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Abstract

Many chemical engineering applications, such as safety verification and parame-

ter estimation, require global optimization of dynamic models. Global optimiza-

tion algorithms typically require obtaining global bounding information of the dy-

namic system, to aid in locating and verifying the global optimum. The typical

approach for providing these bounds is to generate convex relaxations of the dy-

namic system and minimize them using a local optimization solver. Tighter convex

relaxations typically lead to tighter lower bounds, so that the number of iterations

in global optimization algorithms can be reduced. To carry out this local optimiza-

tion efficiently, subgradient-based solvers require gradients or subgradients to be

furnished. Smooth convex relaxations would aid local optimization even more.

To address these issues and improve the computational performance of global dy-

namic optimization, this thesis proposes several novel formulations for construct-

ing tight convex relaxations of dynamic systems. In some cases, these relaxations

are smooth.

Firstly, a new strategy is developed to generate convex relaxations of implicit

functions. These convex relaxations are described by parametric programs whose
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constraints are convex relaxations of the residual function. Compared with es-

tablished methods for relaxing implicit functions, this new approach does not as-

sume uniqueness of the implicit function and does not require the original resid-

ual function to be factorable. This new strategy was demonstrated to construct

tighter convex relaxations in multiple numerical examples. Moreover, this new

convex relaxation strategy extends to inverse functions, feasible-set mappings in

constraint satisfaction problems, as well as parametric ordinary differential equa-

tions (ODEs). Using a proof-of-concept implementation in Julia, numerical exam-

ples are presented to illustrate the convex relaxations produced for various implicit

functions and optimal-value functions. In certain cases, these convex relaxations

are tighter than those generated with existing methods.

Secondly, a novel optimization-based framework is introduced for computing

time-varying interval bounds for ODEs. Such interval bounds are useful for con-

structing convex relaxations of ODEs, and tighter interval bounds typically trans-

late into tighter convex relaxations. This framework includes several established

bounding approaches, but also includes many new approaches. Some of these new

methods can generate tighter interval bounds than established methods, which are

potentially helpful for constructing tighter convex relaxations of ODEs. Several of

these approaches have been implemented in Julia.

Thirdly, a new approach is developed to improve a state-of-the-art ODE relax-

ation method and generate tighter and smooth convex relaxations. Unlike state-

of-the-art methods, the auxiliary ODEs used in these new methods for comput-

ing convex relaxations have continuous right-hand side functions. Such continu-

ity not only makes the new methods easier to implement, but also permits the
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evaluation of the subgradients of convex relaxations. Under some additional as-

sumptions, differentiable convex relaxations can be constructed. Besides that, it is

demonstrated that the new convex relaxations are at least as tight as state-of-the-

art methods, which benefits global dynamic optimization. This approach has been

implemented in Julia, and numerical examples are presented.

Lastly, a new approach is proposed for generating a guaranteed lower bound

for the optimal solution value of a nonconvex optimal control problem (OCP).

This lower bound is obtained by constructing a relaxed convex OCP that satis-

fies the sufficient optimality conditions of Pontryagin’s Minimum Principle. Such

lower bounding information is useful for optimizing the original nonconvex OCP

to a global minimum using deterministic global optimization algorithms. Com-

pared with established methods for underestimating nonconvex OCPs, this new

approach constructs tighter lower bounds. Moreover, since it does not involve any

numerical approximation of the control and state trajectories, it provides lower

bounds that are reliable and consistent. This approach has been implemented for

control-affine systems, and numerical examples are presented.

v



Acknowledgements

I would like to first express my sincere gratitude to my supervisor, Dr. Kamil Khan.

Thank you for your training and guidance through these years, for being there

whenever I have questions, for listening to my various ideas and letting me pursue

them, and for reviewing my rough drafts with patience. I would also like to thank

my thesis committee members, Dr. Thomas Adams and Dr. Ned Nedialkov, who

have contributed lots of helpful feedback and suggestions.

I am also thankful to McMaster Advanced Control Consortium (MACC) for

providing support and a great atmosphere for my research. I am particularly grate-

ful to my lab-mate and friend Yingkai Song. We had so many lively discussions

over the years, which gave me a deeper understanding of our research.

My interest in process system engineering developed when I was a M.Sc. stu-

dent at Rutgers University. I am greatly thankful to my M.Sc. supervisor, Dr. Rohit

Ramachandran, for his advice and help with both my studies and my professional

development.

I am so fortunate to have wonderful friends, Chenchen, Jia, and Zilong, who

give me lots of encouragement. I am particularly grateful to Zilong, who has al-

ways been like a big brother and gives me advice and help whenever I need it. I

also thank my parents for their unconditional love and support. Lastly, to Yexuan,

vi



thank you for your company, patience, and everything else. Life is a long journey,

but luckily, I have you by my side.

The work presented in this thesis was funded by the McMaster Advanced Con-

trol Consortium (MACC).

vii



Contents

Abstract iii

Acknowledgements vi

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Contributions and thesis structure . . . . . . . . . . . . . . . . . . . . 24

2 Convex Relaxations of Implicit Functions 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Convex Relaxations of Implicit Functions . . . . . . . . . . . . . . . . 37

2.4 Convex Relaxations of Constraint Satisfaction Problems . . . . . . . . 44

2.5 Tightening Interval Bounds . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Relaxations of Numerical ODE Solutions . . . . . . . . . . . . . . . . 53

2.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



3 A Smoothing Method for Generating Tighter Reachable Set Enclosures

for Parametric Ordinary Differential Equations 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 New State Relaxation Formulation . . . . . . . . . . . . . . . . . . . . 80

3.5 Theoretical Development . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . 112

3.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4 Bounding Nonconvex Optimal Control Problems using Pontryagin’s Min-

imum Principle 129

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4 New optimal control relaxation . . . . . . . . . . . . . . . . . . . . . . 144

4.5 Theoretical Development . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.6 Solving the Underestimating Problem . . . . . . . . . . . . . . . . . . 160

4.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5 An Optimization-Based Framework for Enclosing Reachable Sets with

Differential Inequalities 173

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

ix



5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.4 New Framework for Enclosing Reachable Sets . . . . . . . . . . . . . 187

5.5 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.6 Constructing Operators ΠL
i and ΠU

i with an a priori Enclosure . . . . 223

5.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6 Enclosing Reachable Sets for Nonlinear Control Systems using

Complementarity-Based Intervals 236

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.4 New Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.5 Complementarity Reformulation . . . . . . . . . . . . . . . . . . . . . 244

6.6 Constructing convex inclusion functions . . . . . . . . . . . . . . . . . 246

6.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7 A Differential Inequality-Based Framework for Computing Convex En-

closures of Reachable Sets 256

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

7.4 New Framework for State Relaxation . . . . . . . . . . . . . . . . . . . 270

x



7.5 Constructing State Bound RHS . . . . . . . . . . . . . . . . . . . . . . 278

7.6 Constructing State Relaxation RHS . . . . . . . . . . . . . . . . . . . . 280

7.7 Ensuring Inclusion-amplifying Dynamics . . . . . . . . . . . . . . . . 287

7.8 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

8 Concluding Remarks 304

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

xi



List of Figures

1.1 Existing approaches for local dynamic optimization . . . . . . . . . . 3

1.2 Existing approaches for solving optimal control problems . . . . . . . 5

1.3 Classification of approaches for global dynamic optimization . . . . . 15

1.4 Branch-and-bound algorithm . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 The implicit functions x† and x‡ in Example 2.1 (solid), along with

their interval bounds (dashed) reported in [136] and convex and

concave relaxations (dotted) constructed with the new method on

P, plotted as functions of p. . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 The implicit functions x† and x‡ in Example 2.1 (solid), along with

their original interval bounds X†,0 and X‡,0 (dashed) and improved

interval bounds X†,1 and X‡,1 (dotted) on P, plotted as functions of

p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 The implicit functions x† and x‡ in Example 2.1 (solid), along with

their relaxation constructed on X†,0 and X‡,0 (dashed) and improved

relaxations constructed on X†,1 and X‡,1 (dotted) on P, plotted as

functions of p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



2.4 The implicit functions x† and x‡ in Example 2.1 (solid), along with

their interval bounds (dot-dashed) and convex and concave relax-

ations (dashed) where the relaxations of the original residual func-

tion f are constructed with αBB relaxations, plotted as functions of

p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 The implicit function of pressure with respect to volume in Exam-

ple 2.2 (solid), along with its convex and concave relaxations (dashed) 62

2.6 The numerical solution of (2.27) via the implicit Euler method (solid)

at t = 1, along with its convex and concave relaxations (dashed),

plotted as a function of p . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.7 (a) Interval bounds Zm,0 (dashed) and tighter interval bounds Zm,1

(dotted), m ∈ {1, . . . , 20}, in Example 2.3. Solid lines are trajecto-

ries of z(·, p) in (2.27) with different p. (b) The parametric solution

of (2.21) (solid), along with its convex and concave relaxations con-

structed on conservative interval bounds (dashed) and improved

interval bounds (dotted), plotted as a function of p at t = 1 . . . . . . 64

3.1 The parametric solution (3.40) of ODE (3.39) in Example 3.1, along

its lower bound xL(t) = 0 and convex relaxations described in (3.42)

and (3.43), plotted as a function of p at t = 1 . . . . . . . . . . . . . . 123

3.2 The parametric solution of x2 in Example 3.2, along with its state

bounds and state relaxations, plotted as functions of p at t = 1.2.

(a) comparison between Scott-Barton method and new method with

u,o constructed by GMR; (b) smooth relaxations generated with

new method with u,o are constructed by DMR . . . . . . . . . . . . 125

xiii



3.3 The parametric solution x2 in Example 3.2, along with its state bounds,

state relaxations, and subtangents of state relaxations, plotted as

functions of p at t = 1.2. k = 1 (or 20) means that k and k are

both set to 1 (or 20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.1 The system trajectories and the relaxed trajectory in Example 4.1:

trajectories t 7→ φ(x(t, u)) (dotted) where u is a suboptimal control

and trajectory t 7→ φcv(x(t, u∗)) (solid) where u∗ is a globally opti-

mal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.2 The system trajectories and the relaxed trajectory in Example 4.2:

trajectories t 7→ φ(x(t, u)) (dotted) where u is a suboptimal control

and trajectory t 7→ φcv(x(t, u∗)) (solid) where u∗ is a globally opti-

mal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.3 The system trajectories and the relaxed trajectories in Example 4.3:

our new trajectory t 7→ φcv(x(t, u∗)) (solid), the Scott-Barton trajec-
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Chapter 1

Introduction

In this thesis, novel approaches will be presented for efficiently and automatically

generate guaranteed interval bounds and convex relaxations for nonlinear process

models with uncertainty, including dynamic process models. Such global bound-

ing information is useful in the deterministic global optimization of these systems.

Numerical implementations are also presented for computing these bounds auto-

matically. The remainder of this chapter elaborates on the background, goals, and

contributions of this thesis.

1.1 Background

This section summarizes established concepts and approaches that will be consid-

ered throughout the remainder of this thesis.

1
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1.1.1 Local dynamic optimization

In chemical engineering, systems of differential equations are widely used to model

the dynamic behavior of process systems, including chemical reactions [140], cell

culture processes [77], and distillation columns [34]. These differential equation

models enable quantitative analysis via predictive simulation. Nevertheless, many

real-world engineering problems, such as parameter estimation and optimal de-

sign, may require additional computation beyond simulation. In these cases, we

typically combine numerical models with optimization algorithms, for example to

determine the best model parameters [117]. The problem of optimizing parameters

for dynamic models is referred to as dynamic optimization, e.g., [153]. The mathe-

matical formulation of a generic dynamic optimization problem with an ODE sys-

tem embedded is as follows.

min
p∈P

J(p) := φ(x(t f ,p),p), (1.1)

where P ⊂ Rnp is a box and x solves the following ODE:

ẋ(t,p) = f (t,p,x(t,p)), t ∈ (t0, t f ], (1.2)

x(t0,p) = x0(p).

In this thesis, we do not consider dynamic optimization problems with path con-

straints. Broadly, this thesis focuses on developing methods to help solve (1.1) to

global optimality. Dynamic optimization problems in chemical engineering may

also have index-1 differential-algebraic equations (DAEs) embedded; these behave

similarly to (1.2) in many respects, and we do not pursue them further.

2
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There are three primary approaches to solve the dynamic optimization problem

(1.1) to a local optimum [21], including: (i) the simultaneous approach, (ii) the

sequential approach, and (iii) the hybrid approach; these are depicted in Figure 1.1,

and described in the following paragraphs.

Figure 1.1: Existing approaches for local dynamic optimization

The simultaneous approach performs a discretization over the state trajectories

of the ODE (1.2), and collocation techniques are commonly used here [141]. With

the dynamic system approximated by a large system of nonlinear equations, the

original dynamic optimization problem is transformed into a nonlinear program

(NLP), and standard NLP algorithms are immediately applicable here. However,

to perform an accurate approximation of the original system, the generated NLP

is typically very large and might be difficult to solve.

The sequential approach involves successively solving the parametric ODE

(1.2) numerically and searching for the optimal parameters of the NLP (1.1) accord-

ing to the iterations of an NLP solver. Compared with the simultaneous approach,

one advantage of the sequential approach is that it keeps the size of the resulting

NLP relatively small. Moreover, thanks to advanced ODE solvers, numerically

solving the embedded ODE (1.2) is usually efficient and accurate.

Nevertheless, there are some drawbacks of the sequential approach. One major

3
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concern is the issue of instability. If the embedded dynamic system is not numer-

ically stable to integrate for some parameters or initial conditions, then the whole

sequential approach might fail. Since the simultaneous approach does not suffer

from this problem, a hybrid of these two approaches, also known as the multiple-

shooting method, was developed to reduce the potential drawback of instability

[23]. In this hybrid approach, the time horizon of the original dynamic system is

divided into a coarse grid. Inside each interval, a new system of ODEs with a latent

initial condition is formulated. As a result, the original problem is reformulated

into an NLP with several ODEs embedded. The additional latent initial values are

treated as decision variables to introduce more flexibility and adaptability to the

system.

1.1.2 Optimal control

An optimal control problem (OCP) involves finding a control profile for a dynamic

control system that optimizes a particular objective function. Optimal control ap-

pears in many engineering applications, such as the determination of optimal con-

trol inputs of batch chemical rectors [87], the nonlinear model predictive control of

continuous systems [86], and the safe landing of an autonomous spacecraft on a

planet surface [2]. A typical mathematical OCP formulation is as follows:

min
u∈U

J(u) := φ(x(t f ,u),u(t f )), (1.3)

4
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where U is the set of all admissible controls u : [t0, t f ] → W and x solves the

following ODE:

ẋ(t,u) = f (t,u(t),x(t,u)), t ∈ (t0, t f ], (1.4)

x(t0,u) = x0.

Unlike the dynamic optimization problem (1.1) introduced in the previous sec-

tion, one major challenge of solving the OCP (1.3) is that it is infinite dimensional.

Established approaches for solving this problem are outlined in Figure 1.2 and are

briefly summarized below.

Figure 1.2: Existing approaches for solving optimal control problems

Indirect approaches for solving (1.3) address the dynamic optimization prob-

lem in its original infinite dimensional space. The Hamilton-Jacobi-Bellman (HJB)

equation, developed based on the dynamic programming theory by Bellman [17],

provides both necessary and sufficient optimality conditions for solving OCPs.

However, the HJB equation is a partial differential equation and solving it may be

quite cumbersome [95]. Pontryagin’s Minimum Principle (PMP) describes a nec-

essary condition of optimality for solving OCPs. Obtaining a local solution with

5
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PMP usually involves solving a two-point boundary value problem either analyti-

cally or numerically. Furthermore, if the mapping from the control to the objective

function is convex, then PMP is also a sufficient condition for a control input to be

globally optimal [26].

In contrast, the direct approach for solving (1.3) reduces the original infinite di-

mensional problem to a finite dimensional problem via control parameterization.

The original control trajectory u is discretized and approximated with simple func-

tions. These functions are usually piecewise-constant functions or piecewise-affine

functions that can be described by a finite vector of parameters p. The original OCP

(1.3) is therefore approximated as the dynamic optimization problem in (1.1). The

standard dynamic optimization approaches introduced in the previous section can

then be applied.

1.1.3 Convex relaxations and reachability analysis

Given a convex set P ⊂ Rnp , a function hcv : P → R is a convex relaxation of a non-

convex function h : Rnp → R on P if hcv is convex on P and hcv(p) ≤ h(p) for all

p ∈ P. Convex relaxations provide useful global intuition for nonconvex process

models that is used by methods for deterministic global optimization. Since these

relaxations are convex, they can be minimized using local optimization solvers.

They also underestimate the original problem by construction, and so their optimal

values are valid lower bounds for the original nonconvex function. Convex relax-

ations are used in several state-of-the-art deterministic global optimization solvers,

such as BARON [139] and ANTIGONE [90]. Several approaches have been estab-

lished to generate useful convex relaxations automatically; these are summarized
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as follows.

If the original nonconvex function h is a finite composition of known intrin-

sic operations from a library, such as the operations that can be represented on

a typical scientific calculator, then this function h is said to be factorable. Inter-

val arithmetic [94] is an established approach for computing parameter-invariant

interval bounds for factorable functions. McCormick and Mitsos et al. [89, 92] pro-

posed a method for efficiently and automatically constructing convex relaxations

for factorable functions by propagating relaxations for intrinsic operations. These

relaxations are known as the McCormick relaxations (MR), and are always at least

as tight as the bounds provided by interval analysis. A method for propagating

the subgradients for MR was also developed by Mitsos, et al. [92]. Note that affine

relaxations and piecewise-affine relaxations can be constructed by linearizing the

nonlinear MR at fixed points using subgradients. Compared with nonlinear relax-

ations, these affine or piecewise-affine relaxations are computationally cheaper to

optimize [50, 33].

Scott et al. [123] extended MR into the so-called generalized McCormick relax-

ations (GMR), which can additionally accept different types of inputs in various

settings. GMR has the important property of taking previously known convex re-

laxations as arguments for further calculation, which is useful in computing relax-

ations for parametric ODEs [120] and implicit functions [136]. Tsoukalas and Mit-

sos [144] reformulated and generalized McCormick’s composition theorem with an

embedded optimization problem to generate tighter convex relaxations than stan-

dard MR, and to admit virtually any multivariate intrinsic operations. Khan et al.

7



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

[72] developed a smooth variant of GMR, termed as differentiable McCormick re-

laxations (DMR), to eliminate the theoretical and computational obstacles caused

by the nonsmoothness of MR and GMR. These approaches are straightforward

to implement, and have already been implemented in the open-source software

packages MC++ [36] and EAGO [152].

In addition to McCormick relaxation variants, αBB relaxation is another estab-

lished approach for generating convex relaxations [3]. This approach constructs

convex underestimators for nonconvex twice-continuously differentiable functions

by adding a sufficiently large convex quadratic term to the original function. Con-

structing this term typically requires estimating the curvature of the original func-

tion by bounding the eigenvalues of the original function’s Hessian using interval

arithmetic.

As will be discussed in Section 1.1.5 below, methods for global dynamic opti-

mization typically require convex relaxations of the solution x(t f , ·) of the ODE

(1.2), which is generally unavailable in closed-form. In this case, the methods

summarized above may not be applied directly to construct convex relaxations

of x(t f , ·). Instead, this task aligns with constructing convex enclosures for the

reachable set of (1.2). The reachable set of a dynamic system is the set of possible

final states that the system may attain, given a range of permitted initial condi-

tions, parameters, or inputs [62]. Convex enclosures of the reachable set of (1.2)

therefore provide useful global bounding information for finding a global solution

of the dynamic optimization problem (1.1) deterministically. Several approaches

have been established to construct convex relaxations that enclose the reachable

set of (1.2). These methods are summarized in the following paragraphs.
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Taylor series methods involve computing a validated solution (i.e. a guaran-

teed enclosure of the true solution) for ODEs by constructing high-order Taylor

expansions of the system states x with respect to time t in discrete time steps,

and then bounding the coefficients and remainder terms with interval arithmetic.

To overcome the dependency problem of classic Taylor series methods [96], in

which repeated terms in algebraic representations of functions can lead to signifi-

cant overestimation in interval arithmetic, Taylor models were introduced in [88].

These methods bound the the Taylor remainder error by propagating an auxil-

iary model consisting of a Taylor polynomial and an interval remainder bound.

Taylor models were used to enclose the reachable sets for parametric ODEs in

[84]. They were further extended by replacing interval arithmetic with McCormick

relaxations, yielding tighter enclosures in general [112]. However, Taylor series

methods may be limited in computational efficiency because of the complexity of

constructing and evaluating high-order Taylor expansions. The number of Taylor

coefficients involved grows exponentially with the numbers of states and inputs.

Another major category of methods for enclosing reachable sets involves dif-

ferential inequalities [148]. Differential inequality-based methods use an auxiliary

system of ODEs obtained from the original system (1.2) to describe the correspond-

ing reachable sets. The right-hand side (RHS) functions in the auxiliary relaxation

system are modified enclosures of the original ODE RHS function. Under rea-

sonable assumptions, the solutions of this auxiliary system are guaranteed to be

component-wise lower and upper bounds for the reachable set. Such auxiliary
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systems can be solved via off-the-shelf numerical ODE solvers with adaptive time-

stepping, while Taylor series methods require integration procedures with man-

ually configured step-size. Several methods in this different inequality category

have been developed in the past decades. A major distinction among these meth-

ods is how the original RHS functions are handled. We now briefly review some

established methods for constructing the new auxiliary RHS in chronological or-

der. Harrison [59] used interval arithmetic [94] to construct the auxiliary RHS and

computed interval bounds for the original states. A flattening technique was ap-

plied in this method to reduce the so-called wrapping effect of interval arithmetic.

An affine relaxation-based method was introduced by Singer and Barton [128], in

which the auxiliary RHS functions are constructed via linearizing the classic MR

[89]. Although the solutions of such auxiliary systems are rigorous bounds for

the original states, their existence and uniqueness are not guaranteed without ad-

ditional assumptions. Scott and Barton [120] proposed a method for computing

component-wise convex and concave relaxations for the final states of paramet-

ric ODEs, which are guaranteed to be at least as tight as the Harrison’s interval

bounds. This method will be summarized in Section 1.1.4. Harwood et al. [62]

proposed a method that embeds linear programs into the auxiliary RHS functions

to improve the enclosures. A special relaxation technique is used to ensure the

uniqueness of ODE solutions. Moreover, Harwood et al. considered leveraging an

a priori enclosure to reduce the conservatism in the relaxation of the original RHS

functions. This strategy was further explored by Shen and Scott [126, 125, 124].

They made use of known information of the original system, including physical

bounds, model redundancy, and path constraints, to further tighten the reachable
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sets.

Aside from global optimization, enclosures of the reachable set are also useful

when quantifying the influence of uncertainty on the dynamic system. For exam-

ple, in dynamic models that describe chemical and biochemical reaction kinetics,

there typically exist uncertainties in rate parameters. The inputs of these models

may also contain uncertainties caused by measurement errors or system distur-

bances [133]. Constructing enclosures for the reachable set provides an approach

to propagate the uncertainties in these dynamic models [117], so that the states of

these reactions can be estimated robustly [69]. Accurate estimations on the pro-

cess states further permit the development of robust process control [4]. Other

applications of reachable set enclosures include parameter estimation [106], safety

verification [66], and collision avoidance [91].

1.1.4 Scott-Barton relaxations of ODE solutions

One state-of-the-art method for generating convex relaxations for the parametric

ODE (1.2) was proposed by Scott and Barton [120]. This method will be referred as

the Scott-Barton method hereafter. It requires the following functions to be known

in advance:

• Interval bounds xL,xU : I → Rnx of the state variable x such that xL(t) ≤

x(t,p) ≤ xU(t) for all t ∈ [t0, t f ] and p ∈ P. xL,xU can typically be com-

puted using Harrison’s method from Section 1.1.3.

• Convex and concave relaxations xcv
0 ,xcc

0 : P → Rnx of the initial condition

function x0 over P. xcv
0 ,xcc

0 can be constructed with the convex relaxation

methods from Section 1.1.3.
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• Modified convex and concave relaxations u,o : I × P ×Rnx ×Rnx → Rnx

of the RHS function f , satisfying various conditions described in [120]. Scott

and Barton recommend constructing u,o by applying Harrison’s flattening

technique to GMR.

Then, the convex and concave relaxations xcv,xcc of the ODE (1.2) are com-

puted by solving the following auxiliary system of ODEs with discrete jumps: for

each i ∈ {1, . . . , nx},

ẋcv
i (t,p) =

ui(t,p,xcv(t,p),xcc(t,p)) if xcv
i (t,p) > xL

i (t),

max
{

ẋL
i (t), ui(t,p,xcv(t,p),xcc(t,p))

}
if xcv

i (t,p) = xL
i (t),

xcv
i (t0,p) = xcv

0,i(p), (1.5)

ẋcc
i (t,p) =

oi(t,p,xcv(t,p),xcc(t,p)) if xcc
i (t,p) < xU

i (t),

min
{

ẋU
i (t), oi(t,p,xcv(t,p),xcc(t,p))

}
if xcc

i (t,p) = xU
i (t),

xcc
i (t0,p) = xcc

0,i(p).

Scott and Barton [120] showed that valid state relaxations of (1.2) are given by

the unique Carathéodory solutions of (1.5). Moreover, it was verified in [113] such

that, if we construct u,o with flattened GMR [120, Section 4.4], then the Scott-

Barton relaxations will have second-order pointwise convergence to x in the sense

of [24]. This convergence result is critical for using state relaxations in deterministic

global optimization without invoking the “cluster problem” [48, 150] in which a

branch-and-bound algorithm (summarized in Section 1.1.5 below) must branch

many times before terminating.

Although the solutions of (1.5) provide convex and concave relaxations for
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(1.2), the if-statements in the RHS of the ODE system (1.5) will typically create dis-

continuity in the RHS. To numerically solve (1.5), Scott and Barton [120] proposed

to use the event detection feature of CVODES [44] to handle these discontinuities,

but this approach increases the difficulty of implementation and limits the use of

other off-the-shelf ODE solvers. Without event detection, the numerical error re-

sulting from the integration process will likely be worse than when solving similar

ODEs with continuous RHS. Other limitations of the Scott-Barton method include

the nonsmoothness of the generated convex relaxations and the difficulty of evalu-

ating gradient information for these relaxations, again due to those discrete jumps.

1.1.5 Global optimization

Since the dynamic optimization problem in (1.1) typically nonconvex, there may

be multiple suboptimal local solutions [87]. Classic local optimization algorithms

may therefore terminate at a suboptimal solution without identifying a global op-

timum and verifying it. However, many engineering applications require optimiz-

ing nonconvex dynamic optimization problems to global optimality. Some of these

are summarized below.

A first application considers analyzing the safety of chemical processes. Safety

analysis involves investigating if a process system is guaranteed to operate safely,

for any choice among a set of admissible control inputs, system parameters, and

and initial conditions. It is required by many safety standards and regulations, in-

cluding the OSHA in the United States [99], that chemical companies need to carry

out systematic analyses to convincingly demonstrate the safety of their processes.
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Failure in the execution of these analyses may lead to catastrophic accidents, se-

rious damage to people’s life and health, and tremendous economic cost. One

established approach for solving this problem is to formulate it as a dynamic op-

timization problem and search for a worst-case scenario [66]. Evidently, a merely

locally optimal solution cannot provide sufficient information, and may mislead-

ingly indicate that an unsafe process is safe. A globally optimal solution of the

formulated dynamic optimization problem is therefore necessary in this applica-

tion.

A second application considers the economic optimization of dynamic pro-

cesses. Compared with designing and controlling a process using a local subopti-

mal solution, computing a globally optimal solution may significantly reduce the

cost and increase the process profit [80]. This advantage is particularly beneficial

for the manufacturing of high-value products, such as pharmaceuticals [149] and

bio-products [15].

A third application considers the validation of potential mathematical mod-

els for describing a dynamic process. The objective of this task is to determine

whether the output of a model is consistent with the measurement of the underly-

ing process, given that the model is fitted with its best-possible parameters [129].

In contrast, if only a local suboptimal solution is obtained in parameter fitting, it is

doubtful to discriminate a candidate model. The poor consistency between model

outputs and process measurements may be caused by the lack of suitable parame-

ters. Thus, global dynamic optimization is useful in validating possible models for

dynamic processes.

The remainder of this section provides a brief review on established approaches
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for solving the following generic NLP to numerical global optimality:

min
p∈P

J(p), (1.6)

subject to g(p) ≤ 0.

These established approaches can be divided into two categories: stochastic ap-

proaches and deterministic approaches. Figure 1.3 illustrates these categories and

various subcategories.

Figure 1.3: Classification of approaches for global dynamic optimization

Popular stochastic global optimization algorithms include random search [15],

particle swarm optimization [156], differential evolution [10], and simulated an-

nealing [51]. When used in practice, these stochastic algorithms may treat the con-

sidered dynamic process model as a black box. Thus, if we use such a stochastic

approach to solve the dynamic optimization problem (1.1), no reformulation of the

original dynamic system is required. However, these stochastic algorithms cannot

guarantee to locate a global solution within finite time. They also typically cannot

verify global optimality at all. Thus, the solution obtained from a stochastic global
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optimization algorithm cannot be reliably considered to be global optima. Nev-

ertheless, such a solution may provide a starting point for deterministic methods

and improve the convergence of local optimization algorithms [14].

By contrast, deterministic global optimization algorithms can locate and vali-

date a global minimum within finite iterations. They are typically developed based

on the spatial branch-and-bound framework [42]. In a typical branch-and-bound

method for global optimization on a box domain, we first compute the lower and

upper bounds of the optimal objective value of (1.6) on the original domain. If

the difference between these two bounds is within a specified tolerance ε, then

this branch-and-bound algorithm terminates. Otherwise, the original domain is

divided into two subdomains, and the upper bounds and lower bounds of the op-

timal objective value in both subdomains are determined. Figure 1.4 illustrates

the branch-and-bound algorithm’s progress after the original domain has been di-

vided once. In this figure, if the lower bound in the subdomain R1 is higher than

the upper bound in the subdomain R2, then it is impossible for a global minimum

to be located in R1. Thus, R1 is eliminated from consideration. This process of com-

paring, dividing, and possibly eliminating will continue recursively in R2. As this

is carried out, we can infer that a smaller and smaller portion of the original search

space contains a global optimum. In the limit of infinitely many iterations, the

known upper bounds and lower bounds on the unknown globally optimal value

will converge. Before this, when their difference reaches the specified tolerance ε,

the branch-and-bound algorithm terminates and a globally ε-optimal solution is

found and verified.
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Figure 1.4: Branch-and-bound algorithm

Computing valid upper and lower bounds of the globally optimal value in

each subdomain is critical in branch-and-bound algorithms. Providing the up-

per bounds is relatively straightforward since any feasible point of the problem is

greater than or equal to the global minimum. In practice, we usually use a local

minimum in a subdomain as the upper bound. However, obtaining a useful valid

lower bound is much more difficult. As illustrated in Section 1.1.3, this process typ-

ically involves constructing convex relaxations of nonconvex functions and mini-

mizing these relaxations, which is the focus of much of this thesis. Note that this

deterministic global optimization approach immediately extends to the dynamic

optimization problem (1.1) if we have ODE-based convex relaxations for the objec-

tive function J, obtained by combining convex reachable set enclosures with MR

to incorporate the cost function φ [120]. The simultaneous approach described in

Section 1.1.1 may also be applied; this is the most direct way to apply off-the-shelf

global optimization solvers like BARON [139] to dynamic global optimization.
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Different from the standard lower bounding approaches mentioned above, Scott

and Barton [119] proposed a completely different approach for bounding the non-

convex OCP in (1.3). They constructed a convex underestimating OCP by relaxing

the original cost function and dynamic system with GMR. The optimal solution

value of this relaxed OCP is a guaranteed lower bound of the original OCP’s op-

timal solution value, which is useful in branch-and-bound algorithms for deter-

ministic global optimization. They also proposed that this convex underestimat-

ing OCP can be solved to its global optimality using a gradient-based numerical

method from [13].

1.1.6 Implicit functions and inverse functions

An implicit function is a function z : Rnp → Rnz that is defined implicitly so as to

satisfy the equation:

h(z(p),p) ≡ 0,

where h : Rnz+np → Rnp is a known residual function. Such implicit functions z ap-

pear in many research areas and applications [47], such as the ellipse equation in

physics and astronomy, the van der Waals equation of state in chemical engineer-

ing, the equality constraints in mathematical programming [151], and the algebraic

equations in DAEs. Since a closed-form expression is typically not available for the

implicit function z, its convex relaxations cannot be constructed using the αBB or

McCormick relaxations summarized in Section 1.1.3.

Several existing approaches have been developed to relax it nevertheless. One

major category of these approaches is based on applying a fixed-point iteration
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solver to the original nonlinear equation system, and then relaxing these closed-

form iterations. Scott et al. [123] introduced an approach to construct convex re-

laxations for implicit functions by applying GMR to finitely many fixed-point iter-

ations [100]. Stuber et al. [136] later discovered that this approach may not provide

any refinement over the known interval bounds, which may limit the applicability

of this approach. To deal with this issue, they proposed an improved successive

fixed-point iteration approach to construct convex relaxations for implicit func-

tions by relaxing iterations based on the mean value theorem [136]. This approach

was employed to relax the equality constraints in NLPs as inequality constraints

and reduce the dimensionality, which is particularly useful in global optimization.

Note that this approach only applies to factorable residue functions, and assumes

unique solutions of the corresponding nonlinear equations system. It also requires

additional a priori knowledge of the Jacobian of the residual function, such as inter-

val bounds and convex relaxations. Khan et al. [72] applied Stuber et al.’s approach

to construct differentiable relaxations for implicit functions, using DMR in place of

GMR. Wilhelm et al. [153] adapted Stuber et al.’s approach to generate convex re-

laxations for the numerical solutions of parametric ODEs after discretizing them

with implicit ODE solution methods.

A second category of implicit function relaxations is reverse McCormick prop-

agation (RM) proposed by Wechsung et al. [151]. RM is developed based on the

standard McCormick relaxations for factorable functions, except that it carefully

propagates the convex and concave relaxations backward through the function’s
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computational graph, like the reverse mode of automatic differentiation [58]. More-

over, RM is also applicable to constraint satisfaction problems (CSPs), which con-

tain both equality and inequality constraints. In this case, convex relaxations are

constructed for a point-to-set mapping of a system parameter to the correspond-

ing feasible region. Nevertheless, implementing this relaxation method is a non-

trivial coding task and requires advanced coding skills. This implementation task

requires operator overloading or source transformation to step through the func-

tion’s computational graph.

1.2 Motivation and goals

Currently available deterministic global dynamic optimization algorithms can only

solve relatively small problem instances with few decision variables and few state

variables in a reasonable time [120]. The main barrier is the lack of useful convex

relaxations for the ODE solution x(t f , ·) in (1.2) [112]. To improve the compu-

tational efficiency of deterministic global optimization algorithms, these convex

relaxations need to be tight, so that they provide more useful information about

the original dynamic system. Tighter convex relaxations can help the branch-and-

bound algorithms described in Section 1.1.5 to converge faster [42]. Branch-and-

bound algorithms require minimizing convex relaxations repeatedly using local

optimization solvers. Gradient-based local solvers, such as IPOPT and CONOPT,

nominally require that the function being minimized is differentiable, and they

also require the gradients of this function to be available as a subroutine. Overall,

having differentiable objective functions enables faster convergence of local op-

timization methods [97]. Therefore, developing tight convex relaxations for the
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parametric ODE (1.2) are critical to improving the computational performance of

solving the dynamic optimization problem (1.1) with deterministic global opti-

mization algorithms. Differentiability of these relaxations would further speed up

the computation of lower bounds.

As summarized in Section 1.1.6, Stuber et al. [136] developed a fixed-point iter-

ation approach to construct convex relaxations for implicit functions. Wilhelm et

al. [153] applied this approach to generated convex relaxations for the numerical

solutions of the parametric ODE (1.2), obtained with implicit integration meth-

ods. However, Stuber et al.’s approach for relaxing implicit functions requires the

uniqueness of the implicit function and requires the corresponding residual func-

tion to be factorable. Their approach is also restricted to few convex relaxation

methods, i.e. GMR and DMR. Moreover, to achieve tight convex relaxations, their

approach may require many iterations. Thus, a generic and versatile approach for

constructing tight convex relaxations for implicit functions can help relax the nu-

merical solutions of the parametric ODE (1.2). These implicit function relaxations

are also useful in feasibility analysis [151] and equality-constrained bilevel opti-

mization [135], which commonly appear in many engineering applications, such

as process flowsheet optimization [68], chemical reactor optimal design [135], and

feedstock optimization [93].

Another category of established approaches for generating ODE relaxations in-

cludes the differential inequalities-based methods summarized in Sections 1.1.3-

1.1.4. Several state-of-the-art methods in this category [120, 131] solely rely on con-

structing and numerically solving the ODE system in (1.5) that contains discrete

jumps. As illustrated in Section 1.1.4, these discrete jumps increase the difficulty
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in numerical implementation, bring nonsmoothness into the generated convex re-

laxations, and hinder gradient evaluation. To construct smooth ODE relaxations

and evaluate their gradients for deterministic global optimization, these discrete

jumps ought to be addressed.

Furthermore, those state-of-the-art ODE relaxation methods mentioned in the

previous paragraph depend on predefined interval bounds of ODEs, which are

typically computed using Harrison’s method [59]. This method computes interval

bounds for ODEs by solving an auxiliary ODE system whose RHS functions are

constructed using interval arithmetic [94]. However, Harrison’s method may be

vulnerable to the dependency problem and the wrapping effect [94], which may

lead to conservative interval bounds of ODEs. To build tighter ODE relaxations, it

would be beneficial to develop an approach that generates tighter interval bounds

than Harrison’s method and replace it in those state-of-the-art ODE relaxation ap-

proaches. These tighter interval bounds can also lead to more accurate reacha-

bility analysis for many engineering applications, such as the state estimation in

biochemical processes [69] and the collision avoidance of aircraft [91].

Lastly, the optimization of OCPs appears in many engineering problems, from

determining the optimal control inputs of batch reactors [87] to landing an au-

tonomous spacecraft on a planet surface [2]. To solve the OCP in (1.3) to global

optimality using branch-and-bound algorithms, we need to supply global lower

bounds of its optimal solution value. Scott and Barton [119] proposed an approach

to construct a convex underestimating OCP whose optimal solution value is guar-

anteed to be a lower bound of the original OCP’s optimal solution value. This

relaxation approach essentially extended their work for parametric ODEs [122] to
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OCPs. Since later they developed a superior relaxation method for parametric

ODEs [120], we are interested to see if this superior method can also be extended

to OCPs and construct tighter lower bounds than the their prior approach in [119].

Tighter lower bounds help the branch-and-bound algorithms used in determinis-

tic global optimization to converge faster in principle [42]. In addition, their prior

approach in [119] has never been implemented. We are also interested in devel-

oping a practical implementation to solve the relaxed OCP to global optimality

numerically.

To address the issues in previous paragraphs, this thesis focuses on construct-

ing improved convex relaxations for implicit functions, parametric ODEs, and

nonconvex OCPs. These improved relaxations can enhance the computational per-

formance of the deterministic global optimization approach as described in Sec-

tion 1.1.5, for solving the dynamic optimization problem (1.1) and the OCP (1.3) to

global optimality. The specific goals of this thesis are listed as follows:

1. Develop general, more versatile approaches for constructing tighter convex

relaxations of implicit functions. These approaches can also be used to gen-

erate tighter convex relaxations for the numerical solutions of the parametric

ODE (1.2) obtained using implicit integration methods.

2. Construct differentiable convex relaxations for the parametric ODE (1.2) by

eliminating the discrete jumps in the Scott-Barton method (1.5), to permit

the evaluation of gradients and resolve the theoretical obstacles described in

Section 1.1.4.

3. Develop a new framework in which families of new bounds and relaxations

may be generated for the parametric ODE (1.2), to construct and identify
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relaxations that are superior to the current state of the art.

4. Construct tighter lower bounds of the nonconvex OCP (1.3) and develop im-

plementations to compute them, so that they can be used in the deterministic

global optimization of OCPs.

The overarching goal of this line of research is to develop computationally ef-

ficient deterministic global optimization algorithms and implementations that can

solve large-scale dynamic optimization problems with many state variables and

many decision variables. These implementations should be easily adapted for

solving various real-world engineering problems with dynamic systems embed-

ded, such as parameter estimation problems, open-loop optimal control problems,

and safety verification problems. Completing the specific goals mentioned above

is a critical step towards the achievement of this ultimate goal.

1.3 Contributions and thesis structure

This section summarizes the novel contributions of this thesis, in the order in

which they appear in subsequent chapters.

Chapter 2, reproduced from the manuscript [30] to be submitted before the an-

ticipated thesis defense, presents a new strategy to construct convex relaxations

for implicit functions. These relaxations are described as convex parametric pro-

grams whose constraints are convex relaxations of the original residual function. It

is shown that the optimal objective values of these parametric programs underesti-

mate the original implicit function and are indeed convex. In general, these relax-

ations can be evaluated at a similar computational cost to evaluating the original
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implicit function. Unlike previous approaches, this new approach does not assume

uniqueness of the implicit function and does not require the original residual func-

tion to be factorable. Any valid convex relaxation techniques can be employed in

this approach to relax the residual function. This new convex relaxation strategy

is extended to inverse functions, feasible-set mappings in constraint satisfaction

problems, as well as parametric ODEs. A proof-of-concept implementation of this

strategy is developed in Julia, and numerical examples are presented to illustrate

the convex relaxations produced for various implicit functions and optimal-value

functions. In certain cases, these convex relaxations are much tighter than those

generated with existing methods.

Chapter 3, reproduced from the manuscript [27] to be submitted before the an-

ticipated thesis defense, presents a new method for generating convex relaxations

for the parametric ODE (1.2) by improving the Scott-Barton method [120]. These

relaxations are described by an auxiliary system of ODEs constructed with a novel

smoothing technique. It is shown that these auxiliary ODEs have unique solutions,

and these solutions are valid convex relaxations of the solutions of (1.2). More-

over, they are at least as tight as the relaxations constructed with the Scott-Barton

method. It is also confirmed that the new method generates differentiable relax-

ations under additional assumptions, and therefore permits sensitivity analysis for

the parametric ODEs via gradient computation. A Julia implementation for auto-

matically constructing and solving the auxiliary relaxations ODEs is presented and

applied to several numerical examples.

Chapter 4, reproduced from the manuscript [29] to be submitted before the an-

ticipated thesis defense, considers bounding nonconvex optimal control problems
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(OCPs) as described in (1.3). Based on another work by Scott and Barton [119], a

new formulation is proposed to construct a guaranteed lower bound for the op-

timal solution value of a nonconvex OCP by constructing a relaxed OCP. This re-

laxed problem is subject to Pontryagin’s sufficient optimality conditions, while the

original OCP is not. It is verified that the optimal solution value of the relaxed

OCP is a guaranteed lower bound of the optimal solution value of the original

OCP, and is at least as tight as the bound constructed using state-of-the-art meth-

ods. A two-point boundary-value problem is developed and implemented to solve

the relaxed OCP to global optimality using the Pontryagin’s Minimum Principle

conditions. This implementation is applied to numerical examples, in which the

new relaxations are empirically much tighter than established relaxations.

Chapter 5, reproduced from the manuscript in preparation [28], proposes a new

optimization-based framework for computing time-varying interval bounds for

the ODE in (1.4). This framework constructs an auxiliary system of ODEs whose

RHS functions are embedded optimization problems. It is verified that the solu-

tions of these auxiliary ODEs are valid bounds of the original ODE solution. It is

also shown that this framework includes several established bounding approaches

[59, 118, 127], but also includes many new approaches. Several of these new ap-

proaches are implemented in Julia, and are demonstrated to generate tighter in-

terval bounds than existing methods in many numerical examples. These tighter

interval bounds of ODEs are useful for constructing tighter convex relaxations.

Chapter 6, reproduced from the published conference proceeding [31], intro-

duces complementarity reformulations of the optimization-based framework in

Chapter 5. The Karush–Kuhn–Tucker (KKT) conditions are used to reformulated
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the convex optimization problems embedded in the auxiliary RHS functions. This

allows special software designed for mixed nonlinear complementarity systems,

such as Siconos [1], to be used in solving these optimization-embedded ODEs

much faster than using the original formulation in Chapter 5. As a result, tighter

interval bounds than existing methods may be computed without adding signifi-

cantly to the cost of bound evaluation.

Chapter 7, reproduced from the manuscript in preparation [32], combines the

new framework described in Chapter 5 with the Scott-Barton method [120], and

develops a novel general framework for constructing convex relaxations for the

parametric ODE (1.2). These relaxations are confirmed to be valid convex relax-

ations, and are shown to be differentiable if the auxiliary RHS functions are differ-

entiable. Unlike the Scott-Barton method, this new approach employs continuous

bounding ODEs without discrete jumps, which permits the evaluation of gradi-

ents. Moreover, tighter convex relaxations can be constructed with this new ap-

proach, making use of the tight interval bounds developed in Chapter 5. Unlike

the method in Chapter 3, the convex relaxations in this approach does not require

a priori knowledge of the original model. A numerical implementation of this ap-

proach is developed in Julia and applied to several numerical examples.

For brevity, the following additional contributions of my Ph.D. work are not

discussed further in this thesis. First, for the published journal article [33], I im-

plemented a new subtangent-based convex relaxation approach in Julia, and ap-

plied this to several numerical examples. The deterministic global optimization

algorithm using these convex relaxations is shown to be comparable to BARON
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[139], one of the state-of-the-art deterministic global optimization solvers, in mul-

tiple benchmark problems. Second, for the published journal article [133], I im-

plemented a new black-box sampling-based to provide a derivative-free technique

to compute affine relaxations for NLPs tractably. This algorithm is particularly

useful for constructing lower bounds in deterministic global optimization using

convex relaxations whose sensitivities are unavailable. Several nonsmooth non-

convex NLPs and dynamic optimization problems are solved to global optimality

using this implementation.

Furthermore, the two deterministic global optimization implementations men-

tioned in the previous paragraph, as well as the implementations of the methods in

Chapters 3-7, are integrated into a Julia package DynamicGlobalOpt.jl that will be

posted publicly to GitHub by December 2021. This package provides routines for

computing and plotting various interval bounds and convex relaxations for ODEs

automatically. It also contains a numerical solver for deterministic global dynamic

optimization. Developed based on the branch-and-bound framework from the

EAGO.jl package [152], this solver offers user-friendly interfaces for both general

dynamic optimization problems as in (1.1) and parameter estimation problems.

Several dynamic optimization benchmark problems [55] and real-world case stud-

ies [129] have been solved to global optimality successfully using this Julia pack-

age.
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Chapter 2

Convex Relaxations of Implicit

Functions

This chapter is to be submitted to a journal before my anticipated thesis defense.

2.1 Introduction

Branch-and-bound algorithms for deterministic global optimization require guar-

anteed lower bounds on the solution of a nonconvex nonlinear program (NLP) on

particular subsets of the search space. This bounding information is typically ob-

tained by generating and minimizing a convex relaxation of the original NLP to its

global optimum with a convex solver [92]. For a function described explicitly by

a closed-form expression, several established relaxation techniques can effectively

generate associated convex relaxations. In particular, if the nonconvex function

is twice-continuously differentiable, we may construct its convex relaxations us-

ing αBB relaxations [3], which involve adding a sufficiently large convex quadratic
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term to the original function. If the nonconvex function is a finite composition of

known intrinsic functions from a library, such as the functions that can be repre-

sented on a typical scientific calculator, then the function is said to be factorable, and

we can construct its convex relaxations using McCormick’s relaxation method [89,

92]. This relaxation method generates accurate and computationally cheap convex

underestimators [72]. Several open-source implementations of this approach are

available, such as the C++ library MC++ [36] and the Julia package McCormick.jl

[152]. However, if no closed-form expression for the original nonconvex function

is known, then the convex relaxations methods mentioned previously are not di-

rectly applicable.

Roughly, this article primarily considers a function x : Rnp → Rnx that is de-

fined implicitly so as to satisfy the equation:

f (x(p),p) ≡ 0,

where f : Rnx+np → Rnp is a known residual function. Such implicit functions x

appear in many research areas and applications [47], such as the ellipse equation

in physics and astronomy, the van der Waals equation in chemical engineering,

and the equality constraints in mathematical programming [151]. Since a closed-

form expression is not available for the implicit function x, its convex relaxations

cannot be constructed using the αBB or McCormick relaxations. This article seeks

improved dedicated convex relaxation techniques for implicit functions.

Several existing approaches have been developed to address this problem. One

major category of these approaches is based on applying a fixed-point iteration
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solver to the original nonlinear equation system, and then relaxing these closed-

form iterations. Scott et al. [123] developed generalized McCormick relaxations (GM)

based on McCormick’s relaxation method, which permit convex and concave re-

laxations of the inputs to be used as arguments [136]. Using this property, Scott

et al. [123] introduced an approach to construct convex relaxations for implicit

functions by applying GM to finitely many fixed-point iterations [100]. Stuber et

al. [136] later discovered that this approach may not provide any refinement over

the known interval bounds, which may limit the applicability of this approach. To

deal with this issue, they proposed an improved successive fixed-point iteration

approach to construct convex relaxations for implicit functions by relaxing itera-

tions based on the mean value theorem [136]. This approach was employed to

relax the equality constraints in NLPs as inequality constraints and reduce the di-

mensionality, which is particularly useful in global optimization. Note that this ap-

proach only applies to factorable residue functions, and assumes unique solutions

of the corresponding nonlinear equations system. It also requires additional a pri-

ori knowledge of the Jacobian of the residual function, such as interval bounds and

convex relaxations. Khan et al. [72] applied Stuber et al.’s approach to construct

differentiable relaxations for implicit functions, using differentiable McCormick

relaxations (DM) [72, 73] in place of GM. Wilhelm et al. [153] adapted Stuber et

al.’s approach to generate convex relaxations for the numerical solutions of para-

metric ordinary differential equations (ODEs) after discretizing them with implicit

ODE solution methods.

A second category of implicit function relaxations is reverse McCormick prop-

agation (RM) proposed by Wechsung et al. [151]. RM is developed based on
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the standard McCormick relaxations for factorable functions, except that it care-

fully propagates the convex and concave relaxations backward through the func-

tion’s computational graph, like the reverse mode of automatic differentiation [58].

Moreover, RM is also applicable to constraint satisfaction problems (CSPs), which

contain both equality and inequality constraints. In this case, convex relaxations

are constructed for a point-to-set mapping of a system parameter to the corre-

sponding feasible region. Nevertheless, implementing this relaxation method is

a nontrivial coding task and requires advanced coding skills. This implementation

task requires operator overloading or source transformation to step through the

function’s computational graph.

In this work, we propose a novel strategy to generate convex and concave re-

laxations for implicit functions using parametric programming. These relaxations

are described by convex optimization problems whose constraints are convex re-

laxations of the original residual function. This new approach is then extended to

construct convex relaxations for inverse functions, point-to-set mappings in CSPs,

as well as parametric ODEs. Directional derivatives of these convex relaxations

are described by auxiliary convex quadratic programs. Unlike the established ap-

proaches described above, our new approach does not assume uniqueness of a

solution, and does not require the original residual function to be factorable. It is

also easier to implement and automate than previous methods. The parametric

programs can be constructed with existing convex relaxation methods and solved

with standard local optimization solvers. In our new approach, any convex relax-

ation techniques may be employed to relax the residual function, such as standard
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McCormick relaxations [92], αBB relaxations [3], convex envelopes, and the point-

wise best among multiple relaxations, while established methods are limited to one

particular relaxation method, such as GM in [136, 123] and RM in [151]. Lastly, the

convex and concave relaxations generated with our new approach are comparable

to those established methods in tightness. These tight enclosures are potentially

useful in applications like global optimization and reachability analysis.

This article is structured as follows. Section 2.2 introduces the mathematical

background underlying this work. In Section 2.3, we present the formulation of

our new strategy and demonstrate its correctness. We then extend this approach

to inverse functions, and combine our approach with the multivariate McCormick

relaxations of Tsoukalas and Mitsos [144]. Section 2.4 extends this new strategy to

CSPs, where convex relaxations are constructed to enclose the point-to-set map-

pings in CSPs. The directional derivatives of these relaxations are constructed. In

Section 2.5, we adapt the new convex relaxation strategy to improve the tightness

of interval bounds for implicit functions and CSPs. Section 2.6 applies the new

strategy to construct convex relaxations and interval bounds for parametric ODEs.

Finally, a proof-of-concept Julia implementation of our results is described. Nu-

merical examples are presented in Section 2.7 to illustrate our new approach.

2.2 Background

This section summarizes the mathematical background underlying this work, and

echos the background presented in [31]. The following notation conventions are

used in this article. Vectors are denoted with boldface lower-case letters (e.g. x ∈

Rn). Given vectors x,y ∈ Rn, inequalities such as x < y or x ≤ y are to be
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interpreted componentwise. Throughout this article, convexity of a vector-valued

function f : Rn → Rm refers to convexity of all components fi, and concavity is

analogous. An interval in Rn is a nonempty subset of Rn of the form {x ∈ Rn : a ≤

x ≤ b}, which is also denoted as [a, b]. IRn denotes the set of all intervals in Rn.

Next, we introduce convex and concave relaxations of functions.

Definition 2.1. Let P ⊂ Rnp be a convex set. Consider a function φ : P→ Rm.

1. φcv : P → Rm is a convex relaxation of φ on P if φcv(p) ≤ φ(p) for all p ∈ P

and φcv is convex on P.

2. φcc : P → Rm is a concave relaxation of φ on P if φcc(p) ≥ φ(p) for all p ∈ P

and φcc is concave on P.

Several established approaches generate convex relaxations for closed-form fac-

torable functions automatically. The αBB relaxation method [3] constructs convex

relaxations for twice-continuously differentiable functions, and involves adding a

sufficiently large positive convex quadratic term to the original function. Another

approach is McCormick’s relaxation method [89, 92, 123, 144, 72, 73]. General-

ized McCormick relaxations (GM) [123], Tsoukalas-Mitsos relaxations (TM) [144],

and differentiable McCormick relaxations (DM) [72, 73] have the special property

that they describe convex relaxations for a composite function using relaxations

of the inner composed functions. We will refer to relaxations with this property

as generalized convex and concave relaxations, which are formalized according to the

following definition adapted from [119].

Definition 2.2. Let P ⊂ Rnp be a convex set. Consider a function φ : Rnz → Rnq . Func-

tions φcv,φcc : Rnz ×Rnz → Rnq are generalized convex and concave relaxations of
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φ on Rnz , respectively, if the following holds for each function z : P→ Rnz and all choices

of relaxations zcv, zcc : P→ Rnz . Consider ρ : P→ Rnq such that for each p ∈ P,

ρ(p) = φ(z(p)).

Then, the functions ρcv,ρcc : P→ Rnq such that for each p ∈ P,

ρcv(p) = φcv(zcv(p), zcc(p))

and ρcc(p) = φcc(zcv(p), zcc(p)),

are convex and concave relaxations of ρ on P, respectively.

Next, we summarize a sufficient condition for a parametric program to be con-

vex. The following definition and proposition are adapted from [52].

Definition 2.3. Let P ⊂ Rnp be a convex set. A point-to-set map SR : Rnp ⇒ Rnx

assigns a subset of Rnx to each element of Rnp . SR is convex on P if, for all p1,p2 ∈ P

and λ ∈ (0, 1), the Minkowski sum λSR(p1) + (1− λ)SR(p2) is a subset of SR(λp1 +

(1− λ)p2). Moreover, SR is a convex relaxation of an arbitrary point-to-set map S :

Rnp ⇒ Rnx on P if, for all p ∈ P, S(p) ⊆ SR(p) and SR is convex on P.

Proposition 2.1 (Corollary 2.1 in [52]). Define X ∈ Rnx and functions f : Rnx ×

Rnp → R, g : Rnx ×Rnp → Rng , and h : Rnx ×Rnp → Rnh . Let R : Rnp ⇒ Rnx be a

point-to-set map such that, for each p ∈ P,

R(p) = {x ∈ X | g(x,p) ≤ 0,h(x,p) = 0}.
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For each p ∈ P, consider a general parametric optimization problem

min
x

f (x,p), subject to x ∈ R(p).

Define an optimal-value function f ∗ : Rnp → R such that for each p ∈ P,

f ∗(p) =

 inf
x
{ f (x,p) | x ∈ R(p)}, if R(p) 6= ∅,

+ ∞, if R(p) = ∅.

If X and P are convex, f is convex on X × P, g is convex on X × P, and h is affine on

X× P, then f ∗ is convex on P.

Finally, we summarize the directional derivative, which provides local radial sen-

sitivity information for a function. The following definition is adapted from [115,

Section 3.1].

Definition 2.4. Let P ⊂ Rnp be a convex set. Let φ : P → Rn be a function. If for every

d ∈ Rn the limit

φ′(z0;d) = lim
λ↓0

1
λ
(φ(z0 + λd)−φ(z0))

exists, then φ is said to be directionally differentiable at z0 and the function φ′(z0; ·) is

the directional derivative of φ at z0.

