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Abstract

Star cluster formation involves the conversion of molecular gas into stars inside giant
molecular clouds (GMCs). Such a process involves many dynamical evolution mecha-
nisms, including mergers between smaller star clusters (subclusters) on which we focus in
this thesis. We take results of simulations performed by Howard et al. (H18) which
found that young massive cluster (YMC) formation is heavily dependant on the process
of subcluster mergers, and we simulate said mergers at higher resolution. Subclusters in-
side such GMC simulations are modelled using the sink particle prescription which does
not resolve individual star particles or gas parcels inside the subcluster they represent.
We employ a more controlled method in simulating subcluster mergers to better under-
stand the response of the stellar and gas components of a subcluster from the merger
process. To do this, we take the parameters of the sink particles created in H18 and
set up spheres of stars and gas. We use the AMUSE framework to couple the N-body
evolution of the stars to the smoothed particle hydrodynamics (SPH) evolution of the
gas such that both components of a given cluster can realistically react to each other.
We model 15 of these mergers and find that once the velocity at which the two clusters
collide (collisional velocity) exceeds ~ 10kms™!, the resultant cluster is not monolithic
(i.e. it still contains two separate stellar components) while all other simulations merge
into one monolithic stellar and gas component cluster. We also find that, regardless of
the collisional velocity of masses of the component clusters, all resultant clusters lose
a fraction of their stellar and gas mass. This fraction is directly proportional to the
collisional velocity and is a discrepancy between the sink particle prescription (where
all mass is contained inside a constant sink particle accretion radius) and real cluster
mergers. A further discrepancy we find is that all simulations result in a cluster whose
outermost regions are expanding and that the rate of this expansion is somewhat pro-
portional to the collisional velocity of the merger. These results point to the inaccuracy

of the sink particle prescription and allow us to develop tools to improve on it in future
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simulations. Next, we fit commonly used analytical density profiles to both the stellar
and gas component of our resultant clusters and find that, while they do not provide
particularly excellent fits, they provide constraints on what is an acceptable fit. Lastly,
we analyze the amount by which gas with potentially star forming densities increase due
to the merger and we find that all mergers increase their star forming gas mass fraction
by roughly 50 per cent implying that mergers may be an effective tool for triggering star

formation.
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Chapter 1

Introduction

Young massive clusters (YMCs) are dense collections of stars, sometimes embedded in
clouds of molecular gas, with masses often > 10*My and ages < 10Myr (Portegies
Zwart et al. ). Early stages of the formation of such clusters is thought to involve
the conversion of molecular gas into stars inside a giant cloud of molecular gas (GMC)
through gravitational collapse in the densest regions of these clouds (Lada and Lada

). However, this conversion of molecular gas into stars may not be the only process
required to form a bound cluster of stars on the mass scales of most YMCs. Namely,
computational simulations show that mergers of stellar groups can help in reproducing
oberved properties of YMCs. For example, simulations done by Fujii et al. ( ) show
that the radial stellar density profile of the YMC R136 (seen in figure 1.1) can be
reproduced through such mergers. Through computational simulations of GMC collapse
under self-gravity, studies find that these small groups of stars (hereafter referred to
as embedded subclusters) that form in dense regions of GMCs will eventually undergo
multiple mergers, thus building up mass, and eventually leading to the formation of a
YMC (Howard et al. , hereafter referred to as H18). Furthermore, evidence for such
mergers has also been found through observations. An example is the observation done

by Zeidler et al. ( ) of the cluster Westerlund 2. The authors show that it can be
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resolved as two distinct groups of stars containing cores with radial velocities towards

one another, implying that a merger of these stellar groups will happen in the future.

The GMC environment in which these clusters form and grow, contains a large range
of local densities, making it computationally expensive to simulate all scales at the same
time in a single simulation (Stahler and Palla , Bleuler and Teyssier ). To
combat this, simulators have used sink particles as a representation of small subcluster
scales (Banerjee and Kroupa , Howard et al. , Dobbs et al. , Fukushima
and Yajima ). Sink particles are simplified models of clusters which carry global
parameters of the cluster they represent (for example, total stellar mass, total mass
in stars and gas, position, and velocity of the subcluster) and are allowed to evolve in
the simulation through interactions with other sinks, and the ambient molecular gas
(Federrath et al. ). Each of these sink particles has an accretion radius unique to
the simulation but shared among all sinks. Within this sink accretion radius lies the
entirety of the mass of the subcluster. This sink radius also helps define how a given
sink reacts with the simulation around it by acting as a distance within which ambient

gas can be accreted onto the sink or two sinks can merge with one another.

The large scale GMC collapse simulations performed by H18 made use of this sink
particle implementation. The authors created 10"M, spherical GMCs and allowed it to
evolve. Through turbulence induced as an initial condition in their simulations, dense fil-
amentary structures began to appear, within which, sink particles began to form. These
sink particles were used to represent subclusters in their GMC simulations. Though
the sink was meant to represent a subcluster, it provided no information regarding the
positions, or velocity of any of the individual stars or any of the gas that made up each

subcluster.

Sink particles in H18 were prone to prompt mergers throughout the H18 simulations

simulation. This lead the authors to conclude that subcluster mergers were an essential
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part of the formation process of YMCs in GMCs. However, because the sink particle
implementation prevents a simulator from resolving positions or velocities of the stars or
gas in the subcluster, this method of YMC formation does not provide enough insight into
how the individual components of the subcluster react to mergers with other subclusters.
Though previous simulations have looked at subcluster mergers through a purely N-body
analysis (Fujii et al. ), as well as through the coupling of N-body mechanics with
an analytic potential function that represents a gas component (Banerjee and Kroupa

) there have yet to be studies focused on how both the stellar and gas component
of an embedded subcluster react to mergers with other subclusters. As such, it is still
unclear how each component of an embedded subcluster reacts to the merger process
inside a GMC. The goal of this thesis is to fill in this gap in our understanding of YMC
formation. We have simulated more realistic subcluster mergers through the coupling of

a distinct stellar component and gas component.

Our method also serves as a means by which simulators can improve their sink par-
ticle prescription. By taking sink particles from H18 and modelling their mergers as
a collection of stars and gas, we are able to analyze how some of the key assumptions
made in the sink particle prescription hold. In this way, we provide simulators with the
ability to maintain the use of sink particles in their large scale simulations, but suggest
to them ways in which their sink models can be changed to more accurately model real

subcluster mergers.

