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Abstract
Star cluster formation involves the conversion of molecular gas into stars inside giant

molecular clouds (GMCs). Such a process involves many dynamical evolution mecha-

nisms, including mergers between smaller star clusters (subclusters) on which we focus in

this thesis. We take results of simulations performed by Howard et al. 2018 (H18) which

found that young massive cluster (YMC) formation is heavily dependant on the process

of subcluster mergers, and we simulate said mergers at higher resolution. Subclusters in-

side such GMC simulations are modelled using the sink particle prescription which does

not resolve individual star particles or gas parcels inside the subcluster they represent.

We employ a more controlled method in simulating subcluster mergers to better under-

stand the response of the stellar and gas components of a subcluster from the merger

process. To do this, we take the parameters of the sink particles created in H18 and

set up spheres of stars and gas. We use the AMUSE framework to couple the N-body

evolution of the stars to the smoothed particle hydrodynamics (SPH) evolution of the

gas such that both components of a given cluster can realistically react to each other.

We model 15 of these mergers and find that once the velocity at which the two clusters

collide (collisional velocity) exceeds ≈ 10kms−1, the resultant cluster is not monolithic

(i.e. it still contains two separate stellar components) while all other simulations merge

into one monolithic stellar and gas component cluster. We also find that, regardless of

the collisional velocity of masses of the component clusters, all resultant clusters lose

a fraction of their stellar and gas mass. This fraction is directly proportional to the

collisional velocity and is a discrepancy between the sink particle prescription (where

all mass is contained inside a constant sink particle accretion radius) and real cluster

mergers. A further discrepancy we find is that all simulations result in a cluster whose

outermost regions are expanding and that the rate of this expansion is somewhat pro-

portional to the collisional velocity of the merger. These results point to the inaccuracy

of the sink particle prescription and allow us to develop tools to improve on it in future
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simulations. Next, we fit commonly used analytical density profiles to both the stellar

and gas component of our resultant clusters and find that, while they do not provide

particularly excellent fits, they provide constraints on what is an acceptable fit. Lastly,

we analyze the amount by which gas with potentially star forming densities increase due

to the merger and we find that all mergers increase their star forming gas mass fraction

by roughly 50 per cent implying that mergers may be an effective tool for triggering star

formation.
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Chapter 1

Introduction

Young massive clusters (YMCs) are dense collections of stars, sometimes embedded in

clouds of molecular gas, with masses often > 104M� and ages < 10Myr (Portegies

Zwart et al. 2010). Early stages of the formation of such clusters is thought to involve

the conversion of molecular gas into stars inside a giant cloud of molecular gas (GMC)

through gravitational collapse in the densest regions of these clouds (Lada and Lada

2003). However, this conversion of molecular gas into stars may not be the only process

required to form a bound cluster of stars on the mass scales of most YMCs. Namely,

computational simulations show that mergers of stellar groups can help in reproducing

oberved properties of YMCs. For example, simulations done by Fujii et al. (2012) show

that the radial stellar density profile of the YMC R136 (seen in figure 1.1) can be

reproduced through such mergers. Through computational simulations of GMC collapse

under self-gravity, studies find that these small groups of stars (hereafter referred to

as embedded subclusters) that form in dense regions of GMCs will eventually undergo

multiple mergers, thus building up mass, and eventually leading to the formation of a

YMC (Howard et al. 2018, hereafter referred to as H18). Furthermore, evidence for such

mergers has also been found through observations. An example is the observation done

by Zeidler et al. (2021) of the cluster Westerlund 2. The authors show that it can be
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resolved as two distinct groups of stars containing cores with radial velocities towards

one another, implying that a merger of these stellar groups will happen in the future.

The GMC environment in which these clusters form and grow, contains a large range

of local densities, making it computationally expensive to simulate all scales at the same

time in a single simulation (Stahler and Palla 2004, Bleuler and Teyssier 2014). To

combat this, simulators have used sink particles as a representation of small subcluster

scales (Banerjee and Kroupa 2017, Howard et al. 2018, Dobbs et al. 2020, Fukushima

and Yajima 2021). Sink particles are simplified models of clusters which carry global

parameters of the cluster they represent (for example, total stellar mass, total mass

in stars and gas, position, and velocity of the subcluster) and are allowed to evolve in

the simulation through interactions with other sinks, and the ambient molecular gas

(Federrath et al. 2010). Each of these sink particles has an accretion radius unique to

the simulation but shared among all sinks. Within this sink accretion radius lies the

entirety of the mass of the subcluster. This sink radius also helps define how a given

sink reacts with the simulation around it by acting as a distance within which ambient

gas can be accreted onto the sink or two sinks can merge with one another.

The large scale GMC collapse simulations performed by H18 made use of this sink

particle implementation. The authors created 107M� spherical GMCs and allowed it to

evolve. Through turbulence induced as an initial condition in their simulations, dense fil-

amentary structures began to appear, within which, sink particles began to form. These

sink particles were used to represent subclusters in their GMC simulations. Though

the sink was meant to represent a subcluster, it provided no information regarding the

positions, or velocity of any of the individual stars or any of the gas that made up each

subcluster.

Sink particles in H18 were prone to prompt mergers throughout the H18 simulations

simulation. This lead the authors to conclude that subcluster mergers were an essential

2
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part of the formation process of YMCs in GMCs. However, because the sink particle

implementation prevents a simulator from resolving positions or velocities of the stars or

gas in the subcluster, this method of YMC formation does not provide enough insight into

how the individual components of the subcluster react to mergers with other subclusters.

Though previous simulations have looked at subcluster mergers through a purely N-body

analysis (Fujii et al. 2012), as well as through the coupling of N-body mechanics with

an analytic potential function that represents a gas component (Banerjee and Kroupa

2015) there have yet to be studies focused on how both the stellar and gas component

of an embedded subcluster react to mergers with other subclusters. As such, it is still

unclear how each component of an embedded subcluster reacts to the merger process

inside a GMC. The goal of this thesis is to fill in this gap in our understanding of YMC

formation. We have simulated more realistic subcluster mergers through the coupling of

a distinct stellar component and gas component.

Our method also serves as a means by which simulators can improve their sink par-

ticle prescription. By taking sink particles from H18 and modelling their mergers as

a collection of stars and gas, we are able to analyze how some of the key assumptions

made in the sink particle prescription hold. In this way, we provide simulators with the

ability to maintain the use of sink particles in their large scale simulations, but suggest

to them ways in which their sink models can be changed to more accurately model real

subcluster mergers.

The remainder of chapter 1 is structured as follows: first, we review the basics of star

cluster formation inside GMCs. We then discuss star cluster morphologies. We move on

to outline various models of GMC simulations that deal with star cluster formation and

evolution. Finally, we provide an in depth description of the H18 simulation.

3
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Figure 1.1: Image of R136 (credit: NASA, ESA, F. Paresce (INAF-
IASF, Bologna, Italy), R. O’Connell (University of Virginia, Char-
lottesville), and the Wide Field Camera 3 Science Oversight Committee)
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1.1 Star Cluster Formation in Giant Molecular Clouds:

Theory and Simulations

In this section, we set the stage for our project by discussing the current understanding

of star and star cluster formation in GMCs.

1.1.1 Theory

GMCs are the hubs of star formation and star cluster formation (Lada and Lada (2003)).

As a GMC is a collection of molecular gas, it is subject to many internal and external

forces that govern its evolution. Such a self gravitating system may eventually collapse

once internal, outwards pushing pressures can no longer hold up against inward pushing

gravitational contraction. Under such gravitational influence, collapse takes place on the

free-fall timescale. This can be defined as

tff =
√

3π
32Gρ̄ (1.1)

where ρ̄ is the average density and G is Newton’s gravitational constant. This instabil-

ity between gravitational forces pulling the cloud inwards towards collapse and kinetic

energy working to keep the cloud from collapsing can be summarized in the following

equation (Bertoldi and McKee 1992):

α = T

|W |
≈ a5σ2R

GM
(1.2)

where σ is the velocity dispersion of the cloud, M is its mass, a is a parameter that

accounts for deviations from spherical symmetry (but is often set to a ≈ 1), T is the

kinetic energy of the cloud, and W is its potential energy. Alpha is known as the virial

parameter. For spherically symmetric systems, the limits on this parameter help to

quantify the future state of the GMC: α = 1 is a complete balance of outward pressures

5
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with inward gravity, α < 1 represents the regime in which the gravitational potential

outmatches the kinetic energy (the process that leads to this collapse is known as Jeans

instability), and α > 1 is the regime in which the kinetic energy surpasses the potential

energy.

Turbulence further complicates the situation by working against gravity as a form

of kinetic energy to shape the GMC. As a GMC collapses, dense filamentary structure

becomes visible (André et al. 2014). Within these filaments, observers have noticed

dense cores which can go on to form individual stars (Könyves et al. 2010). As the GMC

evolves, its continued collapse may cause these dense filaments to feed material into

the accreting protostellar core which, in turn, increases its mass. One factor that helps

determine the efficiency with which a prestellar core is converted into stellar mass is the

strength of the gas ejected by that protostar as a consequence of conservation of angular

momentum. These ejecta are known as protostellar outflows. Processes such as these

can affect the final mass of the star that forms (Matzner and McKee 2000, Guszejnov

et al. 2020). This implies that stars of varying masses can form in the filaments of

collapsing GMCs. A schematic of this star formation event can be seen in figure 1.2. At

the densest intersections of filaments, this can lead to the formation of groups of stars

bound together gravitationally rather than just a single star. However, this does not tell

us how very massive collections of stars (e.g. YMCs) can form in the GMC environment.

To come to an answer to this question, we can look towards numerical simulations of

GMC collapse that include a star cluster formation prescription.

1.1.2 Simulations

Hydrodynamical simulations of GMC collapse show similar results to one another regard-

ing the location of star forming regions, consistent with theory stated above. Whether

simulators trigger turbulence in their GMC through colliding two cylindrical gas flows

6
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Figure 1.2: A schematic of the star formation process present in the
Serpens South Cluster. Arrows mark velocity gradient with red showing
accretion from host filament, blue showing infall from surrounding cloud,
and black showing radial contraction of the host filament (André et al.
2014 and references therein). Used with permissions from the University
of Arizona Press ©.
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(e.g. Vázquez-Semadeni et al. 2017) or through inducing turbulence via a turbulent ve-

locity spectrum (e.g. Fukushima and Yajima 2021), dense filamentary structure is ubiq-

uitous across these simulations. Many GMC collapse simulations have tried to bridge

the evolutionary gap between groups of stars and massive star clusters. An example of

such a simulation is that done by Chen et al. (2021). Here, the authors tested various

initial GMC density distributions to understand which ones lead to the formation of

a massive cluster. The authors find that the formation of their most massive cluster

by the end of most of their simulations is heavily dependant on the merging of smaller

subclusters along dense filaments in their cloud. This has also been found in simulations

done by Lahén et al. (2020a) who analyze the results of a dwarf galaxy merger simula-

tion carried out by Lahén et al. (2020b) and find that a YMC forms through mergers

of smaller subcluster, in line with observations that find YMCs often form in active

galactic mergers such as the Antannae system due to the extremely dense regions in an

active merger (Zhang et al. 2001). Though the formation mechanisms of massive clusters

in these GMC simulations may be well constrained through these methods, none were

able to constrain the reaction of the subclusters to the merger process as they evolve

in the GMC simulation. This is because, as we reach star cluster densities, the density

contrast between star forming regions and those regions that have yet to get to star

forming densities inside the GMC becomes extremely high. This makes it difficult to

simulate both regimes in one simulation. Mathematically, this can be described using

the Courant condition (Courant et al. 1967) which states:

∆t ≤ ∆x
cs

(1.3)

where ∆t is the maximum timestep, ∆x is the spatial resolution of the region of interest,

and cs is the local sound speed. In words, this equation illustrates the need for lower

timesteps in regions that require higher spatial resolution (small ∆x) such as dense star

forming regions in GMCs which eventually becomes far too computationally expensive.
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Subgrid models help to solve this problem by representing a newly formed subcluster as

a set of parameters that describe the subcluster (i.e. its mass, position in the GMC,

and velocity) rather than a collection of individual stellar particles, thus drastically

shortening computer runtimes. An example of such a subgrid model is the sink particle

prescription outlined in Federrath et al. (2010). In this model, sink particles are point

particles in GMC simulations that are allowed to move freely throughout the simulation

box and interact with gas and other sinks around it. As outlined by Federrath et al.

(2010), a sink particle is formed once a patch of gas in the simulation satisfies the

following conditions: it must be above a density threshold set by the user, it must be at

the highest level of refinement allowed by the simulation code, it must be Jeans unstable

(strong gravitational forces pushing towards collapse against weak outwards pressure),

and finally, it must not be within one accretion radius of another sink particle (else it

will be accreted onto that nearby sink particle). The accretion radius associated with

these sink particles is the means by which sink mergers and gas accretion onto sinks is

mediated. It is done in the following ways:

• Firstly, as a sink particle moves through the simulation and interacts with sur-

rounding gas, it has the chance to accrete that gas if the gas is within the sink

particle’s rsink, and if the gas is gravitationally bound to the sink particle. The

resulting total gas mass in that given sink particle increases by an amount directly

equivalent to the newly accreted gas mass.

• Second, if two sink particles are within one rsink from each other and are gravi-

tationally bound to each other, they merge into one. The resultant sink particle’s

mass is the sum of that of the parent sinks and the resultant sink’s velocity is taken

as the centre of mass velocity of the merger. As sink particles mask the physics of

the stellar and gas component of the subcluster they represent, how the stars and

gas react to subcluster mergers is unknown.
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Despite these caveats, the increased computational efficiency afforded by the sink

particle perscription is often worth it when it comes to simulating the collapse of very

large mass GMCs. To better understand the specific physics being masked by these sink

particles, and why it is important to resolve them as a collection of stars and gas, we

take our discussion to the next scale down and journey through star clusters.

1.2 Star Clusters

The definition of a star cluster has been widely discussed since the early working defi-

nition given by Trumpler (1930) which states that: a star cluster must be a collection

of at least 12 stars and its overall shape and size can be determined by its gravitational

potential. More recently, star cluster definitions have considered the boundedness of the

group of stars to differentiate from an association of field stars (Portegies Zwart et al.

