

transpiration in all VRH treatments. Our study suggests that dispersed or distributed 

retention of 55% basal area (55D) is a suitable forest management technique to enhance 

forest growth while efficiently utilizing water resources and sustaining transpiration. This 
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study will help researchers, forest managers and decision-makers to improve their 

understanding of water cycling in forest ecosystem and adopt favorable forest 

management regimes to enhance forest growth, health and resiliency to climate change.  
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3.1 Background 
 
 
Afforestation and reforestation are widely adopted practices to enhance carbon 

sequestration and mitigate climate change (Pan et al. 2011, Law et al. 2018, Domke et al. 

2020). However, forest managers and planners are challenged with appropriately 

managing these forests. They employ various silvicultural treatments to sustain or 

enhance forest growth and emulate the ecological functions that are typical of natural 

forests. In this endeavor, they must balance timber production, carbon sequestration and 

biodiversity aspects while preserving ecosystem health (Martinez Pastur et al. 2020).  

Converting abandoned agricultural and marginal lands to plantation forests can also 

impact hydrological cycles by increasing infiltration and evapotranspiration, that may 

cause higher local rainfall and changes in regional water cycle (Van Dijk and Keenan 

2007, Ellison et al. 2017). Under representative concentrations pathways (RCP) 2.6, 4.5 

and 8.5, the Great Lakes region in North America is expected to experience an increase in 

annual air temperature between 2.3 and 7.9 °C (McDermid et al. 2015). Furthermore, 

global climate models (GCMs) suggest an increase in heat-waves and extreme 

precipitation events (Zhang et al. 2019), but a decrease in summer precipitation 

(McDermid et al. 2015) in this region. Therefore, enhancing forest cover and adopting 

better forest management practices in this region may mitigate these effects by increasing 

infiltration, reducing surface runoff and hence ‘flash’ flooding events and enhancing and 

stabilizing precipitation, which in turn may prevent sustained periods of drought (Van 

Dijk and Keenan 2007, Ellison et al. 2017).  

 



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

46 
 

Variable Retention Harvesting (VRH) practices are employed worldwide to address 

silvicultural objectives and protect and enhance forest ecosystem services (Gustafsson et 

al. 2012, Beese et al. 2019). VRH often aims to increase resilience by applying partial 

cutting treatments, leaving single or small groups of trees (Bladon et al. 2006, Gustafsson 

et al. 2012). In Canada, retention forestry first emerged in British Columbia in the early 

1990’s and was implemented in more eastern provinces, including Ontario, by the late 

1990’s (Gustafsson et al. 2012). Today, more than 50% of forestland in Ontario is 

managed using the retention forestry approach (Gustafsson et al. 2012). In the past, the 

focus of VRH research has been to assess the impact of these harvesting regimes on wood 

growth and biodiversity. Some studies, however, have examined the effects on 

micrometeorological variables and key components of the hydrologic cycle, and have 

shown that residual trees may benefit from reduced resource competition (Wang et al. 

1995, Liu et al. 2003, Skubel et al. 2017). Bladon et al. (2006) reported an increase in 

wind speed, net radiation, soil water content and vapour pressure deficit following VRH, 

which contributed to higher rates of transpiration in some species. In addition to 

hydrological components, tree growth (Bebber et al. 2004, Powers et al. 2010, Dwyer et 

al. 2010) and carbon sequestration (Zugic et al. 2021) have also been shown to increase in 

residual trees following VRH. 

 

In the Great Lakes region in Southern Ontario, Canada five different harvesting 

treatments were applied in a 21-ha 83-year-old red pine plantation stand by the Ontario 

Ministry of Natural Resources and Forestry (OMNRF) in the winter of 2014 with the 
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ultimate goal of restoring this monoculture pine stand to native mixed forest. These VRH 

treatments included 55% aggregated crown retention (55A), 55% dispersed crown 

retention (55D), 33% aggregated crown retention (33A), and 33% dispersed crown 

retention (33D) and unharvested, control plots (CN). The dispersed method removed trees 

in an even formation, whereas the aggregated crown retention involves leaving the 

remaining un-harvested trees in small or large groups (Figure 3.1). The 55% and 33% 

corresponds to the percentage of basal area retained after harvesting. This experimentally-

managed forest is the first research application of VRH in Ontario, and the first 

experiment anywhere to restore a red pine plantation to native forest type using VRH. 

 

We hypothesize that sap flux density will be highest among the most heavily thinned 

(33% retention) treatments, due to the openness of the canopy and a reduced competition 

for water resources. At the tree-level, we hypothesize that the distributed treatments (33D 

and 55D) will have the highest daily transpiration due to their larger conductive sapwood 

area and increased growth after thinning. The results of this study will help to develop a 

better understanding of the effects of silvicultural practices on the overall water balance 

of plantation forests. 

 

Furthermore, this study is one of the first to examine the effects of VRH on transpiration 

in red pine (Pinus resinosa) ecosystems. An estimated 70% of plantation forests in the 

Southern Ontario or Great Lakes region are red pine stands, which are an important 

source of revenue from harvested timber (Kim 2020). Red pine lumber is used for pulp 
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wood and electricity and other utility poles. Therefore, the establishment of these 

plantation forests not only helps to fulfill timber demand, but also provides a natural 

solution for the mitigation of climate change, while conserving forest ecosystems and 

watershed hydrologic functions (LRC 2005).  

 

This study aims to determine the effect of VRH treatments on water resources by 

examining differences in sap flow and transpiration among remaining dominant canopy 

trees in each treatment and the control plot. Investigating these differences would help 

researchers to explore the effects of these thinning treatments on the growth and hydraulic 

functionality in managed forests and their resilience to climate change. The specific 

objectives of this study are (i) compare sap flux density and tree-level transpiration 

between five different VRH treatments and (ii) determine the major environmental 

drivers of transpiration to better understand the response of managed forests to 

environmental changes.  

 

3.2 Methods 

 

3.2.1 Experimental site description 

This study was conducted in a temperate red pine (Pinus resinosa) plantation stand in the 

St. Williams Conservation Reserve (SWCR) (42°42’N, 80°21’W), located 3 km north of 

Lake Erie, in Southern Ontario, Canada. This 21-ha red pine plantation stand is part of the 

Turkey Point Observatory (TPO) and is referred to as CA-TP31, as the stand was planted 
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in 1931. Topography at this site is predominantly flat with an elevation of 184 m. TPO 

sites are also associated with the Global Water Futures Program and FLUXNET. Further 

details of the Turkey Point Observatory are provided in Restrepo and Arain (2005), Peichl 

et al. (2010), Beamesderfer et al. (2020) and Arain et al. (2021).  

 

CA-TP31 was established by planting seedlings 2 m apart, in furrowed rows (~2500 

trees/ha). This monoculture plantation was subject to thinning in about 1960-1961 that 

reduced stand density to about 1875 trees/ha (McKenzie et al. 2021). In the winter of 

2014, a VRH regime was employed by the Ontario Ministry of Natural Resources and 

Forestry (OMNRF) to evaluate the effectiveness of five different VRH treatments (33A, 

33D, 55A, 55D and Control) on forest growth and ultimately restore this plantation stand 

to a native forest ecosystem. Each VRH treatment included a 1-hectare plot with three 

replicates where different harvesting densities and patterns were applied as shown in 

Figure 3.1.  The percentage of basal area retained in each VRH treatment plot is given in 

Table 3.1.  

 

Local micrometeorological conditions were measured from two flux towers located at the 

white pine (Pinus strobus) plantation sites (CA-TP39, CA-TP74) within a 2-km radius of 

CA-TP31. These towers are instrumented with closed-path eddy-covariance systems and 

weather stations, where continuous half-hourly fluxes and meteorological measurements 

(carbon dioxide, sensible and latent heat fluxes, four components of radiation, 

photosynthetically active radiation (PAR), air temperature, humidity, windspeed and 
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direction, soil temperature, and soil moisture) have been conducted, since 2003 (Arain et 

al. 2021). Soil in this region is sandy and well-drained (McLaren et al. 2008; 

Beamesderfer et al. 2020). The climate in Southern Ontario is temperate with warm, 

humid summers and very cold winters. Mean annual temperature is 8.0 oC and the area 

receives on average 1036 mm of precipitation each year, approximately 13% of which 

falls as snow (Environment Canada, 1980-2010 Norms at Delhi, ON). 

 

3.2.2 Sap flow measurements 

Sap flow sensors were installed in five plots, representing each of the four treatment types 

and the un-thinned control plot. Eight trees within each plot were instrumented with one 

sap flow sensor in the outermost 20 mm of sapwood. Sample trees were randomly 

selected based on overall health (e.g. full crown, undamaged bark) and on proximity to 

the data logger and power supply (less than 30 m away). The sensors were self-

manufactured, Granier-style thermal-dissipation (TD) sensors following Matheny et al. 

