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Lay Abstract 

Exchange proteins activated by cyclic AMP (EPAC) are cAMP sensors with several 

functions in cellular pathways. EPAC has been found to be associated with multiple diseases such 

as cardiovascular diseases. This study aims to first identify the main residues involved in the 

regulation of EPAC1 activity and then develop a predictive model that is able to find promising 

and selective inhibitors for the protein. The two approaches can then be useful in designing 

effective modulators of EPAC1 for the treatment of cardiovascular diseases such as cardiac 

hypertrophy.  
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Abstract 

Allosteric regulation is essential to control biological function. In addition, allosteric sites 

offer a promising venue for selective drug targeting. However, accurate mapping of allosteric sites 

remains challenging since allostery relies on often subtle, yet functionally relevant, structural, and 

dynamical changes. In this thesis, a new toolset of NMR-based methodologies known as T-

CHESCA and CLASS-CHESCA are proposed to identify key allosteric sites, using isoform 1 of 

the exchange protein activated by cAMP (EPAC1) as the model system. The T-CHESCA imposes 

changes on the fast-exchanging active/inactive states of the protein through temperature changes 

while the CLASS-CHESCA imposes changes through variations in the spin-active nuclei involved 

in pairwise correlations of residues. The residue ensembles identified by the CHESCA methods 

were found in previously identified EPAC allosteric sites. EPAC1 has also been identified as a 

promising drug target for cardiovascular diseases and based on structural analogues of a novel 

EPAC1-specific inhibitor called I942, the next aim of the work was to generate a quantitative 

structure activity relationship model (QSAR). The QSAR model was able to predict the affinity of 

a promising inhibitor with enhanced potency and inhibitory activity compared to I942 which was 

confirmed through competition assays, 15N-1H HSQC experiments, saturation transfer difference 

(STD) and chemical shift projection analysis (CHESPA).  
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Chapter 1  

The Role of Exchange Protein Activated by cAMP (EPAC) in cAMP Signaling and 

Importance as a Drug Target 

 

1.1 cAMP-mediated Signaling Pathways 

Cyclic adenosine 3′,5′-monophosphate (cAMP) is a second messenger that plays 

significant roles in mediating cellular pathways in response to extracellular signals 1 and the 

balance between the activities of adenylate cyclases (ACs) and cyclic nucleotide 

phosphodiesterases (PDEs) regulates the concentration of intracellular cAMP 2. Most ACs become 

activated through interactions with the alpha subunit of the Gs protein (Gαs) of the G-protein-

coupled receptors (GPCRs) 3. AC inhibition on the other hand, can be due to binding of ligands to 

GPCRs that are coupled to Gi proteins as opposed to Gs.  

cAMP affects three main protein families: 1) Protein kinase A (PKA), 2) Exchange protein 

activated by cAMP (EPAC) and 3) Cyclic-nucleotide-gated ion channels 4. These effectors are then 

involved in several cellular functions such as gene transcription, cell growth, cell adhesion and 

metabolism 5–7
.  

Cellular effects are often mediated by the cross-talk between different signalling pathways 

that involve second messengers 8. For instance, the cAMP-PKA pathway is associated with the 

3′,5′-cyclic guanosine monophosphate (cGMP) as the concentration of one of the nucleotides is 

affected by the other 9
. An antagonistic relation is observed in certain physiological processes 

mediated by the secondary messengers. For example, myocardial contraction can be promoted by 

isoproterenol, 10
  which in turn results in an elevation of the cAMP levels, while simultaneously 
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decreasing the cGMP levels. An opposite effect is observed when administering a PDE inhibitor 

such as  KMUP-1, a xanthine derivative that inhibits PDEs 3,4 and 5 11
. It showed osteoclastogenic 

activity mediated by both the cAMP and cGMP pathways and the rise in the levels of the secondary 

messengers was proposed as a therapeutic avenue for osteoporosis 8,11
.  

 

1.2 Cyclic Nucleotide Binding Domains 

Increasing levels of cAMP and cGMP levels activate the cAMP and cGMP-mediated 

protein kinases, respectively, 12 and this is through the binding of the cyclic nucleotides to the 

cyclic nucleotide binding domains (CNBDs). CNBDs are key regions that act as controlling units, 

in response to cyclic nucleotides (e.g., cAMP or cGMP), for regulation of multiple cellular 

pathways in eukaryotes and prokaryotes 13,14
. They are usually coupled to different functional such 

as those of kinases, ion channels, transcription modulators and guanine nucleotide exchange 

factors 15,16
.  

CNBDs maintain an evolutionary conserved beta-subdomain that is observed in CNBD-

containing proteins 15
. The beta subdomain includes eight beta strands that form a beta barrel. The 

β strands 6 and 7 bracket a small helical moiety known as the phosphate binding cassette (PBC), 

which, facilitates the interactions with the phosphate group of the cyclic nucleotide and is highly 

conserved among CNBDs 15,17
. Another subdomain of the CNBD is a flexible helical region 

referred to as the alpha subdomain 13
. The alpha subdomain includes two main non-contiguous 

helical motifs: 1) An N3A motif at the N-terminus and 2) a B/C helix that is located after the eighth 

β strand 18
. The beta subdomain is more conserved than the alpha subdomain in structure and 

sequence across CNBDs compared to the alpha subdomain 13
. 
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The regulatory subunit of PKA (PKA-R), which is regarded as the prime example of 

protein kinases, consists of two CNBDs as well as a dimerization and a localization domain in the 

N-terminal region 12
. The two CNBDs of PKA-R, i.e., CNBD A and CNBD B, are located 

sequentially in tandem after each other, whereby the C helix of CNBD A (CA) is linked to the A 

helix of CNBD B (AB) 19. Complexes of a monomeric construct of PKA-R with two cAMP 

molecules show 20,21 that the phosphate group interacts with a conserved arginine residue in the 

PBC, whereas extended contacts are observed between the nucleotide’s base and the N3A and C 

helix of domain B.  

Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are another type of 

cyclic nucleotide regulated systems 22, which are activated by the hyperpolarization of cellular 

membranes as well as the binding of cyclic nucleotides to a CNBD located intracellularly 23. The 

effect of cyclic nucleotide binding to HCN channels extends to multiple different functional 

features of the channels, such as, accelerating the kinetics of channel activation, shifting half-

maximal activation voltage (V1/2) towards depolarization and, elevating the maximum current 24–

26. The HCN channel consists of four domains, two of which are transmembrane and two 

intracellular. The transmembrane domains are the voltage sensor domain and the channel pore, 

and the intracellular domains are the C-linker and the CNBD 23. The CNBD is located C-terminal 

to the C-linker and contains structural elements common to other CNBDs. The β-roll or the beta 

subdomain facilitates the binding of cyclic nucleotides, and the C-helix of the alpha subdomain 

regulates the effectiveness by which these cyclic nucleotides activate the ion channel 27–32.  

In addition to proteins that are cAMP-regulated, cyclic GMP-dependent protein 

kinases (PKGs) are a class of serine/threonine kinases that are regarded as one of the main 
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intracellular cGMP receptors. They exist as two types in mammals: PKG I and PKG II 33–35.  Like 

PKA, PKG also spans two tandem CNBDs: CNBD A and CNBD B which, despite a sequence 

similarity of 37%, exhibit distinct binding kinetics and affinities for cGMP as well as differences 

in specificities for cGMP analogs 36,37 Though the overall binding affinity of PKG for cAMP is 

lower than that of cGMP 38–40, the intracellular cAMP concentrations are significantly higher than 

that of cGMP 41–43, suggesting the presence of additional factors governing cGMP selectivity. For 

example, comparative NMR analyses have revealed that cAMP behaves as a partial agonist for 

PKG 44. The underlying mechanism relied on the sampling of an additional state other than the 

conventional two-state conformational model of cGMP activation, and this partially autoinhibited, 

third state results in partial agonism 44.  

Exchange proteins directly activated by cAMP (EPAC) are 45 also a family of cAMP 

sensors, 46 which act as guanine nucleotide exchange factors (GEF) that activate the small GTP-

binding proteins called Rap1 and Rap2 47. The CNBDs of the two main isoforms of EPAC: 

EPAC1-CNBD and EPAC2-CNBD-B, have a high sequence homology between each other and 

that homology is conserved between humans and other species. The percent identity ranged from 

75 to 95%. CNBD-A of EPAC2 on the other hand, did not have conserved residues since EPAC1 

lacks that domain 48. EPAC CNBDs share the common CNBD structural elements. However, 

unlike other CNBDs, the structure of EPAC2 exhibits some variation in what is known as the 

‘CNBD lid’ region. In HCN and PKA, the lid region is often observed as an α-helix located in the 

C-terminal side of the β-barrel/role 49. The lid in EPAC2, however, exists as a two-stranded β-

sheet that is part of a ‘switchboard’ structure composed of five beta strands, and it is positioned 

away from the cAMP binding region 50.  
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1.3 EPAC1: Domain Organisation and Mechanism of Action 

EPAC1 consists of a regulatory region (RR), which contains the cyclic nucleotide binding 

domain (CNBD) and a disheveled Egl-10 Plectstrin (DEP) domain, and a catalytic region (CR), 

containing a RAS-exchange motif (REM), a RAS association (RA) domain, and a CDC25 

homology domain (CDC25HD) 51–53 (Figure 1.1). In the absence of cAMP (‘apo’), EPAC1 

predominantly samples the autoinhibited (inactive) state, whereby the regulatory region blocks 

substrate access to the CR through salt bridges formed between residues in α helices 1 and 2 of the 

EPAC1 CNBD and the CDC25HD. These interactions are commonly referred to as the ionic latch 

(IL). Upon cAMP binding to the EPAC1 CNBD, the relative orientation of the regulatory and 

catalytic regions shifts  to a more open topology in which the catalytic site occlusion is eliminated 

(Figure 1.2). The CR binds to Rap GTPase to catalyze the exchange of GDP for GTP and the Rap-

GTPase–activating proteins (Rap-GAPs) enhance the slow, intrinsic GTP hydrolysis activity of 

Rap 54,55. The EPAC1 CNBD, therefore, serves as the central controlling unit for the closed-to-

open transition underlying the cAMP-dependent activation of EPAC1. 

 

1.4 cAMP Binding and Allosteric Control of EPAC1 

As previously mentioned, the CNBD of EPAC1 consists of a β-barrel which is flanked by 

an N-terminal helical bundle and a hinge helix located in the C-terminal and is connected to the 

lid region. The sugar phosphate group of cAMP interacts with the PBC, primarily through 

hydrogen bonds between the phosphate group and PBC residues such as A272, R279 and G269, 

as seen in Figure 1.3, where the EPAC1 residues are in brackets next to the analogous residues in 

EPAC2 56.  
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Two main events take place after or during cAMP binding: 1) Rotation of the hinge helix 

in the CNBD C-terminus region and, 2) Weakening of the IL interactions which in turn, stabilize 

the open topology of EPAC and facilitate the motion of the hinge that shifts the RR away from the 

CR 57,58. The mechanism by which cAMP weakens the IL has been shown, to be mainly governed 

by dynamics rather than structural changes 59–61. Indeed, the comparative analysis of NMR 

relaxation experiments for the EPAC1-CNBD in the presence and absence of cAMP revealed that 

the active state exhibits an enhancement in dynamics in a large region spanned by the IL 62. This 

reflects an entropic penalty imposed on the IL salt bridges, which, in turn, leads to a weakened IL 

and a destabilization of the EPAC autoinhibited state 38,62. Further elucidation of the cAMP-

mediated control of distal sites of the CNBD was demonstrated through NMR-based chemical shift 

covariance analyses (CHESCA), which mapped out the allosterically-relevant networks of EPAC 

63.  