2010). Furthermore, studies have shown that a star cluster’s shape is not only affected

by the mass of its member stars, but of the environment in which the cluster is located.

As star clusters are gravitational systems, the radial distribution of their stellar com-

ponent is subject to change under the influence of dynamical interactions between the

stellar members. This change in distribution may lead to the unbinding, or removal, of

stellar members from the host cluster.

1.2.1 Dynamics of Stellar Systems

A method by which stellar systems can lose stellar mass (through the unbinding of stellar

members from the host system) is through two-body relaxation which is the process by

which a single star’s trajectory is altered by the presence of another single star through

close encounters (Spitzer 1940). Close encounters such as these lead to an exchange

of energy between stars and, eventually, stars that lie on the tail end of the energy

distribution of the cluster are given enough kinetic energy to become unbound from the

host cluster in a process known as stellar evaporation. Therefore, we can use the timescale
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of evaporation to understand how long a star cluster may survive before gravitational

effects cause it to evaporate.

To understand the timescales on which this dynamical evolution takes place, we begin

by defining the half-mass relaxation time using Spitzer and Hart (1971):

trh = 0.138 M1/2r
3/2
hm

G1/2m∗ ln(Λ)
(1.4)

where M is the cluster mass, rhm is the radius which encloses half of the cluster mass,

G is Newton’s gravitational constant, m∗ is the average stellar mass of the cluster and

Λ ≈ 0.4N where N is the total number of stars in the system. While the relaxation time

is the time it takes for a star in the cluster to lose all memory of its initial orbit due to

gravitational interactions with surrounding stars, trh is this time at the half mass radius

rhm of the cluster. Numerical integrations done by Gnedin and Ostriker (1997) find that

the timescale for evaporation to destroy a star cluster is related to the concentration of

that cluster c = log(rt/rc) but, on average, find tev ≈ 30trh in the presence of a galactic

potential. Lastly, the relaxation time tr can be related to the crossing time tcr of the

system (the amount of time it takes on average for a star to travel from one side of the

cluster to the other) using

tcr ≈
7 ln Λ
N

tr (1.5)

A contributing factor to the complexity of gravitational interactions in stellar systems

such as star clusters is the fact that stars of varying masses can reside in the same cluster.

To better understand the distribution of stellar masses inside a star cluster, a stellar

initial mass function (IMF) can be used. The IMF is a probability distribution function

that can be applied to a set of particles to randomly distribute to them mass. Many

forms of the IMF have been introduced beginning in 1955 with the Salpeter (1955) IMF.

However, the form of this IMF extended to infinity as one looked towards lower mass

11

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Jeremy Karam; McMaster University– Department of Physics and
Astronomy

stars. In other words, the Salpeter IMF too heavily favoured the production of low mass

stars.

To correct this, Kroupa (2001) introduced a form of the IMF that splits the mass

range into three regions, each with their own slope. The Kroupa (2001) IMF takes the

form:

ε(m) = m−a (1.6)

with

a = 0.3 for m < 0.08M�

a = 1.3 for 0.08M� < m < 0.5M�

a = 2.3 for m > 0.5

The Kroupa and the similar looking Chabrier (2005) IMFs are commonly used in nu-

merical simulations to apply masses to component stars in star clusters.

1.2.2 Star Cluster Morphology

Star cluster morphology is not always perfectly spherical and such deviations from spher-

ical symmetry can have an impact on the star cluster’s evolution (e.g. Parker and Meyer

2012) making it important to resolve such intricacies in star cluster simulations. Kuhn

et al. (2014) studied clusters in nearby massive star forming regions through the MYS-

TIX (Feigelson et al. 2013) sample. They created 2D surface density maps for young

stars in each of the star forming regions and found that they can be grouped morpho-

logically using fitted ellipses of the stellar density. Many of star clusters in their sample

had morphologies that were not spherical.

Though a star cluster can begin with a non-spherical morphology, it may evolve into

a smooth, relaxed state (Cartwright and Whitworth 2004, Schmeja and Klessen 2006).
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For example, N-body simulations done by Allison et al. (2010) show that initially sub-

virial clumpy clusters (clusters containing subclumps with one larger host cluster) can

undergo subclump mergers and lead to massive runaway stars similar to the results ob-

tained by Fujii et al. 2012. Such signatures can not be obtained through the evolution

of more spherical clusters on short timescales. Although, embedded subclusters contain

background gas along with a stellar component which was not modelled in these sim-

ulations. Simulations performed by Sills et al. 2018 included gas and focused on the

evolution of the linear chain of subclumps DR 21 as seen in figure 1.3 and found that

all subclusters had completely merged promptly within 1Myr to form something more

resembling a smooth isolated cluster.

1.3 H18 Simulations

In this section, we discuss Howard et al. (2018) in depth. We talk about the methods

used to set up their simulations as well as some key results.

1.3.1 Methods

Howard et al. (2018) (H18) carried out radiation hydrodynamics simulations using the

FLASH (Fryxell et al. 2000) code. These simulations studied the evolution of initially

spherical 107M� GMCs with a virial parameter of α = 3. This is the upper limit of GMC

mass in the authors suite of GMC collapse simulations. The authors induced turbulence

and these random velocities lead to shocks withing the GMC along which star clusters

began to form as sink particles though their choice of α led to dispersion in the outer

regions of the cloud. The goal of this study was to understand the formation of Young

Massive Clusters (YMCs) in GMCs. Throughout the simulations, the most massive sink

formed would accrete much of the mass around it and merge with smaller sink particles

thus growing in size. An example of the growth of clusters through accretion and mergers

in two of their simulations can be seen in figure 1.4. The blue star in this figure shows
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Figure 1.3: Simulated initial distribution of stars and gas for the cluster
DR21. Stars are shown as blue/white objects while gas distribution can
be seen through contour lines representing its surface density. (Figure 1
from Sills et al. (2018))
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Figure 1.4: Column density maps for the GMCs from H18. Snapshots
are taken at t = 1.54Myr which corresponds to the time when, what
will become the most massive cluster (blue star), forms. White circles
represent smaller clusters that will eventually merge with the blue star
(Howard et al. 2018).

the most massive sink particle formed in their two simulations. This most massive sink

forms in the densest filament near the centre of the collapsing GMC and smaller sink

particles form around it in less dense filaments (shown as white circles in the figure).

By the end of these simulations, many of the smaller sink particles will merge with the

largest one and a YMC sized sink will form.

Once a sink particle is placed, a subgrid model is used to describe star formation

inside that particle: the sink particle is assumed to be comprised solely of gas initially,

and the authors convert that gas into stars such that the stellar mass distribution follows

a Chabrier (2005) IMF. In agreement with observations of local star forming clumps in

the Milky Way done by Lada and Lada (2003), the authors convert 20 per cent of this

gas mass into stellar mass. This conversion takes place once every tff ≈ 0.36Myr so

that gas that is accreted onto the sink at later times can contribute to the sink’s stellar

mass and the stellar mass of each sink is not constant throughout the simulation.
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1.3.2 H18 Results

The H18 simulations resulted in the formation of YMCs in their high column density

filaments through subcluster mergers and gas accretion (see figure 1.4). These YMCs

continue to absorb smaller subclusters and accrete filamentary gas. The merger tree

highlights the importance of subcluster mergers in the creation of YMCs through GMC

collapse. Connected by the dashed line on the bottom of each panel is the largest cluster

in their simulation. The shaded region represents the percentage of the mass of that

sink particle than can be attributed to mergers with other sinks. We can therefore see

that by the end of the simulations, ≈ 45% − 50% of the final YMC’s mass is owed to

mergers. As expected as well, mergers are more plentiful in the 0.1Z� case because lower

metallicity leads to less gas dispersal around sink particles which allows for more sinks

to form and in turn merge with other sinks.

By combining the results from this study and previous simulations of 104−6M� GMCs

(Howard et al. 2017, Howard et al. 2018), H18 noted a strong power law relationship

between the initial mass of their GMC and the mass of the most massive YMC formed

by the end of their simulations. This relationship lasts over 3 orders of magnitude of

GMC masses.

Hierachical merging happens throughout all regions of their GMC as it collapses. As

subclusters travel along filaments and accrete gas, they merge and build up to a YMC.

This merger and gas accretion process occurs mostly in filaments along which these

subclusters travel. The results of the H18 simulation therefore lend themselves well to

the idea that subcluster mergers are vital in the formation of YMCs in GMCs. As such,

it is crucial for us to understand the details of this astrophysical process.
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Figure 1.5: Merger trees, where x-axis shows time, for the YMC in
the 1Z� and 0.1Z� H18 simulations respectively. Each circle represents a
subcluster and the bottom circles connected by dashed lines represent the
most massive sink particles in each respective simulation. Each vertical
dotted line shows a merger between one sink and the most massive sink.
Sinks grow in mass through gas accretion as can be seen by looking at
the colour gradient connecting each sink to its vertical dotted line. The
lighter shaded region in the most massive sink represents the fraction of
that mass that can be attributed to sink particle mergers (Howard et al.
2018).
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1.4 Thesis Overview

In this thesis, we model star clusters as discrete collections of stars and gas. We simulate

pairs of star clusters and investigate the properties pertaining to bound members, cluster

growth, and density profiles of the resultant cluster. We have looked at a number of

star cluster pairs from the H18 simulations as well as mergers that are not present in

H18 but involve the merging of sinks from H18. In chapter 2, we discuss the numerical

methods used for our simulations. In chapter 3, we present results from our simulations.

In chapter 4, we discuss conclusions and outline avenues for future work.
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Chapter 2

Computational Methods

Our star cluster model involves the evolution both the stellar and gas components present

in the cluster. To do this, we employ the Astrophysical Multipurpose Software Envi-

ronment (AMUSE) (Portegies Zwart et al. 2009, Pelupessy et al. 2013, Portegies Zwart

et al. 2013, Portegies Zwart and McMillan 2018) which is a collection of publicly avail-

able community codes, each able to model specific astrophysical processes. We use the

GADGET-2 (Springel 2005) smoothed particle hydrodynamics (SPH) code to model our

cluster’s gas component, and the hermite0 (Makino and Aarseth 1992) N-body dy-

namics code to model our cluster’s stellar component. We use the BRIDGE (Fujii et al.

2007) scheme to connect both components such that they can react to each other in the

simulation.

We begin this chapter with a brief discussion of AMUSE including how the BRIDGE

scheme communicates with the two components of our star cluster. We then move to a

brief review of SPH and N-body mechanics. To end the chapter, we introduce analysis

tools that will be important in guiding our physical understanding of our results.
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2.1 AMUSE

AMUSE is a software environment that contains within it many codes that allow one

to simulate a variety of astronomical phenomena ranging from processes involving stel-

lar evolution, to dynamical interactions, and hydrodynamics. The simulation codes are

written mainly in C and fortran by physicists in the field, yet are all wrapped neatly in

python syntax. This allows the user access to complicated codes in a simpler environ-

ment. Each of these astronomical phenomena have associated with them many solvers

and it is the user’s job to pick which one best matches their needs. One can then call the

respective codes from a master python script along with any other conditions necessary

to their specific code.

With the vast collection of codes in AMUSE, it is only natural to wonder if there is a

way for them to communicate with one another. The example pertinent to our project

is the coupling hydrodynamics (gas particles) to N-body dynamics (star particles). For

the codes responsible for these processes to communicate to one another, we use the

BRIDGE scheme (Fujii et al. 2007) found in AMUSE. This allows outputs from the

hydrodynamics solver to be fed to the N-body dynamics solver so that the gas properties

(particle locations, velocities, etc.) can affect the star particles (and vice versa). We

explain this scheme below.

2.1.1 BRIDGE

The BRIDGE scheme provides a method by which two systems with differing internal

dynamics can communicate with one another in a single code. The BRIDGE scheme

allows both systems to evolve independently of one another and to occasionally commu-

nicate with one another by means of periodic velocity kicks.

For our purposes, we are using BRIDGE to couple two codes in AMUSE (our N-body

and SPH solvers) into one single code which involves the splitting of the N-body and
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hydrodynamics operators such that they can evolve on their own before communicating

with one another. Derivation of this method through operators relies on the formalism

introduced by Wisdom and Holman (1991) and Duncan et al. (1998) which takes the

Hamiltonian of an entire system and splits it into components representative of the two

subsystems (in our case, stars and gas). If we consider the Hamiltonian operator of our

entire system, we can write it as a combination of the stellar dynamics Hamiltonian Hs

and the hydrodynamics Hamiltonian Hg as follows:

Htot = Hs +Hg +Hs,g (2.1)

where Hs,g represents the interaction Hamiltonian between the two subsystems. Hg

includes the total evolution of the gas system, including shocks and pressure forces

(these are taken into account in the GADGET-2 code as described in section 2.2). The

formal time evolution of this system can then be written using

eτ
~H = eτ/2 ~Hs,geτ( ~Hs+ ~Hg)eτ/2 ~Hs,g (2.2)

where the vector symbol has now turned our each exponential into an operator. In words,

the right hand side of this equation represents evolving the system under the influence of

Hs,g (interactions between the stars and gas) for half a time-step, then moving onto the

stellar component Hs and gas component Hg evolutions for a full timestep, and finally,

the interaction once more for half a timestep.

