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Lay Abstract. 

Onsite-wastewater treatments systems such as household septic tanks are vital tools for 

managing wastewater. However, the microbial ecosystem which digests waste within septic 

tanks contains unknown interactions that can alter the rate of waste digestion. We used two DNA 

sequencing methods to assess how microbial communities within septic tanks responded to the 

tank design and surrounding environment. We then compared results produced by the two 

sequencing methods. The response of microbial communities to tank design and the environment 

differed between the two methods. However, the two methods both indicated that one system 

design produced a more variable microbial community. 
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Abstract. 

Onsite wastewater treatment systems may be improved by altering the design and environmental 

variables that affect microbial community composition. However, the two most common 

methods of examining microbial composition through metagenomic sequencing (16S and 

shotgun sequencing) produce different taxonomic identification results according to microbial 

community composition and the analytical methods in use. To identify discrepancies between 

these two sequencing methods, we analyzed the effect of environmental and tank design 

variables on onsite-wastewater treatment system microbial communities sequenced using both 

16S and shotgun sequencing. Shotgun and 16S sequencing produced different results when 

examining genera-level taxonomic richness, quantifying the effect of system design and 

environmental variables on community similarity, and identifying differentially abundant taxa 

between system types. Results were consistent when subjectively examining patterns of 

community similarity and when examining genera-level taxonomic diversity above 0.1% relative 

abundance. Identifying methods that produce similar results between 16S and shotgun 

sequencing supports the reliable analysis of and optimization of OWTS processes. 
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Chapter 1: Review of Metagenomic Methods. 

1.1. Introduction. 

Historically, the metabolic processes of bacteria were examined within isolated species. 

However, recent advances in metagenomic sequencing indicate that many metabolic pathways, 

first studied within isolated species, are probably the results of individual redox reactions occurring 

across multiple species (Garcia et al., 2018). For example, of 330 denitrifying organisms identified 

by metagenomic sequencing in 2016, only 12 had genes for the complete denitrification pathway 

(Anantharaman et al., 2016).  

The Interactions between microbial metabolism and biochemical environments can occur 

at finer scales than are typically examined. Metabolites such as H2 and CO with low environmental 

concentrations (under 1mg/l and between 2-17nM, respectively) can remain undetected in 

chemical analysis (Anantharaman et al., 2016). The involvement of difficult-to-detect biochemical 

factors in microbial metabolism only becomes apparent when examining the relative abundance 

of coding sequences involved in specific metabolic pathways (Anantharaman et al., 2016). Due to 

the lack of sufficient analytical methods for examining microbial metabolism, engineered systems 

that employ microbial processes have historically been developed using a “black box” approach. 

The term “black box” refers more commonly to computing practices in which only the 

input and output of a given program are identifiable (Nidhra, 2012), but “black box” can also be 

used to refer to microbial systems in which the intermediate steps of a process are unknown 

(Manaia et al., 2018). The practical advancement of microbial metabolic tools does not necessarily 

depend upon knowledge of internal microbial processes but can take the form of advancements in 

the constructed environment in which they reside. Most elements of bioreactor design are focused 

on thermodynamic and stoichiometric factors such as heat transfer, agitation, and product removal 
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(Duan and Shi, 2014; Najafpour, 2015). This approach is exemplified by projects such as the 

development of a sustained hydrogen-producing bioreactor that receives only electrons as an 

energy source and only CO2 as a carbon source (REF) (Jourdin et al., 2015). Pyrosequencing was 

carried out after the system was established, but its creation depended on establishing the 

electrochemical conditions that promoted a hydrogen-producing microbial community (Jourdin et 

al., 2015). 

In addition to the design of constructed environments, advancements in the production and 

study of bioreactors have used bioaugmentation. Bioaugmentation typically involves the addition 

of biomass taken from a functioning anaerobic digester. The added biomass acts as an enrichment 

step for the desired but loosely specified community of microbes (Ibrahim et al., 2020; Tale et al., 

2015; Venkiteshwaran et al., 2016).  

Through either 16S amplicon sequencing or whole metagenome sequencing, metagenomic 

profiling has been used to gain more specific insights into the microbial community of anaerobic 

digesters. For example, whole metagenome sequencing of lab-scale anaerobic digesters built to 

process cow manure has allowed the identification of specific taxa and their associated metabolic 

processes that drive the anaerobic digestion process (Johnson et al., 2017). The identification of 

key taxa allows for more accurate monitoring of the waste water treatment design optimization 

processes (Hassan et al., 2019) and provides insights into potential methods of improving both 

large and small scale waste treatment systems through the bioaugmentation of a consortium of 

useful organisms (Chan et al., 2019).  

1.2. Sampling. 

The exact nature of sampling methods for any study will depend on the environment being 

sampled. However, identifying the common limitations of sampling can help identify limitations 
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in the conclusions drawn from later analysis. Microbial community composition can vary spatially 

on the scale of meters or microns depending on the scales of local environmental conditions (Saetre 

and Bååth, 2000; Welch et al., 2016). For example, fluorescent in situ microscopy of soil 

aggregates has indicated that the scale of microbial habitats within this specific environment can 

range from 2 to 2000 µm (O’Donnell et al., 2007; Raynaud and Nunan, 2014). The environmental 

conditions of these habitats are determined by biological interactions such as symbiotic microbial 

relationships that depend on proximity and broader inorganic factors such as temperature or fluid 

currents. Microbial ecosystems can lose biologically important spatial organization when sampled 

(Cordero and Datta, 2016).  

The compositions of microbial communities may change temporally due to seasonal 

succession (Jansson and Hofmockel, 2018) or through currently-unidentified processes (Gonze et 

al., 2018). In terms of anaerobic digesters, varying designs can create temporal and spatial variation 

through factors such as filters isolating bacterial communities (Herrero and Stuckey, 2014) or 

chemical gradients emerging as waste moves through a system (Milner et al., 2008). 

The modelling of discrete microenvironments allows for the identification of specific 

scales of microbial habitats that exist in environments of interest. The loss of spatial information 

during sampling and processing steps can prevent the identification of microbial metabolic 

interactions that depend on proximity (Cordero and Datta, 2016).  

1.3. DNA Extraction. 

Sampling, extraction, sequencing, and analysis, all have the potential to introduce artifacts 

and create inconsistent taxonomic results between studies, potentially obscuring biological trends 

(Leigh Greathouse et al., 2019). Among these factors, inconsistency in the DNA extraction process 

contributes the most to varying experimental results (Sinha et al., 2017). DNA extraction can be 
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performed using standardized commercial kits for the purposes of reproducibility and ease of use 

(Gaur et al., 2019). These kits are designed to isolate DNA from environments that may contain   

PCR-inhibiting compounds. These kits also incorporate agents that lyse organisms with high 

resistance to chemical lysis (for example, archaea which contain S-layers, and Gram-positive 

bacteria (Roopnarain et al., 2017)). However, there is no kit specifically designed for DNA 

isolation from anaerobic digesters, despite the presence of PCR inhibiting compounds and high 

relative abundances of lysis-resistant bacteria and archaea (Roopnarain et al., 2017). 

DNA can be isolated from anaerobic digesters using fecal DNA isolation kits (Tuan et al., 

2014) or soil DNA isolation kits (Roopnarain et al., 2017). The best practices for isolating DNA 

from an anaerobic digester include taking steps to prevent phenolic and humic compound 

contamination (Mahajan et al., 2018; Verma et al., 2017), as well as combining mechanical and 

chemical lysis for maximum yield of DNA to attain representative species richness and diversity 

(Roopnarain et al., 2017). 

1.4. Next-Generation Sequencing. 

Currently, the most common method of DNA sequencing is massively parallel sequencing 

by synthesis, also referred to as “next-generation sequencing” (NGS). The common processes 

among methods referred to as NGS include the isolation of short amplicons or fragments of DNA 

to be sequenced, the preparation of a “library” using annealed sequences (adapters) that bind the 

target sequences to a surface, and the amplification of library sequences using primers 

complimentary to the adapter sequences (McCombie et al., 2019). The addition of barcode 

sequences during the adapters allows target DNA to be labelled according to its sample origin 

(Chamberlain et al., 1988), allowing multiple samples pooling within one sequencing run and 

flowcell. This combinatorial process is referred to as multiplexing (Ranjan et al., 2016).  



M.Sc. thesis – Jacob DeVries; McMaster University – Biology 

5 

 

The main features of NGS systems that influence later analytical steps are the number of 

reads produced and the length of the reads. Illumina systems such as the HiSeq 2500 and MiSeq 

are among the most commonly used sequencing platforms (Schirmer et al., 2016). The HiSeq 2500 

can produce paired-end reads of 2x125bp and create as many as 2 billion reads in slightly under 

six days. The MiSeq produces up to 25 million paired-end reads with lengths of 2x300bp over 

about 55 hours (Schirmer et al., 2016).  

1.5. 16S Amplicon Sequencing. 

The process of 16S amplicon sequencing utilizes high throughput NGS technologies to 

amplify highly variable regions (HVRs) of the ubiquitous prokaryotic 16S rRNA gene 

(Chakravorty et al., 2007). During the library preparation phase, one or more of the nine 16S HVRs 

are amplified from isolated metagenomic DNA. After the amplification of HVRs, a second 

amplification step is carried out in which adapter and barcode sequences are annealed. Once these 

amplicons are isolated according to size, sequencing can target the chosen 16S HVRs (Ranjan et 

al., 2016; Sanschagrin and Yergeau, 2014). The choice of primers and HVRs to be amplified can 

influence the results of taxonomic analysis (Parada et al., 2016). The V4 HVR using (515f/806r) 

primers has been shown to yield more similar taxonomic results to whole metagenome sequencing 

in comparison to V7–V8 (1114f/1392r) and V6–V8 (926f/1392r) primers (Parada et al., 2016). 

However, there is little consensus regarding HVR and primer choice (Chan et al., 2019). 

Advancements in long-read third-generation sequencing stand to improve the consistency of 16S 

taxonomic identifications by using the entire gene (Edgar, 2018; Schloss et al., 2016). 

Whether for 16S or whole metagenome sequencing, the processing of Illumina or other 

NGS data typically begins with the control of common artifacts such as inconsistent quality scores 

across individual reads, unusually sized fragments, PCR amplification biases, and contamination 
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(Trivedi et al., 2014). One of the most common tools in NGS sequencing data quality control is 

Trimmomatic (Bolger et al., 2014), a flexible program designed specifically for Illumina 

sequencing data. This tool processes the detection and removal of technical sequences such as 

adapters or adapter fragments. Trimmomatic also possesses quality filtering functions (Bolger et 

al., 2014). BBDuk2 is also a commonly used quality filtering program and is found within the 

BBtools program suite (Bushnell, 2020).  

Once quality control of the raw sequences is complete, paired-end reads with overlapping 

segments can be merged using programs such as BBMerge (Bushnell et al., 2017) and PEAR 

(Zhang et al., 2014). Downstream tools may optionally accept sets of unmerged reads. In cases 

such as 16S rDNA analysis, which utilizes targeted PCR amplification, steps must also be taken 

to correct pre-sequencing PCR errors, which can create chimeric sequences during the PCR 

amplification process and lead to the inclusion of false taxonomic groups. Tools such as 

ChimeraSlayer (Haas et al., 2011), UCHIME2 (Robert C. Edgar, 2016), DECIPHER (Wright 

et al., 2012), and CATCh (Mysara et al., 2015) can be used to identify and remove chimeric 

sequences.  

Examining sequencing data both before and after quality control can be accomplished 

using fastQC, a tool for observing aspects of sequencing data, including the read length and 

average quality scores at given lengths. FastQC can be used to identify the effect of processing 

data using Trimmomatic or BBDuk, and help to determine which quality control steps are most 

suited to any given project (Andrews et al., 2015). The results of multiple fastQC runs and the 

results of other processes such as mapping assemblies can be visualized using MultiQC, which 

can create a range of visually appealing and informative graphics (Ewels et al., 2016).  
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1.6. Taxonomic and Functional Profiling Using 16S Sequencing. 

When utilizing 16S rDNA sequencing, targeted HVRs can be clustered into operational 

taxonomic units (OTUs) based on the similarity between the HVR sequences (Johnson et al., 

2019). These clusters can be created using a reference database that adds similar sequences into 

an OTU or a de novo clustering algorithm that makes pairwise comparisons of sequence similarity 

(Callahan et al., 2017). The creation of OTUs using HVRs depends on the assumption that 

sequences with a large percentage of shared identity will have come from closely related taxa 

(Johnson et al., 2019).  