The CHESCA methodology, which assumes that linear inter-residue chemical shift 

correlations between a pair of residues reflects their concerted response to a library of perturbations 

63, has identified multiple allosteric networks. These allosteric clusters are in the α-subdomain of 

the CNBD and are composed of two main subclusters: 1) Hydrophobic residues positioned around 

R186, where R186 forms several hydrogen bonds with polar oxygen atoms, and 2) Two spines 

composed of hydrophobic residues in the α4 helix of the N-terminal helical bundle and the hinge 

helix (α6) 63. The CHESCA results coupled with NMR comparative analyses and site-directed 

mutagenesis confirm that the cAMP allosterically modulates the conformations of the β2-β3 loop 

as well as the hinge helix 62,64,65 and facilitates the motion of both the PBC and the hinge helix 

from the ‘out’ to the ‘in’ conformations (Figure 1.3) 50,66.  
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The PBC and the hinge were also confirmed to be allosterically coupled through the 

interaction of a conserved leucine residues in the PBC, L273, and F300 in the hinge helix. 

Mutations of either those residues significantly affected the GEF activity, for example, the L273W 

mutant could not be activated even in the presence of saturating concentrations of cAMP. An 

opposite effect was observed when F300 was replaced with less bulky residues such as in the 

F300A and the F300T mutants which reduced the concentration of cAMP required to reach the 

half maximal activity of the protein 49,72,74,75.  

 

1.5 EPAC: A Drug Target for Cardiovascular Diseases 

EPAC has been investigated as a potential target for cardiac diseases due to its involvement 

in cardiac electric remodeling and cardiac hypertrophy 54. For instance, an EPAC activator known 

as 8-CPT was shown to cause ventricular arrhythmogenesis in whole mouse hearts 68. Other studies 

reported that the activation of EPAC leads to the lengthening of the action potential through the 

decrease of potassium current in rat ventricles 69. The lengthening of action potentials is associated 

with cardiovascular diseases since it is significantly correlated with arrhythmia 70. Another study 

preformed on ventricular myocytes of guinea pig 71 showed that constant stimulation of β1-

adrenergic receptors (β1-AR) induces EPAC1 activation, which reduces the concentration of slow 

delayed rectifier potassium K+-current (IKs). The IKs are essential regulators of cardiac 

repolarization and therefore, their decrease enhances the possibility of arrhythmogenesis. EPAC 

was also shown to raise expression levels of transient receptor potential canonical channels 3 and 

4 in rat ventricular cardiomyocytes and the Ca2+ influx passing through these channels was 

proposed as a mechanism by which EPAC activation promotes arrhythmia 72. Moreover, Okumura 
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et al 73 reported that knock-out mice that lacked EPAC1 exhibited a reduced chance of atrial 

fibrillation. 

EPAC was also proposed as a contributor to cardiac hypertrophy since its expression, 

specifically EPAC1, is increased in various animal models exhibiting cardiomyopathy as well as 

samples of left ventricles obtained from patients with failing hearts 74. The activation of EPAC or 

EPAC1 overexpression in rat cardiac myocytes elevated several hallmarks of hypertrophy, such 

as atrial natriuretic factor expression, protein synthesis and cell-surface area 75. Furthermore, the 

previously mentioned sustained β-AR activation, which leads to EPAC1 activation and subsequent 

upregulation of hypertrophy-related genetic markers, is counter affected by deletion of EPAC1 76. 

EPAC1 knockout mice also display enhanced cardio-protection against stress-induced conditions 

such as age-related cardiac dysfunction 73. In addition, EPAC1 knockout mice subjected to 

transverse aortic constriction or chronically treated with isoprenaline exhibited attenuated cardiac 

fibrosis 73,76. Taken together, these observations strongly support the protective effects of EPAC1 

deletion under stress-induced conditions.  

 

1.6. EPAC1 Inhibitors 

Given the value of human EPAC1 as a drug target, several screening campaigns have aimed 

at identifying leads for EPAC1 inhibition 49,77–80. Initial efforts in the search for EPAC1 inhibitors 

focused on libraries of cAMP analogs, leading to the identification of cAMP antagonists, such as 

the phosphorothioate Rp-cAMPS and cGMP 49,56. However, cAMP derivatives suffer from poor 

selectivity due to cross reactivity with other cyclic nucleotide (cNMP)-dependent systems in 

humans, such as PKA, PKG and HCN 81. Furthermore, cAMP analogs are often hydrolyzed by 
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phosphodiesterases (PDEs), thus limiting their in vivo effectiveness. Hence, subsequent screening 

efforts turned to non-cNMP ligands resulting in the identification of four main core structures for 

EPAC1 inhibitors, denoted as I942, ESI09, CE3F4 and BAA (Table 1.1; Figure 1.4) 77–80. All four 

types of ligands bind directly to the EPAC1 CNBD, without affecting PKA. I942 and ESI09 are 

competitive inhibitors of cAMP, 77,78 while CE3F4 and TBAA are un- and non-competitive EPAC1 

inhibitors, respectively 79,80. In addition, ESI09 is a pan EPAC inhibitor which inhibits both EPAC1 

and EPAC2 78. 

The EPAC1-CNBD:I942 complex has been recently investigated extensively through 

NMR-based experiments 82 and a binding mode was proposed based on measurements of 

intermolecular nuclear overhauser effects (NOEs) 82–84. Such NOEs (Figure 1.5A) are between the 

PBC and base binding region (BBR) residues and I942 protons in the dimethylbenzene and 

naphthalene moieties, respectively. Based on those NOEs as well as chemical shift perturbation 

analyses, I942 was proposed to mimic cAMP (Figure 1.5B), whereby the adenine base of cAMP 

or the naphthalene group in I942 interact with the BBR, whereas the cAMP’s ribose ring or I942’s 

dimethylbenzene group interact with the PBC region 82.  

 

 1.7 SAR Studies of I942 Derivatives 

A recent study by the Yarwood research group developed structure-activity relationships 

(SARs) for derivatives of the EPAC1-selective partial agonist, I942 85. The study involved 

obtaining a correlation between structural elements of a library of I942 analogues and their 

respective relative binding affinities. They showed that a naphthalene ring is essential for EPAC1-

binding and that a substituent on position 7 (as per numbering on I942 in Figure 1.4) that is 



M.Sc. Thesis – H. Mohamed; McMaster University – Chemistry and Chemical Biology 

 

10 

 

electron-donating enhances the affinity. The linker region, i.e., the moiety connecting the 

sulfonamide group to the naphthalene group, was demonstrated to be quite crucial since its 

modification compromised the binding. Furthermore, substituents on the phenyl moiety that are 

electron-donating proved to be better than electron-withdrawing groups and, the replacement of 

the phenyl group with groups of greater π-conjugation also raised the potency levels towards 

EPAC1.  

Evaluation of the effect of promising analogs on the EPAC1-regulated signaling pathway 

leading to induction of the pro-inflammatory VCAM1 cell adhesion protein, revealed that a 

compound called ‘25u’ demonstrated greater activation compared to the parent molecule, I942 85. 

Although the I942-based SAR indicated which substituents enhanced or weakened the binding 

affinity towards the EPAC1-CNBD, the relationships are relatively qualitative in nature. More 

quantitative approaches, i.e., the application of quantitative structure activity relationships 

(QSARs), were still lacking for EPAC.  

 

 1.8 Quantitative Structure Activity Relationships (QSARs) 

Quantitative structure-activity relationship (QSAR) models describe a correlation, of 

statistical significance, between the target property of small molecules such as, bioactivity, and the 

molecular descriptors of those molecules, which are calculated from the molecular structure 86,87. 

The concept of QSAR modeling was introduced in 1964 by Hansch and Fujita 88. Since then, it 

has been extensively applied in the computer-aided drug discovery process 89. QSAR modeling 

relies on the idea that compounds that share structural similarity often display comparable 

biological activity, and this is known as the similarity-property principle (SPP). The SPP proposes 
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that slight structural modifications of a compound correspond to slight variation in the biological 

property, such as potency, of that compound, which, in turn, creates the foundation for linear 

relations that QSAR models generate.  

Analogs of a congeneric series share a common ‘scaffold’ making them chemically similar 

and it is the gradual structural changes through different substituents on that shared scaffold that 

result in variation in potency. QSAR models can, therefore, utilize these linear variations for 

potency predictions of molecules with a shared scaffold and varying substituents. The applicability 

of these QSAR predictions, however, heavily relies on the SPP and is based the concept of ‘SAR 

continuity’ which ensures a linear relation between relatively conserved structural modifications 

and the corresponding, minor, potency variations 87.  

Most of the models are multivariate in nature and offer different means of regression 

analysis. However, multiple linear regression (MLR) is one of the most widely used methods as it 

produces a direct, linear correlation between a property of interest (Y) and the molecular 

descriptors (𝑋𝑗): 

 𝑌 = 𝑏0 + ∑ 𝑏𝑗

𝑝

𝑗=1
× 𝑋𝑗 =  𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ 𝑏𝑝𝑋𝑝 (1.1) 

where Y is a vector of n elements with n representing the number of molecules studied, X 

is a matrix whose size is 𝑛 × 𝑝 where 𝑝 is the number of descriptors and the 𝑏𝑗 values represent 

the regression coefficients. The coefficient is a measure of the descriptor’s weighted contribution 

to the QSAR prediction, and the sign (positive or negative) reflects how the descriptor contributes 

to the target property 90.  
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1.9 QSAR of Protein Kinase A (PKA) 

The application of QSAR models to proteins in the cyclic adenosine monophosphate 

(cAMP)-dependent signaling pathway goes back to the 1990s 91,even before the first structure of 

PKA-R1α was resolved 92, and though many advancements in QSAR methods have been 

developed, only a limited number of QSARs currently exist for the different proteins involved in 

the cAMP-mediated signaling cascade. One of the earliest papers that discusses QSARs for cAMP-

dependent kinases was a study conducted by Mureşan et al. 91
 who examined 27 cAMP analogues 

that contained substitutions in positions 1, 2, 6 and 8 as well as diastereoisomeric phosphorothioate 

cAMP analogs where the sulfur atom was either in the axial (Sp-cAMPS) or equatorial (Rp-

cAMPS) position (Figure 1.6).  

They implemented a QSAR method known as the minimal steric difference method (MTD) 

to map out four different binding sites for the regulatory subunits of protein kinases I and II: AI, 

BI, AII and BII. MTD measures the steric misfit between the studied compound and the cavity of 

the receptor 93. The QSAR coefficients ranged between 0.836 and 0.948 and provided insight on 

the steric characteristics of each type of receptor site. The AI and BI receptor sites were found to 

contain a negatively charged moiety able to interact with cAMP derivatives with modifications at 

position 6. Both BI and BII were determined to be hydrophobic in nature and derivatives with 

thiophosphoric acid groups were reported to have reduced affinities for the four receptor sites.  

