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PREFACE 

 

This book is based on an introductory university course on polymer processing and a short 

course for polymer industry professionals. JV presented the course several times at McMaster 

University, starting in 1993. NDP presented a similar course at U. Thessaly in 2018. The short 

course to industry has been presented by JV, occasionally with the help of some of his co-

workers, 78 times since 1987 in the following countries: Canada, Greece, Sweden, Venezuela, 

Mexico, USA, Finland, Czechoslovakia, Belgium, Brazil, Australia, Japan, Germany, Italy, 

Luxembourg, Spain, The Netherlands and New Zealand. The lectures were given in English, 

a few times in Greek, Spanish, German and once in Italian. Starting in 2003, NDP took part 

in several of the courses as co-organizer and recently as lecturer. At Polydynamics our 

experiences in developing and licensing flow simulation software to industry and our 

consulting activities influenced enormously the evolution of the presentation material. 

The feedback from university and industry participants in our courses helped us a lot in 

deciding what aspects to include, how deeply to delve into the various topics and in shaping 

the presentation style. Targeting two audiences, university and industry, increased the 

challenges we faced. For the rheological parts of the book, we assumed that the reader has a 

basic understanding of fluid mechanics and heat transfer, and we tried to reduce, as much as 

possible, the number of equations and mathematical manipulations. Of course, we had to go 

beyond the unidirectional approach and use the double subscript tensor notation in a few 

spots in our attempt to elucidate certain useful but, to some degree, esoteric concepts. On the 

practical side, we have included several pages on the melt index test, which is totally omitted 

in several of the books we cited.  For the technological parts, we provided a lot of pictorial 

explanations and descriptions. Throughout the book we included examples, equipment 

dimensions and operating conditions that are applicable in real world situations. We tried to 

convert the vast amounts of fragmented information available in technical books and journals 

into working knowledge and sound understanding. We believe that this book can be used as 

a textbook for a university course, or as a reference, or for solving specific and immediate 

problems. 



vi 
 

JV is grateful to his students and coworkers at McMaster University and Polydynamics, 

especially to those who have directly or indirectly contributed to the topics covered in this 

book: A. E. Hamielec, A. N. Hrymak,  M. R. Thompson, E. Takacs, D. Strutt, T. Nakamura, 

C. Kiparissides,  E. E. Agur, E. Mitsoulis, C. Tzoganakis, H. Mavridis, A. Karagiannis, J. 

Vlcek, J. Perdikoulias, A. Zahavich, W. Song, R. J. Castillo, Z. Charlton, A. Torres, A. 

Rincon, C. T. Bellehumeur, M. Kontopoulou, V. Sidiropoulos, H. Larazzabal, V. Hristov, C. 

Santi, M. Emami, A. Goger, D. Kanev, N. Silvi, M. K. Bisaria, J-J. Tian and S-J. Liu. 

NDP wishes to thank his doctoral dissertation supervisor T. D. Papathanasiou for his advice, 

support and encouragement and his co-workers I. E. Sarris and L. T. Benos for many helpful 

discussions. 

We acknowledge with our deepest appreciation the authors whose work we have used and 

cited in the chapters of this book.  

 

John Vlachopoulos 

Nickolas D. Polychronopoulos 

September 2019 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

CONTENTS 

Chapter 1 Polymer Basics 1-1 

1.1 Introduction ………………………………………………………… 1-1 

1.2 Historical Remarks …………………………………………………. 1-3 

1.3 Polymer Structure ………………………………………………….. 1-5 

1.4 Polymer Types ……………………………………………………… 1-6 

1.5 Major Commercial Plastics ………………………………………... 1-7 

1.6 Thermal Properties of Polymers …………………………………… 1-9 

1.7 Molecular Weight and Molecular Weight Distribution ………….. 1-12 

1.8 Zero-Shear Viscosity and Molecular Weight ……………………... 1-17 

1.9 Mechanical Properties of Polymers ……………………………….. 1-18 

1.10 Density …………………………………………………………….. 1-22 

1.11 Melt Flow Index (or Rate) and Intrinsic Viscosity ……………… 1-23 

1.12 Plastics in the Environment and Recycling ……………………… 1-26 

Bibliography …………………………………………………...……….. 1-29 

 