While HVR similarity is reliable for genus-level taxonomic assignment, species-level 

taxonomic assignments are far less reliable (Johnson et al., 2019). HVRs with a similarity of 97% 

are commonly considered to be from the same species, and those with 95% similarity are 

considered to be from the same genus (Chan et al., 2019; Edgar, 2018; Westcott and Schloss, 

2015). However, the species level threshold was first established in 1994, when relatively few 16S 

rDNA sequences were available to verify this threshold (Stackebrandt and Goebel, 1994). More 

recent proposals suggest that ~99% similarity is necessary for species-level identification using 

full-length 16S rDNA sequences, and ~100% is necessary when using the V4 hypervariable region 

(Edgar, 2018).  

NGS platforms are currently not capable of sequencing the entire ~1500 bp 16S rRNA 

gene in a single read, as would be required to use the ~99% species threshold. The 16S rRNA-

based phylogenetic analysis tools that use HVR comparison may take the 97% threshold as a given 

and not allow the user to set a stricter value (Edgar, 2018). Determining whether a tool can set 

alternate species level thresholds must be done on a case-by-case basis as most common tools 

undergo frequent updates.  
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The use of OTUs as identifiers can achieve species-level specificity. However, the process 

of creating OTUs does not distinguish between true biological variations among HVRs and 

artificial variations created during the amplification process (Prodan et al., 2020; Rosen et al., 

2012). This may lead to false-positive errors in the creation of some OTUs. However, methods 

that correct amplification errors can reduce the frequency of false-positive errors in the OTU 

creation process (Callahan et al., 2017). The error-controlled reads, termed amplicon sequence 

variants (ASVs), represent naturally occurring variations that, unlike OTUs, are consistent 

between datasets. (Callahan et al., 2017).  

Pre-constructed pipelines that contain all or most of the previously mentioned processing 

steps are most easily differentiated by their use of either OTUs or ASVs. Analytical tools and 

pipelines such as MOTHUR (Schloss et al., 2009), and USEARCH-UPARSE (Edgar, 2013), 

which make use of OTUs, provide less specificity than analytical pipelines such as USEARCH-

UNOISE3 (Robert C Edgar, 2016), Deblur (Amir et al., 2017), and DADA2 (Benjamin J Callahan 

et al., 2016) which make use of ASVs. These latter pipelines provide greater taxonomic resolution 

and lower proportions of spurious reads (Prodan et al., 2020). 

While 16S sequencing does not provide any direct data regarding the functional genes 

present in an environment, tools such as PICRUSt (Langille et al., 2013) and Tax4Fun (Aßhauer 

et al., 2015) can create approximations of functional gene content. This is done using databases of 

assembled and genomes with annotated functional genes. Tax4Fun (Aßhauer et al., 2015) utilizes 

the KEGG database (Kanehisa, 2004) and PICRUSt (Langille et al., 2013) makes use of the IMG 

database (Markowitz et al., 2012). PICRUSt also incorporates an OTU-based prediction of gene 

content (Langille et al., 2013). 
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1.7. 16S Sequencing in Comparison to Shotgun Sequencing. 

Preparatory procedures employed for Shotgun metagenomic sequencing are similar to 

those of amplicon sequencing. However, instead of amplifying a specific sequence, the first step 

in library preparation is replaced by the random fragmentation of all DNA present in a sample. 

This process creates fragments of a selected length suitable for amplification by the chosen NGS 

sequencing platform (Jovel et al., 2016). Shotgun sequencing increases the taxonomic resolution 

available, detecting more diversity from highly complex microbial communities, including 

eukaryotic sequences (Jovel et al., 2016; Ranjan et al., 2016). (Jovel et al., 2016). Shotgun 

sequencing can also be used to detect the presence of non-prokaryotic organisms without explicitly 

targeting them for amplification (Breitwieser et al., 2018).  

Shotgun and 16S sequencing produce comparable relative abundance data, which 

decreases in similarity as microbial community complexity increases (Jovel et al., 2016). However, 

a recent examination of 16S and shotgun metagenomic analysis that used low diversity (15 species) 

simulated metagenomic datasets found that shotgun sequencing produced a more consistent and 

accurate assessment of community composition and relative abundance (Khachatryan et al., 2020). 

The sequencing of all available DNA allows for more applications than 16S amplicon 

sequencing (Almeida and De Martinis, 2018; Jovel et al., 2016). The potential metabolic functions 

of a microbial ecosystem can be assessed using 16S based taxonomic profiling and comparison to 

the known metabolic capacity of fully-sequenced organisms using databases such as KEGG 

(Aßhauer et al., 2015). However, this process is inherently limited to the assessment of already 

catalogued metabolic functions.  

Shotgun sequencing allows for direct analysis of functional genes present in an 

environment and can identify novel genes. Identifying novel genes can provide insights into 
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microbial metabolic functions using homology-based analysis and genes of known function. 

However, the assembly of novel genes and genomes from shotgun sequencing requires a much 

greater sequencing depth than is regularly associated with 16S sequencing (Anantharaman et al., 

2016; Chan et al., 2019). 

When reviewed for comparison (Chan et al., 2019), four different 16S community analysis 

studies were found to use between 5*104 (Linz et al., 2017) to 1.9*105 (Brown et al., 2017) 

sequences for analysis, while four shotgun metagenomic studies used between 9.4*106 (Mohiuddin 

et al., 2017) to 1*108 (Vanwonterghem et al., 2016a) sequences. The only one of those studies to 

assemble microbial genomes used a read depth of 1*108 (Vanwonterghem et al., 2016a). 

The minimum required number of reads for the characterization of a microbial community 

depends, on the complexity of the community, the method of analysis, and the goals of any given 

study. Characterizing dominant (>1% relative abundance) bacterial species using 16S and OTU-

based methods can take only thousands of reads (Ni et al., 2017), and relative abundances remain 

consistent when using between 1000 and 5*104 reads (Jovel et al., 2016). However, successful 

identification of rare species found in fecal communities using 16S V4-V5 HVR sequencing on a 

MiSeq device requires a minimum of approximately 6.9*105 reads, and 9.82*1023 reads are 

required for detailed characterization (Ni et al., 2017).  

The range of applications available when using shotgun sequencing data makes estimating 

the reads required for any given study a case-by-case process. The best practices typically use the 

results of previous studies which examined the same environments and taxa of interest using the 

same sequencing platform and analytical methods. MiSeq shotgun sequencing species assignments 

within six human fecal samples have been observed to level off around 1.7 million reads (Clooney 
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et al., 2016). However, HiSeq reads can be used to identify additional species past 25 million reads, 

likely due to the shorter reads produced by HiSeq systems (Clooney et al., 2016).  

Assessing both the community composition and the presence of target antimicrobial 

resistance genes in cattle fecal samples requires a depth of 470 million reads (Zaheer et al., 2018). 

The rarefaction curve of lower-level taxonomic assignments in cattle fecal samples approaches a 

plateau at 470 million reads, but additional low abundance (1-6 reads) microorganisms can be 

identified using 940 million reads (Zaheer et al., 2018). In a study of 33 groundwater samples from 

a single site and a combination of  4.58 billion reads, genome assembly and metabolic analysis are 

possible for up to 36% (1,297) of the distinct microorganisms present (Anantharaman et al., 2016).  

1.8. Metagenomic Assembly. 

Longer sequences must be reconstructed from fragmented sequence reads to assess 

metabolic functions using NGS shotgun sequencing. Sequenced fragments must be either aligned 

to a reference genome or assembled, “de novo,” using only the sequenced fragments. Due to the 

short length of individual sequenced fragments, aligning paired-end sequences to a reference 

genome is more reliable for producing longer contiguous sequences (contigs) (Schirmer et al., 

2016). However, reference genomes are not typically available for metagenomic analysis, 

necessitating more complex de novo assembly methods. The use of de novo assembly methods in 

a metagenomic context has been facilitated by a decrease in the cost of sequencing, increasing the 

number of metagenomic sequences available for analysis, and therefore increasing the likelihood 

of assembling a complete microbial genome (Anantharaman et al., 2016; Wilkins et al., 2019; 

Wohlgemuth et al., 2018).  

Choosing an assembly method depends entirely on the goals of any given project (Quince 

et al., 2017). Metagenomic genome assembly follows a similar process to isolated single-species 
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genome assembly (Quince et al., 2017). The most common method for genomic and metagenome 

assemblies is the de Bruijn graph (dBg) approach. This approach involves breaking reads into 

overlapping and unique subsequences of a fixed length called k-mers (Pevzner et al., 2001). 

Together these represent every possible k-length subsequence of the read. Each individual k-mer 

created represents a vertex (or node) in a dBg, and each node forms a connection (or edge) where 

the strings of nucleotides overlap by k-1, regardless of the reads which nodes (k-mers) originated.  

These connections form what are referred to as edges in the dBg. In the ideal case, this 

would form a line of overlapping k-mers from one end of the chromosome to another. However, 

real data containing structural variants, errors, and repeating DNA creates highly complex 

graphical structures (Pevzner et al., 2001). The variety of dBg based assembly programs represents 

different heuristic processes for finding the most likely sequence (or path) of overlapping k-mers 

within the graph (Ayling et al., 2019; Simpson and Pop, 2015). The overlap-layout consensus 

(OLC) assembly is another available approach, although this method is better suited for assembling 

longer reads such as those produced by Sanger sequencing or third-generation sequencing (Ayling 

et al., 2019). 

A common method for the assessment of assembly quality is the N50. The N50 represents 

the minimum contig length which contains 50% of all assembled bases. Tools can be assessed by 

the trade-off they make between contiguity (N50) and the amount of species and strain diversity 

represented in a set of assembled contigs (Ayling et al., 2019). The main parameter influencing 

this trade-off is k-mer size. Decreasing the size of k-mers increases the potential for assembling 

low abundance genomes, and increasing the size of k-mers decreases the frequency of repeating 

k-mer sequences, improving the accuracy and length of genome construction (Li et al., 2015; 

Quince et al., 2017). 
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Assembly tools such as MEGAHIT (Li et al., 2015), MegaGTA (Li et al., 2017), and 

IDBA-UD (Peng et al., 2012) attempt to circumvent this trade-off by using an iterative approach 

involving multiple k-mer sizes. Other tools such as MetaVelvet-SL (Afiahayati et al., 2015) 

separate the collected metagenomic reads into de Bruijn sub-graphs based on differences in k-mer 

coverage and initial dBg connections. This approach attempts to create sub graphs for individual 

species, which can then be assembled using single species assembly methods (Afiahayati et al., 

2015). The program metaSPAdes is a dBg based program which makes use of multiple k-mer 

sizes and methods originally designed to manage single species genome assembly. SPAdes creates 

assemblies in the presence of nonuniform coverage produced during single cell sequencing (Nurk 

et al., 2017). The metaSPAdes tool makes use of similar methods to manage the nonuniform 

coverage of metagenomic datasets (Nurk et al., 2017).  

Other assembly programs are built for more specific applications or available data types. 

For example, the Plass assembly program can improve the likelihood of assembling low 

abundance genomes when the focus of a project is the identification of protein sequences. It does 

so by substituting nucleotides with amino acids and predicted open reading frames for assembly 

using overlap-based methods. This does not provide an assembled nucleotide sequence but can 

potentially create more extended amino acid assemblies suitable for identifying novel or 

taxonomically indicative proteins (Steinegger et al., 2019). In cases where both shotgun 

sequencing data and long-read sequence data are available, the OPERA-MS assembly program 

can use both these data types to provide more accurate and less fragmented assemblies (Bertrand 

et al., 2019). 
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1.9. Taxonomic Profiling Using Shotgun Sequencing. 

Taxonomic profiling does not necessarily require the reconstruction of entire or partial 

genomes. Taxonomic profiles can be created by aligning either assembled contigs or raw reads to 

databases of taxonomically catalogued sequences. This method is limited by the availability of 

reference sequences for comparison and alignment. However, non-assembly-based taxonomic 

profiling can help identify the presence of specific well-catalogued taxa, specifically when the 

abundances of these taxa are too low for robust assembly (Segata et al., 2012). Programs such as 

mOTUs2 (Milanese et al., 2019) and MetaPhlAn2 (Truong et al., 2015) can provide taxonomic 

profiles based on sets of taxonomically-indicative marker genes. The mOTUs2 program uses 

ubiquitous genes to create OTU-based taxonomic classifications (Milanese et al., 2019), and 

MetaPhlAn2 uses taxa-specific genes to identify previously-classified taxonomic groups (Truong 

et al., 2015).  

