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Lay Abstract

In this thesis, two challenges using deep learning models to analyze health records are

investigated using a real-world medical dataset. First, an important step in analyzing

health records is to estimate missing data. We investigated how imputation can have

a cascading negative impact on a deep learning model’s performance. A comparative

analysis was then conducted to investigate the strengths and limitations of evalua-

tion metrics from the statistical literature to assess deep learning-based imputation

models. Second, the most successful deep learning diagnostic models to date, called

transformers, lack a mechanism to analyze the temporal characteristics of health

records. To address this gap, we developed a new temporally-embedded transformer

to analyze patients’ medical histories, including the elapsed time between visits, to

predict their primary diagnoses. The proposed model successfully predicted patients’

primary diagnosis in their final visit with improved predictive performance (78.54 ±

0.22%) compared to existing models in the literature.
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Abstract

Deep learning models are increasingly used to analyze health records to model disease

progression. Two characteristics of health records present challenges to developers of

deep learning-based medical systems. First, the veracity of the estimation of missing

health data must be evaluated to optimize the performance of deep learning models.

Second, the currently most successful deep learning diagnostic models, called trans-

formers, lack a mechanism to analyze the temporal characteristics of health records.

In this thesis, these two challenges are investigated using a real-world medical

dataset of longitudinal health records from 340,143 patients over ten years called MI-

IDD: McMaster Imaging Information and Diagnostic Dataset. To address missing

data, the performance of imputation models (mean, regression, and deep learning)

were evaluated on a real-world medical dataset. Next, techniques from adversarial

machine learning were used to demonstrate how imputation can have a cascading

negative impact on a deep learning model. Then, the strengths and limitations of

evaluation metrics from the statistical literature (qualitative, predictive accuracy, and

statistical distance) to evaluate deep learning-based imputation models were investi-

gated. This research can serve as a reference to researchers evaluating the impact of

imputation on their deep learning models.
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To analyze the temporal characteristics of health records, a new model was devel-

oped and evaluated called DTTHRE: Decoder Transformer for Temporally-Embedded

Health Records Encoding. DTTHRE predicts patients’ primary diagnoses by analyz-

ing their medical histories, including the elapsed time between visits. The proposed

model successfully predicted patients’ primary diagnosis in their final visit with im-

proved predictive performance (78.54 ± 0.22%) compared to existing models in the

literature. DTTHRE also increased the training examples available from limited med-

ical datasets by predicting the primary diagnosis for each visit (79.53 ± 0.25%) with

no additional training time. This research contributes towards the goal of disease

predictive modeling for clinical decision support.
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Chapter 1

Introduction

Deep learning models are increasingly being used to predict patients’ diagnoses by

analyzing the trends and relationships in their medical histories. The deep learning

models are generally designed to analyze datasets such as text and images that are

from a single source (homogeneous) with no missing data and no time component

(non-temporal). In contrast, medical histories recorded in electronic health records

(EHR) have the following characteristics. First, modeling medical histories involve

analyzing data from multiple sources (heterogeneous) such as diagnostic, physiolog-

ical, and imaging. As a result, missing data is common due to the technical and

privacy challenges of collecting health data from multiple sources. Second, medical

records represent multiple observations of a patient’s health over time (temporal).

The following real-world health scenario demonstrates the challenges of analyzing

heterogeneous and temporal medical datasets with missing data using deep learning.

As part of an interdisciplinary team at McMaster, Ryerson University, and Hamil-

ton Health Sciences (HHS), I am currently developing a decision support system
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(DSS) using deep learning that provides real-time risk assessment of radiation ex-

posure from medical imaging relative to a patient’s medical history. Two challenges

developing the risk model were encountered: 1) missing data in health records and

2) analyzing the temporal characteristics of medical histories. First, an important

step towards developing the DSS was collecting a dataset of real medical histories for

training and evaluating the models called MIIDD: McMaster Imaging Information

and Diagnostic Dataset. Due to technical and privacy challenges, I accessed a subset

of patients’ heterogeneous records to estimate exposure from medical imaging. As a

result, the low-dose radiation exposure for the remaining images in MIIDD must be

imputed. Imputation is the process of replacing missing data with estimated values.

An important task in imputing data is evaluating the performance of the imputation

models (Nguyen, Carlin, & Lee, 2017). Second, the risk model must analyze patients’

exposure patterns over time within the context of their medical histories. Deep learn-

ing models generally lack a mechanism to analyze temporal patterns in EHR. The

following sections introduce the background of the research, outline the thesis, and

summarize the main contributions.

1.1 Imputation of Missing Data in Health Records

Figure 1.1 shows an overview of the research presented in this thesis based on the

methodology used to develop deep learning models. The first step towards devel-

oping the deep learning model for health outcome prediction was curating MIIDD

(Fig. 1.1a). MIIDD contains approximately 2.1 million imaging records from 340,143

patients over ten years in four hospitals in Hamilton, Ontario, Canada. The medi-

cal records are stored in three repositories: 1) health records of diagnostic codes, 2)

2
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Health
Records

Collection

Missing
Data

Imputation

Medical
History

Encoding

Deep
Learning

Model
Evaluation

Preprocessing Model

Chapter 1 Chapters 3 and 4 Chapter 5 Chapter 5

(a) (b) (c) (d)

Figure 1.1: Thesis overview based on the development methodology for deep learning
models. Literature Review and Conclusions are in Chapters 2 and 6, respectively

imaging records that contain summary data on scans (e.g., modality, body part, and

date of scan), and 3) diagnostic images that can provide a more accurate estimate of

exposure. Due to technical and privacy challenges, a representative subset of diag-

nostic images was accessed to estimate exposure. As a result, the exposure for the

remaining imaging records must be imputed. The imputation model’s performance

was evaluated as it can have a cascading impact on the deep learning risk model.

The investigation evaluating imputation models for health records led to three

studies (Fig. 1.1b). First, the performance of mean, regression, and deep learning

imputation models were evaluated to estimate missing data in heterogeneous health

records for a target feature (imaging exposure) over a patient’s medical history. Sec-

ond, there is a need to better understand the impact of imprecise imputation methods

on deep learning performance. To that end, I used techniques from adversarial ma-

chine learning (Papernot et al., 2016) to investigate how mean imputation impacts

the performance of a proof-of-concept deep learning model. Third, discrepancies were

discovered evaluating deep learning-based imputation models using the common eval-

uation metric used in the literature, root mean square error (RMSE), compared to

qualitative evaluation. Investigating this discrepancy led to a comparative analysis

3
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of evaluation metrics from the statistical literature (qualitative, predictive accuracy,

and statistical distance) to assess the performance of deep learning-based imputation

models. Based on the findings, the missing exposure values in MIIDD were estimated

using the imputation model that performed best on the representative sample. The

next step was to model patients’ medical histories represented by the imputed dataset

using deep learning.

1.2 Temporally-Embedded Deep Learning

The second research objective in this thesis was to model the temporal characteris-

tics of health records using deep learning (Fig. 1.1c). A common approach (Y. Li

et al., 2020; Rasmy, Xiang, Xie, Tao, & Zhi, 2021) for analyzing the temporal pat-

terns in medical histories is to encode them as diagnostic sequences (diagnostic-level

encoding). A sequence is a set of elements (e.g., diagnoses) that are listed in order.

Deep learning models such as recurrent neural networks (RNN; Rumelhart, Hinton,

and Williams, 1985) and long-short term memory models (LSTM; Hochreiter and

Schmidhuber, 1997) analyze the sequential order of medical diagnoses to learn dis-

ease patterns (Shickel, Tighe, Bihorac, & Rashidi, 2018). RNN and LSTM require

sequential processing, and the information from previous visits is stored recursively

in the model’s memory.

Transformers (Vaswani et al., 2017) are a class of deep learning models that learn

to relate elements in a sequence to each other by generating weight-adjusted rep-

resentations for each sequence. The amount of weight (attention) applied to each

sequence element is learned by the model during training. The encoded represen-

tation of the sequence is then used by the transformer to predict elements in the
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sequence. Transformers have three advantages over the RNN and LSTM (Vaswani et

al., 2017). First, transformers access sequence elements directly rather than through

the recursive memory used in RNN and LSTM. Second, transformers analyze the

elements in each sequence at once, which enables parallelization to reduce training

time. Third, transformer models can be trained on larger datasets compared to RNN

and LSTM. The transformer has demonstrated improved performance for natural lan-

guage processing (NLP; Vaswani et al., 2017) and diagnostic prediction (Y. Li et al.,

2020) tasks compared to RNN and LSTM.

An important requirement for assessing patients’ risk from medical imaging is an-

alyzing the elapsed time between exposure events. Transformers are designed for NLP

where the distance between subsequent elements is constant. In contrast, patients’

visits to their health professionals are episodic and the time between subsequent visits

varies (irregular time series). For example, consider two patients who have the same

low-dose radiation exposure from three medical scans. The first patient has three

scans over two months while the second patient has the scans over two years. Trans-

former models lack a mechanism for analyzing the elapsed time between elements in

a sequence. As a result, a transformer analyzing exposure histories would represent

the patients’ exposure patterns with the same sequence. There is a need to develop

a transformer model that analyzes the elapsed times between visits when predicting

disease trajectories.

In this thesis, a transformer model called Decoder Transformer for Temporally-

Embedded Health Records Encoding (DTTHRE) was developed that predicts the

primary diagnosis (Dx) for each visit using the patient’s medical history, including

the elapsed times between visits (Fig. 1.1c). The proposed model requires an encoding
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mechanism that embeds the irregular time series data in medical histories. Instead of

diagnostic-level encoding, an encoding representation for EHR was proposed called

Temporally-Embedded Health Records Encoding (THRE). THRE encodes EHR as

sequences of medical events such as age, sex, and visit-level diagnostic embeddings

while incorporating the elapsed time between visits. Instead of predicting each ele-

ment in THRE, DTTHRE predicts the primary diagnosis for each visit by analyzing

all events from previous medical visits.

A proof-of-concept DTTHRE model was developed to evaluate if embedding the

time between visits impacts predictive performance (Fig. 1.1d). The DTTHRE’s

performance was then compared to an existing diagnostic model in the literature.

DTTHRE successfully analyzed patients’ medical histories, including the elapsed time

between visits, to predict the primary diagnosis in their final visit with improved

predictive performance (78.54 ± 0.22%) compared to the existing model.

1.3 Thesis Outline and Major Contributions

The thesis structure and contributions are as follows.

Chapter 2 presents the related work and gap analysis on the relevant research

in three areas. The first area of the literature review investigates the requirements

for exposure risk assessment models, motivating the investigation into missing data

imputation and analyzing temporal data using deep learning. The second related

research area reviews imputation models and their evaluation methodology. The

third area of the literature review investigates transformer models for health record

analysis.

Chapter 3 reports the investigation into the performance of mean imputation to

6
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estimate missing data in health records and the impact on a deep learning model

(Fig. 1.1b). I make the following contributions in this chapter:

1. A comparative analysis between two methods to estimate exposure from medical

imaging: 1) dose means from the literature and 2) dose estimates calculated

from real imaging scans.

2. Techniques from adversarial machine learning are used to investigate how mean

imputation impacts the performance of a deep learning model.

Chapter 4 reports on a comparative study between evaluation metrics in the

statistical literature to assess the performance of deep learning imputation models

(Fig. 1.1b). I make the following contributions in this chapter:

1. A survey of the available evaluation metrics from the statistical literature (qual-

itative, predictive accuracy, and statistical distance) to evaluate deep learning

imputation models.

2. A comparative analysis of the reviewed evaluation metrics to assess the perfor-

mance of two deep learning-based imputations models and a regression impu-

tation model using two heterogeneous datasets.

3. Investigate the strengths and limitations of using the evaluation metrics to assess

the quality of deep learning imputation models.

Chapter 5 describes the proposed deep learning model architecture for analyzing

patients’ medical records, including the elapsed time between visits (Fig. 1.1c-d). I

make the following contributions in this chapter:
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1. DTTHRE, a transformer model that analyzes medical histories, including the

elapsed time between visits, to predict diagnoses.

2. THRE, a temporally-embedded encoding representation for health records.

3. Develop a proof-of-concept DTTHRE and evaluate the model’s performance

compared to an existing transformer diagnostic model in the literature.

Chapter 6 presents conclusions and discusses directions for future work. First, the

potential of defence mechanisms from the adversarial learning literature to improve

the resilience of deep learning to imprecise imputation models are discussed. Second,

the requirements for an evaluation methodology specifically for deep learning imputa-

tion models are described. Third, extensions to DTTHRE are proposed to investigate

the relationships learned by the model and predict disease trajectories.

All evaluations in this thesis were done on a real medical records dataset I cu-

rated called the McMaster Imaging Information and Diagnostic Dataset (Fig. 1.1a).

MIIDD contains longitudinal medical records covering ten years (May 2006 - 2016)

from four hospitals in Hamilton, Ontario, Canada. The dataset characteristics and

EHR samples are shown in Appendix A and B, respectively. MIIDD (Table B.1) con-

tains deidentified, consolidated, cleaned, and linked health records from three medical

repositories: 1) ambulatory data from the Discharge Abstract Database (DAD), 2)

inpatient data from the National Ambulatory Care Reporting System (NACRS), and

3) imaging data from the HHS’s Picture Archiving and Communications Systems

(PACS). DAD (Table B.2) contains administrative, clinical, and demographic infor-

mation on hospital discharges. NACRS (Table B.3) contains clinical information (e.g.,

diagnosis and treatments) from day surgery, outpatient, and community-based clinics.

8
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Each hospital reports DAD and NACRS records to the Canadian Institute for Health

Information (CIHI) each year to comply with Canadian law. The PACS (Table B.4)

contains summary data on imaging scans (e.g., modality and body part scanned) and

detailed imaging data stored in the DICOM (digital imaging and communications in

medicine) format that contains the scanner data required to estimate patient expo-

sure (Table B.5). The PACS system is used by all the hospitals to store their imaging

data to comply with Canadian law. MIIDD has approximately 1.3 million diagnostic

and 2.1 million imaging records from 340,143 patients. Due to technical and privacy

challenges, I accessed a subset of 39,909 DICOM headers from a representative subset

of 2,000 patients. MIIDD also includes the month and year of each medical visit.

The author brings to the reader’s attention that the work in this thesis was pub-

lished in Boursalie, Samavi, Doyle, and Koff, 2020b. In addition, work in this thesis

has been accepted for publication in Boursalie, Samavi, and Doyle, 2021a and Bour-

salie, Samavi, and Doyle, 2021b. These publications were made by the author of this

thesis, as the lead author, in collaboration with his supervisors at McMaster Uni-

versity. The review of the related literature and gap analysis in Chapter 2 are the

contributions that have only been published in this thesis.

9



Chapter 2

Literature Review

In this chapter, a review of the related research is presented in three areas: 1) require-

ments for exposure risk assessment models, 2) imputation models and their evaluation

methodology, and 3) transformers for health record analysis. These three areas of re-

search are examined in Sections 2.1, 2.2, and 2.3, respectively.

2.1 Exposure Model Requirements

Multiple exposure models have been proposed to calculate a patient’s risk of disease

or mortality by analyzing their pattern of exposure (Fig. 2.1) to toxicants such as

ionizing radiation (Lin, 2010), pollution (Vitolo, Scutari, Ghalaieny, Tucker, & Rus-

sell, 2018), or toxins (M. Liu et al., 2011). Current ionization radiation risk models

on the effects of radiation exposure are based on statistics from the Japanese atomic

bomb survivors (National Research Council, 2006). The Linear-No-Threshold (LNT)

model linearly extrapolates the cancer risk assessment from high radiation doses to

the low level of radiation emitted by imaging devices based on age and sex (Royal,

10
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Figure 2.1: Timeline of a patient’s exposure (green) and medical history (blue)

2008). Ionizing radiation risk assessment models such as RadRat (Gonzalez, Apos-

toaei, Veiga, & Land, 2013) then calculate a patients’ lifetime and organ-specific

cancer risk based on their imaging history and the LNT model. Similarly, Furukawa,

Misumi, Cologne, and Cullings, 2016 proposed a Bayesian semiparametric model that

uses LNT, threshold, hormesis, and hypersensitivity (Fig. C.1) extrapolation models

to estimate cancer risk. Environmental pollution models (Vitolo et al., 2018) the

impact of air or water pollutants (e.g., ozone, nitrogen dioxide, or smog) on mortality

rates for a geographic area based on topography and exposure levels (Jerrett et al.,

2005). Pharmacokinetics models use differential equations to model a drug’s impact

on patients’ health based on the drug dose given, patient characteristics, and the

exposure time(s) (Donnet & Samson, 2013). X. Liu et al., 2020 proposed a pharma-

cokinetics model based on the LSTM that successfully captured the temporal effects

of a simulated drug. An important component of pharmacokinetics models (M. Liu

et al., 2011) is that they model how the drug concentrations in the body change over

time depending on the drug’s properties and the patient’s metabolism.
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Based on the review of existing risk assessment models, current low-dose radia-

tion risk models have three important limitations (National Research Council, 2006).