(2014) and Pappas et al. (2018). Each sensor consisted of two hollow needles, 20 mm in 

length, each containing a fine-wire, type T thermocouple at the midpoint (10 mm) of each 

needle. One of the needles was wrapped with insulated, constantan wire, which provided 

constant heating when connected to the self-made circuit board and supplied 12V power. 

The needles were coated with thermal grease and inserted into a hollow, metal tube on the 

north side of the tree at breast height (1.3 m above the ground). The heated probe was 

installed 10 cm vertically above the non-heated probe.  
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 In each sample tree, one sensor was installed in the outer-most 0-20 mm of sapwood, 

except for 5 trees which were equipped with radial sensors for the measurement of non-

uniform flow (Bodo and Arain 2021). Raw measurements (mV) were collected with 30-

minute resolution on a CR10X datalogger (Campbell Scientific, Logan, UT, USA) 

continuously from 1 July 2018 to 31 October 2020 and averaged into half-hour intervals. 

A dimensionless flow index (K), was calculated from the difference in temperature (T) 

measured between the two probes following Granier (1987) and can be expressed as: 

 

𝐾 = D#$%&'D(
D(

           (1) 

 

Where T represents temperature in degrees Celsius. K values were calculated by 

determining zero-flow conditions using the double regression method in R package 

TREX (Tree sap flow Extractor; R Core Team 2017) developed by Peters et al. (2021). 

All sampled trees were located within 30 m radius from the datalogger box and power 

supply due to voltage drop considerations. Therefore, in some instances, we were limited 

in the selection of trees for sap flow sensors in VRH plots, which could lead to 

uncertainties regarding edge-effects and overall representativeness of the plot.  

 

3.2.3 Wounding/signal dampening correction 

It is widely known that the insertion of sap flow sensors into tree stems and subsequent 

heating of sap flow sensor probes may cause ‘wounding’ of stem tissue. Over time tree 

resin is also deposited over the probes due to healing from the drilled holes where sensors 
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are installed. Because of these effects and when sensors have been installed for multiple 

years, many studies have reported a dampening in the raw sensor signal (Steppe et al. 

2010, Wullschleger et al. 2011, Wiedemann et al. 2016) which may lead to significant 

underestimations. We corrected for underestimations in Js resulting from signal 

dampening between sensor installation (2018) and the 2019 growing season by installing 

two new sensors into the CN plot. Using a linear regression model, we determined a 69% 

reduction in Js values in original sensors, when compared to newly installed sensors 

(average R2=0.94).  Both the 2019 and 2020 data were corrected to reflect this 

relationship between time of installation and signal dampening. A correction factor was 

not determined empirically for 2020 due to field restrictions during the COVID-19 

pandemic, so the correction factor was assumed to be the same for both 2019 and 2020. 

 

3.2.4 Scaling sap flow measurements 

Sap flux density (Js; gH2O m-2 s-1) was calculated following Granier (1987). Whole-tree 

water use (TWU) was calculated following: 

 

TWU = Js ×	As	 × 	rw     (2) 

 

Where Js is sap flux density (gH2O m-2 s-1), As is the sapwood area of the tree (m2) and rw 

is the density of water (1000 kg m-3). TWU was also corrected for radial differences in 

sap flux density according to Bodo and Arain (2021), which assumes Js is highest in the 

outermost 20 mm of sapwood and decreases toward the sapwood-heartwood boundary. 
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3.2.5 Gap filling and statistical analysis 

Due to an unpredicted power failure which affected the power supply and data logger, 

data gaps occurred in the control (CN) and 55D plots from 30 August to 22 October 2020.  

Other minor (a few hours or a few days) gaps also occurred throughout the study period 

due to sensor failure and power interruptions. Minor gaps in Js were filled using a linear 

relationship with environmental variables PAR and VPD. The average correlation 

coefficient was 0.68 and the minimum coefficient was 0.56 (p < 0.01). Gap-filled data 

was not used to examine meteorological drivers of sap flux density in our analysis. 

 

A linear regression model was used to test the significance of environmental conditions 

(VPD, Ta, PAR) on sap flux density. The fit of the model and the significance of the 

regression coefficients were assessed using the F-statistic. To test for significant 

differences in sap flux density among the VRH treatments, an analysis of variance test 

(one-way ANOVA) was conducted. All statistical analyses were conducted using 

MATLAB (The MathWorks Inc.). 

 

3.3 Results 

 

3.3.1 Meteorological conditions 

The site received a total of 1644, 1126 and 1056 mm of precipitation in 2018, 2019 and 

2020, respectively (Figure 3.2j-l). With regards to growing season precipitation only (1 
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April to 31 October), 2018 was significantly more wet (985 mm) compared to 2019 (677 

mm) and 2020 (619 mm). Air temperature throughout the study period was seasonally 

consistent between years, with the exception of April 2018, where the average monthly 

temperature was 3.6 °C, compared with April 2019 (6.7 °C) and April 2020 (5.3 

°C)(Figure 3.2g-i). Additionally, May 2018 (17.1 °C) was strikingly warmer than May 

2019 (13.0 °C) and May 2020 (12.7 °C). This may have led to an earlier onset of 

photosynthesis and transpiration in the forest, however, sap flow measurements did not 

begin until July 2018. Finally, we see more prolonged periods of low soil moisture (<0.1 

m3m-3) in 2020 compared to other years (Figure 3.2j-l). This is likely due to a combination 

of factors including higher average temperatures and a lower precipitation in June (19.7 

°C) and July (24.0 °C) months on 2020 with a combined total precipitation of 131 mm.  

 

3.3.2 Effects of VRH on sap flux density 

We divided the growing seasons into three periods, where 1 April to 30 May is referred to 

as the early growing season, 1 June to 31 August as the mid growing season and 1 

September to 31 October as the late growing season. Our results (Figure 3.3) revealed 

small differences in Js among VRH plots in the late growing season of 2018 and 2019, 

with the 33D and 55A plots exhibiting the highest Js. However, in the mid growing 

season (May to July) in 2019, we observed major differences between treatments, with 

the 55A and 55D plots dominating in terms of Js. That year, we saw similar values among 

all treatment types in the early growing season as well, but differences among the 

treatments arose in mid-to-late June where we saw that the general trend in daily average 
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Js was 55A > 55D > 33D > CN > 33A. A similar trend was observed in 2020 where daily 

average Js was highest in the 55A, particularly in the early and mid-growing season. With 

some exceptions, however, in the mid 2020 growing season, we observed higher Js among 

trees in the CN plot compared to the 33A, 33D and 55D. Statistically, sap flux density 

was significantly different between the VRH treatments for all three years: 2018 (p < 

0.01), 2019 (p < 0.001), 2020 (p< 0.001). 

 

3.3.3 Differences in tree-level transpiration 

Js reflects water flow per unit of sapwood area, which functions well as a method of 

comparison between treatment types. However, in order to more accurately compare the 

water fluxes at the whole tree-level, we quantified tree water-use (TWU) in each VRH 

treatment for all years of the study (Figure 3.4). The results showed trends similar to that 

of sapflux density between years, with the 55D and 33D treatments exhibiting the highest 

water-use in 2018, while 55D, 33D and 55A were the highest in 2019 and for most of 

2020. Overall, we observed average TWU followed: 55D > 33D > 55A > 33A > CN. 

 

3.3.4 Controls on sap flux density and transpiration 

Our results showed that both VPD and PAR were the main drivers of Js among all VRH 

treatments (Figure 3.6). We compared diurnal Js curves for a warm, sunny day (5 

September 2018; Figure 3.5a-e) and a cool, cloudy day (12 October 2018; Figure 3.5f-j). 

The daily average Ta for these days was 26.7°C and 8.2°C, respectively; and the daily 
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average incoming PAR was 558 and 153 µmol m-2 s-1, respectively.  

 

We found that Js and, by proxy, transpiration was mainly driven by VPD, with some 

exceptions (Figure 3.6). In 2020, during periods of low precipitation, Js in the 33A and 

33D plots were strongly driven by VPD (R2 values reported in Table 3.2). By contrast, in 

2018, trees in the control and 33A plots were more closely coupled with PAR.  

 

3.4 Discussion 

 

It is widely discussed in the literature that a healthy and productive forest provides 

numerous benefits like lumber, carbon sequestration and long-term storage (Pan et al. 

2011, Le Quere et al. 2018), enhanced biodiversity (Gibson et al. 2011) and better 

regulation of the hydrologic cycle (Ellison et al. 2017, Bonan 2008, Sheil 2018). Red pine 

forests are a preferred plantation species in the Great Lakes region in Canada and the 

USA (Kim 2020). Several studies have been conducted in red pine forests in the Great 

Lakes region to examine their growth, yield and wood productivity in response to 

thinning treatments or climatic stresses (Bradford and Palik 2009, Magruder et al. 2013). 

However, none of these studies have examined effects on transpiration. To our 

knowledge, this study is the first effort to explore the impact of VRH on transpiration in 

the Great Lakes region. Some scientists have argued that the hydrologic benefits of 

forests should be considered among the primary contributions of forest ecosystems to 
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mitigating climate change, highlighting the development for adaptation and management 

policies (Ellison et al. 2017).  

