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Abstract
With the development of underwater technology, a more significant number of

scholars and scientists have begun to pay attention to the development and ap-

plication of UWOC (Underwater optical wireless communication) and UWONs

(Underwater optical wireless networks). These studies require underwater local-

ization technology to provide accurate location information. This thesis applies

existing underwater positioning technology with knowledge of the LED Lambertian

pattern with the aim of developing a low latency underwater positioning concept

that helps locate the fast-moving underwater targets.

A key contribution of this thesis is the development of an adaptive time slot

(ATS) approach. Each buoy transmits signals in disjoint time slots which repeats

periodically. Given the random locations and orientations of the buoys, the dis-

tance from each buoy to the target will not be identical and will change in time.

These changes in position lead to overlap, discontinuity or loss of signals transmit-

ted from buoys in each time slot. The ATS approach use the structure of these

distortions received from multiple buoys to improve positioning accuracy. The

thesis provides a comparison results with and without ATS in several practical

scenarios.
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Chapter 1

Introduction

According to a recent survey by Nasir Saeed et al [1], the status of Underwater

Wireless Optical Communications (UWOC), Networks, and Localization are de-

scribed. According to [6], nearly 97% of the water surface of the earth are oceans.

There is a growing interest in ocean exploration and development. Therefore,

the research about the underwater sensors and Autonomous Underwater Vehicles

(AUV) is growing. Moreover, some AUVs, e.g. OpenROV and the SubSea Glider,

require enough understanding of the location information [7]. As a result, research

on underwater localization algorithms is becoming essential. This chapter reviews

acoustic, radio and optical approaches considered for underwater localization.

1.1 Underwater Wireless Communications

Underwater Wireless Communication (UWC) technology promotes the develop-

ment and application of underwater exploration. Acoustic waves, radio frequency

1
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and optical waves are the main frequency bands used in underwater communi-

cations. Underwater Wireless Optical Communications (UWOC) has the advan-

tages of high bandwidth and high speed compared with traditional radio frequency

(RF) and Underwater acoustic wireless communications (UAWC), making it an

attractive and feasible alternative. This section compared the UWOC with RF

and acoustic methods in more detail, giving the advantages and disadvantages of

UWOC.

Acoustic Waves

Underwater acoustic wireless communications can provide communication over

relatively long distances since the 1800s. Because of the high demand for military

requirements during the World Wars, underwater acoustic communication system

has become a well-developed technology and has been used in almost every field

of Underwater Wireless Senor Networks (UWSNs) [8]. In 1995, the author in [9]

proposed a UAWC system with a data rate of 40 kbps over one nautical mile. In

1996, a UAWC system with a data rate of 8 kbps was developed, which can work

at a depth of 20 m and a horizontal distance of 13 km [10]. In 2005, a high-speed

UAWC system was designed in [11] which supports a data rate of 125 kbps. In

addition, a data rate of 60 kbps UAWC system was illustrated in [12], which can

be deployed at a depth of 100 m with a horizontal communication range of 3 km.

Although acoustic methods are the most popular way to enable underwater

communications, it also has many technical limitations. At first, according to [13]

the typical frequencies used in underwater acoustics are between 10 Hz and 1

MHz, resulting in a relatively low communication data rate of the acoustic channel

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

(theoretically on the order of kbps). Table 1.1 lists a survey of several commercial

acoustic modems. Secondly, because the sound wave has a lower propagation speed

than optical wave and radio frequency (approximately 1500m/s for 20 Celsius

pure water), the acoustic channel suffers from significant transmission time delay

(basically in seconds). Thus it is not possible to use acoustic waves in applications

that need real-time data interaction. Thirdly, acoustic transmitters and receivers

are usually expensive. For example, the price of an acoustic modem with rugged

pressure housing is approximate $3000USD [14], and the underwater sensors are

usually more expensive than the modem. In addition, acoustic waves used by

communication systems and high-power sound navigation and ranging (SONAR)

devices can have a harmful impact on the underwater marine wildlife [15].

Acoustic device Bandwidth Data rate Distance
DSPComm AquaComm Mako [16] 14 kHZ 240 bps 100 m

TriTech MicronModem [17] 4 kHz 40 bps 500 m
LinkQuestUWM10000 [18] 5 kHZ 5000 bps 1 km

EvoLogics S2CR7/17 USBL [19] 10 kHZ 6900 bps 8 km
Teledyne BenthosAtm88x [20] 5 kHZ 2400 bps 6 km

Table 1.1: Comparison of commercial underwater acoustic de-
vices.

Radio Frequency Waves

RF communication refers to the use of electromagnetic radiation for transfer-

ring information between two devices that have no direct electrical connection.

Both acoustic and optical waves cannot support smooth transmission through the

air/water interface. In contrast, RF waves can cross water-to-air boundaries eas-

ily [21]. Moreover, the RF signal is less affected by water turbulence and turbidity

effects compared to the optical wave. When compared with acoustic waves, RF

3
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waves have a higher propagation speed and smaller time delay correspondingly [22].

The authors in [23] have improved the capacity of underwater RF systems up to

10 Mbps over a communication distance of 100 m with the frequency of 1 MHz.

However, the data rates of underwater RF communication systems are frequency-

dependent and due to the fact that the attenuation of RF waves increases signif-

icantly while frequency increases [24]. According to [22] the attenuation of signal

is usually between 60dB and 80dB. RF waves are commonly used in shallow wa-

ter [25]. For instance, submarines can communicate at only up to a depth of 8-10

meters, using very low frequency (VLF) to transmit signals [26] at low data rates

of 50 bit/s [27].

Optical Waves

Seawater has a low loss transmission window in the 450nm-550nm wavelength

corresponding to the blue-green spectrum shown in the Figure 1.1 [28]. In 1966,

Gilbert et al confirmed the existence of blue and green light transmission "win-

dow" in the water. This "window" provides the possibility for the development of

UWOC in the future [29]. In 1977, the researchers from the University of Cali-

fornia conceived a unidirectional optical communication system from the coast to

the submarine, using a blue-green laser source as the transmitter to generate one-

microsecond duration light pulses. The transmitter was designed to be portable,

which could be carried by a land vehicle or an aircraft. The transmitter aimed its

pulsed beam at a relay satellite in space, then reflected the beam to a submarine’s

location in a distant ocean. According to the summary in [30], the submarine could

receive laser signals at a depth of about 700 m in deep-ocean water on a clear day

4
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Figure 1.1: Attenuation of optical waves in water (figure taken
from [1])

or night, and about 570 m on a cloudy day [30]. The US navy held ADORE

experiment in 1992, where two-way laser communication between airplane and

submarine in the 455 nm bandwidth was demonstrated [31].

For decades, UWOC has remained limited to military applications [30,31]. How-

ever, at the beginning of the 20th century, some limited UWOC products were

commercialized. For example, the BlueComm UWOC system can achieve 10Mbps

underwater data transmission over a distance of 150m by using time division mul-

tiple access (TDMA) methods, which provides a bi-directional high-speed, low

latency link [32]. The Ambalux UWOC system can reach 10Mbps data transmis-

sion rate within 40 meters [33]. Compared with radio frequency systems, UOWC

can support a higher data transmission rate within 100 meters over several Gbps

in clear water with nearly no scattering. In addition, since the light wave speed

of the UOWC system can reach 2.25 × 108m/s, technically, the system delay is

5
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much lower than those acoustic methods [34,35]. Table 1.2 lists some experiments

of UWOC.

UWOC Ref. Source Data rate Distance
UOWC with vector radiative transfer theory [36] 1 W Laser (532 nm) 1 Gbps 30 - 50 m

UOWC for autonomous robots [37] 500 mW Blue LED (470 nm) ≈ kbps 20-30 m
UOWC with bandwidth dispersion [38] 3 W Laser (532 nm) 5 Gbps 64 m (clear ocean)

UOWC for remote robots [39] 5W LED (480 nm) 1.2 Mbps 200 m
UOWC for sensor networks [40] 0.1 W LED (532 nm) 1 Gbps 31 m (deep ocean)

Table 1.2: Summary of UWOC

However, underwater optical communications also have many limitations. The

optical beam suffers from absorption, scattering, turbulence, and multi-path fading

in the underwater environment [29,41]. Those phenomena can cause performance

degradation and significantly reduce the communication range. The physical ori-

gins of those impairments and underwater optical characteristics are introduced in

Chapter 2.

1.2 Underwater Optical wireless Localization

Underwater positioning technology is especially important today because under-

water optical wireless networks are inseparable from accurate location informa-

tion [42]. Range based approaches to localization are typically used and consist of

two stages:

Stage 1 is the range measurement stage. In Figure 1.2 each target node esti-

mates its distance from each reference node (buoy). In the literature, the received

signal strength (RSS) method and time of arrival (TOA) method are the main

localization scheme used for UOWNs [42]. Therefore, RSS and TOA methods of

ranging are introduced below, and a table of different optical wireless localization

6
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Figure 1.2: Stage 1: range measurement

scheme are listed in Table 1.3. The error tolerance depends on applications. For

high-speed systems, latency is a key limitation.

Received Signal Strength (RSS): In the RSS method, the distance between

the target and neighbouring buoys is estimated based on a known attenuation

model. The underwater target needs to compare the received signals from at

least four neighbouring buoys to estimate its location. Since almost all receivers

have the ability to estimate the strength of the received signal, the RSS method

does not need additional devices or modules, which makes it a low-cost method

[43]. However, an accurate channel model is essential for distance estimation. For

instance, in [43], the author used the following equation as the channel model to

describe the relationship between received signal strength y(i) and distance di.

