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Lay Abstract

Soft condensed matter physics is the study of soft, deformable materials, such as soap

bubbles, foams, and plastics. Many different soft matter systems undergo a fascinating phe-

nomenon known as self-assembly, wherein the constituent particles spontaneously arrange

themselves to form various ordered structures. In particular, the spherical packing phases

appear when the particles first cluster into spherical aggregates, which then pack into larger

arrangements. This sort of self-assembly is interesting because many different spherical ar-

rangements are observed, including the complex spherical packing phases (also known as the

Frank-Kasper phases). The fact that these complex phases appear in many different types

of materials is not well understood. In this thesis we use a model known as the Ginzburg-

Landau theory to ask which of these arrangements will form in a given system, and why.

We uncover generic features of the Ginzburg-Landau theory that control which spherical

packing phases appear, and we connect these features to several specific systems. These

results provide insight into the mechanisms behind the formation of the complex spherical

packing phases in a diverse range of systems.

iii



Abstract

Stable Frank-Kasper spherical packing phases have been observed in a wide variety of soft-

condensed matter systems, but the universality of these phases is not well understood.

Recently, it was shown that the Frank-Kasper σ and A15 phases are stable in the well-known

Landau-Brazovskii (LB) model. In this work we consider the σ and A15 phases, as well as

the Laves C14 and C15 phases, and show that none of these is stable in the Ohta-Kawasaki

(OK) model, which is another widely studied Ginzburg-Landau theory. The LB and OK

models differ only in their quadratic coefficients. We conduct a thorough investigation of

the role that this coefficient plays in stabilizing the complex phases. We uncover generic

principles linking the functional form of the coefficient in reciprocal space with the stability

of the complex phases. A Ginzburg-Landau theory for a for diblock copolymer system with a

conformational asymmetry parameter is derived, but the complex phases are not found to be

stable in this model. We also consider a Ginzburg-Landau theory for a system of hard spheres

interacting via a pairwise short-range attractive, long-range repulsive (SALR) potential, and

use our framework to demonstrate how the parameters in the potential influence the stability

of the Frank-Kasper phases. Taken together, these results provide insight into the universal

mechanisms that underlie the formation of the complex spherical packing phases in soft

condensed matter.
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Chapter 1

Introduction

1.1 What is soft condensed matter?

Soft condensed matter (or soft matter) refers broadly to a class of materials that can be

mechanically or structurally deformed by thermal fluctuations or external forces – in other

words, materials that are soft. Some examples are polymers, surfactants, colloids, and liquid

crystals. In his beginner-friendly text on the subject, Soft Condensed Matter [1], R. A. L.

Jones lists three common features of these materials. The first is the importance of the so-

called mesoscopic molecular length scales, which range from 1 nm to 1 µm. The molecules

that make up soft matter are much larger than their constituent atoms, meaning they are

well described by coarse grained models. This results in universality ; similar phenomena

appear across multiple systems even though they appear very different from a molecular

standpoint. The softness is also a consequence of particle size. Daan Frenkel makes a rough

argument for this using dimensional analysis [2]. Consider that the elastic modulus has units

of [energy/volume]. The energetic interactions between soft matter particles are weaker

than those between atoms, and the length scales are 10 to 100 times larger, meaning the

particles are at least 103 to 106 times softer than atomic or hard condensed matter systems.

The second important feature that Jones lists is the relevance of thermal fluctuations and

Brownian motion. By setting the upper limit of the length scales to ∼ 1µm, we ensure

1
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that the soft matter systems are well described by statistical mechanics. Together with

the softness this means that thermal fluctuations are sufficient to deform the system, so we

should visualize soft matter as being in a state of constant flux. The final important feature

is the phenomenon of equilibrium self-assembly. This refers to the spontaneous formation

of equilibrium ordered structures. The same or similar self-assembled patterns appear in

a wide variety of soft matter systems [3]. Understanding and guiding the formation of

self-assembled structures is an active research area of soft condensed matter physics.

1.2 Spherical packing phases

The current work concerns a subset of the possible self-assembled structures that appear

when the molecules in a material are driven to form spherical assemblies such as micelles.

Under correct conditions these micelles will form dense arrangements referred to as the

spherical packing phases. As we will soon discuss, these phases are very common in soft

matter. They appear in block copolymers, surfactants, liquid crystals, colloidal solutions,

and many other systems. There are many different spherical packing phases associated with

the different possible arrangements of these micelles, which mimic the structures observed

in hard condensed matter [4, 5]. Our objective is to understand the principles governing

the formation of these phases and determining which packing will be favoured for a given

system.

1.2.1 Hard sphere packing

In order to understand the complexity of this problem it is informative to first consider the

packing of hard, non-interacting spheres. For identical hard spheres the largest possible

periodic packing fraction (the fraction of available volume that is occupied by the spheres)

is π/(3
√

2) ≈ 0.74. This was proved by Carl Friedrich Gauss in 1831 [6]. It is the packing

fraction achieved by both the face-centered cubic (fcc also known as cubic close packed) and

hexagonally close packed (hcp) arrangements. Both of these arrangements are made up of

stacked layers of spheres arranged in hexagonal close packed configurations, and differ only

in the alignments of successive layers, as illustrated in figure 1.1.

2
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First layer
A

Second layer
AB

fcc
ABC

hcp
ABA

Figure 1.1: Illustration of how the fcc and hcp arrangements are constructed from successive

layers of hexagonally close packed spheres.

The statement that this is the largest possible packing fraction among all possible arrange-

ments of uniform spheres (including random packings) came to be known as the Kepler

conjecture after it was proposed by Johannes Kepler in a 1611 paper titled “On the six-

cornered snowflake” [7]. Though it may seem intuitive, the Kepler conjecture was not

proven until 1998 when Thomas Hales conducted a proof by exhaustion, which involved

numerically checking a sufficiently large number of cases [8]. Numerical calculations show

the maximum packing fraction that can be obtained by randomly close-packed (rcp) spheres

is approximately 0.64 [9].

In the 1950s and 60s statistical physicists were interested in the following question: will a

system of hard spheres spontaneously order? It is clear from purely geometric considerations

that they must if the packing fraction is above the 0.64 threshold for random packing, but

could this transition occur at lower packing fractions? In one anecdote, the physicist George

Uhlenbeck posed this question at a symposium on many body physics in 1959 in Hoboken

New Jersey. He told the audience that he had held the question to a vote at a discussion

in Seattle and that the final count was tied. The same vote in Hoboken once again ended

in a tie [10]. To understand why his question caused such disagreement, consider a system

3
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of uniform hard spheres with diameter σ. The interaction energy between any pair of such

spheres is given as a function of the separation distance between their centres, r, by

u(r) =

 ∞ r < σ

0 r > σ
. (1.1)

The equilibrium state will be the one that minimizes the Helmholtz free-energy:

F = E − TS (1.2)

where E is the internal energy, S is the entropy, and T is the temperature. Equation

(1.1) tells us that all allowed microstates of this system have the same energy and thus the

equilibrium phase will be the one that maximizes entropy, regardless of the temperature. We

often think of the order-disorder phase transition as energy-driven; the lost of translational

entropy in the ordered state is offset by a decrease in energy of the system at sufficiently low

temperatures. That cannot occur here. Can a transition to the apparently more ordered

periodic structure be driven entirely by the principle of maximum entropy? Monte Carlo

simulations done by Alder and Wainwright [11] and by Wood and Jacobson [12] in 1957

showed that a system of hard spheres would undergo a phase transition to a close-packed

(fcc or hcp) structure when the volume fraction of spheres was increased above a fraction of

∼0.49, well below the packing density of rcp spheres. The experimental verification was more

challenging to obtain, owing to the difficulty in producing non-interacting spherical particles

of uniform radius. The ordering of hard spheres was observed experimentally by Pusey and

Van Megen in 1986 for a system of colloidal particles with a very short-ranged repulsive

interaction [13]. Additionally, detailed numerical calculations by Bolhuis et. al. showed

that the fcc phase is actually slightly favoured over the hcp phase at room temperature,

with an energy difference of only 10−3kBT per mol [14].

So how is this possible? The argument requires us to accept that our intuitive notion of

randomness does not always correspond to the maximal entropy. When hard spheres order

the loss of long-range translational entropy is offset by some gain in local configurational

entropy. Each sphere has more space to explore when it maintains equal distance from

each of its neighbours, a situation which corresponds to a regular packing arrangement.

See articles by Bruce Ackerson [15] and Daan Frenkel [16] for a more detailed intuitive

explanation of entropy driven ordering in hard spheres.

4
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(a) (b) (c) (d)

Figure 1.2: The four Frank-Kasper polyhedra, (a) CN12 (the icosahedron), (b) CN14, (c)

CN15, and (d) CN16

1.2.2 The Frank-Kasper phases

We have seen that a system of uniform spheres will order into the close-packed fcc phase

when their volume fraction is sufficiently large. As it turns out, the hard sphere model is a

good description of atomic metals. The atoms in a metal will crystallize into structures that

maximize electron density by finding configurations with the largest packing fraction. This

can be achieved via structures with a coordination number (CN) of 12, where coordination

number refers to the number of nearest neighbour atoms at each lattice site. There are

three possible structures that can be formed with CN12: the fcc and hcp structures and

the tetrahedron. In a paper published in 1952 [17], Sir F. C. Frank demonstrated that

a collection of 13 atoms interacting via a simple Lennard-Jones pair potential has a free-

energy minimum when arranged in the icosahedral configuration. He argued that this was

due to the tetrahedral interstitial spaces of this shape. In atomic metal such as copper or

iron, however, only the fcc and hcp phases appear because these are space filling crystal

structures. Icosahedra alone cannot be packed together to fill space without gaps. However

when we ease the requirement that the spheres have uniform size, as we must if we wish

to consider metallic alloys, then the optimal spherical packing arrangement becomes more

complex. In a pair of papers published in 1958 and 1959 Frank and Kasper described

how the icosahedral configuration could be incorporated into a space filling crystal lattice

when paired with three other tetrahedra known as the Frank-Kasper polyhedra [18, 19].

As previously stated the icosahedron has coordination number 12 (CN12). The three other

polyhedra Frank and Kasper used are made up of spheres of slightly different sizes, and

have coordination numbers 14 (CN14), 15 (CN15), and 16 (CN16). The four Frank-Kasper

polyhedra are shown in figure 1.2.

5
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Because the Frank-Kasper phases are close-packed structures, they were predicted to be

the most energetically favourable way for spheres to pack when size differences between

the spheres were present. At least 20 different Frank-Kasper phases have been observed

in metal alloys [20]. In this work we are particularly interested in the σ, A15, C14 and

C15 phases which, as we will see, are the most relevant for soft condensed matter systems.

The unit cells for these four phases are shown in figure 1.3. These phases are sometimes

refered to as the complex spherical packing phases due to their larger unit cells. We use the

terms Frank-Kasper phase and complex phase interchangeably throughout this thesis. A

detailed description of the Frank-Kasper crystal structures can be found in Marc De Graef

and Michael E. McHenry’s text [21].

(a)
(b)

(c)

(d)

Figure 1.3: Unit cells for four different Frank-Kasper phases, (a) the A15 phase, (b) the

σ phase, (c) the C14 phase, and (d) the C15 phase. Sphere colours indicate which of the

polyhedra depicted in figure 1.2 sits at each site.

1.2.3 Soft sphere packing

We must now contend with the fact that soft matter micelles are, by their very definition,

not hard spheres. To understand the packing behaviour of soft spheres we next consider

the other extreme case, when the spheres are so soft that there is no free-energy cost to

deform them. In this case the problem becomes one of minimizing the area of contact. We

might imagine that we are dealing with something like a collection of soap bubbles arranged

into a foam. After the last section the reader should not be surprised to learn that figuring

out the optimal way to arrange soap bubbles of equal volume into a lattice structure is not

trivial. This problem was notably studied in the 1800s by Joseph Plateau [22] and by Lord

6
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(a) (b)

Figure 1.4: (a) Unit cell and (b) Voronoi cell shapes for body-centred cubic (bcc) lattice.

Kelvin [23], who hypothesized that a foam with no gas in the interstitial sites could have zero

modulus and thus might be an interesting mechanical model for the ether through which

light was then thought to propagate. To describe the crystal structures formed by foams, we

should introduce the concept of a Voronoi cell. For a given set of points, the Voronoi cells

are the volumes associated with each point that are constructed by taking the loci of points

in the space that are closer to the point of interest than to any other point in the original set.

The spherical bubbles in an ideal foam are deformed to fill space and their final, distorted

shapes are Voronoi cells for an underlying lattice structure. Lord Kelvin proposed that the

optimal packing for such soft spheres was one in which the bubbles deformed into a shape

he called the tetrakaidecahedron, and which then packed into a body-centred cubic (bcc)

lattice. A single unit cell for the bcc lattice is shown in figure 1.4 (a), together corresponding

shapes of the deformed bubbles, (b).

The bcc structure was the best-known solution to the Kelvin problem until 1993 when Denis

Weaire and Robert Phelan discovered a more efficient solution, now known as the Weaire-

Phelan structure [24]. This structure is made up of two different polyhedral Voronoi cells

with the same volume, packed into a lattice that has the Frank-Kasper A15 symmetry.

The A15 unit cell is shown in figure 1.3 (a). The Weaire-Phelan structure is the current

best-known solution to the Kelvin problem, but there is still no proof that it is optimal.

7



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

1.2.4 Spherical packing phases in soft condensed matter

Having considered the two extreme cases, we return now to the original problem: the packing

of soft spherical micelles. Here the physics is governed by space filling constraints and surface

area minimization just like the spherical bubbles of the Kelvin problem. However, unlike

soap bubbles, these spheres have non-zero elastic moduli and so they resist deformation.

In the limit of very large elastic moduli we recover the hard sphere case. The tension

between the need to fill space and the resistance to deformation leads to the complexity

of spherical packing phases observed in soft matter systems. These systems are frustrated,

with competing effects leading to phase diagrams that are both highly diverse and extremely

sensitive to fine tuning. The Frank-Kasper spherical packing phases appear in many soft

matter systems as a consequence of this frustration. Experimentalists have observed the σ

and A15 phases in liquid crystalline dendrimers [25, 26] and in linear tetrablock copolymer

melts [27, 28], the σ, C14 and C15 phases in diblock copolymer melts [29, 30, 31], the

A15 phase in linear dendron block copolymer melts [32] and amphiphilic nanotetrahedral

surfactants [33, 34], the C14 phase in monodisperse functionalized nanoparticles [35], and

the σ, A15, C14 and C15 phases in concentrated ionic surfactants [36, 37], to name a few.

1.2.5 Spherical packing phases in diblock copolymers

The phase behaviour of block copolymers has been studied in detail. They provide a good

illustration of how the competition between factors in the packing of soft spheres can lead

to the formation of the Frank-Kasper phases [38]. Block copolymers are heterogeneous

polymers created by bonding two or more chemically distinct sub-chains together. This

chain architecture results in a system where frustration emerges between chain connectivity

effects that favour mixing of the different species and enthalpic effects that prefer phase

separation. Block copolymer structures can be fine-tuned to enable a wide range of phase

behaviours [39, 29]. A recent overview by Dorfman discusses many of the mechanisms

known to stabilize the complex phases in block copolymers [40]. Here we will discuss the

simplest example, the diblock copolymer, which is made of two polymers joined together

as illustrated in figure 1.5 (a). The immiscibility of the two species causes micelles to form

at low temperatures in order to reduce the contact between chains of unlike species, see

8
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(a) (b)

Figure 1.5: (a) Diblock copolymer molecules are composed of two unlike chains (red and

blue) that are bonded together. The immiscibility of the chains causes them to phase

separate. Depending on the geometry of the chain this process may result in the formation

of a spherical micelle, like the one shown in (b).

figure 1.5 (b). We visualize the spherical micelle formed in a diblock melt as consisting of

an inner core and an outer corona, The balance between entropic and enthalpic effects that

stabilizes complex phases in diblock systems is illustrated by a model called the diblock

foam model (DFM), first described by Milner and Olmstead [41, 42]. In this model, packed

micelles are assumed to deform in order to fill space, much like the bubbles described in

the Kelvin problem. The resulting shapes are called quasi-spherical domains (qSD). It is

further assumed that the inner core of the micelles is deformed so that it forms an affinely

shrunk copy of the Voronoi cell shape. This is illustrated in figure 1.6, which is reproduced

from [5]. Unlike in the Kelvin problem there is a free energy cost to this deformation. The

immiscibility of the chains means there is also a cost associated with the surface of contact

between the core and the corona. In the DFM these free energies are taken to be functions

of the geometry of the Voronoi cells. This geometrical interpretation can help us see how

the complex phases appear in systems with physics that is partway between the soft and

hard sphere models described in previous sections. For illustration purposes we will sketch

the arguments of the DFM here, following reference [5].

To compute the free-energy we begin by choosing a particular lattice packing, X , that is

required to be space filling. X consists of a collection of Voronoi cells (for example, a set of

Frank-Kasper polyhedra) that can be tiled to create a space-filling lattice. The free-energy

per chain, f , for a given choice of X is:

f(X ) = γ
A(X )

R0
+
κ

2
I(X )R2

0. (1.3)

Here R0 is the radius of a sphere which has volume equal to the mean volume of the Voronoi

9



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

Figure 1.6: Illustration of how the core shape may differ from the shape of the Voronoi cell.