In practice, the above formalism requires the gas and stars to evolve on their own

separately using either the hermite0 scheme or GADGET-2 scheme respectively after

initially interacting with one another. In order, the BRIDGE scheme is carried out in

the following way: first, create a tree to calculate the accelerations ag−→s,0 and as−→g,0

between the stellar and gas components of the subcluster. We use the AMUSE code BHTree
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written by Jun Makino using Barnes and Hut (1986) to create this tree. Next, use

v′s,0 = vs,0 + 1
2∆tag−→s,0 (2.3)

to provide a velocity kick to the stellar velocities vs,0 to obtain a new velocity for each

star v′s,0. Similarly, the gas velocities are updated using

vg, 1
2

= vg,0 + 1
2∆tas−→g,0 (2.4)

For the next time step, the stellar and gas positions and velocities are evolved on their

own using hermite0 for the stars and GADGET-2 for the gas and using the outputs of the

above equations. To finish the timestep, BRIDGE applies one more velocity kick after

having calculated the new accelerations ag−→s,1 and as−→g,1. The forms of these kicks

follow

vs,1 = v′s,1 + 1
2∆tag−→s,1 (2.5)

and

vg,1 = v′g,1 + 1
2∆tas−→g,1 (2.6)

where v′s,1 and v′g,1 are the velocities obtained from the hermite0 and GADGET-2 N-body

and hydro solvers for the stars and gas respectively. After this last kick, the timestep is

over and the process repeats. The user must specify the frequency of interactions between

the two subsystems by means of a bridge timestep ∆tB so that the code knows how long

to evolve the stars and gas separately before letting them communicate. Through initial

tests, we find that the optimal bridge timestep for our system is ∆tB ≈ 800yr because

it does the best job at conserving total energy throughout the simulation.

Now we will discuss how the evolution of these star and gas particles are performed

in their own respective solver after their initial interaction with each other and before

their final one in the BRIDGE scheme. We begin with the gas particles and smoothed
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particle hydrodynamics (SPH).

2.2 Smoothed Particle Hydrodynamics (SPH)

SPH is a method of simulating the evolution of fluids that treats the fluid as a collection

of discrete particles, not confined to a grid (Monaghan 1992). However, hydrodynamics

requires that each particle be described as a smoothed out distribution of density rather

than a point particle. Because of this, each SPH particle represents a smoothed density

distribution given by

ρj(r) = mjW (|r− rj|, h) (2.7)

where ρj is the contribution to the total density at some position r by a particle of mass

mj . The function W (r, h) is know as the smoothing kernel and allows us to understand

the mass distribution of particle j. Therefore, particles can interact with one another if

they are inside each others kernel function. Originally, kernels took on a Gaussian shape

whose variance was given by h and whose mean was 0 (Gingold and Monaghan 1977).

However, because Gaussians extend to infinity, this was dropped in favour of a kernel

that satisfies contact support: meaning that particles can be outside the influence of

one another, and therefore have no interactions thus increasing computational efficiency.

This is the case if the separation of the particles is larger than the extent of the kernel

function |r| > h. A good choice of kernel function is therefore the spline kernel described

as follows

W (r, h) = 8
πh3



1− 6( rh)2 + 6( rh)3 0 ≤ r
h ≤

1
2

2(1− r
h)3 1

2 <
r
h ≤ 1

0 r
h > 1

(2.8)
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because it imposes the limit that W = 0 for particles whose position away from the

particle of interest is larger than h. This spline kernel is used in the SPH code GADGET-2

(Springel 2005) which we use to model our cluster’s gas evolution.

With a given kernel function, we can find other physical quantities related to the

fluid by means of an interpolating function. Following Monaghan (1992), the integral

interpolant of a function A(r) is given by

A(r) =
∫
A(r′)W (r− r′, h)dr′ (2.9)

where the integral is done over all space. To apply this to numerical work, we can rewrite

the above equation as

A(r) = ΣN
j=1mj

Aj
ρj
W (|r− rj|, h) (2.10)

In practice, both the smoothing lengths hj and the density ρj of the jth particle must

obey the implicit equation

4π
3 h3

jρj = m̄NSPH = MSPH (2.11)

where m̄ is the average mass of the particles, and NSPH is the number of neighbours.

This implies the need for an adaptive hi throughout the simulations as densities around

each particle change.

One can see from the above equations that the choice of SPH particle mass mj is

important in determining the density at a given point the simulation and, in turn, the

resolution of the simulation. By taking a fixed amount of total gas mass, and evenly

distributing particles, all of mass mj in the simulation, one can alter the resolution of

their simulation by means of smaller inter-particle separations as long as the width of
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the kernel h is defined such that a fixed mass is contained in one smoothing volume

(Springel and Hernquist 2002).

To find the equations of motion of each gas particle, Springel and Hernquist (2002)

show that the Lagrangian of the entire system (considering the kinetic and thermal

energies) combined with the constraints put on the system through equation 2.11, lead

to

dvi
dt

= −
N∑
j=1

mj [fi
Pi
ρ2
i

∇iWij(hi) + fj
Pj
ρ2
j

∇iWij(hj)] (2.12)

where Pi is the pressure of the ith particle, Wij(h) = W (|ri − rj|, h) and

fi = [1 + hi
3ρi

δρi
δhi

]−1 (2.13)

obtained from the Lagrangian multipliers provided by the constraints in equation 2.11.

In order to account for any shocks that may occur throughout the gaseous component

of our star clusters, it is important to understand how GADGET-2 implements artificial

viscosity in their simulation code.

Physically, a shock is not an infinitely sharp discontinuity. Rather, it takes place over

a very small range (only a few particle mean free paths) making it difficult to resolve

computationally. In order to broaden the shock front such that it is able to be resolved

in numerical codes, artificial viscosity is used (given by Πij). As seen in Springel (2005),

the viscous force is given by

dvj
dt visc

= −
N∑
i=1

miΠji∇jW̄ji (2.14)

Here, Πji is only non-zero when particles are travelling towards one another in physical

space. This constraint allows the artificial viscosity to only be used during shocks, and
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not appear in other parts of the simulation. This can be defined mathematically as:

Πji = −α2
(cj + ci − 3wji)wji

ρji
(2.15)

only if vji · rji < 0 where vji and rji are the differences in particle velocity and position

respectively between the jth and ith particle. In the above equation, cj and ci are the

sound speeds associated with the jth and ith gas particles, and wji = vji·rji
|rji| . Here, α

is a free parameter that regulates the strength of the viscosity. With this, shocks in the

gas component of our cluster can be handled inside the GADGET-2 code.

2.3 N-Body Mechanics

We now move onto a discussion regarding the means by which the gravitational inter-

actions between our star particles our modelled in our star cluster simulations. We use

a fourth order Hermite Scheme (Makino and Aarseth 1992) to calculate gravitational

interactions between the stars in our simulations. The outline of this scheme is described

here.

Each particle is given its own time ti, timestep ∆ti, position xi, velocity vi, accelera-

tion ai, and jerk ȧi at a given time in the simulation. The minimum ti + ∆ti associated

with these particles is selected as the global time (set as tg) for all particles (including

the particle associated with tg) in the simulation and the positions, and velocities of all

particles are calculated at this timestep using

xi,p = xi,0 + ∆tivi,0 + 1
2∆t2i ai,0 + 1

6∆t3i ȧi,0 (2.16)

vi,p = vi,0 + ∆tiai,0 + 1
2∆t2i ˙ai,0 (2.17)
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where ∆ti = tg − ti. To update the particle associated with tg, we must calculate the

acceleration and jerk felt from all other particles in the simulation. This is done using

aj =
N∑
i

Gmi
xij

(x2
ij + ε2)3/2 (2.18)

ȧj = daj
dt

=
N∑
i

Gmi[
vij

(x2
ig + ε2)3/2 + 3(vig · xij)xij

(x2
ij + ε2)5/2 ] (2.19)

In the above equations, xij = xi,p − xj,p and vij = vi,p − vj,p. ε is the softening

parameter introduced to prevent acceleration calculations from producing values that

tend to infinity. Moving now to the corrector component of the scheme, we can use the

third order Hermite interpolation, defined as

aj(t) = a0,j + ∆tȧ0,j + ∆t2
2 a(2)

0,j + ∆t3
6 a(3)

0,j (2.20)

to find the second and third derivatives of the acceleration vector.

a(2)
0,j = −6(a0,j − a1,j)−∆tj(4ȧ0,j + 2ȧ1,j)

∆t2j
(2.21)

a(3)
0,j = 12(a0,j − a1,j) + 6∆tj(ȧ0,j + ȧ1,j)

∆t3j
(2.22)

The final step is to add these corrections to the position and velocity using

xj(tj + ∆tj) = xj,p +
∆t4j
24 a(2)

0,j +
∆t5j
120 a(3)

0,j (2.23)

vj(tj + ∆tj) = vj,p +
∆t3j

6 a(2)
0,j +

∆t4j
24 a(3)

0,j (2.24)
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and update the timestep using

∆tj =

√√√√√η
|a1,j||a

(2)
1,j |+ |ȧ1,j|2

|ȧ1,j||a
(3)
1,j |+ |a

(2)
1,j |2

(2.25)

η is a control parameter to control the accuracy of the new timestep. The second order

derivative in the above equation can be calculated using

a(2)
1,j = a(2)

0,j + ∆tja(3)
0,j (2.26)

Note as well that because we are using a third order interpolation scheme, a(3)
1,j = a(3)

0,j .

2.4 Model Fits

2.4.1 Clustertools

Clustertools1 is a python module writted by Jeremy Webb that has many functions

which make the analysis of star cluster properties very simple. Chief among these func-

tions are those that can produce cluster profiles using the positions, velocities, and

masses of the particles in the cluster. One important example of these profile functions

is clustertools.rho_prof. This function takes either component of star cluster, and

returns the density profile for that component. To do this, the code bins the star cluster

into radial bins, the number of which is set by the user. A key requirement in the binning

process is that every bin must contain an equal number of particles. To calculate the

density in each bin, this function takes the sum of the masses of every particle in the

bin, and divides by the volume calculated as

V = 4π
3 (r3

max − r3
min) (2.27)

1https://github.com/webbjj/clustertools
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where rmax and rmin are the top and bottom limits for a corresponding bin respectively.

The function finally assigns the resulting density to the radial distance r corresponding

to the average radial distance of each particle from the cluster centre (i.e r =
∑

i
ri

N where

N is the number of particles).

An important caveat to the requirement that each bin contains an equal number

of particles is that, often times, the particles in our star clusters are not evenly dis-

tributed. This effect is especially visible at r values where stars are more diffuse,

and the density falls off rapidly. The small densities at large r means the final bin

in clustertools.rho_prof would span a wide radial distance in order to maintain a

constant number of stars in each bin. Because we are representing each bin (which

contains many stars) as a single density at a given radius, there must be some error

associated with the final density of each bin.

The definition of variance is given by

σ2 =
∑
i(xi − x̄)2

n− 1 (2.28)

where xi is the parameter of interest of the ith particle, x̄ is the average of that pa-

rameter, and n is the total number of particles in the given bin. In order to arrive at a

density variance, we need to find the variance in our mass measurement M and our r

measurement from each particle in a given bin. We do this by substituting x = M and

x = r into equation 2.28 for the mass and radial variance calculations respectively.

Given the definition of density in each bin as the total mass divided by equation 2.27,

we can relate the mass and radial variances to the density variance for the ith bin using

σρ,i =
√

( δρ
δM

σM,i)2 + (δρ
δr
σr,i)2 (2.29)
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which leads to

σρ,i = 3Mi

4πr3
i

√√√√σ2
m,i

M2
i

+
9σ2

r,i

r2
i

(2.30)

With this, we can now calculate the density profile of a given set of particles with

associated error on each measurement.

Using the density profiles calcualted by Clustertools, we are able to fit density

models to our clusters. The three models we focus on are the EFF, Plummer (1911), and

King (1966) models. We carry out our fits using the Levenberg-Marquardt (Levenberg

1944) method which minimizes the χ2 defined as

χ2 =
∑
i

(Oi −Mi)2

σ2
i

(2.31)

whereOi is the value of the density of the cluster calculated using clustertools.rho_prof

in the ith bin, Mi is the value of the density calculated using either of the three models

(EFF, Plummer, or King) in the ith bin, and σi is the density variance in the ith bin.

We now discuss the three models in more detail starting with the Plummer model.

2.4.2 Plummer Model

A Plummer 1911 model is a density distribution that has been used in numerous sim-

ulations to represent the initial conditions of star clusters. This model is in dynamical

equilibrium and its derivation requires a potential energy function given by

φ(r) = −GM
(r2 + a2)1/2 (2.32)

where G is Newton’s gravitaional constant,M is the mass of the system, r is the distance

away from the system centre, and a is a scale parameter. This helps define the clusters

core. Furthermore, this model assumes spherical symmetry and we can therefore replace
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r with r. To derive the density profile from the potential, we use the Poisson equation

∇2φ = −4πGρ (2.33)

which results in

ρ(r) = M

4π
3a2

(r2 + a2)1/2 (2.34)

It is helpful to look at equations 2.32 and 2.34 in terms of the central potential (φ0)

and central density (ρ0)

φ(r) = φ0(1 + r2

a2 )1/2 (2.35)

and

ρ(r) = ρ0(1 + r2

a2 )−5/2 (2.36)

where φ0 = −GM
a and ρ0 = 3M

4πa3 which helps illustrate that as we get to infinitely small

r, the potential is represented by that of a particle with mass M and radius a.

In order to set up a Plummer sphere in position and velocity space, one can look at

the method outlined in Aarseth (1974) which is described as follows. First, we want to

populate a Plummer sphere with N-body particles. For this derivation, we elect to use

N-body units (Heggie and Mathieu 1986) which set G = M = R = 1 where M is the

total mass of the system, and R is the virial radius of the system which is the radius

within which T = −1
2U . We then integrate equation 2.34 to find an expression for the

mass enclosed in a sphere of radius r

M(r) = r3(1 + r2)−3/2 (2.37)

The next step is to generate a random number X and set M(r) = X. This allows us to

solve for r and ensure that the resulting position follows the density profile outlined by
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equation 2.34. Rearranging equation 2.37 leads us to

r = (X−2/3 − 1)−1/2 (2.38)

With this, we can randomly populate the sphere of radius r with Cartesian coordinates

(x, y, z) using two more randomly selected numbers Y and Z in the following way:

z = (1− 2Y )r (2.39)

x = (r2 − z2)1/2cos(2πZ) (2.40)

y = (r2 − z2)1/2sin(2πZ) (2.41)

which allows for an isotropic sampling of positions.

The Plummer sphere model is such that the entire system is in a steady state, and

the velocities of each star are isotropically distributed. Sampling velocities for our newly

initiated stars relies on the escape velocity of the system. The escape velocity of our

cluster can be calculated using equation 2.32 and the kinetic energy of the system.