The channel is assumed to be invariant with time:

y(i) = RPt,avgTsβ(di)L(di) + v (1.1)

7
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Where R = ηq/hf is represented as the sensor’s responsiveness. Denote Pt,avg

and Ts as the average transmitted power and time duration of the signal from an-

chored nodes, respectively. And β(di) is log-normal fading coefficient and L(di) is

the channel loss caused by absorption and scattering effects (introduced in Section

2.2). The zero-mean Gaussian channel noise is added as v. The RSS method is

based on the given signal attenuation model, which means the pairs of (y(i), d(i))

from Monte Carlo simulation or experiments should be known in advance. Then

the estimation of distance d(i) can be obtained in terms of received signal strength

y(i).

Time of Arrival (TOA): The TOA method estimates distances based on the

transmission time and underwater light speed [44]. However, the TOA method has

a high requirement of time synchronization among all the nodes in the network,

including buoys and the target. For example, in [43], the author assumed all

the anchored nodes send their optical signals at t0 = 0. The underwater target

calculates the TOA of every received signal from the neighbouring anchored nodes,

namely t1, t2, t3, and so on. In general, the target needs to know the anchored

nodes’ clock phase (t0) to calculate the transmission times. With known ti and

t0, the target can estimate its distance from the i−th anchored node using the

following equation

d̂i = c

n
ti

where c and n are represented as the speed of light in the vacuum and the refractive

index of the water type.

Stage 2 is the location estimation stage. The target node identifies its location

8
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Scheme Method Accuracy
Underwater optical CDMA networks [43] TOA, Optical MSE=0.25 m (clear seawater)
Underwater optical CDMA networks [43] RSS, Optical MSE=1.80 m (clear seawater)

UOWNs localization with limited connectivity [45] RSS, Opticall RMSPE=0.1-0.35 m
UOWNs localization with low rank matrix [46] RSS, Optical RMSE=0.64 m
UOWNs localization with outlier detection [47] RSS, Optical RMSE=0.659 m
UOWNs localization with energy harvesting [48] RSS, Optical RMSPE=0.22 m
Hybrid energy harvesting localization system [42] RSS, Hybrid acoustic/optical MSE=0.05-1.77 m

Table 1.3: Different underwater optical wireless localization
schemes (MSE: Mean square error. RMSPE: Root mean square
positioning error. RMSE: Root mean square error.)

via the intersection of at least three circles centred at each buoy node with a radius

corresponding to the estimated distances, as shown in Figure 1.3. Note that N1, N2

andN3 are reference nodes with known location, and r1, r2 and r3 are measured dis-

tances between target and reference nodes (buoys) correspondingly, while Ev is the

estimated location. Normally, to estimate the position of a target in n-dimensional

space, the number of independently estimated distances should be at least n + 1.

For example, two measurements in two-dimension space only produce two circles,

like the blue and the green circles in Figure 1.3. These circles have two intersection

points; unless another measurement is performed, the estimated position cannot

be determined. In the three-dimensional space, four measurements from 4 buoys

are required, as shown in Figure 1.4, three measurements produce three spheres,

and they have two intersection points as well, represented by black dots, which can

not be determined as the estimated position. This thesis introduces some typical

localization algorithms, including the 3D least square method (LS), 2D particle

swarm optimization method (PSO) and 2D majorization-minimization approach

(M-M) in Chapter 3. Their comparison of results are discussed in Chapter 4.

9
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Figure 1.3: Illustration of location estimation using circles in 2D
space [2]

Figure 1.4: Illustration of location estimation using spheres in 3D
space, produced by Matlab

10
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1.3 Thesis Contributions

In the literature, most underwater targets in the localization or tracking experi-

ments are stationary or with speeds lower than 10m/s. As an example, the author

in [49] has developed a low-cost and high-speed AUV for the optical survey of the

seafloor. "Hattori," has a maximum surge speed is 2m/s. In [50] a high-speed

AUV-based silent localization system has been proposed; the maximum speed

of underwater sensor node is 2m/s. An underwater optical localization exper-

iment was introduced in [51], Autonomous Modular Optical Underwater Robot

(AMOUR) is an AUV developed by MIT with a maximum speed of 1m/s. How-

ever, due to the existence of supercavitating AUVs, the frictional drag of vehicles

is reduced dramatically, enabling the underwater vehicle to achieve high speeds of

more than 100m/s [52] [53].

Hence, this thesis combines existing underwater positioning technology with

knowledge of the LED Lambertian pattern to localize underwater. A key contri-

bution of this work is an adaptive time slot approach that helps locate the high-

speed underwater target. The signal transmission time of the buoy is regarded as

a time slot; where all the buoys continuously transmit signals one after another,

these time slots form a time sequence at the transmitter side. However, because

the buoys are randomly distributed, the distance from the buoy to the target is

not equal. In other words, the underwater propagation time of each buoy is not

equal, which leads to discontinuity, overlap, loss of time slots at the receiver side.

The adaptive time slot is a secondary distance optimization based on the posi-

tion and distance information derived from the initial signal. The concept reduces

the interference of light signals between multiple buoys and improves positioning

11
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accuracy. The adaptive time slot approach can finish the localization process in

micro-seconds. Therefore it can also be used in the sea area where the underwater

channel changes quickly. The thesis also studies a 9-buoy distribution scheme,

and buoys are deployed at fixed positions, where the RMSE of every point on the

X − Y plane at different depths are discussed.

1.4 Thesis Structure

This thesis consists of five chapters. A summary of each chapter is presented as

follows:

Chapter 1 introduces the underwater background knowledge and some new

applications of UWOC, UAWC and underwater RF communication. Also, the ad-

vantages and disadvantages of using UWOC are studied. Advantages include high

data transmission rate, low transmission latency and low cost, and disadvantages

contain high absorption and scattering, moderate channel range.

Chapter 2 illustrates the underwater optical channel properties and illustrates

the system model. A fast localization concept with an adaptive time slot is in-

troduced, designed to improve the positioning reliability. This chapter also in-

troduces several ocean wave models that are widely used at this stage. The

Pierson-Moskowitz Spectrum (P-M) method is selected based on oceanographic

observations to model the 3D ocean surface.

Chapter 3 introduces 2D underwater localization algorithms, including Particle

swarm optimization and Majorization-minimization, and one 3D localization algo-

rithm Least square method. In addition, the concept of the adaptive time slot is
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explained in the rest of the chapter.

In Chapter 4, two scenarios and their RMSE results are discussed. The first

scenario is the randomly deployed buoys and target; the RMSE results between

before and after using the adaptive time slot (ATS) algorithm are compared in

Section 4.1. In the second scenario, a practical situation to localize an underwater

target with buoys is proposed as the 9-buoy distribution formation, assuming that

nine buoys are anchored at the given positions of the simulation surface. Two cases

are introduced in Section 4.2. The first case is the 9-buoy distribution scheme with

a randomly deployed target, which localization accuracy can be compared with the

first scenario in Section 4.1. In contrast, the second case is the target deployed

at a given position with various depths; in this case, RMSE error distribution

is discussed in Subsection 4.2.2. Majorization-Minimization approach, Particle

Swarm Optimization algorithm and the 3D Least Square method are used and

compared in both scenarios. In general, the M-M approach gave the best results,

whereas, as the depth decreases, the interference from other buoys’ optical signals

increases, resulting in a decrease in the positioning accuracy of the algorithm.

Chapter 5 summarizes the entire thesis and suggests directions for future work.
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Chapter 2

System and Channel Models

In this chapter, some ocean surface models are introduced at first, and then un-

derwater optical wireless channel and system model are discussed.

2.1 3D Ocean Surface Modeling

The simulation of ocean waves can be roughly divided into two methods. The first

is based on physics, by solving the Navier-Stokes equation (N-S) of the fluid [54].

The motion state of each particle inside the wave is calculated, thereby simulating

ocean waves. However, the process of this equation is very complicated. It is chal-

lenging to meet real-time requirements, so the N-S equation is usually simplified

to find an approximate solution. For example, Kass [55] simulates water wave

animation by simplifying the shallow water equation, Chen [56] uses a numerical

iterative method to solve the two-dimensional Navier-Stokes equation. The second

approach is based on oceanography. For example, the Pierson-Moskowitz Spec-

trum (P-M) method [3], which calculates the sea height field through parametric

surface synthesis to simulate waves. The following subsections introduce the P-M

14
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spectrum method, including frequency spectrum, direction spectrum, and wave

height field, in the end, modelling the ocean surface.

2.1.1 Wave frequency spectrum

Ocean waves are a complicated random process. Pierson first applied Rice’s theory

of radio noise to ocean waves in the early 1950s [57]. Since then, the use of power

spectra to describe ocean waves as a random process has become the main research

approach.

Consider superimposing an infinite number of random cosine waves to describe

a fixed-point wave surface, denote Z(t) as the wave function with units in meter:

Z(t) =
∞∑
n=1

an cos (ωnt+ εn) (2.1)

where an and wn are the amplitude and circular frequency of the component wave

respectively, εn is the random initial phase uniformly distributed in the range of

0 ∼ 2π and t is time. As shown in Figure 2.1, the thick black line is the result of

the superposition of the thin black line and the dashed cosine wave.

Figure 2.1: Wave groups are formed by interference between two
or more wave trains of different periods moving in the same direc-
tion. [3]
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the variance of the sea wave surface in equation 2.1, due to D[Z] = E[Z2(t)] is:

D[Z] =
∞∑
n=1

∫ 2π

0
a2
n cos2 (ωnt+ εn) 1

2πdε = 1
2

∞∑
n=1

a2
n (2.2)

Define the frequency spectrum as S(ω), then the variance:

D[Z] =
∫ ∞

0
S(ω)dω (2.3)

so,

1
2

∞∑
n=1

a2
n =

∫ ∞
0

S(ω)dω (2.4)

On the other hand, according to wave theory, the energy of the n-th component

wave is 1
2a

2
n. Distribute ω evenly to n constituent waves. The sum energy of the

n-th component wave with the frequency in the range of ω ∼ ω + ∆ω is:

ωn+∆ω∑
ωn

1
2a

2
n = S(ωn)∆ω (2.5)

S(ωn) = 1
∆ω

ωn+∆ω∑
ωn

1
2a

2
n (2.6)

Therefore, S(ωn) represents the average power within a frequency interval of

∆ω. Each component wave provides the total power of the ocean wave, and the
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function S(ωn) gives the power provided by the component waves in different fre-

quency intervals, so S(ωn) represents the distribution of ocean wave power relative

to the frequency of each component waves. If ∆ω = 1, Equation (2.6) represents

the power within the unit frequency interval, that is the power density, so S(ωn)

is called the power spectrum. Because it gives the distribution of power relative

to frequency, it is also called frequency spectrum. Figure 2.2 is a diagram of wave

spectrum, where f = ω
2π .