First, the LNT model can only be used if the patient population has similar properties

to the target population used for the model. Otherwise, population conversion fac-

tors must be applied which increases the uncertainty of the model. Second, the linear

effect of radiation risk from high to low levels remains experimentally unchallenged.

Alternative extrapolations models such as threshold, hypersensitivity, and hormesis

(Fig. C.1) have also been proposed (National Research Council, 2006). As a result,

the National Research Council of the National Academies recommends against using

the LNT model to predict cancer risks for patients at low doses (National Research

Council, 2006). Third, patients’ medical histories are not considered when assessing

risk from imaging exposure.

To address the limitations in existing imaging exposure risk models, the proposed

risk assessment model needs to attend to the following requirements:

Requirement 1 (R1): Estimate patients’ exposure from medical imaging across

different anatomical regions and modalities. Previous studies (Berrington de Gon-

zalez et al., 2009; Mathews et al., 2013) estimated exposure from medical imaging

using mean values from the literature.

Requirement 2 (R2): Analyze the duration between imaging events and the fre-

quency of imaging. Currently, existing low-dose radiation risk models estimate

patient risk from each scan independently and sum the risk together to estimate

total risk (Gonzalez et al., 2013; Furukawa et al., 2016). The complex and non-

linear interactions between exposure events are not analyzed.
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Requirement 3 (R3): Analyze heterogeneous concepts in health records (e.g., diag-

nostic and exposure data). In existing assessment models (Gonzalez et al., 2013;

Furukawa et al., 2016), patients’ risk from medical imaging are based on exposure

amount, age, and sex. Patients’ medical histories are not used to estimate risk.

Requirement 4 (R4): Analyze medical histories with different start and end times,

number of visits, and cover different time periods.

Requirement 5 (R5): Consider different exposure decay rates (e.g., half-life) be-

cause the long term effect of exposure from medical imaging remains an open

research question. As a result, the model needs to provide health providers and

patients risk calculations based on various exposure decay rates.

Requirement 6 (R6): Calculate a patient’s cancer risk with and without the pro-

posed scan based on their medical and imaging history.

Requirements 1 and 2 were investigated in this thesis as the the first steps towards

developing the medical imaging risk assessment DSS. To address R1 (Fig. 1.1b), I

investigated the challenges of using imputation models to estimate missing data in

health records (Chapter 3 and 4). To address R2 (Fig. 1.1c), I investigated the

challenges of analyzing temporal health records using deep learning (Chapter 5).

Based on the findings, a proof-of-concept transformer diagnostic model that addresses

R1 - R4 is proposed and evaluated in Chapter 5 (Fig. 1.1d). Analyzing patients’

cancer risks under different decay rates (R5), calculating patients’ cancer risk from

medical imaging (R6), and evaluating the proposed cancer risk model’s performance

compared to models from the literature was outside the scope of this thesis and

remains for future work.

13
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2.2 Imputation Models and Evaluation

The first objective in this thesis was to evaluate imputation models to estimate pa-

tients’ exposure from medical imaging (Fig. 1.1b). To achieve this objective, the

evaluation methodology and metrics used to assess imputation models was inves-

tigated. In this section, imputation models (Sect. 2.2.1) as well as the evaluation

methodology and metrics (Sect. 2.2.2) are reviewed.

2.2.1 Imputation Models

Consider a matrix D containing data for r instances described by f features. The

objective in inferential statistics is to estimate population parameters Q such as mean,

variance (σ), and regression coefficients (θ) by calculating statistics Q̂ = (µ̂, σ̂, θ̂)

from D. D can also be used to train deep learning models. However, D may contain

observed (D(1)) and missing (D(0)) data. Together, D = (D(1), D(0)) is the matrix with

complete data. The response matrix Rr,f shows the locations of observed (Rr,f = 1)

and missing values (Rr,f = 0). The missing data pattern of R (Little & Rubin,

2019) can be described as missing completely at random (MCAR), missing at random

(MAR), or missing not at random (MNAR). Data are MCAR when the probability

of data being missing depends only on the overall probability of data being missing

(ψ). Data are MAR when the probability of missing data depends on ψ and D(1).

Data are MNAR when the probability of missing data depends on ψ, D(1), and D(0).

We can estimate missing data by drawing synthetic observations from the pos-

terior distribution of the missing data, given the observed data and the process

that generated the missing data. Formally, the posterior distribution is denoted as

P (D(0)|D(1), R). Rubin, 1976 demonstrated that R and the process that generated
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the missing data are ignorable when data are MCAR or MAR. In these cases, the dis-

tribution of D is assumed to be the same in D(0) and D(1) (Rubin, 1976). As a result,

we can model the posterior distribution using the observed data and then use this

model to create imputations for the missing data (P (D(0)|D(1), R) = P (D(0)|D(1))).

Note we need to include R and the process that generated the missing data in the

model of the posterior distribution (P (D(0)|D(1), R)) when data are MNAR.

Mean, statistical, and deep learning imputation models have been proposed to

estimate missing data. Mean imputation estimates missing data using the mean (µ)

values from the medical literature or complete samples in the dataset. While mean im-

putation maintains the sample size, it reduces the variability in the dataset (Eekhout,

de Boer, Twisk, de Vet, & Heymans, 2012). On the other hand, statistical imputation

models such as logistic regression, decision trees, sequential regression (Van Buuren

& Groothuis-Oudshoorn, 2010), and predictive mean matching (PMM; Heymans and

Eekhout, 2019; Rubin, 1986 impute missing data based on the remaining values in

the dataset. PMM constructs separate multiple Bayesian linear regression models for

each feature based on the complete instances in a dataset. The differences between

each imputed estimate and all observed values are then calculated (Rubin, 1986). The

final imputed value is randomly drawn from the five complete cases with the smallest

differences to the imputed estimate. A benefit of PMM is that the imputation model

constructs plausible estimates by replacing the imputed data with the closest values

from the real data. However, PMM requires complete instances which limits the size

of the training set when multiple features have missing data.

Imputation models based on deep learning such as denoising (DAE; Lall and

Robinson, 2021), variational autoencoders (VAE; Nazabal, Olmos, Ghahramani, and
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Valera, 2020), and generative adversarial nets (GAN; Yoon, Jordon, and van der

Schaar, 2018) have been proposed. Multiple Imputation with Denoising Autoen-

coders (MIDAS; Lall and Robinson, 2021) is a denoising autoencoder that models

the posterior distribution even when data is missing in multiple features (Lall &

Robinson, 2021; Nazabal et al., 2020). MIDAS consists of an encoder to learn to code

representation of the input in the latent space and a decoder that reconstructs the

original input from the latent code. During training, missing data is introduced by

dropping random inputs. In MIDAS, the training objective is to minimize the model’s

likelihood function or reconstruction error (Sinha, Pandey, & Pattnaik, 2018). The

missing data is treated as noise that MIDAS removes (Lall & Robinson, 2021). Gener-

ative imputation models generate new instances from the posterior distribution of D

that are closest to the missing data (Borji, 2019). Generative Adversarial Imputation

Nets (GAIN; Yoon et al., 2018) is a deep learning imputation model consisting of a

generator, discriminator, and hint generator. The generator is an autoencoder that

learns to implicitly model the data distribution while the discriminator estimates the

probability that a sample came from the data distribution. The discriminator has

an output vector of length f (one per feature). The generator and discriminator are

trained using an adversarial process. During training, the generator learns to im-

prove the imputed values while the discriminator learns to better identify imputed

instances. A hint generator provides the discriminator partial information on the

original sample to focus the model’s attention on certain features. As a result, the

generator learns to generate features according to the posterior distribution to fool

the discriminator. The training objective of generative models is to minimize the

distance between the generated and original data distributions (Borji, 2019).
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Deep learning imputation has three advantages over statistical imputation mod-

els. First, deep learning imputation models can model the distribution of a dataset

without assumptions on the underlying data (e.g., distribution function). Second,

missing data across multiple features can be estimated using a single imputation

model. Third, deep learning models can capture the latent structure of complex

high-dimensional data (e.g., the correlation between demographics, medication his-

tory, and clinical outcomes in EHR (Pham, Tran, Phung, & Venkatesh, 2017)).

Missing data can be estimated using single or multiple imputation (Rubin, 1988).

Multiple imputation captures the uncertainty of the imputation model by performing

c > 1 independent draws from the posterior distribution P (D(0)|D(1)) to generate c

complete datasets. Each c imputed dataset is then analyzed and the average per-

formance over all c datasets is calculated. For example, PMM generates c Bayesian

coefficients for the regression model. MIDAS subsamples thinned networks from a

trained model using dropout (Lall & Robinson, 2021). GAIN draws multiple synthetic

examples from the estimated distribution (Yoon et al., 2018). Multiple imputation

has been shown to have improved confidence intervals and p-values compared to single

imputation (Van Buuren & Groothuis-Oudshoorn, 2010).

2.2.2 Evaluation of Imputation Models

No imputation model (mean, statistical, or deep learning) is ideal for imputing missing

data in all datasets. As a result, the performance of the candidate imputation models

on MIIDD must be evaluated. The evaluation methodology commonly used in the

literature to assess the quality of an imputation model is as follows (MIT Critical

Data, 2016):
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1. Select the data subset with no missing values.

2. Introduce increasing rates of missing data (e.g., 2%-80%).

3. Estimate the missing data using imputation models.

4. Assess the imputation models using an evaluation metric.

5. Repeat steps 1 - 4 multiple times (e.g., five times).

6. Calculate and plot the average evaluation metric versus the rate of missing data.

Existing deep learning imputation models (Lall & Robinson, 2021; Yoon et al., 2018;

Nazabal et al., 2020) were assessed using the above methodology.

A commonly used metric to evaluate the quality of a deep learning imputation

model (Step 4) is RMSE, which measures the difference between the imputed values

and their corresponding actual values (Lall & Robinson, 2021; Nazabal et al., 2020;

Yoon et al., 2018). Existing deep learning imputation models (MIDAS (Lall & Robin-

son, 2021), GAIN (Yoon et al., 2018), and VAE (Nazabal et al., 2020)) were assessed

using RMSE. The studies showed the deep learning imputation models had compet-

itive RMSE performance compared to statistical imputation models. However, the

goal of imputation should not be achieving the best prediction accuracy by imputing

the missing data, as in deep learning (Lall & Robinson, 2021; Nguyen et al., 2017),

rather the goal is to ensure the imputed data meets the underlying properties of the

data (e.g., data variability and distribution) (van Buuren, 2018). In addition, deep

learning imputation models can impute missing data in multiple features at once. As

a result, Lall and Robinson, 2021 and Yoon et al., 2018 assessed their deep learning

imputation models’ aggregated performances across all features with missing data.

However, there are scenarios where specific features need to be imputed. For exam-

ple, I needed to impute a target feature (low-dose radiation exposure) to develop the
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risk model as the remaining features in MIIDD are complete. The deep learning im-

putation model’s performance for target features has not been investigated. Finally,

the deep learning imputation model’s performance using qualitative and quantitative

metrics has not been studied. In this thesis, two deep learning imputation models

(DAE and GAN) are compared using qualitative, predictive accuracy, and statistical

distance metrics on two tabular datasets.

Previous studies (Nguyen et al., 2017; Borji, 2019) have reviewed the performance

metrics used to evaluate statistical and deep learning models. Borji, 2019 reviewed

evaluation metrics to train and evaluate GANs for image generation. Borji demon-

strated how qualitative and quantitative evaluation metrics assessed various aspects of

the deep learning model’s image generation. Similarly, Nguyen et al., 2017 reviewed

evaluation metrics (qualitative, predictive accuracy metrics, and PCC) used to as-

sess imputation models. Both studies recommended using different metrics to assess

various properties of the imputation model’s performance. However, deep learning

imputation models have been evaluated using RMSE, a predictive accuracy metric.

2.3 Transformers for Health Record Analysis

The second objective in this thesis was to investigate using deep learning to analyze

the elapsed time between medical events (Fig. 1.1c). In this section, the health

records representations (Sect. 2.3.1) and transformer models (Sect. 2.3.2) used in

existing predictive diagnostic models are reviewed.
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Figure 2.2: Encoding temporal health records

2.3.1 Encoding Health Records

Electronic health records are tabular datasets that contain irregular observations of a

patients’ health. Previous studies have investigated encoding medical histories using:

1) Time series (Wiens, Horvitz, & Guttag, 2012; Hameed & Kleinberg, 2020), 2)

Binning/Sequences (Xiao, Choi, & Sun, 2018), 3) Bag-of-words (Schafer, 2016), 4)

Window slicing (Dietterich, 2002), and 5) Aggregation (M. Huang, Zolnoori, Shah, &

Yao, 2018; Boursalie, Samavi, & Doyle, 2018) representations (Fig. 2.2). First, time

series models encode each time step as an input feature, but EHR are modeled as

regular time series with missing data. Second, binning/sequences represent medical

records as ordered diagnostic or visit-level sequences of fixed duration (Choi, Xiao,

Stewart, & Sun, 2018). Third, bag-of-words use a sliding window to generate an order

invariant histogram of observations over patients’ medical histories. Fourth, window

slicing splits each patient’s medical history into separate windows that are classified

separately, and a majority voting approach is used to predict a patient’s diagnosis.

Finally, aggregation summarizes a patient’s medical history into one vector which

removes the temporal and sequential order of diagnoses. The elapsed time between

medical visits is not included in these health record encodings.
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2.3.2 Encoder-only Transformers

Analyzing irregular temporally-embedded datasets such as health records using ma-

chine learning models is a challenge. Early diagnostic models used the support vector

machine (SVM; Boursalie, Samavi, and Doyle, 2015; Boursalie et al., 2018) and con-

volutional neural network (CNN; Fawaz, Forestier, Weber, Idoumghar, and Muller,

2018) to analyze aggregated medical histories which removed the temporal and se-

quential characteristics from health records. On the other hand, sequential deep learn-

ing models such as RNN (Rumelhart et al., 1985), LSTM (Hochreiter & Schmidhuber,

1997; Shickel et al., 2018), and transformers (Rasmy et al., 2021) have been used to

analyze medical histories encoded as sequences (Pham, Tran, Phung, & Venkatesh,

2016; Devlin, Chang, Lee, & Toutanova, 2019). Transformers have three advantages

over the RNN and LSTM (Vaswani et al., 2017). First, transformers access sequence

elements directly rather than through the recursive memory. Second, transformers

analyze the elements in each sequence at once, which enables parallelization to reduce

training time. Third, transformer models can be trained on larger datasets.

There is growing interest in using transformers to analyze medical histories en-

coded as sequences. Consider a sequence {xi} where i = {0...j} and j is the last

element in the sequence. Each element i is dependent on the previous i− 1 terms in

the sequence. The encoder-only transformer (Vaswani et al., 2017), such as BERT

(Bidirectional encoder representations from transformers; Devlin et al., 2019), is de-

fined as:

yj = fc1(fe({x0, ..., xj−1})) (2.1)

{y0, ..., yj−1} = fc2(fe({x0, ..., xj−1}))

21



Ph.D. Thesis - Omar Boursalie McMaster - Biomedical Engineering

where yj is the final element in the sequence predicted using the previous j−1 terms.

During training, the encoder-only transformer also predicts a subset of randomly

masked elements {y0, ..., yj−1} using the remaining {x0, ..., xj−1} terms to generalize

the model, which is known as a masked language modeling (MLM; Devlin et al., 2019)

The transformer maps the available input elements to a continuous representation

z = {z0, ..., zj−1} using an encoder layer. Each element in z is a weighted sum of the

input to the encoder layer. The encoder-only transformer model is bi-directional so

each attention head can attend to all positions in the sequence. The amount of weight

(attention) applied to each input element is learned by the model during training.

Examining the attention heads provides researchers a mechanism to investigate the

sequence patterns learned by the model. Interested readers are referred to Vaswani

et al., 2017 for more information on the attention mechanism. Encoder layers are

stacked (fe) to construct a high-level representations of the input sequence. The

first element in the continuous representation of the final encoder layer (z0) is fed to a

feed-forward classification layer (fc1) to predict the final element (yn) in the sequence.

In addition, the continuous representation of the final encoder layer for each masked

elements {z0, ..., zj−1} is fed through a separate classification layer fc2 to predict the

masked input elements. The combined classification loss from fc1 and fc2 is used

to update the model using back-propagation. The transformer has demonstrated

improved performance for NLP (Vaswani et al., 2017) and diagnostic prediction (Y.