36



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

2.3 Convex Relaxations of Implicit Functions

In this section, we present a new formulation for generating convex and concave

relaxations for an implicit function using parametric programming. In the remain-

der of this section, consider a Lipschitz continuous residual function f : Rnx+np →

Rnp , and the following system of equations

f (z,p) = 0. (2.1)

Consider a convex compact set P ∈ Rnp . If for each p ∈ P, there exists z that satisfy

(2.1), then there is an implicit function x : P → Rnx (not necessarily unique) such

that, for each p ∈ P,

f (x(p),p) = 0. (2.2)

Assumption 2.1. Assume that there exists at least one Lipschitz continuous function

x : P → Rnx and a known interval X ∈ IRnx such that (2.2) holds and x(p) ∈ X for

every p ∈ P.

The semi-local implicit function theorem [98] gives sufficient conditions for the

uniqueness of x in Assumption 2.1. Roughly, that theorem requires the partial

derivative ∂f
∂z to be nonsingular on X × P [47]. This result was later extended to

nonsmooth functions in [40, Theorem 7.1.1] and subsequent discussions.
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2.3.1 Main Result

Under Assumption 2.1, a new description for constructing convex and concave

relaxations for any such implicit function x is presented in the theorem below.

Theorem 2.1. Let f cv,f cc : Rnx+np → Rnp be convex and concave relaxations of f on

X × P, respectively. Define xcv,xcc : P → Rnx such that, for each i ∈ {1, . . . , nx} and

p ∈ P,

xcv
i (p) = min

ξ∈X
ξi subject to f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p), (2.3a)

xcc
i (p) = max

ξ∈X
ξi subject to f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p). (2.3b)

Under Assumption 2.1, xcv and xcc are convex and concave relaxations of x on P, respec-

tively.

Proof. Following Definition 2.1, we first show that xcv,xcc satisfy xcv(p) ≤ x(p)

and xcc(p) ≥ x(p) for all p ∈ P. Then, we demonstrate their respective convexity

and concavity.

To show that xcv(p) ≤ x(p) for all p ∈ P, define an optimal-value function

ω : P→ X such that, for each i ∈ {1, . . . , nx} and p ∈ P,

ωi(p) = min
ξ∈X

ξi subject to f (ξ,p) = 0. (2.4)

Choose any i ∈ {1, . . . , nx} and p ∈ P. Since x satisfies (2.2), the optimization

problem (2.4) is feasible and ωi(p) ≤ xi(p). Observe that the solution ξ∗ of the

optimization problem (2.4) is feasible in (2.3a). Therefore, xcv
i (p) ≤ ωi(p) ≤ xi(p)

for all p ∈ P.
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Next, we verify the convexity of xcv and the concavity of xcc. Define φ : X ×

P → R2ny such that φ(ξ,p) = (f cv(ξ,p),−f cc(ξ,p)) for each ξ ∈ X and p ∈ P.

Since f cv and f cc are convex and concave functions, respectively, φ is convex on

X× P. For each i ∈ {1, . . . , nx} and p ∈ P, (2.3a) is equivalent to

xcv
i (p) = min

ξ∈X
ξi subject to φ(ξ,p) ≤ 0. (2.5)

Under Assumption 2.1, for each p ∈ P, x(p) is a feasible point of (2.5), so that the

feasible region of (2.5) is non-empty. Since the objective function of (2.5) is linear,

X and P are convex, and φ is convex on X × P, the convexity of xcv
i on P follows

from Proposition 2.1.

The optimization problems in (2.3a) and (2.3b) are convex optimization prob-

lems. Thus, the relaxations xcv and xcc can in principle be computed with local

NLP solvers, such as IPOPT and CONOPT. Since evaluating x involves solving a

nonlinear equation system of similar size, we do not expect that evaluating each

xcv
i (p) or xcc

i (p) would be much more computationally expensive than evaluat-

ing x(p). Moreover, there are two particular scenarios in which the optimization

problems in (2.3a) and (2.3b) are easier to solve. Firstly, if the supplied relaxations

f cv,f cc are chosen to be affine or piecewise-affine relaxations of f [70, 33, 133], then

(2.3a) and (2.3b) become linear programs (LPs), which can be solved efficiently by

off-the-shelf solvers such as CPLEX and Gurobi. Secondly, if the original func-

tion f is quadratic and f cv,f cc are corresponding αBB relaxations [3], then f cv and

f cc will also be quadratic. In the case, (2.3a) and (2.3b) become convex paramet-

ric quadratically constrained quadratic programs (QCQPs) [102]. The advantage
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here is that the optimization problems (2.3a) and (2.3b) may be solved analyti-

cally in advance to determine closed-form expressions for xcv and xcc, to aid rapid

evaluation. This is particularly useful in deterministic global optimization, which

typically requires many evaluations of convex relaxations.

2.3.2 Tsoukalas-Mitsos Relaxation

In this subsection, we extend Theorem 2.1 to generate convex and concave relax-

ations for a composition of an implicit outer function with a known inner func-

tion. Suppose that the convex and concave relaxations of the inner function are

available. Then, we may construct the relaxations of the composite function by

modifying (2.3) using Tsoukalas-Mitsos relaxations [144].

Let R ⊂ Rnr and P ⊂ Rnp be convex compact sets, and consider continuously

differentiable functions r : P→ R and f̂ : Rnx+nr → Rnp . Suppose that an implicit

function x̂ : R→ Rnx is defined so as to satisfy:

f̂ (x̂(q), q) = 0, ∀q ∈ R. (2.6)

and suppose that the following assumption holds.

Assumption 2.2. Assume that there exists at least one differentiable function x̂ : R→ X

such that (2.6) holds for every q ∈ R.

Next, consider a composite function x : P→ Rnx such that, for all p ∈ P,

x(p) = x̂(r(p)). (2.7)
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We will apply the Tsoukalas-Mitsos relaxations to show that, if convex and concave

relaxations of r are available, then correct relaxations of x can be described by a

formulation similar to (2.3).

Theorem 2.2. Define f̂ cv, f̂ cc : Rnx+nr × Rnx+nr → Rnp such that f̂ cv and f̂ cc are

generalized convex and concave relaxations of f̂ on X × R, respectively. Let rcv, rcc :

Rnp → Rnr be convex and concave relaxations of r on P, respectively. Consider xcv,xcc

such that, for each i ∈ {1, . . . , nx} and p ∈ P,

xcv
i (p) =min

ξ∈X
ξi subject to (2.8a)

f̂ cv((ξ, rcv(p)), (ξ, rcc(p))) ≤ 0 ≤ f̂ cc((ξ, rcv(p)), (ξ, rcc(p))),

xcc
i (p) =max

ξ∈X
ξi subject to (2.8b)

f̂ cv((ξ, rcv(p)), (ξ, rcc(p))) ≤ 0 ≤ f̂ cc((ξ, rcv(p)), (ξ, rcc(p))).

Under Assumption 2.2, with x defined in (2.7), xcv,xcc in (2.8) are convex and concave

relaxations of x on P, respectively.

Proof. Consider f ,f cv,f cc : Rnx+np → Rnx such that, for each ξ ∈ Rnx and p ∈

Rnp ,

f (ξ,p) = f̂ (ξ, r(p)),

f cv(ξ,p) = f̂ cv((ξ, rcv(p)), (ξ, rcc(p))),

f cc(ξ,p) = f̂ cc((ξ, rcv(p)), (ξ, rcc(p))).

Substituting f̂ , f̂ cv, f̂ cc with f ,f cv,f cc, respectively, then (2.6) and (2.8) becomes

(2.1) and (2.3), respectively. Since f̂ cv and f̂ cc are generalized convex and concave
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relaxations of f̂ on X× R, respectively, f cv,f cc are convex and concave relaxations

of f on X× P following Definition 2.2. Assumption 2.2 shows that there exists one

differentiable function x : P→ X such that

f̂ (x̂(r(p)), r(p)) = f (x(p),p) = 0,

which ensures Assumption 2.1. Therefore, Theorems 2.1 ensures that xcv,xcc in

(2.8) are convex and concave relaxations of x defined in (2.7) on P, respectively.

Generalized convex and concave relaxations, f̂ cv and f̂ cc, may be constructed

using GM and DM.

2.3.3 Relaxations of Inverse Functions

Theorem 2.1 may be adapted to generate convex and concave relaxations for in-

verse functions. Suppose that v : X → P is an invertible function, and so there

exists an inverse function v−1 : P→ X of v such that, for each p ∈ P,

v(v−1(p)) = p.

Observe that v−1 may also be expressed as an implicit function defined by the

equation system:

f̄ (v−1(p),p) = v(v−1(p))− p = 0 ∀p ∈ P. (2.9)

So, correct convex and concave relaxations of v−1 on P may be constructed with a

formulation adapted from (2.3).
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Corollary 2.1. Let vcv,vcc : X → P be convex and concave relaxations of v on X,

respectively. Consider functions v−cv,v−cc : P→ Rnx such that, for each i ∈ {1, . . . , nx}

and p ∈ P,

v−cv
i (p) = min

ξ∈X
ξi subject to vcv(ξ) ≤ p ≤ vcc(ξ), (2.10a)

v−cc
i (p) = max

ξ∈X
ξi subject to vcv(ξ) ≤ p ≤ vcc(ξ). (2.10b)

Then, v−cv,v−cc in (2.10) are convex and concave relaxations of v−1 on P.

Proof. The desired result can be verified by showing that the hypotheses in Theo-

rem 2.1 holds with v−1 in place of x, and v−cv,v−cc in place of xcv,xcc, respectively.

Since v is invertible and v−1 is its inverse, Assumption 2.1 is satisfied. Define func-

tions f̄ cv, f̄ cc : X× P→ P such that, for each p ∈ P,

f̄ cv(z,p) = vcv(z)− p,

f̄ cc(z,p) = vcc(z)− p.

Because vcv and vcc are convex and concave relaxations of v on X, respectively,

f̄ cv and f̄ cc are respective convex and concave relaxations of f̄ . Thus, Theorem 2.1

applies in this case, and v−cv,v−cc in (2.10) are convex and concave relaxations of

v−1 on P.

As with Theorem 2.1, note that optimization problems in (2.10a) and (2.10b) are

convex NLPs. In addition, if vcv,vcc are affine or piecewise-affine relaxations, then

(2.10a) and (2.10b) are actually LPs, which maybe be solved efficiently.
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2.4 Convex Relaxations of Constraint Satisfaction Problems

In this section, we generalize the convex relaxation methodology described in

(2.3) from implicit functions to constraint satisfaction problems (CSPs). Relax-

ations of the point-to-set mappings in CSPs will be presented, and the directional

derivatives of these relaxations will be constructed as well. Throughout this sec-

tion, consider continuously differentiable mappings g : Rnx+np → Rng and h :

Rnx+np → Rnh . Unlike the function f considered in Section 2.3, the dimensions of

the codomains of g and h are arbitrary and may be distinct from np. Given known

intervals X ∈ IRnx and P ∈ IRnp , consider the following CSP:

min
z∈X, p∈P

0

subject to g(z,p) ≤ 0,

h(z,p) = 0.

(2.11)

Let the set of feasible z-values in X be expressed as a point-to-set map Ξ from Rnp

to Rnx such that, for each p ∈ P,

Ξ(p) := {ξ ∈ X | g(ξ,p) ≤ 0, h(ξ,p) = 0}. (2.12)

Let gcv : Rnx+np → Rnp be a convex relaxation of g on X × P, and hcv,hcc :

Rnx+np → Rnp be convex and concave relaxations of h on X × P, respectively.
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Define ξcv, ξcc : Rnp → Rnx such that, for each i ∈ {1, . . . , nx} and p ∈ P,

ξcv
i (p) = min

ξ∈X
ξi

subject to gcv(ξ,p) ≤ 0, (2.13a)

hcv(ξ,p) ≤ 0 ≤ hcc(ξ,p),

ξcc
i (p) = max

ξ∈X
ξi

subject to gcv(ξ,p) ≤ 0, (2.13b)

hcv(ξ,p) ≤ 0 ≤ hcc(ξ,p).

The optimization problems in (2.13a) and (2.13b) are convex NLPs, which are gen-

erally easier to solve than the original nonconvex CSP in (2.11).

Define an interval-valued point-to-set map ΞR : Rnp ⇒ Rnx such that, for each

p ∈ P,

ΞR(p) ≡ [ξcv(p), ξcc(p)].

We will verify that ΞR is a convex relaxation of Ξ on P. According to Definition 2.3,

it suffices to show that, for all p ∈ P, Ξ(p) is a subset of ΞR(p) and ΞR is convex

on P.

Theorem 2.3. Suppose that Ξ(p) is nonempty for all p ∈ P. Then, ΞR is a convex

relaxation of Ξ on P.

Proof. According to Definition 2.3, we will proceed by showing that Ξ(p) ⊆ ΞR(p)

for each p ∈ P, and that ΞR is convex on P.

First, choose any p ∈ P. Since Ξ(p) is nonempty, consider an arbitrary z ∈
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Ξ(p). Define ω : P→ X such that, for i ∈ {1, . . . , nx},

ωi(q) = min
ξ∈X

ξi subject to g(ξ, q) ≤ 0, h(ξ, q) = 0. (2.14)

Choose any i ∈ {1, . . . , nx}. Since z ∈ Ξ(p) as in (2.12), ωi(p) ≤ zi. Moreover,

observe that the optimization problem in (2.13a) is a convex relaxation of (2.14) in

the sense of [133, Definition 2], so ξcv
i (p) ≤ ωi(p) ≤ zi. It is analogous to show that

ξcc
i (p) ≥ zi for each i ∈ {1, . . . , nx}. Hence, ξcv(p) ≤ z ≤ ξcc(p), and so z ∈ ΞR(p).

Thus, Ξ(p) is a subset of ΞR(p) for each p ∈ P.

Next, we demonstrate the convexity of ΞR on P. Define φ : X× P→ R3nx such

that, for each ξ ∈ X and p ∈ P, φ(ξ,p) = (gcv(ξ,p),hcv(ξ,p),−hcc(ξ,p)), which

is convex on X× P. For each i ∈ {1, . . . , nx}, (2.13a) is equivalent to

ξcv
i (p) = min

ξ∈X
ξi subject to φ(ξ,p) ≤ 0. (2.15)

Observe that any point ξ ∈ Ξ(p) is feasible in the optimization problem (2.15).

Since the objective function of (2.15) is linear, φ is convex on X × P, and X, P are

convex, the convexity of ξcv
i on P follows from Proposition 2.1. It is analogous to

show that ξcc
i is concave on P.

Consider any pA,pB ∈ P and λ ∈ (0, 1). The convexity of ξcv and the concavity

of ξcc ensure that

λξcv(pA) + (1− λ)ξcv(pB) ≥ ξcv(λpA + (1− λ)pB),

λξcc(pA) + (1− λ)ξcc(pB) ≤ ξcc(λpA + (1− λ)pB).
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Consider any zpA ∈ Ξ(pA) and zpB ∈ Ξ(pB). Ξ(p) being a subset of ΞR(p) for each

p ∈ P ensures that zpA ∈ ΞR(pA) and zpB ∈ ΞR(pB). Then,

λzpA + (1− λ)zpB ≥ λξcv(pA) + (1− λ)ξcv(pB) ≥ ξcv(λpA + (1− λ)pB),

λzpA + (1− λ)zpB ≤ λξcc(pA) + (1− λ)ξcc(pB) ≤ ξcc(λpA + (1− λ)pB),

which shows that

λzpA + (1− λ)zpB ∈ ΞR(λpA + (1− λ)pB).

Since λ, zpA , zpB were arbitrarily chosen, and since λzpA + (1− λ)zpB is an arbi-

trary point in the Minkowski sum λΞR(pA) + (1− λ)ΞR(pB), it follows that

λΞR(pA) + (1− λ)ΞR(pB) ⊂ ΞR(λpA + (1− λ)pB).

Thus, according to Definition 2.3, ΞR is convex on P.

2.4.1 Directional Derivatives

In the previous section, we constructed a pair of convex and concave functions

to enclose the point-to-set mapping defined by a CSP. In this section, we describe

the directional derivatives of these convex and concave relaxations. Since implicit

functions may be considered as a special type of CSPs with only equality con-

straints, and since (2.3) is a variant of (2.13), the method presented in this section

also applies to the relaxations in (2.3).

Define a function ψ : X × P → Rng+2nh such that, for each ξ ∈ X and p ∈ P,
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ψ(ξ,p) = (gcv(ξ,p),hcv(ξ,p),−hcc(ξ,p)). Then, (2.13) becomes

ξcv
i (p) = min

ξ∈X
ξi subject to ψ(ξ,p) ≤ 0, (2.16a)

ξcc
i (p) = max

ξ∈X
ξi subject to ψ(ξ,p) ≤ 0. (2.16b)

We use results from [107] to evaluate directional derivatives of the constructed

convex relaxations in (2.16a) for an arbitrary i ∈ {1, . . . , nx}; a similar approach can

be adapted for concave relaxations in (2.16b). Given any p∗ ∈ P, it will be shown

that for each p near p∗, (2.16a) has a (global) solution ξ(p) near ξ∗ under relevant

assumptions. Furthermore, ξ(·) is B-differentiable, and its directional derivative

may be computed by solving a convex quadratic program. To proceed, we first

introduce notations that will be used in this section.

For each p ∈ P, let y(p) = (ξ(p),p). Since (2.16a) is a convex optimization

problem with inequality constraints only, let M(p) be the set of multipliers λ ∈

Rng+2nh that satisfies the Karush-Kuhn-Tucker (KKT) conditions at y(p):

e(i) +
ng+2nh

∑
k=1

λk∇ξψk(y(p)) = 0,

ψ(y(p)) ≤ 0, λ ≥ 0, 〈λ, ψ(y(p))〉 = 0,

(2.17)

where e(i) is the ith column of the identity matrix E ∈ Rnx×nx .

For each p ∈ P, denote the set of active inequality constraint indices [107] as

I(p) = {j : ψj(y(p)) = 0}. Given λ ∈ M(p), let I+λ (p) = {j : λj > 0} and

I0
λ(p) = I(p)\I+λ (p). The critical cone of the constraints ψ ≤ 0 at y(p) with respect
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to λ is

Kλ(p) := {ω ∈ Rnx+np : ∀k ∈ I0
λ(p), 〈∇ψk(y(p)), ω〉 ≤ 0,

∀j ∈ I+λ (p), 〈∇ψj(y(p)), ω〉 = 0, }.

The critical cone at y(p) with respect to λ in the direction d ∈ Rnp is

Kλ(p;d) := {ν ∈ Rnx | (ν,d) ∈ Kλ(p)}.

The Lagrangian of (2.16a) at p is:

L(y; λ) ≡ yi + 〈λ, ψ(y)〉.

Lastly, given d ∈ Rnp , define a subset S(p;d) of M(p) such that

S(p;d) ≡ arg max
λ

λ>∇pψ(y(p))d subject to λ ∈ M(p).

The following assumption is adapted from Assumptions (A1)-(A4) in [107] for

the convex optimization problem (2.16a).

Assumption 2.3. For each j ∈ {1, . . . , ng + 2nh}, assume the following conditions hold:

1. ψ is twice-continuously differentiable near (ξ∗,p∗) ∈ Rnx+np , where ξ∗ is a locally

optimal objective value of (2.16a) of ξcv
i (p∗).

2. There exists ν ∈ Rnx such that, if ψi(y(p
∗)) = 0, then 〈∇ξψi(y(p

∗)), ν〉 < 0.

3. For each λ that satisfies the KKT conditions (2.17) at y(p∗), and each ν 6= 0 such
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that 〈∇ξψi(ξ,p), ν〉 = 0 if λi > 0, it holds that

ν>∇2
ξξ〈λ, ψ(y(p∗))〉ν > 0.

4. There exists a neighborhood W of y(p∗) such that for any subset I of I(p∗) ≡ {j :

ψj(p
∗) = 0}, the collection of partial derivative matrices {∇ξψj(y) : j ∈ I} has

the same rank for all vectors y ∈W.

The following theorem describes directional derivatives for the optimization

problem in (2.16a). It is adapted from Theorem 2 in [107].

Theorem 2.4. Suppose that Assumption 2.3 holds. Then, for respective neighborhoods

P∗ of p∗ and X∗ of ξ∗, there is a function ξ : P∗ → X∗ that satisfies all of the following

conditions:

1. ξ is continuous, and for each p ∈ P∗, ξ(p) is the unique solution of (2.16a) in X∗,

2. ξ is a piecewise-differentiable function, and hence locally Lipschitz continuous, and

3. The directional derivative ξ′(p; ·) is a piecewise linear function such that for each

p ∈ P∗, d ∈ Rnp , and λ ∈ S(p;d), ξ′(p;d) is the unique solution of the following

convex quadratic program:

min
ν

1
2
ν>∇2

ξξ〈λ, ψ(y(p))〉ν + d>∇2
ξp〈λ, ψ(y(p))〉ν

subject to ν ∈ Kλ(p;d).
(2.18)
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2.5 Tightening Interval Bounds

In the previous sections, convex and concave relaxations of implicit functions and

CSPs are constructed on known intervals, i.e., X in Assumption 2.1 and (2.11). In

this section, we adapt the formulation in (2.13) to generate new interval bounds for

implicit functions and CSPs that are at least as tight as the original bounds. These

tighter intervals can then be used to construct relaxations of implicit functions and

CSPs that are tighter than those constructed with the original intervals. This is

because the convex relaxations of the original residual function, constructed using

methods like αBB and McCormick relaxations, will converge quickly to the original

function when the intervals shrink. Examples 2.1 and 2.3 in Section 2.7 illustrate

such applications. With this foundation, we allow the interval X that convex and

concave relaxations were constructed on to be varied, and add it as a superscript

to these relaxations.

Define ΞB ≡ [ξL, ξU] ∈ IRnx such that for each i ∈ {1, . . . , nx},

ξL
i = min

ξ∈X,p∈P
ξi

subject to gcv,X(ξ,p) ≤ 0, (2.19a)

hcv,X(ξ,p) ≤ 0 ≤ hcc,X(ξ,p),

ξU
i = max

ξ∈X,p∈P
ξi

subject to gcv,X(ξ,p) ≤ 0, (2.19b)

hcv,X(ξ,p) ≤ 0 ≤ hcc,X(ξ,p).

We will show that, given a rough enclosure X, (2.19) describes refined interval

51



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

bounds for the feasible region in (2.12) for all p ∈ P, and they are as least as tight

as X.

Theorem 2.5. Let ΞR(p) ≡ [ξcv, ξcc] be a solution of (2.13). Then, ΞB ≡ [ξL, ξU] in

(2.19) satisfy satisfies the following inclusions. For all p ∈ P,

ΞR(p) ⊆ ΞB ⊆ X.

Proof. From (2.13) and (2.19), observe that, for any i ∈ {1, . . . , nx},

ξL
i = min

p∈P
ξcv

i (p), and ξU
i = max

p∈P
ξcc

i (p).

Hence, ΞR(p) ⊆ ΞB for all p ∈ P. Since (2.19) guarantees that ξL, ξU ∈ X, ΞB ⊆

X.

The approach described in (2.19) may be used iteratively to further improve the

tightness of intervals that enclose implicit functions and the point-to-set mappings

in CSPs. Let interval ΞB,0 be an initial rough enclosure of implicit functions or the

point-to-set mappings in CSPs, in place of X. Let ΞB,k ≡ [ξL,k, ξU,k] be computed
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by solving the following for k ∈ {1, 2, . . . }: for each i ∈ {1, . . . , nx},

ξL,k
i = min

ξ∈ΞB,k−1,p∈P
ξi

subject to gcv,ΞB,k−1
(ξ,p) ≤ 0, (2.20a)

hcv,ΞB,k−1
(ξ,p) ≤ 0 ≤ hcc,ΞB,k−1

(ξ,p),

ξU,k
i = max

ξ∈ΞB,k−1,p∈P
ξi

subject to gcv,ΞB,k−1
(ξ,p) ≤ 0, (2.20b)

hcv,ΞB,k−1
(ξ,p) ≤ 0 ≤ hcc,ΞB,k−1

(ξ,p).

Theorem 2.5 illustrates that ΞB,k ⊆ ΞB,k−1 ⊆ · · · ⊆ ΞB,0 ≡ X. Thus, (2.20) presents

a method to iteratively compute intervals for implicit functions and CSPs that are

at least as tight as a known rough enclosure.

2.6 Relaxations of Numerical ODE Solutions

In this section, we construct convex and concave relaxations for implicit functions

that are numerical solutions of parametric ordinary differential equations (ODEs),

computed using implicit integration methods. Compared with explicit integra-

tion methods, implicit integration methods are more stable when dealing with stiff

ODEs [136]. While methods have been established in [136, 153] to construct con-

vex relaxations for implicit numerical solutions of ODEs, this section introduces an

alternative approach that may construct tighter relaxations, as illustrated in Exam-

ple 2.3 in Section 2.7. Such convex relaxations are useful in the deterministic global

optimization of dynamic systems.
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Define t0, t f ∈ R such that t0 < t f , and let I = (t0, t f ]. Given z0 ∈ Rnz and a

continuous function u : I × P×Rnz → Rnz , consider an initial-value problem:

dz
dt

(t,p) = u(t,p, z(t,p)), t ∈ I,

z(t0,p) = z0.
(2.21)

According to Peano’s Theorem summarized in [60, Theorem 2.1, Chapter II], (2.21)

has at least one solution. We will use the implicit Euler method to obtain a numer-

ical solution and generate it convex relaxations using the approach of Section 2.3.

Similar approaches can be applied to other implicit integration methods, such as

the Adams–Moulton method and the BDF method [153]. To solve (2.21) with the

implicit Euler method at an arbitrary p ∈ P, we first discretize I into n evenly

spaced intervals with length ∆t = (t f − t0)/n and {0, . . . , n} mesh points. Denote

the ODE solution value at a mesh point as zm for each m ∈ {0, . . . , n}. Then, (2.21)

can be approximated by a nonlinear equation system: for all m ∈ {1, . . . , n} and

p ∈ P,

zm(p)− zm−1(p)− ∆tu(m ∆t,p, zm(p)) = 0. (2.22)

where z0(p) = z0 is the known initial condition. (2.22) actually defines an implicit

function

x(p) ≡


z1(p)

...

zn(p)
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following (2.2) if we let

f ((z1(p), . . . ,zn(p))>,p) ≡


z1(p)− z0(p)− ∆tu(∆t,p, z1(p))

...

zn(p)− zn−1(p)− ∆tu(n∆t,p, zn(p))


= 0. (2.23)

Thus, we can use Theorem 2.1 to construct convex and concave relaxations for zn

on P, where zn is the numerical solution value of ODE (2.21) at its terminal time.

Let Z ≡ [zL, zU] ∈ Rnz be a known interval bound so that z(t,p) ∈ Z for all

(t,p) ∈ I × P. Define Zm,0 ≡ [zm,0,L, zm,0,U] ⊆ IRnz as the initial interval bounds

of zm for each m ∈ {1, . . . , n}, where the superscript m represents the mesh point

index and 0 means that its is a initial rough enclosure (similar to the notation in

Section 2.5). Since a conservative interval bound Z is known, we set Zm,0 = Z for

each m ∈ {1, . . . , n}, and it follows that zm(p) ∈ Zm,0 for each m ∈ {1, . . . , n} and

p ∈ P. Then, convex and concave relaxations of zn on P can be computed using
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Theorem 2.1: for each j ∈ {1, . . . , nz},

zn,cv
j (p) = min

ζm∈Zm,0,
m∈{1,...,n}

ζn
j ,

subject to f cv,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn)>,p)

≤ 0 ≤ f cc,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn)>,p),

∀i ∈ {1, . . . , nz}, m ∈ {1, . . . , n},

zn,cc
j (p) = max

ζm∈Zm,0,
m∈{1,...,n}

ζn
j ,

subject to f cv,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn)>,p)

≤ 0 ≤ f cc,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn)>,p),

∀i ∈ {1, . . . , nz}, m ∈ {1, . . . , n},

(2.24)

where f cv,Zm,0
and f cc,Zm,0

: Rnz×n+np → Rnz×n are convex and concave relaxations

of f in (2.23), respectively, constructed on interval Zm,0.

Furthermore, we may use the formulation in (2.20) to construct improved inter-

val bounds Zm,1 ≡ [zm,L,1, zm,U,1] of zm for each m ∈ {1, . . . , n}, where m denotes

the index of mesh point and 1 is used in place of k in (2.20) to represent one iter-

ation of refinement. As discussed in Section 2.5, these improved intervals are at

least as tight as the original interval Zm,0, and they will lead to tighter relaxations

for implicit functions and CSPs. In this case, we can use these tighter intervals to

generate tighter relaxations for the numerical solutions of ODEs by replacing Zm,0

in (2.24) with Zm,1. This result is illustrated in Example 2.3 in Section 2.7.

Similar to Section 2.5, the intervals where convex and concave relaxations are
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constructed on are added as superscripts to these relaxations in the following for-

mulation. For each m ∈ {1, . . . , n}, consider Zm,1 ≡ [zm,L,1, zm,U,1] ∈ Rnz such that,

for each j ∈ {1, . . . , nz},

zm,L,1
j = min

p∈P,ζκ∈Zκ,0,
κ∈{1,...,n}

ζm
j ,

subject to f cv,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn)>,p)

≤ 0 ≤ f cc,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn)>,p),

∀i ∈ {1, . . . , nz}, κ ∈ {1, . . . , n},

zm,U,1
j = max

p∈P,ζκ∈Zκ,0,
κ∈{1,...,n}

ζm
j ,

subject to f cv,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn)>,p)

≤ 0 ≤ f cc,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn)>,p),

∀i ∈ {1, . . . , nz}, κ ∈ {1, . . . , n}.

(2.25)

2.7 Numerical Examples

In this section, we use the approaches in previous sections to construct convex

and concave relaxations, as well as improved interval bounds, for various implicit

functions and parametric ODEs. These approaches were implemented in the pro-

gramming language Julia [20]. The McCormick.jl package [152] was used to con-

struct convex relaxations of nonconvex factorable functions following either the

standard McCormick relaxations [92, 123] or the differentiable McCormick relax-

ations [72, 73]. All convex nonlinear programs were solved with IPOPT v3.13.2

[147] via JuMP v0.21.4 [49]. The numerical results reported below were obtained

57



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

by running this implementation on a Windows 10 machine with a 3.6 GHz AMD

Ryzen 5 2600X CPU and 8 GB memory.

The following example is adapted from [136, Example 3.26].

Example 2.1. Let P := [6, 9], and consider a function f (z, p) = z2 + pz + 4 where

the parameter p is an element of P. According to the quadratic formula, for each p ∈ P,

there are two real roots z∗ of the equation f (z, p) = 0. It was reported in [136] that

X†,0 = [−0.78,−0.4] and X‡,0 = [−10.0,−5.0] are two interval bounds of these two real

roots, respectively. In both X†,0 and X‡,0, there is a single real root z∗ of f (z, p) = 0 for

each p ∈ P, so we have two injective implicit functions x† : P→ X†,0 and x‡ : P→ X‡,0

such that f (x†(p), p) = 0 and f (x‡(p), p) = 0.

We generated convex and concave relaxations of x† and x‡ on P using Theo-

rem 2.1, and compared them with relaxations constructed using the method estab-

lished in [136]. The convex and concave relaxations of f were constructed with

standard McCormick relaxations [92, 123]. The minimization and maximization

problems in (2.3) were solved at different p ∈ P. Their optimal values, plotted

as functions of p in Figure 2.1, are convex and concave relaxations of the implicit

functions x† and x‡ on P. Moreover, it was observed that these relaxations are

significantly tighter than the relaxations in [136, Figure 1] at each p ∈ P. For exam-

ple, in Figure 2.1(b), our method generated a concave relaxation xcc(p) ≈ −6.25

at p = 8. However, in [136, Figure 1(b)], the concave relaxation of x at p = 8 is

around −5.

Next, we constructed improved interval bounds of x† and x‡ on P separately.

Since an implicit function may be considered as a CSP with equality constraints

only, we applied the formulation in (2.20) with k = 1 to generate interval bounds
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(a) (b)

Figure 2.1: The implicit functions x† and x‡ in Example 2.1 (solid), along with
their interval bounds (dashed) reported in [136] and convex and concave

relaxations (dotted) constructed with the new method on P, plotted as functions
of p.

that are tighter than the original interval bounds X†,0 and X‡,0. As shown in Fig-

ure 2.2, these improved interval bounds are significantly tighter than the original

bounds.

(a) (b)

Figure 2.2: The implicit functions x† and x‡ in Example 2.1 (solid), along with
their original interval bounds X†,0 and X‡,0 (dashed) and improved interval

bounds X†,1 and X‡,1 (dotted) on P, plotted as functions of p.
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Furthermore, we used the improved interval bounds X†,1 and X‡,1 to gener-

ate improved relaxations for x† and x‡, respectively, on P. These relaxations are

plotted in Figure 2.3, along with the original relaxations constructed with X†,0 and

X‡,0. This illustrates that tighter interval bounds produce tighter convex and con-

cave relaxations.

(a) (b)

Figure 2.3: The implicit functions x† and x‡ in Example 2.1 (solid), along with
their relaxation constructed on X†,0 and X‡,0 (dashed) and improved relaxations

constructed on X†,1 and X‡,1 (dotted) on P, plotted as functions of p.

In addition to McCormick relaxations, we also used αBB relaxations [3] to con-

struct convex and concave relaxations of f . The resulting convex and concave

relaxations of x on X†,0 and X‡,0 are illustrated in Figure 2.4. This illustrates the

versatility of our relaxation approach. Any valid convex and concave relaxations

of f can be used in (2.3), while the established method in [136] is limited to GM.

Example 2.2. The van der Waals equation is a physical property model for describing the

behavior of non-ideal gases in chemical engineering. It establishes the relationship between

pressure P (atm), volume V (L), temperature T (K), and amount of gas n (mole) using
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(a) (b)

Figure 2.4: The implicit functions x† and x‡ in Example 2.1 (solid), along with
their interval bounds (dot-dashed) and convex and concave relaxations (dashed)
where the relaxations of the original residual function f are constructed with αBB

relaxations, plotted as functions of p.

the nonlinear equation below:

f (P, V) :=
(

P + a
n2

V2

)
(V − nb)− nRT = 0. (2.26)

where R = 0.082 06 L atm
K mol is the gas constant, and a, b are van der Waals constants. We

study the behavior of 1 mole of hydrogen gas that undergoes reversible isothermal com-

pression from 23.0 L to 22.0 L at 273 K. We would like to compute guaranteed bounds

on the pressures obtained during this conversion, which may be used to verify that the

process operates safely. In this case, n = 1 mole, T = 273 K, a = 0.2444 L2 atm
mol2

, and

b = 0.026 61 L
mol are constants.

To study how pressure varies during this compression process, we consider

the implicit function of pressure in terms of volume, defined to satisfy (2.26). Thus,

we construct convex and concave relaxations of P on [22.0, 23.0] using Theorem 2.1.

The interval bound X that encloses P on [22.0, 23.0] is set to [0.9, 1.1] and the convex
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and concave relaxations of f are constructed with GM. The generated convex and

concave relaxations of P are illustrated in Figure 2.5, and appear to provide tight

enclosures of the graph of P.

Figure 2.5: The implicit function of pressure with respect to volume in
Example 2.2 (solid), along with its convex and concave relaxations (dashed)

Example 2.3. Consider the following parametric ODE:

dz
dt

(t, p) = −z2 + p, t ∈ (0, 1],

z(0, p) = 9,
(2.27)

where p ∈ P ≡ [−1, 1].

The convex and concave relaxations of this ODE system are generated accord-

ing to Section 2.6. Similar work has been done in [111, Section 4.1] and [153, Exam-

ple 1]. We first discretize I into 20 intervals, so that n = 20 and ∆t = (t f − t0)/n =

0.05. Using the implicit Euler method, ODE solution z(·, p) can be numerically ap-

proximated by z1(p), . . . , z20(p) for all p ∈ P. In particular, z20(p) is the numerical

approximation of the ODE solution z(t f , p) at the terminal time for all p ∈ P. A

known conservative interval bound for the ODE (2.27) is Z = [0.1, 9] according to
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[153], so the interval bounds of zm on P, Zm,0, are set to Z for each m ∈ {1, . . . , 20},

where the superscript 0 means that they are initial rough enclosures. Then, we

generated convex and concave relaxations z20,cv,0(p), z20,cc,0(p) on P using (2.24)

to, where f cv,f cc were constructed with GM. These relaxations are plotted in Fig-

ure 2.6, and appear to be valid convex and concave relaxations of z20(p) on P.

Figure 2.6: The numerical solution of (2.27) via the implicit Euler method (solid)
at t = 1, along with its convex and concave relaxations (dashed), plotted as a

function of p

Next, the formulation in (2.25) was employed to construct improved interval

bounds Zm,1 ≡ [zm,L,1, zm,U,1] of zm for each m ∈ {1, . . . , 20}, where the last su-

perscript 1 stands for one iteration of refinement. The generated lower bounds

z1,L,1, . . . ,z20,L,1 and upper bounds z1,U,1, . . . ,z20,U,1 are plotted as the lower-bounding

and upper-bounding trajectories in Figure 2.7a. Furthermore, these tighter interval

bounds are used to generated tighter convex and concave relaxations z20,cv,1(p), z20,cc,1(p)

by replacing Zm,0 in (2.24) with Zm,1 for each m ∈ {1, . . . , 20}. The improved relax-

ations are illustrated in Figure 2.7(b).

Lastly, we compare the convex and concave relaxations illustrated in Figure 2.7(b)

with those constructed with established methods [111, 153]. When k = 0, we
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(a) (b)

Figure 2.7: (a) Interval bounds Zm,0 (dashed) and tighter interval bounds Zm,1

(dotted), m ∈ {1, . . . , 20}, in Example 2.3. Solid lines are trajectories of z(·, p) in
(2.27) with different p. (b) The parametric solution of (2.21) (solid), along with its

convex and concave relaxations constructed on conservative interval bounds
(dashed) and improved interval bounds (dotted), plotted as a function of p at

t = 1

used very conservative interval bounds Z1,0, . . . , Z20,0 that are much looser than

the bounds used in [111]. In this case, the convex relaxation z20,cv,0 in Figure 2.7(b)

is looser than the convex relaxation in [111, Figure 5], but the concave relaxation

z20,cc,0 overlaps with the numerical solution z20, and is significantly tighter than

the concave relaxation in [111, Figure 5]. When k = 1, we used tighter interval

bounds Z1,1, . . . , Z20,1. In this case, the convex and concave relaxations, z20,cv,1 and

z20,cc,1, are both significantly tighter than the relaxations in [111, Figure 5]. Com-

pared with the lower and upper bounds shown in [153, Figure 4, lower left and

lower right], the bounds in Figure 2.7(a) are looser. This is probably due to the

difference in numerical integration methods. Instead of the naive implicit Euler

method used in this work, more advanced Adams–Moulton (AM) and backward

difference formula (BDF) methods were used in the implementation of [153]. In

principle, the approach in Section 2.6 can be trivially adapted for the AM and BDF
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methods, but we won’t attempt it here due to the implementation complexity.

2.8 Conclusion

A novel approach for generating convex and concave relaxations of implicit func-

tions has been developed in this article. These relaxations are described by the

convex parametric programs shown in Theorem 2.1, whose constraints are arbi-

trary convex and concave relaxations of the original residual function. Using the

Tsoukalas-Mitsos relaxations of compositions [144], Section 2.3.2 demonstrated

that a priori convex and concave relaxations can be used to generate relaxations

for composite functions that involve implicit functions. Furthermore, this new ap-

proach was extended to construct convex relaxations for inverse functions (Sec-

tion 2.3.3) and feasible set mappings in CSPs (Section 2.4). Directional deriva-

tives of these convex relaxations are available through solving auxiliary convex

quadratic programs described in Section 2.4.1. Section 2.5 illustrated that tighter

interval bounds of implicit functions and feasible regions in CSPs can be obtained

by further optimizing their convex relaxations with respect to parameters. These

improved interval bounds can then be used to generate tighter relaxations. Lastly,

Section 2.6 demonstrated constructing convex relaxations and interval bounds for

the numerical solutions of parametric ODEs using our new approach.

Unlike established methods that construct relaxations for implicit functions and

CSPs, our new approach does not assume uniqueness of a solution and does not

require the original residual function to be factorable. While the method in [136]

requires GM and the method in [151] requires RM, our new approach admits any

valid convex relaxations of the original residual function, including McCormick
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relaxations [92, 123, 72], αBB relaxations [3], convex envelopes, and the pointwise

best among multiple relaxations. Furthermore, while the established method in

[136] depends on one particular nonlinear equation solution approach, i.e. fixed-

point iteration, our new approach may employ various methods to solve the em-

bedded optimization problems, such as LP algorithms and NLP algorithms, or

even solve them analytically. This optimization-based approach is also easy to

implement. A proof-of-concept Julia implementation of this approach was devel-

oped. As illustrated by the numerical examples in Section 2.7, our new approach

may construct tighter relaxations of implicit functions and parametric ODEs than

established methods. These properties are beneficial in applications such as global

optimization and reachability analysis.

Future work may include describing subgradients for the new convex relax-

ations of implicit functions, for use when minimizing these relaxations during

global optimization, or when constructing outer approximations. Tsoukalas and

Mitsos has described subgradients of their convex relaxations in [144]. Another po-

tential direction of future research is to extend the approach of generating convex

relaxations for parametric ODEs to construct relaxations for parametric differential

algebraic equations (DAEs). Semi-explicit index-1 DAEs can be approximated as

CSPs using similar implicit numerical methods as discussed in Section 2.6. Then,

convex relaxations can be generated following Theorem 2.3 if the parametric DAE

has a solution for each p ∈ P. However, compared with ODEs, it may be difficult

to verify the existence of solutions of DAEs on the entire parameter domain due to

these additional algebraic equations.
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Chapter 3

A Smoothing Method for Generating

Tighter Reachable Set Enclosures for

Parametric Ordinary Differential

Equations

This chapter is to be submitted to a journal before my anticipated thesis defense.

3.1 Introduction

The reachable set of a dynamic system is the set of possible final states that the

system may attain, given a range of permitted initial conditions, parameters, or

controls. This article focues on dynamic systems that are represented as paramet-

ric systems of ordinary differential equations (ODEs), as formalized in Section 3.2
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below. Methods for constructing reachable sets are useful for estimating the influ-

ence of uncertainty on the dynamic system. Moreover, generating convex enclo-

sures of reachable sets is fundamental to methods for deterministic global dynamic

optimization [101, 81]. Direct analysis of reachable sets is also important in various

applications, such as uncertainty evaluation [59], parameter estimation [75], state

estimation [69], safety verification [66, 121], and fault detection [82].

Several approaches for describing reachable sets have been established. The

Hamilton-Jacobi equation, which is a partial differential equation (PDE), character-

izes the reachable set accurately (as summarized by [91]). However, solving such a

PDE is still a computationally intensive task with current technology. Other meth-

ods require conservative approximations of the original nonlinear system with lin-

earized models, such as a linearization method by [8] with the linearization error

rigorously bounded. To reduce over-approximation of the actual reachable set,

[12] described a method for splitting state space into smaller regions and com-

puted linear approximations in these partitions. Many types of enclosures have

been applied to such linear systems, such as hyper-rectangles [46], zonotopes [7],

and ellipsoids [79].

Taylor series methods provide a second way to compute reachable sets for para-

metric ODEs. They involve computing a validated solution (i.e. a guaranteed

enclosure of the true solution) for ODEs by constructing high-order Taylor expan-

sions of the system states with respect to time in discrete time steps, and then

bounding the coefficients and remainder terms with interval arithmetic [96]. To
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overcome the dependency problem of classic Taylor series methods, in which re-

peated terms in algebraic representations of functions can lead to significant over-

estimation in interval arithmetic, Taylor models were introduced by [88]. These

methods bound the the Taylor remainder error by propagating an auxiliary model

consisting of a Taylor polynomial and an interval remainder bound. [84] used

Taylor models to enclose the reachable sets for parametric ODEs. [112] extended

these further by replacing interval arithmetic with McCormick relaxations, yield-

ing tighter enclosures in general. However, Taylor series methods may be limited

in computational efficiency because of the complexity of constructing and evalu-

ating high-order Taylor expansions. The number of Taylor coefficients involved

grows exponentially with the numbers of states and inputs.

A third major category of methods for describing reachable sets involves differ-

ential inequalities. Differential inequality-based methods use an auxiliary system

of ODEs obtained from the original system to describe the reachable sets. The

right-hand side (RHS) functions in the auxiliary relaxation system are modified

enclosures of the original ODE RHS function. The solutions of this auxiliary sys-

tem are guaranteed to be component-wise lower and upper bounds for the reach-

able set. Such auxiliary systems can be solved via off-the-shelf numerical solvers

with adaptive time-stepping, while Taylor series methods require integration pro-

cedures with manually configured step-size. Several methods in this different in-

equality category have been developed in the past decades. A major distinction

among these methods is how the original RHS functions are handled. We now

briefly review some established methods for constructing the new auxiliary RHS

in chronological order. Harrison [59] used interval arithmetic [94] to construct the
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auxiliary RHS and computed interval bounds for the original states. A flattening

technique was applied in this method (see Section 3.2 below) to reduce the so-

called wrapping effect of interval arithmetic. An affine relaxation-based method

was introduced by [128], in which the auxiliary RHS functions are constructed via

linearizing the classic McCormick relaxation [89]. Although the solutions of such

auxiliary systems are rigorous bounds for the original states, their existence and

uniqueness are not guaranteed without additional assumptions. Scott and Barton

[120] proposed a method for computing component-wise convex and concave re-

laxations for the final states of parametric ODEs, which are guaranteed to be at

least as tight as the Harrison’s interval bounds. Scott and Barton’s construction

of the auxiliary RHS functions involves applying Harrison’s flattening technique

to generalized McCormick relaxations (GMR) [123]. However, these RHS func-

tions are typically discontinuous, which may hinder methods for solving the ODEs

and evaluating subgradients for use in dynamic global optimization. More details

about this approach are presented in Section 3.3. Harwood et al. [62] proposed a

method that embeds linear programs into the auxiliary RHS functions to improve

the enclosures. A special relaxation technique is used to ensure the uniqueness of

ODE solutions. Moreover, Harwood et al. considered leveraging an a priori en-

closure to reduce the conservatism in the relaxation of the original RHS functions.

This strategy was further developed by [126, 125, 124]. Shen and Scott made use

of known information of the original system, including physical bounds, model

redundancy, and path constraints, to further tighten the reachable sets.

In this article, a new differential inequality method is proposed with the goal of

generating tight enclosures of reachable sets for parametric ODEs automatically.
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This method improves Scott and Barton’s method by adding a new square-root

term to the auxiliary RHS functions based on kinematic intuition. This modifi-

cation eliminates the discrete jumps from the auxiliary RHS functions and fur-

ther tightening them. The solutions of the new auxiliary system are verified to

be tighter convex and concave relaxations of the original states. Moreover, un-

der mild assumptions, they are differentiable with respect to parameters. The im-

proved tightness and smoothness of these new convex relaxations are desirable for

a number of reasons, such as permitting sensitivity analysis and supplying tighter

global bounds for use in global optimization algorithms.

This article is organized as follows. In Section 3.2, we introduce the problem

formulation. Necessary mathematical background is summarized in Section 3.3.

Our new approach is then presented in Section 3.4, and Section 3.5 establishes use-

ful properties of this approach. In Section 3.6, we introduce a practical numerical

method for computing these new relaxations automatically. Finally, numerical ex-

amples are presented in Section 3.7 to demonstrate the tighter and smooth convex

relaxations generated with this new method.

The following notation conventions are used in this article. The set of positive

real numbers is represented as R>0, and the set of non-negative real numbers is

represented as R≥0. The standard Euclidean norm ‖·‖ is adopted on Rn. Vectors

are denoted with boldface lower-case letters (e.g. x). Given vectors x,y ∈ Rn, in-

equalities such as x < y or x ≤ y are to be interpreted componentwise. Moreover,

x(−i) ∈ Rn−1 denotes the vector x ∈ Rn except with its ith component excluded.

Throughout this article, convexity of a vector-valued function f refers to convexity

of all components fi, and concavity is analogous. An interval in Rn is a nonempty
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subset of Rn of the form {x ∈ Rn : a ≤ x ≤ b}, which is denoted as [a, b]. IRn

denotes the set of all intervals in Rn.

3.2 Problem Formulation

Consider scalars t0, t′f ∈ R and t f ∈ R ∪ {+∞} with t0 < t′f ≤ t f . Set I := [t0, t f ]

(or [t0,+∞) if t f = +∞). Set I′ := [t0, t′f ] ⊂ I. Let P ⊂ Rnp be an interval, and

D ⊂ Rnx be open. Given a continuous mapping x0 : P → D and a Lipschitz

continuous function f : I × P× D → Rnx , the remainder of this article considers

an initial-value problem

ẋ(t,p) = f (t,p,x(t,p)), x(t0,p) = x0(p). (3.1)

Assume that there exists a solution of (3.1) on I × P. Moreover, suppose that

kx ∈ R>0 is a Lipschitz constant of f (t,p, ·) over D for all (t,p) ∈ I × P. Thus,

(3.1) has a unique solution x by the Picard-Lindelöf Theorem summarized in [60,

Theorem 1.1, Chapter II].

State relaxations, defined below, are convex and concave relaxations of the state

variable x, respectively, which provide valid enclosures for the reachable set of

(3.1). Besides that, they are also required in generating convex relaxed problems

for nonconvex dynamic optimization problems with ODEs embedded [120]. Mini-

mizing these relaxed convex problems locally generates guaranteed lower bounds

of the original nonconvex objective function, which are desired in deterministic

global dynamic optimization [131].

Definition 3.1. Suppose that Z ⊂ Rn is convex and h : Z → Rm.
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1. hcv : Z → Rm is a convex relaxation of h on Z if hcv(z) ≤ h(z) for all z ∈ Z

and hcv is convex on Z.

2. hcc : Z → Rm is a concave relaxation of h on Z if hcc(z) ≥ h(z) for all z ∈ Z

and hcc is concave on Z.

Definition 3.2. Functions xcv,xcc : I′ × P → Rnx are state relaxations for (3.1) on

I′ × P, if, for every t ∈ I′,

1. xcv(t, ·) is convex on P,

2. xcc(t, ·) is concave on P, and

3. xcv(t,p) ≤ x(t,p) ≤ xcc(t,p), for all p ∈ P.

The objective of this work is to generate improved state relaxations for the ODE

(3.1) on I′ × P. We will achieve this by adapting and tightening a state-of-the-

art method developed by [120]. Their ODE relaxation method will be referred as

the Scott-Barton method hereafter, and their corresponding state relaxations will be

called Scott-Barton relaxations. These relaxations are described by an auxiliary sys-

tem of ODEs, whose right-hand side (RHS) functions are constructed with general-

ized McCormick relaxations (GMR) [123]. Intuitively, the usage of GMR indicates

that such RHS functions depend on interval bounds of x, motivating the following

definition.

Definition 3.3. Functions xL,xU : I → Rnx are state bounds for (3.1) over P if

xL(t) ≤ x(t,p) ≤ xU(t) for all (t,p) ∈ I × P. For all t ∈ I, the interval [xL(t),xU(t)]

is denoted by XB(t) ∈ IRnx .
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Similar to [120], we assume that state bounds for (3.1) are always available.

We also assume similar requirements on these state bounds. Define the following

variant of the ODE (3.1):

ξ̇(t) = f (t,p, ξ(t)), t ∈ I,

ξ(τ) = ξ0,
(3.2)

where τ ∈ I and ξ0 ∈ XB(τ).

Assumption 3.1. Assume the following conditions hold:

1. State bounds of (3.1) over P, xL and xU, are available and differentiable on I.

2. ẋL(·) and ẋU(·) are measurable on I.

3. There exists an integrable function m̃ : I → R such that ‖ẋL(t)‖ ≤ m̃(t) and

‖ẋU(t)‖ ≤ m̃(t) for each t ∈ I.

4. XB ≡ [xL,xU] is a state bound of (3.2) over P for all t ∈ I and ξ0 ∈ XB(τ).

An established approach by [59] was used in the Scott-Barton method to com-

pute state bounds for (3.1). This approach solves an auxiliary system of ODEs with

RHS function constructed with a variant of natural interval extension (NIE) [94].

This approach satisfies Assumption 3.1, and will be adopted in the implementation

of this work as well. To summarize the relevant details of Harrison state bounds,

we adapt the description from [120, 31], which involves a flattening operation over

state bounds.

Definition 3.4. Define flattening operators BL
i , BU

i : Rnx ×Rnx → Rnx ×Rnx such that,

for each i ∈ {1, . . . , nx} and φ,ψ ∈ Rnx ,
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1. BL
i (φ,ψ) = (φ,ψ′), where ψ′i = φi and ψ′(−i) = ψ(−i).

2. BU
i (φ,ψ) = (φ′,ψ), where φ′i = ψi and φ′(−i) = φ(−i).

Define f L,fU : I ×Rnx ×Rnx → Rnx so that, for all t ∈ I, p ∈ P, and z,φ,ψ ∈

Rnx such that φ ≤ z ≤ ψ,

f L(t,φ,ψ) ≤ f (t,p, z) ≤ fU(t,φ,ψ).

Define x̄L
0 , x̄U

0 ∈ Rnx so that, for all p ∈ P,

x̄L
0 ≤ x0(p) ≤ x̄U

0 .

The functions f L,fU and x̄L
0 , x̄U

0 described above may be constructed via applying

NIE to f and x0, respectively.

Definition 3.5. Harrison’s state bounds for (3.1), denoted as X̄B ≡ [x̄L, x̄U], are com-

puted as the solutions of the following auxiliary system of ODEs: for each i ∈ {1, . . . , nx},

˙̄xL
i = f L

i (t, BL
i (x̄

L, x̄U)), x̄L
i (t0) = x̄L

0,i,

˙̄xU
i = f U

i (t, BU
i (x̄

L, x̄U)), x̄U
i (t0) = x̄U

0,i.
(3.3)

Define f̄ L, f̄U : I ×Rnx ×Rnx → Rnx such that, for i ∈ {1, . . . , nx},

f̄ L
i (t,φ,ψ) := f L

i (t, BL
i (φ,ψ)),

f̄ U
i (t,φ,ψ) := f U

i (t, BU
i (φ,ψ)).
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Then, (3.3) is equivalent to

˙̄xL
i = f̄ L

i (t, x̄
L, x̄U), x̄L

i (t0) = x̄L
0,i,

˙̄xU
i = f̄ U

i (t, x̄L, x̄U), x̄U
i (t0) = x̄U

0,i.
(3.4)

Analogous to Harrison’s bounding method, the Scott-Barton method applies

the flattening operators to GMR and constructs auxiliary RHS functions. This

technique reduces the overestimation in state relaxations [113]. Desired bounding

and convexity properties of the generated state relaxations are ensured by verify-

ing that the flattened relaxations describe bound-preserving dynamics and convexity-

preserving dynamics, under the following definitions adapted from [120].

Definition 3.6. Functionsu,o : I× P×Rnx ×Rnx → Rnx describe bound-preserving

dynamics for (3.1) if, for any p ∈ P, each i ∈ {1, . . . , nx}, a.e. t ∈ I (in the Lebesgue

sense), and any z,φ,ψ ∈ XB(t) such that φ ≤ z ≤ ψ, u and o satisfy the following

conditions:

1. If zi = φi, then ui(t,p,φ,ψ) ≤ fi(t,p, z).

2. If zi = ψi, then oi(t,p,φ,ψ) ≥ fi(t,p, z).

Definition 3.7. Functionsu,o : I× P×Rnx ×Rnx → Rnx describe convexity-preserving

dynamics for (3.1) if, for any (λ,p1,p2) ∈ (0, 1)× P× P, p̄ := λp1 + (1− λ)p2, each

i ∈ {1, . . . , nx}, a.e. t ∈ I, and any φ1,φ2, φ̄,ψ1,ψ2, ψ̄ ∈ XB(t) such that the following

three conditions all hold:

1. φ̄ ≤ λφ1 + (1− λ)φ2,

2. ψ̄ ≥ λψ1 + (1− λ)ψ2, and
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3. φ1 ≤ ψ1, φ2 ≤ ψ2, φ̄ ≤ ψ̄,

u and o satisfy the following conditions:

1. If φ̄i = λφ1,i + (1− λ)φ2,i, then

ui(t, p̄, φ̄, ψ̄) ≤ λui(t,p1,φ1,ψ1) + (1− λ)ui(t,p2,φ2,ψ2).

2. If ψ̄i = λψ1,i + (1− λ)ψ2,i, then

oi(t, p̄, φ̄, ψ̄) ≥ λoi(t,p1,φ1,ψ1) + (1− λ)oi(t,p2,φ2,ψ2).

Assumption 3.2. There exist particular functions u,o : I × P × Rnx × Rnx → Rnx

satisfying the following conditions:

1. u,o are continuous,

2. There exists a positive constant kr ∈ R>0 such that, for all t ∈ I, p ∈ P, and

φ†,ψ†,φ‡,ψ‡ ∈ Rnx ,

∥∥∥u(t,p,φ†,ψ†)− u(t,p,φ‡,ψ‡)
∥∥∥+ ∥∥∥o(t,p,φ†,ψ†)− o(t,p,φ‡,ψ‡)

∥∥∥
≤ kr

(∥∥∥φ† −φ‡
∥∥∥+ ∥∥∥ψ† −ψ‡

∥∥∥) , (3.5)

3. u,o describe bound-preserving dynamics for (3.1),

4. u,o describe convexity-preserving dynamics for (3.1).