Because equation 2.32 is the potential per unit mass, we can find the escape velocity ve

through
1
2mv

2
e +mφ(r) = 0

ve =
√
−2φ(r) = 21/3(1 + r2)−1/4 (2.42)

where ve is the escape velocity. We can then use the magnitude of the velocity V to

find each component such that V = qve where q is between 0 and 1. To ensure that

the resulting velocities are isotropic, we find the velocity components (u, v, w) using 2
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new random numbers Yv and Zv in the same way as equations 2.39, 2.40, and 2.41 but

setting r as V .

Both components (stars and gas) of each of our star clusters are set up using Plummer

spheres as shown in figure 2.1. We choose the scale radius such that the half mass density

of each component is in the range given by Portegies Zwart et al. (2010) (102−4M�pc3).

The masses of each of the stars are sampled randomly from a Kroupa (2001) IMF which

is similar to that introduced in Chabrier (2005). In this figure, the stellar component

shows slight deviations around the idealized Plummer density profile due to the fact that

we have a limited number of stars in each cluster. As we get to a smoother distribution

(gas) the density profile matches much closer to that of an idealized Plummer sphere.

2.4.3 King (1966) Model

Observations presented by von Hoerner (1957) and King (1962) showed that local Milky

Way star clusters do not extend to infinity, but rather, are cut off from tidal forces by

the Milky Way. The extent of a given star cluster can then be described using the tidal

radius. The tidal radius is the distance away from the cluster centre where gravitational

interactions from the surrounding galaxy overpower those from the star cluster, and a

lone star can be stripped from the cluster (von Hoerner 1957). Therefore, in the King

(1966) model, no stars that exist beyond the tidal radius are a part of the star cluster

and the density profile does not extend to infinity like the Plummer model described

above. To account for this in the radial density distribution, one needs to prevent the

distribution of particles whose total energy is > 0, in other words, particles who are

removed by tidal forces from the parent galaxy. The velocity distribution function is

Maxwellian that is truncated at the escape velocity ve of the cluster, thus ensuring no

stars are initiated with v > ve.
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Figure 2.1: A sample star cluster created using Plummer spheres for
the stars (white circles) and gas (orange). The size of the white circles is
scaled by the stellar mass which is applied using a Kroupa IMF.
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To find the density ρ as a function of position r, one must solve the Poisson equation:

d2V

dr2 + 2
r

dV

dr
= 4πGρ (2.43)

where V is the potential of the cluster. However, this is often rewritten in terms of W =

−2j2V (where j is the reciprocal of the standard deviation of the Gaussian distribution

that represents the energy distribution function and V is the potential) and R = r
rc

where rc ≈ the core radius of the cluster. This takes the form

d2W

dR2 + 2
R

dW

dR
= −9 ρ

ρ0
(2.44)

The King (1966) models are therefore dependant on two parameters: W0 which is a

unitless constant that quantifies the degree of central concentration of the cluster, and

rc the core radius which can also be converted to the tidal radius using the parameter

c = log10(rt/rc) when a tidal force from a surrounding galaxy acts on the cluster. The

first step in this calculation process is to calculate the quantity

ψ = eW
∫ W

0
eηη3/2dη

= 3
4
√
π[eWEf(

√
W )− 2√

π

√
W (2

3W + 1)] (2.45)

where Ef is the error function. This is proportional to the density as a function of

W , ρ(W ). One can then substitute ρ(W ) into equation 2.44 to solve for the density as

a function of position r. To carry out this numerical integration, we use the python

module galpy2 (Bovy 2015).

The tidally truncated nature of King models lend themselves to fit well to older more
2https://github.com/jobovy/galpy
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dynamically evolved globular clusters (Grudić et al. 2018, Zocchi et al. 2012). The King

profile is also commonly used as initial conditions for stellar positions in a similar way

to the Plummer profile (Mackey and Gilmore 2003a, Whitehead et al. 2013).

2.4.4 Elson, Fall, and Freeman (EFF 1981) Model

Surface brightness profiles are not well described by truncated King models, rather, the

gentle curves in their tails are better represented by the profile introduced by Elson et al.

(1987) hereafter EFF (Portegies Zwart et al. 2010):

Σ(r) = Σ0(1 + r2

a2 )−γ/2 (2.46)

or, the volume density profile:

ρ(r) = ρ0(1 + r2

a2 )−
γ+1

2 (2.47)

Here, a is a scale radius that differentiates the core of the distribution from the tail.

Equation 2.47 is very similar to equation 2.34. The main difference comes from the

ability of the EFF to have a varying slope in the tail end of the density profile. The

profile was introduced as a way to fit observations of young star clusters in the Large

Megellanic Cloud (LMC) and the authors find that γ values between 2.2 and 3.2 provide

the best fit to their observations.

An example of an EFF fit to a cluster’s stellar density distribution can be seen in

figure 2.2 which is a resolved image of the cluster Westerlund 2 which has been identified

as consisting of two subclusters on route to merging in the near future (Zeidler et al.

2021). Highlighted in this image are the best fit core radius rc of each subcluster, the

half mass radius rhm of each subcluster, and the scale radius a of each subcluster. While
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a theoretical definition of this radius was introduced in King (1966) as

rc =
√

3σ2
v

4πGρ0
(2.48)

where σv is the cluster velocity dispersion, and ρ0 is the central density of the cluster, in

situations where the velocity dispersion or central density of a system are not well con-

strained, the EFF model can provide an analytic solution to rc (provided that equation

2.47 fits the data of the cluster well) using

rc = a(22/γ − 1)1/2 (2.49)

2.5 Merger Simulation Methods

In the following sections, we summarize the numerical methods being used in our sim-

ulations, outline the process by which we initialize our isolated clusters, starting from

initial particle distributions, and the conditions used to determine when both are ready

to be set on their collision course. We then outline the initial setup of our merger and the

parameters of interest when choosing which mergers to include from the H18 simulations.

2.5.1 Isolated Clusters

We set up initial conditions for our individual clusters using parameters taken from the

H18 sink particles, specifically, the mass in stars (M∗) and the total mass in stars and

gas (Mtot). The initial distributions of our N-body and SPH particles follow a Plummer

(Plummer 1911) sphere with a scale radius chosen such that the half mass density of

the cluster starts as ρhm = 103M�/pc
3. This density choice is consistent with observed

YMC densities (Portegies Zwart et al. 2010). Given a ρhm, and the total mass of the

cluster, we can calculate the half mass radius rhm which we convert to a Plummer scale
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Figure 2.2: Image of Wd2 taken by HST F814W (Zeidler et al. 2021).
©AAS Reproduced with permission.
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radius using a ≈ 1.3rhm. This way, the scale radius a is dependant on ρhm (which we

choose as a constant) and the total mass of the cluster allowing for more massive clusters

to have larger initial a values. This allows us to simulate a wider range of cluster masses

without running into extremely small timesteps by virtue of high central densities (see

equation 1.3). However, our process outlined above allows our clusters to vary in size:

through imposing a half mass density, the size of a depends on the total mass of the

cluster. Our initial scale radii for our clusters is such that there is either stars or gas

located beyond the H18 sink particle accretion radius or rsink ≈ 1.7pc for all of our

simulations. In order to relate our results to the H18 sink particles, we focus on the

change imposed on the resultant cluster by the merger through comparing it with the

clusters before they have merged (see section 3.2).

The number of SPH particles in our simulations is given by N = Mg/mSPH whereMg

is the total mass in gas of the sink particle taken directly from H18, andmSPH = 0.06M�.

A lowermSPH brings the resolution to a point where our run times get too high. Further-

more, our choice of mSPH leads to a smoothing length h ≈ 0.01pc which is significantly

smaller than the core radii in our clusters implying sufficient spatial resolution of our

smallest scales in our simulations. Stellar masses are sampled from a Kroupa (Kroupa

2001) IMF between 0.15M� and 100M�. The gas temperature is chosen to be 10K, con-

sistent with GMC temperatures from H18. We assign each particle a velocity which we

sample using the method outlined in Aarseth (1974) and in section 2.4.2. We calculate

the velocity dispersion of our stellar and gas component separately and scale the veloc-

ities of each such that both are initially in virial equilibrium (2Ks,g/|Ps,g| = αs,g = 1).

Next, we allow our cluster to evolve in its own isolated simulation box. We do this

so that the stars can have time to react to the new potential introduced by the gas, and

vice versa in a process called numerical relaxation. In order to decide when our clusters

are done numerically relaxing, we look at the evolution of the core radii for the stars
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Figure 2.3: Evolution of the core radius for an isolated cluster

and gas as a function of time, as shown in figure 2.3 for an example cluster. Up until

0.21Myr, the core radii are decreasing drastically until both become stable. This effect

comes from both stellar and gas components reacting to the potential of the other. In

this example, to ensure stability, we take the snapshots of this cluster after t = 0.21Myr

as our initial conditions for our merger simulation. This corresponds to roughly 0.01

N-body times. Because we set up all of our clusters with the same initial half mass

density, every cluster in our suite of simulations shares the same conversion between N-

body and physical times initially. The crossing timescale is defined as t = rvir/v where

rvir is normalized to 1 in N-body units (Heggie and Mathieu 1986) and v is the velocity

of a star. Assuming virial equilibrium, as N-body units do, we can find that the velocity

in the above equation v ∝
√
r3
hm/Mhm ∝ ρ

−1/2
hm which means, regardless of our cluster

mass, 1 N-body dynamical time is always the same physical time for every simulation of

our isolated cluster systems initially but can change as the system evolves. Furthermore,

every cluster’s core radius will numerically relax in the same timeframe as the example
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above (within ≈ 0.01 N-body times). Note, although the decrease in the core radius

can cause a deviation of ρhm away from 103M�pc−3, the value of ρhm never exceeds the

upper limit shown in Portegies Zwart et al. (2010). It stays within the quoted range of

102M�pc−3 < ρhm < 104M�pc−3.

As our isolated clusters relax, we find some movement off from the centre for both the

stellar and gas components. We move both components to the centre of the simulation

box and subtract the total centre of mass velocity before the relaxed clusters are set to

merge with one another.

2.5.2 Merger Setup: The Creation of the Resultant Cluster

H18 ran two GMC simulations: one at one solar metallicity (1Z�) and the other at

0.1Z�. We take our mergers from the 1Z� simulation. Each sink pair we take was

separated by a distance d before they merged with one another in H18 and, throughout

the GMC evolution, eventually merged. Many, but not all, of the mergers contained

sink particles that have undergone previous mergers. For these, H18 constructed a

merger tree wherein a given sink particles merger history can be recorded as seen in

figure 1.5. This involves taking careful note of the time between a sink particle’s first

merger and its second and third and so on. For our simulations, we want to keep our

simulation time below the first expected supernovae explosions as this is the time when

most to all of the gas mass has been removed from a star cluster (e.g Pelupessy and

Portegies Zwart 2012). Furthermore, our stellar mass range lies within that expected

to go supernova in ≈ 3Myr (e.g Meynet and Maeder 2003). Therefore, we run all our

simulations for 3Myr after the clusters have been initiated in the merger simulation box.

We further restrict our sampling of H18 sink mergers by only including those that have

never undergone a merger previous to the one we simulate. We refer to these as first

contact mergers. Through simulating these mergers, we are able to provide constraints
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Figure 2.4: The parameter space from which our collisions are being
sampled. Black points represent second contact mergers or higher. Red
points represent first contact mergers i.e. mergers where both members
in the cluster pair have not undergone any previous mergers. Blue points
represent the mergers we model for our simulations.

on what the distribution of stars and gas for a second contact merger should look like,

allowing us to simulate many more H18 sink mergers in the future.

We select merger pairs from the H18 simulation based on the mass ratio of the pair

(fM = MMM
MLM

where MMM and MLM are the sum of the stellar and gas masses for more

massive and less massive cluster respectively) and the velocity of the colliding cluster

(vLM ). A plot of the mergers in this parameter space from the H18 simulation can be

seen in figure 2.4. For this plot, we have limited the mass ratio range to be from 0 to

30. This cuts out only 2 mergers that have mass ratios of ≈ 100 and ≈ 400.

We simulate 5 of these first contact mergers (labelled run 1-5, shown in blue as circles,

see table 2.1), giving us 10 isolated clusters in total. These 10 clusters provide us with a

significant range in cluster masses while not containing clusters that are too large thus
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Run number MMM,s[104M�] MMM,g[104M�] MLM,s[104M�] MLM,g[104M�] d[pc] vLM [kms−1]
1 0.3 2.1 0.2 1.2 2.7 2.3
2 0.05 0.3 0.02 0.2 2.4 2.8
3 0.1 0.8 0.06 0.4 4.9 4.7
4 0.4 1.6 0.1 0.3 2.9 6.5
5 0.4 0.5 0.3 0.3 3.3 10

2to3 0.1 0.8 0.02 0.2 2.4 2.8
2to5 0.4 0.5 0.02 0.2 2.4 3.4
3to1 0.3 2.1 0.06 0.4 4.9 4.7
3to4 0.4 1.6 0.06 0.4 4.9 4.7
2_2v 0.06 0.3 0.02 0.2 2.4 5.6
2to1 0.3 2.1 0.02 0.2 2.4 2.8
2to4 0.4 1.6 0.02 0.2 2.4 7.0

2_2p8v 0.06 0.3 0.02 0.2 2.4 7.8
3_2v 0.1 0.8 0.06 0.4 4.9 9.4

4_2p5v 0.4 1.6 0.1 0.3 2.9 16

Table 2.1: Parameters for our merger simulations. Column 1: the name
of the run, column 2: the mass of the more massive cluster in stars,
column 3: mass of the more massive cluster in gas, column 4: mass of the
less massive cluster in stars, column 5: mass of the less massive cluster in
gas, column 6: the initial separation along the x-axis of the two clusters,
column 7: the x-velocity kick given to the less massive cluster towards
the origin. The horizontal line splits the models taken directly from H18
sinks (upper) and those given some alteration (lower). Runs are ordered
by increasing collisional velocity.

keeping simulation times reasonable. This spread in cluster mass can be translated to a

spread in collision mass ratio fM .