The sphere on the left corresponds to the case when the corona polymer is stretched, the

sphere on the right to when the core is stretched. The DFM assumes the latter. Figure

reproduced from reference [5].

cells in X , i.e.,
4

3
πR3

0 =
1

NX

∑
i

vi, (1.4)

where the sum is over all cells in X , vi is the volume of the ith cell, and NX is the number of

cells. The first term in equation (1.3) measures the unfavourable interaction energy between

the core of each micelle and its corona. The coefficient γ is positive and measures the

immiscibility of the two components, it can be thought of as a sort of surface tension. A(X )

is the dimensionless ratio between the average interfacial area per chain and the area of a

perfectly spherical micelle with radius R0:

A(X ) =
N−1
X
∑
i ai

4πR2
0

, (1.5)

where again the sum is over all cells in X and Ai is the area per chain in the ith cell. If it

were possible to construct a space filling set of perfectly spherical Voronoi cells, we would

find A(X ) = 1. This term is minimized when the core-corona interface is small, and so

drives the system to favour Voronoi cells with high sphericity.

The second term in (1.3) is a measure of the entropic cost of stretching the chains inside the

core. κ is a measure of the chain stiffness and I is a dimensionless stretching moment:

I(X ) =
N−1
X
∑
i Ii

4
5πR

5
0

, (1.6)

10
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where Ii is the second moment of the ith Voronoi cell, which is centred at xxxi:

Ii =

∫
Vi

dxxx |xxx− xxxi|2 . (1.7)

The free energy in (1.3) can be computed for each candidate lattice structure X , and it can

be supposed that the structure which minimizes f(X ) is preferred. The model was used by

Milner and Olmstead to demonstrate that the Frank-Kasper A15 phase can be favoured over

the fcc and bcc phases [42]. In their paper [5], Reddy et. al. relax the requirement that the

cells have equal volume and use the DFM to analyse 11 Frank-Kasper phases, as well as the

bcc and fcc phases. The authors find that the DFM predicts the Frank-Kasper σ phase as

the stable phase of the system for diblock copolymers formed from two highly asymmetric

species, consistent with results from experiment and self-consistent field theory (SCFT).

The model also accurately describes the relative free energies of the complex phases when

compared with the results from a SCFT calculation of the same system [43, 30]. We can

therefore trust that this is a useful intuitive picture of the factors governing the formation

of FK phases in diblock copolymers. The frustration that arises between the space-filling

constraint and the resistance to deformation is likely also at play in other systems of soft

spheres.

We now have a picture of micelles as intermediate between hard and soft spheres. We also

have a description of how this intermediate behaviour leads to the appearance of the Frank-

Kasper phases. Beyond providing us with some good intuition, however, the DFM cannot

be extended to other soft matter systems where the complex phases are known to be stable.

1.3 Ginzburg-Landau theory

In the previous section we saw how the formation and relative stability of the spherical

packing phases is described in various systems of spheres, and we presented a detailed

discussion of the interplay between factors that leads to the stability of the Frank-Kasper

phases in diblock copolymer systems. We now remind the reader of the fact that the complex

phases appear in a wider range of systems. The ubiquity of these phases indicates that some

more general mechanisms must be at play. Ginzburg-Landau (GL) theories provide us with

11
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a framework to understand the phase behaviour of self-assembled systems in a generic way.

Lev Landau first developed his general theory of phase transitions in a pair of papers pub-

lished in 1937 [44, 45]. Landau theory relies on the choice of an order parameter, φ, to

capture the phase behaviour of the system. The order parameter must satisfy the condition

that φ = 0 in the high symmetry (disordered) phase and is small but non zero in the ordered

phase close to the transition point. If φ is chosen so that it doesn’t become too large in the

low symmetry (ordered) phase, then we can expand the free-energy of the system as a poly-

nomial function of φ. Only terms that reflect the symmetry of the underlying Hamiltonian

are included in this expansion. Thus Landau theory allows us to understand universality

classes of phase transitions – close to the transition point the nature of the transition is

determined by the symmetry of the system rather than any particular atomic or molecular

interactions. In order to describe crystallization it is necessary to consider a spatially vary-

ing order parameter φ(xxx) that satisfies φ(xxx) = 0 everywhere in the disordered state. The

generalization of the Landau theory to an order parameter field is known as the Ginzburg-

Landau theory. Notable early work in the use of a GL theory to study the formation of

ordered phases was done by Brazovskii [46] and by Alexander and McTague [47]. Papers by

Leibler [48], Friedrickson and Helfand [49], and Ohta and Kawasaki [50] developed theories

that connected the polynomial coefficients with molecular parameters of diblock copolymers.

E. I. Katz et. al. [51] developed the theory for liquid crystal systems. GL theory has also

been used to describe the phase behaviour of colloidal systems [52]. Seul and Andelman [3]

worked on the use of GL theory to describe the formation of ordered phases in a generic

system where competing interactions pick out a particular length scale. Though the theory

has been used extensively to study self assembly, the Frank Kasper phases were largely ig-

nored until the thesis work by Duncan McClenegan, supervised by Dr. An-Chang Shi [53],

which will be discussed in some detail in the next section.

The GL theories considered in this work all have the following form,

F [φ] = Flocal[φ] + Fnl[φ], (1.8)

where φ is an appropriate order parameter field. The local part is given by a quartic

polynomial:

Flocal[φ] =

∫
dxxx

{
τ

2
φ(xxx)2 − γ

3!
φ(xxx)3 +

1

4!
φ(xxx)4

}
, (1.9)

12
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where τ and γ are constants. It is significant that a cubic term appears in this theory; the

presence of this term means that the phase transitions will be first order. The non-local

term in equation (1.8) is a quadratic functional,

Fnl[φ] =
1

2

∫
dqqq

(2π)3
Γ(q)φ̃(qqq)φ̃(−qqq). (1.10)

Here φ̃(qqq) is the Fourier transform of φ(xxx):

φ̃(qqq) =

∫
dxxxφ(qqq)e−iqqq·xxx. (1.11)

The formation of periodic ordered phases in these models is due to the coefficient Γ(q). We

assume that Γ(q) has at least one minimum at some finite, non-zero q, and the theory is

scaled so that this minimum occurs at q = 1. This means that equation (1.8) is minimized

by order parameters that have density modulations with wavevectors |qqq| = 1. As noted by

Alexander and McTague [47] and others, the set of vectors with |qqq| = 1 forms a spherical shell

in reciprocal space so there are multiple periodic phases that minimize Fnl. We may also

see the solutions with additional non-zero modes, |qqq| 6= 1, provided these offer a sufficient

decrease in the local part of the free energy.

1.3.1 Frank-Kasper phases in the Landau-Brazovskii model

As was mentioned above, the question of whether the Frank-Kasper phases might be stable

in a GL theory was investigated by McClenegan and Shi [53]. In that work the authors

considered a particular form of equation (1.8) known as the Landau-Brazovskii (LB) model

[46]. The free energy of this model is given by:

FLB[φ] =

∫
dxxx′
{
ξ2

8q2
0

(∇2φ′ − q2
0φ
′)2 +

τ ′

2
φ′(xxx)2 − γ′

3!
φ′(xxx)3 +

u

4!
φ′(xxx)4

}
. (1.12)

Here 2π/q0 is the principal length scale of the theory and ξ2, τ ′, γ′ and u′ are all constants.

The authors showed that the free energy can be rescaled to match equation (1.8) with,

ΓLB(q) =
1

2
(q2 − 1)2. (1.13)

Their work showed that the Frank-Kasper σ and A15 phases were stable in the LB model

in a region between the bcc and fcc phases. The phase diagram shown in figure 1.7 is

a reconstruction of the one computed in that work. Minor differences are the result of a

different numerical algorithm.
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Figure 1.7: Phase diagram for the Landau-Brazovskii model, showing stable regions for the

Frank Kasper σ and A15 phases. This diagram closely matches the one constructed by

McClenegan and Shi [53].

The LB free energy functional appears frequently in discussions of self-assembly in the GL

theory. Any quadratic coefficient Γ(q) that depends on the square of the wavevector, q2,

and has a minimum at q0 6= 0 can be approximated to quadratic order by the LB model:

Γ(q2
0) ≈ 1

2
Γ′′(q2

0)(q2 − q2
0)2. (1.14)

If we suppose that only those wavevectors close to q0 contribute to the free energy then

this should be a good approximation. Thus the quadratic term in a GL theory is often

assumed to have the form of equation (1.13). The ubiquity of the LB model underscores

the importance of McClenegan’s result; their updated phase diagram has consequences for

any work that models the formation of ordered phases using a GL theory. It also raises

several new questions: do the complex phases still appear if we change the form of Γ(q)?

If not, then what factors control their stability? Lastly, what does this mean for any work

that uses the GL theory to approximate the free-energy functional of a soft matter system?

These questions are the focus of this work.
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1.4 Density functional theory of spherical packing phases

We will now mention another theoretical framework that has been used to study self-

assembly of soft condensed matter, the density functional theory (DFT). In particular we

are interested in the use of DFT to study the formation of ordered phases in a system of

hard-core spherical particles that interact via a short-range attractive, long-range repulsive

(SALR) potential (sometimes also called a mermaid potential because of its attractive head

and repulsive tail). Such potentials can be realized experimentally and with a high degree of

control in colloid polymer mixtures [54, 55, 56, 57]. This makes them an exciting focus for

theoretical work. DFT calculations reveal that a range of ordered phases are stable in SALR

systems. In particular we highlight the work of Davide Pini and Alberto Parola [58], whose

phase diagram is reprinted here in figure 1.8, and of Yuan Zhuang and Patrick Charbonneau

[59]. Both authors detected the bcc and hcp spherical packing phases in their respective

models.

Figure 1.8: Phase diagram computed by D. Pini and A. Parola for a SALR potential using

the DFT. Reprinted from [58]. The authors discovered regions of stability of the hcp and

bcc spherical packing phases in the model that they considered.

The appearance of the bcc and hcp phases means that the SALR models are interesting

candidates for the appearance of complex phases. No one had investigated the stability of
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any of the complex phases in an SALR system until quite recently when our collaborators

Jiayu Xie and Cameron Burns did a calculation that detected the Frank-Kasper σ and A15

phases [60]. Those results are highly relevant to our work. They will be discussed in more

detail in chapter 4 where they can be compared with the main conclusions of this thesis.

1.5 The organization of this thesis

We have seen that the Frank-Kasper phases appear in many soft condensed matter systems.

Their formation is a consequence of the packing of soft spherical assemblies. In section 1.3.1

we highlighted a result showing that the complex phases are stable in the Landau-Brazovskii

model. The remainder of this work is dedicated to investigating the stability of the complex

phases in other Ginzburg-Landau theories. The thesis is structured as follows. In chapter

2 we will describe in detail the Ginzburg-Landau theories considered in this work. The

numerical methods we used to obtain our results will be explained in chapter 3. Chapter 4

contains a description and discussion of the results obtained. Chapter 5 gives a summary

and contextualization of the work.
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Chapter 2

Generic Landau theory

In chapter 1 we described the context for this research and introduced the generic form

of the free energy functionals used in this work, equations (1.8), (1.9), and (1.10). In the

first part of this chapter we will explain this expression. We will then present the specific

theories that are analysed in later chapters. In section 2.2 we discuss the Ginzburg-Landau

theory that was created by T. Ohta and K. Kawasaki in 1986 [50], and which is known as the

Ohta-Kawasaki (OK) model. Like the Landau-Brazovskii (LB) model, it is widely used to

describe the formation of ordered phases. We also create a model that interpolates between

the LB and OK models, which we will use later to understand the difference between their

respective phase behaviours. In section 2.3 we discuss the theory that was first derived by

Ludwik Leibler in 1980 [48], which we will refer to as the Leibler model throughout this

work. We rederive the Leibler model with a modification that is expected to influence the

stability of the complex phases, and we refer to this result as the modified Leibler (ML)

model. In the final section, 2.4, we discuss how a Ginzburg-Landau theory can be derived

from DFT models with SALR potentials, and present a couple examples.

17



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

2.1 Form of the free energy functional

In this section we will first explain how the truncated series expansion for the free energy

functional is obtained and then we will describe how it can be rescaled so that we can make

comparisons between different theories. The scaling of the free energy functional that we

describe here was first derived by Duncan McClenegan and An-Chang Shi [53].

We begin with an order parameter φ′(xxx) which is a scalar field that measures the thermal

average of deviations of the system away from the disordered phase. Thus φ′ is zero ev-

erywhere in the disordered phase: φ′dis(xxx) = 0. For many soft condensed matter systems

a natural choice of φ′ is the deviation of the density of material away from the average

density. Throughout this thesis we work in the canonical ensemble, which means that our

order parameter is conserved within the volume occupied by our system. This results in the

following constraint on φ′: ∫
dxxxφ′(xxx) = 0. (2.1)

We write our free energy functional as a series expanded about the disordered phase:

F ′[φ′] =

∞∑
n=2

1

n!

∫
dxxx′1 · · · dxxx′nGn (xxx′1, · · · ,xxx′n)φ′(xxx′1) · · ·φ′(xxx′n). (2.2)

Here the free energy in the disordered state is taken as the reference point (F ′[φ′dis] = 0),

which we can always guarantee by shifting the free energy by a constant value. There is no

linear term in the series because we assume that the disordered state is a local minimum on

the free energy landscape.

In this work our focus is the simplest theories that are useful for describing crystallization.

To this end we assume that the cubic and quartic coefficients are both constant with respect

to position and we label them as γ′ = −G3(xxx1,xxx2,xxx3) and u = G4(xxx1, · · · ,xxx4) to signify

this fact. We assume that φ′(xxx) is small so that we can truncate the series at quartic order

without significant loss of accuracy. This truncation requires that u is always positive,

otherwise our system will be driven towards the unphysical solutions φ′ → ±∞. With these

assumptions we are left with the following expression for the free energy functional:

F ′[φ′] = F2[φ′] +

∫
dxxx′
{
−γ
′

3!
φ′(xxx′)3 +

1

4!
φ′(xxx′)4

}
, (2.3)
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where F2[φ′] is still the most general form for the quadratic term:

F2[φ′] =
1

2

∫
dxxx′1dxxx

′
2G2(xxx′1,xxx

′
2)φ′(xxx′1)φ′(xxx′2). (2.4)

We assume the disordered phase is translation invariant, which means

G2(xxx1,xxx2) = G2(xxx1 + yyy,xxx2 + yyy) (2.5)

for any vector yyy. In particular, choosing yyy = −xxx2, we have G2(xxx1,xxx2) = G2(xxx1 − xxx2, 0).

Therefore if we define G(xxx) = G2(xxx, 0) then the translation invariance of the system lets us

write

F2[φ′] =
1

2

∫
dxxx′1dxxx

′
2G(xxx′1 − xxx′2)φ′(xxx′1)φ′(xxx′2). (2.6)

We will replace G(xxx1 − xxx2) with an integral over Fourier modes:

G(xxx′1 − xxx′2) =

∫
dqqq′

(2π)3
G̃(qqq′)eiqqq

′·(xxx′1−xxx
′
2). (2.7)

Putting this back into equation 2.6 and rearranging:

F2[φ′] =
1

2

∫
dxxx′1dxxx

′
2

∫
dqqq′

(2π)3
G̃(qqq′)eiqqq

′·(xxx′1−xxx
′
2)φ′(xxx′1)φ′(xxx′2)

=
1

2

∫
dqqq′

(2π)3
G̃(qqq′)

∫
dxxx′1φ

′(xxx′1)eiqqq
′·xxx′1
∫
dxxx′2φ

′(xxx′2)e−iqqq
′·xxx′2 . (2.8)

The integrals over xxx′1 and xxx′2 give the Fourier transforms of the order parameter field:

φ̃′(qqq) =

∫
dxxxiφ

′(xxxi)e
−iqqq·xxxi . (2.9)

We are left with

F2[φ′] =
1

2

∫
dqqq′

(2π)3
G̃(qqq′)φ̃′(qqq′)φ̃′(−qqq′). (2.10)

We assume that the system is isotropic, so that the quadratic coefficient in equation (2.10)

only depends on the magnitude of its argument, q = |qqq|, so we have that G̃(qqq) = G̃(q).

In order to describe the formation of ordered phases G̃(q) must have one or more minima

at some qi 6= 0, i.e.
(
dG̃(q)/dq

)
q=qi

= 0. We call the first minimum q0. We can rewrite

equation (2.3) in terms of the scaled length xxx = q0xxx
′ and qqq = qqq′/q0. Note that the Fourier

modes pick up a factor of q3
0 : φ̃′(qqq′)→ q3

0φ̃
′(q0qqq). The free energy becomes

F ′[φ′] =
1

2q3
0

∫
dqqq

(2π)3
G̃(q0q)φ̃

′(q0qqq)φ̃
′(−q0qqq) +

1

q3
0

∫
dxxx

{
−γ
′

3!
φ′(xxx/q0)3 +

u

4!
φ′(xxx/q0)4

}
.

(2.11)
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Our goal is to standardize the functional form of the quadratic coefficient so that we can

make comparisons between theories. To this end we will define a new function Γ(q) in terms

of G̃(q) so that it has its first minimum at q = 1, is shifted vertically so Γ(1) = 0, and is

scaled so that its second derivative at that minimum satisfies Γ′′(1) = 8. Note that each of

these conditions is satisfied by the scaled LB model used by McClenegan and Shi, equation

(1.13). The new function Γ(q) has the following form:

Γ(q) =
1

α

(
G̃(q0q)− G̃(q0)

)
, (2.12)

where α = q2
0G̃
′′(q0)/8. Rewriting equation (2.11) in terms of Γ(q):

q3
0F
′[φ′] =

1

2

∫
dqqq

(2π)3

(
αΓ(q) + G̃(q0)

)
φ̃′(q0qqq)φ̃

′(−q0qqq) +

∫
dxxx

{
−γ
′

3!
φ′(xxx/q0)3 +

u

4!
φ′(xxx/q0)4

}
=
α

2

∫
dqqq

(2π)3
Γ(q)φ̃′(q0qqq)φ̃

′(−q0qqq) · · ·

+

∫
dxxx

{
τ ′

2
φ′(xxx/q0)2 − γ′

3!
φ′(xxx/q0)3 +

u

4!
φ′(xxx/q0)4

}
, (2.13)

where in the second line we have transformed the constant part of the quadratic term into

real space and defined τ ′ = G̃(q0). Now we rewrite the free-energy in terms of the scaled

order parameter cφ(xxx) = φ′(xxx/q0), where c is a constant that will be defined shortly:

q3
0F
′[cφ] =

αc2

2

∫
dqqq

(2π)3
Γ(q)φ̃(qqq)φ̃(−qqq) +

∫
dxxx

{
τ ′c2

2
φ(xxx)2 − γ′c3

3!
φ(xxx) +

uc4

4!
φ(xxx)4

}
.