The same research group further explored cAMP derivatives in a separate study but with a 

greater focus on derivatives containing bulky groups on positions 2, 6 and 8 94. In addition to MTD, 

which is primarily a measure of steric contribution, they included parameters such as the predicted 

base moiety hydrophobicities as well as the charge of substituents on position 6. QSAR 
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correlations that included multiple parameters rather than the MTD parameter alone yielded higher 

correlation values 95.  

 

1.10 Thesis Outline 

1.10.1 Thesis Objective  

The goal of this thesis is to explore the EPAC1 system through two main approaches. The 

first is to establish an NMR-based toolset that identifies the core allosteric network using EPAC1 

as the model system, while the second approach aims at developing a quantitative structure-activity 

relationship based on a series of EPAC1-selctive modulators.  

1.10.2 Chapter Outlines 

Chapter 2 will discuss two new proposed methods of CHESCA methodologies to narrow 

down the allosteric maps of the EPAC1-CNBD to the core allosteric residues. The first method is 

the temperature CHESCA (T-CHESCA), which is based on the 1H-15N-HSQC readout of EPAC1 

in the apo and four other ligand-bound states, acquired at different temperatures, and the second 

method is the CLASS-CHESCA, which is be based on the 1H-15N-HSQC readout of the five 

different states of EPAC1-CNBD acquired at a single temperature (e.g., 306K). T-CHESCA 

selects allosterically coupled residues whose chemical shifts remain strongly correlated across 

different temperatures, while the CLASS-CHESCA identifies tightly allosteric couplings based on 

the number of correlations, above a certain threshold, observed between different nuclei within a 

given residue pair. Networks identified from these two CHESCA methods are then compared with 

the network identified from complete linkage clustering obtained from the conventional CHESCA 

analysis 63.  
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Chapter 3 discusses a QSAR model developed for a library of EPAC1-selective 

sulfonamide modulators 85. The goal of the model is to be able to predict the affinities of de-novo 

compounds that still share a similar skeleton as that of I942 77. The model is first trained and 

validated using structures with known affinities 85 and is then utilized as a tool to predict affinities 

for a set of compounds that are ‘unknown’ to the model. Predictions are then experimentally 

validated through a competition assay and compared to I942. Further insight into the possible 

binding mode and mechanism of action of the most promising compound is obtained through 

HSQC, STD, and chemical shift projection analyses (CHESPA) 65.  

Chapter 4 is a summary of the main findings of the two studies conducted, i.e., the 

CHESCA toolset, and the QSAR model, and provides a further outlook on future directions. The 

common ensemble of residues shared between the two, newly proposed CHESCA methods and 

the previously established allosteric network seem to be critical sites in the allosteric regulation of 

EPAC1 and can therefore, be prioritized for the design of allosteric drugs. The QSAR model is 

also promising in terms of predictive power based on the experimentally-measured affinities that 

confirmed the QSAR predictions. 
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Figure 1.1: EPAC1 domain organization with corresponding function. 
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Figure 1.2: EPAC Activation Mechanism.  Adenylyl cyclase (AC) produces cAMP from ATP in 

response to Gαs-coupled G protein–coupled receptors (GPCRs) stimulation. Binding of cAMP to 

the cyclic nucleotide–binding domain (CNBD) of EPAC induces conformational changes leading 

to exposure of the catalytic region for binding of Rap GTPase to catalyze the exchange of GDP 

for GTP. Rap-GTPase–activating proteins (Rap-GAPs) enhance the slow, intrinsic GTP hydrolysis 

activity of Rap leading to GTPase inactivation. 
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Figure 1.3: Structural differences between the apo and holo states of EPAC.  The cAMP-bound 

EPAC2-CNBD (holo) state (blue, PDB 3CF6) is overlayed on the unbound (apo) state (yellow, 

PDB 1O7F). The phosphate binding cassette (PBC), the base binding region (BBR) and the hinge 

region are marked by black circles. The PBC and the hinge exhibit the ‘out’ conformation in the 

apo state and adopt an ‘in’ conformation in the holo state. cAMP, represented as a stick figure 

forms key interactions between its phosphate group and residues in the PBC whereby the residues 

equivalent to those residues in the EPAC1 structure are written in brackets. The base of the 

nucleotide is oriented towards the BBR, facilitating hydrophobic interactions.  
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Figure 1.4: Molecular structures of non-cNMP inhibitors of EPAC1 
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Figure 1.5: I942 binding interface and cAMP mimicry.  A) A map of residues, highlighted as cyan 

surfaces, in the EPAC1-CNBD that showed NOE peaks towards I942 protons from the 13C,15N-

filtered NOESY-HSQC readout. NOE peaks to protons in the phenyl group of I942 (2 and 3) 

originated from residues at the PBC whereas the NOE peak towards the naphthalene proton (9) 

originated from the BBR residue, T261. B) A scheme for the cAMP mimicry that I942 

demonstrates whereby regions of the molecular structures that are highlighted by the same shape 

are proposed to interact in a similar fashion with EPAC1-CNBD. 
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Figure 1.6: Cyclic adenosine monophosphate (cAMP) structure.  Numbers in boxes mark the 

positions where substituents were added to generate different cAMP derivatives. Sp and Rp 

indicate the location of the sulfur atom in place of the axial and the equatorial oxygens, 

respectively. 
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Table 1.1: Preclinical EPAC1 Inhibitors  a 

Name Type IC50/μM 

I942 Competitive 35 ± 1 76 

ESI09 Competitive 3.0 ± 1 77 

CE3F4 Uncompetitive 23 ± 3 78 

TBAA Non-competitive 4.0 ± 1 79 

a They bind to the EPAC1 CNBD 
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Chapter 2  

Identification of Core Allosteric Sites through Temperature- and Nucleus-Invariant 

Chemical Shift Covariance  

 

2.1 Introduction 

Allostery plays a central role in cellular signaling, pathological dysregulation, and drug 

development 1,2,3. Due to lower evolutionary pressure for conservation at allosteric vs. orthosteric 

sites, targeting the former rather than the latter often leads to enhanced selectivity 4. In addition, 

allosteric ligands often exhibit higher affinity than orthosteric binders due to the absence of 

competition with endogenous substrates 5–7. It is therefore critical to reliably map residues involved 

in mediating allostery.  

A means to identify allosteric sites in systems for which allostery relies on fast-exchanging 

conformational equilibria 8 (Figure 2.1A) is the NMR chemical shift covariance analysis 

(CHESCA) 9–13. CHESCA maps allosteric networks underlying long-range communication 

between distal sites within a protein 14–17 (Figure 2.1B). CHESCA utilizes NMR chemical shift 

variations to single out clusters of residues exhibiting similar responses to a common perturbation 

library (Figure 2.1C). Such clustering relies on pairwise correlations between residue-specific 

chemicals shifts (Figure 2.1D-G), whereby residue pairs displaying high correlations typically are 

assigned to the same allosteric cluster 9.  

The original implementation of CHESCA 9,18–21 is effective in generating exhaustive maps 

of allosteric networks. However, for the purpose of prioritizing subsequent experiments, such as 

mutations at allosteric sites or allosteric drug design, it is also essential to define the hierarchy of 
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allostery maps. As a first step in this direction, a means to demonstrate how to narrow down 

exhaustive CHESCA maps to ‘core’ allosteric residues suitable for prioritization in follow up 

studies, is presented. In order to identify such key allosteric sites, three different and 

complementary CHESCA-based methods are proposed: 1) Temperature-CHESCA (T-CHESCA), 

which relies on performing CHESCA analyses at different temperatures at which the protein is 

still folded (T < Tmelting) 
22 and identifying residue pairs that remain highly correlated across all 

temperatures; 2) CLASS-CHESCA, which relies on multiple correlations between separate 1H and 

15N amide chemical shifts for each residue pair as opposed to the typical correlations between 

combined chemical shifts (CCS), which lead to projection compression artifacts (Figure 2.2A) 

resulting in false positives 10; 3) The combination of the T- and CLASS-CHESCAs with complete 

linkage-CHESCA (CL-CHESCA), which implements a form of agglomerative clustering that, 

unlike single linkage, avoids chaining effects (Figure 2.2B) and related false positives.10 Together 

the T-, CLASS- and CL-CHESCAs effectively implement strict filtration criteria that minimize 

false-positives and selectively reveal core allosteric sites useful to be prioritized in follow up 

mutation design and/or docking efforts. The proposed CHESCA approaches are validated by 

applying them to the EPAC1-CNBD.  

The available comparative structural, dynamical, and mutational analyses 23,24,25 

consistently point to the IL and hinge regions of the EPAC1 CNBD as ideal benchmarks to validate 

the CHESCA-based approaches proposed to dissect core allosteric elements. The EPAC1 CNBD 

serves as an excellent model system to test CHESCA methodologies also because cAMP analogs 

spanning a wide range of EPAC GEF activities are available to use as CHESCA perturbation 

libraries (Figure 2.1C). Hence, the EPAC1 CNBD model system is utilized to show how T-, 

CLASS- and CL-CHESCA approaches can be used to build hierarchical maps of allostery. 
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2.2 Methods 

Sample Preparation. The EPAC1h (149-318) construct was purified according to 

previously established protocols 9 except for inducing the expression by adding 1 mM of Isopropyl 

β-D-1-thiogalactopyranoside and concentrating the final protein samples to 0.25 mM.  

NMR Measurements and Processing. NMR experiments were acquired using a Bruker 

Avance 700 MHz spectrometer. Sensitivity and gradient-enhanced 15N-1H heteronuclear single 

quantum coherence (HSQC) spectra were acquired with 256 (t1) and 2048 (t2) complex points and 

spectral widths of 31.82 and 14.06 ppm for the 15N and 1H dimensions, respectively. The number 

of scans was 8 and the recycle delay was 1 s. The experiments were repeated for each of the five 

EPAC1-CNBD samples (i.e., apo, cAMP-, Rp-cAMPS-, Sp-cAMP- and 2’-OMe-cAMP-bound) 

and at each of the five temperature points (290K, 298K, 306K, 310K to 316K). The equilibration 

time interval between each temperature was 15 minutes. The spectra were processed using 

NMRPipe 26 where the size of the real spectrum (SI) was 1024 and 512 in the 1H and the 15N 

dimensions, respectively. A window function (WDW) of sine squared was applied with a sine bell 

shift (SSB) value of 3 for both dimensions. Forward line prediction (LPfc) was used for the two 

dimensions with the number of LP coefficients being 64 for the 15N dimension.  