Li et al., 2020) compared to the RNN and LSTM. Y. Li et al., 2020 and Rasmy et

al., 2021 used BERT-based models to predict patients’ final diagnosis based on their

medical histories. However, transformers lack a mechanism to analyze the elapsed

times between visits.
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2.4 Summary

In this chapter, risk assessment models, imputation models and their evaluation met-

rics, and transformers for health record analysis were reviewed. Based on this review,

three important challenges were identified that became the focus of the thesis:

1. Impact of mean imputation on a deep learning model’s performance

has not been investigated (Fig. 1.1b): This gap is the focus of Chapter 3.

2. Deep learning-based imputation models (Lall & Robinson, 2021; Naz-

abal et al., 2020; Yoon et al., 2018) have been evaluated using RMSE,

a predictive accuracy metric (Fig. 1.1b): The deep learning-based impu-

tation model’s performance capturing the underlying properties of the dataset

(e.g., mean and distribution) using evaluation metrics from the statistical liter-

ature has not been investigated. This gap is the focus of Chapter 4.

3. Elapsed time between medical visits is not considered when trans-

formers are used to analyze health records (Fig. 1.1c-d): Instead, ex-

isting transformer-based diagnostic models in the literature (Y. Li et al., 2020;

Rasmy et al., 2021) analyze the sequential order of medical diagnoses to learn

disease patterns. This gap is the focus of Chapter 5.

23



Chapter 3

Mean Imputation in Deep Learning

An important step in evaluating the DTTHRE model was imputing the missing data

in MIIDD. The MIIDD has approximately 2.1 million imaging records. Due to tech-

nical and privacy challenges, a representative subset of 39,909 DICOM headers was

accessed that contain the scanner data required to estimate patient exposure. As a

result, the exposure for the remaining imaging records in MIIDD must be imputed. A

common method to impute medical imaging exposure is using mean values from the

literature (Berrington de Gonzalez et al., 2009; Mathews et al., 2013). However, the

predictive power of mean values to impute patients’ exposure needs to be investigated.

In this chapter, the performance of mean imputation to estimate missing expo-

sure data in health records and the impact on a deep learning model is investigated

(Fig. 1.1b). A comparative analysis is performed between two methods to estimate

low-dose radiation exposure from computed tomography (CT) and x-ray (XR) scans:

1) mean values from the literature and 2) calculated dose estimates from imaging

scans. I also used techniques from adversarial machine learning (Papernot et al., 2016)
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to demonstrate how the difference between estimation methods impacts a proof-of-

concept deep learning model. The results show moderate increases in the mean values

compared to the literature across all imaging exam types. However, using mean val-

ues reported in the literature underestimated patients’ total exposure from medical

imaging over the study period. The results also demonstrate that the discrepancies

between the estimation methods was sufficient to cause model misclassification.

This chapter is structured as follows. In Section 3.1, an overview of the target

feature for imputation, effective dose (ED; ICRP, 2007), is presented. Next, a com-

parative analysis estimating exposure from medical imaging using dose means from

the literature and estimates calculated from imaging scans is provided in Section 3.2.

In Section 3.3, I used techniques from adversarial machine learning to investigate

how the discrepancies between estimation methods can impact the performance of a

proof-of-concept deep learning model. A summary of this chapter is provided in Sec-

tion 3.4. The author brings to the reader’s attention that this chapter was published

in Boursalie et al., 2020b and reproduced with permission from the IEEE.

3.1 Effective Dose Estimation

Effective dose is a metric to estimate the uniform whole-body dose that has the

same nominal radiation risk compared to the nonuniform exposure from medical

imaging (ICRP, 2007). Effective dose enables the comparison of radiation exposure

between anatomical regions and modalities. The effective dose (EDP,x) for each scan

x per patient P is calculated using Eq. 3.1 (ICRP, 2007):

EDP,x =
1

2
·
∑
T

(wT ·GT (female) + wT ·GT (male)) (3.1)
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Table 3.1: Scanner parameters and equations used to estimate ED. c©2020 IEEE

Scanner
Parameters

Unit
DICOM

Tag
CT

(Toshiba)
CT

(GE)
XR

(All)

Manufacturer - (0008,0070) X X X
Model - (0008,1090) X X X
Age Year (0010,1010) X X X

Peak kVp V (0018,0060) - X X
CTDIvol mGy (0018,9345) X - -

I mA (0018,1151) - X X
τ ms (0018,1150) - X X

SPF mm (0018,9311) - X -
TCW mm (0018,9307) - X -
DSD mm (0018,1110) - - X

ED mSv - Eq. 3.1-3.2 Eq. 3.1-3.3 Eq. 3.1 and 3.4

where wT are weighting factors for each organ or tissue T from the International Com-

mission on Radiological Protection (ICRP, 2007). GT is the gender-specific equivalent

dose to each organ or tissue. Note that the weighting factors used to estimate ED are

averaged over age and gender (McCollough, Christner, & Kofler, 2010). As a result,

ED is a generic risk estimate and not the risk to a specific patient.

Calculating GT is modality and scanner-specific, as shown in Table 3.1. For CT,

the National Cancer Institute Dosimetry System for CT (NCICT) v2.1 (C. Lee, Kim,

Bolch, Moroz, & Les, 2015) was used to estimate GT using the following equation:

GT =
∑
R

wR · (
u=SEL∑
u=SSL

DCCT (organ, age, sex, kV p, u) · CTDIvol) (3.2)

where SSL and SEL are the scan start and scan end locations, respectively. DC is

a matrix of Monte Carlo calculations based on organ scanned, age, sex, peak x-ray

tube voltage (kVp), and scan slice number u (C. Lee et al., 2015). wR is a radiation
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weighting factor proposed by ICRP, 2007. CTDIvol is the volume CT dose index

reported by modern scanners. CTDIvol can also be derived for older scanners using

Eq. 3.3 (C. Lee et al., 2015):

CTDIvol =
nCTDIw(manufacturer,model, spectrum)

SPF
· (

I · τ
100

) · kOB (3.3)

where nCTDIw is the volume CT dose index selected from E. Lee, Lamart, Little,

and Lee, 2014 based on manufacturer, model, and spectrum (combination of tube

potentials and filtrations for a particular CT scan). SPF is spiral pitch factor, I is

tube current, τ is exposure time, and kOB is the overbeaming correction factor defined

by Reiser, Becker, Nikolaou, and Glazer, 2008. Interested readers are referred to Huda

and Mettler, 2011 for more information on the CT imaging scanner parameters used

to estimate ED.

For XR, the CalDose X v5.0 tool (Kramer, Khoury, & Vieira, 2010) was used to

estimate GT using the following equation:

GT =
∑
R

wR · DCXR(exam, position, projection,DSD, I · τ, kV p, age, sex) (3.4)

where DC is a matrix of Monte Carlo calculations based on imaging exam, patient

position (standing or supine), image projection, distance source to detector (DSD),

age, and sex.

Each imaging scan in this study was mapped to one of the exam types defined in

the European Commission Report N154 (European Commission, 2008) for CT (head,

neck, chest, abdomen, pelvis, and trunk) and XR (chest, cervical/thoracic/lumbar

spine, abdomen, and pelvis). Each imaging study contains multiple scans representing
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separate exposure events (e.g., a study has three scans). As a result, I calculated

the effective dose for each scan in a study separately. Interpolated imaging scans

(e.g, reconstructed, sagittal, and coronal) do not represent exposure events and were

excluded from the study. Imaging scans with missing dosage information (Table 3.1)

were also excluded. The distribution and mean effective dose for each exam type e

(µHAM,e) was calculated and compared to the EU mean dose (µEU,e). Outliers beyond

three standard deviations for each exam type were removed from the study.

In addition to calculating mean doses per exam type, each patient’s total effective

dose over the ten year study period was calculated. Two methods are used to estimate

total effective dose: 1) effective dose means from the EU survey (CP,EU ; European

Commission, 2015) and 2) effective dose calculated from imaging records (CP,HAM)

using Eq. 3.5 and 3.6, respectively. NP,e is the total number of scans per exam type

e for patient P and NP is the total number of scans per patient. The percentage

change per person (PCP ) is calculated using Eq. 3.7.

CP,EU =
E∑
e=1

µ
EU,e
·NP,e (3.5)

CP,HAM =

NP∑
x=1

EDP,x (3.6)

PCP =
CP,HAM − CP,EU

CP,EU
· 100 (3.7)
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Toshiba Aquilion 64
n=5,347 (72%)

GE Discovery CT HDF750
n=1,114 (13%)

GE LightSpeed
n=1,114 (15%)

Canon Inc. CXDI
n=10,074 (57%)

GE Global 1 Platform
n=4,807 (27%)

Siemens FD-X n=1,440 (8%)

Toshiba Infinix n=977 (5%)

Other n=467 (3%)

Figure 3.1: Distribution of CT (left) and XR (right) scans by model. c©2020 IEEE

3.2 Experimental Evaluation

In this section, the performance of mean imputation to estimate patients’ ED exposure

from individual medical scans and their total ED over the study period is evaluated.

3.2.1 Data Collection

A retrospective study was performed of all medical imaging scans from 2,000 patients

who received at least one low-dose scan (e.g., CT and XR) from four hospitals in

Hamilton, Ontario, Canada between May 2006 - 2016. The patients were a stratified

random sample representative of the patient cohort in MIIDD in terms of age of

first scan, sex, and body part scanned. In addition, the patients had above-average

cumulative ED exposure. This study was approved by the University ethics board.

3.2.2 Evaluation of Mean Imputation

The representative study sample of 2,000 patients had 18,875 imaging studies (5,357

CT and 13,518 XR studies) with 39,909 imaging scans (7,427 CT and 32,482 XR

scans) that resulted in low-dose radiation exposure. The breakdown of imaging scans

by manufacturer and model are shown in Fig. 3.1. The majority of CT scans (72%)
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were from Toshiba Aquiline 64 scanners and the ED was estimated using Eq. 3.1-3.2.

The remaining CT scans (28%) were from GE scanners and Eq. 3.1-3.3 were used to

estimate ED. The ED for XR scans were estimated using Eq. 3.1 and 3.4.

Figure 3.2 shows the estimated effective dose distributions, mean, and scan areas

for each CT and XR exam type. Chest, abdomen, and trunk scans had similar ED

distributions despite having different scan areas. Head CT scans had the lowest mean

ED (3.14 mSv) and the smallest distribution (1-5 mSv). Chest, abdomen, and trunk

CT examinations had the highest mean effective doses (12-17 mSv). Abdomen, tho-

racic and lumbar spine XR scans had the highest mean ED and similar distributions.

Unlike CT, chest and cervical spine XR scans (including neck) had the lowest effective

dose estimations. X-ray ED estimations were the result of all scan projections (e.g.,

anterior-posterior, posterior-anterior, left/right lateral, and posterior oblique).

The mean effective doses were then compared to the EU survey results. The

estimated mean CT effective dose for head, abdomen, and trunk agreed with the mean

doses in the EU survey. Similarly, the estimated mean for XR chest, spine (cervical,

thoracic and lumbar), and abdomen had good agreement with the EU survey means.

On the other hand, CT neck, chest, and XR pelvis estimates were higher than the EU

survey. In fact, the CT chest and XR pelvis estimate means were around two times

greater than the EU means. All EU effective dose means were within the distributions

for each exam type. The EU survey did not include the raw data, so statistical

comparisons such as t-test cannot be performed. The differences between the mean

doses may result from different scanning equipment, imaging protocols, patient sizes,

and training regiments across different institutions (Osei & Darko, 2013).
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Figure 3.2: Boxplot of CT (top) and XR (bottom) ED per exam type. Lines denote
the mean ED values from the literature (blue dashes) and this study (green dots).
Lines within boxplot boxes denote medians; notch denotes 95% confidence interval of
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respectively; vertical lines denote ranges (excluding outliers); and circles denote out-
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Les, 2015 and Kramer, Khoury, and Vieira, 2010, respectively) are shown below each
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shown. c©2020 IEEE
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Two design decisions in this study were identified that contributed to the dis-

crepancy between estimation methods. First, the definitions of the start and stop

positions impact the effective dose estimations because they determine which organs

or tissues are within the scan area for the ED calculator. The scan area definition was

a source of bias because scan definitions vary between institutions. For example, the

NCICT calculator default scan ranges are defined from the protocols at the National

Institute of Health Clinical Center in Bethesda, Maryland (C. Lee et al., 2015). The

chest scan area covers the clavicles to the bottom of the liver (Fig. 3.2). If we define

the chest scan area from the clavicle to the top of the liver, the ED estimation of the

CT chest scan is reduced by 20%. Similarly, the x-ray field positions can be defined in

CalDose X. Second, the different scanner models impacted the NCICT effective dose

calculations. For example, the effective dose for a male adult chest scan from Toshiba

Aquilion 64 Slice CT scanners was 10.49 mSv. On the other hand, the effective dose

estimation was 5.96 mSv from a Philips Brilliance 64 Slice CT scanner, decreasing

the average dose estimation by 56%.

Two main sources of bias were identified in this study. First, the NCICT tool

was used to estimate ED rather than the IMPACT calculator used in the EU dose

survey (European Commission, 2015). To investigate the bias from the NCICT cal-

culator, I compared the NCICT ED values with the estimations from the IMPACT

calculator. Second, different DICOM attributes for the Toshiba and GE CT scan-

ners were used to estimate ED. This bias was investigated by estimating ED using

age, kVp, x-ray current, exposure time, SPF, and total collimation width (TCW) for

all CT scans in this study. HHS’s protocol values for SPF and TCW were used for

Toshiba scans because the DICOM attributes are not recorded by the manufacturer.
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3.2.3 Evaluation of Total Patient Exposure Estimation

Figures 3.3a-b and 3.3d-e show the estimated CT and XR total effective doses for each

patient using the EU and HAM estimation techniques, respectively. The percentage

difference between the EU and HAM cumulative ED estimations for the CT and XR

scans are shown in Fig. 3.3c and 3.3f, respectively. Interestingly, there was a difference

between the total ED from each estimation method despite similar mean dose values

(Fig. 3.2). The total CT effective doses for 66% (807/1,223) of patients with a CT

scan history were overestimated using mean dose values from the literature while 34%

(416/1,223) of patients were underestimated. On the other hand, the total x-ray ED

for 45% (798/1,775) and 55% (977/1,775) of patients with XR scan histories were

over and underestimated, respectively, using mean dose values from the literature.

This study demonstrates the challenges of using mean ED values from the litera-

ture to estimate patient exposure from medical imaging. Mean effective doses were a

reasonable estimate of a patient’s average exposure from a single scan of a particular

exam type. However, the difference between patients’ total ED estimates from the

mean values from the literature and calculated from medical images accumulated over

time. For example, the number of scans per study is not captured in the health, imag-

ing, insurance, or billing records used to estimate patients’ total exposure (Eq. 3.5).

As a result, researchers may assume that each study contains one imaging scan that

results in patients’ low-dose radiation exposure. The findings in this study show that

CT and XR studies on average contained two imaging scans that results in patients’

low-dose radiation exposure (CT: range [1:13], XR: range [1:24]) which impacts the

total dose estimation. Ideally, a patient’s total effective dose should be estimated

33



Ph.D. Thesis - Omar Boursalie McMaster - Biomedical Engineering

X
R
 C

u
m

u
la

ti
ve

E
ff

ec
ti
ve

 (
m

S
v)

Patient ID

X
R
 P

er
ce

n
ta

g
e 

C
h
an

g
e 

(%
)

Patient ID
(f)

(e)

(d)

X
R
 C

u
m

u
la

ti
ve

 E
ff
ec

ti
ve

 (
m

S
v)

Patient ID

Patient ID

C
T 

Pe
rc

en
ta

g
e 

C
h
an

g
e 

(%
)

100

200

300

400

500

0

C
T
 C

u
m

u
la

ti
ve

 E
ff
ec

ti
ve

 (
m

S
v)

Patient ID

C
T
 C

u
m

u
la

ti
ve

 E
ff
ec

ti
ve

 (
m

S
v)

Patient ID

(c)

(b)

(a)

300 600 900 1200

200

300

400

0

500

600

100

200

300

400

0

500

600

100

300 600 900 1200

300 600 900 1200

80

0

40

20

60

500 1000 1500

500 1000 1500

80

0

40

20

60

100

120

500 1000 1500

-50

50

0

100

150

200

250

20% -20% 20% -20%

20% -20%

20% -20%

20% -20%

20% -20%
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δX

Figure 3.4: Adversarial attack where a perturbation δX results in misclassification

using each patient’s DICOM headers and images. Patient-specific dose reconstruc-

tion (Tian, Yin, Man, & Samei, 2013; De Man, Wu, FitzGerald, Kalra, & Yin, 2015;

Wu, Yin, & De Man, 2017) is a promising approach to more accurately estimate

patients’ ED exposures based on their body size and anatomy without computation-

ally expensive Monte Carlo simulations. Estimating effective dose for a large study

sample over a long period of time is challenging because it is difficult to collect the

medical images, protocols, and machine parameters for all imaging procedures.