In addition to flattened GMR, functions u,o satisfying Assumption 3.2 may

be generated with flattened differentiable McCormick relaxations (DMR) [72, 73].
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Moreover, [131] developed an optimization-based approach to construct functions

u,o satisfying Assumption 3.2 with the following formulation. For each i ∈ {1, . . . , nx},

ui(t,p,φ,ψ) = min
z∈[φ,ψ],zi=φi

f cv(t,p, z),

oi(t,p,φ,ψ) = max
z∈[φ,ψ],zi=ψi

f cc(t,p, z),

where f cv,f cc : I× P×Rnx → Rnx are modified convex and concave relaxations of

f [131]. Available methods for generating f cv,f cc from f include αBB relaxations

[3] and McCormick-based relaxations [92].

3.3 Background

Given the problem formulation in the previous section, and under Assumptions 3.1

and 3.2, we now briefly introduce the state relaxation method developed by [120].

Their method lays the foundation of our new approach, and motivates its struc-

ture.
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Consider the following auxiliary system of ODEs: for each i ∈ {1, . . . , nx},

ẋcv
i (t,p) =

ui(t,p,xcv(t,p),xcc(t,p)) if xcv
i (t,p) > xL

i (t),

max
{

ẋL
i (t), ui(t,p,xcv(t,p),xcc(t,p))

}
if xcv

i (t,p) = xL
i (t),

(3.6a)

xcv
i (t0,p) = xcv

0,i(p),

ẋcc
i (t,p) =

oi(t,p,xcv(t,p),xcc(t,p)) if xcc
i (t,p) < xU

i (t),

min
{

ẋU
i (t), oi(t,p,xcv(t,p),xcc(t,p))

}
if xcc

i (t,p) = xU
i (t),

(3.6b)

xcc
i (t0,p) = xcc

0,i(p),

where xcv
0 , xcc

0 : P → Rnx are respectively convex and concave relaxations of x0

on P such that xL(t0) ≤ xcv
0 (p) and xU(t0) ≥ xcc

0 (p). These inequality require-

ments may be enforced by setting xcv
0 (p) ← max{xL(t0),xcv

0 (p)} and xcc
0 (p) ←

min{xU(t0),xcc
0 (p)}, where max and min are computed componentwise.

Scott and Barton [120] showed that valid state relaxations of (3.1) are given by

the unique Carathéodory solutions of (3.6). Moreover, [113] verified the follow-

ing result. If we construct u,o with flattened GMR, then the Scott-Barton relax-

ations will have second-order pointwise convergence to x in the sense of [24]. This

convergence result is critical for using state relaxations in deterministic global op-

timization without invoking the “cluster problem” [48, 150] in which a branch-

and-bound algorithm must branch many times before terminating.

Although the solutions of (3.6) provide state relaxations for (3.1), the if-statements

in the RHS of the ODE system (3.6) will typically create discontinuity in the RHS.
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To numerically solve (3.6), [120] proposed to use the event detection feature of

CVODES [44] to handle these discontinuities, but this approach increases the dif-

ficulty of implementation and limits the use of other off-the-shelf ODE solvers.

Without event detection, the numerical error resulting from the integration pro-

cess will likely be worse than when solving similar ODEs with continuous RHS.

Another limitation of the Scott-Barton method is the difficulty of evaluating gra-

dient or subgradient information for state relaxations, again due to those discrete

jumps. To avoid any possibility of discrete RHS jumps and to provide improved

relaxations, a new relaxation system is proposed in the next section.

Finally, we introduce a definition adapted from [115, Section 3.1], which will be

used for the automatic computation of the new state relaxations.

Definition 3.8. Let h : D → Rn be a function. If for every y ∈ Rn the limit

h′(z0;y) = lim
λ↓0

1
λ
(h(z0 + λy)− h(z))

exists, then h is directionally differentiable at z0 and the function h′(z0; ·) is the di-

rectional derivative of h at z0. Moreover, if h is directionally differentiable at z0 and also

Lipschitz continuous near z0, then h is B-differentiable at z0 and the function h′(z0; ·)

is the B-derivative of h at z0.

3.4 New State Relaxation Formulation

This section presents a new formulation for generating state relaxations without

discrete jumps in the auxiliary RHS function. Useful properties of this formula-

tion are then established in Section 3.5. This formulation employs a safe-landing
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mechanism to avoid the if-statements in (3.6), based on a kinematic intuition that

is explained in the end of this section. This safe-landing mechanism requires pos-

itive constants k,k ∈ R
nx
>0 satisfying the following definition. Section 3.5.5 will

present automatable approaches for computing these constants.

Definition 3.9. Suppose that Assumption 3.1 holds. Let ξ(t) be a solution of (3.2). k,k

are safe-landing constants for (3.1) over XB if the following holds. For any τ ∈ I′ and

i ∈ {1, . . . , nx},

1. If ξ̇i(τ) < ẋL
i (τ), then for each t ∈ [τ, τ +

ẋL
i (τ)−ξ̇i(τ)

ki
],

(
ξ̇i(t)− ẋL

i (t)
)
−
(

ξ̇i(τ)− ẋL
i (τ)

)
≤ ki(t− τ).

2. If ξ̇i(τ) > ẋU
i (τ), then for each t ∈ [τ, τ +

ξ̇i(τ)−ẋU
i (τ)

ki
],

(
ẋU

i (t)− ξ̇i(t)
)
−
(

ẋU
i (τ)− ξ̇i(τ)

)
≤ ki(t− τ).

Remark 3.1. To apply Definition 3.9, it is necessary to ensure that the time intervals

[τ, τ +
ẋL

i (τ)−ξ̇i(τ)
ki

] and [τ, τ +
ξ̇i(τ)−ẋU

i (τ)

ki
] are contained in I for any τ ∈ I′, ξ0 ∈ XB(τ),

and i ∈ {1, . . . , nx}. If I = [t0,+∞), then this requirement is immediately satisfied.

Otherwise, let ξ̇L
i and ξ̇U

i be lower and upper bounds of ξ̇i(t′f ), respectively, for all ξ0 ∈

XB(τ). These can be calculated from the NIE of fi(t′f , ·, ·) on P× XB(t′f ). Then, we need

only to choose t f large enough so that t f ≥ max{t′f , t′f +
ẋL

i (t
′
f )−ξ̇L

i
ki

, t′f +
ξ̇U

i −ẋU
i (t′f )

ki
}. This

claim is supported by the following lemma.

Lemma 3.1. Suppose that t f := max{t′f , t′f +
−ẏ(t′f )

k }. Consider a positive constant

k ∈ R>0 and a non-negative differentiable function y : [t0, t f ]→ R≥0. For any τ ∈ I′ =
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[t0, t′f ] such that ẏ(τ) < 0, if

ẏ(t)− ẏ(τ) ≤ k(t− τ), ∀t ∈ [τ, τ +
−ẏ(τ)

k
], (3.7)

then

τ +
−ẏ(τ)

k
≤ t f .

Proof. Choose an arbitrary τ̂ ∈ I′ such that ẏ(τ̂) < 0. To achieve a contradiction,

suppose that

t f < τ̂ +
−ẏ(τ̂)

k
. (3.8)

Reformulating (3.8) yields:

−ẏ(τ̂) > k(t f − τ̂). (3.9)

Contradictions can be found in the following exhaustive cases:

1. If ẏ(t′f ) ≥ 0, then t f = max{t′f , t′f +
−ẏ(t′f )

k } implies that t f = t′f . Moreover, in

this case, (3.9) implies

ẏ(t′f )− ẏ(τ̂) > k(t′f − τ̂). (3.10)

Now, (3.8) ensures that t′f ∈ [τ̂, τ̂ + −ẏ(τ̂)
k ]. Therefore, (3.10) contradicts (3.7).
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2. If ẏ(t′f ) < 0, then t f = t′f +
−ẏ(t′f )

k . (3.9) becomes

−ẏ(τ̂) > k(t′f +
−ẏ(t′f )

k
− τ̂).

Rearranging the above inequality yields (3.10), which contradicts (3.7).

The following assumption is imposed in the remainder of this article.

Assumption 3.3. Suppose Assumption 3.1 holds, and that k,k ∈ R
nx
>0 are safe-landing

constants for (3.1) over XB.

Definition 3.10. Define a scalar-valued mapping σ : R→ R≥0 for which

σ(θ) ≡
√

max{θ, 0}. (3.11)

Definition 3.11. Under Assumption 3.3, define functions α,β : I×Rnx → Rnx so that,

for each i ∈ {1, . . . , nx},

αi(t,θ) ≡ ẋL
i (t)− σ

(
2ki(θi − xL

i (t))
)

,

βi(t,θ) ≡ ẋU
i (t) + σ

(
2ki(xU

i (t)− θi)
)

.
(3.12)

Definition 3.12. Under Assumptions 3.2 and 3.3, define functions v,w : I× P×Rnx ×

Rnx → Rnx so that, for each i ∈ {1, . . . , nx},

vi(t,p,φ,ψ) ≡ max {ui(t,p,φ,ψ), αi(t,φ)} ,

wi(t,p,φ,ψ) ≡ min {oi(t,p,φ,ψ), βi(t,ψ)} .
(3.13)
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Substituting (3.11) and (3.12) into (3.13) yields: for each i ∈ {1, . . . , nx},

vi(t,p,φ,ψ) = max
{

ui(t,p,φ,ψ), ẋL
i (t)−

√
2ki max{φi − xL

i (t), 0}
}

, (3.14a)

wi(t,p,φ,ψ) = min
{

oi(t,p,φ,ψ), ẋU
i (t) +

√
2ki max{xU

i (t)− ψi, 0}
}

. (3.14b)

The following definition constructs our new state relaxations. Their validity

will be established in Section 3.5.

Definition 3.13. Under Assumptions 3.2 and 3.3, and with v andw as in Definition 3.12,

define an auxiliary initial-value problem in parametric ODEs:

ẋcv(t,p) = v(t,p,xcv(t,p),xcc(t,p)), xcv(t0,p) = xcv
0 (p), (3.15a)

ẋcc(t,p) = w(t,p,xcv(t,p),xcc(t,p)), xcc(t0,p) = xcc
0 (p). (3.15b)

Remark 3.2. It will be shown in Section 3.5.3 that xcv(t,p) ≥ xL(t) and xcc(t,p) ≤

xU(t) for all (t,p) ∈ I′× P. Thus, the arguments of σ in (3.12) can never be negative. So

(α,β) can be simplified by replacing the function σ with the square root, as will be shown

in (3.24).

Next, we explain the kinematic intuition behind our new formulation in (3.14a)

and (3.15a). For any i ∈ {1, . . . , nx} and (t,p) ∈ I′ × P, we image a drone, which

flies at the altitude xcv
i (t,p) − xL

i (t), is trying to land safely on the ground with

a constant acceleration rate. This is a metaphor for describing that the state relax-

ation xcv
i is moving towards the state bound xL

i and trying to achieve the same first-

order time derivative. Unlike the Scott-Barton method in (3.6a) which changes the

drone’s trajectory suddenly using if-statements, our new formulation makes this
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landing process happen smoothly. The motion of this imaginary drone is designed

to follow this kinematic equation:

v2
f = v2

i + 2ad,

where vi ≡ ẋcv
i (t,p) − ẋL

i (t) < 0 stands for initial vertical velocity, v f stands for

final vertical velocity, d ≡ xcv
i (t,p)− xL

i (t) stands for displacement, and a stands

for acceleration rate. We expect that when the drone’s vertical velocity v f is 0, its

altitude is nonnegative, which implies that the drone will not crash to the ground.

This requires the drone to pull up quickly with a sufficiently large acceleration rate,

which corresponds to the requirement of safe-landing constants in Definition 3.9.

3.5 Theoretical Development

Under Assumptions 3.2 and 3.3, this section establishes the following features of

the ODE system (3.15).

• The ODE system (3.15) has a unique solution on I′ × P.

• The solutions of (3.15) are valid state relaxations for (3.1) on I′ × P.

• The new state relaxations generated with (3.15) are at least as tight as Scott-

Barton relaxations when the same u,o are used, and therefore have analo-

gous second-order pointwise convergence.

• Under additional mild assumptions, these state relaxations are differentiable

with respect to parameters.
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We also discuss how to compute the safe-landing constants required to formulate

and solve the ODE system (3.15).

3.5.1 Existence of a solution

Theorem 3.1. Under Assumptions 3.2 and 3.3, there exist a solution of (3.15) on I′ × P.

Proof. Under Assumption 3.3, it is trivially verified that v andw in (3.14) satisfy the

Carathéodory conditions [53, page 3]. Theorem 1 in [53, Chapter 1] then ensures

that there exists a solution of (3.15) on I′ × P.

3.5.2 Uniqueness of a solution

Classic uniqueness results for ODEs, e.g., the Picard-Lindelöf Theorem, typically

require the ODE right-hand side (RHS) functions to be Lipschitz continuous. How-

ever, v,w in (3.15) do not satisfy this condition due to the square root functions.

To address this, a uniqueness theorem by [148] is used here instead. This result

instead requires the RHS functions to satisfy a one-sided Lipschitz-like condition.

Theorem 3.2. Under Assumptions 3.2 and 3.3, the solution of (3.15) on I′× P is unique.

Proof. Theorem 3.1 shows that such a solution exits. Consider the Lipschitz con-

stant kr ∈ R>0 from Assumption 3.2. According to the uniqueness result in [148,

p. 88], it suffices to show that, for all t ∈ I′, p ∈ P, φ†,ψ†,φ‡,ψ‡ ∈ Rnx , and

i ∈ {1, . . . , nx}, the following two conditions hold.

• If φ†
i ≥ φ

‡
i , then

vi(t,p,φ†,ψ†)− vi(t,p,φ‡,ψ‡) ≤ kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) . (3.16)
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• If ψ†
i ≥ ψ

‡
i , then

wi(t,p,φ†,ψ†)− wi(t,p,φ‡,ψ‡) ≤ kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) . (3.17)

Now, suppose that φ†
i ≥ φ

‡
i . (3.16) is equivalent to

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) (3.18)

≥ max
{

ui(t,p,φ†,ψ†), αi(t,φ†)
}
−max

{
ui(t,p,φ‡,ψ‡), αi(t,φ‡)

}
.

Since the right-hand side of (3.18) has two bivariate “max” operations, we consider

the corresponding four cases separately.

1. Suppose ui(t,p,φ†,ψ†) ≥ αi(t,φ†) and ui(t,p,φ‡,ψ‡) ≥ αi(t,φ‡).

In this case, demonstrating (3.18) is equivalent to demonstrating that

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) ≥ ui(t,p,φ†,ψ†)− ui(t,p,φ‡,ψ‡), (3.19)

which always holds according to (3.5).

2. Suppose ui(t,p,φ†,ψ†) ≥ αi(t,φ†) and ui(t,p,φ‡,ψ‡) < αi(t,φ‡).

In this case, it suffices to show that

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥)

≥ ui(t,p,φ†,ψ†)−
(

ẋL
i (t)−

√
2ki max{φ‡

i − xL
i (t), 0}

)
.

(3.20)

87



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

According to Assumption (3.5),

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) ≥ ui(t,p,φ†,ψ†)− ui(t,p,φ‡,ψ‡).

Since in this case

0 > ui(t,p,φ‡,ψ‡)−
(

ẋL
i (t)−

√
2ki max{φ‡

i − xL
i (t), 0}

)
,

adding the above two inequalities yields

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥)

> ui(t,p,φ†,ψ†)− ui(t,p,φ‡,ψ‡) + ui(t,p,φ‡,ψ‡)

−
(

ẋL
i (t)−

√
2ki max{φ‡

i − xL
i (t), 0}

)
= ui(t,p,φ†,ψ†)−

(
ẋL

i (t)−
√

2ki max{φ‡
i − xL

i (t), 0}
)

.

(3.20) follows.

3. Suppose ui(t,p,φ†,ψ†) < αi(t,φ†) and ui(t,p,φ‡,ψ‡) ≥ αi(t,φ‡).

The argument for the previous case applies here, after interchanging φ†,ψ†

and φ‡,ψ‡.

4. Suppose ui(t,p,φ†,ψ†) < αi(t,φ†) and ui(t,p,φ‡,ψ‡) < αi(t,φ‡).
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In this case, it suffices to show that

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥)

≥
(

ẋL
i (t)−

√
2ki max{φ†

i − xL
i (t), 0} −

(
ẋL

i (t)−
√

2ki max{φ‡
i − xL

i (t), 0}
))

= −
√

2ki

(√
max{φ†

i − xL
i (t), 0} −

√
max{φ‡

i − xL
i (t), 0}

)
(3.21)

We now divide this case into several further cases depending on the “max”

terms in (3.21), given that φ†
i ≥ φ

‡
i .

(a) Suppose φ†
i ≥ φ

‡
i > xL

i (t). Then, (3.21) becomes

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥)

≥ −
√

2ki

(√
φ†

i − xL
i (t)−

√
φ

‡
i − xL

i (t)
)

. (3.22)

Because φ†
i ≥ φ

‡
i , the right-hand side of (3.22) cannot be positive and so

(3.22) holds.

(b) Suppose φ†
i ≥ xL

i (t) ≥ φ
‡
i . Then, (3.21) becomes

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) ≥ −√2ki

(√
φ†

i − xL
i (t)− 0

)
= −

√
2ki

√
φ†

i − xL
i (t). (3.23)

Since the right-hand side of (3.23) cannot be positive, (3.23) always holds.

(c) Suppose xL
i (t) > φ†

i ≥ φ
‡
i . Then, (3.21) becomes

kr
(∥∥∥φ† −φ‡

∥∥∥+ ∥∥∥ψ† −ψ‡
∥∥∥) ≥ 0,
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which is always true.

Combining Cases 1-4, the inequality (3.16) is established. A similar argument es-

tablishes (3.17).

The previous two subsections showed that, under Assumptions 3.1, 3.2, and

3.3, (3.15) has a unique solution on I′ × P. This result is used implicitly in the

remaining results.

3.5.3 Obedience of state bounds

This subsection shows that the unique solutions of (3.15) lie within the state bounds

xL,xU from Assumption 3.1.

Lemma 3.2. Under Assumptions 3.2 and 3.3, let (xcv,xcc) be the unique solution of

(3.15) on I′ × P. Then xcv(t,p) ≥ xL(t) and xcc(t,p) ≤ xU(t) for all (t,p) ∈ I′ × P.

Proof. We will show that xcv(t,p) ≥ xL(t) for every (t,p) ∈ I′ × P. An analogous

argument then shows that xcc(t,p) ≤ xU(t).

To achieve a contradiction, suppose that there exist p̂ ∈ P, i ∈ {1, . . . , nx}, and

τ ∈ I′, for which xcv
i (τ, p̂) < xL

i (τ). Define S := {s ∈ [t0, τ] : xcv
i (s, p̂) ≥ xL

i (s)}

and t1 := sup S. Since xcv
i (t0, p̂) ≥ xL

i (t0) by construction, the set S is non-empty,

and the continuity of xcv
i (·, p̂) and xL

i ensures that t1 ∈ [t0, τ). Because t1 is an

upper bound of S, we have xcv
i (t, p̂) < xL

i (t) for all t ∈ (t1, τ], and because t1 is the

least upper bound of S, the continuity of xcv
i (·, p̂) and xL

i (·) implies that xcv
i (t1, p̂) =

xL
i (t1). Then, for all t ∈ [t1, τ], (3.11) implies that σ(2ki(xcv

i (t, p̂)− xL
i (t))) = 0.
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(3.13) and (3.15) yield that, for all t ∈ [t1, τ],

ẋcv
i (t, p̂) = max

{
ui(t, p̂,xcv(t, p̂),xcc(t, p̂)), ẋL

i (t)
}
≥ ẋL

i (t),

Applying Theorem 3.1 in [137] (as used similarly by [120]), it follows that (xL
i −

xcv
i (·, p̂)) is non-increasing on [t1, τ]. Hence,

0 = xL
i (t1)− xcv

i (t1, p̂) ≥ xL
i (τ)− xcv

i (τ, p̂).

Then, xL
i (τ) ≤ xcv

i (τ, p̂), which yields the desired contradiction.

Lemma 3.2 shows that the arguments of σ in (3.14) and (3.15) are always non-

negative along solution trajectories of (3.15). So the functions (α,β) in (3.14) and

(3.15) can be simplified as

αi(t,θ) = ẋL
i (t)−

√
2ki(θi − xL

i (t)),

βi(t,θ) = ẋU
i (t) +

√
2ki(xU

i (t)− θi),
(3.24)

for i ∈ {1, . . . , nx}. In the remaining parts, we will use (3.24) instead of (3.12).

3.5.4 Enclosing the reachable set

This subsection verifies that, under Assumptions 3.1 and 3.3, v,w in (3.14) describe

bound-preserving dynamics for (3.1). A differential inequality-based result is then

developed to show that solutions of (3.15) encloses enclose the reachable set of the

original ODE (3.1).
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Lemma 3.3. Suppose that Assumptions 3.1 and 3.3 hold, and that ξ(t) solves the ODE

(3.2). Then, for any τ ∈ I′, ξ0 ∈ XB(τ), p ∈ P, and i ∈ {1, . . . , nx}, the following holds:

1. If fi(τ,p, ξ0) < ẋL
i (τ),

2ki

(
ξ0,i − xL

i (τ)
)
≥
(

fi(τ,p, ξ0)− ẋL
i (τ)

)2
.

2. If fi(τ,p, ξ0) > xU
i (τ),

2ki

(
xU

i (τ)− ξ0,i

)
≥
(

ẋU
i (τ)− fi(τ,p, ξ0)

)2
.

Proof. It will be shown that the first result holds; it is analogous to verify the sec-

ond.

Suppose we choose arbitrary τ̂ ∈ I′, ξ0 ∈ XB(τ), and p ∈ P for which fi(τ̂,p, ξ0) <

ẋL
i (τ̂). To achieve a contradiction, suppose that

2ki

(
ξ0,i − xL

i (τ̂)
)
<
(

fi(τ̂,p, ξ0)− ẋL
i (τ̂)

)2
. (3.25)

Let t := τ̂ +
ẋL

i (τ̂)− fi(τ̂,p,ξ0)
ki

. Remark 3.1 ensures that t ∈ I′. Now,

ξi(t)− xL
i (t)

= ξi(τ)− xL
i (τ̂) + (t− τ̂)

∫ 1

0

(
ξ̇i(τ̂ + s(t− τ̂))− ẋL

i (τ̂ + s(t− τ̂))
)

ds,

= ξi(τ)− xL
i (τ̂) + (t− τ̂)

(
ξ̇i(τ̂)− ẋL

i (τ̂)
)

+ (t− τ̂)
∫ 1

0

(
ξ̇i(τ̂ + s(t− τ̂),p)− ẋL

i (τ̂ + s(t− τ̂))−
(

ξ̇i(τ̂)− ẋL
i (τ̂)

))
ds.
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The first condition in Definition 3.9 then implies:

ξi(t)− xL
i (t)

≤ ξi(τ)− xL
i (τ̂) + (t− τ̂)

(
ξ̇i(τ̂)− ẋL

i (τ̂)
)
+ ki(t− τ̂)2

∫ 1

0
s ds

= ξi(τ)− xL
i (τ̂) + (t− τ̂)

(
ξ̇i(τ̂)− ẋL

i (τ̂)
)
+

ki
2
(t− τ̂)2.

Thus,

2ki

(
ξi(t)− xL

i (t)
)
≤ 2ki

(
ξi(τ)− xL

i (τ̂)
)
+ 2ki

(
ξ̇i(τ̂)− ẋL

i (τ̂)
)
(t− τ̂)

+ (ki (t− τ̂))2,

= 2ki

(
ξi(τ)− xL

i (τ̂)
)
−
(

ξ̇i(τ̂)− ẋL
i (τ̂)

)2

+
(

ki (t− τ̂) + ξ̇i(τ̂)− ẋL
i (τ̂)

)2
. (3.26)

Substituting t := τ̂ +
ẋL

i (τ̂)−ξ̇i(τ̂)
ki

into (3.26) and applying (3.25) yields:

2ki

(
ξi(t)− xL

i (t)
)
≤ 2ki

(
ξi(τ̂)− xL

i (τ̂)
)
−
(

fi(τ̂,p, ξ0)− ẋL
i (τ̂)

)2

< 0, (3.27)

and so ξi(t) < xL
i (t), which contradicts the fact that xL

i underestimates ξi.

Lemma 3.4. Under Assumptions 3.1, 3.2, and 3.3, (v,w) describe bound-preserving dy-

namics for (3.1).

Proof. Consider any t ∈ I′, z,φ,ψ ∈ XB(t), and choose any fixed p ∈ P. It is

desired to show that, for each i ∈ {1, . . . , nx},

1. if zi = φi, then vi(t,p,φ,ψ) ≤ fi(t,p, z), and
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2. if zi = ψi, then wi(t,p,φ,ψ) ≥ fi(t,p, z).

We will show that the first condition holds; showing the second is analogous.

Consider the following two scenarios. First, if fi(t,p, z) < ẋL
i (t), then according

to Lemma 3.3,

2ki(zi − xL
i (t)) ≥ ( fi(t,p, z)− ẋL

i (t))
2,

and so

ẋL
i (t)−

√
2ki(zi − xL

i (t)) ≤ fi(t,p, z).

When zi = φi, the above inequality becomes

ẋL
i (t)−

√
2ki(φi − xL

i (t)) = αi(t,φ) ≤ fi(t,p, z). (3.28)

Next, if fi(t,p, z) ≥ ẋL
i (t), then (3.28) trivially holds. Combining the above two

scenarios, if zi = φi, then αi(t,φ) ≤ fi(t,p, z).

According to Assumption 3.2, (u,o) describe bounding-preserving dynamics

for (3.1). So if zi = φi, then ui(t,p,φ,ψ) ≤ fi(t,p, z), and therefore

max {ui(t,p,φ,ψ), αi(t,φ)} = vi(t,p,φ,ψ) ≤ fi(t,p, z).

For convenience, the following two propositions reproduce Lemma 4 and The-

orem 2 from [120].

Proposition 3.1. Let (xcv,xcc) be a solution of (3.6) on I′ × P. Then xcv(t,p) ≤

xcc(t,p) for all (t,p) ∈ I′ × P.
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Proposition 3.2. Suppose that for each t ∈ I′, x(t,p) ∈ XB(t) for all p ∈ P. Let

φ,ψ : I′ × P→ Rnx be continuous functions satisfying

(EX) : [φ(t),ψ(t)] ∩ XB(t) 6= ∅, ∀t ∈ I′.

(IC) : φ(t0) ≤ x0(p) ≤ ψ(t0), ∀p ∈ P.

(RHS) : For a.e. t ∈ I′ and each index i,

1. φ̇i(t) ≤ fi(t,p, z) if p ∈ P, z ∈ BL
i ([φ(t),ψ(t)]) ∩ XB(t) ∩ D

and φi(t) > xL
i (t),

2. ψ̇i(t) ≥ fi(t,p, z) if p ∈ P, z ∈ BU
i ([φ(t),ψ(t)]) ∩ XB(t) ∩ D

and ψi(t) < xU
i (t).

Then φ(t) ≤ x(t,p) ≤ ψ(t) for all (t,p) ∈ I′ × P.

Theorem 3.3. Under Assumptions 3.1, 3.2, and 3.3, let (xcv,xcc) be solutions of (3.15)

on I′ × P. Then, xcv(t,p) ≤ x(t,p) ≤ xcc(t,p) for all (t,p) ∈ I′ × P.

Proof. Choose any (t,p) ∈ I′× P. We will show that the three conditions in Propo-

sition 3.2 are satisfied with φ := xcv(·,p) and ψ := xcc(·,p). Lemma 3.2 shows

that xcv(τ,p),xcc(τ,p) ∈ XB(τ) for all τ ∈ I′, and so xcv,xcc are solutions to (3.6).

Proposition 3.1 shows that xcv(t,p) ≤ xcc(t,p). Hence, (EX) holds. By construc-

tion, xcv
0 (p) ≤ x0(p) ≤ xcc

0 (p), which shows that (IC) is satisfied. Lemma 3.4

shows that (v,w) describe bound-preserving dynamics for (3.1). Therefore, for

95



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

each i ∈ {1, . . . , nx},

1. ẋcv
i (t,p) ≤ fi(t,p, z)

if z ∈ BL
i (x

cv(t,p),xcc(t,p)) ∩ XB(t) ∩ D and xcv
i (t,p) > xL

i (t),

2. ẋcc
i (t,p) ≥ fi(t,p, z)

if z ∈ BU
i (x

cv(t,p),xcc(t,p)) ∩ XB(t) ∩ D and xcc
i (t,p) < xU

i (t).

As a result, both (RHS) conditions hold. Thus, Proposition 3.2 yields the required

result.

3.5.5 Obtaining safe-landing constants

To ensure the bounding property developed in this section, appropriate safe-landing

constants k,k are desired. In the lemma below, we show that k,k can be calculated

using Lipschitz constants of ξ̇(·,p) and ẋL, ẋU.

Assumption 3.4. Suppose Assumption 3.1 holds. Assume that there exist kt,kL,kU ∈

R
nx
>0 such that, for any t1, t2 ∈ I, p ∈ P, and i ∈ {1, . . . , nx},

|ξ̇i(t1)− ξ̇i(t2)| ≤ kt
i |t1 − t2|,

|ẋL
i (t1)− ẋL

i (t2)| ≤ kL
i |t1 − t2|,

and |ẋU
i (t1)− ẋU

i (t2)| ≤ kU
i |t1 − t2|.

Lemma 3.5. Under Assumptions 3.1 and 3.4, define

k := kt + kL, k := kt + kU. (3.29)
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Then, (k,k) are safe-landing constants for (3.1) and XB.

Proof. For any τ ∈ I, p ∈ P, ξ0 ∈ XB(τ), let ξ(t) solve (3.2). It is desired to

verify the two conditions in Definition 3.9. For any i ∈ {1, . . . , n}, it will be shown

that the first condition in Assumption 3.3 holds: If ξ̇i(τ) < ẋL
i (τ), then, for each

t ∈ [τ, τ +
ẋL

i (τ)−ξ̇i(τ)
ki

],

(
ξ̇i(t)− ẋL

i (t)
)
−
(

ξ̇i(τ)− ẋL
i (τ)

)
≤ ki(t− τ).

It is analogous to verify the second condition.

Consider the non-negative differentiable function ξ − xL. Lemma 3.1 and Re-

mark 3.1 guarantee that, if ξ̇i(τ) < ẋL
i (τ),

τ +
ẋL

i (τ)− ξ̇i(τ)

ki
∈ I.

Assumption 3.4 ensures that, for any t1, t2 ∈ I, p ∈ P, and i ∈ {1, . . . , nx},

|ξ̇i(t1)− ξ̇i(t2)| ≤ kt
i |t1 − t2|, and

|ẋL
i (t1)− ẋL

i (t2)| ≤ kL
i |t1 − t2|.
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Thus, for any t ∈ [τ, τ +
ẋL

i (τ)−ξ̇i(τ)
ki

],

(
ξ̇i(t)− ẋL

i (t)
)
−
(

ξ̇i(τ)− ẋL
i (τ)

)
≤
∣∣∣(ξ̇i(t)− ẋL

i (t)
)
−
(

ξ̇i(τ)− ẋL
i (τ)

)∣∣∣
=
∣∣∣(ξ̇i(t)− ξ̇i(τ)

)
−
(

ẋL
i (t)− ẋL

i (τ)
)∣∣∣

≤
∣∣ξ̇i(t)− ξ̇i(τ)

∣∣+ ∣∣∣ẋL
i (t)− ẋL

i (τ)
∣∣∣

≤ kt
i |t− τ|+ kL

i |t− τ|

= ki(t− τ),

which ensures the first condition in Assumption 3.3.

3.5.6 Convexity and concavity

This subsection shows that the unique solutions of (3.15), xcv(t, ·) and xcc(t, ·), are

convex and concave over P, respectively.

Lemma 3.6. Under Assumption 3.1 and 3.3, (v,w) describe convexity-preserving dy-

namics for (3.1).

Proof. Consider any t ∈ I′, (λ,p1,p2) ∈ (0, 1)× P× P, p̄ := λp1 + (1− λ)p2, and

φ1,φ2, φ̄,ψ1,ψ2, ψ̄ ∈ XB(t) such that

1. φ̄ ≤ λφ1 + (1− λ)φ2,

2. ψ̄ ≥ λψ1 + (1− λ)ψ2, and

3. φ1 ≤ ψ1, φ2 ≤ ψ2, φ̄ ≤ ψ̄,
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It suffices to show that, for any i ∈ {1, . . . , nx},

1. If φ̄i = λφ1,i + (1− λ)φ2,i, then

vi(t, p̄, φ̄, ψ̄) ≤ λvi(t,p1,φ1,ψ1) + (1− λ)vi(t,p2,φ2,ψ2). (3.30)

2. If ψ̄i = λψ1,i + (1− λ)ψ2,i, then

wi(t, p̃, φ̄, ψ̄) ≥ λwi(t,p1,φ1,ψ1) + (1− λ)wi(t,p2,φ2,ψ2).

It will be shown that the first of these conditions holds; showing the second is

analogous.

Consider vi(t,p,φ,ψ) = max {ui(t,p,φ,ψ), αi(t,φ)} in the following cases:

1. If ui(t,p1,φ1,ψ1) ≥ αi(t,φ1) and ui(t,p2,φ2,ψ2) ≥ αi(t,φ2)

(i) if ui(t, p̄, φ̄, ψ̄) ≥ αi(t, φ̄), (3.30) becomes

ui(t, p̄, φ̄, ψ̄) ≤ λui(t,p1,φ1,ψ1) + (1− λ)ui(t,p2,φ2,ψ2),

which holds in this case because u describes convexity preserving dy-

namics.

(ii) if ui(t, p̄, φ̄, ψ̄) < αi(t, φ̄), (3.30) becomes

αi(t, φ̄) ≤ λui(t,p1,φ1,ψ1) + (1− λ)ui(t,p2,φ2,ψ2).
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In this case, the above inequality will be proved by showing

αi(t, φ̄) ≤ λαi(t,φ1) + (1− λ)αi(t,φ2),

which is equivalent to

ẋL
i (t)−

√
2ki(φ̄i − xL

i (t))

≤ λ

(
ẋL

i (t)−
√

2ki(φ1,i − xL
i (t))

)
+ (1− λ)

(
ẋL

i (t)−
√

2ki(φ2,i − xL
i (t))

)
= ẋL

i (t) + λ

(
−
√

2ki(φ1,i − xL
i (t))

)
+ (1− λ)

(
−
√

2ki(φ2,i − xL
i (t))

)
.

Rearranging the above inequality,

√
(φ̄i − xL

i (t)) ≥ λ
√

φ1,i − xL
i (t) + (1− λ)

√
φ2,i − xL

i (t).

Because φ̄i = λφ1,i + (1− λ)φ2,i, the above inequality is equivalent to

√
λ(φ1,i − xL

i (t)) + (1− λ)(φ2,i − xL
i (t))

≥ λ
√

φ1,i − xL
i (t) + (1− λ)

√
φ2,i − xL

i (t).

Because both sides of the above inequalities are non-negative, it is equiv-

alent to

λ
(

φ1,i − xL
i (t)

)
+ (1− λ)

(
φ2,i − xL

i (t)
)

≥ λ2(φ1,i − xL
i (t)) + (1− λ)2(φ2,i − xL

i (t))

+ 2λ(1− λ)
√
(φ1,i − xL

i (t))
√
(φ2,i − xL

i (t)).
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Rearranging the above inequality,

φ1,i − xL
i (t) + φ2,i − xL

i (t)

≥ 2
√
(φ1,i − xL

i (t))
√
(φ2,i − xL

i (t)).

The above inequality always holds, and is equivalent to (3.30) in this

case.

2. If ui(t,p1,φ1,ψ1) ≥ αi(t,φ1) and ui(t,p2,φ2,ψ2) < αi(t,φ2), then:

(i) if ui(t, p̄, φ̄, ψ̄) ≥ αi(t, φ̄), (3.30) becomes

ui(t, p̄, φ̄, ψ̄) ≤ λui(t,p1,φ1,ψ1) + (1− λ)αi(t,φ2).

In this case, the above inequality is true because ui(t,p2,φ2,ψ2) < αi(t,φ2)

and u describes convexity preserving dynamics.

(ii) if ui(t, p̄, φ̄, ψ̄) < αi(t, φ̄), (3.30) becomes

αi(t, φ̄) ≤ λui(t,p1,φ1,ψ1) + (1− λ)αi(t,φ2).

In this case, the above inequality can be proved by showing

αi(t, φ̄) ≤ λαi(t,φ1) + (1− λ)αi(t,φ2).

This inequality holds here as shown in case 1(ii).

3. If ui(t,p1,φ1,ψ1) < αi(t,φ1) and ui(t,p2,φ2,ψ2) ≥ αi(t,φ2), then the argu-

ment in case 2 applies here, after interchanging p1 and p2.
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4. If ui(t,p1,φ1,ψ1) < αi(t,φ1) and ui(t,p2,φ2,ψ2) < αi(t,φ2), then:

(i) if ui(t, p̄, φ̄, ψ̄) ≥ αi(t, φ̄), (3.30) becomes

ui(t, p̄, φ̄, ψ̄) ≤ λαi(t,φ1) + (1− λ)αi(t,φ2).

In this case, we only need to show

ui(t, p̄, φ̄, ψ̄) ≤ λui(t,p1,φ1,ψ1) + (1− λ)ui(t,p2,φ2,ψ2).

The above inequality holds here because u describes convexity preserv-

ing dynamics.

(ii) if ui(t, p̄, φ̄, ψ̄) < αi(t, φ̄), (3.30) becomes

αi(t, φ̄) ≤ λαi(t,φ1) + (1− λ)αi(t,φ2).

The above inequality holds here as shown in case 1(ii).

Combining the above cases, (3.30) holds when φ̄i = λφ1,i + (1− λ)φ2,i.

The following proposition is adapted from [120, Theorem 3].

Proposition 3.3. Let (xcv,xcc) be a solution of (3.6) on I′ × P. Then, xcv(t, ·) and

xcc(t, ·) are respectively convex and concave on P, for every t ∈ I′.

Theorem 3.4. Under Assumptions 3.1, 3.2, and 3.3, let (xcv,xcc) be a solution of (3.15)

on I′× P. Then, xcv(t, ·) and xcc(t, ·) are respectively convex and concave on P, for every

t ∈ I′.
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Proof. Lemma 3.2 implies that (xcv,xcc) are solutions to (3.6) with (v,w) replacing

(u,o). Lemmas 3.4 and 3.6 show that (v,w) describe bound-preserving dynamics

and convexity-preserving dynamics for (3.1). Thus xcv(t, ·) and xcc(t, ·) are respec-

tively convex and concave on P, for every t ∈ I′ according to Proposition 3.3.

Theorems 3.3 and 3.4 show that the solutions to (3.15) are valid state relaxations

of (3.1).

3.5.7 Tighter State Relaxations

This subsection shows that our new state relaxations are at least as tight as the

Scott-Barton relaxations. In addition to Assumption 3.2, we suppose that (u,o)

satisfy the following assumption.

Assumption 3.5. Consider any i ∈ {1, . . . , nx}, p ∈ P, and t ∈ I. For all φ,ψ, φ̂, ψ̂ ∈

XB(t) such that φ̂ ≤ φ ≤ ψ ≤ ψ̂,

1. if φi = φ̂i, then ui(t,p,φ,ψ) ≥ ui(t,p, φ̂, ψ̂),

2. if ψi = ψ̂i, then oi(t,p,φ,ψ) ≤ oi(t,p, φ̂, ψ̂).

Definition 3.14. An interval function H : IRn → IRm is inclusion monotonic if for

all Z1, Z2 ∈ IRn such that Z1 ⊂ Z2, we have H(Z1) ⊆ H(Z2).

Assumption 3.5 holds if the interval-valued function FR ≡ [u,o] : I × P ×

Rnx ×Rnx is inclusion monotonic on Rnx ×Rnx , which is always satisfied by GMR

[117, 113], DMR [72], and an optimization-based relaxation approach by [131].

Moreover, if the flattening operators in Definition 3.4 are applied to any such u,o

on Rnx ×Rnx , the resulting functions also satisfy Assumption 3.5. This result is

justified in Section 3.6.2.
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Theorem 3.5. Under Assumptions 3.1, 3.2, 3.3, and 3.5, let (x̂cv, x̂cc) be a solution of

(3.6), and (xcv,xcc) be a solution of (3.15) on I′ × P. If the same state bounds (xL,xU)

and same initial conditions (xcv
0 ,xcc

0 ) are used for both (3.6) and (3.15), then it holds that

[xcv(t,p),xcc(t,p)] ⊆ [x̂cv(t,p), x̂cc(t,p)] for all (t,p) ∈ I′ × P.

Proof. This theorem will proved by showing that all requirements in [130, Theo-

rem 2] are satisfied with xcv,xcc in place of vB,wB and x̂cv, x̂cc in place of vA,wA.

Consider any i ∈ {1, . . . , nx}, p ∈ P, t ∈ I′, and φ,ψ, φ̂, ψ̂ ∈ XB(t) such that

φ̂ ≤ φ ≤ ψ ≤ ψ̂.

Lemma 1 in [120] and Lemma 3.2 in this article ensure Condition II.1 in [130,

Theorem 2] with the state bound XB in place of both CA and CB. For Condition

II.2, we will show that the first inequality holds; showing the second is analogous.

Consider the following exhaustive scenarios, with dL,A defined as in [130].

• If φi ≥ φ̂i > xL
i (t), then the first case of (3.6a) is selected for both ẋcv

i , ˙̂xcv
i such

that

dL,A
i (t,φ,ψ) = ui(t,p,φ,ψ), dL,A

i (t, φ̂, ψ̂) = ui(t,p, φ̂, ψ̂).

(3.5) implies that

ui(t,p,φ,ψ)− ui(t,p, φ̂, ψ̂) ≤ kr (∥∥φ− φ̂∥∥+ ∥∥ψ − ψ̂∥∥) ,

which ensures the first inequality of Condition II.2.
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• If φi > φ̂i = xL
i (t), then,

dL,A
i (t,φ,ψ) = ui(t,p,φ,ψ), dL,A

i (t, φ̂, ψ̂) = max
{

ui(t,p, φ̂, ψ̂), ẋL
i (t)

}
.

The first inequality then follows from

ui(t,p,φ,ψ)−max
{

ui(t,p, φ̂, ψ̂), ẋL
i (t)

}
≤ ui(t,p,φ,ψ)− ui(t,p, φ̂, ψ̂)

≤ kr (∥∥φ− φ̂∥∥+ ∥∥ψ − ψ̂∥∥) .

(3.31)

• If φi = φ̂i = xL
i (t), then,

dL,A
i (t,φ,ψ) = max

{
ui(t,p,φ,ψ), ẋL

i (t)
}

,

dL,A
i (t, φ̂, ψ̂) = max

{
ui(t,p, φ̂, ψ̂), ẋL

i (t)
}

.

We further consider the following two cases of dL,A
i (t,φ,ψ). When ui(t,p,φ,ψ) ≥

ẋL
i (t), we recover (3.31), which holds under Assumption 3.2. When ui(t,p,φ,ψ) <

ẋL
i (t), the first inequality becomes

ẋL
i (t)−max

{
ui(t,p, φ̂, ψ̂), ẋL

i (t)
}
≤ 0

≤ kr (∥∥φ− φ̂∥∥+ ∥∥ψ − ψ̂∥∥) ,

which holds in this case.

Combining the scenarios above, the first inequality in Condition II.2 in [130, Theo-

rem 2] holds.
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Next, we verify Condition II.3 in [130, Theorem 2] with φ,ψ in place of φB,ψB,

φ̂, ψ̂ in place of φA,ψA, u,o in place of dL,B,dU,B, and v,w in place of dL,A,dU,A.

Suppose that φi = φ̂i, and consider the following two scenarios. If φi = φ̂i > xL
i (t),

then Assumption 3.5 ensures that

vi(t,p,φ,ψ) = max
{

ui(t,p,φ,ψ), ẋL
i (t)−

√
2ki(φi − xL

i (t))
}

≥ ui(t,p,φ,ψ)

≥ ui(t,p, φ̂, ψ̂).

If φi = φ̂i = xL
i (t), then

vi(t,p,φ,ψ) = max
{

ui(t,p,φ,ψ), ẋL
i (t)−

√
2ki(φi − xL

i (t))
}

≥ max
{

ui(t,p,φ,ψ), ẋL
i (t)

}
.

So Condition II.3(a) is satisfied. A similar argument yields Condition II.3(b). Lemma 4

in [120] and Theorem 3.3 ensure Condition II.4. Condition II.5. is trivially satisfied

by these two systems. Therefore, all requirements are satisfied.

One immediate consequence of the above theorem is that, the new state re-

laxations obtained by solving (3.15) also enjoy pointwise convergence with order

2 under the same assumptions as the Scott-Barton relaxations. This is important

when using state relaxations in deterministic global optimization algorithms with-

out invoking the “cluster problem” [48, 150].

Furthermore, choosing safe-landing constants k and k with smaller compo-

nents will typically tighten state relaxations. This statement is supported by the
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following theorem.

Theorem 3.6. Under Assumptions 3.1, 3.2, 3.3, and 3.5, let (xcv,xcc) be a solution of

(3.15) on I′ × P. Let k∗,k∗ ∈ R
nx
>0 be another pair of safe-landing constants for (3.1)

over XB. Let v̂, ŵ : I × P × Rnx × Rnx → Rnx be a variant of v,w such that, for

i ∈ {1, . . . , nx},

v̂i(t,p, φ̂, ψ̂) = max
{

ui(t,p, φ̂, ψ̂), ẋL
i (t)−

√
2k∗i (φ̂i − xL

i (t))
}

,

ŵi(t,p, φ̂, ψ̂) = min
{

oi(t,p, φ̂, ψ̂), ẋU
i (t) +

√
2k
∗
i (xU

i (t)− ψ̂i)

}
.

Let (x̂cv, x̂cc) solve the following variant of (3.15) with the same initial conditions on

I′ × P:

˙̂xcv(t,p) = v̂(t,p, x̂cv(t,p), x̂cc(t,p)), x̂cv(t0,p) = xcv
0 (p),

˙̂xcc(t,p) = ŵ(t,p, x̂cv(t,p), x̂cc(t,p)), x̂cc(t0,p) = xcc
0 (p).

If k ≤ k∗ and k ≤ k∗, then [xcv(t,p),xcc(t,p)] ⊆ [x̂cv(t,p), x̂cc(t,p)] for all (t,p) ∈

I′ × P.

Proof. To prove [xcv(t,p),xcc(t,p)] ⊆ [x̂cv(t,p), x̂cc(t,p)] for all (t,p) ∈ I′ × P, we

will show that all the conditions in [130, Theorem 2] are satisfied with xcv,xcc

in place of vB,wB, x̂cv, x̂cv in place of vA,wA, respectively. Consider any i ∈

{1, . . . , nx}, p ∈ P, t ∈ I′, and φ,ψ, φ̂, ψ̂ ∈ XB(t) such that φ̂ ≤ φ ≤ ψ ≤ ψ̂.

Lemma 3.2 ensures Condition II.1 in in [130, Theorem 2] with state bound XB

in place of both CA and CB. In the proof of Theorem 3.2, we showed that, for every
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i ∈ {1, . . . , nx}, if φi − φ̂i ≥ 0 and ψ̂i − ψi ≥ 0, then

v̂i(t,p,φ,ψ)− v̂i(t,p, φ̂, ψ̂) ≤ kr (∥∥φ− φ̂∥∥+ ∥∥ψ − ψ̂∥∥) ,

and ŵi(t,p, φ̂, ψ̂)− ŵi(t,p,φ,ψ) ≤ kr (∥∥φ− φ̂∥∥+ ∥∥ψ − ψ̂∥∥) .

Thus, Condition II.2. is satisfied with v̂, ŵ in place of dL,A,dU,A, respectively.

Next, suppose that φi = φ̂i. Assumption 3.5 provides

ui(t,p,φ,ψ) ≥ ui(t,p, φ̂, ψ̂),

and k ≤ k∗ provides

ẋL
i (t)−

√
2ki(φi − xL

i (t)) ≥ ẋL
i (t)−

√
2k̂i(φ̂i − xL

i (t)).

Therefore, vi(t,p,φ,ψ) ≥ v̂i(t,p, φ̂, ψ̂). Similarly, if ψi = ψ̂i, then wi(t,p,φ,ψ) ≤

ŵi(t,p, φ̂, ψ̂). Condition II.3. is satisfied with φ,φ′ in place of φA,φB and ψ,ψ′ in

place of ψA,ψB, respectively.

Theorem 3.3 ensures Condition II.4. The Carathéodeory solution requirement

in Condition II.5. always holds for these systems. Therefore, all conditions in [130,

Theorem 2] are satisfied.

3.5.8 Differentiability

This subsection shows that our new method can produce differentiable state re-

laxations. Throughout this section, continuous differentiability on closed sets is

defined as in [71]. In addition to Assumptions 3.1, 3.2, and 3.3, we suppose that
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the following differentiability and non-singularity conditions are satisfied.

Assumption 3.6. u and o are continuously differentiable on their domain.

Functionsu,o satisfying Assumption 3.2 may be constructed with DMR [72, 73,

71]. The assumption below is adapted from [57]. It ensures that small variations in

the parameters will still lead to a unique solution when a discrete switch occurs in

the max and min functions in (3.13).

Assumption 3.7. Under Assumptions 3.1, 3.2, and 3.3, let (xcv,xcc) be a solution of

(3.15) on I′ × P. For all t ∈ I′, p ∈ P, and i ∈ {1, . . . , nx}, assume the following

conditions hold. Arguments (t,p,xcv,xcc) are omitted for simplicity.

1. If ui(t,p,xcv,xcc) = αi(t,xcv), then xcv
i (t,p) 6= xL

i (t), and

∂ui

∂xcvv +
∂ui

∂xccw+
∂ui

∂t
6= − ki√

2ki(xcv
i (t,p)− xL

i (t))
vi.

2. If oi(t,p,xcv,xcc) = βi(t,xcc), then xcc
i (t,p) 6= xU

i (t), and

∂oi

∂xcvv +
∂oi

∂xccw+
∂oi

∂t
6= − ki√

2ki(xU
i (t)− xcc

i (t,p))
wi.

The following proposition is adapted from [60, Theorem 3.1, Section 3, Chapter

V, p. 95].

Proposition 3.4. Let h : I × P ×Rn → Rn be a continuously differentiable function.
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Consider the following ODE system

ż(t) = h(t,p, z), ∀t ∈ I,

z(t0) = z0.

Then, the solution z to the above system is continuously differentiable on I × P.

To apply the sensitivity results by [57], we formulate (3.15) as a hybrid dis-

crete/continuous system without jump discontinuities following [57, Section 2]. A

hybrid state space S = ∪nk
k=1Sk is used to describe this hybrid system, where each

mode Sk corresponds to a smooth piece of those max/min functions. Since the

switches between the smooth pieces in max/min functions are continuous, there

are no discrete jumps in this hybrid system. Next, we use the following lemma

to show that the derivatives of state relaxations with respect to parameters exist

when these switches happen.

Lemma 3.7. Under Assumptions 3.1, 3.2, 3.3, 3.6, and 3.7, let (xcv,xcc) be a solution of

(3.15) on I′ × P. Consider any p ∈ P, m ∈ {1, . . . , np}, and i ∈ {1, . . . , nx}. Then, the

partial derivative ∂xcv

∂pm
(t,p) exists at every t ∈ I′ such that ui(t,p,xcv(t,p),xcc(t,p)) =

αi(t,xcv(t,p)), and ∂xcc

∂pm
(t,p) exist at every t ∈ I′ such that oi(t,p,xcv(t,p),xcc(t,p)) =

βi(t,xcc(t,p)).

Proof. Consider any p ∈ P, m ∈ {1, . . . , np}, and i ∈ {1, . . . , nx}. We will show that

∂xcv

∂pm
(t,p) exists at every t ∈ I′ such that ui(t,p,xcv(t,p),xcc(t,p)) = αi(t,xcc(t,p)).

It is analogous to show the second result.

According to Assumption 3.6, u is continuously differentiable. Assumption 3.7

and Theorem 3.3 ensure that, if ui(t,p,xcv(t,p),xcc(t,p)) = αi(t,xcv(t,p)), then
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xcv
i (t,p) > xL

i (t). So the partial derivatives

∂ui

∂xcv (t,p,xcv,xcc),
∂ui

∂pm
(t,p,xcv,xcc),

∂αi

∂xcv (t,p,xcv,xcc),
∂αi

∂pm
(t,p,xcv,xcc)

exist and are continuous in a neighborhood of xcv
i (t,p) and xcc

i (t,p). When vi

changes between ui and αi, we consider the hybrid system to be moving from

some mode Sj to some mode Sj+1. Assumption 3.7 ensures that the Jacobian ma-

trix corresponding to xcv
j ,xcc

j , xcv
j+1,xcc

j+1, t is invertible. According to Theorem 1

and Remark 6 in [57], the partial derivatives in mode Sj and mode Sj+1 are equal

such that

∂xcv
i,j

∂pm
(t,p) =

∂xcv
i,j+1

∂pm
(t,p).

So ∂xcv

∂pm
(t,p) exists at every t ∈ I′ such that ui(t,p,xcv(t,p),xcc(t,p)) = αi(t,xcv(t,p)).

Theorem 3.7. Under Assumptions 3.1, 3.2, 3.3, 3.6, and 3.7, let (xcv,xcc) be a solution

of (3.15) on I′ × P. For any m ∈ {1, . . . , np}, the partial derivatives ∂xcv

∂pm
and ∂xcc

∂pm
exist

and are continuous on I′ × P.

Proof. Consider any m ∈ {1, . . . , np}, and p ∈ P. Let [S1, S2, . . . , Sj, . . . , Snk ] be the

sequence of modes visited by a hybrid system described by (3.15). At each event

time t ∈ I′ between two successive modes, Lemma 3.7 ensures that ∂xcv
i

∂pm
(t,p) or

∂xcc
i

∂pm
(t,p) exists, and respectively

∂xcv
i,j

∂pm
(t,p) =

∂xcv
i,j+1

∂pm
(t,p) or

∂xcc
i,j

∂pm
(t,p) =

∂xcc
i,j+1

∂pm
(t,p).
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Next, we consider each mode as an individual ODE system. The RHS function of

the ODE is either u or α, and the initial condition is the terminal state of the previ-

ous mode. When u and α are differentiable, Proposition 3.4 ensures the existence

and continuity of ∂xcv

∂pm
and ∂xcc

∂pm
within each mode. Therefore, ∂xcv

∂pm
and ∂xcc

∂pm
exist

and are continuous on I′ × P.

In the formulation of our new method (3.15), there is no discrete jump in the

RHS functions (3.14). Thus, the partial derivatives of state relaxations with re-

spect to parameters may in principle be calculated using the approach developed

in [132]. This result is beyond the scope of this work and will not be included here.

Nevertheless, a demonstration of the corresponding evaluated partial derivatives

will be presented in Section 3.7.

3.6 Implementation Considerations

This section discusses additional considerations that arise when implementing the

new relaxation method in Section 3.4. Approaches for calculating safe-landing

constants and constructing functions u,o are introduced. To proceed, we assume

that Harrison’s method in Definition 3.5 is used to compute state bounds.

3.6.1 Calculating safe-landing constants

First, we discuss the calculation of safe-landing constants k,k according to Defini-

tion 3.9, as required by Assumption 3.3. Following Assumption 3.4 and Lemma 3.5,

we can set k = kt + kL and k = kt + kU. Here, we introduce methods to calculate

the respective Lipschitz constants kt, kL, kU of ξ̇(·,p), ẋL(·), ẋU(·) for any p ∈ P.
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Suppose that f is directionally differentiable. Since f L and fU are derived from f

with natural interval extension (NIE) [94], they are also directionally differentiable.

We start with kt. With g(t,p) := ξ̇(t,p) for all (t,p) ∈ I × P, we are looking

for a valid Lipschitz constant of gi(·,p) for any i ∈ {1, . . . , nx} and p ∈ P. If a

Lipschitz constant kf ∈ R>0 of f on I′ × P× D is known, then Lemma 3.8 below

shows that each kt
i can be set to kf + M(ekf (t f−t0)−1)

t f−t0
, where M ≥ ‖f (t,p, z)‖ for any

t ∈ I,p ∈ P, and z ∈ D.

The following proposition is adapted from Theorem 2.3, Chapter 1 by [43].

Proposition 3.5. Suppose h : I × D → Rnx is a Lipschitz continuous function with a

Lipschitz constant kh, and let

M = max ‖h(t,y)‖, ∀(t,y) ∈ I × D.

Then the problem

ẏ = h(t,y), y(τ) = y0

has a unique solution ȳ on I, and

‖ȳ(t)− y0‖ ≤
M(ekh|t−τ| − 1)

kh
, ∀t ∈ I.

Lemma 3.8. Suppose that I = [t0, t f ]. Let kf be a Lipschitz constant of f on I × P× D

such that, for all t1, t2 ∈ I, p1,p2, and z1, z2 ∈ D,

‖f (t1,p1, z1)− f (t2,p2, z2)‖ ≤ kf (|t1 − t2|+ ‖p1 − p2‖+ ‖z1 − z2‖).
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Moreover, suppose that there is M ∈ R such that, M ≥ ‖f (t,p, z)‖ for any t ∈ I, p ∈ P,

and z ∈ D. Then, kf + M(ekf |t f−t0|−1)
t f−t0

is a Lipschitz constant of g(·,p) on I for any

p ∈ P.

Proof. Choose an arbitrary p ∈ P. To achieve a contradiction, suppose that there

exist t1, t2 ∈ I, t1 6= t2, such that

‖g(t1,p)− g(t2,p)‖ > (kf +
M(ekf (t f−t0) − 1)

t f − t0
)|t1 − t2|.