Figure 2.2: Wave spectrogram [4]

At present, the most common wave spectrums include the Bretschneider spec-

trum and Pierson-Moscowitz (P-M) spectrum, JONSWAP spectrum, and Phillips

spectrum [3].

The Bretschneider spectrum ( developed in 1956 [58]) comes from observations

in the deep waters of the North Atlantic without wind or large waves. This work

was improved to the P-M spectrum ( in 1964, Pierson-Moscowitz spectrum, [59]),

which assumes that the wave satisfies the Gaussian stochastic process and is a fully
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grown wave. In contrast, the JONSWAP spectrum (The Joint North Sea Wave

Observation Project in 1973, [60]) is assumed the wave to be never fully grown.

While the Phillips (in 1957, [61] ) spectrum is a statistical model in which wind

speed is regarded as the random contribution of pressure changes [3] and is mainly

used to describe the dynamic effect of wind blowing on the water surface. However,

the P-M spectrum is used as the basis for standardization of the prediction of

marine vessels and offshore structures in the open ocean [3]. Therefore, this thesis

uses the P-M spectrum as the modelling method. Its expression is [3]:

S(ωn) = αg2

ω5
n

exp [−β( g

Uωn
)4] (2.7)

where α = 8.1 × 10−3, β = 0.74, αg2 = 0.78, g denotes the acceleration of

gravity and U is the wind velocity at a height of 19.5m above the ocean surface.

Taking the partial derivative of the frequency ω and set the partial derivative to

zero to obtain the spectrum peak frequency ωm:

∂S(ω)
∂ω

= αg2

ω6 (−5 + 4β( g

Uω
)4) exp [−β( g

Uω
)4] = 0 (2.8)

ωm = (0.8β) 1
4 g

U
= 8.596

U
(2.9)
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2.1.2 Wave direction spectrum

Equation 2.1 describes only the change of the wave surface at a fixed point over

time. The actual ocean surface is three-dimensional, and its energy is not only

distributed in a certain frequency range but also a fairly wide range of directions.

Equation 2.1 can be expanded by considering the superposition of most cosine

waves with amplitude an, frequency ωn, initial phase εn, and propagating in the x

and y horizontal planes along the θn angle with respect to the x axis. Therefore,

the wave function Z(t) becomes Z(x, y, t) with changing position (x, y) and time t.

As shown in the following formula (kn is the wave number of the n− th component

wave, −π ≤ θn ≤ π):

Z(x, y, t) =
∞∑
n=1

an cos [kn(xcosθn + ysinθn)− ωnt+ εn] (2.10)

As for the deep water situation, according to the linear wave theory [4] :

ω2
n = kng (2.11)

where d is the depth of the water. Substituting the above formula into Equation

(2.10):

Z(x, y, t) =
∞∑
n=1

an cos[ω
2
n

g
(x cos θn + y sin θn)− ωnt+ εn] (2.12)

The above formula shows that the wavefront at any time t has various directional

angles of θn(−π ≤ θn ≤ π) with respect to x − axis and various frequencies

ωn(0 ≤ ωn ≤ ∞), which consists of infinite composition waves. Assuming phase
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factor εn is a uniformly distributed random variable in the range of 0 ∼ 2π and

an ≥ 0. For any component wave within a frequency interval ∆ω and a direction

interval ∆θ, its energy is 1
2a

2
n. Similar to the frequency spectrum in the previous

Section 2.1.1, the directional spectral density function S(ωn, θn) can be obtained

as:

∑
∆θ

∑
∆ω

1
2a

2
n = S(ωn, θn)dωdθ (2.13)

0 ≤ ωn <∞, −π ≤ θn ≤ π (2.14)

The direction spectrum S(ωn, θn) gives the distribution of the power of each

component wave in different directions with respect to the frequency, in other

words, for a given frequency, S(ωn, θn) shows the division of the power of each

component wave with respect to the direction, in theory, the range of θ varies

from −π ∼ π, whereas, the wave energy is mostly distributed within the range of
π
2 [4].

The following relationship exists between the direction spectrum and power

spectrum of ocean waves at the same location:

S(ω) =
∫ π

2

−π2
S(ω, θ)dθ (2.15)

with wave surface variance:
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D[Z] = σ2 =
∫ π

2

−π2

∫ ∞
0

S(ω, θ)dωdθ (2.16)

Normally, the direction spectrum S(ω, θ) can be written as the product of the

frequency spectrum and the direction function [4]:

S(ω, θ) = S(ω)G(ω, θ) (2.17)

where S(ω)is the frequency spectrum, and G(ω, θ) is the direction distribution

function, referred to as the direction function. The direction function used in this

thesis when simulating ocean waves is based on the formula obtained from the

Wave Stereo Observation Project (referred to as SWOP-Stereo Wave Observation

Project) [62]:

G(ωn, θn) = 1
π

(1 + p cos 2θ + q cos 4θ), |θ| ≤ π

2 (2.18)

empirical factors defined as:

p = (0.5 + 0.82 exp[−1
2( ωn
ωm

)4]) , q = 0.32 exp[−1
2( ωn
ωm

)4] (2.19)
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2.1.3 Wave modelling

After introducing the height field, frequency spectrum and direction spectrum in

detail, 3D sea surface can be concluded in Figure 2.3. According to Equation

(2.12), when implemented, the number of waves forming the wave height field

cannot be infinity, and there can only be a finite number of k. Suppose the

number of frequency dispersion is N and the number of direction angle dispersion

is M , and define K = N × M . Since the frequency of the component waves

forming the ocean wave is mainly concentrated in a lower frequency band, this

range is (ω1, ωN) selected from [59], and the frequency component waves outside

this range contribute little to the energy of the ocean wave. Dividing the frequency

in S(ω1, ωN), into N segments according to the frequency equal division method,

each interval is ∆ω, where ∆ω = (ωN − ω1)/N . In the interval (ω1, ωN), taking

ωi or ωN as the discrete points in the interval to find the corresponding frequency

spectrum S(ωi), or other values. The discrete point value taken in this thesis is

the frequency mean value poison in the interval 1
2(ω1, ωN), and its corresponding

frequency spectrum is S(1
2(ω1, ωN)). In simulation, N = 10,M = 8. Note that

larger N and M give more details about the sea surface.

In the same way, the direction angle θ can also be equally divided into M

sections, each interval is ∆θ, where ∆θ = (θM − θ1)/M . The calculation formula

for the wave height field after the frequency and direction angle becomes:

Z(x, y, t) =
N∑
i=1

M∑
i=1

ai,j cos[w
2
i

g
(x cos θj + z sin θj)− wit+ εi] (2.20)

where, as shown in Figure 2.4, Z(x, z, t) represents the instantaneous height of
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Figure 2.3: Block diagram of modelling P-M spectrum ocean
surface

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

Figure 2.4: Height field at sampled points with 1 meter interval

the grid sampling point on the sea level X −Y plane at time t, and ai,j represents

the component wave amplitude with a frequency of ωi and a direction angle of θj.

The only unknown parameter is the amplitude ai,j, which is described in Equation

2.27. The frequency spectrum and direction spectrum of the P-M spectrum are

shown in Equation 2.7 and Equation 2.17.

S(ωi) = αg2

ω5
i

exp [−β( g

Uωi
)4] (2.21)

S(ωi, θj) = S(ωi)G(ωi, θj) (2.22)
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where n is replaced by i and j, represented as the i-th frequency component and

j-th direction component respectively. Correspondingly:

G(ωi, θj) = 1
π

(1 + p cos 2θj + q cos 4θj) (2.23)

p = (0.5 + 0.82 exp[−1
2( ωi
ωm

)4]) , q = 0.32 exp[−1
2( ωi
ωm

)4] , |θ| ≤ π

2 (2.24)

where the spectrum peak frequency ωm is given by Equation 2.8 and Equation 2.9.

Substituting Equation (2.24) into Equation (2.23), G(ωi, θj) can be found, which

frequency is ωi and direction angle is θj. Substituting Equation (2.23) and Equa-

tion (2.21) into Equation (2.22), S(ωi, θj) can be obtained. According to Equation

2.14, the sum of wave power of the direction spectrum is:

θj+∆θ∑
θj

ωi+∆ω∑
ωi

1
2a

2
i,j = S(ωi, θj)∆ω∆θ (2.25)

0 ≤ ω <∞, −π ≤ θ ≤ π (2.26)

then, the value of ai,j can be estimated as:

ai.j =
√

2S(ωi, θj)∆ω∆θ (2.27)

In the end, find the instantaneous height Z of the grid sampling point on the

seaplane at (x, y) when time t:
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Z(x, y, t) =
N∑
i=1

M∑
j=1

√
2S(ωi, θj)∆ω∆θ cos [w

2
i

g
(x cos θj + y sin θj)− ωit+ εi]

(2.28)

where the phase factor εn is a uniformly distributed random variable in the range

of 0 ∼ 2π.

2.2 Underwater Optical Channel Characteristics

There are two main groups of the optical properties of water: Inherent optical

properties (IOPs) and Apparent optical properties (AOPs).