CHESCA Analyses -Temperature CHESCA (T-CHESCA). The CHESCA analyses were 

preformed using the NMRFAM-SPARKY plugin 27. The HSQC peaks were first referenced to 

15N-acetyl glycine and were assigned by comparison starting from previously determined 

assignments at 306K 9,28,29. The chemical shifts from the assigned spectra for each EPAC1 

state/perturbation (Apo, cAMP, Sp-cAMPS, 2’OMe-cAMP and Rp-cAMPS) at each temperature 

were used to build temperature-specific correlation matrices through Sparky-CHESCA 12. The cut-
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off values for the 15N and 1H chemical shifts were set to 5 and 10 Hz, respectively and a scaling 

factor of 0.2 was utilized for the 15N dimension in the computations of combined chemical shifts 

(CCS). The Pearson correlation coefficient (R) cut-off was set to 0.98 and the CHESCA matrices 

for all temperatures were generated in the same manner. Only residue pairs for which R values 

could be computed across all five temperatures were included in the analyses. The embedded 

“CHESCA-CL” feature in Sparky-CHESCA was used to generate the complete linkage clusters 

and the correlation coefficient cut-off between residues in the clusters was set to 0.98. The SVD 

feature in Sparky-CHESCA was used to generate the singular value decomposition (SVD) plot at 

306K. In the SVD, Rp-cAMPS was used as the reference state to calculate the differentials of the 

states with respect to Rp-cAMPS (loading plot). PyMoL was used for mapping the residues 

identified through CHESCA on the EPAC-CNBD structure. 

 

2.3 Results and Discussion 

Rationale for Temperature-CHESCA (T-CHESCA). The central tenet of the T-CHESCA is 

that core allosteric couplings are preserved at increasing temperatures, provided that no 

appreciable thermal unfolding occurs. In CHESCA, allosteric couplings between two generic 

residues i and j are identified through linear chemical shift correlations 9.  

 𝛿𝑖𝑠 = 𝛿𝑗𝑠𝛼 +  𝛽  (2.1) 

where  𝛿𝑖𝑠 and 𝛿𝑗𝑠  are typically the combined 15N and 1H amide chemical shifts of residues i and j, 

respectively, in sample s (i.e., either the apo or the cAMP, Rp-cAMPS, Sp-cAMPS or 2’-OMe-

cAMP-bound EPAC1 CNBD; Figure 2.1C), and: 
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 𝛼 =
𝛿𝑖,𝐴𝑐 − 𝛿𝑖,𝐼𝑛

𝛿𝑗,𝐴𝑐 − 𝛿𝑗,𝐼𝑛
 (2.2) 

 𝛽 = 𝛿𝑖,𝐼𝑛 − 𝛼𝛿𝑗,𝐼𝑛 (2.3) 

with 𝛿𝑖,𝐼𝑛 (𝛿𝑗,𝐼𝑛) and 𝛿𝑖,𝐴𝑐 (𝛿𝑗,𝐴𝑐) representing the combined ppm values (CCS) of residue i (j) in 

the pure inactive and active states, respectively.  

If the temperature at which the CHESCA analysis is performed changes (Figure 2.3A), the 

𝛿𝑖,𝐼𝑛 (𝛿𝑗,𝐼𝑛) and 𝛿𝑖,𝐴𝑐 (𝛿𝑗,𝐴𝑐) values are expected to change 30–32, thus possibly changing the slope 

(𝛼) and intercept (𝛽) of the correlation between 𝛿𝑖𝑠and 𝛿𝑗𝑠.  However, based on equation (2.1), the 

extent to which 𝛿𝑖𝑠and 𝛿𝑗𝑠 are linearly correlated remains unaffected. Hence, we anticipate that 

CHESCA correlations for residue pairs (i and j) sensing fast-exchanging concerted two-state 

transitions are temperature invariant.  

Temperature variations may also lead to changes in the relative populations of the two 

exchanging states (i.e., inactive, and active) and hence results in redistributions of the experimental 

points defining the correlation between 𝛿𝑖𝑠and 𝛿𝑗𝑠 (Figure 2.3B). The Pearson correlation 

coefficient, however, is not expected to vary appreciably, provided the conditions of equations 

(2.1) are fulfilled, i.e., two-state exchange in the fast exchange regime, ensuring that the observed 

chemical shifts are population-weighted linear averages of the pure state ppm values.  

The temperature invariance of pairwise residue vs. residue CHESCA correlations is a 

unique property of tight allosteric couplings. If the coupling between residue i and j is weak, the 

likelihood that these residues sample more than two states increases, as predicted by ensemble 

allosteric models 1,33–36. In this case temperature-induced variations in state-populations and/or 
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state-specific ppm values are expected to result in losses of CHESCA correlations. For example, 

a fast-exchanging three state model predicts that equation (2.1) should be modified to 9: 

 𝛿𝑖𝑠 = 𝛿𝑗𝑠𝛼 +  𝛽 +  𝑝𝑠
′′ (𝛿𝑖,𝐴𝑐 − 𝛿𝑖,𝐼𝑛)𝛾  (2.4) 

where 𝑝𝑠
′′ is the population of the new (third) state in sample s and: 

𝛾 = (
𝜀𝑖

𝛿𝑖,𝐴𝑐−𝛿𝑖,𝐼𝑛
) − (

𝜀𝑗

𝛿𝑗,𝐴𝑐−𝛿𝑗,𝐼𝑛
)                                                   (2.5)                                                  

with 𝜀𝑖 (𝜀𝑗) is defined as the difference between the combined chemical shifts of the third state and 

the active state for residue i (j). The third addendum in equation (2.4) dictates the non-linearity of 

the 𝛿𝑖𝑠𝑣𝑠.  𝛿𝑗𝑠 plot and its temperature dependency, as it includes a population factor and pure-state 

chemical shifts. Hence, the temperature-invariance of the linearity in CHESCA inter-residue 

pairwise correlations is a unique signature of residues that report exquisitely on highly concerted 

conformational transitions, which in turn reflect tight allosteric couplings. On this basis, it is 

expected that core allosteric sites should exhibit CHESCA correlations that are more resistant to 

temperature variations than more weakly coupled allosteric loci. This is the rationale of the 

temperature-CHESCA (T-CHESCA). 

Implementation of T-CHESCA. In addition to the previously used temperature, 306 K,9,28,29 

lower (290K and 298K) as well as higher (310K and 316K) temperatures were utilized to 

implement the T-CHESCA for the EPAC1-CNBD (Figure 2.3). The structural integrity of this 

domain is preserved even at the higher temperatures, as indicated by the conservation of the 1H 

chemical shift dispersion (Figure 2.3A). Hence, we proceeded with the computation of the 

CHESCA correlation matrices for EPAC1-CNBD at each of the five temperature values (Figure 

2.3D-F; Figure 2.4) using the same perturbation library of ligands at each temperature (i.e., cAMP, 
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Rp-cAMPS, Sp-cAMPS or 2’-OMe-cAMP; Figure 2.1C). The comparative analysis of the 

CHESCA correlation matrices reveals that selected correlations are maintained across the full 

temperature spectrum, such as those between several residues in the hinge and the adjacent α4 

helix, while other correlations are markedly temperature-dependent, such as those between several 

residues in the a- and b-subdomains (Figure 2.3D-F and Figure 2.4).  

Further insight into the temperature-dependence of the CHESCA correlation matrices is 

provided by the probability distribution of the respective Pearson’s correlation coefficients (R) at 

different temperatures (Figure 2.5). Figure 2.5 shows that most R values are concentrated at the 

extreme end values (i.e., +/- ~1). In the case of the 15N ppm values both ends are populated at 

comparable levels (Figure 2.5A), while for the 1H ppm values a net preference for positive R values 

is observed (Figure 2.5B). As expected, for compounded chemical shifts an intermediate pattern 

between the 15N and 1H distributions is detected (Figure 2.5C). In all three cases, it is notable that 

at the highest temperature, lower absolute R values start to be populated more than at the lower 

temperatures (Figure 2.5), suggesting a heating induced decorrelation possibly arising from the 

appreciable sampling of additional conformational states within the native ensemble of EPAC1- 

CNBD. These R value distributions do not seem to be correlated with the magnitude of the 

underlying chemical shift changes (Figure 2.6). 

To determine which residues are involved in pairwise correlations preserved across all 

temperatures, we computed the mean R (<R>) and the related standard deviation (s) for each 

residue pair for which assigned chemical shifts were available for all five CHESCA perturbations 

(Figure 2.1C) at all temperature values. The resulting s vs. <R> plot is shown in Figure 2.7. Figure 

2.7 shows that residue pairs exhibiting excellent or poor correlations (|<R>| ~ 1 or |<R>| ~ 0) tend 
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to remain as such throughout the temperature spectrum tested, i.e., they exhibit minimal s values 

(Figure 2.7A-C). On the contrary, intermediate |<R>| values are subject to the highest degree of 

temperature-dependent variability (s) (Figure 2.7B). In fact, most of the residue pairs fall within 

or in the vicinity of the boundaries dictated by the dashed lines in Figure 2.7 defined as: s = |<R>| 

for |<R>| approaching zero and s = 1-|<R>| for |<R>| approaching unity.  

To select the most conserved correlations, which are more likely to reflect tight allosteric 

couplings, we focused on the residue pairs meeting the conditions: <R> > 0.98 and s < (1-0.98). 

These correlations are displayed in the zoomed insets of Figure 2.7 (Figure 2.7A,C) and define the 

ensemble of proposed core allosteric sites determined through the T-CHESCA approach (Table 

2.1). To further filter the core allosteric sites identified by the T-CHESCA approach, we 

complemented it with another proposed CHESCA variation called here the CLASS-CHESCA. 

Rationale for the CLASS-CHESCA. Similarly, to the T-CHESCA, the CLASS-CHESCA 

also singles out tight allosteric couplings based on their invariance with respect to changes in the 

chemical shifts of the pure active and inactive states. However, unlike the T-CHESCA, in the 

CLASS-CHESCA the chemical shifts of the pure states are not changed by varying the temperature 

but by varying the type of nuclei selected for each residue (Figure 2.8A). For example, if ppm 

values for the 15N and 1H nuclei are available, the CLASS-CHESCA approach requires the 

computation of four correlation coefficients (RNH, RHN, RHH and RNN; Figure 2.8A) corresponding 

to the respective inter-residue correlations between the four possible nuclei pairs (i.e., 15N vs. 1H, 

1H vs. 15N, 1H vs. 1H and 15N vs. 15N; Figure 2.8A).  

As shown in Figure 2.8A, in the CLASS-CHESCA method the nitrogen and proton 

chemical shifts are examined separately as opposed to the original CHESCA implementation, in 
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which the 1H and the scaled 15N ppm values are added to yield a single combined chemical shift 

(CCS) for each residue. While the CCS approach offers a simple means to build residue-residue 

correlations, it suffers from ambiguities arising from projection compression artifacts (Figure 

2.2A) 10. Due to projection compression, distinct 1H-15N HSQC cross-peaks may result in similar 

CCS values (Figure 2.2A) thus possibly leading to spurious pair-wise correlations and false-

positives in the detection of allosteric sites. The CLASS-CHESCA also circumvents this limitation 

without requiring the acquisition of data at different temperatures. 

In the CLASS-CHESCA, the strength of the overall residue-pair correlations is assessed 

based on how many of the nuclei-specific correlations (RNH-RNN) give rise to Pearson correlation 

coefficients above a given threshold value (Rth; Figure 2.8B). For the weakest correlations, defined 

as class 0 correlations, no R value exceeds Rth, while for the strongest correlations, denoted as 

class 4 correlations, all four R values exceed Rth (Figure 2.8B). For the intermediate correlations 

(classes 1-3), a subset of R values exceeds Rth (Figure 2.8B). Representative examples of residue-

residue correlations for each class are shown in Figure 2.8C and the full CLASS-CHESCA 

correlation matrix is displayed in Figure 2.8D.  