Since η(z) := M(ekf z − 1)/z is a monotonically increasing function, (t f − t0) ≥

|t1 − t2| provides that

M(ekf (t f−t0) − 1)
t f − t0

≥ M(ekf |t1−t2| − 1)
|t1 − t2|

.

Therefore,

‖g(t1,p)− g(t2,p)‖ > (kf +
M(ekf |t1−t2| − 1)
|t1 − t2|

)|t1 − t2|

= kf |t1 − t2|+ M(ekf |t1−t2| − 1). (3.32)

According to Proposition 3.5,

kf‖x(t1,p)− x(t2,p)‖ ≤ M(ekf |t1−t2| − 1).
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Then, (3.32) yields

‖g(t1,p)− g(t2,p)‖ = ‖f (t1,p,x(t1,p))− f (t2,p,x(t2,p))‖

> kf |t1 − t2|+ kf‖x(t1,p)− x(t2,p)‖

= kf (|t1 − t2|+ ‖x(t1,p)− x(t2,p)‖) ,

which contradicts that kf is a Lipschitz constant of f .

Otherwise, if kf is not available in advance, we can proceed according to the

following steps. Denote some particular lower and upper bounds of x̄L(·) and

x̄U(·) on I as x̄L∗ and x̄U∗, respectively. This bounding information can be ob-

tained by solving the ODEs in Definition 3.5 from t0 to t f , and keeping the lowest

and highest values of state variables x̄L, x̄U.

The following proposition is adapted from [115, Proposition 3.1.1].

Proposition 3.6. Let U ⊆ Rn be an open set, and z0, z1 ∈ U. Let function h : U → Rm

be locally Lipschitz continuous and B-differentiable. The functionψ : [0, 1]→ Rm defined

by ψ(t) = h′(z0 + λ(z1 − z0); z1 − z0) is Lebesgue integrable and

h(z1) = h(z0) +
∫ 1

0
h′(z0 + λ(z1 − z0); z1 − z0)d λ.

According to Proposition 3.6, for any t1, t2 ∈ I and p ∈ P,

gi(t2,p) = gi(t1,p) +
∫ 1

0
g′i(t1 + λ(t2 − t1),p; t2 − t1,0)d λ,
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and so

|gi(t2,p)− gi(t1,p)| ≤ |t2 − t1| sup
0≤λ≤1

|g′i(t1 + λ(t2 − t1),p; 1,0)|.

A sufficient condition for kt
i being a Lipschitz constant of gi(·,p) over I is

kt
i ≥ |g′i(t,p; 1,0)|, ∀(t,p) ∈ I × P.

The following proposition is adapted from [115, Theorem 3.1.1].

Proposition 3.7. If U ⊆ Rn and V ⊆ Rp are open sets and π : U → Rm and ρ : V →

Rn are continuous and B-differentiable at the points z0 ∈ V and g(z0) ∈ U, respectively,

then the function π ◦ ρ is B-differentiable at z0 and

(π ◦ ρ)′(z0; y) = π′(ρ(z0); ρ′(z0; y)).

According to Proposition 3.7,

|g′i(t,p; 1, 0)| = | f ′i (t,p, ξ; 1,0,0) + f ′i (t,p, ξ; 0,0, ξ′(t,p; 1,0))|

= | f ′i (t,p, ξ; 1,0,0) + f ′i (t,p, ξ; 0,0,f (t,p, ξ))|. (3.33)

Provided with the interval bounds of t, p, and ξ such that t ∈ I, p ∈ P, and

ξ(t,p) ∈ [x̄L∗, x̄U∗] for all (t,p) ∈ I × P, we apply interval extensions to (3.33). Let

[·]U denote the upper bound of an interval extension. We may then set

kt
i = [ | f ′i (t,p, ξ; 1,0,0) + f ′i (t,p, ξ; 0,0,f (t,p, ξ))| ]U. (3.34)
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Similar approaches can be used to compute kL and kU, respectively. According

to Proposition 3.7, and recalling the notation of Definition 3.4,

|( ˙̄xL
i )
′(t; 1)|

= |( f̄ L
i )
′(t, x̄L, x̄U; 1, (x̄L)′(t; 1), (x̄U)′(t; 1))|

= |( f̄ L
i )
′(t, x̄L, x̄U; 1, f̄ L(t, x̄L, x̄U), f̄U(t, x̄L, x̄U))|

= |( f L
i )
′(t, BL

i (x̄
L, x̄U); 1,f L(t, BL

i (x̄
L, x̄U)),fU(t, BL

i (x̄
L, x̄U)))|. (3.35)

Since BL
i (x̄

L(t), x̄U(t)) is a subset of [x̄L∗, x̄U∗] for all t ∈ I, the inclusion mono-

tonicity of NIE [117, Theorem 2.3.11] suggests that, for each t ∈ I,

[|( f L
i )
′(t, BL

i (x̄
L(t), x̄U(t)); 1,f L(t, BL

i (x̄
L(t), x̄U(t))),fU(t, BL

i (x̄
L(t), x̄U(t))))|]U

≤ [|( f L
i )
′(t, x̄L∗, x̄U∗; 1,f L(t, x̄L∗, x̄U∗),fU(t, x̄L∗, x̄U∗))|]U.

Thus, kL
i can be set to

kL
i =[|( f L

i )
′(t, x̄L∗, x̄U∗; 1,f L(t, x̄L∗, x̄U∗),fU(t, x̄L∗, x̄U∗))|]U. (3.36)

Similarly, we may set

kU
i =[|( f U

i )′(t, x̄L∗, x̄U∗; 1,f L(t, x̄L∗, x̄U∗),fU(t, x̄L∗, x̄U∗))|]U. (3.37)

Setting k = kt +kL and k = kt +kU is only one way to satisfy Assumption 3.3,

but it is broadly applicable. Theorem 3.6 shows that smaller k and k will help

generate tighter relaxations. With additional knowledge of the original system
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and the state bounds, it may indeed be possible to compute smaller safe-landing

constants.

Next, we discuss the influence of state bounds on the choice of k and k. When

Harrison’s method [59] is used for state bounds, its flattened RHS function has a

special property, which is introduced in the following theorem.

Theorem 3.8. Suppose that Harrison’s method is used to computed the state bounds in

Assumption 3.1. For any i ∈ {1, . . . , nx}, if fi does not depend directly on its xi argument,

then Assumption 3.3 is satisfied with any ki, ki ∈ R
nx
>0.

Proof. Consider any i ∈ {1, . . . , nx}. According to Definition 3.4, the flattening

operator BL
i only modifies the ith component of its interval argument. When

fi(t,p,x) does not depend on xi, the flattened interval extension f̄ L
i (t, x̄

L, x̄U) is

equivalent to f L
i (t, x̄

L, x̄U), which is always a lower bound of fi(t,p,x(t,p)) on

I × P. That is, ẋi(t,p) − ˙̄xL
i (t) is non-negative for all (t,p) ∈ I × P. Hence, As-

sumption 3.3 is satisfied with ki being any positive value. A similar argument

holds for ki.

Theorem 3.8 suggests that we can set ki and ki to be any positive real number,

if fi(t,p,x) does not involve xi. This result is useful for reducing the computing

effort involved in computing ki and ki.

If the state bounds are not restricted to Harrison’s method and satisfy ẋL(t) ≤

ẋ(t,p) ≤ ẋU(t) for any t ∈ I and p ∈ P, then Conditions 2 and 3 in Assumption 3.3

are always satisfied. In other words, components k and k can be set to any positive

value. One way to achieve this is to construct ẋL and ẋU from NIE of f without

the flattening operation. However, this approach provides state bounds that are

typically looser than Harrison’s method [113].
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3.6.2 Constructing functions u and o

The method introduced in [120, Section 4.3] constructs continuous functions u,o

that describe bound-preserving dynamics and convexity-preserving dynamics for

(3.1) as required by Assumption 3.2. This method is summarized here as follows.

For all (t,p,φ,ψ) ∈ I × P×Rnx ×Rnx , and each i ∈ {1, . . . , nx}, let

ui(t,p,φ,ψ) := ũi(t,p, BL
i (φ,ψ)),

oi(t,p,φ,ψ) := õi(t,p, BU
i (φ,ψ)),

(3.38)

where (ũ, õ) are obtained by relaxing f with generalized McCormick relaxations

(GMR) [123]. It is readily verified that differentiable McCormick relaxations (DMR)

[72, 73] and the optimization-based relaxation approach in [131] can be used to de-

rive (ũ, õ) from f as well, and they satisfy Assumption 3.6. In particular, DMR

are differentiable, so they satisfy Assumption 3.6. To generate differentiable relax-

ations, we also require Assumption 3.7. If this assumption is not satisfied, we can

slightly perturb the constants (k,k) to ensure it.

Next, we show that functions u,o constructed in (3.38) with GMR satisfy As-

sumption 3.5, in which case our new state relaxations are tighter than Scott-Barton

relaxations following Theorem 3.5. When φi = φ̂i, the flattening operation in Def-

inition 3.4 makes φ̂i = φi = ψi = ψ̂i and the others remain the same, that is

φ̂(−i) ≤ φ(−i) ≤ ψ(−i) ≤ ψ̂(−i). Overall, φ̂ ≤ φ ≤ ψ ≤ ψ̂ when φi = φ̂i. The

inclusion monotonicity of GMR [117, Theorem 2.4.32] implies that ui(t,p,φ,ψ) ≥

ui(t,p, φ̂, ψ̂). Thus, Assumption 3.5 is also satisfied.
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3.6.3 Numerical error of square root evaluation

To numerically solve the new relaxation (3.15) with v,w as in (3.13) and α,β as in

(3.24), it is worth noting that evaluating the square root function in (3.24) might

introduce numerical error. If the square root argument in (3.24) approaches zero,

then a numerical ODE solver might provide a negative input to this expression. To

avoid this behavior, the formulation in (3.14) can instead be adopted in the numer-

ical implementation, in which case the max function will eliminate numerically

negative values.

3.7 Examples

This section presents two examples to illustrate the computation of state relax-

ations with our new method. The first example uses constant state bounds and

closed-form convex relaxations of the original ODE RHS function, so that the aux-

iliary ODEs in (3.15) may be solved analytically. In the second example, we use a

numerical ODE solver to calculate the new state relaxations, which are shown to

be tighter than the Scott-Barton relaxations. Moreover, partial derivatives of our

new state relaxations are evaluated and illustrated.

Example 3.1. Consider the parametric ODE:

ẋ(t, p) = −x(t, p), x(0, p) = (p + 1)/2, (3.39)

where p ∈ [1, 3] and t ∈ [0, 1].

120



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

The analytical solution of (3.39) is

x(t, p) =
1
2
(p + 1)e−t. (3.40)

Observe that xL(t) = 0 is a trivial lower state bound for (3.39). To generate a con-

vex relaxation of x(t f , ·) on P, we take the following steps. Firstly, we determine

appropriate Lipschitz constants kL and kt of ẋL(·) and ξ̇(·,p), respectively, for any

p ∈ P following the approach in Section 3.6.1. Then, we set k = kt + kL according

to Lemma 3.5. Since the lower state bound xL is a constant, kL can be set to 0. Based

on the analytical solution (3.40), we choose a Lipschitz constant kt to be the upper

bound of ẋ such that, for all t ∈ [0, 1] and p ∈ [1, 3],

kt ≥ |−ẋ(t, p)| = |x(t, p)| .

Since e−t is monotonically decreasing for t ∈ [0, 1], it suffices to set kt ≥ x(0, p) = p+1
2

for all p ∈ [1, 3]. Thus, we choose kt = 2, and consequently k = 2.

Next, we construct convex relaxations of the ODE RHS function and initial con-

dition so that switches may happen between the two pieces of the max function

in (3.14a). An affine function u(t, p, φ, ψ) = −φ− 3
4 is selected as the convex re-

laxation of the RHS function in (3.39) and it satisfies Assumption 3.2. A convex

relaxation of the original initial condition is generated as follows:

xcv(0, p) =


1, p ≤ 2,

(p− 2)2 + 1, p > 2.
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Since we are not interested in the concave state relaxation and function u does not

depend on ψ, the concave relaxations of the ODE RHS and the initial condition are

not needed here.

Finally, following the new formulation in (3.15), we obtain the ODE system

describing the convex relaxation of (3.39) as follows:

ẋcv(t, p) = max
{
−xcv(t, p)− 3

4
,−2

√
xcv(t, p)

}
, (3.41)

xcv(0, p) =


1, p ≤ 2,

(p− 2)2 + 1, p > 2.

When xcv(t,p) = 1
4 or 9

4 , the two compared pieces in the max operation of (3.41)

are equal. Thus, we obtain:

ẋcv(t, p) =


−xcv(t, p)− 3

4 , 1
4 ≤ xcv(t, p) ≤ 9

4 ,

−2
√

xcv(t, p), 0 ≤ xcv(t, p) < 1
4 or xcv(t, p) > 9

4 .

When p ≤ 2, xcv(0, p) = 1 and ẋcv(t, p) = −xcv − 3
4 . For t > ln(7

4), the max oper-

ation in (3.41) switches to its −2
√

xcv piece. Hence, the analytical solution of the

ODE system (3.41) is

xcv(t, p) =


7
4 e−t − 3

4 , t ≤ ln(7
4),

(t− ln(7
4)−

1
2)

2, t > ln(7
4).

(3.42)

When p > 2, xcv(0, p) = (p− 2)2 + 1 and ẋcv(t, p) = −xcv − 3
4 . For t > ln((p −

2)2 + 7
4), the max function on the RHS of (3.41) switched to−2

√
xcv. The analytical
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solution of the ODE system (3.41) is

xcv(t, p) =


((p− 2)2 + 7

4)e
−t − 3

4 , t ≤ ln((p− 2)2 + 7
4),

(t− ln((p− 2)2 + 7
4)−

1
2)

2, t > ln((p− 2)2 + 7
4).

(3.43)

This convex relaxation is plotted in Figure 3.1. This example shows that our new

relaxation method does indeed generate a valid convex relaxation for the ODE

system (3.39).

Figure 3.1: The parametric solution (3.40) of ODE (3.39) in Example 3.1, along its
lower bound xL(t) = 0 and convex relaxations described in (3.42) and (3.43),

plotted as a function of p at t = 1

In a second example, we use the proposed new approach to compute state re-

laxations for a parametric ODE system automatically.

Example 3.2. Consider the ODE system:

ẋ1(t, p) = p x2(t, p), x1(t0, p) = −1, (3.44)

ẋ2(t, p) = −p x1(t, p), x2(t0, p) = 0,
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where p ∈ [0, 1] and I ≡ [t0, t f ] = [0, π].

The analytical solution of (3.44) is

x1(t, p) = − cos(p t), (3.45)

x2(t, p) = sin(p t).

Since for each p ∈ [0, 1] and t ∈ I, (p t) ∈ [0, π], constant state bounds of (3.45) may

be given by −1 ≤ x1(t, p) ≤ 1 and 0 ≤ x2(t, p) ≤ 1 for each p ∈ [0, 1] and t ∈ I.

Next, we follow the approach in Section 3.6.1 to determine safe-landing constants

by setting k = kt + kL and k = kt + kL, where kt, kL, and kU are respective

Lipschitz constants of ξ̇(·,p), ẋL, and ẋU. Because the state bounds are constant,

kL and kU can be set to 0. Next, we compute kt using (3.34).

kt
1 = [ |p (−p x1)| ]U = 1,

kt
2 = [ | − p (p x2)| ]U = 1.

Therefore, we set k = kt + kL = 1 and k = kt + kU = 1.

Using the implementation described in Section 3.6, state relaxations were eval-

uated for this system. The numerical implementation was developed in Julia [20]

using DifferentialEquations.jl [104] as the ODE solver. The package McCormick.jl

[134] was used to apply the GMR and DMR relaxation techniques to the ODE

RHS functions. This numerical experiment was performed on a Dell Optiplex 7060

desktop with an Intel i7 CPU.
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Figure 3.2: The parametric solution of x2 in Example 3.2, along with its state
bounds and state relaxations, plotted as functions of p at t = 1.2. (a) comparison

between Scott-Barton method and new method with u,o constructed by GMR; (b)
smooth relaxations generated with new method with u,o are constructed by

DMR

Figure 3.2 depicts x2(t, ·), along with the corresponding state bounds and dif-

ferent state relaxations at t = 1.2. Figure 3.2(a) compares the Scott-Barton relax-

ations with our new relaxations, in which ODE RHS functions are relaxed using

GMR. This comparison shows that the new method can generate tighter state re-

laxations than the Scott-Barton method as was established in Theorem 3.5. The

relaxations in Figure 3.2(b) are constructed by the new method with the RHS func-

tions relaxed by DMR, and are visibly differentiable.

In Section 3.5.8, we proposed that partial derivatives of the new state relax-

ations may be computed with the technique developed by [132]. Here, we demon-

strate this result using Example 3.2. Figures 3.3(a) and (b) show subtangent lines

constructed for the same relaxations in Example 3.2, for both nonsmooth and smooth
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cases. To generate Figures 3.3(c) and (d), we increased the values of k and k from

1 to 20, so that part of the state relaxations overlaps with the state bonds. The

putative subtangents constructed with our conjecture still appear to be valid.

Figure 3.3: The parametric solution x2 in Example 3.2, along with its state bounds,
state relaxations, and subtangents of state relaxations, plotted as functions of p at

t = 1.2. k = 1 (or 20) means that k and k are both set to 1 (or 20).

3.8 Conclusion

A new method was developed for enclosing the reachable set of parametric ODEs

(3.1) with convex and concave relaxations described in (3.15). This new approach

essentially smooths and tightens the discrete RHS jumps of an earlier relaxation
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approach by [120]. Section 3.5 shows that this modification not only ensures valid

state relaxations, but also provides further advantages. First of all, the auxiliary

ODEs (3.15) are easier to solve numerically than the auxiliary system (3.6) from the

Scott-Barton method. Secondly, the generated new state relaxations were verified

in Section 3.5.7 to be as least as tight as the Scott-Barton relaxations. Such a tighter

enclosure of the reachable set provides an more useful information regarding the

influence of uncertainty on dynamic systems. We expect it would also improve

the computational performance of branch-and-bound-based deterministic global

dynamic optimization algorithms [112]. In addition to tightness, the new state

relaxations were shown in Section 3.5.8 to be differentiable under additional mild

assumptions. This is another useful feature for global dynamic optimization. The

local optimization solvers used in a global optimization implementation typically

require the functions to be differentiable. Lastly, this smoothing method permits

the evaluation of partial derivatives for the state relaxations, which provide useful

local sensitivity information desired by local optimization solvers. A thorough

procedure for constructing the improved auxiliary system (3.15) was described in

Section 3.6. A proof-of-concept numerical implementation in Julia was developed,

and two examples were presented for illustration in Section 3.7.

Future work may include validating the conjecture in Section 3.5.8 about com-

puting partial derivatives of the new state relaxations. Besides that, the current

approach for determining safe-landing constants requires evaluating the original

system and state bounds before constructing state relaxations. A more convenient

approach for calculating safe-landing constants without this extra step is desired

to make our new method easier to implement. Another possible extension of
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this work is to constructing state relaxations for differential algebraic equations

(DAEs).
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Chapter 4

Bounding Nonconvex Optimal

Control Problems using Pontryagin’s

Minimum Principle

This chapter is to be submitted to a journal before my anticipated thesis defense.

4.1 Introduction

This paper presents a new approach for generating guaranteed lower bounds for

the solution value of a nonconvex open-loop optimal control problem (OCP) with

bounded control input. Such bounding information is useful when computing

the global solution of a nonconvex OCP with state-of-the-art branch-and-bound

algorithms [119, 64]. The global optimization of nonconvex OCPs has been used

in many engineering applications, such as the determination of optimal control

inputs of batch chemical rectors [87], the nonlinear model predictive control of
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continuous systems [86], and the safe landing of an autonomous spacecraft on a

planet surface [2].

Branch-and-bound algorithms [42] for deterministic global optimization require

the ability to compute guaranteed upper and lower bounds for the solution value

of the original problem on each subset of the search space. While each upper

bound may be evaluated as the objective function value at an appropriate feasible

point, ideally a constrained local minimum, providing lower bounds is typically

more difficult. Intuitively, since global optimization methods involve computing

many such lower bounds, these lower bounds must be evaluated efficiently yet

accurately. There are three main categories of approaches to generate these lower

bounds for nonconvex open-loop OCPs based on how the control and state trajec-

tories are discretized.

The first category of approaches discretize both control and state trajectories

according to the discrete time mesh [143, 67]. This approach is called the simultane-

ous approach. The original OCP is then reformulated into a large-size nonlinear pro-

gram (NLP), so that conventional underestimating methods in deterministic global

optimization may be applied [138, 33]. If the control input values are bounded in

a convex set, we may use αBB relaxations [3] or McCormick-based relaxations [92]

to construct a convex relaxation problem of the resulting NLP and solve it with

a local optimization solver. Due to convexity, this solution is guaranteed to be

globally optimal for the convex relaxation NLP. Thus, the corresponding optimal

value provides a lower bound for the optimal value of the discretized NLP that

approximates the original OCP. On the other hand, if the original OCP’s control

input values are from a nonconvex set, we can still construct a relaxed convex

130



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

OCP for the original problem using lossless convexification [2, 22]. This approach

introduces a slack variable to replace the original nonconvex set of feasible control

input values with a convex set. However, there is a trade-off in this category of ap-

proaches involving how finely the control and state should be discretized. On the

one hand, if a fine discretization is applied to the original problem, we will obtain

an NLP with a large number of decision variables and constraints, which may be

computationally expensive or impractical to solve [54]. On the other hand, if the

discretization is performed over a coarse grid, then this approach will yield a poor

approximation of the original continuous-time system. In this case, the optimal

solution value of the convex relaxation NLP may be a poor underestimator of the

original OCP.

The second category of approaches discretize only the control input trajectory

into a vector of finitely many parameters, so that the original infinite-dimensional

OCP is approximated as a finite-dimensional NLP with parametric ordinary dif-

ferential equations (ODEs) embedded. This control-discretized dynamic optimiza-

tion problem is then underestimated by applying relaxation methods for paramet-

ric ODEs. Several methods have been established in [128, 120, 131] for computing

convex and concave relaxations for the parametric solutions of those embedded

ODEs. However, the relaxations might be conservative when there are many pa-

rameters and state variables [64]. This relaxation conservatism may limit the ap-

plicability of a finely discretized parameterization of the control trajectory and the

ability to handle dynamic systems with many state variables.
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The third category underestimates an open-loop OCP without any discretiza-

tion over the control or state trajectories [119]. Given an ODE with bounded con-

trol inputs, Harrison [59] proposed a method to construct componentwise interval

bounds for its state variables. Then, a lower bound of the optimal solution value

of the OCP can be computed by applying natural interval extension [94] to the

cost function. We will call this approach Harrison’s method throughout this arti-

cle. A second approach in this category constructs a convex underestimating OCP

whose optimal solution value is guaranteed to be a lower bound of the original

problem’s optimal solution value. In particular, Scott and Barton [119] constructed

a convex underestimating OCP by relaxing the original cost function and dynamic

system with generalized McCormick relaxations (GMR) [123]. They also proposed

that this convex underestimating OCP can be solved to its global optimality using

a gradient-based numerical method from [13]. However, this numerical method

requires the functions in the OCP to be differentiable. Since GMR may generate

nonsmooth convex relaxations, a more recent differentiable variant of GMR [72]

might be beneficial here. To our knowledge, Scott and Barton’s approach has never

been implemented.

In this work, we propose a novel approach for computing lower bounds for

nonconvex OCPs in the third category above, without discretizing the state or con-

trol trajectories. Our new approach essentially improves upon Scott and Barton’s

method [119] by constructing an underestimating OCP with a flattening operation

adapted from [59, 120]. While Scott and Barton’s OCP relaxation method [119] was

based on their earlier relaxation approach [122] for parametric ODEs, our new ap-

proach is based on their newer superior relaxation method for ODEs [120]. These
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superior ODE relaxations exhibit weakened variants of convexity compared to the

prior relaxations of [122], thus introducing theoretical obstacles when extended

to an optimal control setting. Hence, the theoretical development of this article

is nontrivial, and proceeds quite differently to [119]. This modification leads to a

lower bound that is tighter than Scott and Barton’s method, which we expect will

lead the branch-and-bound algorithms used in deterministic global optimization

to converge faster in principle [42]. Compared with other established approaches

that discretize control or state trajectories, our approach does not involve any ap-

proximation of the original OCP, and thereby avoids incurring numerical error due

to discretization. It is guaranteed that the optimal solution value of our relaxed

OCP is always an underestimator of the optimal solution value of the original OCP.

Due to the particular structure of our relaxed OCP, Pontryagin’s Minimum Prin-

ciple (PMP) provides a sufficient condition [26] for determining a global optimal

solution of the relaxed OCP. This enables developing numerical implementations

to solve the relaxed OCP and obtain a guaranteed lower bound of the original

OCP efficiently and automatically. Note that the original nonconvex OCP does not

necessarily satisfy the PMP sufficient optimality conditions, so that a global lower

bound cannot be obtained by applying PMP directly to the original problem.

This article is organized as follows. Section 4.2 introduces a rigorous problem

formulation. The mathematical background underlying this problem is summa-

rized in Section 4.3. Our new approach that constructs an underestimating OCP

is then presented in Section 4.4. Several useful properties of this approach are

established in Section 4.5, including validity and tightness. In Section 4.6, we
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demonstrate that PMP provides the globally optimal solution of the underestimat-

ing OCP. Section 4.7 discusses a numerical implementation in Julia of our lower

bounding approach. Several numerical examples are also presented to illustrate

that our new approach constructs lower bounds for nonconvex OCPs.

The following notation conventions are used in this article. The standard Eu-

clidean norm ‖·‖ and `-infinity norm ‖·‖∞ are adopted for any vector space Rn.

Vectors are denoted with boldface lower-case letters (e.g. z). Given vectors z†, z‡ ∈

Rn, inequalities such as z† < z‡ or z† ≤ z‡, maximum operations such as max(z†, z‡),

and minimum operations such as min(z†, z‡), are to be interpreted component-

wise. z(−i) ∈ Rn−1 denotes the vector z ∈ Rn except with the ith component

omitted. 〈z†, z‡〉 denotes the inner product of z† and z‡. Throughout this article,

the convexity of a vector-valued function h : Rn → Rm refers to convexity of all

components hi. If h is differentiable, then Dzh denotes the partial derivative of the

function h with respect to z. Dotted quantities indicate partial derivatives with

respect to time t (e.g. ḣ ≡ Dth). The abbreviation “a.e.” stands for “almost every”

in the Lebesgue sense. An interval in Rn is a nonempty subset of Rn of the form

{z ∈ Rn : zL ≤ z ≤ zU}, which is denoted as an upper-case letter Z ≡ [zL, zU].

IRn denotes the set of all intervals in Rn. Lastly, [ai]i∈{1,...,n} denotes a finitely

terminating sequence.

4.2 Problem Formulation

The section presents the mathematical formulation of the open-loop optimal con-

trol problem (OCP) considered in the remainder of this article. Consider scalars

t0, t f ∈ R such that t0 < t f , and define a duration I ≡ [t0, t f ]. Choose interval
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domains U ≡ [uL,uU] ∈ IRnu , and D ∈ IRnx . Denote the space of all Lebesgue

integrable functions that map from I into Rn as Ln(I). Let

U ≡ {u ∈ Lnu(I) : u(t) ∈ U, t ∈ I}

be a set of admissible controls.

Assume that f : I ×U × D → Rnx and φ : D → R are factorable [94, 89], mean-

ing that it is a finite composition of known simple functions such as the operations

on a typical scientific calculator; see [119, Definition 2]. This structural assumption

is required to generate convex relaxations for this function using McCormick re-

laxations [89, 123, 72]. Given an arbitrary initial state x0 ∈ D and control u ∈ U ,

consider the following OCP in Mayer form:

min
u∈U

φ(x(t f ,u)), (4.1)

where x solves the following ordinary differential equation (ODE) on I:

ẋ(t,u) = f (t,u(t),x(t,u)), t ∈ (t0, t f ],

x(t0,u) = x0.
(4.2)

We assume that a solution of (4.2) exists on I × U and is unique. Note that the os-

tensibly more general Bolza OCP, formulated as (4.3) below, can be converted into

Mayer form by appending an additional quadrature variable to track the running

cost; see e.g. [26, Section 6.5]. The Bolza OCP is:

min
u∈U

∫ t f

t0

L(s,u(s),x(s,u))ds + φ(x(t f ,u)), (4.3)
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where x solves (4.2) and L : I ×U ×Rnx → R is a running cost function.

The primary goal of this work is to generate a useful lower bound for the glob-

ally optimal solution value of (4.1). We achieve this by nontrivially modifying the

approach in [119] which produces a lower bound as the optimal solution value of

an underestimating OCP of (4.1). Moreover, we develop and implement a new

strategy that solves the underestimating OCP to global optimality using PMP.

4.3 Background

This section introduces the mathematical background underlying the methods and

results in this article.

4.3.1 Convex relaxations

First, we present established terminology relating to convex relaxations of fac-

torable functions.

Definition 4.1. Consider an interval S ∈ IRn and a function h : S → Rm. Consider an

interval-valued function H ≡ [hL,hU] : IRn → IRm. Then:

I. H is an inclusion function of h on S if, for all Z ⊆ S, h(Z) ≡ {h(z) : z ∈ Z} ⊆

H(Z).

II. H is inclusion monotonic on S if, for all Z, Z∗ ⊆ S such that Z∗ ⊆ Z, H(Z∗) ⊆

H(Z).

Definition 4.2. Consider a function h : U → Rm. Then:
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I. hL,hU ∈ Rm are lower and upper bounds of h on U , respectively, if hL ≤

h(u) ≤ hU for all u ∈ U .

II. hcv,hcc : U → Rm are convex and concave relaxations of h on U , respectively, if

hcv(u) ≤ h(u) ≤ hcc(u) for all u ∈ U , and hcv,hcc are respectively convex and

concave on U .

Generalized McCormick relaxations (GMR) [123] and Differentiable McCormick

relaxations (DMR) [72, 73] are established approaches for automatically construct-

ing efficient convex and concave relaxations for factorable functions. In particular,

DMR are continuously differentiable.

4.3.2 State relaxations

Next, we adapt two definitions from [120] that define relaxations for the open-loop

ODE system (4.2) presented in Section 4.2.

Definition 4.3. Functions xL,xU : I → Rnx are state bounds for the ODE (4.2) on

I ×U if, for every t ∈ I and u ∈ U ,

xL(t) ≤ x(t,u) ≤ xU(t).

Let XB ≡ [xL,xU] : I → IRnx denote the corresponding inclusion function of x on

I ×U .

Definition 4.4. Functions xcv,xcc : I × U → Rnx are state relaxations for the ODE

(4.2) on I ×U , if, for every t ∈ I,

I. the mapping u 7→ xcv(t,u) is convex on U ,
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II. the mapping u 7→ xcc(t,u) is concave on U , and

III. xcv(t,u) ≤ x(t,u) ≤ xcc(t,u) for all u ∈ U .

Let XR ≡ [xcv,xcc] : I ×U → IRnx denote the corresponding inclusion function of x on

I ×U .

Scott and Barton [120] developed an approach to generate state relaxations for

parametric ODEs by constructing an auxiliary system of ODEs whose right-hand

side (RHS) functions are relaxations of the original ODE RHS functions. Their

approach will be extended to construct state relaxations in an open-loop optimal

control setting (4.2). The following results, adapted from our companion work

[28], provides sufficient conditions for a system of ODEs to enclose trajectories,

including solutions of parametric ODEs and ODEs with control inputs.

Definition 4.5. Consider continuously differentiable functions ξ†, ξ‡ : I → Rnx such

that ξ†(t) ≤ ξ‡(t) for all t ∈ I. The mappings v,w : I × IRnx → Rnx describe enclos-

ing dynamics about [ξ†, ξ‡] if the following holds. For a.e. t ∈ I, each i ∈ {1, . . . , nx},

and any Z = [zL, zU] ∈ IRnx such that zL ≤ ξ†(t) ≤ ξ‡(t) ≤ zU,

I. If zL
i = ξ†

i (t), then vi(t, [zL, zU]) ≤ ξ̇†
i (t).

II. If zU
i = ξ

‡
i (t), then wi(t, [zL, zU]) ≥ ξ̇

‡
i (t).

The mappings v,w describe enclosing dynamics about a single trajectory ξ : I → Rnx if

the condition above holds for ξ† ≡ ξ‡ ≡ ξ.

Proposition 4.1. Consider arbitrary continuously differentiable functions ξ†, ξ‡ : I →

Rnx such that ξ†(t) ≤ ξ‡(t) for all t ∈ I. Consider quantities ξL
0 , ξU

0 ∈ Rnx and con-

tinuous functions v,w : I × IRnx → Rnx . Let (ξL, ξU) solve the coupled ODE system:
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ξ̇L(t) = v(t, [ξL(t), ξU(t)]), ξL(t0) = ξL
0 ,

ξ̇U(t) = w(t, [ξL(t), ξU(t)]), ξU(t0) = ξU
0 .

(4.4)

If the following conditions hold:

I. There exists a Lipschitz constant k` ∈ R>0 such that, for any i ∈ {1, . . . , nx}, a.e.

t ∈ I, and any φ†,ψ†,φ‡,ψ‡ ∈ Rn for which φ‡ ≤ φ† ≤ ψ† ≤ ψ‡,

vi(t, [φ†,ψ†])− vi(t, [φ‡,ψ‡])

≤ k`(‖φ† −φ‡‖∞ + ‖ψ† −ψ‡‖∞),

wi(t, [φ‡,ψ‡])− wi(t, [φ†,ψ†])

≤ k`(‖φ† −φ‡‖∞ + ‖ψ† −ψ‡‖∞).

II. v,w describe enclosing dynamics about [ξ†, ξ‡],

III. ξL
0 ≤ ξ†(t0) and ξ‡(t0) ≤ ξU

0 ,

then

ξL(t) ≤ ξ†(t) ≤ ξ‡(t) ≤ ξU(t), ∀t ∈ I.

The following definition, adapted from [120, Definition 7], describes a neces-

sary condition for establishing convexity in the auxiliary ODEs.

Definition 4.6. Functions v,w : I × IRnu × IRnx × IRnx → Rnx describe convexity-

preserving dynamics if, for a.e. t ∈ I, any i ∈ {1, . . . , nx}, (λ,p†,p‡) ∈ (0, 1) ×

U × U, ΞB ∈ IRnx , and any φ†,φ‡, φ̄,ψ†,ψ‡, ψ̄ ∈ ΞB such that the following three

conditions all hold:
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• φ̄ ≤ λφ† + (1− λ)φ‡,

• ψ̄ ≥ λψ† + (1− λ)ψ‡, and

• φ† ≤ ψ†, φ‡ ≤ ψ‡, φ̄ ≤ ψ̄,

v,w satisfy the following conditions: with p̄ ≡ λp† + (1− λ)p‡,

I. If φ̄i = λφ†
i + (1− λ)φ

‡
i , then

vi(t, [p̄, p̄], [φ̄, ψ̄], ΞB) ≤ λvi(t, [p†,p†], [φ†,ψ†], ΞB)

+ (1− λ)vi(t, [p‡,p‡], [φ‡,ψ‡], ΞB).

II. If ψ̄i = λψ†
i + (1− λ)ψ

‡
i , then

wi(t, [p̄, p̄], [φ̄, ψ̄], ΞB) ≥ λwi(t, [p†,p†], [φ†,ψ†], ΞB)

+ (1− λ)wi(t, [p‡,p‡], [φ‡,ψ‡], ΞB).

ODE RHS functions that describe enclosing dynamics and convexity-preserving

dynamics can be generated by applying flattening operators [120, 59] to inclusion

functions of the original ODE RHS function that describe convexity-amplifying dy-

namics [120]. Such inclusion functions may be constructed with GMR [120] and

DMR [72].

Definition 4.7. For each i ∈ {1, . . . , n}, define flattening operators BL
i , BU

i : IRnx →

IRnx such that

I. BL
i ([φ,ψ]) = [φ,ψ′] where ψ′i := φi, ψ′(−i) := ψ(−i),
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II. BU
i ([φ,ψ]) = [φ′,ψ] where φ′i := ψi, φ′(−i) := φ(−i).

Definition 4.8. Functions v,w : I × IRnu × IRnx × IRnx → Rnx describe convexity-

amplifying dynamics if, for a.e. t ∈ I, any i ∈ {1, . . . , nx}, (λ,p†,p‡) ∈ (0, 1) ×

P × P, ΞB ∈ IRnx , and any φ†,φ‡, φ̄,ψ†,ψ‡, ψ̄ ∈ ΞB such that the following three

conditions all hold:

I. φ̄ ≤ λφ† + (1− λ)φ‡,

II. ψ̄ ≥ λψ† + (1− λ)ψ‡, and

III. φ† ≤ ψ†, φ‡ ≤ ψ‡, φ̄ ≤ ψ̄,

v and w satisfy the following conditions: with p̄ ≡ λp† + (1− λ)p‡,

vi(t, [p̄, p̄], [φ̄, ψ̄], ΞB) ≤ λvi(t, [p†,p†], [φ†,ψ†], ΞB)

+ (1− λ)vi(t, [p‡,p‡], [φ‡,ψ‡], ΞB),

wi(t, [p̄, p̄], [φ̄, ψ̄], ΞB) ≥ λwi(t, [p†,p†], [φ†,ψ†], ΞB)

+ (1− λ)wi(t, [p‡,p‡], [φ‡,ψ‡], ΞB).

4.3.3 Scott and Barton’s OCP relaxation method

Consider the problem formulation of Section 4.2, and assume that X̂B ≡ [x̂L, x̂U]

are state bounds of (4.2) on I × U . Consider functions φ̂cv : IRnx × IRnx → R and

f̂ cv, f̂ cc : I × IRnu × IRnx × IRnx → Rnx such that the following conditions hold

for any convex and concave relaxations ξcv, ξcc : U → Rnx of u 7→ x(t,u) on U :

I. The mapping u 7→ φ̂cv([ξcv(u), ξcc(u)], X̂B(t f )) is a convex relaxation of u 7→

φ(x(t f ,u)) on U ,
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II. The mappings u 7→ f̂ cv(t, [u,u], [ξcv(u), ξcc(u)], X̂B(t)) and

u 7→ f̂ cc(t, [u,u], [ξcv(u), ξcc(u)], X̂B(t)) are convex and concave relaxations

of u 7→ f (t,u,x(t,u))) on U , respectively, for all t ∈ I.

Functions φ̂cv and f̂ cv, f̂ cc satisfying above conditions can be generated with

GMR [119, Section II]. Then, Scott and Barton [119] constructed the following con-

vex OCP whose optimal solution value underestimates the optimal solution value

of the original OCP (4.1).

min
u∈U

φ̂cv([x̂cv(t f ,u), x̂cc(t f ,u)], [x̂L(t f ), x̂
U(t f )]), (4.5)

where X̂R ≡ [x̂cv, x̂cc] solve the following ODE:

˙̂xcv(t,u) = f̂ cv(t, [u(t),u(t)], X̂R(t,u), X̂B(t)), x̂cc(t0) = x0,

˙̂xcc(t,u) = f̂ cc(t, [u(t),u(t)], X̂R(t,u), X̂B(t)), x̂cc(t0) = x0.
(4.6)

To solve the above convex OCP to global optimality, Scott and Barton suggested

using an approach by Azhmyakov and Raisch [13] which involves gradient meth-

ods and proximal point techniques. This approach requires the mappings u 7→

x̂cv(t f ,u), u 7→ x̂cc(t f ,u), and (ξcv, ξcc) 7→ φ̂cv([ξcv, ξcc], [x̂L(t f ), x̂U(t f )]) to be

differentiable [13, Theorem 6]. However, the multivariate relaxation rules in GMR

are typically nonsmooth, and this differentiability requirement limits which OCPs

can actually be bounded using Scott and Barton’s method. Nevertheless, we can

overcome this obstacle by constructing φ̂cv and f̂ cv, f̂ cc with DMR in place of GMR.

Then, the previous mappings u 7→ x̂cv(t f ,u), u 7→ x̂cc(t f ,u), and (ξcv, ξcc) 7→

φ̂cv([ξcv, ξcc], [x̂L(t f ), x̂U(t f )]) become continuously differentiable and the OCP (4.5)
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can then be approached using the approach in [13]. Hence, DMR will be used to

construct convex relaxations for Scott and Barton’s method in this work, instead of

GMR.

4.3.4 Pontryagin’s Minimum Principle

This subsection summarizes the well-known necessary and sufficient conditions

for solving OCPs with PMP [26]. Consider a continuous function h : I × U ×

Rny → Rny that is continuously differentiable with respect to y. Given an initial

state y0 ∈ Rny and a differentiable function ψ : Rny → R, consider the following

Mayer problem:

min
u∈U

ψ(y(t f ,u)),

s.t. ẏ = h(t,u(t),y(t)), t ∈ (t0, t f ],

y(t0) = y0.

(4.7)

The following proposition is a variant of the Pontryagin’s Maximum Principle,

as described in [26, Theorem 6.1.1]. This variant is tailored to address the mini-

mization problem in (4.7) following [26, Theorem 6.3.1 and Remark 6.3].

Proposition 4.2. Let u∗ be an optimal solution of (4.7), and let y∗ be the corresponding

optimal trajectory of the ODE embedded in (4.7). Let µ : I → (Rny)> be the row-vector-

valued solution of the adjoint equation

µ̇(t) = −µ(t)Dyh(t,u∗(t),y(t,u∗)),

µ(t f ) = Dψ(y(t f ,u∗)),
(4.8)
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where y,h are column vectors. Then, for a.e. t ∈ I,

u∗(t) ∈ arg min
ω∈U

〈µ(t), h(t,ω,y∗)〉. (4.9)

The necessary optimality condition (4.9) could also be satisfied by suboptimal

local solutions of the OCP (4.7). However, the following proposition, adapted from

[26, Theorem 7.2.1], presents a sufficient condition for global optimality of (4.7).

Proposition 4.3. Suppose that Duh is continuous. Suppose that the mapping u 7→

ψ(y(t f ,u)) from U into R is convex. Then, any mapping u∗ that satisfies (4.9) in Propo-

sition 4.2 is a globally optimal solution of the Mayer problem (4.7).

4.4 New optimal control relaxation

Consider the problem formulation in Section 4.2, this section constructs a novel

relaxed OCP of the original OCP (4.1).

Assumption 4.1. Suppose that x solves (4.2). Suppose that xL,xU are state bounds of x

on I × U , and xcv,xcc are state relaxations of x on I × U . Let XB ≡ [xL,xU] and XR ≡

[xcv,xcc] be interval-valued functions. Suppose that a function φcv : IRnx × IRnx → R

satisfies the following conditions:

I. The mapping u 7→ φcv([xcv(t f ,u),xcc(t f ,u)], [xL(t f ),xU(t f )]) is a convex re-

laxation of u 7→ φ(x(t f ,u)) on U ,

II. The mapping (ξcv, ξcc) 7→ φcv([ξcv, ξcc], ΞB) is continuously differentiable for all

ΞB ∈ IRnx .
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Note that DMR [72] will construct a function φcv that satisfies this assumption.

Assumption 4.2. Assume that functions f cv,f cc : I × IRnu × IRnx × IRnx → Rnx

satisfy the following conditions for all ΞB ∈ IRnx :

I. There exist a Lipschitz constant kr ∈ R>0 such that, for any (t,p) ∈ I×U and any

Ξ† ≡ [ξL†, ξU†], Ξ‡ ≡ [ξL‡, ξU‡], Ξ̄† ≡ [ξ̄L†, ξ̄U†], Ξ̄‡ ≡ [ξ̄L‡, ξ̄U‡] ∈ IRnx ,

‖f cv(t, [p,p], Ξ†, Ξ‡)− f cv(t, [p,p], Ξ̄†, Ξ̄‡)‖∞

+ ‖f cc(t, [p,p], Ξ†, Ξ‡)− f cc(t, [p,p], Ξ̄†, Ξ̄‡)‖∞

≤ kr
(
‖ξL† − ξ̄L†‖∞ + ‖ξU† − ξ̄U†‖∞ + ‖ξL‡ − ξ̄L‡‖∞ + ‖ξU‡ − ξ̄U‡‖∞

)
,

II. The mappings (ξcv, ξcc) 7→ f cv(t, [p,p], [ξcv, ξcc], ΞB) and (ξcv, ξcc) 7→ f cc(t, [p,p], [ξcv, ξcc], ΞB)

are continuously differentiable on ΞB × ΞB for all (t,p) ∈ I ×U,

III. The mappings (t, [ξcv, ξcc]) 7→ f cv(t, [u(t),u(t)], [ξcv, ξcc], ΞB) and (t, [ξcv, ξcc]) 7→

f cc(t, [u(t),u(t)], [ξcv, ξcc], ΞB) describe enclosing dynamics about t 7→ x(t,u)

for all u ∈ U ,

IV. f cv,f cc describe convexity-preserving dynamics,

V. For a.e. t ∈ I, any P ⊆ P̂ ⊆ U and any Z ≡ [zL, zU] ⊆ Ẑ ≡ [ẑL, ẑU] ∈ ΞB,

(a) If zL
i = ẑL

i , then f cv
i (t, P̂, Ẑ, ΞB) ≤ f cv

i (t, P, Z, ΞB),

(b) If zU
i = ẑU

i , then f cc
i (t, P̂, Ẑ, ΞB) ≥ f cc

i (t, P, Z, ΞB).

Under Assumptions 4.1 and 4.2, our new relaxed OCP of the original OCP (4.1)
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is as follows:

min
u∈U

φcv([xcv(t f ,u),xcv(t f ,u)], [xL(t f ),x
U(t f )]), (4.10)

where (xcv,xcv,xL,xU) solves the coupled ODE system:

ẋL(t) = f cv(t, U, XB(t), XB(t)), xL(t0) = x0,

ẋU(t) = f cc(t, U, XB(t), XB(t)), xU(t0) = x0,
(4.11a)

ẋcv(t,u) = f cv(t, [u(t),u(t)], XR(t,u), XB(t)), xcv(t0) = x0

ẋcc(t,u) = f cc(t, [u(t),u(t)], XR(t,u), XB(t)), xcc(t0) = x0.
(4.11b)

The new relaxed OCP in (4.10) is the main contribution of this article. Its useful

properties, including validity and tightness, are illustrated in Section 4.5. This

new formulation differs from Scott and Barton’s formulation (4.5) in three aspects.

First, our new approach described above places a weaker requirement on the

auxiliary ODE RHS functions than Scott and Barton’s method. Specifically, f̂ cv, f̂ cc

in (4.6) need to be convex and concave relaxations of the original ODE RHS func-

tion f on I × U × X̂B(t) for all t ∈ I, while our new formulation only requires

f cv,f cc in (4.11) to describe enclosing dynamics and convexity-preserving dynam-

ics. This permits constructing f cv,f cc with tighter but nonconvex relaxations of f ,

and one valid technique is introduced Section 4.4.1. Theorem 4.2 in Section 4.5.5 il-

lustrates that tighter auxiliary ODE RHS functions lead to tighter state relaxations,

and then provide tighter lower bounds for the original OCP (4.1). Furthermore,

even though f cv,f cc are not necessarily convex, the auxiliary ODE solutions of

(4.11) have been shown to be convex after nontrivial theoretical development in
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Section 4.5.3. This implies that our new relaxed OCP (4.10) can be solved to its

global optimality using PMP as illustrated in Section 4.6. Note that the original

OCP does not satisfy the PMP sufficient optimality conditions, so that PMP cannot

be applied to (4.1) directly to obtain a global lower bound.

Second, while Scott and Barton’s method depends on state bounds that are

known in advance, our new approach constructs state bounds and state relaxations

simultaneously. It is also illustrated in Section 4.5.2 that the state relaxations gener-

ated in our new approach are always at least as tight as state bounds. This property

is fundamental to constructing auxiliary ODE RHS function using GMR [123] and

DMR [72]. Scott and Barton did not address this in (4.6), but their later work [120]

may be adapted to deal with it.

4.4.1 Constructing ODE RHS functions

This section presents an approach to construct the auxiliary ODE RHS functions

f cv,f cc in (4.11) by applying the flatten operators in Definition 4.7 to DMR. As dis-

cussed above, these generated functions are tighter than DMR but are not convex.

It will be verified that they satisfy Assumption 4.2.

Assumption 4.3. Assume that an interval-valued function F̄ ≡ [f̄ cv, f̄ cc] : I × IRnu ×

IRnx × IRnx → IRnx satisfies the following conditions for all ΞB ∈ IRnx :

I. There exist a Lipschitz constant k̄r ∈ R>0 such that, for any (t,p) ∈ I×U and any
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Ξ† ≡ [ξL†, ξU†], Ξ‡ ≡ [ξL‡, ξU‡], Ξ̄† ≡ [ξ̄L†, ξ̄U†], Ξ̄‡ ≡ [ξ̄L‡, ξ̄U‡] ∈ IRnx ,

‖f̄ cv(t, [p,p], Ξ†, Ξ‡)− f̄ cv(t, [p,p], Ξ̄†, Ξ̄‡)‖∞

+ ‖f̄ cc(t, [p,p], Ξ†, Ξ‡)− f̄ cc(t, [p,p], Ξ̄†, Ξ̄‡)‖∞

≤ k̄r
(
‖ξL† − ξ̄L†‖∞ + ‖ξU† − ξ̄U†‖∞ + ‖ξL‡ − ξ̄L‡‖∞ + ‖ξU‡ − ξ̄U‡‖∞

)
,

II. (ξcv, ξcc) 7→ f̄ cv(t, [p,p], [ξcv, ξcc], ΞB) and (ξcv, ξcc) 7→ f̄ cc(t, [p,p], [ξcv, ξcc], ΞB)

are continuously differentiable on ΞB for all (t,p) ∈ I ×U,

III. ([pL,pU], [ξcv, ξcc]) 7→ F̄(t, [pL,pU], [ξcv, ξcc], ΞB) is an inclusion function of (p, ξ) 7→

f (t,p, ξ) on U × ΞB for a.e. t ∈ I,

IV. f̄ cv, f̄ cc describe convexity-amplifying dynamics,

V. ([pL,pU], [ξcv, ξcc]) 7→ F̄(t, [pL,pU], [ξcv, ξcc], ΞB) is inclusion monotonic on U×

ΞB for a.e. t ∈ I.

Under this assumption, consider f cv,f cc such that, for each t ∈ I, i ∈ {1, . . . , nx},

P ∈ IRnu , and ΞR, ΞB ∈ IRnx ,

f cv
i (t, P, ΞR, ΞB) = f̄ cv

i (t, P, BL
i (Ξ

R), ΞB),

f cc
i (t, P, ΞR, ΞB) = f̄ cc

i (t, P, BU
i (Ξ

R), ΞB).
(4.12)

The following result confirms that applying the flattening operators BL
i , BU

i in Def-

inition 4.7 to DMR provides a valid approach to construct the auxiliary ODE RHS

functions in (4.11).

Lemma 4.1. Under Assumption 4.3, the functions f cv,f cc defined in (4.12) satisfy As-

sumption 4.2.
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Proof. We will shown that f cv,f cc satisfy all conditions in Assumption 4.2. Con-

sider a.e. t ∈ I, any i ∈ {1, . . . , nx}, u ∈ U , and any ΞB, ΞR ∈ IRnx such that

x(t,u) ∈ ΞR ≡ [ξcv, ξcc] ⊆ ΞB.

Since the flattening operators BL
i , BU

i are linear, Conditions I. and II. in Assump-

tion 4.3 guarantee Conditions I. and II. of Assumption 4.2.

Next, we verify the enclosing dynamics in Condition III. of Assumption 4.2.

According to Definition 4.5, this is equivalent to showing that,

1. If ξcv
i = ẋi(t,u), then f cv

i (t, [u(t),u(t)], ΞR, ΞB) ≤ ẋi(t,u),

2. If ξcc
i = ẋi(t,u), then f cc

i (t, [u(t),u(t)], ΞR, ΞB) ≥ ẋi(t,u).

It will be shown that the first requirement holds; verifying the second is analogous.

If ξcv
i = ẋi(t,u), then the flattening operator BL

i from Definition 4.7 ensures that

x(t,u) ∈ BL
i (Ξ

R). Condition III. in Assumption 4.3 shows that

f̄ cv
i (t, [u(t),u(t)], BL

i (Ξ
R), ΞB) ≤ fi(t,u(t),x(t,u))

= ẋi(t,u),

which ensures the first requirement. Hence, Condition III. in Assumption 4.2 is

verified.

Lemma 11 from [120] shows that, if f̄ cv, f̄ cc describe convexity-amplifying dy-

namics, then f cv,f cc describe convexity-preserving dynamics. Therefore, Condi-

tion IV. ensures Condition IV. in Assumption 4.2.

Lastly, we verify Condition V. in Assumption 4.2. Consider any P ⊆ P̂ ∈ IRnu

and Z ≡ [zL, zU] ⊆ Ẑ ≡ [ẑL, ẑU] ∈ ΞB. According to Definition 4.5, this is equiva-

lent to showing that,
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1. If zL
i = ẑL

i , then f cv
i (t, P̂, Ẑ, ΞB) ≤ f cv

i (t, P, Z, ΞB),

2. If zU
i = ẑU

i , then f cc
i (t, P̂, Ẑ, ΞB) ≥ f cc

i (t, P, Z, ΞB).

We will show that the first requirement holds; showing the second is analogous.

When zL
i = ẑL

i and Z ⊆ Ẑ, the flattening operation ensures that BL
i (Z) ⊆ BL

i (Ẑ).

Combined with P ⊆ P̂, Condition V. in Assumption 4.3 shows that

f̄ cv
i (t, P̂, BL

i (Ẑ), ΞB) ≤ f̄ cv
i (t, P, BL

i (Z), ΞB).

which is equivalent to the inequality in the first requirement. Condition V. in As-

sumption 4.2 is verified.

Thus, all conditions in Assumption 4.2 are indeed satisfied.

Lemma 4.2. Functions f̄ cv, f̄ cc satisfying Assumption 4.3 can be generated using DMR.

Proof. We will show that all conditions in Assumption 4.3 hold.

First, since DMR are continuously differentiable with respect to their convex

and concave relaxation inputs [72], Condition II. holds. Next, the interval bounds

used in DMR are typically computed with natural interval extension [94], which is

locally Lipschitz continuous [113]. Since the composition of locally Lipschitz con-

tinuous functions is also locally Lipschitz continuous [117], DMR is locally Lips-

chitz continuous with respect to its relaxation inputs and interval bound inputs.

The global Lipschitz continuity required in Condition I. is satisfied with appropri-

ate Lipschitz extensions [120, 131]. Next, the inclusion properties required in Con-

ditions III. and V. can be verified using similar arguments as in [117, Section 2.4].

Lastly, the convexity-amplifying dynamics required in Condition IV. can be con-

firmed by adapting [120, Lemma 9].
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Thus, f̄ cv, f̄ cc generated using DMR satisfy all conditions in Assumption 4.3.

4.5 Theoretical Development

This section develops the useful theoretical properties of our new formulations in

(4.10)-(4.11), including existence and uniqueness, bounding properties, convexity,

as well as tightness in comparison to Scott and Barton’s method [119]. Note that

this development process is completely different from Scott and Barton’s proof

[119] showing that (4.5) provides valid lower bounds for the original OCP (4.1).

Scott and Barton’s proof used successive approximations (also known as Picard

Iteration), which is a standard construction in ODE theory [43]. But this technique

cannot be applied here. The reason is that, unlike f̂ cv, f̂ cc in (4.6), f cv,f cc in our

new formulation (4.11) are not convex and concave relaxations of the original RHS

functions f . Instead, our proofs in this section heavily relies on the theory of differ-

ential inequalities [148, 120], which is a totally different technique from successive

approximations.

4.5.1 Existence and uniqueness of a solution

Lemma 4.3. Under Assumption 4.2, (4.11) has a unique solution.

Proof. Condition I. in Assumption 4.2 ensures that f cv,f cc are Lipschitz continu-

ous with respect to xL,xU in (4.11a) and with respect to xcv,xcc in (4.11b). There-

fore, (4.11) has a unique solution following the Picard-Lindelöf Theorem as sum-

marized in [60, Theorem 1.1, Chapter II].
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4.5.2 Bounding properties

Lemma 4.4. Under Assumption 4.2, let (xL,xU,xcv,xcc) be a solution of (4.11) on I ×

U . Then, the following results are true:

I. xL,xU are state bounds of (4.2) on I ×U ,

II. xcv(t,u) ≤ x(t,u) ≤ xcc(t,u) for all (t,u) ∈ I ×U ,

III. xL(t) ≤ xcv(t,u) ≤ xcc(t,u) ≤ xU(t) for all (t,u) ∈ I ×U .

Proof. Result I. has been verified in [28, Theorem 3]. Consider any u ∈ U . Re-

sult II. can be verified by showing that all three requirements in Proposition 4.1 are

satisfied with (t 7→ x(t,u), t 7→ x(t,u)) in place of (ξ†, ξ‡), (xcv,xcc) in place of

(ξL, ξU), and ((t, ΞR) 7→ f cv(t, [u(t),u(t)], ΞR, XB(t)), (t, ΞR) 7→ f cc(t, [u(t),u(t)], ΞR, XB(t)))

in place of (v,w). Condition I. in Assumption 4.2 ensures Requirement I. of Propo-

sition 4.1. Condition III. in Assumption 4.2 guarantees Requirement II. of Propo-

sition 4.1. Requirement III. of Proposition 4.1 is ensured by the construction of

the initial conditions in (4.11). Hence, all three requirements in Proposition 4.1 are

satisfied.