3.3 Effect of Mean Imputation in Deep Learning

In adversarial machine learning, an attacker changes the input feature vector (X) by

a perturbation (δX) to generate an adversarial sample (X* = X + δX) that results

in a model misclassification (I. J. Goodfellow, Shlens, & Szegedy, 2015), as shown

in Fig. 3.4. Previous studies demonstrated that deep learning models are sensitive

to small input perturbations (I. Goodfellow, Shlens, & Szegedy, 2016). Interested

readers are referred to Vorobeychik and Kantarcioglu, 2018 for more information on

adversarial machine learning.
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In this study, the perturbation represents the difference between the mean effec-

tive doses from the literature used for imputation and the calculated dose estimates

from imaging scans. A proof-of-concept deep learning model was developed to in-

vestigate whether the impact of the two different imputation methods was similar

to the impact of the input set being perturbed by an adversary. The deep learning

model classified each patient’s exposure history as above or below the mean EU CT

cumulative exposure (µCEU(CT )
=37.81 mSv). Imaging records from patients with a

CT scan history (n=1,214) were used to train the model. The training set has six

features (fP,s) describing each patient’s total CT exposure per exam e (head, neck,

chest, abdomen, pelvis, and trunk) between 2006-2017. The CT ED exposure was

estimated using the EU mean values from the literature (fP,e = µ
EU,e
· NP,e). The

model’s architecture had an input layer with six neurons, as well as a hidden and

output layer with two neurons each. This model architecture was selected because

each input feature can be perturbed independently to change the model’s classifica-

tion. The model was trained using k-fold (k=10) cross-validation (CV) with 20% of

the training data used as the validation set. The L0 Carlini-Wagner attack strat-

egy (Carlini & Wagner, 2017) was used to calculate the perturbation required per

feature for each patient (δP,f ) to generate the adversarial examples for each test fold.

The adversarial examples were constrained to the distribution range of calculated ED

for each body part scanned. For example, an adversarial example of a chest CT scan

was limited between 1.5 and 43 mSv. The model’s performance against an increasing

maximum admissible perturbation (δmax; Melis et al., 2017) was also evaluated.

Figure 3.5 shows the absolute total perturbation (|δX |) required to result in a mis-

classification by the model. Figure 3.6 shows the impact of perturbations on model
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performance. 57% (691/1,214) of patients with a CT scan history required a |δX | ≤

30 mSv over all scans in ten years to be misclassified. The perturbation can be dis-

tributed among any of the patient scans over ten years. A perturbation of less than

30 mSv over ten years decreased the models’ average test accuracy by 20% (Fig. 3.6).

The required perturbation was within the distribution ranges for each CT body part

scanned (Fig. 3.2). Another focus in adversarial learning is examining the pertur-

bations for instances closest to the decision boundary which are most vulnerable to

misclassification. In this study, 26% (313/1,214) of patients with a CT scan history

were borderline patients that required a |δX | ≤ 10 mSv over ten years to be misclas-

sified. Such a perturbation can come from a single chest, abdomen, or trunk CT scan

(Fig. 3.2). A perturbation of ≤ 10 mSv over ten years decreased the models’ average

test accuracy by 12% (Fig. 3.6). The results also show that the deep learning models’

performance variability (error bars in Fig. 3.6) increased with δmax. The increased

variability reflects how the difference between estimation methods can accumulate

based on the patient’s number of scans and body part scanned. For example, head

CT scans had a smaller distribution then chest scans (Fig. 3.2) so a patient’s total

head exposure will be more representative compared to their total chest exposure.

The results demonstrate how small changes in the imputation method can impact a

deep learning model’s performance.

This study exhibits some limitations. Effective dose is an estimation of expo-

sure that cannot be directly measured or validated (ICRP, 2007). As a result, we

compared two techniques to estimate ED. In addition, the XR ED calculator does

not leverage scanner manufacturer and model values which may contribute to their

improved agreement with the literature mean dose estimations compared to CT.
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3.4 Summary

Collecting complete medical histories for a large patient cohort over a long period is

difficult due to technical, security, and privacy challenges. Imputation of missing data

is an important step in developing diagnostic models such as DTTHRE. In this chap-

ter, the mean imputation of ED was compared to estimations derived from medical

images. Despite the good agreement between the mean values, using literature val-

ues underestimated patients’ total ED. Techniques from adversarial machine learning

were used to demonstrate the impact of imputation on a deep learning model.

I conclude with the following implications based on this study:

1. Deep learning models are sensitive to the perturbations between im-

puted and actual values: Perturbations from imputation models had similar

effects on a deep learning model’s performance as adversarial attacks.

2. Discrepancies between the mean and actual values accumulated over

a patient’s medical history: The accumulating discrepancies had a cascading

negative impact on the performance of the deep learning model.

3. It is important to consider the underlying feature properties (e.g.,

mean and distribution) when imputing datasets for analysis by deep

learning models: This is the focus of the next chapter.
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Chapter 4

Evaluation Metrics for Deep

Learning Imputation Models

In Chapter 3, I demonstrated that mean imputation underestimates patients’ expo-

sure from medical imaging. Another approach is to impute the exposure for the 2.1

million imaging records in MIIDD using a deep learning imputation model trained

on the representative subset of 39,909 DICOM headers and diagnostic records. I was

interested in using deep learning for imputation because the models make no assump-

tions about the underlying distribution of the data (Pham et al., 2017). Existing deep

learning imputation models (Lall & Robinson, 2021; Nazabal et al., 2020; Yoon et al.,

2018) were assessed using RMSE, which evaluates predictive performance.

In this chapter, the limitations of the evaluation metric RMSE for assessing the

performance of deep learning-based imputation models is investigated (Fig. 1.1b). I

also review and assess metrics from the statistical literature (qualitative, predictive

accuracy, and statistical distance) to evaluate deep learning-based imputation mod-

els. A comparative analysis was conducted of two deep learning imputation models
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(MIDAs and GAIN) and a regression model (PMM) using two datasets from different

industry sectors: healthcare and financial. The results of the comparative analysis

show that contrary to the commonly used RMSE metric, the statistical metric Jensen

Shannon Distance (JSDist; Briet and Harremoes, 2009) best assessed the imputation

models’ performances. The regression model also ranked higher than deep learning

when evaluated using the JSDist metric.

This chapter is organized as follows. In Section 4.1, a survey of the available

evaluation metrics from the statistical literature to evaluate imputation models is

described. Next, a comparative analysis of deep learning imputation models using the

reviewed metrics is presented in Section 4.2. The limitations of using the evaluation

metrics to assess deep learning imputation models are discussed in Section 4.3. A

summary of this chapter is provided in Section 4.4. The author brings to the reader’s

attention that this chapter has been accepted for publication in Boursalie et al., 2021b

and reproduced with permission from Springer.

4.1 Evaluation Metrics

In the statistical literature, the evaluation metrics can be qualitative (e.g., histogram,

box, and density plots) or quantitative (e.g., predictive accuracy and statistical dis-

tance), as shown in Table 4.1. Predictive accuracy metrics measure the differences

between the imputed values and their corresponding actual values. RMSE is a pre-

dictive accuracy metric and is defined in Eq. 4.1 where b̂ and b are the imputed

and actual values for r observations, respectively. Smaller RMSE indicates better

agreement between the imputed and actual values.

Unlike predictive accuracy metrics, statistical distance metrics such as Cohen’s
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Table 4.1: Evaluation metrics summary. Reproduced with permission from Springer

Metric
Type

Metric Description Assumptions Used

Qualitative Histogram
Graph of
distributions

(Nguyen,
Carlin, & Lee,

2017)

Predictive
Accuracy

RMSE
Difference between
the predicted and
observed values

- Errors are
unbiased and
follow a normal
distribution

(Lall &
Robinson, 2021;
Yoon, Jordon, &
van der Schaar,

2018)

Statistical
Distance

CDT
Magnitude of
differences between
2+ groups

- Similar sizes
- Similar SD

φ-divergence
(KL & Jensen

Shannon
divergence,

JSDist)

Dissimilarity
between two
probability
distributions

- Xr = 0 means
Yr = 0

(Kingma &
Welling, 2014;

Nazabal, Olmos,
Ghahramani, &

Valera, 2020;
Nowozin, Cseke,

& Tomioka,
2016)

RMSE =

√∑R
r=0(b̂r − br)2

R
(4.1)

CDT =
µb − µb̂
SDpq

where SDpq =

√
SD2

b + SD2
b̂

2
(4.2)

JSDist =

√
KL(p, s)

2
+
KL(q, s)

2
where KL(a, b) =

abins∑
i=0

ai · log2(
ai
bi

), s =
p+ q

2

(4.3)
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Distance Test (CDT; Cohen, 1988) and φ-divergence measure the distance between

the actual (p) and imputed (q) probability densities. The CDT is defined in Eq. 4.2

where µ and SD are the mean and standard deviations of the actual and imputed

distributions. Distributions with small, medium, and large differences have a CDT

≤ 0.2, 0.2 < CDT ≤ 0.5, and 0.5 < CDT ≤ 0.8, respectively. φ-divergence metrics

estimate the divergence between p and q using Dφ(p||q) =
∫
p(x)φ( q(x)

p(x)
)dx where φ

is a class of distance functions. Examples of φ are the Kullback-Leibler (KL) diver-

gence (Kullback & Leibler, 1951), KL approximate lower-bound estimator (Arbel,

Zhou, & Gretton, 2021), and JSDist (Eq. 4.3). A JSDist = 0 indicates identical

distributions while JSDist = 1 represents maximally different distributions.

4.2 Comparative Analysis

In this section, the comparative analysis of qualitative, predictive accuracy, and sta-

tistical distance metrics to assess two deep learning imputation models (MIDAS and

GAIN) and a regression-based imputation model (PMM) on two tabular datasets is

presented. MIDAS and GAIN represent non-generative and generative deep learning

imputation models, respectively. PMM was selected as the benchmark model from

the statistical literature.

4.2.1 Data Collection and Processing

The imputation models (PMM, MIDAS, and GAIN) were evaluated on two tabular

datasets: 1) MIIDD and 2) Credit (Cr; Yeh and Lien, 2009). The MIIDD was collected

in a retrospective study I performed of all medical scans from 1,200 patients who
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Table 4.2: Continuous (C) and discrete (D) features from the MIIDD and Credit
dataset. Reproduced with permission from Springer

Dataset Instances Years Features Target Other Features

MIIDD

2,565 (4
hospitals,

1,200
patients)

May 2006
to May

2016

53 (31
C, 22

D)

Effective
Dose
(C)

1. Age of first scan (C), 2.
Date (C), 3. Sex (D), 4-
25. ICD-10 Diagnostic His-
tory (D), 26-47. Months
since last diagnosis (C), 48-53.
Number of CT and XR head,
neck, chest, abdomen, pelvis,
and trunk scans (C)

Credit
(Yeh &
Lien,
2009)

29,602 (1
bank,
29,602
clients)

May 2005
to Sept.

2005

30 (15
C, 15

D)
Age (C)

1. Sex (D), 2. Limit (C), 3-
7. Education (D), 8-10. Mar-
ried? (D), 11-16. Paid on
time? (D), 17-20. Amount
(C), 21-26. Amount paid (C),
27. Default next month? (D)

received at least one low-dose medical imaging scan (e.g., CT and XR) from four

hospitals in Canada between May 2006 and May 2016. The patients were a stratified

random sample representative of the target population in terms of age of first scan,

sex, and body part scanned. The patients also had above-average cumulative ED

exposure. All imaging scans were in the DICOM format. This study was approved

by the Hamilton Integrated Research Ethics Board. Information on the Credit dataset

is available at Yeh and Lien, 2009. The MIIDD and Credit datasets were selected for

this study because they have continuous and discrete features with no missing data.

The Credit dataset was also used to evaluate GAIN (Yoon et al., 2018).

Table 4.2 describes the characteristics of each dataset. Unlike previous stud-

ies (Lall & Robinson, 2021; Yoon et al., 2018), the imputation models’ performances
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on one target feature from each dataset were assessed to be consistent with the impu-

tation evaluation methodology (Chapter 2.2.2). Effective dose (fMIIDD,ED) and age

(fCr,A) in the MIIDD and Credit dataset were selected for imputation because they

are continuous features with non-normal distributions. There is also a relationship

between the target and the remaining features to build the imputation model. For

example, an important component in imputing temporal data such as EHR is the

correlations between features across time (Rahman, Huang, Claassen, Heintzman, &

Kleinberg, 2015). In this study, the ED exposure was related to the scan year as older

scanners have higher exposure rates.

The target imputation features, effective dose (fMIIDD,ED) and age (fCr,A), had

non-normal distributions. As a result, the imputation models were evaluated using the

original and quantile transform (QT; Pedregosa et al., 2011) features. The QT maps

each quantile of the non-normal feature distribution to the corresponding quantile

of the normal distribution (Beasley, Erickson, & Allison, 2009). Using QT, features

with non-normal distributions can be analyzed using statistical tests (e.g., parametric)

and machine learning models (e.g., Gaussian Naive Bayes) that require normal feature

distributions. Machine learning models have also shown improved performance using

QT features (L. Li, Song, & Yang, 2019).

4.2.2 Evaluation

The PMM, MIDAS, and GAIN imputation models were assessed using the evalua-

tion methodology described in Chapter 2.2.2 to impute missing data in the MIIDD

and Credit datasets. Increasing proportions of data MCAR (2%, 4%, 8%, 10%, 20%,

40%, and 80%) were introduced in ED (MIIDD) and age (Credit). Data MCAR was
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selected to be consistent with previous studies (Lall & Robinson, 2021; Yoon et al.,

2018). Missing data was imputed at each proportion using PMM, MIDAS, and GAIN.

The mean results (c = 5) were taken from the multiple imputation models (MIDAS

and PMM) to compare performance with GAIN. Previous studies (van Buuren, 2018)

have demonstrated that the imputation results did not significantly change when c >

5. The evaluation was then repeated five times. Data was randomly removed each

time. The imputation models were investigated using four evaluation metrics: 1)

Histogram (benchmark), 2) RMSE, 3) CDT, and 4) JSDist. The evaluation metrics

represent qualitative (histogram), predictive accuracy (RMSE), and statistical dis-

tance (CDT and JSDist). The qualitative performances (histogram) were plotted for

each run. In addition, the average RMSE, CDT, and JSDist performance over the

five runs were plotted. All experiments were conducted on a 64-bit Windows 7 laptop

with a 2.8 GHz Intel Xeon CPU and 16 GB RAM. The default PMM (Van Buuren

& Groothuis-Oudshoorn, 2010), MIDAS (Lall & Robinson, 2021), and GAIN (Yoon

et al., 2018) models were implemented using their respective open-source codes.

Figure 4.1 shows a subset of the qualitative histogram results (Full results are

shown in Fig. D.1 and D.2). fMIIDD,ED and fCr,A had non-normal distributions.

The No-QT-PMM, No-QT-MIDAS, and No-QT-GAIN models did not capture the

distribution of fMIIDD,ED and fCr,A. The imputed values from the non-generative

models (PMM and MIDAS) had more normal distributions centered on the average

values of the target features. On the other hand, the generative model (GAIN)

suffered from mode collapse (Srivastava, Valkov, Russell, Gutmann, & Sutton, 2017).

Mode collapse occurs when the GAIN discriminator does not distinguish well between

the actual and imputed data. As a result, the GAIN generator learns to fool the
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Figure 4.1: Histogram of fMIIDD,ED (left) and fCr,A (right) imputation at 2% and
80% missing data over two runs (rows). Reproduced with permission from Springer.
Full results are shown in Fig. D.1 and D.2

discriminator by generating modes of data that are not representative of the feature

distribution. The results show that PMM and MIDAS had improved performance

when fMIIDD,ED and fCr,A were represented using a QT. For PMM and MIDAS, the

imputation models better captured the distributions of fMIIDD,ED and fCr,A. The

QT-GAIN models did not capture the mode or distribution of the data.