 

3.4.1 Effects of VRH on sap flux density  

Our study showed that thinning reduces water-resource competition among remaining 

trees for soil water, leading to higher tree-level transpiration in the remaining trees 

(Figure 3.4). Several understory species have emerged since thinning, and the amount of 

understory vegetation is positively correlated with the thinning intensity. While we did 

not measure sap flow in any of the understory species, we acknowledge these plants 

compete with the dominant red pine for soil water. The significant amount of understory 

vegetation in the 33A plot may be the cause of lower Js values in this treatment. Our 

results from 33A refute the hypothesis that Js would be highest among trees in the more 

heavily thinned treatments (e.g. 33A and 33D). It shows the complexities of these 

linkages and the need for more long-term observations and research. By contrast, we 

observed higher TWU in 55D and 33D plots (Figure 3.4), which suggests that a dispersed 

thinning pattern is favorable to that of an aggregated pattern when concerned with 

promoting transpiration. Because TWU was quantified by applying Js to the total 

sapwood area, which is why these general patterns more closely follow the trend in 

average tree sapwood area among the treatments (Table 3.1). TWU is an important metric 

for describing water quantities at the tree-level, because although trees in the 55A plot 

may exhibit the highest Js, when scaled to the tree-level, we observe the 55D and 33D to 
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have the highest TWU or tree-level transpiration. 

 

In another study at our site, using tree ring measurements, Zugic et al. (2021) has found 

that dispersed VRH treatments at both levels of retention (55D and 33D) were more 

effective in promoting post-harvest tree-level growth and carbon sequestration than 

aggregate treatments. However, their study also suggested that at the stand-level after 

accounting for retained tree biomass, the growth and carbon sequestration was highest for 

greater levels of retention, regardless of the pattern of treatment.  These results support 

our findings that moderate levels of thinning in a dispersed pattern may promote higher 

tree-level water-use and hence higher growth, which may help to offset the impacts of 

drought events linked to climate change. 

 

Additionally, several other studies have used sap flow sensors to investigate the effect of 

thinning on sap flux density. For example, Skubel et al. (2017) used sap flow sensors to 

examine tree- and stand-level transpiration at CA-TP74 site (part of the TPO) following a 

13% reduction in basal area (87% retention) from thinning. Their study found an increase 

in tree-level transpiration among the remaining trees following the moderate thinning 

event. In a long-term study on Chinese pine (Pinus tabuliformis), Chen et al. (2020) 

reported greater DBH, greater sapwood area and higher transpiration among heavily 

thinned stands (80% and 65% reduction) when compared to a moderately thinned stand 

(55% reduction) 30 years after the thinning. By contrast, Park et al. (2018) observed 

transpiration in Korean pine (Pinus koraiensis) following heavy and moderate thinning 



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

59 
 

and reported an increase in transpiration following thinning in both stands, however, the 

effects of the light thinning decreased over time. The expansive literature on sap flow 

studies suggests a positive relationship between thinning and tree-level transpiration, but 

there seems to be no conclusive recommendation for the optimal thinning intensity and 

pattern and the controls on these processes may be dependent on the tree species- and 

climate of the region.  

 

3.4.2 Controls on sap flux density and transpiration 

Impacts of forest management treatments on transpiration and water cycle is quite 

complex where various factors may exert opposing controls. In our study, we found that 

during periods of low precipitation, VPD was the main driver or control on Js in our VRH 

treatments (e.g. 33A and 33D). However, Js was more closely coupled with PAR in the 

unharvested or control plot (CN). Studies in the literature have shown that thinning 

increases penetration of radiation in the canopy, while remaining trees in a treatment 

regime have been shown to be exposed to higher fluctuations in wind speed, air 

temperature and evaporative demand (Man and Lieffers 1999, Proe et al. 2001, Bladon et 

al. 2007). Some studies have also shown that thinning may decrease absorption of PAR 

by the canopy due to the removal of low-albedo coniferous crown cover (Anderson et al. 

2010, Cherubini et al. 2018), however, below canopy transmission of PAR may increase 

causing higher exposure of understory and ground surface to radiation resulting in higher 

soil temperatures and increased evaporation. Although VPD was not measured at the 

canopy level in each treatment plot, we expect VPD to be lower in the control, due to the 
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closed canopy of this homogeneous plot. These results suggest the application of VRH in 

a plantation forest changes the dominant environmental drivers of water flux, where VPD 

becomes increasingly significant in addition to PAR. Further, we expect the extent of this 

change to increase with increased levels of thinning which causes a more open canopy 

and heating of the canopy and ground. 

 

Thinning may also increase soil moisture due to reduced competition and hence higher 

transpiration in remaining trees (Breda et al 1995, Reid et al. 2006). While soil moisture 

was not directly measured in each of the VRH plots, it is possible that the closed canopy 

of the CN plot allowed for greater retention of soil moisture throughout the growing 

season, particularly in periods with low precipitation. On the other hand, removal of 

canopy cover decreases interception, potentially allowing for more precipitation to reach 

the soil surface, which may result in greater soil moisture availability and hence more 

transpiration. In fact, Kurpius et al. (2003) and Simonin et al. (2007) showed that thinning 

led to increased throughfall, greater water availability and more energy at the soil surface 

resulting in greater soil evaporation. Future studies should measure soil moisture in each 

VRH plot to support exploration of the effects of thinning on water balances in each 

treatment. In our, previous research in a similar-age white pine (Pinus strobus) stands at 

our CA-TP39 site, we have also highlighted the complex nature of soil-vegetation-

atmosphere interactions in thinned stands (Skubel et al., 2017). Skubel et al. measured sap 

flow and soil moisture before and after thinning at the CA-TP39 site which was 74-year-

old at the time of measurement and found that soil moisture increased immediately 
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following thinning. Ma et al. (2010) also found that soil moisture and VPD increased after 

thinning, in treatments of various thinning intensities (14-66% basal area removed). 

These findings suggest a positive net effect of thinning on soil moisture status in 

harvested stands. However, some studies have also suggested that more intense thinning 

may lead to a net decrease in soil moisture in thinned stands (Simonin et al. 2007) due to 

increased surface radiation and subsequent higher evaporation from soil. In our study, two 

VRH treatments (33A and 33D) involved the removal of 67% of basal area. We found 

low Js among the 33A treatment. However, we observed higher tree-level transpiration in 

the 55D and 33D plot, which suggests that the thinning pattern (dispersed vs. aggregated) 

has a larger effect on transpiration than thinning intensity alone. Additionally, our results 

support the findings that thinning decreases competition among remaining trees for water 

resources and increases soil moisture (Ma et al. 2010).  

 

3.5 Conclusion 

 

Appropriate management of coniferous plantations can provide a balance between 

ecological restoration, economic benefit and regional climate change mitigation. Our 

study results support the use of VRH as an efficient silvicultural treatment which may 

promote atmospheric moisture through canopy transpiration. Our results show that tree-

level transpiration was highest among trees in the 55D treatment, followed by 33D, 55A, 

33A and CN plots, suggesting moderate thinning in a dispersed pattern may be optimal to 

promote growth and transpiration among remaining trees following VRH. Managed 
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forests will play an increasingly important role in climate change mitigation at regional 

and global scales. Our study further provides empirical data to support decision-making 

in the region and highlight the complex nature of soil-vegetation-atmosphere interactions 

in forest ecosystems.  

 

List of Abbreviations 

33A 33% basal retention in aggregated pattern 
33D 33% basal retention in dispersed pattern 
55A 55% basal retention in aggregated pattern 
55D 55% basal retention in dispersed pattern 
As  sapwood area [m2] 
CA-TP31 Turkey Point red pine plantation forest planted in 1931 
CA-TP39 Turkey Point pine plantation forest planted in 1939 
CA-TP74 Turkey Point pine plantation forest planted in 1974 
CA-TP02 Turkey Point pine plantation forest planted in 2002 
CA-TPD Turkey Point mixed deciduous forest stand 
CN  control treatment 
DBH  Diameter at Breast Height [m] 
Js sap flux density [mL m-2sapwood s-1] 
Ha hectare 
K a dimensionless flow index describing the relationship between average flow 

and zero flow (nighttime) conditions   
OMNRF Ontario Ministry of Natural Resources and Forestry 
PAR Photosynthetically Active Radiation [µmol m-2 s-1] 
SWCR  St. Williams Conservation Reserve 
T Temperature [°C] 
TD Thermal Dissipation  
TWU Tree Water Use [kg day-1 or L day-1] 
VPD Vapour Pressure Deficit [kPa] 
VRH Variable Retention Harvesting  
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Table 3.1. Variable Retention Harvesting treatments in CA-TP31 

Plot 
abbreviation 

%  basal 
area retained 

after 
thinning 

Pattern of 
thinning 

Stand 
Density 

(trees plot-1) 

Average 
DBH (m) 

Average As 
(m2) 

33A 33% Aggregate 178 0.311 0.0609 
33D 33% Dispersed 118 0.296 0.0542 
55A 55% Aggregate 213 0.279 0.0472 
55D 55% Dispersed 235 0.305 0.0582 
CN -  -  432 0.278 0.0468 
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Table 3.2. Slope of the linear regression models describing the relationship between daily 
average sap flux density and daily average PAR, Ta and VPD (p < 0.001). Correlation 
coefficients (R2) are displayed in parentheses. 
 