Along with the H18 mergers, we simulate mergers that were not present in H18

(called other models, shown in blue as stars). To do this, we use a cluster from one H18

merger and collide it with a cluster from another H18 merger (for example, we take the

less massive cluster from the run1 pair and simulate its merger with the more massive

cluster from the run3 pair in table 2.1 and the run is labelled run3to1) allowing us to

better sample the parameter space from figure 2.4. The last alteration we make to the

H18 model runs in table 2.1 is increasing or decreasing the collision velocity vLM while

keeping all other parameters the same. These runs are labelled as runx_yv where x is

the label of the H18 model run we are updating, and y is the factor by which we multiply

vLM for that run. The yellow points include both of these alterations. All of our merger

simulations are done head on.
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Once each cluster has reached the relaxation point outlined in section 2.5.1, we take

the newly relaxed system of stars and gas and initialize them together in a new simulation

box as follows:

• The more massive cluster is placed at position (x, y, z) = (0, 0, 0) with no velocity

• The less massive is placed a distance x = d, away from more massive cluster and

is given a velocity vLM in the x-direction towards the origin.
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Chapter 3

Results

3.1 Resultant Cluster Properties

We begin with a discussion of a typical merger from our sample (run 3 in table 2.1). The

total masses of the more and less massive clusters in the merger are 0.9 and 0.5 ·104M�

respectively resulting in a mass ratio of fm = 2 which, coupled with a collisional velocity

of vLM = 4.7kms−1 places this merger in the region of parameter space where we find

most of the first contact mergers from H18 as seen in figure 2.4. Most of the total mass

of both clusters resides within rsink ≈ 1.7pc (80 per cent of the more massive cluster

mass, 90 per cent of the less massive cluster’s mass). Snapshots of this merger can be

seen in figure 3.1.

The white circles shown in figure 3.1 represent the stars belonging to the less massive

cluster, and the blue circles represent those belonging to the more massive cluster. The

size of each circle scales with the mass of the star it represents. The orange points show

the gas in the simulation. At the beginning of the simulation, the kick given to the less

massive cluster causes it to travel towards the stationary more massive cluster. After

t ≈ 0.7Myr, the clusters collide with one another as can be seen by the merging of the

gas components of each cluster. We denote this time as the collision time tcol which
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Figure 3.1: Snapshots of the stars and gas from merger run 3 leading up
to the monolithic time. The circles represent the stars from each cluster
(blue belong to less massive cluster, white belong to more massive cluster).
Size of the filled circles scales with mass of the star. Time is take with
respect to the beginning of the simulation. The left panel on the second
row shows the merger at t = 0.7Myr = tcol and the right panel on the
second row shows the merger at t = 1.1Myr = tmon.
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Figure 3.2: Definition of the collision time tcol (top) and the mono-
lithic time tmon (bottom). These definitions rely on the gas and stellar
components separately. tcol is determined using the separation of the gas
density centres dxρ and tmon is determined using the separation of the
stellar centres dxp.
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is defined as the time at which the densest point of both gas clouds (density centre)

overlap for the first time along the x axis shown in the top panel in figure 3.2. This

overlap occurs when the separation of the density centres reaches a minimum. While

stars originally belonging to the more massive cluster lie roughly overlapped with the

newly merged gas cloud at the time of the collision, stellar members of the less massive

cluster accelerate through the merged gas cloud, leading to an increase in the separation

of each cluster’s stellar component centre of mass. Stars that once belonged to the less

massive cluster disperse in the outermost region. The core of the less massive cluster

combines with that of the more massive cluster roughly 0.4Myr after the collision, and

a single monolithic cluster is formed. We call the time at which the monolithic cluster

is formed, the monolithic time and denote it using tmon. An example of our definition

of tmon can be seen in the bottom panel of figure 3.2.

To determine tmon, we take an average over the x positions of the n stars that feel

the least total potential in both the more and less massive clusters (we call the average

of these positions xp,MM and xp,LM for the more and less massive clusters respectively),

and look for the time at which xp of each cluster overlaps as seen in figure 3.2 by

calculating dxp. To find the positions, we choose to average over the 5 per cent of stars

with the lowest potential in each cluster. This corresponds to the number of stars located

within 1 core radius of each cluster centre before the merger. Therefore, our definition

of monolithicity is dependant on the behaviour of the core of each star cluster.

To find the overlap, we begin by averaging dxp values of each cluster in 0.1Myr time

bins. This time scale helps us smooth out noise in the motion of xp,LM after the less

massive cluster merges with the more massive one. We then look for the time at which the

difference goes below a threshold equivalent to the core radius of the more massive cluster

before the merger process. This value is 0.08pc for this merger simulation. Therefore, our

definition of monolithicity ensures that the core radii of each cluster remain overlapped.
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Figure 3.3: Bound mass fractions of resultant cluster after merger.

The horizontal line in figure 3.2 indicates the time at which the star cluster cores overlap

which happens at t− tcol ≈ 0.4Myr for run3.

3.1.1 Bound Fraction

A constraint of the sink particle prescription used in H18 is that all mass inside each sink

remains in the sink throughout the entire simulation. When two parent sink particles

merge, the resultant sink’s mass will simply be the sum of the masses of each parent.

We can test this approximation by looking at the bound percentage of stellar and gas

mass in the resultant cluster after the merger takes place. This can be seen in figure 3.3

for run3. We calculate the kinetic energy of each star and gas particle in the simulation

and compare it to the potential energy felt on that particle by every other particle in

the simulation (stars and gas) and consider a particle bound when its T + U < 0 where

T is its kinetic energy, and U is its potential. We see that by the end of our simulations,

≈ 3 per cent of stellar mass and ≈ 1 per cent of gas mass has become unbound. Most of
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the decrease in bound stellar mass happens immediately after tcol as stars that initially

belonged to the less massive cluster have been flung out of the gravitational pull of the

resultant cluster. This is in contrast to the sink particle prescription. These results

are somewhat consistent with simulations done by Banerjee and Kroupa (2015) which

quote a negligible amount of unbound stellar mass through merger simulations with an

included gas potential. As well, N-body simulations done by Grudić et al. (2018) show

that / 10 per cent of their stellar mass becomes unbound after the merger of two equal

mass Plummer spheres. Therefore, when using sinks to model this subcluster merger,

the resultant sink particle’s mass is accurate to 95 per cent.

Not all of the resultant sink particles in H18 last for 3Myr after the initial merger

has taken place (see section 2.5.2). Though a number of sink particles do not undergo

more than one merger in H18, the average time between a first generation resultant sink

particle’s formation and its second merger in the H18 simulation is ≈ 0.4Myr. With

this in mind, we can look at figure 3.3 to see how well the sink particle prescription

models initial mergers in terms of mass conservation. In this simulation, 0.4Myr after

tcol we see that the total unbound stellar mass percentage is ≈ 5.5 per cent and the

unbound gas mass percentage is only ≈ 0.3 per cent showing an acceptable conservation

of total mass for this simulation. We therefore conclude that in order for this particular

sink particle merger to better represent a subcluster merger in the H18 simulation, the

resultant sink particle’s stellar mass should decrease by ≈ 5.5 per cent, and the gas mass

should decrease by ≈ 0.3 per cent though, as we will see in later sections, these values

are tied to the collision al velocities of our simulations and can increase drastically.

3.1.2 Cluster Size

We can now look at the inner, and outer regions of the resultant cluster to better

understand where in the cluster is the remaining bound mass most affected. We are

looking to see which regions of the cluster experience the most growth due to the merger
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Figure 3.4: Core radii, half mass radii and 75 per cent mass radii of
stellar (left) and gas (right) component for the resultant cluster after the
merger. The green line indicates the sink radius prescribed in the H18
simulations (rsink ≈ 1.7pc).
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process. Furthermore, we can see where in the cluster, this growth results in material

being pushed beyond the sink radius. This implies that the sink particle accretion radius

in H18 simulations does not necessarily hold 100 per cent of the remaining mass of the

cluster after a merger between two sinks has occurred.

Note, the parent clusters that make up the monolithic cluster in run 3 were initialized

with most of their total mass (80 per cent and 90 per cent for the more and less massive

cluster respectively) within rsink. In runs where this does not hold, and a significant

amount of material is initialized beyond rsink, we analyze the fractional growth of the

Lagrangian Radii of a given resultant cluster compared to the parent clusters that make

it up such that every simulation can be compared equally (see section 3.2). We look at

the core, half mass, and 75 per cent mass radius of the resultant cluster (hereafter, when

we refer to the resultant cluster, we refer to the bound members of each component only

because these would be the members that remain part of the resultant sink particle)

after tmon once the cluster has become monolithic which can be seen for both the stellar

and gas components in figure 3.4.

The core radius remains stable for the entire simulations after tmon at rc ≈ 0.2pc

and rc ≈ 0.1pc for the stellar and gas components respectively. The core radius of the

resultant cluster has grown compared to the original clusters.

Immediately after tmon, the stellar half mass radius L50,s has reached a stable state

at a value of 0.9pc which is larger than L50,s of the initial clusters before the merger.

Similarly, the gas half mass radius L50,g increases slowly for the entire simulation after

tmon and by the end of the simulation, L50,g ≈ 1.1pc which is also an increase compared

to the original clusters before the merger. Though L50,s and L50,g both grow after the

collision, neither grow beyond rsink as shown by the green line in figure 3.4 implying

that at least 50 per cent of each component of the resultant cluster remains inside the

sink particle radius after the merger.
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However, if we look at the L75 of each component, we see that, at most times after

tmon, both components’ L75 is greater than rsink. As seen in figure 3.4, the stellar

component 75 per cent mass radius L75,s increases and oscillates around ≈ 1.9pc shortly

after tmon. L75,g increases steadily after tmon and does not stop by the end of our

simulation. If we look at L75,g at t = tmon and at the end of our simulation, we see

that L75,g ≈ 2.9pc and 5.4pc respectively. Because these values have moved beyond the

sink radius, at least 25 per cent of the stellar and gas mass lies outside the sink radius.

Therefore, we see that the resultant sink particle’s accretion radius needs to increase in

order to keep the remaining bound mass inside the sink.

Though our clusters do not have an accretion radius like sink particles do, we can still

look at a cluster analogue to the sink particle accretion radius by looking at the 90 per

cent mass radius of the resultant cluster L90,RC . This is an analogue to a sink particles

accretion radius rsink which contains 100 per cent of a cluster’s total mass. We, however,

cannot use the 100 per cent mass radius because it is subject to the motions of 1 single

N-body or SPH particle leading to too much noise. As well, because rsink contains the

entirety of the cluster’s mass, we do not look at L90 for both components separately

as we did above. In this analysis L90,RC is the 90 per cent mass radius of the entire

resultant cluster (stellar plus gas component). We show L90,RC normalized by the L90

of the entire more massive (L90,MM ) and less massive (L90,LM ) parent clusters before

the merger in figure 3.5. Directly after tmon, the L90,RC increases and shows no sign of

slowing down by the end of our simulation showing us that the outer most regions of

the cluster are growing rapidly after the merger. This is partially due to the expansion

of the gas component after the collision but, as we will see in later sections, the stellar

component of our clusters are also expanding after the merger.

With the resolution in H18 of rsink = 1.7pc, this resultant sink particle may be

missing the chance to accrete extra gas mass before it merges with other sink particles.
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This is due to the sink particle prescription allowing gas accretion to take place if gas

is within one rsink and gravitationally bound to the cluster. In this simulation, because

the resultant cluster grows compared to the parents that make up the merger, a sink

particle prescription which does not allow this growth will potentially be accreting less

gas than it should be before it merges with another sink particle. This tells us that, at

the resolution provided in H18, this star cluster merger cannot be simulated using sink

particles because it may be missing accreted gas mass which may result in a discrepancy

regarding the final mass of the YMC formed at the end of the H18 simulations. The

magnitude of this discrepancy is dependant on how prompt the secondary merger process

is. If the resultant cluster merges with another cluster quickly after it is formed, its

L90,RC will not have had enough time to significantly grow, meaning that only a small

fraction of extra gas would be added to the resultant sink. However, the longer it takes

for a resultant cluster to undergo another merger, the larger L90,RC grows and the more

mass it may accrete.

3.1.3 Density Profiles

We now turn our attention to the density profiles of the resultant cluster. In this analysis

we treat the stars and gas of the resultant cluster separately and include only bound

members of each component. Unbound stars and gas are no longer considered a part of

the host cluster and therefore do not contribute to the density profiles.

Our analysis consists of fitting commonly used density profiles to the bound stellar

and gas components of the resultant cluster. We fit the Plummer, Elson et al. (1987)

(EFF) model, and the King (1966) models to the density profiles. The EFF model is

very similar to the Plummer model used to set up our clusters. The only difference could

be the slope of the density distribution at large r. This would allow us to compare our

resultant cluster to the parents directly to see if changes in the resultant cluster density

profile come more from the tail or the core. We bin our data using Clustertools.
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Figure 3.5: 90 per cent mass radius for entire (stars and gas) resultant
cluster. Y-axes show fractional growth in L90,RC when compared to the
more massive (left y-axis) and less massive (right y-axis) parent clusters.
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Our bins are centered on the density centre for the stellar component and the density

centre for the gas component (the location of highest density in the gas distribution

(Portegies Zwart et al. 2010)). For both the stellar and gas components, we find that

our choice of density centre over centre of mass does not greatly affect our best fit

parameters for any of our models.

We choose Ns = 25 radial bins for the stellar component and Ng = 100 radial bins

for the gas. These values allow us to keep important density characteristics without

introducing noise (having too many bins forces us to have too few particles per bin).

We then use the python function curve_fit which uses the Levenberg-Marquardt (LM)

method (Levenberg 1944) to minimize the χ2 and calculate the best fit parameters for

each model. We limit our analysis to times tmon and beyond. At this point, the stellar

component of the resultant cluster has become monolithic which is a requirement of the

3 models we have chosen.

