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Lay Abstract

Concussions are recorded in approximately 300,000 athletes annually and are esti-
mated to affect up to 3.8 million individuals per year in the United States alone.
Understanding when its safe to return to normal routine after an injury is important
but challenging. Therefore, a series of stages have been developed to lead children
through a safe and timely return to sport and activity after concussion. The goal
of this study was to develop machine learning (ML) algorithms which predict these
return stages using symptom recordings and gross body movement data. Algorithms
could be incorporated into a smartphone application (APP) to provide accessible re-
turn guidelines for children with concussions. Algorithms were created and model
performance was tested using symptom and body movement data collected from chil-
dren after a concussive injury. The results of this study show that it is possible to
predict return to school and return to activity stages with ML, and with improve-

ments, can be used to facilitate return from injury.
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Abstract

Mild traumatic brain injury (mTBI), or concussion, results from sudden acceleration
or deceleration of the brain and subsequent complex tissue propagation of shock waves
that disrupt structure and function. Concussions can cause many symptoms including
headache, dizziness, and difficulty concentrating. These can be detrimental to chil-
dren, affecting their participation in school, sport, and social activities. Therefore,
return to school (RTS) and return to activity (RTA) protocols have been developed to
help safely return children to these activities without risking further injury. The goal
of this study was to develop machine learning (ML) algorithms to predict RTA and
RTS stages, that can easily be incorporated into a smartphone application (APP).
Ideally this would assist children in tracking and determining their RTA and RTS
progression leading them to a safe and timely return.

Support vector machine classifier (SVC) and random forest (RF) algorithms were
developed to predict RTA/RTS stages. Both were modeled on previously acquired
data, and on newly acquired data, and results were compared. Models were trained
and tested using accelerometry and symptom data from pediatric concussion patients.
A sliding window technique and feature extraction were performed on raw acceler-
ation data to extract suitable features, which were combined with yes/no symptom

recordings as ML inputs. The dataset consisted of 67 participants aged 10 to 18, 42

v



female and 25 male, with a total of 844408 samples.

The best results for RTS prediction showed average accuracy of 83% for RF and
66% for SVC. For RTA predictions, the best results had average accuracy of 60% for
RF and 58% for SVC. For new data, RTS predictions showed an accuracy of 45%
for RF and 41% for SVC. RTA predictions had an accuracy of 35% for RF and 30%
for SVC. RF models had superior performance on all data. These results show that
predicting RTA/RTS is possible with ML. However, improvements to these models
can be made by training on more data prior to APP implementation. More data is

needed, as recruitment during this study was limited due to Covid-19 restrictions.
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Chapter 1

Introduction

Mild traumatic brain injury (mTBI), formally known as concussion, is recorded in
approximately 300 000 athletes annually, however, is estimated to affect up to 3.8
million individuals a year in the United States (Halstead et al., 2010). According to
the government of Canada, 46 000 children had recorded concussions in 2016-2017
(Canada, 2020), and only 1 in 4 people are aware of how concussions are treated.
Concussions can cause many symptoms including headache, dizziness, and difficulty
concentrating. These can be detrimental to children, affecting their participation in
school, sport, and social activities. Finding the balance between returning too soon
and staying out from activities for too long can be challenging, but is important
to keep children from isolating from their normal routines for too long(DeMatteo
et al., 2019). Providing children with a simple solution to understanding the return
from their injury could increase understanding of return protocols, and facilitate the
reCOVery process.

The current research proposes the use of two machine learning algorithms (MLA),

random forest and support vector machine classifiers, to predict the pre-determined
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return to school (RTS) and return to activity (RTA) protocols for children with con-
cussion(Dematteo et al., 2015a)(Dematteo et al., 2015b). Using self-recorded symp-
toms and recorded body movement as the basis for inputs to the algorithms, stages
could be predicted and easily be portrayed to the child assisting them in moving
through the stages leading to a safe and timely recovery. Alongside this study, a
phone application (APP) called Back2Play has been developed by developers with
the company Medic associated with Mohawk College, where children can record their
symptoms, and movement is tracked using an Apple watch. The end goal for this
research is to incorporate the ML model into the APP to predict and display which
stage a child is in at any given time throughout the day. APP results could then be
correlated to brain recovery found from functional medical imaging techniques. This
study was part of the Back2Play study presented by research company CanChild.
This thesis describes in detail the methodology, results, and conclusions from find-
ing the best ML model to incorporate into the APP for use of children with concus-
sions. Two algorithms were used and compared to find the best model for predicting
RTA and RTS stages. Chapter 2 highlights important background information on
concussions, currently available tools and technologies for assessing and intervening
with concussions, and introduces the machine learning models that are used in this
study. Chapter 3 describes the methods for this research, including data processing
and ML modelling. Chapters 4 through 7 describes the results for models created
on different processing methods for the initial study data. Each method taken was a
new variation from the former, with the hopes of improving algorithm performance
with each test. Chapter 8 describes the results for the models created on a newly

collected set of data. Chapter 9 discusses the results presented in previous chapters.
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Finally, chapter 10 summarizes the findings of this study, while highlighting potential

limitations, and describing potential future work prior to APP implementation.



Chapter 2

Background

This chapter provides a brief background into mild traumatic brain injuries, including
assessment tools, protocols of intervention, and currently available products to assist

children with concussions.

2.1 Mild Traumatic Brain Injury

A concussion occurs when there is sudden acceleration or deceleration of the brain
inside the skull, which can be caused by traumatic forces to the body or head produc-
ing impulsive forces which are transferred to the brain. A concussive injury results in
a rapid onset of impairment and neurological function which usually resolves quickly,
however, these impairments can last from minutes to hours (McCrory et al., 2017).
The signs and symptoms of concussion largely reflect a functional disturbance as
opposed to a structural injury (McCrory et al., 2017)(Chen et al., 2004) however,
imaging techniques have found axonal injury in research settings. Shrey et al. sug-

gest that more work must be done to apply these findings clinically(Shrey et al.,
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2011). Following an injury to the brain, there is a release of neurotransmitters that
result in an efflux of potassium and influx of calcium. These ionic fluxes then cause
changes in cellular physiology (Giza and Hovda, 2014). In order to normalize these
shifts, the Na+-K+ATPase pump must work harder, requiring an increase of adeno-
sine triphosphate (ATP). Dramatic increases in the level of ATP causes an imbalance
between glucose supply and demand thus causing a cellular energy crisis (Giza and
Hovda, 2014). This crisis creates a vulnerability and in the brain’s response to a
second injury, which increases the possibility of longer-lasting deficits. Additionally,
after injury, axonal stretching occurs which can cause membrane disruption and de-
polarization. This can lead to increased calcium influx, mitochondrial swelling, and
altered neurofilament stability (Giza and Hovda, 2014). The injury can be consider-
ably magnified and exacerbated calcium is often a second messenger in biochemical
pathways. Based on these pathophysological effects, Shrey et al. suggests that youth
could be more susceptible to second injury(Shrey et al., 2011). Furthermore, individ-
uals with previous history of concussion are reportedly up to 5.8 times more likely
to sustain another injury(Zemper, 2003). Additional injury prior to healing from
the initial can result in second-impact syndrome in youth under 18 years producing
cerebral vascular congestion that can lead to severe morbidity, and death in severe
cases(Halstead et al., 2018).

Concussions cause several physical, cognitive and emotional symptoms including,
but not limited to, sensitivity to light or noise, headaches, dizziness, fogginess, depres-
sion, and difficulty concentrating (Halstead et al., 2010). Concussion greatly affects
youth in sports, and there has been a 40% increase in incidence noted in emergency

departments for sport related mTBIs in the past decade alone (DeMatteo et al., 2019).
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A study done by Zuckerman et al. found that the recovery time for children ages 13-18
is longer than youth aged 18-22 (Zuckerman et al., 2012). Symptoms occurring due to
concussion can significantly impact the participation of children in school, social, and
physical activities. A major focus in concussion research is providing children with
the understanding of when it is safe for them to return to these activities. Returning
to activities too soon can risk more severe injuries or a longer recovery from the initial
injury, and it is known that children have a higher risk of re-injury (Giza and Hovda,
2014)(Dematteo et al., 2015¢). Furthermore, isolating children from school and ac-
tivities for longer than necessary can cause anxiety or higher incidence of depression
due to isolation from normal routine (DeMatteo et al., 2019). Therefore, return to
school (RTS) and return to activity (RTA) protocols have been developed and can
be used to identify when children can continue participation without risking further

injury (DeMatteo et al., 2019).

2.2 Concussion Assessment

The following section describes several tools that are currently used to assess concus-

sions either on the sidelines, or in clinical settings.

2.2.1 PCSS

The post concussion symptom scale (PCSS) is a self-assessment used to rank symp-
toms based on their severity. The list consists of 22 symptoms, which can be seen
in Table 2.1, and each symptom is ranked from 0-6 where 0 is no symptom, 3 is

moderate, and 6 is severe.
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Table 2.1: PCSS Symptoms (Hawaii Concussion, 2017)

Symptoms
Headache Nausea Vomitting
Balance problems Dizziness Fatigue
Trouble falling asleep  Excessive sleep Loss of sleep

Drowsiness Light sensitivity Noise sensitivity

[rritability Sadness Nervousness
More emotional Numbness Difficulty concentrating
Feeling ‘foggy’ Feeling ‘slow”  Difficulty remembering

Visual problems

PCSS is a good benchmark for individuals to self assess symptoms and can show

important information on the severity of the concussion.

2.2.2 King Devick Test

Visual testing can be important to determining and assessing a brain injury such
as concussion. The pathways connecting the eyes to the visual system are quite com-
plex with many intersections in the frontal, parietal and temporal lobes of the brain
(Galetta et al., 2016). Many subcortical structures, such as the thalamus, are involved
in eye movement causing an interconnection between eye movement and neural activ-
ity in these regions. Based on this relationship, saccade testing is a highly appropriate
option for testing the neurophysiological effects of concussion (Galetta et al., 2016).

The King-Devick (K-D) test was developed to assess visual performance measures
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such as rapid eye movement. The K-D test is a two-minute assessment where pa-
tients rapidly read numbers from a card or computer-based system, measuring eye
movement, attention and language function (Galetta et al., 2016). The results of this
test have been shown to correlate with suboptimal brain function in concussion pa-
tients. The K-D test is mainly used in sport as a sideline tool for assessing concussion

acquired during an activity.

2.2.3 Balance Testing

Balance and related problems are a major symptom of concussion(Guskiewicz,
2011). Measuring balance can assist in tracking patient recovery and can be used
to aid in determining safe return to school and activity. Several methods exist to
measure balance, including the Sensory Organization Test (SOT) and the Balance
Error Scoring System (BESS).

The SOT method implements a specially designed force plate that alters the
users somatosensory and visual inputs, in real time, to assess how the individual
can maintain their stance (Guskiewicz, 2011). Expensive technology is required for
this test and therefore it is not a feasible manner of assessing concussion recovery,
especially if considering assessment on the sidelines. More commonly, BESS testing
is used to assess balance. For BESS testing, a series of 3 stances are performed on
flat ground followed by on a foam pad for a total of 6 trials. The stances are shown

in Figure 2.1.
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Figure 2.1: BESS testing stances.

2.2.4 Sport Concussion Assessment Tool

The Sport Concussion Assessment Tool (SCAT') was first developed by the Concus-
sion in Sport Group at a meeting in Prague in 2004 and was developed as a tool for
the public to assist in detecting sport related concussion (Echemendia et al., 2017c¢).
Since its introduction, the SCAT tool has continued to be refined, with the current
definition being the SCAT5. SCAT5 was designed for use by healthcare practitioners
on individuals 13 years or older who are believed to have had a sport related concus-
sion (SRC). A child version of the SCAT5 was also designed for individuals younger
than 13 (Echemendia et al., 2017c). For the non-medically trained, a separate concus-
sion recognition tool (CRT5H) was developed to assess SRC. The SCAT5 test is done
in two parts: first an on-field assessment, followed secondly by in-office assessment. A
child version of the SCAT called ChildSCAT5 was created for use on children 12 and

under. This version has minor changes to gear the assessments towards the children,
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and includes a parent symptom report (Davis et al., 2017).

On-Field Assessment

The on-field assessment is separated into 4 parts(Echemendia et al., 2017b): 1) red
flags (listed in Table 2.2), 2) observable signs, 3) Maddock memory assessment, and 4)
the Glasgow Coma Scale (GCS). Additionally, there is also a cervical spine assessment

to aid in determining whether the individual has sustained a spinal injury.

Table 2.2: SCAT5 red flag symptoms (Echemendia et al., 2017Db)

Red Flag Symptoms

Neck pain or tenderness
Double vision
Weakness or tingling/burning in arms or legs
Severe or increasing headache
Seizure or convulsion
Deteriorating conscious state
Vomitting

Increasingly restless, agitated or combative

In-Office Assessment

The SCATS5 in-office assessment is conducted in a quiet distraction-free area (Echemen-
dia et al., 2017b). This part of the assessment includes 1) a background on the
individual including previous concussions and recovery for those injuries, 2) record
symptoms and their severity, 3) cognitive screening to assess orientation, memory, and

concentration, 4) a neurological examination is performed using a modified version of
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the Balance Error Scoring System (BESS), which will be discussed in section 2.2.3,
and 5) a delayed recall, which asks the participant how many words they remember

from the given list in the cognitive screening section(Echemendia et al., 2017b).

2.2.5 Concussion Recognition Tool

The CRTS5 is a modified version of the SCAT5H which can be used by non-medically
trained individuals to assess if an athlete has sustained a concussion and therefore
should be removed from gameplay. This version consists of only on-field assessment,
however, should any red flag symptom be observed then emergency assistance should

be phoned immediately (Echemendia et al., 2017a).

2.2.6 Heart rate variability

Heart rate variability (HRV) is a physiological marker that measures the variation
in time intervals between individual heart beats, measuring between consecutive R
peaks in the QRS complex. Electrocardiogram (ECG) is the gold standard in mea-
suring HRV (Bishop et al., 2018). Heart rate is primarily controlled by a balance
between sympathetic and parasympathetic neural activity, and therefore HRV pro-
vides insight into the state of the autonomic nervous system (ANS) (Bilchick and
Berger, 2006). Various parameters exist for calculating HRV, and they include but
are not limited to averaging the R-R intervals (RR mean), a standard deviation rep-
resenting total variance (SDNN) and a percent of intervals that vary by more than
50 millimeters (pNN50). Furthermore, a fast Fourier transform (FFT) can be used to
calculate a power spectral density of the R-R intervals at different frequencies (Bishop

et al., 2018). The Task Force of the European Society of Cardiology and the North
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American Society of Pacing and Electrophysiology divided heart rate into four fre-
quencies: ultra-low frequency (ULF), very-low frequency (VLF), low frequency (LF)
and high frequency (HF) bands, and these frequency bands can be used as metrics
for measuring HRV (Shaffer and Ginsberg, 2017). Research has been done to show
that HRV can potentially be used as a marker to assess concussion recovery, as many
studies have shown a correlation between TBI patients and low HRV when compared
to controls (Senthinathan et al., 2017). Autonomic nervous system (ANS) dysfunc-
tion has been seen in early and late stages of mTBI recovery, and HRV is commonly
used as an index to measure ANS function and its reflection on cardiovascular health
(Purkayastha et al., 2019).

A study done by Purkayastha et al. evaluated HRV using pNN50 of concussed
athletes compared to healthy controls, measuring at 3 times post injury; 3 days, 21
days and 90 days (Purkayastha et al., 2019). Results showed that the pNN50 val-
ues were significant lower in concussed individuals compared to controls at 3 days
post injury, however the pNNb50 values were comparable for both groups at 21- and
90-days post injury. This study supports that HRV can be used as a marker dur-
ing early stages of recovery. A recent study done by Paniccia et al. observed how
HRV differed in youth with concussion versus controls (Paniccia et al., 2018). The
study recruited participants aged 13 to 18 from community sports programs and per-
formed baseline testing. Participants who sustained a concussion were then matched
with an age-matched control for comparison. The study looked at SDNN, root mean
square of successive R-R differences (RMSSD), pNN50, HF and HF normalized units
(HFnu) as measures of HRV. Results showed that SDNN had no significant differ-

ence between injured and control groups. RMSSD showed a decrease 15 days post
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injury followed by a continuous decrease until 30 days post-injury, whereas pNN50
measures showed increases with increasing days post injury. Furthermore, individuals
with more symptoms showed higher pNN50. Finally, both HF and HFnu showed in-
creasing values as days elapsed post injury, with significant differences seen between
injured participants and healthy controls. This study also showed a relationship be-
tween increase in HRV in some measures with more reported symptoms, however
this is mentioned to be inconsistent with other literature, which found lower HRV for
individuals with more symptoms (Paniccia et al., 2018). A study performed by Abaji
et al. observed the effects of concussion on HRV in collegiate athletes, looking both
at resting state and during physical exertion (Abaji et al., 2016). Concussed athletes
were paired with controls matched based on age, sex, and weight. The study found no
significant differences in HRV during resting state, however during physical exertion
is was found that concussed athletes had significantly lower HF power bands when
compared to the control. Other measures of HRV such as RMSSD and RMNN did
not show significant differences between concussed athletes and control. The authors
suggest that concussed individuals show modifications in cardiac autonomic activity
due to increased ANS stimulation (Abaji et al., 2016). The studies highlighted above
show that HRV can potentially be used as a marker for concussion recovery, however
more research is required. Overall, there are inconsistencies in the literature which
indicates more research must be conducted to further understand the relationship

between concussion symptoms, recovery and HRV.
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2.2.7 Neurological Imaging

As previously mentioned, concussions result in a functional injury more so than a
structural injury, and therefore routine (i.e. clinical) structural neuroimaging does not
greatly assist in concussion detection and recovery. Functional magnetic resonance
imaging (fMRI) is a form of functional neuroimaging that detects brain activity by
measuring relative changes of blood oxygenation and may be of more assistance in
concussion diagnosis. As neural activity in regions of the brain increase, more ATP
is required, leading to an increase in oxygenated blood flow to that area (Glover,
2011). The change in oxygenation drives the so called blood oxygen level dependent
(BOLD) signal and can be measured using MRI. Depending on haemoglobin percent
oxygen saturation (%02sat) there will be varied modulation in the local MRI mag-
netic field homogeneity ((ABy)) surrounding the cells, and hence differing BOLD
contrast, allowing fMRI to display regions of activation (Glover, 2011). fMRI can
either be task-mediated or measured during what is termed resting state. During
task-mediated fMRI, the participant performs a task, such as tapping their fingers,
or is subjected to a form of stimulation (e.g. visual or sensory stimulation) and neural
activity is measured. For resting state fMRI (rs-fMRI), the participant is asked to
relax and ‘think of nothing in particular’, with eyes open. The resting state is used to
show spontaneous neurological activity of the brain and is often used to analyze con-
nectivity between various brain regions (Lv et al., 2018). The default mode network
(DMN) is commonly analyzed in concussion studies as it shows high functional con-
nectivity during resting state (Chamard and Lichtenstein, 2018a). Both task-based
and resting state methods have been used as approaches for evaluating concussion,

with varying degrees of success (detailed below).
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Task Based fMRI