Chapter 2 Viscosity and Unidirectional Melt Flows 2-1 

2.1 Introduction …………………………...…………………………… 2-1 

2.2 Viscosity of Suspensions ...………………………………………… 2-3 

2.3 Shear-Thinning Behavior of Polymers ...…………………………. 2-4 

2.4 Stress and Conservation of Momentum  ..………………………... 2-8 

2.5 How to Derive the Governing Equation(s) for a Flow Problem… 2-11 

2.6 Pressure Driven Flow of a Power-Law Fluid Between Two Flat   

      Plates ..……………………………………………………………… 2-13 

2.7 Pressure Driven Flow of a Power-Law Fluid in a Tube ...………. 2-18 

2.8 Capillary Viscometer Analysis and the Rabinowitsch Correction 2-24 

2.9 Pressure Drop for Flow of a Power-Law Fluid Through a   



viii 
 

      Tapered Tube  ……..……………………………………………….. 2-28 

2.10 Flow Through a Tapered Slit ………………...………………….. 2-29 

2.11 Pressure Driven Flow of a Bingham Fluid in a Tube  ..………… 2-30 

2.12 Viscous Dissipation (Frictional Heating) ...……………………... 2-32 

2.13 Wall Slip  ..………………………………………………………… 2-38 

2.14 Viscosity Models for Three-Dimensional Flow Analysis ...……. 2-40 

Bibliography…………………………………………………………….. 2-44 

 

Chapter 3 Viscoelasticity 3-1 

3.1 Unusual Rheological Phenomena…………………………………. 3-1 

3.2 Basic Concepts of Viscoelastic Behavior………………………….. 3-5 

3.3 Extensional (Elongational) Viscosity……………………………… 3-12 

3.4 Flow in a Sudden Contraction…………………………………….. 3-14 

3.5 Cogswell’s Method for Elongational Viscosity Determination …. 3-17 

3.6 The Bagley Correction of Capillary Viscometry …..…………….. 3-19 

3.7 Constitutive Equations …………………………………………….. 3-20 

3.8 Extrudate (Die) Swell ……………………………………………… 3-27 

3.9 Melt Elasticity and Stress Relaxation …………………………….. 3-37 

Bibliography ……………………………………………………………. 3-45 

 

Chapter 4 Sharkskin, Melt Fracture, Die Lip Build Up  

                  and Surface Tearing 

 

 

4-1 

4.1 Flow Instabilities and Extrusion Defects …………………………. 4-1 

4.2 Sharkskin …………………………………………………………… 4-4 

4.3 Melt Fracture ………………………………………………………. 4-8 

4.4 Die Lip Build-Up (Drool) …………………………………………. 4-14 

4.5 Surface Tearing in Extrusion of Fiber Filled Polymers ………….. 4-16 



ix 
 

Bibliography ……………………………………………………………. 4-18 

 

Chapter 5 Rheological Measurements and Their   

                  Interpretation 
5-1 

5.1 Introduction ………………………………………………………... 5-1 

5.2 Melt Flow Index (Melt Flow Rate) ……………………………….. 5-2 

5.3 Capillary Rheometer ………………………………………………. 5-6 

5.4 Rotational Rheometer in Steady Shear …………………………… 5-10 

5.5 Oscillatory Shear Rheometry ……………………………………... 5-13 

5.6 Determination of a Characteristic Relaxation Time …………….. 5-23 

5.7 Melt Strength and Elongational Viscosity ………………………... 5-27 

5.8 Torque Rheometers ………………………………………………... 5-30 

5.9 Temperature and Pressure Dependence of Viscosity ……………. 5-31 

Bibliography ……………………………………………………………. 5-33 

 