The imputation models’ RMSE performances imputing fMIIDD,ED are shown in

Fig. 4.2a. The No-QT-MIDAS model had the best RMSE performance across all miss-

ing data rates. Next, QT-MIDAS had the second-best RMSE performance. Then,

the No-QT-PMM and QT-PMM models performed third best overall. The No-QT-

GAIN model had a similar performance to the MIDAS and PMM models for 2%-40%

missing rates. However, the No-QT-GAIN model’s mode collapse was poorly de-

tected using RMSE. The No-QT imputation models captured the fMIIDD,ED mean
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Figure 4.2: RMSE (a-b), CDT (c-d), and JSDist (e-f) evaluation results for fMIIDD,ED

(top) and fCr,A (bottom) at increasing missing data rates. Lines and error bars are
average performance over five runs. Reproduced with permission from Springer

(Fig. 4.1), which minimized their RMSE. The QT-GAIN model captured the maxi-

mum fMIIDD,ED values, which resulted in the worst RMSE performance. The impu-

tation models’ RMSE performances were consistent on the Credit dataset (Fig. 4.2b)

except for the No-QT-MIDAS, QT-MIDAS, and QT-PMM models, which had simi-

lar performances. Interestingly, the imputation models’ RMSE performances did not

agree with the qualitative results (Fig. 4.1). In addition, the improved distributional

performances of the QT models were not captured using RMSE.

Figure 4.2c shows the CDT performances for the fMIIDD,ED imputation models.

The No-QT MIDAS, No-QT-PMM, and QT-PMM models had the best CDT per-

formances. Next, the QT-MIDAS had the second-best CDT performance. Then, the

No-QT-GAIN and QT-GAIN models had the worst CDT performances. Similar to

RMSE, the GAIN model’s mode collapse was poorly detected using CDT. CDT com-

pares the mean and standard deviations of the actual and imputed data (Eq. 4.2). As

a result, the GAIN models had competitive and stable CDT performance despite not
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capturing the fMIIDD,ED distribution. The fCr,A imputation had similar CDT perfor-

mance (Fig. 4.2d) across all models. On the other hand, the fCr,A GAIN imputation

models had the most unstable CDT results. Like RMSE, the CDT results for both

datasets did not agree with the qualitative results (Fig. 4.1). Furthermore, the im-

proved distributional performances of the QT imputation models were not captured

using CDT.

The imputation models’ JSDist performances imputing fMIIDD,ED are shown in

Fig. 4.2e. The PMM models had the best JSDist performances for fMIIDD,ED im-

putation. Next, the QT-MIDAS had the second-best JSDist performance. Then,

the No-QT-MIDAS, No-QT-GAIN, and QT-GAIN models had the worst JSDist per-

formances. The No-QT-GAIN and QT-GAIN models also had the most unstable

JSDist performance. Unlike RMSE and CDT, the JSDist was sensitive to detecting

mode collapse in No-QT-GAIN and QT-GAIN. The GAIN model’s reconstruction

of the mean fMIIDD,ED value did not achieve competitive JSDist performance. On

the Credit dataset (Fig. 4.2f), the QT-PMM model had the best JSDist performance

while the No-QT-PMM model performed second-best. The No-QT-MIDAS, QT-

MIDAS, No-QT-GAIN, and QT-GAIN models had the worst JSDist performances.

Unlike the predictive accuracy metrics, the JSDist metrics for the fMIIDD,ED and

fCr,A imputation models agreed with the qualitative results. JSDist is a quantitative

implementation of the qualitative comparison (Fig. 4.1), so the agreement between the

evaluation metrics was understandable. The improved distributional performances of

the QT imputation models were captured by the JSDist metric.
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Table 4.3: Imputation models’ ranked performances (1 best, 4 worst) based on the
evaluation metrics. Reproduced with permission from Springer

MIIDD (ED) Credit (Age)
PMM MIDAS GAIN PMM MIDAS GAIN
No-
QT

QT
No-
QT

QT
No-
QT

QT
No-
QT

QT
No-
QT

QT
No-
QT

QT

Histogram 1 1 3 2 3 3 2 1 3 3 4 4
RMSE 3 3 1 2 3 4 1 2 1 1 3 3
CDT 1 1 1 2 3 3 1 1 2 3 4 4
JSDist 1 1 3 2 3 3 2 1 3 3 4 4

4.3 Limitations of Performance Metrics

Table 4.3 ranks each imputation model’s performance on each dataset based on the

qualitative, predictive accuracy, and statistical distance metrics. The qualitative

results were ranked based on a visual inspection of the mean and distribution recon-

struction (Fig. 4.1) across all runs. Based on the histogram (benchmark) results, the

QT-PMM would be selected for imputation in both datasets across all missing data

rates. However, the predictive accuracy metrics did not agree with the qualitative

and statistical distance results. The No-QT-MIDAS would be selected for the MIIDD

and the No-QT-PMM, No-QT-MIDAS, or QT-MIDAS models would be selected for

the Credit dataset based on RMSE. Using CDT, the No-QT-PMM, QT-PMM, or

No-QT-MIDAS model would be selected for the MIIDD while the No-QT-PMM or

QT-PMM would be selected for the Credit dataset. The JSDist ranking agreed with

the histogram results.

The qualitative results (Fig. 4.1) provided an initial check of the imputation

model’s performance (Nguyen et al., 2017) and context to the quantitative metrics.

For example, the qualitative results demonstrate that the poor performance of the
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GAIN models was due to mode collapse. The qualitative results can also be reviewed

by a domain expert. For example, a medical expert could review the qualitative

results of the No-QT-PMM and QT-PMM models (Fig. 4.2e).

The results demonstrate that the predictive accuracy metrics evaluated the impu-

tation model’s ability to capture the mean of the target distributions. For example,

RMSE directly compares the imputed estimates with the actual values rather than

compare the distributions (Eq. 4.1). Similarly, CDT compares the means and stan-

dard deviations of the imputed and actual distributions (Eq. 4.2). Interestingly, the

imputation models that generate more normal distributions (MIDAS and No-QT

models) minimized their RMSE and CDT (Fig. 4.2a-d) without capturing the distri-

bution of the target features. In fact, the PMM models that attempted to capture the

distribution of the target features (Fig. 4.1) had low RMSE and CDT performances

(Fig. 4.2a-d). In addition, the GAIN models demonstrate how competitive RMSE

and CDT results (Fig. 4.2a-d) can be achieved by imputing a single value due to

mode collapse. The results demonstrate how imputation models can achieve good

predictive accuracy performance (Fig. 4.2a-b) without capturing the distributions of

the features (Fig. 4.1).

The φ-divergence metric (JSDist) best assessed the imputation models’ perfor-

mances. Unlike predictive accuracy metrics, JSDist (Eq. 4.3) compares the target

and imputed distributions rather than comparing imputed instances directly with

their actual values. In this study, the target features had non-normal distributions.

As a result, imputation models that generate more normal distributions (GAIN and

No-QT) will diverge from the target feature distribution (Fig. 4.1). In addition, im-

putation models that capture the mean or mode of the data (Fig. 4.1) result in poor
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JSDist (Fig. 4.2e-f) performances despite competitive RMSE and CDT (Fig. 4.2a-d)

results. Divergence metrics have been used to evaluate generative deep learning mod-

els for image generation (Borji, 2019). The results demonstrate that φ-divergence

metrics can also be used to evaluate deep learning-based imputation models.

The goal of imputation is not to predict the missing data in a dataset as in

deep learning (van Buuren, 2018). Rather, the goal is to capture the underlying

dataset properties (e.g., mean and distribution) that are hidden by missing data to

prevent bias in the subsequent analysis. The qualitative, predictive accuracy and

statistical distance metrics did not agree because they evaluated different qualities of

the imputation model’s performance. RMSE and CDT compared mean reconstruction

while φ-divergence metrics examine the divergence between distributions. The results

demonstrate that previous studies that evaluated deep learning imputation using

predictive accuracy metrics (Lall & Robinson, 2021; Yoon et al., 2018) may not have

captured the overall performance of their models.

The dataset properties may determine the suitability of the evaluation metrics to

assess imputation models. For example, the statistical distance metric (JSDist) may

better capture the difference between the target and imputed distributions for non-

normal distributions compared to predictive accuracy metrics. Similar to statistical

tests (Biau, Kere is, & Porcher, 2008), the choice of metric may depend on the dataset

size. In this study, the metrics had similar performances (Fig. 4.2) between datasets

with different sizes (Table 4.1).

Previous studies (Lall & Robinson, 2021; Yoon et al., 2018) evaluated their deep

learning-based imputation model’s aggregate performance across all features with

simulated missing data. Unlike generative deep learning (Guan, Li, Yu, & Zhang,
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2018), only a subset of the imputed values are used to replace the missing data for

subsequent analysis. As a result, the aggregated performance may not represent the

deep learning-based imputation model’s performance on a single target feature.

This study exhibits the following limitations. First, the imputation models’ per-

formances on specific features (ED and age) were investigated. Second, data MAR

and MNAR were not investigated. Third, the default model architectures were used.

Improved model architecture and training could impact the performance ranking.

4.4 Summary

Deep learning imputations models are a promising approach to estimate missing data

in health records. Imputation models introduce their own level of uncertainty that

needs to be evaluated (Eekhout et al., 2012). In this chapter, I investigated the use of

evaluation metrics from the statistical literature (qualitative, predictive accuracy, and

statistical distance) to assess the performance of deep learning imputation models. I

performed a comparative analysis of two deep learning imputation models (DAE and

GAN) and a regression imputation model on two tabular datasets (healthcare and

financial). The results show that the statistical distance metric (JSDist) best assessed

the performances of the imputation models.

I conclude with the following implications for evaluating deep learning imputation

models based on this study:

1. Imputation is not prediction: Deep learning imputation models need to be

evaluated on their ability to capture underlying data properties instead of their

predictive performance.
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2. Qualitative, predictive accuracy and, statistical distance metrics eval-

uated different properties of the imputation model’s performance:

RMSE and CDT compared mean reconstruction while φ-divergence metrics ex-

amined the divergence between distributions.

3. Selecting the evaluation metric for assessing deep learning-based im-

putation models depends on the dataset properties: When selecting the

evaluation metric, researchers should consider the dataset size, distribution of

features, and proportion of missing data.
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Chapter 5

Temporally-Embedded Deep

Learning Model

An important characteristic of EHR is that they represent multiple episodes of a

patient’s point of care over time. In addition, the elapsed time between medical visits

is irregular. One approach for analyzing the temporal patterns in medical histories is

to encode each patient’s medical history as a sequence of diagnostic codes (Y. Li et

al., 2020; Rasmy et al., 2021). Transformers then analyze the sequence of diagnoses

to learn disease patterns. However, transformers do not consider the elapsed time

between medical visits when analyzing medical histories, which is an important factor

when assessing patients’ risk from medical imaging (National Research Council, 2006).

In this chapter, I propose and evaluate a decoder-only transformer model called

Decoder Transformer for Temporally-Embedded Health Records Encoding (DTTHRE)

that predicts the primary diagnosis for each visit using the patient’s medical history,

including the elapsed times between visits (Fig. 1.1c). The proposed model requires
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an encoding mechanism that embeds the irregular time series data in medical histo-

ries. Instead of diagnostic-level encoding, I propose to encode medical histories as

a sequence of medical events called Temporally-Embedded Health Records Encoding

(THRE). A proof-of-concept DTTHRE model was then used to analyze the imputed

MIIDD (Chapters 3 and 4) to investigate if embedding the time between visits impacts

predictive performance (Fig. 1.1d). The performance of DTTHRE on the MIIDD was

then compared to Med-BERT (Rasmy et al., 2021). DTTHRE successfully predicted

patients’ primary diagnosis in their final visit with improved predictive performance

(78.54 ± 0.22%) compared to Med-BERT (40.51 ± 0.13%).

This chapter is organized as follows. In Section 5.1, the challenges of analyzing

health records using transformers are reviewed. To address these challenges, the

proposed DTTHRE model and THRE mechanism are described in Section 5.2. In

Section 5.3, the evaluation of the proof-of-concept DTTHRE model is reported. A

summary of this chapter is provided in Section 5.4. The author brings to the reader’s

attention that this chapter has been accepted for publication in Boursalie et al., 2021a

and reproduced with permission from the IEEE.

5.1 Medical Records Characteristics and Decoder

Transformers

In this section, the characteristics of health records and decoder-only transformers

for diagnostic predictive models are reviewed.
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Figure 5.1: a) Raw, b) diagnostic-level, and c) THRE sequences of medical histories.
Elements from the same visit are in the contiguous thick border blocks. c©2021 IEEE

5.1.1 Medical Records Characteristics

Electronic health records are tabular datasets that contain demographic, diagnostic,

and treatment records for each patient. Medical histories contain irregular observa-

tions (Fig. 5.1a) as patients have different first and last visits, visit dates, number of

visits, and number of diagnosis and treatments per visit. We define each p = {1...P}

patient’s medical history as an irregular time series Hp = {vp,tn , n ∈ Z} with obser-

vation times tn+1 > tn, n ∈ Z where vtn is the patient’s nth medical visit at time

tn. Each medical visit contains the following: 1) demographic data (age and sex), 2)

diagnostic sequence of d = {1...D} codes, and 3) medicine or treatment sequence of

m = {1...M} codes.
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There is growing interest in encoding medical histories as sequences. Previous

studies (Y. Li et al., 2020; Rasmy et al., 2021) represented patients’ medical histories

as sequences of diagnostic-level codes hp = {d1,1
p , ..., dn,Dp }, as shown in Fig. 5.1b. In

sequential modeling, disease progression is modeled using visit and diagnostic order

(o = (n, d)) instead of time (tn). The position embedding for each element is used to

identify the corresponding visit. Representing medical histories as sequences enable

researchers to use sequential models designed for NLP for disease prediction.

Y. Li et al., 2020 and Rasmy et al., 2021 demonstrated that encoding diagnostic

codes as a sequence can be used for disease prediction without considering time.

However, time of exposure is an important feature when assessing patients’ risk from

exposure due to medical imaging (National Research Council, 2006). In fact, encoding

patients’ irregular exposure history as a sequence would remove patterns that need

to be modeled. In addition, encoding each diagnosis as a separate element (hp)

increases the search space as the model learns inter and intra-visit properties. There

is a need to develop an encoding representation for diagnostic and exposure histories

that incorporates time for analysis by transformer models.

5.1.2 Modeling Temporal Data Using Decoder Transformers

The transformer (Vaswani et al., 2017) is a deep learning sequential model that learns

weight-adjusted representations for each element in a sequence. Previous studies (Y.

Li et al., 2020) used encoder-only transformers to analyze patients’ medical histories

encoded as diagnostic sequences. The encoder-only transformer has bi-directional

attention heads so a weight-adjusted representation for each element is constructed

based on the remaining elements in the sequence.
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The transformer is designed for NLP where the distance between subsequent el-

ements is constant (λ = C). As a result, transformers cannot evaluate variable λ

in time series data. For example, music is a regular time series that has varying λt

between notes. The transformer assumes that λ = C regardless of λt. One solution

proposed by C. Huang et al., 2019 was to analyze piano music using a decoder-only

transformer (Vaswani et al., 2017). A decoder-only transformer, such as the Genera-

tive pre-trained transformer (GPT-2; Radford et al., 2019), is defined as:

{y1, ..., yi} = fc3(fd({x0, ..., xi−1})) (5.1)

that predicts each element in the sequence ({y1, ..., yi}) using the previous {x0, ..., xi−1}

terms. Like the encoder-only transformer, the decoder-only transformer consists of

stacked layers of multi-attention heads (fd) that construct a continuous representa-

tion of the input sequence. However, the decoder masked multi-attention heads are

uni-directional so each head pays attention only to the previous i − 1 elements in

the sequence. In addition, each element of {z0, ..., zi−1} in the final decoder layer is

passed through the feed-forward classification layer (fc3) to predict the next element

{y1, ..., yi} in the sequence. The combined classification loss from each predicted el-

ement is back-propagated through the model during training. The decoder model is

autoregressive and generative. For example, GPT-2 (Vaswani et al., 2017; Radford

et al., 2019) generates text by predicting each word in a sentence sequentially.

C. Huang et al., 2019 encodes the complex concepts in music (notes, velocity, and

time shifts) as events in a musical sequence. Specifically, music was represented as

MIDI (Musical Instrument Digital Interface) events (Oore, Simon, Dieleman, Eck,

& Simonyan, 2020) that include NOTES ON, NOTES OFF, note VELOCITY, and
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discretized TIME SHIFTS in 10 ms increments. C. Huang et al., 2019 then trained

a decoder-only transformer to generate music by predicting each musical event using

the previous events in the sequence.

The method described in C. Huang et al., 2019 for analyzing time series music

encoded as a sequence of events using a decoder-only transformer can be used to

analyze medical histories if the following limitations are addressed:

Limitation 1 (L1): If we encode health records as an event sequence as in C. Huang

et al., 2019, the decoder-only transformer would predict each medical event using

previous events from the same visit which would bias the model. For example,

consider a patient’s visit where the first and third diagnoses have a hierarchical

relationship. A decoder-only transformer could learn the multilevel relationships

between diagnostic codes (Choi et al., 2018) that are not related to predicting

disease. All events from the same visit must be analyzed by the decoder-only

model at once to predict disease progression.