Many studies have been done to compare fMRI results from concussed athletes
with healthy/aged matched controls. Many studies have reported abnormal fMRI
results which coincide with post concussive symptoms (PCS) (Chamard and Licht-
enstein, 2018b). A study by Chen et al. showed athletes experiencing PCS had
abnormal fMRI scans during working memory tasks, whereas concussed individu-
als without symptoms presented scans similar to an uninjured control (Chen et al.,
2004)(Chamard and Lichtenstein, 2018b). This demonstrates that fMRI could po-
tentially be used to assess symptoms and symptom patterns throughout the recovery
process. Jantzen et al. found a relationship between hyperactivation on fMRI scans
and longer recovery periods for athletes with concussions (Chamard and Lichten-
stein, 2018b)(Jantzen et al., 2004). Athletes who showed hyperactivity during finger-
tapping compared to baseline tests had a longer recovery period compared to those
who had lower activation patterns. This information could be used to help track
recovery periods however it would require frequent scans (not feasible due to cost
and limited access to MRI scanners). Other studies have been done to test changes
in activation patterns from concussed, compared to uninjured individuals, however
most studies have been done on adults and not children. A study by Keightley et
al. tested working memory in concussed children using fMRI (Keightley et al., 2014).
The results showed lower performance for visual and verbal working memory tasks in
concussed children, as well as lower activation in numerous brain regions (Keightley
et al., 2014). This study shows a good start in analyzing functional deficits caused

by concussion, however more research is required.
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Resting State fMRI

Recently, rs-fMRI has been more frequently used to evaluate concussions. This
approach is advantageous compared to task-mediated fMRI due to limitations in
task-based studies, such as activity constraints, and variability between participants
(Murdaugh et al., 2018). Iyer et al. performed a study to look at connectivity be-
tween two regions of the DMN, the posterior cingulate cortex (PCC) and the medial
prefrontal cortex (mPFC), as well as grey matter volume (Iyer et al., 2019a). This
study compared children with persistent post concussion symptoms (PPCS) to an age-
matched control group. It was found that decreased functional connectivity within
the DMN, and grey matter volume was linked to sleep disturbances, fatigue, and
increased symptoms. It was also noted that normalization of the DMN was linked
to improvements in cognitive function (Iyer et al., 2019a). These results provided
promise in the use of rs-fMRI alongside symptom scales for analyzing recovery in
children with concussion. Furthermore, it was concluded by Iyer et al. that assess-
ment of the connectivity between the PCC and mPFC can provide information on the
likelihood of recovery from symptoms, and the evolution of PPCS (Iyer et al., 2019a).
A previous study by the same group noted the same results, that decreased functional
connectivity in the DMN is indicative of increased persistent post concussion symp-
toms and decreased cognitive ability (Iyer et al., 2019b). Churchill et al. performed
a study on university level athletes to determine how functional connectivity corre-
sponds to SCAT3 scores of concussed athletes compared to a non-injured controls
(Churchill et al., 2018). The results showed that decreased connectivity correlated
with worse symptoms and lower scores on the SCAT3. It was also seen that most

athletes with high scores showed similar functional connectivity to the control group.
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Furthermore, functional connectivity was seen to be most affected in regions consis-
tent with post-concussive symptoms such as cognition and memory (Churchill et al.,
2018). This study further supports the results found in the aforementioned studies,
where decreased neural connectivity is suggestive of more severe symptoms. A study
by Murdaugh et al. was done to assess alteration in functional activity and connectiv-
ity using rs-fMRI, and white matter integrity using DTI (Murdaugh et al., 2018). The
study was done on male high school football players with post concussion symptoms,
and the goal was to compare acute results with those 21 days later, and to com-
pare against healthy controls. The results showed concussed athletes had decreased
functional connectivity in anterior regions of the brain but increased connectivity in
posterior regions when compared to a control. Furthermore, hyperconnectivity was
found in the left precuneus. The precuneus is an important node in the DMN as it
mediates connectivity across the other nodes, and is involved in many cognitive tasks
(Murdaugh et al., 2018). [35]. It was suggested that hyperconnectivity is a compen-
satory mechanism to maintain similar neurological function to non-concussed peers
(Murdaugh et al., 2018). This study defends the argument that DMN connectivity
is affected in symptomatic individuals. Rs-fMRI results in literature have proven to
be a valuable method of evaluating post concussion symptoms and severity and can

therefore be a key tool in assessing the recovery patterns of children with concussions.

Diffusion Tensor Imaging

Many studies have been done to assess changes in white matter integrity, and for
evidence of diffuse axonal injury, after concussion (Wu et al., 2018). Using DTT Mur-

daugh et al. found that upon initial scanning the concussed group had increased
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isotropic diffusion compared to controls. This showed concussed individuals could
have abnormal diffusion patterns, suggesting DTI could be a tool in assessing con-
cussion recovery. (Murdaugh et al., 2018). Wu et al. evaluated white matter FA and
apparent diffusion coefficient (ADC; also called MD from tensor based measures) in
concussed children in a longitudinal study, imaging at both 96 hours and 3 months
post injury (Wu et al., 2018). Concussed individuals were compared to two control
groups, one with no injury and one with orthopedic injury. An orthopedic control
group is regularly recruited to compare to TBI groups in order to rule out any fac-
tors or non-specific effects found within both groups that were caused by the injury,
treatment, or emotional impact of the traumatic injury, and are therefore not specific
to TBI (Wu et al., 2018). A good example, but not the only factor, is the elevation in
inflammatory markers (e.g. 1L-6) seen following both mTBI and surgery. This study
found that at 96 hours post injury, no difference was seen in FA and ADC, however
at 3 months the concussed group showed significantly lower FA than both controls
(Wu et al., 2018). Furthermore, they found that certain brain regions showed higher
ADC in the concussed group compared to the control (Wu et al., 2018). Satchell et
al. performed a study testing whether FA and MD were different in patients with a
sports related concussion compared to age and sex matched controls(Satchell et al.,
2019). This study was done on patients ages 9 to 17. The results showed that there
was no significant difference in FA or MD between concussed individuals and healthy
controls. It was suggested that this may be due to the small sample size of the study,
or the time after injury as they were scanned around 4 weeks post injury. This study
highlights the fact that some DTI has shown changes in white matter whereas other

studies do not, indicating that more research is required to assess the use of DTT as a
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biomarker for concussion (Satchell et al., 2019). Based on the studies analyzed, DTI
could be useful in determining recovery patterns due to FA, ADC and white matter
integrity, however it is still unclear as to what patterns are consistent in children with

concussion.

2.3 Concussion Protocols of Intervention

Currently, many physical and cognitive tests are used to determine the appropriate-
ness of returning to activity (RTA) or school (RTS). Alongside these tests, a series of
stages have been determined to assist in the recovery process and provide a guide for
individuals to follow to assist in their return. These guidelines have been developed
by the Zurich Consensus and updated in the Berlin Consensus 2016(McCrory et al.,
2017), and CanChild for pediatric cases(CanChild, 2017). A primary limitation with
these assessments is requirement for clinicians to oversee the progress, and most of the
test administration. Providing a smart device app (i.e. smart phone) incorporated
with ML that guides children through recovery stages would allow for more accessible
determination of RTA/RTS without the constant requirement of clinician assistance,

yet still provide clinician support through data tracking.

2.3.1 Stages of Recovery

A set of RTA guidelines were developed at the 4th International Conference on
Concussion in Sport (the Zurich Consensus Guidelines), and RTS guidelines were
added in the 5th Conference in Berlin (McCrory et al., 2017)(Mccrory et al., 2013).

These guidelines were developed for adults suffering from sport related concussions
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and define stages to guide in the recovery process. For both RTA and RTS, it is
recommended that the stages commence after 24-48 hours of cognitive and physical
rest, and patients spend a minimum of 24 hours on each stage prior to advancing.
Should the individual have worsening symptoms at any point it is recommended they
return to the previous stage (McCrory et al., 2017). RTA guidelines consist of six
stages leading up to a full return to activity, and are outlined in Table 2.4. RTS
guidelines consist of four stages leading up to a full return to school, and are outlined
in Table 2.3.

Table 2.3: Zurich Consensus Return to School Guidelines(McCrory et al.,
2017)(Mccrory et al., 2013)

Stage Goal

Participation in daily activities at home that do

not induce any symptoms, such as reading or tex-

! ting. It is recommended to start at 5-15 minutes
and increase the time given there are no symptoms
Participating in school activities at home, such as
? homework or reading.
Part time return to school, with a gradual re-
’ introduction to schoolwork.
. Full return to school, by gradually returning to full

participation until a full school day is achieved
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Table 2.4: Zurich Consensus Return to Activity Guidelines(McCrory et al.,
2017)(Meccrory et al., 2013)

Stage Goal
Participation in light daily activities that do not
! invoke any symptoms.
2 Light exercise such as walking or light cycling.
Returning to light sport-specific training with no
] contact.
Full return to non-contact sport specific training,
! which can include resistance training.
Participation in full-contact sport-specific train-
° ing.
6 Full return to activity.

One major limitation with the Zurich Consensus Guidelines is that they have
been developed for adults, and therefore they do not apply to children under the age
of 13 (Mccrory et al., 2013). Understanding appropriate RTA and RTS guidelines
is imperative for a safe recovery of each child. Current literature recommends that
these guidelines should be conservative, cautious, and specific to children and youth
(Dematteo et al., 2015¢). Returning to school or activity too soon can cause increased
symptoms, longer recovery time, and a higher risk of re-injury. However, staying away
from school for too long can severely affect academic standing, cause social isolation,
and even increased depression (Dematteo et al., 2015a). This juxtaposition requires
careful determination of balance of activity with symptamology. Specific guidelines

are required for these children as well as for toddlers. Based upon the Zurich consensus
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and Berlin updates, DeMatteo et al. developed RTS and RTA guidelines, that are
designed specifically for children (Dematteo et al., 2015a)(CanChild, 2017)(Dematteo
et al., 2015b).The RTS protocol consists of five stages resulting in a full return to
school, and RTA protocol consists of six stages resulting in a full return to activity.

The RTS and RTA protocols can be seen in Tables 2.5 and 2.6.
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Table 2.5: CanChild Return to School Guidelines (Dematteo et al.,
2015a)(CanChild, 2017)

Stage Goal Activities

Regular daily activities that do
Short term physical
1 not cause any symptoms. Lim-
and cognitive rest
ited screen time.

Walking, 15 minutes of screen
Simple cognitive ac-
2 time twice a day, socialization for
tivities
30 minutes a day.

Attend class with a reduced class
time, no tests and completing
homework in 15-minute blocks for
a maximum of 45 minutes. 15-
Return  to  simple
3 minute blocks of screen time for
school routines
a maximum of 1 hour. Regu-
lar school activities avoiding high

stress situations such as the bus

or lunchroom.

Return to school fully, can miss

Normal routine, with one day a week if necessary. Can

4
some restrictions return to full homework, but limit
to 1 test a week.
Gradual return to full school ac-
5 Return to school

tivities.
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Table 2.6: CanChild Return to Activity Guidelines(CanChild, 2017)(Dematteo

et al., 2015b)

Stage Goal Activities
Short term physical Regular daily activities that do
! and cognitive rest not cause any symptoms
15-30 minutes of light exercise
2 Light exercise without increased symptoms, up

to 1 hour a day.

Continue stage 2 activity and add
Non-contact sport-
3 two 30-minute sessions of moder-
specific activity
ate physical activity

Continue stage 2 and 3 activity,
Non-contact sport
4 add two 30-minute sessions of vig-
specific practice
orous physical activity

Participate in practice and train-
5 Return to practice
ing without worsening symptoms

6 Return to sport Guidelines are complete

2.3.2 Existing Technology for Concussion Tracking

Many tools and protocols described above exist to assist individuals dealing with
a concussion. However, other approaches that assist in monitoring concussion and
injury recovery exist, and could be useful for users to track their injury. Examples of

these technologies are described below.
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EQ Active Brain Tracking

A phone application (app) has been developed by Highmark Interactive which was
designed to allow further insight into concussion and symptoms that are correlated
with concussion (Starr, 2020). This app is available free for download on Apple and
Android devices, however is subscription based (Highmark Interactive, 2020). The
application tracks brain function by using a series of games as tests, which can then be
used to assess the individual’s brain function based on statistical norms. The concept
surrounding this application is to give physicians an idea of how an individual is
performing between visits, thereby providing guidance for that person’s specific brain
injury. Real-time results are also shown directly in the application which can provide
areas of improvement for the individual to focus on (Highmark Interactive, 2020).
Furthermore, the application has different settings for different age classes of people,
for example kids versus adults. This product provides insight into symptoms and
areas of improvement related to brain injury; however, it does not provide feedback

on recovery or assist in the recovery patterns for individuals with concussions.

SMART Web Application

Kurowski et al. developed a web-based “Self-Monitoring Activity-restriction and
Relaxation Training (SMART)” web application to be used as a tool in self-assessment
of concussion symptoms and recovery (Kurowski et al., 2016). This application pro-
motes self-monitoring by incorporating guidance and psychoeducation of concussion,
as well as self-management for cognitive and physical activities, and cognitive behav-

ioral principles for aid in managing concussion for adolescents (Kurowski et al., 2016).

25



M.A.Sc. Thesis — L. Anderson McMaster University — biomedical engineering

The program consists of two parts: symptom and activity monitoring, and psychoed-
ucational modules containing information related to concussion. The aim is for users
to input symptoms and activity levels using a trajectory based PCSS, allowing input
in text boxes. Furthermore, the application requests the user’s plans for the next day
of activities (i.e. increase, decrease, or maintain levels) (Kurowski et al., 2016). This
promotes self-assessment and provides the user with valuable skills, useful in recovery.
Psychoeducational modules are available, providing information regarding the recu-
peration process, again promoting self-management of their recovery (Kurowski et al.,
2016). This application assists in managing and monitoring symptoms and activities
throughout recovery, however it does not provide specific recommendations for RTA
or RTS which can be highly beneficial for youth with this injury. Furthermore, this

web application remains in the research stages and is not publicly available.

Concussion Tracker App

The concussion tracker app was developed by “Complete Concussion Management”
(https://completeconcussions.com) to be used by coaches, clinicians, teachers, and
patients. It was developed as a recovery tool to help assess concussion, report symp-
toms to clinicians, and track recovery (Complete Concussion Management, 2020).
The main goal of the app is to connect the patient to their teachers, coaches and clin-
icians by providing updates on symptoms and milestones. The app also conveniently
allows users to contact clinics and book appointments. Furthermore, it allows patients
to update their teachers or coaches on their return to school or activity timelines by
uploading documents from clinicians such as doctors notes or progress updates (Com-

plete Concussion Management, 2020). The app is free for download and is available
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on Apple and Android devices. This app requires complete clinician input for any
milestone or RTA/RTS progress, and therefore it does not promote self-management

throughout the recovery process.

2.4 Machine Learning

Machine learning (ML) is a type of artificial intelligence that learns based on pre-
vious experience to predict future outputs for new input data. ML uses a series of
variables called “input variables” which represent measurable features of something,
for example temperature, or size (de Mello and Ponti, 2018). Input variables are
paired with an output variable, which represents the classification of the features.
For example, if the model is trying to predict whether a patient has cancer, the input
variables may include age, sex, and symptoms, and the output variable would be
either yes or no. A dataset is split into two separate sets: the training set and the
testing set. A training set is required to train a machine learning algorithm. It is a
set of input/output variables that is used to train the algorithm to recognize patterns
in the inputs that correlate to the output variable, allowing the algorithm to classify
based on the input variables. Finally, a testing set is a set of inputs where the output
is known but removed, and the algorithm classifies these inputs based on what it has
learned from the training set. The results are then compared to the actual output to
determine how well the algorithm performed. This type of ML is called supervised
machine learning because the algorithm receives labelled data (de Mello and Ponti,
2018).

Many machine learning algorithms (MLAs) exists for classification and clus-

tering of data, however some perform better than others given the data being used.
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Prior to passing data through the algorithms, data must be analyzed and massaged
using tools such as feature extraction. The two algorithms that were used in this
study are Support Vector Machine Classifiers (SVC) and Random Forest Classifiers
(RF). Both methods are supervised classifiers and can be used to predict the stages
of concussion as classes. A study done by Bergeron et al. tested various MLAs to
determine which algorithms performed best in analysis of recovery timelines for stu-
dents having suffered a sports related concussion (Bergeron et al., 2019). The study
found that RF with 500 trees showed the most promise in predicting recovery times
(Bergeron et al., 2019), and therefore can be a good potential algorithm for predicting
concussion recovery as well. SVC is the most commonly used technique in artificial
intelligence in healthcare (Jiang et al., 2017). Previous studies have used SVCs for
applications such as neurological disease, diagnosis of cancer and early detection of
Alzheimer’s disease (Jiang et al., 2017). Based on these examples, it is evident that
SVCs are used in a wide variety of situations, and therefore can be a good potential
algorithm for concussion recovery detection. A beneficial property of SVCs is that
the solution is a global optimum and therefore always the best possible results (Jiang

et al., 2017).

2.4.1 Support Vector Machine Classifier

SVC is a supervised machine learning technique originally presented by Vapnik
and Cortes (Cortes and Vapnik, 1995). SVC work by separating a binary set of
data with a hyper-plane, generally called the ‘maximal margin hyper-plane’, that is

maximally distant from both classes (Furey et al., 2000). The hyperplane for a data
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set N = (x;,y;...xn, yn) is defined by the function (Hastie et al., 2009)

v f(x) =28+ B =0 (2.4.1)

where 3 is a unit vector. The margin, M, of the hyperplane is calculated by the

following optimization:

mazg g, || 5] (2.4.2)

subject to y;(x! B+ By) > 1,i = 1..N (2.4.3)

where M = (1/||B]|), and is the distance on either side of the hyperplane, making
the full boundary 2M.

It is possible that some classes will overlap in the feature space, making it
impossible to have a linear separation of the data. To account for this overlap,
techniques have been developed to maximize M while allowing some points, each
point represented by &;, to fall on the wrong side of the margin (Hastie et al., 2009).

The following equation accounts for these overlapping points.

yi(x] B+ Fo) > 1 =&V
min ||5]| subject to (2.4.4)

& > 0,2¢ > constant

The constant in the equation above can be replaced by a ‘cost’ parameter C, which

is inputted by the user and can be changed to improve the output of the algorithm.
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SVC classification can then be performed by using an inner dot product of trans-
formed feature vectors h(x). The overall decision function is derived from Lagrange

multipliers and is as follows

f(x) = Z oy (h(x), h(x;)) + Bo (2.4.5)

where « is a constant between 0 and the cost parameter (Hastie et al., 2009).