Similarly, Result III. will be demonstrated by showing that all three require-

ments in Proposition 4.1 are satisfied with (t 7→ xcv(t,u), t 7→ xcc(t,u)) in place

of (ξ†, ξ‡), (xL,xU) in place of (ξL, ξU), and ((t, ΞB) 7→ f cv(t, U, ΞB, ΞB), (t, ΞB) 7→

f cc(t, U, ΞB, ΞB)) in place of (v,w). Condition I. in Assumption 4.2 ensures Re-

quirement I. of Proposition 4.1. Requirement III. of Proposition 4.1 is guaranteed

by the construction of initial conditions in (4.11). Next, we verify that the mappings

(t, ΞB) 7→ f cv(t, [u(t),u(t)], ΞB, ΞB) and (t, ΞB) 7→ f cc(t, [u(t),u(t)], ΞB, ΞB) de-

scribe enclosing dynamics about [t 7→ xcv(t,u), t 7→ xcc(t,u)] for all u ∈ U , so that

152



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

Requirement II. of Proposition 4.1 is satisfied. It suffices to show that, for a.e. t ∈ I,

any u ∈ U , and Z = [zL, zU] ∈ IRnx such that XR(t,u) ≡ [xcv(t,u),xcc(t,u)] ⊆ Z,

i. If zL
i = xcv

i (t,u), then f cv
i (t, U, Z, Z) ≤ ẋcv

i (t,u).

ii. If zU
i = xcc

i (t,u), then f cc
i (t, U, Z, Z) ≥ ẋcc

i (t,u).

It will be shown that the first requirement holds; verifying the second is analo-

gous. Since zL
i = xcv

i (t,u), XR(t,u) ⊆ Z, and [u(t),u(t)] ⊆ U, Condition V. in

Assumption 4.2 shows that,

f cv
i (t, U, Z, Z) ≤ f cv

i (t, [u(t),u(t)], XR(t,u), Z)

= ẋcv
i (t,u),

which is the desired inequality.

4.5.3 Convexity

Lemma 4.5. Under Assumption 4.2, suppose that (xcv,xcc,xL,xU) solves the ODE

(4.11) on I × U . Then, u 7→ xcv(t,u) and u 7→ xcc(t,u) are convex and concave,

respectively, on U for every t ∈ I.

Proof. We proceed very similarly to the proof of [120, Theorem 3]. Choose any

fixed u†,u‡ ∈ U and λ ∈ (0, 1). For all t ∈ I, define

ū(t) ≡ λu†(t) + (1− λ)u‡(t),

x̄cv(t) ≡ λxcv(t,u†) + (1− λ)xcv(t,u‡),

x̄cc(t) ≡ λxcc(t,u†) + (1− λ)xcc(t,u‡).
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To achieve a contradiction, assume that there exists t̂ ∈ I such that either xcv
i (t̂, ū) >

x̄cv
i (t̂) or xcc

i (t̂, ū) < x̄cc
i (t̂) for at least one index i ∈ {1, . . . , nx}. Define δ : I →

R2nx by

δ(t) ≡ (xcv(t, ū)− x̄cv(t), x̄cc(t)− xcc(t, ū)), ∀t ∈ I.

Then, there is δi(t̂) > 0 or δi+nx(t̂) > 0. Let kr ∈ R>0 be the Lipschitz constant

in Condition I. in Assumption 4.2. According to Lemma 3 in [120], there exist

j ∈ {1, . . . , 2nx}, t1, t2 ∈ I with t1 < t2, and a continuously differentiable function

ρ : I → R satisfying

0 < ρ(t) and ρ̇(t) > (2kr)ρ(t), ∀t ∈ I.

Suppose that j ≤ nx; the case in which j > nx is analogous. The following inequal-

ities then hold.

xcv(t, ū) ≤ x̄cv(t) + 1ρ(t), ∀t ∈ [t1, t2), (4.13a)

xcc(t, ū) ≥ x̄cc(t)− 1ρ(t), ∀t ∈ [t1, t2), (4.13b)

x̄cv
j (t) < xcv

j (t, ū) < x̄cv
j (t) + ρ(t), ∀t ∈ (t1, t2), (4.13c)

xcv
j (t2, ū) = x̄cv

j (t2) + ρ(t2), (4.13d)

xcv
j (t1, ū) = x̄cv

j (t1), (4.13e)

where 1 is a vector whose elements are 1.

Define xcv†(t) ≡ min(xcv(t, ū), x̄cv(t)) and xcc†(t) ≡ max(xcc(t, ū), x̄cc(t)) for
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all t ∈ [t1, t2]. The Lipschitz continuity of f cv and f cc implies that

ẋcv
i (t, ū) = f cv

j (t, [ū(t), ū(t)], [xcv(t, ū),xcc(t, ū)], XB(t))

≤ f cv
j (t, [ū(t), ū(t)], [xcv†(t),xcc†(t)], XB(t))

+ kr(‖xcv(t, ū)− xcv†(t)‖∞

+ ‖xcc(t, ū)− xcc†(t)‖∞),

for a.e. t ∈ [t1, t2]. By the inequalities in (4.13a) and (4.13b), it follows that

ẋcv
i (t, ū) ≤ f cv

j (t, [ū(t), ū(t)], [xcv†(t),xcc†(t)], XB(t)) + 2krρ(t)

≤ f cv
j (t, [ū(t), ū(t)], [xcv†(t),xcc†(t)], XB(t)) + ρ̇(t),

for a.e. t ∈ [t1, t2].

Next, following Definition 4.6, we use the fact that f cv and f cc describe convexity-

preserving dynamics to show that, for a.e. t ∈ [t1, t2],

ẋcv
j (t, ū)

≤ f cv
j (t, [ū(t), ū(t)], [xcv†(t),xcc†(t)], XB(t)) + ρ̇(t)

≤ λ f cv
j (t, [u†(t),u†(t)], [xcv(t,u†),xcc(t,u†)], XB(t))

+ (1− λ) f cv
j (t, [u‡(t),u‡(t)], [xcv(t,u‡),xcc(t,u‡)], XB(t))

+ ρ̇(t)

= λẋcv
j (t,u†) + (1− λ)ẋcv

j (t,u‡) + ρ̇(t). (4.14)
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First, it is assured by Lemma 4.4 that, for a.e. t ∈ [t1, t2],

xcv(t,u†) ≤ xcc(t,u†),

xcv(t,u‡) ≤ xcc(t,u‡),

xcv†(t) ≤ xcv(t, ū) ≤ xcc(t, ū) ≤ xcc†(t).

Moreover, by definition,

xcv†(t) ≤ x̄cv(t) = λxcv(t,u†) + (1− λ)xcv(t,u‡),

xcc†(t) ≥ x̄cc(t) = λxcc(t,u†) + (1− λ)xcc(t,u‡),

and the inequality in (4.13c) shows that, for a.e. t ∈ [t1, t2],

xcv†
j (t) = x̄cv

j (t) = λxcv
j (t,u†) + (1− λ)xcv

j (t,u‡).

Thus, Definition 4.6 ensures (4.14) with the following substitutions:

p† ≡ u†(t) p‡ ≡ u‡(t) p̄ ≡ ū(t),

φ† ≡ xcv(t,u†), φ‡ ≡ xcv(t,u‡), φ̄ ≡ xcv†(t),

ψ† ≡ xcc(t,u†), ψ‡ ≡ xcc(t,u‡), ψ̄ ≡ xcc†(t).

According to Theorem 1 in [120], (4.14) implies that ẋcv
j (t, ū)− ˙̄xcv

j (t)− ρ̇(t) is non-

increasing on [t1, t2]. So,

xcv
j (t2, ū)− x̄cv

j (t2)− ρ(t2) ≤ xcv
j (t1, ū)− x̄cv

j (t1)− ρ(t1).
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The inequalities in (4.13d) and (4.13e) suggest that 0 ≥ ρ(t1), which is a contradic-

tion.

4.5.4 Underestimating the original OCP

This section uses the results in Sections 4.5.1-4.5.3 to illustrate that, the optimal

solution value of OCP (4.10) is a guaranteed lower bound of the optimal solution

value of the original OCP (4.1).

Theorem 4.1. Under Assumptions 4.1 and 4.2, the following results hold:

I. The following mapping is convex:

u 7→ φcv([xcv(t f ,u),xcc(t f ,u)], [xL(t f ),x
U(t f )]),

II. The optimal solution value of OCP (4.10) is a lower bound of the optimal solution

value of OCP (4.1).

Proof. Under Assumption 4.2, Lemmas 4.3, 4.4, and 4.5 ensure that (xcv,xcc,xL,xU)

is a unique solution of (4.11) and provides state relaxations and state bounds of

(4.2). Assumption 4.1 shows that

u 7→ φcv([xcv(t f ,u),xcc(t f ,u)], [xL(t f ),x
U(t f )]) (4.15)

is a convex relaxation of

u 7→ φ(x(t f ,u)) (4.16)
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on U . Thus, Result I. holds.

Next, let u∗ ∈ U be an optimal solution of (4.1) and u† ∈ U be an optimal

solution of (4.10). Since u† minimizes (4.10) and since (4.15) is a convex relaxation

of (4.16),

φcv([xcv(t f ,u†),xcv(t f ,u†)], [xL(t f ),x
U(t f )])

≤ φcv([xcv(t f ,u∗),xcv(t f ,u∗)], [xL(t f ),x
U(t f )])

≤ φ(x(t f ,u∗)),

which ensures the Result II..

4.5.5 Tightness

In this section, we demonstrate that if Scott and Barton’s relaxed OCP (4.5) uses

the state bounds in (4.11a) and if the RHS functions of (4.11b) are constructed as in

(4.12), then (4.10) generates a lower bound that is tighter than Scott and Barton’s

lower bound (4.5).

Theorem 4.2. Suppose that φcv in (4.10), φ̂cv in (4.5), f̂ cv, f̂ cc in (4.6), and f̄ cv, f̄ cc

in (4.12) are constructed with DMR. Let f cv,f cc in (4.11) be defined as in (4.12). Let

(xcv,xcc,xL,xU) be a solution of (4.11). Moreover, let xL,xU be the state bounds used

in (4.6) and let (x̂cv, x̂cc) be a solution of (4.6). Assume that u† ∈ U minimizes (4.5) and

u‡ ∈ U minimizes (4.10). Then,

φcv([xcv(t f ,u‡),xcc(t f ,u‡)], [xL(t f ),x
U(t f )])

≥ φ̂cv([x̂cv(t f ,u†), x̂cc(t f ,u†)], [xL(t f ),x
U(t f )]).
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Proof. First, we demonstrate that

[xcv(t f ,u‡),xcc(t f ,u‡)] ⊆ [x̂cv(t f ,u‡), x̂cc(t f ,u‡)] (4.17)

using Proposition 4.1. It is desired to verify that the three conditions in Propo-

sition 4.1 hold with t 7→ x̂cv(t,u‡), t 7→ x̂cc(t,u‡) in place of ξL, ξU and t 7→

xcv(t,u‡), t 7→ xcc(t,u‡) in place of ξ†, ξ‡. Since f̂ cv ≡ f̄ cv and f̂ cc ≡ f̄ cc are

constructed with DMR, f̂ cv, f̂ cc satisfy Assumption 4.3. Condition I. in Assump-

tion 4.3 ensures the first condition in Proposition 4.1. Next, we investigate the

enclosing dynamics in the second condition of Proposition 4.1 following Defini-

tion 4.5. It suffices to show that, for a.e. t ∈ I and any ΞR ∈ IRnx such that

[xcv(t,u‡),xcc(t,u‡)] ⊆ ΞR ≡ [ξcv, ξcc] ⊆ XB(t) ≡ [xL(t),xU(t)],

1. If ξcv
i = xcv

i (t,u‡), then f̂ cv
i (t, [u‡(t),u‡(t)], ΞR, XB(t)) ≤ ẋcv

i (t,u‡).

2. If ξcc
i = xcc

i (t,u‡), then f̂ cc
i (t, [u‡(t),u‡(t)], ΞR, XB(t)) ≥ ẋcc

i (t,u‡).

It will be shown that the first requirement holds; verifying the second is analogous.

Since [xcv(t,u‡),xcc(t,u‡)] ⊆ ΞR, BL
i ([x

cv(t,u‡),xcc(t,u‡)]) ⊆ ΞR. The inclusion

monotonicity of f̂ cv, f̂ cc ensures that

f̂ cv
i (t, [u‡(t),u‡(t)], ΞR, XB(t))

≤ f̂ cv
i (t, [u‡(t),u‡(t)], BL

i ([x
cv(t,u‡),xcc(t,u‡)]), XB(t))

= f̄ cv
i (t, [u‡(t),u‡(t)], BL

i ([x
cv(t,u‡),xcc(t,u‡)]), XB(t))

= f cv
i (t, [u‡(t),u‡(t)], [xcv(t,u‡),xcc(t,u‡)], XB(t))

= ẋcv
i (t,u‡),
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which is the desired inequality in the first requirement.

Lastly, since φcv is generated with DMR and since (4.17) holds, the inclusion

monotonicity of DMR [72] ensures that

φcv([xcv(t f ,u‡),xcc(t f ,u‡)], [xL(t f ),x
U(t f )])

≥ φcv([x̂cv(t f ,u‡), x̂cc(t f ,u‡)], [xL(t f ),x
U(t f )]).

Since φ̂cv ≡ φcv and since u† ∈ U minimizes (4.5),

φcv([xcv(t f ,u‡),xcc(t f ,u‡)], [xL(t f ),x
U(t f )])

≥ φ̂cv([x̂cv(t f ,u‡), x̂cc(t f ,u‡)], [xL(t f ),x
U(t f )])

≥ φ̂cv([x̂cv(t f ,u†), x̂cc(t f ,u†)], [xL(t f ),x
U(t f )]),

which is the desired inequality.

4.6 Solving the Underestimating Problem

This section presents an approach to solve our new relaxed OCP (4.10) to global

optimality. Since RHS functions f cv,f cc in ODE (4.11) are not convex, the OCP

(4.10) is not a convex OCP in the sense of [13]. Thus, the gradient-based numer-

ical method in [13], which was proposed to solve Scott and Barton’s OCP (4.5)

[119], is not applicable here. Instead, we will solve OCP (4.10) using PMP. Because

the mapping u 7→ φcv([xcv(t f ,u),xcc(t f ,u)], [xL(t f ),xU(t f )]) is convex on U as

demonstrated in Theorem 4.1, the PMP conditions in (4.8)-(4.9) actually provide a

globally optimal solution of (4.10) according to Proposition 4.3 in Section 4.3.
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For simplicity, define yB,yR,y0 ∈ R2nx and fR : I × IRnu × IRnx × IRnx →

R2nx such that yB ≡ (xL,xU), yR ≡ (xcv,xcc), and fR ≡ (f cv,f cc). Then, (4.10)

becomes:

min
u∈U

φcv(yR(t f ,u),yB(t f )), (4.18)

where (yR,yB) solves the following ODE:

ẏB(t) = fR(t, U,yB(t),yB(t)), yB(t0) = y0,

ẏR(t,u) = fR(t, [u(t),u(t)],yR(t,u),yB(t)), yR(t0,u) = y0.

For this OCP, the PMP conditions (4.8) and (4.9) are stated as follows, in terms of

variables yR, yB, and λ:

ẏB(t) = fB(t, U,yB(t),yB(t)),

ẏR(t,u) = fR(t, [u∗(t),u∗(t)],yR(t,u∗),yB(t)),

λ̇(t) = −λ(t)DyRfR(t, [u∗(t),u∗(t)],yR(t,u∗),yB(t)), (4.19)

yB(t0) = y0, yR(t0) = y0,

λ(t f ) = DyR φcv(yR(t f ,u∗),yB(t f )),

where for a.e. t ∈ I,

u∗(t) = arg min
ω∈U

〈λ(t), fR(t, [ω,ω],yR(t,u∗),yB(t))〉. (4.20)

Theorem 4.3. Under Assumptions 4.1 and 4.2, let (yR,yB,λ) be a trajectory satisfying

(4.19) and let u∗ be the corresponding control. Then, u∗ is a globally optimal control input

for (4.18). Moreover, φcv(yR(t f ,u∗),yB(t f )) is a lower bound of the optimal solution
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value of the original OCP (4.1).

Proof. fR is continuously differentiable with respect to yR according to Assump-

tion 4.2, so DyRfR is continuous. Result I. in Theorem 4.1 shows that the map-

ping u 7→ φcv(yR(t f ,u),yB(t f )) is convex. Thus, Proposition 4.3 ensures that u is

a globally optimal solution of (4.18). Moreover, since φcv(yR(t f ,u∗),yB(t f )) is a

globally optimal solution value of (4.10), Result II. in Theorem 4.1 guarantees that

it is a lower bound of the optimal solution value of (4.1).

Observe that the ODE in (4.19) is a two-point boundary-value problem with

both initial and terminal conditions. It may be solved numerically by standard

collocation methods or shooting methods. Furthermore, the optimization problem

in (4.20) is trivial to solve if ω 7→ fR(t, [ω,ω],yR(t,u),yB(t)) is affine. In this case,

the original OCP (4.1) is a control-affine OCP, and has been widely studied [85, 13,

26].

Corollary 4.1. Consider a nonlinear function g : I ×Rnx → Rnx and a matrix-valued

function B : I → Rnx×nu . Consider a control-affine instance of (4.2) where the ODE RHS

function f is given by

f (t,u,x) ≡ g(t,x(t,u)) + B(t)u(t). (4.21)

Suppose that the ODE RHS functions f cv,f cc are constructed following Section 4.4.1

using DMR. Then, the control u∗ in the following provides a closed-form globally optimal
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solution for (4.20): for each j ∈ {1, . . . , nu},

u∗j (t) ≡


uL

j , if (λcv(t) + λcc(t))B(j)(t) ≥ 0,

uU
j , otherwise,

(4.22)

where B(j) is the jth column of B.

Proof. Consider functions ḡcv, ḡcc : I × IRnx × IRnx → Rnx such that, for any con-

vex and concave relaxations ξcv, ξcc : U → Rnx of u 7→ x(t,u) on U , the map-

pings u 7→ ḡcv(t, [ξcv(u), ξcc(u)], XB(t)) and u 7→ ḡcc(t, [ξcv(u), ξcc(u)], XB(t)) are

convex and concave relaxations of u 7→ g(t,x(t,u))) on U , respectively, for all

t ∈ I. In this case, functions ḡcv, ḡcc are constructed from g using DMR. Define

gcv, gcc : I × IRnx × IRnx → Rnx such that

gcv(t, ΞR, ΞB) ≡ ḡcv(t, BL
i (Ξ

R), ΞB),

gcc(t, ΞR, ΞB) ≡ ḡcc(t, BU
i (Ξ

R), ΞB),

and let gR ≡ (gcv, gcc). Then, we construct f cv,f cc as follows:

f cv(t, [pL,pU], ΞR, ΞB) ≡ gcv(t, ΞR, ΞB) + B(t)pL,

f cc(t, [pL,pU], ΞR, ΞB) ≡ gcc(t, ΞR, ΞB) + B(t)pU.
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Representing λ in (4.19) as (λcv,λcc), in this case (4.20) becomes

u∗(t) ∈ arg min
ω∈U

{〈λcv(t), gcv(t,yR(t,u∗),yB(t)) + B(t)ω〉

+ 〈λcc(t), gcc(t,yR(t,u∗),yB(t)) + B(t)ω〉}

= arg min
ω∈U

{〈λ(t), gR(t,yR(t,u∗),yB(t)〉

+ 〈λcv(t) + λcc(t), B(t)ω〉}. (4.23)

Therefore, (4.22) is a globally optimal solution of (4.20) by inspection.

Corollary 4.1 demonstrates that, when the original OCP (4.1) is a control-affine

instance, our new relaxed OCP (4.10) can be solved trivially using PMP and a

closed-form solution is available. This property is particularly useful in determin-

istic global optimization, because branch-and-bound algorithms typically require

many evaluations of a guaranteed global lower bound.

4.7 Numerical Examples

This section presents numerical examples to demonstrate bounding the optimal

solution value of nonconvex OCPs using the new underestimating OCP in (4.10).

To compute valid lower bounds, PMP was applied as in Theorem 4.3. A proof-

of-concept implementation that solves the two-point boundary-value problem in

(4.19) was developed in Julia v1.5.3 [20] using the package DifferentiableEqua-

tions.jl [104] as the numerical integrator. Natural interval extension was constructed

using the package IntervalArithmetic.jl. DMR was generated with the package

McCormick.jl in EAGO.jl [152]. All numerical experiments were performed on a

164



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

Windows 10 machine with a 3.6 GHz Ryzen 5 2600X CPU and 8 GB memory.

The following example is modified from [19, Example 3.2.1] by adding a non-

linear nonconvex term to the RHS function of the ODE (4.25).

Example 4.1. Consider the following instance of the OCP (4.1):

min
u∈U

φ(x(t f , u)) =
1
2
(x(t f , u))2, (4.24)

where x solves the ODE:

ẋ(t, u) = −1
4
((x(t, u))3 − (x(t, u))2) + u(t),

x(t0, u) = −1
2

,
(4.25)

and U ≡ [−1, 1], u ∈ U , I ≡ [t0, t f ] = [0, 1].

To generate a lower bound for (4.24), we first construct the relaxed OCP in

(4.10). Since φ(ξ) = 1
2 ξ2 is a convex quadratic function, we may set φcv = φ, which

satisfies Assumption 4.2. Next, we applied the results in Section 4.6 to solve the

relaxed OCP using the PMP conditions described in (4.19) and (4.20). Observe that

the ODE RHS function in (4.25) is consistent with the formulation in (4.21) with

g(t, x) = −1
4(x3 − x2) and B = 1. So, we constructed convex and concave relax-

ations of ODE RHS function with DMR following Section 4.4.1 and determined the

optimal control inputs using Corollary 4.1.

The relaxed trajectory t 7→ φcv(x(t, u∗)) is plotted in Figure 4.1, along with the

system trajectories t 7→ φ(x(t, u)) where u(t) = sin(2(t + πp)) and p ∈ [0, 1]. As

shown in Figure 4.1, the optimal solution value of the underestimating problem is

a lower bound for φ(x(t, u)) with various control inputs u at the terminal time t f =
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1. Observe that the trajectory t 7→ φcv(x(t, u∗)) does not underestimate trajectories

t 7→ φ(x(t, u)) for most earlier times t < t f in this example.

Figure 4.1: The system trajectories and the relaxed trajectory in Example 4.1:
trajectories t 7→ φ(x(t, u)) (dotted) where u is a suboptimal control and trajectory

t 7→ φcv(x(t, u∗)) (solid) where u∗ is a globally optimal control

Next, we consider a second example adapted from Example 6.3 in [26], The cost

function in this example is nonlinear and nonconvex, so the terminal condition of

the adjoint equations is not known a priori.

Example 4.2. Consider the instance of the OCP (4.1):

min
u∈U

φ(x(t f , u)) = x1(t f , u)− (x2(t f , u))2, (4.26)
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where x solves the following ODE:

ẋ1(t, u) = (x2(t, u))3, x1(t0, u) = 0.2,

ẋ2(t, u) = u(t), x2(t0, u) = 0.1,

and U ≡ [−1, 1], u ∈ U , I ≡ [t0, t f ] = [0, 1].

An underestimating OCP of (4.26) was constructed and solved similarly to

Example 4.1, except that φcv was generated with DMR. The objective trajectory

t 7→ φcv(x(t, u∗)) is plotted in Figure 4.2, along with trajectories t 7→ φ(x(t, u)) for

various suboptimal control trajectories u. Observe that the optimal solution value

of the underestimating OCP, φcv(x(t f , u∗)), is an underestimator of φ(x(t f , u)) at

the final time t f = 1.

Figure 4.2: The system trajectories and the relaxed trajectory in Example 4.2:
trajectories t 7→ φ(x(t, u)) (dotted) where u is a suboptimal control and trajectory

t 7→ φcv(x(t, u∗)) (solid) where u∗ is a globally optimal control
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Furthermore, we compare the new underestimating method with the Harri-

son’s method [59] as described in Section 4.1. Using Harrison’s method, we ob-

tained an underestimator for (4.26) of −1.174, which is less than the optimal solu-

tion value of the new underestimating OCP φcv(x(t f , u∗)) = −0.644. Therefore,

our new method constructed a tighter lower bound than Harrison’s method for

this example.

Example 4.3. Consider the instance of the OCP (4.1):

min
u∈U

φ(x(t f , u)) = −1
2
(x(t f , u))2, (4.27)

where x solves the ODE:

ẋ(t, u) = −1
3
(x(t, u))3 − 1

2
(x(t, u))2 + u(t),

x(t0, u) = −0.1,
(4.28)

and U ≡ [−1, 1], u ∈ U , I ≡ [t0, t f ] = [0, 1].

In this example, we compare our new approach with Scott and Barton’s method

[119], as well as the simultaneous approach described in Section 4.1. Our new ap-

proach was implemented similarly to Example 4.2. For Scott and Barton’s method,

the functions φ̂cv in (4.5) and f̂ cv, f̂ cc in (4.6) were generated with DMR as dis-

cussed in Section 4.3.3, and thereby satisfy Assumptions 4.1 and 4.2, respectively.

Therefore, when we implemented Scott and Barton’s method, the globally opti-

mal solution of the convex OCP (4.5) was determined using PMP following Theo-

rem 4.3. Denote this optimal control as û∗.

To implement the simultaneous approach, we first discretized both control and
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state evenly over n time-intervals of duration and each time step ∆t =
t f−t0

n . Then,

the original OCP (4.1) was approximated as the following NLP where the ODE

solution is approximated using the implicit Euler method.

min
vi∈U, ξi∈Ξi,

i∈{1,...,n}

φ(ξn),

subject to ξi − ξi−1 − ∆t f (i∆t,vi, ξi) = 0, i ∈ {1, . . . , n},

ξ0 = x0.

(4.29)

The interval bound of the discretized state ξi, Ξi, was generated using the forward

Euler method and natural interval extension:

Ξi = Ξi−1 + ∆t F(i∆t, U, Ξi−1), ∀i ∈ {1, . . . , n},

Ξ0 = [x0,x0],

where F : I × IRnu × IRnx → IRnx is the natural interval extension of f . Finally,

we used DMR to construct a convex relaxation problem of the NLP (4.29) with

same numbers of variables and constraints, and solved this to global optimality.

This approach has been used to underestimate nonconvex NLPs in deterministic

global optimization [138]. Denote this convex relaxation problem’s global solution

as (ṽi, ξ̃i) and its optimal objective value as φ̃cv(ξ̃n) where φ̃cv is the convex relax-

ation of φ generated with DMR. Then, φ̃cv(ξ̃n) is a guaranteed lower bound of the

global optimal solution value of (4.29). Furthermore, the sequence [φ̃cv(ξ̃i)]i∈{1,...,n}

represents the value of the relaxed objective function φ̃cv at each mesh point. It de-

scribes how the value of the relaxed cost function evolves with time, to mimic the
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trajectory t 7→ φcv(x(t, u∗)) in our continuous-time approach and form a compari-

son.

Figure 4.3 shows the trajectory t 7→ φcv(x(t, u∗)) generated using our new ap-

proach, the trajectory t 7→ φ̂cv(x(t, û∗)) generated using Scott and Barton’s method,

as well as the sequence [φ̃cv(ξ̃i)]i∈{1,...,n} generated using the discretization ap-

proach with two different numbers of discretization points: n = 10 and n = 30. For

this example, our new approach generated a tighter lower bound for the globally

optimal solution of the original OCP (4.1) than these two established approaches.

Figure 4.3: The system trajectories and the relaxed trajectories in Example 4.3: our
new trajectory t 7→ φcv(x(t, u∗)) (solid), the Scott-Barton trajectory

t 7→ φ̂cv(x(t, û∗)) (dashed), and the sequence [φ̃cv(ξ̃i)]i∈{1,...,n} with n = 10 (star)
and n = 30 (triangle), and trajectories t 7→ φ(x(t, u)) (dotted) for various

suboptimal control inputs u
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4.8 Conclusion

This article presented a novel approach for underestimating a nonconvex open-

loop OCP without discretizing the control or state trajectories. We constructed a

relaxed OCP in (4.10) using the state relaxations and state bounds described in

(4.11). Our new approach improved Scott and Barton’s relaxed OCP (4.5) [119] by

tightening the ODE RHS functions with the flattening operators in Definition 4.7.

This modification weakened the convexity of the relaxed OCP and made the the-

oretical results in [119] no longer applicable. Instead, we underwent a completely

different theoretical development process using the theory of differential inequal-

ities [148, 120]. Theorem 4.1 demonstrated that the optimal solution value of the

relaxed OCP is a guaranteed lower bound for the optimal solution value of the

original OCP. It was also verified in Theorem 4.2 that this lower bound is always at

least as tight as the lower bound generated with Scott and Barton’s method. Such

a tighter lower bound can in principle hasten the convergence of the branch-and-

bound algorithms used in deterministic global optimization [42].

Furthermore, Theorem 4.3 illustrated that the relaxed OCP (4.10) can be solved

to its global optimality using PMP. A two-point boundary-value problem (4.19)

was developed to describe the globally optimal solution, which can be solved with

a standard numerical integrator. Unlike Scott and Barton’s method [119], the so-

lution strategy of our approach is straightforward to implement and can be au-

tomated easily. In particular, when the original problem (4.1) is a control-affine

OCP, the closed-form globally optimal solution of our relaxed OCP (4.10) can be

determined trivially following Corollary 4.1. A proof-of-concept implementation

of our new approach was developed in Julia. Numerical examples were presented
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in Section 4.7 to illustrate that the new method generates valid lower bounds for

nonconvex OCPs. For these examples, our new bounds are tighter than established

methods [119, 59].

Future work may include constructing the ODE RHS functions in (4.11) using

GMR [123], which is tighter than DMR but nonsmooth. Achieving this would

likely require nonsmooth variants of the PMP formulations considered in this ar-

ticle, along the lines of [41]. Moreover, Section 4.6 focuses on control-affine OCPs.

This is to ensure that the ODE RHS functions f cv,f cc in the underestimating OCP

are also affine with respect to the control input, so that the lower-bounding prob-

lem (4.20) may ultimately be solved easily. It may be worthwhile to develop other

techniques to construct functions f cv,f cc instead of using GMR or DMR.
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Chapter 5

An Optimization-Based Framework

for Enclosing Reachable Sets with

Differential Inequalities

This chapter represents a manuscript in preparation for submission to a journal.

5.1 Introduction

The reachable set of a dynamic system is the set of possible states that the system

may attain, given bounded uncertain controls, parameters, and initial conditions.

This article presents a novel framework for enclosing the reachable set of nonlinear

ordinary differential equations (ODEs) using differential inequalities. Such enclo-

sures provide critical bounding information for algorithms in deterministic global

dynamic optimization [101, 129, 81] and global optimal control [64]. They are also

widely used in applications like safety verification [66], fault detection [82], and
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state estimation [69]. While a number of different strategies have been established

to compute such enclosures [91, 8, 78, 96, 76], this work particularly focuses on an

extensively studied category of methods that are based on differentiable inequali-

ties [59, 128, 118, 127, 62].

The theories of differential inequalities can be found in the book by Walter [148].

To generate time-varying bounds for a dynamic system using differential inequali-

ties, an auxiliary system of ODEs need to constructed and solved numerically. This

strategy requires rigorous lower and upper bounding information of the original

system’s right-hand side (RHS) functions, which has been central to the research in

differential inequality-based methods. In established approaches, various bound-

ing techniques have been developed. Harrison [59] proposed to calculate interval

bounds of the RHS function automatically with natural interval extension (NIE)

[94]. A flattening technique was implemented in Harrison’s method to reduce

the overestimation generated by NIE. Singer and Barton [128] provided bound-

ing information by minimizing affine relaxations of the original RHS function.

These affine relaxations are generated by linearizing classic McCormick-based re-

laxations using subgradients [92]. Neverthelss, the constructed auxiliary system of

ODEs is not guaranteed to have a unique solution. Another method described by

Harwood, et al. [62] involves embedding linear programs (LPs) into the RHS of the

auxiliary system. To ensure the existence and uniqueness of a solution, a special re-

laxation technique is required to construct those LPs. A formulation of generalized

differential inequalities was proposed by Villanueva, et al. [146], which may serve

as a framework for established differential inequalities and ellipsoidal bounding

approach [79]. It also supports propagating nonconvex enclosures for reachable
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sets using Taylor models [88]. But the authors didn’t report any improved convex

enclosing methods developed using their framework.

Summarizing the differential inequality-based methods reviewed above, one

thing in common can be found. They provide bounding information for the origi-

nal system by optimizing various relaxations of the original ODE’s RHS function.

This commonality is the intuition of our new framework. In addition to covering

these established approaches, this novel framework also permits the application of

various other relaxation techniques for the original ODE’s RHS functions. There-

fore, it is necessary to provide a brief overview of available convex and concave

relaxation methods.

McCormick [89] proposed a method for deriving (nonsmooth) convex and con-

cave relaxation pairs for functions that are factorable. A function being factorable

means that it is a composition of finite simple operations such as addition, multipli-

cation, etc. A method for propagating the subgradients of McCormick’s relaxations

was later developed by Mitsos, et al. [92]. McCormick’s relaxation method, along

with Mitsos, et al.’s subgradient propagation rule, will be referred as McCormick

relaxations (MC) in this article. Note that affine relaxations and piecewise-affine

relaxations can be constructed by linearizing the nonlinear McCormick relaxations

at fixed points using subgradients. Compared with nonlinear relaxations, these

affine or piecewise-affine relaxations are computationally cheaper to optimize [50,

33]. Scott et al. [123] described a generalized formulation of MC and named it as

generalized McCormick relaxations (GMC). It has one important property of taking

previously known convex relaxations as arguments for further calculation, which

is useful in the applications like differential inequalities and iterative algorithms.
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Khan and his coworkers developed two smooth variants of GMC, termed as dif-

ferentiable McCormick relaxations (DMC), to eliminate the theoretical and compu-

tational obstacles caused the non-smoothness in MC and GMC. The DMC intro-

duced in [74] yields convex relaxations that are twice-continuously differentiable

(C 2), and will be referred as C 2-DMC. The other version of DMC [72, 73], C 1-

DMC, constructs tighter but continuously differentiable (C 1) relaxations. It is also

worth mention that C 1-DMC was developed based on the generalization of multi-

variate McCormick relaxations by Tsoukalas and Mitsos (T-M) [144]. Their method

reformulates McCormick’s composition theorem with an optimization problem to

generate tighter convex relaxations than standard McCormick relaxations (i.e. MC

and GMC). Similar to GMC and DMC, T-M relaxations can also take convex relax-

ations that are known a priori for further computation.

All the methods introduced above originate from McCormick’s work and will

be referred as McCormick-type relaxations here. Those generalized methods that can

take known convex relaxations for further computation, i.e. GMC, DMC and T-M

relaxations, will be referred as generalized McCormick-type relaxations in this work.

The hierarchical relationship among these methods is described in Figure 5.1.

McCormick-type relaxations

MC [92, 89] Generalized McCormick-type
relaxations

GMC [123] DMC

C 1-DMC [72, 73] C 2-DMC [74]

T-M relaxations [144]

Figure 5.1: An illustration of the hierarchical relationship of McCormick-type
relaxations
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Moreover, we propose a novel usage of generalized McCormick-type relax-

ations in this work. If GMC, DMC, or T-M relaxations are fed with known interval

bounds without parameter dependence for further calculation, then the computed

convex relaxations will continue to be parameter-independent interval bounds.

Hence, similar to NIE, GMC, DMC, and T-M relaxations are also able to construct

interval extensions. Such interval extensions will be called McCormick interval ex-

tensions (MIE). They can be used to replace NIE in some applications, such as Har-

rison’s method.

In addition to McCormick-type relaxations, αBB relaxation is another estab-

lished method for generating convex relaxations [3]. It constructs convex under-

estimators for nonconvex C 2 functions by adding a negative convex quadratic

term to the original function. Another available method for bounding nonconvex

functions is edge-concave relaxations [63]. Compared with previously described

convex relaxation methods, edge-concave relaxation is relatively unorthodox. It

provides bounding information for the original function via generating concave

underestimators.

Besides permitting new methods for bounding the original system’s RHS func-

tion, our new framework also support the strategy of generating tighter enclo-

sures of reachable sets using known constraints of the original system, including

the non-negativity of the states, physical bounds of the dynamic system, and con-

servation laws. Such constraints are typically expressed as a priori enclosures of

the reachable set, and have been employed to construct tighter interval bounds

for the original system [121, 118, 62, 127]. A generalized formulation of this strat-

egy was developed in [124] to support for a wider range of a priori knowledge of
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the original system, such as nonlinear constraints and constraints depending on

time-varying inputs. Moreover, given an unconstrained nonlinear dynamic sys-

tem, [126] proposed an strategy to deliberately construct useful constraints via in-

troducing redundant state variables in order to produce tighter enclosures for the

reachable set.

The remainder of this article is organized as follows. Section 5.2 introduces the

notation convention and necessary definitions. The problem of interest is formally

formulated in 5.3. Our new framework is presented in Section 5.4. Section 5.5

describes four use cases of this framework, as well as various methods for relaxing

the original ODE’s RHS function. Lastly, numerical examples are presented in

Section 5.7 to illustrate the interval bounds constructed using this new framework

for enclosing reachable sets.

5.2 Preliminaries

This section introduces the mathematical background underlying the methods and

results in this article. The following notation conventions are used. The set of

positive real numbers is represented as R>0, and R≥0 stands for the set of non-

negative real numbers. The standard Euclidean norm ‖·‖ is adopted for any vector

space Rn, and ‖·‖∞ represents infinity norm. Vectors are denoted with boldface

lower-case letters (e.g. z). Given vectors z†, z‡ ∈ Rn, inequalities such as z† < z‡

or z† ≤ z‡ are to be interpreted component-wise. z−i ∈ Rn−1 stands for the

vector z with the ith component excluded. Throughout this article, the convexity

of a vector-valued function h refers to convexity of all components hi. Dotted

quantities indicate time-derivatives (e.g. ż ≡ ∂z
∂t ). The abbreviation “a.e.” stands
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for “almost every” in the Lebesgue sense. C 1 stands for continuously differentiable

and C 2 stands for twice-continuously differentiable.

5.2.1 Intervals and interval functions

Definition 5.1 (Interval). For any zL, zU ∈ Rn such that zL ≤ zU, define interval

Z ≡ [zL, zU] as the nonempty compact connected set of {z ∈ Rn : zL ≤ z ≤ zU}.

The set of all interval subsets of D ⊂ Rn is denoted as ID, and IRn denotes the set of all

interval subsets of Rn.

Definition 5.2 (Interval function). Let S ∈ IRn and h : S→ Rm.

1. An interval function H ≡ [hL,hU] : IRn → IRm is a inclusion function of h on

S if for all Z ⊆ S,

{h(z) : z ∈ Z} ⊆ H(Z) ≡ [hL(Z),hU(Z)].

2. Let H†, H‡ : IRn → IRm be interval functions. H† is tighter than H‡ on S if

H†(Z) ⊆ H‡(Z), ∀Z ⊆ S.

3. H is inclusion monotonic on S if for all Z†, Z‡ ∈ S such that Z† ⊆ Z‡,

H(Z†) ⊆ H(Z‡).

Definition 5.3 (Convex relaxation). Let Z ∈ IRn and h : Z → Rm.
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1. hcv : Z → Rm is a convex relaxation of h on Z if hcv(z) ≤ h(z) for all z ∈ Z

and hcv is convex on Z.

2. hcc : Z → Rm is a concave relaxation of h on Z if hcc(z) ≥ h(z) for all z ∈ Z

and hcc is concave on Z.

3. The interval function H ≡ [hcv,hcc] is a convex inclusion function of h on Z.

Definition 5.4 (Flattening operators [118]). For each i ∈ {1, . . . , n}, define flattening

operators BL
i , BU

i : IRn → IRn such that,

1. BL
i ([φ,ψ]) = [φ,ψ′], where ψ′i = φi, and ψ′−i = ψ−i,

2. BU
i ([φ,ψ]) = [φ′,ψ], where φ′i = ψi, and φ′−i = φ−i.

5.2.2 Enclosing trajectories

Based on the bounding methods in [120], [113], and [130], we develop a new gen-

eral result for bounding trajectories using ODEs. While those established results

provide sufficient conditions for bounding ODEs only, our new result can be used

to bound any continuous differentiable trajectories such as solutions of ODEs and

DAEs, or system trajectories of optimal control problems. Moreover, weaker as-

sumptions are required in our new result.

Definition 5.5 (Enclosing dynamics). Consider t0, t f ∈ R with t0 < t f , and define

I := [t0, t f ]. Consider arbitrary continuously differentiable functions ξ†, ξ‡ : I → Rn

such that ξ † (t) ≤ ξ‡(t) for all t ∈ I. Functions hL,hU : I ×Rn ×Rn → Rn describe

enclosing dynamics about [ξ†, ξ‡] if the following holds: For a.e. t ∈ I, zL, zU ∈ Rn

such that zL ≤ ξ†(t) ≤ ξ‡(t) ≤ zU,
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1. If zL
i = ξ†

i (t), then hL
i (t, z

L, zU) ≤ ξ̇†
i (t),

2. If zU
i = ξ

‡
i (t), then hU

i (t, z
L, zU) ≥ ξ̇

‡
i (t).

Definition 5.5 is modified from [120, Definition 6], [118, Theorem 2] and [130,

Theorem 2]. We use time derivatives ξ̇†
i , ξ̇

‡
i to replace the ODE RHS functions used

in the original definitions and theorems. This modification not only reduces a

monotonicity requirement on the ODE RHS functions, but also makes this result

applicable to trajectories other than solution of ODEs.

Theorem 5.1. Consider arbitrary continuously differentiable functions ξ†, ξ‡ : I → Rn

such that ξ † (t) ≤ ξ‡(t) for all t ∈ I. Define ξL
0 , ξU

0 ∈ Rn and continuous functions

hL,hU : I ×Rn ×Rn → Rn. Let (ξL, ξU) solves the following ODEs:

ξ̇L(t) = hL(t, ξL(t), ξU(t)), ξL(t0) = ξL
0 ,

ξ̇U(t) = hU(t, ξL(t), ξU(t)), ξU(t0) = ξU
0 .

(5.1)

If the following holds:

1. There exists kL ∈ R>0 such that, for any i ∈ {1, . . . , n}, a.e. t ∈ I, and any

φ†,ψ†,φ‡,ψ‡ ∈ Rn for which φ‡ ≤ φ† ≤ ψ† ≤ ψ‡,

hL
i (t,φ

†,ψ†)− hL
i (t,φ

‡,ψ‡) ≤ kL(‖φ† −φ‡‖∞ + ‖ψ† −ψ‡‖∞),

hU
i (t,φ

‡,ψ‡)− hU
i (t,φ

†,ψ†) ≤ kL(‖φ† −φ‡‖∞ + ‖ψ† −ψ‡‖∞).

2. hL,hU describe enclosing dynamics about [ξ†, ξ‡],

3. ξL
0 ≤ ξ†(t0) and ξ‡(t0) ≤ ξU

0 ,
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then

ξL(t) ≤ ξ†(t) ≤ ξ‡(t) ≤ ξU(t), ∀t ∈ I.

Proof. Since hL,hU are continuous, (5.1) is guaranteed to have a solution by the

Peano’s existence theorem. The one-sided Lipschitz continuity of hL,hU ensures

the uniqueness of such a solution (ξL, ξU) on I [148, p. 88].

Next, we proceed with a similar strategy used in the proves of [118, Theorem 2]

and [130, Theorem 1]. Since ξ† ≤ ξ‡ for all t ∈ I, it suffices to show that for all

t ∈ I,

ξL(t) ≤ ξ†(t) and ξ‡(t) ≤ ξU(t). (5.2)

By Condition 3, (5.2) holds at t := t0. We will verify that (5.2) holds for all

t ∈ (t0, t f ]. To arrive at a contradiction, suppose there exist a t̃ ∈ (t0, t f ] and

i ∈ {1, . . . , n} such that

ξL
i (t̃) > ξ†

i (t̃) or ξ
‡
i (t̃) < ξU

i (t̃).

Define

t1 := inf{t ∈ (t0, t f ] : ∃i ∈ {1, . . . , n} such that ξL
i (t) > ξ†

i (t) or ξ
‡
i (t) < ξU

i (t)}

Define a function δ : I → R2n such that for each t ∈ I,

δ(t) := (ξL(t)− ξ†(t), ξ‡ − ξU(t)).
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Since (ξL, ξU) solves (5.1) on I, ξL, ξU are absolutely continuous. Thus, δ is also

absolutely continuous on I. A contradiction will be developed following Lemma 2

and 3 in [120].

Define functions φ,ψ : I → Rn such that for each t ∈ I and i ∈ {1, . . . , n},

φi(t) := min{ξ†
i (t), ξL

i (t)}, and ψi(t) := max{ξ‡
i (t), ξU

i (t)}.

Let 1 ∈ Rn be a constant vector whose components are 1. It holds that t1 < t f ,

and for any t4 ∈ (t1, t f ], there exist j ∈ {1, . . . , n}, ε ∈ R>0, and an absolutely

continuous and non-decreasing function ρ : [t1, t4] → R whose derivative a.e. on

[t1, t4] is denoted as ρ̇, and scalars t2, t3 ∈ [t1, t4] with t2 < t3 such that

0 < ρ(t) ≤ ε, ∀t ∈ [t1, t4], (5.3)

ρ̇(t) > kLρ(t), a.e. t ∈ [t1, t4], (5.4)

ξL(t)− ρ(t)1 < ξ†(t), ξ‡(t) < ξU(t) + ρ(t)1, ∀t ∈ [t2, t3), (5.5)

and

ξ†
j (t2) = ξL

j (t2), (5.6)

ξ†
j (t3) = ξL

j (t3)− ρ(t3), (5.7)

ξ†
j (t) < ξL

j (t), ∀t ∈ (t2, t3). (5.8)

or

ξ
‡
j (t2) = ξU

j (t2),

ξ
‡
j (t3) = ξU

j (t3) + ρ(t3),

ξ
‡
j (t) > ξU

j (t), ∀t ∈ (t2, t3).

We proceed by assuming that (5.6)-(5.8) hold; the proof is analogous if the con-

ditions on the right-hand side hold.
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(5.6)-(5.8) show that ξ†
j (t) ≤ ξL

j (t) for all t ∈ [t2, t3), and thus

φj(t) = ξ†
j (t), ∀t ∈ [t2, t3). (5.9)

By the definition of φ and ψ,

φ(t) ≤ ξ†(t) ≤ ξ‡(t) ≤ ψ(t), ∀t ∈ [t2, t3). (5.10)

According to Condition 2, (5.9) and (5.10) show that

ξ̇†
i (t) ≥ hL

j (t,φ(t),ψ(t)), a.e. t ∈ [t2, t3). (5.11)

For each k ∈ {1, . . . , n} and each t ∈ [t2, t3), one of the following cases will

occur:

1. If ξ†
k(t) ≥ ξL

k (t) and ξ
‡
k(t) ≤ ξU

k (t), then φk(t) = ξL
k (t) and ψk(t) = ξU

k (t),

which is

φk(t)− ξL
k (t) = 0 and ψk(t)− ξU

k (t) = 0.

2. If ξ†
k(t) < ξL

k (t) and ξ
‡
k(t) ≤ ξU

k (t), then φk(t) = ξ†
k(t) and ψk(t) = ξU

k (t).

Combining with (5.5),

0 < ξL
k (t)− φk(t) < ρ(t) and ψk(t)− ξU

k (t) = 0.

3. If ξ†
k(t) ≥ ξL

k (t) and ξ
‡
k(t) < ξU

k (t), then φk(t) = ξL
k (t) and ψk(t) = ξ

‡
k(t).
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Combining with (5.5),

φk(t)− ξL
k (t) = 0 and 0 < ψk(t)− ξU

k (t) < ρ(t).

4. If ξ†
k(t) < ξL

k (t) and ξ
‡
k(t) < ξU

k (t), then φk(t) = ξ†
k(t) and ψk(t) = ξ

‡
k(t).

Combining with (5.5),

0 < ξL
k (t)− φk(t) < ρ(t) and 0 < ψk(t)− ξU

k (t) < ρ(t).

The above four cases ensure that

(‖φ(t)− ξL(t)‖∞ + ‖ψ(t)− ξU(t)‖∞) < ρ(t), ∀t ∈ [t2, t3). (5.12)

Condition 1 and (5.12) show that

hL
j (t, ξ

L(t), ξU(t)) ≤ hL
j (t,φ(t),ψ(t)) + kL(‖φ(t)− ξL(t)‖∞ + ‖ψ(t)− ξU(t)‖∞)

< hL
j (t,φ(t),ψ(t)) + kLρ(t), ∀t ∈ [t2, t3). (5.13)

Combining (5.11) and (5.13),

hL
j (t, ξ

L(t), ξU(t)) < ξ̇†
i (t) + kLρ(t), a.e. t ∈ [t2, t3). (5.14)

(5.4) shows that

ρ̇(t) > kLρ(t), a.e. t ∈ [t2, t3].
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(5.14) becomes

hL
j (t, ξ

L(t), ξU(t))− ξ̇†
i (t)− ρ̇(t) < 0, a.e. t ∈ [t2, t3]. (5.15)

According to Theorem 3.1 in [137], function (ξL
j (t) − ξ†

j (t) − ρ(t)) is decreasing

with respect to t on [t2, t3]. Thus,

ξL
j (t3)− ξ†

j (t3)− ρ(t3) < ξL
j (t2)− ξ†

j (t2)− ρ(t2). (5.16)

However, (5.6) and (5.7) show that

ξL
j (t2)− ξ†

j (t2) = 0,

ξL
j (t3)− ξ†

j (t3)− ρ(t3) = 0.

Substituting into (5.16) yields 0 > ρ(t2), which contradicts (5.3).

Remark 5.1. A single trajectory ξ : I → Rn can be bounded by (5.1) if we let ξ† ≡ ξ‡ ≡

ξ. For simplicity, we extend Definition 5.5 so that hL,hU describing enclosing dynamics

about ξ is interpreted as hL,hU describing enclosing dynamics about [ξ, ξ].

5.3 Problem Statement

Let U := [uL,uU] ⊂ Rnu be an interval, and D ⊂ Rnx be open. Denote the space

of all Lebesgue integrable functions h : I → Rn as Ln(I). Let U := {u ∈ Lnu(I) :

u(t) ∈ U, t ∈ I} be a set of admissible controls, and X0 ≡ [xL
0 ,xU

0 ] ∈ D be a

set of admissible initial conditions. Given a locally Lipschitz continuous function
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f : I ×U × D → Rnx , consider an initial-value problem

ẋ(t,u,x0) = f (t,u(t),x(t,u,x0)), ∀t ∈ (t0, t f ],

x(t0,u,x0) = x0,
(5.17)

where (u,x0) ∈ U × X0. The local Lipschitz continuity of f implies that the ODE

(5.17) is guaranteed to have a unique solution by the Picard-Lindelöf Theorem

(Theorem 1.1, Chapter II in [60]). Moreover, the ODE solution x is continuously

differentiable on I [148, p. 39].

This work concerns about enclosing the reachable set of (5.17) with state bounds,

which are time-varying interval bounds of the state variables.

Definition 5.6 (State bounds [120, 113]). Functions xL,xU : I → Rnx are state

bounds for (5.17) if, for each t ∈ I, u ∈ U , and x0 ∈ X0,

xL(t) ≤ x(t,u,x0) ≤ xU(t).

Let XB : I → IRnx denote the corresponding inclusion function: XB(t) ≡ [xL(t),xU(t)]

for each t ∈ I.

5.4 New Framework for Enclosing Reachable Sets

This section introduces a novel framework for constructing state bounds of (5.17).

Assumption 5.1. Assume that functions f L,fU : I ×Rnu ×Rnx ×Rnx → Rnx satisfy

the following conditions:

1. f L and fU are continuous,
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2. f L(t,p, ·, ·) and fU(t,p, ·, ·) are Lipschitz continuous on Rnx ×Rnx , uniformly in

(t,p),

3. (t, ξL, ξU) 7→ f L(t,u(t), ξL, ξU) and (t, ξL, ξU) 7→ fU(t,u(t), ξL, ξU) describe

enclosing dynamics about t 7→ x(t,u,x0) for all u ∈ U and x0 ∈ X0.

Note that an inclusion function of f (t,p, ·) for all (t,p) ∈ I × U describes

enclosing dynamics about t 7→ x(t,u,x0). However, to construct tighter state

bounds, the flattening operation in Definition 5.4 are usually applied to the in-

clusion function [59, 118]. The generated new function also describes enclosing

dynamics about t 7→ x(t,u,x0). Numerous methods for deriving f L,fU are intro-

duced in Section 5.5, which typically involves the flattening operation.

Under Assumption 5.1, consider the following auxiliary ODE system: for each

i ∈ {1, . . . , nx},

ẋL
i (t) = min

p∈U
f L
i (t,p,xL(t),xU(t)), xL

i (t0) = xL
0,i,

ẋU
i (t) = max

p∈U
f U
i (t,p,xL(t),xU(t)), xU

i (t0) = xU
0,i. (5.18)

It will be shown in the remainder of this section that the solution of (5.18) provides

valid state bounds of (5.17).

5.4.1 Existence and uniqueness

First, we verify that the ODE system (5.18) has exactly one solution under Assump-

tion 5.1.

Lemma 5.1. Under Assumption 5.1, define function gL, gU : I ×Rnx ×Rnx → Rnx
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such that, for each i ∈ {1, . . . , nx},

gL
i (t,φ,ψ) = min

p∈U
f L
i (t,p,φ,ψ),

gU
i (t,φ,ψ) = max

p∈U
f U
i (t,p,φ,ψ).

Then, gL(t,p, ·, ·), gU(t,p, ·, ·) are Lipschitz continuous on Rnx × Rnx for all (t,p) ∈

I ×U.

Proof. Consider any i ∈ {1, . . . , nx}, t ∈ I, p ∈ U, and compact set S ⊂ Rnx .

Condition 2 in Assumption 5.1 ensures that, for any φ†,ψ†,φ‡,φ‡ ∈ S, there exists

kS ∈ R>0 such that

f L
i (t,p,φ†,ψ†)− f L

i (t,p,φ‡,ψ‡) ≤ kS
(∥∥∥φ† −φ‡

∥∥∥
∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
.

f U
i (t,p,φ†,ψ†)− f U

i (t,p,φ‡,ψ‡) ≤ kS
(∥∥∥φ† −φ‡

∥∥∥
∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
.

Define set-valued mappings ωL, ωU : I × S× S ⇒ U such that

ωL(t,φ,ψ) := {p ∈ U : gL
i (t,φ,ψ) = f L

i (t,p,φ,ψ)},

ωU(t,φ,ψ) := {p ∈ U : gU
i (t,φ,ψ) = f U

i (t,p,φ,ψ)}.

Since f L,fU are continuous and U is compact, ωL(t,φ,ψ), ωU(t,φ,ψ) are nonempty
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for all t ∈ I, andφ,ψ ∈ S. Consider any p‡ ∈ ωL(t,φ‡,ψ‡) and p† ∈ ωU(t,φ†,ψ†).

gL
i (t,φ

†,ψ†) = min
p∈U

f L
i (t,p,φ†,ψ†)

≤ f L
i (t,p

‡,φ†,ψ†)

≤ f L
i (t,p

‡,φ‡,ψ‡) + kS
(∥∥∥φ† −φ‡

∥∥∥
∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
= gL

i (t,φ
‡,ψ‡) + kS

(∥∥∥φ† −φ‡
∥∥∥

∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
.

Similarly,

gU
i (t,φ

†,ψ†) = f U
i (t,p†,φ†,ψ†)

≤ f U
i (t,p†,φ‡,ψ‡) + kS

(∥∥∥φ† −φ‡
∥∥∥

∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
≤ max

p∈U
f U
i (t,p,φ‡,ψ‡) + kS

(∥∥∥φ† −φ‡
∥∥∥

∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
= gU

i (t,φ
‡,ψ‡) + kS

(∥∥∥φ† −φ‡
∥∥∥

∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
.

Since i is arbitrarily selected,

∥∥∥gL(t,φ†,ψ†)− gL(t,φ‡,ψ‡)
∥∥∥

∞
≤ kS

(∥∥∥φ† −φ‡
∥∥∥

∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
,∥∥∥gU(t,φ†,ψ†)− gU(t,φ‡,ψ‡)

∥∥∥
∞
≤ kS

(∥∥∥φ† −φ‡
∥∥∥

∞
+
∥∥∥ψ† −ψ‡

∥∥∥
∞

)
.

Thus, gL, gU are Lipschitz continuous with respect to φ,ψ. Since t and p were

chosen arbitrarily, the desired result holds.

Theorem 5.2. Under Assumption 5.1, (5.18) has a unique solution.
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Proof. Condition 1 of Assumption 5.1 shows that f L,fU are continuous. The Max-

imum Theorem [65, Theorem 3.4] ensures that the RHS functions of (5.18) are con-

tinuous. Thus, (5.18) has at least one solution according to Peano’s existence theo-

rem as summarized in [60, Theorem 2.1].

Lemma 5.1 ensures that the RHS functions of (5.1) are Lipschitz continuous

with respect to state variables. According to the uniqueness theorem in [148, Chap-

ter II, Section 10], (5.18) has at most one solution.

Combining the two results above, (5.18) has a unique solution.

