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Abstract

Modern computer applications process massive volumes of data from sensors and

cameras, putting tremendous demands on the system’s memory bandwidth, energy,

and predictability. Because main memory is the main bottleneck in such computing

systems, researchers have proposed a number of novel memory solutions. However,

because memory-centric benchmarks have been slow to emerge, these solutions are

assessed using CPU-centric benchmarks or high-level memory access patterns bench-

marks such as sequential vs random or read vs write. As a result, we present RAM ify, a

user-friendly and highly flexible framework for creating memory-centric architecture-

aware workloads.

In this thesis, RAM ify is presented, and its architecture, key features, and how to

use it to formulate new performance benchmarks for evaluating memory subsystems

are discussed. I also discuss how to update the framework for software development,

and highlight the need for memory-centric benchmarks as well as the importance of

RAM ify in evaluating memory systems in modern computing platforms. We generate

132 workloads from RAM ify to compare them with SPEC-CPU2006 and MemBen

workloads. Furthermore, we utilized these workloads to perform a comparative study

between the High Bandwidth memory (HBM) and Double Data Rate generation 4

(DDR4). Finally, we investigate HBM through the perspective of real-time systems,
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focusing on the HBM device to capture architectural factors that influence timing pre-

dictability, such as device access behaviour, timing characteristics, and performance

measures.
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Chapter 1

Introduction

Main memory is widely considered as a fundamental bottleneck in computing systems

that demand a high amount of processing data [3]. Modern applications such as the

Artificial Intelligence (AI) and sensor fusion deployed in autonomous vehicles, drones,

and Internet-of-Things (IoT) domains operate on enormous amounts of data coming

from sensors and cameras. This imposes unprecedented memory bandwidth, energy,

and predictability requirements which can limit the system performance [3, 4, 5].

To meet these requirements, many novel memory solutions have been proposed in

recent years. This includes novel memory scheduling techniques [6, 7, 8], architectural

modifications to the Dynamic Random Access Memory (DRAM) device [9, 10, 11],

new memory protocols/technologies [12, 13], and even a new programming paradigm

such as processing near-memory [14, 15, 16] and processing-in-memory solutions [17,

18, 19, 20].
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1.1 Motivation

The motivation of this thesis is driven from the impact of main memory on total sys-

tem performance. In the high-performance computing (HPC) domain, Bandwidth, la-

tency, and capacity are the most important factors for DRAM subsystems. Whereas,

there are additional consideration metrics for real-time application, such as: reliabil-

ity, security, and safety. For this purpose, We explore two areas by: (i) investigating

the current benchmarks which found to be not memory-aware or application centric,

and (ii) assessing real-time application by examining different memory architecture

as DRAM technology which is not efficient for the performance of these applications.

1.1.1 Benchmarks

Several architectural simulators are introduced recently to capture the details of

DRAMs and other memory protocols, aiming at offering an easy and accurate way to

prototype and evaluate novel proposals [21, 22]. Despite these strenuous efforts, we

find one open gap that is yet to be efficiently addressed: memory-centric architecture-

aware benchmarks. The aforementioned solutions almost universally use either tra-

ditional CPU benchmarks (e.g. SPEC [23], PARSEC [24], and SPLASH [25]), syn-

thetically hand-crafted tests, or a mix of both. Traditional benchmarks suffer from

one or more of the following drawbacks:

1. They are often not memory intensive, They stimulate only a very small set of

the memory behaviors/properties. For example, they exhibit specific locality

and read/write patterns as we show in Sections 6.1.1 and 6.1.3.3.

2. They are usually exhibiting complex paths, which hinder the explanability and

2
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analyzability of their memory patterns.

To address this problem, there has been recent efforts towards proposing memory

benchmarks [26, 27, 28, 29, 30, 31]. Despite being memory intensive, these bench-

marks provide only coarse-grained high-level patterns such as sequential/stream, and

random access patterns. These simple patterns are way behind covering the large

design space of the main memory subsystem, with:

• off-chip memory devices having different levels of parallelism (channels, ranks,

banks, etc), and complex low-level command interactions based on memory

page locality (hit vs miss), and

• on-chip memory controller(s) deploying complex scheduling techniques, and dif-

ferent levels or re-orderings to optimize memory latency and bandwidth.

1.1.2 Real-Time Applications

Embedded applications for autonomous driving demand memory bandwidth ranging

from 400 to 1024 GB/s [32]. This is difficult to achieve with the current DRAM

technology.

1. DRAMs have a significant influence on overall system performance and power

consumption.

2. The system performance in these applications is frequently restricted by the

memory bandwidth or latency rather than the computation itself [3, 4, 5].

3
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1.2 Thesis Contributions

There are different proposals to address the memory bottleneck such as (i) novel

DRAM device structure, (ii) memory scheduling techniques, and (iii) new main mem-

ory technologies. We observe that memory-centric benchmarks to assess these pro-

posal and quantitatively evaluate their benefits and trade-offs are lagging behind.

Researchers usually use CPU-centric benchmarks (e.g. SPEC [23]) or at best bench-

marks that deploy high-level memory access patterns such as sequential vs random

or read vs write.

This thesis addresses this gap by proposing RAM ify: a tunable framework for

generating memory-centric architecture-aware workloads. we propose RAM ify which

represents a powerful, yet easy-to-use and tune, framework that enables the generation

and customization of memory access patterns to cover the state space of the main

memory subsystem. Also, we envision RAM ify to accelerate research and innovation in

memory systems in different directions. By being DRAM-aware: RAM ify offers several

tuning knobs enabling the generation of over 1000000 different benchmarks, each of

them is low-level tuned to produce a particular DRAM access pattern. RAM ify is

implemented in C++ using object-oriented programming concept with a high degree

of configurability to facilitate design space exploration of predictability and cache

coherent memory issues raised in multi-core systems. For the purpose of validating

the effectiveness of RAM ify, we use the generated workloads to study and compare

two of the state-of-the-art memory protocols/devices: HBM and DDR4.

While studying memory protocols and devices, researchers generally analyze two

system components: the memory device and its on-chip memory controller [33, 34, 35].

The controller handles memory access to the device. It has been shown that the

4
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improvement by redesigning memory controllers to provide predictability is limited

by the latency variations of the device architecture. Therefore, it is more useful to

analyze memory device.

Hence, we analyze HBM from a real-time systems perspective by focusing on

the HBM device to capture its architectural characteristics and functionalities that

can affect timing predictability such as device access behavior, timing properties and

performance metrics. Moreover, by focusing on the device, the analysis and obser-

vations we provide in this thesis are general and not limited to a specific scheduling

technique deployed by the memory controller. Our analysis leads to key insights as

a first essential step opening the door towards designing predictable HBM memory

controllers.

1.3 Thesis Structure

The thesis is organized into 7 chapters. Chapter 2 presents a background and lit-

erature review for understanding this thesis. Chapter 3 discusses the most relevant

related work. Chapter 4 describes the architecture design of RAM ify and the de-

tailed implementation of the framework. Then Chapter 5 analyzes the structural

organization of HBM, and explores HBM’s fit to real-time domain through careful

investigation of its timing properties. Chapter 6 evaluates and validates RAM ify and

assessing DRAM vs HBM for real-time applications. Finally, Chapter 7 concludes

the work and provides some guidelines for future research.

5



Chapter 2

Background

This chapter provides the necessary background on the memory hierarchy, memory

controller, and off-chip memory organization and operation.

2.1 Multi-Core Architecture

A multi-core architecture is a single physical processor contains the core logic of many

processors. These processors are packaged or held on a single integrated circuit.

Die refers to these single integrated circuits. Multiple processor cores are grouped

together as a single physical processor in multi-core architecture. The goal is to

develop a system that can handle more jobs at once, resulting in improved overall

system performance.

Figure 2.1 depicts the architecture of modern Commercial Off-The-Shelf (COTS)

multi-core system. Multi-core processors, in which two or more processor chips or

cores work simultaneously as a single system, are the most popular application of

6
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Figure 2.1: Modern COTS multi-core architecture

this technology. Mobile devices, PCs, workstations, and servers all employ multi-

core architectures. Memory hierarchy is utilized in such systems to improve the

performance and handle the enormous data transfers. Actually, the applications

have different performance characteristics. For example, real-time embedded systems

concern about Worst-Case Execution Time (WCET) analysis to obtain tighter bound

for application’s execution. Current COTS memories are not concerned for WCET

as their controllers are optimized for the average-case performance which leads to

pessimistic limits for WCET or even no limits [36].

2.1.1 Memory Hierarchy

A memory hierarchy is a set of memory subsystems of different speed, access latency,

and cost, used to store the most and least used data and instructions. The goal of a

memory hierarchy design is to use each memory device as much as possible in order

to maximize performance. A memory hierarchy is normally arranged in levels. Many

concurrent memory requests can be issued to the main memory system at any given

7



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

moment in modern multi-core systems for the following two reasons.

1. Each core uses a number of strategies to disguise memory access delay, such as

non-blocking caching, out-of-order, and speculative execution. These strategies

allow the core to continue executing new instructions while waiting for memory

requests for earlier instructions to be processed.

2. numerous cores can simultaneously operate several threads, each of these threads

issues memory requests.

2.2 Off-Chip Memory Architecture

There are different DRAM technologies which are shown in Figure 2.2. The suitable

DRAM architecture is selected based on the application requirements. We provide a

quick overview of many regularly used and developing DRAM technologies. Double

Data Rate (DDR) DRAMs are the most commonly used technology as an off-chip

main memory system. it doubles the data rate by sending a burst of data on both

the positive and negative edges of the bus clock. There are different generations of

DDR, referring to it DDRx.

DDR3 [37] is the third generation of DDRx memory, and has eight banks of

DRAM in each rank. DDR4 [38] introduces a new level of hierarchy in the DDR

architecture, bank groups, which raises the number of banks per rank to 16. Despite

the the bus clock frequency is much higher in DDR4 compared to DDR3, a regular

memory access in DDR4 takes more time than in DDR3 due to coupling of bank

groups to I/O. but this allows DDR4 to have better bandwidth. both DDR3, and

DDR4 are based on dual in-line memory module (DIMM).
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Figure 2.2: DRAM-based memory subsystems [1]

Dual part of a DIMM refers to the existence of two different electrical contacts

on each side. Most DIMMs are built using number of memory chips per side. Each

memory chip has a ”width” or the number of data pins on the chip, which relates to

the number of bits that may be transported into/out of the chip in each cycle, refers

to chip width or burst length. For example, x4 (by four) or x8 (by eight) means the

chips interface width is 4 and 8-bits respectively. The number of memory chips on

the DIMM determines the width of the DRAM DIMM; for instance, if there are N

chips on the DIMM, each having an xM interface, the DRAM DIMM is N ∗ M wide.

JEDEC [2], in most cases, determines the data width of the DIMM. Standard

DIMMs are typically 64-bit wide, resulting in eight x8 DRAM chips or 16 x4 DRAM

chips. In general, a single DRAM request, returns 64-Bytes of data (a typical cache-

line size) from the DRAM - so on a 64-bits data width DIMM, it takes 8 transfers to
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get the data. If the DIMM is comprised of x8 devices, then each device contributes 1-

Byte (8-bits) to each transfer, and 64-bits overall. Different constraints in the system

define what width of DIMM or memory they want to use.

In addition, several of the new memory technologies such as High Bandwidth

Memory (HBM) [12] and Hybrid Memory Cube (HMC) [13] which are based on 3D-

stacked memory architectures by stacking different DRAM layers on top of each

other. Most of these memory technologies adopt DRAM cells as their core data

arrays. Therefore, in this section, we give a brief background about the structure and

operation of DRAMs.

2.2.1 DRAM Structure

DRAM is structured as independent channels. Each channel can have one or more

ranks, and each rank has a number of bank groups or banks based on the architecture

as shown in Figure 2.3 which presents the interface between the processor and main

memory. Modern memories increase parallelism and capacity by combining multiple

banks into bigger logical modules. An on-chip Memory Controller (MC) manages

accesses to the main memory. it is responsible to translate memory requests into the

corresponding DRAM commands and translate their addresses to the correct DRAM

segments, i.e. which channel, rank, bank, etc. Figure 2.3 delineates the interface

between on-chip memory controller and off-chip memory.

Internal DRAM Organization Bank is the basic building block of DRAM;

different banks can be accessed simultaneously, which enables memory access paral-

lelism when requests are interleaved across different banks. Each DRAM bank is a

2-D matrix of memory cells comprising rows and columns. These cells are based on

10



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

14

Figure 2.3: Interface between main memory and processor

DRAM cell which consists of an access transistor and capacitor to store the charge of

this bit. DRAM bank deploys sense amplifiers to amplify the row bits before trans-

ferring the requested data to to the data bus. These sense amplifiers operate as small

cache inside each bank that keeps the most recently accessed row in that bank, which

is usually referred to as the row buffer. Figure 2.4 delineates the internal DRAM

bank and cell structure.

DRAM chips retain data in the form of electric charges employing capacitor-based

cells. Moving electrical charge to and from these cells is basically how data storage

and retrieval are all about. DRAM delay is caused by such charge transfer for the

following reasons:

1. To store (write) data, charge is transferred into the cell through a wire referred

as a bitline. Many cells are coupled to a single bitline to minimize the cost-

per-bit. As a result of the enormous resistance and capacitance of the bitline,

the cell experiences a substantial RC-delay, which increases the time it takes to

charge entirely.

2. In order to enhance capacity, the DRAM cell size has already been severely

11



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

5

Figure 2.4: DRAM bank structure and bank cell

scaled down, reducing the amount of charge that can be held in its smaller

capacitor, weakening its capability to transfer charge into the bitline when ac-

cessing data. As a result, the cell is unable to charge the bitline rapidly.

2.2.2 DRAM Access Commands

Accesses to DRAM are performed in the form of DRAM commands. Figure 2.9 shows

three DRAM commands Activate 1 , Read/Write 2 , and Precharge 3 . Based on

these commands, DRAM controller needs to satisfy different timing constrains based

on the row buffer status for each bank.

• Activate 1 command (ACT) is the main row access command. It opens a row

and transfers charge from the capacitors to the sense amplifiers. In DRAM,

accessing a row always comes before accessing a column by fetching an entire

row from cells into the row buffer.
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Figure 2.5: DRAM commands

• Column Address Strobe command (CAS) represents the Read/Write 2 com-

mands (R/W) from/to the target column in the activated row in the row buffer

by either pushing the data into the data path in case of Read or pulling the

data from the path in Write.

• If the row buffer holds a different row than the requested one, a Precharge 3

command (PRE) is needed to retain the old row from the sense amplifiers, before

activating the new one.

• Bits are stored as charges on the capacitors in the DRAM cells. The charges

on these capacitors are drained over time, and in read operations. A Refresh

command (REF) is issued from DRAM controller for the rows on a regular basis

within the specified refresh time so that the charges are replenished in cells.
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2.2.3 DRAM Timing Constrains

The JEDEC DRAM standard [2] mandates specific timing constraints between

different commands that must be satisfied to ensure correct operation. It is also

the responsibility of the MC to ensure the correct timings of the issued DRAM com-

mands. Table 2.1 1 describes the different timing parameters. In addition, The timing

diagrams for these constrains are presented in Figure 2.6 for more clarification.