The program Kraken takes a different approach by aligning k-mers of sequenced reads to 

a dataset containing k-mers and the last common ancestor associated with organisms that contain 

that k-mer (Wood and Salzberg, 2014). Alignment of protein sequences to a broad array of 

taxonomically and functionally annotated proteins in the NCBI non-redundant protein catalogue 

can be accomplished using the DIAMOND BLAST tool (Buchfink et al., 2014).  

1.10. Functional Profiling Using Shotgun Sequencing. 

The proteins within a genome can be identified and annotated using either reference-based 

alignment programs such as DIAMOND or de-novo assembly followed by protein prediction 

based on assembled open reading frames. Tools such as MetaGeneMark (Zhu et al., 2010), 

Prokka (Seemann, 2014), and Prodigal (Hyatt et al., 2010) can be used to identify coding 

sequences and predict proteins from metagenomic assemblies.  
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The assessment of functional groups and preceding steps can also be accomplished using 

pipelines that include multiple methods in one software package. The pipelines MOCAT2 

(Kultima et al., 2016) and MEGAN6 (Huson et al., 2016) can be used for assembly, gene 

annotation, taxonomic assessment, and functional profiling based on sequence similarity to 

proteins of known function. MEGAN6 community edition makes use of SEED (Overbeek et al., 

2014), EggNOG (Huerta-Cepas et al., 2019), KEGG (Kanehisa, 2004), and their novel 

InterPro2GO profiling system (Huson et al., 2016). MOCAT2 utilizes 18 databases, including 

those used by MEGAN6, although they do not include a system built specifically for MOCAT2 

(Kultima et al., 2016). 

For a summary of all programs and pipelines discussed here, see table 1. 

Chapter 2: Introduction to Anaerobic Wastewater Treatment. 

2.1. Impacts of Improperly Treated Wastewater. 

The release of improperly treated wastewater into the environment poses a risk to human 

health and the local ecosystem (Richards et al., 2017). Wastewater from underperforming or failing 

onsite-wastewater treatment systems (OWTSs) contributes to fecal contamination in recreational 

and drinking water (Appling et al., 2013; Schaider et al., 2017). This fecal contamination can lead 

to the spread of waterborne diseases, which are of particular concern in underdeveloped regions 

where wastewater treatment systems are unavailable or poorly maintained (Adeyemi et al., 2019; 

Palamuleni, 2002). 

Fecal contamination and waterborne diseases are also a concern in regions with relatively 

well-developed wastewater management infrastructure (DeFlorio-Barker et al., 2018). For 

example, the United States records approximately 90 million illnesses annually caused by 

contaminated recreational water (DeFlorio-Barker et al., 2018). Furthermore, the prevalence of 



M.Sc. thesis – Jacob DeVries; McMaster University – Biology 

16 

 

waterborne diseases from contaminated water sources will increase with political instability 

created by climate change and the emergence of multidrug-resistant pathogens (Caminade et al., 

2019). 

In addition to harmful microorganisms, poorly treated wastewater contains high levels of 

nitrogen and phosphorus (Lapointe et al., 2017). These nutrients encourage the growth of algal 

blooms (Grattan et al., 2016), which can produce toxins that pose a risk to both human health and 

the local environment. Human exposure to algal toxins can occur either through consuming 

contaminated seafood or inhalation of aerosolized toxins (Grattan et al., 2016). Environmental 

damages can occur both through direct harm of marine fauna by algal toxins or as a result of algal 

blooms decomposing (Karlson et al., 2021). As large algal blooms die off, their decomposition by 

aerobic microbes creates hypoxic conditions (Karlson et al., 2021). Hypoxic conditions and algae-

derived toxins can cause marine habitat loss and severe wildlife mortalities (Al-Yamani et al., 

2020; Mallin and McIver, 2012). 

2.2. Household OWTS and Anaerobic Digestion. 

Household septic tanks are the most common type of OWTS used for managing wastewater 

without access to a large-scale sewage network (Withers et al., 2014). The most common OWTS 

design consists of a buried chamber separated into two parts by a wall which wastewater passes 

over while waste settles in the first chamber (Jowett et al., 2017). In 2017, approximately 1.5 

billion people depended on OWTSs for wastewater management (World Health Organization and 

UNICEF, 2017). Reliance on OWTSs is most common in the urban and periurban regions of 

middle to low-income countries (Reymond et al., 2018; Sotelo et al., 2019). Despite their 

abundance and the risks presented by insufficiently treated  OWTS runoff (Adeyemi et al., 2019), 

the typical OWTS design has not significantly changed since the 1800s (Jowett et al., 2017). 
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OWTSs operate through the anaerobic digestion of organic wastes to reduce the risk of 

fecal pathogens or nutrient-rich runoff contaminating nearby water sources (Richards et al., 2017). 

The anaerobic digestion process consists of four basic steps: hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis (Batstone et al., 2002; Wirth et al., 2012) (see figure 1). 

During hydrolysis, acidogenic and acetogenic bacteria release extracellular enzymes, 

which break down complex organic particulates into soluble monomers that bacteria can utilize 

(Y. Li et al., 2019).  These monomers include simple sugars, fatty acids, and amino acids (Y. Li et 

al., 2019). The most abundant phyla associated with hydrolytic activity are Fibobacteres, 

Firmicutes, Bacteroidetes, Spirochaetes, Proteobacteria and Actinobacteria (Qi et al., 2019; 

Vanwonterghem et al., 2016b). 

During acidogenesis, acidogenic bacteria ferment hydrolytic products to produce volatile 

fatty acids such as propionate, acetate, and butyrate, as well as ethanol (Anukam et al., 2019). The 

rate of volatile fatty acid production versus ethanol production varies according to pH (Li et al., 

2020). Volatile fatty acid production is promoted at a pH of 5 to 6, while a pH of 4 is more 

conducive to ethanol production (Wu et al., 2017). Increased ethanol production is favourable for 

the digestion of waste compared to butyric acid or propionic acid (Shi et al., 2021). The production 

of ethanol is beneficial due to the increased production of hydrogen during acidogenic ethanol 

production and a more kinetically favourable conversion of ethanol to acetate during acetogenesis 

(Li et al., 2020; Z. Li et al., 2019; Wu et al., 2017).  

The majority of bacteria within anaerobic digestion systems possess some capacity for 

acetate production (Vanwonterghem et al., 2016b). The most abundant phyla associated with 

propionate and butyrate production are Actinobacteria, Bacteroidetes, Rhodospirillum, and 

Verrucomicrobia (Vanwonterghem et al., 2016b). Ethanol-producing bacteria are most common 
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within the Firmicutes and Proteobacteria phyla (Binod et al., 2013). Ethanol-producing fungi also 

contribute to the anaerobic digestion process, particularly when digesting lignocellulose-rich waste 

(Wei, 2016). The most effective fungi at digesting lignocellulose waste are a polyphyletic group 

referred to as white-rot fungi (Wei, 2016). However, ethanol-producing fungi in anaerobic 

digestion are most common within the Ascomycota phylum (Binod et al., 2013). 

Acetogenesis is defined by acetate production from hydrolytic and acidogenic products 

(Schuchmann and Müller, 2016). Acetate production can occur through the autotrophic Wood-

Ljungdahl pathway (Ljungdahl, 1986; Mayer and Weuster-Botz, 2017) or through a wide range of 

heterotrophic pathways (Karekar et al., 2019). While many bacteria can produce acetate, the 

acetate production by bacteria containing the Wood-Ljungdahl pathway differentiates the 

acetogenic phase of anaerobic digestion from acetate production during the acidogenic phase 

(Schuchmann and Müller, 2016). Acetogenic bacteria containing this pathway are referred to here 

as Wood-Ljungdahl acetogens. 

Autotrophic acetogenesis relies on the Wood-Ljungdahl pathway to reduce CO2 to acetyl-

CoA using H2 as an electron donor (Schuchmann and Müller, 2016). Many Wood-Ljungdahl 

acetogens can also perform heterotrophic acetogenesis, which can use a wide variety of electron 

donors, including products from both the hydrolytic and acidogenic stages of anaerobic digestion 

(Karekar et al., 2019). Bacteria containing the Wood-Ljungdahl pathway are most prevalent within 

the Firmicutes phylum (Schuchmann and Müller, 2016). 

Acetate can then be reduced to methane by methanogenic archaea or oxidized by bacteria 

to produce H2 and CO2 (Sun et al., 2014). Acetate oxidizing bacteria rely on syntrophic 

relationships with methanogenic archaea to remove H2 and maintain a kinetically favourable 
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conversion of acetate to H2 (Westerholm et al., 2019). Acetate oxidizing bacteria are most common 

in the Clostridia class of the Firmicutes phylum (Westerholm et al., 2019). 

Methanogenesis is carried out exclusively by archaea, which typically utilizes H2 and CO2, 

acetate, or methylated compounds (Kurth et al., 2020). These three pathways for methane 

production are referred to respectively as hydrogenotrophic, acetoclastic, and methylotrophic 

methanogenesis (Wang et al., 2018). Methanogenesis can also occur using additional or alternative 

substrates such as ethanol, formate, propanol, butanol, and iron (Kurth et al., 2020). However, 

these pathways are not as common or as well studied as the hydrogenotrophic, acetoclastic, and 

methylotrophic pathways (Kurth et al., 2020). 

Acetoclastic and hydrogenotrophic methanogenesis are responsible for the majority of 

global biological methane production (Connelly et al., 2017). Acetate oxidizing bacteria can 

increase the rate of hydrogenotrophic methanogenesis vs acetoclastic methanogenesis by 

converting acetate to H2 and CO2 (Westerholm et al., 2016). In addition, hydrogenotrophic 

methanogens and acetate oxidizing bacteria have a higher tolerance for Free Ammonia Nitrogen 

(FAN) than acetoclastic methanogens (Westerholm et al., 2016). Therefore, high ammonia 

nitrogen creates an environment that encourages hydrogenotrophic methanogenesis supported by 

syntrophic ammonia oxidization (Westerholm et al., 2019). The pH of an environment can also 

influence the relative abundance of hydrogenotrophic and acetoclastic methanogens, as 

hydrogenotrophic methanogens are more tolerant to acidic conditions (C. Wang et al., 2020). 

Furthermore, the autotrophic acetogenesis pathway competes for CO2 and H2 with 

hydrogenotrophic methanogenesis  (Boyd et al., 2020). The relative activity of autotrophic 

acetogenesis and hydrogenotrophic methanogenesis responds to temperature (Fu et al., 2019). 
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Autotrophic acetogenesis is favoured in low (15ºC) and high temperature (50ºC) conditions, 

whereas moderate temperatures (30ºC) favour hydrogenotrophic methanogenesis (Fu et al., 2019). 

2.3. Inhibition of Anaerobic Digestion and Conditions for OWTS Failure. 

Of the four steps of anaerobic digestion, the rate-limiting step of the anaerobic digestion 

process varies depending on environmental conditions and waste composition (Ma et al., 2013).   

(Capson-Tojo et al., 2018a). The accumulation of volatile fatty acids such as propionate and acetate 

is one of the primary indicators of system failure (He et al., 2017). The overaccumulation of 

volatile fatty acids leads to toxic concentrations of volatile fatty acids and an unfavourably acidic 

environment for anaerobic digestion (C. Wang et al., 2020). Sudden declines in pH can kill off 

populations of acetoclastic methanogens, which typically require a pH between 6.8 and 7.2 (C. 

Wang et al., 2020; Yuan and Zhu, 2016). Mixed populations of acetoclastic and hydrogenotrophic 

methanogens that have acclimated to gradual pH changes can maintain reactor function at a pH of 

4.8 to 5.5. however, without specific steps to cultivate an acid-tolerant microbial community, 

volatile fatty acid accumulation is likely to prevent adequate OWTS function (Li et al., 2018; C. 

Wang et al., 2020). 

During hydrolysis, the breakdown of high-protein waste can lead to the accumulation of 

FAN  (Yenigün and Demirel, 2013). While beneficial to bacterial growth at low concentrations, 

FAN can also lead to system failure at higher concentrations of 1 g/L to 1.5 g/L (Capson-Tojo et 

al., 2020). The archaea responsible for methanogenesis are particularly susceptible to high 

concentrations of FAN (Yan et al., 2020). Therefore, high ammonia conditions cause system 

failure through the accumulation of volatile fatty acids and other intermediate compounds due to 

the decreased rate of methanogenesis (Yan et al., 2020). 
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The accumulation of volatile fatty acids can also occur if an anaerobic digestion system 

receives too much high-carbohydrate waste (Yuan and Zhu, 2016). Overloading an anaerobic 

digestion system with waste that can easily pass through the hydrolysis, acidogenesis, and 

acetogenesis phases can create an accumulation of volatile fatty acids, leading to system failure 

(Yuan and Zhu, 2016). 