   

2018 
  PAR Ta VPD 

33A 0.019 (0.77) 0.316 (0.51) 12.61 (0.72) 
33D 0.025 (0.72) 0.363 (0.34) 18.56 (0.83) 
55A 0.025 (0.74) 0.385 (0.39) 18.83 (0.83) 
55D 0.022 (0.75) 0.302 (0.33) 15.57 (0.77) 
CN 0.023 (0.77) 0.356 (0.44) 14.82 (0.64) 

2019 
  PAR Ta VPD 

33A 0.014 (0.73) 0.299 (0.37) 8.28 (0.66) 
33D 0.014  (0.60) 0.378 (0.5) 8.98 (0.66) 
55A 0.021 (0.71) 0.494 (0.42) 13.65 (0.74) 
55D 0.020 (0.73) 0.474 (0.47) 12.01 (0.71) 
CN 0.014 (0.65) 0.328 (0.41) 8.77 (0.69) 

2020  
PAR Ta VPD 

33A 0.010 (0.34) 0.388 (0.65) 7.85 (0.65) 
33D 0.006 (0.25) 0.263 (0.54) 5.40 (0.55) 
55A 0.016 (0.61) 0.373 (0.40) 9.21 (0.60) 
55D 0.013 (0.62) 0.239 (0.35) 5.90 (0.50) 
CN 0.014 (0.53) 0.303 (0.43) 7.43 (0.61) 
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Figures 
 

 
 
Figure 3.1. Aerial photograph of CA-TP31 study area obtained from Google Earth 2016 
showing the various 1-ha VRH treatments. 
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Figure 3.2. Annual daily average measurements of photosynthetically active radiation 
(PAR; a-c), vapour pressure deficit (VPD; d-f), air temperature (Ta; g-i); daily total 
precipitation (Ppt; j-l) and daily average soil moisture (θ, j-l) for years 2018, 2019 and 
2020 measured at CA-TP39. 
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Figure 3.3. Daily average sap flux density for all plot types for the growing season (1 
April to 31 October) for all years. 
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Figure 3.4. Average daily whole-tree water use by month for 2018(a; p < 0.001), 2019 (b; 
p < 0.001) and 2020 (c). 
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Figure 3.5. Sap flux density for a 24-hour period on a warm, sunny day (5 September 
2018; a-e) and on a cool, cloudy day (12 October 2018; f-j). Data from individual sensors 
(6-8 sensors per plot) is shown in the dashed lines and the mean is shown in solid black. 
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Figure 3.6. Scatter plots showing the correlation between daily average sap flux density 
(Js) and photosynthetically active radiation (PAR; a-c), air temperature (Ta; d-f) and 
vapour pressure deficit (VPD; g-i) for 2018, 2019 and 2020. The slope of each line and 
corresponding R2 value are displayed in Table 3.2 (p < 0.001 ). 
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CHAPTER 4: 

 
WATER DYNAMICS IN THE UNDERSTORY OF A PINE PLANTATION 

FOREST AFTER VARIABLE RETENTION HARVESTING 
 

Abstract 

Variable Retention Harvesting (VRH) is a silvicultural technique applied to enhance 

forest growth, and restore forest stands to closely resemble their natural composition in 

the region. This study used sapflow and eddy covariance flux measurements to examine 

the impacts of four different VRH treatments on water-use efficiency and the dominant 

components of evapotranspiration including canopy transpiration and water flux from 

understory vegetation and soil. These VRH treatments were applied to an 83-year-old red 

pine (Pinus resinosa) plantation forest in the Great Lakes region in Canada and included 

55% aggregated crown retention (55A), 55% dispersed crown retention (55D), 33% 

aggregated crown retention (33A), 33% dispersed crown retention (33D) and unharvested 

control (CN) plot. Study results showed a positive relationship between thinning intensity 

and the growth of understory vegetation, and hence enhanced understory 

evapotranspiration. The contribution to evapotranspiration from understory vegetation 

and soil was more pronounced in the dispersed thinning treatments, as compared to the 

aggregated treatments. Canopy transpiration contributed to 83 % of total 

evapotranspiration in the un-thinned control plot and 58, 55, 30, and 23 % for the 55D, 

55A, 33A and 33D plots, respectively. Overall thinning or retention harvesting treatments 

contributed to an increase in stand water use efficiency. 



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

79 
 

Our study results suggested that VRH treatments that followed a dispersed harvesting 

pattern such as 55D led to higher evapotranspiration and forest productivity. Furthermore, 

a balance of contributions from both the canopy and successional understory vegetation 

and soil, as observed in the 55D treatment, may increase the resiliency of forest to climate 

change. These findings will help researchers, forest managers and decision-makers to 

improve their understanding of thinning impacts on water and carbon exchanges in forest 

ecosystems and adopt appropriate forest management practices to enhance their carbon 

sequestration capabilities, water use efficiency and resilience to climate change. 
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4.1 Background 

Forest ecosystems play a significant role in global water and carbon cycling through 

evapotranspiration (ET) and photosynthetic/respiratory processes, respectively. It is 

estimated that approximately 61% of the 117,600 km3 of annual global precipitation is 

derived from terrestrial ecosystems (Schlesinger and Jasechko 2014). Further, more than 

50% of this atmospheric moisture originates as transpiration from plants, predominantly 

forests and crops (Jasechko et al. 2013, Wei et al. 2017, Sheil 2018). In the past century, 

land-use changes have increased at an alarming rate.  Globally deforestation is removing 

18.7 million acres of forest every year (FAO, 2016). It is estimated that 18% of current 

climate warming trends can be attributed to deforestation and land-use change (Ellison et 

al. 2017, Alkama and Cescatti 2016).  One recent study estimated that due to these 

alterations to terrestrial land cover, there is about 5-6% reduction in atmospheric water at 

a global scale (Sterling et al. 2013). Despite the recent commitment of global leaders to 

end deforestation (UN Climate Change Conference UK 2021), it is becoming more 

important to understand the intricate processes that drive water and carbon cycling at the 

land-atmosphere boundary. There is a growing need for restoring forest ecosystems 

through various means such as afforestation and reforestation and developing sustainable 

forest management methods to enhance forest growth, promote carbon sequestration and 

sustain and secure regional water resources.  

In Canada red pine (Pinus resinosa) is a major plantation species and over 70% of 

plantation forest in Ontario are comprised of red pine (Kim 2020). It is a favourable 

species due to the straight, robust trunk, resiliency to drought conditions and shade 
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tolerance (Magruder et al. 2013, Sharma and Parton 2018). Red pine stands were widely 

planted in the early 20th century to convert abandoned agricultural lands to native forest 

ecosystems.  The management of plantation stands has been a challenge and traditional 

silviculture techniques (e.g. clear-cutting) are often inadequate to enhance stand growth 

and productivity (Beese et al. 2019). Therefore, forest managers and planners are striving 

to explore different forest management techniques that can not only increase stand growth 

but also enhance carbon sequestration, water use efficiency, biodiversity and resilience to 

climate change. 

 

Variable retention harvesting (VRH) is a selective-thinning silvicultural method designed 

to increase forest growth, promote productivity and increase carbon sequestration 

(Franklin et al. 1997, Bladon et al. 2006, Beese et al. 2019). First implemented in the 

Pacific Northwest region of the USA and Western Canada, VRH strives to mimic natural 

disturbance and involves the implementation of different thinning intensities and patterns. 

Remaining trees are typically left in distributed or aggregated groups that vary in size and 

structure, in order to increase structural complexity, maintain biodiversity and promote 

growth. Over the past two decades this technique has been widely used in western North 

America, Australia, Argentina and many of the Nordic European countries (Beese et al. 

2019). Several studies have examined tree mortality, growth and carbon dynamics 

following VRH (Bladon et al. 2006, Bladon et al. 2008, Montgomery et al. 2013, Powers 

et al. 2011, Xing et al. 2018), but a few have discussed the effect of VRH on 

evapotranspiration and hydrological processes (Aussenac 2000, Jutras et al. 2006) ). In 
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particular, studies examining the changes in the components of total ET (e.g. canopy and 

understory transpiration and soil evaporation) are lacking. Partitioning of ET into its 

dominant components is very important to understand the links between plant water use 

and the impacts of stand structure and environmental conditions (Kool et al. 2014). 

Additionally, scientists rely on field-based measurements of ET and its components to 

test and further improve land-surface models and better predict the effects of climate 

change on terrestrial ecosystems (Lawrence et al. 2007). 