The remainder of chapter 1 is structured as follows: first, we review the basics of star
cluster formation inside GMCs. We then discuss star cluster morphologies. We move on
to outline various models of GMC simulations that deal with star cluster formation and

evolution. Finally, we provide an in depth description of the H18 simulation.
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FIGURE 1.1: Image of R136 (credit: NASA, ESA, F. Paresce (INAF-
TASF, Bologna, Italy), R. O’Connell (University of Virginia, Char-
lottesville), and the Wide Field Camera 3 Science Oversight Committee)
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1.1 Star Cluster Formation in Giant Molecular Clouds:

Theory and Simulations

In this section, we set the stage for our project by discussing the current understanding

of star and star cluster formation in GMCs.

1.1.1 Theory

GMCs are the hubs of star formation and star cluster formation (Lada and Lada ( ))-
As a GMC is a collection of molecular gas, it is subject to many internal and external
forces that govern its evolution. Such a self gravitating system may eventually collapse
once internal, outwards pushing pressures can no longer hold up against inward pushing
gravitational contraction. Under such gravitational influence, collapse takes place on the

free-fall timescale. This can be defined as

| 3m

where p is the average density and G is Newton’s gravitational constant. This instabil-
ity between gravitational forces pulling the cloud inwards towards collapse and kinetic
energy working to keep the cloud from collapsing can be summarized in the following

equation (Bertoldi and McKee ):

(1.2)

where o is the velocity dispersion of the cloud, M is its mass, a is a parameter that
accounts for deviations from spherical symmetry (but is often set to a ~ 1), T is the
kinetic energy of the cloud, and W is its potential energy. Alpha is known as the wvirial
parameter. For spherically symmetric systems, the limits on this parameter help to

quantify the future state of the GMC: o = 1 is a complete balance of outward pressures
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with inward gravity, a < 1 represents the regime in which the gravitational potential
outmatches the kinetic energy (the process that leads to this collapse is known as Jeans
instability), and o > 1 is the regime in which the kinetic energy surpasses the potential

energy.

Turbulence further complicates the situation by working against gravity as a form
of kinetic energy to shape the GMC. As a GMC collapses, dense filamentary structure
becomes visible (André et al. ). Within these filaments, observers have noticed
dense cores which can go on to form individual stars (Kényves et al. ). As the GMC
evolves, its continued collapse may cause these dense filaments to feed material into
the accreting protostellar core which, in turn, increases its mass. One factor that helps
determine the efficiency with which a prestellar core is converted into stellar mass is the
strength of the gas ejected by that protostar as a consequence of conservation of angular
momentum. These ejecta are known as protostellar outflows. Processes such as these
can affect the final mass of the star that forms (Matzner and McKee , Guszejnov
et al. ). This implies that stars of varying masses can form in the filaments of
collapsing GMCs. A schematic of this star formation event can be seen in figure 1.2. At
the densest intersections of filaments, this can lead to the formation of groups of stars
bound together gravitationally rather than just a single star. However, this does not tell
us how very massive collections of stars (e.g. YMCs) can form in the GMC environment.
To come to an answer to this question, we can look towards numerical simulations of

GMUC collapse that include a star cluster formation prescription.

1.1.2 Simulations

Hydrodynamical simulations of GMC collapse show similar results to one another regard-
ing the location of star forming regions, consistent with theory stated above. Whether

simulators trigger turbulence in their GMC through colliding two cylindrical gas flows
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FIGURE 1.2: A schematic of the star formation process present in the
Serpens South Cluster. Arrows mark velocity gradient with red showing
accretion from host filament, blue showing infall from surrounding cloud,
and black showing radial contraction of the host filament (André et al.
2014 and references therein). Used with permissions from the University
of Arizona Press ©.
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(e.g. Vazquez-Semadeni et al. ) or through inducing turbulence via a turbulent ve-
locity spectrum (e.g. Fukushima and Yajima ), dense filamentary structure is ubig-

uitous across these simulations. Many GMC collapse simulations have tried to bridge
the evolutionary gap between groups of stars and massive star clusters. An example of
such a simulation is that done by Chen et al. ( ). Here, the authors tested various
initial GMC density distributions to understand which ones lead to the formation of
a massive cluster. The authors find that the formation of their most massive cluster
by the end of most of their simulations is heavily dependant on the merging of smaller
subclusters along dense filaments in their cloud. This has also been found in simulations
done by Lahén et al. ( ) who analyze the results of a dwarf galaxy merger simula-
tion carried out by Lahén et al. ( ) and find that a YMC forms through mergers
of smaller subcluster, in line with observations that find YMCs often form in active
galactic mergers such as the Antannae system due to the extremely dense regions in an
active merger (Zhang et al. ). Though the formation mechanisms of massive clusters
in these GMC simulations may be well constrained through these methods, none were
able to constrain the reaction of the subclusters to the merger process as they evolve
in the GMC simulation. This is because, as we reach star cluster densities, the density
contrast between star forming regions and those regions that have yet to get to star
forming densities inside the GMC becomes extremely high. This makes it difficult to
simulate both regimes in one simulation. Mathematically, this can be described using

the Courant condition (Courant et al. ) which states:

Az

Cs

At <

(1.3)

where At is the maximum timestep, Ax is the spatial resolution of the region of interest,
and c, is the local sound speed. In words, this equation illustrates the need for lower
timesteps in regions that require higher spatial resolution (small Az) such as dense star

forming regions in GMCs which eventually becomes far too computationally expensive.
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Subgrid models help to solve this problem by representing a newly formed subcluster as
a set of parameters that describe the subcluster (i.e. its mass, position in the GMC,
and velocity) rather than a collection of individual stellar particles, thus drastically
shortening computer runtimes. An example of such a subgrid model is the sink particle
prescription outlined in Federrath et al. ( ). In this model, sink particles are point
particles in GMC simulations that are allowed to move freely throughout the simulation
box and interact with gas and other sinks around it. As outlined by Federrath et al.
( ), a sink particle is formed once a patch of gas in the simulation satisfies the
following conditions: it must be above a density threshold set by the user, it must be at
the highest level of refinement allowed by the simulation code, it must be Jeans unstable
(strong gravitational forces pushing towards collapse against weak outwards pressure),
and finally, it must not be within one accretion radius of another sink particle (else it
will be accreted onto that nearby sink particle). The accretion radius associated with
these sink particles is the means by which sink mergers and gas accretion onto sinks is

mediated. It is done in the following ways:

o Firstly, as a sink particle moves through the simulation and interacts with sur-
rounding gas, it has the chance to accrete that gas if the gas is within the sink
particle’s rg;,k, and if the gas is gravitationally bound to the sink particle. The
resulting total gas mass in that given sink particle increases by an amount directly

equivalent to the newly accreted gas mass.

e Second, if two sink particles are within one 74, from each other and are gravi-
tationally bound to each other, they merge into one. The resultant sink particle’s
mass is the sum of that of the parent sinks and the resultant sink’s velocity is taken
as the centre of mass velocity of the merger. As sink particles mask the physics of
the stellar and gas component of the subcluster they represent, how the stars and

gas react to subcluster mergers is unknown.


http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Science— Jeremy KARAM; McMaster University— Department of Physics and
Astronomy

Despite these caveats, the increased computational efficiency afforded by the sink
particle perscription is often worth it when it comes to simulating the collapse of very
large mass GMCs. To better understand the specific physics being masked by these sink
particles, and why it is important to resolve them as a collection of stars and gas, we

take our discussion to the next scale down and journey through star clusters.