Table 2.1: DRAM timing parameters

Parameter Description

tRCD As part of the (ACT) command, there is a delay in transferring

data from DRAM cells to the row buffer before (CAS), refer

to Figure 2.6.

tRL Delay between the memory controller’s issue of the (R) com-

mand and the insertion of data on the data bus. refer to BK0

(data0) access in Figure 2.6(d)

tWL Delay between the memory controller’s issue of the (W) com-

mand and the insertion of data on the data bus. refer to BK1

(data0) access in Figure 2.6(d)

Continued on the next page

1(S) denotes to short delay which happens between accesses targeting different banks in different
bankgroups, while (L) is a long delay for banks within same bankgroup
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Continued from previous page

Parameter Description

tRP (PRE) to (ACT) delay is the minimum time to retrieve the

bitlines from the row buffer, refer to Figure 2.6(b)

tRAS (ACT) to (PRE) delay is the shortest time between the first

issue of the row access command and the DRAM cells being

available for a precharge.

For reads, refer to Figure 2.6(b), tRAS ≥ tRCD + tRL

For writes, refer to BK1 accesses in Figure 2.6(d),

tRAS ≥ tRCD + tWL + tBurst + tWR

tRC (ACT) to (ACT) delay for accessing two different rows within

the same bank, refer to Figure 2.6(b), tRC = tRAS + tRP

tWR The minimum time between the end of write data burst and

the start of (PRE) command, refer to BK1 (data0) access in

Figure 2.6(d)

tRTP (S/L) The minimum delay between (R) to (PRE) command, refer to

Figure 2.6(b)

tCCD (S/L) (CAS) to (CAS) delay is the time that must elapse between

subsequent column commands for same row, burst length de-

fines this constrains, refer to Figure 2.6(a)

Continued on the next page
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Continued from previous page

Parameter Description

tRRD (ACT) to (ACT) delay is the minimum time between row ac-

tivation commands to different banks, refer to Figure 2.6(c)

tRTW The minimum delay between (R) and the start of (W) com-

mand, refer to Figure 2.6(d)

tWTR (S/L) The shortest time between the end of write data burst and

the beginning of (R) command. The amount of time (W)

command takes to release I/O gating resources, refer to Fig-

ure 2.6(d).

tFAW Time window for maximum 4 bank activation, refer to Fig-

ure 2.6(c)

2.3 Memory Controller

The memory controller handles the accesses to the off-chip memory, while adhering to

the DRAMs’ sophisticated protocols. Figure 2.7 shows the main architecture of MC.

The MC performs four important functions: address mapping 1 , (Read/Write)

request arbitration 2 , transaction scheduling 4 , command generation 5 , and

command scheduling 7 . This section covers the architectural implementation of

memory controller.

16



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

(a)

8

(b)

8

(c)

77

𝑛+1

4

(d)

9

Figure 2.6: DRAM commands and timing constraints

17



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

4

Figure 2.7: Memory controller architecture

In the memory controller front-end, streams of requests from different requestors

are received by an address mapping Section 2.3.1 which translates them into rank,

bank, row, and column segments. After address mapping, Section 2.3.2.1 discusses

two modes to handle the read and write requests. Requests are submitted after

being sorted by bank and row addresses into the transaction queues as presented in

Section 2.3.3. Also, the transaction scheduler chooses requests from the row sorter

and inserts them in the corresponding command queue to be issued to the target

bank as described in Section 2.3.4.

2.3.1 Address Mapping

The receiving physical address of a request is decomposed into rank, bank, row,

and column segments via address mapping. Each request is mapped to a rank and

bank based on the address translation. The address mapping policy is intended to

maximize locality in the memory access pattern as well as ensure high parallelism

across different layers. There are different schemes of mapping policies to benefit

various applications’ requirements. For real-time embedded systems, predictable MC
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are needed to be able to obtain tighter WCET, whereas COTS MC concerns about

the average case.

1. Interleaved Banks: Banks can be accessed in parallel, so if the address pattern

is sequential, the bank number changes before the row number. This policy gives

each requestor maximal bank parallelism, but it suffers from row interference

since other requestors can creat row conflicts by closing each other’s row buffers.

2. XOR-ing Banks: When accessing addresses with big strides, XORing the

row number’s lower bits into the bank number prevents bank thrashing. For

instance, in case of two addresses separated by the stride size larger than the

row size, these addresses address can be mapped to different rows in the same

bank, and every access the conflict each other. the XORing causes addresses to

be mapped in separate banks rather than being in the same bank.

3. Private Banks: each requestor is allocated a bank or group of banks. Because

the behavior of one requestor has no effect on the row buffer of other requestors’

banks, a predictable MC can take use of row locality. As a result, the perfor-

mance of a requestor running alone suffers since the number of banks it may

access in parallel is restricted.

2.3.2 Request Arbitration

After mapping the addresses from physical to logical, the read and write requests

received from the address mapping are buffered in the Read Queue and the Write

Queue 2 , together with accompanying information such as address, requester (core-

id), and arrival time. These information will be transmitted into the transaction
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6

Figure 2.8: Timing diagram of write command following read command to open
banks

queues b.
2.3.2.1 Read/Write Queues

Two methods are discussed in this section to handle read and write requests in the

memory controller. The read/write requests can be issued from a unified queue or

in a write batching mode. In unified queue, the read and write requests are sorted

based on their arrival cycles in the same queue which shows one of the drawbacks in

DRAM.

As back-to-back read and write requests showed bad performance in terms of

latency in DRAM devices. In conventional DDRx devices, a column read command

that comes right after a column write command induces a significant latency since the

column read command should wait for the accessibility of the DRAM device’s internal

datapath, which is shared by read and write commands despite both commands are

targeting different banks as shown in Figure 2.8.

The strategy of write batching is utilized in many memory controllers to improve
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the efficiency of the system. The core concept fir this strategy is that write requests

are usually non-critical in terms of latency compared to read requests. As a result,

deferring write requests and allowing read requests to be issued ahead of write re-

quests is usually preferable, with taking into consideration that the system’s memory

ordering model allows this optimization and the program’s functional validity is not

affected.

2.3.3 Transaction Scheduling

The transaction scheduler c, and command generation are responsible for transferring

the scheduled transactions to the command queues. We explore three major types of

scheduling:

1. Time Division Multiplexing (TDM): Each requestor is allocated one or

more slots under TDM, and its requests may only be fulfilled during the assigned

slot (s). If no requests can be serviced during the specified time window, the

spot is lost.

2. Round Robin (RR): Unused slots are allocated to the next available re-

questor, as opposed to non-work conserving TDM.

3. First-Ready First-Come-First-Serve (FR-FCFS): To improve memory

bandwidth, most COTS MCs use FR-FCFS scheduling. This approach pro-

motes open row buffer requests above those necessitating row activation; open

requests are serviced in FCFS order. The open-page policy is always applied by

FR-FCFS controllers.
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2.3.4 Command Generation

The command generation 5 is the first step in the MC back-end, it maps the

received transactions that were processed by the transaction scheduler to DRAM

commands (e.g., ACT, PRE, RD, WR) that were discussed in Section 2.2.2. these

commands are mapped to the command queues 6 which are kept per-bank. The

Command Scheduler 7 is responsible for transferring DRAM commands from the

queues to its bank in the main memory. The command timing constraints command

discussed in Section 2.2.3, are satisfied and monitored by the command scheduler.

Also, it checks the row-buffer status of the various DRAM banks. The command

scheduler iterates across the queues to interleave requests to various banks in order

to take use of bank-level parallelism which is discussed in Section 2.4.2.

2.3.4.1 Page Policies

The arrays of sense amplifiers in current DRAM chips can also serve as buffers for

temporary data storage. Row-buffer policies are the policies that govern the func-

tioning of sense amplifiers in this chapter. The open-page policy and the close-page

policy are the two major row-buffer-management policies, and based on the system,

alternative page policies can be utilized to enhance latency or reduce the energy of

the DRAM memory system.

Closed-page Policy A closed-page policy ensures that every read or write on a

DRAM page is promptly closed. This successfully removes both page misses and page

hits, thus turning every access into a page-empty case. This may not allow for higher

memory bandwidth, but it does provide consistent access latency. In circumstances

where several distinct DRAM pages are viewed often, the closed-page policy might
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be useful. Data on pages across banks can be interleaved, allowing various banks to

be accessible concurrently.

Open-page Policy The DRAM page is kept open in the expectation that the

next request to a bank will be sent to the same page, reducing latency. In contrast,

an open-page policy may lead to page misses, that can be worse for latency. There is

another policy driven from open-page policy, timeout open-page policy. In this policy,

the memory controller leaves a page open for a set duration of time by tracking the

counts of clock cycles since last access to each bank. If no requests are sent to a bank

before its counter exceeds a certain limit, the page is said to have timed out and is

closed with a PRE command which means the row buffer will be idle/close.

Adaptive-page Policy In open-page policy, a DRAM bank becomes susceptible

to page-misses if a page is left open longer than necessary. The adaptive open-page

strategy was created in an attempt to decrease average memory delay significantly.

This policy is identical to the fixed open-page policy, except the page timeout period

to close the open-row is dynamically adjusted. Both fixed open-page policy and

adaptive-page policy are considered to be hybrid policy as they utilize open and

closed policies.

2.4 The Performance of Application

Due to off-chip memory’s complex protocol (i.e., the latency of a DRAM request de-

pends on the status previously issued commands) and the run-time configuration of

the memory controller, the DRAM subsystem has non-deterministic timing behavior

from an application standpoint [39]. This makes it hard to grant predictable effi-

ciency and thus to achieve real-time task predictability. There are two metrics can be
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explored from off-chip memory’s perspective to investigate application’s performance:

row-buffer locality, and bank-level parallelism

2.4.1 Row-Buffer Locality

Generally retrieving data from memory can be categorized into one of three scenarios

based on the row-buffer status as presented in Figure 2.9. All of the scenarios are

targeting Co0 within Ro4 in Bk0 but each case has a different row-buffer status: (a)

idle/close, (b) hit, and (c) conflict

• Figure 2.9(a) shows the first scenario where the row buffer is idle/close. So,

before accessing the data through CAS command 2 , Ro4 charges must mover

to the row buffer by ACT command 1 .

• In scenario (b), we can directly access the data without activating the row buffer

because the row was already in the row-buffer (hit) which means CAS command

2 can be issued after satisfying tCCD as presented in Figure 2.9(b).

• The access in scenario (c) is to Ro4, but the row buffer contains Ro1. So, the

controller removes Ro1 from the row buffer using the PRE command 3 , then

activate the row buffer by ACT command 1 to bring Ro4 into the row-buffer.

Finally, accessing the data with CAS command 2 .

2.4.2 Bank-Level Parallelism

While the banks can function in parallel, they are bound by a variety of constraints

imposed by common structures. For example, local data bus is shared by banks
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(a) (b) (c)

Figure 2.9: Page status

within a bank group in DDR4, whereas a global data bus is shared by bank groups

within a channel.

Accesses to separate banks in different bank groups may overlap because they only

share the global data bus. On the other hand, parallel data transfers to the banks

within the same group are serialized because they share a small bus, Banks within a

bank group can function in parallel to some extent. Data transport between bank A

and the host processor, for example, can be overlapping with row opening or closure

in bank B using ACT or PRE instructions. However, only four ACT commands may be

given in a time window known as tFAW (four-activation window) in a conventional

DRAM, limiting parallelism across banks even more.

Summary. row-buffer locality, and bank-level parallelism are commonly tech-

niques that are used to decrease the latency impact on the execution time of the

application, and improve the performance of memory systems which will be explored

by our proposed framework in RAM ify implementation Chapter 4, and the experi-

mental results Chapter 6.
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Chapter 3

Related Work

As aforementioned, this thesis focus is on creating a framework for generating memory-

centric workloads and then using them to do a comparative study of memory policies

and memory protocols, specifically HBM and DDR4. Therefore, in this chapter, we

present the most related areas of research to this thesis which are 1) benchmarks and

workloads for computing systems, and 2) different recent solutions utilizing HBM.

3.1 Current Memory Benchmarks

Computing systems benchmarking is a well-studied area with many proposed suites to

evaluate these systems. SPEC suite [23] is among the mostly used. Other suites aim

to offer a specialty in their workloads; for instance, by focusing on multi-threaded ap-

plications (SPLASH-3 [25] and PARSEC [24]), or heterogeneity (e.g. Rodinia [40]).

However, most of these benchmarks are non memory-centric and they do not tar-

get to specifically stress the designs space of the memory subsystem. To address
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this problem, there are several benchmarks aiming at memory characterization in-

cluding Stream [26], lmbench [27], HPCC [28], GPU-Stream [29], Apex-Map [30],

MemBen [41], Spatter [31], Hopscotch [42] and X-Mem [43].

Nonetheless, those benchmarks provide only coarse-grained high-level patterns

that are mostly focusing on data locality by supporting either pure sequential or

random patterns with some recent benchmarks provide locality tuning [30, 31, 42].

As a result, they do not cover most of the main memory design space, and therefore,

For example, most of these benchmarks are only providing sequential or random

address patterns [44, 45], they fall short of providing a comprehensive workload to

stressing novel memory proposals and accurately quantify their design trade-offs.

There are earlier works that also try to comprehensively cover some of the state-space

of DRAM [46]. However, a big difference between RAM ify and MCXplore in RAM ify

generates completely working binary workloads that can operate on systems, while

MCXplore was mainly targeting pre-silicon validation through direct access memory

traces to the controller. As explained in Sections 4, RAM ify fundamentally addresses

this problem by providing a benchmark generation framework along with a family of

low-level memory architecture aware workloads that covers the main memory design

space.

3.2 HBM Applications

HBM has been widely analyzed from a high-performance perspective. Some initial

works present HBM as an emerging memory standard that can provide bandwidth

superior to 256GB/s as well as offers lower power consumption [47]. The study

demonstrate basic structure and organization of a HBM stack including distribution

27



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

of banks and TSV interconnections. More recent works compare HBM and DDR for

high performance systems [48]. authors perform an in depth comparison of HBM

and GDDR5. And third, other works project on the scalability limits of HBM. [49]

presents the challenges of capacity scaling of HBM device by stacking more DRAM

dies to make a taller stack. The authors project that in current stacking technology

HBM stacks could be limited to 16 dies for DRAM die thinning and die under-fill

thickness limitations.

Several other works evaluate HBM from a purely average-performance perspective

without considering predictability and hence, are not directly applicable to real-time

systems. Other works focus on studying the power consumption of HBM2 compared

to DRAM [50], which confirm that HBM2 consumes significantly less energy than

DDR4, for per-bit transmitted. This is enabled by stacking memory dies directly on

top of each other and sharing the same package as the SoC using a silicon interposer.

While we recognize the importance of energy-consumption in embedded systems, in

this first work, we focus on HBM features affecting time predictability. HBM, common

in GPUs, FPGA-CPUs and System on Chips like the Xilinx UltraScale+, is better

equipped to handle increased memory requirements of GPU and accelerator-based

architectures [48].

At the software level, techniques have proposed HBM’s application-specific im-

provements. low-level techniques that for instance identify an imbalance of HBM’s

channel utilization and proposes a cost effective technique to improve load balanc-

ing among the channels by enabling the migration of memory requests to non-busy

channels [48]. This technique effectively increases the request depth of the memory

controller and results in a 10% performance improvement for GPGPU workloads.
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Other techniques make application-specific improvements. For instance, Maohua [51]

et al. implement a convolutional neural network (CNN) and breadth-first search

(BFS) – two data intensive applications on a HBM-enabled GPU platform. The

study proposes software techniques to overcome the capacity bottleneck and to ex-

ploit the full benefits of HBM for efficiently implementing neural networks and graph

algorithms. The proposed technique achieves a 1.63× speedup on a HBM-enable

GPU in comparison to the best high performance GPU in the market.