Residue pairs that belong to classes 3 and 4 define the best CLASS-CHESCA correlations 

and point to tight allosteric couplings. Based on the CLASS-CHESCA matrix (Figure 2.8D), class 

3 and 4 residues appear in the IL, α2, α3-α4, α4 and α6 regions (Table 2.1). It is also notable that 

correlations along the diagonal (i.e., correlations between the chemical shifts of the same residue) 

are often not classified as class 4 (Figure 2.8D). This is because CHESCA perturbation-induced 

changes in 1H and 15N ppm values for a given residue are not necessarily linearly correlated. The 
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information content of diagonal CLASS-CHESCA self-correlations is an added benefit of this type 

of CHESCA implementation. 

CL-CHESCA. As a complement to the T-CHESCA and CLASS-CHESCA as well as a term 

of reference, the classical CHESCA was implemented based on CCS at a single temperature 

(306K) but using a stringent form of hierarchical clustering known as complete-linkage (CL) 

clustering. Unlike single-linkage (SL) clustering, CL clustering requires that all residue pairs 

within a given cluster exhibit correlation coefficients above a selected threshold (Figure 2.2B). 

The CL-CHESCA resulted in five clusters (Figure 2.9 and Figure 2.10) with correlations 

coefficients above 0.98. The CL-CHESCA clusters 1-3 and 5 (Figure 2.9 and Figure 2.10) include 

residues preferentially aligned along the second singular value decomposition (SVD) principal 

component (PC2; Figure 2.11), which reflects, primarily, allosteric rather than binding 

contributions. On the contrary, cluster 4 in the CL-CHESCA aligns better with PC1 as opposed to 

PC2, which predominantly represents binding rather than allosteric contributions. In fact, cluster 

4 residues are located at the BBR and just near the PBC region and both BBR and PBC are known 

binding sites for cyclic nucleotides. Cluster 4 was therefore, excluded from the CL-CHESCA 

ensemble in order to mainly account for allosteric contributors (Table 2.1).  

Comparison of T-, CLASS- and CL-CHESCAs. The T-, CLASS- and CL-CHESCAs 

approaches select distinct but overlapping subsets of the commonly used single-linkage (SL) CCS-

CHESCA (Figure 2.12A). Comparison of the residues identified by the T-, CLASS- and CL-

CHESCAs (Figure 2.12A-E; Table 2.1) demonstrates that sites shared by all three ensembles are 

in regions of the EPAC1-CNBD known to be critical for the allosteric control of EPAC 23,24,37–41, 

i.e., the IL, the α3- α4 loop as well as the α6 hinge helix and the adjacent α4 helix (Figure 2.12F). 
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This observation suggests that the CHESCA-based approaches proposed here are effective in 

identifying core allosteric sites to be targeted by EPAC modulators. For example, the binding mode 

of CE3F4R, which is an unconventional uncompetitive allosteric inhibitor of EPAC1 42–44, was 

found to be in the interface between the α and β-subdomains of the CNBD with the most significant 

chemical shift changes upon CE3F4R binding observed in the α4 and α6 helices 43. Both helices 

are, therefore, pivotal components in the allosteric regulation of EPAC1 activity and serve as 

hotspots for EPAC1-targeted drug discovery. 

Out of the three CHESCA approaches investigated, the CL-CHESCA method emerges as 

the least selective approach. The CL-CHESCA yields the largest allosteric ensemble with several 

residues not captured by the other two sets (Table 2.1). The percentage of residues exclusively 

found in the CL-CHESCA ensemble is the highest compared to the other two approaches (Table 

2.1), pointing to low selectivity in identifying core allosteric sites. Improved selectivity is obtained 

by altering the chemical shifts of the two pure states (i.e., active, and inactive conformations) either 

by changing the temperature within the folded range (T-CHESCA) and/or by mixing and matching 

the chemical shifts of spin-active nuclei for each residue involved in pairwise correlations 

(CLASS-CHESCA).  

The CLASS-CHESCA appears as the most selective method with no residue exclusively 

identified by it (Table 2.1). Hence, the CL- and CLASS-CHESCA lie at opposite extremes of the 

selectivity spectrum in the identification of allosteric sites. While the former may suffer from false 

positives, the latter may introduce false negatives. The T-CHESCA emerges therefore, as a more 

balanced compromise to concurrently minimize both false positives and negatives (Table 2.1). 
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However, unlike the other two types of CHESCA, T-CHESCA requires the acquisition of NMR 

data and assignments at multiple temperatures.  
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Figure 2.1: Allosteric regulation of EPAC1, CHESCA library, and pairwise residue correlations.  

A) Coupled activation and binding equilibria underlying the allosteric regulation of EPAC1. IL 

denotes the ionic latch region of EPAC1-CNBD, which is displaced upon activation by cAMP. B) 

Overlay of the EPAC-CNBD holo, active state (dark blue, PDB 3CF6) and the apo, inactive state 

(light blue, PDB 1O7F). Dashed boxes indicate the phosphate binding cassette (PBC), the base 

binding region (BBR) and the hinge region. The PBC and the hinge are in the ‘out’ conformation 

in the apo, inactive state whereas in the holo, active state they are in the ‘in’ conformation. The 

endogenous ligand, cAMP, is shown in stick representation docked between the BBR and the PBC. 

C) Molecular structures of cAMP and cAMP analogues. cAMP analogues include covalent 

modifications marked by circles. Sp-cAMPS and Rp-cAMPS include a sulfur atom in place of the 

axial and equatorial oxygens, respectively, while 2’-OMe-cAMP exhibits a methoxy group in 

place of the 2’-hydroxyl group. The extent of relative activation for each cyclic nucleotide is 

qualitatively described by the kmax, scale above the structures. Shades of red also reflect the extent 
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of EPAC1 activation. D) Scheme illustrating three representative residues denoted as i, j and k 

subject to linear vs. non-linear changes in chemical shift changes across different perturbations. E) 

1H and 15N combined chemical shift correlation plots between residues undergoing a concerted 

chemical shift response to the perturbations in (C) result in a high degree of correlation. F,G) lower 

degrees of correlation are observed between residues with chemical shift changes that deviate from 

linearity due to deviations from two-state fast-exchange model.  
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Figure 2.2: Projection compression and CL vs. SL clustering.  A) Illustration, adapted from 

Boulton et al. 10, of projection compression occurring when combined 1H and 15N chemical shifts 

(CCS) are used. Using CCS is equivalent to projecting the 2D HSQC cross-peaks onto a single 

line with slope (‘θ’) depending on the relative weights in the linear combination of 1H and 15N 

chemical shifts utilized for the CCS computation. Two different 2D HSQC cross-peaks may result 

in the same CCS value. B) Scheme illustrating the differences between the single versus complete-

linkage clustering. The black and grey spheres refer to two different sub-clusters of residues and 

the dotted line shows how the clusters are connected by each method of clustering. In single-

linkage, it is sufficient that a single residue pair across the two sub-clusters meets the clustering 

criterium. In complete-linkage, all residue pairs across the two sub-clusters must meet the 

clustering criterium. 
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Figure 2.3: EPAC1 HSQC spectra and CHESCA matrices across 298-310K.  A) Overlay of 

unreferenced 1H-15N HSQC spectra acquired for the cAMP-bound (holo) EPAC1-CNBD at 

different temperatures. B) Examples of inter-residue pairwise correlations for a residue pair with 

high Pearson correlation coefficient at low and high temperatures. C) Example of a residue pair 

with high correlation coefficient at low temperature but significantly lower correlation coefficient 

at higher temperature. Labeled circles represent the different EPAC states at 290K (purple) and 

316K (red). The black dotted lines mark the difference in HSQC positions between the same state 

at the two temperatures. D-F) Chemical shift correlation (CHESCA) matrices for the EPAC1-

CNBD at D) 298K E) 306K and F) 310K. The CHESCA R value legend in (F) indicates the color 

code for absolute correlation coefficients above or equal to 0.98 (red: positive and blue: negative). 

The secondary structure of the apo EPAC1-CNBD is mapped on the matrix, whereby grey boxes 

represent α helices and green boxes correspond to β sheets. Regions highlighted in grey denote the 

phosphate binding cassette (PBC), ionic latch (IL), base binding region (BBR) and the hinge helix. 
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Figure 2.4: Chemical shift correlation (CHESCA) matrices for EPAC1-CNBD at A) 290K and B) 

316K.  The color code, secondary structure and key regions are marked as in Fig. 2.3D-F. 
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Figure 2.5: Three-dimensional bar plots showing the percentage distribution of residue pair 

Pearson correlation coefficients (R) at different temperatures  ranging from 290K (dark blue) to 

316K (red) for A) 15N-only based CHESCA, B) 1H-only based CHESCA and C) combined 

chemical shift (15N-1H)-based CHESCA. 
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Figure 2.6: Maximum combined chemical shift difference versus Pearson coefficient (R) of 

EPAC1 residue pairs at different temperatures:  A) 290, B) 298K, C) 306K, D) 310K and E) 316K. 

For every residue pair, the maximum combined chemical shift (CCS) difference corresponds to 

the difference between the largest and the smallest combined chemical shift value for the first 

residue of the residue pair. That value is plotted against the Pearson coefficient of the pair of 

residues. The yellow and purple lines represent the moving averages (+/- three residues) for the 

positive and negative R values, respectively. 
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Figure 2.7: Mean Pearson coefficient against standard deviation across temperature.  The average 

R value (<R>) for residue pair correlations was calculated across the five temperatures and plotted 

against the standard deviation of R (σ) in panel (B). Each circle represents a residue pair: orange 

(blue) circles correspond to residue pairs with negative (positive) mean R values. The black dashed 

lines (i.e., σ  = <R> if |<R>| < 0.4 and σ  = 1 - <R> if |<R>| > 0.6) capture the general approximate 

trend: residue pairs with high <R> values consistently exhibit low standard deviations, as 

illustrated in the zoomed in panels (A, C), while residue pairs with lower <R> values tend to result 

in higher and more variable σ values. 
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Figure 2.8: Schematic diagram explaining the rationale of the CLASS-CHESCA.  A) For each 

residue pairs four Person correlation coefficients (RNH-RNN) are calculated, where RNH corresponds 

to the correlation coefficient between the nitrogen chemical shift of the first residue in the pair and 

the proton chemical shift of the second residue, RHN is for the proton chemical shift of the first 

residue and the nitrogen chemical shift of the second residue, RHH is for the proton chemical shift 

of the first residue and the proton chemical shift of the second residue and RNN is for the nitrogen 

chemical shift of the first residue and the nitrogen chemical shift of the second residue. B) Residue 

pairs are then divided into five different classes (0 - 4) depending on how many of the correlation 

coefficients (RNH-RNN) are greater than a set threshold (Rth), e.g., 0.98. C) Examples of residue 

pairs that fall under different classes. For each class, one residue pair is provided, and the four 

different correlations (corresponding to RNH-RNN) are shown in different columns. The 

perturbation states are indicated by color coded circles like Fig. 2.1. D) CLASS-CHESCA matrix 

where the different colors relate to the type of class that the residue pair correlation belongs to, as 
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shown by the legend on the right of the panel. The secondary structure of the EPAC1-CNBD is 

mapped on the matrix whereby grey boxes represent α helices and brown boxes correspond to β 

sheets. Regions highlighted in grey denote the phosphate binding cassette (PBC), Ionic latch (IL), 

base binding region (BBR) and the hinge. 
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Figure 2.9: Perturbation-based agglomerative clustering of EPAC1-CNBD residues obtained from 

complete-linkage clustering performed at 306K.  
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Figure 2.10: Mapping of complete-linkage clusters  A) Cluster 1, B) Cluster 2, C) Cluster 3, and 