1.2 Star Clusters

The definition of a star cluster has been widely discussed since the early working defi-
nition given by Trumpler ( ) which states that: a star cluster must be a collection
of at least 12 stars and its overall shape and size can be determined by its gravitational
potential. More recently, star cluster definitions have considered the boundedness of the
group of stars to differentiate from an association of field stars (Portegies Zwart et al.

). Furthermore, studies have shown that a star cluster’s shape is not only affected
by the mass of its member stars, but of the environment in which the cluster is located.
As star clusters are gravitational systems, the radial distribution of their stellar com-
ponent is subject to change under the influence of dynamical interactions between the
stellar members. This change in distribution may lead to the unbinding, or removal, of

stellar members from the host cluster.

1.2.1 Dynamics of Stellar Systems

A method by which stellar systems can lose stellar mass (through the unbinding of stellar
members from the host system) is through two-body relaxation which is the process by
which a single star’s trajectory is altered by the presence of another single star through
close encounters (Spitzer ). Close encounters such as these lead to an exchange
of energy between stars and, eventually, stars that lie on the tail end of the energy
distribution of the cluster are given enough kinetic energy to become unbound from the

host cluster in a process known as stellar evaporation. Therefore, we can use the timescale
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of evaporation to understand how long a star cluster may survive before gravitational

effects cause it to evaporate.

To understand the timescales on which this dynamical evolution takes place, we begin

by defining the half-mass relaxation time using Spitzer and Hart ( )
M1/24:3/2
trp = 0.138 ——1m 1.4
rh G1/2m, In(A) (14)

where M is the cluster mass, rp,, is the radius which encloses half of the cluster mass,
G is Newton’s gravitational constant, m, is the average stellar mass of the cluster and
A =~ 0.4N where N is the total number of stars in the system. While the relaxation time
is the time it takes for a star in the cluster to lose all memory of its initial orbit due to
gravitational interactions with surrounding stars, t,5 is this time at the half mass radius
Thm Of the cluster. Numerical integrations done by Gnedin and Ostriker ( ) find that
the timescale for evaporation to destroy a star cluster is related to the concentration of
that cluster ¢ = log(r/r.) but, on average, find t., ~ 30t,} in the presence of a galactic
potential. Lastly, the relaxation time ¢, can be related to the crossing time t.. of the
system (the amount of time it takes on average for a star to travel from one side of the

cluster to the other) using
7InA
tCT’ ~ N

t, (1.5)

A contributing factor to the complexity of gravitational interactions in stellar systems
such as star clusters is the fact that stars of varying masses can reside in the same cluster.
To better understand the distribution of stellar masses inside a star cluster, a stellar
initial mass function (IMF) can be used. The IMF is a probability distribution function
that can be applied to a set of particles to randomly distribute to them mass. Many
forms of the IMF have been introduced beginning in 1955 with the Salpeter ( ) IMF.

However, the form of this IMF extended to infinity as one looked towards lower mass
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stars. In other words, the Salpeter IMF too heavily favoured the production of low mass

stars.

To correct this, Kroupa ( ) introduced a form of the IMF that splits the mass

range into three regions, each with their own slope. The Kroupa ( ) IMF takes the

form:
e(m)=m~* (1.6)
with
a=0.3 form < 0.08M
a=1.3 for 0.08 Mgy <m < 0.5Mg
a=2.3 form>0.5
The Kroupa and the similar looking Chabrier ( ) IMFs are commonly used in nu-

merical simulations to apply masses to component stars in star clusters.

1.2.2 Star Cluster Morphology

Star cluster morphology is not always perfectly spherical and such deviations from spher-
ical symmetry can have an impact on the star cluster’s evolution (e.g. Parker and Meyer

) making it important to resolve such intricacies in star cluster simulations. Kuhn
et al. ( ) studied clusters in nearby massive star forming regions through the MYS-
TIX (Feigelson et al. ) sample. They created 2D surface density maps for young
stars in each of the star forming regions and found that they can be grouped morpho-
logically using fitted ellipses of the stellar density. Many of star clusters in their sample

had morphologies that were not spherical.

Though a star cluster can begin with a non-spherical morphology, it may evolve into

a smooth, relaxed state (Cartwright and Whitworth , Schmeja and Klessen ).
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For example, N-body simulations done by Allison et al. ( ) show that initially sub-
virial clumpy clusters (clusters containing subclumps with one larger host cluster) can
undergo subclump mergers and lead to massive runaway stars similar to the results ob-
tained by Fujii et al. . Such signatures can not be obtained through the evolution
of more spherical clusters on short timescales. Although, embedded subclusters contain
background gas along with a stellar component which was not modelled in these sim-
ulations. Simulations performed by Sills et al. included gas and focused on the
evolution of the linear chain of subclumps DR 21 as seen in figure 1.3 and found that
all subclusters had completely merged promptly within 1Myr to form something more

resembling a smooth isolated cluster.

1.3 H18 Simulations

In this section, we discuss Howard et al. ( ) in depth. We talk about the methods

used to set up their simulations as well as some key results.

1.3.1 Methods

Howard et al. ( ) (H18) carried out radiation hydrodynamics simulations using the
FLASH (Fryxell et al. ) code. These simulations studied the evolution of initially
spherical 10"Mg GMCs with a virial parameter of o = 3. This is the upper limit of GMC
mass in the authors suite of GMC collapse simulations. The authors induced turbulence
and these random velocities lead to shocks withing the GMC along which star clusters
began to form as sink particles though their choice of « led to dispersion in the outer
regions of the cloud. The goal of this study was to understand the formation of Young
Massive Clusters (YMCs) in GMCs. Throughout the simulations, the most massive sink
formed would accrete much of the mass around it and merge with smaller sink particles
thus growing in size. An example of the growth of clusters through accretion and mergers

in two of their simulations can be seen in figure 1.4. The blue star in this figure shows
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FI1GURE 1.3: Simulated initial distribution of stars and gas for the cluster
DR21. Stars are shown as blue/white objects while gas distribution can
be seen through contour lines representing its surface density. (Figure 1
from Sills et al. ( )
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FI1GURE 1.4: Column density maps for the GMCs from H18. Snapshots
are taken at ¢t = 1.54Myr which corresponds to the time when, what
will become the most massive cluster (blue star), forms. White circles
represent smaller clusters that will eventually merge with the blue star
(Howard et al. 2018).

the most massive sink particle formed in their two simulations. This most massive sink
forms in the densest filament near the centre of the collapsing GMC and smaller sink
particles form around it in less dense filaments (shown as white circles in the figure).
By the end of these simulations, many of the smaller sink particles will merge with the

largest one and a YMC sized sink will form.