IOPs depend only on the transmission medium, more specifically, the compo-

nents of the medium and the types of the particles in it [63]. They do not depend

on the characteristics of the light source. It mainly includes absorption coeffi-

cient, scattering coefficient, attenuation coefficient and volume scattering function

(VSF) [64].

Whereas AOPs depend on the situations of the light field and the transmission

medium. Including diffuse attenuation coefficient and collimation coefficient [63].

In underwater environment, according to the Beer-Lambert law, the widely

used function to characterize the light attenuation effects in various underwater
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situations [65] expressed as:

I = I0e
−c(λ)L (2.29)

where I is the received light intensity, I0 is the transmitted light intensity, L is

the transmission distance, and c(λ) is the attenuation coefficient. The overall

attenuation effects can be divided into absorption and scattering, expressed as the

Equation 2.30 [66]:

c(λ) = a(λ) + b(λ) (2.30)

The unit of attenuation coefficient is m−1. Specifically, there are four main factors

that compose the overall optical absorption coefficient, represented as [67]:

a(λ) = aw(λ) + aCDOM(λ) + aphy(λ) + adet(λ) (2.31)

where aw(λ) is the absorption of pure seawater, which is mainly caused by water

molecules and dissolved salt such as NaCl, MgCl2, Na2SO4, and KCl [68]. The

absorption of CDOM ( chromophoric dissolved organic matter) [69] is represented

as aCDOM(λ), which has high absorption in the blue wavelengths and less absorp-

tion in the yellow and red wavelengths [70] [71]. Denote aphy(λ) as the absorption of

phytoplankton, which is mainly caused by chlorophyll [72]. And adet(λ) represents

the absorption of detritus. Living organic particles, such as bacteria, zooplankton,

detrital organic matter and suspended inorganic particles such as quartz and clay

are the sources of adet(λ) [73].
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The scattering coefficient b(λ) can also be affected by those four factors:

b(λ) = bw(λ) + bCDOM(λ) + bphy(λ) + bdet(λ) (2.32)

Where bw(λ) is the scattering factor of pure seawater, which is affected by the

variations of flow, salinity, and temperature. The scattering factor of CDOM is

represented as bCDOM(λ). In addition, bphy(λ) and bdet(λ) are the scattering factors

due to phytoplankton and detritus respectively, they account for more than 40% of

the total scattering effects [74]. Compared with absorption, scattering is relatively

independent of wavelength [25].

However, the attenuation coefficient c(λ) can be used in the case of a narrow

collimated light beam [75]. For instance, when the transmitter is a laser diode,

whereas, when a diffuse light source is used at the transmitter side, such as an

LED, c(λ) does not characterize the light propagation adequately and should be

replaced by the so-called diffuse attenuation coefficient that isKd [76]. The channel

loss (Equation 2.30) can be changed to:

I = I0 exp(−Kd(λ)L) (2.33)

where Kd is different due to different water type, pure seawater is used in the

simulation, hence the Kd ≈ 0.0519m−1 at wavelength λ = 530nm [77].
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2.3 System and Channel Model

2.3.1 Randomly deployed buoy scenario

In general, two situations are considered. In the first scenario, a fast underwater

optical localization situation is assumed, where ten buoys are randomly deployed

on the ocean surface. Assuming the buoys are anchored to the seafloor and are

not moving. In contrast, their depth and orientation are affected by the surface

waves resulting from the wind. One high-speed underwater target is also randomly

released in a 100m × 100m × 80m area. As shown in Figure 2.5, Matlab gener-

ates the 3-D ocean surface using the Pierson-Moskowitz Spectrum (P-M) as wave

model, as defined in Section 2.1. The average height of the sea surface is 0 meters,

which means the surface is moving around at z = 0m, and the red dots represent

surface buoys, and the red arrows represent their direction vectors. Those buoys’

directions are influenced by a sea wave, which includes the attitude angle infor-

mation. The black cross represents the underwater target, and the green lines are

the channel links between buoys and the target.

A general structure is illustrated in Figure 2.6, which shows the corresponding

channel link geometry, where the target’s receiver RX is located at depth D and

the buoy’s transmitter TX is floating on the surface, where there is a position

displacement of RX with respect to the TX . In other words, the receiver is, in

general, not directly underneath the transmitter. The 3D position of transmitter

and receiver are aTX = [xt, yt, zt]T and aRX = [xr, yr, zr]T respectively. Denote the

direction vectors to the TX and the RX by n̂t and n̂r, which include the attitude

angle information. n̂to = [0, 0,−1]T and n̂ro = [0, 0, 1]T are the original normal

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

Figure 2.5: Randomly deployed buoys and one underwater target.

vectors of the transmitter and receiver without any attitude angle.

At the transmitter side TX , the surface buoys can receive GPS signals, which

implies that they can infer their positions, whereas the underwater target cannot.

Every buoy has an LED light source emitting a downwards signal at wavelength

532 nm. The sent signal has a time duration T = 10µs, which contains buoy’s

attitude angle information and position information ([Xt, Yt, Zt]). Those buoys are

equipped with gyros, which means they know their attitude angles (including θt

and ϕt). The LED transmitter under the buoy is assumed following a Lambertian

pattern with order m in the following Equation 2.34, which is associated with the
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Figure 2.6: Transmitter and receiver with position displacement

optical beam directionality [78].

PRX = PTX
m+ 1

2π cosm(φt) e−(LKd) Aeff (φr)
L2

∏
( φr
φFOV

) (2.34)

m = −ln(2)
ln(cosφ1/2) (2.35)

where m is the Lambertian order and φ1/2 is the half power angle of Tx. The

diffuse attenuation coefficient Kd is a measure of how light dissipates with depth

in water. In the simulation, the ocean water is pure clear and pure sea water
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diffuse attenuation coefficient Kd = 0.0519 [77] is used. And APD is defined in [78]

as an active area of the PD, the effective RX light collection area Aeff is then

given :

Aeff (φr) =


APD TS(φr) g(φr) cos(φr), φr ≤ φFOV

0, φr > φFOV

(2.36)

where

g(φr) = nr
2

sin2(φFOV ) (2.37)

and φFOV represents the field of view of RX .

cos(φt) = n̂t · (aRX − aTX )
||aRX − aTX ||

(2.38)

and

cos(φr) = n̂r · (aRX − aTX )
||aRX − aTX ||

(2.39)

where ||aRX − aTX || = L. Denote the position coordinates of the TX and the RX

by vectors aTX = [xt, yt, zt]T and aRX = [xr, yr, zr]T respectively.

At the receiver side RX , a gyro is also assumed to be used on the high-speed

underwater target so that it can know its attitude angle underwater. Moreover,

it is assumed that the speed of the receiver is 100m/s. Its receiver collecting

light signals from above, in the front of the photodiode, an optical filter with

signal transmission Ts(φr) is used to reject the background noise and mitigate the

impact of sunlight as far as possible [79] and no receiver noise is considered in the

simulation. The refractive index is nr and g(φr) is the gain from concentrator,

where φr ∈ {0, π2} is the incidence angle [78].
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Figure 2.7: Link structure between transmitter and receiver

The link structure is shown in Figure 2.7. Assuming the receiver has a light

direction sensor, which can detect the direction of incident light as a direction

vector ~l, and angle φr can be calculated correspondingly. However, according

to [80], a random angle of arrival error with a maximum of 2◦ degree over FOV

is assumed in the simulation. For a given transmitted optical power PTX and a

given received light power PRX , the LED Lambertian Equation 2.34 can be used

to calculate the estimated distance L. The angle of arrival φr can be obtained by

using an on-chip light direction sensor or the AMIMO system proposed in [81].

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

Combining the incident light direction vector ~l with buoy’s transmitter direction

vector n̂t, the angle φt between them can be obtained using Equation 2.40:

cos(φt) =
~l · n̂t
|~l| |n̂t|

(2.40)

Since the estimated distances from buoys to the underwater target are obtained

from stage 1, some localization algorithms can be used to calculate the estimated

position of the underwater target, which will be shown in Chapter 3.

Assuming ten buoys continuously sending signals one by one requires a trans-

mission time of 10µs×10 = 100µs, the underwater target’s movement is 100m/s×

100µs = 0.01m. Thus, it is reasonable to assume a quasi-static assumption that

the target is fixed during the localization operation. However, because the buoys

are randomly distributed, the distance from the buoy to the target is not equal; in

other words, the propagation time of each buoy’s signal is not equal, which leads

to discontinuity, overlap, loss, of time slots at the receiver side. In Section 3.2, an

adaptive time slot approach is introduced as the second estimated distance opti-

mization based on the position and distance information derived from the initial

signal. The approach is designed to reduce the interference of light signals between

multiple buoys and improve positioning accuracy, which is shown in the section

3.2. Moreover, numerical results comparing before and after using the adaptive

time slot are shown in Chapter 4.

2.3.2 Fixed 9-Buoy distribution scheme scenario

In the second scenario, as Figure 2.8 shows, a 9-buoy distribution formation is

studied, assuming that buoys are anchored in the given position of the simulation
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Figure 2.8: 9-buoy distribution scheme

area at 25-meter intervals horizontally and vertically, i.e., x, y ∈ [25m, 50m, 75m].

One target can be randomly deployed as the first scenario, and it can also be

deployed in a given underwater position. In the simulation, the comparison results

of different localization algorithms are discussed, which are shown in Chapter 4.