D) Cluster 5 as colored spheres on the structure of EPAC1-CNBD. Numbers in brackets next to 

the respective cluster numbers specify the highest residue-pair correlation coefficient in each 

complete linkage cluster. 
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Figure 2.11: Singular value decomposition (SVD) PC1 vs. PC2 plot at 306K.  Loadings are 

marked by red stars and show that PC1 is mainly a measure of binding contributions, whereas PC2 

reflects, primarily, allosteric contributions. Residue-specific scores are shown as circles. Scores 

for  residues in different complete-linkage clusters are labeled with different colors as per the 

legend in the top-right corner. The clusters align mostly along PC2 (allostery) rather than 

PC1(binding). 
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Figure 2.12: Comparison of T-, CLASS-, and CL-CHESCA residue ensembles  A) Venn diagram 

of CHESCA-identified residues, including the proposed T-, CL- and CLASS-CHESCA ensembles 

aimed at identifying the core allosteric network of EPAC1. The cyan ensemble refers to classes 3 

and 4 of the CLASS-based CHESCA at 306K, the green ensemble is for the set of residues from 

the T-CHESCA with mean Pearson coefficient greater than 0.98 and standard deviation less than 

0.02 across temperatures, and the dark (light) grey ensemble describes the residues identified from 

complete (single)-linkage clustering, i.e., CL (SL)-CHESCA, at 306K. Core residues that are 

common to all ensembles are highlighted in orange. B-F) The residues identified from each 

ensemble are mapped on the structure of EPAC1-CNBD and represented as surfaces colored as in 

panel A. F) Map of the core residues highlighted in orange on the Venn diagram with respective 

zoomed in panels. Notations for the structural elements are as in Fig. 2.1A, B. 
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Table 2.1: Core Allosteric Sites Identified by Different CHESCA-Based Approaches 

 T-CHESCAa CLASS-CHESCAb,c CL-CHESCAc,d 

Residues 

and 2ary 

Structure 

Elements  

R180, K181: α1  

T187: α1-α2   

D192, L199: α2 

L207: α3-α4 

V211, R213, A216: α4   

T229: β2 

D299, N301, V307, E308: α6 

R180, K181: α1  

L199: α2 

L207: α3-α4 

R213, E214, A216: α4   

F300, N301, I303: α6 

 

A178, R180, K181: α1 

D192: α2 

L207: α3-α4 

V211, R213, E214, 

A216, A217: α4   

F221: β1 

D236: β2- β3 

N275: α5-β7 

F300, N301, R302, 

I303, V307, E308: α6 

T % e 100% 70% 53% 

CLASS% f 50% 100% 47% 

CL % g 71% 90% 100% 

Unique 21% 0% 32% 

a Residues with |<R>| > 0.98 and s < 0.02, as shown in Figure 2.7 insets. b Classes 3 and 4, as 

defined in Figure 2.8. c Implemented at 306K. d Complete-linkage CHESCA. e Percentage of 

residues common to the T-CHESCA sites. f Percentage of residues common to the CLASS-

CHESCA sites. g Percentage of residues common to the CL-CHESCA sites.h Percentage of 

residues unique to each ensemble. 
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Chapter 3  

QSAR Models of EPAC1-Selective Modulators 

 

3.1 Introduction 

Quantitative structure-activity relationships (QSAR) depend on the concept stating that a 

biological property/activity of a compound is related to the structure of that compound. The 

information encoded by the structure is described through ‘molecular descriptors and the 

biological property is then expressed as a function of these descriptors 1.  

Though the first QSAR study on a cyclic adenosine monophosphate (cAMP)-dependent 

protein dates to the late 1990s 2, the reported QSARs since then have been quite limited for cyclic 

nucleotide monophosphate (cNMP) sensors in signaling pathways 3–6.  

Here, the first QSAR model for EPAC1 is demonstrated based on a series of derivatives of 

a novel EPAC1-selective modulator known as I942 7–9. I942 showed promising partial agonistic 

activity on the EPAC1-cyclic nucleotide binding domain (CNBD) 9 and its binding sampled a third 

state in addition to the active and inactive states of the CNBD. That third state was described as a 

‘mixed’ intermediate displaying a mix of features of the active and inactive state whereby the 

phosphate binding cassette (PBC) is in the ‘in’ conformation and the hinge region is in the ‘out’ 

conformation.  

The novel QSAR model was validated and then used to predict affinities for a series of 

I942 analogues that were ‘unknown’ to the model. The affinity for the most promising candidate, 

known as MLGM-2013, as predicted by our validated QSAR model was confirmed through 

fluorescence competition assays. In addition, we investigated the mechanism of action of MLGM-
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2013 using NMR experiments, revealing a new avenue to design I942 analogs with enhanced 

potency through modifications of its phenyl moiety.  

 

3.2 Methods  

QSAR Model. The I942-based QSAR was developed using the I942 analogues synthesized 

by Wang et al 8. The respective molecules were built in MolView 10, transferred to the 3D model 

viewer and the energy of the 3D conformers was minimized using the Jmol energy minimization 

based on the MMFF94 forcefield 11 and a limit of 100 minimization steps at a time. PaDEL-

Descriptor12was used to calculate the 1D and 2D molecular descriptors from the minimized 

structures. Partition of the molecules into training and test sets was implemented according to an 

80:20 ratio for the training vs. test sets, respectively, and considering their measured affinities, 

reported as relative fluorescence intensity (RFI) percentages 8. Specifically, molecules in each set 

were chosen to sample the entire spectrum of RFI values. Following these criteria, the original 

dataset was divided into eleven different training and test partitions. To check for potential outlier 

RFI values, the Z-score was computed as 13: 

 𝑍𝑖 =  
𝑦𝑖 − 𝑦̅

𝑠
 (3.1) 

where 𝑦𝑖 is the RFI value of a given I942 analog, 𝑦̅ is the mean and 𝑠 is the standard deviation. 

Molecules with |𝑍𝑖| greater than 2.5 are considered outliers 13. However, the dataset of I942 

analogs did not contain Z-score outliers and therefore, all the molecules were included in the 

model.  
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RapidMiner Studio 14 was used to narrow down the number of descriptors for the QSAR 

model by applying the forward selection method 15 on the training set. The method entails 

sequential addition of molecular descriptors that improve the performance of the model, i.e., 

descriptors leading to enhanced linear regression correlations. The stopping criteria for the 

sequential addition are 1) There is no improvement in model performance or 2) The maximum 

number of descriptors that satisfy a 5:1 ratio for number of molecules vs. number of descriptors 

was reached 16. The descriptors chosen were then fed into RapidMiner to generate the linear 

regression model, which was applied to the training and test sets generating a coefficient of 

multiple determination 17  (R2) for each. R2 is calculated as: 

 𝑅2 =  
∑ (𝑦̂𝑖 −  𝑦̅)2

𝑖

∑ (𝑦𝑖 −  𝑦̅)2
𝑖

 (3.2) 

where, 𝑦̂𝑖 is the calculated dependent variable, i.e., the predicted RFI value, 𝑦𝑖 is the observed or 

actual RFI value and 𝑦̅ is the mean RFI.  

An additional parameter reporting on the QSAR quality, known as the root mean squared error 

(RMSE)17 describes the range of error in the model’s predictions and is defined as: 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 −  𝑦̂𝑖)2

𝑖

𝑛
 (3.3) 

where, 𝑦𝑖 is an observed RFI value, 𝑦̂𝑖 is the corresponding predicted RFI value and 𝑛 is the number 

of molecules in the training set, in this case, 45. The RMSE values of both training and test sets 

are well below the corresponding standard deviations (σ) of the observed RFI percentages, 

meaning that the predictions are significantly reliable. 
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As an initial mean of validating the QSAR model, we relied on cross-validation (CV), 

which is a form of internal validation of the model’s predictivity utilizing an approach called the 

‘Leave-Many-Out’ (LMO) 18 method. LMO holds back a portion of the training set as a small test 

set and applies the model without that test set. The process was repeated for 10 iterations and the 

squared correlation obtained was represented as an average value of the multiple iterations. The 

descriptor selection process and QSAR workflow outlined above were repeated for each of the 

eleven different training and test partitions and average statistical parameters across these 

partitions were computed.  

Protein Purification. The wild-type EPAC1h (149-318) construct was purified according 

to previously published protocols 9,19–22. The protein was cultured in either Lysogeny Broth (LB) 

or 15N-labeled M9 minimal media to prepare unlabeled or 15N-labeled EPAC1-CNBD, 

respectively, as needed for fluorescence or NMR measurements.  

Preparation of I942 and MLGM Compounds. Compounds were dissolved in deuterated 

DMSO-d6 to prepare 10 mM stock solutions. I942 was purchased from Life Chemicals (purity > 

99%) and was prepared as a 10 mM stock solution with deuterated DMSO-d6. 

8-NBD-cAMP Competition Assay. 8-(2-[7-nitro-4-benzofurazanyl] aminoethylthio) 

adenosine-3’,5’-cyclic monophosphate (8-NBD-cAMP) binds to EPAC1-CNBD with high affinity 

and the binding can be monitored by fluorescence intensity changes 23. Unlabeled EPAC1-CNBD 

was used for this assay. The KD measurements of EPAC1-CNBD in complex with either I942, 

MLGM-2013, or MLGM-2017 were recorded from the decrease in fluorescence intensity as a 

result of 8-NBD-cAMP competitive displacement 9,23. The compounds were added at 

concentrations between 0 to 300 µM to solutions of 2.5 µM and 0.5 µM of EPAC1-CNBD and 8-
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NBD-cAMP, respectively. The NMR buffer (vide infra) was used to bring the final volume of the 

samples to 250 µL. Samples were added to Corning 96-well half area plates (120 µL per well) 

after an incubation period of at least 30 minutes at room temperature to allow for equilibration. A 

Cytation 5 plate reader was used to scan the plate using excitation and emission wavelengths of 

485 nm and 535 nm, respectively. The equation used for fitting the competitive binding isotherms 

was applied as previously described 24.  