Once a sink particle is placed, a subgrid model is used to describe star formation
inside that particle: the sink particle is assumed to be comprised solely of gas initially,
and the authors convert that gas into stars such that the stellar mass distribution follows
a Chabrier (2005) IMF. In agreement with observations of local star forming clumps in
the Milky Way done by Lada and Lada (2003), the authors convert 20 per cent of this
gas mass into stellar mass. This conversion takes place once every t;y ~ 0.36 Myr so
that gas that is accreted onto the sink at later times can contribute to the sink’s stellar

mass and the stellar mass of each sink is not constant throughout the simulation.
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1.3.2 H18 Results

The H18 simulations resulted in the formation of YMCs in their high column density
filaments through subcluster mergers and gas accretion (see figure 1.4). These YMCs
continue to absorb smaller subclusters and accrete filamentary gas. The merger tree
highlights the importance of subcluster mergers in the creation of YMCs through GMC
collapse. Connected by the dashed line on the bottom of each panel is the largest cluster
in their simulation. The shaded region represents the percentage of the mass of that
sink particle than can be attributed to mergers with other sinks. We can therefore see
that by the end of the simulations, ~ 45% — 50% of the final YMC’s mass is owed to
mergers. As expected as well, mergers are more plentiful in the 0.1Z case because lower
metallicity leads to less gas dispersal around sink particles which allows for more sinks

to form and in turn merge with other sinks.

By combining the results from this study and previous simulations of 10*~6M, GMCs
(Howard et al. , Howard et al. ), H18 noted a strong power law relationship
between the initial mass of their GMC and the mass of the most massive YMC formed
by the end of their simulations. This relationship lasts over 3 orders of magnitude of

GMC masses.

Hierachical merging happens throughout all regions of their GMC as it collapses. As
subclusters travel along filaments and accrete gas, they merge and build up to a YMC.
This merger and gas accretion process occurs mostly in filaments along which these
subclusters travel. The results of the H18 simulation therefore lend themselves well to
the idea that subcluster mergers are vital in the formation of YMCs in GMCs. As such,

it is crucial for us to understand the details of this astrophysical process.
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FIGURE 1.5: Merger trees, where x-axis shows time, for the YMC in
the 1Z¢ and 0.1Zs H18 simulations respectively. Each circle represents a
subcluster and the bottom circles connected by dashed lines represent the
most massive sink particles in each respective simulation. Each vertical
dotted line shows a merger between one sink and the most massive sink.
Sinks grow in mass through gas accretion as can be seen by looking at
the colour gradient connecting each sink to its vertical dotted line. The
lighter shaded region in the most massive sink represents the fraction of
that mass that can be attributed to sink particle mergers (Howard et al.
2018).
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1.4 Thesis Overview

In this thesis, we model star clusters as discrete collections of stars and gas. We simulate
pairs of star clusters and investigate the properties pertaining to bound members, cluster
growth, and density profiles of the resultant cluster. We have looked at a number of
star cluster pairs from the H18 simulations as well as mergers that are not present in
H18 but involve the merging of sinks from H18. In chapter 2, we discuss the numerical
methods used for our simulations. In chapter 3, we present results from our simulations.

In chapter 4, we discuss conclusions and outline avenues for future work.
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Chapter 2

Computational Methods

Our star cluster model involves the evolution both the stellar and gas components present
in the cluster. To do this, we employ the Astrophysical Multipurpose Software Envi-
ronment (AMUSE) (Portegies Zwart et al. , Pelupessy et al. , Portegies Zwart
et al. , Portegies Zwart and McMillan ) which is a collection of publicly avail-
able community codes, each able to model specific astrophysical processes. We use the
GADGET-2 (Springel ) smoothed particle hydrodynamics (SPH) code to model our
cluster’s gas component, and the hermite0 (Makino and Aarseth ) N-body dy-
namics code to model our cluster’s stellar component. We use the BRIDGE (Fujii et al.

) scheme to connect both components such that they can react to each other in the

simulation.

We begin this chapter with a brief discussion of AMUSE including how the BRIDGE
scheme communicates with the two components of our star cluster. We then move to a
brief review of SPH and N-body mechanics. To end the chapter, we introduce analysis

tools that will be important in guiding our physical understanding of our results.
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2.1 AMUSE

AMUSE is a software environment that contains within it many codes that allow one
to simulate a variety of astronomical phenomena ranging from processes involving stel-
lar evolution, to dynamical interactions, and hydrodynamics. The simulation codes are
written mainly in C and fortran by physicists in the field, yet are all wrapped neatly in
python syntax. This allows the user access to complicated codes in a simpler environ-
ment. Each of these astronomical phenomena have associated with them many solvers
and it is the user’s job to pick which one best matches their needs. One can then call the
respective codes from a master python script along with any other conditions necessary

to their specific code.

With the vast collection of codes in AMUSE, it is only natural to wonder if there is a
way for them to communicate with one another. The example pertinent to our project
is the coupling hydrodynamics (gas particles) to N-body dynamics (star particles). For
the codes responsible for these processes to communicate to one another, we use the
BRIDGE scheme (Fujii et al. ) found in AMUSE. This allows outputs from the
hydrodynamics solver to be fed to the N-body dynamics solver so that the gas properties
(particle locations, velocities, etc.) can affect the star particles (and vice versa). We

explain this scheme below.

2.1.1 BRIDGE

The BRIDGE scheme provides a method by which two systems with differing internal
dynamics can communicate with one another in a single code. The BRIDGE scheme
allows both systems to evolve independently of one another and to occasionally commu-

nicate with one another by means of periodic velocity kicks.