Kernels

Support vector machines are designed to separate data that is linearly separable,
however this is not always the case. Kernels were therefore designed as a method of
mapping data into a new space that can be separated linearly as much as possible
(de Mello and Ponti, 2018). The optimization of SVC is calculated using a dot product
(Equation 2.4.5), and these dot products are easily replaced by the kernel function to
transform the data to a higher dimensional feature space (de Mello and Ponti, 2018).
The three most common kernel functions are the polynomial kernel, the radial basis
kernel, and the sigmoid kernel.

The polynomial kernel transforms features to a higher dimension using the follow-

ing equation(de Mello and Ponti, 2018)

k(xz,y) = (z,y+ ) (2.4.6)

where d is the kernel order and c is a parameter that trades off the influence of
lower and higher order terms of the polynomial. Both parameters are set by the

user. This kernel maps the data to a new feature space, where the dimension of that
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feature space is determined by the order of the kernel. For example, a 2-D feature
space, using the polynomial kernel of order 2, will be mapped to a 4-D space (de Mello
and Ponti, 2018).

The RBF kernel transforms the data using the following equation(de Mello and
Ponti, 2018)

k(x,y) = exp(—7llz — y[|*),7 > 0 (2.4.7)

where v is the kernel parameter, which is inversely related to the standard de-
viation of the Gaussian distribution, and measures how significant the length of the
difference vector between examples is to the similarity of those examples. A higher
gamma value would require examples to be closer together for them to be deemed
similar, whereas a low gamma would find similarity between examples that are further
apart(de Mello and Ponti, 2018).

Finally, the signoid kernel maps data to a higher dimension using the following

equation(de Mello and Ponti, 2018).

K(z,y) = tanh(—kzx,y) + ¢) (2.4.8)

Where k > 0 and ¢ < 0. K is a modifier to the magnitudes of the dot product,
whereas c is a shifting parameter for the curve (de Mello and Ponti, 2018). Sigmoid

kernels are popular for SVC models since they originate from neural networks (Lin

and Lin, 2003).
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2.4.2 Random Forest

Classification and regression trees (CART) are a powerful classification tool and is
the foundation algorithm from which random forest classifiers are built. CART splits
observations at the ‘nodes’ of the tree based on certain conditions of the predictor
variables, and makes predictions to classify these observations. A common method
that is used in classification trees for splitting the data at the nodes is called the Gini
Index (Hastie et al., 2009). First, the proportion of class k observations is found at

the node, m, with the following equation

=— Y I(yi=k) (2.4.9)

xieRm
where R,, represents the region of the node and N,, represents the observations.
The Gini Index is then calculated for each proportion as a measure of impurity of the

node, and is calculated by

Pk Brl(1 = Pog) (2.4.10)
kK
The class with the lowest Gini Index would be the splitter for that node and the
observations would then be split based on that class. This allows for each split in the
decision tree to be as pure as possible with the lowest misclassification.

RF classifiers are a type of decision tree classifier that is built on a method
called bagging (Zhou, 2012). The bagging method is a combination of bootstrap and
aggregating techniques. Bootstrap sampling is done to obtain a subset of data from
the training set. This method starts with a training set of n samples and creates a

new subset of n samples by sampling with replacement. Each subset is used to train
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a base classifier, creating a series of decision trees with a predicted output. A voting
method is then used to aggregate the subsets into a final predictor, meaning that the
algorithm will vote on which predictor sample is the best overall prediction of the
system (Zhou, 2012). The RF algorithm differs from bagging by using a randomly
selected set of features to predict the output. At each split in the decision tree, the
algorithm will select a random subset of features from the total number of features in
the data, and will proceed with the normal conventional split selection based on the
randomly selected features. At each split in the tree, the randomly selected features
will be different (Zhou, 2012). The number of features selected is specified by the
user when modelling the algorithm, and this value can be manipulated to get the best

possible results from the model. The value can be calculated as approximately

M=+VP (2.4.11)

where M is the subset of features randomly selected, and P is the total number of

features in the dataset(Zhou, 2012).
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Chapter 3

Methods

This chapter describes the overall methodology taken throughout the project from

pre-processing to result visualization.

3.1 Data

Data used in this study was previously collected by Professor DeMatteo and her team
at CanChild. The study was called “Safely returning children and youth to activity
after concussion”, and was done to develop the RTA and RTS stages. Two separate
datasets were collected from children with concussion. Dataset A consisted of infor-
mation about the symptoms each child was experiencing. This dataset initially had
data from 134 participants, 61 male and 73 female. Of those 134 participants, 94 had
data acquired for dataset B, which consisted of raw accelerometry data. Participant
ages ranged from 6 to 18, however data collected from children under 10 years of age
was removed for the present study. This was done because the initial scope of the

current research was participants aged 10 to 18, and the initial target population of
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the APP was children over 10 years of age. Usable participants were determined by
whether they had data in both datasets A and B, both recorded on the same day.
In total, 67 participants had overlapping data which could be used for this study.
Research ethics approval (Hamilton Integrated Research Ethics Board, HIREB) was

attained prior to any data collection.

3.2 Software

Programming was done on two separate graphics processing unit (GPU) computing
clusters. The first machine was used for all work done on the initial data including
data processing and modelling. This machine had an Intel Core 19-9820x 3.30GHz
central processing unit (CPU), with 64GB RAM, and an NVIDIA GeForce RTX 2080
Ti graphics card with 12GB memory. All coding on this machine was done using the
open-source programming language Python version 3.8 (Python Software Foundation,
https://www.python.org/). The editor used to write and execute code was Jupyter
Notebook, an open-source interactive environment derived from iPython(Jupyter,
2021).

The second machine used was used for all work done on the new data including
data processing and modelling. This system had an AMD Threadripper 3960X 3.8
GHz 24-Core CPU, with 64GB RAM. All programming on this machine was done
using Python 3.8, running scripts from the command line.

Many packages were used, all of which were open source and accessed directly
through Python. The main packages used can be found in Table 3.1.

Several functions included in the packages mentioned above were used, and are

mentioned in the appropriate sections below.
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Package Purpose

Numpy Used to work with numerical data.
(Harris et al., 2020)

Pandas Used for data manipulation of time se-

ries and tabular data.(pandas develop-
ment team, 2020)(Wes McKinney, 2010)

Matplotlib Used for plotting and visualizing re-
sults.(Hunter, 2007)

Sklearn Used for pre-processing and machine
learning functions. (Pedregosa et al.,
2011)

Scipy Used for statistic calculations. (Virta-
nen et al., 2020)

Seaborn Used for statistical data visualisation.

(Waskom, 2021)

Table 3.1: Main Python packages used and their purpose for use.

Early stage programming was done using MATLAB (MathWorks, https://
www.mathworks.com/ products/matlab.html). Only symptom data cleaning was

done using this software. All other programming was done with Python.

3.3 Data Processing

Data collected in the study included accelerometer data, symptom recordings and
stage of recovery self reported by the participants. Symptom and accelerometer data
was processed and combined in preparation for modelling and stage prediction. The
flow of the project is detailed in Figure 3.1, and the methods for each component are

described in this chapter.
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Accelerometer Pre-Processing Stage
Windowing and feature Random Forest o
Data extraction Prediction
Data
Combination
Symptom Support Vector Stage

— Pre-Processing

Data Machine Prediction

Figure 3.1: Flow chart displaying modelling pipeline from data pre-processing to
stage prediction.

3.3.1 Symptom Data

The acquired symptom data was recorded every 48 hours by participants using the
PCSS. In addition, a few other questions regarding their concussion symptoms, such
as the level of cognitive activity they did, or how their school day went, were also
recorded. A total of 27 questions from the symptom surveys were used as features for
the machine learning algorithms. Table 3.2 lists the features and possible responses
initially recorded with each feature. All other entries recorded in the initial study were
removed as they were not relevant to the current Back2Play study. Furthermore, some
participants had data recorded once biweekly. This was removed for all participants
since very few users had entries, and therefore there was not enough useful data.
Participants could specify that they had not experienced any symptoms in the
past 48 hours, and if this was the case they did not record 0 for all of the symptoms.
Therefore, if a participant specified they had no symptoms then all ‘no entry’ spaces,
represented by a NaN, were changed to 0. This was done using nested “for-loops” with
a conditional statement, which checked if the value at the index for ‘no symptoms
in the last 48 hours’ was zero, then all symptom values for that row marked as NaN
would be set to 0. Entries that had some missing information were removed since a
complete dataset is required for machine learning. Participant sex and age initially

were only recorded with the first entry, and therefore were added to each entry to fill
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Feature Possible Response
Headache Number from 0 to 6 where 0 is no symp-
Nausea tom and 6 is severe

Balance Problems

Dizziness

Fatigue

Drowsiness

Sensitivity to Light

Sensitivity to Noise

Irritability

Sadness

Nervousness

Feeling Emotional

Feeling Slowed Down

Feeling Foggy

Difficulty Concentrating
Difficulty Remembering

Visual Problems

Getting Confused with Direction or
Tasks

More Clumsy

Difficulty Answering Questions

Neck Pain

Sleep Problems

Degree of Feeling Differently Number from 0 to 4 where 4 is a major
difference

Total Score Sum of all symptom recordings

Cognitive Activity Level Score 1 to 5 where 1 is none and 5 is full.

School Day Level Score 1 to 5, 1 is school not in session

and 2 to 5 range from not going to school
to a full return.

Treatment 1 or 0 if they received non-study treat-
ment in the past 48 hours

Table 3.2: Symptom Features

in those missing values. This was done using a function ‘fillmissing’ in Matlab which

fills the NaN value of that column with the value above it. Any symptom response
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from 1 to 6 was changed to a 1 representing that the participant was experiencing
that symptom. This was done to limit the possible responses for the majority of
the questions, and to keep the features as consistent as possible with the phone
application, which asks participants which symptoms they are experiencing and not
a ranking. Values were changed manually for each column in Microsoft Excel. Code

for this section can be found in Appendix A.1.1.

3.3.2 Accelerometry Data

Participants in the study wore an ActiGraph (ActiGraph, https://actigraphcorp.com/)
model wGT3XBT ActiLife Software v6.13.3 with firmware v1.2.0 around their waist
throughout the day. The Actigraph collected accelerations in the x, y, and z axis
in gravitational units, at a sampling frequency of 30Hz. The Actigraph was worn
continuously throughout the day, unless removed for activities such as showering,
swimming, or sleeping. A wear journal was kept by participants recording when the
device was removed. Non-wear times recorded in the journal were used to remove
data recorded when the device was not worn. Journal recordings for non-wear had
length of time in minutes for each period of time the watch was worn and removed.
An example of the wear time journal can be seen in Figure 3.2, and the time between
each period of wear and non-wear is labelled a ‘Length’. This value was used to re-
move the non-wear samples from the accelerometer data. The length was added with
each previous value to get a vector with the cumulative time from the beginning that
the watch had been worn/removed. This was done using the ‘cumsum’ function in
Python. Each value was then multiplied by 60 to convert from minutes to seconds,

and again by the sampling frequency of 30 to convert to samples.The last value was
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Start_time Stop_time Wear Length Use
3 12/11/20155:00 12/11/20157:31 Non-Wear 1515 FALSE
4 12/1120157:31 12/11/20156 2158 Wear 8665 TRUE
5 12/11/201521:58 12/12/2015840 Non-Wear 6425 FALSE
6 12/12/20158:40 12/12/2015 15:45 Wear 4245 TRUE
7 1211220151545 12/13/20157:43 Non-Wear 958 FALSE
8  12/13/20157:43 12/13/2015 18:28 Wear 645 TRUE
8 12/13/201518:28 12/22/2015 1658 MNon-Wear 12870 FALSE

Figure 3.2: Sample Wear-Time Journal

changed to the total length of the signal to ensure all samples after the last time of
removal were removed. A “for-loop” was then used to create an index vector that
would be used to label the bounds of which values needed to be removed. The “for-
loop” iterated over every 2nd value of the wear length vector and took the current
value an as the start bound and the next value in the wear length vector as the stop
bound. Once all bounds for removal were recorded as a vector, these indices were
used to remove all values in the accelerometer signal between those bounds. Figure

3.3 shows this process. Code for non-wear removal can be found in Appendix A.2.1 .
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start non-wear

\J
inputs: accel array,
wear-time array

A

calculate cumulative sum
for each wear-time

A

convert wear times to
number of samples

A

create iterator vector that skips every other
value to the length of wear-time vector

A

create blank new index
vector

N drop values at each index in index
00— |
vector from accel array

value in iterator
vector

|
Yes
A

A
create index vector as a range of values
from wear time at index of the iterator to
wear time at index of the iterator+1

end non-wear

\/

append to new index
vector

Figure 3.3: Flowchart showing process for removing non-wear times.

Once all non wear times were removed, the remaining dates with accelerometer
recordings were compared to dates in which that participant had both symptom

and stage recordings. Given the overall goal of the study being stage prediction,

accelerometer recordings with no corresponding symptoms or stages were not useful.
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Therefore, only dates in which participants had all 3 types of data were windowed for
feature extraction. This was done in Python by comparing the date stamps of the
symptom data to the date stamps on the accelerometer data. First, a date vector was
created of all of the dates that had symptom recordings, and each date was saved as
a unique variable. The dates from the accelerometer data were then converted into a
date value without a timestamp, and saved in a separate vector. The accelerometer
data was then split into each individual day by finding the dates that matched the
unique signal date variables. An index vector was then created to find the indices
for all of the accelerometer samples that needed to be kept. The index vectors were
combined using numpy’s ‘concatenate’ function creating a final vector of which indices
from the original accelerometer file needed to be kept for windowing. Using the python
function ‘loc’, all indices stored in the index vector were taken from the accelerometer
file and saved as a new matrix which contained all useful data. This data could then

be used for windowing. Code for this methodology can be found in Appendix A.2.2

Windowing

A sliding window technique was used to split the data and prepare it for feature
extraction. A sliding window is a technique where a window time is chosen and data
is separated in segments where each segment contains the defined time worth of data.
The window is then moved with a specified overlap and then groups the next segment
of data. Many studies use a 50% overlap between windows to ensure no movement
is lost between windows.This technique often used in human activity recognition
machine learning studies when accelerometer data is being analyzed to predict body

movement (Abdull Sukor et al., 2018)(Lavanya and Mallappa, 2019). Window sizes
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often vary, and in literature it has been seen to range from 1 second to upwards of 60
seconds (de Almeida Mendes et al., 2018). To window the data, a function provided
by a colleague of the lab was used (A. Simons, personal communication, September
15, 2020). This function uses an initial condition to determine if there is a shift,
and if so a “while-loop” is used to iterate over the signal vector as long as there are
samples left in the signal to window. If so, then for each iteration of the loop the
number of samples in the window is taken from the signal vector and added to an
array using ‘numpy.concatenate’, and the iterator is increased by the window shift
each time. Once completed, an array containing all of the windows concatenated
together as well as a variable set as the total number of windows is returned from the
function. Figure 3.4 illustrates this function. Each x, y, z axis and a vector containing
the date for each sample is sent as inputs into the function individually, as well as the
sampling frequency, window length, and window shift. The code used for windowing

the signals can be found in Appendix A.2.2.
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Start
Windowing

Inputs: array, window size, window
shift, sampling frequency

assign iterator
calculate number of
samples in a window

[ Calculate number of samples for a shift ]

l

create window array from iterator to
iterator plus number of samples in
the window

]

add window
No——»| samples to
iterator

Is there a window

add samples for
window shiftto |« Yes
iterator

v Y

the iterator smaller than the § the iterator smaller than the

Yes.
length of the total array No No length of the total array) Yes
\ l y
create new window from - - create new window from
! ! Output: window array Output: window array ! N
iterator to iterator p|llS iterator to iterator pll‘S

number of samples in

number of samples in

shift ¥ L window
end function end function
return return l

[ append new window to window array ] [ append new window to window array ]

add window shift to add window size to
iterator iterator

Figure 3.4: Flowchart describing windowing function process.

The window size selected was 30 seconds with a 50% overlap between windows.
This time was selected by consulting Professor Carol Dematteo, principal investigator
in the Back2Play study, determining that 30 seconds was an appropriate amount of
time to capture the overall type of movement the child is doing in each window.

A shorter window could potentially misinterpret the nature of the movement the
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child is doing, whereas a longer window could be too vague and miss smaller bouts of
movement during analysis. The 50% overlap was selected to ensure that no movement
is lost between windows, and it also provides more data points for machine learning.

Once the data was segmented into windows, feature extraction could be performed.

Feature Extraction

An integral part in machine learning is extracting features that provide good data
for the models to predict from. Human activity recognition (HAR) papers were
searched to determine features which have been seen to work well to predict body
movement. A total of 17 statistical features were chosen to calculate over each win-
dow of data, all of which have shown promise in predicting human activity in previous
studies(Figo et al., 2010) (Abdull Sukor et al., 2018) . All features are listed in Table
3.3. Furthermore, these features were selected as they were relatively simple to calcu-
late and would be easily transferable to a smartphone application without requiring
too much computational power, which is the eventual end goal of the Back2Play
study. The features were calculated using a “for-loop” to loop through the windowed
signal and calculate all features for each window of data. The specific method for
calculating each feature is described below, and the code for this section can be found

in Appendix A.2.2.
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Feature Axis

Standard Deviation One for each x, y, z axis
Mean One for each x, y, z axis
Maximum One for each x, y, z axis
Minimum One for each x, y, z axis
Mean Absolute Deviation (MAD) One for each x, y, z axis
Signal Magnitude Area (SMA) One for all axes combined
Signal Vector Magnitude (SVM) One for all axes combined

Table 3.3: Accelerometry Features

The standard deviation (SD) was calculated in Python using the ‘numpy.std()’
function, which finds the square root of the variance, and is calculated using Equation
3.3.1(Ebner et al., 2021). One SD was calculated for each window in the x, y, and z

axis.

N

SD =, |[1/N() (x; — 7)) (3.3.1)

i=1
where N = number of samples in the dataset
x; = individual values of the dataset

and T; = mean of x;

The mean was calculated in Python using the ‘numpy.mean()’ function, which
calculates the arithmetic average of the dataset and is calculated using Equation
3.3.2 (NumPy, 2021). One mean was calculated for each window in the x, y, and z

axis.
N

MEAN =1/N> () (3.3.2)

=1
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where N = number of samples in the dataset

and z; = individual values of the dataset

The maximum and minimum value from each window in the x, y, and z axis were
also taken as features. The Python functions max() and min() were used to find the
largest and smallest values in the window.

The median absolute deviation (MAD) was calculated in python using the func-
tion ‘scipy.stats.median_absolute_deviation()’, which calculates the average absolute
difference between all of the values in the window using Equation 3.3.3. This sta-
tistical measure was used as an extracted feature in some publicly available HAR
datasets including UCI HAR Dataset (Davide Anguita and Reyes-Ortiz, 2013) and
the WISDM dataset (Weiss et al., 2019), and has shown promise as a feature in

predicting HAR. One MAD was calculated for each window in the x, y, and z axis.
N
MAD = 1/N(>_ |a; — 7i) (3.3.3)
i=1

where N = number of samples in the dataset
x; = individual values of the dataset

and T; = mean of x;

The signal magnitude area (SMA) and signal vector magnitude (SVM) were both
chosen as metrics to analyze the complete signal by combining all three axes. Both
features have been found useful in previous HAR studies (Figo et al., 2010)(Abdull

Sukor et al., 2018). Both the SMA and SVM were calculated directly in Python using

47



M.A.Sc. Thesis — L. Anderson McMaster University — biomedical engineering

Equations 3.3.4 and 3.3.5(Abdull Sukor et al., 2018).