(2.14)

Next the entire free energy can be rescaled by uc4, so that the quartic coefficient is 1/4!:

q3
0

uc4
F ′[cφ] =

α

2c2u

∫
dqqq

(2π)3
Γ(q)φ̃(qqq)φ̃(−qqq) +

∫
dxxx

{
τ ′

2c2u
φ(xxx)2 − γ′

3!cu
φ(xxx) +

1

4!
φ(xxx)4

}
.

(2.15)

Finally we choose c so that the first quadratic coefficient is equal to 1/2: c =
√
α/u. The

final free energy looks like

F [φ] =
1

2

∫
dqqq

(2π)3
Γ(q)φ̃(qqq)φ̃(−qqq) +

∫
dxxx

{
τ

2
φ(xxx)2 − γ

3!
φ(xxx)3 +

1

4!
φ(xxx)4

}
. (2.16)

where the unprimed quantities F , τ and γ are related to the original quantities by

F [φ] = (q3
0u/α

2)F ′
[√

α/u φ
]
, (2.17)

τ = τ ′/α, (2.18)

γ = γ′/
√
αu. (2.19)

Equation (2.16) is the general form of the free energy functional that we will use throughout

this work.
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2.2 Ohta-Kawasaki and piecewise models

In the introductory chapter we reproduced the phase diagram that was created by Duncan

McClenegan for the LB model. The diagram shows that the Frank-Kasper σ and A15 phases

are stable in that model. Directly motivated by that result our first question is: do the

complex phases appear in other Ginzburg-Landau theories for crystallization? Our starting

point is the Ohta-Kawasaki (OK) model. This model was originally created to describe the

formation of periodic ordered phases in diblock copolymers. In fact it was derived as an

approximation to the Leibler theory which will be discussed in the next section. The original

form of the free energy functional derived by Ohta and Kawasaki is,

FOK[ϕ] =

∫
dqqq

(2π)3

(
A

q2
+Bq2

)
ϕ̃(qqq)ϕ̃(−qqq) +

∫
dxxx

{
τ ′

2
ϕ(xxx)2 − γ′

3!
ϕ(xxx)3 +

u

4!
ϕ(xxx)4

}
.

(2.20)

When we apply the scaling that led us to equation (2.12) we find that the OK model can be

written in the form of equation (2.16) with a scaled quadratic coefficient ΓOK(q) given by:

ΓOK(q) = q2 +
1

q2
− 2. (2.21)

We see that, like the LB model, the OK model depends on only two parameters,: τ and γ.

Plots of the scaled quadratic coefficients ΓLB(q) and ΓOK(q) in equations (1.13) and (2.21)

are shown in figure 2.1. We see that, relative to the LB model, ΓOK(q) is larger for wavevec-

tors q < 1 and smaller values for q > 1. Any differences in the phase diagrams of the two

theories must be caused by this difference in the quadratic coefficients. In order to investi-

gate the relative importance of the short (q > 1) and long (q < 1) wavelength modes on the

stability of the ordered phases we create a third model that interpolates between the two

theories. We call this the piecewise (PW) model and define it as in equation (2.16) with

quadratic coefficient ΓPW(q) given by:

ΓPW (q;λ1, λ2) =

 λ1ΓOK(q) + (1− λ1)ΓLB(q) q < 1

λ2ΓOK(q) + (1− λ2)ΓLB(q) q > 1
. (2.22)

The parameter λ1 controls the free energy cost associated with the long wavelength (q < 1)

modes, and λ2 controls the cost of the short wavelength modes. We can vary these two

parameters independently and observe their effect on the complex phases. Figure 2.2 shows
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Figure 2.1: Plots of quadratic coefficients for the Landau-Brazovskii model and Ohta

Kawasaki model, as defined in equations (1.13) and (2.21), respectively

the shape of ΓPW compared against ΓLB and ΓOK for several different values of λ1 and λ2,

demonstrating how we can vary the small- and large-q values of the function independently.

2.3 Modified Leibler theory

An analysis of the OK and PW models presented in the last section will help us to understand

what effect the quadratic coefficient Γ(q) has on the stability of the complex spherical phases.

In the work presented so far we have been interested in probing the universal properties of the

complex phases and thus we have avoided discussions of any specific soft condensed matter

system. Indeed both the LB and OK models are used to study the formation of ordered

phases in many different contexts. We are now going to look at a Ginzburg-Landau theory

that is derived for a specific system in which the complex phases are expected to appear.

We will investigate how the microscopic parameters of this system influence the shape of

the quadratic coefficient. We hope to use this result to connect the generic mechanisms

uncovered by the PW theory to those at play in this specific case.
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Figure 2.2: Plots of ΓPW (a) λ1 varied, changing the shape of the left branch of Γ, λ2 = 0,

fixed. (b) λ1 = 0 fixed and λ2 varied, changing the shape of the right branch. In both

figures ΓLB and ΓOK are included for reference.

We have chosen to consider a modification of the theory developed by Ludwik Leibler to

describe the formation of ordered phases in diblock copolymers [48]. We discussed block

copolymers in some detail in the last chapter (section 1.2.5), where we mentioned that the

complex phases sometimes appear. Experiments [29, 30, 31, 61] and self-consistent field

theory calculations [61, 43] have shown that the behaviour of these systems depends on

the conformational asymmetry, ε. This parameter is defined below for diblock copolymers,

but for now we simply note that both SCFT and experiment show the complex phases

only appear in diblock systems when the asymmetry is sufficiently large. Leibler’s original

calculation assumes there is no asymmetry. In this section we modify Leibler’s calculation

to incorporate conformational asymmetry between the two diblock species and investigate

how the inclusion of the ε parameter impacts the shape of the quadratic coefficient in the

resulting Ginzburg-Landau theory.

We consider a monodisperse system of M diblock copolymer chains with degree of poly-

merization N . The chains are all composed of two chemically distinct polymer species, A

and B. The number of segments of type κ is denoted Nκ (κ = A,B), so that
∑
κNκ = N .

A useful parameter in this theory is the composition fraction f , defined as f = NA/N . In

Leibler’s calculation the Kuhn statistical segment lengths of the two polymer species are

assumed to be the same, but here we relax that assumption. Let the Kuhn length of the

κ-type polymer be bκ and define the segment asymmetry parameter as the square of the

ratios of the Kuhn lengths: ε = (bA/bB)2. Taking bB = b, it follows that bA =
√
εb.
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Define the reduced number density of the κ segments as,

ρκ(xxx) =
V
MN

∑
xxxκ

δ(xxx− xxxκ), (2.23)

where the system and the sum is over the centre-of-mass position of every κ-type polymer

segment, of which there are MNκ in total. The factor of volume, V in this expression makes

it into a dimensionless quantity. In the uniformly mixed (disordered) state, the thermal

averages of the reduced densities of A and B are 〈ρA(xxx)〉 = f and 〈ρB(xxx)〉 = (1 − f),

respectively. The system is assumed to be incompressible, which means that the thermal

average of the local density must always be a constant value:

〈ρA(xxx)〉+ 〈ρB(xxx)〉 = 1. (2.24)

This incompressibility condition holds even when the system is not in the disordered state.

Equation (2.24) means that a good choice of order parameter for this system is the thermal

average of the deviation of the local density away from its value in the disordered state:

φ′(xxx) = 〈ρA(xxx)〉 − f. (2.25)

Leibler’s theory is applicable in the so-called weak-segregation limit. This refers to the region

of the phase diagram close to the order-disorder transition line, where the local density of

both A and B segments is assumed to be close to the average value. In this limit, we can

assume that φ′ is small and we can construct a Ginzburg-Landau theory by expanding the

free energy functional in powers of φ′ about the disordered state. This part of the calculation

follows Leibler’s procedure exactly, nevertheless it is presented in full in the first section of

appendix A for the convenience of the interested reader. The result of this expansion is a

free energy functional of the form,

βF ′[φ′] =

∞∑
n=2

1

n!

∫
dqqq1

(2π)3
· · ·
∫

dqqqn
(2π)n

δ (qqq1 + · · ·+ qqqn) G̃n(qqq1, · · · , qqqn)φ̃′(qqq1) · · · φ̃′(qqqn).

(2.26)

Here β is inversely proportional to the temperature T , β = (kBT )−1 where kB is the

Boltzmann constant. Equation (2.26) looks like the Fourier transform of equation (2.2)

when translation invariance is assumed. Since we are interested in free energy functionals of

the form in equation (2.16), we will truncate this series at quartic order and take the cubic

and quartic coefficients to be constant (independent of qqq). Leibler’s derivation gives us the
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following expression for the quadratic coefficient:

G̃2(qqq) =
1

C̃2(qqq)
, (2.27)

where C̃2(qqq) is the Fourier transform of the two point correlation function in the disordered

phase:

C2(xxx1 − xxx2) = 〈δρA(xxx1)δρA(xxx2)〉dis . (2.28)

Leibler demonstrates how an approximate expression for C2 can be obtained using the ran-

dom phase approximation (RPA). The RPA relies on the fact that closed form expressions,

can be obtained for the two point correlation functions of non-interacting diblock copoly-

mers. This is done using the Gaussian, or bead-spring model, which treats a polymer chain

with degree of polymerization N as a string of N + 1 beads connected by springs. A good

description of the model can be found in the textbook by T. Kawakatsu [62]. In particular

the Kuhn length of each polymer species shows up in the spring constant of the segments,

and so the non-interacting asymmetric diblock copolymer is modelled as a chain composed

of two connected springs with different stiffness. There are three two-point correlation func-

tions, SAA, SBB , and SAB , that are needed to find C2 using the RPA. Each of these is

computed in section 2 of appendix A. The resulting expressions can be rescaled to find:

SAA(q) = g
(
εq2, f

)
, (2.29)

SBB(q) = g
(
q2, 1− f

)
, (2.30)

SAB(q) = h
(
εq2, f

)
h
(
q2, 1− f

)
, (2.31)

where g (a modified version of the Debye function) and h are defined as

g(y, α) =
2

y2

(
αy + e−αy − 1

)
, (2.32)

h(y, α) =
1

y

(
1− e−αy

)
. (2.33)

Note that by setting ε = 1 we recover the expressions found by Leibler for the symmetric

case. The details of the RPA are presented in section 3 of appendix A. The final expression

for the quadratic coefficient of the modified Leibler theory is given by,

G2(q) =
S(q)

W (q)
− 2χ, (2.34)

where χ (called the Flory parameter) is a measure of the interaction strength between A
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and B segments, and,

S(q) = SAA(q) + 2SAB(q) + SBB(q), (2.35)

W (q) = SAA(q)BBB(q)− (SAB(q))
2
. (2.36)

Equation (2.34) for the quadratic coefficient of the ML theory is the main result for this

section. In order to draw comparisons between this theory and the models considered in

section 2.2 we need to rescale the quadratic term so that it has the form of equation (2.12).

We can compute the second derivative of G̃2(q) analytically, but we rely on a numerical root

finding algorithm to calculate the minimum, q0.

2.4 SALR potential theories

In the introduction (section 1.4) we described some results that used the DFT to construct

phase diagrams for systems of hard spheres with SALR pairwise interactions. Those results

hinted to us that the complex phases might be stable in such systems. It is now interesting

to see if we can predict the onset of the complex phases by comparing the form of these

theories with the quadratic coefficients that we have considered so far. SALR systems are

also interesting to investigate because the parameters that appear in these potentials are

simple to interpret and can provide us with some intuition about the origin of the long and

short wavelength modes of the quadratic coefficient.

In this section we describe how a Ginzburg-Landau theory can be derived from the classical

DFT. We start with the expression for the free energy, which is a functional of the density of

spheres, ρ(xxx). One expression for the free energy functional consists of three contributions

[59]:

F [ρ] = F0[ρ] + FCS [ρ] + F2[ρ]. (2.37)

Here F0[ρ] is the free energy of an ideal gas:

F0[ρ] = kBT

∫
dxxxρ(xxx) (ln ρ(xxx)− 1) . (2.38)

The second term, FCS [ρ], is known as the Carnahan-Starling expression,it is an approxima-
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tion that accounts for the hard-core repulsion of the spheres within the classical DFT:

FCS [ρ] = kBT

∫
dxxx
η(xxx) (4− 3η(xxx))

(1− η(xxx))
2 , (2.39)

where η(xxx) = πσ3ρ(xxx)/6, and σ is the diameter of the spheres. The last term in equation

(2.37) is the pairwise interaction between the spheres:

F2[ρ] =
1

2

∫ ∫
dxxxdx′x′x′ρ(xxx)w(xxx− x′x′x′)ρ(x′x′x′). (2.40)

Here w(rrr) is an interaction potential that captures the desired short-range attractive, long-

range repulsive behaviour.

We could of course expand equation (2.37) in powers of ρ(xxx) and truncate at quartic order to

obtain our Ginzburg Landau theory. However for our purposes it is more efficient to simply

note that only F2 will contribute to the q-dependence of the quadratic coefficient in the

series. Recall that we scale our theories to match equation (2.16). Therefore the particular

expressions for the remaining coefficients will turn out to be irrelevant. Saving ourselves

some time, then, we focus our attention on equation (2.40). We want systems with order

parameters that satisfy equation (2.1), so we write the density of hard spheres at position

xxx as a deviation away from the average value, ρ̄: ρ(xxx) = ρ̄+ φ′(xxx). Then F2 becomes

F2 =
1

2

∫ ∫
dxxxdx′x′x′φ′(xxx)w(xxx− x′x′x′)φ′(x′x′x′) + const. (2.41)

Using the fact that
∫
dxxxφ′(xxx) = 0 to eliminate the linear terms we see that the functional

form of F2 is unchanged. Comparing with equation (2.6), the connection between the

classical DFT and the Ginzburg-Landau theory is clear. The quadratic coefficient Γ(q) is

obtained simply by scaling the SALR potential:

Γ(q) =
8

q2
0w̃
′′(q0)

(w̃(q0q)− w̃(q0)) , (2.42)

where w̃(q) is the Fourier transform of the interaction potential and q0 is the minimum of

w̃: w̃′(q0) = 0. We will next consider two specific expressions for w(x).

2.4.1 The double-Gaussian potential

We consider a pair potential with the desired SALR behaviour and a simple functional form,

the sum of two Gaussian functions:

wDG(r) = −A exp(−r2/σ2
1) +B exp(−r2/σ2

2). (2.43)
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Figure 2.3: Plots of the real-space interaction potential wDG(r) for the double-Gaussian

model, equation (2.44), with the WCA condition (C = α) using various values of the pa-

rameter α.

Here σ1 and σ2 are the length scales of the attractive and repulsive parts of the potential,

respectively, so σ1 < σ2. We can rescale the length r by σ1 and the energy scale by A to

obtain

wDG(r) = − exp(−r2) + C exp(−α2r2), (2.44)

where C = B/A and α = σ1/σ2 < 1. In the DFT, a criterion known as the WCA (Weeks,

Chandler, Anderson) condition is often used to determine the overall amplitude of the in-

teraction potential. As described in [63], the WCA condition requires that the Fourier

transform, w̃DG(q), passes through the origin when q = 0. Applied to our expression, this

constraint yields C = α.

Plots of the real-space potential, wDG(r), are shown in figure 2.3 for three different values

of α. The plots show the SALR behaviour of this mode. Smaller values of α correspond to

a longer range for the repulsive part of the potential and a deeper minimum.

Taking the Fourier transform of equation (2.44) with C = α gives,

w̃DG(q) = − 1√
2
e−q

2/4 +
1√
2
e−q

2/4α2

. (2.45)

The minimum of this potential can be found analytically:

q0 =

(
8α2 ln(α)

α2 − 1

)1/2

. (2.46)
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The second derivative of w̃DG(q) is also required to compute the quadratic coefficient for

this theory.

w̃′′DG(q) = − 1

4
√

2
q2

(
e−q

2/4 − 1

α4
e−q

2/4α2

)
+

1

2
√

2

(
e−q

2/4 − 1

α2
e−q

2/4α2

)
. (2.47)

The scaled quadratic coefficient for this theory, which we call ΓDG, can be computed fol-

lowing equation (2.12), with G̃(q) = w̃DG(q) in equation (2.45), q0 given by equation (2.46),

and G̃′′ given by equation (2.47).

2.4.2 The step potential

The Double-Gaussian SALR potential considered in the last section is appealing to work

with because of its simple functional form. A drawback to that potential is that it depends

only on a single parameter, α, which means we have limited control over its shape. In this

section we will describe another SALR potential which has a more complex expression. This

potential, which we call the generic step potential, was analysed by Zhuang and Charbonneau

[59]. These authors used the DFT as well as numerical simulations to find a phase diagram

for this model that included the fcc phase. The potential has the following functional form:

wstep(r) =



C r < 1,

−A 1 < r < 1 + σ1,

B
σ2

(1 + σ1 + σ2 − r) 1 + σ1 < r < 1 + σ1 + σ2,

0 r > 1 + σ1 + σ2.