Bingchao et al. describes pseudo channel mode and dual-command features of

HBM, and concludes that these features does not significantly contribute to an

average-case performance improvement [48]. Unlike this stream line of work, this

paper comprehensively studies HBM’s unique features from the real-time embedded

systems perspective. The authors also draws an in depth comparison of HBM and

GDDR5 standards as well as proposes to combine Pseudo Channel Mode with Amoeba

Cache for effectively utilizing cache capacity and memory bandwidth for GPGPU ap-

plications.

Matthias et al. [52] identify the factors that contributes to non-deterministic la-

tency for DRAM. The authors compare various DRAM standards for many aspects

such as capacity, power consumption, temperature vs. reliability, safety and secu-

rity mainly for applications of automotive domain. The study presumes that 3D

stacked DRAM systems may aggravate thermal crisis due to the increased sensitivity

of thinner stacked dies.
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3.2.1 DRAM memory predictability

There exists an extensive literature to handle memory contention in real-time systems.

A commonality in these proposals is that they do not propose hardware changes

to the memory device. Instead they address contention with i) software solutions

that increase the isolation among tasks in memory; and/or ii) hardware changes

of the memory controller. Regarding the former we refer the reader to [53] for a

detailed summary of the state of the art. Software solutions build around approaches

to increase isolation, e.g. via bank partitioning among processors (e.g. [54]), and

controlling access counts (e.g. [55]). A comparison of hardware solutions is presented

in [34] covering a wide set of works on DRAM controller designs for predictability

and/or balancing predictability and performance (e.g. [56, 57, 58]).

Beyond DDR DRAMs, Hassan [35] identifies that DDR DRAMs suffer inherent

limitations to achieve reasonable predictability and results highly variable access la-

tencies with over pessimistic bounds. The study proposes to use Reduced Latency

DRAM (RLDRAM) to address these challenges, and shows that it provides 6.4×

reduction in worst case memory latency and 11× less latency variability. Therefore

DDR DRAMs appears not be an ideal candidate for some real-time systems, which

requires a strict predictable performance with tight timing constraints.
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Chapter 4

RAMify Framework

RAM ify is our proposed framework to generate comprehensive and customizable work-

loads that are more memory-centric and architecture-aware. Decomposing a system

into modules is a widely established technique to software development. RAM ify rec-

ommends a decomposition based on the information-hiding concept [59]. This idea

promotes design for change since the ”secrets” that each module conceals indicate

expected future modifications, particularly during the initial development phase as

the solution space is explored. As a result, designing for change is an important factor

to consider for RAM ify.

RAM ify is developed in C++ as object-oriented techniques are used to create a

modular, expandable, and configurable framework. The generated workloads from our

framework are easy to be compatible with any memory simulator. Also, we provide

a micro-benchmark program developed in C to capture real CPU instructions with

memory-intensive requests to be executed on a full-system simulator.

In this chapter, we present our proposed framework RAM ify from an abstract

point of view in Section 4.1. Then, the environment setup, detailed development of
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the framework, and the workloads use-cases are discussed in Section 4.2.

4.1 RAMify: Proposed Framework
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Figure 4.1: Main architecture of RAM ify

Figure 4.1 shows the main architecture of the framework, its interface with the

external environment, and the different usage cases. The framework functionality is

divided into three stages.

1. Parsing the configuration files to detect the target application, system, and

memory device.

2. Generating the requests based on the parsed address, and type patterns.

3. Formatting the memory accesses pattern in either a trace-based that is evaluated

by DRAM simulators such as Ramualtor [21], DRAMsim3 [22], and MCSim [60],

or as micro-benchmark program that assesses the memory of the system using

RAMSuite.
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Configurability: RAM ify offers different degrees of flexibility for the user by

exploiting configuration files. For the target application, the user can stress the

memory behavior by tuning the parameters to generate low-level access patterns.

Also, RAM ify provides different address mapping modes and schemes which add a

great opportunity to assess current address mappings, and explore new mapping

schemes.

Expansibility: RAM ify benefits from inheritance to provide different segments’

features in the address generation. Clustering the segments based on locality, and

parallelism helps in minimizing the line of codes to add new features for a specific

segment as mentioned in Section 2.3.1. There are different address mapping schemes

for the segments as channels, ranks, bankgroups, banks, rows, and columns which are

deployed as {Ch, Rk, Bg, Bk, Ro, Co}.

Modularity: Each block is responsible for completing a particular task. Parsing

the configuration files to pass related data to the target blocks is done in Stage 1. In

Stage 2, requests are created by generating the memory addresses and types. Both

are separated blocks to make sure any future modifications in one of these blocks im-

plementation will not affect the other block functionality. In addition, the algorithms

used to implement these blocks are customized based on the input configuration.

Integrability: RAM ify offers flexible and general interface with different mem-

ory simulators or memory system. It is not restricted to a specific trace format or

simulator. Moreover, by introducing some real system information to RAM ify such as

address mapping; RAM ify generates workloads to stress on the memory of the system.
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4.2 Detailed System Design

In this section, we show a thorough understanding of system operation for RAM ify.

1. User input configuration files (.ini) are introduced in Section 4.2.1

2. Section 4.2.2 clarifies RAM ify functional software blocks.

3. The workloads different use-cases are presented in Section 4.2.3.

4.2.1 User Input Configurations

This is the initial step in RAM ify as the user specifies the system, application, and

memory device parameters by setting their configuration files to generate the target

workload. The (.ini) files have been structured to accommodate.

1. The framework’s expansibility feature. For example, adding new segments to

the address mapping such as bank-groups for DDR4.

2. The configurations of system settings. For example, instead of configuring the

source code, a user can define multiple settings for target application, memory

architecture, or system organization by simply altering the configuration in the

(.ini) files.

4.2.1.1 Application

The generated workload represents a sequence of memory accesses. Each memory

request consists of address and type. Configuration file 4.1 shows the used parameters

to configure the workload such as:
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Table 4.1: Features of address segments

Segment Features

Column no change, set, sequential, random

Row no change, set, sequential, random, hit, miss, custom hit (%)

Channel, Rank, Bankgroup, Bank no change, set, sequential, random, interleave (%), effective interleave (%)

1. The access format of requests in the workload which is discussed in details in

section 4.2.3,

2. The number of requests that will be generated.

3. The address and type patterns of these accesses.

Each segment in the memory device has different configurations based on its char-

acteristics. For example, locality is a feature in the rows, while interleaving is a feature

of banks, ranks, and channels. This is useful on stressing the memory behavior by

classifying the segments features as presented in Table 4.1.

All the implemented parameters for the addresses, and types are presented in

Sections 4.2.2.4, and 4.2.2.5 respectively. More details for access parameters to

formulate the workload is discussed in Sections 4.2.2.6, and 4.2.3

1 # #######################

2 # Application config file

3 # Comments start with #

4 # #######################

5 [ access ]

6 # CPU , DRAM , FULL

7 access_mode = CPU

8 addr_format = HEX

9 read_format = RD
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10 write_format = WR

11

12 [ requests ]

13 num_requests = 20

14

15 [ address ]

16 # address_pattern = {sequential , random ,

17 # seq_customized , rnd_customized , customized }

18 # ( default value is sequential )

19 address_pattern = customized

20

21 [ channel ]

22 # customChannel = {no_change , set , sequential ,

23 # random , interleave , eff_interleave }

24 # ( default value is no_change )

25 custom_channel = set

26 set_channel = 0

27 period_channel = 1

28 eff_channels = 3

29 interleave_pct_channel = 100

30

31 [rank]

32 # customRank = {no_change , set , sequential ,

33 # random , interleave , eff_interleave }

34 # ( default value is no_change )

35 custom_rank = seq

36 set_rank = 0

37 period_rank = 5

38 eff_ranks = 2
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39 interleave_pct_rank = 80

40

41 [ bankgroup ]

42 # customBankGroup = {no_change , set , sequential ,

43 # random , interleave , eff_interleave }

44 # ( default value is no_change )

45 custom_bankgroup = set

46 set_bankgroup = 0

47 period_bankgroup = 3

48 eff_bankgroups = 10

49 interleave_pct_bankgroup = 100

50

51 [bank]

52 # customBank = {no_change , set , sequential ,

53 # random , interleave , eff_interleave }

54 # ( default value is no_change )

55 custom_bank = set

56 set_bank = 0

57 period_bank = 2

58 eff_banks = 8

59 interleave_pct_bank = 100

60

61 [row]

62 # customRow = {no_change , set , sequential ,

63 # random , hit , miss , custom_hit }

64 # ( default value is no_change )

65 custom_row = set

66 set_row = 0

67 period_row = 3
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68 hit_percentage = 50

69

70 [ column ]

71 # customColumn = {no_change , set ,

72 # sequential , random }

73 # ( default value is no_change )

74 custom_column = set

75 set_column = 0

76 period_column = 6

77

78 [type]

79 # type_pattern = {all_read , all_write ,

80 # rw_random , rw_switch_pct }

81 # ( default value is all_read )

82 type_pattern = all_read

83 switch_percentage = 30

84 # #######################

Code 4.1: Application Configuration File

4.2.1.2 Memory Device

Configuration file 4.2 presents the memory architecture description. The user can

specify the number of each segment as channels, rank, bankgroups, banks, etc...

Also, the burst length which was discussed in Chapter 2 is configured in this file.

1 # #######################

2 # Device config file

3 # Comments start with #

4 # #######################
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5 [ dram_structure ]

6 channels = 4

7 ranks = 16

8 bankgroups = 16

9 banks = 16

10 rows = 2048

11 columns = 16

12

13 burst_length = 8

14 # #######################

Code 4.2: Memory Configuration File

4.2.1.3 System

Configuration file 4.3 shows the specified address width and transaction size. Also,

it supports two schemes of address mapping: segment-based, and bit-based. The

segment-based is implemented to mimic the traditional address mapping in the some

of memory controllers by allocating contiguous bits in the address for the target

segment, whereas the bit-based, or flexible, is a proposed scheme to handle non-

contiguous address mapping in the other memory controllers. In addition, bit-based

address mapping scheme enables the computer architecture community to explore

different address mapping by providing pliable representation of the segments’ bits in

any location in the address.

1 # #######################

2 # System config file

3 # Comments start with #

4 # #######################
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5 ### Below are parameters only for address mapping

6 [ system ]

7 address_width = 29

8 transaction_size = 64

9 address_mapping = Flexible

10 # Segment Address

11 channelMapStart = 0

12 channelMapEnd = 1

13 rankMapStart = 6

14 rankMapEnd = 9

15 bankgroupMapStart = 10

16 bankgroupMapEnd = 13

17 bankMapStart = 14

18 bankMapEnd = 17

19 rowMapStart = 18

20 rowMapEnd = 28

21 columnMapStart = 2

22 columnMapEnd = 5

23 # Flexible Address

24 # Addr_MSD =2222222221111111111

25 # Addr_LSD =87654321098765432109876543210

26 flex_addr = RGWGLWBWRBWBWWLWLWRWGWRLBGCWC

27 # #######################

Code 4.3: System Configuration File

4.2.2 Functional Blocks

In this section, we present a detailed implementation and functionality description

of RAM ify blocks. Figure 4.2 shows RAM ify class diagram for the various blocks and
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Figure 4.2: RAM ify UML diagram

their interactions. The full diamond form represents module composition, the hollow

triangle shape with hashed lines represents inheritance, and the solid triangle shape

represents association connection. The supported patterns to generate the address,

specific segment, and type of the requests are shown in the diagram.

4.2.2.1 RAMify Top-Level Node

The main is top-level node of RAM ify. It generates the memory workloads based on

the input parameters provided in the configuration files. Code 4.4 shows the main

function in RAM ify. First, the framework parses the use configuration parameters

using Config class. Then, it dynamically allocates memory space for the requests from

Request class according to the input number of requests. The addresses and types

of these requests are generated to construct the target workload from GenReqAddr

and GenReqType respectively. Finally, RAM ify formats the requests for the target
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simulation as either standalone memory-simulator or full-simulator.

1 int main(int argc , const char *argv [])

2 {

3 // parse configuration files

4 Config config = Config (argc , argv );

5 // Dynamically allocate requests

6 int num_requests = config . getNumReqs ();

7 Request * requests = new Request [ num_requests ];

8 // Generate requests ’ addresses

9 GenReqAddr (requests , config . getConfigAddr (), num_requests );

10 // Generate requests ’ types

11 GenReqType (requests , config . getConfigType (), num_requests );

12 // Format accesses

13 GenAccess (requests , config . getConfigAccess (), num_requests );

14 // clean requests once done

15 delete [] requests ;

16 return 0;

17 }

Code 4.4: RAM ify Top-Level Function

4.2.2.2 Parsing Configurations

As stated before, Config class parses all the configuration files from Section 4.2.1 for

the framework, and initializes the members of three classes ConfigAddr, ConfigType,

and ConfigAccess. Also, it has all of the debugging methods for the framework to

check the correctness and validity of input parameters. Code 4.5 shows the construc-

tion of this class and its subsystems.

The (.ini) files are built based on INIH library which makes it easy-to-access
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name/value pairs. Clearly, this design approach improves our framework’s con-

figurability and extensibility for the user configuration. The initialization classes

ConfigAddr, ConfigSeg, ConfigType, and ConfigAccess which save the data of the

configuration files are presented in Appendix A.

1 class Config

2 {

3 public :

4 Config (int argc , const char *argv []);

5

6 ConfigAddr getConfigAddr ();

7 ConfigType getConfigType ();

8 ConfigAccess getConfigAccess ();

9 int getNumReqs ();

10

11 private :

12 ConfigAddr m_config_addr ;

13 ConfigType m_config_type ;

14 ConfigAccess m_config_access ;

15 ...

16

17 // Help and Initialization methods

18 void provideHelp (const char *argv );

19 void initAppParams (const std :: string &fname );

20 void initSystemParams (const std :: string &fname );

21 void initDeviceParams (const std :: string &fname );

22 };

Code 4.5: RAM ify Config Class
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4.2.2.3 Requests

Requests are generated from a simple Request data-structure which consists of ad-

dress and Type as READ or WRITE. Code 4.6 shows this implementation. Classes 4.7

and 4.9 are utilized to map the user specification to the target workload.

1 class Request

2 {

3 public :

4 long unsigned addr;

5 enum class Type

6 {

7 READ ,

8 WRITE ,

9 MAX

10 } type;

11 };

Code 4.6: RAM ify Request Class

4.2.2.4 Address Generator

GenReqAddr class represents the operation of Address Generator in Figure 4.1.

This class changes the requests addresses according to the given settings from appli-

cation configuration file 4.1. Code 4.7 shows the implementation of this class. We

provide five modes to generate addresses as follows:

• sequential: sequential memory accesses means that the system reads or writes

information to the memory are generated sequentially, starting from the starting

address and proceeding by transaction size step.
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• random: the system in random memory access, on the other hand, has all the

requests in random manner.

• customized: the address segments are produced by a special handling to be

able to give the user the flexibility and controlability.

• seq customized: same as sequential mode, then some of the segments will be

customized.

• rnd customzied: same as random mode, then some of the segments will be

customized.