N N N

SMA=1/N() |$i|+Z|yi| +Z|Zi|) (3.3.4)

=1

where N = number of samples in the dataset

and x;,v;, z; = individual values of the dataset in each axis

SVM = /a2 +y? + 22 (3.3.5)

where x;, y;, z; = individual values of the dataset in each axis

All features mentioned above were calculated for each window and could then be
combined with the daily symptom and stage recordings. The code used to extract

features can be found in Appendix A.2.2.

3.3.3 Data Fusion

Once feature extraction was performed for every window of data, the final data set
for machine learning was completed by combining the symptom data with the ac-
celerometer data, and attaching the appropriate RTA and RTS label to each feature
set. Features were encoded as integer values of 0 or 1 for all symptoms and whether
or not they received treatmet, values between 0 and 120 for total score, and values
between 0 and 7 for ranking of cognitive activity, school day, and degree of feeling
differently. Since symptoms were recorded by day, feature sets for each 30 seconds
of one day were all labelled with the symptoms and RTA/RTS labels for that day.
Features were standardized to a value between -1 and 1 using the python function
“StandardScalar”, which subtracts the mean and normalizes by the variance (Equa-

tion 3.4.1. To combine the data sets, a nested “for-loop” with nested conditional
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statements were used. The first “for-loop” iterated over the length of the symptom
data set, and the inside “for-loop” iterated over the length of the feature data set.
Within both “for-loops”, the first conditional compared participant numbers. If the
participant was the same at that value, then another conditional compared the dates.
If the date was also the same, then the feature and symptom data at that row were
combined using the ‘pandas.concat’ function, and added to a new vector using the
‘append’ function. This was done to compare each row in both data sets creating one
final matrix containing all necessary data. Figure 3.5 shows this process. The final
data set included 67 participants with a total of 844408 rows of data, where each row
is a feature set associated with one label for RTA and one for RTS. Participant ages
ranged from 10 to 18, and there were 42 female and 25 male participants. A sample of
data used as inputs to the algorithms can be see in Figure 3.6. Code for this section

can be found in Appendix A.2.3.
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Figure 3.5: Flowchart describing data fusion process.
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Stdx Meanx  Maxx  Minx  MADX  Stdy Meany Maxy  Miny  MADy .. posiyd8_cf posiyds cl pesiyds sl pesiyds_dif
4090481 1146812 0199950 -7.68849 -0750525 1505694 -0.548711 0172015 -1656775 -0.584650 1878802 -0518542 0501429 0109442
3088875 -2405167 0199950 7688496 2678420 2003085 -0.539163 0202874 -1656775 2721896 1878802 0518542 0501429 0109442
8953492 0056823 3201097 2750049 15091016 2075050 -0226851 0894719 -1184735 3267306 1878802 0518542 0501429 0109442
4426545 1749259 3201097 0882472 4720999 2405106 0186220 1136616 -1.184735 2713374 1878802 -0518542 -0.501429  -0.109442
2936800 0352016 1892946 -0.882472 3648876 4963804 -0377144 1136616 -0.960229 11942728 1878802 0518542 0501429 0109442
0325633 1100561 0321225 0868073 -0306888 -0.263016 1068421 0584136 1.097748 -0.311945 0532254 0518542 0501429 1819330
0257969 1312693 0269481 0914226 -0.602646 -0.474627 1024113 0564226 1097748 -0516474 0532254 0518542 0501429 1819330
0289930 0962759 0269481 0894446 0159009 0278962 1091771 0564226 1103261 -0260813 0532254 0518542 0501429 1819330
0755348 0671219 -0.115364 0887853 -0.602646 -0.642539 1154384 0541331 1194650 -0.465342 0532254 0518542 0501429 1819330
0175505 0754098 0308289 0340602 -0491737 -0.320094 1134555 0751373 1.066006 -0.516474 0532254 0518542 0501429 1819330

Figure 3.6: Sample of data from the training set, after standard scaling.

3.4 Modelling

Once the feature matrix was completed, modelling could be done. Data was split
into a training and testing set, ensuring that no participants had data in both sets.
To split accordingly, the ‘GroupKFold’ function from the SKLearn Python library
was used. This function splits data into a desired number of folds, ensuring that no
groups occur in multiple folds. A split value of 3 was used to separate data into 3
folds, where 2 folds were the training set and one was the test. This value of folds was
chosen to have approximately 70% of the data in the training set and 30% of data in
the testing set. Labels were separated from the data and saved in a unique vector,
one for the training set and one for the testing set. This was done for both RTA and
RTS data.

Features were then normalized using the function ‘StandardScalar’ from the SKLearn
pacakge This function standardizes the data by subtracting the mean of the training
set and dividing by the standard deviation of the training set, as seen in Equation
3.4.1. Standardizing was done to ensure all features were approximately all scaled

the same to ensure no feature had more weighting in the classifications than others.

z=(x; —u)/s (3.4.1)
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where x = individual value of the dataset
u = mean of the training set

and s = standard deviation of the training set

Once standardization was complete, data was ready for modelling. The ‘Random-
ForestClassifier’ function was used form the SKLearn ‘ensemble’ package to create a
RF classifier, and the ‘SVC’ function from the SKLearn ‘svim’ package was used for

the SVC classifier.

3.4.1 Hyperparameter Tuning

Hyperparameter tuning was done for each model to find the best combination of pa-
rameters that would yield the best results for the data. A cross-validation grid search
was used to tune hyperparameters. For the random forest classifier, a randomized
grid search was first used to narrow down the parameters, followed by a full grid
search. K-Fold Cross validation (CV) is a method of training a model by splitting
the training set into K folds, where K-1 folds act as the training data, and 1 fold acts
as the validation set to test the accuracy of the model. This occurs K times, where
each fold acts as the validation set one time (Hastie et al., 2009). A CV grid search
does a CV for each possible combination of hyperparameters, and determines which
set of parameters yields the best model accuracy. This method of hyperparameter
tuning was determined to be the best to get highest model accuracy for SVC in a
study done by Duarte and Wainer(Duarte and Wainer, 2017). The number of folds
for a CV is manually selected, however is usually either 5 or 10(Hastie et al., 2009).
In this study, 5-fold was chosen for all models to decrease length of time required

for training model to run, which was necessary due to time and resource limitations.
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For both RF and SVC, the parameter ‘class_weight’ was set to balanced, allowing
the models to weight the classes differently depending on the amount of data was
available for each class. This was done to try and level out the imbalance between

classes.

Random Forest

For the RF classifier, a randomized grid search was used prior to doing the grid search.
The randomized search did 50 combination trials to find approximately which values
for each parameter yielded the best results. Values around those numbers were then
used to do a full grid search to find the overall best set of hyperparameters for the
data-set. This was done to decrease the computational time, since the grid searches
were long processes. To do both the randomized grid search and the full grid search,
the functions ‘RandomizedSearchCV’ and ‘GridSearchCV’ from the SKLearn library

were used. Parameters that were tuned are described in Table 3.4.

Support Vector Machine

For the SVC, just a grid search was done using the function ‘GridSearchCV from the
SKLearn library. Table 3.5 describes the parameters tuned in the grid search. The
Radial Basis Function Kernel was chosen as this is one of the most popular kernels
used, and works well when dealing with non-linear and large data-sets(Prajapati and

Patle, 2010).
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Parameter

Description

Possible Values

n_estimators

Number of decision trees
in the forest.

10 evenly spaced values
between 10 and 1500

max_features

Number of considered fea-
tures at each split.

‘sqrt’

max_depth

Maximum number of lev-
els in the tree

11 evenly spaced values
between 10 and 110, or No
maximum

min_samples_split

Minimum number of sam-
ples required to split a
node.

2,5, 10

min_samples_leaf

Minimum number of sam-
ples required for a leaf
node

1,2, 4

bootstrap

Method for selecting sam-
ples from the training set

True, False

class_weight

Weights the classes to bal-
ance the models

‘balanced’

Table 3.4: Random Forest Hyperparameters Tuned for Modelling

Parameter Description Possible Values

Kernel Kernel used for SVC ‘rbf’ - radial basis func-
tion

Gamma Kernel parameter le-1, 1e-2, 1e-3, le-4

C Represents how many val- | 1, 10, 100, 1000, 10000

ues can be misclassified

class_weight

Weights the classes to bal-
ance the models

‘balanced’

Table 3.5: Support Vector Machine Hyperparameters Tuned for Modelling

3.4.2 Modelling and Results

Once hyperparameters were selected and trained on the training set, the models were

tested using the testing data set. Models were first made to predict all five RTS

stages and all six RTA stages. Predictions made by the model using the test set

were found using the ‘decision_function’ feature of the SVC model, which returns an
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array for each set of samples showing a score of how far the sample for each class
would be from the decision boundary(scikit learn, 2021b). The largest positive value
is decided as the class most likely to be predicted, and therefore the overall prediction
for each sample set is determined using “np.argmax”. For the RF models, the function
“predict_proba”, which computes the probability for each class to be predicted(scikit
learn, 2021a). “argmax” is also used in this instance to determine which class is
predicted for each instance in the test set.

After predictions were made, the results were analyzed using multiple methods.
Firstly, a confusion matrix was used to display classification results. A confusion
matrix is an n by n table, where n is the number of classes being predicted. The
confusion matrix has a value in each index of the matrix, showing for each true case
which classes were predicted. The values along the diagonal are the correct predic-
tions, and all other values are false predictions. An example confusion matrix can be
seen in Figure 3.7, where green shows the correct predictions and red shows the incor-
rect predictions. The confusion matrix for each model was printed using the python
function “confusion_matrix” from the “SKlearn.metrics” package. Confusion matri-
ces were plotted as a heat map for visualization purposes using Seaborns ‘heatmap’
function.

From the confusion matrix, values such as accuracy, fl-score, recall and precision
can be calculated. Precision and recall were found using the “classification_report”
function from the “SKLearn.metrics” package. Precision measures the accuracy of the
model by calculating how many positive predictions were actually correct, whereas
recall measures how many of the actual positives were predicted (Developers, 2020).

Recall can also be called sensitivity. The formulae for precision and recall can be seen

95



M.A.Sc. Thesis — L. Anderson McMaster University — biomedical engineering

Predicted Class
1 2 3

=

True Class
N

Figure 3.7: Example Confusion Matrix

in equations 3.4.2 and 3.4.3 (Developers, 2020).

o TruePositive (3.4.2)
recision = A.
p TruePositive + FalsePositive

TruePositive
Il = 3.4.3
reea TruePositive + FalseNegative ( )

Precision is mostly important when having a false positive could be costly, whereas
recall is mostly important when having a false negative could be costly. However, both
are important to understanding the overall effectiveness of the model, and therefore a
metric that evaluates both is needed. The fl-score is a measure of both precision and

accuracy, providing a metric that balances both. F'l-score is calculated with equation
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3.4.4, and was found using the “classification_accuracy” function in python.

- Precision * Recall

= 3.4.4
Precision + Recall ( )

Precision, recall and F1 score were calculated for each class, as this gives a bet-
ter understanding on how the model works as opposed to an overall accuracy that
averages all of the classes together. An overall F1 score and accuracy were also cal-
culated for the entire classification, however the values are not as telling as they are
an average across all classes.

Receiver operator characteristic curves (ROC) were used to show the performance
of the models, and the area under the curve (AUC) was calculated to summarize
the results. ROC is regularly used to summarize the sensitivity and specificity over
varying thresholds(Hastie et al., 2009). Sensitivity is defined as the true positive
rate, and measures the true predictions that are actually true. Specificity is defined
as the true negative rate, and measures the negative predictions that are actually
negative. Sensitivity (recall) and specificity are calculated using Equations 3.4.3 and
3.4.5 (Swift et al., 2019). The ROC is plotted as sensitivity in the y-axis and 1 -

specificity in the x-axis, where 1 - specificity represents the false positive rate.

True Negatives (3.4.5)

specificity =
peci ficity True Negatives + False Positives

Thresholds are values used to determine at what probability a value will be pre-
dicted in each class. For example, if the threshold is 70%, then the probability will
need to exceed 70% for the point to be classified as that class(Hand and Anagnos-

topoulos, 2013). The ROCs and AUC are calculated in python using the functions
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“roc_curve” and “auc”. These functions were inside a “for-loop” to find the ROC and
AUC for each predicted class. The code for this process can be found in Appendix
A.2.4 and process can be seen in Figure 3.8. ROC and AUC are plotted for each class,
and are shown together on one plot. The perfect ROC would have a be a square like
curve in the top left corner of the graph, showing a high true positive rate with a
low false positive rate. Code to plot the multi-class ROC curves was taken from a
tutorial done by Analytics Vidhya(Bhandari, 2020). Conclusions were made about
model performance based on ROC curves, classification result summaries, and the
confusion matrices together as opposed to one individual metric.

All methods described above were used for all trials of prediction, where different
combinations of stage predictions were attempted to find the best model performance.
Chapter 4 describes the first attempt, where all RTA and RTS stages were predicted.
Next, feature reduction was attempted to determine whether eliminating highly cor-
related features could improve model performance. This is explained in Chapter 5.
Since feature reduction did not greatly improve performance, stage 1 was removed
and models were attempted again, which is described in chapter 6. Finally, in a final
attempt to find the best models, stage 1 was removed and the last two stages of each
protocol were combined. This is described in Chapter 7. Some supplementary steps
were taken depending on the attempt, and any additional methods will be described

in the corresponding chapter below.
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start roc

\/

input: nunber of classes, actual label,
prediction scores

itearate
through all classes
being predicted

No. > end roc

Yes

y

find true positive rate and false positive
rate for class from prediction score and
actual label

\

calculate ROC and AUC from
true positive and false
positive rates

Figure 3.8: Flowchart showing process for calculating ROC and AUC values.
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Chapter 4

Predicting All Stages

The following chapter describes the results for the RF and SVC models predicting
RTA stages 1 through 6, and RTS stages 1 through 5. This was done as the first
attempt to evaluate algorithm performance to see if predicting all stages of return

was possible with the extracted feature set.

4.1 Pre Processing

When predicting all stages, no additional steps were taken from the methodology
explained in Chapter 3. However, one modification in methodology in this section
was the hyperparameter tuning for the RF algorithm. In this attempt, the range
of number of trees used i the randomized grid search was from 200 to 2000, instead
of the range specified in Table 3.4. This range was changed for future iterations to
encompass a larger variety of tree sizes that could potentially produce good results.
All 6 RTA stages and 5 RTS stages were predicted. The distribution of the data for

both RTA and RTS can be found in Figures 4.1a and 4.1b. Distributions have been
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plotted as normalized values to show the proportion of data out of 1 in each stage.

Return to Activity Stage Distribution Return to School Stage Distribution

Normalized Stage Recerdings
Normalized Stage Recordings

RTA Stage RTS Stage
(a) (b)

Figure 4.1: Return to activity (a) and return to school (b) normalized distributions
for all stages

Classes were not evenly distributed, however it was decided to use the data with-
out any additional processing to analyze model prediction on the initial dataset. The
‘class_weight” parameter was set to “balanced” for both RF and SVC models to ac-

count for the imbalance in the classes.

4.2 Return to School

The best set of hyper parameters found for the RF and SVC classifiers for this set of

data can be seen in Tables 4.1 and 4.2.
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Parameter Value
n_estimators 150
max_features ‘sqrt’
max_depth ‘None’
min_samples_split 2
min_samples_leaf 3
bootstrap True
class_weight ‘balanced’

Table 4.1: Random Forest Hyperparameters Tuned for RTS All Stages

Parameter Value

C 1

Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 4.2: Support Vector Machine Hyperparameters Tuned for RTS All Stages

The classification results for both RF and SVC classifiers can be seen in the

confusion matrices (Figure 4.2), ROC cruves 4.3, and summary table of results (Table

4.3) The overall accuracy was 0.47 for the RF model and 0.42 for the SVC model.
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Class

Model

Precision

Recall

f1-Score

Stage 1

RF
SVC

0.00
0.00

0.00
0.00

0.00
0.00

Stage 2

RF
SVC

0.89
0.00

0.37
0.00

0.53
0.00

Stage 3

RF
SVC

0.50
0.40

0.84
0.81

0.63
0.53

Stage 4

RF
SVC

0.53
0.39

0.04
0.10

0.07
0.16

Stage 5

RF
SVC

0.33
0.66

0.70
0.56

0.45
0.61

Table 4.3: Summary of results for RTS predictions of all stages

Random Forest RTS Confusion Matrix

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Support Vector Machine RTS Confusion Matrix

Stage 1 Stage 2 Stage 3
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Figure 4.2: Random forest (a) and support vector machine (b) confusion matrices
for RTS classifier prediction for all stages.
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Figure 4.3: Random forest (a) and support vector machine (b) ROC curves for RTS
classifier prediction for all stages.

Based on the results shown above, it can be seen that this model did not predict
the stages very well since it had a poor overall accuracy, and many misclassified data
points between all stages. Stage 1 especially had zero true positives for both models
and therefore made no correct classifications. One possible explanation for this could
be the lack of data for this stage, reducing the number of entries the model has to
learn from making it harder for the model to train for predicting this stage. Stages
2, 3, and 5 predicted better than others for the RF model but the results were still
not convincing, showing low predictive ability. The SVC had no true predictions for
stage 2, and similar trends to the RF model for all other stages. The ROC curves for
both models showed that in order to have high true positive rates there would also be
a high false positive rate, and therefore the model would likely misclassify more data
points. For example with the random forest model, for all stages to have true positive
rates above 0.8, the false positive rate would be between approximately 0.4 and 0.8
for the stages. This shows that although there could be true positive classifications,

there would also be a great amount of false positive predictions, which could tell the
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user it is safe to move to the next stage when it is not. The ROC curves also showed
that the RF model had better predictive ability with higher AUC values and curves
closer to the top left corner of the plot.

Overall, when looking at all results together, its clear that these models did not
perform well enough to solve the problem of predicting stages of recovery for children
in real world applications. The RF classifier performed slightly better overall than
the SVC, which was especially evident when looking at the ROC curves and AUC

values.