For our purposes, we are using BRIDGE to couple two codes in AMUSE (our N-body

and SPH solvers) into one single code which involves the splitting of the N-body and
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hydrodynamics operators such that they can evolve on their own before communicating
with one another. Derivation of this method through operators relies on the formalism
introduced by Wisdom and Holman ( ) and Duncan et al. ( ) which takes the
Hamiltonian of an entire system and splits it into components representative of the two
subsystems (in our case, stars and gas). If we consider the Hamiltonian operator of our
entire system, we can write it as a combination of the stellar dynamics Hamiltonian H

and the hydrodynamics Hamiltonian H, as follows:
Hiyy=Hs+Hy+ Hg g (2.1)

where H , represents the interaction Hamiltonian between the two subsystems. H,
includes the total evolution of the gas system, including shocks and pressure forces
(these are taken into account in the GADGET-2 code as described in section 2.2). The

formal time evolution of this system can then be written using

oTH _ o7/2Hs g 7(Hs+Hy) ,7/2Hs g (2.2)

where the vector symbol has now turned our each exponential into an operator. In words,
the right hand side of this equation represents evolving the system under the influence of
H 4 (interactions between the stars and gas) for half a time-step, then moving onto the
stellar component H, and gas component H, evolutions for a full timestep, and finally,

the interaction once more for half a timestep.

In practice, the above formalism requires the gas and stars to evolve on their own
separately using either the hermiteO scheme or GADGET-2 scheme respectively after
initially interacting with one another. In order, the BRIDGE scheme is carried out in
the following way: first, create a tree to calculate the accelerations a;—,50 and as_4

between the stellar and gas components of the subcluster. We use the AMUSE code BHTree
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written by Jun Makino using Barnes and Hut ( ) to create this tree. Next, use
, 1
Vis0=Vs0 + iAtag_>570 (23)

to provide a velocity kick to the stellar velocities v, to obtain a new velocity for each
star v/5 o. Similarly, the gas velocities are updated using

1
Vgl = Vg0 + §Atas_>970 (2.4)

For the next time step, the stellar and gas positions and velocities are evolved on their
own using hermiteO for the stars and GADGET-2 for the gas and using the outputs of the
above equations. To finish the timestep, BRIDGE applies one more velocity kick after
having calculated the new accelerations a;.s1 and a;_,41. The forms of these kicks
follow

1
Vg1 = V/s’1 + iAtag_m’l (25)

)

and

1
Vg71 = V/g71 + §Atas_>971 (26)

where v/ 1 and v/ 1 are the velocities obtained from the hermite0 and GADGET-2 N-body
and hydro solvers for the stars and gas respectively. After this last kick, the timestep is
over and the process repeats. The user must specify the frequency of interactions between
the two subsystems by means of a bridge timestep Atp so that the code knows how long
to evolve the stars and gas separately before letting them communicate. Through initial
tests, we find that the optimal bridge timestep for our system is Atp = 800yr because

it does the best job at conserving total energy throughout the simulation.

Now we will discuss how the evolution of these star and gas particles are performed
in their own respective solver after their initial interaction with each other and before

their final one in the BRIDGE scheme. We begin with the gas particles and smoothed
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particle hydrodynamics (SPH).

2.2 Smoothed Particle Hydrodynamics (SPH)

SPH is a method of simulating the evolution of fluids that treats the fluid as a collection
of discrete particles, not confined to a grid (Monaghan ). However, hydrodynamics
requires that each particle be described as a smoothed out distribution of density rather
than a point particle. Because of this, each SPH particle represents a smoothed density
distribution given by

pi(r) = m;W(|r —xj|, ) (2.7)

where p; is the contribution to the total density at some position r by a particle of mass
mj. The function W (r, k) is know as the smoothing kernel and allows us to understand
the mass distribution of particle j. Therefore, particles can interact with one another if
they are inside each others kernel function. Originally, kernels took on a Gaussian shape
whose variance was given by h and whose mean was 0 (Gingold and Monaghan ).
However, because Gaussians extend to infinity, this was dropped in favour of a kernel
that satisfies contact support: meaning that particles can be outside the influence of
one another, and therefore have no interactions thus increasing computational efficiency.
This is the case if the separation of the particles is larger than the extent of the kernel
function |r| > h. A good choice of kernel function is therefore the spline kernel described

as follows

1-6(3)*+6(5)° 0<f <3
8
W(rh) = —512(1-1)3 l<r<i (2.8)
0 n>1
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because it imposes the limit that W = 0 for particles whose position away from the
particle of interest is larger than h. This spline kernel is used in the SPH code GADGET-2

(Springel ) which we use to model our cluster’s gas evolution.

With a given kernel function, we can find other physical quantities related to the
fluid by means of an interpolating function. Following Monaghan ( ), the integral

interpolant of a function A(r) is given by
Aw) = [ AW ' B (2.9)

where the integral is done over all space. To apply this to numerical work, we can rewrite
the above equation as
A
A(r) = SN m; =W (|r — 3], ) (2.10)
Pj
In practice, both the smoothing lengths h; and the density p; of the jth particle must

obey the implicit equation

a7 _
?h?pj = mNSpH = MSPH (2.11)
where m is the average mass of the particles, and Ngppy is the number of neighbours.

This implies the need for an adaptive h; throughout the simulations as densities around

each particle change.

One can see from the above equations that the choice of SPH particle mass m; is
important in determining the density at a given point the simulation and, in turn, the
resolution of the simulation. By taking a fixed amount of total gas mass, and evenly
distributing particles, all of mass m; in the simulation, one can alter the resolution of

their simulation by means of smaller inter-particle separations as long as the width of
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the kernel h is defined such that a fixed mass is contained in one smoothing volume

(Springel and Hernquist ).

To find the equations of motion of each gas particle, Springel and Hernquist ( )
show that the Lagrangian of the entire system (considering the kinetic and thermal
energies) combined with the constraints put on the system through equation 2.11, lead

to

dv; al P, P;
o =~ 2 milfig ViWii(hi) + £ VWi (h;)] (2.12)
j=1 pz pj

where P; is the pressure of the ith particle, W;;(h) = W(|r; —rj|, h) and
fi= 14 =2t (2.13)

obtained from the Lagrangian multipliers provided by the constraints in equation 2.11.

In order to account for any shocks that may occur throughout the gaseous component
of our star clusters, it is important to understand how GADGET-2 implements artificial

viscosity in their simulation code.