1 class GenReqAddr

2 {

3 public :

4 GenReqAddr ( Request *request , const ConfigAddr config ,

5 const int num_requests );

6

7 private :

8 int m_num_reqs ;

9 int m_addr_width ;

10

11 void sequentialIndexArray ( Request * request );

12 void randomIndexArray ( Request * request );

13 void customIndexArray ( Request *request ,

14 const ConfigAddr config );

15 };

Code 4.7: RAM ify GenReqAddr Class
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Table 4.2: Inheritance of child classes from Segment class

Segment Parameter Description

Segment
Column

no change segment value will be kept as 0

set set the segment to a specific parsed
value, and this value is supposed to be
within the segment’s range

Row
hit the requests are generated to access

same row to achieve 100% row hit in
the row buffer

miss the requests are generated to access dif-
ferent rows to achieve 0% row hit in the
row buffer

hit percentage generating requests with different hit
percentage

Channel
Rank

Bankgroup
Bank

interleaving interleave across all of the number of
a segment by a specific percentage ei-
ther to access same segment in all the
requests, or access all of the segments
in a uniform distribution with 0%, and
100% respectively

effective interleaving same as interleaving but the number of
the segment to be interleaved across is
variable to be able to generate work-
loads with partitioning feature

In any customized mode, our framework will initialize the segments based on a

specific selection related to the segment. Code 4.8 presents the parent class Segment

which is inherited to create the child classes for each segment. The common features

for all of the segments are implemented in the parent class. The related features for

specific segments are added in the child classes while inheriting them from the parent

Segment as shown in Table 4.2.
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1 class Segment

2 {

3 public :

4 Segment ( Request *request , const ConfigSeg config ,

5 const int num_reqs , const int addr_width );

6

7 private :

8 protected :

9 long unsigned int SegMap (long unsigned int current_addr ,

10 int calculated_seg );

11 void SegSet ( Request * request );

12 void SegSequential ( Request * request );

13 void SegRandom ( Request * request );

14 void SegDigitsAndClearing (int * seg_map_digits ,

15 int * seg_clear_num );

16

17 // members

18 ...

19 };

Code 4.8: RAM ify Segment Class

4.2.2.5 Type Generator

Type Generator in Figure 4.1 is implemented by GenReqType Class. GenReqType

provides four methods to generate the different type patterns of requests based on

the parameters from application configuration file 4.1, as follows:

• all read: all the requests types are read in this pattern.
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• all write: all the requests types are write accesses in this pattern. This pattern

is not supported in this use-case 4.2.3.1 as will be discussed later.

• rw random: accesses with totally random read and writes will be generated

in this pattern.

• rw switch percentage: in this pattern, a specific percentage will be applied

to create the types. This percentage shouldn’t exceed 50% in case of CPU-

Trace 4.2.3.1.

1 class GenReqType

2 {

3 public :

4 GenReqType ( Request *request , const ConfigType config ,

5 const int num_requests );

6

7 private :

8 int m_num_reqs ;

9 int m_switch_percentage ;

10

11 void readAccess ( Request * request );

12 void writeAccess ( Request * request );

13 void randomAccess ( Request * request );

14 void customReadWrite ( Request * request );

15 };

Code 4.9: RAM ify GenType Class
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4.2.2.6 Access Generator

GenAccess class gives the user the flexibility to generate the workloads in the desired

format. It represents the Access Syntax block in Figure 4.1. It is extendible to pro-

duce any format for read and writes, also any number format for the addresses based

on the parsed parameters that are passed from the from application configuration

file 4.1. Code 4.10 shows the class implementation for GenAccess. Also, the user

can develop the preferred mode for the access format as a new method in this class.

The current implementation of the class methods is done to support the workloads

use-cases that are discussed in Section 4.2.3

1 class GenAccess

2 {

3 public :

4 GenAccess ( Request *request , const ConfigAccess config ,

5 const int num_requests );

6

7 private :

8 int m_num_reqs ;

9 int m_transaction_size ;

10 std :: string m_read_format ;

11 std :: string m_write_format ;

12

13 void WriteDRAM ( Request * request );

14 void WriteCPU ( Request * request );

15 void AccessMEM ( Request * request );

16 };

Code 4.10: RAM ify GenAccess Class
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4.2.3 Workload Use-Case

The output workload from RAM ify can be used to provide input in two modes: 1) as

memory traces, to be used by a standalone memory simulator, or 2) as an executable

binary that can be run in actual machines/platforms or full-system simulators. In

this section, we present an overview on these different modes and the experiments

of them are shown in Chapter 6. For these simulations, Ramulator [21] is the target

memory simulator, and the CPU simulator is MacSim [61].

4.2.3.1 DRAM Simulation

Ramulator is the utilized memory simulator to test the generated workloads from

RAM ify. To simulate the workloads on Ramulator as a standalone memory simulator,

there are two mode of operations both based on a trace file that will be provided to

the simulator so RAM ify is developed to generate any format as it is extensible.

Memory Trace Driven In this mode, memory simulator is given an input trace

file containing the application’s major memory demands to imitate. The simula-

tor successively processes these requests according to the DRAM standard set (e.g.,

DDR3). This mode does not provide enough information to perform timing simu-

lations on any system. Memory Trace Driven mode is therefore more suitable for

testing the functionality of newly introduced features.

Ramulator implements this mode by receiving memory traces straight from a file

and solely mimics the DRAM subsystem. Each line in the trace file indicates a

memory request, with the hexadecimal address followed by the letters ’R’ or ’W’ for

read or write, respectively. as follows:

1 0 x32312480 R
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2 0 x43A25C00 W

3 ..

CPU Trace Driven This method is mainly related to DRAM-device simulator as

it uses prerecorded memory trace from a file. This trace consists of multiple memory

requests shown by each line in the trace. The trace saves the memory operations when

the application is executed on a trace generation environment [62]. This environment

can be the actual hardware, or can be produced by software. Hard monitoring, trace

synthesis, and binary instrumentation are the most common approaches to generate

these memory traces [63]. This method simplifies the real application simulation by

separating the functionality of this application from the executing time to complete

the application. But, it requires time and data storage to record the traces which can

grow really large [62].

Ramulator takes the CPU instruction traces from a file. Then, it creates memory

requests to the DRAM subsystem using a simplified out-of-order CPU core model.

From the nature of the CPU operations, Non-memory instructions and memory re-

quests can be found in these trace files. Memory requests in the trace file may relate

to a certain cache level or straight to main memory, depending on how the trace file is

created. In Ramulator, A trace contains main memory requests is called cache-filtered

trace. Ramulator should be set to not create any caches while emulating a cache-

filtered trace to be able to run the experiments. A memory request is represented by

each line in the CPU trace file, which can take one of these forms:

1 20 5445626

2 12 21440 54652310

3 ..
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• <num-cpu-instr> <addr-read>: If a line has two tokens, the first token which

is <num-cpu-instr>, denotes the number of CPU (i.e., non-memory) instruc-

tions that were executed before a memory read request is issued. The memory

address of the read request is specified by the second token <addr-read>.

The first two tokens in a line with three tokens are the same as in the first

format.

• num-cpu-instr> <addr-read> <addr-writeback>: In a line with three to-

kens, the first two tokens are similar to the two tokens format. The third to-

ken <addr-writeback> writeback request’s decimal address, which is the dirty

cache-line eviction induced by the read request that preceded it.

4.2.3.2 Full-system Simulation

The generated workloads from our Framework are also supporting full-system sim-

ulation. Full-system is done to validate the experiments on a real-application by

integrating memory simulator as a part of micro-architecture simulator such as gem5

[64] and MacSim [61]. In this setup, an executable file (.exe) which contains the mem-

ory requests and the CPU non-memory instructions to mimic a real simulation. The

parsing of the accesses is done in Code 4.12 while Code 4.11 shows our C developed

micro-benchmark program is utilized to generate the executable file that will be used

in the full-system simulation with Macsim.

1 SIM_BEGIN (1);

2 char reader = 0;

3 for (int i = 0; i < num_reqs ; i++) {

4 if ( req_type [i] == ’R’)

5 reader = dataArray [ req_addr [i]];
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6 else

7 dataArray [ req_addr [i]] = ’w’;

8 }

9 SIM_END (1);

Code 4.11: Micro-benchmark main function

1 int main(int argc , char *argv [])

2 {

3 if (argc < 1) {

4 printf ("wrong number of arguments \n");

5 return 0;

6 }

7

8 char const *const fileName = argv [1];

9 FILE *file = fopen(fileName , "r");

10 if (fopen == NULL) {

11 perror ("Error opening file");

12 return ( -1);

13 }

14

15 char line [256];

16 char delim [] = " ";

17 fgets(line , sizeof (line), file );

18 char *ptr = strtok (line , delim );

19 long unsigned num_reqs = strtol (ptr , &ptr , 0);

20

21 unsigned int * req_addr = malloc ( num_reqs * sizeof (int unsigned ));

22 char * req_type = malloc ( num_reqs * sizeof (char ));

23 int index = 0;
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24 while (fgets(line , sizeof (line), file )) {

25 char *ptr = strtok (line , delim );

26

27 for (int i = 0; ptr != NULL; i++) {

28 if (i == 0)

29 req_type [index] = *ptr;

30 else if (i == 1)

31 req_addr [index] = strtol (ptr , &ptr , 0);

32 ptr = strtok (NULL , delim );

33 }

34 index ++;

35 }

36 fclose (file );

37

38 char * dataArray = malloc ( MEM_SIZE_KB * 1024 * sizeof (char ));

39 dataArray [ MEM_SIZE_KB * 1024 * sizeof (char) - 1] = ’A’;

40

41 for (int i = 0; i < num_reqs ; i++) {

42 char str [] = {[41] = ’\1’};

43 rand_str (str , sizeof str - 1);

44 dataArray [i] = *str;

45 }

46 ...

47 return 0;

48 }

Code 4.12: Micro-benchmark configuration part
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4.3 Summary

RAM ify is our proposed framework for the computer architecture community. To the

best of our knowledge, it is the first tunable, low-level framework to stress on differ-

ent memory aspects be generating comprehensive workloads that are both memory-

centric and architecture-aware. We utilize RAM ify workloads in evaluating novel

DRAM device structure, and assessing memory scheduling techniques. Chapter 6

shows one of the advantages of RAM ify as it captured a bad implementation for one

of the page policies in Ramulator. RAM ify is a modular, expandable, and configurable

framework. We offer it as an open-source tool for the community to utilize and extend

it. It can be found in our repository1 in GitLab.

1https://gitlab.com/fanosteam/benchmarks/rambench
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Chapter 5

HBM for Real-Time Systems

In this chpater, we explore and evaluate two cutting-edge memory protocols/devices,

HBM and DDR4, using RAM ify workloads. The results are provided in Chpater 6.

HBM comes as an alternative implementing wider channels (128 bits) provid-

ing bandwidth up to 1TB/s [52], while consuming lower power and having higher

capacity in comparison to graphics double data rate (GDDRx). Besides the increas-

ing average-performance requirements, applications used in automotive and avionics

carry real-time requirements, where the total worst-case execution time (WCET) of

all tasks should never exceed their respective dedicated deadlines. Therefore, the

consolidation of HBM in critical systems requires careful analysis of its timing pre-

dictability properties with emphasis on timing isolation.

This enables the safe execution of mixed-criticality software and predictable and

tight worst-case memory access latency so that it can be shown that the benefits of

HBM in average memory performance remain for worst-case memory performance.

A breadth of works analyze HBM from a hardware and software perspective, though

those works do not cover HBM for real-time systems. On the other hand, the solutions
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for predictable DRAM-based systems do not cover HBM. In this chapter and next

chapter, we show the following contributions:

• We analyze HBM’s device structure and the changes it brings to its functional

and timing behavior compared to the DRAMs. This leads us to identify unique

features of HBM from the latency-guarantee perspective that are not present

in other DRAM-based memories. These are articulated as a set of observations

(Section 5.1).

• Building on these observations we analyze the impact of the main identified

HBM features to increase isolation or decrease worst-case latency (WCL). To

that end, we develop an HBM specific latency formulation for certain HBM fea-

tures and a set of illustrative time diagrams comparing DRAM and HBM. Our

analysis shows that HBM can indeed represent a promising memory protocol

for real-time embedded systems (Section 5.2).

• We perform an empirical comparison of the latest HBM standard (HBM2) and

DDR4 DRAM with the state-of-the-art DRAMSim3 [22] simulator integrated

with MacSim [61]: a detailed cycle-accurate processor simulator (Sections 6.2.2

and 6.2.3). Our comparison assesses overall average performance, worst-case

performance, and isolation properties using a wide set of representative as well

as synthetic benchmarks and kernels.

• We develop a timing simulation model derived from the JEDEC standards of

HBM2 and DDR4 [12, 65]. The purpose of the model is twofold. It allows us to

execute synthetically generated traces to further stress HBM2 and DDR4 dif-

ferences. And it allows us to assess all the HBM features including the recently
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(a) (b)

Figure 5.1: Simplified diagram of the internal organization of DRAM (left) and
HBM devices (right)

introduced ones in the HBM2 standard [12] (such as pseudo-channels), which

are not currently implemented in details in state-of-the-art memory simulators

(Section 6.2.4). We release this model as an open-source [66].

5.1 HBM Structure and Features

5.1.1 HBM Device Organization

HBM organizes DRAM dies into stacks (Figure 5.1 right), in contrast to the planar

layout of conventional DDRx DRAMs (Figure 5.1 left). This leads to a completely

different structure and organization of HBM, enforcing significant changes in opera-

tion sequence and timing behavior in contrast to DRAM. These novel properties and
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Figure 5.2: (a) HBM stacks; (b) Per channel data/bus connections; (c) Internal
structure of a 4-die HBM stack with arrangements of banks for pseudo channel

mode (Channel 6) and legacy mode (channel 7)

features of HBM urge close analysis of the memory standard to determine what ad-

vantages HBM can offer for specific computing domains. The basic structure of HBM

entails a base logic die, on which several (usually four or eight) DRAM core dies are

stacked. The logic die accommodates external communication interface of the stack

while stacked DRAM core dies are powered and connected to the logic die by Through

Silicon Vias (TSVs). TSVs provide internal bandwidth to satisfy the external I/O pin

bandwidth of the stack. A DRAM core die accommodates two independent channels,

each of which are connected to the logic die with 128 non-shared TSV I/Os.

A standard HBM stack with four/eight dies totals 1024 TSV I/O connections

to the logic die from its DRAM dies, see in Figure 5.1. These corresponds to the

stack’s external 1024 bit wide I/O interface that connects to the computing unit via

interconnect circuitry (i.e. memory controllers) [49] (Observation 1). One processing

unit to multiple HBM stacks as depicted in Figure 5.2a (Observation 2). DRAM
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on the other hand usually has an interface of 64 bit. This is because the DRAM’s

chip width is usually 4, 8, or 16 bit as stated in the DRAM chip datasheets. A

DRAM channel or DIMM is usually composed of rank(s) where each rank has 8-chips

totaling 64bit [33]. Each channel of the HBM interface is independently clocked and

has its own command / data interface. Channels do not need to be synchronous

to each other (Figure 5.2b and captured by Observation 3). Each channel features

several DRAM banks. However, their organization and access granularity is different

than of DRAM’s. As stated in Observation 4, unlike DRAM, HBM is not organized

into ranks. Instead, each HBM channel has a number of banks (e.g. 8 or 16), and

each bank is divided into half banks [67] [68]. Each half, under the so called legacy-

mode, produces 64 bits, so that a full bank produces 128 bits in each access (having

the column width of 128 bits). Each set of half banks have 64 dedicated I/Os, see

Channel 7 at Core Die 3 in Figure 5.2c.

For DDR DRAMs, when a specific memory location is fetched via row, column

and bank address, each chip across the rank supplies either 4, 8, or 16-bit (column

width) data from the same location (based on the device type, which is so-called x4,

x8, or x16). Hence, assuming 8 chips, this results in a 64 bit width per rank. In

contrast, a single access to an HBM (logical) bank supplies 128 bits (Observation 5).

In addition to its bandwidth benefits, we show in Section 5.2 that this feature can

also help in reducing worst-case memory access latency.