5.4.2 Bounding the original system

Theorem 5.3. Under Assumptions 5.1, let (xL,xU) be a solution of (5.18). Then, xL,xU

are state bounds of (5.17).

Proof. It suffices to show that the requirements in Theorem 5.1 are satisfied with

xL,xU in place of ξL, ξU and t 7→ x(t,u,x0) in place of ξ† and ξ‡, respectively.

Assumption 5.1 and Lemma 5.1 ensure the RHS functions of (5.18) are Lipschitz

continuous with respect to state variables, which is sufficient for the first require-

ment. Since x0 ∈ X0, third requirement is satisfied.

Next, we verify the enclosing dynamics in the second requirement. It suffices

to show that, for a.e. t ∈ I, any i ∈ {1, . . . , nx}, u ∈ U , x0 ∈ X0, and zL, zU ∈ Rnx

such that zL ≤ x(t,u,x0) ≤ zU,

1. If zL
i = xi(t,u,x0), then minp∈U f L

i (t,p, zL, zU) ≤ ẋi(t,u,x0).

2. If zU
i = xi(t,u,x0), then maxp∈U f U

i (t,p, zL, zU) ≥ ẋi(t,u,x0).
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We will show that the first condition holds. It is analogous to verify the second.

Condition 3 of Assumption 5.1 ensures that, if zL
i = xi(t,u,x0), then

f L
i (t,u(t), z

L, zU) ≤ ẋi(t,u,x0).

Thus,

min
p∈U

f L
i (t,p, zL, zU) ≤ f L

i (t,u(t), z
L, zU) ≤ ẋi(t,u,x0),

which ensures the first condition.

Hence, all three requirements in Theorem 5.1 are satisfied.

Note that since xL,xU are state bounds of (5.17), it is ensured that xL(t) ≤

xU(t) for all t ∈ I. Following Definition 5.6, they form an interval function XB(t) ≡

[xL(t),xU(t)]. This result will be used implicitly in the remainder of this article.

5.4.3 Comparison of tightness

This subsection describes a general result showing that if the ODE system (5.18)

has tighter RHS functions, then it generates tighter state bounds. It is developed

based on [130, Theorem 2], but requires weaker assumptions.

Assumption 5.2. Assume that functions f L,†,fU,† and f L,‡,fU,‡ : I ×Rnu × IRnx →

Rnx satisfy Assumption 5.1 and the following conditions: for any p ∈ U, t ∈ I, Ξ† ≡

[ξL,†, ξU,†] ⊆ Ξ‡ ≡ [ξL,‡, ξU,‡] ∈ IRnx , and i ∈ {1, . . . , nx},

1. if ξL,†
i = ξ

L,‡
i , then f L,‡

i (t,p, Ξ‡) ≤ f L,†
i (t,p, Ξ†),

2. if ξU,†
i = ξ

U,‡
i , then f U,‡

i (t,p, Ξ‡) ≥ f U,†
i (t,p, Ξ†).

192



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

Consider the following two ODE systems that are similar to (5.18):

ẋL,†(t) = min
p∈U

f L,†(t,p, XB,†(t)), xL,†(t0) = xL
0 ,

ẋU,†(t) = max
p∈U

fU,†(t,p, XB,†(t)), xU,†(t0) = xU
0 , (5.19)

and

ẋL,‡(t) = min
p∈U

f L,‡(t,p, XB,‡(t)), xL,‡(t0) = xL
0 ,

ẋU,‡(t) = max
p∈U

fU,‡(t,p, XB,‡(t)), xU,‡(t0) = xU
0 . (5.20)

Theorem 5.4. Under Assumption 5.2, let (xL,†,xU,†) and (xL,‡,xU,‡) be solutions of

(5.19) and (5.20) on I×U, respectively. Then, XB,†(t) ≡ [xL,†(t),xU,†(t)] ⊆ XB,‡(t) ≡

[xL,‡(t),xU,‡(t)] for all t ∈ I.

Proof. This theorem can be proved by showing that all three requirements in The-

orem 5.1 are satisfied with xL,†,xU,† in place of ξ†, ξ† and xL,‡,xU,‡ in place of

ξL, ξU, respectively. Assumption 5.1 and Lemma 5.1 guarantee that the RHS func-

tions of (5.19) and (5.20) are Lipschitz continuous with respect to state variables,

which ensures the first requirement. Since (5.19) and (5.20) share the same initial

condition, the third requirement is satisfied.

Next, we verify the second requirement by showing that f L,‡,fU,‡ describe

enclosing dynamics about [xL,†,xU,†]. For a.e. t ∈ I, any i ∈ {1, . . . , nx}, and

zL, zU ∈ Rnx such that zL ≤ xL,† ≤ xU,† ≤ zU, it suffices to show that,

1. If zL
i = xL,†

i (t), then minp∈U f L,‡
i (t,p, zL, zU) ≤ ẋL,†

i (t).

2. If zU
i = xU,†

i (t), then maxp∈U f U,‡
i (t,p, zL, zU) ≥ ẋU,†

i (t).
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It will be shown that the first condition holds; showing the second is analogous.

Define p∗ ∈ U such that

p∗ := arg min
p∈U

f L,†
i (t,p,xL,†(t),xU,†(t)).

According to Assumption 5.2, if zL
i = xL,†

i (t), then

f L,‡
i (t,p∗, zL, zU) ≤ f L,†

i (t,p∗,xL,†(t),xU,†(t)).

Thus, if zL
i = xL,†

i (t),

min
p∈U

f L,‡
i (t,p, zL, zU) ≤ f L,‡

i (t,p∗, zL, zU)

≤ f L,†
i (t,p∗,xL,†(t),xU,†(t))

= min
p∈U

f L,†
i (t,p,xL,†(t),xU,†(t))

= ẋL,†
i (t),

which verifies the first condition.

Thus, all three requirements in Theorem 5.1 are satisfied.

5.5 Use Cases

In this section, four use cases of our new framework (5.18) are presented. Each of

them represents a strategy for constructing f L,fU that satisfy Assumption 5.1. In

every use case, multiple practical methods are introduced for generating functions

f L,fU from f . Some of these methods have been established by other researchers,
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but fall within our new framework; the rest are novel approaches discovered with

this new framework. A preview of these use cases is presented in Table 5.1. It

briefly describes the embedded optimization problem size in the RHS of (5.18)

along with expected tightness of the generated state bounds. Note that some of

the embedded optimization problems may be solved trivially without a numerical

optimization solver. For example, if f L,fU are constructed using interval exten-

sions, then finding their minimum or maximum only involves choosing the lower

or upper bound, respectively.

Table 5.1: Preview of use cases introduced in Section 5.5

Use case Section Opt variables Computing effort Tightness

Interval extension 5.5.1 0 Low Loose
Optimize states 5.5.2 nx Medium Moderate
Optimize parameters 5.5.3 nu Medium Moderate
Optimize states and parameters 5.5.4 nx + nu High Tight

In addition to the flattening operation introduced previously, a methodology

studied in [118, 62, 124] is also considered here to reduce the overestimation of state

bounds. It utilizes the information from an a priori enclosure of the original system

(5.17) to refine state bounds. Such an enclosure can be obtained from physical

boundaries, conservative laws, or constraints in optimization problems [121, 62,

124].

Definition 5.7. A set G ⊂ I ×U ×Rnx is considered as an a priori enclosure of (5.17)

if for all (t,u,x0) ∈ I ×U × X0, (t,u(t),x(t,u,x0)) ∈ G.

To include such a priori knowledge into auxiliary system (5.18), interval opera-

tors ΠL
i , ΠU

i : I × IRnu × IRnx → IRnx are introduced for each i ∈ {1, . . . , nx}, and

they satisfy the following assumption.
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Assumption 5.3. Assume that for every i ∈ {1, . . . , nx}, ΠL
i , ΠU

i satisfy the following:

1. For any Ξ ≡ [ξL, ξU] ∈ IRnx and (t,u,x0) ∈ I ×U × X0 such that x(t,u,x0) ∈

Ξ:

• If xi(t,u,x0) = ξL
i , then x(t,u,x0) ∈ ΠL

i (t, U, Ξ),

• If xi(t,u,x0) = ξU
i , then x(t,u,x0) ∈ ΠU

i (t, U, Ξ),

2. (ξL, ξU) 7→ ΠL
i (t, U, [ξL, ξU]) and (ξL, ξU) 7→ ΠU

i (t, U, [ξL, ξU]) are Lipschitz

continuous on Rnx ×Rnx , uniformly continuous in t.

Remark 5.2. If ΠL
i , ΠU

i are independent of t and U, then we recovered the operators

ΩL
i , ΩU

i : IRnx → IRnx proposed in [118]. ΩL
i and ΩU

i are refinement operators that

incorporate time-invariant and input-invariant a priori enclosures to construct tighter

state bounds. Another pair of similar operators ΦL
i , ΦU

i : IRnx × IRnu → IRnx × IRnu

were developed in [127]. They were designed to support parameter-dependent but time-

invariant a priori enclosures.

5.5.1 Interval extension

This subsection discusses a use case of the new framework where f L,fU are con-

structed with interval extensions. The embedded optimization problems in (5.18)

then can be solved trivially via choosing lower or upper interval bounds. The clas-

sic Harrison’s method [59] that constructs interval extension using NIE is included

in this category. Beside that, a novel technique that constructs interval extensions

using MIE is also discussed.

Assumption 5.4. Assume that interval function F̄B = [f̄ L, f̄U] : I × IRnu × IRnx →

IRnx satisfies the following conditions:
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1. f̄ L and f̄U are continuous,

2. (ξL, ξU) 7→ f̄ L(t, U, [ξL, ξU]) and (ξL, ξU) 7→ f̄U(t, U, [ξL, ξU]) are Lipschitz

continuous on Rnx ×Rnx , uniformly in t,

3. Ξ 7→ F̄B(t, U, Ξ) is an inclusion function of f (t,p, ·) on D for a.e. t ∈ I and all

p ∈ U.

In this use case, consider f L,fU such that, for each i ∈ {1, . . . , nx},

f L
i (t,p, ξL, ξU) := f̄ L

i (t, U, ΠL
i (t, U, [ξL, ξU])), (5.21)

f U
i (t,p, ξL, ξU) := f̄ U

i (t, U, ΠU
i (t, U, [ξL, ξU])),

where ΠL
i , ΠU

i are operators satisfying Assumption 5.3. Since f̄ L
i , f̄ U

i in (5.21) are

interval extensions, the optimization problems embedded in the RHS of (5.18) can

be solved trivially by choosing the lower or upper bound, respectively. Therefore,

(5.18) becomes: for each i ∈ {1, . . . , nx},

ẋL
i (t) = f̄ L

i (t, U, ΠL
i (t, U, XB(t))), xL

i (t0) = xL
0,i,

ẋU
i (t) = f̄ U

i (t, U, ΠU
i (t, U, XB(t))), xU

i (t0) = xU
0,i.

(5.22)

Lemma 5.2. Under Assumptions 5.3 and 5.4, f L,fU in (5.21) satisfy Assumption 5.1.

Proof. Condition 2 of Assumption 5.3 and Condition 1 of Assumption 5.4 guar-

antees the continuity requirement in Condition 1 of Assumption 5.1. Since the

composite function of locally Lipschitz continuous functions is locally Lipschitz

continuous [117, Theorem 2.5.6], Condition 2 of Assumption 5.3 and Condition 2

of Assumption 5.4 ensures in Condition 2 of Assumption 5.1.
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Next, we demonstrate the enclosing dynamics required in Condition 3 of As-

sumption 5.1. Consider a.e. t ∈ I, any u ∈ U , x0 ∈ X0, i ∈ {1, . . . , nx}, and

Ξ ≡ [ξL, ξU] ∈ IRnx such that x(t,u,x0) ∈ Ξ. According to Definition 5.5, it is

desired to show that,

1. If ξL
i = xi(t,u,x0), then f̄ L

i (t, U, ΠL
i (t, U, Ξ)) ≤ ẋi(t,u,x0), and

2. If ξU
i = xi(t,u,x0), then f̄ U

i (t, U, ΠU
i (t, U, Ξ)) ≥ ẋi(t,u,x0).

It will be shown that the first requirement holds; it is analogous to prove the sec-

ond. If ξL
i = xi(t,u,x0), Assumption 5.3 ensures that x(t,u,x0) ∈ ΠL

i (t, U, Ξ).

Condition 3 of Assumption 5.4 shows that

f̄ L
i (t, U, ΠL

i (t, U, Ξ)) ≤ fi(t,u(t),x(t,u,x0)) = ẋi(t,u,x0),

which ensures the first requirement.

Therefore, all three conditions in Assumption 5.1 are satisfied.

Natural interval extensions

Constructing F̄B using NIE was proposed by Harrison [59]. F̄B satisfies Assump-

tion 5.4 according to [117, Section 2.5 and Section 2.3]. If operators ΠL
i , ΠU

i are

defined as ΩL
i , ΩU

i in Remark 5.2 such that, for each i ∈ {1, . . . , nx}

ΠL
i (t, U, Ξ) := ΩL

i (Ξ),

ΠU
i (t, U, Ξ) := ΩU

i (Ξ),
(5.23)
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we recover a formulation proposed in [118]: for each i ∈ {1, . . . , nx},

ẋL
i (t) = f̄ L

i (t, U, ΩL
i (XB(t))), xL

i (t0) = xL
0,i,

ẋU
i (t) = f̄ U

i (t, U, ΩU
i (XB(t))), xU

i (t0) = xU
0,i.

(5.24)

Furthermore, if a priori enclosure is not considered, ΠL
i and ΠU

i may be set to

the flattening operators in Definition 5.4:

ΠL
i (t, U, Ξ) := BL

i (Ξ),

ΠU
i (t, U, Ξ) := BU

i (Ξ).

It is readily verified that operators BL
i and BU

i satisfy Assumption 5.3. Then, the

classic Harrison’s method [59] is recovered:

ẋL
i (t) := f̄ L

i (t, U, BL
i (XB(t))), xL

i (t0) = xL
0,i,

ẋU
i (t) := f̄ U

i (t, U, BU
i (XB(t))), xU

i (t0) = xU
0,i.

(5.25)

If a priori enclosure G is available for reducing conservatism, it can be employed

by including an interval refining operator IB
G; see Section 5.6.

McCormick interval extensions

Besides NIE, another applicable interval extension technique for constructing F̄B is

MIE, which uses generalized McCormick-type relaxations. Unlike the traditional

usage of GMC and DMC that takes convex and concave relaxations as inputs, MIE

takes interval bounds as inputs: xL and xU in this case. GMC satisfies Assump-

tion 5.4 according to [117, Section 2.7], and similar arguments hold for DMC.
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5.5.2 Optimizing states

This subsection considers a second use case of our new framework. Functions

f L,fU are constructed with a strategy that involves optimization with respect to

state variables [131].

Assumption 5.5. Assume that interval function F̃B ≡ [f̃ L, f̃U] : I × IRnu ×Rnx ×

IRnx → IRnx satisfies the following conditions:

1. f̃ L and f̃U are continuous,

2. (z, ξL, ξU) 7→ f̃ L(t, U, z, [ξL, ξU]) and (z, ξL, ξU) 7→ f̃U(t, U, z, [ξL, ξU]) are

Lipschitz continuous, and uniformly in t,

3. f (t,p, ξ) ∈ F̃B(t, U, ξ, Ξ) for a.e. t ∈ I, any p ∈ U, and any Ξ ∈ IRnx and ξ ∈ Ξ.

In this use case, consider f L,fU such that, for each i ∈ {1, . . . , nx},

f L
i (t,p, [ξL, ξU]) := min

z∈ΠL
i (t,U,[ξL,ξU ])

f̃ L
i (t, U, z, ΠL

i (t, U, [ξL, ξU])),

f U
i (t,p, [ξL, ξU]) := max

z∈ΠU
i (t,U,[ξL,ξU ])

f̃ U
i (t, U, z, ΠU

i (t, U, [ξL, ξU])),
(5.26)

where ΠL
i , ΠU

i are operators satisfying Assumption 5.3. Then, (5.18) becomes: for

each i ∈ {1, . . . , nx},

ẋL
i (t) = min

z∈ΠL
i (t,U,XB(t))

f̃ L
i (t, U, z, ΠL

i (t, U, XB(t))), xL
i (t0) = xL

i,0,

ẋU
i (t) = max

z∈ΠU
i (t,U,XB(t))

f̃ U
i (t, U, z, ΠU

i (t, U, XB(t))), xU
i (t0) = xU

i,0.
(5.27)

Lemma 5.3. Under Assumptions 5.3 and 5.5, f L,fU in (5.26) satisfy Assumption 5.1.
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Proof. Condition 2 of Assumption 5.3 and Condition 1 of Assumption 5.5 guaran-

tees the continuity requirement in Condition 1 of Assumption 5.1.

Define f L†,fU† : I ×Rnu × IRnx → Rnx such that, for each i ∈ {1, . . . , nx},

f L†
i (t,p, Ξ) := min

z∈BL
i (Ξ)

f̃ L
i (t, U, z, BL

i (Ξ)),

f U†
i (t,p, Ξ) := max

z∈BU
i (Ξ)

f̃ U
i (t, U, z, BU

i (Ξ)).

Under Assumption 5.5, f L,†,fU† are Lipschitz continuous in ξL, ξU according to

[131, Proposition 2]. Since BL
i , BU

i are linear operations, there exists corresponding

reverse operators B̌L
i , B̌U

i that are locally Lipschitz continuous and satisfy

B̌L
i (BL

i (Ξ)) = Ξ and B̌U
i (BU

i (Ξ)) = Ξ.

Then,

f L†
i (t,p, B̌L

i (Π
L
i (t, U, Ξ))) = min

z∈ΠL
i (t,U,Ξ)

f̃ L
i (t, U, z, ΠL

i (t, U, Ξ)) = f L
i (t,p, Ξ),

f U†
i (t,p, B̌U

i (Π
U
i (t, U, Ξ))) = max

z∈ΠU
i (t,U,Ξ)

f̃ U
i (t, U, z, ΠU

i (t, U, Ξ)) = f U
i (t,p, Ξ).

Since the composite function of locally Lipschitz continuous functions is locally

Lipschitz continuous [117, Theorem 2.5.6], (ξL, ξU) 7→ f L†
i (t,p, B̌L

i (Π
L
i (t, U, [ξL, ξU])))

and (ξL, ξU) 7→ f U†
i (t,p, B̌U

i (Π
U
i (t, U, Ξ))) are Lipschitz continuous. Thus, f L(t,p, ·, ·)

and fU(t,p, ·, ·) satisfy the Lipschitz continuity in Condition 2 of Assumption 5.1.

Next, we verify Condition 3 of Assumption 5.1. Consider a.e. t ∈ I, any i ∈

{1, . . . , nx}, u ∈ U , x0 ∈ X0, and Ξ ≡ [ξL, ξU] ∈ IRnx such that x(t,u,x0) ∈ Ξ.
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According to Definition 5.5, it is desired to show that,

1. If xi(t) = ξL
i , then minz∈ΠL

i (t,U,Ξ) f̃ L
i (t, U, z, ΠL

i (t, U, Ξ)) ≤ ẋi(t,u,x0), and

2. If xi(t) = ξU
i , then maxz∈ΠU

i (t,U,Ξ) f̃ U
i (t, U, z, ΠU

i (t, U, Ξ)) ≥ ẋi(t,u,x0).

It will be shown that the first requirement holds; it is analogous to prove the sec-

ond. If xi(t,u,x0) = ξL
i , Assumption 5.3 ensures that x(t,u,x0) ∈ ΠL

i (t, U, Ξ).

Condition 3 of Assumption 5.5 guarantees that

min
z∈ΠL

i (t,U,Ξ)
f̃ L
i (t, U, z, ΠL

i (t, U, Ξ)) ≤ f̃ L
i (t, U,x(t,u,x0), ΠL

i (t, U, Ξ))

≤ fi(t,u(t),x(t,u,x0))

= ẋi(t,u,x0),

which ensures the first requirement.

Therefore, all three conditions in Assumption 5.1 are satisfied.

Nonlinear relaxations

Inclusion function F̃B can be constructed using nonlinear convex relaxations GMC

and DMC. They satisfy Assumption 5.5 according to the similar reason as de-

scribed in Section 5.5.1. In this case, the RHS of (5.18) contains convex nonlinear

programs (NLPs). Note that local NLP solvers, e.g., IPOPT and CONOPT, typically

requires smoothness. While DMC is guaranteed to be continuously differentiable,

nonsmoothness may exist in GMC. Although empirically these solvers might still

be able to solve these nonsmooth NLPs, their performance will be effected. One
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alternative approach for solving nonsmooth NLPs is to use the level method de-

scribed in [97]. It reformulates the problem into combinations of linear programs

(LPs) and quadratic programs (QPs) that can be solved efficiently with advanced

LP solvers, e.g., CPLEX and Gurobi.

Piecewise-affine relaxations

Another type of relaxations for constructing F̃B is piecewise-affine relaxations.

They can be generated using the subtangents of nonlinear convex relaxations at

multiple points. Piecewise-affine relaxations are essentially approximations of the

original nonlinear relaxations and are certainly looser than the original relaxations.

However, they allow the embedded optimization problems in auxiliary RHS to be

formulated as LPs, which typically solve much faster than NLPs. The following

part discusses about constructing piecewise-affine convex relaxations by linearly

approximating nonlinear convex relaxations.

Assumption 5.6. Assume that interval function F̃B,nl = [f̃ L,nl, f̃ L,nl] : I × IRnu ×

Rnx × IRnx → IRnx satisfies the following conditions:

1. f̃ L,nl and f̃ L,nl are continuous

2. f̃ L,nl(t, U, z, Ξ) and f̃ L,nl(t, U, z, Ξ) are differentiable with respect to z for all t ∈ I

and Ξ ∈ IRnx ,

3. (z, ξL, ξU) 7→ ∂f̃ L,nl

∂z (t, U, z, [ξL, ξU]) and (z, ξL, ξU) 7→ ∂f̃ L,nl

∂z (t, U, z, [ξL, ξU])

are locally Lipschitz continuous, uniformly over t, and

4. F̃B,nl(t, U, ·, Ξ) is a convex inclusion function of f (t,p, ·) on U for any (t, Ξ) ∈

I × IRnx and p ∈ U.
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A nonlinear interval function F̃B,nl satisfying Assumption 5.6 can be constructed

with C 2-DMC.

Define function χ : IRnx × (0, 1)→ Rnx such that

χ(Γ, λ) := γL + λ(γU − γL).

Consider an arbitrary positive integer m and choose λ1, λ2, . . . , λm ∈ (0, 1). For

any t ∈ I, i ∈ {1, . . . , nx}, and Γ ∈ IRnx , the subtangents of the nonlinear con-

vex relaxation and the supertangents of the nonlinear concave relaxation at λj, j ∈

{1, . . . , m} are

(aL,i,j(t, Γ))>z + bL,i,j(t, Γ) = 0 and (aU,i,j(t, Γ))>z + bU,i,j(t, Γ) = 0,

respectively, where

aL,i,j(t, Γ) =
∂ f̃ L,nl

i
∂z

(t, U, χ(Γ, λj), Γ),

aU,i,j(t, Γ) =
∂ f̃ U,nl

i
∂z

(t, U, χ(Γ, λj), Γ),

(5.28)

and

bL,i,j(t, Γ) = −(aL,i,j(t, Γ))>χ(Γ, λj) + f̃ L,nl
i (t, U, χ(Γ, λj), Γ),

bU,i,j(t, Γ) = −(aU,i,j(t, Γ))>χ(Γ, λj) + f̃ U,nl
i (t, U, χ(Γ, λj), Γ).

(5.29)

The piecewise-affine convex (concave) relaxation is the maximum (minimum) of

these subtangents (supertangents). So, we define f̃ L, f̃U such that, for each i ∈
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{1, . . . , nx},

f̃ L
i (t, U, z, Γ) := max{(aL,i,j(t, Γ))>z + bL,i,j(t, Γ) : j ∈ {1, . . . , m}},

f̃ U
i (t, U, z, Γ) := min{(aU,i,j(t, Γ))>z + bU,i,j(t, Γ) : j ∈ {1, . . . , m}}.

(5.30)

Lemma 5.4. Under Assumptions 5.3 and 5.6, F̃B in (5.30) satisfies Assumption 5.5.

Proof. Condition 1 of Assumption 5.6 ensures Condition 1 of Assumption 5.5.

Next, we verify the Lipschtiz continuity required in Condition 2 of Assump-

tion 5.5. According to Section 5.1 in [62], we need to show that aL,j(t, ·, ·),aU,j(t, ·, ·)

and bL,j(t, ·, ·), bU,j(t, ·, ·) are locally Lipschitz continuous. Since bL,j, bU,j are deter-

mined through (5.29) andχj only depends on Γ, it suffices to show that (γL,γU) 7→

aL,j(t, [γL,γU]) and (γL,γU) 7→ aU,j(t, [γL,γU]) are locally Lipschitz continuous

for each t ∈ I. According to (5.28), this always holds under Assumption 5.6.

Lastly, since Condition 4 of Assumption 5.6 holds and since F̃B in (5.30) is a

piecewise affine approximation of F̃B,nl, Condition 3 of Assumption 5.5 is satisfied.

Hence, all three conditions in Assumption 5.5 are satisfied.

Affine relaxations

Affine relaxation is a special case of piecewise-affine relaxation, where the original

nonlinear convex and concave relaxations are linearized at a single point, typically

the midpoint. Therefore, the formulation defined in the previous piecewise-affine

relaxation section is applicable here with m = 1 and λ = 0.5. The major advantage

of affine relaxations is that we no longer need any local optimization solvers to

evaluate the RHS of (5.26), neither an NLP solver or an LP solver. The optimization

problem can be solved trivially with a simple algorithm described in Algorithm 1.
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Algorithm 1: Min and max affine functions h†, h‡ : Rnz → R, respectively
and simultaneously, subject to z ∈ Z

Result: The minimum of h† on Z, h†∗; the maximum of h‡ on Z, h‡∗.
1 Choose z̄ ∈ Z, usually the midpoint;
2 Evaluate h†(z̄), h‡(z̄), and the respective slopes s†, s‡ ;
3 h†∗ = h†(z̄) ;
4 h‡∗ = h‡(z̄) ;
5 for i = 1, . . . , nz do
6 if s†(z̄) ≥ 0 then
7 h†∗ = h†∗ + s†(zL

i − z̄i) ;
8 else
9 h†∗ = h†∗ + s†(zU

i − z̄i) ;
10 end
11 if s‡(z̄) ≥ 0 then
12 h‡∗ = h‡∗ + s‡(zU

i − z̄i) ;
13 else
14 h‡∗ = h‡∗ + s‡(zL

i − z̄i) ;
15 end
16 end
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5.5.3 Optimizing parameters

This subsection introduces a straightforward use case of the new formulation (5.18).

It optimizes the auxiliary RHS functions with respect to the parameter.

Assumption 5.7. Assume that interval function F̆B ≡ [f̆ L, f̆U] : I ×Rnu × IRnx →

IRnx satisfies the following conditions:

1. f̆ L and f̆U are continuous,

2. (ξL, ξU) 7→ f̆ L(t,p, [ξL, ξU]) and (ξL, ξU) 7→ f̆U(t,p, [ξL, ξU]) are Lipschitz

continuous on Rnx ×Rnx , uniformly in (t,p), and

3. Ξ 7→ F̆B(t,p, Ξ) is an inclusion function of f (t,p, ·) on D for a.e. t ∈ I and all

p ∈ U.

In this use case, consider f L,fU such that, for each i ∈ {1, . . . , nx},

f L
i (t,p, Ξ) := f̆ L

i (t,p, ΠL
i (t, U, Ξ)),

f U
i (t,p, Ξ) := f̆ U

i (t,p, ΠU
i (t, U, Ξ)),

(5.31)

where ΠL
i , ΠU

i are operators satisfying Assumption 5.3. Then, the auxiliary system

(5.18) becomes: for every i ∈ {1, . . . , nx},

ẋL
i (t) = min

p∈U
f̆ L
i (t,p, ΠL

i (t, U, XB(t))), xL
i (t0) = xL

0,i,

ẋU
i (t) = max

p∈U
f̆ U
i (t,p, ΠU

i (t, U, XB(t))), xU
i (t0) = xU

0,i.
(5.32)

Lemma 5.5. Under Assumptions 5.3 and 5.7, f L,fU in (5.31) satisfy Assumption 5.1.
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Proof. Condition 2 of Assumption 5.3 and Condition 1 of Assumption 5.7 guaran-

tees the continuity requirement in Condition 1 of Assumption 5.1.

Since the composite function of locally Lipschitz continuous functions is locally

Lipschitz continuous, Condition 2 of Assumption 5.3 and Condition 2 of Assump-

tion 5.7 ensures Condition 2 of Assumption 5.1.

Next, we verify the enclosing dynamics required in Condition 3 of Assump-

tion 5.1. Consider a.e. t ∈ I, any i ∈ {1, . . . , nx}, u ∈ U , x0 ∈ X0, and Ξ ≡

[ξL, ξU] ∈ IRnx such that x(t,u,x0) ∈ Ξ. According to Definition 5.5, it is desired

to show that

1. If xi(t,u,x0) = ξL
i , then f̆ L

i (t,u(t), ΠL
i (t, U, Ξ)) ≤ ẋi(t,u,x0), and

2. If xi(t,u,x0) = ξU
i , then f̆ U

i (t,u(t), ΠU
i (t, U, Ξ)) ≥ ẋi(t,u,x0).

It will be shown that the first requirement holds; it is analogous to prove the sec-

ond. If xi(t,u,x0) = ξL
i , Assumption 5.3 ensures that x(t,u,x0) ∈ ΠL

i (t, U, Ξ).

The third condition in Assumption 5.7 guarantees that

f̆ L
i (t,u(t), ΠL

i (t, U, Ξ)) ≤ fi(t,u(t),x(t,u,x0)) = ẋi(t,u,x0),

which verifies the first requirement.

Therefore, all three conditions in Assumption 5.1 are satisfied.

Similar to Section 5.5.2, we present three categories of methods to construct f̆ L

and f̆U and they are distinguished by their linearity.
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Nonlinear relaxation

F̆B can be a nonlinear inclusion function of f (t, ·, ·, ·) constructed using GMC and

DMC. Arguments analogous to those in previous sections ensure that these two

methods satisfy Assumption 5.7.

Piecewise-affine relaxations

F̆B can also be constructed with piecewise-affine approximations of those nonlin-

ear convex relaxations mentioned above. This method is similar to the piecewise-

affine relaxations presented in Section 5.5.2.

Assumption 5.8. Assume that nonlinear interval function F̆B,nl = [f̆ L,nl, f̆ L,nl] : I ×

Rnu × IRnx → IRnx satisfies the following conditions:

1. f̆ L,nl and f̆ L,nl are continuous,

2. f̆ L,nl(t, ·, Ξ) and f̆ L,nl(t, ·, Ξ) are differentiable for all t ∈ I and Ξ ∈ IRnx ,

3. (ξL, ξU) 7→ ∂f̆ L,nl

∂p (t,p, [ξL, ξU]) and (ξL, ξU) 7→ ∂f̆U,nl

∂p (t,p, [ξL, ξU]) are Lips-

chitz continuous on Rnx ×Rnx , uniformly in (t,p),

4. Ξ 7→ F̆B(t,p, Ξ) is a convex inclusion function of f (t,p, ·) on D for a.e. t ∈ I and

all p ∈ U.

This nonlinear convex inclusion function satisfying Assumption 5.8 may be

generated from f with C 2-DMC.

Choose arbitrary fixed points ρj ∈ U, j ∈ {1, . . . , m}. For each i ∈ {1, . . . , nx}

and j ∈ {1, . . . , m}, defined aL,i,j,aU,i,j : I × IRnx → IRnx and bL,i,j, bU,i,j : I ×
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Rnx → R such that

aL,i,j(t, Ξ) =
∂ f̆ L,nl

i
∂p

(t,ρj, Ξ), bL,i,j(t, Ξ) = −(aL,i,j(t, Ξ))>ρj + f̆ L,nl
i (t,ρj, Ξ),

aU,i,j(t, Ξ) =
∂ f̆ U,nl

i
∂p

(t,ρj, Ξ), bU,i,j(t, Ξ) = −(aU,i,j(t, Ξ))>ρj + f̆ U,nl
i (t,ρj, Ξ).

Then, the piecewise-affine relaxation is the maximum (minimum) of these subtan-

gents (super-tangents): For each i ∈ {1, . . . , nx} and t ∈ I,

f̆ L
i (t,p, Ξ) := max{(aL,i,j(t, Ξ))>p+ bL,i,j(t, Ξ) : j ∈ {1, . . . , m}},

f̆ U
i (t,p, Ξ) := min{(aU,i,j(t, Ξ))>p+ bU,i,j(t, Ξ) : j ∈ {1, . . . , m}}. (5.33)

It was readily verified that F̆B defined in (5.33) satisfies Assumption 5.7 according

to similar arguments as in Section 5.5.2.

Affine relaxations

Similar to the discussion in Section 5.5.2, affine relaxation, a special case of piecewise-

affine relaxation, is also applicable here. The optimization problems on the RHS of

(5.18) can be solved trivially using Algorithm 1.

5.5.4 Optimizing states and parameters

Similar to the second use case introduced in Section 5.5.2, the last use case of our

new framework also construct f L,fU using optimization problems with respect to

states [131]. But here, we combine them with the embedded optimization problems

in the RHS of (5.18) and obtain optimization problems with respect to both states
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and parameters.

Assumption 5.9. Assume that interval function F̂B ≡ [f̂ L, f̂U] : I × Rnu × Rnx ×

IRnx → IRnx satisfies the following conditions:

1. f̂ L and f̂U are continuous,

2. (ξ, ξL, ξU) 7→ f̂ L(t,p, ξ, [ξL, ξU]) and (ξ, ξL, ξU) 7→ f̂U(t,p, ξ, [ξL, ξU]) are Lip-

schitz continuous, uniformly in (t,p),

3. f (t,p, ξ) ∈ F̂B(t,p, ξ, Ξ) for a.e. t ∈ I, any p ∈ U, Ξ ∈ IRnx and ξ ∈ Ξ.

In this use case, consider f L,fU such that, for each i ∈ {1, . . . , nx},

f L
i (t,p, Ξ) := min

z∈ΠL
i (t,U,Ξ)

f̂ L
i (t,p, z, ΠL

i (t, U, Ξ)),

f U
i (t,p, Ξ) := max

z∈ΠU
i (t,U,Ξ)

f̂ U
i (t,p, z, ΠU

i (t, U, Ξ)),
(5.34)

where ΠL
i , ΠU

i are operators satisfying Assumption 5.3. Substitute (5.34) into (5.18),

(5.18) becomes: for each i ∈ {1, . . . , nx},

ẋL
i (t) = min

p∈U, z∈ΠL
i (t,U,XB(t))

f̂ L
i (t,p, z, ΠL

i (t, U, XB(t))), xL
i (t0) = xL

i,0,

ẋU
i (t) = max

p∈U, z∈ΠU
i (t,U,XB(t))

f̂ U
i (t,p, z, ΠU

i (t, U, XB(t))), xU
i (t0) = xU

i,0.
(5.35)

Lemma 5.6. Under Assumptions 5.3 and 5.9, f L,fU in (5.34) satisfy Assumption 5.1.

Proof. Condition 2 of Assumption 5.3 and Condition 1 of Assumption 5.9 guaran-

tees the continuity requirement in Condition 1 of Assumption 5.1.
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Define f L†,fU† : I ×Rnu × IRnx → Rnx such that, for each i ∈ {1, . . . , nx},

f L†
i (t,p, Ξ) := min

z∈BL
i (Ξ)

f̂ L
i (t,p, z, BL

i (Ξ)),

f U†
i (t,p, Ξ) := max

z∈BU
i (Ξ)

f̂ U
i (t,p, z, BU

i (Ξ)).

Under Assumption 5.9, the discussion in [131, Sections 5.1 and 5.2] ensures that

f L†,fU† are locally Lipschitz continuous in ξL, ξU for each (t,p) ∈ I ×U. Since

BL
i , BU

i are linear operations, there exists corresponding reverse operations B̌L
i , B̌U

i

of BL
i , BU

i that are Lipschitz continuous and satisfy

B̌L
i (BL

i (Ξ)) = Ξ and B̌U
i (BU

i (Ξ)) = Ξ.

Then,

f L†
i (t,p, B̌L

i (Π
L
i (t, U, Ξ))) = min

z∈ΠL
i (t,U,Ξ)

f̂ L
i (t,p, z, ΠL

i (t, U, Ξ)) = f L
i (t,p, Ξ),

f U†
i (t,p, B̌U

i (Π
U
i (t, U, Ξ))) = max

z∈ΠU
i (t,U,Ξ)

f̂ U
i (t,p, z, ΠU

i (t, U, Ξ)) = f U
i (t,p, Ξ).

Since the composite function of locally Lipschitz continuous functions is locally

Lipschitz continuous [117, Theorem 2.5.6], Condition 2 of Assumption 5.3 and

Condition 1 of Assumption 5.9 imply that (ξL, ξU) 7→ f L†
i (t,p, B̌L

i (Π
L
i (t, U, [ξL, ξU])))

and (ξL, ξU) 7→ f U†
i (t,p, B̌U

i (Π
U
i (t, U, [ξL, ξU]))) are locally Lipschitz continuous.

Hence, f L(t,p, ·, ·) and fU(t,p, ·, ·) are Lipschitz continuous for each (t,p) ∈ I×U

and Condition 2 of Assumption 5.1 is satisfied..
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Next, we verify the enclosing dynamics in Condition 3 of Assumption 5.1. Con-

sider a.e. t ∈ I, any i ∈ {1, . . . , nx}, u ∈ U , x0 ∈ X0, and Ξ ≡ [ξL, ξU] ∈ IRnx such

that x(t,u,x0) ∈ Ξ. According to Definition 5.5, it is desired to show that,

1. If xi(t,u,x0) = ξL
i , then minz∈ΠL

i (t,U,Ξ) f̂ L
i (t,p, z, ΠL

i (t, U, Ξ)) ≤ ẋi(t,u,x0),

and

2. If xi(t,u,x0) = ξU
i , then maxz∈ΠU

i (t,U,Ξ) f̂ U
i (t,p, z, ΠU

i (t, U, Ξ)) ≥ ẋi(t,u,x0).

It will be shown that the first requirement holds; it is analogous to prove the sec-

ond. If xi(t,u,x0) = ξL
i , Assumption 5.3 ensures that x(t,u,x0) ∈ ΠL

i (t, U, Ξ).

Condition 3 in Assumption 5.9 shows that

min
z∈ΠL

i (t,U,Ξ)
f̂ L
i (t,u(t), z, ΠL

i (t, U, Ξ)) ≤ f̂ L
i (t,u(t),x(t,u,x0), ΠL

i (t, U, Ξ))

≤ fi(t,u(t),x(t,u,x0))

= ẋi(t,u,x0),

which ensures the first requirement.

Therefore, all three conditions in Assumption 5.1 are satisfied.

In the remainder of this subsection, several approaches are introduced for gen-

erating F̂B that satisfy Assumption 5.9.
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Original RHS function

Suppose that f̂ L, f̂U := f . Then, (5.35) becomes

ẋL
i (t) = min

p∈U, z∈ΠL
i (t,U,XB(t))

fi(t,p, z), xL
i (t0) = xL

i,0,

ẋU
i (t) = max

p∈U, z∈ΠU
i (t,U,XB(t))

fi(t,p, z), xU
i (t0) = xU

i,0.
(5.36)

If ΠL
i , ΠU

i is defined as BL
i , BU

i without considering an a priori enclosure, the gen-

erated formulation is similar to the following result proposed in [148, p. 96] and

described in [59]:

ẋL
i (t) ≤ min

p∈U, z∈[xL,xU ], zi=xL
i

fi(t,p, z), xL
i (t0) ≤ xL

i,0,

ẋU
i (t) ≥ max

p∈U, z∈[xL,xU ], zi=xU
i

fi(t,p, z), xU
i (t0) ≥ xU

i,0.
(5.37)

The solutions of (5.36) are the tightest possible bounds that can be constructed with

this new framework. However, since f may be nonlinear and nonconvex, solving

the embedded optimization problems in (5.36) during numerical integration is not

practical [128].

The other methods generate F̂B using various relaxations of the original ODE

RHS function f . To simplify notation in the following part, denote y = (z,p) ∈

Rnx+nu and define YL
i , YU

i : I × IRnx → IRnx ×U such that

YL
i (t, Ξ) = ΠL

i (t, U, Ξ)×U,

YU
i (t, Ξ) = ΠU

i (t, U, Ξ)×U.
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Then, (5.35) becomes

ẋL
i (t) = min

y∈YL
i (t,X

B(t))
f̂ L
i (t,y, ΠL

i (t, U, XB(t))), xL
i (t0) = xL

i,0,

ẋU
i (t) = max

y∈YU
i (t,XB(t))

f̂ U
i (t,y, ΠU

i (t, U, XB(t))), xU
i (t0) = xU

i,0.
(5.38)

Nonlinear relaxation

1. Convex envelopes.

Suppose that f̂ L, f̂U are the convex envelopes of f . It was readily verified

that Assumption 5.9 is satisfied. Since the minimum of a convex envelope is

equivalent to the global minimum of the original function, this method also

provides the tightest possible state bounds, equivalent to (5.36). The advan-

tage of using a convex envelope is that, the embedded optimization problem

can be solved to its global minimum with a local solver. But obtaining the

convex envelope may be cumbersome.

2. McCormick-type relaxations.

Suppose that f̂ L, f̂U are McCormick-type relaxations of f . It was readily

verified that Assumption 5.9 is satisfied.

3. αBB relaxations.

Suppose that f̂ L, f̂U are αBB relaxations of f . This use case has been dis-

cussed in [31]. Note that αBB relaxations are convex relaxations that can be

optimized with state-of-the-art local NLP solvers, such as IPOPT and CONOPT.

Moreover, if the original RHS function is quadratic, then the generated αBB

relaxations are also quadratic. In this scenario, these quadratic relaxations

215



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

can be optimized with advanced LP solvers, e.g., CPLEX, which typically

require less computing time.

4. Edge-concave relaxations.

Suppose that f̂ L, f̂U are edge-concave relaxations developed in [63]. Even

though almost every previous method for constructing f L,fU involves a

convex relaxation technique, our new framework also supports the usage

of concave relaxation technique. To the authors’ knowledge, this is the first

time that a concave relaxation technique is used in enclosing reachable set

using differential inequalities. For each i ∈ {1, . . . , nx}, the corresponding

edge-concave under-estimator f̂ L
i and edge-convex over-estimator f̂ U

i of fi

can be constructed as follows.

f̂ L
i (t,y, ΠL

i (t, U, Ξ)) := fi(t,y)−
nx+nu

∑
i=1

θL
i

(
yi −mid(YL

i (t, Ξ))
)2

,

f̂ U
i (t,y, ΠL

i (t, U, Ξ)) := fi(t,y) +
nx+nu

∑
i=1

θU
i

(
yi −mid(YU

i (t, Ξ))
)2

,

(5.39)

where mid : IRnx+nu → Rnx+nu represents the middle point of an interval,

and

θL
i = max

0,
1
2

[
∂2 fi

∂y2
i

]U
 , θU

i = max

0,
1
2

[
−∂2 fi

∂y2
i

]U
 .

It was readily verified that F̂B in (5.39) satisfies Assumption 5.9. The opti-

mum of the edge-concave relaxations are obtained by checking all the ver-

tices of the interval domain. The computational cost of this process may be

cheap if the numbers of state variables and uncertain parameters are small.
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Piecewise-affine inclusion

Suppose that f̂ L, f̂U are piecewise-affine relaxations of f . Then, the LP-based

method from [62] is recovered. A special approach for constructing piecewise-

affine relaxations for f with local Lipschitz continuity can be found in [62, Sec-

tion 5.2].

Another general approach for generating piecewise-affine f̂ L, f̂U is to linearly

approximating nonlinear convex relaxations, similar to the methods introduced in

Sections 5.5.2 and 5.5.3.

Assumption 5.10. Assume that interval function F̂B,nl = [f̂ L,nl, f̂ L,nl] : I × Rnu ×

Rnx × IRnx → IRnx satisfies the following conditions:

1. f̂ L,nl and f̂ L,nl are continuously differentiable,

2. ∂f̂ L,nl

∂y (t,p, ·), ∂f̂ L,nl

∂y (t,p, ·) are locally Lipschitz continuous for each (t,p) ∈ I ×U,

and

3. (p, ξ) 7→ F̂B,nl(t,p, ξ) is a convex inclusion function of (p, ξ) 7→ f (t,p, ξ) on

U × Ξ for a.e. t ∈ I and any Ξ ⊂ IRnx .

A nonlinear interval function F̂B,nl satisfying Assumption 5.10 may be con-

structed with twice-continuously differentiable convex relaxations, e.g., C 2-DMC

and αBB relaxations.

Define function χ‡ : IRnx+nu × (0, 1)→ Rnx+nu such that

χ‡(Γ, λ) = γL + λ(γU − γL).
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Choose λ1, λ2, . . . , λm ∈ (0, 1). For any t ∈ I, i ∈ {1, . . . , nx}, and Γ ∈ IRnx , the

subtangents of nonlinear convex relaxations and the supertangents of nonlinear

concave relaxations at λj, j ∈ {1, . . . , m}, are

(aL,i,j(t, Γ))>y + bL,i,j(t, Γ) = 0 and (aU,i,j(t, Γ))>y + bU,i,j(t, Γ) = 0,

respectively, where

aL,i,j(t, Γ) =
∂ f̂ L,nl

i
∂y

(t, χ‡(Γ, λj)),

aU,i,j(t, Γ) =
∂ f̂ U,nl

i
∂y

(t, χ‡(Γ, λj)),

and

bL,i,j(t, Γ) = −(aL,i,j(t, Γ))>χ‡(Γ, λj) + f̂ L,nl
i (t, χ‡(Γ, λj)),

bU,i,j(t, Γ) = −(aU,i,j(t, Γ))>χ‡(Γ, λj) + f̂ U,nl
i (t, χ‡(Γ, λj)).

The piecewise-affine convex (concave) relaxation is the maximum (minimum) of

these subtangents (supertangents). So, define f̃ L, f̃U,pa such that, for each i ∈

{1, . . . , nx},

f̂ L
i (t,y, Γ) := max{(aL,i,j(t, Γ))>y + bL,i,j(t, Γ) : j ∈ {1, . . . , m}},

f̂ U
i (t,y, Γ) := min{(aU,i,j(t, Γ))>y + bU,i,j(t, Γ) : j ∈ {1, . . . , m}}.
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Affine inclusion

Suppose that f̂ L, f̂U are affine relaxations of f constructed with the subtangent

and supertangent of McCormick-based relaxations. Then, the method developed

in [128] is recovered. Since McCormick-based relaxations is typically nonsmooth,

f̂ L, f̂U are may not be continuous. Thus, the existence and uniqueness of system

(5.18) is not guaranteed.

Alternatively, the affine relaxations can be constructed as a special case of the

piecewise-affine relaxations introduced in the previous section. The original non-

linear convex and concave relaxations are linearized at a single point, typically the

midpoint with parameters m = 1 and λ = 0.5.

5.5.5 Summary of use cases

Four different use cases of the new framework (5.18) have been introduced in Sec-

tions 5.5.1-5.5.4. Each of them includes multiple methods for constructing relax-

ations of the original RHS function. The continuity and bounding properties of

f L,fU were addressed to ensure Assumption 5.1 holds for every method. A sum-

mary of these use cases is presented in Table 5.2.

5.5.6 Comparison of use cases

This section compares the tightness of the state bounds generated with different

use cases or different methods. The following lemma shows that tighter relaxations

of f generates tighter state bounds in each use case.
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Table 5.2: Summary of available methods in Section 5.5

Section Domain Relaxation method Code

5.5.4 I ×Rnu ×Rnx × IRnx

Convex envelope px-N-E
Nonlinear GMC px-N-G
Nonlinear DMC px-N-D
PA with C 2-DMC px-P-D
Affine with C 2-DMC px-A-D
αBB px-N-α
PA with αBB px-P-α
Affine with αBB px-A-α
Edge-concave px-N-EC
PA from [62] px-P-H

5.5.3 I ×Rnu × IRnx

Nonlinear GMC p-N-G
Nonlinear DMC p-N-D
PA with C 2-DMC p-P-D
Affine with C 2-DMC p-A-D

5.5.2 I × IRnu ×Rnx × IRnx

Nonlinear GMC x-N-G
Nonlinear DMC x-N-D
PA with C 2-DMC x-P-D
Affine with C 2-DMC x-A-D

5.5.1 I × IRnu × IRnx

Nonlinear GMC #-N-G
Nonlinear DMC #-N-D
NIE [59] #-N-I

Lemma 5.7. Assume that Assumptions 5.4, 5.5, 5.7, and 5.9 hold. In each use case, con-

sider a pair of corresponding relaxations of f , F̌† ∈ {F̄†, F̃†, F̆†, F̂†} and F̌‡ ∈ {F̄‡, F̃‡, F̆‡, F̂‡}

(with the same accent mark). Suppose that ΠL
i , ΠU

i are the flattening operators in Defini-

tion 5.4, and F̌‡ is inclusion monotonic on IRnx . If F̌† is tighter than F̌‡ in the sense of

Definition 5.2, then the resulting state bounds XB,† is tighter than XB,‡ with same initial

conditions.

Proof. This result can be proved with Theorem 5.4 by showing F̌† and F̌‡ satisfy

the conditions in Assumption 5.2.
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Consider any p ∈ U, t ∈ I, Ξ† ≡ [ξL†, ξU†] ⊆ Ξ‡ ≡ [ξL‡, ξU‡], and i ∈

{1, . . . , nx}. It will be shown that, if ξL,†
i = ξ

L,‡
i , then f̌ L,‡

i (t,p, Ξ‡) ≤ f̌ L,†
i (t,p, Ξ†);

it is analogous to show that, if ξU,†
i = ξ

U,‡
i , then f̌ U,‡

i (t,p, Ξ‡) ≥ f̌ U,†
i (t,p, Ξ†).

If ξL,†
i = ξ

L,‡
i , then BL

i (Ξ
†) ⊆ BL

i (Ξ
‡). Since F̌† is tighter than F̌‡ and F̌‡ is

inclusion monotonic,

F̌†(t,p, BL
i (Ξ

†)) ⊆ F̌‡(t,p, BL
i (Ξ

†)) ⊆ F̌‡(t,p, BL
i (Ξ

‡)),

which implies that f̌ L,‡
i (t,p, Ξ‡) ≤ f̌ L,†

i (t,p, Ξ†).

Under this new framework, several relaxation techniques can be used in mul-

tiple use cases, e.g. GMC and DMC. The following lemma shows that with the

same relaxation technique, the use case in Section 5.5.4 generates the tightest state

bounds and the use case in Section 5.5.1 produces the worst.

Lemma 5.8. Consider an inclusion function F̌B : I×Rnu × IRnu ×Rnx × IRnx → Rnx

of f that is inclusion monotonic on IRnu × IRnx . Suppose that ΠL
i , ΠU

i are the flattening

operators in Definition 5.4. Let XB,1, XB,2, XB,3, XB,4 be the state bounds generated with

(5.22), (5.27), (5.32), and (5.35), respectively. Then, XB,1(t) ⊇ XB,2(t) ⊇ XB,4(t) and

XB,1(t) ⊇ XB,3(t) ⊇ XB,4(t) for each t ∈ I.

Proof. Define intervals Ξ1 ≡ [ξL,1, ξU,1], Ξ2 ≡ [ξL,2, ξU,2], Ξ3 ≡ [ξL,3, ξU,3] such that

Ξ1 ⊆ Ξ2 ⊆ Ξ3 ⊂ IRnx , and consider any t ∈ I. If ξL,1
i = ξL,2

i , BL
i (Ξ

1) ⊆ BL
i (Ξ

2).

The inclusion monotonicity of F̌B ensures that, for any p ∈ U,

f̌ L(t, U, BL
i (Ξ

2)) ≤ f̌ L(t,p, BL
i (Ξ

1)).
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Analogously, it can be shown that when ξU,1
i = ξU,2

i ,

f̌ U(t, U, BU
i (Ξ

2)) ≥ f̌ U(t,p, BU
i (Ξ

1)).

Thus, Theorem 5.4 guarantees that for any t ∈ I, XB,1(t) ⊇ XB,2(t).

Similarly, for any t ∈ I, p ∈ U, and z ∈ BL
i (Ξ

2), if ξL,2
i = ξL,3

i ,

f̌ L(t,p, BL
i (Ξ

3)) ≤ f̌ L(t,p, BL
i (Ξ

2))

≤ f̌ L(t,p, z).

Hence,

f̌ L(t, U, BL
i (Ξ

3)) ≤ f̌ L(t,p, BL
i (Ξ

2)) ≤ min
z∈BL

i (Ξ
2)

f̌ L(t,p, z).

Analogously,

f̌ U(t, U, BL
i (Ξ

3)) ≥ f̌ U(t,p, BL
i (Ξ

2)) ≥ max
z∈BL

i (Ξ
2)

f̌ U(t,p, z).

According to Theorem 5.4, for any t ∈ I, XB,2(t) ⊇ XB,4(t).

Similar arguments holds for XB,1(t) ⊇ XB,3(t) ⊇ XB,4(t) for any t ∈ I.
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5.6 Constructing Operators ΠL
i and ΠU

i with an a priori

Enclosure

This section discusses reducing conservatism in the state bounds using an a priori

enclosure G in order to construct tighter state bounds.

Assumption 5.11. Assume that G in Definition 5.7 is described by continuously differ-

entiable functions g : I × Rnx × Rnu → Rng and h : I × Rnx × Rnu → Rnh such

that

G ≡ {(t,x,u) ∈ I ×Rnx ×Rnu : g(t,x,u) ≤ 0, h(t,x,u) = 0}.

Such a priori knowledge can be utilized with a novel interval refining operator

IB
G : I × IRnu × IRnx → IRnx . The intuition behind this new operator is that

the domain knowledge about states and inputs should be completely translated

into refinement over state bounds. This operator is different from the operators

IG : IRnx → IRnx in [118] and IA : IRnx+nu → IRnx+nu in [127], though they are

all designed to trim off regions that lie outside of a priori G. IG typically reflects the

constraints over the states, such as physical bounds and non-negativity. IA refines

both state bounds and input bounds, but this refinement is only effective when it

is combined with the flattening operators BL
i , BU

i [127]. Our new framework may
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support operator IA by modifying (5.18) as follows:

ẋL
i (t) = min

p∈UL
i

f̄ L
i (t,p, XB,L

i ), xL
i (t0) = xL

0,i,

ẋU
i (t) = max

p∈UU
i

f̄ U
i (t,p, XB,U

i ), xU
i (t0) = xU

0,i,

where

(XB,L
i , UL

i ) = IA(BL
i (XB(t)), U),

(XB,U
i , UU

i ) = IA(BU
i (XB(t)), U).

However, we will proceed with the new operator IB
G rather than IA. The reason

is that the above auxiliary system involves different input bounds UL
i , UU

i for each

component of the auxiliary RHS function and these bounds are time-variant. Com-

pare with the formulation in (5.18), this is more complex and may be computation-

ally more expensive in numerical implementation.

Assumption 5.12. Assume that IB
G satisfies the following conditions:

1. For all Ξ ∈ IRnx with (Ξ ∩ G) 6= ∅,

(Ξ ∩ G) ⊂ IB
G(t, U, Ξ) ⊂ Ξ.

2. (ξL, ξU) 7→ IB
G(t, U, [ξL, ξU]) is locally Lipschitz continuous.

A valid choice of ΠL
i and ΠU

i satisfying Assumption 5.3 is then obtained in the

following definition.
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Definition 5.8. Under Assumption 5.12, define ΠL
i , ΠU

i for each i ∈ {1, . . . , nx} and all

Ξ ∈ IRnx by

ΠL
i (t, U, Ξ) := IB

G(t, U, BL
i (Ξ)),

ΠU
i (t, U, Ξ) := IB

G(t, U, BU
i (Ξ)). (5.40)

Based on the interval-Krawczyk method developed in [127, 124], a parametric-

interval-Krawczyk method is proposed as follows. Define function µ : {0, 1}× I×

IRnu × IRnx → R such that

µ(m, t, U, Ξ) := (−1)m/ max
(

ε,
∣∣∣∣[ ∂gi

∂yk

]
(t, U, Ξ)

∣∣∣∣) , (5.41)
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where ε is a fixed user-specified tolerance. Let V ≡ (−∞, 0]. The refinement oper-

ator IB
G is described in Algorithm 2.