Chapter 6 Single Screw Extruders 6-1 

6.1 Historical Remarks ………………………………………………… 6-1 

6.2 Designing a Melt Screw Pump ……………………………………. 6-2 

6.3 Output Determination of a Melt Fed Extruder ………………….. 6-4 

6.4 Solids Conveying in an Extruder …………………………………. 6-10 

6.5 Melting in an Extruder …………………………………………….. 6-14 

6.6 Melt Pumping in an Extruder (Metering Zone) …………………. 6-15 

6.7 Barrier Screws ……………………………………………………… 6-20 

6.8 Screws with Mixing Sections ……………………………………… 6-25 

6.9 Power Requirements ………………………………………………. 6-31 

6.10 Generic Screw Design Characteristics …………………………... 6-32 

6.11 Multi-Flighted Screws ……………………………………………. 6-35 



x 
 

6.12 Simple Analysis of a Typical Extruder ………………………….. 6-37 

Bibliography ……………………………………………………………. 6-46 
 

 

 

 

Chapter 7 Flat Film and Sheet Extrusion 7-1 

7.1 Introduction ………………………………………………………... 7-1 

7.2 Flat Die Design …………………………………………………….. 7-2 

7.3 Flat Die Co-extrusion ……………………………………..………. 7-8 

7.4 Beyond the Die Exit ……………………………………………….. 7-11 

Bibliography ……………………………………………………………. 7-12 

Chapter 8 Blown Film Extrusion 8-1 

8.1 Introduction ………………………………………………………... 8-1 

8.2 Blown Film Die Design …………………………………………… 8-3 

8.3 Blown Film Co-extrusion …………………………………………. 8-7 

8.4 Beyond the Die Exit ……………………………………………….. 8-10 

Bibliography ……………………………………………………………. 8-15 

Chapter 9 Co-extrusion Instabilities 9-1 

9.1 Introduction ………………………………………………………... 9-1 

9.2 Layer Encapsulation and Non-uniformities ……………………… 9-2 

9.3 Interfacial Instabilities ……………………………………………... 9-4 

9.4 Co-extrusion Flow Analysis ………………………………………. 9-7 

Bibliography 9-10 

Chapter 10 Pipe and Tubing Extrusion 10-1 

10.1 Introduction ..……………………………………………………... 10-1 



xi 
 

 

 

 

SUBJECT INDEX                                                                  Index 1 to Index 7 

 

10.2 Pipe Dies ………………………………………………………….. 10-2 

10.3 Pipe Calibration and Cooling ……………………………………. 10-5 

10.4 Double-Walled Corrugated Pipes ……………………………….. 10-6 

10.5 Hoop Stress ……………………………………………………….. 10-7 

Bibliography ……………………………………………………………. 10-9 

Chapter 11 Profile Extrusion  11-1 

11.1 Introduction ………………………………………………………. 11-1 

11.2 Flow Balancing of a Simple Die ………………………………… 11-3 

11.3 Types of Profile Dies ……………………………………………... 11-5 

11.4 Computer Assisted Profile Die Design ………………………….. 11-8 

11.5 Beyond the Die Exit ……………………………………………… 11-12 

Bibliography ……………………………………………………………. 11-12 

Chapter 12 Twin Screw Extruders 12-1 

12.1 Introduction ………………………………………………………. 12-1 

12.2 Co-rotating Fully Intermeshing Twin Screw Extruders ………... 12-3 

12.3 Machine Design and Assembly of Self-wiping Co-rotating Twin 

Screw Extruders……...…………………………………………… 12-5 

12.4 Unit Operations in Co-rotating Twin Screw Extruders ………... 12-11 

12.5 Flow and Pressurization in Co-rotating Twin Screw Extruders.. 12-13 

12.6 Counter-rotating Twin Screw Extruders ………………………... 12-15 

12.7 Low Speed Counter-rotating Intermeshing Twin Screw 

Extruders ………………………………………………………….. 12-16 

Bibliography ……………………………………………………………. 12-19 



xii 
 

 

 

 

 

 

 

ISAAC NEWTON (1642-1727) 



1-1 

 

 

J. Vlachopoulos and N.D. Polychronopoulos “Understanding Rheology and Technology of Polymer 

Extrusion”, First Edition, Polydynamics Inc, Dundas, Ontario, Canada (2019) 

 

 

Chapter 1 

POLYMER BASICS 
 

 

 

1.1 Introduction 

The word polymer comes from Greek and it means “many parts”. Polymers, i.e. 

plastics and rubber, are substances whose molecules form long chains, made up from smaller 

parts (repeating units) as shown in Fig. 1.1-1.  