As a reminder, the EFF model is given by

ρ = ρ0(1 + r2

a2 )−
γ+1

2 (3.1)

The two parameters allowed to vary in the above EFF model are the scale radius a,

and the slope of the density tail γ. Note that the Plummer density profile is the same

as equation 1 but has γ = 4 meaning that in the Plummer model, only the scale radius

a is allowed to vary. The King (1966) model is integrated using galpy1 and has two

parameters that are allowed to vary: the tidal radius of the cluster rt and W0 which

is a dimensionless number that represents the depth of the potential well created by

the distribution. We applied the curve_fit algorithm to the stars and gas throughout

the evolution of the cluster, to obtain all best fit parameters as a function of time. To
1https://github.com/jobovy/galpy
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Figure 3.6: Stellar and gas radial density profiles plotted with best
fit profiles from three theoretical functions: Plummer (dot-dashed), EFF
(dotted), and King (dashed). The shaded regions show one standard
deviation in the density calculation for a given radial bin.
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compare our three models, we analyze the reduced χ2 (χ2
red) for each model as a function

of time, and take the minimum of the three. The corresponding model is thus the one

that has minimized χ2
red for that given timestep. We show the snapshot of our analysis at

which both the stellar and gas components are fit to the three profiles with the minimum

χ2
red in figure 3.6.

We find that the three models above do not fit the density profiles of our resultant

cluster well. These three models are best used to describe spherical clusters that have

had time to dynamically relax and whose velocity distributions have come closer to

Maxwellian (i.e globular clusters) (Mackey and Gilmore 2003b). In contrast, our newly

formed resultant cluster has only been alive for a small fraction of its relaxation time

and is therefore nowhere near the dynamical state expected for one of these profiles.

From our best fits however, we find that the merger process has steepened the surface

density in the tail end of our stellar and gas density profiles (γ = 4 merges into γ = 5).

Furthermore, the W0 = 8.1 for the stars and W0 = 9 for the gas King profiles are

consistent with a centrally concentrated cluster as expected after a merger process due

to the compactness of the core and the expansion of the outer regions of the cluster.

We conclude that these models can represent the general shape of our stellar and gas

components. Furthermore, they can put constraints on what simulators can use as their

initial conditions when setting up clusters that are the results of one previous merger.

3.2 Bringing it all Together

In the previous section, we discussed many of the important parameters that help us

understand our resultant cluster that is the result of a single merger. This discussion

centred around run 3 shown in table 2.1. However, one merger simulation is not a

representative sample of the H18 GMC collapse simulation (see figure 2.4). In this

section we look at the parameters discussed in section 3 for every merger simulation in
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our sample and look for relationships between these parameters and the dimensions that

make up our parameter space of interest.

3.2.1 Monolithic Time, Bound Cluster Members and the Parameter

Space

We begin with the monolithic time tmon. We calculate tmon for every simulation using

the method outlined in the previous section, but tailor it to each individual simulation.

Note, there are three simulations whose tmon exceeds the length of the simulation tsim,

and we will discuss those in a later section. However, we include them on the plots

as "x" symbols. The values plotted for these simulations represent a lower limit to the

monolithic time for that given simulation. These mergers result in two clusters whose

stellar components are not monolithic by the end of our simulation. However, we are

still able to calculate a collision time as the time when the gas cloud’s density centres

overlap along the x-axis for the first time.

We first show the monolithic time against the collisional velocity in figure 3.7. On

the y-axis, we show the monolithic time subtracted by the collision time which tells us

how long after each simulation’s collision does the resultant cluster become monolithic.

The general trend we see from figure 3.7 is that higher collisional velocity leads to

longer tmon− tcol. There does not seem to be a clear relationship between tmon− tcol and

fM . Less massive clusters that are given a larger velocity kick towards the more massive

cluster in a merger pair, enter the collision with a high kinetic energy stellar component.

Because the stellar component is collisionless compared to the gas component, stars

belonging to the less massive cluster pass through those of the more massive cluster

at higher velocities, and thus move farther away from the rest of the cluster before

being pulled back by gravity. In the simulation with the highest fM , run2to1, strong

gravitational pull-back from the more massive cluster onto the less massive cluster, causes
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Figure 3.7: tmon − tcol plotted against the collisional velocity vLM of
each simulation. The colourbar values represent mass ratio fM of each
merger. We show both the monolithic (tmon < tsim) simulations and the
non monolithic (tmon > tsim) simulations. The arrows indicate that this
is a lower limit of the monolithic time for the non monolithic simulations.
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Figure 3.8: Remaining bound stellar mass percentage at t − tcol =
0.4Myr for all mergers whose tmon < tsim

the less massive cluster to oscillate around the core of the more massive cluster multiple

times until the two finally merge. In cases with lower mass ratios such as run2to3, the

less massive cluster stars only pass through the more massive cluster stars once, and do

not oscillate once pulled back.

The clusters whose tmon > tsim tend to exist at vLM ' 10kms−1 with fairly low fM .

These are our non-monolithic simulations. In these simulations, the stellar components

of both clusters never recombine after tcol and the resultant state of the merger does not

have a monolithic stellar component. The gas component, on the other hand, may be

monolithic. This is dependant on the densities of the merging gas clouds (see section

3.4).
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From section 3.1.1, we found that the merger process results in a relatively low

percentage of stellar and gas mass becoming unbound from the resultant cluster. For

the stellar component, this unbound percentage remains constant after tcol, but for the

gas component, the loss of mass is consistent throughout the simulation after a given

simulation’s tcol. We check to see whether or not there are any correlations between

the unbound mass percentage of our resultant clusters and vLM or fM and find that,

consistently, / 5 per cent of the stellar mass becomes unbound in our resultant cluster

at t − tcol = 0.4Myr as seen in figure 3.8. Because Sills et al. (2018) and Banerjee and

Kroupa (2015) find that subcluster mergers tend to happen promptly within 1Myr in

their cluster simulations, we can also look at the unbound percentages at t−tcol = 1Myr.

This has the added benefit of applying to GMC regions with lower sink particle number

density in which sink particles do not merge as quickly as found in the densest regions of

H18. In this case, the unbound stellar mass percentage does not change at all compared

to the case where t − tcol = 0.4Myr. Mergers with higher velocity and lower mass

ratios tend to lose more mass, but only in our extreme simulations run3_2v which has

a collisional velocities of vLM ≈ 9.4kms−1 and mass ratio fM ≈ 2 do we lose more than

5 per cent of the stellar mass. In this simulation, we lose 12 per cent. The unbound

gas mass percentage behaves in a similar way (strong dependence on vLM and no clear

dependence on fM ). However, the unbound gas mass percentage is significantly lower

than that of the stars. At both t − tcol = 0.4Myr and 1Myr, the percentage lies below

1 per cent. Therefore, although a resultant sink particle loses mass after the merger

process, the percentage of mass loss is very small before the resultant cluster is likely

to merge with another. Not including mass loss in the sink particle prescription is

acceptable.
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3.2.2 Cluster Growth and the Parameter Space

In order to compare the growth of the inner regions of our resultant cluster for all of

our simulations, we look at the growth of the core radius and half mass radius. We

average each radii over a given time period and normalize that average by the value of

that radius for the more massive cluster before the merger. We choose two time periods

for comparison, t − tmon = 0.4Myr and t − tmon = 1Myr which represent the average

time between first and second merger in H18 and the timescale for prompt subcluster

mergers from Sills et al. (2018) and Banerjee and Kroupa (2015).

Regarding our normalization, choosing the less massive cluster tells us nothing about

how the resultant cluster changes after the merger whereas by choosing the more massive

cluster, we gain insight into how the merger process affects the resultant cluster. There-

fore, by choosing to look at r/rMM , where r is the radius in question of the resultant

cluster, and rMM is that same radius for the more massive cluster initially, we can say

that low values of this fraction imply no change in the resultant clusters Lagrangian

Radii, and high values imply large change.

We further restrict our analysis in this section to simulations whose tmon < tsim.

Because this section relies on the calculation of the core radius, and Lagrangian Radii,

we cannot consider resultant clusters who are not monolithic. This still leaves us with

12 simulations to consider. We analyze the growth of our simulations whose tmon > tsim

in a later section.

Beginning with the stellar component averaged until t−tmon = 1Myr as seen in figure

3.9, we find that there is not much of a dependence of the growth in the resultant cluster’s

core radius on the vLM . However, we find a strong dependence of this growth on fM .

As we get to higher fM values, we are looking at more minor mergers (MMM >> MLM )

and, in this limit, the resultant cluster’s growth is very minimally affected by the less

massive cluster which results in a plateau at r/rMM ≈ 1 for high fM . We find that
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Figure 3.9: Inner regions of stellar component of resultant cluster plot-
ted against mass ratio fM for simulations whose tmon < tsim. We av-
erage the core radius (left) of the resultant cluster from t − tmon = 0 to
t−tmon = 1Myr and divide it by the core radius of the more massive clus-
ter before the merger such that we can compare understand how much the
resultant cluster has grown after the merger process. This normalization
also allows us to compare all of our simulations to one another on the
same space. We do the same for the half mass radius on the right.
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the collisional velocity does not seem to have any effect on this trend until we get to

the half mass radius, where we find that the trend with fM starts to disappear due to

scatter. High kinetic energy stars originally belonging to the less massive cluster are

able to make their way to the outer regions of the cluster where the potential energy

is lower and remain there for the remainder of the simulation. This correlates with the

slight dependence of the growth in the half mass radii on vLM we see.

At low fM , because the masses of both clusters are similar, the core of the resultant

cluster has gained a significant amount of stellar mass which causes it to grow. Con-

versely, for high fM , the stellar core of the resultant cluster gains a fairly small amount

of stellar mass compared to the mass of the more massive cluster, and responds by grow-

ing very slightly. This tight trend is not present for the half mass radius because it is

more dependant on the kinetic energy of the incoming cluster. The half mass radius is

located further away from the cluster centre than the core radius which is where many

of the high kinetic energy stars are located. We note that in the case where we average

up until t− tmon = 0.4Myr, the only difference is increased scatter in figure 3.9.

Moving on to the same regions for the gas component, the clear trend with fM

present in the stellar inner region has somewhat disappeared for the core radius. Most

of the resultant cluster’s core radii have grown somewhere between 1 and 3.2 times their

original value. The collisional velocity vLM induces a large amount of scatter in these

points. The half mass radius for the resultant cluster gas component L50,RC however,

does see a slight trend of decrease with increasing fM . However, the velocity scatter

around the low fM simulations makes it difficult to ascertain a strong relationship.

Lastly, we can look at the evolution of each simulation’s L90,RC as an analogue to

that simulations sink particle accretion radius (see section 3.2). We show the values

of L90,RC for each simulation, normalized by that simulation’s L90,MM plotted for all

simulations in which tmon < tsim in figure 3.11. In both plots, it is difficult to see a clear
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Figure 3.10: Same as figure 3.9 but for gas component of resultant
cluster.
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Figure 3.11: L90,RC normalized by L90,MM as a function of time after
tmon for every merger whose resultant cluster is one monolithic structure.
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trend in how the L90,RC grows with either vLM or fM besides the fact that the merger

simulation with the highest collisional velocity has its L90,RC grow at the fastest rate

compared to the other simulations. Furthermore, this simulation is in the lower end of

the fM space.

With this, we can conclude that all of our simulations which result in one monolithic

resultant cluster exhibit growth in the outer most regions of that cluster after the merger.

This growth is absent in the sink particle prescription in GMC simulations. Recall, every

sink particle in the H18 simulation is given the same accretion radius rsink ≈ 1.7pc even

those that are the result of previous mergers. Our results show that the star cluster

expands after a merger which implies that it cannot be held within a constant accretion

radius.

It is important to note that this acts as an upper limit to the amount by which

we expect the L90,RC to grow after mergers such as these. In regions where mergers

are surrounded by ambient gas, such as a background GMC, the pressures from this

background gas would decrease the amount by which the L90,RC grows for our resultant

clusters.

3.3 Best Fit Radial Density Profiles and the Parameter

Space

Next, we discuss how the three theoretical density profiles (Plummer, EFF, and King,

see section 3.1.3) fit to the radial density profiles of all of our simulations in tandem.

Similar to the above analysis, we restrict our times to t > tmon because at this time, the

resultant cluster is one monolithic form.

We use the same method as in section 3.1.3 to divide our clusters into bins of equal

numbers of stars or gas particles. In section 3.1.3 we found that through using 25 and
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Figure 3.12: King W0 for stellar component of resultant cluster against
collisional velocity for all simulations whose tmon < tsim. Zocchi et al.
(2012) find that King model fits to GCs are best described using W0 ≈ 7

100 bins for the stars and gas respectively, there were 80 and 2000 stars or gas particles

in each bin. We keep this number of particles in each bin for all of our simulations as it

is the resolution at which we find best shows all aspects of the radial density profile of

a given component.

For all of our simulations, the range of best fit W0 values is between 7.5 and 14 with

most lying around 8 and only a couple points of scatter above 10. The scatter around a

mean of ≈ 8 forW0 is found at the lower end of the fM and vLM axes as seen in figure 3.12

which shows the value of W0 that results in the lowest χ2
red for each simulation plotted

against the collisional velocity vLM of that given simulation. This spread indicates that

at high mass ratios and low collisional velocities, the resultant cluster can become much
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Figure 3.13: Best fit EFF scale radii ae of resultant cluster normalized
by that of the more massive cluster before the merger against fM for the
stellar component.

more centrally concentrated than at higher ends of the fM and vLM axes (as indicated

by a high W0). In other words major mergers can produce more centrally concentrated

best fit King profiles, while minor mergers produce shallower models. However, more

simulations would help further solidify this conclusion.

Note, for the King model fits, the best fit rt follows either components L90 fairly

well. This is a due to the fact that the tidal radius is defined as L100 with only slight

scatter. The tidal radius is consistently the radial location of the outermost bin in all

of our simulations. We therefore refrain from discussing it here as the total L90 is more

important and has been discussed in section 3.2.2.

We now discuss the stellar components best fit EFF parameters. All of the γ values
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for our simulations lie between 4.3 and 4.9 which is growth from the γ = 4 associated with

the Plummer density profile used to initialize our clusters. To compare our best fit EFF

scale radii for all of our simulations, we perform a similar analysis to that of the cluster

growth: we normalize our resultant cluster’s best fit EFF scale radii ae by that of the

more massive cluster before the merger process ar,MM . To find ae,MM , we do not simply

take the scale radius used to set up the Plummer spheres before numerical relaxation.