4.3 Return to Activity

The best set of hyper parameters found for this set of data can be seen in Tables 4.4

and 4.5.
Parameter Value
n_estimators 1600
max_features ‘sqrt’
max_depth 90
min_samples_split 10
min_samples_leaf 1
bootstrap True
class_weight ‘balanced’

Table 4.4: Random forest hyper-parameters tuned for predicting RTA all stages
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Parameter Value

C 1000
Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 4.5: Support vector machine hyper-parameters tuned for predicting RTA all

The classification results for both models can be seen in the confusion matrices
(Figure 4.5), ROC curves (Figure 4.4) and summary table of results (Table 4.6) The

overall accuracy was 0.46 for the RF model and 0.44 for the SVC.

stages
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Class Model Precision Recall f1-Score
Stage 1 RF 0.13 0.05 0.07
SVC 0.00 0.00 0.00
Stage 2 RF 0.50 0.90 0.64
SVC 0.52 0.91 0.66
Stage 3 RF 0.53 0.18 0.27
SVC 0.25 0.12 0.16
Stage 4 RF 0.36 0.19 0.25
SVC 0.28 0.13 0.18
Stage 5 RF 0.00 0.00 0.00
SVC 0.00 0.00 0.00
Stage 6 RF 0.09 0.14 0.11
SVC 0.21 0.30 0.24
Table 4.6: Results summary for RTA prediction for all stages
ROC for Random Forest RTA Prediction SVM RTA Preiction ROC
W CEEw e CEEE
(a) (b)

Figure 4.4: Random forest (a) and support vector machine (b) ROC curves for RTA

classifier prediction for all stages.
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Random Forest RTA Confusion Matrix Support Vector Machine RTS Confusion Matrix
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Figure 4.5: Random forest (a) and support vector machine (b) confusion matrices
for RTS classifier prediction for all stages.

Results for predicting RTA showed stages 1, 5 and 6 having very low fl-scores with
very few true positive predictions. Stage 5 had no true positive predictions. Stages 3
and 4 predicted better than 1, 2 and 5 however their f1-scores were still quite low and
therefore did not classify well. Stage 2 had adequate classification with an fl-score
of 64% for RF and 66% for SVC. Stage 3 and 4 had better classification for the RF
compared to the SVC, but was low for both models. ROC curves for both models
showed, to get higher true positive rates for all classes, the false positive rate would
also be quite high. Stage 1 in the RF model could have improved prediction with a
different classification threshold, however this would maybe not benefit other stages
and could lead to more misclassification of those stages. AUC values between RF
and SVC were quite different some stages, such as Stage 1, however the trends were
similar, and overall the models performed similarly.

When comparing the SVC and RF models, both performed at approximately the
same overall accuracy with just 0.02% difference. Both showed promise for Stage 2

but not for any other stage. At this point, no model can be determined better suited
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for this application. It was determined that further pre-processing should be done in

hopes of improving overall model performance for predicting stages of recovery.
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Chapter 5

Predicting All Stages with Feature

Selection

Feature selection is a pre-processing method in machine learning that selects a subset
of features from an initial feature set, removing irrelevant or redundant information
(Cai et al., 2018). By reducing the feature set size and removing unnecessary infor-
mation, model accuracy can be improved, and learning time can be decreased (Cai
et al., 2018). Due to results found in Chapter 4, feature reduction was attempted
to determine if removing highly correlated features could help improve algorithm

performance.

5.1 Feature Selection

The first attempted method at reducing the feature set was using a built in random
forest function called “feature_importances_”, which calculates the importance of each

feature when fitting the model with the training set. Using the matplotlib library in
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python, feature importance was plotted as a bar chart for both the RTS and RTA

random forest models (Figure 5.1).

Feature Importances for Random Forest RTS model

0.14

0.12

T
=)
2
S

®  ©

] ]

(=] (=}
aocuepoduw)

0.04

0.02 1

0.00 -

8¥iean
8yPIUS
g8t10ebod
ds gpfisod
U spAIsad
s1 8pAisad
up grAisod
|5 arAIsad
12" gvAIsod
o grlisad
sa gpfisod
wi gplisod
20 gpfisod
Jwgphisod
ms grhisad
ws grAisad
AugpAIsd
ps srAisad
A" spAisad
wgfisod
1 sAIsod
sp gpfisad
Y gyhisad
zp gpAIsad

Features

a9 8rAisad
su” gpfisod
ey grAisad
aby

X35

YIS

WAS
Zavw
Zun

z xew

z ueap
zpis
Aavii
AUy

A xep

K ueap
Apis

X avi

X Ul

X xep

X uesp

X P15

Feature Importances for Random Forest RTA model

0.12 1

0.10 1

T T
© ]
=] =]
=]

S
ssuepodw

0.04

0.02 1

0.00 -

8tiesan
8¥PIUdS
g10ebod

ds gpAisod
ju grAisad
s) gvAisad
P spAsad
15 arAisad
12 grAsad
42 gphisad
sA”gpAisad
uugpAIsad
23 gphAisad
JwgpAisod
msgrAIsad
wa gpAisad
AuTgpAisod
ps grAisad
AgpAisad
- gpAisad
1| apAIsad
sp gphisad
3y srfisod
zp gpflisad

Features

19 grAisad
su”gpAisod
ey grAIsad
aby

X955

YIS

WAS
Zavi

Z U

z xep
zueap
zpis
Aavi
Aupy

A xep

A ueap
Apis

X avi

X uip

X Xen

X ueal

x P15

)

b

(

Figure 5.1: Return to School (a) and Return to Activity (b) feature importances.

Based on the importance plotted above, it is clear that a few features had much

higher importances, and a ranking of top 5 features based on importance can be seen

in Table .
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Ranking Feature

1 Score of how the school days in the past
48 hours were

2 Level of cognitive activity done in the
past 48 hours

3 Age

4 Total symptom score

5 Degree of feeling differently in the past

48 hours

Table 5.1: Top 5 features in order of importance for Return to School Classification

Ranking Feature

1 Age

2 Level of cognitive activity done in the
past 48 hours

3 Score of how the school days in the past
48 hours were

4 Total symptom score

5 Degree of feeling differently in the past

48 hours

Table 5.2: Top 5 features in order of importance for Return to Activity Classification

All other features for both models had importance below 0.04. Although some

were smaller than others, it was decided that there were no obvious features to remove
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using this method. Both RTA and RTS models had the same trends for all features,
with slight variance in the actual value of importance. The SVC did not have a
similar built in function and therefore this was only analyzed on the RF model. It is
speculated that importance would be similar for SVC models.

The second method used to reduce the feature set was correlation between fea-
tures. Features that are highly correlated to eachother would provide the same infor-
mation to the model, and therefore having both features in the set adds redundant
information (Yu and Liu, 2003). The python function “corr()” was used to calculate
the Pearson correlation coefficient between each feature. A correlation matrix for the
feature set was plotted as a heat map and features with 0.8 or higher were deemed
as highly correlated, and one of the features was removed. Correlation of 0.8 and
higher has been recorded in medical research as displaying a very strong relationship
between values (Chan, 2003)(Akoglu, 2018). The correlation matrix for the feature
set can be seen in Figure B.1 in Appendix B. The features that had correlation above
0.8 with at least one other feature were removed. These features were ‘Std x’, ‘MAD
y’, ‘Std 7, ‘pesiy48_dif’; ‘pesiyd8._sd’, ‘Mean y’. The models were run again with the
new feature set not including the features mentioned. The code to find and plot the

correlation can be found in Appendix A.2.5.

5.2 Return to School

The hyperparameters for both RF and SVC were the same from those used in Chapter
4 and can be found in Tables 4.1 and 4.2 respectively. The results can be found in
the confusion matrices (Figure 5.2), ROC curves (Figure 5.3), and summary table

of results (Table 5.3). Overall accuracy was 0.46 for the RF model and 0.42 for the
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SVC.

Class Model Precision Recall f1-Score

Stage 1 RF 0.00 0.00 0.00
SVC 0.00 0.00 0.00

Stage 2 RF 0.55 0.10 0.17
SVC 0.00 0.00 0.00

Stage 3 RF 0.51 0.89 0.65
SVC 0.40 0.83 0.54

Stage 4 RF 0.51 0.04 0.07
SVC 0.43 0.10 0.16

Stage 5 RF 0.35 0.72 0.47
SVC 0.63 0.51 0.56

Table 5.3: Summary of results for RTS predictions of all stages with feature

Random Forest RTS Confusion Matrix

Stage 5 Stage4 Stage3 Stage2 Stage 1
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Figure 5.2: Random forest (a) and support vector machine (b) confusion matrices
for RTS classifier prediction with feature reduction.
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Figure 5.3: Random forest (a) and support vector machine (b) ROC curves for RTS
classifier prediction with feature reduction.

RTS predictions were very similar to the results seen in Chapter 4. Stages 3, 4,
and 5 predicted the same or slightly better with feature reduction for the RF mode,
however stage 2 had much worse classification. No major differences were seen in
the ROC curves for both models. Overall accuracy for RF was comparable, at just
0.01% lower than previously. For the SVC classifier, all stages prediction the same
with stage 5 having a slightly worse classification compared to the previous model.

Overall accuracy was the same for SVC models with and without feature reduction.

5.3 Return to Activity

The hyperparameters for both RF and SVC were the same from those used in Chapter
4 and can be found in Tables 4.4 and 4.5 respectively. The results can be found in
the confusion matrices (Figure 5.4), ROC curves (Figure 5.4), and summary table
of results (Table 5.4). Overall accuracy was 0.47 for the RF model and 0.44 for the

SVC.
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Class Model Precision Recall f1-Score

Stage 1 RF 1.00 0.19 0.32
SVC 0.00 0.00 0.00

Stage 2 RF 0.51 0.91 0.66
SVC 0.52 0.91 0.66

Stage 3 RF 0.49 0.18 0.27
SVC 0.25 0.12 0.16

Stage 4 RF 0.37 0.17 0.23
SVC 0.28 0.15 0.20

Stage 5 RF 0.00 0.00 0.00
SVC 0.00 0.00 0.00

Stage 6 RF 0.08 0.14 0.10

SVC 0.21 0.29 0.24

Table 5.4: Results summary for RTA prediction for all stages with feature reduction.
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Support Vector Machine RTS Confusion Matrix
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Figure 5.4: Random forest (a) and support vector machine (b) confusion matrices
for RTA classifier prediction with feature reduction.
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ROC for Random Forest RTA Prediction SVM RTA Prediction ROC
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Figure 5.5: Random forest (a) and support vector machine (b) ROC curves for RTA
classifier prediction with feature reduction.

Simialrly to results seen for RTS prediciton, feature reduction did not greatly
improve model performance of the RTA classification. The RF model had better
prediction for stage 1 and 2, however all other stages were either the same or slightly
lower. The SVC model had slightly better performance at stage 4, but all other
stages were the exact same. No major differences were seen in the ROC curves for
both models. There were slight improvements for the models with feature reduction,
but not great enough for feature reduction to have a large effect. Therefore, the
full feature set was kept and further pre-processing methods were tested to improve

algorithm performance.
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Chapter 6

Predicting Stages while Removing

Stage 1

The following chapter describes the results for the RF and SVC models predicting
RTA stages 2 through 6, and RTS stages 2 through 5. Stage 1 was removed because
it had a much smaller amount of data, making it difficult for models to predict.
Furthermore, stage 1 of recovery occurs normally within the first 24-48 hours after
injury. Therefore data collection, especially for a research study, is more challenging
during this period (i.e typically a smaller window of opportunity for recruitment).
Thus, removing stage 1 was the next test to find the best possible model for predicting

RTA/RTS stages.

6.1 Pre Processing

Methodology from Chapter 3 was used with an additional step to remove the data

from stage 1. Two data sets were created, one for RTA with the RTS labels removed,
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and one for RTS with the RTA labels removed. For each data set, any row of features
that was labelled as stage one was removed. This data set contained features for 62
participants with a total of 778915 rows for RTA and 813761 rows for RTS, where
each row represents one labelled entry. The distribution of the data for both RTA

and RTS can be found in Figure 6.1.

Return to Activity Stage Distribution Without Stage 1 Return to School Stage Distribution Without Stage 1

o o
w ES

Normalized Stage Recordings
o
¥

Normalized Stage Recordings
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RTA Stage RTS Stage

(a) (b)

Figure 6.1: Return to activity (a) and return to school (b) normalized stage
distributions without stage 1.

Similarly to the distributions seen in Chapter 4, there is not an even distribution

between stages even when removing stage 1.

6.2 Return to School

The best set of hyper parameters found for this set of data can be seen in Tables 6.1

and 6.2.
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Parameter Value
n_estimators 550
max_features ‘sqrt’
max_depth 60
min_samples_split )
min_samples_leaf 2
bootstrap ‘False’
class_weight ‘balanced’

Table 6.1: Random forest hyperparameters tuned for RTS removing stage 1

Parameter Value

C 100
Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 6.2: Support vector machine hyperparameters tuned for RTS without stage 1

The classification results for both RF and SVC can be seen in the confusion matrics

(Figure 6.2), ROC curves (Figure 6.3), and summary table of results (Table 6.3) The

overall accuracy was 0.68 for the RF model and 0.54 for the SVC.
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Class Model Precision Recall f1-Score

Stage 2 RF 1.00 0.59 0.74
SVC 0.19 0.12 0.15

Stage 3 RF 0.80 0.91 0.85
SVC 0.61 0.78 0.68

Stage 4 RF 0.53 0.33 0.41
SVC 0.39 0.30 0.34

Stage 5 RF 0.41 0.57 0.48
SVC 0.57 0.32 0.41

Table 6.3: Results summary for RTS predictions while removing stage 1

Random Forest RTS Confusion Matrix Removing Stage 1 Support Vector Machine RTS Confusion Matrix Removing Stage 1
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Figure 6.2: Random forest (a) and support vector machine (b) confusion matrices
for RTS predictions without stage 1.
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ROC for Random Forest RTS Prediction When Removing Stage 1 ROC for Support Vector Machine RTS Prediction When Removing Stage 1
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Figure 6.3: Random forest (a) and support vector machine (b) ROC predicting RT'S
stages without stage 1.

Overall, the prediction for RTS while removing stage 1 was much better than the
results seen in Chapter 4. Stage 2 predicted well for both the RF and SVC models,
and 3 had good prediction for the RF model. Stage 4 and 5 still had relatively low
results, with fl-scores under 50% for both models. Over half of the misclassifications
for both stages 4 and 5 were with each other, likely due to the similarities between
stage 4 and 5 of the RTS protocol. The ROC curve showed high area under the curves
for all RF predicted stages, with stage 3 having the best score. The RF values were
higher for all stages than the SVC model, showing better predictive ability for the
RF model. Overall, to have a high true positive rate for all classes, the false positive
rate would also need to be high meaning more mislcassifications could occur.

The RTS predictions were much better when stage 1 was removed from the data
set. The RF model worked better than the SVC classifier with the overall accuracy
being 14% higher, however there is still a need to improve algorithm performance

prior to APP implementation.
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6.3 Return to Activity

The best set of hyper parameters found for this set of data can be seen in Tables 6.4

and 6.5.
Parameter Value
n_estimators 1100
max_features ‘sqrt’
max_depth 10
min_samples_split 2
min_samples_leaf 1
bootstrap ‘True’
class_weight ‘balanced’

Table 6.4: Random forest hyperparameters tuned for RTA without stage 1

Parameter Value

C 1000
Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 6.5: Support vector machine hyperparameters tuned for RTA without stage 1

The classification results can be seen in the confusion matrices (Figure 6.4), ROC

curves 6.5), and summary table of results (Table 6.6) The overall accuracy was 0.59

for the RF model and 0.57 for the SVC.
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Class Model Precision Recall f1-Score

Stage 2 RF 0.82 0.69 0.75
SVC 0.76 0.76 0.76

Stage 3 RF 0.38 0.48 0.42
SVC 0.47 0.61 0.53

Stage 4 RF 0.55 0.56 0.55
SVC 0.47 0.30 0.37

Stage 5 RF 0.00 0.00 0.00
SVC 0.00 0.00 0.00

Stage 6 RF 0.32 0.65 0.43
SVC 0.20 0.54 0.29

Table 6.6: Results summary for RTA predictions without stage 1

Random Forest RTA Confusion Matrix Removing Stage 1 Support Vector Machine RTA Confusion Matrix Removing Stage 1
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Figure 6.4: Random forest (a) and support vector machine (b) confusion matrices
for RTA predictions without stage 1.
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ROC for Random Forest RTA Prediction When Removing Stage 1 ROC for Support Vector Machine RTA Prediction When Removing Stage 1
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Figure 6.5: Random forest (a) and support vector machine (b) ROC predicting RTA
stages without stage 1.

RTA predicitons showed worse performance than RTS, but still a higher perfor-
mance than results shown in Chapter 4. Stage 5 had no correct predictions for obth
models, but all other stages had some true predictions with stage 2 showing the best
classification results. Aside from stage 5, AUC values were high for the RF model
showing promising predictive abilities of the algorithm. Stage 2, 3 and 4 for the SVC
classifier also had high AUC values, but stages 5 and 6 had lower values than the RF
model, and with values closer to 0.5 showed it had difficulty predicting these stages.
For both models, to get high true positive rates for all stages there would be a high
false positive rate as well.

Overall, the results outlined in this chapter exceed those in Chapter 4, showing
that algorithm performance improved by removing stage 1 from the data sets. Algo-
rithm performance for all models was still not high enough for app implementation,

and further modifications were made in attempt to improve performance.
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Chapter 7

Predicting Stages with Stage

Combination

The following chapter describes the results for the RF and SVC models predicting
RTA stages 2 through 5, where 5 is a combination of stages 5 and 6. Additionally,
RTS stages 2 through 4 were modified such that 4 was a combination of stages 4 and 5.
The last 2 stages from each return protocol were combined because, based on results
presented in earlier chapters, these stages had many misclassifications between them.
These classification errors were undoubtedly due to stage similarities and the fuzziness
between them, especially when relying on self-reported measures. Combining the
stages increased the number of data points for the class, improving balance in the
data set, and reducing the number of classes that the model needed to predict. This
was the final attempt at improving algorithm performance, yielding the best results

across all trials.
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7.1 Pre Processing

All methods from Chapter 3 were used, and the methodology from Chapter 6 used
to remove stage 1 from the data set. Stage combination was done using the python
function ‘replace’ which replaces a specified value from a column with another speci-
fied value. This data set contained features for 62 participants with a total of 778915
rows for RTA and 813761 rows for RTS, where each row represents one labelled entry.

The distribution for these data sets can be seen in Figure 7.1.
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Figure 7.1: Return to activity (a) and return to school (b) normalized stage
distributions without stage 1 and with combining the last 2 stages for each case.