The latest HBM standard suggests these I/O pins can operate at rougly 2Gbps,

providing a maximum 256 GB/s of theoretical bandwidth per HBM stack, which

is about 10× in comparison to DDR4 DRAM’s and 5.3× of GDDR5’s maximum

bandwidth [69]. The key to HBM’s bandwidth superiority over DRAM comes from
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the implementation of the staggering 1024 bit wide I/O bus, which is made possible

by placing the HBM stack on the same silicon interposer as the processing unit within

a single package. This allows significantly reduced wire spacing in comparison to off-

chip PCB interconnects and potentially connecting one processing unit to multiple

HBM stacks as depicted in Figure 5.2a. the same processor to be connected to several

HBM stacks as depicted in Figure 5.2a.

Each channel of the HBM interface is independently clocked and has its own

command / data interface. Channels do not need to be synchronous to each other

(Figure 5.2b and captured by Observation 3. Hence, each channel consists of a number

of DRAM banks in which they have dedicated access. This is depicted in Figure 5.2b.

that highlights the private data bus and private (duplicated) address and control buses

of one HBM channel (and hence is replicated 8 times for the whole HBM). Note that

for simplicity some control signals have been omitted.

Observation 1 HBM offers wider connections to the processing unit (1024 bits) with

respect to DRAM (e.g. 64 bits).

Observation 2 A processor can be connected to several independent HBM stacks

residing on the same silicon interposer.

Observation 3 HBM channels, even those in the same core die, operate indepen-

dently via private data and address/control signals and buses. Each HBM channel is

connected to the logic die via a non-shared 128-bit TSV. Therefore, HBM channels

offer an ideal solution to achieve timing isolation among tasks accessing the memory.

Observation 4 While HBM is based on DRAM banks, unlike DRAM it is organized

into channels, pseudo channels, (logical) banks and half (physical) banks.
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Observation 5 In DDR3/4 the access granularity is either 4, 8, or 16 bits per phys-

ical bank and 64 bits for the DRAM rank, while in HBM each bank supplies 128

bits.

5.1.2 HBM’s Core Memory Cells

Although HBM has a completely different structure w.r.t. conventional DRAMs, it

still uses conventional DRAM cells as its memory storage core, i.e., HBM banks are

organized (and accessed) the same way as in DRAMs. They are organized as an array

of rows and columns and each bank has a row buffer that holds the most recently

accessed row in that bank. An access to the data that is available in the row buffer,

only an access command is needed (referred to as CAS command) to conduct the R/W

operation. However, if the access is to another row, it has first to close the row in the

row buffer, which is referred to as a precharging operation conducted using a PRE

command. Then, it has to bring the row to the buffer using an ACT command before

being able to conduct the R/W operation using the CAS command. Accordingly, all

commands have the same associated timing constraints as in conventional DRAM,

which are dictated by the JEDEC standard both for DRAM [2] and HBM [12].

5.1.3 Reduced Column-to-Column Timing

Another interesting characteristic of HBM is that, its tCCD is smaller than for

DRAM’s. tCCD is the timing of minimum burst duration, or the column-to-column

timing constraint (i.e. minimum time between column operations). tCCD is mainly

constrained by the time required to transfer the data on the data bus. In DDR

DRAM, with a burst length of BL = 8, it requires BL/2 = 4 cycles to transfer the
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Figure 5.3: A conceptual diagram of a HBM memory controller with key
components and connections to support pseudo channel mode

data from one access (i.e. one CAS command). Accordingly, tCCD = 4 is the mini-

mum possible value to ensure correct operation. On the other hand, since HBM does

not have BL = 8 and instead it supports up to BL = 4, we observe that tCCD = 1

or 2 in most HBM devices (depending on using either BL = 2 or BL = 4). This leads

to Observation 6.

Observation 6 Compared to DRAM, HBM has a reduced tCCD.

5.1.4 Pseudo Channel Mode

A unique feature of HBM is that HBM channels can be operated in two modes

— legacy and pseudo channel. The former corresponds to the conventional operation

mode as described in the previous section. The latter, which is provided in the latest
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HBM standard (also known as HBM2) [70], further divides each channel into two

sub channels formed with each set of half banks and 64 I/Os. This is illustrated for

Channel 6 and Core Die 3 in Figure 5.2c. Pseudo channel mode requires the burst

length (BL) to be 4, providing 64 × 4 = 256 bit or 32B per read/write command for

each pseudo channel. Pseudo channels are semi-independent to each other — they

share row, column command bus and clock inputs, but they can decode and execute

command independently.

Observation 7 In HBM2, a single memory access (i.e., CAS command) provides a

32B of data using BL = 4.

In pseudo channel mode, each set of half banks constitutes a semi-independent

sub-channel (pseudo channel). Each pseudo channel shares the same address and

command bus but they have dedicated banks and 64 bit I/Os. Therefore, they can

decode and execute commands independently, as illustrated in Figure 5.3b. Please

note, that one channel in legacy mode and one channel is pseudo channel mode is

depicted side-by-side on a single core die, just for illustrative comparison purposes;

in reality, HBM device can operate either in pseudo channel mode or in legacy mode,

but not both.

Pseudo channels offer some degree of isolation so that accesses to the same channel

but different pseudo channel have limited impact on each other. Assuming that each

pseudo channel is provided to a different task would also limit the inter-task contention

effects.

Observation 8 Pseudo channels are semi-independent to each other: while they

share the row and column command buses and clock inputs, they can decode and

execute commands independently.
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5.1.5 Dual Command Interface

Driven by cost constraints, DRAM adopts a shared column and row address pins. On

the other hand, with its wide I/O interface, HBM deploys separate column and row

address pins. Leveraging this architecture, HBM employs dual address/command

interface that allows column-related commands (i.e. read and write) to be issued

simultaneously with the row-related commands (ACT and PRE) [47]. Row command

bus issues commands corresponding to the row operations such as precharge or acti-

vate. Therefore, unlike DRAM, HBM can issue RAS and CAS commands in parallel.

Observation 9 HBM has dedicated pins for column address that are separate from

row address pins. Hence, read/write commands and addresses can be issued concur-

rently with row ACT/PRE commands.

Despite employing separate row/column address and command bus, HBM needs

to enforce usual DDR timings for ACT, R/W, PRE since these timing constraints

are imposed by the internal physical structure of the memory cells, which is still

DRAM-based. Hence, this does not change the timing of individual transactions

(ACT, R/W, PRE). However, this feature can reduce address/command bus conflicts

among different transactions as we explain in Section 5.2.

5.1.6 Implicit Precharge

In DRAM standard, a row in a bank can only be activated after the previously open

(active) row has been closed (precharged). Under DRAM close-page protocol, this

translates into the sequence ACT-R/W-PRE. Under open-page if the row to access

is open R/W commands are issued, otherwise it is required to issue PRE and ACT.
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Contrarily, when operating in pseudo-channel mode, HBM controller can ignore the

PRE command and issue the ACT directly by leveraging the implicit precharge feature

(Observation 10). However, it is important to know that all associated ACT-to-PRE

and PRE-to-ACT constraints yet have to be satisfied.

Devices can issue an activate command to another row in the same bank, before

closing the previously opened row. This is done via an implicit precharge operation,

which issues an internal precharge command as part of the ACT command. In HBM

activate command requires two cycles, during second of which the activate an implict

PRE command precharges the row. The implicit precharge feature, hence, plays an

important role in the sequence of commands send to the device and can be exploited

to reduce worst-case issue latency w.r.t. DRAM.

Observation 10 In pseudo channel operation HBM allows a subsequent ACT com-

mand to be issued to another row in the same bank without closing the previous row.

In this case, the DRAM core itself will issue an implicit PRE command to close the

first row before activating the second one.

5.1.7 Single Bank Refresh

Another interesting feature that HBM implements, is Single Bank Refresh This fea-

ture facilitates accessing other banks while a specific bank is being refreshed.

Observation 11 HBM allows to refresh a single bank per channel instead of the

refreshing all banks during periodic refresh.
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5.2 HBM for Real-Time Systems

In this section, we show how the main observations made in the features section 5.1

about HBM operation can be leveraged to

1. either increase isolation properties; and/or

2. reduce the worst-case memory latency (WCL) bounds compared to existing

state-of-the-art commodity-DRAM approaches.

In each section we describe each feature assuming it is the only difference between

HBM and DRAM. By default all timing parameters remains the same as DRAM

except the ones being analyzed in that section. This allows to independently analyze

the benefit of each feature as well as simplifies the discussion. Of course, the benefit

of different features combine, which we analyze experimentally in chapter 6.

5.2.1 HBM Degrees of Isolation

HBM can be leveraged to reduce contention among tasks in memory. We identify

several levels of isolation from HBM stacks (Observation 2), HBM channels (Obser-

vation 3) and two pseudo-channels per channel (Observation 8). They can be smartly

exploited to map the data/instructions of concurrently running tasks to reduce their

contention interference as follows.

1. Stack isolation. At the top level, requests sent to different HBM stacks suffer

no inter-task contention. This is so as each HBM stack operates independently.

2. HBM (logical) bank isolation. Similar to regular DRAM systems, HBM

enables bank isolation so that requests from different tasks can be mapped to
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Figure 5.4: Effect of bank partitioning

non overlapping banks.

3. Half (logical) bank isolation. As per Observation 8, pseudo-channels enable

request to be sent to different half logical banks (also referred to as physical

banks). Pseudo channels offer a reduced degree of isolation compared to chan-

nels as they share the row/column address and command buses and clock inputs.

Each pseudo-channel has its own 64-bit data interface to the TSV.

These isolation levels can be leveraged from the software [53] to increase pre-

dictability. Comparing high-level organizational structure, HBM stacks do not exist

in traditional DRAMs (since the latter is not 3D stacked); HBM channels match

DRAM channels; DRAM ranks do not exist in HBM; HBM bank isolation matches

DRAM bank isolation, and HBM half-bank isolation (pseudo-channels) is not present

in DRAM.
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5.2.2 The Isolation and Bandwidth Trade-offs

A common approach when using DRAMs for real-time systems is to partition banks

among different requestors to minimize interference [56, 71, 34]. The main issue with

this approach is that one request can be serialized into multiple accesses to serve the

requested data. For instance, for the common DRAM data bus width of 16 bit [33]

and a maximum burst length of BL = 8, a 64B cache line will require 64/(8 ∗ 2) = 4

accesses to serve the requested data. For WCL analysis purposes, the 64B request

will suffer an interference delay of 4×WCDAcc from other requestors, where WCDAcc

is the worst-case interference delay suffered by a single access, see Figure 5.4(a) 1.

For HBM, we build on Observation 1, 5, and 7 to tighten the WCD in Lemma 1.

Observation 7 is based on the fact that each pseudo channel in HBM has a bus width

of 64 bit (8 bytes). A BL = 4 results in 32B per access. Based on Observation 7,

HBM can be utilized to deploy bank partitioning to provide isolation among different

requestors, while mitigating the effects of the reduced interleaving. To illustrate this

observation, Figure 5.4(b) presents the same example used previously in DRAM but

using HBM instead. Since HBM provides 32B per single access, a 64B cache line

size will consume two accesses. This reduces the total WCD suffered by a memory

request to half of the DRAM’s case (compared to DRAM’s column width of 16 bits).

Lemma 1 Under bank partitioning where each core is assigned BC private banks, a

request with a data size of Y bytes targeting a DRAM with a data bus width of cw

bits and a burst length of BL suffers a total WCD due to interference from other

requestors that can be computed as shown in Equation 5.2.1 [34, 72].
1In all time diagrams, ‘A’, ‘C’ and ‘P’ refers to ACT, CAS and PRE commands respectively; and

the following number, if any, indicates the bank. ‘D’ represents data burst.
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WCDtot
DRAM = Y

BL × BC × cw/8 × WCDAcc (5.2.1)

Note that as Lemma 1 shows, the number of transferred bytes depends on how

many banks the request is interleaved across (Equation 1) [34, 73]. We make the

following important remarks about Equation 5.2.1.

1. cw in modern DRAMs is limited to 4, 8, 16, or 32 bits.

2. BL can be either 4 or 8.

3. BC is the number of banks assigned to the requestor, which is upper bounded

by the total number of available banks. In DDR3, a rank has a total of 8 banks,

while in DDR4 it increased to 16.

4. the value of WCDAcc depends on the memory controller architecture [34].

5.2.3 Reducing CAS Latency

One of the main components of the WCD is the CAS latency [74, 53], defined as

the latency affecting open requests targeting data available in the row buffer. For

a sequence of NOP row-open requests of same type (and hence composed of NOP

CAS commands), the total access latency of the sequence is LCAS = (NOP − 1) ×

tCCD + tCL + tBUS, where tCL is the time between the CAS command and the

start of its corresponding data transfer, while tBUS is the required time to transfer

the data (= BL/2). For this CAS latency, HBM (Observation 6) offers a significant

advantage over regular DRAMs. This is because HBM has tCCD = 1 or 2 compared

to tCCD >= 4 for DRAM. Accordingly, HBM can reduce the CAS latency component

to at least half of its DRAM value.
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Figure 5.5: Reduced tCCD effect

Figure 5.5 illustrates this by showing a sequence of three consecutive CAS com-

mands. The two requests correspond to the address/commands sent to Bank0 and

the data sent over the data bus, respectively. The row at the bottom shows the cycle

count.

This section captures how reduced tCCD (Observation 6) can be used to effectively

reduce the access latency. In case of DRAM (Figure 5.5a), tCCD = 4, which leads to

a total of 31 cycles of service time of the sequence. In contrast, HBM (Figure 5.5b)

with tCCD = 2 services the same sequence in only 21 cycles. In both scenarios

we assume tCL = 15 (recall that we keep DRAM parameters except the one being

analyzed).
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Figure 5.6: HBM Internal PRE feature and its effect on latency

5.2.4 Reducing Bus Conflicts

5.2.4.1 Implicit Precharge.

Per Observation 10, HBM implements an implicit precharge that allows the controller

to issue an ACT command to a bank while another row is already active. The internal

circuitry of HBM device takes care of precharging the open row and maintaining

correct operation. Figure 5.6 captures how this feature can lead to a reduced memory

access latency by eliminating the PRE bus conflict. Each scenario shows three rows

corresponding to the address/commands sent to of Bank0 (row1); address/commands

sent to the other banks (row2); and the data over the bus, respectively.

The scenario assumes that Bank0 has opened a row with the ACT command at

cycle 1 and accesses it at cycle 16. While this row is open, another request at cycle

37 arrives to the same bank but different row. Hence, it has to close the open row

by a PRE command before accessing the requested row. The PRE command at cycle
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37 already satisfies the intra-bank constraint of CAS-to-PRE. Additionally, PRE com-

mands do not have associated inter-bank constraints. Hence, it can theoretically be

issued immediately to the DRAM device. However, there are other ready commands

to the remaining 7 DRAM banks (C1, A2, P3, ... in the Figure). This delays the

PRE command by 7 cycles to cycle 44. In this case, we say that the PRE command

suffered a bus conflict delay (this is why it is shown in orange at cycle 37 indicating

that it was not issued).

For the HBM case, the controller does not need in the first place to issue that

PRE command at cycle 37. It only needs to issue the ACT command after satisfying

all timing constraints, namely, tRAS (36 cycles) and tRP (15 cycles). So, the next

ACT command occurs at cycle 52. That request finishes at cycle 85 compared to 92

for the DRAM case. Again note that all timings are DRAM based, e.g. single-cycle

ACT, other than the particular features analyzed.

5.2.4.2 Dual Command Bus

Since the Implicit Precharge feature helps in removing the need to issue the PRE

command, and hence eliminates its associated bus conflict delays, it remains to be

discussed the bus conflicts in ACT and CAS commands. We now discuss how the dual

command/address buses (feature from Observation 9) can help in eliminating these

conflicts by an illustrative example. Figure 5.7 draws a scenario in which several ACT

commands are sent to the memory device (namely to Bank 0, 1, and 2).