NMR Measurements. NMR experiments were acquired using a Bruker Avance or NEO 700 

MHz spectrometer with a TCI cryoprobe. For the HSQC experiments, 350 µM of the ligand 

(I942/MLGM) was added to 50 µM of EPAC1-CNBD in NMR buffer with 5% D2O. The same 

volume of DMSO-d6, present in the NMR samples with ligands, was added to the apo sample to 

exclude the effect of DMSO-d6 from the chemical shift perturbation assessment. The 15N-1H-

HSQC experiment utilized an Echo and Anti-echo PFG selection along with a water flip-back and 

the operating temperature was 306K. The time domain digitization points were 2048 and 128 for 

the 1H and 15N dimensions, respectively, and the spectral widths were 16.23 ppm for 1H and 38 

ppm for 15N. The number of scans was 64 and the recycle delay was 1 second. The spectra were 

processed in TopSpin (Bruker), where the size of the real spectrum (SI) was 2048 and 512 for the 

1H and the 15N dimensions, respectively. Sine bell shift (SSB) values of 2 and 3 were applied for 

the 1H and 15N dimensions, respectively, and a sine squared window function (WDW) was applied 

for both dimensions. Forward line prediction (LPfc) was utilized for the 15N dimension, where the 

number of LP coefficients was 32. The chemical shifts were referenced to 15N-acetyl glycine and 

were assigned through comparison with the apo and cAMP-bound EPAC1-CNBD at 306K that 

were previously acquired and assigned 9.  
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The compounded chemical shift differences (ΔCCS) between ligand bound EPAC1 and 

the apo form were calculated using the following equation: 

 ∆𝐶𝐶𝑆 =  √(∆𝛿𝐻)2 + (0.2 × ∆𝛿𝑁)2 (3.4) 

Samples for 1D saturation transfer difference (STD) were prepared using a 50 µM EPAC1-

CNBD solution that was buffer-exchanged with a 20 mM sodium phosphate buffer containing 50 

mM NaCl, pH 7.4 and 99.9% D2O. PD-10 Desalting columns (GE Healthcare) were used to 

facilitate the exchange by a gravity protocol. 350 µM of MLGM-2013 (final concentration) was 

added to 50 µM of EPAC1-CNBD and the saturation frequency in the STD experiments was set 

to 0.8 ppm to saturate the region of protein peaks (i.e., methyl region) that is further away from 

the MLGM-2013’s signal. An off-resonance saturation of 30 ppm was applied to the STR 

experiments and the STD/STR ratios normalized to the largest value were compared to those 

acquired for I942 9
. The spectra were referenced to DMSO (2.48 ppm) and the assignments of 

MLGM-2013 were obtained by comparison with previously established assignments for I942 9
. 

The STD spectra were acquired at 298K with a time domain of 32768 points and number of scans 

of 128 and 1024 for STR and STD experiments, respectively. Eight dummy scans were used for 

both STD and STR. The spectral width was 11.7057 ppm, and the transmitter frequency was set 

to 4.697 ppm.  

The chemical shift projection analysis (CHESPA) was implemented according to previous 

protocols 9,25,26 and using the NMRFAM-SPARKY plugin 27.The reference vector is defined from 

the apo to the cAMP-bound EPAC1 state, while the perturbation vector is defined from the cAMP-

bound form to the I942-analog ligand-bound form. The minimum cut-off for the ΔCCS values of 
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both vectors was set to 0.02 ppm and the cos θ and fractional activation (X) values were computed 

according to the following formulae: 

  cos 𝜃 =  
𝐴 ∙ 𝐵

|𝐴||𝐵|
 (3.5) 

 

 

 𝑋 =  
|𝐴|

|𝐵|
cos 𝜃 (3.6) 

 

3.3 Results and Discussion 

QSAR Model Development. The QSAR models for I942 were developed according to the 

flowchart described in Figure 3.1 where the partitioning of training and test sets was implemented 

maintaining an 80:20 ratio (Figure 3.2A,B) and a balanced distribution of affinities, as quantified 

by relative fluorescence intensity (RFI) percentage values (Figure 3.2C). QSAR models were 

developed for a total of 11 distinct training vs. test set partitions in compliance with the same 

criteria (Figure 3.3 and Table 3.1). The average values of statistical parameters describing the 

QSAR quality were then computed across the 11 resulting QSAR models (Table 3.2). One of the 

primary QSAR quality descriptors is the coefficient of multiple determination, 17
 referred to as R2

, 

which reflects the overall accuracy of the RFI values predicted by the model compared to the actual 

measured RFI percentages. As seen from Table 3.2, the R2
 values are high (above threshold) for 

both training and test sets, reflecting the ability of the model to reproduce the original data as well 

as to predict external data, respectively. The data points in the correlation plots are also closely 

arranged around the line of best fit set to have a zero intercept (Figure 3.4). 
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We also computed the average statistical parameters of the 11 QSAR models without 

imposing a zero-intercept, showing slightly improved performance with the intercept set to zero.  

Interestingly, the QSAR models obtained from the 11 distinct partitions, exhibited classes 

of recurring molecular descriptors in the multiple linear regressions. The shared descriptors are 2D 

in nature and fall in the ‘autocorrelation’ category, which essentially captures the distribution of 

physicochemical properties across the spatial arrangement of atoms 28
. In our particular model, the 

main physicochemical properties are (a) the intrinsic state, represented by the GATS5s, AATS5s 

and MATS5s descriptors, and these report on the electronegativity of the atom in its valence state, 

as well as (b) the Sanderson electronegativity 29 represented by descriptors such as ATSC8e and 

AATS5e. It was interesting to observe consistently positive coefficients for the descriptors in the 

linear regression equations, which reflects a positive correlation between these descriptors and the 

RFI values. 

Affinity Prediction of Unknown Compounds and Experimental Validation through 

Fluorescence Competition Assays. After model validation, both internal, through the training set 

and cross-validation R2, and external, through the test set R2 (Figure 3.2), the model with the 

highest test set R2 value (considering both zero and non-zero intercepts) was used to predict the 

RFI values of a new set of I942 analogues that were not part of either the original training or test 

sets (Figure 3.5A). Therefore, the I942 derivatives in the new set, referred to with the ‘MLGM’ 

code in Figure 3.5A, are essentially ‘unknown’ to our QSAR model, but they all share the same 

skeleton common to other I942 analogues with a sulfonamide flanked by phenyl and linked 

naphthyl moieties (Figure 3.5A). Based on the RFI values predicted by our QSAR model for the 

new set of I942 analogs (Table 3.3), the MLGM-2013 derivative (Figure 3.5A) stood out as having 
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the lowest predicted RFI, pointing to better binding affinity for EPAC1 relative to I942. On the 

contrary, the MLGM-2017 derivative (Figure 3.5A) was predicted to exhibit the weakest EPAC1 

affinity (highest RFI value) within the new set. 

To confirm our predictions, a competition assay was preformed using the fluorescently 

tagged cAMP known as 8-(2-[7-nitro-4-benzofurazanyl] aminoethylthio) adenosine-3’,5’-cyclic 

monophosphate (8-NBD-cAMP)23. The displacement of 8-NBD-cAMP by a competing ligand at 

increasing concentrations was used to measure the dissociation constant (KD) of MLGM-2013, 

I942 as well as MLGM-2017, as a negative control. The assay clearly showed a significant 

enhancement of the binding affinity of MLGM-2013 relative to I942 (Figure 3.5B), while MLGM-

2017 resulted in a significantly higher KD value compared to that of I942, as expected, further 

confirming the validity of our QSAR model’s predictions. To gain structural insight into the 

enhanced affinity of MLGM-2013 and its mechanism of action, we investigated the interactions 

of this I942 analog with the EPAC1 CNBD using NMR. 

The MLGM-2013 Binding Mode. The binding of MLGM-2013 to the EPAC1 CNBD was 

monitored through 15N-1H-HSQC spectra (Figure 3.5C) and the corresponding chemical shift 

changes (ΔCCS) are reported in Figure 3.5D. Figure 3.5D shows major ppm variations induced by 

MLGM-2013 in key CNBD regions such as the BBR, the PBC and the hinge region, quite similar 

to the chemical shift changes observed upon cAMP binding (Figure 3.5D). The ΔCCS measured 

for MLGM-2013 are also quite similar to those observed for I942 (Figure 3.5E), suggesting a 

similar binding mode, with the notable exception of N275 located in the PBC (Figure 3.5E). 

To further elucidate the difference in binding affinity between I942 and MLGM-2013, 

saturation transfer difference (STD) experiments were performed to map the binding epitopes of 
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MLGM-2013 and assess the proximity of ligand protons to the EPAC1-CNBD (Figure 3.5F) 9,30. 

Interestingly, we found that the STD/STR ratios for MLGM-2013 are higher for several phenyl 

protons compared to I942 with the most significant increase observed for the tertiary butyl protons 

located at the para position of the phenyl group (Figure 3.5F and Figure 3.6). As opposed to the 

single methyl group at that location in I942, the additional methyls of tertiary butyl offer more 

contacts with the protein as seen through STD/STR ratios of 0.62 vs. 0.39 for MLGM-2013: 

EPAC1-CNBD vs. I942: EPAC1-CNBD, respectively (Figure 3.5F and Figure 3.6). Based on the 

N275 outlier observed in Figure 3.5E, we hypothesized that the enhanced contacts of the tertiary 

butyl in MLGM-2013 are with the PBC of the EPAC1-CNBD. 

To test out hypothesis, we measured the EPAC1-CNBD compounded chemical shift 

changes (ΔCCS) between MLGM-2013 and MLGM-2014 which lacks any phenyl substituents, 

and therefore, serves as a useful reference ligand to capture the effect of the MLGM-2013 tertiary 

butyl para substituent (Figure 3.7A). Despite the absence of phenyl substituents, MLGM-2014, 

previously referred to as I178 7, was shown to bind EPAC1 and result in an IC50 of ~40µM 7. Figure 

3.7A reports the residue-specific MLGM-2013 vs. MLGM-2014 ΔCCS values as well as the 

corresponding I942 vs. MLGM-2014 ΔCCS as a control. Although the ΔCCS values of the EPAC1 

CNBD in the presence of MLGM-2013 or I942 relative to MLGM-2014 are similar, the most 

evident difference is observed in the PBC. MLGM-2013 yields a markedly higher ΔCCS, 

reflecting additional perturbations in that region due to the bulkier, tertiary butyl moiety at the para 

phenyl position. These results confirm our hypothesis that the tertiary butyl group of MLGM-2013 

interacts with the PBC and that such contacts are unique of MLGM-2013, possibly explaining the 

enhanced affinity of MLGM-2013 relative to the parent I942 compound.  
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The MLGM-2013 Mechanism of Action. To gain more insight on the possible mechanism 

of action of MLGM-2013, the CHEmical Shift Projection Analysis (CHESPA)9,25,26 was 

implemented for the MLGM-2013-bound EPAC1 and compared with the CHESPA of I942-bound 

EPAC1. The CHESPA reports on the ligand-induced shifts in the auto-inhibitory equilibria 

between inactive and active conformations. Using the CHESPA vector scheme in Figure 3.7B, the 

fractional activation (X) as well as the cos θ values were computed for MLGM-2013, revealing 

primarily negative values (Figure 3.7C and D) or I942 (Figure 3.7E and F). This indicates a partial 

but quite consistent shift towards the apo-inactive conformation of the EPAC1-CNBD, reflecting 

a partial agonistic activity.  