2.4. Prediction of Anaerobic Digester Function. 

The microorganisms that determine anaerobic digestion rate live in complex syntrophic 

relationships, which vary according to environmental variables such as pH, temperature, and waste 

composition (Capson-Tojo et al., 2018b; Ziels et al., 2016). In addition to the pathways and 

interactions previously described, many unknown syntrophic relationships and environmental 

responses determine the stable microbial community composition and the rate of anaerobic 

digestion within any individual system (García-Lozano et al., 2019; Manaia et al., 2018). 

The number of unknown interactions limits the accurate prediction of wastewater anaerobic 

digester function (Batstone et al., 2015). Predictions of anaerobic digestion rates typically use 

either a mechanistic model, which includes each known interaction (Batstone, 2006; Batstone et 

al., 2015), or a machine learning-based approach which examines only operational parameters such 

as temperature and waste composition (De Clercq et al., 2020; L. Wang et al., 2020). The machine 

learning-based approach, which does not attempt to model internal microbial interactions, 

produces better results than the more commonly used mechanistic approach (De Clercq et al., 

2020; L. Wang et al., 2020). The most recently developed tools for predicting the function of 

anaerobic digestion systems use machine learning algorithms that examine both operational 

parameters and genomic information (Long et al., 2021). Whether predictions attempt to model 

the entire process (Batstone et al., 2015) or use limited information and machine learning (De 
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Clercq et al., 2020; Long et al., 2021; L. Wang et al., 2020), an improved understanding of the 

anaerobic digestion process will aid the design of wastewater treatment systems and the prediction 

of their success. 

The microorganisms that determine anaerobic digestion rate live in complex syntrophic 

relationships, which vary according to environmental variables such as pH, temperature, and waste 

composition (Capson-Tojo et al., 2018b; Ziels et al., 2016). OWTS design can contribute to an 

improved rate of anaerobic digestion through the control of variables such as hydraulic retention 

time and sediment mixing (Ma et al., 2019). Finding the optimum design conditions for anaerobic 

digestion is complicated by the amount of unknown or understudied syntrophic interactions 

occurring within OWTSs (Batstone et al., 2015). Improving the function and design of household 

OWTSs and larger anaerobic digestion systems depends on an improved understanding of the 

anaerobic digestion process (Batstone et al., 2015). For an additional summary of recent research 

on anaerobic digestion syntrophic interactions and environmental effects, see table 2. 

Chapter 3: Comparison of Household OWTS Metagenomic Analysis Using 16S and 

Shotgun Sequencing. 

3.1. Introduction. 

There are two commonly used sequencing methods for examining microbial ecosystems 

such as those found in anaerobic digestors. These methods are whole metagenome sequencing 

(referred to here as shotgun sequencing) and 16S amplicon sequencing (Escobar-Zepeda et al., 

2018). However, the results produced by each of these methods can differ depending on 

environment-specific factors such as multiple species with near-identical 16S rDNA sequences 

(Antony-Babu et al., 2017). Therefore, it is necessary to determine if 16S and shotgun sequencing 
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of wastewater anaerobic digesters produce equivalent results when examining the environments 

within wastewater treatment systems. 

In this study, we sought to determine which genetic sequencing methods could be relied 

upon to meet common research objectives in the study of anaerobic digestion. Community 

composition data produced using 16S and shotgun sequencing data was used to assess the effect 

of OWTS design features and environmental variables on the microbial community within the 

OWTS.  

The community composition data used in this comparison was created during the thesis 

projects of James Naphtali and Wing Yip Alexander Chan  (Chan, 2020; Naphtali, 2020). The 

methods described before the statistical analysis of community composition data, including 

sampling, DNA extraction, sequencing, quality control, and filtering / trimming, were all carried 

out by James Naphtali and Wing Yip Alexander Chan (Chan, 2020; Naphtali, 2020). 

3.2. Methods. 

3.2.1. Sampling Site Description. 

The OWTSs examined were all residential installations serving single households. Four 

distinct system types were tested, each consisting of either a single-pass or recirculating flow 

type and a conventional or InnerTube™ internal design (see figure 2). These four system types 

were labelled single-pass plug flow (S.P.), single-pass conventional (S.C.), recirculating plug 

flow (R.P.) and recirculating conventional (R.C.). Conventional OWTSs included a holding tank 

after the two-chambered main tank All OWTSs sampled also included an aerobic biofilter unit 

after the initial anaerobic unit. However, this secondary aerobic system was not examined, as the 

focus of this study was the anaerobic digestion process. 
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OWTSs with recirculating designs contained an inline valve to direct a portion of the 

effluent from the aerobic biofilter back to the influent point of the anaerobic OWTS. The degree 

to which each valve is open is listed as a percentage in table 3. The recirculating valves were set 

by Waterloo Biofilter Systems Inc and could not be controlled. The Hydraulic retention time was 

calculated using the system volume (L) divided by the flow rate (L/day). 

3.2.2. Sampling Procedure. 

Sampling took place from September 2018 to January 2019. The samples were collected 

from OWTSs across Southern and Central Ontario. Six OWTSs were sampled for each design 

and flow combination, with the exemption of the S.P systems, for which five systems were 

sampled. Each system was sampled at three points (see figure 2).  

Samples were collected using three devices: the tube sampler, the effluent sampler, and 

the collection vessel (see figure 3). Samples collected using the tube sampler were emptied into 

the collection vessel for ease of transport before being distributed into sterile sampling 

containers. The tube sampler, effluent sampler, and collection vessel were washed with 

commercial bottled water between uses to minimize cross-contamination. 

The first sampling point (influent) in the conventional systems was in the first open 

chamber beneath the influent pipe. Wastewater was collected from the conventional systems at 

the influent using the tube sampler (see figure 3). In the plug flow systems, the first sampling 

point (influent) was at the opening of the innertube beneath the influent pipe. Wastewater was 

collected from the plug flow systems at the influent point by inserting the tube sampler into the 

opening of the innertube (see figure 3). 

The second sampling point (tank) in the conventional OWTSs was in the second portion 

of the two-chambered tank. Wastewater was collected from the second sampling point of the 
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conventional systems using the tube sampler (see figure 3). The second sampling point (tank) in 

the plug flow systems was the opening at the end of the innertube. Wastewater was collected 

from the second sampling point of the plug flow systems using the tube sampler (see figure 3). 

The third sampling point (effluent) of the conventional systems was the effluent holding 

tank between the main two-chambered tank and the aerobic biofilter. Wastewater was collected 

from the third sampling point of the conventional systems using the effluent sampler (see figure 

3). The third sampling point (effluent) of the plug flow systems was the spray nozzle feeding into 

the aerobic biofilter. Wastewater was collected from the third sampling point of the plug flow 

systems by placing the effluent sampler beneath the spray nozzle and allowing wastewater to 

spray into the effluent sampler. 

The wastewater from each sampling point was distributed into two 500ml and two 100ml 

wastewater sample bottles. The 100ml sampling containers were each pre-loaded with 200 µl of 

sulfuric acid (H2SO4) preservative. These 100ml containers were used in examining ammonia 

(NH3), total Kjeldahl nitrogen (TKN), and chemical oxygen demand (COD). During sample 

collection, the wastewater in the collection vessel was measured for dissolved oxygen (D.O.), 

pH, and temperature. 

Once sampled, one of the 500ml replicates was sent to McMaster University, and the other 

was sent to the Centre for Advancement of Water and Wastewater Treatment Technologies 

(CAWT, Fleming College). All samples were shipped in coolers with ice packs. The longest 

holding time between sampling and chemical testing at CAWT was seven days. All samples sent 

to McMaster University exempt for the single-pass plug flow samples were stored at -80oC less 

than 24 hours after sampling. The plug flow single-pass samples from Central Ontario were kept 
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on ice for up to six days after sampling. For the location, chemical variables, and environmental 

variables of each wastewater sample, see table 4. 

To assess the effect of the transport and storage protocol, six samples from the influent 

sampling point and six samples from the tank sampling points were taken from a single plug 

flow recirculating tank. Three samples from each sampling point were stored at 4oC for one day 

before being frozen at -80oC to emulate the standard transportation and storage protocol. Three 

samples from each sampling point underwent DNA extraction on the same day as sampling to 

act as a control. Lab contamination was assessed by carrying out the DNA extraction process on 

200 ml of ddH2O. 

One of the two 500ml wastewater samples and both 100ml samples from each sampling 

site was sent to the Centre for Advancement of Water and Wastewater Treatment Technologies 

(CAWT). The remaining 500ml from each sampling site was sent to McMaster University. The 

samples sent to CAWT were examined for total suspended solids (TSS), total Kjeldahl nitrogen 

(TKN), ammonia (NH3). The samples sent to McMaster were analyzed for carbonaceous 

biological oxygen demand (CBOD).  

3.2.3. DNA Extraction. 

Samples were thawed and then vacuum filtered through 0.22 um sterile cellulose filters 

(Brown et al., 2015; Mohiuddin et al., 2019). The sample fluid was added until fluids could no 

longer pass through the filter. The filters were then transferred to microcentrifuge tubes which 

were pre-loaded with 0.25ul of 0.1mm zirconium beads (Bag et al., 2016) (BioSpec Products, 

Bartesville, Oklahoma) and stored at -20ºC. DNA was extracted from the filters using the Norgen 

Biotek soil DNA Isolation Plus Kit (Norgen Biotek Corp., Thorold, Ontario). The manufacturer’s 

extraction procedure was followed unless otherwise specified. The filters and zirconium beads 
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were immersed in the Norgen lysis buffer and agitated using a Bio spec Products Sonibeast Small 

Sample Cell Disruptor (Bio specProducts Inc., Bartesville, Oklahoma). The bead beating step 

included three intervals of 40 seconds. Once the bead beating step was completed, the samples 

were centrifuged, and the supernatants were transferred to sterile microfuge tubes. Proteins were 

precipitated using the Norgen acidic precipitation solution. Samples were placed on ice for 5 

minutes, then centrifuged again. Humic acid contamination was removed using a Norgen 

extraction additive, and the samples were again centrifuged. The samples were then filtered 

through a Norgen DNA-binding centrifuge column. The columns were washed twice using an 

ethanol solution included in the kit and centrifugation. DNA was then eluted from the columns 

using the Norgen extraction buffer and centrifugation. Once extracted, the DNA was stored at -

20ºC. DNA that was to be used for 16S sequencing was quantified using a NanoDro2000 

(Thermofischer Scientific,Waltham, Massachusetts), and DNA that was to be used for shotgun 

sequencing was quantified using a Qubit 2.0 Fluorometer (Thermofischer Scientific, Waltham, 

Massachusetts). DNA samples were then stored at - 20ºC. 

3.2.4. Shotgun Sequencing, Quality Control, and Classification. 

DNA samples were sequenced at the Farncombe Sequencing Institute at McMaster 

University using an Illumina HiSeq 2500 platform. Paired-end libraries were prepared using the 

NEBNext® Ultra™ II DNA library preparation kit for Illumina (New England Biolabs Inc.) and 

TruSeq3 paired-end adapters. The intended read length was 150 bp, and the fragment size was 500 

bp. Sequencing took place on two separate lanes. The two FASTQ files for each sample were 

concatenated using the UNIX cat function. FASTQ files were trimmed using Trimmomatic 

(version 0.39) (Bolger et al., 2014). The Phred score cut-off for Trimmomatic was set to 33, and 

sequences were trimmed using a sliding window with three leading and trailing base pairs, a width 
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of 4 bases, and a minimum quality score of 20. The TruSeq3 paired-end adapters were also remove 

by Trimmomatic, 

All reverse reads were removed from the dataset due to the tendency for Illumina 

sequencing to produce lower quality reverse reads (Gajer et al., 2021), a lack of overlapping reads, 

and the inability of DIAMOND-BLASTx to process paired-end reads (Buchfink et al., 2014). 

Read quality was assessed using the R package fastqcr (Kassambara, 2019). The mean read count 

after trimming was 5.3 million reads (SD ± 1.6 million). 

DIAMOND-BLASTx (Buchfink et al., 2014) was used to align reads against the NCBI 

non-redundant (nr) protein database. The e-value cut-off was set at 1x10-5, the maximum number 

of target sequences to report alignments for was set to 25 per query. All other options for 

DIAMOND-BLASTx were left as the default. The diamond alignment archive (.daa) output was 

inputted into MEGAN6 (version 6.18.4) (Huson et al., 2016) for binning and classification. 

Sequences were binned according to the MEGAN6 Weighted Lowest Common Ancestor 

Algorithm. The minimum quality threshold to assign sequences was set to 50, and the e-value 

threshold was set to 0.01. Taxonomic assignments were created using the NCBI non-redundant 

protein database as a reference. 