Limitation 2 (L2): The decoder-only transformer model in C. Huang et al., 2019

predicts each event in the music sequence. The goal of the diagnostic model is

to predict the primary diagnosis for each patient’s visit, not each event in the

medical sequence (e.g., predict patient’s age and sex by analyzing diagnoses).

Limitation 3 (L3): In NLP, the elements in the sequence are the same data type

(words). Consequently, we sum the classification loss over all predicted elements to

update the model using backpropagation. In contrast, elements in medical records

contain multiple types of data such as age, sex, diagnoses, medication, and time

between visits. The diagnostic model’s classification loss must be evaluated on

predicting the primary diagnosis for each visit, not the next sequence element.
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5.2 DTTHRE Model

To address the gaps in the existing transformer diagnostic models, I propose: 1) a

medical encoding representation called THRE and 2) a diagnostic model called DT-

THRE. To address L1, the MIDI encoding described in Sect. 5.1.2 was extended for

medical records. The health records irregular time series (Hp) were encoded as a se-

quence of medical events (Fig. 5.1c). There are four types of medical events in THRE:

1) AGE, 2) SEX, 3) VISIT, and 4) DELTA TIME. AGE and SEX represent the pa-

tient’s age at their first visit and sex, respectively. VISIT is the visit-level embedding

of the diagnostic and medical/treatment observation sequences for each visit. Choi et

al., 2018 demonstrated that visit-level embeddings improved predictive performance

in deep learning models. DELTA TIME represents the time between subsequent visits

in monthly increments (Oore et al., 2020; C. Huang et al., 2019; Miotto, Li, Kidd, &

Dudley, 2016). I also extended the decoder-only transformer (Sect. 5.1.2) to analyze

medical events, as shown in Fig. 5.2. To address L1, the DTTHRE decoder layers

were modified to analyze the event-pairs for each visit (DELTA TIME and VISIT)

rather than each element. To address L2 and L3, the feed-forward classification layer

was modified to predict the next primary diagnosis (Table E.1) using the previous

VISIT representation state instead of predicting the next i element using the last i−1

representation state.

Formally, THRE is expressed as the sequence:

THREp = {ap, sp, v1
p,∆t(v2p,v1p), v

2
p, ...,∆t(vnp

p ,v
np−1
p )

, vnp
p }

where vnp
p = AE({dnp

p ,m
np
p }) (5.2)
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Figure 5.2: Proposed DTTHRE architecture. Elements from the same visit are in
the contiguous thick border blocks. c©2021 IEEE

where ap and sp are each patient’s AGE at first visit and SEX respectively, ∆t is

the time between subsequent visits (DELTA TIME), and vp is the visit-embedding

(VISIT) representation of the diagnostic and medical/treatment observations for each

visit. VISIT is generated by passing the concatenated diagnostic (d) and medi-

cal/treatment (m) observations for each visit through a trained auto-encoder (AE).

The first visit for each patient is described by {ap, sp, v1
p}. Subsequent patient visits

are described using the event-pair {∆t(vnp ,vn−1
p ), v

n
p }.

DTTHRE is defined as:

{l4, l6, ..., li} = fc4(fdec2({x0, ..., xi−1}) (5.3)

where fdec2 is the modified uni-directional decoder layers, fc4 is the new feed-forward

classification layer, and {l4, l6, ..., li} are the labels for the target positions {4, 6..., i}

in x. In fdec2, the three elements at the beginning of sequence {x0, x1, x2} (e.g., AGE,
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SEX, and VISIT 1) are always available to the decoder attention heads. In addition,

the masked self-attention heads were modified so pairs of elements are available to

the attention heads instead of individual elements (Fig. 5.2). Instead of predicting

the next element xi at each sequence position i (Eq. 5.1), the proposed decoder model

predicts the labels for select sequence positions {l4, l6, ..., li}.

THRE and DTTHRE can be used as elaborated in Algorithm 1. First, the diagnos-

tic codes and primary diagnoses for each visit are extracted from the temporal health

records Hp. Second, an auto-encoder AE is trained to generate the visit-level embed-

dings. Third, the THRE sequences (Eq. 5.2) consisting of AGE, SEX, DELTA TIME,

and VISIT medical events are constructed. Finally, DTTHRE (Eq. 5.3) is trained on

the THRE sequences and primary diagnoses.

5.3 Experimental Evaluation

An important step towards developing the medical imaging cancer risk assessment

model was to evaluate if embedding the elapsed time between visits impacts the

predictive performance of a proof-of-concept DTTHRE model. In this section, the

implementation and evaluation of two diagnostic models (Med-BERT and DTTHRE)

are described. DTTHRE is the proposed decoder-only transformer (Algorithm 1) that

predicts patients’ primary diagnosis for each visit by analyzing their medical histories

encoded using THRE. In contrast, Med-BERT (Rasmy et al., 2021) is based on the

commonly used encoder-only transformer and predicts patients’ primary diagnosis

for their final visit by analyzing their medical histories encoded using diagnostic-level

encoding.
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Algorithm 1 Training DTTHRE model on THRE sequences. c©2021 IEEE

Require: Patient electronic health records H0...HP

Ensure: THRE sequence THRE0...THREP , autoencoder AE, DTTHRE model,
and vocabulary V
. Extract diagnoses and primary diagnosis from H

1: for p := 0 to P do
2: for n := 1 to np do
3: vall.append(merge(dnp ,m

n
p ))

4: l[p].append(Primary diagnosis in visit n)
5: end for
6: end for
. Generate visit-level embeddings

7: AE ← Train visit-level embedding autoencoder using vall
8: vlut ← unique(vall)
9: vembeddings ← AE(vlut)
. Construct THRE sequences (Eq. 5.2)

10: for p := 0 to P do
11: THRE[p].append(Patient p age at first visit)
12: THRE[p].append(Patient p sex)
13: THRE[p].append(Find index of merge(d1

p,m
1
p) in vlut)

14: for n := 2 to np do
15: THRE[p].append(tn − tn−1)
16: THRE[p].append(Find index of merge(dnp ,m

n
p ) in vlut)

17: end for
18: end for

. Construct sequence vocabulary dictionary
19: V ← Construct LUT for each unique(THRE) element
20: V [Find index of vlut in V, 1]← vembeddings

. Train DTTHRE (Eq. 5.3)
21: for epoch := 0 to 100 do
22: for p := 0 to P do
23: Forward pass THRE[p] through fdec2
24: zvisits ← {z4, z6, ..., zi} from last decoder layer
25: lpred ← fc4(zvisits)
26: Backwards pass through fdec2 to update weights based on classification

loss(l[p], lpred)
27: end for
28: end for
29: return THRE0...THREP , AE, DTTHRE, V
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5.3.1 Data Collection and Exposure Estimation

The initial cohort consisted of 340,143 patients from the MIIDD who received at least

one low-dose medical imaging scan (e.g., CT and XR) from four hospitals in Canada

between May 2006 and May 2016. In this study, patients also met the following

inclusion criteria: 1) Patients had at least four visits with at least one diagnosis

per visit and 2) cancer patients were diagnosed ≥ 12 months after their first CT or

XR scan. The final cohort consisted of P = 66,906 patients with 60,206 non-cancer

and 6,700 cancer patients. Each patient’s medical history contained demographic,

health, and imaging records. Demographic data included the patient’s age, sex, year,

and month of the medical visit. Health records consisted of diagnostic codes in the

International Statistical Classification of Diseases and Related Health Problems (ICD-

10-CA) format (Canadian Institute for Health Information (CIHI), 2010). Imaging

records consisted of modality (CT or XR) and body part scan (e.g., head). This study

was approved by the University ethics board.

Patients’ ED exposure from medical imaging was estimated using the methodology

described in Chapter 4 (Boursalie et al., 2020b; Boursalie et al., 2021b). First, detailed

imaging exposure records (DICOM) were collected for a subset of 1,200 patients who

were a stratified random sample representative of the cohort in terms of age of first

scan, sex, and body part scanned. Second, ED calculators (Kramer et al., 2010; C.

Lee et al., 2015) were used to estimate ED using the DICOM headers (Boursalie et

al., 2020b). Third, a PMM imputation model (Van Buuren & Groothuis-Oudshoorn,

2010) was trained to impute the ED for the cohort (Boursalie et al., 2021b). Each

patient’s background ED exposure was also estimated (age∗1.7 mSv/year (Canadian

Nuclear Safety Commission (CNSC), 2020)).
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5.3.2 Health Records Encodings

Each patient’s medical history (Fig. 5.1a) was encoded using two encoding mech-

anisms: 1) Med-BERT (Rasmy et al., 2021) encoding (Sect. 2.3.2) and 2) THRE

(Eq. 5.2). In the Med-BERT embedding I encode: 1) 22 ICD-10-CA chapter codes,

2) background ED exposure quantized in 20 bins (range 0 to 190 mSv) (Canadian Nu-

clear Safety Commission (CNSC), 2020), 3) medical imaging ED exposure quantized

in 78 bins (range 0 to 770 mSv), and 4) cumulative ED exposure quantized in 171 bins

(range 0 to 1,700 mSv). Due to our limited dataset size (66,906 patients), the ICD-10-

CA codes were encoded at the diagnostic chapter level (Table E.1) rather then the five

character subcategory level used in Rasmy et al., 2021 (28 million patients). For ex-

ample, ICD-10-CA codes I21.09 (Myocardial Infarction, Acute, Anterior) and I25.10

(Atherosclerotic heart disease of native coronary artery without angina pectoris) were

encoded as ICD-10-CA Chapter 9 (Circulatory disease) in this study. Visits with no

diagnoses (only imaging scans) were not included in the diagnostic code sequence.

Instead, the medical imaging ED exposure was added to the cumulative ED total

for each patient. Similarly, background, medical imaging, and cumulative ED ex-

posures from all visits in the same month were represented as one element each and

appended to the sequence after the diagnostic codes from the last visit in that month.

The diagnoses, background, medical imaging, and cumulative ED exposure per visit

were encoded as elements in each patient’s Med-BERT sequence. The diagnoses were

ordered in the sequence based on their order in each visit. The sequence position

embedding was used to identify the corresponding medical visit for each element.

THRE (Section 5.2) encodes patients’ medical histories as a sequence of AGE,

66



Ph.D. Thesis - Omar Boursalie McMaster - Biomedical Engineering

SEX, DELTA TIME, and VISIT medical events. First, AGE represented the pa-

tient’s age at their first visit in 0 to 100 years (101 elements) while SEX was male

or female (2 elements). Second, DELTA TIME represented the month between visits

and increments from 0 to 93 months (94 elements). Third, each medical VISIT was

a 160-bit embedding of a 286-bit diagnostic-level vector. Each diagnostic-level vector

consisted of the ICD-10-CA chapter codes (22 bits), and quantized background (20

bits), medical imaging (78 bits), and cumulative (171 bits) ED exposure. Effective

dose exposures from medical visits with no diagnoses were added to the cumulative

ED total. The resulting 286-bit diagnostic-level vectors were embedded using an

autoencoder into a 160-bit VISIT-level events (81,244 elements).

5.3.3 Diagnostic Prediction Transformer Models

Two diagnostic prediction models are compared: 1) Med-BERT (Sect. 2.3.2) and 2)

DTTHRE (Sect. 5.2). Both models were implemented in HuggingFace PyTorch (Wolf

et al., 2020). I modified the HuggingFace GPT-2 model (Sect. 5.2) to implement

DTTHRE. Both models had six layers, eight attention heads per layer, and the hidden

and embedding dimensions were 160-bits. The AdamWeight decay optimizer (Kingma

& Ba, 2015) was used with a learning rate of 1e-5 and a dropout rate of 0.1.

The models have different optimization goals during training. Med-BERT has two

training objectives (Eq. 2.1): 1) predict the primary ICD-10-CA chapter diagnosis

(Table E.1) of the last visit using the patient’s medical history and 2) predict the

randomly masked diagnoses in the patient’s medical history sequence (MLM). On

the other hand, the DTTHRE model’s learning objective (Eq. 5.3) is to predict the

primary diagnosis for each visit based on their medical history up to that visit. To
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compare DTTHRE to Med-BERT, I also evaluated DTTHRE’s ability to predict the

primary diagnosis of the final visit using the patient’s medical history.

Med-BERT and DTTHRE were trained using stratified k-fold CV, where the

dataset is split into k = 5 folds that contain the same proportion of class labels as

the overall cohort (90% non-cancer, 10% cancer). Both models were then trained k

times, using the k-1 folds (80% of the cohort) for the training set while the kth fold

(20% of the cohort) was used for the test set. 25% of the training set was used for

the validation set. All models were trained on a GeForce RTX 2080 Ti GPU for 100

epochs with early-stopping and a batch size of 1. The models were not pretrained

and fine-tuned to prevent the dataset (66,906 patient histories) from being further

split. Results are summarized as mean ± standard error (SE).

5.3.4 Evaluation of Diagnostic Prediction Models

Table 5.1 shows the characteristics of the cohort and encoding mechanisms. The

patients in this cohort had an average of 8 ± 0.02 medical visits with an average of 2 ±

0.003 diagnoses per visit along with their background, medical imaging, and total ED

exposure. The Med-BERT diagnostic-level encoding resulted in long sequences (24.20

± 0.07 elements per patient) which increases the search space for Med-BERT. On the

other hand, THRE encoded the medical histories using shorter sequences (7.99 ±

0.03 events per patient) that incorporates more properties of the health records (age,

sex, and time between visits) compared to Med-BERT. THRE resulted in a smaller

search space compared to diagnostic-level encoding. However, Med-BERT encodes

the visit order using the BERT’s position embedding while THRE does not. The

vocabulary for Med-BERT (281) was also smaller than THRE (81,440) and Rasmy et
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Table 5.1: Characteristics of the cohort and encoding mechanisms (Mean ± SE).
c©2021 IEEE

Med-BERT DTTHRE

Transformer
BERT (Devlin, Chang,

Lee, & Toutanova, 2019)
Modified Decoder

(Alg. 1)

Encoding
Med-BERT (Rasmy, Xiang,

Xie, Tao, & Zhi, 2021)
THRE (Sect. 5.2)

Layers 6 layers (8 attention heads per layer)

Learning objective

1) Predict final visit pri-
mary diagnosis
2) Predict randomly
masked elements (MLM)

1) Predict each visit pri-
mary diagnosis

Cohort size 66,906

Avg. visits per patient 8.00 ± 0.020 (Max: 96, Min 4)

Avg. Dx per visit 2.27 ± 0.003 (Max: 25, Min 1)

Avg. elements
per patient

24.20 ± 0.07
(Max: 398, Min: 6)

14.53 ± 0.03
(Max: 193, Min: 9)

Max sequence length 400 195

Vocabulary
Dx (22), Background
(20)/ imaging (78)/

total ED (171)

Age (100), Sex (2),
Elapsed time (94),

Visits (81,244)

Vocabulary size 291 81,400

Age N Y
Sex N Y

Diagnoses Y Y
Background ED Y Y

Imaging ED Y Y
Total ED Y Y

Visit representation
Position label
denotes visits

Visit-level embedding

Diagnosis order Y N
Time between visits N Y
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Table 5.2: Med-BERT and DTTHRE’s precision and recall performances (mean ±
SE) predicting patients’ primary diagnosis in their final medical visit. The average
k = 5 cross-validation results on the test folds are shown. c©2021 IEEE

ICD Number of Med-BERT DTTHRE
Chapter Samples Precision Recall Precision Recall

Code (Mean ± SD) (%) (%) (%) (%)

1 318± 57 68.41± 2.94 17.02± 0.22 92.74± 1.10 73.80± 0.41
2 136± 24 48.31± 1.37 18.52± 0.65 82.18± 3.36 53.22± 0.88
3 44± 8 67.41± 1.76 36.94± 1.09 81.73± 2.76 36.13± 1.02
4 98± 17 70.76± 1.33 46.71± 0.93 61.69± 3.56 35.46± 1.36
5 123± 22 63.74± 0.97 30.03± 0.76 83.19± 2.28 60.89± 1.01
6 142± 25 57.83± 1.68 22.83± 0.44 83.67± 2.14 68.05± 0.89
7 62± 11 20.00± 8.00 0.19± 0.08 97.99± 0.24 78.56± 0.99
8 133± 24 30.36± 0.72 6.97± 0.43 98.23± 0.35 88.23± 0.34
9 595± 106 67.28± 0.66 55.95± 0.35 61.86± 1.68 69.61± 0.96
10 741± 132 40.93± 0.38 50.68± 0.42 81.43± 1.27 81.65± 0.63
11 562± 101 50.27± 1.43 33.13± 0.59 69.86± 0.85 79.56± 0.55
12 188± 33 55.91± 2.37 13.08± 0.29 89.67± 1.15 73.12± 0.29
13 545± 97 37.96± 1.22 20.53± 0.52 86.42± 1.38 82.25± 0.33
14 322± 58 49.63± 1.60 30.45± 0.56 73.15± 1.20 69.79± 0.36
15 58± 10 34.87± 0.66 31.27± 0.83 88.47± 1.10 76.07± 0.61
17 18± 3 34.00± 2.71 10.36± 1.92 85.30± 2.42 58.62± 1.79
18 1,483± 265 34.75± 0.45 50.88± 0.95 78.06± 1.87 82.16± 0.76
19 1,415± 253 36.60± 0.35 55.38± 0.91 83.09± 1.18 89.22± 0.34
21 458± 82 37.55± 1.33 23.34± 0.88 91.18± 1.02 73.36± 0.44

al., 2021 (82,603) since the ICD-10-CA codes were encoded at the diagnostic chapter

level rather then the subcategory level used in Rasmy et al., 2021.