2.4 Conclusions

In this chapter, firstly, the P-M spectrum method of simulating 3D ocean surface

and underwater optical channel properties is introduced. Secondly, the system

and channel model are illustrated. Moreover, two situations are considered, the

first one is the fast underwater optical localization concept with adaptive time slot
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designed to improve the positioning accuracy, buoys and underwater target are

randomly deployed, and the second situation is the 9-buoy distribution formation,

buoys and target are deployed at given positions, and the RMSE results at different

depths using different localization algorithms are discussed in Chapter 4.
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Chapter 3

Underwater Localization

Algorithms

Chapter 2 introduces the first step of underwater optical wireless localization, the

range measurement. This chapter introduces some typical 2D and 3D localiza-

tion algorithms used in the simulations. The proposed adaptive time slot (ATS)

approach for high-speed underwater localization is then illustrated.

3.1 Localization algorithms

The second step of underwater localization is the position estimation, which is

carried out using the distance measurements from step one.

3.1.1 3-Dimensional Localization Algorithms

There are many exist range-based location estimation algorithms, such as Ana-

lytical method (AM) [82], Least Squares method (LS) [83], Taylor Series method
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(TS) [84], Approximate Maximum Likelihood method (AML) [85], and Genetic

Algorithm (GA) [86]. In this section, the 3D range-based location estimation

algorithm based on least-square method is reviewed.

The position of the target node is determined as the intersection of all the

spheres as illustrated in Section 1.2 in Figure 1.4. Notice that the centers of the

spheres are the coordinates of the buoys, while the radius is derived from the

estimated range of each buoy. Each of the spheres can be described as below:

(xt − xi)2 + (yt − yi)2 + (zt − zi)2 = d̂i
2
, i = 1, 2, ..., n (3.1)

where bi = (xi, yi, zi) and d̂i, i = 1, 2, ...,m are the known coordinates of the

i − th buoy and the estimated range respectively. The index i also indicates the

transmitting order in time, for example, the first buoy transmit its signal when

i = 1. Let m denote the number of buoys in the system. The coordinate of the

target to be estimated is denoted as x = (xt, yt, zt).

Least Squares Method

The most straightforward method for determining the target’s coordinate is to find

the solution to the nonlinear equation, e.g., least-square method [83]. Subtracting

the first buoy’s coordinates (i = 1) from all other buoys (Equation 3.1) into a

form of a matrix, one of the second-order parts x2
t + y2

t + z2
t can be cancelled,

and the other second-order parts x2
i + y2

i + z2
i can be represented as the squared
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distances r2
i between the i-th buoy and the origin. The matrix should at least has

four measurements as mentioned in Section 1.2:

2



x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

...

xm − x1 ym − y1 zm − z1




xt

yt

zt

 =



d̂1
2
− d̂2

2 + r2
2 − r2

1

d̂1
2
− d̂3

2 + r2
3 − r2

1

...

d̂1
2
− d̂m

2 + r2
m − r2

1


(3.2)

where

r2
i = x2

i + y2
i + z2

i , i = 1, 2, ..., n (3.3)

Equation 3.2 can be rewritten as:

Ax = E (3.4)

where x = [xt yt zt]T is the estimated position, and

A = 2



x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

...

xm − x1 ym − y1 zm − z1


, E =



d̂1
2
− d̂2

2 + r2
2 − r2

1

d̂1
2
− d̂3

2 + r2
3 − r2

1

...

d̂1
2
− d̂n

2 + r2
n − r2

1


(3.5)
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The coordinates of the target will not meet all the equations in the Equation 3.4,

so set the error vector as e = Ax − E, take the square sum of the error in the

error vector, then there is:

F (x) = |e|2 = eTe = (Ax− E)T (Ax− E) (3.6)

If the squared error is to be minimized, taking the derivative of the above formula

with respect to x, so that the derivative is equal to 0, the expression is:

dF (x)
dx

= 2ATAx− 2ATE = 0 (3.7)

where the estimated position x can be obtained by using following equation [83]:

x = (ATA)−1ATE (3.8)

3.1.2 2-Dimensional Localization Algorithms

Although the three-dimensional positioning algorithms are the most complete for

underwater applications, sometimes the depth information can be obtained with

the help of underwater pressure sensors [2], e.g. the pressure sensor, ImpactSubsea

ISD4000 has a 0.01% Full-Scale accuracy with the pressure range 10 bar- 600

bar [87]. In this case, the problem can be transformed into a two-dimensional

problem. Another method to estimate depth proposed in this thesis is to use an

on-chip directional sensor to estimate the angle of arrival, as shown in Figure 3.1.
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The directional light sensor can estimate the vector ~l, which is the direction vector

of estimated distance L. Combine the incident light direction vector ~l with buoy’s

transmitter direction vector n̂t, the angle φt between them can be obtained using

Equation 3.9:

cos(φt) =
~l · n̂t
|~l| |n̂t|

(3.9)

Substituting arrival angle φr and transmitted angle φt into the Lambertian emis-

Figure 3.1: Orientation of target and Buoy (n̂t and n̂r are the
direction vectors of transmitter and receiver)

sion pattern:

PRX = PTX
m+ 1

2π cosm(φt) e−(LKd) Aeff (φr)
L2

∏
( φr
φFOV

)
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the estimated spatial distance L can be obtained. The vertical distances between

each buoy and the target can be estimated correspondingly with the vector direc-

tion and its normal distance. Averaging over multiple buoys to remove the impact

of waves can then be used to determine the estimation of the target depth D.

Similar to the projection scheme in [88], with the help of depth information, the

underwater target and the surface buoys can be placed at the same plane approx-

imately. Since the buoys are moving up and down in the Z direction, therefore,

assuming the target and buoys’ depths are 0 meters is an approximation, as shown

in Figure 3.2. Moreover, the problem changes to a 2D localization problem. Define

Figure 3.2: Projection diagram

the objective problem as:

arg min
X

=
m∑
i=1

(‖X −Bi‖ − d̂i)2 (3.10)

Where X = (x, y) is the estimated coordinates of the target, and Bi = (xi, yi),

i = 1, 2...m, (m > 3) is the coordinates of each buoy, where the number of buoys

must greater than 3, or there would be two intersection points as shown in the

Section 1.2. Denote d̂i as the estimated distance of each measurement from step

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

one in Chapter 2. The goal of the 2D localization algorithm is to find a proper

X, such that the objective function 3.10 can be minimized. The following section

introduces two methods to solve the problem, Particle Swarm Optimization and

the Majorization-Minimization approach.

Particle Swarm Optimization

Particle Swarm Optimization (PSO) [89] is a computational method that opti-

mizes an objective function by iteratively finding the best candidate solution with

regard to a given measure of quality. It uses several particles that consist a swarm

searching around to find the best solution. Each particle keeps track of its own co-

ordinates in the solution space, which is associated with the best solution (fitness)

that has been achieved so far by that particle. This value is called personal best,

pbest. The other best solution that the PSO tracking is the best value obtained

so far by all particles in the neighbourhood of that particle. This value is called

global best, gbest. The basic concept of PSO lies in accelerating each particle

toward its pbest and the gbest locations, with a random weighted acceleration at

each time step as shown in Figure 3.3 [5].

In the iterations, the same processes are carried out for each particle. Every

particle pi has a positionX t
i and a velocity V t

i , which is used to update the particle’s

position in space. The position of the i − th particle can be updated between

iteration t and iteration t+ 1 by using Equation 3.12.

X t+1
i = X t

i + V t+1
i (3.11)
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Figure 3.3: PSO characteristic [5]

In equation 3.12, X t
i is the current coordinate of particle i and V t+1

i is the velocity

indicating the particle’s next position. And t represents iteration index number.

In each iteration step the velocity V t+1
i is impacted by personal best location P t

i

and global best location P t
g , show as the following equations:

V t+1
i = WV t

i + c1r1(P t
i −X t

i ) + c2r2(P t
g −X t

i ) (3.12)

Here, W is inertia weight, which is not kept fixed and is varied in the loop. In

the simulation, W starts from 1 and is multiplied by a constant of 0.99 in each

iteration. c1 is the cognitive learning parameter, c2 is the social learning parameter,

according to [90], the appropriate learning parameters are c1 = c2 = 2, while r1

and r2 are random numbers uniformly distributed in the range [0,1]. Furthermore,

the particle movement is restricted with maximum velocity to avoid jumping over

the optimal location as per search requirements.
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In the simulation, the initial point of the iteration is the average coordinate

from all buoys. The population of particles is 10, and the maximum iteration

times are set to 10 and 100. The results of using different iterations are compared

in Chapter 4.

To estimate the coordinates of the underwater target, the process followed:

• The underwater target with at least four buoys in its transmission range L

to be localized.

• Mean of coordinates of buoys falls within transmission range, considered as

initial estimation position of the target node.

• Run the PSO algorithm and searches the global best solution as the estimated

position of the target node.

Majorization-Minimization Approach

Majorization-Minimization Approach [91] is a way by transferring the non-convex

problem to convex problem. The estimated distances including error obtained

from step one in Chapter 2 can be written as d̂i, i = 1, 2, ...m, (m > 3), where m

is the number of buoys. Just as for the PSO algorithm, the goal is to minimize

the objective problem:

arg min
X

m∑
i=1

(‖X −Bi‖ − d̂i)2 (3.13)

where X = (x, y) and Bi = (xi, yi) are the coordinates of target and i− th buoy in

2D space respectively. Expanding the square and dropping the constant term [92],
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equation (3.13) equals to:

arg min
X

m∑
i=1

(‖X −Bi‖2 − 2d̂i‖X −Bi‖) (3.14)

which can be written as a sum of convex function and a concave function:

arg min
X

m∑
i=1

(‖X −Bi‖2)︸ ︷︷ ︸
CV X(X)

+
m∑
i=1

(−2d̂i‖X −Bi‖)︸ ︷︷ ︸
CCV (X)

(3.15)

where CVX(X) denotes a convex function and CCV (X) denotes a concave func-

tion. Clearly, Equation (3.15) is non-convex. In order to effciently compute this

optimization problem, a surrogate function is constructed as the upper bound of

the objective function 3.15 by using Majorization-Minimization (M-M) approach.