Physically, a shock is not an infinitely sharp discontinuity. Rather, it takes place over
a very small range (only a few particle mean free paths) making it difficult to resolve
computationally. In order to broaden the shock front such that it is able to be resolved
in numerical codes, artificial viscosity is used (given by II;;). As seen in Springel ( ),
the viscous force is given by

d’Uj

N
- = — ZmiﬂjiVjoi (2.14)
dt visc =1

Here, 11;; is only non-zero when particles are travelling towards one another in physical

space. This constraint allows the artificial viscosity to only be used during shocks, and

25


http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Science— Jeremy KARAM; McMaster University— Department of Physics and
Astronomy

not appear in other parts of the simulation. This can be defined mathematically as:

I = _% (CJ ta wﬂ)wﬂ (2.15)
Pji

only if vj; - rj; < 0 where vj; and rj; are the differences in particle velocity and position

respectively between the jth and ith particle. In the above equation, ¢; and ¢; are the

sound speeds associated with the jth and ith gas particles, and w;; =

. Here, «
is a free parameter that regulates the strength of the viscosity. With this, shocks in the

gas component of our cluster can be handled inside the GADGET-2 code.

2.3 N-Body Mechanics

We now move onto a discussion regarding the means by which the gravitational inter-
actions between our star particles our modelled in our star cluster simulations. We use
a fourth order Hermite Scheme (Makino and Aarseth ) to calculate gravitational
interactions between the stars in our simulations. The outline of this scheme is described

here.

Each particle is given its own time t;, timestep At;, position x;, velocity vj, accelera-
tion aj, and jerk &; at a given time in the simulation. The minimum ¢; + At; associated
with these particles is selected as the global time (set as t,) for all particles (including
the particle associated with t4) in the simulation and the positions, and velocities of all

particles are calculated at this timestep using
1 1
Xip = Xi,0 + At;vig + §At?ai,0 + EAt?éi,O (2.16)
1,5 .
Vip = Vio + Atiaio + §Ati ai,0 (2.17)
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where At; = t, —t;. To update the particle associated with t,, we must calculate the

acceleration and jerk felt from all other particles in the simulation. This is done using

N
Xij
a; = Gm——+—=7> 2.18
-3 o
ay — B EN:Gm‘[ Vi 3lVig X)Xy (2.19)
J dt ; ‘ (x%g + €2)3/2 (:L‘f] + €2)5/2 ’
In the above equations, xj; = Xjp — Xjp and vj; = Vi, — Vjp. € is the softening

parameter introduced to prevent acceleration calculations from producing values that
tend to infinity. Moving now to the corrector component of the scheme, we can use the

third order Hermite interpolation, defined as

. At? 2 At3 3
aj (t) = ag + Ataod' + Ta((,,j) + ?aé’j) (2.20)

to find the second and third derivatives of the acceleration vector.

2) _ —6(ao; —a1;) — At;(4dg + 24 )
agj = T (2.21)
J
3) _ 12(ag; —a1) + 6At;(dg; + 41)
ag; = At? (2.22)
The final step is to add these corrections to the position and velocity using
Atd At?
_ (2) (3)
Xj(tj + Atj) =Xjp + TZaOJ + ﬁ 0., (223)
At 5 At 4
vj(tj + Atj) = vjp + Tja((),j) + Tlfa((),j) (2.24)

27


http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/

Master of Science— Jeremy KARAM; McMaster University— Department of Physics and
Astronomy

and update the timestep using

2 .
lagllal)| + a2

2)‘2

At =
N 3
Ay gllal| + [al%

(2.25)

7 is a control parameter to control the accuracy of the new timestep. The second order
derivative in the above equation can be calculated using

al¥) = al + At;a) (2.26)

Note as well that because we are using a third order interpolation scheme, af’j) = a(():?.

2.4 Model Fits

2.4.1 Clustertools

Clustertools' is a python module writted by Jeremy Webb that has many functions
which make the analysis of star cluster properties very simple. Chief among these func-
tions are those that can produce cluster profiles using the positions, velocities, and
masses of the particles in the cluster. One important example of these profile functions
is clustertools.rho_prof. This function takes either component of star cluster, and
returns the density profile for that component. To do this, the code bins the star cluster
into radial bins, the number of which is set by the user. A key requirement in the binning
process is that every bin must contain an equal number of particles. To calculate the
density in each bin, this function takes the sum of the masses of every particle in the

bin, and divides by the volume calculated as

(2.27)

"https://github.com /webbjj/clustertools
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where 7,42 and 7y, are the top and bottom limits for a corresponding bin respectively.
The function finally assigns the resulting density to the radial distance r corresponding
>

to the average radial distance of each particle from the cluster centre (i.e r = T’r’ where

N is the number of particles).

An important caveat to the requirement that each bin contains an equal number
of particles is that, often times, the particles in our star clusters are not evenly dis-
tributed. This effect is especially visible at r values where stars are more diffuse,
and the density falls off rapidly. The small densities at large r means the final bin
in clustertools.rho_prof would span a wide radial distance in order to maintain a
constant number of stars in each bin. Because we are representing each bin (which
contains many stars) as a single density at a given radius, there must be some error

associated with the final density of each bin.

The definition of variance is given by

0_2 _ Zz(nxl__li.)2 (228)

where x; is the parameter of interest of the ¢th particle, z is the average of that pa-
rameter, and n is the total number of particles in the given bin. In order to arrive at a
density variance, we need to find the variance in our mass measurement M and our 7
measurement from each particle in a given bin. We do this by substituting * = M and

x = r into equation 2.28 for the mass and radial variance calculations respectively.

Given the definition of density in each bin as the total mass divided by equation 2.27,

we can relate the mass and radial variances to the density variance for the ith bin using

op op
Opi = \/((,).]\401\/[71')2 -+ (507«,@)2 (2.29)
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which leads to

(2.30)

4rr

With this, we can now calculate the density profile of a given set of particles with

associated error on each measurement.

Using the density profiles calcualted by Clustertools, we are able to fit density
models to our clusters. The three models we focus on are the EFF, Plummer ( ), and
King ( ) models. We carry out our fits using the Levenberg-Marquardt (Levenberg

) method which minimizes the x? defined as

2y (O M (231)

i i

where O; is the value of the density of the cluster calculated using clustertools.rho_prof
in the ith bin, M; is the value of the density calculated using either of the three models

(EFF, Plummer, or King) in the ith bin, and o; is the density variance in the ith bin.

We now discuss the three models in more detail starting with the Plummer model.