While combining the stages improves the balance between the last two stages and
stage 3, there is still a large gap between stage 2 in both cases. In RTA, stage 2 has
much more data than the later stages, whereas in RTS stage 2 has much less data.
Although stage distribution is better than the previous cases, the'class_balanced’

parameter was still used for all models to account for remaining imbalances.
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7.2 Return to School

The best set of hyper parameters found for this set of data can be seen in Tables 7.1

and 7.2.
Parameter Value
n_estimators 700
max_features ‘sqrt’
max_depth ‘None’
min_samples_split 2
min_samples_leaf 1
bootstrap ‘True’
class_weight ‘balanced’

Table 7.1: Random forest hyperparameters tuned for RTS combining stages 4 and 5

Parameter Value

C 1000
Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 7.2: Support vector machine hyperparameters tuned for RT'S while combining
stages 4 and 5

The classification results for both models can be seen in the confusion matrices
(Figure 7.2), ROC curves (Figure 7.3), and summary table of results (Table 7.3). The
overall accuracy was 0.83 for the RF model and 0.66 for the SVC.
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Class Model Precision Recall f1-Score
Stage 2 RF 1.00 0.59 0.74
SVC 0.19 0.12 0.15
Stage 3 RF 0.82 0.90 0.86
SVC 0.65 0.79 0.71
Stage 4/5 RF 0.83 0.77 0.80
SVC 0.74 0.59 0.66

Table 7.3: Results summary for RTS predictions while combining stages 4 and 5
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Figure 7.2: Random forest (a) and support vector machine (b) confusion matrices
for predicting RTS stages while combining stages 4 and 5
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ROC for Random Forest RTS Prediction When Joining Stages 4/5
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Figure 7.3: Random forest (a) and support vector machine (b) ROC curves for
predicting RTS stages while combining stages 4 and 5.

The RF classifier to predict RTS was the best performing model. All stages
predicted with an fl-score above 0.70 showing good predictive abilities. Stage 3 had
slightly better performance than stages 4/5, which was anticipated since it had the
largest amount of data, and is consistent with the results from previous chapters.
However, the SVC model had good results for stages 3 and 4/5, but not for stage
2. The RF model predicted each stage better than the SVC. AUC values were all
higher than previous models and the ROC curve showed good trade-off between true
positive and false positive rates for all classes. RF AUC values were higher than the
SVC showing better predictive ability for that model. Although the model had some
difficulty predicting stage 2, it still showed good results and promise for predicting

concussion recovery stages. Overall, RTS stages were best predicted when stage 1

was removed and stages 4 and 5 were combined.
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7.3 Return to Activity

The best set of hyper parameters found for this set of data can be seen in Tables 7.4

and 7.5.
Parameter Value
n_estimators 250
max_features ‘sqrt’
max_depth 15
min_samples_split 10
min_samples_leaf 2
bootstrap ‘True’
class_weight ‘balanced’

Table 7.4: Random forest hyperparameters tuned for RTA while combining stages 5

and 6
Parameter Value
C 10
Gamma 0.1
Kernel ‘rbf’
class_weight ‘balanced’

Table 7.5: Support vector machine hyperparameters tuned for RTA while combining
stage 5 and 6

The classification results can be seen in the confusion matrices (Figure 7.4), ROC
curves (Figure 7.5), and summary table of results (Table 7.6) The overall accuracy

was 0.60 for the RF model and 0.58 for the SVC.
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Class

Model

Precision

Recall

f1-Score

Stage 2 RF 0.80 0.72 0.76
SVC 0.76 0.77 0.77
Stage 3 RF 0.39 0.48 0.43
SVC 0.47 0.63 0.54
Stage 4 RF 0.57 0.54 0.55

SVC

0.43

0.29

0.34

Stage 5/6

RF
SVC

0.29
0.26

0.38
0.38

0.33
0.31

Table 7.6: Results summary for RTA predictions while combining stages 5
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Figure 7.4: Random forest (a) and support vector machine (b) confusion matrices
for predicting RTA stages while combining stages 5 and 6
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ROC for Random Forest RTA Prediction When Joining Stages 5/6 ROC for Support Vector Machine RTA Prediction When Joining Stage 5/6
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Figure 7.5: Random forest (a) and support vector machine (b) ROC curves for
predicting RTA stages while combining stages 5 and 6.

The RF and SVC classifiers to predict RTA stages while removing stage 1 and
combining stages 5 and 6 showed the best results for RTA predictions. However, only
stage 2 had high fl-scores at 0.76 and 0.77. All other stages had fl-scores close to
or below 0.50. ROC curves had good AUC values, however for all stages to have
high true positive rates they would also have high false positive rates. AUC values
were higher for the RF model when compared to the SVC, showing better predictive
ability for this model. Overall, this model performed best compared to all previous
RTA models, however it still did not predict all stages with a high accuracy. Further
work could be done to try and improve model performance before implementation

into the APP for use on stage prediction for children with concussion.
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Chapter 8

Stage Predictions for New Data

Data was collected using the first iteration of the Back2Play APP developed by Medic,
a software development company working with CanChild. Recruited participants
wore an Apple Watch which collected accelerometer data at a sampling frequency
of 33Hz. Participants answered a symptom survey three times per day, and at the
end of each day recorded their RTS and RTA stage. Heart rate was also recorded.
However this data was not recorded for some participants. Heart rate was therefore
unusable due to a lack of data. A total of 5 participants, 3 female and 2 male, were
recruited. Participant ages ranged from 8 to 15 which was disappointingly low due to
Covid-19. Lockdowns and cancellation of sports and schools lowered the number of
children getting concussed and therefore decreased the pool of potential participants

in the study.
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8.1 Pre Processing

Symptom processing, accelerometer windowing, data combination, and modelling
methods were the same as those described in Chapter 3, however some additional
formatting and changes were required. Symptom recordings were collected as a list
where one column contained each question asked in the survey, and another column
had the response for each question, with all participants mixed throughout the list.
Data was separated by participant by encoding each participant with a single letter
identifier, and extracting every row with that identifier for each participant. Some
questions were removed as they were not desired as features for the models. These
questions include participant listing which cognitive and physical activities they did,
and a rank from 1-5 of how they were doing that day. These symptoms were removed
to keep symptom features consistent with the features used from the previous data
with the hopes of having similar model results. The remaining features included all 22
symptoms from the PCSS, listed in Table 2.1. All other recordings from the surveys
that weren’t necessary as features were removed, such as ID’s used in the database
to label entries, questions, and other files.

A function was written to format the file into a table where each survey was
represented by one row containing the user ID, time of completion, and symptom
recordings. Firstly, rows that contain questions that weren’t required for the feature
set were removed using a function that checks if rows contain the specific value in
a certain column using a conditional, and if the response is ‘False’, then the row is
kept. Columns containing unnecessary information for the feature set were removed
using the python function ‘drop’. The ‘pivot_table’ function was then used to create a

matrix where the values from the ‘question_text’ column was set as the new columns,
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and answers for each question from the ‘answer_text’ column were set as the row
values in each column. Rows were grouped by values that had the same participant
ID and completion time, making one row for each survey entry. Similar to processing
done on previous data, the symptom values were changed to yes/no responses. In
this data collection, participants were asked to answer whether a symptom was new
(recorded as yes), better, worse, the same, or gone. Any answer recorded as yes,
better, worse, or same was changed to 1, representing that they were experiencing
the symptom. All symptoms recorded as no or gone were changed to 0, representing
that they were not experiencing the symptom. Time entries were then changed to a
‘datetime’ so that it could be sorted in chronological order. Entries were grouped by
participant and sorted by time. Finally, a label matrix was extracted from the overall
matrix, containing RTA and RTS stages, user ID, and time completed. Symptom
files could be processed by using this function, where the file was the input and the
outputs were the symptom matrix and the label matrix. The function process is

described in Figure 8.1.
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start process_symptoms

Y

/ input: symptom_file /

Y

remove rows with
specified values

Y

drop unwanted
columns

create pivot table of
symptoms

Y

encode symptoms as 0
orl

group by user and time
of survey completion

Y

/ output: new_symptom_file /

Y

end function return

Figure 8.1: Flowchart showing process for processing new symptom data.

Accelerometer data processing was the same as detailed in Chapter 3, however

there were no non-wear times to remove. The APP on the Apple Watch was set with
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security to lock the watch when it was removed. If the watch was locked, accelerometer
data was not collected, therefore data was not collected when the watch was not worn.

Stage 1 was removed from the dataset since there was very little data in this class,
to reduce the number of classes, and attempt to get the best algorithm possible. For
RTS, stage 4 and 5 were combined, and for RTA stages 4, 5, and 6 were combined.
All three stages had to be combined due to lack of data in stages 5 and 6. Only
one participant had data past stage 4, and therefore there was not enough data to
have those stages represented in both the training and testing set. Each model was
therefore predicting 3 stages. Due to a lack of data, the training and testing split
was changed to 80/20 for these models to add as much training data as possible. The
distribution of the data can be seen in Figure 8.2. All pre-processing code can be

found in Appendix A.2.7.
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Figure 8.2: Return to activity (a) and return to school (b) normalized stage
distributions for new data, with distinction between participants.

Distributions were split per participant to show the lack of distribution over all
stages. Based on the distributions, it is clear that there was a not enough data for

this test and the models were expected to have difficulty predicting the classes. Three
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participants are only represented in one stage, where the other two have data split
over various stages which causes a lack of variability in the training and testing sets.

Hyper-parameter tuning was the same as mentioned in Chapter 3, however the
range for SVC gamma was increased. Gamma values of 100, 10, 1, 0.1, 0.01, 0.001,
0.0001, and 0.00001 were tested. The range was increased to include larger values
since the dataset was much smaller, and therefore the grid search was much quicker
and more values could be tested without too much additional computation time.
Increasing the range of gamma was done to see if larger values of gamma could
improve algorithm performance. Since gamma controls the distance required between
samples for them to be similar, a higher gamma requires less distance between points
for them to be similar, making the boundary more defined but in exchange taking

longer to compute.

8.2 Return to School

The best set of hyper parameters found for this set of data can be seen in Tables 8.1

and 8.2.
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Parameter Value
n_estimators 10
max_features ‘sqrt’
max_depth 90
min_samples_split )
min_samples_leaf 4
bootstrap ‘True’
class_weight ‘balanced’

Table 8.1: Random forest hyperparameters tuned for RTS prediction of new data

Parameter Value

C 1

Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 8.2: Support vector machine hyperparameters tuned for RTS prediction of
new data

The classification results for both models can be seen in the confusion matrices
(Figure 8.3), ROC curves (Figure 8.4), and summary table of results (Table 8.3). The

overall accuracy was 0.45 for the RF model and 0.41 for the SVC.
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Class Model Precision Recall f1-Score
Stage 2 RF 0.00 0.00 0.00
SVC 0.00 0.00 0.00
Stage 3 RF 0.46 0.68 0.55
SVC 0.41 1.00 0.58
Stage 4/5 RF 1.00 0.37 0.54
SVC 0.00 0.00 0.00

Table 8.3: Results summary for RTS predictions of the new data

Random Forest RTS Confusion Matrix for New Data Support Vector Machine RTS Confusion Matrix for New Data
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Figure 8.3: Random forest (a) and support vector machine (b) confusion matrices
for predicting RTS stages of new data
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Figure 8.4: Random forest (a) and support vector machine (b) ROC curves for
predicting RTS stages of new data

Both the RF and SVC models predicted stage 3 the best, with the SVC having
slightly better classification than the RF with an fl-score of 0.58. The RF was able to
predict some correct samples for stages 4/5 however the SVC was not. Both models
were unable to predict any correct for stage 2. The ROC curves showed that both
models had very low predictive ability, where all curves were around or below the
50% line. The curves also show that the RF model had better predictive ability than
the SVC, which is also evident when comparing the overall accuracies of the models.
Overall, neither model performed particularly well when predicting RT'S stages, which

was expected given the lack of data.

8.3 Return to Activity

The best set of hyper parameters found for this set of data can be seen in Tables 8.4

and &.5.
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Parameter Value
n_estimators 10
max_features ‘sqrt’
max_depth 90
min_samples_split 15
min_samples_leaf 4
bootstrap ‘True’
class_weight ‘balanced’

Table 8.4: Random forest hyperparameters tuned for RTA prediction of new data

Parameter Value

C 1

Gamma 0.1

Kernel ‘rbf’
class_weight ‘balanced’

Table 8.5: Support vector machine hyperparameters tuned for RTA prediction of
new data

The classification results for both models can be seen in the confusion matrices
(Figure 8.5), ROC curves (Figure 8.6), and summary table of results (Table 8.6). The
overall accuracy was 0.35 for the RF model and 0.30 for the SVC.
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Class Model Precision Recall f1-Score
Stage 2 RF 0.21 0.49 0.30
SVC 0.00 0.00 0.00
Stage 3 RF 0.47 0.45 0.46
SVC 0.30 1.00 0.46
Stage 4/5/6 RF 1.00 0.18 0.31
SVC 0.00 0.00 0.00

Table 8.6: Results summary for RTA predictions of the new data

Random Forest RTA Confusion Matrix for New Data Support Vector Machine RTA Confusion Matrix for New Data

1.9e+04 - 40000 3.9e+04 - 50000

stage 2
stage 2

40000
30000

2.4e+04 1.9e+04 30000

True labels

True labels
stage 3

Stage 3

20000

20000

10000

4.7e+04 1l.1le+04 10000

Stage 4/5/6]
|
Stage 4/5/6]

i i
Stage 2 Stage 3 Stage 4/5/6 Stage 2 Stage 3 Stage 4/5/6
Predicted labels Predicted labels

(a) (b)

Figure 8.5: Random forest (a) and support vector machine (b) confusion matrices
for predicting RTA stages of new data
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Figure 8.6: Random forest (a) and support vector machine (b) ROC curves for
predicting RTA stages of new data

Similarly to the results above, stage 3 had the best classification for both models.
The SVC was unable to correctly classify any points in the other two stages, whereas
the RF model had some correct classifications with f1-score of 0.30 for stage 2 and 0.31
for stage 4/5/6. ROC curves held similar trends to those seen for RTS classification,
where most stages had predictive ability around the 50% line. The ROC curve shows
the RF forest had better predictive ability than the SVC with higher AUC values.
For all ROC curves it is evident that in order to have high true positive rates, the
false positive rates would also be very high. This proves that these models did not
accurately predict the RTA/RTS stages very well.

Overall, for both RTA and RTS predictions it was found that the RF model
predicted better. However, the model performance was not very good, which is likely
due to the lack of data. It is hopeful that with more data, the RF models could be
used to accurately predict RTS and RTA stages and could then be incorporated into

the APP for use by concussed users.
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Chapter 9

Discussion

Chapters 4 through 8 present the results found from various models created to predict
RTA and RTS stages. From algorithms creating using previously acquired concussion
data, it was found that best predictions occurred when stage 1 was removed and the
final two stages of each protocol were combined. Stage 1 could be removed since
the protocols advise staying in stage 1 for just the first 24 to 48 hours after injury.
Given the short period in this stage, and the clear protocols for moving to the next
stage, it would be unnecessary to determine for the user. The guidelines for using
the APP could clearly state to start only following predictions after the first 24-48
hours. Furthermore, this stage had little data collected in the previous study. This is
also likely attributed to the short time period participants would spend in this stage,
and the increased difficulty of recruiting participants immediately after injury. The
last two stages of each protocol were combined to once again decrease the number
of stages that needed to be predicted by each algorithm. It was found that there
were misclassifications between these stages likely due to similarity in the data. The

protocols show that the last RTA/RTS stage is just a full return to school or activity,
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whereas the second last stage is almost a full return with slight limitations. This could
mean that symptoms would be very similar between stages, and there would be very
little difference in the level of physical activity. By combining them, there was more
data in the final stage to be predicted, also balancing out the dataset slightly more.
Overall, removing stage 1 and combining the final stages removed two classes that
needed to be predicted, decreasing complexity of the algorithms and allowing room
for improvement. This case found the best results and shows promise in predicting
RTA/RTS stages.

Given there were slight differences between data collected by the earlier study and
data that would be collected by the APP, new models were required on a new set of
participants to create algorithms that could be used in the APP. The most successful
model was matched to create algorithms for new data, since it was assumed that it
would similarly have the most success. The algorithms were made on a dataset of
5 participants, which was low due to Covid-19 restrictions. Algorithms were not as
successful as those found with previous data, likely due to limitations in data size. A
five participant pool was not enough to provide good training and testing data for the
algorithms. Furthermore, it was seen that just one participant had data in all stages
of return. Each participant only used the APP for approximately two weeks, meaning
there was a chance they didn’t use it for the full recovery and therefore did not capture
all stages of return for RTA and RTS. Although overall accuracies of the models were
lower, the results show good indication that they can successfully predict some stages
of return, especially in the stage that had more data and higher distributions between
participants. Given these results, the models can be used moving forward on larger

datasets to attempt to improve results.
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In each test, both RF and SVC models were tested. Through each trial, it was
clear that the RF algorithms performed better than SVC. RF classifiers have been
found in literature to have good accuracy compared to other models. Furthermore,
it has been seen that these classifiers have decreased training time compared to SVC,
and are better at handling noise/outliers in a dataset (Parmar et al., 2019). It was
suspected that the RF algorithms would perform better than the SVC in this study,
mostly since outlier detection was not done in preprocessing. This puts the RF
model at a advantage since, as mentioned above, SVC’s are more sensitive to outliers.
Furthermore, a benefit of the RF model was the training time, as it was observed
during training that the RF classifiers all trained much quicker than the SVe. This is
highly advantageous in this study since the end goal is implementation into an APP,
which has device battery limitations. A model that runs more quickly could decrease
time of background use and therefore limit the risk of using too much battery. Based
on the results found in this study, RF models predicted RTA/RTS stages with higher

accuracy, and should therefore be used moving forward.
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Chapter 10

Conclusions

In this thesis, machine learning algorithms to predict return to school and return to
activity stages were created. Four iterations were done to find the best algorithm,
including predicting all stages, predicting all stages with feature reduction, predicting
stages without stage 1, and predicting stages without stage 1 and while combining the
last two stages. It was found that when reducing the number of stages by removing
stage 1 and combining the last two stages, predictive ability of the models were higher
than previous iterations. In general, the random forest models performed better than
the support vector machine models for all iterations. Furthermore, similar models
were created to predict RTA and RTS stages on newly collected data, and preliminary
results were found on a small set of participants. Future work is required to complete
models that can be implemented into the smartphone APP to be used to predict RTA

and RTS stages for children with concussions.
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10.1 Future Work

With the conclusions of this study, some future work is still required to complete the
expectations set out at the beginning. Firstly, processing and modelling of newly
collected data is required. First iterations of the APP have been released and partic-
ipants have been recruited to collect data throughout their recovery. This recorded
data could be used alongside the small data set described in Chapter 8, and models
could be retrained to improve algorithm performance. Once modelling of these algo-
rithms is complete, they could then be exported to CoreML, which is the language
required for implementing a MLA in an Apple APP. Once implemented into the APP,
further recruitment and data collection would be required to analyze model perfor-
mance. Model performance could then be compared to brain recovery using medical
imaging techniques. Stages of recovery determined by the model could be compared
to symptom severity and functional brain recovery through the RTA/RTS stages by
using “TBlfinder” brain analysis software(TBIFinder, 2021). “TBlfinder” provides
personalized brain injury analysis using MRI and Big Data techniques to identify and
locate brain injury, and quantify severity(TBIFinder, 2021).