In [93], a quadratic surrogate function f(X t+1|X t)is constructed by first order

Taylor approximation, which leads to the concave function being upper bounded

by a linear function:

CCV (X) ≤ CCV (X(t)) +∇CCV (X(t))T (X −X(t)) (3.16)

= −2
m∑
i=1

d̂i‖X(t) −Bi‖ − 2
m∑
i=1

d̂i(X(t) −Bi)T
‖X(t) −Bi‖

(X −X(t)) (3.17)
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where T represents transpose and t represents iteration index number. Therefore,

the objective function can be reformulated to:

f(X|X t) =
m∑
i=1

(‖X −Bi‖2 − 2d̂i‖X(t) −Bi‖)− 2
m∑
i=1

d̂i(X(t) −Bi)T
‖X(t) −Bi‖

(X −X(t))

(3.18)

X t+1 = arg min
X

f(X|X t) (3.19)

in the iteration, let

∇f(X(t+1)|X(t)) = 0 (3.20)

then

X(t+1) = 1
m

∑
[Bi + d̂i(X(t) −Bi)

‖X(t) −Bi‖
] (3.21)

where X t+1 is the result after iterations. Since the original problem is non-convex,

to prevent the result converging to a local optimum, the author in [94] used the

linear least square method with discarding the quadratic constraint to calculate
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the iteration initial point, define the Xinitial as:

Xinitial = (ATA)−1AT b (3.22)

where

A =


−2BT

1 1
... ...

−2BT
m 1

 (3.23)

b =


d̂1

2
− ‖B1‖
...

d̂m
2
− ‖Bm‖

 (3.24)

Iterations of the algorithm are run to search for the global best solution as the

estimated position of the target.

Complexity Discussion

For the PSO algorithm, the computational time complexity depends on the maxi-

mum number of iterations tmax, the total number of particle populations p and the

number of buoys, m. Assuming that each particle needs to run for O(n1) time per

iteration, then the total time can be expressed as O(tmax× p×n1×m). Similarly,

if the computational time complexity needed for each buoy in LS method is O(n2),

then the total computation time for LS method is O(m× n2). In addition, in the

M-M approach, the iteration process starts from the solution of LS method. If
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each iteration of the MM algorithm requires O(n3) time, the computation time for

the M-M approach can be simply denoted by O(n2) + O(m × i × n3), where i is

the iteration times.

3.2 Adaptive time slot

In the application scenarios described, the target is moving at high speed on the

order of 100 m/s. It is assumed that at least ten buoys are used to transmit

signals one after another at the same wavelength, as shown in Figure 3.4. However,

the signals are not distinguishable from different buoys. Surface transmitters can

receive GPS signals, such that time synchronization can be achieved.

Figure 3.4: Randomly deployed buoys and one underwater target.
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3.2.1 Time slot definition

As shown in Figure 3.5, the signal time duration T transmitted from each trans-

mitter is regarded as one time slot, e.g. Ti is the time interval of the i-th signal,

where red and blue represent two adjacent signals’ time intervals. When all the

buoys continuously transmit signals one after another, these ten time slots form

a time sequence at the transmitter side from t = 0µs to t = 100µs. And they

have no time overlap. It is assumed that when the target exceeds the maximum

emission angle of 65◦ of the LED source or the target is more than 100m away

from the buoy, the target cannot receive the signal. The time slot is set to empty

correspondingly. At the receiver side, the target gets the signal interval with time

delay ti due to the propagation time, where ti is given by the following equation:

ti = di
c
n

(3.25)

where c is the speed of light in the vacuum and n is the seawater refractive index.

For instance, the i-th signal interval Ti is shifted because of ti. It is assumed the

receiver has the ability to detect the rising of the received power level, and its clock

will automatically start counting T time to calculate the received power within

the interval. However, because the buoys are randomly deployed, the distances

between the buoys and the target are not equal. In other words, the underwater

propagation time of each buoy’s signal is not equal to each other, which may lead

to discontinuity, overlap, or loss of the received signals at the receiver side.
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Figure 3.5: Time slots’ duration T with different time delay ti, i =
1, 2, ...m, where m is the number of buoy.

3.2.2 Time slot overlap situations

In Figure 3.5 an example is illustrated, at the transmitter side, three buoys con-

tinuously transmit signals without overlap or gap. Due to the different distances

to the target, the signal propagation times are represented as t1, t2 and t3. If the

buoys are equidistantly distributed around the target, then the light propagation

times of all the transmitters are equal. In this situation, when the target receives

the signal from the first buoy for T1 time with time delay t1, the next received

signal interval T2 with a time delay t2. Clearly, t2 = t1, as a result, two signal

intervals at the receiver side have the same shift. Thus, the second signal interval

T2 will be completely from the second buoy without any overlap.

However, if the second buoy is closer than the first and the third buoys to the

target as shown in the number (4) of the Figure 3.7, then t2 < t1 and t2 < t3, when

the receiver starts to calculate the energy from the first buoy, it will also receive

the signal interference from the second closer buoy, which causes errors when

calculating the distance through the LED Lambertian Equation 2.34 introduced
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in Chapter 2. Similarly, when calculating the optical energy from the second buoy,

not only the optical energy from the first buoy should be taken into account, the

optical energy from the third buoy should be considered as well if the third buoy

is farther than the second, propagation time t3 > t2. As a result, the third buoy

will not affect the second buoy and vice versa.

When studying the energy sources within a time slot, only its previous time slot

and the next time slot need to be considered. Hence, only three time slots need to

be discussed each time. Simply, name their time slots T1, T2 and T3 respectively,

and their propagation time delay t1, t2 and t3. Compare the value of t2 with t1

and t3 to determine whether the second time slot is affected by the previous or

the next time slots. However, there is no previous time slot for the first one (T1)

or next time slot for the last one(T10); therefore, two null time slots T0 and T11

with zero optical power are added on both sides of the receiver time sequence as

shown in 3.6.

Figure 3.6: T0 and T11 are represented by green time slots with
zero optical power, which means they will not interfere with other
time slots.
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The example in Figure 3.5 and Figure 3.6 is one possible situation. Figure 3.7

lists all nine possible situations of buoys geometry positions. Because only three

buoys’ signals in the continuous-time need to be considered each time, only three

buoys are shown in each situation in the figure. In other words, the interference of

the previous buoy (B1) and the next buoy (B3) should be considered each time.

In each row of the 9 subfigures, the influence of the previous buoy (B1) on the

current buoy (B2) is the same. In each column, the influence of the next buoy

(B3) on the current buoy is the same.

In Subfigures (1), (2) and (3), the signal of B1 exceeds the maximum emission

angle, or the transmitter is more than 100m away from the target, so its signal

will not be received at all, which means that the signal B1 will not interfere with

B2. In Subfigure (1), B3 is further than B2, therefore t3 > t2, there will be no

power interference from the third buoy. In Subfigure (2), when B3 is closer to the

target than B2, t2 > t3, there will be some light power interference from B3 when

calculating the current buoy’s signal power. Nevertheless, when B3 is also far away

or its signal exceeds the maximum emission angle, its signal power is determined to

be 0, as shown in Subfigure (3). In Subfigures (4), (5), and (6), the previous buoy

B1 is farther than B2, so the signal propagation time is longer. When calculating

the signal power of the current buoy B2, there will be signal interference from B1.

As for the B3, situation (5) and situation (6) are similar to case (2) and case (3).

In Subfigures (7), (8), and (9), the previous buoy B1 is closer to the target with a

shorter signal propagation time, so even with time delay, the time slot T1 will not

affect the current buoy B2. Note that cases (8), (9) are similar to cases (2) and

(3) in terms of the third buoy.
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Correspondingly, Figure 3.8 shows nine overlap situations of time slots. The

time slots are represented by the blue bars. The signal duration is T . If the buoy is

too far away or the signal exceeds the maximum emitting angle, the signal power

in the time slot is determined to be 0. If the signals of two buoys at adjacent times

do not overlap, there will be a gap between their time slots and vice versa. For

example, in case (1), B1 is far away from the target, and B3 is also farther than

B2. Therefore, the optical power of the first time slot is set to be 0, and there is

no power overlap between time slot T2 and T3. In contrast, case (5) shows the

most complicated situation, where B2 is closer than B1, and B3 is closer than B2.

As a consequence, the second time slot is influenced by both T1 and T3.
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Figure 3.7: 9 different overlap situations, the numbers in the
square represent three buoys B1, B2 and B3 in continuous time,
the red circle represents underwater target and red line represents
channel link out of range.
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Figure 3.8: 9 different situations, signals’ power overlap are illus-
trated
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3.2.3 Time slot update

Because there may be signal interference from other buoys to the current time slot

as shown in the Figure 3.8, so the estimated distance d̂ calculated by the LED

Equation 2.34 within the current time slot may contain errors. After using the

LS method, PSO or M-M localization algorithms introduced in Chapter 3, the

estimated position may contain errors as well. Therefore, this thesis proposes an

adaptive time slot approach, which is a secondary distance optimization based

on the first estimated distance d̂. The first estimated position can provide an

approximate signal propagation time t′i. Then, according to the relationship among

all these propagation times (t′1, t′2, ...t′10), the time overlap in each situation can be

determined. After that, the time slots can be adjusted to remove the optical

interference power from other buoys approximately.