When the CHESPA profiles of MLGM-2013 (Figure 3.7C, D) are compared to those of 

I942 (Figure 3.7E, F), one of the most notable differences is observed for PBC residues such as 

A272, N275 and A277 (asterisks in Figure 3.7E). These sites exhibit markedly more negative X 

and cos θ values for MLGM-2013 than I942, suggesting a more significant shift towards the 

inactive state in that region compared to I942. Additionally, MLGM-2013 demonstrates a more 

negative average X value at the PBC region compared to I942, whereas the average X value for 

the hinge region is slightly less negative compared to I942 (dotted lines in Figure 3.7C, E). These 

average X values suggest that MLGM-2013 bound to EPAC samples an inactive state with PBC 

out, hinge out and a population of around 60%, while the population of the mixed intermediate 

with the PBC in, hinge out 9 is negligible. Based on these results, MLGM-2013 promises to serve 

as a more potent EPAC1-CNBD modulator than I942 with enhanced inhibitory activity.  
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The QSAR model proposed here, therefore, serves as an effective tool to virtually screen 

compound libraries for EPAC1 binding, thus aiding the identification of novel EPAC1-selective 

drug candidates.  
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Figure 3.1: Flowchart describing the workflow of the QSAR model generation and validation 
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Figure 3.2: Molecular structures of the I942 analogues  in the A) training and B) test sets. The 

training and test sets include 45 and 11 molecules, respectively. The modifications, relative to I942 

(3), are marked by blue for the training and red for the test set. The shaded circles highlight the 

positions that lack substituents originally found in I942. C) Box plot representation for the 

distribution of the RFI values in the training (blue) and test (red) sets.  
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Figure 3.3: (A-J) Box plot representations for the range of RFI values of different training (blue) 

and test (red) set divisions.  The number of training set molecules is 45 and test set molecules is 

11 for all the divisions. 
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Figure 3.4: Predicted vs. measured relative fluorescence intensities (RFI) correlation plots  for the 

A) training and B) test sets of I942 analogues shown in Figure 3.2. Representative molecules are 

marked with black arrows and labeled as in Figure 3.2. 
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Figure 3.5: Independent validation of the QSAR model.  A) Molecular structures of new 

synthesized I942 analogues that are ‘unknown’ to the QSAR model. MLGM-2013, which was 

predicted to have the highest affinity towards EPAC1-CNBD (Table 3.3), is highlighted in blue 

and MLGM-2017, the compound with the lowest predicted affinity (Table 3.3) is shown in red.  
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B) EPAC1-CNBD binding isotherm for I942 (grey), MLGM-2013 (blue), and MLGM-2017 (red) 

measured through the 8-NBD-cAMP fluorescence-based competition assay. The resulting 

measured dissociation constants are included in the top right corner. The percentage of 8-NBD-

cAMP bound to EPAC1 is represented by <v> on the y-axis. C) The chemical shift differences 

between apo EPAC1-CNBD (green) and EPAC1-CNBD bound to 350 µM of MLGM-2013 (blue) 

were monitored by 15N-1HSQC spectra. D) The compounded chemical shift variations between 

apo EPAC1-CNBD and EPAC1-CNBD bound to MLGM-2013 (350 µM) or cAMP (1mM) are 

plotted as blue and green bars, respectively. The secondary structure is shown on the top of the 

plot in boxes and key regions are highlighted in grey. E) Compounded chemical shift differences 

of EPAC1-CNBD in the presence of MLGM-2013 are plotted against the compounded chemical 

shift differences of EPAC1-CNBD in the presence of I942 at 350 µM. F) 1D saturation-transfer 

reference (STR, blue) spectrum of EPAC1-CNBD: MLGM-2013 overlayed with the scaled 

saturation transfer difference (STD, red) spectrum. The assigned protons are marked in green and 

represented as circles on the structure of MLGM-2013 where the size of the circles reflects the 

relative STD/STR ratios (normalized to proton j with the highest STD/STR ratio). The structure 

of I942 with the previously determined STD/STR ratios 9
 are shown for comparison whereby the 

STD/STR ratios with the most significant differences are reported near the corresponding proton. 
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Figure 3.6: Correlation plot for the normalized STD/STR intensity ratios  of protons of MLGM- 

2013 against protons of I942. The proton marked by a box and labeled as ‘k’, corresponds to the 

proton with the greatest difference in STD/STR ratio.  
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Figure 3.7: Effect of MLGM-2013’s tertiary butyl moiety on EPAC1 residues and CHESPA 

analysis.  A) Residue specific compounded chemical shift variations of between MLGM-2013-

bound (green) or I942-bound (blue) and MLGM-2014-bound EPAC1 CNBD. Structural 

differences between the ligands are highlighted with corresponding color codes. B) Vector 
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representation of the CHESPA analysis. C) Fractional activation values and D) cos θ of MLGM-

2013-bound EPAC1 relative to cAMP-bound EPAC1 where values greater than 1 or less than -1 

are not within the scale of the plot. E) Fractional activation and F) cos θ values of I942-bound 

EPAC1 measured under the same conditions as that of MLGM-2013-bound EPAC1. The asterisks 

correspond to the residues in the PBC which are more negative in the MLGM-2013-bound 

structure and the red asterisk marks N275, which exhibits the greatest change. Dotted lines in C 

and E represent the average X values in the PBC and hinge region. The secondary structure of 

EPAC1-CNBD is shown in the same way as Figure 3.5D.  
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Table 3.1: Code names for the test set molecules used for each of the 10 dataset partitions.  The 

training set molecules are the remaining part of the dataset (~ 80%). 

Division 1 Division 2 Division 3 Division 4 Division 5 Division 6 Division 7 Division 8 Division 9 Division 10 

25ad 12e 12g 12g 12d 25ac 12a 25ad 25aa 12c 

25b 12f 25aa 25a 25ac 25c 25i 25e 25b 12e 

25e 25ab 25g 25ab 25c 25i 25k 25j 25m 12f 

25h 25e 25h 25d 25v 25l 25u 25o 25v 25g 

25p 25j 25i 25q 25w 25m 25w 25p 25z 25o 

25r 25l 25q 25y 25x 25z 25x 25r 9b 25r 

25t 25m 25s 25z 9f 9e 25z 25v 9e 25w 

9b 25n 25y 9i 9h 9l 9g 25y 9g 25x 

9e 25r 9o 9k 9j 9q 9k 9b 9i 9j 

9j 9l 9r 9p 9n 9r 9m 9c 9m 9n 

9n 9m 9s 9q 9p 9s 9q 9d 9o 9s 
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Table 3.2: Parameters for the QSAR model developed for the I942 analogues* 

 
Training Set Test Set Cross-Validation (CV) Threshold 

31,32
 

R2 0.972 ± 0.008 0.929 ± 0.021 0.772 ± 0.055 

R2 > 0.600 and > 0.500 

for CV 

σ 27.69 ± 0.60 28.69 ± 2.40 - - 

RMSE 11.83 ± 1.81 19.09 ± 3.13 12.78 ± 1.50 RMSE < σ 

k 0.972 ± 0.008 0.960 ± 0.090 - 0.850 ≤ k ≤ 1.150 

* Standard deviations were computed using data from eleven different partitioning of training vs. test sets. 

 

 

Table 3.3: Predicted RFI values for a series of I942 analogues 'unknown' to the QSAR 

Model 
 

 

Compound Name Predicted RFI(%) 

MLGM-2013 25.87 

MLGM-2010 48.73 

MLGM-2016 52.32 

MLGM-2011 59.36 

I942 69.97 

MLGM-2012 79.08 

MLGM-2017 82.22 
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Chapter 4  

Discussion and Future Directions on CHESCA Toolset and QSAR Modeling in the Signaling 

Field 

 

4.1 Conclusions of the Proposed CHESCA Methods 

Two new CHESCA variations were proposed, i.e., the T- and CLASS-CHESCAs, to 

selectively identify critical allosteric sites. Both T- and CLASS-CHESCAs are based on the 

invariance of pairwise CHESCA correlations to variations in the chemical shifts of two fast-

exchanging states (i.e., active, and inactive conformations). The T- and CLASS-CHESCAs 

together with the more classical CL-CHESCA were implemented for the EPAC1-CNBD. Residues 

common to the three CHESCA ensembles were found in known EPAC allosteric core sites.  These 

results suggest the proposed CHESCA toolset is effective in prioritizing sites for further targeting 

through allosteric modulators.  

 

4.2 Conclusions of QSAR Study on EPAC1-Selective Competitive Sulfonamide Inhibitors  

A novel QSAR model for a series of EPAC1-specific sulfonamide modulators was 

developed using the multiple linear regression approach and it showed promising correlation 

coefficients between the actual and predicted affinities for both the training and test sets. The 

model was used to predict the affinities of a set of compounds different from the sets used to train 

the model and based on our QSAR predictions, a new I942 analog denoted as MLGM-2013 was 

chosen as a promising candidate with a better predicted affinity relative to I942. 8-NBD-cAMP 

fluorescence competition assays confirmed the QSAR prediction that MLGM-2013 exhibits a 
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significantly lower KD value than the parent compound, I942. NMR analyses further investigated 

the binding mode and mechanism of action of MLGM-2013 and the compound was shown to share 

a similar binding mode to I942, with significant chemical shift perturbations at PBC residues 

specifically. Based on the CHESPA analysis, MLGM-2013 was proposed to be more inhibitory 

compared to I942. We anticipate that the proposed QSAR model will serve as a tool to virtually 

screen libraries of compounds, which will aid in identifying novel EPAC1-selective drug 

candidates.  

 

4.3 Future Directions 

4.3.1 Applicability of the CHESCA Toolset 

The T-, CLASS- and CL-CHESCA offer an effective toolset to prioritize allosteric sites to 

be further probed through mutations and functional assays. In addition, the allosteric networks 

identified through such CHESCA toolset may assist in the mechanistic understanding of disease-

related mutations as well as aid in the process of developing new effectors targeting allosteric sites. 

It is also worth noting that the EPAC1-CNBD is a model system for this toolset and so, the 

parameters used rely on the behaviour of the protein under the influence of imposed conditions, 

such as temperature variations. Other allosterically regulated proteins may be more/less stable 

under the same conditions used for EPAC1. Therefore, the selection of temperatures, or the cut-

off values used (e.g., the mean Pearson correlation coefficient cut-off) should be fine tuned and 

adapted to the system of interest.  
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4.3.2 QSAR Models in the cNMP-signaling Field 

While the QSAR model presented in this thesis addresses the affinity predictions of I942 

derivatives 1, the model can essentially be extended to other series of EPAC-selective compound, 

some of which have been extensively studies with the purpose to build structure-activity 

relationships. For example, recent studies have reported a library of ESI09 2 derivatives with 

corresponding inhibitory activities (IC50) against both EPAC1 and EPAC2 3,4. The inhibition of 

EPAC by ESI09 has been shown to suppress the migration and invasion of pancreatic cells 2 as 

well as shed the light on the roles of EPAC in fatal rickettsioses 5 and T-cell-mediated 

immunosuppression 6. QSAR models are anticipated to be useful in the design of more potent 

EPAC-specific inhibitors based on the promising ESI09 scaffold. Moreover, a further area of 

EPAC QSAR applications entails EPAC2-specific compounds, which can be both cNMP-like 7 as 

well as non-cNMP molecules 8.  

As a result of the versatility of the QSAR approach, similar models can additionally be 

applied to the CNBDs of other members of the cNMP-signaling pathways, such as PKA, cyclic-

nucleotide-gated ion channels (such as HCN) and PKG, provided enough data on potencies or 

possibly efficacies are available to train the model 9,10. The current QSAR approach, which relies 

on planar structures of molecules, can be further leveraged to include three-dimensional geometric 

molecular descriptors as well, given the availability of known bioactive conformations for the 

ligands 11–13.  
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