(2.48)

We can find the Fourier transform of wstep analytically, although the expression is a little

messy:

w̃step(q) = 4π

{
Cf(q) +A

[
f(q)− f((1 + σ1) q)

]
+

+
B

σ2q4

[ (
2 + q2(1 + σ1)σ2

)
cos((1 + σ1) q)− 2 cos((1 + σ1 + σ2) q)+

+ q(1 + σ1 − σ2) sin((1 + σ1) q)− q sin(σ + 1 + σ2 + 1) q)
]}
, (2.49)

where

f(q) =
−q cos(q) + sin(q)

q3
. (2.50)
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Figure 2.4: Plot of the step potential defined in equation (2.48) with σ1 = 2, σ2 = 3, B = 3,

C = 5, and A ≈ 8.760, as determined by the WCA condition, equation (2.51).

The parameter A can be set using the WCA condition described in the last section,

A =
C + 1

4Bσ2

(
6 + 6σ2

1 + 4σ2 + 4σ1(3 + σ2)
)

3σ1 + 3σ2
1 + σ3

1

. (2.51)

In order to find the scaled quadratic coefficient, Γstep(q) we will need to find the first

minimum of equation (2.49). We do this numerically using a root finding algorithm. We

also need the second derivative, which can be found analytically.

Plots of wstep(r) are shown in figure 2.4. This model is appealing because we have a great

deal of control over its shape. We can manipulate the free parameters in equation (2.48) and

observe how they affect the shape of the scaled quadratic coefficient Γstep(q). We can then

connect this change of shape with the physical interpretation of these parameters in order

to gain more insight into what factors in the SALR potential control the relative stability

of the spherical packing phases.

We have the Landau-Brazovskii (LB) and Ohta Kawasaki (OK) models, equations (1.13)

and (2.21), as well as the piecewise (PW) model, (2.22), that interpolates between them. We

will compare the behaviours of these three models in order to gain an understanding of the

mechanisms that control the relative stabilities of the spherical packing phases. We will then

look at the shape of the gamma functions for the modified Leibler (ML) theory, equation

(2.34), and the double-Gaussian SALR potential, equation (2.45), (both scaled according
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to equation (2.12)) and attempt to connect the parameters in those models with the onset

of the complex spherical phases. In the next section we describe how this calculation is

performed.
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Chapter 3

Numerical methods

In this chapter we will describe the computational techniques used to obtain the phase

diagrams presented in chapter 4 of this thesis. The goal of this chapter is to provide the

reader with enough detail to reproduce these results. We start with a free energy functional,

F [φ], of the form given in equation (2.16), and a set of candidate phases. We do not consider

every possible ordered phase, we instead restrict ourselves to a smaller set of phases of

interest. We will use the symbol P to denote the set of phases under consideration and p to

denote individual elements of this set. We use a subscript p to denote an order-parameter

field that has symmetry consistent with the phase p: φp. For example φbcc(xxx) is a real-space

field with the bcc symmetry and φ̃bcc(qqq) is its Fourier transform. F will depend on multiple

parameters, including the τ and γ variables of equation (2.16) and possibly others as well.

For a given set of parameter values the goal is to determine which of the phases in P is

the most stable, i.e. has the lowest free energy. Since there are an infinite number of fields

φp that are consistent with the phase p, and since each of these has a different free energy,

we need to minimize F [φp] for each phase individually. This optimization is described in

section 3.1. Once the minimum free energy has been determined for each p in P, the stable

phase can be determined at this point in the space of model parameters. By performing

this calculation over a range of parameter values we can construct a phase diagram for the

model. Section 3.2 describes how the phase diagrams are constructed.
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3.1 Phase optimization

In this section we describe how a given phase p is optimized for the free energy functional

of interest. We are looking for the particular field φ∗p that minimizes the free energy while

remaining consistent with the symmetries of p.

In this work we are interested in periodic phases. Any such phase can be divided into an

infinite number of identical rectangular boxes, or unit cells. Thus, in order to find the

optimal field for phase p it is sufficient for us to optimize φp over a single unit cell. Let

lx, ly, and lz be the dimensions of the unit cell, and vp = lxlylz be its volume. φp can be

written as a sum of plane waves whose periodicity is commensurate with the unit cell size:

φp(xxx) =
∑
ijk

φ̃p(qqqijk)eiqqqijk·xxx, (3.1)

where qqqijk are the reciprocal lattice vectors associated with this unit cell:

qqqijk =
2πi

lx
x̂xx+

2πj

ly
ŷyy +

2πk

lz
ẑzz, (3.2)

and i, j, k are integers. The coefficients φ̃ijk ≡ φ̃p(qqqijk) are given by:

φ̃ijk =
1

vp

∫
vp

dxxxφp(xxx)e−iqqqijk·xxx, (3.3)

where the integration is over a single unit cell.

Each phase will have a different unit cell size, so in order to make comparisons we need

the minimum free-energy density for each phase, fp = Fp/vp, where Fp is the free energy

integrated over the entire unit cell and vp is the volume of that unit cell. Starting from the

general expression for the free energy, the density is given by:

fp =
1

vp

∫
vp

dxxx

[
1

2

∫
dx′x′x′φp(xxx)G(xxx− x′x′x′)φp(x′x′x′) +

{
τ

2
φp(xxx)2 − γ

3!
φp(xxx)3 +

1

4!
φp(xxx)4

}]
=

1

2

∑
ijk

Γ(qijk)
∣∣∣φ̃ijk∣∣∣2 +

1

vp

∫
vp

dxxx

{
τ

2
φp(xxx)2 − γ

3!
φp(xxx)3 +

1

4!
φp(xxx)4

}
. (3.4)

In order to minimize (3.4) for a given phase we must optimize the field φp and also the unit

cell dimensions lx, ly, lz. The minimization algorithm for the phase p is summarized in table

3.1.
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Phase optimization algorithm

1. Initialize a unit cell for the target phase. This involves choosing both

box dimensions and a field φ with the required symmetry. Details on the

initialization of each phase considered in this work are given in section

3.1.1.

2. Fix the box size and optimize the order parameter field φp so that it

minimizes the free energy density, (3.4). Details of this optimization are

given in section 3.1.2.

3. Fix the field and stretch or compress the box size until we find the

optimal dimensions. This process is described in section 3.1.3.

4. Alternate between steps 2 and 3 until the resulting change in the free

energy density is below some threshold error tolerance. Note that this

tolerance should be much smaller than the difference between the free

energy densities of the phases.

Table 3.1: Summary of the algorithm used to find the minimum free energy density for a

each phase p in P.

3.1.1 Initialization

The unit cell is a three dimensional box with one corner located at the origin and with

dimensions lx, ly, lz. Each axis is divided into Nα equal segments of length ∆α = lα/Nα

(α = x, y, z) so that the unit cell is discretized into N = NxNyNz boxes, each with volume

v = ∆x∆y∆z. We create a discrete approximation to the field φ(xxx) by treating its value

within the (ijk)th box as a constant value equal to φijk ≡ φ(xxxijk). Here xxxijk is the vector

that points from the origin to the bottom corner of the (ijk)th box, and i = 0, · · · , Nx − 1,

j = 0, · · · , Ny − 1, and k = 0, · · · , Nz − 1. The accuracy of this discretization depends on

whether φ(xxx) changes sufficiently slowly relative to the grid spacing.

The discretization of the real-space field φ(xxx) also affects the discrete Fourier transform
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(DFT). The reciprocal vectors qqqlmn have the same form as equation (3.2), but now the

highest frequency mode is set by the grid spacing: να,max = 2π
∆α . This means that the series

expression, equation (3.1), is truncated. The assumption that φ(xxx) varies slowly means that

these high-frequency modes which we ignore are not important to accurately describe the

field.

For the remaining modes, the Fourier coefficients are computed using the discretization of

equation (3.3):

φ̃lmn →
1

vp

∑
lmn

∆x∆y∆zφlmn exp {i~qijk · ~xlmn}

=
1

N

∑
lmn

φlmn exp {i~qijk · ~xlmn} , (3.5)

with (−Nx2 + 1) ≤ l ≤ Nx
2 , (−Ny2 + 1) ≤ m ≤ Ny

2 , and (−Nz2 + 1) ≤ n ≤ Nz
2 .

The free energy density of the discretized field is given by ,

f =
1

2

∑
ijk

Γ(qijk)
∣∣∣φ̃ijk∣∣∣2 +

1

N

∑
ijk

{
τ

2
φ2
ijk −

γ

3!
φ2
ijk +

1

4!
φ4
ijk

}
, (3.6)

where the first sum is over Fourier modes, φ̃ijk and the second sum is over the discretized

φ values in real-space. We should choose the Nα large enough that equation (3.6) is inde-

pendent of them.

Now that we understand how the volume is discretized, we need to initialize the order

parameter field for the phase of interest. Figure 3.1 shows the initial unit cell for each the

nine phases considered in this work: the lamellar (lam), hexagonally close-packed cylindrical

(hex), double gyroid (gyr), body-centred cubic (bcc), and face-centred cubic (fcc) phases,

as well as the Frank Kasper A15, σ, C14, and C15 phases. The full details of each can be

found in appendix B.

The optimization algorithm described in the next two sections can sometimes cause φp to

evolve into a different phase. The final step in the initialization process is to choose a point

somewhere in the phase space where the phase of interest is well behaved, optimize the field

at that point, and then save the resulting order parameter. Using this pre-optimized field

as an initial condition for the remaining points in the phase diagram is beneficial because

it speeds up the convergence of the algorithm and decreases the frequency with which the
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(a) Lamellar
(b) HCP cylindrical

(c) Double-gyroid

(d) Body-centred cubic (e) Face-centred cubic (f) A15

(g) σ (h) C14

(i) C15

Figure 3.1: Initial unit cells for each of the nine phases considered in this work. Note that the

lamellar phase, (a), is one-dimensional and the hcp cylindrical phase (b) is two-dimensional.

The remaining phases are three dimensional.
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field evolves away from the phase of interest.

3.1.2 Free energy optimization

In this section we describe how the order parameter field for a given phase p is optimized

when the dimensions of the unit cell are fixed. We are looking for the optimized field φ∗p

which minimizes the free energy density in equation (3.4):(
δf

δφ

)
φ=φ∗p

= 0. (3.7)

We can locate stationary states of f [φ] using a gradient descent algorithm, but recall this

problem is subject to the constraint that the order parameter is conserved, meaning the

integral of φ(xxx) over the entire system must be 0 (see equation (2.1)). For periodic φ, this

conservation constraint must hold over a single unit cell:∫
v

dxxxφp(xxx) = 0, (3.8)

or, equivalently, φ̃p(qqq = 0) = 0. If we start with an initial guess, φ0
p, that matches the

symmetry of the target phase and satisfies equation (3.8), then we can ensure that the

constraint is always satisfied by evolving φp according to the continuity equation:

∂φp(xxx)

∂t
= −∇ · jjj(xxx), (3.9)

where jjj(xxx) is the current density:

jjj(xxx) = −D∇µ(xxx). (3.10)

Here D is the diffusion coefficient, which we have assumed is a constant, and µ(xxx) is the

chemical potential field, which is related to the order parameter field through the equation

of state:

µ(xxx) =
δf [φ]

δφ(xxx)
. (3.11)

Putting all of this together we get the following expression for the time evolution of φp,

∂φp
∂t

= ∇2 δf [φp]

δφp
. (3.12)

We are not interested in dynamics here beyond ensuring equation (3.8) is satisfied, so we

have scaled the time variable t to eliminate D from the expression. φp is evolved according
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to equation (3.12) until a steady state solution is reached (∂tφ = 0). This solution will be

φ∗p, the local minima of the free energy density subject to the constraint in equation (3.8).

The algorithm used to find φ∗p is based on the one described by Kai Jiang, et. al. [64].

Details of this algorithm can be found in section 2 of appendix B.

3.1.3 Unit cell optimization

In this section we describe how the size of the unit cell is determined for a given order

parameter field φp. We can visualize fixing the density profile, stretching or compressing

the box, and observing how the free energy changes. Referring back to equations (3.1) and

(3.2), we hold the amplitudes, φ̃ijk fixed and vary the qqqijk vectors by varying the lengths

lx, ly, lz. First a quick bit of notation, define bα ≡ 2π/lα, α = x, y, z, so that,

~qijk = ibxx̂xx+ jbyŷyy + kbzx̂xx. (3.13)

Consider again the expression for the free energy density, equation (3.4). We will make

the dependence on the box size clear by writing f entirely in terms of the Fourier space

representation of φ:

f [φ] =
∑
qqq

(
1

2
Γ(q)

∣∣∣φ̂p(qqq)∣∣∣2 +
τ

2

∣∣∣φ̂p(qqq)∣∣∣2 − γ

3!

∑
q′q′q′q′′q′′q′′

φ̂p(qqq)φ̂p(q
′q′q′)φ̂p(q

′′q′′q′′) · · ·

+
1

4!

∑
q′q′q′q′′q′′q′′q′′′q′′′q′′′

φ̂p(qqq)φ̂p(q
′q′q′)φ̂p(q

′′q′′q′′)φ̂p(q
′′′q′′′q′′′)

)
. (3.14)

Here the sum over qqq is shorthand for a sum over the integer coefficients i, j, k of equation

(3.13). We see that only the first term will change when we vary any bα with φ̃ held fixed.

Therefore we only need to minimize this non-local part of the free energy:

fnl =
1

2

∑
ijk

Γ(qijk)
∣∣∣φ̃ijk∣∣∣2 . (3.15)

Taking the derivative of fnl with respect to bα:

∂fnl
∂bα

=
1

2

∑
ijk

∣∣∣φ̃ijk∣∣∣2 ∂Γ(qijk)

∂qijk

∂qijk
∂bα

=
∑
ijk

Γ′(qijk)
∣∣∣φ̃ijk∣∣∣2 i2αbα

qijk
, (3.16)

38



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

where iα = i, j, k when α = x, y, z, respectively, and we have used the fact that the

magnitude of qqqijk depends on the bα:

qijk =
(
i2b2x + j2b2y + k2b2z

)1/2
. (3.17)

We therefore have three equations to solve in order to find the optimal bx, by and bz:∑
ijk

i2α
qijk

Γ′(qijk)
∣∣∣φ̃ijk∣∣∣2 = 0, (3.18)

for α = x, y, z. Note that these equations depend on the values of the bα through the

reciprocal lattice vectors, equation (3.17). We use a conjugate gradient method like the one

described in [65] to find the solutions to equation (3.18). The details of the algorithm can

be found in section 3 of appendix B.

3.2 Constructing phase diagrams

In this section we describe how phase diagrams like the one shown in figure 1.7 are con-

structed. All of our free energy functionals depend on some set of parameters which includes

the coefficients τ and γ, as well as any other parameters, ω, appearing in the quadratic co-

efficient Γ = Γ(q;ω). In general we are interested in how the minimum free energy density

of each phase, f∗p = fp(φ
∗
p), varies as a function of these parameters. Let us take τ and γ as

an example. In order to compute the τ–γ phase diagram we begin by choosing a range for

each parameter and then taking a discrete set of values within that range, so that we end

up with a set of pairs (τi, γj). We find the minimal free energy density for each phase in the

set P at each point in the set of pairs. By comparing each of these densities at the point

(τi, γj) we can determine the phase that is stable at that point: p∗ =
{
p | f∗p = minp′∈P f

∗
p′

}
This can be visualized in a diagram like figure 3.2, which shows how p∗ varies as a function

of τ and γ, and also shows how the calculation is first done over a discrete set of points.

Figure 3.3 shows how the free energy densities for each phase considered vary as a function

of γ, with τ = −0.05 fixed. In this plot we have zoomed into the region between γ = 0.5

and γ = 0.8. Comparison with the diagram in figure 3.2 shows that there is a transition

point here between the hex and bcc phase. In order to determine the approximate value of

γ at which this transition occurs, we first interpolate between the calculated points using a
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Figure 3.2: Preliminary phase diagram for the Landau Brazovskii model, coloured dots

indicate which phase p in P has the lowest free energy density at each value of the parameters

τ and γ
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Figure 3.3: Plots of free energy densities f∗p for each p in P (points), computed at τ = −0.05

using the algorithm described in section 3.1. Lines fit to numerical data using cubic spline

interpolation algorithm. Intersection point (black star, dashed line) indicates the γ value

where bcc becomes stable over hex, this point is calculated using a root finding algorithm.

cubic spline interpolation algorithm. We then compute the intersection point using a root

finding algorithm. The calculated intersection point is indicated by a star in figure 3.3.

The final step is to interpolate between the set of boundary points in order to produce the

final phase diagram. Figure 3.4 shows a small region of the phase diagram with γ between

0 and 0.5 and τ between −0.35 and 0. The set of intersection points between the lam and

hex phases are shown, together with the boundary line between the two phases. This line

is found using a cubic spline interpolation.

We can see from figure 3.4 that the lam-hex phase boundary line will intersect either the

lam-gyr or hex-gyr boundary line at the bottom and the order-disorder transition line at the

top. Once we’ve fitted lines to all of the boundaries in figure 3.2 we can find the intersection
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Figure 3.4: Close up of figure 3.2 showing intersection points and interpolated boundary

line between lam and hex phases. Line is found using a cubic spline interpolation.

points between each line. We then choose the appropriate end points for each line. The

reader may get the impression that this is a somewhat arbitrary choice. Indeed the precise

location of triple points is difficult to obtain, and we can only ever approach it’s precise

location using the algorithm described here. For the purposes of this work, we accept this

imprecision in the phase diagram. Once we have obtained all of the phase boundaries and

their limits we can construct the phase diagram shown in figure 1.7.

We have explained how the minimum free energy associated with each phase in the set P is

calculated and described how that information is used to construct phase diagrams. In the

next chapter we move onto a presentation of the results.
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Chapter 4

Results and discussion

In this chapter we will analyse the phase diagram for Ginzburg-Landau theory with the form

described in chapter 2, equation (2.16). In section 4.1 we begin by constructing the phase

diagram for the Ohta-Kawasaki model and comparing that with the Landau-Brazovskii

diagram. We then use the piecewise model to understand the differences between these

diagrams, section 4.2. We discuss the modified Leibler model and the double-Gaussian

SALR model in sections 4.3 and 4.4, respectively.