3.2.5. 16S Amplification, Sequencing, Quality Control, and Classification. 

The 16S V4 hypervariable region was amplified using a two-stage PCR protocol (Herbold 

et al., 2015). The 1st PCR stage amplified the V4 hypervariable region, and the 2nd stage attached 

the adapter for Illumina sequencing and indices for dual-index sample multiplexing (Kozich et al., 

2013). Indices were taken from the Nextera XT In dex Kit v2 (Illumina, Inc.). A T100 

Thermocycler (Bio-Rad Laboratories, Inc.) was used to carry out the PCR reactions. The PCR 
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input was normalized to 15 ng/ul using double-distilled water and a NanoDrap 2000 (Thermo 

Fisher Scientific). 

The resulting PCR products underwent gel electrophoresis to confirm that the correct size 

of amplicon was produced. Once the correct size of amplicon was confirmed, 5 ul of each product 

was pooled for gel extraction. The extraction of target bands made use of the Axygen Gel 

Documentation System (Corning Inc.). The extraction and clean-up were performed in triplicate. 

For each extraction, 25 ul of pooled PCR product was run on 1.8% agarose gel. The gels were 

examined under 302 nm U.V. light to identify target bands. Target bands were then removed and 

immersed in a guanidinium thiocyanate solution before being dissolved at 50oC. 

The PCR clean-up process made us of a NucleoSpin Gel and PCR clean-up kit (Macherey-

Nagel GmbH). The manufacturer’s instructions were followed. The columns were washed with 

ethanol solution three times and then dried using a heat block for 1 minute at 70ºC. The NucleoSpin 

buffer solution was used to elute DNA from each column. Triplicate extractions were then pooled 

for sequencing. The quality of DNA isolation was verified using a NanoDrop 2000 (Thermo Fisher 

Scientific). 

Amplicons were sent to the Farncombe Institute Genomics Facility and sequenced on an 

Illumina MiSeq platform (Illumina, Inc.). Like the shotgun sequencing library, the 16S sequencing 

library was prepared using the NEBNext® Ultra™ II DNA library preparation kit for Illumina 

(New England Biolabs Inc.) and TruSeq3 paired-end adapters. The sequencing was carried out 

using a paired-end 300 bp sequencing configuration. The resulting sequences were then 

demultiplexed. Adapters were trimmed using cutadapt (version 1.2.1) (Martin, 2011). Sequence 

quality trimming and filtering, error modelling, and sequence variant assignment were carried out 
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using the DADA2 R package and the SILVA 132 SSU reference dataset (Benjamin J Callahan et 

al., 2016). 

3.2.6. Statistical Analysis. 

Shotgun sequencing identifications with taxonomic levels labelled as “no ranked” by the 

NCBI database were removed using the taxonomizr R package (version 0.8.0). The original 

taxonomic labels were replaced by the standard taxonomic ranks from kingdom to species to be 

compatible downstream with the phyloseq (version 1.32.0) R package (McMurdie and Holmes, 

2012). From this point onward, the taxonomic identifications produced by 16S and shotgun 

sequencing were treated identically. 

Not all sampled OWTSs were sequenced using shotgun sequencing. Twelve OWTSs 

were sequenced using shotgun sequencing, and 23 systems were sequenced using 16S amplicon 

sequencing. Samples were matched between the available 16S and shotgun sequencing data. The 

final dataset included 36 metagenomes, representing 12 systems, each sampled at the influent, 

tank, and effluent point. These 12 systems represented three systems from each OWTS type 

(S.P., S.C., R.P., and R.C.).  

Both datasets were agglomerated to the genus level to compare identifications at the same 

taxonomic level. After agglomeration, both datasets were filtered to remove taxa representing 

less than 0.1% of the total microbial abundance in that sample. This abundance filtering step was 

included to examine differences in the identification of low-abundance taxa between 16S and 

shogun sequencing. This step was repeated using thresholds of 0.05% and 0.2% relative 

abundance to examine the consistency with which taxonomic identifications responded to 

abundance filtering 
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The observed species richness of 16S and shotgun sequencing taxonomic identifications 

were calculated at multiple stages of data treatment (raw, filtered, agglomerated, and 

agglomerated then filtered) using the iNEXT R package (Hsieh et al., 2016) to examine 

differences in microbial diversity according to sequencing method and data treatment. The 

iNEXT package also extrapolated true species richness from rarefaction curves. 

The community composition data produced by 16S and shotgun sequencing were 

compared using only samples taken from the central portion of the system (see figure 1) and not 

the influent or effluent points. The effluent point was not examined because of the inclusion of a 

holding tank in the conventional systems, which may have altered the microbial community 

composition. The influent point was examined for initial chemical conditions but was not 

included in microbial community analysis due to a potential lack of digestive activity in newly 

deposited waste. 

To examine patterns of community variation, filtered and agglomerated taxonomic data 

was normalized using DESeq2 (version 1.28.1) (Love et al., 2014), and then phyloseq was used 

to create Bray-Curtis dissimilarity matrices (Bray and Curtis, 1957). These Bray-Curtis 

dissimilarity matrices were used in PERMANOVA testing (Anderson, 2017), which was carried 

out using the VEGAN adonis2 function to determine the significance of sample clustering 

according to the variables that were independent of OWTS function. These variables were 

system design (conventional or plug flow), flow type (single-pass or recirculating), temperature, 

tank volume, flow rate, and chemical oxygen demand at the influent point. The adonis2 function 

assessed variables non-sequentially. The results of PERMANOVA analysis produced using 16S 

and shotgun sequencing data were compared to identify discrepancies in the environmental and 

design variables that were found to be significant. 
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The same Bray-Curtis dissimilarity matrices used in the PERMANOVA testing were 

used to create non-metric dimensional scaling (NMDS) ordinations (Jakaitiene et al., 2016; 

Tzeng et al., 2008) using the phyloseq ordinate function to visualize potential clustering patterns 

created by OWTS design and flow type. The overall pattern of community dissimilarity 

produced using 16S and shotgun sequencing was compared using Procrustes analysis to quantify 

the difference between the microbial communities depicted by each sequencing method. 

Taxonomic identifications produced using shotgun sequencing and 16S sequencing that 

were significantly differentially abundant (P > 0.05) according to the DESeq2 Wald test were 

examined to determine the effect of OWTS design and flow type on specific taxa. The results of 

differential abundance analysis produced using 16S and shotgun sequencing were compared to 

assess the consistency with which taxa displayed differential abundance according to system 

design and flow type. The formula used in DEseq2 to assess the effect of flow type while 

controlling for design was (~ Design + Flow), and DEseq2 formula to assess the effect of design 

while controlling for flow type was (~ Flow + Design). The functional significance of 

differentially abundant taxa was also compared between 16S and shotgun sequencing results. 

3.3. Results and Discussion. 

3.3.1. Taxonomic Richness. 

Shotgun sequencing can detect more low abundance taxa than 16S sequencing (Durazzi 

et al., 2021). However, the differences between 16S and shotgun sequencing taxonomic 

identification results depend on DNA extraction efficiency and reference genome availability 

(Tessler et al., 2017). To assess differences in the total identifications made by 16S and shotgun 

sequencing of OWTS microbiomes, we compared the taxonomic richness depicted by each 

sequencing method. We repeated this comparison to determine how the differences between 16S 
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and shotgun sequencing identifications are affected by data treatment steps such as 

agglomeration to the genus level and filtering out low abundance (0.1%) taxa. The number of 

identified taxa in each type of OWTS was also compared to identify differences in the trends 

between system types depicted by 16S and shotgun sequencing. When comparing numbers of 

total observed genera in each OWTS, single-pass plug flow type reactors displayed the most 

variation in taxonomic richness between each system (see figure 4). The 16S and shotgun 

sequencing data included different numbers of identifications but mostly identified the same 

pattern of relative abundance between each OWTS (see figure 4). Once the genera were filtered 

to remove identifications below 0.1% relative abundance, the overall numbers of genera 

identified were similar. However, the pattern of relative taxonomic richness between OWTS 

sequenced by shotgun sequencing was lost in the filtering step (see figure 5). 

For the total and average species and genera count using taxonomic relative abundance 

cut-offs of 0.05%, 0.1%, and 0.2%, see tables 5 and 6. 

The shotgun sequencing taxonomic identification results from 12 OWTS initially 

included 23,819 distinct identifications with an average of 12,837 identifications per system. 

There was a 22.6% increase between the average observed species richness and the average true 

species richness predicted by the iNEXT package. After agglomeration to the genus level, the 

shotgun sequencing data included 3,045 distinct identifications with an average of 2505 

identified genera per sample. After abundance filtering, the shotgun sequencing data included 

121 distinct identifications with an average of 120 identifications per sample. After abundance 

filtering followed by agglomeration, the shotgun sequencing data included 113 distinct 

identifications, with an average of 113 identifications per sample.  
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The 16S sequencing taxonomic identification results initially included 3365 distinct 

ASVs, with an average of 550 distinct ASVs per sample. There was a 1.4% increase between the 

average observed taxonomic richness and the average true taxonomic richness predicted by the 

iNEXT package. After agglomeration to the genus level, the 16S sequencing data included 809 

distinct ASVs, with an average of 277 distinct ASVs per sample. After abundance filtering, 16S 

sequencing included distinct 149 ASVs with an average of 88 distinct ASVs per sample. After 

agglomeration, followed by abundance filtering, the 16S sequencing data included distinct 123 

ASVs, with an average of 96 distinct ASVs per sample.  

After we agglomerated and filtered the shotgun sequencing and 16S sequencing, there 

was a remaining total of 193 identified genera, but only 50 genera of those genera appeared in 

both datasets. 

The numbers of taxa that we identified using 16S and shotgun sequencing were different 

(Shotgun total = 23,819, 16S total = 3365). However, when examining genera with relative 

abundances higher than 0.1%, the taxonomic richness measured by 16S sequencing was 

significantly closer to the taxonomic richness measured by shotgun sequencing (Shotgun total = 

113, 16S total = 123). While taxonomic richness was much more similar when examining genera 

above 0.1% relative abundance, only 48 of the 188 total identified genera above 0.1% relative 

abundance were shared between 16S and shotgun sequencing. 

These results indicate that while the taxonomic richness of abundant genera (>0.1% 

relative abundance) can be estimated using both 16S and shotgun sequencing, these two 

sequencing methods identify different taxa as above 0.1% relative abundance. The process of 

agglomerating low abundance shotgun sequencing identifications to the genus level may have 

led to genera in the shotgun sequencing dataset increasing in relative abundance in comparison to 
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16S sequencing. The 22.6% difference between observed species richness and predicted true 

species richness in the shotgun sequencing dataset indicates that low abundance taxa were more 

abundant in the shotgun sequencing dataset than in the 16S sequencing dataset, which contained 

only a 1.4% difference between observed and predicted average taxonomic richness. Future 

analysis of the differences between 16S and shotgun sequencing taxonomic identifications may 

benefit from a more detailed breakdown of how individual taxa respond to agglomeration and 

abundance filtering.  

3.3.2. Influence of Environment, Tank Design, and Sequencing Method on Observed 

Community Composition. 

Physiochemical variables such as the temperature, system design, and chemical oxygen 

demand at the influent point can alter the microbial community composition within OWTSs (Zhu 

et al., 2020). We used PERMANOVA testing to assess the effects of these physicochemical 

parameters on community similarity between OWTSs. 

When examining the effects of physiochemical variables on OWTS community 

composition, we did not identify any variables as being significant. The available sample size of 

12 tanks representing 3 of each tank design and flow type combination was too small to identify 

the effects of environmental and tank design variables on community dissimilarity using 

PERMANOVA. However, we gathered additional samples that did not undergo shotgun 

sequencing. Using a larger sample size, future analysis of this kind may identify significant 

effects of environment and tank design on community composition.  

When examining the patterns of community similarity between OWTSs, non-metric 

dimensional scaling determined that single-pass plug flow systems displayed the most intergroup 

and intragroup variation of genus-level community dissimilarity (see figure 6). The second most 
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variable system type was the single-pass conventional system (see figure 2). Compared to other 

systems, the increased variation of plug flow single-pass systems may indicate that the plug flow 

design without recirculated waste may significantly affect the anaerobic digestion microbial 

community. However, the examination of NMDS ordination plots is subjective. Future 

ordination-based research on the effect of OWTS design and flow type will benefit from a larger 

sample size to supplement quantitative PERMANOVA testing with easily visualized patterns of 

community similarity. 