Concurrently, Bank3 has multiple requests to the same open row that happens

to arrive at the same time when the ACT commands to other banks become ready.

Assuming that ACT commands have higher priority than CAS commands, each of
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Figure 5.7: HBM Dual command feature

the CAS commands to Bank3 has to be delayed by one cycle due to the command

bus conflict. Note that a similar scenario would occur if CAS commands have higher

priority, but in that case the ACT commands are the ones that are going to be delayed

and hence suffer the bus conflict. On the HBM case, on the other hand, none of these

conflicts occur since CAS and ACT commands can be issued simultaneously.

5.2.5 Reducing ACT Latency

One of the largest DRAM timing constraints affecting the WCD is the four-bank

window constraint, tFAW . No more than 4 banks can be activated in a rank within

a tFAW time window. To show the effect of tFAW in the DRAM latency, Figure 5.8
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Figure 5.8: Effect of HBM’s pseudo-channel on tFAW constraint. (a) DRAM, (b)
HBM with pseudo-channel. (c) HBM with pseudo-channel but with actual two-cycle

ACT command

draws an example of 8 requests targeting different banks. In Figure 5.8a, a single-rank

DRAM is used. In this case, the first four ACTs (A0— A3) are issued and separated

only by the tRRD constraint, which is 6 cycles in the used DRAM example. However,

the fifth ACT command cannot be issued until the tFAW = 32 constraint is satisfied.

This causes the idle gap in the data bus between cycles 53 and 62 in Figure 5.8a.

Hence, the sequence of the 8 requests finishes at cycle 84.

Intuitively, using a DRAM with more than one rank and interleaving the ACT

commands among them can be the solution to address the tFAW effect on the mem-

ory delays. While it is true that the tFAW constraint does not apply to ACTs across

ranks, rank interleaving in commodity DRAMs is a source for another delay that can

result in a total suffered delay larger than the one added by the tFAW . This is so

as the DRAM standard mandates that data transfers from different ranks has to be

separated by at least tRTR cycles. The tFAW constraint in the single-rank case

adds an extra delay of tFAW − 4 × tRRD. This equals to 32 − 24 = 8 cycles to the

ACT commands in our used DDR device. On the other hand, the tRTR constraint in

the dual-rank case can add a delay of 7 × 2 = 14 cycles between the CAS commands
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compared to the single-rank case. Overall, this is a trade-off between ACT latency

(tFAW ) and CAS latency (tRTR).

In contrast to commodity DRAMs, HBM has no concept of ranks (Observation 4).

Instead, it introduces the pseudo channel concept, where each channel can be divided

into two pseudo channels as explained in Section 5.1 in the background chapter.

ACTs targeting two different pseudo channels do not have to conform to the tFAW

constraint, while ACTs to the same pseudo-channel have to; this constructs our next

observation.

Observation 12 HBM’s large tFAW constraint does not apply to ACT commands

targeting different pseudo channels.

Unlike accesses to different ranks in DRAMs, there are no timing constraints that

enforce a gap between data transfers from two pseudo channels (Observation 3). In

other words, there is no tRTR-like constraint. Accordingly, by cleverly interleaving

ACTs among the two pseudo channels, it is possible to stream data on the data

bus without suffering the large tFAW constraint. In Figure 5.8b, we apply this

observation to our 8 requests sequence. As the figure illustrates, HBM enables the

sequence to terminate at cycle 76, which is an example of how the effect of tFAW

on the WCL can be mitigated.

5.2.6 HBM Drawback: Two-cycle ACT commands

One drawback in HBM that affects the access latency as well as the total WCD upon

accessing the device is that HBM requires the ACT command to consume two-cycles

in the command bus compared to a single-cycle DRAM’s ACT command. This also
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affects all the ACT-related timing constraints since the standard imposes that all these

constraints have to be considered from the second cycle of the command and not the

first one [12]. To illustrate the effect of this feature, in Figure 5.8c we show actual

dual-cycle ACT commands of HBM (compared to a single-cycle ACT in Figure 5.8b).

As the figure illustrates, now the same 8-request sequence finish at cycle 84 similar

to DRAM even though it does not suffer the tFAW constraint. The intuition behind

this result is that with the two-cycle ACT commands, an additional cycle per ACT

command is suffered by the sequence. This adds 8 cycles to the single-cycle ACT

HBM in Figure 5.8b entailing the sequence to finish at cycle 84.

5.3 Summary

We analyzed some distinctive functional features (e.g dual issue, implicit precharge,

and reduced tCCD) and architectural features (e.g. isolation levels and pseudo chan-

nels) of HBM. In particular, we analyzed the benefits of those HBM features from

a real-time point of view in terms of isolation and reduction on memory worst case

latency. We empirically showed the benefits of some HBM features via a reference

DRAM memory simulator. We also provide insights on some of the difficulties for

the real-time community to build on DRAM memory simulators developed by the

high-performance community. Finally, we developed a worst-case timing model de-

rived from the JEDEC standards of HBM and DDR4 capturing HBM features that

are not currently properly modeled in those DRAM simulators.
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Chapter 6

Evaluation and Validation

This chapter provides details of the experiments used to verify RAM ify, and compare

it to SPEC and MemBen. The verification plan is closely tied to the framework

specification and contains a description of what features need to be exercised and the

techniques to be used to verify our implementation.

6.1 RAMify Evaluation

In this section, we utilize RAM ify to create different workloads that are assessing

various features related to the off-chip memory architectures. First, we show the

shortage of the current benchmarks in evaluating the current memory architecture

by investigating their traces in Section 6.1.1. Then we present the setup of our

experiments in section 6.1.2. In section 6.1.3, we present the results from the a

standalone experiments on DRAM-simulator.
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Figure 6.1: Non-Memory instruction vs memory requests

6.1.1 Memory intensity of current BMs

In this section, we show how current benchmarks, as SPEC [23] and MemBen [41],

are not memory oriented, and their cpu traces have limitations to evaluate current

memory technologies. To show the limitations in these benchmarks, we assessed 22

CPU-driven traces from SPEC2006 benchmarks, and 34 workloads from MemBen
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Figure 6.2: Memory access cycles vs execution cycles

suite by processing these traces offline to collect the number of non-memory instruc-

tion and memory requests. Also, we compare our analysis to the statistics that are

generated from Ramulator, and they show the same results. The percentage between

CPU non-memory instruction vs memory requests of these traces between are pre-

sented in Figure 6.1. Moreover, we show the memory access cycles compared to the

total execution cycles in Figure 6.2 for SPEC2006 benchmarks.

CPU vs Memory

The instructions percentages for SPEC and MemBen benchmarks are shown in

Figures 6.1(a) and 6.1(b) respectively. It is clear that the huge difference between

CPU non-memory instructions compared to the memory ones. Actually, the maxi-

mum memory instruction percentage was in mcf trace file around 8% of the total

instructions. h264-decode in MemBen shows the maximum percentage almost 20%

compared to the other workloads. Both graphs present the limitation in SPEC and

MemBen benchmark to provide fairness percentage between CPU and memory in-

structions. On other words, SPEC benchmark is more CPU oriented as the average

percentage of CPU instructions in these 22 traces was almost 98.4% which is not fair
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for the memory. MemBen shows also low memory-intensity.

Memory Access Cycles vs Execution Cycles

Figure 6.2 clarifies how some of SPEC benchmarks are not memory intensive. It is

clear that most of the benchmarks spend the execution time in executing non-memory

instructions. The memory access cycles are so low in SPEC while some benchmarks

have high intensity such as mcf, GemsFDTD and soplex but it is so challenging

to interpret the results and understand the performance in such benchmarks.

6.1.2 Experimental Setup

This section presents the experimental setup used in the evaluation of RAM ify .

The simulation environment for both DRAM simulation, and full-system simulation

is discussed in Section 6.1.2.1. Also, the system and memory configurations that

provided to RAM ify are shown in this section. Section 6.1.2.2 describes the application

configurations used by RAM ify to generate the workloads that will be executed.

6.1.2.1 Simulation Environment

We use Ramulator as a standalone DRAM simulator to evaluate the generated

CPU workloads from RAM ify . The workloads are designed to be stressing on the

memory behavior by neglecting any non-memory instructions For full system ex-

periments, we integrate Ramulator with Macsim CPU simulator to verify selected

workloads performance.

We model four channels DDR4-1600 with one rank and four banks within four

bankgroups, as well as an HBM stack with eight channels and 16 banks per channel.
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Table 6.1: Main memory configuration parameters for RAM ify work

Main Memory Structural Parameters

PARAMETER DDR4 HBM2

bankgroups 4 4

banks per group 4 4

rows 65536 16384

Columns 1024 128

device width 16 128

BL 8 4

System Parameters

PARAMETER DDR4 HBM

channels 4 8

bus width 64 128

address mapping RoBaBgRaCoCh RoBaBgRaCoCh

row buf policy open page open page

queue structure per bank per bank

cmd queue size 8 8

trans queue size 32 32

Table 6.1 displays the configuration details, including structural, system, and tem-

poral factors. Both setups employ the open page policy. The timings constrains for

DDR4 and HBM are presented in Table 6.2.

6.1.2.2 Workloads

We generate a wide set of workloads to stress on memory features as locality, and

parallelism. Also, these workloads are designed to focus on the timing constrains
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Table 6.2: JEDEC DRAM timing description [2].

Timing Constrains

Parameter DDR4 HBM

tRCD(R/W ) 11 7/6

tRL 11 7

tWL 9 4

tRP 11 7

tRAS 28 17

tRC 39 24

tWR 12 8

tRTP 6 7

tCCD (S/L) 4/5 2/3

tRRD (S/L) 4/5 4/5

tWTR (S/L) 2/6 2/4

tFAW 20 20

within the memory architectures. Table 6.3 shows the configurations of the workloads;

20 of them are created to be customized in the address pattern to explore the effect

of row locality and different level of parallelism on the memory behavior, in addition

to a sequential, and random address mapping. Combining these workloads with 6

read-write switch percentages 0 : 20 : 100 leads to 132 different workloads.

RAM ify offers various degrees of freedom while creating the workloads as there is

another layer of controlability related to the period of each segment in the generated

accesses. Read-write with 0% represents all-read scenarios, while 100% means the

type of the request keeps toggling between read and write. In other words, each

write represents write-back, cache-eviction, for the previous read. We target different
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Table 6.3: RAM ify workloads

Workload Address Address Segment Period Type

Pattern Ro Bk Bg Co Ch Ro Bk Bg Co Ch RW

WL0 customized 100 set set rnd set 1 1 1 1 1 0:20:100

WL1 customized 100 seq set rnd set 4 1 1 1 1 0:20:100

WL2 customized 100 seq seq rnd set 16 4 1 1 1 0:20:100

WL3 customized 100 seq seq rnd seq (64,128) (16,32) (4,8) 1 1 0:20:100

WL4 customized 75 set set rnd set 1 1 1 1 1 0:20:100

WL5 customized 75 seq set rnd set 4 1 1 1 1 0:20:100

WL6 customized 75 seq seq rnd set 16 4 1 1 1 0:20:100

WL7 customized 75 seq seq rnd seq (64,128) (16,32) (4,8) 1 1 0:20:100

WL8 customized 50 set set rnd set 1 1 1 1 1 0:20:100

WL9 customized 50 seq set rnd set 4 1 1 1 1 0:20:100

WL10 customized 50 seq seq rnd set 16 4 1 1 1 0:20:100

WL11 customized 50 seq seq rnd seq (64,128) (16,32) (4,8) 1 1 0:20:100

WL12 customized 25 set set rnd set 1 1 1 1 1 0:20:100

WL13 customized 25 seq set rnd set 4 1 1 1 1 0:20:100

WL14 customized 25 seq seq rnd set 16 4 1 1 1 0:20:100

WL15 customized 25 seq seq rnd seq (64,128) (16,32) (4,8) 1 1 0:20:100

WL16 customized 0 set set rnd set 1 1 1 1 1 0:20:100

WL17 customized 0 seq set rnd set 4 1 1 1 1 0:20:100

WL18 customized 0 seq seq rnd set 16 4 1 1 1 0:20:100

WL19 customized 0 seq seq rnd seq (64,128) (16,32) (4,8) 1 1 0:20:100

WL20 sequential X X X X X X X X X X 0:20:100

WL21 random X X X X X X X X X X 0:20:100
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characteristics in the implemented workloads such as:

1. access same bank all the time. This scenario produces the worst case latency in

case of all the accesses are miss for any memory architecture because the row-

buffer suffers from the three timing components as mentioned in Chapter 1.

2. interleave across the banks within the same bankgroup to stress on the long

timing constrains as they are characterized for the accesses that targeting

different banks within same top-level entity, ranks in DDR3, or bankgroups in

DDR4.

3. interleave across all the banks in the memory before accessing the first bank

again either within a single channel or multiple channels are produced to check

the interleaving effect on the latency. In these workloads, timing constrains

with short periods contribute in the memory accesses.

4. There is only one rank in the setup of both DDR4 and HBM so the timing

constrain tRTRS which presents the needed time time to switch between ranks

during memory accesses is not covered in these experiments.

6.1.3 DRAM Simulation

In this section, we explore different aspects for the memory architecture. Ramulator

is the main DRAM simulator for these experiments. First, we show the memory

access cycles for these workloads in Section 6.1.3.1. Then, we compare the row-buffer

different status as hit, miss, and conflict percentages of our workloads with SPEC

CPU benchmark, the most commonly used benchmark, to show its limitation in

covering specific scenarios in Section 6.1.3.2. Since SPEC benchmarks do not stress
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on the off-chip memory systems as discussed in Section 6.1.1, we select the most

memory intensive applications for fair comparison. Finally, Section 6.1.3.4 compares

different page policies for specific workloads.

6.1.3.1 Memory Access Cycles

Hit Percentage

Figure 6.3 presents the memory access cycles for the workloads WL0-21 generated

by RAM ify as shown in Table 6.3 by simulating them on both DDR4 and HBM

memory architectures. The memory access cycles for SPEC and MemBen are showed

in Figure 6.4. The memory requests addresses are customized and the types in the

workloads are all-read. We classify the workloads based on the hit percentage for

each group of them. Figures 6.3(a) — 6.3(e) show workloads with hit percentage

100%, 75%, 50%, 25%, and 0% respectively. From these graphs, we make the current

observation and validation for RAM ify framework:

• Memory access are improved in terms of cycles by increasing the interleaving

across the memory segments.

• HBM shows better performance compared to DDR4 due to the small timing

constrains and HBM features that discussed in Chapter 5.

• WL0 and WL1 in Figure 6.3(a) show the same performance as both suffer

for tCCDL, 5 in case of DDR4 and 4 in HBM, as all the memory accesses

are targeting the same row, 100% hit percentage, either in the same bank or

across the banks within the same bankgroup. On the other hand, WL2 has

improvement due to the interleaving across all the banks within a single channel
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Figure 6.3: RAM ify memory access cycles

so the memory request will be constrained to tCCDS which is 4 and 2 for

DDR4 and HBM as declared in Table 6.2. The calculation of the latency in the

workloads can be calculated by Nreqs ∗ tCCD(S/L).
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Figure 6.4: Memory access cycles for (a) SPEC, and (b) MemBen

• WL16 represents all conflict for same bank which means this is the worst case

in all the scenarios as each access will need to precharge the old row in the

row-buffer. Then, active the new row, and active the target column at the end.

The timing constrain responsible for this is tRC = tRAS + tRP

• For WL18, HBM shows worse performance compared to DDR4 due to the
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nature of the workload as the accesses are all conflict for the banks within a

single channel. As the memory controller can issue commands for different banks

so it can issue ACT commands but with taking into consideration tFAW . From

Table 6.2. tFAW is the same for both memories =20, and the interval between

two row activation commands to same DRAM device tRCD is the same = 4.