While micrometeorological techniques, such as eddy covariance (EC) are widely used to 

measure ET above forest ecosystems (Baldocchi 2003, 2020), the use of EC systems 

below a forest canopy is far less common due to numerous challenges such as low wind 

speed, weak and intermittent turbulence and large surface heterogeneity (Baldocchi et al. 

2000, Launiainen et al. 2005). Some studies, however, have successfully measured carbon 

and water fluxes below the forest canopy and partitioned ET into soil evaporation (ES) 

and transpiration (TC) (Baldocchi and Vogel 1996, Black et al. 1996, Constantin et al. 

1999, Mission et al. 2007, Brown et al. 2014). But none of these studies were conducted 

in forests where different management regimes have been applied to evaluate their 

effectiveness for stand growth, carbon sequestration and water conservation.  

The objectives of this study are to (i) measure ET in four different VRH treatments and a 

control plot in a red pine plantation forest in the Great Lakes region in Canada (ii) 

partition ET into canopy and understory components of water fluxes in each plot (iii) 

determine the water use efficiency of both the canopy and the understory in each 
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treatment and (iv) explore which of these VRH treatments might be best suited to enhance 

stand growth while conserving water resources. This study is among the first efforts to 

study and partition ET in to its components in different VRH treatments in pine forests.  

4.2 Methods 

4.2.1 Site Description 

The study site is located within the St. Williams Conservation Reserve (SWCR, 42°42’N, 

80°21’W), about 3 km north of Lake Erie in southern Ontario, Canada. The temperate 

forest stand is a 21-hectare red pine (Pinus resinosa) plantation forest established in 1931 

and is further referred to as ‘CA-TP31’. In 2014, the plantation underwent variable 

retention harvesting (VRH) to restore the coniferous monoculture to a native Carolinian 

composition. Soils in the region are well-drained, sandy loam with a low to moderate 

water holding capacity. CA-TP31 is part of the larger Turkey Point Observatory, which 

consists of three white pine (Pinus strobus) plantation forests of various ages (CA-TP39, 

CA-TP74 and CA-TP02), one mixed deciduous stand (CA-TPD) and an agricultural site 

(CA-TPAg). These sites are associated with Global Water Futures and FLUXNET. 

Further details of the Turkey Point Observatory are provided in Restrepo and Arain 

(2005), Peichl et al. (2010), Beamesderfer et al. (2020) and Arain et al. (2021). 

As part of the VRH scheme, CA-TP31 was segmented into 21 one-hectare blocks and 

randomly treated with one of 5 harvesting techniques that differed in harvesting density 

and pattern: 33% basal retention in a dispersed pattern (33D), 55% retention in a 
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dispersed pattern (55D), 33% retention in an aggregated pattern (33A), 55% retention in 

an aggregated pattern (55A) and an unharvested control (CN). The aggregated pattern of 

harvesting left remaining trees in small and large groups (Figure 4.1). Further details are 

given in Bodo and Arain (2021b).   

Since the implementation of VRH, successional species have emerged in the understory 

of the harvested blocks, with varying degrees of growth. Species include black oak 

(Quercus velutina), red maple (Acer rubrum), black cherry (Prunus serotina), and white 

pine (Pinus strobus). There was almost no understory in control plots where the canopy 

was almost closed. Figure 4.2 displays imagery captured at the location of the understory 

EC tower in each VRH treatment and highlights differences in canopy cover. 

 

Soil at the site is sandy and well-drained (McLaren et al. 2008; Beamesderfer et al. 2020). 

The climate in the region is warm humid continental (based on the Koeppen climate 

classification) with warm summers, very cold winters. Mean annual temperature in the 

region is 8.0 oC and mean annual precipitation is 1036 mm, with about 13% falling as 

snow (Environment and Climate Change Canada, 1980-2010 Norms at Delhi, ON). 

4.2.2 Understory Eddy Covariance Flux Measurements  

Carbon (CO2), latent (LE) and sensible heat (H) fluxes were measured over the 

understory in each VRH treatment during the 2019 growing season using a roving open-

path eddy covariance (OPEC) system. The OPEC system was installed in one block of 

each treatment, for a minimum of 14 days before rotating to the next block (Table 4.1). 



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

85 
 

Data collected on the day in which the instrument was moved was not included in the 

analysis. The instruments were installed in the centre of the plot at 5 m above the ground. 

It consisted of an infrared gas analyzer (Li-7500, LI-COR Inc.) and a 3D sonic 

anemometer (CSAT3, Campbell Scientific Inc.). Flux measurements were made at 20Hz 

and averaged every 30-minutes. Meteorological measurements such as photosynthetically 

active radiation (PAR; LI190SB, LI-COR Inc.), air temperature (Ta) and humidity (RH; 

HC2S3, Campbell Scientific Inc.), soil temperature at depths of 5 and 10 cm below the 

ground surface (Ts; TS107b, Campbell Scientific Inc.), volumetric water content at depths 

of 5 and 10 cm below the ground surface (θ; CS616, Campbell Scientific Inc.) were 

sampled every 5 seconds, averaged every half-hour and stored on a data logger (CR5000, 

Campbell Scientific Inc.). Net ecosystem exchange (NEEU) was calculated as the sum of 

the vertical CO2 flux and the rate of storage in the air column below the IRGA. NEPU was 

then calculated as the opposite of NEEU (multiplied by -1). 

All meteorological and flux data were processed following Brodeur (2014). 

Meteorological and flux measurements were cleaned using a two-step process described 

in Beamesderfer et al. (2020). All half-hourly fluxes were subjected to friction velocity 

(u*) filtering to remove values that may be underestimated during periods of low 

turbulence. We used the moving-point determination method (Reichstein et al. 2005) to 

estimate u* threshold values for the understory. The u* threshold value was 0.064 m s-1 

and the resulting flux data recovery following threshold filtering was 62%. Finally, 

carbon and water flux measurements collected during rain events (precipitation > 0.5 mm 

in a half-hourly interval) were considered erroneous and discarded. Gaps in understory 
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EC measurements that occurred as a result of instrument error or power loss were not 

filled.  

While eddy covariance systems have been used to study below canopy carbon and water 

fluxes in the past (Black et al. 1996, Baldocchi 1997, Saugier et al. 1997, Wilson and 

Meyers 2001a, Paul-Limoges et al. 2017), there are challenges regarding understory 

canopy homogeneity, sufficient turbulence and adequate fetch or footprint required to 

meet the assumptions of the eddy covariance theory. In figure 4.3a, we report wind speed 

and wind direction for all VRH treatments when fluxes were measured using the 

understory EC system in each VRH plot. Additionally, we also conducted a footprint 

analysis (Kljun et al. 2004, 2015) for each of the VRH treatment plots to ascertain the 

majority (70%) of fluxes are originating within the VRH plots. (Figure 4.3b). 

4.2.3 Above-canopy Eddy Covariance Flux Measurements 

Above-canopy fluxes were measured using a reference eddy covariance system (ECREF) 

installed above the white pine forest stand (CA-TP39), situated about 1 km north of CA-

TP31. This flux station was chosen a reference system due to the similar stand age and 

density as that of CA-TP31. This system is a closed-path EC system consisting of an 

enclosed infrared gas analyzer (LI-7200, LI-COR Inc.) and a 3D sonic anemometer (CSAT3, 

Campbell Scientific Inc.) installed at 36 m height above the ground. Continuous half-hourly 

measurements of momentum, sensible heat, latent heat and CO2 were measured during the 

study period, as along with meteorological measurements such as PAR, Ta, RH and soil 

temperature (2, 5, 10, 20, 50 and 100 cm) and soil moisture (5, 10, 20, 50 and 100 cm) at two 
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locations in the vicinity of the tower. Further details of the CA-TP39 instrumentation are 

given in Peichl et al. (2010), Beamesderfer et al. (2020) and Arain et al. (2021).  

Above-canopy fluxes and meteorological data collected at CA-TP39 were cleaned and 

gap-filled using in-house software implemented by Brodeur (2014) and following Fluxnet 

Canada Research Network and AmeriFlux protocols. A friction velocity (u*) threshold of 

0.49 m s-1 was used to exclude values that are measured under low turbulence conditions. 

Ecosystem respiration (RE) was modeled as a function of soil temperature and soil moisture 

in the upper 30 cm of the soil profile (Brodeur, 2014) in order to accurately describe the 

relationship between RE and soil temperature. Gross ecosystem productivity (GEP) was 

estimated by adding daytime NEP and RE. Furthermore, gaps in NEP were filled as the 

difference between modeled GEP and RE (Beamesderfer et al. 2020).  