When comparing the patterns of community similarity between 16S and shotgun 

sequencing, Procrustes analysis indicates that the NMDS ordinations which we created using 

16S and shotgun sequencing depicted very similar patterns of community similarity. The 

symmetric Procrustes analysis identified a sum of squares of 0.0982. The Protest resulted in a 

significance of 0.001 and a correlation coefficient of 0.950. Therefore, either 16S or shotgun 

sequencing can be used when the goal of sequencing is to examine the whole-community 

variation between sampling sites subjectively. 

3.3.3. Influence of Tank Design Variables on Specific Taxa. 

There are likely many unknown biochemical interactions that influence anaerobic 

digestion systems’ performance (Batstone et al., 2015). However, taxa with known effects on the 

hydrolytic, acidogenic, acetogenic, or methanogenic stages of anaerobic digestion can 

consistently impact the rate of waste removal (Zhang et al., 2019). Taxa which consistently 

correlate with changes in any aspect of the anaerobic digestion process, represent a potential tool 

for altering the digestor microbiome (Yin et al., 2016; Zhang et al., 2018). To examine the 

response of specific taxa to tank design and flow type, we used DESeq2 to identify taxa with 
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average relative abundances that were significantly different between tank designs and flow 

types. 

When comparing plug flow to conventional system designs, we identified two 

significantly differentially abundant taxa using shotgun sequencing (see table 7) and five 

significantly differentially abundant taxa using 16S amplicon sequencing (see table 8). We only 

identified one genus (Desulfomicrobium, enriched in conventional systems) as significantly 

(Shotgun P=2.2E-4, 16S P=5.05E-18) differentially abundant according to both 16S and shotgun 

sequencing comparing plug flow to conventional system designs. The genus Desulfomicrobium 

(enriched in conventional systems) contains sulphur reducing bacteria, which use oxidized 

sulphur compounds and elemental sulphur as electron acceptors (Kushkevych, 2013; Sun et al., 

2017). 

When comparing single-pass systems to recirculating systems, we identified seven 

significantly differentially abundant taxa using shotgun sequencing (see table 9), and we 

identified 13 significantly differentially abundant taxa using 16S sequencing (see table 10). 

When comparing single pass and recirculating flow types, we identified two taxa as significantly 

differentially abundant according to both 16S and shotgun sequencing, namely 

Phenylobacterium (shotgun P=1.15E-04, 16S P=2.47E-04) and Simplicispira (shotgun P=1.15E-

04, 16S P=6.97E-04). 

Bacteria in the Phenylobacterium genus (enriched in single-pass systems) can utilize 

heterocyclic phenyl compounds such as those found in artificial herbicides and surfactants as 

carbon sources (Oh and Roh, 2012). The Phenylobacterium genus is also associated with 

cellulose metabolism (Puentes-Téllez and Salles, 2020; Verastigui et al., 2021). Bacteria in the 
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Simplicispira genus (enriched in single-pass systems) can perform denitrification (Siddiqi et al., 

2020). 

Phenylobacterium, Desulfomicrobium, and Simplicispira improve the function of 

anaerobic digestion systems (Siddiqi et al., 2020; Sun et al., 2017; Verastigui et al., 2021; 

Wilhelm et al., 2019).  

Given the lack of overlapping differential abundance results between 16S and shotgun 

sequencing, verifying the taxonomic differential abundances that indicated Desulfomicrobium, 

Phenylobacterium, and Simplicispira responded to tank design and flow type is necessary for 

determining if OWTS design can reliably influence the relative abundance of these potentially 

useful taxa. 

Conclusions. 

Despite the widespread use of onsite wastewater treatment systems (OWTSs), and the need 

to improve their function, there has been limited use of DNA sequencing to examine the microbial 

communities which drive the anaerobic digestion process within OWTSs. Research into the 

internal functions of OWTS will depend extensively on both 16S and shotgun sequencing. 

Therefore, establishing which research objectives can be met reliably with both 16S and shotgun 

sequencing is essential for developing effective methods in future research. 

In this project, we assessed the microbial community composition of Ontario household 

OWTSs sequenced using both 16S and shotgun sequencing to identify relationships between 

community composition and environmental and system design variables. Specifically, we assessed 

the total taxonomic richness across all systems at multiple stages of data treatment, the similarity 

of each OWTS microbial community to each other OWTS microbial community, and the effect of 

OWTS design on the relative abundance of specific taxa. We then compared the results of these 
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analytical steps between 16S and shotgun sequencing to identify which research objectives could 

be technologies.  

We found that the OWTSs designed with a recirculating flow system and plug-flow type 

design contained the most variable taxonomic richness and that 16S and shotgun sequencing 

identified similar numbers of taxa when examining genera over 0.1% relative abundance. 

However, as most taxa identified by shotguns sequencing were below 0.1% relative abundance, 

the filtration step caused information on the relative taxonomic richness between OWTSs to be 

lost. The filtered genera level identifications also included mostly different genera between the 

16S and shotgun sequencing datasets. Of the 193 genera above 0.1%  relative abundance identified, 

50 appeared in both the 16S and shotgun sequencing datasets. The difference in identified genera 

above 0.1% relative abundance was most likely due to the low abundance species in the shotgun 

sequencing dataset, which increased the abundance of specific genera when we agglomerated all 

identifications to the genus level. The variable community composition and taxonomic richness 

observed in single-pass OWTSs may indicate a more pronounced response to environmental 

conditions and input composition in these OWTSs. However, a larger sample size will be 

necessary to quantify the effects of environment and system design on OWTSs. 

The sample size of 3 replicates per flow type and system design combination may have 

been too low to quantify the effect of OWTS flow type system design, temperature, flow rate, 

volume, and chemical oxygen demand at the influent point on microbial community composition. 

However, we did find that both 16S and shotgun sequencing indicated that the single-pass plug 

flow type OWTSs contained the most variable microbial community composition when comparing 

the microbial communities of each OWTS using NMDS ordination. The consistency with which 

patterns of microbial community similarity were observed using both 16S and shotgun sequencing 
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provides an opportunity to plan future research with an understanding of which sequencing 

methods can be reliably used for community similarity comparisons. 

While the available sample size was too small to quantify the effects of environment and 

system design on the entire microbial community, we did successfully quantify the effects of 

OWTS design variables on specific taxa. The taxa with significantly different relative abundances 

were different between 16S and shotgun sequencing. Of the 27 genera which we found were 

significantly differentially abundant, three were significantly differentially abundant according to 

both 16S and shotgun sequencing. The sulphur-reducing genus Desulfomicrobium was enriched 

in the conventional two-chambered septic tank design, while the denitrifying genus Simplicispira 

and the cellulose and phenyl-degrading genus Phenylobacterium were both enriched in OWTSs 

with single-pass flow systems. While many of the results of differential abundance analysis 

differed between 16S and shotgun sequencing, the consistent differential abundances of 

Desulfomicrobium, Simplicispira, and Phenylobacterium indicate that the design variables of 

OWTS may be used to alter the relative abundances of these genera and potentially improve the 

anaerobic digestion process. The design-based enrichment of these taxa may support the digestion 

of particular substrates rich in nitrate, cellulose, sulphur, and phenolic compounds. 

In conclusion, the findings of this project provide insight into the effects of OWTS design 

on community variation and information on the research objectives that can be met using both 16S 

and shotgun sequencing. 
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Figures. 

 

Figure 1. Anaerobic digestion of solid waste components to gaseous products. 

A. 

 

B. 

 

Figure 2. The location of sampling points and internal layouts of OWTSs sampled for 

metagenomic analysis. 
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(A) depicts the conventional two-chambered OWTS design with influent sampling site located 

within the first chamber beneath the influent pipe (1), the tank site located within the second 

chamber (2), and the effluent site (3) located within the effluent holding tank. (B) depicts the 

plug flow type InnerTube™ OWTS design with the influent sampling site located at the opening 

of the innertube (1), the tank site located at the end of the innertube (2), and the effluent site 

located at the effluent spray nozzle (3). 

 

 

Figure 3. The effluent sampler, collection vessel, and tube sampler. 

The effluent sampler (top) is capped with a tube that has an approximate volume of 0.75 L. The 

collection vessel (middle) is capped with a tube that has an approximate volume of 1.25 L. The 

tubes of both the effluent sampler and the collection vessel are affixed by two metallic screws to 

the bottom of hollow and open-ended poles approximately four feet in length. The tube sampler 

(bottom) consists of a hollow and open-ended plastic tube approximately four feet in length with 

a rigid foam sphere at the bottom end (left) attached by a rope knotted at the top end (right). A 

dual hook is fastened to the top end of the tube (left). Pulling on the rope from the top end (left) 

seals the tube once it has been inserted into the wastewater to fill. 
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Figure 4. Total genera in each OWTS identified by 16S and shotgun sequencing.  

Conventional and plug flow systems labelled Coven., and Plug respectively. 

 

 

Figure 5. Total genera above 0.1% relative abundance in each OWTS identified by 16S and 

shotgun sequencing. 

Conventional and plug flow systems labelled Conven. and Plug respectively.  
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Figure 6. Non-metric dimensional scaling ordination plots of Bray-Curtis dissimilarity 

matrices of onsite wastewater treatment system microbial communities examined using 16S 

and shotgun sequencing. 

Tables. 

Table 1. Primary functions of all programs and pipelines discussed in Chapter 1: Review of 

Metagenomic Methods. 

Program / Pipeline 

name  
Description  

Sequence Quality Control  

BBDuk2  

A flexible tool within the BBTools program suite for trimming 

technical sequences and low-quality sections from NGS sequencing 

data (Bushnell, 2020).  

CATCh  

A tool for removing chimeric DNA in 16S sequencing data which 

makes use of both database and de novo chimera identification (Mysara 

et al., 2015).  

ChimeraSlayer  
A tool for removing chimeric DNA in 16S sequencing data using a 

database of chimera-free 16S sequences (Haas et al., 2011). 

DECIPHER   
A tool for removing chimeric DNA in 16S sequencing data using a 

search-based approach (Wright et al., 2012). 
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Program / Pipeline 

name  
Description  

fastQC  

A quality assessment tool for observing important sequencing data 

characteristics such as quality scores, length distributions and GC 

content (Andrews et al., 2015).  

MultiQC  

A quality assessment tool for visualizing the results of 

multiple fastQC assessments, as well as the results of later processes 

such as mapping assemblies (Ewels et al., 2016).  

Trimmomatic  
A flexible tool which can remove technical sequences and low-

quality sections from NGS sequencing data (Bolger et al., 2014).  

UCHIME2  
A tool for removing chimeric DNA in 16S sequencing data using both a 

database and de novo based identification (Robert C. Edgar, 2016).  

16S Taxonomic and Functional Profiling  

Deblur  An AVS based clustering tool (Amir et al., 2017).  

PICRUSt  

A functional group prediction tool which uses an OUT based prediction 

of gene content (Langille et al., 2013), as well as the IMG reference 

database (Markowitz et al., 2012).  

Tax4Fun  
A functional group prediction tool which uses the KEGG 

database (Aßhauer et al., 2015). 

USEARCH-UNOISE3  
An ASV based clustering tool found in the USEARCH program 

suite (Robert C Edgar, 2016).  

USEARCH-UPARSE  
An OTU based clustering tool found in the USEARCH program 

suite (Edgar, 2013).  

16S Analysis Pipelines  

DADA2  
An ASV based 16S analytical pipeline which contains steps from 

quality control to ASV clustering (Benjamin J. Callahan et al., 2016).  

MOTHUR  
An OTU based 16S analytical pipeline with functions including quality 

control, OTU clustering, and statistical analysis (Schloss et al., 2009).  

Metagenomic Assembly.  

IDBA-UD  

A metagenomic assembly tool which uses repeated de Bruijn graphs 

with multiple k-mer lengths, and it designed to process data with 

uneven sequencing depth (Peng et al., 2012).  

MegaGTA  
A gene-targeted metagenomic assembly tool which uses repeated 

succinct de Bruijn graphs with multiple k-mer lengths (Li et al., 2017).  

MEGAHIT  
A metagenomic assembly tool which uses repeated succinct de Bruijn 

graphs with multiple k-mer lengths (Li et al., 2015).  

MetaSPAdes  
A metagenomic assembly tool which uses repeated de Bruijn graphs 

with multiple k-mer lengths (Nurk et al., 2017).  

MetaVelvet-SL  

A metagenomic assembly tool based on decomposing de Bruijn graphs 

into sub-graphs which can be processed more easily (Afiahayati et al., 

2015).  