Rather, we fit the cluster to an EFF profile after it has numerically relaxed giving us an

initial scale radius and γMM which we use to normalize our resultant cluster’s best fit

parameters.

For all of our simulations, we see that the best fit scale radii follows a similar trend

as the stellar core and half mass radii found in figure 3.9, namely: there is a slight trend

of decreasing scale radius ae and increasing fM as can be seen in figure 3.13. However,

this decrease towards unity happens much faster for the scale radii and most of the

simulations have their scale radii increase by a factor of ≈ 1.2. The best fit γ of the

resultant cluster normalized by that of the more massive cluster on the other hand,

shows a spread. We find that our resultant cluster’s best fit γ increase by a factor of

≈ 1.3 on average. This shows us that the merger process has caused the radial density

profiles of the stellar component of our clusters to steepen which is in line with what we

find from the best fit King profiles: our clusters become more centrally concentrated.

For the gas component, we see similar behaviour. The King model W0 values are

consistently between 8.4 and 9 and there is no clear trend with either vLM or fM .

However, the χ2
red for all the gas component simulations are orders of magnitude higher

than those of the stellar component implying that the gas fits, overall, produce much

more poorly than those of the stellar component. The scale radius of the EFF fits of the

resultant cluster normalized by that of the more massive cluster follows the same trend

as that of the stellar component: decrease in value with increase in fM . However, while

71

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Jeremy Karam; McMaster University– Department of Physics and
Astronomy

Figure 3.14: Same as figure 3.13 but for gas component.

the stellar component’s ae/ae,MM plateaus at 1 with small scatter, the gas component’s

ae/ae,MM plateaus below 1 at around 0.3 as seen in figure 3.14 implying that the radial

density profiles of the gas components are able to have denser cores after the merger

process when compared to the stellar component. As well, converse to that of the stellar

component, γ for the gas component EFF fits of the resultant cluster normalized by

that of the more massive cluster before the merger shows scatter between 0.07 to 0.8

but always lies below 1. This implies that the power of the tail part of the resultant gas

component’s best fit EFF model decreases for all of our mergers when compared to that

of the more massive cluster. Therefore, the gas components density profile tail becomes

shallower which is consistent with the outer regions of the gas component expanding

throughout our simulations as seen in the previous sections.
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We note here briefly that the Plummer model χ2
red represent very poor fits for all

simulations’ stellar and gas component. We therefore have refrained from discussing

them here.

3.4 Non monolithic Resultant Cluster Cases

We now discuss the simulations whose final resultant cluster does not reach monolithicity

by the time our simulation is finished (i.e tmon > tsim). The three simulations that satisfy

this criteria are run2_2p8v, run5, and run4_2p5v. Their initial conditions can be seen

in table 2.1. They all have collisional velocities ' 10kms−1 and have fairly low mass

ratios. To draw an analogue to the sink particle prescription, these simulations should

be represented by two sink particles merging and not remaining together as one sink

particle, but rather, still being represented as two. We now briefly discuss the merger

process for these three simulations. We aim to define what is meant by a "resultant

cluster" for these non monolithic simulations.

Beginning with run2_2p8v, as before, the less massive cluster is initiated a distance

away from the more massive cluster and given a velocity kick towards the origin. The

mass of these clusters is comparatively small when looking at the other runs in our suite.

Therefore, any massive stars in these clusters will have a stronger gravitational effect on

the system as a whole than on larger clusters. By virtue of the Kroupa IMF used to

sample stellar masses for our clusters, a 40M� star is found in our more massive cluster

where the average mass is ≈ 1M�. As the simulation evolves before the merger, both

components of the more massive cluster move slightly off the origin. This leads to a

merger that does not involve the collision of the two densities centres of both of our

clusters. Rather, because the density centre of the more massive cluster has moved off

the trajectory of that of the less massive cluster, the density centre of the less massive

cluster collides with a diffuse part of the more massive cluster gas cloud. This leads to a
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much weaker shock and less energy dissipation allowing for the gas component of the less

massive cluster to travel through that of the more massive cluster. Furthermore, due to

the collisionless nature of the stellar component, coupled with the high collisional velocity

of the merger, the stellar component of the less massive cluster travels through that of

the more massive cluster and does not recombine before our simulation is completed (i.e

tmon > tsim). Therefore, the result of this simulation is two clusters each with their own

stellar and gas component, rather than one resultant cluster.

Next, we look at run5. The stellar components of the clusters that make up the run5

simulation act in a similar way to those in the run2_2p8v simulation. That is, they pass

through each other and do not recombine by the time our simulation is finished. However,

because the stellar components are more massive for both clusters than their counterparts

in the run2_2p8v simulation, there is no significant movement of the clusters off of the

y = z = 0pc axis and the mergers are head on (i.e the density centres of both clouds

collide). However, we find that gas originally from the less massive cluster pushes through

that from the more massive cluster with only a fraction of it remaining merged with the

more massive cluster gas cloud. This process can be seen in figure 3.15. We find that

roughly half of the gas remains attached to the more massive cluster after the collision,

and the other half leaves with the stellar component of the less massive cluster, thus

again resulting in two clusters after the merger. To make the distinction between both

clusters, we use the density weighted centre of all of the gas particles belonging to the

less massive cluster. This density weighted centre is roughly half way between both of

the new clusters for the duration of our simulation. We therefore call all gas to the left

of the density weighted centre the new less massive cluster, and all to the right is the

new more massive cluster. With this definition, the less massive cluster loses a large

fraction of its gas mass, and the more massive cluster gains a significant amount of gas

mass at the collision time. We discuss this more in the following sections.
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Figure 3.15: Evolution of the gas particles that originally belonged to
the less massive cluster in run5. We omit the particles that belonged
to the more massive cluster here to illustrate that the gas from the less
massive cluster mixes with that of the more massive cluster and splits off
into its own cluster after the collision.
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Lastly, we describe run4_2p5v. This is the fastest of our simulations and the gas

clouds are on the larger end in our suite. Because of this, the shock is very efficient

at dissipating the kinetic energy of the moving less massive cluster leading to a single

monolithic gas component after the collision time. The stellar component however,

behaves in a similar way to the previous two runs discussed. Stars belonging to the less

massive cluster fly through those of the more massive cluster, and do not recombine by

the end of our simulation. Therefore the result here is still two isolated clusters, however

the less massive cluster no longer has a gas component and the more massive cluster has

gained a large amount of gas mass.

From here on, we refer to this subset of simulations as the non monolithic simulations

for simplicity.

3.4.1 Bound Fraction

We begin with a discussion of the bound fraction of stars and gas for these simulations.

This is handled differently than section 3.1.1 because we are no longer considering the

bound stars with respect to the single resultant cluster. We now change our reference

frame to each cluster individually. To do so, we calculate the potential energy of a given

star or gas particle in our simulation and compare it to that particles kinetic energy

after subtracting the clusters net velocity. This allows us to determine how many of a

given components’ particles are still bound to each individual cluster after the merger

which we translate to a mass fraction by dividing the total mass by that of the clusters

before the merger.

We show the unbound percentage of stellar mass for each cluster in each of the three

simulations in figure 3.16. From top to bottom, the collisional velocities of these runs are

vLM = 7.8, 10, and 16kms−1. The green vertical line in each figure shows the collision

time of each respective simulation. We see, in the highest velocity case, the less massive
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Figure 3.16: Remaining bound stellar mass of more massive (MM) and
less massive (LM) clusters for the three runs whse result is not one mono-
lithic cluster. The green lines show the collision time for each respective
simulation. 77
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cluster loses up to ≈ 72% of its total stellar mass after the merger process yet the more

massive cluster is nearly unaffected, losing only ≈ 4% of its total stellar mass. In the

lower velocity cases however, the more massive cluster does lose a non-negligible amount

of stellar mass compared to that of the less massive cluster. In the lowest velocity case,

the more massive cluster even ends up losing a comparable amount of stellar mass to

that of the lower mass cluster. This result implies that sink mergers whose resultant

cluster is not a monolithic cluster, such as the ones shown here, must account for mass

loss much more than those whose resultant sink is monolithic as they are much more

sensitive to higher velocity mergers. We note that the mass loss here is much higher

than in the case of a monolithic resultant cluster where the maximum stellar mass lost

was only slightly above 10 per cent.

We now perform the same analysis for the gas component of the resultant clusters

after the merger has taken place. Recall, for the special cases of run5 and run4_2p5v,

the gas component of the result is not the same as the initial gas components before the

merger as described above. All of these mergers can be seen in 3.17. For run5, we see

that the more massive cluster gains an amount of mass after the collision time and that

the less massive cluster loses a very significant amount of its total mass. The bound

gas mass of run4_2p5v behaves very similarly to the bound gas mass of the monolithic

simulations in the previous section due to its monolithicity after the merger. However,

it loses more mass than those clusters. Lastly, run2_2p8v has both the gas clouds

losing mass in a similar way to the monolithic gas cloud cases, but at a slightly higher

rate. Compared to the <5 per cent bound gas mass loss of the previously analyzed

monolithic simulations, the gas mass loss (or gain) is much more drastic here due to the

high velocity of these mergers. Furthermore, we find that in the run where the resultant

gas component remains monolithic, the stronger shock that takes place turns much of

the kinetic energy into heat and therefore, causes less of the total gas mass to become

gravitationally unbound.
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Figure 3.17: Same as figure 3.16 but for gas. Final plot only contains
bound mass fraction of gas for final monolithic gas component RC
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As seen in figures 3.16 and 3.17, all of these resultant clusters lose significant amounts

of stellar and gas mass by the time they are expected to merge with another cluster. If

we look at these unbound fractions at t− tcol ≈ 1Myr, we find that the bound mass lost

is a fairly large fraction of the total mass of the cluster. In a GMC simulation involving

sink particles, this behaviour would result in a large discrepancy in the final mass of the

YMC sink particle meaning that mergers with collisional velocities ' 10kms−1 should

have their unbound stellar and gas mass accounted for.

3.4.2 Cluster Size

After the collision time, we look at how the core radius and half mass radius of our

clusters evolves with time. For runs 2_2p8v and 4_2p5v, the half mass radii of both

clusters do not change significantly and for run5, the core radii of both clusters, on

average, do not change after the collision. The core radii of these simulations show much

noise around a given value making it difficult to discern any trend for these clusters. On

the other hand, the noise in the evolution of the half mass radii for these simulations is

much less prevalent throughout the cluster’s evolution. We show these half mass radii in

figure 3.18. The only significant change in the stellar component half mass radii occurs

in the clusters from run5 where we see increases for both clusters. In the other two

simulations the only movement away from L50/L50,0 is around the collision time. We

therefore see that the merger process introduces little to no expansion in either cluster’s

stellar component for our monolithic runs although.

Plotting these onto figure 3.9 along with the stellar component core radii for our non

monolithic clusters, allows us to compare our non monolithic resultant cluster simulations

to our monolithic ones. This can be seen in figure 3.19. We see that for the core radius,

our non monolithic resultant cluster simulations lie below the trend discussed for our

monolithic resultant cluster simulations. Both clusters stellar components that come out

of these non monolithic simulations tend to grow less than the one resultant cluster in our
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Figure 3.18: Evolution of the half mass radii of both clusters from all
non-monolithic runs. The y-axis has been normalized by the value of the
half mass radius of the cluster before the merger. The green vertical line
shows the collision time for each simulation.
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Figure 3.19: Same as figure 3.9 but now including non monolithic re-
sultant cluster simulations.

monolithic simulations. This is expected as the single resultant cluster of our monolithic

simulations contains most the material of both clusters involved in the merger (save for

some unbound stellar and gas mass). Conversely, the non monolithic resultant clusters

pass through each other and lose much more mass as a result of the collision.

We now perform the same analysis as above for the gas component of our resultant

clusters. The growth of the gas component’s core radii and half mass radii can be seen

in figure 3.20 where we have normalized the values of the resultant clusters core and half

mass radii by those of the initial clusters before the merger.

We see from these plots that there is growth in both the core radii, and half mass

radii of the gas components of all clusters after the mergers. We also see that the growth

of the gas components of runs 2_2p8v and 5 is much higher than that of any simulation

whose final gas component is monolithic as seen by comparing these results to those
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Figure 3.20: Growth of the gas component of all simulations whose
tmon > tsim. We focus on the growth of the core radii and half mass
radii of each cluster that results from the given merger. In all plots, the
green vertical line shows the collision time for that merger simulation. For
runs 5 and 4_2p5v, the green line is at the beginning of the plot because
either the definition of each cluster changes after the merger (run5) or the
resultant cluster gas component is monolithic (run4_2p5v).
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shown in figure 3.10. Lastly, the evolution of the core radii and half mass radii for these

cluster after the merger differ from the rest of the clusters shown in figure 3.10: they do

not remain constant after the merger. In particular the half mass radii of runs 2_2p8v

and 5 show change throughout the entirety of the simulation. Because of this, we cannot

average over a given time period to obtain a single value that can be plotted on figure

3.10 as we did with figure 3.19.

As done for our tmon < tsim simulations, we can look at how our sink particle accretion

radius analogue, the 90 per cent total mass radius L90,RC , changes after the merger

simulation. The difference here is that we are concerned with this value for both of our

clusters rather than just the single monolithic cluster after the merger. However, for

the case of run4_2p5v, the less massive cluster loses all of its gas at the collision time

and the more massive cluster now has the stars it originally contained including the gas

components from both clusters.

These plots can be seen in figure 3.21 where we have normalized L90,RC by this

value of each respective cluster before the merger L90,OC . As before, this would result

in further delay of gas accretion onto the sink particles in a GMC simulation context.

We see here that run4_2p5v is the only simulation in which the more massive cluster’s

L90,RC grows more than that of the less massive cluster due to the extra gas mass it has

picked up from the merger process as described above. Furthermore, the less massive

cluster loses much of its stellar mass by the end of the simulation implying a much

smaller bound component and, in turn, a smaller increase in L90,RC .