4.2.4 Sap Flow Measurements 

Self-manufactured thermal dissipation sap flow sensors were installed in 80 of the 

dominant red pine trees in CA-TP31. Sensors were Granier-style and constructed as 

described following Matheny et al. (2014) and Pappas et al. (2018). Eight sap flow 

sensors were installed in 10 blocks, two of each of the four treatments and two control 

plots, during the 2018 growing season and measurements are ongoing (Bodo and Arain 

2021a,b). Sensors were installed in the outermost 20 mm of conductive sapwood, and 

measurements were sampled every 30 seconds and averaged every half-hour. Radial 

variation in hydraulic conductivity within the sapwood was measured in five trees and 

corrected for following Bodo and Arain (2021a).  
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Sap flux density (Js; gH2O m-2 s-1) was calculated following Granier (1987). Tree-level 

sap flux measurements were scaled to plot-level transpiration for each of the study blocks 

following equation 1: 

Ti = Js (
45
46

)        (1) 

Where T is transpiration (mm s-1), i denotes the treatment plot, Js is the average sapflux 

density of all sensors in plot I (gH2O m-2 s-1), and As/Ag is the ratio of sapwood area to 

total wood area in the plot (m2 m-2). 

 

4.2.5 Water Use Efficiency 

Canopy water use efficiency (WUEC) was estimated as the ratio of net primary 

productivity (NPPC) to canopy transpiration (TC) for each of the five treatment blocks (g 

C m-2/Kg H2O).  Tree-ring width analysis was used to estimate carbon uptake (NPPC) in 

the red pine canopy of each treatment for the growing season. Tree cores were collected 

at breast-height using a 5-mm increment borer as described in McKenzie et al. (2020) and 

Zugic et al. (2021).  

The water use efficiency of the understory soil and vegetation (WUEU) was estimated as 

the ratio of gross ecosystem productivity (GEPU) to understory evapotranspiration (ETU). 

GEPU was estimated by partitioning NEPU into its components (GEPU and REU) through 

the use of R-package REddyProc (Wutzler et al. 2018). NEPU was partitioned following 
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Lasslop et al. (2010), which fits a model of daytime NEE and radiation, and Reichstein et 

al. (2005), which extrapolates respiration measurements made at night to the daytime.  

4.3 Results 

4.3.1 Meteorological Conditions 

Meteorological conditions conformed to typical seasonal averages for the 2019 growing 

season when compared to the previous five years. Both thinning intensity and pattern 

influenced below canopy radiation. For example, in the un-thinned control plot, only 8% 

of PAR reached the ground surface due to the dense canopy. By comparison, in the 33A 

and 33D plots, on average 26% and 36% of PAR reached the ground, respectively. In the 

55A and 55D plots, 18% and 25% of PAR penetrated the canopy to reach the ground 

surface (Figure 4.4a). These values also suggest that when compared to the aggregated 

plots, the dispersed pattern of thinning allows for slightly more radiation to penetrate the 

canopy, which may be an important factor for understory growth and productivity. During 

the day, Ta was cooler below the canopy in each of the treatment plots when compared to 

the above canopy reference Ta on top of EC tower at CA-TP39 as expected. At night, a 

temperature inversion was observed in each of the treatments where the below canopy Ta 

was higher than above the forest. There was no correlation between VRH treatment and 

difference in air temperature between the above and below canopy sensors. Ts 

measurements taken at 5 cm and 10 cm depths closely followed Ta. The driest 

measurement period was that of the 55D plot (25 July to 13 August) where only 21 mm 

of precipitation fell over the 12-day period. By contrast, between 14 August and 30 
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September we observed 118 mm of rainfall, while the ECU was measuring fluxes in the 

control plot.  

 

4.3.2 Partitioning of Evapotranspiration 

There is a positive relationship between the level of thinning and presence of understory 

vegetation, with the more heavily thinned blocks (33A and 33D) experiencing the most 

understory growth. By contrast, control plots had least understory with the dominant 

understory vegetation species mostly comprising the non-vascular bryophytes. These 

differences in understory vegetation among VRH treatments had significant impact on 

understory ET. We observed the largest understory ET fluxes in the most heavily thinned 

VRH treatments (33A and 33D) and the lowest in the un-thinned control (Figure 4.5c). 

On average, the understory ET in the control plot represented 17% of total ET (ETU + 

TC). In the moderately thinned 55A and 55D treatments, ETU contributed to 45% and 

42% of total ET, respectively; and in the 33A and 33D, it contributed up to 70% and 77% 

of total ET, respectively (Figure 4.5a,c). Further, daytime ET values measured in the 

understory were linearly correlated with the reference above-canopy ET measurements 

(ETREF) taken at CA-TP39 (Figure 4.6. The control plot had the smallest slope (0.17), 

signifying the least contribution from the understory to ETREF. The most heavily thinned 

plots, 33A and 33D, had the largest slopes (0.45 and 0.59 respectively), confirming that 

the understory soil and vegetation contributed more to ETREF  when compared to the 

moderately thinned 55A and 55D, and the un-thinned control plots. Additionally, the 



PhD Thesis; A.V. Bodo; McMaster University; School of Earth, Environment and Society 
 

91 
 

dispersed VRH treatments (33D and 55D) exhibited greater contribution of ET from the 

understory when compared to the aggregated plots of the same thinning intensity (Figure 

4.6).  

 

We observed the opposite trend in plot-level transpiration, with an average of 83% of 

total ET (Tc + ETU) in the un-thinned control plot comprised of TC. On some days during 

the study period, the TC/ ETU ratio was as high as 1 in the CN plot (Figure 4.7). In the 

33D plot, however, we saw TC/ET values as low as 0.12, with an average ratio of 0.23. 

Plot-level transpiration closely reflected trends in the stand’s tree-density among the VRH 

treatments.  

4.3.3 Water Use Efficiency 

Canopy-level water use efficiency, WUEC (NPPC/TC) followed the growth trends of 

treatment plots with CN < 33A < 55D < 55A < 33D in the 2019 growing season (Table 

4.2). The plots with largest net primary productivity (NPP) were 55D (515 g C m-2) and 

33D (481 g C m-2). While plot-level productivity was among the highest in 33D, this 

treatment exhibited the least amount of transpiration (104 mm) during the growing 

season, therefore the WUEC was 4.63 g C m-2 per kg H2O – the highest of all treatments. 

Conversely, in the un-thinned control, plot-level transpiration was highest (297 mm), 

partly due to the large stand density (432 trees ha-1). Growing season NPP in the CN plot 
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was moderately low when compared to the other treatments (258 g C m-2) but transpired 

more water, which led to a very low WUEC of 0.87 g C m-2 per kg H2O.  

In the understory, WUEU (GEPU/ETU) followed the general trend with 55A < 55D < CN 

< 33D < 33A with slight differences among these values (Table 4.2). Due to 

measurements having been collected at different time periods during the growing season 

and for varying durations, we cannot compare understory gross ecosystem productivity 

(GEPU) between treatments. However, the ratio of GEPU/ETU and therefore, WUEU is 

upheld regardless of timing and duration. Interestingly, we observed the highest WUEU in 

the most heavily thinned treatments, 33A and 33D where the WUEU was 1.32 and 1.27 g 

C m-2 per kg H2O, respectively; but the lowest WUEU among the 55A and 55D (1.03 g C 

m-2 per kg H2O in both treatments). 

4.4 Discussion 

4.4.1 Effects of VRH treatments on Meteorological Conditions 

Our study showed VRH treatments that follow a dispersed thinning method (33D and 

55D) allow for more PAR to reach the understory. This is important for climate change 

mitigation as it may promote higher growth and productivity in understory vegetation, 

leading to an increase in carbon sequestration. In fact, Mission et al. (2007) found that the 

GEP of the understory may reach up to 39% of total canopy GEP and is highly influenced 

by PAR that penetrates the canopy. While understory vegetation is influenced by PAR, 

their study found leaf area index (LAI) was more closely linked to overall productivity of 
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the understory and the water balance (Mission et al. 2007). Additionally, Mission et al. 

(2007) found daytime Ta was generally higher in the understory than above the canopy, 

in less-dense forests. Our study found the opposite was true, where daytime Ta was cooler 

beneath the canopy, due to shading provided by the remaining trees in all treatments. To 

better understand the effects of VRH on micrometeorological conditions, several 

measurements throughout the plot should be taken to account for spatial variation beneath 

the canopy. Additionally, the presence and abundance of understory vegetation may 

influence advective flow and therefore, Ta in the understory (Lee 2000, Mahrt et al. 2000, 

Staebler and Fitzjarrald et al. 2005). While our study was limited in soil moisture and 

temperature measurements at two depths only, other studies have reported dissimilar 

results regarding the effect of thinning on forest ecosystems. For example, Gebhardt et al. 

(2014) and Xu et al. (2020) both observed an increase in soil moisture after thinning in 

Norway spruce (Picea abies) and Larch (Larix principis-upprechtii), respectively. By 

contrast, Trentini et al. (2017) found soil water content decreased following a 50% 

reduction in basal area in a loblolly pine (Pinus taeda) plantation. Due to complex 

linkages between thinning and the attenuation of both PAR and precipitation, spatially 

representative measurements of soil temperature and moisture should be collected in 

future studies.  