As tRCD < tFAW with 16 banks so there are 4 activation windows will be

sustained before being able to access the first bank which means tFAW is the

dominant in this scenario so both memories supposed to have same performance

expect HBM has spend more cycles in Refresh.

• Figure 6.3(f) shows a comparison for different hit percentage in case all of the

requests are targeting same bank. It is clear that once the hit percentage de-

creased the memory access cycles get worse as the memory controller needs to

issue three commands: PRE, ACT, and CAS in case of conflict row.

• Figures 6.4(a) and 6.4(b) show only HBM is better than DDR4 for all the

workloads due to tCCD effect. The benchmarks couldn’t capture the effect of

tFAW for example as showed in RAM ify WL18. This shows another limitation

in these benchmarks while assessing memory devices as it is hard to interpret

the results.

Read/Write Percentage

Another experiment was done on read/write switching percentage using both uni-

fied queue and write batching modes in the read/write arbitration as discussed in

Section 2.3.2.1. Workloads with 100% hit percentage is used in this experiment to

show the effect of giving reads and writes same priority as in unified queue compared

to issuing the writes in clusters to minimize the switching latency in write batching.
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Figure 6.5: RAM ify memory access cycles for read/write switching percentage

Figure 6.5 presents memory access cycles for both arbitration across different inter-

leaving segments. Figures 6.5(a) and 6.5(b) show the results for workloads with hit

percentage 100% and interleaving in same bank, different bank in the same bankgroup

respectively, while the effect of banks in different bankgroups is shown in Figure 6.5(c).

Figure 6.5(d) present the interleaving across banks in different channels. The figures

show that giving the same priority for reads and writes, unified queue mode, adds

more latency while increasing the switching percentage. For WL2 and WL3, 100%

case shows improvement in the memory access cycles due to the address mapping as
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the channel is in the least significant bits which distribute the read and writes across

he channels so it reduces or eliminates the effect of reads/writes switching. write

batching mode gives almost the same performance in all the cases as it issues the

writes in groups once a threshold is satisfied.

6.1.3.2 Row-Buffer Status

Row-Buffer status is so important feature to show the locality of the program. As

discussed in Section 2.4.1, locality has an impact on the application’s performance.

Figure 6.6 shows the results of RAM ify , SPEC and Memben. First, we validate

the generated workloads from RAM ify by collecting the statistical simulation results

from Ramulator. As shown in Figure 6.6(a), RAM ify generates the workloads with

the correct hit percentage for all the scenarios either for DDR4 or HBM. In some

workloads, hits are converted to be misses due to the scheduling scheme. As FRFCFS

in Ramulator checks if a request is meets all timing parameters. If this condition is

satisfied, then it is prioritized. Sequential shows hit percentage so close to all hit,

whereas random shows percentage close to all conflict.

We explore the hit, miss, and conflict percentages for SPEC benchmark and Mem-

Benc suite in Figures 6.6(b) and 6.6(c) respectively. In some cases, HBM shows worse

results in hit percentage compared to DDR4 despite both have 16 banks as we use

same CPU trace in both simulations which is not ideal as HBM has 8 channels com-

pared to 4 channels in DDR4 so the address mapping affects the results. This shows

the advantage of RAM ify framework as it is so easily to direct the accesses of the

workloads based on the address mapping from the system configuration file 4.3 to be
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Figure 6.6: Row-buffer status percentage
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able to evaluate the memory architecture correctly.

Another important aspect for these experiment is to help in developing benchmark

characterization. For example, we can classify the benchmarks to be high or low

locality based on thresholds to differentiate between these benchmarks. In the same

time, it will be easier to map these benchmarks to the memory architectures that can

give high performance for these kind of applications.

6.1.3.3 Read-Write Analysis

Figure 6.7 shows another useful metric which is the percentage between reads

and writes for RAM ify compared to SPEC and Memben. The generated workloads

from RAM ify are validated and verified to be correctly produced by checking the

read and write requests from both Ramulator and offline analysis as presented in

Figure 6.7(a). By averaging all the read-write switching 0 : 20 : 100% testcases over

the 22 workloads, we verified the correctness of the framework. For example, 20%

switching percentage means for 100 requests, there will be 20 toggling between read

and writes while taking into account each write represents an eviction because of the

prior read request, so these 20 toggles creates 10 writes. On other words, for each

switching percentage the number of writes in case of CPU-trace is half the specified

percentage which is proved for the selected workloads as shown in Figure 6.7.

Figures 6.7(b) and 6.7(c) present the read write switching percentage for SPEC

and MemBen. The advantage of generating parameterized percentage is clear in

RAM ify compared to SPEC and MemBen as there is no controllabilty on this per-

centage which means RAM ify gives more flexibility.
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Figure 6.7: Read-write switch percentage

6.1.3.4 Page Policies

We use WL0,4,8,12,16 to mimic custom hit percentage for the range 0 : 25 : 100

while setting the other segments, and all-read requests to evaluate the performance

of the implemented page policies in Ramulator which are Opened, Closed, ClosedAP,

94



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

1007550250

0
25
50
75

100
125
150
175
200

Hit Percentage %

c
y
c
le

s

Closed
ClosedAP orig
ClosedAP mod

Opened
Timeout

·106

1007550250

0

50

100

150

200

250

300

Hit Percentage %

c
y
c
le

s

Closed
ClosedAP
Opened
Timeout

·106

(a) Back-to-back case (b) Separated case

Figure 6.8: Page policies comparison

and Timeout. In Ramulator, Opened page policy only precharges a row if there are no

pending references in the requests queue target the open row. The difference between

Closed and ClosedAP is that memory controller issues read/write commands with

auto-precharges for the row as soon as there are no pending requests to this row in

ClosedAP. Finally, there is a capability to precharge the row after specific time in

Timeout page policy.

We executed two experiments 1) all the requests are issued back-to-back without

non-memory requests. 2) by separating the memory requests with 400 non-memory

instructions to make sure each memory request is issued and received by the memory

controller before issuing a new request. The performance of these page policies is

presented in figure 6.8.

• We figured out a discriminancy in the logic of ClosedAP using our RAM ify

workloads. In back-to-back experiment, it is expected the workloads have the

same performance by the definitions of these page policies as the command

queue is always full with the commands which means memory controller issues

them with the minimum timing constrains. On other words, there is memory
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activities and the memory is busy through the whole execution of the workload.

ClosedAP orig shows wrong behavior according to its definition in Ramulator

for WL8,12. Despite having two requests targeting same row, we find both

of them are upgraded to issue their CAS associated with auto-prechagre. We

fix this logic in ClosedAP mod and the result is shown in Figure 6.8(a). This

proves the importance of RAM ify to stress on different aspects in the memory

architecture.

• Issuing the memory requests by separating them with 400 non-memory instruc-

tions gives another dimension to verify in these page policies. As we expect

that Closed and ClosedAP have the same performance as now the memory con-

troller has a gap between the memory requests due to the effect of non-memory

instructions which accommodate the difference between both policies.

Also, this gap guarantees that the performance of opened and timeout is the

same as the command queue is empty most of the execution time. It is expected

opened and timeout perform better than the other policies in the high-locality

workloads while they will be worse in low-locality. Figure 6.8(b) presents this

behavior and shows the performance of Closed and ClosedAP is fixed as every

time the memory controller will close the row as the command queue is empty.

6.2 HBM Evaluation

In this section we assess the average and worst-case performance of DDR4 and HBM2

as well as other benefits of HBM2 over DDR4 for real time applications. After intro-

ducing the experimental setup in section 6.2.1, in sections 6.2.2 and 6.2.3 we present

96



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

the results from the Macsim+DRAMSim3 environment. From our experiments we

conclude that DRAMSim3 does not fully model some HBM features like the pseudo

channels (section 5.1.4). We then develop a C++ simulation model (which we release

as open-source) derived from the JEDEC standard both for HBM2 and DDR4 both on

timing constrains in Table 6.4 for the sake of comprehensively studying all the features

of HBM2 that can affect the worst-case latencies and predictability (section 6.2.4).

6.2.1 Experimental Setup

6.2.1.1 Simulation Environment

We use the MacSim CPU simulator [61] integrated with DRAMSim3 [22] as its off-

chip memory. We model a DDR4 DRAM (to our knowledge there are no worst-case

analysis developed for GDDR5). In particular, we model a single channel DDR4-2133

with one rank, and eight banks; and an HBM2 stack with four dies, each with two

channels and each channel having 16 banks. Both HBM2 and DDR4 devices are

running at the same frequency (2133MHz). Details of the configuration are shown in

Table 6.5 including structural, system and timing parameters. Open page policy is

used for both configurations.

As aforementioned, the focus of the work is on the device, we use a single in-

order core, which reflects a type of cores commonly deployed in real-time domains.

The core has an L1 cache with 16KB and a last-level cache (LLC) with 256KB.

The details of both caches configurations are shown in Table 6.5. Unless otherwise

stated, we use a cache line size of 64B for DDR4 and 512B for HBM since DDR4
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Table 6.4: JEDEC DRAM timing for HBM work

Parameter HBM DDR4

tRCD 14 15

tRL 14 15

tWL 4 11

tRP 14 15

tRAS 34 36

tWR 16 16

tRTP (S/L) 4/6 8/8

tCCD (S/L) 1/2 4/6

tRRD 6 6

tWTR (S/L) 6/8 3/8

tFAW 30 32

can only transfer up to 64B per single transaction, while HBM provides transactions

up to 512B. The intuition is that existing COTS architectures match the cache line

size with the off-chip memory transaction size to guarantee that all the cache line

bytes will be transferred by one request; and hence, maximize performance. The

cache size and associativity are kept the same for all experiments as in Table 6.5,

while we change the number of sets with changing the cache line size. In addition

to MacSim+DRAMSim3, our C++ simulation model in section 6.2.4 implements the

state machine of the various timing constraints for both protocols. We also create

specific tests to stress each of the covered features and feed them to the simulator to

assess the behavior of the two protocols.
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Table 6.5: Cache and main memory configuration parameters for HBM work

Cache Parameters

PARAMETER L1 LLC

Cache Size 16KB 256KB
sets {32, 4} {256, 32}

Associativity 8 16
bank 1 1
Line size {64, 512} {64, 512}

Main Memory Structural Parameters

PARAMETER DDR4 HBM2

bankgroups 2 4
banks per group 4 4
rows 65536 32768
Columns 1024 64
device width 16 128
BL 8 4

System Parameters

PARAMETER DDR4 HBM2

channel size 8192 1024
channels 1 8
bus width 64 128
address mapping rorabgbachco rorabgbachco
row buf policy open page open page
queue structure per bank per bank
cmd queue size 8 8
trans queue size 32 32
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6.2.1.2 Benchmarks

We use a wide set of benchmarks ranging from well known benchmark suites, synthetic

benchmarks, and representative kernels in real-time domains.

• We use benchmark from EEMBC Autobench (EEMBC) [75] to mimic function-

alities of production automotive, industrial, and general-purpose applications.

• We use the Bandwidth (BW read and BW write) and Latency micro-benchmarks

from the IsolBench suite [76], since EEMBC benchmarks are not memory in-

tensive and do not put high stress on the off-chip memory subsystem.

• We also use a Matrix Multiplication (MXM) kernel that is a common function

in autonomous driving systems for object detection. We configure the Matrix

Multiplication with different total memory footprints: 2MB, 4MB, and 8MB.

We aim at modeling real-time applications with varying memory demands. These

are common in real-time on-board space systems that encompass control applications

and payload applications. While both have real-time and predictability requirements,

control application are much less memory intensive [57]. We model control type of ap-

plications with benchmarks from EEMBC Autobench (EEMBC) [75] to mimic control

functionalities of production automotive, industrial, and general-purpose systems.

We model payload applications by using a Matrix Multiplication (MXM) kernel

that we configure with different total memory footprints: 2MB, 4MB, and 8MB.

MXM is one of the most common kernels for many functionalities like object detection

libraries like YOLOv3 [77] and accounts for more than 65% of YOLO’s execution

time [78]. We also use the Bandwidth (BW read and BW write) and Latency micro-

benchmarks from the IsolBench suite [76].
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Figure 6.9: Number of read requests of DDR4 vs HBM2 for EEMBC BMs (left),
Synthetic and MXM BMs (right)

6.2.2 Worst Case Memory Latency

Determining the worst-case memory latency (WCL) of a task is primitive towards

calculating its total worst-case execution time (WCET) since WCET = WCCT +

WCL, where WCCT is the worst computation time of the task on the processor.

Since WCL = WCLperReq × NumReqs, two metrics are needed: the worst-case

latency suffered by a single request WCLperReq, and the worst-case total number of

memory requests issued by the task NumReqs. In this section, in order to evaluate

the behavior of HBM2 compared to DDR4 from a real-time perspective, we delineate

both metrics.

6.2.2.1 Total Number of Read Requests

In most modern architectures, write requests to DRAM are only due to cache evictions

of dirty cache line (cache write backs). Therefore, they do not stall the processor

pipeline and hence, are not in the critical path of the task’s WCET [74]. Therefore,

we focus in this experiment on comparing the total number of read requests issued
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to both HBM2 and DDR4, which is shown in Figure 6.9. From Figure 6.9, we note

that there is an overall significant reduction in the number of issued read requests

for HBM compared to DDR4 with an average reduction of 6.5× for the EEMBC

benchmarks and up to 8× for the BW benchmarks in Figure 6.9 (right). This is so

since HBM by leveraging the wide interface (a total of 1024 bits) is able to transfer

512B per single transaction compared to the 64B transaction size of DDR4. When

applications exhibit a high locality pattern, fetching larger data to their caches allows

them to enjoy more cache hits and hence decrease the number of times they need to

access the off-chip memory.

Some of the benchmarks, namely Latency and MXM, exhibit a relatively smaller

reduction in the number of requests. Investigating these benchmarks, we find that

due to their access pattern, they suffer a lot of cache conflicts. As a result, they do

not really benefit from the large request size that is brought to their cache hierarchy,

which results in more requests issued to the off-chip memory.

6.2.2.2 Worst-Case Per-Request Read Latency

Figure 6.10 shows the observed worst-case latency, which is the maximum latency

of a single request observed during the execution of the corresponding benchmark.

Results show that HBM introduces lower WCL compared to DDR4. While HBM’s

WCL is in the range of 291 - 353 cycles, whereas it is between 415 - 480 cycles in case

of DDR4.

102



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

a2
ti
m

e

ai
fft

r
ai
fir

f

ai
iff

t

ba
se

fp

bi
tm

np

ca
ch

e

ca
nr

dr

id
ct

rn
iir

flt

m
at

ri
x

pn
tr
ch

pu
w
m

od

rs
pe

ed

tb
lo

ok

tt
sp

rk

0
50

100
150
200
250
300
350
400
450
500

W
o
rs

t
R

ea
d

L
a
te

n
cy

DDR4 HBM2

B
W

re
ad

B
W

w
ri
te

Lat
en

cy

M
X
M

2M

M
X
M

4M

M
X
M

8M

0
50

100
150
200
250
300
350
400
450
500
550

Figure 6.10: Worst latency of read request DDR4 vs HBM2 for EEMBC BMs (left),
Synthetic and MXM BMs (right)
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Figure 6.11: Channel partitioning vs interleaving in HBM2 for EEMBC BMs (left),
Synthetic and MXM BMs (right)

6.2.2.3 Memory Isolation Opportunities

In all previous experiments, we assume that a request to HBM is interleaved across

all the channels to utilize the wide interface of 1024 bits, and hence, transfer 512B

per request. This is the common approach in high-performance systems to increase

the off-chip memory bandwidth. However, a common approach in real-time systems
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is to enforce isolation by partitioning the off-chip memory among requestors to min-

imize memory interference [34]. As discussed in section 5.2.1, HBM offers different

degrees of isolation. Nonetheless, it is well established that achieving isolation by

partitioning off-chip entities among different requestors comes at the cost of perfor-

mance. Although as we discussed in section 5.2.2, HBM can reconcile this trade-off,

it is still expected that the trade-off is not fundamentally resolved. Therefore, in this

section, we evaluate the BW loss incurred if the application accesses a single HBM

channel (resembling channel isolation) compared to being interleaved across all the

channels.