OPERA-MS  
A metagenomic assembly tool which can make use of both shotgun 

sequencing and long read sequencing data (Bertrand et al., 2019).  
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Program / Pipeline 

name  
Description  

Plass  
A metagenomic assembly tool which uses amino acid-based assembly 

of predicted open reading frames (Steinegger et al., 2019).  

Taxonomic and Functional Profiling Using Shotgun Sequencing  

DIAMOND   

A gene identification tool which aligns protein sequences translated 

from shotgun sequencing data to the NCBI-nr protein 

database (Buchfink et al., 2014).  

Kraken  

A taxonomic profiling tool for shotgun sequencing data which uses a 

genome database and k-mer alignment to identify the last common 

ancestor which corresponds to the sequence being aligned (Wood and 

Salzberg, 2014).  

MetaPhlAn2  

A taxonomic profiling tool for shotgun sequencing data which uses a 

set of taxonomically specific marker genes to indicate the presence of 

previously classified taxonomic groups (Truong et al., 2015).  

MetaGeneMark  
A tool for the de novo prediction of genes from shogun sequencing 

data (Zhu et al., 2010).  

mOTUs2  
A taxonomic profiling tool for shotgun sequencing data which uses a 

set of ubiquitous marker genes to form OTUs (Milanese et al., 2019).  

Prokka  

A gene identification tool which aligns protein sequences translated 

from shotgun sequencing data to a set of decreasingly specific 

databases (Seemann, 2014). 

Shotgun sequencing analysis pipelines  

MEGAN6  
An analytical pipeline for metagenomic shotgun sequencing 

analysis (Huson et al., 2016).  

MOCAT2  
An analytical pipeline for metagenomic shotgun sequencing 

analysis (Kultima et al., 2016).  

Statistical Tools for Metagenomic Analysis.  

DESeq2  
A differential abundance analysis tool which includes an advanced 

normalization process (Love et al., 2014).  

Phyloseq  
An integrated data analysis tool for taxonomic data and associated data 

(such as environmental variables) (McMurdie and Holmes, 2012).  

taxonomizr  
A data handling tool for NCBI taxonomy files and BLAST 

results (Sherrill-Mix, 2019).  

VEGAN  
A community ecology tool which includes functions for creating and 

analysing ordinations (Dixon, 2003). 

* Programs / pipelines listed often have additional or secondary functions not listed



M.Sc. thesis – Jacob DeVries; McMaster University – Biology 

47 

 

 

Table 2. A summary of recent research on anaerobic digestion syntrophic interactions and environmental effects. 1 

Title 
Authors 

and Year 
Journal Principal finding 

Solar Septic Tank: Next Generation 

Sequencing Reveals Effluent Microbial 

Community Composition as a Useful Index 

of System Performance. 

(Connelly 

et al., 2019) 

Water 

(Switzerland) 

An increase in temperature driven by solar power 

correlated to an increased rate of waste removal and 

an altered microbiome.  

Temporal dynamics of activated sludge 

bacterial communities in two diversity 

variant full-scale sewage treatment plants. 

(Jiang et al., 

2018) 

Applied 

Microbiology 

and 

Biotechnology 

The microbial community within two sewage 

treatment plants were correlated with influent 

composition and operating parameters. 

Deterministic mechanisms define the long-

term anaerobic digestion microbiome and its 

functionality regardless of the initial 

microbial community.  

(Peces et 

al., 2018)  
Water Research 

Long term waste removal performance, metabolic 

rates, and community composition are independent 

of starting inoculum. 

Influence of Temperature on Biogas 

Production Efficiency and Microbial 

Community in a Two-Phase Anaerobic 

Digestion System. 

(Wang et 

al., 2019) 

Water 

(Switzerland) 

Temperatures above 25ºC promoted 

methanogenesis, and temperatures below 20ºC 

inhibited methanogenesis and acidogenesis. 

Thermophilic anaerobic digestion: Effect of 

start-up strategies on performance and 

microbial community. 

(Shin et al., 

2019)  

Science of the 

Total 

Environment 

During the start-up of wastewater treatment plants, 

a one-step increase in temperature promoted 

volatile solid removal, while step-wise temperature 

change promoted methanogenesis. 

Variable sediment methane production in 

response to different source-associated 

sewer sediment types and hydrological 

patterns: Role of the sediment microbiome. 

(Chen et al., 

2021) 
Water Research 

Continual hydraulic flow without turbulent 

suspension of sediments produces more methane 

from sewer sediments than interrupted flow. 

Hydrogenotrophic methanogenesis is predominant 

in storm sewers and illicit discharge-associated 

storm sewers. 
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Title 
Authors 

and Year 
Journal Principal finding 

Microbiome taxonomic and functional 

profiles of two domestic sewage treatment 

systems. 

(Hidalgo et 

al., 2021)  
Biodegradation 

A school septic system showed lower COD 

removal rates than a factory septic system with a 

higher abundance of Chloroflexi, Bacterioidetes, 

and Proteobacteria. 

Addition of granular activated carbon and 

trace elements to favor volatile fatty acid 

consumption during anaerobic digestion of 

food waste. 

(Capson-

Tojo et al., 

2018a)a 

Bioresource 

Technology 

The addition of activated carbon to an anaerobic 

digestion system promoted the growth of archaea 

and syntrophic bacteria while improving acetate 

degradation. The addition of trace elements 

improved the degradation of propionate. 

Acclimation of Acid-Tolerant Methanogenic 

Culture for Bioaugmentation: Strategy 

Comparison and Microbiome Succession. 

(C. Wang et 

al., 2020) 
ACS Omega 

A gradual decrease in pH allowed the development 

of Methanothrix and Methanolinea populations 

which support anaerobic digestion, while a sudden 

decrease in pH led to a halt in methane production. 

The fate of anaerobic syntrophy in anaerobic 

digestion facing propionate and acetate 

accumulation. 

(Yue et al., 

2021) 

Waste 

Management 

Acetate and propionate negatively influenced 

biogas production. However, hydrogenotrophic 

methanogens maintained methane production 

during acetate and propionate accumulation. 

Characterisation of microbial communities 

for improved management of anaerobic 

digestion of food waste. 

(de Jonge et 

al., 2020)  

Waste 

Management 

Microbial communities in industrial-scale reactors 

digestion food waste were influenced by substrate 

type and temperature. 

Effect of ammonia on anaerobic digestion of 

municipal solid waste: Inhibitory 

performance, bioaugmentation and 

microbiome functional reconstruction. 

(Yan et al., 

2020) 

Chemical 

Engineering 

Journal 

The addition of Methanoculleus to an anaerobic 

digestion system improved methane yield through 

syntrophy with Peptococcaceae, Syntrophaceticus, 

and Peptococcaceae 

Novel insights into the anaerobic digestion 

of propionate via Syntrophobacter 

fumaroxidans and Geobacter 

sulfurreducens: Process and mechanism. 

(Wang et 

al., 2021) 
Water Research 

Co-culture of Syntrophobacter fumaroxidans and 

Geobacter sulfurreducens improved propionate 

degradation compared to a co-culture of 

Syntrophobacter fumaroxidans and methanogens. 
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Title 
Authors 

and Year 
Journal Principal finding 

Quantifying the percentage of methane 

formation via acetoclastic and syntrophic 

acetate oxidation pathways in anaerobic 

digesters 

(Jiang et al., 

2017) 

Waste 

Management 

Hydrogenotrophic methanogenesis produced 68% 

to 75% of the methane from an anaerobic digestion 

system under high total ammonia nitrogen 

conditions and produced 9% to 23% of the methane 

under low total ammonia nitrogen conditions. 

Acetoclastic methanogenesis led by 

Methanosarcina in anaerobic co-digestion of 

fats, oil and grease for enhanced production 

of methane 

(Kurade et 

al., 2019) 

Bioresource 

Technology 

The co-digestion of sewage waste with fats, oil, and 

grease led to an increase in acetoclastic 

methanogenesis led by Methanosarcina and a 

217% increase in overall methane production. 

Mitigation of ammonia inhibition through 

bioaugmentation with different 

microorganisms during anaerobic digestion: 

Selection of strains and reactor performance 

evaluation 

(Yang et al., 

2019) 
Water Research 

The addition of Methaobrevibacter smithii and 

Syntrophaceticu schinkii increased methane 

production of an anaerobic digestion system by 

71.1%, while the addition of Methanosarcina 

barkeri alone increased methane production by 

59.7%. 

Competition Between Chemolithotrophic 

Acetogenesis and Hydrogenotrophic. 

Methanogenesis for Exogenous H2/CO2 in 

Anaerobically Digested Sludge: Impact of 

Temperature 

(Fu et al., 

2019) 

Frontiers in 

Microbiology 

At temperatures of 15ºC and 50ºC chemilitotrophic 

acetogenesis utilized more H2 and CO2 than 

hydrogenotrophic methanogenesis, while at 30ºC, 

H2 and CO2 the inverse occurred. 

Effect of pH on volatile fatty acid 

production and the microbial community 

during anaerobic digestion of Chinese 

cabbage waste. 

(Zhou et al., 

2021) 

Bioresource 

Technology 

In an anaerobic digestor processing cabbage, 

acetate, propionate, and butyrate were the primary 

products while the pH was at 6.0, while acetate, 

propionate, and butyrate were the primary products 

at a pH of 7. 
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Title 
Authors 

and Year 
Journal Principal finding 

Enhanced methane production in an 

anaerobic digestion and microbial 

electrolysis cell coupled system with co-

cultivation of Geobacter and 

Methanosarcina. 

(Yin et al., 

2016) 

Journal of 

Environmental 

Sciences 

(China) 

The addition of co-cultivation of Geobacter and 

Methanosarcina in an anaerobic digestion 

microbial electrolysis cell resulted in a 24.1% 

increase in methane production relative to inoculum 

without the added microbes. 

Effect of mixing intensity on hydrolysis and 

acidification of sewage sludge in two-stage 

anaerobic digestion: Characteristics of 

dissolved organic matter and the key 

microorganisms. 

(Ma et al., 

2019) 
Water Research 

In a continuously stirred tank reactor, a mixing 

speed of 90 and 120 rpm enhanced hydrolysis and 

acidogenesis. 

 2 

Table 3. Design variables of septic systems sampled for metagenomic analysis. 3 

System Replicate1 Tank Residence 

Volume (L) 

Flow Rate 

(L/day) 

Hydraulic Residence Time 

(days) 

Recirculating Valve Open  

1SP  4830  800 6 No Valve 

2SP  6060  800 8 No Valve 

3SP  3600 1000 4 No Valve 

1RP 24000 4000 6 Unknown 

2RP 13000 2625 5 50% 

3RP 17280 2888 6 10% 

1SC  9170 2000 7 0% 

2SC  9170 2000 5 No Valve 
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System Replicate1 Tank Residence 

Volume (L) 

Flow Rate 

(L/day) 

Hydraulic Residence Time 

(days) 

Recirculating Valve Open  

3SC  5400 1000 5 No Valve 

1RC  5400 1250 4 50% 

2RC  9173 1750 5 25% 

3RC  9170 2250 4 50% 

1. System types are RC (recirculating conventional), SC (single-pass conventional), RP (recirculating plug flow), and SP (single-pass 4 

plug flow) 5 

 6 

Table 4. Location, chemical, and environmental variables of all wastewater samples. 7 

Sample 

Code1  
Location  

Sample 

Type  
pH  

DO  

(mg/L)  

Temp. 

(ºC)  

COD 

(mg/L)  

TSS 

(mg/L)  

TKN 

(mg/L)  

NH3 

(mg/L)  

1RP1  75 Firelane 2  Inlet  7.42  1.86  16.7    326   138   62.8   54.3  

1RP2  75 Firelane 2  Tank  7.47  1.86  17.1       227    52   72.0   65.2  

1RP3  75 Firelane 2  Effluent  7.61  5.58  16.9    243    44   72.8   67.0  

2RP1  1552 Concession 2  Inlet  7.27  4.84  19.2    979   460  107   84.1  

2RP2  1552 Concession 2  Tank  7.13  1.64  18.9    463   258   87.7   80.0  

2RP3  1552 Concession 2  Effluent  7.55  1.27  18.6    191    28   82.6   76.0  

3RP1  28 Highway 8  Inlet  7.53  2.25  14.2    173    46   14.6   12.3  

3RP2* 28 Highway 8 Tank  7.59  0.65  15.4    208    24   24.4   19.6  

3RP3  28 Highway 8  Effluent  7.67  2.93  15.0    199    33   24.0   18.9  

4RP1  2649 No. 2 Sideroad  Inlet  7.18  1.82  11.8    219   202   30.6   24.1  
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Sample 

Code1  
Location  

Sample 

Type  
pH  

DO  

(mg/L)  

Temp. 