4.4.2 Partitioning Evapotranspiration 

Our study found a significant positive relationship between VRH intensity and ETU 

driven by understory vegetation. Like findings by Xu et al. (2020), we observed an 
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increase in the contribution of ETU to total ET as a result of increased thinning intensity. 

Moreover, we observed greater understory contributions from the dispersed treatments 

(33D and 55D), suggesting this may be the preferred treatment pattern. These results 

follow similar trends in growth among remaining trees determined by Zugic et al. (2021) 

using tree-ring analysis in the same site (CA-TP31). Their study found higher growth in 

the dispersed treatments when compared to the aggregated plots of the same retention.  

We also found a strong negative relationship between thinning intensity and the ratio of 

transpiration to total ET (T/ET). There have been several studies that have quantified the 

contribution of canopy transpiration to total ET at stand, national and global scales 

(Jasechko et al. 2013, Schlesinger and Jasechko 2014 , Wei et al. 2017, Zhang et al. 

2021). While there are significant uncertainties with spatially large-scale values, Skubel 

et al. (2017) determined transpiration contributed to 89% of total ET in an adjacent white 

pine plantation (CA-TP39) prior to thinning. After a reduction in basal area by 13%, the 

contribution of TC to total ET dropped to an average of 58% in the two years immediately 

following the thinning event (Skubel et al. 2017).  Our study results support these 

findings, where in an un-thinned, closed canopy (CN), transpiration accounted for an 

average of 83% of total ET, but in a highly open canopy (33D), transpiration accounted 

for an average of 23%.  

While there are relatively few studies that compare water balance components between 

thinning treatments, the importance of quantifying these contributions in forest 

ecosystems is widely accepted. Our study is the first known study to quantify and 
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partition evapotranspiration in red pine following VRH treatments. ETU is particularly 

important during periods of drought, when canopy transpiration is low due to stomatal 

closure (Simonin et al. 2007).  Therefore, quantifying the contribution of the understory 

to ecosystem ET is key to predicting the effects of climate change on these forests, for 

determining the optimal management strategies and growth and survival of understory 

species contributing to richness of biodiversity.   

 

4.4.3 Water Use Efficiency  

We observed a positive relationship between thinning and the presence of understory 

vegetation. Several studies have shown that understory vegetation competes with the 

dominant canopy species for soil water and nutrients (Oren et al. 1987, Kume et al. 2003). 

However, the effects of understory vegetation on WUEC may be site- and species-

specific. For example, Liles et al. (2019) used isotopic ratios to determine the growth of 

understory vegetation led to a decrease in WUE of the Ponderosa pine (Pinus ponderosa) 

canopy, in dry climates. By contrast, Kume et al. (2003) and Livingston et al. (1999) 

found that the presence of understory vegetation led to an increase in WUE in Japanese 

red pine (Pinus densiflora) and white spruce (Picea glauca), respectively. More recent 

studies have also found thinning in Norway spruce leads to an increase in productivity 

related WUE (Gebhardt et al. 2014). These results support our findings that despite a 

greater presence of understory vegetation, canopy thinning leads to more productivity, 

less plot-level transpiration and therefore a higher WUEC.  
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When compared to WUEC, WUEU was lower in all treatments except for the un-thinned 

control. Similar findings are reported by Gebhardt et al. (2014) and Binkley et al. (2002) 

who found understory vegetation was less efficient in resource utilization, and thus had 

lower WUE than the dominant canopy trees. As previously discussed, there is very little 

vegetation present in the understory of the un-thinned control plot, due to closed canopy 

and low level of PAR. Because of resource competition due to a higher number of trees, 

the control plot had a lower WUEC than the thinned plots. While we do observe lower 

WUEC and WUEU in the un-thinned control when compared to the four thinned plots, 

there is no clear pattern to describe the effect of thinning on WUE. Similarly, Park et al. 

(2018) did not observe a change in WUE as a result of thinning due to the synchronized 

effects of thinning on both transpiration and productivity. Additionally, WUE is 

influenced more by productivity (GEP, NEP) than water use (ET, TC) in the North 

American Great Lakes region (Yang et al. 2016). Additionally, Yang et al. (2016) 

determined that WUE in the Great Lakes region decreased as a result of drought. 

Therefore, a better understanding of WUE in both the canopy and the understory is 

important in predicting the effects of climate change on the resilience of these 

ecosystems. Furthermore, knowledge of partitioning of ET and water exchanges in 

dominant canopy species and subdominant understory vegetation in red pine plantations 

is important for future forest management decisions. 

4.5 Conclusion 
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Due to the significant contribution of forest ecosystems to carbon sequestration and water 

resources, forest managers are facing increasing pressure to implement silviculture 

techniques that balance economic gain and ecosystem services, including carbon 

sequestration and availability of clean water resources. This study quantified the influence 

of forest management (variable retention harvesting) treatments on the partitioning of 

total evapotranspiration. We found a positive relationship between thinning intensity, 

understory vegetation, and therefore understory evapotranspiration. The contribution from 

understory vegetation was more pronounced in the dispersed thinning treatments, when 

compared to the aggregated. Additionally, we observed canopy transpiration contributed 

to 83% of total ET in the un-thinned control. Finally, we found that water use efficiency 

increased as a result of thinning in the remaining trees. These findings suggest variable 

retention harvesting in a dispersed pattern with 55% basal retention (more than half of the 

trees) may provide the optimal balance between forest productivity and 

evapotranspiration or water use. Furthermore, a balance of contributions from both the 

canopy and successional understory vegetation may increase forest resiliency to future 

threats associated with climate change such as droughts.  

 

List of Abbreviations 

33A 33% basal retention in aggregated pattern 
33D  33% basal retention in dispersed pattern 
55A  55% basal retention in aggregated pattern 
55D  55% basal retention in dispersed pattern 
As  sapwood area [m2] 
Ag  ground area [m2] 
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C  carbon 
CA-TP31  Turkey Point red pine plantation forest planted in 1931 
CA-TP39  Turkey Point pine plantation forest planted in 1939 
CA-TP74  Turkey Point pine plantation forest planted in 1974 
CA-TP02  Turkey Point pine plantation forest planted in 2002 
CA-TPD  Turkey Point mixed deciduous forest stand 
CA-TPAg Turkey Point agricultural site 
CN   control treatment 
CO2   carbon dioxide 
DBH   Diameter at Breast Height [m] 
EC  eddy covariance 
ECREF  reference above-canopy eddy covariance system 
ECU  below-canopy eddy covariance system 
ES  soil evaporation [mm] 
ET  evapotranspiration [mm] 
ETU  understory evapotranspiration [mm] 
g  grams 
GEPU  gross ecosystem productivity 
GPP  gross primary productivity 
H  sensible heat 
Ha  hectare 
IRGA  infrared gas analyzer 
Js  sap flux density [mL m-2sapwood s-1] 
K  a dimensionless flow index describing the relationship between average 

flow and zero flow (nighttime) conditions   
Kg  kilograms 
LE  latent heat 
NEEU  net ecosystem exchange of the understory 
NEPU  net ecosystem productivity of the understory 
NPPC  net primary productivity of the canopy 
OMNRF  Ontario Ministry of Natural Resources and Forestry 
OPEC  Open Path Eddy Covariance system 
PAR  Photosynthetically Active Radiation [µmol m-2 s-1] 
REU  understory respiration 
RH  relative humidity (%) 
SWCR   St. Williams Conservation Reserve 
T  transpiration [mm s-1] 
Ta  Air temperature [°C] 
TC  canopy transpiration [mm] 
TD  Thermal Dissipation  
Ts  soil temperature [°C] 
TWU  Tree Water Use [kg day-1 or L day-1] 
u*  friction velocity [m s-2] 
VPD  Vapour Pressure Deficit [kPa] 
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VRH  Variable Retention Harvesting  
WUE  Water Use Efficiency 
WUEC  Canopy Water Use Efficiency 
WUEU  Understory Water Use Efficiency 
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Tables 

Table 4.1: Details of roving eddy covariance flux measurements in the understory of each 
Variable Retention Harvesting (VRH) treatment and control plots.  

Treatment 
Type 

% Basal 
Area 

Retained 

Pattern of 
Retention 

Dates in which the 
understory Eddy 

Covariance was in 
the treatment plot 

(2019) 

Duration 
(# of 
days) 

55A 55% Aggregated 2-May to 27-May 24 

33D 33% Dispersed 27-May to 2-July 35 

33A 33% Aggregated 2-July to 24-July 21 

55D 55% Dispersed 24-July to 14-

August 

19 

CN 100% -- 14-August to 30-

September 

47 
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Table 4.2: Water use efficiency in understory (WUEU) and water use efficiency in 
canopy (WUEC) in each of the VRH treatment plots. Corresponding gross ecosystem 
productivity (GEPU), net primary productivity (NPPC), canopy transpiration (TC) and 
understory evapotranspiration (ETU) values are also given in parentheses. 
 