Algorithm 2: An implementation of IB
G

1 Function IB
G(t, Ξ, U):

2 for i← 1, . . . , ng do
3 for j← 1, . . . , nx do
4 for m← 0, 1 do
5 ξ ← mid(Ξ)

6 α← [gi](t, ξ, U) + ∑k 6=j

[
∂gi
∂yk

]
(t, U, Ξ)(Ξk − ξk) + V

7 Ξ̂i ← ξi + µ(m, t, U, Ξ)α

+(1 + µ(m, t, U, Ξ)
[

∂gi
∂yj

]
(t, U, Ξ)(Ξj − ξ j)

8 ξL
j ← min(max(ξ̂L

j , ξL
j ), ξU

j )

9 ξU
j ← max(min(ξ̂U

j , ξU
j ), ξL

j )

10 end
11 end
12 end
13 for i← 1, . . . , nh do
14 for j← 1, . . . , nx do
15 for m← 0, 1 do
16 ξ ← mid(Ξ)

17 α← [hi](t, ξ, U) + ∑k 6=j

[
∂hi
∂yk

]
(t, U, Ξ)(Ξk − ξk)

18 Ξ̂i ← ξi + µ(m, t, U, Ξ)α

+(1 + µ(m, t, U, Ξ)
[

∂hi
∂yj

]
(t, U, Ξ)(Ξj − ξ j)

19 ξL
j ← min(max(ξ̂L

j , ξL
j ), ξU

j )

20 ξU
j ← max(min(ξ̂U

j , ξU
j ), ξL

j )

21 end
22 end
23 end
24 return Ξ

Theorem 5.5. Choose any ε ∈ R≥0 and t ∈ I. If [ ∂g
∂y ], [

∂h
∂y ] : I × IRnx × IRnu 7→ IRnx

are inclusion functions of ∂g
∂y , ∂h

∂y , respectively, and are locally Lipschitz continuous. Then,

IB
G defined in Algorithm 2 satisfies Assumption 5.12.
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Proof. This result of IB
G satisfying Assumption 5.12 is analogous to [127, Theorem 4]

and the proof is similar.

5.7 Numerical Examples

This section presents numerical examples in which state bounds of nonlinear dy-

namic systems are generated using our new framework (5.18). Functions f L,fU in

the RHS of (5.18) are constructed with various methods introduced in Section 5.5.

An implementation of these approaches has been developed in Julia v1.5.3 [20].

The auxiliary system of ODEs (5.18) is solved with DifferentiableEquations.jl [104].

McCormick-type relaxations, including MC, GMC, and C 1-DMC, are generated

with McCormick.jl [152]. JuMP v0.21.4 [49] is used as the interface to optimzation

solvers; CPLEX v12.10 is used to solve LPs, and IPOPT v3.13.2 is used to solve

NLPs. All numerical experiments were performed on a Windows 10 machine with

a 3.6 GHz Ryzen 5 2600X CPU and 8 GB memory.

Example 5.1. This example involves the Van der Pol oscillator, which is a classic dy-

namic system that has been widely studied in electrical engineering and biological science.

Relaxations of this system were obtained by [126]. Here, a two-dimensional form with

uncertainty in both initial conditions and RHS functions is considered:

ẋ1(t,u) = x1, x1(t0,u) = u1(t0),

ẋ2(t,u) = u1(1− x2
1)x2 − x1, x2(t0,u) = u2(t0),

where U ≡ [1.399, 1.400]× [2.299, 2.300], u = (u1, u2) ∈ U , and I ≡ [t0, t f ] = [0, 6].
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(a) (b)

Figure 5.2: The state bound trajectories generated with different methods for (a)
x1 and (b) x2 (dotted) in Example 5.1. Solid lines are real trajectories.

State bounds were computed for state variables x1 and x2 with methods based

on interval extensions and methods that optimize states and parameters. As shown

in Figure 5.2, approaches that optimize state and parameters, i.e. px-N-D and px-

N-α, construct tighter state bounds than the optimization-free methods, i.e. #-N-I

and #-N-G. Note that except #-N-I which was developed by Harrison [59], the

other three methods are all newly discovered using our new framework (5.18).

Example 5.2. This example is an ODE system with a quadratic RHS adapted from [31]:

ẋ1(t,u) = (x1 − u1)
2 − (x2 − u1)

2, x1(t0) = 2.2,

ẋ2(t,u) = (x1 − u2)
2 − (x2 − u2)

2, x2(t0) = 1.8,

where U ≡ [−2, 2]× [−1, 3], u = (u1, u2) ∈ U , and I ≡ [t0, t f ] = [0.0, 0.2].
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Two new state bounding methods, px-N-α and px-N-EC, are used in this exam-

ple. These two new methods are developed based on αBB relaxations and edge-

concave relaxations, respectively, using the new framework. The trajectories of

theses methods are plotted in Figure 5.3. For this particular problem, px-N-EC

generates tighter state bounds than px-N-α. Furthermore, both of these two new

methods generate tighter state bounds than Harrison’s method #-N-I.

Figure 5.3: The state bound trajectories (dotted) generated with©-N-I (square),
px-N-EC (star), and px-N-α (diamond) for x1 in Example 5.2. Solid lines are real

trajectories.

Besides those three methods illustrated in Figure 5.3, additional methods from

Table 5.2 were tested with this example to evaluate their computational perfor-

mance. Each method was repeated 10 times and the average computing time is
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displayed in Table 5.3. Note that the newly developed method, #-N-G, has a com-

puting time that is similar to Harrison’s method with this implementation. The

method that involves nonsmooth nonlinear optimization (i.e. x-N-G) took longer

computing time than a similar method than involves smooth nonlinear optimiza-

tion (i.e. x-N-D). Moreover, since the original ODE RHS function is quadratic, its

αBB relaxation is also a quadratic function and can be minimized using CPLEX.

The computing time of px-N-α(NLP) and px-N-α(QP) confirms that, solving the

embedded optimization problems as a QP using CPLEX is faster than solving it as

an NLP using IPOPT. Lastly, minimizing the edge-concave relaxations in px-N-EC

were optimized by checking all vertices of the domain box. Since this example has

a small number of state variables and controls, this optimization process was not

computationally expensive.

Table 5.3: Computing time of Example 5.2 with different methods

Bounding method #-N-I #-N-G x-N-G x-N-D

Average time (s) 0.0043 0.0042 15.243 4.8706

Bounding method px-N-D px-N-EC px-N-α(NLP) px-N-α(QP)

Average time (s) 14.143 1.2314 4.7906 1.6311

Example 5.3. This example describes the dynamic of an anaerobic digestion process origi-

nally developed in [18]. Enclosures for the reachable set of this model have been constructed

230



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

in [146, 127].

Ẋ1 = (µ1(S1)− αD)X1, (5.42)

Ẋ2 = (µ2(S2)− αD)X2,

Ṡ1 = D(Sin
1 − S1)− k1µ1(S1)X1,

Ṡ2 = D(Sin
2 − S2) + k2µ1(S1)X1 − k3µ2(S2)X2,

Ż = D(Zin − Z),

Ċ = D(Cin − C)− qCO2 + k4µ1(S1)X1 + k5µ2(S2)X2,

where

qCO2 = kLa(C + S2 − Z− KHPCO2 ,

PCO2 =
φCO2 −

√
φ2

CO2
− 4KHPt(C + S2 − Z)

2KH
,

φCO2 = C + S2 − Z + KHPt +
k6

kLa
µ2(S2)X2,

µ1(S1) = µ̄1
S1

S1 + KS1

,

µ2(S2) = µ̄2
S2

S2 + KS2 + S2
2/KI2

.

The uncertain parameters and initial conditions are summarized in Table 5.4. The other

parameters are constants and their values can be found in [146].

A higher-dimensional “lifted” variant of the model (5.42) was developed in
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Table 5.4: Parameters and initial conditions for Example 5.3

Symbol Value Unit

k1 [42.14, 42.98] g(COD) g(cell)−1

k2 [116.5, 118.24] mmol g(cell)−1

X1(t0) [0.49, 0.51] g(COD) L−1

X2(t0) [0.98, 1.02] mmol L−1

C(t0) [39.2, 40.8] mmol L−1

S1(t0) 1 mmol L−1

S2(t0) 5 mmol L−1

Z(t0) 50 mmol L−1

[127]. It has two redundant state variables

Ṅ1 = D(Sin
1 + S1(α− 1)− αN1), (5.43)

Ṅ2 = D(Sin
2 + S2(α− 1)− αN2).

The new system consisting of (5.42) and (5.43) satisfies an a priori enclosure such

that

0 = −N1 + k1X1 + S1, (5.44)

0 = −N2 − k2X1 + k3X2 + S2.

(5.44) follows the description of a priori enclosure G in Assumption 5.12, so that

the interval refinement operator IB
G can be used to reduce the conservatism in state

bounds. Figure 5.4 compares three different NIE-based methods. The first one did

not consider a priori enclosure; the other two incorporated the a priori enclosure G

with operators IB
G and IA, respectively. It was observed that the a priori enclosure

G prevented the state bounds from diverging within the time horizon. Moreover,
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operators IB
G and IA provided same refinement to the state bounds of this particular

system, and their trajectory overlaps in Figure 5.4.

Figure 5.4: The state bound trajectories of S2 in Example 5.3 (dotted) generated
with no refinement (square) and refinement operators IA (star) and IB

G (diamond).
Solid lines are real trajectories.

5.8 Conclusions

This work concerns the problem of bounding the reachable set of a nonlinear dy-

namic system with uncertainty. A novel systematic framework (5.18) was devel-

oped based on the theory of differential inequalities in Section 5.4. It employs an

auxiliary system of ODEs with optimization problems embedded in the RHS. The

solutions of these auxiliary ODEs are componentwise lower and upper bounds of

233



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

the original system. The intuition behind these embedded optimization problems

is to generate lower and upper bounds of the original ODE RHS function by opti-

mizing relaxations of the original ODE RHS function. Four different use cases of

this new framework were presented in Section 5.5, and they were distinguished by

the decision variables in the embedded optimization problems. Moreover, various

methods for generating relaxations of the original ODE RHS function were intro-

duced in each use case. In particular, some of these methods lead to an embedded

optimization problem that is trivial to solve and does not require any numerical

optimization solver. In Section 5.6, we adapted an approach from [124] to incor-

porate the a priori knowledge of the original system in order to produce tighter

bounds. Lastly, a proof-of-concept implementation was developed to support all

four use cases. Numerical examples were presented in Section 5.7 to illustrate that

several new methods discovered with this framework are capable of constructing

tight bounds for the original system efficiently.

The benefits of our new framework for enclosing reachable sets are multi-fold.

First, this framework describes a general strategy for bounding nonlinear ODEs

using differential inequality. It not only includes several established methods such

as [59, 118, 62], but also inspires the discovery of various new methods as long

as Assumption 5.1 is satisfied. Second, this framework is versatile. It supports

various relaxation techniques that have never been used to construct state bounds,

such as GMC, DMC, αBB relaxations, and edge-concave relaxations. Some of the

techniques lead to tighter state bounds than established methods, which is fun-

damental to reachability analysis and global optimization. Third, this framework

allows the usage of a priori knowledge of the original system for generating tighter
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state bounds. Similar approaches have been studied in many researches [126, 146,

121] and were demonstrated to be effective.

For future work, we are interested in using the new state bounds developed in

this work to construct convex relaxations for parametric ODEs. These convex re-

laxations are fundamental to the deterministic global optimization of dynamic sys-

tems [131]. To generate convex relaxations for parametric ODEs using differential

inequalities, we first need to construct valid state bounds. While established meth-

ods [120, 131, 27] typically use Harrison’s method [59] to provide state bounds,

we expect that the tighter state bounds developed in this work will lead to tighter

convex relaxations for parametric ODEs, and therefore help global optimization

algorithms converge faster [42].
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Chapter 6

Enclosing Reachable Sets for

Nonlinear Control Systems using

Complementarity-Based Intervals

This chapter is reproduced from a published conference proceeding [31].

6.1 Introduction

The problem of interest in this paper is to compute tight bounds for the reachable

set of nonlinear dynamic systems represented as system of parametric ordinary

differential equations (ODEs) with uncertain inputs, parameters, and initial condi-

tions. Such enclosures are important in many applications, including state estima-

tion [69], parameter estimation [128], safety verification [66, 142], fault detection

[82], and global dynamic optimization [101, 129]. Various strategies have been
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proposed to enclose this reachable set, such as solving the Hamilton-Jacobi equa-

tions [91], conservatively linearizing nonlinear models [8], constructing zonotopes

[78, 155] or ellipsoids [79], and computing validated solutions [96, 84]. This paper

focuses on another category of methods that are based on differential inequalities

[148].

Differential inequality-based methods generate time-varying interval enclosures

for the original nonlinear dynamic system by constructing an auxiliary dynamic

system and solving this numerically. The solutions of the auxiliary system are

component-wise lower and upper bounds for the original system. Differential

inequality-based methods require valid bounding information for the original sys-

tem’s right-hand side (RHS) function. [59] first proposed to use natural interval

extensions (NIE) [94] to calculate interval bounds of the RHS function automati-

cally. This strategy was extended using affine relaxation techniques for tighter en-

closures [128]. [62] introduced a method to bound the RHS function with the solu-

tions of linear programs (LPs). These LPs optimize piecewise-affine relaxations of

the original RHS function that are derived with a special relaxation scheme to en-

sure the Lipschitz continuity. [37] presented another differential inequality-based

approach that applies Taylor series expansion to the original system. Besides the

various techniques for constructing an auxiliary bounding system, another direc-

tion of research in this area involves generating less conservative enclosures by

exposing the “hidden constraints” of the original system, such as physical bounds

and implicit conservation laws [118, 126]. This approach may require specialized

knowledge of the system of interest to formulate effective constraints for refining

the enclosures.
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In this work, we propose a novel differential inequality-based method for com-

puting enclosures for nonlinear control systems. Bounding information for the

RHS function is obtained by optimizing its convex relaxations. This is distinct

from the LP-based method by [62] in which the relaxations are limited to a special

type of convex piecewise-affine under-estimators. Our new approach, on the other

hand, is applicable to a broad range of convex relaxations. Moreover, complemen-

tarity formulations are developed in an effort to solve the optimization problems

efficiently. Examples are presented for illustration.

The following notation conventions are used in this paper. Vectors are denoted

with boldface lower-case letters (e.g. x). Given vectors x,y ∈ Rn, inequalities

such as x < y or x ≤ y are to be interpreted component-wise. Convexity of a

vector-valued function f refers here to convexity of all components fi. A matrix is

denoted with boldface upper-case letters (e.g. A), and its elements are represented

by corresponding lower case letters with subscripts indicating the row and column

(e.g. aij). An interval in Rn is a nonempty subset of Rn of the form {x ∈ Rn : a ≤

x ≤ b}, which is denoted as [a, b]. IRn denotes the set of all intervals in Rn.

6.2 Problem Statement

Consider t0, t f ∈ R with t0 < t f , and define I := [t0, t f ]. Let U := [uL,uU] ⊂ Rnu

be an interval, and D ⊂ Rnx be open. Denote the space of all Lebesgue integrable

functions h : I → Rn as Ln(I). Let Ũ := {u ∈ Lnu(I) : u(t) ∈ U, t ∈ I} be

a set of admissible controls, and X0 := [xL
0 ,xU

0 ] ∈ D be a set of admissible initial

conditions. Given a continuous mapping f : I×U×D → Rnx for which f (t, ·, ·) is
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twice-continuously differentiable for each t ∈ I, consider an initial-value problem

ẋ(t,u,x0) = f (t,u(t),x(t,u,x0)), ∀t ∈ (t0, t f ], (6.1)

x(t0,u,x0) = x0,

where (u,x0) ∈ Ũ × X0, and where dotted quantities indicate time-derivatives

(e.g. ẋ ≡ ∂x
∂t ).

Under these conditions, the ordinary differentiable equation (ODE) (6.1) is guar-

anteed to have a unique solution by the Picard-Lindelöf Theorem, summarized as

[60, Theorem 1.1, Chapter II].

The objective of this work is to compute tight time-varying interval bounds for

x(t,u,x0) in (6.1). Here, we use the terminology proposed by [118] to describe

such enclosures.

Definition 6.1 (State bounds). Functions xL,xU : I → Rnx are state bounds for the

ODE (6.1) if

xL(t) ≤ x(t,u,x0) ≤ xU(t), ∀(t,u,x0) ∈ I × Ũ × X0.

Let XB : I → IRnx denote the corresponding interval function: XB(t) := [xL(t),xU(t)]

for each t ∈ I.

6.3 Background

The following fundamental differential inequality theorem was presented in [59].

Proposition 6.1. Let xL,xU : I → Rnx satisfy the following conditions.
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1. x0 ∈ XB(t0),

2. For a.e. t ∈ I and each i ∈ {1, . . . , nx},

ẋL
i (t) ≤ min

z∈XB(t), zi=xL
i (t),

u∈Ũ

fi(t,u, z), (6.2a)

ẋU
i (t) ≥ max

z∈XB(t), zi=xU
i (t),

u∈Ũ

fi(t,u, z), (6.2b)

Then x(t,u,x0) ∈ XB(t) for all (t,u) ∈ I × Ũ.

Based on the above result, [59] suggested to compute ẋL and ẋU by applying

NIE to f . This method generates an inclusion function of f that is independent of u

and z, satisfying the following definition.

Definition 6.2 (Inclusion function). Let S ∈ IRn and h : S → Rm. An interval

function H = [hL,hU] : IRn → IRm is a inclusion function of h on S if

{h(z) : z ∈ Z} ⊆ H(Z), ∀Z ⊆ S.

Harrison also noted that choosing ẋL and ẋU close to the bounds given by (6.2)

will empirically benefit the generated state bounds. A recent comparison result for

ODE solutions [130] also confirms this. So, we explore the possibility of providing

bounding information of fi with convex relaxation, which is typically closer to the

original function compared with NIE.

Definition 6.3 (Convex relaxation). Let Z ∈ IRn and h : Z → Rm. Then:

1. hcv : Z → Rm is a convex relaxation of h on Z if hcv(z) ≤ h(z) for all z ∈ Z

and hcv is convex on Z.
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2. hcc : Z → Rm is a concave relaxation of h on Z if hcc(z) ≥ h(z) for all z ∈ Z

and hcc is concave on Z.

3. The interval function H = [hcv,hcc] is called a convex inclusion function of h on

Z.

6.4 New Formulation

Define an interval function FR = [f cv,f cc] : I ×U ×Rnx → IRnx , and recall the

considered ODE system (6.1).

Assumption 6.1. Suppose that the interval function FR = [f cv,f cc] has the following

properties:

1. f cv and f cc are continuous,

2. f cv and f cc are locally Lipschitz continuous in x, uniformly in (t,p),

3. FR(t, ·, ·) is an convex inclusion function of f (t, ·, ·) on U × D for a.e. t ∈ I.

Definition 6.4. Under Assumption 6.1, define an interval function FB = [f L,fU] :

I × IRnx → IRnx such that, for each i ∈ {1, . . . , nx}, t ∈ I, and Ξ = [ξL, ξU] ∈ IRnx ,

f L
i (t, Ξ) = min

z∈Ξ, zi=ξL
i ,

p∈U

f cv
i (t,p, z), (6.3a)

and f U
i (t, Ξ) = max

z∈Ξ, zi=ξU
i ,

p∈U

f cc
i (t,p, z). (6.3b)
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Define the following auxiliary ODE system over t ∈ I:

ẋL(t) = f L(t, XB(t)), xL(t0) = xL
0 , (6.4a)

ẋU(t) = fU(t, XB(t)), xU(t0) = xU
0 . (6.4b)

6.4.1 Existence and uniqueness

This section shows that the auxiliary ODE system (6.4) has exactly one solution

under mild assumptions.

Theorem 6.1. Under Assumption 6.1, the ODE (6.4) has unique solutions.

Proof. Define gcv, gcc : I ×Rnx → Rnx such that

gcv
i (t, z) = min

p∈U
f cv
i (t,p, z),

gcc
i (t, z) = max

p∈U
f cc
i (t,p, z),

for each i ∈ {1, . . . , nx}. Then, (6.3) becomes

f L
i (t, Ξ) = min

z∈Ξ, zi=ξL
i

gcv
i (t, z),

f U
i (t, Ξ) = max

z∈Ξ, zi=ξU
i

gcc
i (t, z). (6.5)

According to Assumption 6.1 and [40, Theorem 2.1], (gcv, gcc) are Lipschitz con-

tinuous in z, uniformly in t. Moreover, because gcv(t, ·) and gcc(t, ·) are readily

verified to be convex and concave, respectively, Proposition 2 from [131] ensures

that (f L,fU) in (6.5) are Lipschitz continuous with respect to ξL and ξU, uniformly

242



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

for t ∈ I. Then, the existence and uniqueness of (6.4) is guaranteed by the Picard-

Lindelöf Theorem [60, Theorem 1.1, Chapter II].

6.4.2 Bounding the original system

This section shows that the auxiliary ODE (6.4) provides valid state bounds for

(6.1).

Theorem 6.2. Under Assumption 6.1, let (xL,xU) be solutions of the ODE (6.4). Then,

(xL,xU) are state bounds of ODE (6.1).

Proof. It suffices to show that the two requirements in Proposition 6.1 are satisfied

by (xL,xU). First, x0 ∈ XB(t0) is ensured by the construction of auxiliary ODE

system (6.4). Second, Condition 3 in Assumption 6.1 guarantees that, for a.e. t ∈ I

and any (p, z) ∈ U × D,

f cv(t,p, z) ≤ f (t,p, z).

So for a.e. t ∈ I, each Ξ ∈ IRnx , and each i ∈ {1, . . . , nx},

ẋL
i (t) = f L

i (t, Ξ) = min
z∈Ξ, zi=ξL

i ,
p∈U

f cv
i (t,p, z)

≤ min
z∈Ξ, zi=ξL

i ,
u∈Ũ

fi(t,u, z).
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Similarly,

ẋU
i (t) = f U

i (t, Ξ) ≥ max
z∈Ξ, zi=ξU

i ,
u∈Ũ

fi(t,u, z).

The second condition in Proposition 6.1 is thus satisfied.

6.5 Complementarity Reformulation

This section derives a complementarity reformulation of (6.3) based on Karush-

Kuhn-Tucker (KKT) conditions. To simplify notation, denote y = (x,p) ∈ Rnx+nu

in the remainder of this paper. We also define the following operators as did [118].

Definition 6.5. For each i ∈ {1, . . . , nx}, define flattening operators Bi, Bi : IRnx →

IRnx such that,

1. Bi([φ,ψ]) = [φ,ψ′], where ψ′i = φi, and ψ′k = ψk for all k ∈ {1, . . . , nx}\{i},

2. Bi([φ,ψ]) = [φ′,ψ], where φ′i = ψi, and φ′k = φk for all k ∈ {1, . . . , nx}\{i}.

The optimization problem in (6.3a) can be then reformulated as follows; with

Ξ = [ξL, ξU], [φL
(i),φ

U
(i)] = BL

i ([(ξ
L,uL), (ξU,uU)]),

min
y

f cv
i (t,y), (6.6)

s.t. φL
(i) ≤ y ≤ φ

U
(i).
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The corresponding KKT conditions are:

∇y∗ f cv
i (t,y∗) +µ−µ = 0,

φL
(i) ≤ y

∗ ≤ φU
(i),

µ ≥ 0, µ ≥ 0, (6.7)

(µ−µ)>y∗ +µ>φL
(i) −µ

>φU
(i) = 0.

Under Assumption 6.1, (6.6) is a box-constrained convex optimization problem

which satisfies the linearity constraint qualification. So, satisfying the condition

(6.7) is equivalent to y∗ solving (6.6) directly. A similar formulation can be derived

for the optimization problem in (6.3b): with [ψL
(i),ψ

U
(i)] = BU

i ([(ξ
L,uL), (ξU,uU)]),

∇y∗ f cc
i (t,y∗)− ν + ν = 0,

ψL
(i) ≤ y

∗ ≤ ψU
(i),

ν ≥ 0, ν ≥ 0, (6.8)

(ν − ν)>y∗ + ν>ψL
(i) − ν

>ψU
(i) = 0.

So (6.3) can be reformulated as

f L
i (t, Ξ) = f cv

i (t,y∗),

and f U
i (t, Ξ) = f cc

i (t,y∗), (6.9)

where y∗ and y∗ are the KKT points in (6.7) and (6.8), respectively.

The dynamic system (6.4) with its RHS defined in (6.9) can thus be considered

as a mixed nonlinear complementarity system (NCS), for which many numerical
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algorithms have been developed [116]. In particular, a software platform Siconos

[1] has been developed to solve NCSs efficiently.

6.6 Constructing convex inclusion functions

According to Theorem 6.2, state bounds for (6.1) can be computed by constructing

a convex inclusion function of f , FR = [f cv,f cc], that satisfies Assumption 6.1. One

way to construct FR is to use convex (concave) envelopes, which are defined as the

supremum (infimum) of all convex under-estimators (concave over-estimators) of

f . In this case, we obtain the tightest bounds that are consistent with Proposi-

tion 6.1. However, the convex envelope is generally cumbersome or impossible

to evaluate for multivariate functions. A practical and computationally simpler

method for generating such a convex inclusion function is to derive αBB relax-

ations [9] for f . Other relaxation approaches, such as McCormick relaxation [123,

72, 73], are also applicable.

6.6.1 αBB relaxation

αBB relaxation is an established technique [3] for constructing convex under-estimators

for general nonconvex twice differentiable functions. To construct a relaxation, a

negative convex quadratic term is added to the original function, h : Rn → Rm:

hcv(z) := h(z) +
n

∑
i=1

αi(zL
i − zi)(zU

i − zi),

where zL and zU are the lower and upper bounds of z, and α ∈ Rn is a constant

vector that is determined by h, zL, and zU. [3] propose an approach to construct a
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valid α that ensures the convexity of the under-estimator hcv. The first step of this

approach is to determine a symmetric interval matrix [H ] such that

∇2h(z) ∈ [H ], ∀z ∈ [zL, zU].

This can be accomplished by applying NIE to the Hessian matrix of h, denoted as

H . Then, each component αi, i ∈ {1, . . . , n}, can be calculated as

αi = max

{
0,−1

2

(
hii −∑

j 6=i
|h|ij

)}
, (6.10)

where |h|ij = max{|hij|, |hij|}, and hij, hij are the lower and upper bounds of hij in

H , respectively. Correspondingly, a concave over-estimator can be constructed by

taking the negative of the αBB convex under-estimator of −h(z).

Using αBB relaxation, a convex inclusion function FR that satisfies Assump-

tion 6.1 can be constructed as follows.

Definition 6.6. Define an αBB relaxation Fα = [f cv,f cc] : I × IRny → IRny such that,

for each i ∈ {1, . . . , nx},

f cv
i (t,y) = fi(t,y) +

ny

∑
j=1

acv
ij (t)(y

L
j − yj)(yU

j − yj), (6.11a)

f cc
i (t,y) = fi(t,y)−

ny

∑
j=1

acc
ij (t)(y

L
j − yj)(yU

j − yj), (6.11b)

where the ith rows of matrices Acv(t) and Acc(t) are α factors for fi(t, ·) and − fi(t, ·),

respectively, obtained as in [3].

The αBB parameters in Acv(t) and Acc(t) can be calculated via (6.10) at each
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t ∈ I with yL = (ξL(t),uL) and yU = (ξU(t),uU). Alternatively, if constant

bounds of x are available on I ×U, then these can be used to determine another

valid combination of yL and yU. Such bounds may be a rough enclosure of the

reachable set, or may be computed by an established state bounding method, such

as by [59].

Since the original RHS function f is twice differentiable, it is readily verified

that Fα in Definition 6.6 is a valid choice of FR that satisfies Assumption 6.1, and

may be employed in the state bounding system (6.4).

6.6.2 Specialization to quadratic functions

If the original RHS function f in (6.1) is quadratic, then its αBB relaxations f cv and

f cc are also quadratic. For an arbitrary i ∈ {1, . . . , nx}, suppose that

fi(t,y) = y>Qy + q>y + c,

whereQ is symmetric.

Definition 6.7. For matrices (or vectors)A,B ∈ Rm×n, their Hadamard productA�

B ∈ Rm×n is a matrix with elements

(A�B)ij = aijbij.
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Let acv
(i) be the transposed ith row ofAcv. Then, (6.11a) provides

f cv
i (t,y) = y>Qy + q>y + c +

ny

∑
j=1

acv
ij (y

L
j − yj)(yU

j − yj)

= y>Q̃y + q̃>y + c̃,

where, with diag(acv
(i)) denoting the diagonal matrix with components of acv

(i) along

its main diagonal,

Q̃ := Q+ diag(acv
(i)),

q̃ := q − acv
(i) � (yL + yU),

c̃ := c +
ny

∑
j=1

acv
ij yL

j yU
j .

Then, the optimization problem in (6.3a) can be expressed as a convex quadratic

program (QP); with Ξ = [ξL, ξU], [φL
(i),φ

U
(i)] = BL

i ([(ξ
L,uL), (ξU,uU)]),

min
y

y>Q̃y + q̃>y + c̃, (6.12)

s.t. φL
(i) ≤ y ≤ φ

U
(i).
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The KKT conditions of (6.12) can be derived accordingly:

2 Q̃y∗ + q̃ +µ−µ = 0,

φL
(i) ≤ y

∗ ≤ φU
(i),

µ ≥ 0, µ ≥ 0, (6.13)

(µ−µ)>y∗ +µ>φL
(i) −µ

>φU
(i) = 0.

A vector y∗ solves (6.12) if and only if there are multipliers (µ,µ) for which (y∗,µ,µ)

solves (6.13).

Note that the QPs described in (6.12) and (6.13) are solvable by efficient com-

mercial solvers such as CPLEX and Gurobi. They may also be treated as multi-

parametric quadratic programs [103], in which the optimum of the optimization

problem is considered as a function of varying parameters. The advantage of this

strategy is that an analytical expression of the optimum function can in principle

be obtained in advance, for quick online evaluation.

Moreover, the KKT conditions in (6.13) also comprise a mixed linear comple-

mentarity problem (MLCP). Comprehensive theoretical results and various nu-

merical algorithms for LCPs and MLCPs can be found in literature; see e.g. [45].

6.7 Numerical Examples

This section presents numerical examples in which state bounds are constructed

for nonlinear dynamic system with our new method described in Sections 6.4 and

6.6. This method was implemented in Julia v1.4.2 with the auxiliary system of
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ODEs solved with DifferentialEquations.jl. All numerical experiments were per-

formed on a Windows 10 machine with an AMD Ryzen 2600X CPU and 16GB

memory.

The first example involves a simple ODE system with a quadratic RHS.

Example 6.1. Consider the quadratic ODEs:

ẋ1(t,u) = (x1 − u1)
2 − (x2 − u1)

2, x1(t0) = 2.2,

ẋ2(t,u) = (x1 − u2)
2 − (x2 − u2)

2, x2(t0) = 1.8,

where U ≡ [−2, 2]× [−1, 3], u = (u1, u2) ∈ Ũ, and I ≡ [t0, t f ] = [0.0, 0.2].

Using the approach from Section 6.6.2, we derived quadratic αBB relaxations

of f , and the QPs (6.12) in (6.4) were solved with CPLEX v12.10. The resulting

bounds are illustrated in Figure 6.1, along with Harrison’s NIE-based method and

trajectories of the original system. This figure shows that the time-varying bounds

generated by our new method are tighter than those by Harrison’s method.

Next, we consider the Van der Pol oscillator, which is a classic dynamic sys-

tem that has been widely studied in electrical engineering and biological science.

Relaxations of this system were obtained by [126]. Here, we consider its two-

dimensional form with uncertainty in both initial conditions and RHS functions.

Example 6.2. Consider the Van der Pol oscillator:

ẋ1(t,u) = x1, x1(t0,u) = u1(t0),

ẋ2(t,u) = u1(1− x2
1)x2 − x1, x2(t0,u) = u2(t0),
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Figure 6.1: State bounds of x1 in Example 6.1 computed by relaxing RHS
functions with NIE (dotted) and αBB relaxation in (6.4) (dashed). Solid

(overlapping) lines are real trajectories.

where U ≡ [1.399, 1.400]× [2.299, 2.300], u = (u1, u2) ∈ Ũ, and I ≡ [t0, t f ] = [0, 6].

The αBB relaxations of this ODE’s RHS functions were obtained via (6.11) and

optimized by IPOPT [147]. State bounds were computed for the state variable x1

using Harrison’s method (NIE) and our new αBB-based method, and are plotted

in Figure 6.2. In this case, the new method generates a better enclosure while

Harrison’s method explodes faster.

The last example involves a bioreactor process [16]. An enclosure of this system

was obtained by [83].

Example 6.3. Consider a microbial growth process described by the following ODE sys-

tem:

Ẋ = (µ− αD)X, X(t0) = 0.82,

Ṡ = D(Si − S)− kµX, S(t0) = 0.8,
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Figure 6.2: State bounds of x1 in Example 6.2 computed by relaxing RHS
functions with NIE (dotted) and αBB relaxation in (6.4) (dashed). Solid

(overlapping) lines are real trajectories.

where state variables X and S respectively represent the concentrations of biomass and

substrate, I ≡ [t0, t f ] = [0, 3], and µ is the growth rate

µ =
µmS

KS + S + KIS2 .

The remaining quantities are parameters, whose values and uncertainties are provided in

Table 6.1.

Table 6.1: Microbial growth process parameters

Parameter Symbol Value Unit

Process heterogeneity α 0.5 -
Dilution rate D 0.36 day−1

Influent concentration Si 5.7 g S/l
Yield coefficient k 10.53 g S/g X
Max growth rate µm 1.2 day−1

Kinetic parameter KS [7.0, 7.2] g S/l
Kinetic parameter KI [0.4, 0.6] (g S/l)−1
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In this numerical experiment, we consider the two kinetic parameters KS and

KI , to have bounded uncertainties. Corresponding state bounds were constructed

with αBB relaxations in (6.4), and are shown in Figure 6.3. This figure shows that

the proposed new approach produces a tighter enclosure for the biomass concen-

tration than Harrison’s method.

Figure 6.3: State bounds of X in Example 6.3 computed by relaxing RHS functions
with NIE (dotted) and αBB relaxation in (6.4) (dashed). Solid lines are real

trajectories.

6.8 Conclusion

We have developed an approach for computing tight enclosures for nonlinear con-

trol systems based on differential inequalities. Bounding information for the orig-

inal RHS function f is obtained by optimizing its convex relaxations. We investi-

gated the usage of αBB relaxation in this context, and developed the correspond-

ing complementarity reformulation as an NCS. Our numerical results illustrate the
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tightness of the time-varying interval bounds generated by our new method. Fu-

ture work may involve exploring the usage of other established convex relaxation

techniques [123, 72, 73]. Our proof-of-concept implementation involves repeatedly

solving optimization problems during integration, which requires a considerable

amount of computing effort, especially when the system of interest is nonlinear.

As suggested in Section 6.5, a specialized complementarity system solver would

help in a more sophisticated implementation.
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Chapter 7

A Differential Inequality-Based

Framework for Computing Convex

Enclosures of Reachable Sets

This chapter represents a manuscript in preparation for submission to a journal.

7.1 Introduction

A reachable set is the set of final states reachable by a dynamic system with uncer-

tain inputs or initial conditions. Enclosing the reachable set provides a quantifica-

tion for the influence of uncertainty on the dynamic model. This is desired for solv-

ing various engineering problems, e.g., state estimation [69], parameter estimation

[106], process control [4], fault diagnosis [82, 105], and safety verification [66], in

many applications, including chemical reactors [145], biochemical processes [109],

and automated vehicles [6]. Another type of problems that requires enclosures of
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reachable sets is deterministic global optimization for dynamic systems, includ-

ing parameter estimation problems [129] and optimal control problems [81, 64].

In this particular usage, reachable set enclosures provide global bounding infor-

mation for the dynamic model, and they are expected to be convex. Nonconvex

enclosures may cause the global optimization algorithm to terminate at a solution

that is suboptimal.

Established methods for computing enclosures for the reachable set of general

nonlinear dynamic systems can be categorized depending on whether they lin-

early approximate the nonlinear system or not. Compared with enclosing non-

linear systems, analyzing the reachability of linear systems is significantly easier

[108]. Conservative linear and piecewise-linear approximating methods for non-

linear systems are introduced in [8, 7] and [11], respectively. In both techniques,

the linearization error is accounted by adding a bounded input to the approximat-

ing system. Then, various set representations suitable for linear systems can be

applied, such as hyper-rectangles [46], polytopes [39], zonotopes [78, 155], and el-

lipsoids [79]. Moreover, off-the-shelf packages are available for computing such

enclosures, including CORA [5], PHAVer [56], and HSolver [110]. It is worth not-

ing that tight enclosures of reachable sets may require complex set representations

and high computational cost [126].

Without linearization, we may generate enclosures for the reachable set of non-

linear systems directly with the following two types of methods. Taylor series

methods involve constructing Taylor expansions for the nonlinear dynamic sys-

tem and then bound them with different techniques, including interval arithmetic
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[96], McCormick relaxations [111], and Taylor models [84, 112]. Flow* [38], a reach-

ability analysis tool for polynomial continuous systems, was developed based on

this type of methods. Nevertheless, constructing high-order Taylor expansions for

high dimensional problems is computationally expensive [120]. The second type of

methods relies on the theory of differential inequalities [148]. It constructs an aux-

iliary system of ODEs to describe time-varying interval bounds for each state of the

original system. The right-hand side (RHS) of the auxiliary system are generated

from the original RHS functions with various relaxation techniques, e.g., interval

arithmetic [59, 118], affine relaxations [128, 61], embedded linear programs [62],

and embedded general nonlinear programs [31]. Additional bounding informa-

tion about the dynamic system, such as physical bounds and conservation laws,

can be used to further refine these bounds [121, 62, 127]. Furthermore, Scott and

Barton [120] proposed a differential inequality-based framework to generate com-

ponentwise convex and concave relaxations for parametric ODEs, given known

interval bounds of the original system. They proposed to construct the auxiliary

RHS with generalized McCormick relaxations (GMC) [123] of the original RHS

function. Recently, Song and Khan [131] developed a new use case of this frame-

work by replacing GMC with embedded optimization problems, whose objective

functions can be any convex and concave relaxations of the original RHS functions.

Although repeatedly solving optimization problems during numerical integration

may not be efficient, their approach generates tighter convex enclosures for non-

linear ODEs than Scott and Barton’s GMC-based method. However, Scott and Bar-

ton’s framework depends on auxiliary ODEs with discontinuous RHS functions,

which may lead to difficulties in solving it numerically and evaluating sensitivities
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for the generated convex relaxations.

In this work, we propose a new differential inequality-based framework for

computing convex enclosures for the reachable set of nonlinear parametric ODEs.

It constructs an auxiliary system of ODEs to compute componentwise interval

bounds and convex relaxations for the original system simultaneously. Compared

with Scott and Barton’s framework, our new framework eliminates the discrete

jumps by taking into account the dynamics of both interval bounds and convex

relaxations. It also supports Song and Khan’s optimization-based method for con-

structing auxiliary RHS function. Moreover, with a proper choice of auxiliary RHS

functions, we can generate convex enclosures that are tighter than Scott and Bar-

ton’s method and Song and Khan’s method. Last but not least, smooth convex

relaxations that are differentiable with respect to parameters, along with their gra-

dients, can be computed under mild assumptions. This is critical for the applica-

tion of convex enclosures in global optimization algorithms [131].

This article is organized as follows. Section 7.2 introduces some notations and

definitions that are used throughout the article. Problem formulation, along with

the relative background, is provided in Section 7.3. Our new framework is pre-

sented in Section 7.4. Sections 7.5 and 7.6 introduce various novel methods dis-

covered with this framework for constructing auxiliary RHS functions. Lastly,

numerical examples are presented in Section 7.8 to demonstrate the reachable set

enclosures generated with these novel methods.
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7.2 Preliminaries

This section introduces the mathematical background underlying the methods and

results in this article. The following notation conventions are used. The set of

positive real numbers is represented as R>0, and R≥0 stands for the set of non-

negative real numbers. The standard Euclidean norm ‖·‖ is adopted for any vector

space Rn, and ‖·‖∞ represents infinity norm. Vectors are denoted with boldface

lower-case letters (e.g. z). Given vectors z†, z‡ ∈ Rn, inequalities such as z† < z‡

or z† ≤ z‡ are to be interpreted component-wise. z(−i) ∈ Rn−1 stands for the

vector z with the ith component excluded. Throughout this article, the convexity

of a vector-valued function h refers to convexity of all components hi. Dotted

quantities indicate time-derivatives (e.g. ż ≡ ∂z
∂t ). The abbreviation “a.e.” stands

for “almost every” in the Lebesgue sense.

Definition 7.1. For any zL, zU ∈ Rn such that zL ≤ zU, define the interval Z =

[zL, zU] as the nonempty compact connected set of {z ∈ Rn : zL ≤ z ≤ zU}. The set

of all interval subsets of D ⊂ Rn is denoted as ID, and IRn denotes the set of all interval

subsets of Rn.

Definition 7.2. Let S ∈ IRn and h : S→ Rm.

1. An interval function H ≡ [hL,hU] : IRn → IRm is an inclusion function of h

on S if for all Z ⊆ S,

{h(z) : z ∈ Z} ⊆ H(Z) ≡ [hL(Z),hU(Z)].
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2. Let H†, H‡ : IRn → IRm be interval functions. H† is tighter than H‡ on S if

H†(Z) ⊆ H‡(Z), ∀Z ⊆ S.

3. H is inclusion monotonic on S if for all Z†, Z‡ ∈ S such that Z† ⊆ Z‡,

H(Z†) ⊆ H(Z‡).

Definition 7.3. Let Z ∈ IRn and h : Z → Rm.

1. hcv : Z → Rm is a convex relaxation of h on Z if hcv(z) ≤ h(z) for all z ∈ Z

and hcv is convex on Z.

2. hcc : Z → Rm is a concave relaxation of h on Z if hcc(z) ≥ h(z) for all z ∈ Z

and hcc is concave on Z.

3. The interval function H ≡ [hcv,hcc] is a convex inclusion function of h on Z.

Definition 7.4 (Adapted from [120]). For each i ∈ {1, . . . , n}, define flattening opera-

tors BL
i , BU

i : IRn → IRn such that

1. BL
i ([φ,ψ]) = [φ,ψ′], where ψ′i = φi and ψ′(−i) = ψ(−i).

2. BU
i ([φ,ψ]) = [φ′,ψ], where φ′i = ψi and φ′(−i) = φ(−i).

7.3 Problem Formulation

Consider t0, t f ∈ R with t0 < t f and define I := [t0, t f ]. Let P ⊂ Rnp be an interval,

and D ⊂ Rnx be open. Given a continuous mapping x0 : P → D and a Lipschitz
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continuous function f : I × P× D → Rnx , consider an initial-value problem

ẋ(t,p) = f (t,p,x(t,p)), x(t0,p) = x0(p). (7.1)

Suppose that kx ∈ R>0 is a Lipschitz constant of f (t,p, ·) over D for all (t,p) ∈

I × P. Then, (7.1) is guaranteed to have a unique solution by the Picard-Lindelöf

Theorem as summarized in [60, Theorem 1.1, Chapter II].

State bounds and State relaxations [120], defined below, provide valid enclosures

for the reachable set of (7.1). They are both time-varying lower and upper bounds

for the state variables. While state bounds are independent of parameters, state re-

laxations are convex with respect to parameters componentwise. Moreover, state

relaxations are typically tighter state bounds, so they provide tighter convex enclo-

sures for the reachable set of (7.1) than state bounds. But the computation of state

relaxations usually requires state bounds [120].

Definition 7.5 (State bound, adapted from [120]). Functions xL,xU : I → Rnx are

state bounds of (7.1) if, for each t ∈ I and p ∈ P,

xL(t) ≤ x(t,p) ≤ xU(t).

Let XB ≡ [xL,xU] : I → IRnx denote the corresponding inclusion function of x on

I × P.

Definition 7.6 (State relaxation, adapted from [120]). Functions xcv,xcc : I × P →

Rnx are state relaxations of (7.1) on I × P, if, for every t ∈ I,

1. xcv(t, ·) is convex on P,
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2. xcc(t, ·) is concave on P, and

3. xcv(t,p) ≤ x(t,p) ≤ xcc(t,p) for all p ∈ P.

Let XR ≡ [xcv,xcc] : I × P → Rnx denote the corresponding inclusion function of x on

I × P.

The main objective of this work is to formulate a general framework for con-

structing tight and smooth state relaxations for the nonlinear parametric ODE (7.1).

We achieve this by modifying Scott and Barton’s framework [120] and combining

it with our previous work on constructing state bounds [28]. A unified auxiliary

system of ODEs is proposed to compute state bounds and state relaxations simul-

taneously.

7.3.1 Background

This section introduces some properties of the RHS function in an auxiliary ODE

system that describes enclosures of (7.1).

Definition 7.7 (Bound-preserving dynamics, adapted from [120]). Functions u,o :

I × P×Rnx ×Rnx → Rnx describe bound-preserving dynamics for (7.1) if, for any

p ∈ P, each i ∈ {1, . . . , nx}, a.e. t ∈ I, and any z ∈ Rnx and Z ≡ [zL, zU] ∈ IRnx such

that zL ≤ z ≤ zU, u and o satisfy:

1. If zi = zL
i , then ui(t,p, zL, zU) ≤ fi(t,p, z),

2. If zi = zU
i , then oi(t,p, zL, zU) ≥ fi(t,p, z).

Definition 7.8 (Enclosing dynamics, adapted from [28]). Consider arbitrary contin-

uously differentiable functions ξ†, ξ‡ : I × P → Rn such that ξ†(t,p) ≤ ξ‡(t,p) for all
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(t,p) ∈ I × P. Functions u,o : I × P×Rnx ×Rnx → Rnx describe enclosing dynam-

ics about [ξ†, ξ‡] if the following holds. For a.e. t ∈ I, any p ∈ P, Z ≡ [zL, zU] ∈ IRnx

such that zL ≤ ξ†(t,p) ≤ ξ‡(t,p) ≤ zU,

1. If zL
i = ξ†

i (t,p), then ui(t,p, zL, zU) ≤ ξ̇†
i (t,p),

2. If zU
i = ξ

‡
i (t,p), then oi(t,p, zL, zU) ≥ ξ̇

‡
i (t,p).

u,o describe enclosing dynamics about a single trajectory ξ : I × P → Rn if we let

ξ† ≡ ξ‡ ≡ ξ.

Observe that if u,o describe enclosing dynamics about x, then they also de-

scribe bound-preserving dynamics about (7.1). However, this claim does not hold

vice versa. Thus, the requirements in enclosing dynamics are weaker than those in

bound-preserving dynamics.

Proposition 7.1 (Adapted from [28]). Consider arbitrary continuously differentiable

functions ξ†, ξ‡ : I → Rn such that ξ†(t) ≤ ξ‡(t) for all t ∈ I. Define ξL
0 , ξU

0 ∈ Rn

and continuous functions hL,hU : I ×Rn ×Rn → Rn. Let (ξL, ξU) solve the following

ODE:
ξ̇L(t) = hL(t, ξL(t), ξU(t)), ξL(t0) = ξL

0 ,

ξ̇U(t) = hU(t, ξL(t), ξU(t)), ξU(t0) = ξU
0 .

(7.2)

If the following holds:

1. There exists k ∈ R>0 such that, for any i ∈ {1, . . . , n}, a.e. t ∈ I, and any
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φ†,ψ†,φ‡,ψ‡ ∈ Rn for which φ‡ ≤ φ† ≤ ψ† ≤ ψ‡,

hL
i (t,φ

†,ψ†)− hL
i (t,φ

‡,ψ‡)

≤ k(‖φ† −φ‡‖∞ + ‖ψ† −ψ‡‖∞),

hU
i (t,φ

‡,ψ‡)− hU
i (t,φ

†,ψ†)

≤ k(‖φ† −φ‡‖∞ + ‖ψ† −ψ‡‖∞).

2. hL,hU describe enclosing dynamics about [ξ†, ξ‡],

3. ξL
0 ≤ ξ†(t0) and ξ‡(t0) ≤ ξU

0 ,

then

ξL(t) ≤ ξ†(t) ≤ ξ‡(t) ≤ ξU(t), ∀t ∈ I.

Note that Proposition 7.1 can be extended to enclose a single trajectory ξ : I →

Rn if we let ξ† ≡ ξ‡ ≡ ξ.

Definition 7.9 (Convexity-amplifying dynamics, adapted from [120]). Let S ∈ IRnx .

Functions u,o : I × P ×Rnx ×Rnx → Rnx describe convexity-amplifying dynam-

ics on S if, for any (λ,p†,p‡) ∈ (0, 1)× P× P, each i ∈ {1, . . . , nx}, a.e. t ∈ I, and

φ†,φ‡, φ̄,ψ†,ψ‡, ψ̄ ∈ S such that the following three conditions all hold:

1. φ̄ ≤ λφ† + (1− λ)φ‡,

2. ψ̄ ≥ λψ† + (1− λ)ψ‡, and

3. φ† ≤ ψ†, φ‡ ≤ ψ‡, φ̄ ≤ ψ̄,
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u and o satisfy:

ui(t, p̄, φ̄, ψ̄) ≤ λui(t,p†,φ†,ψ†) + (1− λ)ui(t,p‡,φ‡,ψ‡),

oi(t, p̄, φ̄, ψ̄) ≥ λoi(t,p†,φ†,ψ†) + (1− λ)oi(t,p‡,φ‡,ψ‡),

where p̄ ≡ λp† + (1− λ)p‡.

Definition 7.10 (Convexity-preserving dynamics, adapted from [120]). Let S ∈

IRnx . Functions u,o : I × P × Rnx × Rnx → Rnx describe convexity-preserving

dynamics on S if, for any (λ,p†,p‡) ∈ (0, 1)× P× P, each i ∈ {1, . . . , nx}, a.e. t ∈ I,

and φ†,φ‡, φ̄,ψ†,ψ‡, ψ̄ ∈ S such that the following three conditions all hold:

1. φ̄ ≤ λφ† + (1− λ)φ‡,

2. ψ̄ ≥ λψ† + (1− λ)ψ‡, and

3. φ† ≤ ψ†, φ‡ ≤ ψ‡, φ̄ ≤ ψ̄,

u and o satisfy:

1. If φ̄i = λφ†
i + (1− λ)φ

‡
i , then

ui(t, p̄, φ̄, ψ̄) ≤ λui(t,p†,φ†,ψ†) + (1− λ)ui(t,p‡,φ‡,ψ‡),

2. If ψ̄i = λψ†
i + (1− λ)ψ

‡
i , then

oi(t, p̄, φ̄, ψ̄) ≥ λoi(t,p†,φ†,ψ†) + (1− λ)oi(t,p‡,φ‡,ψ‡),

where p̄ ≡ λp† + (1− λ)p‡.
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Definition 7.11 (Inclusion-amplifying dynamic). Consider functions u†,o†,u‡,o‡ :

I × P× IRnx → Rnx . u‡,o‡ describe inclusion-amplifying dynamic about u†,o† if,

for a.e. t ∈ I, any i ∈ {1, . . . , nx}, p ∈ P, and Ξ†, Ξ‡ ∈ IRnx such that Ξ† ⊆ Ξ‡,

[u†
i (t,p, Ξ†), o†

i (t,p, Ξ†)] ⊆ [u‡
i (t,p, Ξ‡), o‡

i (t,p, Ξ‡)].

Definition 7.12 (Inclusion-preserving dynamic). Consider functions u†,o†,u‡,o‡ :

I× P×Rnx ×Rnx → Rnx . u‡,o‡ describe inclusion-preserving dynamic aboutu†,o†

if, for a.e. t ∈ I, any i ∈ {1, . . . , nx}, p ∈ P, and Ξ† ≡ [ξL†, ξU†], Ξ‡ ≡ [ξL‡, ξU‡] ∈

IRnx such that Ξ† ⊆ Ξ‡,

1. If ξL†
i = ξ

L‡
i , then u‡

i (t,p, Ξ‡) ≤ u†
i (t,p, Ξ†).

2. If ξU†
i = ξ

U‡
i , then o‡

i (t,p, Ξ‡) ≥ o†
i (t,p, Ξ†).

Lemma 7.1. Consider functions u†,o†, ū†, ō†,u‡,o‡, ū‡, ō‡ : I × P × IRnx → Rnx

such that, for each i ∈ {1, . . . , n}, any (t,p) ∈ I × P and Z ∈ IRnx ,

ū†
i (t,p, Z) ≡ u†

i (t,p, BL
i (Z)), ō†

i (t,p, Z) ≡ o†
i (t,p, BU

i (Z)),

ū‡
i (t,p, Z) ≡ u‡

i (t,p, BL
i (Z)), ō‡

i (t,p, Z) ≡ o‡
i (t,p, BU

i (Z)).

If u‡,o‡ describe inclusion-amplifying dynamics about u†,o†, then ū‡, ō‡ describe

inclusion-preserving dynamics about ū†, ō†.

Proof. Consider a.e. t ∈ I, each i ∈ {1, . . . , nx}, any p ∈ P and Ξ† ≡ [ξL†, ξU†], Ξ‡ ≡

[ξL‡, ξU‡] ∈ IRnx such that Ξ† ⊆ Ξ‡. According to Definition 7.12, it suffices to

show that,

1. If ξL†
i = ξ

L‡
i , then ū‡

i (t,p, Ξ‡) ≤ ū†
i (t,p, Ξ†).
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2. If ξU†
i = ξ

U‡
i , then ō‡

i (t,p, Ξ‡) ≥ ō†
i (t,p, Ξ†).

It will be shown that the first condition holds; showing the second is analogous.

If ξL†
i = ξ

L‡
i , then the flattening operation ensures that BL

i (Ξ
†) ⊆ BL

i (Ξ
‡). Since

u‡,u‡ describe inclusion-amplifying dynamics about u†,u†,

u‡
i (t,p, BL

i (Ξ
‡)) ≤ u†

i (t,p, BL
i (Ξ

†)),

which is equivalent to

ū‡
i (t,p, Ξ‡) ≤ ū†

i (t,p, Ξ†).

Therefore, the first condition is verified.

7.3.2 Established methods

This subsection briefly reviews Scott and Barton’s framework (Scott-Barton frame-

work hereafter) for generating state relaxations of (7.1).

Assumption 7.1. Assume that xL
0 ,xU

0 ∈ Rnx and xcv
0 ,xcc

0 : P→ Rnx satisfy the follow-

ing:

1) xL
0 ≤ x0(p) ≤ xU

0 for all p ∈ P,

2) xcv
0 and xcc

0 are convex and concave relaxations of x0, respectively, on P,

3) [xcv
0 (p),xcc

0 (p)] ⊆ [xL
0 ,xU

0 ] for all p ∈ P.

Note that the last condition in Assumption 7.1 may be enforced by setting

xcv
0 (p)← max{xL

0 ,xcv
0 (p)} and xcc

0 (p)← min{xU
0 ,xcc

0 (p)}.

268



Ph.D. Thesis – H. Cao McMaster University – Chemical Engineering

Given continuously differentiable state bounds XB of (7.1) on I × P and initial

conditions xcv
0 ,xcc

0 satisfying Assumption 7.1, the Scott-Barton framework [120]

provides the following result. Ifu,o : I× P×Rnx ×Rnx → Rnx describe bounding-

preserving dynamics about (7.1) and convexity-preserving dynamics, then (xcv,xcc)

that solves the following auxiliary system of ODEs, provides state relaxations of

(7.1) on I × P: for each i ∈ {1, . . . , nx},

ẋcv
i (t,p) =



ui(t,p,xcv(t,p),xcc(t,p))

if xcv
i (t,p) > xL

i (t),

max
{

ẋL
i (t), ui(t,p,xcv(t,p),xcc(t,p))

}
if xcv

i (t,p) ≤ xL
i (t),

xcv
i (t0,p) = xcv

0,i(p), (7.3)

ẋcc
i (t,p) =



oi(t,p,xcv(t,p),xcc(t,p))

if xcc
i (t,p) < xU

i (t),

min
{

ẋU
i (t), oi(t,p,xcv(t,p),xcc(t,p))

}
if xcc

i (t,p) ≥ xU
i (t),

xcc
i (t0,p) = xcc

0,i(p).

Scott and Barton also proposed that state bounds XB of (7.1) can be computed

with Harrison’s method [59]. Functions xcv
0 ,xcc

0 satisfying Assumption 7.1 can be

generated from x0 with GMC. Functions u,o that describe bounding-preserving

dynamics about (7.1) and convexity-preserving dynamics can be constructed by

applying the flattening operation in Definition 7.4 to GMC of f .

An optimization-based method was developed by Song and Khan in [131] to
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compute tighter state relaxations using the Scott-Barton framework. Consider

functions û, ô : I × P × Rnx → Rnx such that û(t, ·, ·) and ô(t, ·, ·) are convex

and concave relaxations of f (t, ·, ·), respectively, on P× XB(t) for a.e. t ∈ I. For

each i ∈ {1, . . . , nx}, let

ui(t,p,φ,ψ) := min
z∈[φ,ψ],

zi=φi

ûi(t,p, z),

oi(t,p,φ,ψ) := max
z∈[φ,ψ],

zi=ψi

ôi(t,p, z).
(7.4)

Song an Khan validated that u,o in (7.4) also describe bounding-preserving dy-

namics about (7.1) and convexity-preserving dynamics. Thus, u,o in (7.4) can be

substituted into (7.3) to compute state relaxations for (7.1).

The Scott-Barton framework described in (7.3) contains discrete jumps in its

RHS because of those if-statements. To solve (7.3) numerically, an advanced ODE

solver with event detection feature, e.g., CVODES, is required to handle those dis-

crete jumps. This prohibits the usage of many ODE solvers and increases the diffi-

culty of implementation. Moreover, the discontinuities in ODE RHS create obsta-

cles for evaluating gradients or subgradients of state relaxations, which is another

limitation of the Scott-Barton framework. To address these problems, a new differ-

ential inequality-based framework is proposed in the next section.

7.4 New Framework for State Relaxation

Unlike the Scott-Barton framework that depends on known state bounds of the

original system, our new framework computes state bounds and state relaxations
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simultaneously using a coupled auxiliary system of ODEs.