An example is shown in Figure 3.9. It is assumed that the previous buoy

(B1) is far away from the target with zero optical power, whereas the next buoy

(B3) is closer than the current buoy (B2), and their light propagation time are t2

and t3, respectively, as shown in Subfigure (1). Therefore, there is a little power

interference from B3, the overlap of their time slots represented by tt = t2 − t3,

and the received light power within the time slot can be expressed by:

p2′ = p2× T2 + p3× tt
T

(3.26)

p3′ = p3× T3 + p2× tt
T

(3.27)

where p2, p3 are the optical power over interval T without overlap, and p2′, p3′ are

the optical power containing overlap parts. Based on the p2′, p3′ and other optical
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Figure 3.9: remove power overlap using adaptive time slot

power, the estimated distances and estimated position can be obtained. Then

regard the estimated position as a given condition, the estimated propagation time

t2′, t3′ and time overlap tt′ = t2′ − t3′ can be calculated, as shown in Subfigure

(2). In the final step, the optical power over the time tt′ from both T2 and T3

need to be removed:

p2′′ = (p2′ × T2)− (p3′ × tt′)
T

(3.28)

p3′′ = (p3′ × T3)− (p2′ × tt′)
T

(3.29)

where p2′′ and p3′′ are the updated optical power. A more accurate estimated
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position can be obtained with the updated optical power. However, the estimated

parameters including power, distances, propagation time and time overlap are all

containing errors, which means the interfered power can only be removed approx-

imately, not accurately. Numerical results are shown in Chapter 4.

3.2.4 Discussion

In the assumption, the localization algorithm needs to wait 10 time slots to start.

Therefore the latency is determined by the number of buoys. For example, if ten

buoys are used, then the latency is 100µs, the movement of the target is 0.01m,

and the speed of the target is 100m/s. However, when a larger group of buoys

is used the latency and the movement of the target can be higher. Additionally,

after the first round of measurements, the process repeats. Therefore, the rate

of localization depends inversely on the number of buoys and the time interval of

the time slot. In addition, with a smaller group of the buoys, e.g., the number

of buoys is 10, if a small time gap between successive emissions is inserted, the

power overlap can be neglected. Nonetheless, in the real situation, the sea area

may be on the scale of kilometres. In that case, a larger group of buoys may be

required. The total time from time slot and time gap over all the buoys may lead

to the non-negligible error to the target’s position. There are several strategies

that could be used to reduce the waiting time due to the large group of buoys.

For example, the area can be divided into smaller zones, and the target can select

some of the prior buoys that belong to the closer zone.
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3.3 Chapter summary

This chapter introduces underwater localization algorithms, including the 3D Least

square method, 2D Particle swarm optimization and Majorization-minimization.

Explains how to transform a three-dimensional localization problem into a two-

dimensional space problem. The concept of time slot and adaptive time slot is

illustrated, and the process of removing interfered optical power is also explained.

The numerical results are shown in Chapter 4.
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Chapter 4

Numerical Results

Results accuracy of the localization algorithms introduced in Chapter 3 is nu-

merically evaluated in this chapter, including the 3D LS method, PSO and M-M

approach. The root means square error (RMSE) as a metric is used to compare

their accuracy under two scenarios. In the first scenario, buoys are deployed ran-

domly, while in the second scenario, there is a 9-buoy fixed scheme. The proposed

adaptive time slot (ATS) introduced in Section 3.2 is used in both scenarios. Mat-

lab is used to generate a 100m × 100m × 80m sea area and a 3D ocean surface

using the P-M spectrum presented in Chapter 2. Simulation parameters used in

all simulations in this chapter are presented in Table 4.1. Table 4.2 summarizes

the key assumptions made in computing these numerical results as discussed in

Chapter 2 and Chapter 3.
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Parameter Value
surface model starting time t = 100

time interval ∆t = 0.1
number of wave circular frequencies ω N = 10
number of wave direction angles θ M = 8

speed of wind U19.5 15 m/s
height of average sea level 0 meter
simulation area (X,Y,Z) 100m× 100m× 80m
maximum link distance 100 m

LED maximum emitting angle 65◦
LED bandwidth and power 532 nm and 20 w

LED Lambertian semi-angle at half power 65◦
diffuse attenuation coefficient Kd ≈ 0.0519m−1 (pure sea water)

receiver FOV 180◦
particle population in PSO 10
maximum iterations in PSO 10 and 100

maximum iterations in M-M approach 10
underwater target speed 100m/s

time slot duration T = 10µs

Table 4.1: Simulation parameters

Assumptions
1. The optical filter can reject background noise and sunlight
2. There is no receiver noise
3. There are no GPS errors
4. Pure seawater is used, scattering effect can be neglected
5. The buoys only move up and down with sea surface
6. Signals propagating in excess of 100m will not be received
7. Signals exceeding a maximum emission angle (65◦) will not be received
8. The sea waves satisfy the Gaussian stochastic process and is a fully grown wave
9. LED transmitters follow LED Lambertian pattern
10. Gyros are used on both buoys and the target to provide altitude information
11. A light direction sensor is used on the receiver
12. The computation time for the localization algorithm is not significant

Table 4.2: List of Key Assumptions
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4.1 Scenario 1 - Randomly deployed Buoys and

Target

As introduced in Chapter 3, the adaptive time slot (ATS) concept is designed to

improve localization accuracy. In this scenario, ten randomly deployed surface

buoys send light signals one by one continuously. Recall there is no time gap be-

tween any of the buoys signals aided by GPS synchronization. One underwater

target is also randomly deployed near the bottom of the simulated sea area. The

depth of the target is a single uniformly distributed random number in the interval

(-80 m,-70 m), as shown in Figure 4.1. The localization algorithm results are com-

pared among the 3D LS method, PSO algorithm and M-M approach described in

Chapter 3. For realism, a maximum 2◦ angle error in the LED Lambertian chan-

nel is added, as mentioned in Chapter 2. This section uses Matlab [95] to run the

simulation 10000 times with random positions of buoys, target, and ocean surface

in each simulation time. This section also compares the RMSE results before and

after using the ATS concept among three different localization algorithms in the

following figures (Figure 4.2, Figure 4.3, Figure 4.4, 4.5, 4.6 and 4.7 ). Table 4.3

summarizes the comparison results, including RMSE, mean and variance of error

in each case.

Figure 4.2 and Figure 4.5 show a comparison of performance with and without

ATS obtained by Matlab CDF (Cumulative Distribution Function) function over

10000 times simulations. Any spatial distance exceeding 100m is regarded as

invalid data and deleted. The improved localization accuracy can be found in

LS and M-M algorithms; the RMSE before using the ATS are 14.4 m and 0.28
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Figure 4.1: scenario 1: randomly deployed buoys and target

ten buoys LS PSO-10 PSO-100 M-M
RMSE (no ATS) 14.2 m 1.89 m 1.48 m 0.28 m
RMSE (with ATS) 4.4 m 1.85 m 1.36 m 0.04 m

improvement RMSE (%) 68% 2% 8% 82%
mean (no ATS) 7.6 m 1.30 m 0.49 m 0.23 m
mean (with ATS) 0.55 m 1.28 m 0.27 m 0.03 m
variance (no ATS) 143 m2 1.90 m2 1.95 m2 0.03 m2

variance (with ATS) 19.2 m2 1.80 m2 1.79 m2 0.001 m2

Table 4.3: Comparison of results among LS, PSO and M-M lo-
calization algorithms.

m, respectively, whereas the ATS results are 4.4 m and 0.04 m. In these two

algorithms, the positioning accuracy has been improved significantly, which are

68% and 82% respectively. As illustrated in Section 3.1.2, the initial point of the
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Figure 4.2: Comparison of results before and after using ATS,
where 3D LS method is adopted during 10000 times simulations.

M-M approach is set to

X = (ATA)−1AT b

, which is similar to the estimated result of the LS method described in Section

3.1.1. However, the M-M approach uses the initial point as the start point in the

iteration to find a more optimum solution as shown in Equation 3.21 and Equation

3.22. Therefore, the M-M approach can provide more accurate results.

However, in Figure 4.3 and Figure 4.4, the positioning accuracy of the PSO

algorithm has not been significantly improved with the use of ATS. When the

iteration of the PSO algorithm is set to 10, the CDF curves before and after using

ATS are nearly overlapped in Figure 4.3, and the accuracy is only improved by

2%. This phenomenon is because those twice searches start from the same initial

point (the geometric center of the buoys’ position) when the number of iterations
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Figure 4.3: Comparison of results before and after using ATS,
where 2D PSO (iteration times = 10) is adopted during 10000 times
simulations.

is small; even if the adaptive time slot concept is used, a much better result cannot

be found. When the number of iterations is set to 100, the accuracy is increased by

8% after using the adaptive time slot in Figure 4.4. In addition, when the number

of iterations is increased, the positioning accuracy of the PSO algorithm itself is

also improved, RMSE (before) decreasing from 1.89 m to 1.48 m and RMSE (after)

decreasing from 1.85 m to 1.36 m, respectively.

The RMSE results among three localization algorithms are also compared in

Figure 4.6 and Figure 4.7. In general, the M-M approach has the highest posi-

tioning accuracy. Regardless of whether the ATS is used, the RMSE error has a

probability of more than 90% to be within half a meter. Before using the ATS

method, results show that the M-M approach is better than PSO-100, better than

PSO-10, and better than LS. The error of the PSO-100 algorithm has more than
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Figure 4.4: Comparison of results before and after using ATS,
where 2D PSO (iteration times = 100) is adopted during 10000
times simulations.

90% of the probability less than 1 m, and the PSO-10 algorithm has more than

90% of the probability less than 2 m before the ATS is used. After using the ATS

method, PSO-100 is closer to the result of the M-M approach, but it has approx-

imately 3% of possibility that error larger than 5 m. As a result, it has a slower

rise in the error interval greater than 2 m than the LS algorithm with ATS.
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Figure 4.5: Comparison of results before and after using ATS,
where 2D M-M approach (iteration times = 10) is adopted during
10000 times simulations.