4.1 The Ohta-Kawasaki model

The phase diagram for the Ohta-Kawasaki model, equation (2.16) with quadratic coefficient

(2.21), is shown in figure 4.1. We see immediately that none of the Frank-Kasper phases

are present in this diagram. This is in contrast to the phase diagram for the Landau-

Brazovskii model that was computed by McClenegan and Shi [53] (figure 1.7), in which the

Frank-Kasper σ and A15 phases were both stable between the bcc and fcc phases.
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Figure 4.1: τ -γ phase diagram for the Ohta-Kawasaki model, equations (2.16) and (2.21).

In this diagram the Frank-Kasper σ and a15 phases do not appear between the bcc and fcc

phases, unlike the diagram computed by McClenegan and Shi [53] for the Landau-Brazovskii

model, figure 1.7.
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4.2 The piecewise interpolation model

We now use the piecewise interpolation (PW) model, equation (2.22), to help us understand

the difference between the OK and LB phase diagrams. We begin by varying λ1 in (2.22)

while λ2 is held fixed. This has the effect of changing the shape of ΓPW(q) for q < 1 only,

and so we can isolate the effects of the long wavelength modes. These results are described

in section 4.2.1. We then consider what happens when we hold λ1 fixed and instead vary λ2,

an analysis that allows us to understand the effects of the short wavelength (q > 1) modes.

These results are discussed in section 4.2.2.

4.2.1 Effect of the long wavelength modes

We begin by isolating the effects of the long wavelength (q < 1) modes. Figure 4.2 shows

three different λ1 versus γ phase diagrams. The parameters τ and λ2 are held constant in

all of the diagrams, with τ = 0 in all three and λ2 = 0 (top), λ2 = 0.5 (center), and λ2 = 1

(bottom). λ1 varies from 0 to 1 which leads to an increase in the free energy cost associated

with the long wavelength modes as we move up the y-axis in each diagram.

The A15 phase is only stable in the top (λ2 = 0) diagram. The σ phase is stable in some

region of all three diagrams. The Frank-Kasper C14 and C15 phases were also included in

the analysis but they were not found to be stable at any point. In all three diagrams we see

that the region occupied by the complex σ and A15 phases shrinks as λ1 increases. This

suggests that increasing the free-energy cost associated with the long-wavelength modes

supresses the formation of these phases.

Figure 4.3 shows how the free energy densities of each of the spherical phases vary with

λ1 when all of the other parameters are held fixed: τ = 0.0, γ = 1.1 and λ2 = 0. The

stable phase is indicated at each point by the background colour: purple for the A15 phase

and yellow for σ. The x-axis correspond to the vertical line γ = 1.1 in the topmost plot of

figure 4.2. The leftmost plot in figure 4.3 shows the total free energy density of each of the

spherical phases, as defined in (3.4). The plot in the center shows the contribution from

the non-local term, equation (3.15), and the rightmost plot shows the contribution from the
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Figure 4.2: λ1 versus γ phase diagram for the Piecewise model with τ = 0 (all) and λ2 = 0

(top), λ2 = 0.5 (center), λ2 = 1 (bottom). Inset shows how the shape of ΓPW(q) changes as

λ1 increases.

46



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

0.00 0.25 0.50 0.75 1.00

λ1

−0.074

−0.073

−0.072

−0.071

−0.070

f
(a)

0.0 0.5 1.0

λ1

0.011

0.013

0.015

f n
l

(b)

bcc fcc A15 σ C14 C15

0.0 0.5 1.0

λ1

−0.088

−0.086

−0.084

f l
oc
a
l

(c)

Figure 4.3: (a) Total free energy density, f , (b) non-local free energy density, fnl, and (c)

local free energy density flocal for each of the spherical candidate phases (bcc, fcc, A15, σ,

C14 and C15), plotted against λ1, with τ = 0, γ = 1.1, λ2 = 0. In all plots the background

colour indicates the phase that is stable in that region of phase space: a15 (purple), and σ

(yellow).

local term, which is defined as:

flocal =
1

v

∫
dxxx

{
τ

2
φ(xxx)2 − γ

3!
φ(xxx)3 +

1

4!
φ(xxx)4

}
. (4.1)

In plot (a) we see that the slope of the free energy density of the bcc phase is almost flat,

while the other phases have larger, positive slopes. This indicates that the bcc phase is

relatively insensitive to the shape of Γ(q) when q < 1. The free energy cost associated

with the formation of the remaining phases increases as λ1 increases, with the fcc phase less

sensitive than the A15, σ, C14 and C15 phases. If we imagine extrapolating the lines shown

in (a) out to larger λ1 values, we might expect that the fcc and eventually the bcc phase

would become stable. In plot (b) we see that the non-local part of the free energy density

increases with λ1 for the fcc, A15, σ, C14, and C15 phases, an unsurprising result. Plot (c)

shows that the local part of the free energy density also increases for all of these phases.
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Furthermore, (b) and (c) show that both terms are approximately flat for the bcc phase.

In order to understand the effect that the shape of Γ(q) has on the free energy densities of

the spherical phases, we next look at their Fourier spectra. These are shown in the top plots

of figure 4.4. The height of the peak associated with wavevector q in these plots is given by:

Iq =
∑
|qqq|=q

∣∣∣φ̃(qqq)
∣∣∣2 , (4.2)

where φ̃p(qqq) is the Fourier transform of the phase p that has been optimized at the point

τ = 0, γ = 1.1 in the LB model (λ1 = 0, λ2 = 0). The bottom plots in figure 4.4 show how

each peak in the Fourier spectra contributes to the total non-linear free energy density:

fnl(q) =
1

2
Γ(q)I(q). (4.3)

Each peak in these bottom plots is normalized by the total non-linear free energy density

for this phase, fnl calculated at the point τ = 0, γ − 1.1 in phase space.

Figure 4.4 can provide us with some insight into the relationships we saw in figure 4.3

between the free energy densities and λ1. Starting with the bcc phase, (a), the top plot

reveals that the longest wavelength mode occurs at q = 0.98, very close to q = 1. The

bottom plot shows that this main peak contributes only a small fraction (about a tenth)

of the total non-local free energy density. It makes sense then that varying the free energy

cost associated with the long-wavelength peaks would not have a significant impact on the

bcc phase. Looking at fcc (b) next, we see that this phase has two peaks close to q = 1,

at q = 0.93 and q = 1.08. Together these two peaks account for about 68% of the total

non-local free energy density, which is in sharp contrast to the situation for the bcc phase.

The minimization of the free energy density of the fcc phase is constrained by a competition

between the positions of these two peaks. Increasing λ1 may decrease the height of the

first peak or cause it to move closer to q = 1, either way we can understand why the fcc

is relatively more sensitive to λ1 than the bcc phase was. Similarly, the Frank-Kasper A15

(c), σ (d), C14 (e), and C15 (f) phases all have multiple peaks around q = 1. It naturally

follows that these phases have a stronger dependence on the long-wavelength part of Γ(q).

The short wavelength modes are relatively more important for the C15 phases than for the

A15, σ, and C14 phases, and this accounts for the fact that C15 is the most sensitive of the

four phases to changes in λ1.
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Figure 4.4: Plots of Fourier modes I(q) defined in equation (4.2) (top plot, logarithmic axis),

and the fractional contribution of each mode to the non-local free energy density (bottom

plot) for the (a) bcc, (b) fcc, (c) A15, (d) σ, (e) C14, and (f) C15 phases. Each of the

spectra represents the optimized order parameter field for its respective phase, computed

using the LB model with τ = 0.0 and γ = 1.1
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The particular shape of the Fourier spectrum influences how sensitive each phase is to λ1.

The complex phases in particular have more long-wavelength peaks, and so they are the

most sensitive to changes in the shape of the quadratic coefficient for q < 1. The following

argument may provide some intuition as to why: the longest wavelength mode that appears

in each of the plots in figure 4.4 is associated with the size of the unit cell : qmin = 2π/l,

where l is the largest dimension of the unit cell. Each phase must also have one or more peaks

associated with the length scales of the spheres. In the case of the bcc phase we see from

figure 4.4 that there is one dominant peak (note that the y-axis of the Fourier spectra plots

uses a logarithmic scale). This indicates that the sphere sizes are roughly commensurate

with the unit cell size. In contrast, the fcc phase and the Frank-Kasper phases all have

multiple dominant peaks, indicating that the sphere sizes are smaller than the box size.,

and (in the case of the complex phases) that the spheres are not all the same size.

4.2.2 Effect of the short wavelength modes

We now turn our attention to the effects of the short-wavelength (q > 1) modes. Figure 4.5

shows three λ2 versus γ phase diagrams constructed by holding τ and λ1 fixed, with τ = 0

in all three diagrams and λ1 = 0 (top), λ2 = 0.5 (center), and λ1 = 1.0 (bottom). Note

that an increase in λ2 corresponds to a decrease in the free energy cost associated with the

short-wavelength modes. This is illustrated by the insets in figure 4.5, and is different from

the situation with λ1.

The A15 phase is stable in a small region in both the top and centre plots and nowhere in

the bottom plot. The σ phase is stable in some region of all three plots. In each of the plots

the bcc phase becomes more stable as λ2 is increased. The behaviour of the σ phase is more

complicated. In the top plot we observe that the σ region appears to overtake both the A15

and fcc regions as λ2 is increased. Conversely, in the bottom plot the fcc appears to become

favoured over σ as λ2 increases. The centre plot demonstrates both behaviours.

Figure 4.6 shows plots of the total free energy density for all the spherical candidate phases,

as well as contributions from the local and non-local terms.

In 4.6 (a) we see that all of the spherical phases are strongly dependent on the shape of
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Figure 4.5: λ2 versus γ phase diagram for the Piecewise model with τ = 0 (all) and λ1 = 0

(top), λ1 = 0.5 (center), λ1 = 1 (bottom). Inset shows how the shape of Γ(q) changes as λ2

increases.

51



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

0.0 0.5 1.0

λ2

−0.15

−0.14

−0.13

f

(a)

0.0 0.5 1.0

λ2

0.020

0.025

0.030

f n
l

(b)

bcc fcc A15 σ C14 C15

0.0 0.5 1.0

λ2

−0.18

−0.17

−0.16

−0.15

f l
oc
a
l

(c)

Figure 4.6: (a) Total free energy density, f , (b) non-local free energy density, fnl, and (c)

local free energy density flocal for each of the candidate spherical phases (bcc, fcc, A15,

σ, C14, and C15) plotted against λ2, with τ = 0, γ = 1.25, λ1 = 0.5. In all plots the

background colour indicates the phase that is stable in that region of phase space: bcc

(red), A15 (purple), and σ (yellow).
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Figure 4.7: Plots of free energy densities shown in figure 4.6, with the σ-phase values

subtracted off. All parameters are the same between the two figures.

the right-hand side of Γ(q) (q > 1). The total free energy density always decreases as λ2

increases. Surprisingly, the non-local free energy density (b) actually increases when we

decrease the cost of the short-wavelength modes by increasing λ2. Plot (c) shows that the

overall decrease in free energy density is driven by a decrease in the local term.

Figure 4.6 doesn’t give us much information about the effect of λ2 on the relative free

energy densities of the various phases. The next plot, figure 4.7., shows the same free

energy densities for the bcc, fcc, A15, C14, and C15 phases, this time calculated relative to

their values in the σ phase.

Figure 4.7 (a) shows that the free energy density of the bcc phase decreases rapidly relative

to that of the σ phase as λ2 increases. Both fnl, plot (b), and flocal, plot (c), contribute to

this trend. An increase in λ2 appears to suppress the A15 phase relative to the σ phase. This

suppression appears to be driven primarily by the non-local free energy density shown in

plot (b). On the other hand, increasing λ2 appears to enhance both C14 and C15 relative to

σ. Finally, the relationship between the free energy densities of the σ and fcc phases is more

complicated. Plot (b) shows that fnl for the fcc phase decreases relative to the σ phase, but
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plot (c) shows that flocal increases. In plot (a) we see the effect of the competition between

these two terms, the total free energy density of the fcc phase has a minimum that appears

around λ2 = 0.7. These trends agree qualitatively with the phase behaviour observed in

figure 4.5.

Figure 4.8 shows how the Fourier spectra for the optimized spherical packing phases change

when λ2 is increased from λ2 = 0 (top plots) to λ2 = 1 (bottom plots). In all four plots the

remaining parameters are fixed at τ = 0, γ = 1.25 and λ1 = 0.5. Plots therefore correspond

to the bottom and top points of the vertical line γ = 1.25 in the middle phase diagram of

figure 4.5.

Comparison of the top and bottom plots for each phase in figure 4.8 shows both the ap-

pearance of new peaks and an increase in the height of existing peaks with q > 1 when λ2

is increased. This is the expected behaviour, of course, since an increase in λ2 corresponds

to a decrease in the free energy cost associated with the short wavelength modes.

We refer back to figure 4.6 where we observed that the total free energy density decreased

with increasing λ2, and that this decrease was driven by the local term in f . We can get some

insight into this trend by considering again the expressions for the different contributions

to the total free energy density. It is clear that the non-local free energy density, equation

(3.15), is always positive. This term always associates a free energy cost to any Fourier

peak, φ̃(qqq) (unless q = 1). As for the local free energy density, let’s write equation (4.1) in

terms of the Fourier components φ̃ijk and take τ = 0:

flocal =
∑
qqq,q′q′q′,q′′q′′q′′

− γ
3!

+
1

4!

∑
q′′′q′′′q′′′

φ̃q′′′q′′′q′′′

 φ̃qqqφ̃q′q′q′ φ̃q′′q′′q′′ . (4.4)

Both the cubic and quartic terms pick out combinations of peaks. In other words, each of

these terms will increase in magnitude when new peaks are added. The extent to which the

cubic term (always negative) is able to ‘win out’ over both fnl and the quartic term depends

on the value of γ, but at any rate we can connect the increase in amplitude and number of

short-wavelength peaks that we observed in figure 4.8 with the change in local free energy

density that we saw in figure 4.6.

Our investigation of the short-wavelength modes reveals a couple of trends: decreasing the

free energy cost of these modes promotes the formation of the bcc phase and suppresses the

54



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

10−4

10−3

10−2

10−1

100

I q
/I

q,
m
a
x

(a.i) (b.i) (c.i)

10−5

10−4

10−3

10−2

10−1

100

I q
/I

q,
m
a
x

(a.ii) (b.ii) (c.ii)

10−4

10−3

10−210−2

100

I q
/I

q,
m
a
x

(d.i) (e.i) (f.i)

0 1 2 3

q

10−5

10−4

10−3

10−2

10−1

100

I q
/I

q,
m
a
x

(d.ii)

1 2 3

q

(e.ii)

1 2 3

q

(f.ii)

Figure 4.8: Plots of Fourier peaks for (a) bcc, (b) fcc, (c) A15, (d) σ, (e) C14, and (f) C15

phases. Top plot in each pair shows intensities at λ2 = 0 and bottom plot shows intensities

at λ2 = 1. Other parameters are fixed: τ = 0.0, γ = 1.25, λ1 = 0.5.

a15 phase. Upon closer inspection our analysis reveals that the dependence of the phase

diagram on the short-wavelength modes is the result of an interplay between the different

terms in the free energy density.
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4.3 Modified Leibler theory

We turn now to the modified Leibler (ML) model described in section 2.3. The functional

form for the quadratic coefficient, ΓML(q) is obtained by scaling equation (2.34) to match the

expression given in equation (2.12). The parameter ε is a measure of the segment asymmetry

of the diblocks. Increasing ε is expected to stabilize the Frank-Kasper σ and A15 phases

based on the literature, see [43, 29, 30, 31]. Figure 4.9 shows how the shape of the coefficient

ΓML that we derived depends on the two parameters, the composition fraction, f , and the

asymmetry parameter, ε.
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Figure 4.9: Plots showing how the shape of the quadratic coefficient for the modified Leibler

theory, ΓML(q), varies with ε when (a) f = 0.1, (b) f = 0.3, and (c) f = 0.9. The coefficients

for the LB and OK models are included in all plots for comparison.

We see that the shape of ΓML(q) changes very little in any of the three figures. We also

see that the shape of this function looks very similar to the shape of ΓOK, and here we

note that the OK model was originally derived as an approximation to Leibler’s original

(ε = 1) theory [50]. Looking at the shape of ΓML in figure 4.9 (a), we see that there is some

dependence of the shape of ε. This plot shows that the free energy cost associated with the

short-wavelength modes increases slightly and the cost associated with the long-wavelength

modes decreases slightly when ε is increased and f = 0.1. In figure 4.9 (c), by contrast, we

can make out the reverse behaviour.

What does the shape of ΓML tell us about the phase behaviour of our ML theory? Well the
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shape is very similar to ΓOK, and we saw in section 4.1 that this shape was associated with

a suppression of the complex phases. For f = 0.1 we see that increasing ε does slightly alter

the shape in a way that should correspond to increased stability for the complex phases per

our analysis in sections 4.2.1 and 4.2.2. In a 2014 paper by Xie et. al. [43], for example,

the authors found that increasing ε corresponded to an increased region of stability for the

complex phases when f < 0.5, so our results are somewhat consistent with the literature.

When f = 0.9 we see that increasing ε changes the shape of ΓML in a way that is expected

to suppress the complex phases. This result is also consistent with Xie’s result. However the

change in shape that we observe is not large. The function still closely resembles the OK

coefficient for all values of f and ε. Looking at the shape of ΓML that we derived, we can

conclude that increasing the asymmetry parameter ε does not stabilize the complex phases

within the ML theory.