Assumption 7.2. Assume that functions f L,fU,f cv,f cc : I × P×Rnx ×Rnx → Rnx

satisfy the following:

1) f L,fU,f cv,f cc are continuous,

2) f L(t,p, ·, ·),fU(t,p, ·, ·) and f cv(t,p, ·, ·),f cc(t,p, ·, ·) are Lipschitz continuous

on Rnx ×Rnx , uniformly in (t,p) ∈ I × P,

3) Both f L,fU and f cv,f cc describe enclosing dynamics about x, and

4) f cv,f cc describe convexity-preserving dynamics on Rnx .

Assumption 7.3. Assume that f L,fU describe inclusion-preserving dynamics about f cv,f cc.

Under Assumptions 7.2 and 7.3, consider the following auxiliary initial-value

problem in parametric ODEs: for i ∈ {1, . . . , nx},

ẋL
i (t) = min

p∈P
f L
i (t,p,xL(t),xU(t)), xL

i (t0) = xL
0,i,

ẋU
i (t) = max

p∈P
f U
i (t,p,xL(t),xU(t)), xU

i (t0) = xU
0,i,

(7.5a)

ẋcv
i (t,p) = f cv

i (t,p,xcv(t,p),xcc(t,p)), xcv
i (t0,p) = xcv

0,i(p),

ẋcc
i (t,p) = f cc

i (t,p,xcv(t,p),xcc(t,p)), xcc
i (t0,p) = xcc

0,i(p).
(7.5b)

Theorem 7.1. Under Assumptions 7.2 and 7.3, (7.5) has one unique solution.

Proof. The existence and uniqueness of a solution of (7.5a) have been verified in

[28, Theorem 2].
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Conditions 1) and 2) in Assumption 7.2 ensure the existence and uniqueness

of a solution of (7.5b) according to the Picard-Lindelöf Theorem as summarized in

[60, Theorem 1.1].

Theorem 7.2. Under Assumptions 7.1, 7.2, and 7.3, let (xL,xU,xcv,xcc) be a solution

of (7.5) on I × P. Then, the following holds:

1) xL,xU are state bounds of x on I × P,

2) xcv(t,p) ≤ x(t,p) ≤ xcc(t,p) for all (t,p) ∈ I × P,

3) [xcv(t,p),xcc(t,p)] ⊆ [xL(t),xU(t)] for all (t,p) ∈ I × P,

Proof. Theorem 7.1 ensures that such a unique solution exists. Result 1) was readily

verified in [28, Theorem 3].

Consider any p̄ ∈ P. Result 2) is verified by showing that all three requirements

in Proposition 7.1 are satisfied with x(·, p̄) in place of ξ†, ξ‡ and xcv(·, p̄),xcc(·, p̄)

in place of ξL, ξU. Conditions 2) and 3) in Assumption 7.2 ensures the first and

second requirements, respectively. The third requirement is guaranteed by Condi-

tion 2) in Assumption 7.1.

Similarly, Result 3) is verified by showing that all three requirements in Propo-

sition 7.1 are satisfied with xcv(·, p̄),xcc(·, p̄) in place of ξ†, ξ‡ and xL(·, p̄),xU(·, p̄)

in place of ξL, ξU. Condition 2) in Assumption 7.2 ensures the first requirement,

and Condition 3) in Assumption 7.1 ensures the third requirement. Next, we verify

the enclosing dynamics in the second requirement. It suffices to show that, for a.e.

t ∈ I, any [ξL, ξU] ∈ IRnx such that [xcv(t, p̄),xcc(t, p̄)] ⊆ [ξL, ξU],

1. If ξL
i = xcv

i (t, p̄), then minp∈P f L
i (t,p, ξL, ξU) ≤ ẋcv

i (t, p̄).
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2. If ξU
i = xcc

i (t, p̄), then maxp∈P f U
i (t,p, ξL, ξU) ≥ ẋcc

i (t, p̄).

It will be shown that the first condition holds; verifying the second is analogous.

According to Assumption 7.3, if ξL
i = xcv

i (t, p̄), then

f L
i (t, p̄, ξL, ξU) ≤ f cv

i (t, p̄,xcv(t, p̄),xcc(t, p̄)).

It follows that

min
p∈P

f L
i (t,p, ξL, ξU) ≤ f L

i (t, p̄, ξL, ξU)

≤ f cv
i (t, p̄,xcv(t, p̄),xcc(t, p̄))

= ẋcv
i (t, p̄),

which ensures the first condition. Thus, all three requirements in Proposition 7.1

are satisfied.

Theorem 7.2 shows that xL(t) ≤ xU(t) and xcv(t,p) ≤ xcc(t,p) for all (t, p) ∈

I × P, and they form intervals functions XB and XR according to Definitions 7.5

and 7.6. This result will be used implicitly in the remainder of this article.

Theorem 7.3. Under Assumptions 7.1, 7.2, and 7.3, let (xL,xU,xcv,xcc) be a solution

of (7.5) on I × P. Then, xcv(t, ·) and xcc(t, ·) are, respectively, convex and concave on P

for every t ∈ I.

Proof. We proceed very similarly to the proof of [120, Theorem 3]. Theorem 7.2

shows x(t,p) ∈ XR(t,p) ⊆ XB(t) for each (t,p) ∈ I× P. Choose any fixed p†,p‡ ∈
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P and λ ∈ (0, 1). For all t ∈ I, define

p̄ := λp† + (1− λ)p‡,

x̄cv(t) := λxcv(t,p†) + (1− λ)xcv(t,p‡),

x̄cc(t) := λxcc(t,p†) + (1− λ)xcc(t,p‡).

To achieve a contradiction, assume that there exists t̂ ∈ I such that either xcv
j (t̂, p̄) >

x̄cv
j (t̂) or xcc

j (t̂, p̄) < x̄cc
j (t̂) for at least one index j ∈ {1, . . . , nx}. Define δ : I → R2nx

by

δ(t) := (xcv(t, p̄)− x̄cv(t), x̄cc(t)− xcc(t, p̄)), ∀t ∈ I.

Then, there is δj(t̂) > 0 or δj+nx(t̂) < 0 for at least one j. Let kr ∈ R>0 denote

the Lipschitz constant in Condition 2) in Assumption 7.2. According to Lemma 3

in [120], there exists j ∈ {1, . . . , nx}, t1, t2 ∈ I with t1 < t2, and a continuously

differentiable function ρ : I → R satisfying

0 < ρ(t) and ρ̇(t) > (2kr)ρ(t), ∀t ∈ I,
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and the inequalities

xcv(t, p̄) ≤ x̄cv(t) + 1ρ(t), ∀t ∈ [t1, t2), (7.6a)

xcc(t, p̄) ≥ x̄cc(t)− 1ρ(t), ∀t ∈ [t1, t2), (7.6b)

x̄cv
j (t) < xcv

j (t, p̄) < x̄cv
j (t) + ρ(t), ∀t ∈ (t1, t2), (7.6c)

xcv
j (t2, p̄) = x̄cv

j (t2) + ρ(t2), (7.6d)

xcv
j (t1, p̄) = x̄cv

j (t1). (7.6e)

A violation of concavity of xcc
j (t, ·) on [t1, t2] for some j can be shown analogously

by altering the above inequalities. Here, we assume that (7.6) holds.

Define xcv†(t) := min(xcv(t, p̄), x̄cv(t)) and xcc†(t) := max(xcc(t, p̄), x̄cc(t))

for all t ∈ [t1, t2]. Since xcv(t, p̄) ≥ xcv†(t) for all t ∈ [t1, t2], Condition 2) in

Assumption 7.2 provides

ẋcv
i (t, p̄)

= f cv
j (t, p̄,xcv(t, p̄),xcc(t, p̄))

≤ f cv
j (t, p̄,xcv†(t),xcc†(t))

+ kr(‖xcv(t, p̄)− xcv†(t)‖+ ‖xcc(t, p̄)− xcc†(t)‖),

for a.e. t ∈ [t1, t2]. By (7.6a) and (7.6b), it follows that, for a.e. t ∈ [t1, t2],

ẋcv
i (t, p̄) ≤ f cv

j (t, p̄,xcv†(t),xcc†(t)) + 2krρ(t)

< f cv
j (t, p̄,xcv†(t),xcc†(t)) + ρ̇(t).
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Next, following Definition 7.10, we use the assumption that f cv,f cc describe

convexity-preserving dynamics to show that, for a.e. t ∈ [t1, t2],

ẋcv
j (t, p̄)

≤ f cv
j (t, p̄,xcv†(t),xcc†(t)) + ρ̇(t)

≤ λ f cv
j (t,p†,xcv(t,p†),xcc(t,p†))

+ (1− λ) f cv
j (t,p‡,xcv(t,p‡),xcc(t,p‡)) + ρ̇(t). (7.7)

First, it is assured that, for a.e. t ∈ [t1, t2],

xcv(t,p†) ≤ xcc(t,p†),

xcv(t,p‡) ≤ xcc(t,p‡),

xcv†(t) ≤ xcv(t, p̄) ≤ xcc(t, p̄) ≤ xcc†(t).

Moreover, it is trivial to see that xcv(t, q),xcc(t, q) ∈ XB(t), ∀q ∈ {p†,p‡, p̄}, and

thus x̄cv(t), x̄cc(t),xcv†(t),xcc†(t) ∈ XB(t). Finally,

xcv†(t) ≤ x̄cv(t) = λxcv(t,p†) + (1− λ)xcv(t,p‡),

xcc†(t) ≥ x̄cc(t) = λxcc(t,p†) + (1− λ)xcc(t,p‡),

and (7.6c) shows that, for a.e. t ∈ [t1, t2],

xcv†
j (t) = x̄cv

j (t) = λxcv
j (t,p†) + (1− λ)xcv

j (t,p‡).
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Thus, (7.7) follows from applying Definition 7.10 with

φ† := xcv(t,p†), φ‡ := xcv(t,p‡), φ̄ := xcv†(t),

ψ† := xcc(t,p†), ψ‡ := xcc(t,p‡), ψ̄ := xcc†(t).

Observe that (7.7) is equivalent to

ẋcv
j (t, p̄) ≤ λẋcv

j (t,p†) + (1− λ)ẋcv
j (t,p‡) + ρ̇(t). (7.8)

According to Theorem 1 in [120], (7.8) implies that ẋcv
j (t, p̄)− ˙̄xcv

j (t)− ρ̇(t) is non-

increasing on [t1, t2]. So,

xcv
j (t2, p̄)− x̄cv

j (t2)− ρ(t2) ≤ xcv
j (t1, p̄)− x̄cv

j (t1)− ρ(t1).

(7.6d) and (7.6e) suggest that 0 ≥ ρ(t1), which is a contradiction. Hence,

xcv(t, λp† + (1− λ)p‡) = xcv(t, p̄)

≤ x̄cv(t)

= λxcv(t,p†) + (1− λ)xcv(t,p‡),

xcc(t, λp† + (1− λ)p‡) = xcc(t, p̄)

≥ x̄cc(t)

= λxcc(t,p†) + (1− λ)xcc(t,p‡),

for all t ∈ I. Since p†,p‡ ∈ P and λ ∈ (0, 1) was chosen arbitrarily, the above

inequalities hold for all p†,p‡ ∈ P and λ ∈ (0, 1).
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Combining Theorems 7.2 and 7.3, it can be concluded that the solution of (7.5)

provides valid state bounds and state relaxations for (7.1) on I × P. Moreover, the

state relaxations are tighter than the state bounds.

Next, we show that if f cv,f cc are smooth, then the generated state relaxations

from (7.5b) are smooth.

Assumption 7.4. f cv(t, ·, ·, ·),f cc(t, ·, ·, ·) are differentiable on P×Rnx ×Rnx for every

t ∈ I.

Theorem 7.4. Under Assumptions 7.1, 7.2, 7.3, and 7.4, let (xL,xU,xcv,xcc) be a solu-

tion of (7.5) on I × P. Then, xcv and xcc are continuously differentiable on I × P.

Proof. The claimed result follows from [60, Chapter V, Theorem 3.1].

Sections 7.5 and 7.6 introduce methods for constructing the RHS of state bound

system (7.5a) and the RHS of the state relaxation system (7.5b), so that Assump-

tions 7.2 and 7.3 are satisfied.

7.5 Constructing State Bound RHS

Assumption 7.5. Assume that interval function F̆B ≡ [f̆ L, f̆U] : I × P× IRnx → Rnx

satisfies the following:

1) f̆ L, f̆U are continuous,

2) f̆ L(t,p, ·, ·), f̆U(t,p, ·, ·) are Lipschitz continuous on Rnx ×Rnx , uniformly in (t,p),

3) ΞB 7→ F̆B(t,p, ΞB) is an inclusion function of f (t,p, ·) on IRnx for a.e. t ∈ I and

any p ∈ P.
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Under Assumption 7.5, consider f L,fU such that, for each i ∈ {1, . . . , nx},

f L
i (t,p, ξL, ξU) := f̆ L

i (t,p, BL
i ([ξ

L, ξU])),

f U
i (t,p, ξL, ξU) := f̆ U

i (t,p, BU
i ([ξ

L, ξU])).
(7.9)

It was verified in [28] that f L,fU in (7.9) satisfy Conditions 1)-3) in Assumption 7.2.

Four approaches for constructing f̆ L, f̆U have been developed in [28]. A brief

summary is provided as follows.

The first approach constructs f̆ L, f̆U using GMC and differentiable McCormick

relaxations (DMC) [74, 72, 73], as well as piecewise-affine (PA) approximations and

affine approximations of twice-continuously differentiable McCormick relaxations

C 2-DMC [74]. These methods are listed in Category II of Table 7.1. Note that tech-

niques for generating PA approximations and affine approximations of nonlinear

convex relaxations have been introduced in [28].

In the second approach, we consider f̂ L, f̂U : I × P × Rnx → Rnx such that

f̂ L(t, ·, ·), f̂U(t, ·, ·) are convex and concave relaxations of f (t, ·, ·), respectively, on

P × XB(t) for each t ∈ I. They can be generated using GMC, DMC, αBB relax-

ations, as well as PA approximations and affine approximations of C 2-DMC and

αBB relaxations; see Category I of Table 7.1. Then, we let

f̆ L
i (t,p, ΞB) := min

p∈P,z∈ΞB
f̂ L
i (t,p, z),

f̆ U
i (t,p, ΞB) := max

p∈P,z∈ΞB
f̂ U
i (t,p, z).

(7.10)

In the third approach, we consider f̃ L, f̃U : I × IRnp ×Rnx → Rnx such that

f̃ L(t, P, ·), f̃U(t, P, ·) are convex and concave relaxations of f (t,p, ·), respectively,
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on XB(t) for each (t,p) ∈ I × P. They can be generated using GMC, DMC, as well

as PA approximations and affine approximations of C 2-DMC; see Category III of

Table 7.1. Then, we let

f̆ L
i (t,p, ΞB) := min

z∈ΞB
f̃ L
i (t, P, z),

f̆ U
i (t,p, ΞB) := max

z∈ΞB
f̃ U
i (t, P, z).

(7.11)

In the last approach, we consider f̄ L, f̄U : I × IRnp × IRnx → Rnx such that

(P̂, Ξ) 7→ [f̄ L(t, P̂, Ξ), f̄U(t, P̂, Ξ)] is an inclusion function of f (t, ·, ·) on P× X(t)

for each t ∈ I. They can be generated using interval extension methods, including

NIE, GMC, and DMC; see Category IV of Table 7.1. Then, we let

f̆ L
i (t,p, ΞB) := f̄ L

i (t, P, ΞB),

f̆ U
i (t,p, ΞB) := f̄ U

i (t, P, ΞB).
(7.12)

7.6 Constructing State Relaxation RHS

This section introduces two strategies for constructing f cv,f cc in (7.5b), given that

state bound XB is available on I. They both involve applying the flattening opera-

tors to inclusion functions of f (t, ·, ·).

Assumption 7.6. Assume that interval function F̆R ≡ [f̆ cv, f̆ cc] : I ×Rnp × IRnx ×

IRnx → IRnx satisfies the following conditions: for any ΞB ∈ IRnx ,

1) f̆ cv, f̆ cc are continuous,
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Table 7.1: Summary of available methods

Category Domain Relaxation method Code Category
score

Relax.
score

Approx.
score

I I ×Rnp ×Rnx

Nonlinear GMC px-N-G 1 2 0
Nonlinear DMC px-N-D 1 3 0
PA C 2-DMC px-P-D 1 3 1
Affine C 2-DMC px-A-D 1 3 2
αBB px-N-α 1 1 + α 0
PA with αBB px-P-α 1 1 + α 1
Affine with αBB px-A-α 1 1 + α 2

II I ×Rnp × IRnx

Nonlinear GMC p-N-G 2 2 0
Nonlinear DMC p-N-D 2 3 0
PA C 2-DMC p-P-D 2 3 1
Affine C 2-DMC p-A-D 2 3 2

III I × IRnp ×Rnx

Nonlinear GMC x-N-G 2 2 0
Nonlinear DMC x-N-D 2 3 0
PA C 2-DMC x-P-D 2 3 1
Affine C 2-DMC x-A-D 2 3 2

IV I × IRnp × IRnx

Nonlinear GMC #-N-G 3 2 0
Nonlinear DMC #-N-D 3 3 0
NIE #-N-I 3 4 0

2) f̆ cv(t,p, ·, ·, ΞB), f̆ cc(t,p, ·, ·, ΞB) are locally Lipschitz continuous on ΞB × ΞB ,

uniformly in (t,p),

3) ΞR 7→ F̆R(t,p, ΞR, ΞB) is an inclusion function of f (t,p, ·) on ΞB for a.e. t ∈ I

and any p ∈ P,

4) (t,p, ξcv, ξcc) 7→ F̆R(t,p, [ξcv, ξcc], ΞB) describe convexity-amplifying dynamics

on ΞB.

Assumption 7.7. Assume that f̆U, f̆ L describe inclusion-amplifying dynamics about

f̆ cv, f̆ cc.
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Consider f cv,f cc such that, for each i ∈ {1, . . . , nx},

f cv
i (t,p, ξcv, ξcc) := f̆ cv

i (t,p, BL
i ([ξ

cv, ξcc]), XB(t)),

f cc
i (t,p, ξcv, ξcc) := f̆ cc

i (t,p, BU
i ([ξ

cv, ξcc]), XB(t)).
(7.13)

Since BL
i , BU

i are linear operations, it has been readily verified that f cv,f cc in

(7.13) satisfy continuous and Lipschitz conditions in Assumption 7.2 under As-

sumption 7.6. Moreover, Lemma 7.1 ensures that, under Assumption 7.7, f L,fU in

(7.13) describe inclusion-preserving dynamics about f cv,f cc as in Assumption 7.3.

Next, we verify that f cv,f cc in (7.13) satisfy the enclosing and convexity properties

desired in Assumptions 7.2.

Lemma 7.2. Under Assumption 7.6, f cv,f cc defined in (7.13) describe enclosing dynam-

ics about x.

Proof. According to Definition 7.8, it suffices to show that, for a.e. t ∈ I, any p̄ ∈ P

and ΞR ≡ [ξcv, ξcc] ∈ IRnx such that x(t, p̄) ⊆ ΞR ⊆ XB(t),

1. If ξcv
i = ẋi(t, p̄), then f cv

i (t, p̄, ΞR) ≤ ẋi(t, p̄).

2. If ξcc
i = ẋi(t, p̄), then f cc

i (t, p̄, ΞR) ≥ ẋi(t, p̄).

It will be shown that the first condition holds; verifying the second is analogous.

If ξcv
i = ẋi(t, p̄), the flattening operation ensures that x(t, p̄) ∈ BL

i (Ξ
R). The

third condition in Assumption 7.6 ensures that

f̆ cv
i (t, p̄, BL

i (Ξ
R), XB(t)) ≤ fi(t, p̄,x(t, p̄)),
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which is equivalent to

f cv
i (t, p̄, ΞR) ≤ ẋi(t, p̄).

Thus, the first condition is verified.

Lemma 7.3. Under Assumption 7.6, f cv,f cc defined in (7.13) describe convexity-preserving

dynamics on XB(t) for every t ∈ I.

Proof. Condition 4) in Assumption 7.6 shows that, for every t ∈ I, (t,p, ξL, ξU) 7→

F̆R(t,p, [ξL, ξU], XB(t)) describes convexity-amplifying dynamics on XB(t). After

flattening operation, f cv,f cc defined in (7.13) describe convexity-preserving dy-

namics according to [120, Lemma 11].

Assumption 7.8. f̆ cv(t, ·, ·, ·, ΞB), f̆ cc(t, ·, ·, ·, ΞB) are differentiable on P×ΞB×ΞB for

all t ∈ I, ΞB ∈ IRnx .

Lemma 7.4. Under Assumption 7.8, f cv,f cc defined in (7.13) satisfy Assumption 7.4.

Proof. Since BL
i , BU

i are linear operators, the claimed result holds.

In the remainder of this subsection, we introduce two strategies to construct

f̆ cv, f̆ cc that satisfy Assumption 7.6. Assumption 7.7 will be discussed in Sec-

tion 7.7.

7.6.1 Generalized convex relaxations

The first strategy is adapted from Scott and Barton [120] in which f̆ cv, f̆ cc are con-

structed with GMC. It was validated in [120, Section 4.2] that f̆ cv, f̆ cc satisfy As-

sumption 7.6. Similar arguments hold for DMC. Moreover, the PA approximations
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and affine approximations of C 2-DMC are also valid options for generating f̆ cv, f̆ cc

and they were validated in [28]. Theses methods are summarized in Category II in

Table 7.1.

7.6.2 Optimization-based method

The second strategy is adapted from [131] where convex optimization problems

are embedded in the RHS of the auxiliary ODEs.

Assumption 7.9. Assume that interval function F̂R ≡ [f̂ cv, f̂ cc] : I × P × Rnx ×

IRnx → IRnx satisfies the following conditions: for any ΞB ∈ IRnx ,

1) f̂ cv, f̂ cc are continuous,

2) f̂ cv(t,p, ·, ΞB), f̂ cc(t,p, ·, ΞB) are Lipschitz continuous on ΞB, uniformly in (t,p),

3) f̂ cv(t, ·, ·, ΞB), f̂ cc(t, ·, ·, ΞB) are convex and concave relaxations of f (t, ·, ·), respec-

tively, on P× ΞB for a.e. t ∈ I.

Under Assumption 7.9, consider F̆R such that, for each i ∈ {1, . . . , nx},

f̆ cv
i (t,p, ΞR, ΞB) := min

z∈ΞR
f̂ cv
i (t,p, z, ΞB),

f̆ cc
i (t,p, ΞR, ΞB) := max

z∈ΞR
f̂ cc
i (t,p, z, ΞB).

(7.14)

It was verified in [131] that F̆R in (7.14) satisfy Conditions 1) and 2) in Assump-

tion 7.6. We will show that F̆R also satisfy Conditions 3) and 4) in Assumption 7.6.

Lemma 7.5. Under Assumption 7.9, for a.e. t ∈ I, any p ∈ P, and any ΞB ∈ IRnx ,

ΞR 7→ F̆R(t,p, ΞR, ΞB) is an inclusion function of f (t,p, ·) on ΞB.
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Proof. According to Definition 7.2, it suffices to show that, for each i ∈ {1, . . . , nx},

any p ∈ P, Z ⊆ ΞB, and z̄ ∈ Z,

f̆ cv
i (t,p, Z, ΞB) ≤ fi(t,p, z̄),

f̆ cc
i (t,p, Z, ΞB) ≥ fi(t,p, z̄).

It will be shown that the first inequality holds; showing the second is analogous.

Condition 3) in Assumption 7.9 shows that

f̂ cv
i (t,p, z̄, ΞB) ≤ fi(t,p, z̄).

It follows that

f̆ cv
i (t,p, Z, ΞB) = min

z∈Z
f̂ cv
i (t,p, z, ΞB)

≤ f̂ cv
i (t,p, z̄, ΞB)

≤ fi(t,p, z̄),

which ensures the first inequality.

Lemma 7.6. Under Assumption 7.9, for each ΞB ∈ IR, (t,p, ξL, ξU) 7→ f̆ cv(t,p, [ξL, ξU], ΞB)

and (t,p, ξL, ξU) 7→ f̆ cc(t,p, [ξL, ξU], ΞB) defined in (7.14) describe convexity-amplifying

dynamics on ΞB.

Proof. Consider any (λ,p†,p‡) ∈ (0, 1) × P × P, each i ∈ {1, . . . , nx}, a.e. t ∈ I,

and any φ†,φ‡, φ̄,ψ†,ψ‡, ψ̄ ∈ ΞB such that the following three conditions all hold:

1. φ̄ ≤ λφ† + (1− λ)φ‡,
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2. ψ̄ ≥ λψ† + (1− λ)ψ‡, and

3. φ† ≤ ψ†, φ‡ ≤ ψ‡, φ̄ ≤ ψ̄.

It suffices to show that f̆ cv and f̆ cc satisfy:

f̆ cv
i (t, p̄, [φ̄, ψ̄], ΞB)

≤ λ f̆ cv
i (t,p†, [φ†,ψ†], ΞB) + (1− λ) f̆ cv

i (t,p‡, [φ‡,ψ‡], ΞB),

f̆ cc
i (t, p̄, [φ̄, ψ̄], ΞB)

≥ λ f̆ cc
i (t,p†, [φ†,ψ†], ΞB) + (1− λ) f̆ cc

i (t,p‡, [φ‡,ψ‡], ΞB),

where p̄ ≡ λp† + (1 − λ)p‡. It will be verified that the first inequality holds;

showing the second is analogous.

Since φ† ≤ ψ†, φ‡ ≤ ψ‡, and φ̄ ≤ ψ̄, the first equation in (7.14) shows that, for

all (q,φ,ψ) ∈ {(p†,φ†,ψ†), (p‡,φ‡,ψ‡), (p̄, φ̄, ψ̄)},

f̆ cv
i (t, q, [φ,ψ], ΞB) = min

z∈[φ,ψ]
f̂ cv
i (t, q, z, ΞB). (7.15)

Let z†,∗ and z‡,∗ solve the above optimization problem at q ≡ p† and q ≡ p‡,

respectively. Define z̄∗ := λz†,∗ + (1− λ)z‡,∗. Because f̂ cv
i (t, ·, ·, ΞB) is convex on

P× ΞB,

f̂ cv
i (t, p̄, z̄∗, ΞB)

≤ λ f̂ cv
i (t,p†, z†,∗, ΞB) + (1− λ) f̂ cv

i (t,p‡, z‡,∗, ΞB).
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Thus,

f̆ cv
i (t, p̄, [φ̄, ψ̄], ΞB)

= min
z∈[φ̄,ψ̄]

f̂ cv
i (t, p̄, z, ΞB)

≤ f̂ cv
i (t, p̄, z̄∗, ΞB)

≤ λ f̂ cv
i (t,p†, z†,∗, ΞB) + (1− λ) f̂ cv

i (t,p‡, z‡,∗, ΞB)

= λ min
z∈[φ†,ψ†]

f̂ cv
i (t,p†, z, ΞB)

+ (1− λ) min
z∈[φ‡,ψ‡]

f̂ cv
i (t,p‡, z, ΞB)

= λ f̆ cv
i (t,p†, [φ†,ψ†], ΞB)

+ (1− λ) f̆ cv
i (t,p‡, [φ‡,ψ‡], ΞB),

which verifies the first inequality.

7.7 Ensuring Inclusion-amplifying Dynamics

In this section, we address Assumption 7.7 by discussing three different scenarios

of F̆B and F̆R.

7.7.1 Tighter relaxations

The first scenario assumes that F̆R is tighter than F̆B and is inclusion monotonic.

Assumption 7.10. Assume the following holds: for a.e. t ∈ I, any p ∈ P and ΞB ∈ IRnx .

1. Ξ 7→ F̆R(t,p, Ξ, ΞB) is inclusion monotonic on ΞB.
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2. Ξ 7→ F̆R(t,p, Ξ, ΞB) is tighter than Ξ 7→ F̆B(t,p, Ξ) on ΞB.

According to Definitions 7.2 and 7.11, it was readily verified that, if interval

functions F̆R and F̆B satisfy Assumption 7.10, then they also satisfy the inclusion-

amplifying dynamics in Assumption 7.7.

If F̆R is constructed with the strategy in Section 7.6.1, then F̆R being tighter than

F̆B is straightforward according to Definition 7.2. We elaborate more on the second

strategy in Section 7.6.2 where F̆R is generated with optimizing convex relaxations.

We show that, if F̆B is an inclusion function of f̂ cv and f̂ cc, then F̆R is tighter than

F̆B.

Lemma 7.7. Assume that for a.e. t ∈ I, any p ∈ P, and any ΞB ∈ IRnx , Ξ 7→

F̆B(t,p, Ξ) is an inclusion function of f̂ cv(t,p, ·, ΞB) and f̂ cc(t,p, ·, ΞB) on ΞB. Then,

Ξ 7→ F̆R(t,p, Ξ, ΞB) is tighter than Ξ 7→ F̆B(t,p, Ξ) in (7.14) on ΞB.

Proof. Consider for a.e. t ∈ I, each i ∈ {1, . . . , nx}, any p ∈ P and any Z ⊆ ΞB.

According to Definition 7.2, it suffices to show that,

f̆ L
i (t,p, Z) ≤ f̆ cv

i (t,p, Z, ΞB),

f̆ U
i (t,p, Z) ≥ f̆ cc

i (t,p, Z, ΞB).

It will be shown that the first inequality holds; showing the second is analogous.

Ξ 7→ F̆B(t,p, Ξ) being an inclusion function of f̂ cv(t,p, ·, ΞB) ensures that, for

any z̄ ∈ Z,

f̆ L
i (t,p, Z) ≤ f̂ cv

i (t,p, z̄, ΞB).
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It follows that

f̆ L
i (t,p, Z) ≤ min

z∈Z
f̂ cv
i (t,p, z, ΞB) = f̆ cv

i (t,p, Z, ΞB),

which ensures the first inequality.

In addition to summarizing methods for constructing F̆B and F̆R, Table 7.1 is

also a useful tool for choosing a pair of F̆B and F̆R that satisfy Assumptions 7.10.

The steps of using Table 7.1 are described as follows:

i. Choose F̆R from Categories I or II in Table 7.1.

ii. Choose F̆B from any category in Table 7.1 with higher or equivalent category

score, relaxation score, and approximation score. However, if we chose F̆R is

from the Category II, then F̆B cannot be from Category III.

iii. If F̆B and F̆R are affine or piecewise-affine methods, then the linearization

points for constructing F̆B must contain the those linearization points used

for constructing F̆R.

7.7.2 Max-landing

In the second scenario, we suppose that Assumption 7.10 does not hold. We

present an approach to enforce Assumption 7.7.

Assumption 7.11. Suppose that f̆ L, f̆U describe convexity-amplifying dynamics.

Under Assumption 7.11, consider interval function F̆R∗ = [f̆ cv∗, f̆ cc∗] : I × P×
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IRnx × IRnx → IRnx such that, for each i ∈ {1, . . . , nx},

f̆ cv∗
i (t,p, ΞR, ΞB)

:= max
{

f̆ cv
i (t,p, ΞR, ΞB), f̆ L

i (t,p, ΞR)
}

, (7.16a)

f̆ cc∗
i (t,p, ΞR, ΞB)

:= min
{

f̆ cc
i (t,p, ΞR, ΞB), f̆ U

i (t,p, ΞR)
}

. (7.16b)

In the max-landing approach, we use f̆ cv∗, f̆ cc∗ to replace f̆ cv, f̆ cc in (7.13). So,

we need to verify that they satisfy Assumptions 7.6 and 7.7.

Lemma 7.8. Under Assumptions 7.5, 7.6 and 7.11, f̆ cv∗, f̆ cc∗ defined in (7.16) satisfy

Assumptions 7.6 and 7.7 in place of f̆ cv, f̆ cc.

Proof. Conditions 1)-3) in Assumption 7.5 and Conditions 1)-3) in Assumption 7.6

ensure that f̆ cv∗, f̆ cc∗ satisfy Conditions 1)-3) in Assumption 7.6 in place of f̆ cv, f̆ cc.

Since max and min functions preserve convexity and concavity [25], respectively,

Condition 4) in Assumption 7.6 and Assumption 7.11 ensure that f̆ cv∗, f̆ cc∗ satisfy

Conditions 4) in Assumption 7.6 in place of f̆ cv, f̆ cc. Hence, Assumption 7.6 is

verified.

Next, we verify Assumption 7.7 by showing that f̆ L, f̆U describe inclusion-

amplifying dynamics about f̆ cv∗, f̆ cc∗. According to Definition 7.11, it suffices to

show that, for each i ∈ {1, . . . , nx} and any Z∗, Z ⊆ ΞB such that Z∗ ⊆ Z,

f̆ L
i (t,p, Z) ≤ f̆ cv∗

i (t,p, Z∗, ΞB),

f̆ U
i (t,p, Z) ≥ f̆ cc∗

i (t,p, Z∗, ΞB).
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(7.16a) shows that

f̆ cv∗
i (t,p, Z∗, ΞB) = max

{
f̌ cv
i (t,p, Z∗, ΞB), f̆ L

i (t,p, Z∗)
}

≥ f̆ L
i (t,p, Z∗)

≥ f̆ L
i (t,p, Z),

which verifies the first inequality. Similar arguments hold for the second inequal-

ity,

The formulation in (7.16) can be extended so that extra f̆ cv, f̆ cc functions can be

used in the max and min functions. For example,

f̆ cv∗
i (t,p, ΞR, ΞB) := max{ f̌ cv

i (t,p, ΞR, ΞB), f̆ L
i (t,p, ΞR),

f̆ cv†
i (t,p, ΞR, ΞB)},

f̆ cc∗
i (t,p, ΞR, ΞB) := min{ f̌ cc

i (t,p, ΞR, ΞB), f̆ U
i (t,p, ΞR),

f̆ cc†
i (t,p, ΞR, ΞB)},

where f̆ cv†, f̆ cc† satisfy Assumption 7.6. This result can be verified similarly as

the lemma above. The benefit of using multiple f̆ cv, f̆ cc functions is to construct

tighter state relaxation RHS functions, and therefore tighter state relaxations.

Next, we show that if f̆ cv, f̆ cc and f̆ L, f̆U in (7.16) are smooth, then the gener-

ated state relaxations are smooth. Observe that in max-landing, we use f̆ cv∗, f̆ cc∗

to replace f̆ cv, f̆ cc in (7.13). So, consider f cv∗,f cc∗ : I × P×Rnx ×Rnx → Rnx such
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that, for each i ∈ {1, . . . , nx},

f cv∗
i (t,p, ξcv, ξcc)

:= f̆ cv∗
i (t,p, BL

i (Ξ
R), XB(t))

= max
{

f̆ cv
i (t,p, BL

i (Ξ
R), XB(t)), f̆ L

i (t,p, BL
i (Ξ

R))
}

,

= max
{

f cv
i (t,p, ξcv, ξcc), f L

i (t,p, ξcv, ξcc)
}

,

f cc∗
i (t,p, ξcv, ξcc)

:= f̆ cc∗
i (t,p, BU

i (Ξ
R), XB(t))

= min
{

f̆ cc
i (t,p, BU

i (Ξ
R), XB(t)), f̆ U

i (t,p, BU
i (Ξ

R))
}

,

= min
{

f cc
i (t,p, ξcv, ξcc), f U

i (t,p, ξcv, ξcc)
}

.

Then, f cv∗,f cc∗ will replace f cv,f cc in the RHS of (7.5b).

Assumption 7.12. Assume the following holds.

1. f̆ L(t, ·, ·, ·), f̆U(t, ·, ·, ·) are differentiable on P × ΞB × ΞB for any t ∈ I, ΞB ∈

IRnx .

2. Let (xL,xU,xcv,xcc) be a solution of (7.5) on I × P. For all (t,p) ∈ I × P and

i ∈ {1, . . . , nx},

(a) If f cv
i (t,p,xcv,xcc) = f L

i (t,p,xcv,xcc), then

∂ f cv
i

∂xcvf
cv∗ +

∂ f cv
i

∂xccf
cc∗ +

∂ f cv
i

∂t

6=
∂ f L

i
∂xcvf

cv∗ +
∂ f L

i
∂xccf

cc∗ +
∂ f L

i
∂t

,
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(b) If f cc
i (t,p,xcv,xcc) = f U

i (t,p,xcv,xcc), then

∂ f cc
i

∂xcvf
cv∗ +

∂ f cc
i

∂xccf
cc∗ +

∂ f cc
i

∂t

6=
∂ f U

i
∂xcvf

cv∗ +
∂ f U

i
∂xccf

cc∗ +
∂ f U

i
∂t

,

where arguments (t,p,xcv,xcc) are omitted for simplicity.

Lemma 7.9. Under Assumptions 7.1, 7.5, 7.6, 7.8, 7.11, and 7.12, let (xL,xU,xcv,xcc)

be a solution of (7.5) on I × P. Consider any p ∈ P, m ∈ {1, . . . , np}, and i ∈

{1, . . . , nx}. Then, the partial derivative ∂xcv

∂pm
exists at every t ∈ I such that f cv

i (t,p,xcv(t,p),xcc(t,p)) =

f L
i (t,p,xcv(t,p),xcc(t,p)), and partial derivative ∂xcc

∂pm
exist at every t ∈ I such that

f cc
i (t,p,xcv(t,p),xcc(t,p)) = f U

i (t,p,xcv(t,p),xcc(t,p)).

Proof. Consider any p ∈ P, m ∈ {1, . . . , np}, and i ∈ {1, . . . , nx}. We will show that

∂xcv

∂pm
exists at every t such that f cv

i (t,p,xcv(t,p),xcc(t,p)) = f L
i (t,p,xcv(t,p),xcc(t,p)).

It is analogous to show the second result.

According to Assumptions 7.8 and 7.12, the partial derivatives

∂ f cv
i

∂xcv (t,p,xcv,xcc),
∂ f cv

i
∂pm

(t,p,xcv,xcc),

∂ f L
i

∂xcv (t,p,xcv,xcc),
∂ f L

i
∂pm

(t,p,xcv,xcc)

exist and are continuous in a neighborhood of xcv
i (t,p) and xcc

i (t,p). When f cv∗
i

changes between f cv
i and f L

i , we consider the hybrid system to be moving from

some mode sj to some mode sj+1. Assumption 7.12 ensures that the Jacobian ma-

trix corresponding to xcv
j ,xcc

j , xcv
j+1,xcc

j+1, t is invertible. According to Theorem 1
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and Remark 6 in [57], the sensitivities in mode sj to mode sj+1 are equal such that

∂xcv
i,j

∂pm
(t,p) =

∂xcv
i,j+1

∂pm
(t,p).

So, partial derivative ∂xcv

∂pm
(t,p) exists at every t such that f cv

i (t,p,xcv(t,p),xcc(t,p)) =

f L
i (t,p,xcv(t,p),xcc(t,p)).

Theorem 7.5. Under Assumptions 7.1, 7.5, 7.6, 7.8, 7.11, and 7.12, let f cv∗,f cc∗ be

the RHS of (7.5b) and let (xL,xU,xcv,xcc) be a solution of (7.5) on I × P. For any

m ∈ {1, . . . , np}, the partial derivatives ∂xcv

∂pm
and ∂xcc

∂pm
exist and are continuous in I × P.

Proof. Consider any m ∈ {1, . . . , np}, and p ∈ P. Let [s1, s2, . . . , sj, . . . , snj ] be the

ordered succession of modes a hybrid system described by (7.5). At each event

time t ∈ I between two successive modes, Lemma 7.9 ensures that ∂xcv
i

∂pm
(t,p) or

∂xcc
i

∂pm
(t,p) exists, and respectively

∂xcv
i,j

∂pm
(t,p) =

∂xcv
i,j+1

∂pm
(t,p) or

∂xcc
i,j

∂pm
(t,p) =

∂xcc
i,j+1

∂pm
(t,p).

Next, we consider each mode as an individual ODE system. The RHS function of

the ODE (7.5b) is either f cv and f L, and the initial condition is the terminal state

of the previous mode. Since f̌ cv(t, ·, ·, ·), f̌ cc(t, ·, ·, ·) and f̆ L(t, ·, ·, ·), f̆U(t, ·, ·, ·) are

differentiable, flattening operations BL
i , BU

i ensure that f cv(t, ·, ·, ·),f cc(t, ·, ·, ·) and

f L(t, ·, ·, ·),fU(t, ·, ·, ·) are also differentiable. Then, [60, Theorem 3.1] ensures the

existence and continuity of ∂xcv

∂pm
and ∂xcc

∂pm
within each mode. Therefore, ∂xcv

∂pm
and

∂xcc

∂pm
exist and are continuous on I × P.
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7.7.3 Safe-landing

In the last scenario, we suppose that neither Assumption 7.10 or Assumption 7.11

holds. The safe-landing strategy introduced in [27] can be applied here. Its formu-

lation is as follows:for all (t,p) ∈ I × P and ΞR ∈ XB(t),

f̌ cv
i (t,p, ΞR, XB(t)) := max

{
f̌ cv
i (t,p, ΞR, XB(t)), (7.18a)

ẋL
i (t)−

√
2ki(ξ

cv
i − xL

i (t))
}

,

f̌ cc
i (t,p, ΞR, XB(t)) := min

{
f̌ cc
i (t,p, ΞR, XB(t)), (7.18b)

ẋU
i (t) +

√
2ki(xU

i (t)− ξcc
i )

}
,

where k,k ∈ R
nx
>0 are safe-landing constants [27, Definition 7] determined by

ẋL, ẋU, and ẋ.

Using similar approaches as in [27], it has been readily verified that f cv,f cc,

constructed with flattened f̌ cv, f̌ cc from (7.18), describe enclosing dynamics and

convexity-preserving dynamics. Note that f̌ cv, f̌ cc in (7.18) are not Lipschitz con-

tinuous with respect to state variables, but one-sided Lipschitz continuous, due

to those square root functions. But the existence theorem and unique theorem in

[148] ensure that (7.5b) always has a unique solution under this circumstance.

7.8 Numerical Examples

In this section, we use the new framework to construct state relaxations for para-

metric ODEs. A proof-of-concept implementation was developed in Julia [20]. Dif-

ferentialEquations.jl [104] was used as the ODE solver, and GMC and DMC were
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computed with McCormick.jl [134]. The numerical results reported below were

obtained by running this implementation on a Windows 10 machine with a 3.6

GHz AMD Ryzen 5 2600X CPU and 8GB memory.

The first example is adapted from [31]. It involves a simple ODE system with a

quadratic RHS. We will use it to illustrate constructing state relaxations using our

new framework (7.5) and compare the generated state relaxations with established

methods.

Example 7.1. Consider the quadratic ODEs:

ẋ1(t,p) = (x1 − p1)
2 − (x2 − p1)

2, x1(t0) = 2.2,

ẋ2(t,p) = (x1 − p2)
2 − (x2 − p2)

2, x2(t0) = 1.8,
(7.19)

where p = (p1, p2) ∈ P ≡ [−2, 2]× [−1, 3], and I ≡ [t0, t f ] = [0.0, 0.16].

To start with, we choose f̆ L, f̆U and f̆ cv, f̆ cc to construct f L,fU and f cv,f cc

as in (7.9) and (7.13), respectively. According to Section 7.7.1, we may choose

them conveniently using Table 7.1 following steps i-iii. Firstly, we selected p-N-G

from Category II to construct F̆R. Secondly, we selected #-N-G from Category IV

which has higher or equivalent scores than p-N-G. Since both p-N-G and #-N-G

use nonlinear relaxations, the last step can be ignored. After substituting f L,fU

and f cv,f cc into (7.5), we obtained a method, p-N-G w/ #-N-G, for constructing

state relaxations for (7.1) using the new framework. To the best of the authors’

knowledge, this method has never been reported in literature, and is therefore a

newly discovered method using our new framework. Following similar steps, we

also obtained another new method, p-N-D w/ p-A-D, using Table 7.1. Note that

in this method, f̆ L, f̆U are affine approximations of DMC linearized at the middle
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point of P, so that the optimization problem in the RHS of (7.5a) can be solved

trivially without a numerical optimization solver.

Figure 7.1 illustrates the state relaxations generated with the two new state re-

laxation methods, as well as the Scott-Barton method [120]. Compared with the

Scott-Barton method, the first new method, p-N-G w/ #-N-G, constructed looser

state relaxations in this example. However, according to Table 7.2, it required less

computing time. This may due to the fact that our new framework eliminates

the discrete jumps, while Scott-Barton method requires continuously checking if-

statements in (7.3) using event detection feature during integration which may

be computationally expensive. The second method, p-N-D w/ p-A-D, generated

state relaxations are tighter than the first method, but the computing time is longer.

Compared with the Scott-Barton method, p-N-D w/ p-A-D generated significantly

tighter concave relaxation and similar convex relaxation. Note that the DMC im-

plemented in [152] is from [72], which is not twice-continuously differentiable.

Therefore, the uniqueness of a solution of (7.5a) is not guaranteed according to

[28]. Here, we use this implementation for demonstration and assume that there

exists only one solution.

Figure 7.2 illustrates another two new methods for constructing state relax-

ations of (7.1) using the new framework, and they both depend on αBB relaxations

[3]. The first new method, px-N-α w/ px-N-α, was discovered using Table 7.1.

Since the αBB relaxations of quadratic functions are also quadratic [31], the embed-

ded optimization in (7.5) are quadratic programs and can be solved with CPLEX.

The second method, px-N-α&#-N-G w/ #-N-G, was obtained following the max-

landing method described in Section 7.7.2. f̆ cv, f̆ cc in (7.16) were constructed with
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Figure 7.1: The parametric solution of x2 in (7.19) (black solid), along with the
convex and concave relaxations generated with the Scott-Barton method (green

dotted) and our new methods (violet dashed and red dashed) with p1 = 0 at
t f = 0.15s

.

αBB relaxations and f̆ L, f̆U were constructed with GMC. Observe that the state

relaxations constructed with both new methods are significantly tighter the Scott-

Barton method. Moreover, method px-N-α&#-N-G w/ #-N-G constructed tighter

concave relaxations than the method by Song and Khan [131].

Figure 7.3 shows smooth state relaxations constructed using new method p-N-

D w/ #-N-D. These state relaxations are differentiable with respect to parameters.

Their gradients were evaluated using a subgradient computation method from

[132] and were plotted as tangents in Figure 7.3.

The second example considers a biochemical process adapted from [16]. Con-

vex enclosures of this system have been obtained in [83, 31].
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Figure 7.2: The parametric solution of x2 in (7.19) (black solid), along with the
convex and concave relaxations generated with Scott-Barton method [120] (green
dotted) and Song-Khan method [131] (blue dotted) and our new methods (pink

dashed and orange dashed) with p1 = 0 at t f = 0.15s
.

Figure 7.3: The parametric solution of x2 in (7.19) (black solid), along with the
differentiable convex/concave relaxations (yellow dashed) and their tangents

(purple dash-dot), with p1 = 0 at t f = 0.05s
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Table 7.2: Computing times of methods shown in Figures 7.1 and 7.2

State relaxation State bound Label CPU time 1

GMC GMC p-N-G w/ #-N-G 0.0035
DMC Affine DMC p-N-D w/ p-A-D 0.0538
GMC NIE Scott-Barton 0.0104
αBB αBB px-N-α w/ px-N-α 4.0869

αBB and GMC GMC px-N-α & #-N-G
w/ #-N-G 3.3831

αBB NIE Song-Khan 2.2989
1 Each number is the average of 20 runs

Example 7.2. Consider a microbial growth process described by the following ODE sys-

tem:
ẋ1(t) = (µ− αD)x1, x1(t0) = 0.82,

ẋ2(t) = D(Si − x2)− kµx1, x2(t0) = 0.8,
(7.20)

where state variables x1 and x2 respectively represent the concentrations of biomass and

substrate, p = (KI , KS) are uncertain kinetic parameters, I ≡ [t0, t f ] = [0, 5], and µ is

the growth rate

µ =
µmx2

KS + x2 + KI x2
2

.

The remaining quantities are parameters, whose values and uncertainties are provided in

Table 7.3.

Figure 7.4 presents two new state relaxations constructed for (7.2) and com-

pares them with the Scott-Barton method. The first method, p-N-G w/ #-N-G,
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Table 7.3: Microbial growth process parameters

Parameter Symbol Value Unit

Process heterogeneity α 0.5 -
Dilution rate D 0.36 day−1

Influent concentration Si 5.7 g S/l
Yield coefficient k 10.53 g S/g X
Max growth rate µm 1.2 day−1

Kinetic parameter KI [0.4, 0.6] (g S/l)−1

Kinetic parameter KS [7.0, 7.2] g S/l

generates state relaxations that overlap with Scott-Barton relaxations. But its com-

putational cost is slightly less than Scott-Barton method, probably due to elimina-

tion of discrete jumps. The other method, p-N-G w/ px-N-G, utilizes the optimization-

based state relaxation method introduced in Section 7.6.2 where f̂ cv, f̂ cc are gener-

ated with GMC. The embedded optimization problems were solved with IPOPT.

Compared with the Scott-Barton method, though the overall computing process of

the second new method takes a longer time according to Table 7.3, the constructed

state relaxations are significantly tighter.

Table 7.4: Computing times of methods shown in Figures 7.4 of Example 7.2

State relaxation State bound Label CPU time 2

GMC GMC p-N-G w/ #-N-G 0.0076
GMC GMC p-N-G w/ px-N-G 74.7005
GMC NIE Scott-Barton 0.0106

2 Each number is the average of 20 runs
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Figure 7.4: The parametric solution of x2 in (7.20) (black solid), along with the
convex and concave relaxations generated with the Scott-Barton method [120]

(green dotted) and our new methods (violet dashed and red dashed) with
KS = 7.1 at t f = 5s

.

7.9 Conclusion

In this article, we proposed a general framework for computing convex enclosures

for nonlinear parametric ODEs (7.1) using differential inequalities. Component-

wise convex and concave relaxations of the original state variables were obtained

by constructing and solving an auxiliary system of ODEs (7.5). Unlike Scott and

Barton’s framework [120] which contains discrete jumps in the auxiliary ODE RHS

(7.3), our new framework employs continuous ODEs. This modification not only

makes the auxiliary system (7.5) easier to solve numerically than (7.3), but also

permits subgradient evaluation for the generated state relaxations [132]. Subgra-

dients are useful sensitivity information for local optimization solvers. They also

can be used to generate computationally cheap outer approximations of nonlinear
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convex relaxations, which are favorable in deterministic global optimization [33,

152]. Moreover, this new framework is versatile. Section 7.6 introduced various

methods for constructing the auxiliary RHS functions in (7.5), including both es-

tablished methods [120, 131] and newly discovered methods. They are all summa-

rized in Table 7.1. Some of the new methods lead to tighter convex relaxations than

the established methods. To demonstrate this, we developed a proof-of-concept

implementation of the new framework and presented multiple numerical exam-

ples in Section 7.8. Tighter convex relaxations supply more accurate quantification

on the influence of uncertainty to the original system. They also facilitate branch-

and-bound algorithms to converge faster in deterministic global optimization [42].

Future work may involve using these new convex relaxations of parametric

ODEs in deterministic global dynamic optimization. Compare with using estab-

lished relaxations from [120, 131], we expect to see an improvement in computa-

tional performance, since our new relaxations are tighter and their subgradients

are available.
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Chapter 8

Concluding Remarks

8.1 Conclusions

In this thesis, novel formulations and supporting theory have been developed to

automatically construct improved bounds for implicit functions and dynamic sys-

tems in order to improve the computational performance of deterministic global

optimization algorithms.

Chapter 2 presented a new approach for constructing convex relaxations for im-

plicit functions using parametric programming. Unlike state-of-the-art approaches

[136, 151], this new approach does not assume the uniqueness of the implicit func-

tion and does not require the original residual function to be factorable. The valid-

ity of these convex relaxations was verified and a proof-of-concept implementation

of this new approach was developed. Multiple numerical examples illustrated that

this new approach constructed tighter convex relaxations than established meth-

ods. This new approach was also extended to generate convex relaxations for the
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numerical solutions of parametric ODEs obtained with implicit integration meth-

ods.

Chapters 5 and 6 presented an optimization-based framework for construct-

ing time-varying interval bounds of ODEs using differential inequalities. This

framework includes several established bounding approaches, but also includes

many new approaches. Some of these new approaches were implemented, and

they generated tighter ODE bounds than established methods in many numerical

examples. These tighter interval bounds are useful in constructing tighter convex

relaxation for ODEs [131]. Complementarity reformulations of these approaches

were also provided, so that tighter ODE bounds may be computed without adding

significantly to the cost of bound evaluation.

Chapters 3 and 7 introduced two new approaches for generating smooth con-

vex relaxations of the parametric ODEs. They both improved the Scott-Barton

method [120] by eliminating the discrete jumps in the bounding ODEs. To achieve

this, Chapter 3 developed a novel smoothing technique, and Chapter 7 adapted the

new optimization-based framework from Chapter 5. Both new approaches were

demonstrated to construct convex relaxations that are at least as tight as the Scott-

Barton method. Under additional conditions, both approaches can generate differ-

entiable relaxations. Such tightness, smoothness, and availability of gradients are

beneficial to the application of these ODE relaxations in branch-and-bound algo-

rithms for deterministic global dynamic optimization.

Chapter 4 presented a new approach for generating guaranteed lower bounds

of a nonconvex optimal control problem (OCP) by constructing a relaxed OCP. The

optimal solution value of this relaxed OCP was verified that to be a lower bound of
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the optimal solution value of the original OCP, which is useful in the determinis-

tic global optimization of the original OCP [119, 64]. A two-point boundary-value

problem was developed and implemented to solve the relaxed OCP to global op-

timality using the Pontryagin’s Minimum Principle conditions. Numerical exam-

ples illustrated that new bounds are much tighter than established relaxations, and

theoretical results support this.

8.2 Outlook

The ultimate goal of of this line of research is to develop and implement computa-

tionally efficient methods for deterministic global dynamic optimization, and use

them to solve real-world engineering problems. The bottleneck is the construction

of tight and smooth convex relaxations for dynamic systems for use in branch-and-

bound algorithms [112, 120]. The overall approach of this thesis uses differential

inequalities to construct convex relaxations for ODEs [122, 120, 131]. These convex

relaxations are described by bounding systems of ODEs, whose RHS functions are

relaxations of the original ODE RHS function. However, this overall approach can

be vulnerable to the wrapping effect [59] and similar effects, which might lead to

conservative bounds or even make the bounding systems “explode” before reach-

ing the terminal time. Various formulations and techniques have been developed

to address this problem [59, 128, 120, 131], including in this thesis. However, this

is still one of the main obstacles of generating tight enclosures for ODEs using

differential inequalities and applying them in deterministic global dynamic opti-

mization.
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The developments of this thesis suggest two avenues for research in the im-

mediate future to further improve these differential inequality-based approaches.

First, the new theories presented in Chapter 5 and 7, as well as recent develop-

ments in [130], imply that tighter relaxations of the original ODE RHS function will

lead to tighter relaxations of the ODE solutions. Therefore, tighter convex relax-

ation techniques of general nonlinear functions are useful for reducing the wrap-

ping effect. Second, recent research by Scott et al. [118, 126, 127, 124] constructs

tighter time-varying interval bounds of ODEs with some a priori knowledge of the

original system, such as conservative laws, physical bounds, constraints in an op-

timization problem, and algebraic equations in DAEs. Nevertheless, to the best

of the author’s knowledge, this strategy has not been applied to refine the convex

relaxations of parametric ODEs. This might be a potential approach to generate

tight convex relaxations for ODEs and improve the computational efficiency of

deterministic global dynamic optimization.

Chapters 3 and 7 in this thesis provided two new approaches that generate

smooth convex relaxations for parametric ODEs by eliminating the discrete jumps

in Scott and Barton’s bounding system of ODEs [120]. This removed the discon-

tinuity obstacles in evaluating gradients for these convex relaxations. However,

additional techniques must also be implemented, such as forward and adjoint sen-

sitivity analysis, to compute the gradients of these bounding ODEs, so that these

gradients can be used for minimizing convex relaxations in deterministic global

dynamic optimization. Compared with the traditional forward sensitivity analy-

sis, adjoint sensitivity analysis [35] is typically much faster at computing gradients

for smooth ODEs with many parameters. Developing and implementing adjoint
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sensitivity analysis for ODE relaxations may significantly improve the computa-

tional performance of branch-and-bound algorithms and increase the size of dy-

namic optimization problems that can be solved to global optimality in a reason-

able time. However, there are currently no established adjoint sensitivity solvers

for smooth ODEs in Julia, as it is a relatively new language. Once these are es-

tablished, then we expect that adjoint sensitivity analysis may be applied to the

various dynamic relaxations of this thesis.

The work underlying this thesis also included the development of a Julia pack-

age for deterministic global dynamic optimization, requiring minimal user input,

and generating the various relaxations completely automatically using operator

overloading. This implementation has successfully solved several benchmark prob-

lems and chemical engineering cases studies from literature to global optimality.

Nevertheless, to make this implementation applicable for large-scale engineering

problems, we need to further improve its computational efficiency. One possi-

ble approach is to exploit any sparsity in the original system (1.1), and to harness

parallel computing techniques effectively. Furthermore, to facilitate the on-going

research in this area, a representative library of benchmark problems ought to be

collected for assessing and comparing the performance of algorithms for reach-

ability analysis and global dynamic optimization. Such libraries have been con-

structed for static global optimization. The COCONUT library [114] contains over

1000 benchmark problems and has been used to compare state-of-the-art global

optimization solvers, including BARON [139] and ANTIGONE [90]. The develop-

ment of such a benchmark library can provide a thorough evaluation framework

for the performance of global dynamic optimization algorithms and provide fair
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comparisons between different algorithms. Such a library would also help to iden-

tify the kind of problems that are amenable to solution by one particular algorithm,

in the spirit of the “no free lunch” theorem [154].
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