 

 

Figure 1.1-1. Schematic representation of a polymer chain. 

  

Polymers are characterized through the chemical and physical nature of the repeating 

unit in the chains. The word plastics refers to polymers which have been compounded 

(mixed) with various additives, before the production of the numerous products used today. 

Rubbers are polymers with very high degree of deformability. To the general public the word 

plastics usually implies materials which pose major pollution problems in the oceans and 

garbage landfills because the vast majority of them are not biodegradable. Plastics are easily 

recyclable, but collection, separation and recycling efforts vary a lot from one country to 

another. Plastics are also known (Morton-Jones, 1989) for 

 having low strength and stiffness 

 having temperature limitations 

 deforming continuously (i.e. “creep”) under applied force 

The above features are definitely drawbacks when compared to more traditional 

materials like metal, wood or ceramic.  But, why are plastics used in vast and continuously  
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Figure 1.1-2. Volumetric consumption of plastics versus steel (from PLASTICS EUROPE). 

 

increasing quantities? They have surpassed the volumetric production of steel as shown in 

Fig. 1.1-2 since 1989 and the gap is growing. Here are some advantages of plastics: 

 Easily shaped or molded into complex shapes with minimum fabrication and finishing 

and relatively low cost 

 Low densities, i.e. strong low-weight products 

 Easy to produce fibers, films, pipe and profiles  

 Thermal and electrical insulators 

 Other special properties, e.g. often flexible, sometimes transparent, they can last for a 

long time without significant deterioration, some polymer grades have very low 

permeability to gases and liquids and they can be used for food and beverage 

packaging, they can be biocompatible (necessary for medical implants and devices) 

and are can be used with glass fibers, natural fibers, carbon fibers, carbon nanotubes 

or graphene for very strong composite structures. 

New types of polymers and fiber-reinforced composites exhibit high performance and long 

service life.  They are used extensively in aircraft/aerospace applications not only for military 
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aircraft (e.g. stealth aircraft are made of polymer matrix composites), but also in commercial 

aviation.  For example, in Boeing 767 (first introduced in 1982) about 3% of the structural 

weight is due to polymer composites, while in the Boeing 777 (1995) it is about 10% and in 

the 787 (2011) about 50%. Similarly, Airbus A350 and A380 include significant amounts of 

polymer composites. Composites are used in aircraft both for reducing the weight and for 

increasing part performance and overall durability.  

 The high performance polymers and composites are, of course, expensive. They make 

relatively few parts for aircraft/aerospace, sports equipment and other applications. 

 Currently the biggest market is for lower priced packaging, automotive, housing, 

electrical and electronic applications. In 2014 the average car had 200 kg in plastics 

and for 2020 it is projected to have 350 kg. 

 There is also a growing market for medical plastics.  

 They are used extensively in additive manufacturing (3D Printing) technologies. 

The challenge is to produce many parts at high production speeds and low costs, but with 

high performance and long service life characteristics. 

For the production of the most common polymers (e.g. polyethylene, PE), the first 

step consists on steam cracking of hydrocarbons at very high temperatures for the production 

of ethylene (monomer, which is a gas). During a second step, ethylene is subjected to 

polymerization for the generation of long chain molecules and the product is eventually 

delivered in the form of flakes, powders or pellets. 

           Prices of monomers and polymers fluctuate in the world market and they are 

influenced enormously by the price of oil and by political events and we will avoid giving any 

figures in dollars, euros or any other currency. Roughly, the raw materials cost of commodity 

plastics (i.e. those produced in large volume) accounts for about 50% of the final plastic 

product price, but, of course, it all depends on the application, the performance requirements 

and the capabilities of the fabricator. 

 

1.2 Historical Remarks 

Humankind has used polymers since the beginning of recorded history (White, 1990). 

Leather, wood, wool and cotton are polymeric substances of natural origin. Also 

 Important work on rubber was done in the early 1800’s. 
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 The early manufactured rubber softened with heat and hardened with cold.  In 1839, 

U.S. inventor Charles Goodyear invented the process of vulcanization (heat treatment 

called curing of a compound of rubber and sulfur) which led to products of 

considerable durability. 