(ºC)  

COD 

(mg/L)  

TSS 

(mg/L)  

TKN 

(mg/L)  

NH3 

(mg/L)  

4RP2*  2649 No. 2 Sideroad  Tank  7.35  1.68  12.6    174    17   42.7   39.3  

4RP3  2649 No. 2 Sideroad  Effluent  7.58  4.57  12.4    154    18   41.2   36.5  

5RP1  4483 Escarpment Dr.  Inlet  6.31  0.29  14.1  14070  7480  266  131  

5RP2*  4483 Escarpment Dr.  Tank  6.73  0.29  13.5   1133   705   78.7   59.1  

5RP3  4483 Escarpment Dr.  Effluent  7.03  0.80  12.8    396    79   55.8   45.5  

6RP1  8465 Canyon RI  Inlet  7.62  0.78  13.4    935   431  177  146  

6RP2  8465 Canyon RI  Tank  7.45  1.18  13.5    696    60  141  122  

6RP3  8465 Canyon RI  Effluent  7.56  4.21  13.3    682    52  139  122  

1SP1  10091 Iona RD.  Inlet  7.69  1.19  22.7   1110   248   24.9   13.5  

1SP2*  10091 Iona RD.  Tank  7.58  0.37  19.5    263    34   47.6   42.6  

1SP3  10091 Iona RD.  Effluent  7.59  0.35  19.3    259    46   50.6   45.7  

3SP1  1128 Matthiasville RD.  Inlet  6.51  5.10  11.5  21080  5470  399   81.1  

3SP2  1128 Matthiasville RD.  Tank  7.76  0.79   8.9    718   137   64.8   48.9  

3SP3  1128 Matthiasville RD.  Effluent  7.29  1.36   9.7    424    21   50.1   48.5  

4SP1  493 Roaslind Lake Road  Inlet  9.40  4.28   7.8    580    30  228  207  

4SP2*  493 Roaslind Lake Road  Tank  8.86  1.71   4.2    279    24   85.5   77.2  

4SP3  493 Roaslind Lake Road  Effluent  8.82  3.51   4.3    263    15   86.8   78.2  

5SP1  1002 Golden Point Road  Inlet  5.61  1.10   8.7  11890  4020  331   68.8  

5SP2  1002 Golden Point Road  Tank  6.98  1.94   8.7    116     8   54.7   48.7  

5SP3  1002 Golden Point Road  Effluent  6.95  2.35   8.9    109     5   55   49.2  
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Sample 

Code1  
Location  

Sample 

Type  
pH  

DO  

(mg/L)  

Temp. 

(ºC)  

COD 

(mg/L)  

TSS 

(mg/L)  

TKN 

(mg/L)  

NH3 

(mg/L)  

6SP1  1206 Charlie Thompson RD. Inlet  6.37  1.10   9.1  11310  3800  360   92.2  

6SP2* 1206 Charlie Thompson RD. Tank  6.98  1.94   8.9    571    74  155  132  

6SP3  1206 Charlie Thompson RD. Effluent  6.95  2.35   8.9    507    44  139  120  

1RC1  44 Autumn Circle  Influent  7.22  1.76  11.6    514    70   75.7   65.6  

1RC2  44 Autumn Circle  Tank  7.21  1.34  11.6    489    33   75.4   71.4  

1RC3  44 Autumn Circle  Effluent  8.25  0.57  10.8    264    39   73.0   62.6  

2RC1  7 Diamondwood Drive  Influent  6.72  0.61  16.9    950   650   98.9   86.1  

2RC2  7 Diamondwood Drive  Tank  7.03  0.75  16.0    308    44   82.8   79.4  

2RC3  7 Diamondwood Drive  Effluent  7.38  1.25  15.5    255    54   74.2   68.4  

3RC1  10 Diamondwood Drive  Influent  7.09  0.65  17.7    739   424   75.8   50.2  

3RC2  10 Diamondwood Drive  Tank  6.99  0.73  17.1    308   150   62.0   59.1  

3RC3  10 Diamondwood Drive  Effluent  7.16  1.95  16.6    113    21   54.1   51.7  

4RC1  17 Flamborough Hills Drive  Influent  7.37  1.23  13.2    615    48   67.9   59.5  

4RC2*  17 Flamborough Hills Drive  Tank  7.42  1.62  12.7    504    83   70.8   60.3  

4RC3  17 Flamborough Hills Drive  Effluent  7.39  3.20  13.2    431    66   71.6   60.1  

5RC1  40 Diamondwood Drive  Influent  7.26  0.65  17.0    342   124   44.8   37.6  

5RC2*  40 Diamondwood Drive  Tank  7.12  0.70  16.7    216    79   42.5   38.5  

5RC3  40 Diamondwood Drive  Effluent  7.38  1.29  16.5    173    56   42.3   37.9  

6RC1  45 Autumn Circle  Influent  7.11  1.63  11.5    380    52   78.5   67.7  

6RC2*  45 Autumn Circle  Tank  7.09  1.41  11.1    323    48   81.9   72.0  
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Sample 

Code1  
Location  

Sample 

Type  
pH  

DO  

(mg/L)  

Temp. 

(ºC)  

COD 

(mg/L)  

TSS 

(mg/L)  

TKN 

(mg/L)  

NH3 

(mg/L)  

6RC3  45 Autumn Circle  Effluent  7.21  0.42  10.5    271    44   79.8   67.8  

1SC1  2 Diamondwood Drive  Influent  7.22  1.76  11.6    739   282  190   64.8  

1SC2*  2 Diamondwood Drive  Tank  7.21  1.34  11.6   5864  2960  64.4   57.9  

1SC3  2 Diamondwood Drive  Effluent  8.25  0.57  10.8    193    35  61.4   56.9  

2SC1  22 Diamondwood Drive  Influent  6.72  0.61  16.9    505   163  52.7   44.0  

2SC2*  22 Diamondwood Drive  Tank  7.03  0.75  16.0    381   125  44.9   37.9  

2SC3  22 Diamondwood Drive  Effluent  7.38  1.25  15.5    255    50  39.5   34.8  

3SC1  925 Longfellow Ave.  Influent  7.09  0.65  17.7    256    37  68.1   62.1  

3SC2  925 Longfellow Ave.  Tank  6.99  0.73  17.1    211    42  70.7   67.2  

3SC3  925 Longfellow Ave.  Effluent  7.16  1.95  16.6    127    26  64.4   61.2  

4SC1  362 Evert Street  Influent  7.37  1.23  13.2    558   131  51.7   41.2  

4SC2*  362 Evert Street  Tank  7.42  1.62  12.7    394    68  52.5   43.2  

4SC3  362 Evert Street  Effluent  7.39  3.20  13.2    435   153  53.3   45.4  

5SC1  3105 Dundas St.  Influent  7.26  0.65  17.0    441   432  68.4   55.8  

5SC2  3105 Dundas St.  Tank  7.12  0.70  16.7    255    27  69.9   49.9  

5SC3  3105 Dundas St.  Effluent  7.38  1.29  16.5    246    19  60.8   56.3  

6SC1  2850 Victoria Street  Influent  7.11  1.63  11.5    486   200  47.1   35.0  

6SC2  2850 Victoria Street  Tank  7.09  1.41  11.1    218    35  39.1   30.5  

6SC3  2850 Victoria Street  Effluent  7.21  0.42  10.5    375   200  47.1   32.2  
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1. System types are RC (recirculating conventional), SC (single-pass conventional), RP (recirculating plug flow), and SP (single-pass 8 

plug flow). 9 

* Samples included in comparing household onsite wastewater treatment system metagenomic analysis using 16S and shotgun 10 

sequencing. 11 

Table 5. Total taxa identified at multiple stages of data treatment by 16S and shotgun sequencing. 12 

Sequencing 

Method 

Raw 

Identifications 
Genera 

Above 

0.05% 

Relative 

Abundance 

Genera 

Above 0.05% 

Relative 

Abundance 

Above 

0.1% 

Relative 

Abundance 

Genera 

Above 0.1% 

Relative 

Abundance 

Above 

0.2% 

Relative 

Abundance 

Genera 

Above 0.2% 

Relative 

Abundance 

16S 3365 809 253 185 149 123 86 79 

Shotgun 23819 3045 226 192 121 113 72 71 

 13 

Table 6. Average taxa identified per sample at multiple stages of data treatment by 16S and shotgun sequencing. 14 

Sequencing 

Method 

Raw 

Identifications 

Predicted 

True 

Species 

Count 

Genera Above 

0.05% 

Relative 

Abundance 

Genera 

Above 

0.05% 

Relative 

Abundance 

Above 

0.1% 

Relative 

Abundance 

Genera 

Above 

0.1% 

Relative 

Abundance 

Above 

0.2% 

Relative 

Abundance 

Genera 

Above 

0.2% 

Relative 

Abundance 

16S   550   558  277 131 136  88  96 56 65 

Shotgun 12837 15738 2505 223 191 120 113 71 71 
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Table 7. Shotgun Significantly Differentially Abundant Taxa: Plug Flow Compared to Conventional. 15 

Taxa Base Mean log2 Fold  

Change 

Log2 Fold Change 

Standard Error 

Stat P-Value Adjusted  

P-Value 

Desulfomicrobium 6510 -3.85 0.836 -4.6 4.14E-06 3.52E-04 

Azospirillum 1250  2.95 0.789  3.73 1.88E-04 0.00798 

 16 

Table 8. 16S Significantly Differentially Abundant Taxa: Plug Flow Compared to Conventional. 17 

Taxa Base Mean Log2 Fold 

Change 

Log2 Fold  

Change  

Standard Error 

Stat P-Value Adjusted  

P-Value 

Subgroup_7  532 -9.52 2.01 -4.74 2.18E-06 2.11E-04 

Desulfomicrobium 1590 -4.58 1.16 -3.95 7.74E-05 0.00375 

Syner-01  368 -8.93 2.35 -3.79 1.49E-04 0.00482 

Anaeroarcus  283  4.83 1.39  3.47 5.26E-04 0.0128 

Dechloromonas  371 -4.95 1.63 -3.04 0.00238 0.0461 

  18 
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Table 9. Shotgun Significantly Differentially Abundant Taxa: Single-Pass Compared to Recirculating. 19 

Taxa Base Mean Log2 Fold  

Change 

Log2 Fold 

Change 

Standard Error 

Stat P-Value Adjusted 

P-Value 

Pusillimonas 14900  7.47 1.21  6.15 7.74E-10 6.58E-08 

Phenylobacterium  9490  4.83 1.05  4.61 4.07E-06 1.15E-04 

Simplicispira 21200  5.32 1.14  4.66 3.23E-06 1.15E-04 

Geobacter 17000 -5.06 1.13 -4.48 7.56E-06 1.61E-04 

Candidatus Cloacimonetes  1250 -3.54 0.979 -3.61 3.04E-04 0.00517 

Rhizobiales  2240  3.20 0.902  3.55 3.86E-04 0.00548 

Ruminococcus  4790 -1.80 0.618 -2.91 0.0036 0.0438 

 20 

Table 10. 16S Significantly Differentially Abundant Taxa: Single-Pass Compared to Recirculating. 21 

Taxa   Base Mean Log2 Fold  

Change 

Log2 Fold  

Change  

Standard Error 

Stat P-Value Adjusted  

P-Value 

Subgroup_7  532 26.9 2.03 13.3 2.61E-40 2.53E-38 

Camelimonas  396 12.3 2.05  5.99 2.09E-09 1.01E-07 

Hydrogenedensaceae  171  5.63 1.25  4.51 6.55E-06 2.12E-04 

Burkholderiaceae 1760  3.92 0.889  4.41 1.04E-05 2.47E-04 

Phenylobacterium  328  5.97 1.37  4.36 1.27E-05 2.47E-04 
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Taxa   Base Mean Log2 Fold  

Change 

Log2 Fold  

Change  

Standard Error 

Stat P-Value Adjusted  

P-Value 

Simplicispira  516  5.96 1.46  4.09 4.31E-05 6.97E-04 

Brevundimonas  247  4.49 1.29  3.47 5.14E-04 0.00713 

p-251-o5  115 -5.23 1.62 -3.23 0.00123 0.0149 

Pleomorphomonas  202  4.73 1.55  3.05 0.0023 0.0248 

Comamonas  244  3.88 1.31  2.95 0.00317 0.0307 

Ruminococcus_2  146 -1.67 0.591 -2.83 0.00462 0.0356 

Bact-08  320 -3.85 1.36 -2.82 0.00477 0.0356 

Shinella  304  5.17 1.83  2.83 0.00468 0.0356 

 22 
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