Figure 4.6: Comparison of different localization algorithms’ re-
sults before using the ATS, where PSO-10 and PSO-100 represent
the number of iterations equal to 10 and 100, respectively.
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Figure 4.7: Comparison of different localization algorithms’ re-
sults after using the ATS, where PSO-10 and PSO-100 represent
the number of iterations equal to 10 and 100, respectively.
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4.2 Scenario 2 - Fixed 9-Buoy distribution scheme

In the second scenario, a practical situation to localize the underwater target

with buoys is proposed as the 9-buoy distribution formation as shown in Figure

4.8. Assuming that nine buoys are anchored to the seafloor at the given posi-

tions of the simulation surface with 25-meter intervals horizontally and vertically,

x, y ∈ [25, 50, 75]. Using the same sea surface model as the first scenario. However,

two cases are introduced in this section. The first case is a fixed 9-buoy distribu-

tion is used with a randomly deployed target, which localization accuracy can be

compared with the first scenario in Section 4.1. In the second case is the target

deployed at a given position with various depths, and the RMSE error distribution

is presented in Subsection 4.2.2.

Figure 4.8: Scheme 2. Fixed 9-buoy distribution scheme
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4.2.1 Randomly deployed target

Same as the first scenario described in Section 4.1, one underwater target is ran-

domly deployed near the bottom of the simulated sea area shown in Figure 4.9,

where depth is a single uniformly distributed random number in the interval (-80

m,-70 m). Matlab is used to run the simulation 10000 times under the situa-

tion. The RMSE error, mean and variance of error are compared with randomly

deployed ten buoys scenario, results are summarized in Table 4.4.

Figure 4.9: 9-buoy distribution scheme with randomly deployed
target

When comparing the two Tables 4.4 and 4.3, it is found that the accuracy of

the M-M algorithm is the highest in both scenarios and does not vary a great
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9-buoy LS PSO-100 M-M
RMSE (no ATS) 6.34 m 0.57 m 0.24 m
RMSE (with ATS) 3.96 m 0.42 m 0.06 m
improved RMSE (%) 37% 25% 75%

mean (no ATS) 2.5 m 0.24 m 0.21 m
mean (with ATS) 0.45 m 0.07 m 0.05 m
variance (no ATS) 36.3 m2 0.27 m2 0.02 m2

variance (with ATS) 18.4 m2 0.18 m2 0.002 m2

Table 4.4: Comparison of results among LS, PSO and M-M lo-
calization algorithms under 9-buoy distribution scheme.

deal. However, the PSO and LS algorithms have higher positioning accuracy in

the second scenario as compared to scenario 1. Before using ATS, the RMSE

between scenarios 1 and 2 of the LS method decreased from 14.4 m to 6.34 m, and

after using ATS, the RMSE results decreased from 4.4 m to 3.96 m. The RMSE

results of the PSO algorithm show a similar trend. In general, placing buoys in

the fixed 9-buoy distribution scheme can achieve higher positioning reliability. In

this way, the given buoy’s position formation can reduce the signal power overlap

caused by random distribution, so the positioning error is relatively smaller.

4.2.2 Fixed depth

In the second case, every point on the X − Y plane at fixed depth (-80 m, -60 m

and -40 m) from (x = 0, y = 0) to (x = 0, y = 1), (x = 0, y = 2), ..., and in the end

(x = 100, y = 100), which can be seen as the fixed position of underwater target.

The minimum depth is underwater -40 m, and there will be no results if the target

gets closer to the surface due to the maximum emission angle (65◦) of the LED

source. Matlab is used to run the simulation three times at each given target’s

position, and the RMSE error of every single point forms an error distribution
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map at a given depth as shown in Figures 4.10, 4.11 and 4.12. Any RMSE results

exceeding 100m are regarded as invalid data and are deleted. In the four corners of

Figure 4.10: RMSE of every point on the Z = -80 m plane under 9-
buoy distribution scheme, subfigures in the first row are the results
before using ATS and second row of subfigures are the results used
ATS.

the simulation area (i.e., near (0,0), (0,100), (100,0) and (100,100)), far away from

the buoys’ location, the RMSE error is larger than in the central area, and more

buoy signals can be received in the center of the simulation area, so the positioning

result is ideal. Compared with the other two algorithms, the positioning results

of the LS algorithm have a larger error. When the depth is -40 m, some RMSE

results in the corner area are larger than 100m, which are invalid and are deleted.

Therefore, the coverage area under the LS algorithm at -40 m is smaller than at

-60 m and -80 m. Moreover, the RMSE error of the PSO algorithm is closer to

that of the M-M approach at depth -40 m and -60 m.
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Figure 4.11: RMSE of every point on the Z = -60 m plane under 9-
buoy distribution scheme, subfigures in the first row are the results
before using ATS and second row of subfigures are the results used
ATS.

The ATS results also improve the localization reliability among the three al-

gorithms, as shown in Figures 4.13, 4.14 and 4.15. The CDF curve after using

the ATS approach shows a larger slope compared with the ones before using it.

However, it is not difficult to find that in Figure 4.13, the CDF curve at -40 m

cannot be integrated to 1 because many error data have been deleted, which means

the coverage area that the target can be positioned at a depth of -40 m is smaller

than the other two depths. Furthermore, in each case, the slope of the CDF curve

gradually becomes flat as the depth decreases. This is due to the interference from

other buoys’ optical signals increasing, resulting in a decrease in the positioning

accuracy among the three localization algorithms. The mean of RMSE errors

summarized in Table 4.5 can also show this behaviour. Notice that no background

noise or other noises are considered in the simulation, which should be discussed

in future work.
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Figure 4.12: RMSE of every point on the Z = -40 m plane under 9-
buoy distribution scheme, subfigures in the first row are the results
before using ATS and second row of subfigures are the results used
ATS.

Depth LS PSO-100 M-M
-80 m 1.55 m 0.19 m 0.17 m

0.13 m 0.06 m 0.03 m
-60 m 4.45 m 0.40 m 0.40 m

1.14 m 0.13 m 0.129 m
-40 m 7.8 m 0.66 m 0.67

4.3 m 0.302 0.302

Table 4.5: Mean of RMSE errors under 9-buoy distribution
scheme with different depths.
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Figure 4.13: Cumulative distribution function of RMSE error
changing with depth while using LS algorithm

Figure 4.14: Cumulative distribution function of RMSE error
changing with depth while using PSO-100 algorithm

76

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

Figure 4.15: Cumulative distribution function of RMSE error
changing with depth while using M-M algorithm
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4.3 Discussion

In this chapter, two proposed scenarios and their RMSE results are presented. The

first scenario has randomly deployed buoys and a randomly deployed target. Sec-

tion 4.1 compares the RMSE between with and without using ATS. For example,

using the LS method RMSEbefore = 14.4m and RMSEafter = 4.4m, the localiza-

tion accuracy improved by 68%, in PSO (iteration times = 100), RMSEbefore =

1.48m and RMSEafter = 1.36m, the localization accuracy improved by 8%, and in

M-M approach, RMSEbefore = 0.28m and RMSEafter = 0.04m, the localization

accuracy improved by 82%. In conclusion, the adaptive time slot concept improved

localization reliability.

As for the second scenario described in Section 4.2, a more practical situation

has been proposed, which is a 9-buoy distribution formation. The nine buoys are

anchored at fixed positions. As a result, the localization accuracy of the randomly

deployed target in the 9-buoy distribution scheme is slightly higher than in scenario

1. In addition, as the depth decreases, the interference from other buoys’ optical

signals increases, resulting in a decrease in the positioning accuracy among three

localization algorithms.

However, the results presented in this thesis assume many idealistic situations.

In practice, noise and interference from the outside and inside will have more

influence on the positioning results, which should be considered in future work. In

the assumption, the simulation area is only 100m × 100m × 80m, when the ATS

is used in the real setup with a larger sea area, more buoys may be required.
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Chapter 5

Conclusions

This thesis introduces the background of underwater communication and the vital

role of underwater optical localization in Chapter 1. The method of using the

P-M spectrum to generate 3D ocean surface and the underwater optical channel

properties are discussed in Chapter 2. Three typical localization algorithms are

introduced at the beginning of Chapter 3. A fast underwater positioning concept,

which uses adaptive time slot concept (ATS) to reduce the interference of light

signals between multiple buoys, is explained in the remainder of Chapter 3. In

Chapter 4, the adaptive time slot method results show better accuracy and re-

liability over the 10000 simulations under the two different scenarios, including

randomly deployed buoy and given position scenarios. However, many assump-

tions are made in the simulations. The sea area is pure seawater without light

scattering, no background noise or receiver noise, which should be considered in

the natural environment and discussed in future work. In addition, the GPS signal

received by surface buoys also has errors, which need to be taken into account as

well.

79



Master of Applied Science– Ziqi Dou; McMaster University– Department of
Electrical and Computer Engineering

Future work

In the thesis, the RSS method is used as the first stage of the underwater local-

ization, the results of using the Time of Arrival (TOA) method can be studied.

The computational complexities of different localization algorithms are not calcu-

lated, but it is also an essential factor, which should be considered in the future.

Moreover, the PSO algorithm and M-M approach are only used in 2D space, and

their performances can be studied in 3D space. The M-M approach uses the LS

result as the initial point in the iterations. However, the PSO algorithm uses the

average coordinate of all buoys, and the same initial point should be used in both

algorithms to compare their results. The receiver filter is assumed to reject back-

ground noise. Different types of filters should also be considered in future work,

e.g., Kalman filter.

In future work, many other analytical simulations can be carried out. For exam-

ple, the water used in the simulation is pure seawater, coastal water, river water,

and other types of water that should be considered. Therefore, the underwater

channel will change with water type, e.g., ,the scattering effect can be formulated

and added to the channel in the coastal water. The GPS errors should be taken into

account, and the system should be adjusted to reduce the impact of GPS errors.

Some other localization algorithms can be added to the simulations, and their

performances and computational complexities can be compared. Future studies

can also add the communication channel and data interaction between the buoy

and the underwater target. The simulation can be carried in the experimental

environment.
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