2.4.2 Plummer Model

A Plummer model is a density distribution that has been used in numerous sim-
ulations to represent the initial conditions of star clusters. This model is in dynamical

equilibrium and its derivation requires a potential energy function given by

-GM

o(r) = (CEYDIE (2.32)

where G is Newton’s gravitaional constant, M is the mass of the system, r is the distance
away from the system centre, and «a is a scale parameter. This helps define the clusters

core. Furthermore, this model assumes spherical symmetry and we can therefore replace
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r with r. To derive the density profile from the potential, we use the Poisson equation
V2 = —4rGp (2.33)

which results in
M 3ad?
= —— 2.34
plr) 4w (r? + a?)1/? (2:34)
It is helpful to look at equations 2.32 and 2.34 in terms of the central potential (¢g)

and central density (po)

2
r
o(r) = ¢o(1+ a2)1/2 (2.35)
and
r? —5/2
p(r) = po(1+ 1) (2.36)
where ¢g = —% and pg = 43%3 which helps illustrate that as we get to infinitely small

r, the potential is represented by that of a particle with mass M and radius a.

In order to set up a Plummer sphere in position and velocity space, one can look at
the method outlined in Aarseth ( ) which is described as follows. First, we want to
populate a Plummer sphere with N-body particles. For this derivation, we elect to use
N-body units (Heggie and Mathieu ) which set G = M = R = 1 where M is the
total mass of the system, and R is the wirial radius of the system which is the radius
within which T" = —%U. We then integrate equation 2.34 to find an expression for the

mass enclosed in a sphere of radius r

M(r) = 7"3(1 + 7"2)_3/2 (2.37)

The next step is to generate a random number X and set M (r) = X. This allows us to

solve for r and ensure that the resulting position follows the density profile outlined by
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equation 2.34. Rearranging equation 2.37 leads us to
r= (X2 _1)71/2 (2.38)

With this, we can randomly populate the sphere of radius r» with Cartesian coordinates

(z,y,z) using two more randomly selected numbers Y and Z in the following way:

z=(1-=-2Y)r (2.39)
x = (12 = 22)Y2cos(21Z) (2.40)
y = (r2 = 22)2sin(2n Z) (2.41)

which allows for an isotropic sampling of positions.

The Plummer sphere model is such that the entire system is in a steady state, and
the velocities of each star are isotropically distributed. Sampling velocities for our newly
initiated stars relies on the escape velocity of the system. The escape velocity of our
cluster can be calculated using equation 2.32 and the kinetic energy of the system.
Because equation 2.32 is the potential per unit mass, we can find the escape velocity ve
through

1
§mvg +mo(r) =0

Ve =/ —26(r) = 2Y/3(1 4 r?) /4 (2.42)

where v, is the escape velocity. We can then use the magnitude of the velocity V to
find each component such that V = gquv., where ¢ is between 0 and 1. To ensure that

the resulting velocities are isotropic, we find the velocity components (u,v,w) using 2
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new random numbers Y, and Z, in the same way as equations 2.39, 2.40, and 2.41 but

setting r as V.

Both components (stars and gas) of each of our star clusters are set up using Plummer
spheres as shown in figure 2.1. We choose the scale radius such that the half mass density
of each component is in the range given by Portegies Zwart et al. ( ) (102~ *Mgpc?).
The masses of each of the stars are sampled randomly from a Kroupa ( ) IMF which
is similar to that introduced in Chabrier ( ). In this figure, the stellar component
shows slight deviations around the idealized Plummer density profile due to the fact that
we have a limited number of stars in each cluster. As we get to a smoother distribution

(gas) the density profile matches much closer to that of an idealized Plummer sphere.

2.4.3 King (1966) Model

Observations presented by von Hoerner ( ) and King ( ) showed that local Milky
Way star clusters do not extend to infinity, but rather, are cut off from tidal forces by
the Milky Way. The extent of a given star cluster can then be described using the tidal
radius. The tidal radius is the distance away from the cluster centre where gravitational
interactions from the surrounding galaxy overpower those from the star cluster, and a
lone star can be stripped from the cluster (von Hoerner ). Therefore, in the King
( ) model, no stars that exist beyond the tidal radius are a part of the star cluster
and the density profile does not extend to infinity like the Plummer model described
above. To account for this in the radial density distribution, one needs to prevent the
distribution of particles whose total energy is > 0, in other words, particles who are
removed by tidal forces from the parent galaxy. The velocity distribution function is
Maxwellian that is truncated at the escape velocity v, of the cluster, thus ensuring no

stars are initiated with v > v,.
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Sample Cluster Created Using Plummer Spheres
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FIGURE 2.1: A sample star cluster created using Plummer spheres for
the stars (white circles) and gas (orange). The size of the white circles is
scaled by the stellar mass which is applied using a Kroupa IMF.
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To find the density p as a function of position r, one must solve the Poisson equation:

2V 2dV
-+ = 4nG 2.43
dr? * r dr TP ( )

where V' is the potential of the cluster. However, this is often rewritten in terms of W =
—242V (where j is the reciprocal of the standard deviation of the Gaussian distribution
that represents the energy distribution function and V is the potential) and R = %

where r. ~ the core radius of the cluster. This takes the form

AW 2dW P
= _9r 2.44
iRz T RdR 0 (244)
The King ( ) models are therefore dependant on two parameters: Wy which is a

unitless constant that quantifies the degree of central concentration of the cluster, and
re the core radius which can also be converted to the tidal radius using the parameter
¢ = logo(r¢/7c) when a tidal force from a surrounding galaxy acts on the cluster. The

first step in this calculation process is to calculate the quantity

w—ew/we" 3/2q
= 0 n n

2 2
WJW%WJF 1)] (2.45)

where Ef is the error function. This is proportional to the density as a function of

= VAl B (V) -

W, p(W). One can then substitute p(W) into equation 2.44 to solve for the density as
a function of position r. To carry out this numerical integration, we use the python

module galpy® (Bovy ).

The tidally truncated nature of King models lend themselves to fit well to older more

2https://github.com/jobovy /galpy
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dynamically evolved globular clusters (Grudi¢ et al. , Zocchi et al. ). The King
profile is also commonly used as initial conditions for stellar positions in a similar way

to the Plummer profile (Mackey and Gilmore , Whitehead et al. ).

2.4.4 Elson, Fall, and Freeman (EFF 1981) Model

Surface brightness profiles are not well described by truncated King models, rather, the
gentle curves in their tails are better represented by the profile introduced by Elson et al.

( ) hereafter EFF (Portegies Zwart et al. ):
2
B(r) = Bo(1 + ﬁ)ﬂ/? (2.46)

or, the volume density profile:

2

Ty (2.47)

p(r) = po(1+ —=

Here, a is a scale radius that differentiates the core of the distribution from the tail.
Equation 2.47 is very similar to equation 2.34. The main difference comes from the
ability of the EFF to have a varying slope in the tail end of the density profile. The
profile was introduced as a way to fit observations of young star clusters in the Large
Megellanic Cloud (LMC) and the authors find that v values between 2.2 and 3.2 provide

the best fit to their observations.