Figure 4.10 shows the ε versus γ phase diagram constructed for the ML theory with τ = 0

and f = 0.1 held fixed. These values are thought to be the most likely candidates for

stabilizing the complex phases in this model based on the shape of the quadratic coefficient

(figure 4.9).

We see that no complex phases appear between the fcc and bcc phases in this diagram. We

can conclude that our ML theory does not successfully predict the onset of the complex

phases as a function of the asymmetry parameter ε. Possible shortcomings of this theory

are discussed in chapter 5.

4.4 The SALR potentials

The final set of quadratic coefficients considered in this work are those derived from the

density functional theory for short-range attractive, long-range repulsive (SALR) pair po-

tentials, as described in section 2.4. In this section we consider two such theories, the

double-Gaussian (introduced in section 2.4.1) and the step potential (section 2.4.2). We

also discuss work by Jiayu Xie and Cameron Burns [60], who used the DFT to construct

phase diagrams for these potentials. We compare those results with the ones presented here.
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Figure 4.10: γ vs. ε phase diagram for the modified Leibler theory with τ = 0 and f = 0.1.

The Frank Kasper σ phase is expected to appear between the bcc and fcc phases when they

are stable. In this diagram we see that these phases do not appear for this range of ε values.

4.4.1 The double-Gaussian potential

The functional form of the double-Gaussian coefficient is given by scaling equation (2.45) to

match equation (2.42). Figure 4.11 shows how the shape of the scaled quadratic coefficient,

ΓDG(q), varies with the ratio of length scales, α.

Beginning with an analysis of the long wavelength modes, we see from figure 4.11 that

decreasing α has the effect of suppressing these modes. Increasing α therefore favours the

formation of the complex phases, according to our analysis in 4.2.1. Of course, α also impacts

the shape of ΓDG for short wavelengths. Looking at the right hand (q > 1) side of figure

4.11, we see that increasing α also increases the cost of the short wavelength modes until

q ≈ 2.5, at which point there is a crossover. We see that increasing α causes the value of the

quadratic coefficient to decrease past this point. Applying the results from section 4.2.2, that

suppressing short-wavelength modes should promote the complex phases, is therefore more

complicated. To summarize, increasing α should have the effect of promoting the formation

of the complex phases based on the shape of the quadratic coefficient for q . 2.5. For larger
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Figure 4.11: Shape of quadratic coefficient for the double-Gaussian SALR theory, ΓDG, for

different values of the parameter α. Plots of the LB and OK coefficients are included for

comparison.

values of q, increasing α causes ΓDG to decrease, an effect which we expect to suppress the

complex phases. There is thus some ambiguity about the expected phase behaviour of this

model based on the analysis we have done so far.

Figure 4.12 shows a γ vs. α phase diagram for the double-Gaussian model with τ = 0

held fixed. This phase diagram reveals that increasing α has the effect of stabilizing the σ

phase. The result that an increase in α stabilizes the complex phases means that the short

wavelength modes close to q = 1 are more important for determining the phase behaviour

of the theory than the larger values of q are. This makes sense based on the Fourier spectra

from figures 4.4 and 4.8, which show that the spectrum rapidly decays as q increases.

We developed the Ginzburg-Landau theory based on the SALR model so that we could

attempt to gain an intuition about the physical mechanisms that control the shape of the

quadratic coefficient. Our DG model has a single parameter, α, that drives the formation

of the complex σ phase and has a physical interpretation: α is the ratio of attractive to

repulsive length scales in equation (2.44). Figure 2.3 shows how the real-space interaction

potential, w(r) in equation (2.44), varies as a function of α. We see that increasing the value

of α effectively flattens this potential, making the attractive well shallower and causing the
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Figure 4.12: γ vs. α phase diagram for the DG model with τ = 0 calculated using the

Ginzburg-Landau theory.

function to flatten to zero more quickly. The results of this section show us that this

flattening behaviour is connected with the formation of the Frank-Kasper σ phase.

4.4.2 The step potential

The quadratic coefficient for the step potential is given by equation (2.49), scaled using

equation (2.42). Figure 4.13 shows how the shape of Γstep(q) changes with each of the

parameters in the theory.

In plots 4.13 (a) and (b) we see that decreasing the range of the attractive part of the

potential, σ1, changes the shape of Γstep in a way that suggests the complex phases will be

favoured. In (c) and (d) we see that decreasing the range of the long-range repulsive part of

the potential, σ2, favours these phases. Lastly, in plots (e) and (f) we see that decreasing the

maximum amplitude of the repulsive part of the potential, B, favours the complex phases.

Overall, weaker interactions with a shorter-range are more favourable to the formation of

the Frank-Kasper phases. This appears to agree with the results from the double-Gaussian

potential. Figure 2.3 shows that increasing α in the DG model decreases both the magnitude
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Figure 4.13: Plots of the real-space potential wstep(r) (left column) and quadratic coefficient,

Γstep(q) (right column). In (a) and (b) we vary σ1, keeping σ2 = 1 and B = 1 fixed. In (c)

and (d) we vary σ2, keeping σ1 = 1 and B = 1 fixed. In (e) and (f) we vary B, keeping

σ1 = 1 and σ2 = 1 fixed.
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and range of the potential, and we saw in figure 4.12 that this favours the formation of the

σ phase.

4.4.3 DFT results

As mentioned in the introduction, our colleagues Jiayu Xie and Cameron Burns, supervised

by Dr. An-Chang Shi, performed DFT calculations to search for the σ, A15, C14, and C15

Frank Kasper phases using the free energy functional in equation (2.37). They considered

three different SALR potentials. The first was the double-Yukawa (DY) potential used by

Pini [58], the second was the double-Gaussian potential, equation (2.44), and the third was

the step potential, equation (2.48). Figure 4.14 shows the phase diagrams they computed

for each of these theories.

Xie and Burns found that no complex phases were stable in the double-Yukawa model, figure

4.14 (a). They observed the σ phase (orange) in diagrams (b) and (c) (the double-Gaussian

potential) and (d) and (e) (the step potential). They also found that the A15 phase (lime

green) was stable in diagram (e). The C14 and C15 phases were not stable in any of the

models considered. Diagrams (b) and (c) were constructed using (b) α = 1/1.667 ≈ 0.6 and

(c) α = 1/1.4 ≈ 0.71. The stability of the σ phase in both of these diagrams, and the fact

that the region of stability is larger in the second diagram, is consistent with our results.

Figure 4.15 shows the shapes of the quadratic coefficients associated with each of the po-

tentials considered by Xie and Burns, using the scaling described in equation (2.42).

The quadratic coefficients in this figure change shape in a way that has been demonstrated

to favour the formation of the complex phases as we move from (a) to (e).x The Yukawa

potential (diagram (a) in figure 4.14) has both the highest cost for the long-wavelength

modes and the lowest cost for the short-wavelength modes, making it the most similar to

the OK theory. The result of this is that no complex phases are stable in this theory. The

second step potential, Step (2), is the most similar to the shape of the LB model. The

phase diagram for this potential is shown in figure 4.14 (e). We see that both the σ and

A15 phases are stable in this model. The calculation of Xie and Burns shows that the same

mechanisms that stabilize the complex phases in the GL theory also work in the DFT model
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Figure 4.14: Phase diagrams computed by Xie, Burns, and Shi. Reprinted from [60]. Plot

(a) shows the phase diagram computed for the double-Yukawa model used by Pini [58], with

B = 1.0, z1 = 1.0 and z2 = 0.5. Diagrams (b) and (c) were computed using the double-

Gaussian model considered in this work with (b) α = 0.6 and (c) α = 0.71. Diagrams (d)

and (e) were constructed using the step potential described by Zhuang and Charbonneau

with (d) B = 1.0, σ1 = 1.5, σ2 = 3.0 and (e) B = 0.5, σ1 = 1.0, σ2 = 1.5 [59].
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Figure 4.15: Quadratic coefficients corresponding to each of the 5 diagrams shown in figure

4.14. Yukawa (a), Gauss (1) (b), Gauss (2) (c), Step (1) (d) and Step 2 (e). Figure courtesy

of Xie, Burns, and Shi [60].

of interacting spheres.
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Chapter 5

Conclusion

In this work we studied the simplest Ginzburg-Landau theories that one can use to describe

the formation of ordered phases. These theories have a generic form given by equation (1.8),

with a local term always given by the quartic polynomial in equation (1.9) and a non-local

term of the form presented in (1.10). We have thoroughly explored how the shape of the

quadratic coefficient in equation (1.10) influences the stability of the Frank-Kasper spherical

packing phases. Building on the work of McClenegan and Shi [53], which demonstrated the

stability of the Frank-Kasper σ and A15 phases in the Landau-Brazovskii model, we showed

that these phases do not appear in the Ohta-Kawasaki model. These models differ only in

the shape of the quadratic coefficient. To understand why the phase diagrams look different

we constructed our piecewise interpolation model and used it to isolate the effects of the

long and short wavelength modes on the stability of the complex phases. We discovered

that the formation of complex phases is suppressed relative to the other spherical phases

when the free energy cost associated with the long wavelength modes increases. We found

that decreasing the cost of the short wavelength modes also suppresses the complex phases.

Hoping to connect these results with a physical mechanism that is known to govern the

formation of the complex phases in block copolymer systems, we derived a Ginzburg-Landau

theory for diblock copolymers with segment asymmetry. Despite being responsible for the

formation of the Frank-Kasper σ and A15 phases in both experimental systems and SCFT
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calculations, we saw that the conformational asymmetry parameter in this theory did not

cause the shape of the quadratic coefficient to change in a way that would be favourable to

these phases in our model. This model failed to describe the onset of the complex phases.

The reason for this must be that the approximations made in the derivation are too crude.

The fact that the inclusion of conformational asymmetry into the derivation does not change

the asymptotic behaviour of the quadratic coefficient means that this term on its own is not

sufficient to account for the impact. In particular, relaxing the assumption that the cubic

coefficient can be treated as a constant value could have a significant effect on the phase

behaviour. Leibler’s calculation uses a cubic term of the following form:

F3[φ] =
1

3!

∫
dqqq1

(2π)3

dqqq1

(2π)3

dqqq1

(2π)3
δ(qqq1 + qqq2 + qqq3)G̃3(qqq1, qqq2, qqq3)φ̃(qqq1)φ̃(qqq2)φ̃(qqq3), (5.1)

Making the assumption that γ has no dependence on q means that we lose access to a lot

of physically relevant effects that might stabilize the complex phases. One might consider

a theory with a more complicated cubic term of the form in equation (5.1). However this

term will make the numerical methods used in this work significantly more computationally

intensive.

We considered two Ginzburg-Landau theories derived for a system of spheres interacting

via a pairwise short-range attractive, long-range repulsive (SALR) potential. These were

chosen to allow us to make comparisons with DFT results discussed in the introduction that

showed the formation of the bcc and fcc spherical packing phases. First we considered a

specific SALR potential which was the sum of two Gaussian functions. We saw that the free

parameter in this theory is sufficient to stabilize the Frank-Kasper σ phase. This parameter,

called α, is the ratio of length scales of the attractive and repulsive terms in the real-space

potential. As this ratio approaches 1 the quadratic coefficient gets smaller for q < 1 and

larger for q > 1, behaviours that are consistent with the factors needed to stabilize the

complex phases. We then considered a SALR step-potential taken from a paper by Zhuang

and Charbonneau [59]. We investigated how varying the parameters in this theory caused

the shape of the quadratic coefficient to change. This result enabled us to develop some

intuition for the relationship between the real-space interactions and the stability of the

spherical packing phases. In particular, we observed that a weaker repulsion strength and a

shorter range both stabilized the complex phases.
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We described DFT calculations performed by Jiayu Xie and Cameron Burns, supervised

by Dr. Shi, which showed that the same mechanisms that control the relative stability of

the complex spherical packing phases in the Ginzburg-Landau theory are relevant in that

model.

We set out to explore universal mechanisms that influence the formation and relative stability

of the complex spherical packing phases in soft condensed matter systems. We discovered

that a very simple Ginzburg-Landau theory is sufficient to explore this question, and we

thoroughly probed the mechanisms that are available to this theory. Xie and Burns’ result

shows that these mechanisms extend beyond the GL theory and into the DFT as well.

Ginzburg-Landau theories of the form considered in this work, and DFT theories of the form

in equation (2.37) are ubiquitous in the literature. Our result has important consequences

for any work that uses these theories to model the physics of a soft matter system. A

natural next step for this project would be to include quasi-crystalline phases in the set

P of phases considered. Quasicrystal phases appear in many systems that also exhibit the

complex phases, and might be stable in some of our models. Another promising extension

could be to consider a two-field system with a free-energy functional of the form:

F [φ, ψ] =
1

2

∑
qqq

(
Γ1(q)

∣∣∣φ̃(qqq)
∣∣∣2 + Γ2(q)

∣∣∣ψ̃(qqq)
∣∣∣2 + Γ3(q)φ̃(qqq)ψ̃(−qqq)

)
+ Flocal[φ] + Flocal[ψ] + Fcoupling[φ, ψ]. (5.2)

Such models appear for example in the study of binary blends. It is possible that the Frank-

Kasper C14 and C15 phases might become stable in such a model. Both of these proposals

will give us a more complete understanding of the phase behaviour exhibited by Ginzburg-

Landau theories and allow us to better understand the universal mechanisms underlying self

assembly in soft condensed matter systems.
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Appendix A

Modified Leibler theory

This appendix contains the details of the modified Leibler calculation described in section

2.3.

A.1 Series expansion of the free energy functional

Here we will describe how the series expansion of the free energy functional, equation (2.26),

is obtained. We want an expression for F expanded in powers of the order parameter field

φ′, as defined in equation (2.25). To do this we first imagine that there is some external

field U(xxx) that couples to the density fluctuations δρA such that the system is disordered

when U = 0. The full Hamiltonian for the system can be written:

H = Hdis +

∫
dxxxU(xxx)δρA(xxx), (A.1)

where Hdis describes the system in the disordered state. The partition function for this

Hamiltonian is a functional of U :

Z[U ] = Tr exp

{
−βHdis − β

∫
dxxxU(xxx)δρA(xxx)

}
(A.2)

= Zdis

〈
exp

{
−β
∫
dxxxU(xxx)δρA(xxx)

}〉
dis

. (A.3)
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In the second line Zdis is the partition function of the disordered system and we have defined

the thermal average with respect to the disordered Hamiltonian:

〈f〉dis =
1

Zdis
Tr [f exp {−βHdis}] . (A.4)

The Helmholtz free energy for this system is likewise a functional of U :

βF ′[U ] = − lnZ[U ]

= − lnZdis − ln

〈
exp

{
−β
∫
dxxxU(xxx)δρA(xxx)

}〉
dis

. (A.5)

The free energy functional that we are interested in, F [φ′], is related to F ′[U ] through a

Legendre transform,

F [φ′] = F ′[U ]−
∫
dxxxU(xxx)φ′(xxx). (A.6)

We will proceed first by expanding F ′[U ] in powers of U and then by using equation (A.6)

to relate that result to the one that we are actually interested in, the expansion of F in

powers of φ′. The expansion of F ′[U ] looks like,

βF ′[U ] = βFdis −
∞∑
n=1

(−β)n

n!

∫
dxxx1 · · · dxxxnC ′n(xxx1, · · · ,xxxn)U(xxx1) · · ·U(xxxn), (A.7)

where the nth coefficient C ′n is given by,

C ′n(xxx1, · · · ,xxxn) = − 1

(−β)n

(
δnβF ′[U ]

δU(xxx1) · · · δU(xxxn)

)
U=0

. (A.8)

In particular, note that the first coefficient is:

C ′1(xxx) = − 1

β

(
1

Z

δZ

δU(xxx)

)
U=0

= 〈δρA(xxx)〉dis
= 0. (A.9)

Using the fact that the density fluctuations average to zero everywhere in the disordered

state. The second coefficient is:

C ′2(xxx1,xxx2) =
1

β2

(
1

Z

δ2Z

δU(xxx1)δU(xxx2)
− 1

Z2

δZ

δU(xxx1)

δZ

δU(xxx2)

)
U=0

= 〈δρA(xxx1)δρA(xxx2)〉dis − 〈δρA(xxx1)〉dis 〈δρA(xxx2)〉dis
= 〈δρA(xxx1)δρA(xxx2)〉dis . (A.10)
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In general the coefficients are related to the n-point correlation functions. For this work we

only need the exact form of the quadratic coefficient.

At this point it is useful to take the Fourier transform of equation (A.7). We will do this

term-by-term. Denote the nth term of (A.7) as F ′n. Just as in equation (2.5), translation

invariance here means that for each coefficient C ′n,

C ′n(xxx1, · · · ,xxxn) = C ′n(xxx1 − yyy, · · · ,xxxn − yyy). (A.11)

For any vector yyy. Taking yyy = xxxn, we can write:

C ′n(xxx1, · · · ,xxxn) = C ′n(xxx1 − xxxn, · · · ,xxxn−1 − xxxn,000)

≡ Cn(xxx1 − xxxn, · · · ,xxxn−1 − xxxn), (A.12)

where we are taking this as a definition for the un-primed coefficient Cn. We can replace

Cn with the integral over its Fourier components:

Cn(xxx1 − xxxn, · · · ,xxxn−1 − xxxn) =∫
dqqq1

(2π)3
· · · dqqqn−1

(2π)3
C̃n(qqq1, · · · , qqqn−1)eiqqq1·(xxx1−xxxn) · · · eiqqq1·(xxxn−1−xxxn). (A.13)

Putting this back into the expression for F ′n and rearranging the order of the integrals:

βF ′n[U ] = − (−β)n

n!