 In 1869, John Wesley Hyatt invented the first synthetic plastic material from cellulose 

nitrate and camphor. Celluloid is a tough material used in combs, film, toys, etc.  

Further developments led to rayon fibers. 

 In 1909, “Bakelite” appeared (black telephones in old movies), named after its inventor 

Leo Bakeland.  

 The polymeric nature of rubber and celluloid was not realized till the 1920’s, when the 

German chemist Hermann Staudinger (Nobel Prize in chemistry 1953) clearly 

demonstrated the macromolecular concept of long chains composed of repeating 

units. They were confused with colloids before Staudinger. 

 Staudinger’s book “Die Hochmolekularen Organischen Verbindungen” (High 

Molecular Weight Compounds) appeared in 1932. Although many other people 

besides Staudinger made considerable contributions towards the elucidation of the 

macromolecular nature of polymers, it is reasonable to assume that 1932 marks the 

dawning of the polymer science age. 

 In 1935 LDPE was produced by a small research team at ICI (Imperial Chemical 

Industries, Great Britain) and Nylon by Wallace Carothers and his team at the DuPont 

Experimental Station in USA. 

 German chemist Karl Ziegler invented the titanium-based catalysts and Italian 

chemical engineer Giulio Natta used them for the production of polypropylene and 

other polyolefins. They were awarded jointly the Nobel Prize in chemistry in 1963. 

Ziegler-Natta (Z-N) catalysts have been used for the commercial production of 

polyolefins since 1956. As of 2019 more than 150 million tons are produced with Z-N 

and related catalysts annually. 

 The discovery of metallocene catalysts at the University of Hamburg, Germany, in 

1975 by Walter Kaminsky and Hansjoerg Sinn, led to the development of new single 

site catalysts for the production of polyolefins with a highly defined structure and 

superior properties. 
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1.3 Polymer Structure 

In the simplest case, a polymer consists of a simple repeating unit 

··········A A A A A A A A A A·········· 

The most important type of linear polymers are vinyl polymers  

 

If R → H   POLYETHYLENE (PE) 

 R → CH3   POLYPROPYLENE (PP) 

If R → C6H5   POLYSTYRENE (PS) 

 R →  Cl   POLYVINYL CHLORIDE (PVC) 

 

Polymer chains may be linear or branched. The branches may be either short or long and may 

themselves have branches as shown in Fig. 1.3-1. 

 
Figure 1.3-1. Sketches of linear and branched chains, from Nova Corporation. 

 

Polymers having long chain branching (LCB), even if less than one branch per ten 

thousand backbone atoms (called sparsely branched), are of great interest, because of their 

processing and end-use properties. 

HOMOPOLYMERS are made of  one type of  small molecule (monomer). 

R

CH2

|
 CH
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Figure 1.3-2. Sketch of a 3-D network of a typical cross-lined polymer, from the internet. 

 

COPOLYMERS are made of  two different types of  monomers. COPOLYMERS can be 

ALTERNATING (if  monomers alternate in the chain) or RANDOM (if  arranged randomly). 

BLOCK COPOLYMERS are those having one type of  a monomer grouped together and all 

monomers of  the other also grouped together. 

GRAFT COPOLYMERS are those made of  monomer B grafted (like branches) to polymer 

made of  monomer A. 

CROSS-LINKED polymers like in the sketch of Fig. 1.3-2 are those that form a 3-D network 

structure, e.g. like vulcanized rubber. They are unable to flow, they are hard solids. 