An example of an EFF fit to a cluster’s stellar density distribution can be seen in
figure 2.2 which is a resolved image of the cluster Westerlund 2 which has been identified
as consisting of two subclusters on route to merging in the near future (Zeidler et al.

). Highlighted in this image are the best fit core radius r. of each subcluster, the

half mass radius rp,, of each subcluster, and the scale radius a of each subcluster. While
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a theoretical definition of this radius was introduced in King ( ) as

| 302
= 2.48
e 47Gpg ( )

where o, is the cluster velocity dispersion, and pg is the central density of the cluster, in

situations where the velocity dispersion or central density of a system are not well con-
strained, the EFF model can provide an analytic solution to r. (provided that equation

2.47 fits the data of the cluster well) using

re = a(2%/7 —1)Y/?2 (2.49)

2.5 Merger Simulation Methods

In the following sections, we summarize the numerical methods being used in our sim-
ulations, outline the process by which we initialize our isolated clusters, starting from
initial particle distributions, and the conditions used to determine when both are ready
to be set on their collision course. We then outline the initial setup of our merger and the

parameters of interest when choosing which mergers to include from the H18 simulations.

2.5.1 Isolated Clusters

We set up initial conditions for our individual clusters using parameters taken from the
H18 sink particles, specifically, the mass in stars (M,) and the total mass in stars and
gas (Myot). The initial distributions of our N-body and SPH particles follow a Plummer
(Plummer ) sphere with a scale radius chosen such that the half mass density of
the cluster starts as pp, = 103M /pc®. This density choice is consistent with observed
YMC densities (Portegies Zwart et al. ). Given a ppm,, and the total mass of the

cluster, we can calculate the half mass radius ry,, which we convert to a Plummer scale
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FIGURE 2.2: Image of Wd2 taken by HST F814W (Zeidler et al. 2021).
©AAS Reproduced with permission.
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radius using a ~ 1.37p,,. This way, the scale radius a is dependant on pp,, (which we
choose as a constant) and the total mass of the cluster allowing for more massive clusters
to have larger initial a values. This allows us to simulate a wider range of cluster masses
without running into extremely small timesteps by virtue of high central densities (see
equation 1.3). However, our process outlined above allows our clusters to vary in size:
through imposing a half mass density, the size of a depends on the total mass of the
cluster. Our initial scale radii for our clusters is such that there is either stars or gas
located beyond the H18 sink particle accretion radius or rg,r ~ 1.7pc for all of our
simulations. In order to relate our results to the H18 sink particles, we focus on the
change imposed on the resultant cluster by the merger through comparing it with the

clusters before they have merged (see section 3.2).

The number of SPH particles in our simulations is given by N = My /mgpy where M,

is the total mass in gas of the sink particle taken directly from H18, and mgpy = 0.06 M.
A lower mgpg brings the resolution to a point where our run times get too high. Further-
more, our choice of mgpp leads to a smoothing length h =~ 0.01pc which is significantly
smaller than the core radii in our clusters implying sufficient spatial resolution of our
smallest scales in our simulations. Stellar masses are sampled from a Kroupa (Kroupa
) IMF between 0.15M and 100Mg. The gas temperature is chosen to be 10K, con-
sistent with GMC temperatures from H18. We assign each particle a velocity which we
sample using the method outlined in Aarseth ( ) and in section 2.4.2. We calculate
the velocity dispersion of our stellar and gas component separately and scale the veloc-

ities of each such that both are initially in virial equilibrium (2K, 4/|Ps 4| = as9 = 1).

Next, we allow our cluster to evolve in its own isolated simulation box. We do this
so that the stars can have time to react to the new potential introduced by the gas, and
vice versa in a process called numerical relaxation. In order to decide when our clusters

are done numerically relaxing, we look at the evolution of the core radii for the stars
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FIGURE 2.3: Evolution of the core radius for an isolated cluster

and gas as a function of time, as shown in figure 2.3 for an example cluster. Up until
0.21Myr, the core radii are decreasing drastically until both become stable. This effect
comes from both stellar and gas components reacting to the potential of the other. In
this example, to ensure stability, we take the snapshots of this cluster after ¢t = 0.21Myr
as our initial conditions for our merger simulation. This corresponds to roughly 0.01
N-body times. Because we set up all of our clusters with the same initial half mass
density, every cluster in our suite of simulations shares the same conversion between N-
body and physical times initially. The crossing timescale is defined as ¢ = r,;-/v where
Tvir 18 normalized to 1 in N-body units (Heggie and Mathieu ) and v is the velocity
of a star. Assuming virial equilibrium, as N-body units do, we can find that the velocity
in the above equation v ,/r%m [ Mpp, p,;}/ ? which means, regardless of our cluster
mass, 1 N-body dynamical time is always the same physical time for every simulation of
our isolated cluster systems initially but can change as the system evolves. Furthermore,

every cluster’s core radius will numerically relax in the same timeframe as the example
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above (within ~ 0.01 N-body times). Note, although the decrease in the core radius
can cause a deviation of pp,, away from 10>°Mgpc™3, the value of pp,, never exceeds the
upper limit shown in Portegies Zwart et al. ( ). It stays within the quoted range of

102Mgpe ™2 < ppm < 10*Mgpe 3.

As our isolated clusters relax, we find some movement off from the centre for both the
stellar and gas components. We move both components to the centre of the simulation
box and subtract the total centre of mass velocity before the relaxed clusters are set to

merge with one another.

2.5.2 Merger Setup: The Creation of the Resultant Cluster

H18 ran two GMC simulations: one at one solar metallicity (1Z¢) and the other at
0.1Z5. We take our mergers from the 1Zq simulation. Each sink pair we take was
separated by a distance d before they merged with one another in H18 and, throughout
the GMC evolution, eventually merged. Many, but not all, of the mergers contained
sink particles that have undergone previous mergers. For these, H18 constructed a
merger tree wherein a given sink particles merger history can be recorded as seen in
figure 1.5. This involves taking careful note of the time between a sink particle’s first
merger and its second and third and so on. For our simulations, we want to keep our
simulation time below the first expected supernovae explosions as this is the time when
most to all of the gas mass has been removed from a star cluster (e.g Pelupessy and
Portegies Zwart ). Furthermore, our stellar mass range lies within that expected
to go supernova in ~ 3Myr (e.g Meynet and Maeder ). Therefore, we run all our
simulations for 3Myr after the clusters have been initiated in the merger simulation box.
We further restrict our sampling of H18 sink mergers by only including those that have
never undergone a merger previous to the one we simulate. We refer to these as first

contact mergers. Through simulating these mergers, we are able to provide constraints
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