Further work to try and improve model performance could be done by explor-
ing other options, such as data augmentation, and additional pre-processing such as
filtering, or changes in the window length or overlap. Finally, different extracted fea-
tures from the accelerometer data could also be explored to test if a different feature
set improves predictive ability of the models. Features derived from heart rate and
heart rate variability could also be useful, and therefore collecting this data from
future participants and incorporating it into the feature sets could benefit model

performance.
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10.2 Limitations

The biggest limitation in this study was the lack of distribution in the data, decreasing
the predictive ability of the models for stages where data was limited. This was
apparent in all iterations using the previously collected data, and was especially
apparent when analyzing the newly collected data. With the newly collected data,
limitations also included lack of data due to a low number of participants in the study.
Participant recruitment was difficult due to the Covid-19 pandemic, since school and
sports were cancelled for all kids, decreasing the incidence of concussions and the
ability to run research projects. Covid-19 also limited the availability of research
MRI scanning, preventing the use of MRI to compare imaging results to stage of
return predicted from the algorithms, which was initially a goal of this study.

A second limitation which could become more apparent in future work, was the
difference in devices used to collect accelerometer data in the previous study com-
pared to the new study. Previous data was collected by an Actigraph worn on the
waist, whereas new data was collected by an Apple watch worn on the wrist. These
differences could cause the models created on the previous data to be less transferable
to the new data, and could therefore require more pre-processing on the new data to

reach the same level of model performance.
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Appendix A

Appendix A: Code

A.1 Matlab Code

A.1.1 Symptom Data Cleansing

close all
clear all
%everyone , everyone with 2 weeks removed, remove missing data,

%just 10 to 18 yrs

data = readtable(’SymptomData_LaurenEdits_8tol8yrs.csv’);

a = data.Properties. VariableNames;

a=a(l, 3:66);

databto8 = readtable(’SymptomData_LaurenEdits_5to8yrs.csv’);

abto8 = databto8.Properties. VariableNames;
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abto8 = abto8([1, 3, 4, 5, 6, 7, 8, 9, 18:44]);

8
datamat5to8 = databto8{:, [1, 3, 4, 5, 6, 7, 8, 9, 18:45]};
symptomlabels = a([1, 2, 3, 7:37]);
labels = string (symptomlabels);
datamat = data{:, [1, 3:37]};
totaldata = [datamat;datamatbto8];

totalagemat = totaldata (:,3);

totagecount = 0;

%Counts how many participants there are in total

for r=1:length(totalagemat)
if totalagemat(r) >= 0
totagecount=totagecount+1;
end

end

%Changes all NaN values that represent having no symptoms to 0
%done for case when participant specified that they had
Y%no symptoms in the last 48 hours
for d=1:length(totaldata (:,1))
if totaldata(d, 4) = 0 %checks entry for symptom at 48 hours
totaldata(d, 5) = 0; %sets ’recurring symptoms’ to 0
for ¢=9:32
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totaldata(d, c¢)=0; %changes NaN to 0
end
end

end

%This next block uses the original data matrix

%to calculate the number of

%datapoints if all 2 week time period

%entries are removed.

no2week = totaldata (:,:);

week2totcount = 0;

%This for loop calculates how many rows of data there are

%for 2 weeks time period entries.

for c=1:length(no2week (:,2))
if isNaN (no2week(c,4))
week2totcount = week2totcount—+1;
end

end

%Remove all 2 week rows from the data set
no2week (any (isNaN (no2week (:, 4)),2), :) = [];
%Creates a new symptoms matriz containing

%age , sex, rta, rts and the symptoms.
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symptomstotal = no2week (:, [1, 2, 3, 7:35]);
%Calculate how many participants and rows of data there are
Y%without 2weeks data
no2weekage= no2week (:,3);
0;

totagecount2week =

for r=1:length(no2weekage)
if isNaN (no2weekage(r)) = 0
totagecount2week=totagecount2week +1;
end

end

%Any row with at least 1 missing value is removed
for ¢ = 4:32
symptomstotal (any (isNaN (symptomstotal (:, ¢)),2), :) = [];

end

no2weekage2= symptomstotal (: ,3);

totagecountmiss = 0;

for r=1:length(no2weeckage?2)
if no2weekage2(r) >= 0
totagecountmiss=totagecountmiss+1;

end
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end

%Creates a vector of just the ages of participants
%to calculate how many

Zparticipants and observations there would be if
%all participants under 10 were removed.
agemattotal = symptomstotal (:,3);

totalpart=0;

poverl0=0;

for r=1:length(agemattotal)
if agemattotal(r) >= 0
totalpart=totalpart+1;
end
if agemattotal(r) >= 10
poverl0 = poverl0+1;
end

end

%creates a new wvector an fills all NaN values with the
%previous wvalue, in
%order to count the total number of observations for

%participants over the age of 10.
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newagemattotal = fillmissing (agemattotal ,  previous’);

agecount = 0;

for r=1:length(newagemattotal)
if newagemattotal(r) >= 10
agecount=agecount—+1;
end

end

sym_10tol8 = symptomstotal;
sym_10tol18(:,3) = fillmissing (sym_10tol8(:,3), ’'previous’);
rows = zeros (length(sym_10tol8(:,1)),1);
n=1;
for i = 1:length(sym_10tol18(:,3))
if sym_10t018(i,3) < 10

rows(n) = i;
n=n-+1;
end
end
rows( all("rows,2), : ) = [];

sym_10tol8 (rows, :) = [];

symptom_data = array2table (sym_10tol8);
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writetable (symptom_data, "symptoms_10tol8_cleaned.csv”);

A.2 Python Code

A.2.1 Remove Non-Wear Code

import pandas as pd

import numpy as np

#load file with header names

non_wear = pd.read_csv(’1098 wearinfo.csv’,

Y

names=[’Start_time’, ’Stop_time’, 'Wear’,

"Length’, "Use’])

#drops columns that aren’t useful

non_wear = non_wear.drop(non_wear.index [0:3])

samp_freq = 30

wear = non_wear.Length.astype(float)

#cumulative sum for each value to get total time from

begining for each wear/nonwear time
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wear = np.cumsum(wear, axis=0)

#load accelerometer data and skip 10 rows
#which does not contain any data

sig = pd.read_csv(’1098 raw.csv’, skiprows=10)

#set to length of sample for each

rem_times = wearx60xsamp_freq

rem_times [len(rem_times)+2] = len(sig)

rem_vec = np.append (0, rem_times)

#create vector from 0 to length of wear—time vectors
#for the loop iterators

loop_vec = np.arange (0, len(rem_vec)—1, 2)

#create an indexr wvector for remowval

rem_ind = []

#for loop loops through the loop wvector to get every
# other wvalue as the starting index and in the loop
#gets the next value

#in the wear length wvector as the end index.
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#Saves these wvalues in an index vector
for i in loop_vec:
index = np.arange(rem_vec|[i], rem_vec[i+1])

rem_ind . append (index)

#changes to one array

ind_del = np.concatenate(rem_ind, axis=0).astype(int)

#removes all values between start and end index from
#accelerometer signal

new_sig = sig.drop(sig.index[ind_del])

new_sig.to_csv(’1098 _clean.csv’) #saves as new file

A.2.2 Windowing

import pandas as pd

import numpy as np

from datetime import datetime
from scipy import stats

import math

#load symptom data

dates_keep = pd.read_csv(’symptoms_10tol8_cleaned_0Otol_dated.csv’)
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part = 71016” #value is changed depending on which participant

#data 1s being windowed

dates_keep = dates_keep.dropna(subset=[’Participant’])

dates_keep [’ Participant '|]=dates_keep [ Participant’].astype(str)

#Create a date wvector with just the date of each symptom recording
dfl = dates_keep[dates_keep [’ Participant’].str

.contains ('%s’ % part)]
dfl = dfl.reset_index ()

dates = dfl.Date

#Convert the string date to a type datetime
dates.dtype

keepdates = pd.to_datetime (dates)

#Sets a unique wvariable for each date that has symptom data.
#This section is manually

#changed for each participant depending on how many days
#they had symptom recordings

#for. This example i1s for participant 1016

dayl = keepdates [0]

day2 = keepdates[1]
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day3 = keepdates [2]

# ... for number of dates

#Accelerometer file is loaded in. Some participants had

#multiple files and therefore

# the option of multiple files is present. The index 1is

#reset for each file so they all

#start at 0 indexing. Files are concatenated together

#to create one signal file

sigl = pd.read_csv( '%sa_clean.csv’ % part,
names=|['Date’, 'x’, 'y, 'z’])

sig2 = pd.read_csv( '%sb_clean.csv’ % part
names=|['Date’, 'x’, 'y’ , 'z’])

#sig3 = pd.read_csv('%sc_clean.csv’ % part,
names=|['Date’, 'x’, 'y’ , 'z’])

#sig4 = pd.read_csv(’%sd_clean.csv’ % part,
names=[’Date’, 'x’, 'y, 'z’])

sigl = sigl.drop(sigl.index[0])

sig2 = sig2.drop(sig2.index[0])

#sig3 = sig3.drop(sig3.index[0])

#sig4 = sig4.drop(sig4.index[0])

sig = np.concatenate ((sigl, sig2))

sig = pd.DataFrame(sig, columns=[’Date’, 'x’, 'y’ , ’z’])
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#sets a window size and shift size in seconds, and the
#sampling frequency of the signal #in Hz

win_size = 30

win_shift = 15

samp_freq = 30

#creates a vector containing the dates in the signal

day = sig.Date

#Converts date to a datetime, and removes the time so just
#the day is left.
date_time=pd.to_datetime (day)

date_day = date_time.dt.date

#Creates a signal for each day that needs to be kept for analysis
dayl_sig = date_day|[date_day = dayl]

day2_sig = date_day [date_day day?2]

day3_sig = date_day|[date_day = day3]

# ... continues for number of dates

#Creates an index for each date to know which samples need
#to be kept from the original signal.
dayl_ind = dayl_sig.index

day2_ind = day2_sig.index
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day3_ind = day3_sig.index

# ... continues for number of dates

#Creates one vector containing all indexes to account for all

#dates with both symptom and accelerometer

#data (this ex. has 26 days).

keep_ind = np.concatenate ((dayl_ind, day2_ind, day3_ind,
day4_ind, day5_.ind, day6_ind, day7_.ind, day8_ind , day9_ind ,
dayl0_ind, dayll_ind, dayl2_.ind, dayl3_.ind, dayl4_ind, dayl5_ind,
dayl6_ind , dayl17_ind , dayl8_.ind, dayl9_.ind, day20_ind, day21_ind,
day22_ind , day23_.ind, day24_ind,
day25_ind , day26_ind))

#Creates a signal dataframe with only the dates wanted

sig.sym = sig.loc[keep_ind]

#Resets the indexing to 0 and creates a 1D array for

#each signal (z, y, z azes and date)
sig.sym = sig_sym.reset_index ()

X = sig_sym.Xx

y = sig_sym.y

z = sig_sym.z
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symday = sig_sym .Date

#function to window the data — provided by colleague Ama Simons
#requires 1D signal array, window size , window shift

#and sampling frequency as inputs. Qutputs windowed

#sample array and number of windows

def windowing(array, win_size, win_shift , samp_freq):
j=0
#how many samples in win_size window
winsamp = win_sizexsamp_freq

winsamp_shift = int(win_shift«samp_freq)

#takes window samples, then transposes to (1, n_samples)

winsig = array[j:j+winsamp|.T

count = 1

if win_shift:

jt=winsamp _shift

while (j+winsamp<array .shape[0]):
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win = array [j:j+winsamp|.T

count = count + 1

# concatenate the windows by the rows
winsig = np.concatenate ((winsig ,win) ,axis=0)

j+= winsamp _shift

return winsig, count

else: # in the case that window ts zero

j+=winsamp

while (j+winsamp<array.shape[0]):

win = array [j:j+winsamp|.T

count = count + 1

# concatenate the windows by the rows

winsig = np.concatenate ((winsig ,win),axis=0)

j+= winsamp

return winsig , count

#Passes each 1D signal array into the windowing
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#function to return the windowed signal.

{[winsigx , count|} = windowing(x, win_size, win_shift , samp_freq)
{[winsigy , count|} = windowing(y, win_size, win_shift , samp_freq)
{[winsigz , count|} = windowing(z, win_size, win_shift , samp_freq)
{[windate, count]|} = windowing(symday, win_size, win_shift , samp_freq)

#Changes dates to a datetime and removes the timestamp.

win_day = pd.to_datetime (windate).normalize ()

winsigx = winsigx.astype(float)
winsigy = winsigy . astype (float)

winsigz = winsigz.astype(float)

#Creates a day vector containing integer values for each day.
#ie. first day with symptom data is day 1.

day num = []

for sample in win_day:
if sample = dayl:

day num . append (1)

elif sample = day2:

day_num . append (2)

elif sample = day3:

day_num . append (3)
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# ... continues for number of days

#Fzxtract features from the windows. Average day is used to
#remove overlapping signal between dates. Since
#labelling for stages is per day then the one window
#overlapping between days should be removed.

win_samples = win_sizexsamp_freq

size = len(winsigx)

win_start = np.arange (0, size, win_samples)

std_vec = []
day_vec = []
svim = 0
sma_x = 0
sma.y = 0

sma_.z = 0

for sample in win_start:
std_x = np.std(winsigx [sample:sample+win_samples])
mean_x = np.mean(winsigx [sample:sample+win_samples])

max_x = max(winsigx [sample:sample+win_samples])

min_x = min(winsigx [sample:sample+win_samples])
mad_x = stats.median_absolute_deviation
(winsigx [sample:sample+win_samples], axis=None)
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std_y = np.std(winsigy [sample:samplet+win_samples|)
mean_y = np.mean(winsigy [sample:sample+win_samples])

max_y = max(winsigy [sample:sample+win_samples])

min_y = min(winsigy [sample:sample+win_samples])
mad_.y = stats.median_absolute_deviation

(winsigy [sample:sample+win_samples], axis=None)
std_z = np.std(winsigz [sample:sample+win_samples])
mean_z = np.mean(winsigz [sample:sample+win_samples|)

max_z = max(winsigz [sample:sample+win_samples])
min_z = min(winsigz [sample:sample+win_samples])
mad.z = stats.median_absolute_deviation
(winsigz [sample:sample+win_samples], axis=None)

day_win = np.average(day num [sample:sample+win_samples])

for i in range(sample, samplet+win_samples):
svim = svm + (math.sqrt ((winsigx [1]**2)+ (winsigy [i]*%2) +
(winsigz [i]*%2)))
sma_x = sma_x + abs(winsigx[i])
sma_y = sma.y + abs(winsigy[i])

sma.z = sma.z + abs(winsigz[i])

sma = (1/win_size)*(sma_x + sma.y + sma_z)
std_vec.append ((std_x, mean_x, max_x, min_x, madx, std_.y,

mean_y, max.y, min_y, mady, std_z, mean_z, max_z, min_z,
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mad_z, svm, sma, day_win))

svin = 0

sma_-x = (

sma.y = 0

sma_z = 0
cols = [’Stdox’, 'Mean.x’, 'Max.x’, 'Min.x’, 'MAD.x’,
"Std_y’, 'Mean_y’, Max.y’, 'Min_.y’, MAD.y’, 'Std_..z’,
"Mean.z’, 'Max.z’, 'Min_.z’, 'MAD_z’, 'SVM’, 'SMA’, ’Date’]

feature_mat = pd.DataFrame(std_vec, columns = cols)

#Removes overlapping days and creates dataframe with features
#(this ex. has 26 days)
dfl = feature_mat [( feature_.mat[’Date’].isin ([1.0, 2.0, 3.0, 4.0,

5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,

16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0]))]

#Saves dataframe as CSV

dfl.to_csv ( '#s_featmat.csv’ # part)

A.2.3 Data Fusion

import pandas as pd
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# load both symptom and acc feature datasets
sym = pd.read_csv(’symptoms_dates.csv’)

features = pd.read_csv(’features_total.csv’)

#take columns containing desired features

symptoms = sym.iloc [:, 0:33]

#fill in NaN sex and age spaces for each participant
symptoms | 'Sex’] = symptoms|’Sex’]. fillna (method="ffill ")

symptoms | "Age’] = symptoms[ Age’]. fillna (method="ffill ")

#create date vectors for each data type for comparison
symptom_date = symptoms| 'Date’ ]

features_date = features |’ Date’]

#Loop to compare participant and date of both data types.
#If both are the same then data is combined and added as new
#row to total feature matriz
feat_df = []
for i in range(0, len(symptoms)):
for j in range(0, len(features)):
if features.Part[j] = symptoms. Participant[i]:

if features_date[j] = symptom_date[i]:
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symp_row = symptoms. iloc [i]
feat_row = features.iloc|[j]
new_row = pd.concat ((feat_row , symp_row))

feat_df.append (new_row)

#Convert to array
import numpy as np

data_feat = np.array(feat_df)

#convert to dataframe

feat_mat = pd.DataFrame(data_feat)

#Create column labels to add to dataframe

cols = ['Part’, ’Stdox’, 'Mean.x’, 'Max.x’,
'Min_x’, 'MAD_x’, ’'Std.y’, ’Mean.y’, ’Max_.y’, 'Min.y’,
'MAD_y ", ’Std_.z’, 'Mean_z’, 'Max.z’, 'Min_.z’, 'MAD.z ',

'SVM’, SMA’, ’DateNum’, ’Date’,’Participant’, ’Datel’,

"Sex’, "Age’, 'RTA’, 'RTS’, ’pcsiy48_ha’, ’'pcsiy48_ns’,

"pesiy48_bl’, “pesiy48_dz’, 'pcsiy48_ft’, 'pesiy48_ds’,
"pesiy48_1t 7, “pcesiy48_ni’, 'pcesiy48_ir’, ’'pcesiy48_sd’,
"pesiy4d8 _nv '’ 'pesiyd8_em ', 'pesiyd8_sw’, ‘pesiyd8_mf
"pesiy48_cc’,  pesiyd8.rm’, 'pesiyd8_vs’, 'pesiy4d8_cf’,
"pesiy48_cl’, "pesiy48_sl’, 'pesiy4d8_dif

"pesiy48_ts’, 'pcesiyd8_nk’, 'pcsiy48_sp’, 'cogactd8’,
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"schld48 ', ’treat48’]

#Take desired columns

total_feat = feat_-mat.iloc[:,2:55]

#label columns

total_feat .columns=cols

#Drop columns that aren’t required
final_mat = total_feat.drop (][ 'DateNum’, ’Participant’,

"Datel’], axis=l1)

#Save as csv for later use

final_mat.to_csv(’'feature_mat.csv’)

A.2.4 Modelling

Data Preparation for Modelling

import pandas as pd

import numpy as np

import pylab as pl

import math

import matplotlib.pyplot as plt

import seaborn as sns
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from sklearn.utils import shuffle
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, classification_report

from sklearn.model_selection import train_test_split

features = pd.read_csv(’feature_mat.csv’)

RTA _label = features .RTA
RTS_label = features .RTS

groups = features.Part

features = features.drop ([ Unnamed:_0", "Part’, ’Date’,’'RTA’, 'RTS’],

axis = 1)

from sklearn.model_selection import GroupKFold

gkf = GroupKFold(n_splits=3)

trainRTA , testRTA = next(gkf.split(features, RTA_label, groups=groups)
X_trainRTA = features.loc [trainRTA]

y-trainRTA = RTA_label.loc [trainRTA ]