∫
dqqq1

(2π)3
· · · dqqqn−1

(2π)3
C̃n(qqq1, · · · , qqqn−1) · · ·∫

dxxx1 · · · dxxxnU(xxx1) · · ·U(xxxn)eiqqq1·(xxx1−xxxn) · · · eiqqqn−1·(xxxn−1−xxxn). (A.14)

We can perform the integrals over xxxi for i = 1, · · · , n− 1, each of which give us the Fourier

transform of U(xxxi): ∫
dxxxiU(xxxi)e

iqqqi·xxxi = Ũ(qqqi). (A.15)

The integral over xn looks a little bit different but gives the same result. We find:∫
dxxxnU(xxxn)e−ixxxn·(qqq1+···+qqqn−1) = Ũ(−qqq1 − · · · − qqqn−1) (A.16)

We thus find that equation (A.14) becomes,

βF ′n[U ] = − (−β)n

n!

∫
dqqq1

(2π)3
· · · dqqqn−1

(2π)3
C̃n(qqq1, · · · , qqqn−1)Ũ(qqq1) · · · Ũ(qqqn−1)Ũ(−qqq1 − · · · − qqqn−1)

= − (−β)n

n!

∫
dqqq1

(2π)3
· · · dqqqn

(2π)3
δ (qqq1 + · · ·+ qqqn) C̃n(qqq1, · · · , qqqn−1)Ũ(qqq1) · · · Ũ(qqqn).

(A.17)
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The next step is to obtain an expression for Ũ(qqq) in terms of the order parameter φ̃′. The

order parameter in Fourier space, φ̃′(qqq) =
〈
δ̃ρA(qqq)

〉
, is given by,

φ̃′(qqq) =
1

Z
TrδρA(qqq) exp

{
−βHdis − β

∫
dq′q′q′

(2π)3
Ũ(−q′q′q′)δ̃ρA(q′q′q′)

}
= − 1

β

δ lnZ

δŨ(−qqq)

=
1

β

δβF ′[U ]

δŨ(−qqq)
. (A.18)

So by differentiating each term of equation (A.17) we find,

φ̃′(qqq) =

∞∑
n=2

(−β)n−1

(n− 1)!

∫
dqqq2

(2π)3
· · · dqqqn

(2π)3
δ(qqq + qqq2 + · · ·+ qqqn) · · ·

C̃n(qqq, qqq2, · · · , qqqn−1)Ũ(qqq2) · · · Ũ(qqqn−1)Ũ(qqqn). (A.19)

Equation (A.19) can be inverted iteratively to obtain an expression for Ũ in terms of φ̃. To

do this we first write Ũ as a series in powers of φ̃′:

Ũ(qqq) = Ũ0(qqq) + Ũ1(qqq) + · · · . (A.20)

We can plug equation (A.20) into (A.19) and match powers of φ̃′. Finding Ũ0 is simple,

since there are no zeroth order terms on the left-hand side of (A.19):

0 =− β
∫

dqqq2

(2π)3
δ(qqq + qqq2)C̃2(qqq)Ũ0(qqq2)

+
β2

2!

∫
dqqq2

(2π)3

dqqq3

(2π)3
δ(qqq + qqq2 + qqq3)C̃3(qqq, qqq2)Ũ0(qqq2)Ũ0(qqq3)+

+ · · · . (A.21)

This requires that Ũ0 = 0. For Ũ1 we find that the only term on the right-hand side of

(A.19) that is linear in φ̃′ comes from the n = 2 term:

φ̃′(qqq) = −β
∫

dqqq2

(2π)3
δ(qqq + qqq2)C̃2(qqq)Ũ1(qqq2)

= −βC̃2(qqq)Ũ1(−qqq). (A.22)

Rearranging this result, we obtain,

Ũ1(−qqq) = − 1

β

φ̃′(qqq)

C̃2(qqq)
(A.23)

In this way we can iterate to find Ũn for any n, although the algebra does become messy.

Mercifully, for our purposes it is adequate to stop here.
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Returning to equation (A.6) and differentiating with respect to φ′, we find,

δF [φ′]

δφ̃′(qqq)
= −Ũ(qqq). (A.24)

Integrating equation (A.20) term-by-term allows us to easily obtain the series expression for

F [φ′] up to a constant factor,

βF [φ′] =
1

2

∫
dqqq1

(2π)3

dqqq2

(2π)3
δ(qqq1 + qqq2)G̃2(qqq1)φ̃′(qqq1)φ̃′(qqq2) · · ·

+
1

3!

∫
dqqq1

(2π)3
· · · dqqq3

(2π)3
δ(qqq1 + · · ·+ qqq3)G̃3(qqq1, qqq2)φ̃′(qqq1) · · · φ̃′(qqq3)

+ · · · , (A.25)

where consideration of equation (A.23) reveals that

G2(qqq) =
1

C̃2(qqq)
. (A.26)

We have thus arrived at equations (2.26) and (2.27).

A.2 Ideal chain correlation functions

In this section we will derive the two-point correlation functions for a non-interacting, ideal

diblock copolymer chain, equations (2.29), (2.30) and (2.31) in the text.

We start with a string of N + 1 beads connected by springs. Let xxxi be the position of the

ith bead (i = 0, · · · , N) The Hamiltonian for a single chain is:

H0 =
1

2

N∑
i=1

ki (xxxi − xxxi−1)
2
. (A.27)

Note that we are using the subscript 0 to distinguish the Hamiltonian of the ideal system

from that of the disordered system, Hdis, discussed in the last section. Here ki is the spring

constant for the spring connecting the ith bead to the (i − 1)st In this model the spring

constants are related to the Kuhn lengths bi of the polymers through:

ki =
3

βb2i
. (A.28)
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For the AB diblock bi = bA =
√
εb for i ≤ fN and bi = bB = b for i > fN . The partition

function for this model is,

Z0 =

∫
dxxx0 · · · dxxxN exp {−βH0 ({xxxi})}

=

∫
dxxx0 · · · dxxxN exp

{
−

N∑
i=1

3

2bi
(xxxi − xxxi−1)2

}
. (A.29)

Here the trace over system states becomes a series of N + 1 integrals over positions of each

bead. We see how the quadratic functional form of H0 results in a Gaussian integral in the

partition function. We can evaluate equation (A.29) exactly. First define the bond vectors

uuui = xxxi − xxxi−1,. We will do a change of variables from xxx0,xxx1, · · · ,xxxN to xxx0,uuu1, · · · ,uuuN .

The determinant of the Jacobian for this transformation is 1, and so the partition function

becomes,

Z0 =

∫
dxxx0

∫
duuu1 · · · duuuN exp

{
−

N∑
i=1

3

2bi
u2
i

}

= V
N∏
i=1

(
2πb2i

3

)3/2

= V
(

2πεfb2

3

)3N/2

. (A.30)

The integral over xxx0 gives us the factor of the system volume V, this is a reflection of the

translation invariance of the centre of mass of the system.

We can now move on to the main result of this section, which is the calculation of the

two-point correlation functions,

Sµν(xxx,x′x′x′) =
〈
δρµ(xxx)δρν(x′x′x′)

〉
0
, (A.31)

where δρµ(xxx) = ρµ − 〈ρµ〉0. From this we get the following expression for Sµν(xxx,x′x′x′):

Sµν(xxx,x′x′x′) =
〈
ρµ(xxx)ρν(x′x′x′)

〉
0
− 〈ρµ(xxx)〉0

〈
ρν(x′x′x′)

〉
0
. (A.32)

We will begin by computing 〈ρµ(xxx)〉0. Using the definition of ρµ in equation (2.23):

〈ρµ(xxx)〉0 =
V
N

Nµ∑
i=1

〈δ(xxx− xxxi)〉0 . (A.33)
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We need the thermal average of the delta function:

〈δ(xxx− xxxi)〉0 =
1

Z0

∫
dxxx0 · · · dxxxNδ(xxx− xxxi) exp

−1

2

N∑
j=1

3

b2j
(xxxj − xxxj−1)2


=

1

Z0

∫
dqqq

(2π)3

∫
dxxx0 · · · dxxxN exp

iqqq · (xxx− xxxi)− 1

2

N∑
j=1

3

b2j
(xxxj − xxxj−1)2

 .

(A.34)

Using the fact that xxxi = xxx0 + uuu1 + · · · + uuui, we can perform the same change of variables

trick that we used to compute Z0:

〈δ(xxx− xxxi)〉0 =
1

Z0

∫
dqqq

(2π)3
eiqqq·xxx

∫
dxxx0e

−iqqq·xxx0duuu1 · · · duuuN exp

−iqqq ·
i∑

j=1

uuui −
1

2

N∑
j=1

3

b2j
u2
j


=

1

Z0

∫
dqqq

(2π)3
(2π)3δ(qqq)eiqqq·xxx

∫
duuu1 · · · duuuN exp

−iqqq ·
N∑
j=1

uuuj −
1

2

N∑
j=1

3

b2j
u2
j


=

1

Z0

∫
duuu1 · · · duuuN exp

−1

2

N∑
j=1

3

b2j
u2
j


=

1

V . (A.35)

Putting this back into equation (A.33):

〈ρµ(xxx)〉0 =
Nµ
N
. (A.36)

This is an unsurprising result (see the discussion in section 2.3), but it is nevertheless

comforting to see. Returning to equation (A.32), we still need to compute the two point

density correlation functions:

Tµν(xxx,x′x′x′) ≡
〈
ρµ(xxx)ρν(x′x′x′)

〉
0

=
V2

N2

Nµ∑
i=1

Nν∑
j=1

〈
δ(xxx− xxxi)δ(x′x′x′ − xxxj)

〉
0
. (A.37)

We will treat the two distinct cases, µ = ν and µ 6= ν, separately. Let’s start with the µ = ν

case:

Tµµ(xxx,x′x′x′) =
V2

N2

Nµ∑
i,j=1

〈
δ(xxx− xxxi)δ(x′x′x′ − xxxj)

〉
0

=
2V2

N2

∑
i<j

Rij . (A.38)
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In the second line Rij = 〈δ(xxx− xxxi)δ(x′x′x′ − xxxj)〉0 Computing this quantity:

Rij =
1

Z0

∫
dxxx0 · · · dxxxN

∫
dqqq

(2π)3

dq′q′q′

(2π)3
· · ·

exp

{
iqqq · (xxx− xxxi) + iq′q′q′ · (x′x′x′ − xxxj)−

1

2

N∑
k=1

3

b2k
(xxxk − xxxk−1)2

}

=
1

Z0

∫
dqqq

(2π)3

dq′q′q′

(2π)3
eiqqq·xxx+iq′q′q′·x′x′x′

∫
dxxx0e

−i(qqq+x′x′x′)·xxx0 · · ·∫
duuu1 · · · duuuN exp

{
−i(qqq + q′q′q′) ·

i∑
k=1

uuuk − iq′q′q′ ·
j∑

k=i+1

uuuk −
1

2

N∑
k=1

3

b2k
u2
k

}

=
1

Z0

∫
dqqq

(2π)3
eiqqq·(xxx−x

′x′x′)

∫
duuu1 · · · duuuN exp

{
iqqq ·

j∑
k=i+1

uk −
1

2

N∑
k=1

3

b2k
u2
k

}

=
1

V

∫
dqqq

(2π)3
exp

{
iqqq · (xxx− x′x′x′)− 1

2

j∑
k=i+1

b2k
3
q2

}

=
1

V

(
3

2π
∑
k b

2
k

)3/2

exp

{
− 3

2
∑
k b

2
k

(xxx− x′x′x′)2

}
. (A.39)

At this point we can note that Tµν is a function of the distance between xxx and x′x′x′ only:

Tµν(xxx,x′x′x′) = Tµν(xxx−x′x′x′). This is a reflection of the translation invariance of the system. We

should evaluate the sum in this expression. Noting that bk = bµ for all terms:

j∑
k=i+1

b2k = b2µ(j − i), (A.40)

equation (A.39) becomes:

Rij =
1

V

(
3

2πb2µ(j − i))

)3/2

exp

{
− 3

2b2µ(j − i) (xxx− x′x′x′)2

}
. (A.41)

We can now compute Tµµ(xxx− x′x′x′), equation (A.38)

Tµµ(xxx− x′x′x′) =
2V
N2

∑
i<j

(
3

2πb2µ(j − i)

)3/2

exp

{
− 3

2b2µ(j − i) (xxx− x′x′x′)2

}
. (A.42)

We will make the assumption that the chains are very long relative to the length of an

individual segment (Nµbµ � bµ or Nµ � 1) and replace the sums with integrals,

Nµ−1∑
i=0

Nµ∑
j=i+1

→
∫ fµN

0

ds

∫ fµN

s

ds′, (A.43)

where si and sj are dimensionless parameters that measure the distance travelled along the

chain and fµ = Nµ/N . The sum in equation (A.42) becomes an integral,

Tµµ(xxx− x′x′x′) ≡ 2V
N2

∫ fµN

0

ds

∫ fµN

s

ds′
(

3

2πb2µ(s′ − s)

)3/2

exp

{
− 3

2b2µ(s′ − s) (xxx− x′x′x′)2

}
.

(A.44)
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To evaluate this integral we will first take the Fourier transform,

T̃µµ(qqq) =

∫
dyyyTµµ(yyy)e−iyyy·qqq

=
2V
N2

∫ fµN

0

ds

∫ fµN

s

ds′ exp

{
−b

2
µ(s− s′)

6
q2

}

=
2V
N2

(
6

b2µq
2

)2
(
fµNb

2
µ

6
q2 + exp

{
−Nµb

2
µ

6
q2

}
− 1

)
. (A.45)

Let x = 1
6Nb

2q2. The Fourier transform of the two-point µµ density correlation function is:

T̃µµ(q) = 2V
(

1

εµx

)2

(fµεµx+ exp {−fµεµx} − 1) , (A.46)

where εµ = bµ/b. The Fourier transform of the full scattering function (equation (A.32)) is,

S̃µµ(qqq) = T̃µµ(qqq)− (2π)3f2
µδ(qqq). (A.47)

From this we get equations (2.29) and (2.30) in section 2.3.

Next up we repeat the calculation for µ 6= ν. In this case Tµν = TAB and equation (A.37)

becomes,

TAB(xxx,x′x′x′) =
V2

N2

fN∑
i=0

N∑
j=fN+1

Rij . (A.48)

The calculation of Rij in this case is the same as above up until equation (A.39), at which

point we need to compute the sum over Kuhn lengths. This time we note that i < fN and

j > fN , so:

j∑
k=i+1

b2k =

fN∑
k=i+1

εb2 +

j∑
k=fN+1

b2

= (fN − i)εb2 + (j − fN)b2. (A.49)

Putting this back into equation (A.48) we are left to compute the sum:

TAB(xxx− x′x′x′) =
V
N2

fN∑
i=0

N∑
j=fN

· · ·

(
3

2πb2
(
(fN − i)ε+ (j − fN)

))3/2

exp

{
− 3(xxx− x′x′x′)2

2b2
(
(fN − i)ε+ (j − fN)

)} . (A.50)

As before we convert this into an integral:

TAB(xxx− x′x′x′)→ V
N2

∫ fN

0

ds

∫ N

fN

ds′ · · ·(
3

2πb2
(
(fN − s)ε+ (s′ − fN)

))3/2

exp

{
− 3(xxx− x′x′x′)2

2b2
(
(fN − s)ε+ (s′ − fN)

)} . (A.51)
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Taking the Fourier transform and evaluating, we arrive at the two-point AB density corre-

lation function:

T̃AB(qqq) =
V
N2

∫ fN

0

ds

∫ N

fN

ds′ exp

{
−b

2
(
(fN − s)ε+ (s′ − fN)

)
6

q2

}

=
V
εN2

(
6

b2q2

)2(
1− exp

{
−εb

2fN

6

})(
1− exp

{
−b

2(1− f)N

6
q2

})
= V 1

εx2

(
1− e−fεx

) (
1− e−(1−f)x

)
, (A.52)

where x has the same definition as before. The Fourier transform of the full AB scattering

function is,

S̃AB(qqq) = T̃AB(xxx)− (2π)3f(1− f)δ(qqq). (A.53)

This gives us equation (2.31) in section 2.3.

A.3 Random phase approximation

In this section we will show how the random phase approximation (RPA) can be used to

get an expression for the two point correlation function C̃2(qqq). We begin by considering the

two point µν-correlation function in real space:

Cµν2 (xxx− x′x′x′) =
〈
δρµ(xxx)δρν(x′x′x′)

〉
dis
, (A.54)

where µ and ν = A,B. Recall the incompressibility condition requires that δρA + δρB = 0.

This means that there is actually only one correlation function CAA2 = CBB2 = −CAB2 .

Elsewhere we have called this function C2. We imagine applying external fields Uµ (µ =

A,B) to produce density fluctuations φ′µ. The relationship between the density at xxx and

a field applied at position x′x′x′ is determined by the correlation functions. Since we are only

interested in an expression for the two-point correlation function it is sufficient to consider

a linear response:

φ′µ(xxx) = −β
∑
ν

∫
dx′x′x′Cµν2 (xxx− x′x′x′)Uν(xxx′). (A.55)

Actually it will be useful to work in reciprocal space for this work:

φ̃′µ(qqq) = −β
∑
ν

C̃µν2 (qqq)Ũν(qqq). (A.56)
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The RPA assumes that the interaction terms in the Hamiltonian Hdis are small so that

the response of the system to the applied fields Ũµ is the same as the response of the ideal

system to two effective fields Ũ eff
µ :

φ̃′µ(qqq) = −β
∑
ν

S̃µν2 (qqq)Ũ eff
ν (qqq), (A.57)

where S̃µν2 is the Fourier transform of the response function for the ideal system:

Sµν2 =
〈
δρµ(xxx)δρν(x′x′x′)

〉
0
. (A.58)

Ũ eff
ν accounts for the applied field Ũν and the interactions between the A andB segments. We

also include a Lagrange multiplier, λ, that is used to enforce the incompressibility condition

φ′A + φ′B = 0:

Ũ eff
ν (qqq) = Ũν(qqq) + Ũ int

ν (qqq) + λ(qqq). (A.59)

The standard interaction term is a contact interaction between the A and B segments,

Ũ int
ν =

∑
γ V

νγ φ̃′γ , where,

V νγ =


0 ν = γ

1
βχ ν 6= γ

. (A.60)

χ is the strength of the interaction between segments, called the Flory interaction parameter.