Table 5.2 and Figures E.1 and E.2 show the test performances of the Med-BERT

and DTTHRE models to predict patients’ final primary diagnosis. The Med-BERT

implementation had an average test accuracy of 40.51 ± 0.13% predicting the primary

diagnosis for each patient’s final medical visit. As shown in Table 5.2 and Fig. E.1,

Med-BERT learned to predict that the primary diagnosis will be from either of the
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Table 5.3: DTTHRE’s precision and recall performance (mean ± SE) predicting
patients’ primary diagnosis in each medical visit. The average k = 5 cross-validation
results on the test folds are shown. c©2021 IEEE

ICD Chapter Number of Samples DTTHRE
Code (Mean ± SD) Precision (%) Recall (%)

1 3,129± 12 91.91± 0.86 76.78± 0.24
2 1,067± 9 83.62± 3.30 59.18± 1.14
3 517± 3 85.08± 2.41 37.72± 0.82
4 1,062± 7 69.98± 3.31 42.73± 1.18
5 1,347± 13 83.81± 1.76 66.91± 1.10
6 1,553± 10 84.81± 1.67 67.42± 0.72
7 648± 5 98.32± 0.26 76.31± 0.49
8 1,435± 3 97.15± 0.31 87.10± 0.27
9 5,912± 19 63.72± 1.68 71.93± 0.83
10 7,487± 21 82.48± 0.90 84.05± 0.41
11 6,522± 24 71.60± 0.88 80.55± 0.46
12 2,149± 11 90.45± 0.82 72.78± 0.53
13 6,012± 29 87.21± 1.07 83.58± 0.40
14 3,732± 11 79.23± 0.97 74.96± 0.32
15 506± 4 87.01± 1.26 79.14± 0.12
16 40± 2 88.55± 2.10 51.70± 1.32
17 224± 2 89.15± 1.01 55.05± 0.71
18 15,349± 39 78.28± 1.75 82.07± 0.68
19 13,637± 32 82.86± 1.24 89.00± 0.33
21 4,829± 30 90.32± 0.96 72.99± 0.45

two most common diagnostic codes (ICD-10-CA Chapters 18 and 19 (Table E.1)). On

the other hand, the DTTHRE model (THRE encoding) was successful in predicting

the primary diagnosis for each patient’s final medical visit with a test accuracy of

78.54 ± 0.22%, as shown in Table 5.2 and Fig. E.2. DTTHRE performance was also

consistent across all primary diagnoses. Furthermore, DTTHRE achieved an average

test accuracy of 79.53 ± 0.25% predicting patients’ primary diagnosis for each medical

visit, as shown in Table 5.3 and Fig. E.3. An advantage of the proposed model was
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Table 5.4: Study findings

1. DTTHRE successfully predicted patients’ health outcomes by analyzing medi-
cal records, including the elapsed time between visits, with an average accuracy
of 79.53 ± 0.25%

2. DTTHRE, a decoder-only transformer, had improved performance (78.54 ±
0.22%) compared to Med-BERT, an encoder-only transformer model from the
literature, (40.51 ± 0.13%) for health outcome prediction

3. THRE encoding representation is a promising approach to capture complex
hierarchies and relationships for analysis using transformer models

that DTTHRE predicted a primary diagnosis for each patient’s visit which increased

the number of training examples for the model. In fact, DTTHRE’s training set size

was increased to
∑P

p=0 np with no additional training time.

5.3.5 Discussion

Table 5.4 summarizes the three main findings in this chapter. First, I proposed

and demonstrated a proof-of-concept DTTHRE model that successfully predicted

patients’ diagnoses for each medical visit with an accuracy of 79.53 ± 0.25% on a real-

world dataset. In DTTHRE, I also proposed THRE which extends the music encoding

representation used by C. Huang et al., 2019 to encode medical visits, including the

elapsed time between visits. The DTTHRE model and THRE encoding can be used

for other health prediction tasks that require the analysis of the elapsed time between

visits such as the risk of hospital readmission, infection (Wiens, Guttag, & Horvitz,

2016), and mortality prediction.

Second, DTTHRE, a decoder-only transformer, had improved performance (78.54
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± 0.22%) predicting patients’ primary diagnosis in their final visit compared to Med-

BERT (40.51 ± 0.13%), an encoder-only transformer. An advantage of the decoder-

only transformer was that the attention heads are uni-directional so the model predicts

each element in the sequence using previous elements. On the other hand, the encoder-

only transformer’s attention heads are bi-directional which predicts each element

using all the remaining elements. As a result, the decoder-only transformer predicts

the primary diagnosis for each visit in a patient’s medical history which increases

the training set size without additional training time. To achieve the same result in

an encoder-only model, we would need to present each visit as a separate training

sequence which would increase the training set size by a factor of np. However,

presenting segments of the same patient’s medical sequence multiple times to the

encoder-only model for each visit may bias the model.

Third, encoding mechanisms such as THRE are a promising method to represent

different data types (e.g., demographic, diagnostic, and exposure from medical imag-

ing) for analysis using transformers. Existing transformer models have been used

to analyze one data type such as text (Vaswani et al., 2017) and diagnoses (Rasmy

et al., 2021). Additional features such as sequence position (Vaswani et al., 2017)

and age (Y. Li et al., 2020) have been incorporated into transformers by adding them

to each element in the sequence. Instead of summing features for each element, C.

Huang et al., 2019 encoded multiple types of music data (time, notes on/off, and

velocity) as elements in a music sequence. However, encoding medical record ob-

servations such as age, sex, the elapsed time between visits, diagnostic codes, and

exposure levels as elements would result in a large model vocabulary that increases

the transformer’s size and training time. This study demonstrates that encoding
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mechanisms can embed different data types for analysis using transformers. THRE

can be extended to analyze other types of observations stored in health records such

as medication and laboratory history (Choi et al., 2018).

5.3.6 Limitations

This study exhibits some limitations. First, an important component of EHR is

their multi-level structure (Mirtchouk, Srikishan, & Kleinberg, 2021) which was not

captured by THRE. Instead, THRE encodes the diagnostic and exposure codes for

each medical visit as a concatenated visit-level encodings (Algorithm 1 Step 7 - 9). For

example, the primary, secondary, and tertiary diagnoses in each visit are concatenated

into a visit-level embedding. As a result, DTTHRE does not learn the hierarchical

relationships in EHR. Previous studies (Choi et al., 2018; Mirtchouk et al., 2021) have

proposed encoding mechanisms for EHR that encodes hierarchical EHR relationships

that had improved performance compared to concatenated visit-level embeddings.

Second, I trained the DTTHRE and Med-BERT models using ICD-10-CA chap-

ters code (e.g., lung and brain cancer are assigned as cancer elements). In contrast, Y.

Li et al., 2020 and Rasmy et al., 2021 trained their encoder-only diagnostic trans-

formers (e.g., Med-BERT) on detailed ICD-10-CA diagnostic codes (e.g., lung and

brain cancer are assigned their own elements). In this study, using ICD-10-CA chap-

ter codes decreased the vocabulary size for the Med-BERT (22 elements) compared

to Rasmy et al., 2021 (82,603 elements) and DTTHRE (81,400 elements). There is a

need to compare DTTHRE to Med-BERT using detailed ICD-10-CA codes on a large

dataset. For example, DTTHRE and Med-BERT could be evaluated on the Medical

Information Mart for Intensive Care (MIMIC; Johnson et al., 2016) dataset.
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Third, DTTHRE assigns each element in the THRE sequence a distinct position

label i despite elements in the sequence belonging to the same visit. Instead, all

elements for each medical visit are provided to the DTTHRE’s modified attention

heads (Fig. 5.2). On the other hand, Y. Li et al., 2020 and Rasmy et al., 2021 labeled

diagnoses from the same visit (e.g., {0, 0, 1, 1, ..., np}), as shown in Fig. 5.1b. As a

result, DTTHRE needs to learn that elements are grouped together while Med-BERT

does not. There is a need to extend DTTHRE to include visit labels.

5.4 Summary

In this chapter, the design of a new model (DTTHRE) and encoding mechanism

(THRE) for analyzing irregular health record histories was reported. DTTHRE pre-

dicts patients’ diagnoses for each visit by analyzing their medical histories, including

the elapsed times between visits. A proof-of-concept DTTHRE was evaluated using

a real medical dataset (MIIDD) and compared to an existing diagnostic transformer

in the literature (Med-BERT). The proof-of-concept DTTHRE model successfully

predicted patients’ diagnoses with improved performance compared to Med-BERT.

I conclude with the following implications for temporally-embedded transformers

based on this study:

1. Decoder-only transformers are a promising approach for analyzing

datasets with temporal properties such as health records: In this thesis,

a proof-of-concept DTTHRE successfully predicted patients’ primary diagnoses

by analyzing a real medical dataset, including the elapsed time between visits.
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2. Decoder-only transformer’s uni-directional attention heads enables

the model to predict patients’ diagnoses for each visit with no addi-

tional training time: While encoder-only transformers predict the primary

diagnoses for their last visit based on their medical history, the DTTHRE model

predicts the primary diagnosis for each visit based on their previous medical vis-

its. As a result, the training set size was increased by treating each visit as a

separate training example for the model.

3. Encoding representations such as THRE is a promising approach

to capture complex hierarchies and relationships for analysis using

transformers: Existing NLP (Vaswani et al., 2017) and diagnostic transformer

models (Rasmy et al., 2021) encode each word and diagnosis as sequence ele-

ments which increases the transformer’s size and training time. Encoding repre-

sentations such as THRE provide researchers a mechanism to analyze complex

concepts while decreasing the transformer’s size.
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Chapter 6

Conclusions and Future Work

In this chapter, the thesis contributions are summarized and future work is discussed.

6.1 Summary of Contributions

The original objective for this research was to develop an exposure risk assessment

model based on deep learning to monitor the cancer risks of low-dose radiation from

medical imaging. During this research, I encountered two important challenges esti-

mating patients’ exposure from medical imaging and analyzing their exposure pat-

terns over time using deep learning. First, due to technical and privacy challenges,

only a representative sample of medical images to estimate patients’ exposure was

accessed (Fig. 1.1a). As a result, imputation models must be used to estimate the

missing exposure data in the MIIDD (Fig. 1.1b). Second, transformer models lack

a mechanism to analyze temporal patterns in health records (Fig. 1.1c). Thus, the

scope of this thesis was narrowed to investigate the challenges of using imputation

and transformer models for predictive modeling in healthcare.
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6.1.1 Evaluation of Imputation Models in Deep Learning

To address the first challenge of evaluating the imputation of missing data in health

records (Fig. 1.1b), I demonstrated how adversarial machine learning techniques can

be used to evaluate the performance of imputation models and their subsequent im-

pact on deep learning models. Unlike adversarial learning, the perturbation between

the imputed and actual values is a result of the imputation model rather than a ma-

licious actor. The perturbation ranges required to impact model performance were

determined. I then compared the calculated perturbations ranges to the differences

between mean imputed and actual values. Despite the good agreement between the

mean values, the results show that the differences between the estimation methods

were enough to cause model misclassification. The findings in this thesis open new

research opportunities to use concepts from adversarial machine learning to improve

our understanding of the impact of imputation on deep learning.

I also assessed the performance of deep learning imputation models using the

RMSE evaluation metric as in previous studies (Lall & Robinson, 2021; Yoon et al.,

2018). However, I found that the RMSE performance did not agree with the qualita-

tive evaluation using histograms. Addressing this discrepancy led to a comparative

analysis between RMSE and evaluation metrics in the statistical literature, including

qualitative, predictive accuracy, and statistical distance. The results of this study

demonstrate that qualitative, predictive accuracy, and statistical distance metrics

evaluated different qualities of the deep learning imputation model’s performance.

As a result, previous studies (Lall & Robinson, 2021; Yoon et al., 2018) that evalu-

ated deep learning imputation using a predictive accuracy metric (RMSE) may not

have captured the overall performances of their models. The comparative analysis in
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this thesis can serve as a reference to future researchers when evaluating their own

deep learning imputation models.

6.1.2 Model to Analyze Temporal Health Records

Existing diagnostic transformer models (Y. Li et al., 2020; Rasmy et al., 2021) lack

a mechanism to analyze the elapsed time between medical visits. To address the

second challenge of analyzing the temporal characteristics of medical histories using

deep learning (Fig. 1.1c), I proposed DTTHRE (Decoder Transformer for Temporally-

Embedded Health Records Encoding). DTTHRE predicts patients’ diagnoses by

analyzing their medical histories. In DTTHRE, instead of diagnostic-level encoding, I

proposed an encoding representation for health records called THRE. THRE encodes

patient histories as a sequence of medical events such as age, sex, and diagnostic

embedding while incorporating the elapsed time between visits.

A proof-of-concept DTTHRE model was evaluated on a real-world medical dataset

(Fig. 1.1d). DTTHRE successfully predicted patients’ primary diagnoses for each

visit. In addition, DTTHRE predicted patients’ primary diagnosis in their final visit

on a real-world medical dataset with improved performance compared to an existing

diagnostic transformer model in the literature (Med-BERT). DTTHRE can be used

for risk assessment models that require analyzing the time between exposure events

such as radiation, pollution, and pharmacokinetics.
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6.2 Future Work

In this section, recommendations for future work are discussed in three areas: 1)

improve the robustness of deep learning models to imprecise imputation methods,

2) extend the imputation evaluation methodology to deep learning models, and 3)

extensions to the DTTHRE model.

In Chapter 3 (Fig. 1.1b), I demonstrated how techniques from adversarial learn-

ing can be used to evaluate the impact of mean imputation on deep learning. Future

work can focus on extending this study to evaluate the performance of statistical and

deep learning models presented in Chapter 4 (MIDAS, GAIN, and PMM) in deep

learning. In addition, a growing area of interest in adversarial learning is developing

defences against adversarial attacks (Madry, Makelov, Schmidt, Tsipras, & Vladu,

2018; Ren, Zheng, Qin, & Liu, 2020). For example, Tramer et al., 2018 proposed

Ensemble Adversarial Training, a technique that augments training data with per-

turbation examples transferred from other models. Tramer et al., 2018 demonstrated

that providing the model examples of perturbations provided robustness to adver-

sarial attacks. Similarly, Liang and Samavi, 2020 demonstrated how a deep learning

defence of ensemble networks and noisy layers can provide protection against adver-

sarial examples while retaining accuracy. Interesting future work in this direction

would be extending the proposed defences for adversarial attacks (Tramer, Carlini,

Brendel, & Madry, 2020) to improve the robustness of deep learning to perturbations

caused by imprecise imputation models. Third, the proof-of-concept deep learning

model in Chapter 3 aggregated all data over each patient’s medical history (patient-

level encoding). There is a need to extend the work investigating adversarial attacks

in sequential transformer models (Zhu et al., 2019; J. Li, Cao, Zhang, Chen, & Tan,
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2021) to improve the model’s performance analyzing datasets with imputed data.

Specifically, future studies can focus on evaluating the impact of imputing features

that accumulate over time (e.g., exposure).

The goal in Chapter 4 (Fig. 1.1b) was to evaluate the performance of imputation

models to estimate ED exposure from medical imaging. To achieve this goal, I focused

on evaluating the performance of deep learning imputation models for a single feature

(ED) in the MIIDD. An advantage of deep learning was that multiple missing features

can be imputed using one model. There is a need to investigate how deep learning

imputations perform for multiple features compared to statistical imputation models.