Very similar to the simulations whose tmon < tsim, our sink particle accretion radius

analogue grows throughout our simulations after the collision time for each of the non

monolithic simulations. We plot our sink radius analogue for the non monolithic clusters

in figure 3.22. By comparing with figure 3.11, we can see that the slope of the growth

of the L90,RC tends to be similar for mergers with similar collisional velocities. Higher

84

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Jeremy Karam; McMaster University– Department of Physics and
Astronomy

Figure 3.21: Evolution of both the more and less massive cluster’s total
90 per cent mass radius normalized by that cluster’s same radius before
the merger takes place for runs 2_2p8v, 5, and 4_2p5v from top to bottom
respectively. The green line shows the collision time for each respective
simulation. For the final two plots, because the our definition of the more
and less massive clusters change after the collision time, we begin the
x-axis at the collision time.
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Figure 3.22: Same as figure 3.11 but for the non monolithic clusters.
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collisional velocities tend to lead to faster growth of the L90,RC for our clusters. There

are two outliers in figure 3.22. The first is the less massive cluster of run4_2p5v which,

as stated in a previous section, has lost all of its gas due to the collision. The second,

is the less massive cluster from run5 which has lost a sizeable amount of its gas mass.

However, both of these outliers still grow after the respective clusters have formed and

do not show any sign of stopping by the end of our simulations.

This time, because our result is not one monolithic cluster, both cluster’s accretion

radii would need to increase such that they are not missing out on any potential accreted

gas before their next merger.

3.4.3 Best Fit Density Profiles

We finish this section with a brief discussion regarding the best fit density profiles for the

stellar and gas components of the clusters after the collision time for the non monolithic

simulations. From the previous two subsections, we see that the stellar component of

the less massive clusters for all of these simulations lose much of their mass and expand

implying that the radial separation of remaining stars in each bin of our radial density

profile, has a high error. This is especially true for the less massive cluster in run2_2p8v

which is the smallest single cluster in our suite, and in turn, is the cluster with the

smallest number of stellar members. For this simulation, it is impossible to keep the

number resolution of ≈ 80 stars in each bin without only using 4 bins to describe the

resulting density profile of the entire cluster. The same is true for the more massive

cluster in this simulation which means that both clusters in this simulation are too

sparse for us to model using any of the theoretical density profiles used in the previous

sections. Similarly, for the less massive cluster of run4_2p5v which stabilizes at stellar

mass loss of up to ' 70 per cent, we cannot perform fits with any certainty due to the

extremely low number of stellar members. Lastly, as stated in the previous section, the

gas component that makes up the resultant less massive cluster in run5 is very diffuse
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because of all the mass it lost at the collision. Similar to the previous cases, this makes us

unable to resolve the radial density profile with any significant certainty and we refrain

from showing fits here.

This therefore leaves us with both components from the more massive cluster of

run4_2p5v and the more massive cluster of run5, and the stellar component of the less

massive cluster from run5.

We begin with the stellar components of both of the run5 clusters as seen in figure

3.23 where we only show the King fit of the more massive cluster. Neither are good fits

to the density profiles. We note again that the Plummer fits are so poor that we do

not show them here. For both of these clusters, the W0 values are similar to those of

the the stellar components of the clusters in the monolithic simulations. Again, after

the merger, the stellar components become more centrally concentrated. Furthermore,

the increase in the EFF fits’ γeff is similar as well to those in the monolithic run which

again shows that the radial stellar density profiles have steepened which is by a factor

of 1.1 and 1 for the more and less massive cluster respectively. The scale radii increase

by 2 and 1.6 respectively which is the same trend for this mass ratio as the monolithic

simulations.

Moving on to the gas component of the more massive cluster of run5, we find that,

after the merger, the best fit King model parameters behave similarly to those of the

monolithic clusters. Namely,W0 has become more centrally concentrated and now lies at

8.7. Regarding the EFF model, the best fit scale radius has decreased slightly by a factor

of ≈ 0.7 and the best fit γeff has stayed roughly the same converse to the monolithic

cluster simulations showing that for this simulation, the merger does not greatly affect

the tail of the gas density distribution.

Lastly, we show the stellar and gas components for the more massive cluster in
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Figure 3.23: Best fit stellar radial density profile for the more massive
clusters of run5 at the time which minimizes the χ2

red.

run4_2p5v. The King fits can be seen in figure 3.24. Similar to the monolithic cases, the

clusters become more centrally concentrated as evidenced by the best fit KingW0 values.

Both the gas and stellar component best fit W0 values lie within the range described by

the monolithic runs.

3.5 Star Formation Density Thresholds

Lastly, we can look at the amount by which gas above star forming densities grows during

the merger. The subgrid model for star formation employed in H18 involves sampling

the gas mass inside a given sink using a Chabrier (2005) IMF at an efficiency of 20 per

cent to match star formation efficiencies found in Lada and Lada (2003). This sampling

is done once every t = 0.36Myr which corresponds to 1 free-fall time for a sink particle

in the H18 simulation. By looking at the amount of gas above star forming density
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Figure 3.24: Best fit theoretical profiles against stellar (top) and gas
(bottom) radial density profiles at times that have minimized the χ2

red for
that given component for run4_2p5v.
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thresholds in our simulations throughout the merger process, we can see how consistent

this sampling of 20 per cent is throughout the merger process.

We look at the gas with densities above 104−5cm−3 which is a commonly quoted

density above which dense star-forming cores begin to form (e.g Evans et al. 2009,

Heiderman et al. 2010, Lada et al. 2010, Lada et al. 2012). Throughout the simulation,

we track what percentage of the total gas consists of gas with densities above these values.

We show these percentages for gas above n1 = 104cm−3 and n2 = 105cm−3 for run3 in

figure 3.25. In these figures, the x axis is in units of 1 free-fall time tff corresponding to

the given density threshold. We see that, around the collision time, the gas percentage

above either density threshold peaks. The difference between this peak percentage and

the percentage at the beginning of our simulation is approximately 5 per cent for n1 and

11 per cent for n2. However, we see that this peak lasts for less than a free-fall time for

the gas above n1 and approximately one free fall time for n2. Therefore, the increase

in sampling efficiency would not be required if the star formation density threshold is

chosen to be above n1 for this merger, as it is for the sink particles in H18. Furthermore,

we see that after the merger, the percentage of gas with densities above n1 and n2 has

decreased by approximately 10 and 7 per cent respectively. Because this decrease lasts

for the rest of our simulation, it is important for the sink particle prescription to decrease

the efficiency at which it samples its gas mass into stars after the merger has taken place

for this run.

Generalizing to all our simulations, on average, the increase in gas mass above n1 and

n2 is approximately 3 per cent, and 7 per cent respectively. Similar to run3 as discussed

above, the peak lasts for less than 1 free-fall time for all our simulations when looking

at gas with densities above n1, and approximately 1 free-fall time for all our simulations

when look at gas with densities above n2. Therefore, during the merger, the sink particle

prescription need not change its star forming percentage because the sink particles from
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Figure 3.25: Percentage of gas above 104 (top) and 105 (bottom) cm−3

throughout run3. Time on x axis is given in units of the free-fall time
for that density threshold. The green line shows the collision time tcol for
this merger simulation.
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H18 are at densities of n1 and this peak lasts for less than a free-fall time. However, for

sink particles with densities of n2, sampling at a constant rate would be underestimating

the amount of star formation at the time of the merger. We also find that on average,

the gas mass with densities above n1 and n2 decrease by approximately 15 and 10 per

cent respectively after the merger of two clusters. After the merger, the sink particle

prescription is overestimating the amount of star formation inside the sink particle when

compared to our simulations.
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Chapter 4

Discussion and Future Work

4.1 Resolving Star Cluster Mergers in GMC Simulations

We have taken simulation results from Howard et al. (2018) (H18), who found subcluster

formation in the filaments of a collapsing GMC, and have resolved a key component of

the subcluster’s evolution at higher scales. We have resolved 10 H18 subclusters and

have run 15 merger simulations of these clusters. We have shown that most of our

mergers result in one monolithic cluster, and all exhibit stellar and gas mass loss after

the merger process. This is concerning as it is contrary to the sink particle prescription

used in H18 which does not allow for the loss of any mass after a merger between two

sinks. However, the mass loss we found was consistently less than 5 per cent which is

negligible. We advise that sink particle users keep this mass loss in mind when looking at

particularly high velocity sink mergers. In such cases, we find that the unbound stellar

mass percentage increases to upwards of 12 per cent. More drastically, in mergers whose

collisional velocity is so high that the resultant cluster does not become monolithic by

the time our simulations are finished, we find stellar mass loss of at least 30 per cent from

the lower mass cluster. It is important to note that these high speeds assoviated with the

non-monolithic clusters are not extremely common in the H18 simulations. Furthermore,

it is likely that such high speeds are a byproduct of the high mass of their simulated
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GMC. Accounting for this mass loss in GMC simulations would require sink particles

to be able to release stars into the surrounding environment as N-body particles. The

simulations performed by Wall et al. (2019) and Cournoyer-Cloutier et al. (2021) for

example, use sink particles as a star particle "factory" that allows sink particles who

have accreted enough gas mass to release star particles after sampling from a Kroupa

IMF. Such small fractions of mass loss may eventually lead to larger mass discrepancies

concerning the final YMC formed in GMC collapse simulations in the following way: we

may expect that subsequent mergers will continue to lose mass in stars and gas converse

to the sink particle prescription of H18 which does not allow for mass loss in either stars

or gas. Therefore, the sink mass quoted by H18 is higher than what we find in our

simulations.

We have also investigated how the size of the resultant clusters change after a merger

has taken place. Through our analysis of the 15 merger simulations, we have found

that all of the resultant clusters grow after the merger process. This, similar to above, is

contrary to the sink particle prescription which only allows clusters to be contained inside

rsink. The growth of the sink particle accretion radius in a GMC collapse simulation with

time would require a change in resolution of the simulation which could lead to problems.

However, not allowing the accretion radius of a sink particle may lead to a lag in gas

accretion onto sink particles in GMC simulations which may in turn result in further

mass discrepancy by the time the next merger takes place as shown by tests performed

by Dobbs et al. (2021). The authors find that through increasing their accretion radius

by a factor of ≈ 2.5, the mass attainable by a sink particle can increase by one order

of magnitude illustrating the importance the accretion radius plays on a sink particle’s

mass. We therefore suggest that a given sink particle’s accretion radius be allowed to

grow after mergers with other sink particles.

We have found that while commonly used radial density profiles do not provide good
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fits to our resultant cluster’s stellar or gas radial density profile, they do help with putting

constraints on what is considered an acceptable representation of the radial profile of a

merged cluster. For instance, we see that the overall shapes match the three theoretical

models tested.

4.2 Future Work

We have developed a method by which we can simulate subcluster formation mechanisms

with higher precision, but only in the context of mergers. In the future, we will be

simulating the next of the two important subcluster evolutionary mechanisms shown

in H18: gas accretion. We can explore the simulating of gas accretion through many

avenues. Because H18 found that their subclusters formed mostly inside dense filaments

of gas, we can try to emulate this by taking our fully realized clusters (both stellar and

gas component), and initiating cylinders of gas around them. These cylinders of gas,

as shown by Zavagno et al. (2020), can have radial density profiles similar to Plummer

profiles as seen by the filamentary structure inside the galactic HII region RC 120. This

may allow us to easily set up Plummer cylinders of gas that we can then let our star

clusters accrete. Furthermore, with the accretion data from H18, we have the accretion

rates of gas onto each of their sink particles throughout their simulations. We can

use these data to help our simulations more accurately represent GMC simulations by

ensuring that our accretion rates match those found in H18.

Another method by which to include the ambient environment in our simulations

is through background gas representative of the local GMC around these subclusters.

Previous studies have been conducted in which the star cluster as a whole (stars and gas)

has been modelled using an analytic potential energy function which is allowed to move

through a medium of gas (e.g Naiman et al. 2011). Other studies which have included

individual stars have not only omitted the gas component of their star clusters, but
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have also only included ≈ 32 stars all of equal mass (e.g Kaaz et al. 2019) which is not

representative of the subclusters that form in the GMCs. We can improve this by taking

our star clusters comprised of stars and gas and allowing them to travel through ambient

gas. We can apply similar analysis techniques as those used here to see how a subcluster

responds to constant interactions with an ambient medium. For example, at T = 10K,

the sound speed in GMCs is on the order of 0.2kms−1 which is fairly small compared

to the velocity the subclusters travel through the GMC with implying that shocks may

arise in the gas component of our star clusters. These shocks may, in turn, have an affect

on the overall dynamical evolution of the subclusters as they travel through the GMC

environment as the kinetic energy of the gas is irreversibly turned into heat.

Our future work also involves the implementation of stellar feedback effects in our

gas accretion and merger simulations. As stated in chapter 1, stellar feedback plays

a vital role in the survival of a star cluster after its birth in a GMC. Gas expulsion

from stellar feedback has been found to be a vital part of star cluster evolution (e.g

Baumgardt and Kroupa 2007, Krause et al. 2016) and resolving subcluster formation

with stellar feedback would allow us to understand what the sink particle prescription

is masking with regards to this expulsion and how it affects the merger process. Not

only would the implementation of stellar feedback effects help our clusters become more

realistic, they would allow us to run our simulations for longer times. Right now, we

cannot run our simulations beyond 3Myr due to our choice to not include supernovae

which occur ≈ 3Myr after the birth of a massive star (e.g Meynet and Maeder 2003).

This would allow us to investigate multiple merger in a single simulation and how this

affects the resultant star cluster. Furthermore, we can analyze how stellar feedback

effects influence the accretion of gas onto our star clusters and how this influences the

overall star formation efficiency of our clusters.

Finally, once we have included stellar feedback in our merger and future gas accretion
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simulations, we aim to study all the important star cluster evolution mechanisms in one

single simulation. This will involve taking the sink particles from H18 and re-simulating

their entire evolution through the GMC using our new star cluster model (stars and

gas). We will finally be able to see how a star cluster responds to all of the important

evolutionary mechanisms it undergoes inside the GMC environment.
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