X_testRTA = features.loc[testRTA]

y_testRTA = RTA _label.loc [testRTA]

trainRTS , testRTS = next(gkf.split(features, RTS_label, groups=groups)
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X_trainRTS = features.loc [trainRTS]
y-trainRTS = RTS_label.loc [trainRTS]
X_testRTS = features.loc[testRTS]
y-testRTS = RTS_label.loc [testRTS]

from sklearn.preprocessing import StandardScaler

scalerRTA = StandardScaler ()
trainRTA = scalerRTA . fit_transform (X_trainRTA)
testRTA = scalerRTA . transform (X_testRTA)

scalerRTS = StandardScaler ()
trainRTS = scalerRTS. fit_transform (X_trainRTS)
testRTS = scalerRTS . transform (X_testRTS)

General RF Model

#Grid search to determine best parameters

from sklearn.model_selection import RandomizedSearchCV

# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 10,

stop = 1500, num = 10)]
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# Number of features to consider at every split
max_features = [’sqrt’]

# Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace (10, 110, num = 11)]
max_depth .append (None)

# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10]

# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]

# Method of selecting samples for training each tree
bootstrap = [True, False]

class_weight = [’balanced’]

# Create the random grid
random_grid = {’n_estimators’: n_estimators
"max_features’: max_features,

"max_depth’: max_depth,

"min_samples_split’: min_samples_split ,
"min_samples_leaf’: min_samples_leaf |
"bootstrap ’: bootstrap, ’'class_weight’ : class_weight}

print (random _grid)
#FErample — values change depending on results from randomized search

from sklearn.model_selection import GridSearchCV
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#Changes dependant on what the randomized grid search found
# Number of trees in random forest

n_estimators = [450, 500, 550]

# Number of features to consider at every split
max_features = [ ’sqrt’]

# Maximum number of levels in tree

max_depth = [60, 70, 80]

max_depth .append (None)

# Minimum number of samples required to split a node
min_samples_split = [5]

# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2]

# Method of selecting samples for training each tree

bootstrap = [False]

class_weight = [’balanced’]
param_grid = {’n_estimators’: n_estimators,
"max_features’: max_features,

"max_depth ’: max_depth

"min_samples_split’: min_samples_split ,
"min_samples_leaf’: min_samples_leaf ,
"bootstrap ’: bootstrap, ’'class_ weight’ : class_weight}

rf = RandomForestClassifier ()
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# Grid search of parameters, wusing 5 fold cross validation

modelRTS = GridSearchCV (estimator=rf, param_grid=param_grid ,

Y

scoring="neg_mean_absolute_error’,

cv = 5, verbose=10,
return,train,score:True)
modelRTS . fit (trainRTS, y_trainRTS)

print (modelRTS. best_params_, modelRTS. best_score_)

y_score2 = modelRTS. predict_proba (testRTS)

predictionRTS = np.argmax(y_score2, axis=1)

from sklearn.preprocessing import label_binarize

#Classes change depending on which model and if RTA/RTS
testRTS_label = label_binarize (y_testRTS, classes=[1, 2, 3, 4, 5])
trainRTS _label = label_binarize (y_trainRTS, classes=[1, 2, 3, 4, 5])
n_classesRTS = testRTS_label.shape[1]

General SVC Model

from sklearn.model_selection import GridSearchCV

param_grid = [{ 'kernel’: [’rbf’], ’gamma’: [le—1, le—2, le—3, le—4],
'C’: [1, 10, 100, 1000, 10000], ’class_weight’ : [’balanced’]}]
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modelRTS = GridSearchCV (SVC(), param_grid=param_grid, cv=5,
verbose = 2, return_train_score=True)

modelRTS. fit (trainRTS, y_trainRTS)

print (" The_best _.parameters_are %s._with_a_.score_of_%0.2{”

# (modelRTS. best_params_, modelRTS. best_score_))

final_modelRTS = modelRTS. best_estimator._

Y predRTS = final modelRTS . decision_function (testRTS)

predictionRTS = np.argmax(Y_predRTS, axis=1)

Result Visualization

ROC

from sklearn.metrics import roc_curve , auc

fpr = dict ()

tpr = dict ()

roc_auc = dict ()

for i in range(n_classesRTS):

fpr[i], tpr[i],. = roc_curve(testRTS_label[:,i],
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y_score2[:, i])

roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro—average ROC curve and ROC area
fpr ["micro”], tpr[”micro”], _ = roc_curve(testRTS_label.ravel(),
y_score2.ravel ())

roc_auc ["micro” | = auc(fpr[”micro”], tpr[”micro”])

plt. figure ()
width = 2
plt . plot (fpr [0], tpr[0], color="red’,

lw=width, label="Stage_.1_AUC_=.%0.2f)" % roc_auc[0])
plt.plot (fpr[1], tpr[l], color="green’,

lw=width, label="Stage_2_AUC_=.%0.2f)" % roc_auc[1])
plt.plot (fpr[2], tpr[2], color="darkorange’,

lw=width, label="Stage_.3_AUC_.=.%0.2f)" % roc_auc[2])
plt.plot (fpr[3], tpr[3], color="purple’,

lw=width, label="Stage_4_AUC_.=.%0.2f)" % roc_auc[3])
plt.plot (fpr[4], tpr[4], color="yellow’,

lw=width, label=’Stage_5_AUC=_%0.2f) % roc_auc[4])
plt.plot ([0, 1], [0, 1], color="navy’, lw=width, linestyle="—")
plt .xlim ([0.0, 1.0])
plt .ylim ([0.0, 1.05])

plt.xlabel (’False_Positive _Rate’)
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plt.ylabel (’True_Positive _Rate’)

plt . title ('ROC.for _Random._Forest .-RTS_Prediction’)
plt.legend (loc="lower._right”)

plt.savefig ( 'rffROC_RTS.png’)

plt .show ()

Confusion Matrix

#Changes depending on model and RTA or RTS
predictionRTS [predictionRTS = 4] = 5

predictionRTS [predictionRTS 4

w
I

predictionRTS [predictionRTS = 2] = 3
predictionRTS [predictionRTS

—_
I
[\

predictionRTS [predictionRTS

e}
I
—_

confRTS = confusion_matrix (y_testRTS, predictionRTS)

ax= plt.subplot ()

# labels for x—axis

x_axis_labels = [’Stage.1’,’Stage_.2’,’Stage_3’, Stage_4’, ’'Stage.5’]
# labels for y—axis

y_axis_labels = [’Stage.2’,’Stage_3’, Stage_4’,’Stage.5’, 'Stage._6"]

sns . heatmap (confRTA, xticklabels = x_axis_labels ,
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yticklabels = y_axis_labels , annot=True, ax = ax);
# labels , title and ticks

ax.set_xlabel (’Predicted_labels’);
ax.set_ylabel (’True_labels’);

ax.set_title (’Random._Forest .RTS_.Confusion._.Matrix’);

plt.savefig(’rfconf_rts.png’)

plt .show ()
(Classification Report

from sklearn.metrics import plot_confusion_matrix

print (confusion_matrix (y_testRTS, predictionRTS))

print (classification_report (y_testRTS, predictionRTS))

from sklearn.metrics import accuracy_score, fl_score

print ( "Accuracy:’, accuracy_score(y_-testRTS, predictionRTS))

print ('F1:’  fl1_score(y_testRTS, predictionRTS, average='micro’))

A.2.5 Feature Selection
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import pandas as pd
import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv(’feature_mat.csv’)

features = data.drop ([ 'Unnamed: _0’, ’Part’, ’'Date’ ,’RTA’, 'RTS’],

axis = 1)

corrMat = features.corr ()

plt . figure (figsize =(25,25))

sns . heatmap (corrMat , annot=True)

plt . title (” Correlation._.Matrix_for _Feature.Selection”)
plt.savefig(”corr_mat.png”)

plt .show ()

A.2.6 Removing Stages

Removing Stage 1

#Sets separate file for RTA and RTS, and removes the
#other label from each.
#Drops any row that has stage 1.

featuresRTS = features.drop ([ 'RTA’], axis=1)
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featuresRTA = features.drop ([ 'RTS’], axis=1)
dataRTA = featuresRTA [(featuresRTA .RTA = 1)]
dataRTS = featuresRTS [(featuresRTS.RTS != 1)]

Joining Last Two Stages

#Replaces last stage with label for second last stage
dataRTA[ 'RTA’] = dataRTA[’RTA’|. replace (6, 5)
dataRTS['RTS’] = dataRTS[’'RTS’].replace (5, 4)

A.2.7 New Data

Symptom Processing

import pandas as pd

import numpy as np

syml = pd.read_csv(”symptom_data_dates.csv”)
sym2 = pd.read_csv (”survey_results_summary2.csv”)

sym = pd.concat ([syml, sym2], axis=0)

#Coded as since wvalue for each
#participant to make referring

#to participants and calling them
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#later in code easier

sym|[”user_id” |. replace ({ '¢5027e89—e61e —40a9—-929f—-dc2d6e61d90d ": A",
"7£371bb2—d7fe —4e0b—9faf —16d67cf0f6ad’: "B” |

7894286 ff —2619—4e65-—9af7—ccee28f969c9’ : "C”,
"f1¢31998 —56f6 —4bf5 —9b3e—05ebd0f66a8e’ : "D” |
’3a3d29b6--5f59 —412b—8910—4ea03ad51208 " : "E”} | inplace=True)

def process_sym(file ):
def rem _values(df, col, values):
#function to keep rows that don’t
#include a certain value in a specified
#column

return df[df[col].isin(values) = False]

#creates a new file that removes rows containing questions

#that aren’t wanted for the feature set.

new_sym = rem_values(file ,” question_text”,

[”Please._rate_l—5_what_you’ve_been_doing._._.today” ,
"How.are_you.feeling .7_Take_a_.minute_to._log._your._symptoms!” ,

"Cognitive_Activities’, ’Physical_Activities’])

#removes columns that aren’t wanted for the feature set
new_sym = new_sym.drop (columns = [’survey_results_id’,

"survey_stage_id’, ’light_activity_minutes_completed ’,
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“activity_minutes_goal 7,
"moderate_activity _minutes_completed ’,

"vigorous_activity _minutes_completed’, 'question_id’,’id’])

#file had two feel foggy responses (one had quotations)
#so these responses were combined to one response.

new_sym = new_sym.replace(’ Feeling.”foggy”’, ’Feeling_foggy’)

#pivot table function takes the responses in question_text
#column and uses those as new column headings.

#Values from answer_text

#are used as the row values for each column,

#and 1t is sorted wusing the participant id and

#time they completed the survey.

#table 1s then transposed and reset, adding the column

#names for each symptom.

syms = pd.pivot_table (new_sym, values=[’answer_text’],
index=["time_completed’, ’user_id’],
columns="question_text ', aggfunc=’first ")

syms = syms.T.reset_index (drop=True).T.rename (columns=
{0: ’Balance_Problems’,
1: ’Being._.._more_emotional’, 2:’Clumsiness’,

3: ’"Confusion.with_tasks’, 4: ’Difficulty._concentrating’,

146



M.A.Sc. Thesis — L. Anderson McMaster University — biomedical engineering

5: 7 Difficulty _remembering’, 6: ’'Dizziness’, 7: ’Drowsiness’,
8: ’Fatigue’, 9: ’'Feeling._foggy’, 10: ’'Feeling._slowed._down’,
11: "Headaches’, 12: ’Irritability ’, 13: ’'Nausea’,

14: ’"Neck._.Pain’,

15: "Nervousness’, 16: ’'Sadness’,17: ’RTA’, 18: ’'RTS’,

19: ’Sensitivity.to_light >, 20: ’"Sensitivity._to_.noise’,

21:  ’Sleep._Problems’, 22: ’'Slow.to_.answer_questions’,

23: ’Vision._problems’})

#resets the index for time_completed and user_id
newfile = syms.reset_index (level = ['time_completed’,

"user_id ' ])

#replaces any entry that meant they had the
#symptom to a 1, and any response meaning they didnt to a 0
newfile = newfile.replace ([ 'yes’, ' better’, ’worse’, ’'same’|, 1)

Y

newfile = newfile.replace ([ ’no’, gone’], 0)

#converts the time completed to a datetime
newfile [ "time_completed | =

pd.to_datetime (newfile [ "time_completed ')

#sorts the file to group the wusers together,

#and sort the time in chronological order for each user.
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newfile = newfile.groupby( user_id’).apply(lambda x:

x.sort_values (’time_completed’))

#creates a label wvector to separate data and labels
labels = newfile [[ 'RTA’, 'RTS’, ’user_id’,

"time_completed ’ |]. copy ()

#removes labels from feature file

symptoms = newfile.drop(columns = ['RTA’, 'RTS’])

return (symptoms, labels)

feat , labels = process_sym (sym)

Accelerometer Pre-Processing

Data Combination

import pandas as pd

import numpy as np

#allows participant input so do each part file.
part = input(”Enter_part_id:.")

print (" Part.”, part)

#Load in acc features, date column
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#(dates were formatted wrong when data was first
#sent so good formating of dates in this file)

# symptom features and heart rate column.

file = pd.read_csv(”features_part%s.csv” % part)
dates = pd.read_csv(”dates%s.csv” % part)

sym = pd.read_csv(”"newdata2_symptoms.csv”)

hrl

pd.read_csv (”hr_new.csv”)

print (sym. head ())
print (file .head ())

#function that keeps rows that contain a specified value
def keep_rows_by_value(df, col, values):

return df[df[col].isin(values) = True]

#use function to keep symptom rows that pertain to
#specific participant

part_sym = keep_rows_by_value (sym, ”user_id”, [part])
print (part_sym . head ())

del part_sym [”Unnamed: .0" |

part_sym = part_sym.reset_index ()

del part_sym |[”index” |
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#deletes dates column from acc file since dates need to be replaced
del file [”"Date” ]

del dates|[”Unnamed: .0" ]

#creates new acc file with proper date formating

acc = pd.concat ((file, dates), axis = 1)

#keep hr rows that pertain to correct participant

hr = keep_rows_by_value(hrl, "user_id”, [part])

#deletes unnecessary rows
del hr[”Unnamed:_0" |

del hr[”id”]

del hr[”user_id”]

#sorts based on dates

hr2 = hr.sort_values(”date_recorded”)
hr2 = hr2.reset_index ()

print (hr2.head())

del hr2[”index” ]
# User B has no hr data so comment out this section
#and just use symptom data

#Use this line if they don’t have hr data and
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#skip first for loop
sym_hr = part_sym

print (part_sym .head ())

#This section combines symptom and heart rate data —
#only to be used if part has both

sym_hr = []
#nested for loop with conditional to find heart rate

#values from the last survey time
#If heart rate is recorded after the survey then it
#corresponds to that survey recording, up until the
#nexlt survey time.
for i in range(0, len(part_.sym)—1):

for j in range(0, len(hr2)):

a = part_sym.time_completed [i] <=
hr2.date_recorded[j] <
part_sym . time_completed [i+1]

if a == True:

sym_row = part_sym. iloc[i]
feat_row = hr2.iloc/[j]
new_row = pd.concat((feat_row, sym_row))

sym_hr. append (new_row)

sym_hr = pd.DataFrame(sym_hr)
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print (sym_hr.head ())

del sym_hr[”time_completed”]

20

#resets the index of the combined array

sym_hr = sym_hr.reset_index ()

print (sym_hr.head())

#converts date recorded to a datetime wvalue

sym_hr [”date_recorded”] =pd.to_datetime (sym_hr[”date_recorded”])
#print (sym_hr. head())

del sym_hr[”index” ]

#converts date to a datetime, and remowves time zone

#so values can be compared to dates in sym_hr

acc|[”Date”] = pd.to_datetime (acc|[”Date”])

acc|[”Date”] = pd.Datetimelndex ([i.replace (tzinfo=None)
for i in acc[”Date”]])

#print (acc.head())
print (sym_hr.head ())

#nested for loop to combine sym_hr data with acc features

acc = acc.dropna()

152



M.A.Sc. Thesis — L. Anderson McMaster University — biomedical engineering

#same tdea as above, if acc features are from after the last
#survey/hr but before next then it 1is combined with that data/
feat_df = []
for k in range(0, len(sym_hr)—1):
for 1 in range(0, len(acc)):
b = sym_hr.time_completed [k] <=
acc.Date[]l] <
sym_hr.time_completed [k+1] #use if no hr
#b = sym_hr. date_recorded [k] <=
acc.Date[1] <

sym_hr.date_recorded [k+1]

if b = True:
sym_row = sym_hr.iloc [k]
feat_row = acc.iloc 1]

new_row = pd.concat ((feat_row , sym_row))

feat_df.append(new_row)

feat = pd.DataFrame(feat_df)

print (feat .head())
#saved as dataframe

feat.to_csv(”features_total%s.csv” % part)

print (" Done.”)
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# Once all participants are done,

#all parts

import pandas as pd
import numpy as np

a = pd.read_csv(”features_
b = pd.read_csv(” features_
¢ = pd.read_csv(”features_
d = pd.read _csv(”features_
e = pd.read_csv(”features_
print (a.head())

print (a.date_recorded)
print (b.head ())

print (b.time_completed)
print (c.head())

print (c.date_recorded)
print (d.head())

print (d. date_recorded)
print (e.head())

print (e.date_recorded)

a["RTA” |

a [ 7 RTS77 ]

use this to combine

together into final feature set

totalA .csv”

totalB .csv”

)
)
totalC.csv”)
totalD .csv”)
)

totalE .csv”

= a|[”’RTA” |. fillna (method="ffill ")
a[”’RTS”]. fillna (method="ffill 7)
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b["RTA”] = b["RTA” ]. fillna (method="ffill ")
b["RTS"] = b["RTS"]. fillna (method="ffill ")

c["RTA”] = ¢["RTA”]. fillna (method="ffill ")
¢["RTS"] = ¢["RTS” . fillna (method="ffill )

d["RTS"] = d["RTS” ]. fillna (method="ffill )
d["RTA”] = d["RTA”]. fillna (method="ffill ")

¢["RTS"] = e[?"RTS"]. fillna (method="ffill ")
¢["RTA”] = e["RTA”]. fillna (method="ffill ")

print (e.head ())
for col in a.columns:

print (col)

features_hr = pd.concat((a,c,d,e), axis = 0)

print (features_hr.head())

print (features_hr [ ’date_recorded’])

del features_hr[”date_recorded” ]

features_nohr = pd.concat((a, b, ¢, d, e), axis = 0)
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print (features_nohr.head())
print (features_nohr[’date_recorded ’])

print (features_nohr [ ’time_completed ’])

del features_nohr[”time_completed” ]

del features_nohr[”date_recorded”]

features_nohr.to_csv(”features_nohr.csv”)

features_hr.to_csv(” features_hr.csv”)
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Correlation Matrix for Feature Selection
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Figure B.1: Correlation matrix for full feature set. Heatmap shows highly correlated
features with a lighter colour versus low correlated features with darker colours.
Diagonal from top left to bottom right shows a value of 1 as it is comparing to itself.
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