Figure 6.11 shows our findings. We can see that achieving isolation comes at the

expense of a BW degradation of 15%— 45%(35% on average) for the EEMBC bench-

marks and 67%— 87% (78% on average) for the BW-intensive synthetic benchmarks.

The bandwidth-latency trade-off is a use-case dependent and, hence, depends on the

running set of the applications. For example, if the number of contending requestors

is less than the number of available channels, bandwidth can improve by assigning

multiple (yet exclusive) channels. Deciding the exact ideal compromise point of this

trade-off is not the focus of the paper.

6.2.2.4 Summary

The results shown in this section, the total number of requests and the WCL, provide

insights on the the capabilities of HBM2 in reducing the total WCL for real-time

applications with respect to DDR4. In addition, the experiments shed light on the

capabilities of HBM to offer isolation (to improve predictability) and the potential

bandwidth-latency trade-off to address for this isolation.
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Figure 6.12: Execution cycles of DDR4 vs HBM2 for EEMBC BMs (left), Synthetic
and MXM BMs (right)

As introduced in, the potential utilization of HBM in real-time systems is for those

domains requiring not only guarantees but also considerable average performance. In

this line, we next compare HBM2 and DDR4 in terms of average performance.

6.2.3 Average-Case Performance

We compare the average performance of HBM2 and DDR4 using three metrics:

total execution time of the application, total memory latency of the application,

which measures the time spent by the application accessing the off-chip memory, and

bandwidth.

6.2.3.1 Execution Time

Figure 6.12 depicts the execution time of all the benchmarks using DDR4 and HBM.

Despite EEMBC benchmarks presented in Figure 6.12 (left) are not memory intensive,

HBM2 shows better performance than DDR4 with an average improvement of 12%.

On the other hand, for memory-stressing synthetic benchmarks (Figure 6.12 (right))
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Figure 6.13: Total off-chip memory time for DDR4 and HBM2 for EEMBC BMs
(left), Synthetic and MXM BMs (right)

the performance gap between HBM2 and DDR4 is clearer with an improvement up

to 4× for the BW write benchmark. The Latency benchmark shows comparable per-

formance for HBM2 and DDR4 with HBM2 better execution time of only 3%.

For MXM we see improvements of 1.17%. These results emphasize the observation

that the particular benefits of HBM2 heavily depends on the application memory

pattern, and in particular its potential to exploit memory parallelism and bandwidth.

For instance, the Latency benchmark has a random pointer-chasing-like pattern, which

does not benefit from the high bandwidth offered by the HBM since it exhibits very

low locality.

6.2.3.2 Total Memory Latency

Since the application execution time is not only a function in its memory behavior but

also in the computation time consumed on the processor pipeline, we are interested

in a metric that neutralizes the computation behavior and focuses mainly on the

memory behavior. For this purpose, Figure 6.13 shows the total memory time spent
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Figure 6.14: Bandwidth of DDR4 vs HBM2 for EEMBC BMs (left), Synthetic and
MXM BMs (right)

by different benchmarks accessing the off-chip memory. We see that the gap between

HBM2 and DDR4 significantly increases compared to Figure 6.12.

For instance, HBM shows on average a 5× less memory time compared to DDR4

for the EEMBC benchmarks. The gap reaches up to 6× for EEMBC benchmarks

and the MXM benchmarks, and up to 9× for the BW write synthetic benchmark. In

terms of bandwidth our results show that for DDR4 reaches up to 2.5GB/s for the

BW write and HBM achieves and up to 12.9GB/s for the BW write benchmark.

6.2.3.3 Bandwidth

commonly used metric to measure the average-performance of a memory protocol is

bandwidth (BW), which Figure 6.14 illustrates for both HBM2 and DDR4 for all the

benchmarks. The bandwidth is calculated as BW = NumReqs×Y
ExecutionT ime

, where NumReqs

is the total number of requests issued to the off-chip memory, Y from Section 5.2

is the number of bytes transferred by one request, and ExecutionT ime is the total

execution time of the application.

107



M.A.Sc. Thesis – M. Abuelala McMaster University – Computer Architecture

From Figure 6.14, we make the following two observations.

1. Since the BW depends on the number of issued requests to the off-chip mem-

ory, the BW achieved by both DDR and HBM is considerably higher for the

synthetic (memory intensive) benchmarks than in the EEMBC (CPU-centric

and computation-bound) benchmarks. For DDR4, the maximum achieved BW

in EEMBC benchmarks is ≈ 817 MB/s (cache), while it reaches up to 2.5GB/s

for the BW write. On the other hand, the HBM achieves up to 1.4 GB/s across

the EEMBC benchmarks and up to 12.9GB/s for the BW write benchmark.

2. Accordingly, HBM improvements are clearer in the synthetic benchmarks and

MXM(with an average of 6.5× and up to 8×) than in the EEMBC benchmarks

(with an average of 1.5× and up to 1.7×).

6.2.4 Synthetic Experiments

This section assesses the impact of each of the features presented in Section 5.2 on the

behavior of HBM compared to DDR4 DRAM. Memory simulators, including DRAM-

Sim3 [22], RAMulator [21], and GEM5 [79], have been mainly used for the evaluations

of techniques for high-performance systems, and naturally model elements that affect

average performance, while overlooking some details of the features that might have

an impact on the worst-case latency. To exemplify, one unique characteristic of the

latest generation HBM2 is the introduction of pseudo channels.

We have illustrated in Sections d 5.2 how it can be utilized to reduce memory la-

tency and provide better isolation for real-time systems. For instance, we find that the

pseudo-channel mode is either not supported at all or is partially (and abstractly) im-

plemented by these simulators. Abstracting HBM features can support investigations
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related to average-case behavior; however, analysis for real-time systems mandates a

complete and accurate modeling of the timing behavior of HBM. It is also worth men-

tioning that although there has been a recent DRAM simulator targeting real-time

systems [60], it unfortunately does not support HBM in its current version.

For this purpose, we develop a C++ simulation model derived from the JEDEC

standard both for HBM and DDR4, which we release as open-source. It implements

the state machine of the various timing constraints for both protocols taking into

account all the features we covered in this paper including the recent pseudo-channel

feature of HBM2. A final important note is that all the results presented in Sec-

tions 6.2.2 and 6.2.3 are not affected by any mean by the missing pseudo-channel

modelling of HBM2 in DRAMSim3. This is because all the experiments are assuming

HBM2 used in the legacy mode where a request is interleaved across all the channels

and accesses the 16 logical banks of each channel as illustrated in Section 5.1.

In addition to the developed simulation model, we also developed specific tests

to stress each of the covered features and feed these tests to the simulator to assess

the behavior of the two protocols. We develop four different synthetic tests for four

different features as shown in Figure 6.15: Dual CMD, partition, Reduced tCCD, and

tFAW . Each of these four tests performs 1,024,000 accesses.

1. Dual CMD is a test that measures the impact of the dual command feature

(Section 5.2.4.2). This is done by issuing a stream of open-row requests to

one bank; hence, consisting mainly of CAS commands. Simultaneously, an

interfering stream of ACT commands to other banks is crafted such that there

is always a ready interfering command in the same cycle as each of the CAS

commands.
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Figure 6.15: Isolated and combined analysis of the impact of different HBM
features: avg. request latency(left), overall bandwidth(right)

2. Partition is a test where the emulated core running the trace is assigned a single

bank and each request has a data size of 64B. This is useful to study the impact

of the wide data bus width of HBM on latency (Section 5.2.2).

3. Reduced tCCD is a test of open requests targeting same row, and hence, con-

sisting mainly of CAS commands. Unlike Dual CMD, there is no interfering

streams to avoid bus conflicts in order to focus only on the reduced tCCD

feature of HBM (Section 5.2.3).

4. tFAW is a test stressing the tFAW constraint by issuing close-row requests to

different banks; hence, containing ACT commands; hence, assessing the pseudo-

channel feature (Section 5.2.5).

Figure 6.15 shows both the average per-request latency and the bandwidth, re-

spectively for both DRAM (DDR4 in the experiments) and HBM. For each test we

use two different models of HBM.
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• The first one (HBM one feature) only models the considered feature in the cor-

responding test while all other properties are exactly the same as DRAM. We

do this for the sake of studying the effect of this specific feature in isolation.

• The second model (HBM all features or simply HBM ) captures all the features

of a regular HBM. For instance, for Reduced tCCD test, HBM one feature is

completely identical to DRAM parameters except tCCD value, which models

the HBM’s one, while HBM all features models all the parameters of HBM

regardless of the test.

The following conclusions can be obtained from Figure 6.15.

1. Dual CMD and Reduced tCCD features notably contribute to bandwidth im-

provement – this complies with our analysis presented in Section 5.2.4.2 and

5.2.3, respectively. Due to Dual CMD feature, HBM can issue ACT and CAS

commands in parallel, effectively eliminating bus conflicts, therefore suffering

minimum stall cycles and improving sustained bandwidth. This feature also

slightly improves execution time for HBM.

2. Reduced tCCD also allows HBM to issue consecutive CAS commands in shorter

time, therefore increasing throughput, as well as contributes to achieve reduced

execution time.

3. The bank partition feature (analyzed in 5.2.2) enables HBM to provide 32B

per single access, therefore filling a 64B cache line in just two CAS commands,

in comparison to four for DRAM – resulting in a huge reduction in execution

time. This feature also considerably improves bandwidth.
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4. Feature tFAW refers to the timing requirement to open maximum four active

windows in a certain time frame as explained in Section 5.2.5. Since HBM

improves this requirement, we see it achieves increased bandwidth and reduced

execution time w.r.t DRAM. Combined with the analysis in Section 5.2, these

results provide insights on the benefits of all the HBM features including the

recently introduced ones in HBM2.
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Chapter 7

Conclusion

The impact of main memory on overall system performance is the motivation for this

thesis. The most significant parameters for DRAM subsystems in high-performance

computing are bandwidth, latency, and capacity. However, because main memory is

often the basic bottleneck in computer systems, numerous solutions in the form of

innovative DRAM device structure, memory scheduling approaches, and new main

memory technologies have been introduced. However, these solutions are assessed us-

ing CPU-centric benchmarks or at-best best benchmarks that use high-level memory

access patterns such as sequential versus random or read vs write. This is due to the

slower development of memory-centric benchmarks in comparison to the quick rise of

research in main memory solutions.

To address this gap, we offer RAM ify, a programmable framework for creating

memory-centric architecture-aware applications. RAM ify allows us to design and con-

figure memory access patterns that span the whole state space of the primary mem-

ory subsystem. This framework is implemented in C++ utilizing object-oriented
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programming concepts with high degree of configurability to assist design space ex-

ploration of predictability and cache coherence memory challenges posed in multi-core

systems.

For verification, we employ RAM ify-generated workloads to investigate and com-

pare two cutting-edge memory protocols/devices: HBM and DDR4. Also, we stress

and test different memory aspects in the current DRAM simulator. We examine

the memory device rather than the on-chip memory controller since improving pre-

dictability by redesigning memory controllers is constrained by the latency variability

of the device architecture. As a result, we examine HBM from the perspective of real-

time systems, concentrating on the HBM device to capture architectural features that

impact timing predictability, such as device access behavior, timing characteristics,

and performance metrics. Furthermore, by concentrating on the device, the analysis

and observations presented in this thesis are broad and not constrained to a specific

scheduling approach used by the memory controller.

7.1 Future Work

For the future work, RAM ify can be utilized to generate different workloads to sup-

port characterizing the current benchmarks and giving recommendations based on

the characteristics of the workload. Also, based on these features, we could map the

benchmarks with specific behavior to the suitable memory architecture to achieve

the best performance. Moreover, a comparative study for different memory architec-

ture can be explored by generating same workloads from RAM ify with taking into

consideration the different address mapping.
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Appendix A

Configuration

This appendix presents the configuration classes. ConfigAddr in Code A.1 is re-

sponsible of parsing the address configurations while the segments in Code A.2 are

parsed in ConfigSeg. Type and access format are configured in ConfigType and

ConfigAccess respectively which are shown in Codes A.3 and A.4.

1 enum addr_pattern

2 {

3 sequential ,

4 random ,

5 seq_customized ,

6 rnd_customized ,

7 customized

8 };

9

10 class ConfigAddr

11 {

12 public :

13 ConfigAddr (){};
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14 addr_pattern parseAddrPtrn (std :: string pattern_str ) const;

15 ConfigSeg m_config_co ;

16 ConfigSeg m_config_ro ;

17 ConfigSeg m_config_bk ;

18 ConfigSeg m_config_bg ;

19 ConfigSeg m_config_rk ;

20 ConfigSeg m_config_ch ;

21 private :

22 addr_pattern m_addr_pattern ;

23 int m_addr_width ;

24 };

Code A.1: RAM ify InitAddr Class

1 enum seg_pattern

2 {

3 no_change ,

4 set ,

5 seq ,

6 rnd ,

7 hit ,

8 miss ,

9 custom_hit ,

10 interleave ,

11 eff_interleave

12 };

13

14 class ConfigSeg

15 {

16 public :
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17 ConfigSeg (){};

18 seg_pattern parseSegPtrn (std :: string pattern_str ) const;

19 void setSegParam ( seg_pattern pattern , int set_value ,

20 int num_value , int period_seg ,

21 int lsb_value , int msb_value );

22 void setRoParam ( seg_pattern pattern , int set_value ,

23 int num_value , int period_seg ,

24 int lsb_value , int msb_value ,

25 int hit_percentage );

26 void setInterleaveParam ( seg_pattern pattern , int set_value ,

27 int num_value , int period_seg ,

28 int lsb_value , int msb_value ,

29 int interleave_eff , int interleave_percentage );

30 // more methods

31 private :

32 seg_pattern m_seg_pattern = seg_pattern :: no_change ;

33 std :: string m_address_mapping ;

34 int m_num_seg ;

35 int m_set_seg ;

36 int m_period_seg ;

37 int m_addr_map_lsb ;

38 int m_addr_map_msb ;

39 uint64_t m_seg_mask ;

40 uint8_t m_seg_bits ;

41 int m_hit_percentage ;

42 int m_interleave_eff ;

43 int m_interleave_percentage ;

44 };

Code A.2: RAM ify InitSeg Class
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1 enum type_pattern

2 {

3 all_read ,

4 all_write ,

5 rw_random ,

6 rw_switch_pct

7 };

8

9 class ConfigType

10 {

11 public :

12 ConfigType (){};

13 type_pattern parseTypePtrn (std :: string pattern_str ) const;

14 private :

15 type_pattern m_type_pattern ;

16 int m_switch_percentage ;

17 };

Code A.3: RAM ify InitType Class

1 class ConfigAccess

2 {

3 public :

4 ConfigAccess (){};

5

6

7 private :

8 int m_transaction_size ;

9

10 std :: string m_access_mode ;
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11 std :: string m_addr_format ;

12 std :: string m_read_format ;

13 std :: string m_write_format ;

14 };

Code A.4: RAM ify InitAccess Class
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