Treatment Type WUEU (GEPU/ETU) 

(g C m-2 Kg H2O-1) 

WUEC (NPPC/TC) 

(g C m-2 Kg H2O-1) 

55A 1.03 (16.1/15.6) 2.59 (454/175) 

33D 1.27 (100.4/79.4) 4.63 (481/104) 

33A 1.32 (62.6/47.5) 1.70 (224/132) 

55D 1.03 (26.2/25.5) 2.20 (515/234) 

CN 1.18 (18.7/15.8) 0.87 (258/297) 
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Figures 

 

Figure 4.1: Aerial photograph of the VRH plots at CA-TP31 from Google Earth (2016). 
The red triangles denote the location of the roving understory EC system.  
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Figure 4.2 Photos from the understory of each VRH treatment plot. Photos were taken at 
the location of the understory eddy covariance (ECU) tower while looking up toward the 
canopy and sky.    
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Figure 4.3. Wind rose diagram showing wind speed and direction in the understory of 
each of the VRH plots (upper panel) and diagrams showing the footprint of the 
corresponding eddy covariance flux footprints following Kljun et al. 2015 (bottom panel). 
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Figure 4.4. Half-hourly values of a) photosynthetically active radiation (PAR) from above 
the forest canopy (black) and below (red), b) air temperature (Ta), c) soil temperature (Ts) 
measured 5 cm (solid line) and 10 cm (dotted line) below the surface, d) volumetric water 
content (θ) measured 5 cm (solid line) and 10 cm (dotted line) below the surface and 
precipitation. The vertical dashed lines indicate the day at which the meteorological 
instruments were moved to the next plot and the locations are labelled in panel a). 
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Figure 4.5. Total daily evapotranspiration (ET) measured from the reference above 
canopy eddy covariance system at TP39 (a); total daily canopy transpiration measured 
using sap flow sensors in dominant red pine trees in CA-TP31 (b); and total daily 
evapotranspiration measured from the roving understory eddy covariance system at CA-
TP31 (c). The vertical dashed lines indicate the date at which the understory eddy 
covariance system was moved to the next plot. 
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Figure 4.6. Relationship between hourly evapotranspiration (ET) measured above canopy 
at TP39 site (ETREF) and below the canopy (ETU) in each of the VRH plots. 
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Figure 4.7. The ratio of canopy transpiration, Tc to total evapotranspiration, ET (Tc + ETU) 
measured in each of VRH plots. The vertical black line shows the average daily T/ET value 
during the study period, and the grey bar shows the range of daily values. 
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Figure 4.8. Stacked bar plot showing average daily evapotranspiration (ET) measured 
from the reference eddy covariance at TP39 site (blue); and the average daily contribution 
to total ET at CA-TP31 from components: canopy transpiration (green) and understory 
evapotranspiration (brown). 
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CHAPTER 5: 

 
CONCLUSIONS 

 
5.1 Summary and Conclusions 
 
Ecologically-based forest management may be a primary method to increase the 

resilience of conifer plantation forests to climate change-related stress. This study 

investigated the effect of four different variable retention harvesting (VRH) treatments on 

evapotranspiration and water balance in an 83-year-old red pine (Pinus resinosa) 

plantation forest in the Great Lakes region in Canada. Study results showed that at the 

individual tree-level, 65% of water transport occurred in the outer 20 mm of the sapwood, 

while 26% and 9% of water transport occurred in the 20-40 mm and 40-60 mm depth 

segments of the trunk, respectively (Chapter 2). These results highlight the importance of 

accounting for radial variations when using sap flow sensors to scale point-measurements 

to the tree- and stand-level. These results suggest that failing to consider radial variations 

in sap flux density within trees can lead to an overestimation of transpiration by as much 

as 81%, which may cause large uncertainties in water budgets at the ecosystem and 

catchment scale. This implies the best-practices for scaling sap flow measurements to the 

tree- and stand-level involve measuring hydraulic flow at various depths within the 

conductive tissue.  

While evaluating the effects of VRH treatments on canopy transpiration and understory 

evapotranspiration, this study showed that tree-level transpiration was the highest among 

trees in the 55D treatment, followed by 33D, 55A, 33A and CN plots (Chapter 3). Vapor 

pressure deficit (VPD) was a major control or driver of transpiration in all VRH 
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treatments during periods of low precipitation. However, transpiration was more closely 

coupled with photosynthetically active radiation (PAR) in the unharvested or control plot. 

Overall, study results suggests that dispersed or distributed retention harvesting where 

more than half of the trees are retained (55D plot or 55% basal area) provides favourable 

environmental conditions for forest growth with reduced competition of trees for water as 

shown by enhanced transpiration.  

 

In the understory study (Chapter 4), the results revealed a positive relationship between 

thinning intensity, understory vegetation, and therefore understory evapotranspiration. 

The contribution from understory vegetation was more pronounced in the dispersed 

thinning treatments, when compared to the aggregated. Canopy transpiration contributed 

to 83 % of total evapotranspiration in the un-thinned control plot and 58, 55, 30, and 23 % 

for the 55D, 55A, 33A and 33D plots, respectively.  Overall thinning or retention 

harvesting treatments contributed to an increase in stand water use efficiency. Our study 

results suggested that VRH treatments such as 55D that followed a dispersed harvesting 

pattern resulted in higher evapotranspiration and greater forest productivity. Furthermore, 

a balance of contributions from both the canopy and successional understory vegetation 

and soil, as observed in the 55D treatment, may increase the resiliency of forest to climate 

change 

 

Overall, these findings will help researchers, forest managers and decision-makers to 

improve their understanding of water cycling in forest ecosystem and adopt the best forest 
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management regimes to enhance forest growth, health and resiliency to climate change. 

Our study results support the use of VRH as an efficient silvicultural treatment to restore 

red pine plantations to native forest types, with the added benefit of promoting 

atmospheric moisture through canopy transpiration. Our results conclude that VRH 

treatments that following a dispersed pattern may provide the optimal balance between 

forest productivity, evapotranspiration and successional growth. Furthermore, a balance 

of contributions from both the canopy and successional understory vegetation may 

increase the resiliency of these ecosystems to climate change.  

 
5.2 Study Significance and Future Research 
 
 
Sustainable water resource management is expected to become one of the most 

paramount environmental challenges of the 21st century (Rodell et al. 2018). Climate 

change and extreme weather events may disrupt the terrestrial hydrologic cycle at 

regional  and global scales. This study will contribute to a growing set of work which 

aims to understand and quantify the forest water cycle and its major components.  

 
The findings of this research highlight aspects that should be addressed in future work at 

CA-TP31 and other variable retention harvesting stands in Eastern North America and 

elsewhere. In this dissertation, the eddy covariance method was used to capture 

understory evapotranspiration. Future work should continue in the pursuit to partition 

understory ET into physical and biological components such as soil evaporation and 

transpiration from understory vegetation, respectively. There are several existing methods 

for partitioning ET, including flux variance similarity partitioning of eddy covariance data 
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(Scanlon and Kustas 2010), field-based methods (Oren et al. 1998, Wilson et al. 2001) 

and through the use of models (Paul-Limoges et al. 2020). While all methods have both 

benefits and limitations (Kool et al. 2014), it is clear that understanding the components 

of total forest evapotranspiration provides a baseline which may be important for 

interpreting the influence of climate change on the water budget of plantation forests.  

 

This study also examined the meteorological drivers of canopy transpiration and made 

comparisons between VRH treatments. Future work should expand this research and 

examine the meteorological controls on understory evapotranspiration, with a particular 

focus on soil water balance and its controls.  A greater understanding of the spatial and 

temporal dynamics of soil temperature and moisture, and the response of these variables 

to thinning prescriptions and hence water cycling would be beneficial to better predict the 

response of these ecosystems to climate change. 

 

Land surface models are an important component of the regional and global climate 

models used for climate predictions (Bonan 2008). These models use either empirical or 

semi-empirical approaches to formulate canopy conductance, which causes large 

uncertainty in simulated evapotranspiration (Bonan 2008). Moreover, the  hydrologic and 

land-surface modelling community need observed water flux data for testing, validation 

and further improvements in these models. Some of these models such as the Community 

Land Model (Lawrence et al. 2007) and the Ecosystem Demography model (Medvigy et 

al. 2009, Longo et al. 2019) are also used to upscale field-based measurements and 
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ecosystem dynamics to large spatial scales. Therefore, data on observed 

evapotranspiration and its components will be very important in developing and further 

improving land surface and hydrologic models and help in accurately predicting the 

effects of climate change and extreme weather events on the global water and carbon  

cycles. Our study and observed data will contribute in these efforts.  

 

Finally, future research should include a yearly inventory of live trees and their stem  

growth (DBH) within each VRH treatment. It will help to gain a better understanding of 

tree growth and mortality as a result of thinning. This information paired with 

meteorological and flux measurements will be useful for determining stand productivity, 

carbon sequestration, and water use. Such data and knowledge will help decision-makers 

when deciding on best practices for the management of red pine plantations in the region.  
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