I also identified two limitations using the existing imputation evaluation methodology

(Sect. 2.2.2) to assess deep learning imputation. First, evaluating aggregated perfor-

mance across multiple features with missing data may not represent the imputation

model’s performance for a target feature. Second, the suitability of the evaluation

metrics may depend on dataset properties such as normal vs non-normal distribution,

size, and proportion of missing data. As a result, there is a need for an evaluation

methodology for deep learning imputation. As the first step in this direction, I am

extending the imputation evaluation methodology (MIT Critical Data, 2016) to rank

deep learning models on multiple features with missing data. Future work will also

focus on investigating additional evaluation metrics (similar to the study by Borji,

2019 for evaluating GAN image generation) such as mean absolute percentage er-

ror, statistical distance, and integral probability metrics (Sriperumbudur, Fukumizu,

Gretton, Scholkopf, & Lanckriet, 2012).

In Chapter 5 (Fig. 1.1c), I proposed the DTTHRE model and THRE to analyze

medical histories, including the elapsed time between patient visits. DTTHRE can
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be extended from practical and theoretical perspectives. From a practical standpoint,

DTTHRE can be used for other medical prediction tasks such as single disease predic-

tion (e.g., cancer), risk of hospital readmission, and mortality prediction. In addition,

DTTHRE can be extended to analyze other types of observations stored in health

records such as medication and laboratory history (Choi et al., 2018). From a theo-

retical standpoint, the attention heads in DTTHRE can be visualized (Vig, 2019) to

investigate the factors and relationships, including the elapsed times between events,

learned by the model. For example, Y. Li et al., 2020 and Rasmy et al., 2021 used

visualization techniques proposed by Vig, 2019 to investigate the diagnostic patterns

learned by the models. The patterns and relationships learned by the models were

then validated by clinical experts. Similarly, B. Huang, Law, and Khong, 2009 vi-

sualized the attention distribution of their decoder-only transformer to investigate

what previous sequence elements the model was using to generate the next musical

events. Combining DTTHRE with visualization techniques provides us a mechanism

to investigate the diagnostic, exposure, visit, and temporal relations learned by the

model to identify medical risk factors and relationships. Visualization of the model’s

attention heads will also contribute to building trust in the model. Another inter-

esting application of deep learning is forecasting patients’ disease trajectories beyond

their next medical visit (Fox, Ang, Jaiswal, Pop-Busui, & Wiens, 2018). Autoregres-

sive models such as decoder-only transformers can be used to generate new elements

based on an initial sequence. For example, C. Huang et al., 2019 and Radford et al.,

2019 trained decoder-only transformers to generate musical and text sequences, re-

spectively. In the music and text transformers, previous predictions were fed back

into the models to predict the next element in the sequences. Similarly, I propose
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to leverage the autoregressive properties of DTTHRE to generate predictive health

trajectories based on a patient’s initial medical history. The proposed mechanism

provides researchers and health professionals a model to predict patients’ disease pro-

gression. Furthermore, the autoregressive properties of DTTHRE provide researchers

and health professionals a mechanism to predict the impact of clinical decisions on

patients’ health. For example, the DTTHRE model could predict a patient’s risk of

cancer with and without the medical imaging scan being considered. As a result,

DTTHRE is an important step in developing the exposure risk assessment model in

the DSS. To generate disease trajectory predictions, DTTHRE needs to be extended

to predict the elapsed time to the next visit.

In summary, future directions can be considered in three areas: 1) improve the

robustness of deep learning to imprecise imputations methods using adversarial learn-

ing, 2) evaluation methodology for deep learning imputation models, and 3) exten-

sions to the DTTHRE model. To improve the resilience of deep learning to imprecise

imputation methods, I propose to extend the evaluation of imputation to investigate

defense strategies from the adversarial learning literature. Next, I propose to extend

the evaluation methodology to rank deep learning imputation models on multiple

features. Then, I propose to extend DTTHRE to visualize the relationships between

diagnoses, including the elapsed time between visits, learned by the model. DTTHRE

can also be extended to predict disease trajectories. As a major step, I am currently

extending DTTHRE to assess patients’ cancer risk due to low-dose radiation exposure

from medical imaging.
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Appendix A

MIIDD Characteristics

In this appendix (Fig. 1.1a), an overview is provided of the McMaster Imaging Infor-

mation and Diagnostic Dataset (MIIDD) used for the experiments reported in this

thesis. Table A.1 describes the types of medical data (descriptive, diagnostic, in-

terventions, and imaging) available in MIIDD. Next, the breakdown of records from

each data source (DAD, NACRS, and PACS) is shown in Table A.2. Then, Table A.3

describes the characteristics of the patient population (340,143 patients) represented

in the dataset.
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Table A.1: Types of medical data available in MIIDD

Data Type Data Source Description

Descriptive
DAD, NACRS,
PACS

ID, Age, Sex, Postal Code, Admission and
Discharge Dates, Deceased Flag

Diagnostic DAD, NACRS
International Classification of Disease (ICD-
10-CA) Codes

Interventions DAD, NACRS
Canadian Classification of Health Interven-
tions (CCI) Codes

Imaging PACS
Scan Modality (CT and XR), Body Part
Scanned, DICOM Scanner Values

Table A.2: MIIDD data sources breakdown

Missing
Data (%)

Number of Unique Patients 340,143 -
Number of DAD Records 282,996 0
Number of NACRS Records 1,014,737 0
Number of CT and XR DI Records 2,100,223 0
Number of CT and XR DICOM Records 39,909 98.1

Table A.3: MIIDD patient population characteristics (Mean ± SE)

Min Max

Age of First Visit (Years) 44 ± 0.05 1 100
Sex (Female) 49.00% (n = 165,393) - -
Patients with Record of Death 3.83% (n = 13,043) - -
Patients with Cancer Diagnosis 11.05% (n = 37,570) - -
Number of Visits Per Patient 4.34 ± 1.00E-05 1 103
Number of Diagnoses Per Visit
(DAD + NACRS)

1.51 ± 1.05E-06 1 16

Number of Scans Per Patient 6.70 ± 3.23E-05 1 3,010
Number of CT Scans Per Patient 2.64 ± 8.74E-06 0 414
Number of XR Scans Per Patient 5.39 ± 2.65E-05 0 2,385
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Appendix B

Electronic Health Record Samples

In this appendix (Fig. 1.1a), samples of the MIIDD health records are presented.

Each MIIDD record (Table B.1) contains observations from one or more of the fol-

lowing: 1) DAD, 2) NACRS, or 3) PACS records. DAD records (Table B.2) include

all diagnoses recorded in a medical visit. NACRS records (Table B.3) include the

primary diagnosis for the medical visit and all recorded interventions. PACS records

(Table B.4) include imaging information (modality and body part scanned). A sam-

ple of the detailed scanner information (DICOM headers) that are used to estimate

patients’ ED exposure from medical imaging is also provided in Table B.5.
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Table B.1: Sample of MIIDD records curated from DAD (Table B.2), NACRS (Ta-
ble B.3), and PACS (Table B.4) datasets

Data Source
DAD

Record
NACRS
Record

DI
Record

Patient ID DAD/NACRS/PACS 1234567 1234567 123456
Sex DAD/NACRS/PACS F F M

Age (Years) DAD/NACRS/PACS 66 60 79
Admit Date DAD/NACRS/PACS April, 2008 April, 2011 Jan, 2007

Discharge Date DAD/NACRS/PACS April, 2008 April, 2011 Jan, 2007

Primary Dx DAD/NACRS I21 I25 -

Dx Instance One DAD/NACRS I71 I25 -
Dx Instance Two DAD I21 - -

... ... ... ... ...
Dx Instance
Twenty-five

DAD - - -

ICD Ch. AB Flag DAD/NACRS 0 0 -
ICD Ch. C-D48

Flag
DAD/NACRS 0 0 -

ICD Ch. D50-D89
Flag

DAD/NACRS 0 0 -

ICD Ch. E Flag DAD/NACRS 1 0 -
ICD Ch. F Flag DAD/NACRS 0 0 -
ICD Ch. G Flag DAD/NACRS 0 0 -
ICD Ch. H0-H59

Flag
DAD/NACRS 0 0 -

ICD Ch. H60-H99
Flag

DAD/NACRS 0 0 -

ICD Ch. I Flag DAD/NACRS 1 1 -
... ... ... ...

ICD Ch. R Flag DAD/NACRS 1 0 -
ICD Ch. ST Flag DAD/NACRS 0 0 -
ICD Ch. V-Y Flag DAD/NACRS 0 0 -

ICD Ch. Z Flag DAD/NACRS 0 0 -
ICD Ch. U Flag DAD/NACRS 0 0 -

CCI Primary
Intervention

NACRS - 3IP10VX -

Scan Modality PACS - - CT
Workload Name PACS - - CHEST
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Table B.2: Sample of DAD records from a patient’s medical visit. Each column
represents one diagnosis

DAD Record 1/6 ... DAD Record 6/6

Deidentified Patient ID 1234567 ... 1234567
Admit Date Apr-08 ... Apr-08
Discharge Date Apr-08 ... Apr-08
Sex F ... F
Age (Years) 66 ... 66
Postal Code L8S ... L8S

Primary Dx I21 ... I21

Diagnosis Instance 1 ... 6

Coded Diagnosis Type De-
scription

M - Most Responsible ... 3 - Secondary

ICD10 Coded Description (I2149) Acute suben-
docardial MI

... (I100) Benign hyper-
tension

ICD10 Coded Chapter De-
scription

(09) Dis of the circula-
tory system (I00-I99)

... (09) Dis of the circula-
tory system (I00-I99)

ICD10 Coded Block De-
scription

(I20-I25) Ischaemic
heart diseases

... (I10-I15) Hyperten-
sive diseases

ICD10 Coded Category De-
scription

(I21) Acute myocar-
dial infarction

... (I10) Essential (pri-
mary) hypertension

ICD10 Coded Subcategory
Description

(I214) Acute subendo-
cardial MI

... (N/A) Not Applicable
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Table B.3: Sample of NACRS records from a patient’s medical visit. Each column
represents one intervention

NACRS Record 1/2 NACRS Record 2/2

Deidentified Patient ID 1234567 1234567
Admit Date Apr-11 Apr-11
Discharge Date Apr-11 Apr-11
Sex M M
Age (Years) 60 60
Postal Code L8S L8S

Primary Dx I2510 I2510

Primary Dx ICD10 Cate-
gory Code

I25 I25

Primary Dx ICD10 Cate-
gory Description

Chronic ischaemic
heart disease

Chronic ischaemic
heart disease

Primary Dx Subcategory
Description

Atherosclerotic heart
disease

Atherosclerotic heart
disease

Primary Dx Description
Ath hrt dis native
coron art

Ath hrt dis native
coron art

Primary Intervention CCI 3IP10VX 3IP10VX

Intervention Instance 1 2

CCI Code 3IP10VX 3KG10VX

CCI Description
Xray heart w cor art lt
hrt struc PTA retro

Xray art leg after intra
arterial inject contrast

CCI Section Description

Dx Imaging Interven-
tions on the Great Ves-
sels (3ID - 3IS)

Dx Imaging Interven-
tions on the Lower
Body Vessels (3KC -
3KU)

CCI Rubric Code 3IP10 3KG10

CCI Rubric Description Xray heart w cor art Xray art leg

Emergency Department? N N
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Table B.4: Sample of PACS records

Patient ID Scan Date Sex Age Modality Workload Name

1234567 Jan, 2007 M 79 CT CHEST
1234567 Jan, 2007 M 67 CT CHEST
1234567 Jan, 2007 M 69 CR CHEST 1 VIEW
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Table B.5: Sample of DICOM headers from CT (Toshiba and GE) and XR (Canon)
scanners used to estimate ED exposure from medical imaging

Parameters Unit
DICOM CT CT XR

Tag (Toshiba) (GE) (All)

Patient ID - 0010,0020 1234567 1234567 1234567
Date - 0008,0020 Jan-07 Jan-07 Jan-07
Sex - 0010,0004 M M M
Age Years 0018,0060 79 67 69

Postal Code - 0010,1040 L8S L8S L8S

Modality - 0008,0060 CT CT CR

Study Description - 0008,1030
CT

CHEST
CT

CHEST
CHEST 1

VIEW

Series Description
-

0008,103e
Body 3.0
Sagittal

STD ALG CHEST

Series Number - 0020,0011 10 3 1

Scan Options - 0018,0022 HELICAL HELICAL -

Protocol Name - 0018,1030

ROUTINE
CHEST

NO CON-
TRAST

5.70
CHEST

PAN
STUDY

-

Manufacturer - 0008,0070 TOSHIBA GE Canon Inc.

Model Name - 0008,1090 Aquilion
Discovery

CT750 HD
CXDI

Peak kVp V 0018,0060 120 120 110

CTDIvol mGy 0018,9345 21.9 - -

I mA 0018,9345 237 50 50

τ ms 0018,1150 500 699 45

SPF mm 0018,9311 - 0.984375 -

TCW mm 0018,9307 - 40 -

DSD mm 0018,1110 - 946.746 1800
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Appendix C

Existing Low-dose Risk Models

Figure C.1 shows the LNT, Linear-Quadratic, Supra-linear, Linear Threshold, and

Hormesis cancer risk extrapolation models (National Research Council, 2006) dis-

cussed in Section 2.1. The risk models extrapolate the cancer risk from the high

doses of radiation exposures recorded in atomic bomb survivors to the low levels of

radiation emitted from medical devices. The proposed extrapolation models have not

been experimentally validated (National Research Council, 2006).
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Deterimental Effects Range

Linear-no-threshold (LNT) Model

R
is

k

(100 mSv)

Uncertain Effects Range

Exposed Dose

Exposure from Atomic Bomb Survivors

Linear-quadratic Model

Supra-linear Model

Linear Threshold Model

Hormesis Model

Threshold Dose

Figure C.1: The LNT, Linear-Quadratic, Supra-linear, Linear Threshold, and Horme-
sis cancer risk extrapolation models (Boursalie, Samavi, Doyle, & Koff, 2020a)
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Appendix D

Full Imputation Histograms

In this appendix (Fig. 1.1b), the full qualitative (histogram) performances of the

PMM, MIDAS, and GAIN imputation models (Chapter 4.2.2) are presented. Fig-

ures D.1 and D.2 present the imputation models’ performances imputing effective

dose and age, respectively. The qualitative results provide an initial check of the

imputation models’ performances and context to the quantitative metrics (Fig. 4.2

and Table 4.3).
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Figure D.1: Histogram of fMIIDD,ED imputation at 2%, 4%, 6%, 8%, 10%, 20%, 40%,
and 80% missing data (rows) over five runs (columns)
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Figure D.2: Histogram of fCr,A imputation at 2%, 4%, 6%, 8%, 10%, 20%, 40%, and
80% missing data (rows) over five runs (columns)
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Appendix E

Confusion Matrices

In this appendix (Fig. 1.1d), the confusion matrices for the Med-BERT and DTTHRE

models (Section 5.3) to predict patients’ primary diagnoses are presented. Figures E.1

and E.2 show the confusion matrices of the Med-BERT and DTTHRE models respec-

tively to predict a patient’s primary diagnosis (Table E.1) in their last medical visit.

DTTHRE had an improved performance (78.54 ± 0.22%) compared to Med-BERT

(40.51 ± 0.13%) for health outcome prediction. Figure E.2 shows the confusion ma-

trices of the DTTHRE model (79.53 ± 0.25%) to predict the primary diagnosis for

each visit in a patient’s medical history. The Med-BERT and DTTHRE models were

trained with the same patient records in each k = 5 cross-validation fold to compare

the models’ performances.
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Table E.1: ICD-CA-10 diagnostic chapter codes descriptions (Canadian Institute for
Health Information (CIHI), 2010)

Chapter
Description

Code

1 Certain infectious and parasitic diseases
2 Neoplasms
3 Diseases of the blood and blood-forming organs
4 Endocrine, nutritional and metabolic diseases
5 Mental, Behavioral and Neurodevelopmental disorders
6 Diseases of the nervous system
7 Diseases of the eye and adnexa
8 Diseases of the ear and mastoid process
9 Diseases of the circulatory system
10 Diseases of the respiratory system
11 Diseases of the digestive system
12 Diseases of the skin and subcutaneous tissue
13 Diseases of the musculoskeletal system and connective tissue
14 Diseases of the genitourinary system
15 Pregnancy, childbirth and the puerperium
16 Certain conditions originating in the perinatal period
17 Congenital malformations, deformations & chromosomal abnormalities
18 Codes not elsewhere classified
19 Injury, poisoning and certain other consequences of external causes
21 Factors influencing health status and contact with health services
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Figure E.1: Med-BERT’s test confusion matrices for predicting patients’ primary
diagnosis in their final visit. The k = 5 CV results on the test folds are shown
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Figure E.2: DTTHRE’s test confusion matrices for predicting patients’ primary di-
agnosis in their final visit. The k = 5 CV results on the test folds are shown
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Figure E.3: DTTHRE’s test confusion matrices for predicting patients’ primary di-
agnosis in each visit. The k = 5 CV results on the test folds are shown
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