See for example discussions in [62] and [66]. The RPA can be summarized in the following

matrix equation,φ̃′A
φ̃′B

 =− β

S̃AA2 S̃AB2

S̃AB2 S̃BB2

ŨA
ŨB

+

 0 χ/β

χ/β 0

φ̃′A
φ̃′B

+ λ

1

1

 , (A.61)

where we have suppressed the qqq dependence. We begin by calculating λ from the incom-

pressibility condition. A bit of algebra yields the following result:

λ = cAŨA + cBŨB , (A.62)

with constants cA and cB defined by,

cA =
S̃AA2 + S̃AB2 − χW

2χW − S , (A.63)

cB =
S̃BB2 + S̃AB2 − χW

2χW − S . (A.64)

W is the determinant of the correlation matrix in equation (A.61),

W = SAA2 SBB2 − (SAB2 )2, (A.65)
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and S is a linear combination of the correlation functions,

S = SAA2 + SBB2 − 2SAB2 . (A.66)

These are the definitions that appear in equations (2.35) and (2.36). Putting equation (A.62)

back into equation (A.61) and rearranging the terms yields this expression:

A

φ̃′A
φ̃′B

 = −βB

ŨA
ŨB

 , (A.67)

where the matrices A and B are,

A =

1 + χS̃AB2 χS̃AA2

χS̃BB2 1 + χS̃AB2

 , (A.68)

B =

S̃AA2 S̃AB2

S̃AB2 S̃BB2

1 + cA cB

cA 1 + cB

 . (A.69)

We can rewrite equation (A.67) so that it is in the form of (A.56):φ̃′A
φ̃′B

 = β

C̃AA2 C̃AB2

C̃AB2 C̃BB2

ŨA
ŨB

 , (A.70)

and read off the expression for the correlation function: C̃2 = C̃AA2 = (A−1B)11. Again

working through the algebra we find,

C̃AA2 (qqq) =
W (qqq)

S(qqq)− 2χW (qqq)
. (A.71)

This is equation (2.34) in the text.
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Appendix B

Numerical details

B.1 Initializations

Each phase is initialized using a function fp(xxx), and then adjusted so that it satisfies

N∑
i=1

φp(xxxi) = 0, (B.1)

where N = NxNyNz is the total number of grid points. This condition is guaranteed by

defining the initial density profile as

φp(xxx) = fp(xxx)− 1

N

N∑
i=1

f(xxxi). (B.2)

B.1.1 Spherical phases

All of the spherical phases are initialized using equation (B.2) with a function fp(xxx) of the

following form:

fp(xxx) =
∑
xxxi

gr(xxx− xxxi), (B.3)

where the sum is over the locations of the centres of each of the spheres and gr(xxx − xxxi)
defines a sphere with radius r centred at xxxi:

g(xxx) = exp
{

1−
(
1− (xxx− xxxi)2/r2

)−1
}
. (B.4)
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phase
grid

size(s)

unit cell

dimension(s)
initialization function, fp(xxx)

lamellar

(lam)
Nx = 64 lx = 2π φlam(x) = cos

(
2π
lx
x
)

hcp

cylindrical

(hex)

Nx = 64

Ny = 64

lx = 4π/
√

3

ly = 4π

φhex(x, y) = cos

(
4π

ly
y

)
+ 2 cos

(
2π

lx
x

)
cos

(
2π

ly
y

)

double

gyroid

(gyr)

Nx = 64

Ny = 64

Nz = 64

lx = 15

ly = 15

lz = 15

φgyr(x, y, z) =

 1− φ̄
v |r(x, y, z)| > 1

− φ̄v |r(x, y, z)| < 1

where

r(x, y, z) = sin

(
2π

lx
x

)
cos

(
2π

lx
x

)
+ sin

(
2π

ly
y

)
cos

(
2π

ly
y

)
+ sin

(
2π

lz
z

)
cos

(
2π

lz
z

)

Table B.1: Initialization functions, fp(xxx), and parameters for non-spherical phases.

Figure B.1 shows a one-dimensional cross section of the spherical profile created by gr(xxx).

Table B.2 contains a list of coordinates for all of the spheres in the unit cell of each spherical

phase, as well as the radius r of the spheres and the grid sizes and initial unit cell dimensions.

Together with equation (B.3), this provides the information needed to initialize the spherical

phases. Note that the unit cell is assumed to have opposite corners located at the coordinates

(0, 0, 0) and (lx, ly, lz), and that the coordinates given in the table should be interpreted as

fractions of their respective dimensions, so for example the coordinate (1, 1, 0.5) should be

interpreted as the point (lx, ly, lz/2) in the unit cell.
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phase grid size(s)
unit cell di-

mension(s)

sphere coordinate

list

sphere

radius, r

body-centred

cubic (bcc)

Nx = 64

Ny = 64

Nz = 64

lx = 2
√

2π

ly = 2
√

2π

lz = 2
√

2π

(1/2, 1/2, 1/2), (0, 0, 0),

(1, 0, 0), (0, 1, 0),

(0, 0, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1),

(1, 1, 1)

rbcc = 2
√

2π

face-centred

cubic (fcc)

Nx = 64

Ny = 64

Nz = 64

lx = 2
√

3π

ly = 2
√

3π

lz = 2
√

3π

(0, 0, 0), (1, 0, 0),

(0, 1, 0), (0, 0, 1),

(1, 1, 0), (1, 0, 1),

(0, 1, 1), (1, 1, 1),

(1/2, 1/2, 0), (1/2, 0, 1/2),

(0, 1/2, 1/2), (1/2, 1/2, 1),

(1/2, 1, 1/2), (1, 1/2, 1/2)

rfcc = 2
√

3π

a15

Nx = 64

Ny = 64

Nz = 64

lx = 2
√

5π

ly = 2
√

5π

lz = 2
√

5π

(1/2, 1/2, 1/2), (0, 0, 0),

(1, 0, 0), (0, 1, 0),

(0, 0, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1),

(1, 1, 1), (0, 1/2, 1/4),

(0.1/2, 3/4), (1, 1/2, 1/4),

(1, 1/2, 3/4), (1/2, 1/4, 0),

(1/2, 3/4, 0), (1/2, 1/4, 1),

(1/2, 3/4, 1), (1/4, 0, 1/2),

(3/4, 0, 1/2), (1/4, 1, 1/2),

(3/4, 1, 1/2)

ra15 =
√

5π
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σ

Nx = 128

Ny = 128

Nz = 64

lx = 9π

ly = 9π

lz = 9π/2

(1/2, 1/2, 1/2), (0, 0, 0),

(1, 0, 0), (0, 1, 0),

(0, 0, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1),

(1, 1, 1),

(0.3684, 0.9632, 1/2),

(0.9632, 0.3684, 1/2),

(0.0368, 0.6316, 1/2),

(0.6316, 0.0368, 1/2),

(0.1019, 0.8981, 1/2),

(0.8981, 0.1019, 1/2),

(0.5653, 0.7624, 1/2),

(0.7624, 0.5653, 1/2),

rσ = 9π/4
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(0.2376, 0.4347, 1/2),

(0.4347, 0.2376, 1/2)

(0.5368, 0.8684, 0),

(0.8684, 0.5368, 0),

(0.5368, 0.8684, 1),

(0.8684, 0.5368, 1),

(0.1316, 0.4632, 0),

(0.4632, 0.1316, 0),

(0.1316, 0.4632, 1),

(0.4632, 0.1316, 1),

(0.0653, 0.7376, 0),

(0.7376, 0.0653, 0),

(0.0653, 0.7376, 1),

(0.7376, 0.0653, 1),

(0.2624, 0.9347, 0),

(0.9347, 0.2624, 0),

(0.2624, 0.9347, 1),

(0.9347, 0.2624, 1)

(0.3981, 0.3981, 0),

(0.6019, 0.6019, 0),

(0.3981, 0.3981, 1),

(0.6019, 0.6019, 1),

(0.3177, 0.6823, 0.2476),

(0.6823, 0.3177, 0.2476),

(0.3177, 0.6823, 0.7524),

(0.6823, 0.3177, 0.7524),

(0.1823, 0.1823, 0.2524),

(0.8177, 0.8177, 0.2524),

(0.1823, 0.1823, 0.7476),

(0.8177, 0.8177, 0.7476)
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c14

Nx = 64

Ny = 128

Nz = 128

lx = 5π

ly = 5
√

3π

lz = 8π

(1/2, 1/2, 1/2), (0, 0, 0),

(1, 0, 0), (0, 1, 0),

(0, 0, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1),

(1, 1, 1) , (1/2, 1/2, 0),

(1/2, 1/2, 1), (0, 0, 1/2),

(0, 1, 1/2), (1, 0, 1/2),

(1, 1, 1/2),

(0, 0.1695, 3/4),

(1, 0.1695, 3/4),

(0, 0.8305, 1/4),

(1, 0.8305, 1/4)

(0, 1/3, 1/16),

(1, 1/3, 1/16),

(0, 1/3, 7/16),

(1, 1/3, 7/16),

(0, 2/3, 9/16),

(1, 2/3, 9/16),

(0, 2/3, 15/16),

(1, 2/3, 15/16),

(1/2, 1/6, 9/16),

(1/2, 1/6, 0.938),

(1/2, 5/6, 1/16),

(1/2, 5/6, 7/16),

(1/2, 0.3305, 1/4),

(1/2, 0.6695, 3/4),

(0.25425, 0.08475, 1/4),

(0.74575, 0.08475, 1/4),

(0.25425, 0.91525, 3/4),

(0.74575, 0.91525, 3/4)

rc14 = 5π/2
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(0.24575, 0.41525, 3/4),

(0.75425, 0.41525, 3/4),

(0.24525, 0.58475, 1/4),

(0.75425, 0.58475, 1/4)

c15

Nx = 64

Ny = 64

Nz = 64

lx = 20

ly = 20

lz = 20

(0, 0, 0), (1, 0, 0),

(0, 1, 0), (0, 0, 1),

(1, 1, 0), (1, 0, 1),

(0, 1, 1), (1, 1, 1),

(0, 1/2, 1/2), (1, 1/2, 1/2),

(1/2, 0, 1/2), (1/2, 1, 1/2),

(1/2, 1/2, 0), (1/2, 1/2, 1),

(1/4, 1/4, 1/4),

(1/4, 3/4, 3/4),

(3/4, 1/4, 3/4),

(3/4, 3/4, 1/4),

(1/8, 1/8, 5/8),

(1/8, 3/8, 7/8),

(1/8, 5/8, 1/8),

(1/8, 7/8, 3/8),

(3/8, 1/8, 7/8),

(3/8, 3/8, 5/8),

(3/8, 5/8, 3/8),

(3/8, 7/8, 1/8),

(5/8, 1/8, 1/8),

(5/8, 3/8, 3/8),

(5/8, 5/8, 5/8),

(5/8, 7/8, 7/8),

(7/8, 1/8, 3/8),

(7/8, 3/8, 1/8),

(7/8, 5/8, 7/8),

(7/8, 7/8, 5/8)

rc15 = 5
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Table B.2: Parameters and list of coordinate points used with equation (B.3) to initialize

spherical phases.

B.2 Field optimization algorithm

Here we present the details of the algorithm used to find the order-parameter field that

optimizes the free energy density, equation (3.4), subject to the conservation constraint,

equation (3.8). We begin with the time-evolution equation, (3.12). Fourier transforming

both sides, we obtain,

∂φ̃p(qqq)

∂t
= −q2

∫
dxxx

δf

δφ(xxx)
e−iqqq·xxx

= −q2Γ(qqq)φ̃(qqq)− q2F
[
δflocal (φ(xxx))

δφ(xxx)

]
, (B.5)

where we use F to denote the Fourier transform, i.e.,

F [f(xxx)] ≡
∫
dxxxf(xxx)e−iqqq·xxx, (B.6)

and flocal(φ) refers to the local part of the free energy density, which is the same for all

models considered in this work. Define g (φ) as the functional derivative of flocal, given by:

g (φ(xxx)) =
δflocal
δφ(xxx)

= τφ(xxx)− γ

2
φ(xxx)2 +

1

3!
φ(xxx)3. (B.7)

We discretize equation (B.5) into timesteps of length α using a semi-implicit scheme:

1

α

(
φ̃n+1 − φ̃n

)
= −q2Γ(qqq)φ̃n+1 − q2F [g (φn)] , (B.8)

from which we obtain the following update step,

φ̃n+1 = (1 + q2α)−1
(
φ̃n − q2αF [g (φn)]

)
. (B.9)

We could simply iterate equation (B.9) until convergence was reached, however to improve

the speed of convergence we follow [64] and use a damped Nesterov acceleration technique.
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Figure B.1: Plot of gr(xxx− xxx0), equation (B.4), with r = 2 and x0 = 2.

We define a second field, ψ(xxx), which is initially equal to φ(xxx). We update φ using the

Nesterov field:

φ̃n+1 = (1 + q2α)−1
(
φ̃n − q2αF [g (ψn)]

)
. (B.10)

The Nesterov field is then updated using a Nesterov coefficient βn, which is initialized to 0.

The update step for ψ is:

ψ̃n+1(qqq) = (1 + βn)φ̃n+1(qqq)− βnφ̃n(qqq). (B.11)

The Nesterov coefficient is also updated using a series that approaches 1 as n gets large:

βn+1 =
θn(1− θn)

(θn)
2

+ θn+1
, (B.12)

where,

θn+1 = −1

2
(θn)

2
+

√
1

4
(θn)

4
+ (θn)

2
, (B.13)

and β0 = 0, θ0 = 1. The Nesterov acceleration technique can produce fluctuations in the

solution, to avoid this we implement a simple restart - setting θn+1 = 1, and βn+1 = 0

if the free energy ever increases. Table B.3 contains a summary of the field optimization

technique.

88



Ph.D. Thesis - S. Dawson; McMaster University - Physics & Astronomy

Field optimization algorithm

1. Start with an initial field φ0(xxx) and its Fourier transform φ̃0(qqq). The

initial Nesterov field is given by ψ̃0 = φ̃0.

2. Use the Nesterov field to compute the derivative of the local free energy

density, g(ψn), using equation (B.7). Find its Fourier transform,

F [g(ψn)].

3. Update the order parameter field using equation (B.10).

4. Update the Nesterov field using equation (B.11) and then update the

Nesterov coefficients using equations (B.12) and (B.13) and the restart

condition.

5. Compute the inverse Fourier transform of the Nesterov field.

6. Iterate steps 2 to 5 until the change in the free energy density over

successive iterations is below the threshold error tolerance (10−7 for this

work).

Table B.3: Summary of the algorithm used to find the optimal order parameter field φp for

phase p.

B.3 Unit cell optimization algorithm

In this section we describe how a conjugate gradient method is used to find the optimal

unit cell dimensions. More details about the conjugate gradient method can be found in

reference [65]. Here we simply describe the specific algorithm used in this work. Define

the vector bbb = (bx, by, bz)
T

. In a regular gradient descent method, we would compute the

solution bbb∗ to equation (3.18) by iterating:

bbbn+1 = bbbn + αrrrn, (B.14)
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where rrrn is the residual vector (so called because of equation (B.14)):

rrrn = −∂fnl
∂bbbn

, (B.15)

and α is the timestep. In the conjugate gradient method, the update step is instead replaced

with,

bbbn+1 = bbbn + αsssn, (B.16)

where sssn is a linear combination of the last two residual vectors:

sssn = rrrn + βnrrrn−1, (B.17)

and βn is called the conjugate coefficient. It is initialized to 0 and then updated using the

Fletcher-Reeves formula:

βn =

(
rn

rn−1

)2

, (B.18)

with r = |rrr|. If the free energy of the system ever increases then we reset the conjugate

coefficient to 0. In this algorithm we also use an adaptive time step, α → αn in equation

(B.16). We start with some initial guess αn. We then find bbbn+1 using equation (B.16) and

compute the change in the non-local part of the free-energy. We accept our value of αn if

the following inequality holds:

fnl(bbb
n+1)− fnl(bnbnbn) ≥ cαnrn, (B.19)

where c is some constant value chosen at the start. If the inequality does not hold then

αn is shrunk by some factor ρ (αn → ραn) and the process is repeated. This algorithm is

summarized in table B.4. The full unit cell optimization algorithm is described in table B.5.
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Timestep update algorithm

1. Start with constants c and ρ (c = 0.1 and ρ = 0.9 in this work), some

minimum value αmin, and some initial guess αn (in this work, αn = 1).

2. Compute bbbn+1 using equation (B.16).

3. If the inequality in equation (B.19) is satisfied, or if αn < αmin then stop

and return min (αn, αmin).

4. If neither condition is satisfied, then take αn → ραn and repeat steps 2

and 3.

Table B.4: Summary of the algorithm used to find the timestep αn used in equation (B.16).

Unit cell optimization algorithm

1. Start with some bbbn. Compute the residual rrrn using equation (B.15) with

the components of ∂fnl/∂bbb
n given in equation (3.1.3).

2. Compute the conjugate vector sssn using equation (B.17), where the

coefficient βn computed using equation (B.18) (Note β0 = 0).

3. Find the timestep, αn using the algorithm described in table B.4.

4. Find bbbn+1 using equation (B.16).

5. Repeat steps 1 through 4 until the change in the non-local free energy

density is smaller than the threshold error tolerance (10−7 in this work).

Table B.5: Summary of the algorithm used to find the optimal unit cell sizes bbb = (bx, by, bz)
T

.
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