 

1.4 Polymer Types 

Thermoplastics: they can be melted by heating, solidified by cooling and may be re-

melted repeatedly (PE, PP, PVC, PS etc.). Thermosets: in their fluid state, they are long-

chain molecules, but still reactive and harden usually by application of heat and pressure, due 

to crosslinking.  They cannot be softened again to make them flow (e.g. the Bakelite, phenol 

formaldehyde, epoxies, most polyurethanes, etc). Elastomers: are cross-linked network 

structures with large deformability and essentially complete recoverability due to high degree 

of chain flexibility (e.g. natural or synthetic rubber) 

 Thermoplastics and thermosets are usually called plastics. Frequently they are referred 

to loosely as synthetic resins, especially in pricing quotations. Pure polymers are seldom used 

on their own.  They are compounded, i.e. combined with other materials, typically by means 

of mechanical blending of powders or pellets or melt-state mixing to yield a compound which 

is ready to be used by the processor in the form of pellets, granules, powder or flakes for 
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production of plastic products by extrusion, injection molding, calendering, compression 

molding, rotational molding and other processes. The compounds include various types of 

additives, fillers, reinforcements or other polymers. 

Additives: 

 colorants 

 flame retardants 

 stabilizers - to prevent deterioration from light, heat or other environmental factors 

 lubricants - to reduce viscosity and improve formability 

Fillers: 

 inorganic materials either to reduce actual amount of resin or to improve mechanical 

properties 

Reinforcements:  

 glass, natural or carbon fibers to increase strength and stiffness 

Other polymers: 

 to produce blends of polymers (for combination of beneficial properties) 

 

1.5 Major Commercial Plastics 

High density polyethylene (HDPE): Possesses linear chains due to the polymerization 

process.  Linear chains are easy to compact together. Density=940~970 kg/m3. Melting 

temperature ~135oC.  Used for containers, bottles, film, tape, wire and cable insulation and 

household appliances. 

Low density polyethylene (LDPE): Has long and short branches.  Branching prevents 

chains from being closely packed.  Density=910~920 kg/m3. Melting temperature~110oC.  It 

is soft and flexible.  Used for bottles, film, garment bags, wire coating, and toys. 

Linear Low Density Polyethylene (LLDPE): It is a copolymer of ethylene with small 

amounts of butene or octane-1. Density=910~920 kg/m3. Melting temperature~124 oC.  Used 

for thin high-strength film. 

Polypropylene (PP):  There are three categories of PP depending on tacticity. Tacticity 

refers to how the methyl groups are oriented with respect to the plane of symmetry of the 

polymer chain. Commercial PP is usually isotactic, that is all methyl groups are on one side 

of the chain and it melts at about 165 oC, but it can be higher. Density=905 kg/m3.  Possesses 



1-8 

 

 
 

many outstanding properties, including chemical resistance and rigidity.  Used for automotive 

parts, appliances, fibers, luggage, etc. Syndiotactic PP has methyl group alternating on either 

side of the plane of symmetry of the chain and it has lower melting point. Atactic PP has 

methyl groups randomly aligned, it is amorphous and rubber-like at room temperature and is 

used as sealant or hot melt adhesive.  

Polyvinyl Chloride (PVC): It is soft and processable at temperatures 175-200oC.  Rather 

unstable chemically. It starts degrading at about 205 oC. Rigid PVC (with few additives, 

density=1400 kg/m3) is used for pipe and housing applications.  Plasticized PVC is used for 

flexible film sheet, upholstery (density=1300 kg/m3). 

Polystyrene (PS): Amorphous (no crystalline structure) polymer. It is processable above 

150 oC.  Density=1050 kg/m3.  It is often clear and rigid.  Used for packaging, containers and 

modified with rubber for sporting goods, radio and TV housings, automotive parts, etc. 

Nylon-6 and Nylon-66 (Polyamides, PA): Tmelt=215oC (NYLON-6), Tmelt=265oC and 

density=1140 kg/m3 (NYLON-66). Used for synthetic fibers (e.g. for Nylon stockings) and 

other products. 

Polyethylene Terephthalate (PET): Tmelt=260oC, density=1360 kg/m3, used for film, 

water and soft drink bottles and fibers. 

Polycarbonate (PC): Amorphous polymer, processable above 250oC.  Density=1150 

kg/m3. Used for compact disks (CDs), optical fibers, etc. 

Polylactic Acid (PLA): Biodegradable polyester produced from corn starch and other 

renewable resources. Density=1210-1430 kg/m3 and Tmelt=150-160 oC used for biodegradable 

packaging, medical implants and in fused filament fabrication (FFF, 3D printing). PLA has 

become very popular in recent years due to the fact that it is derived from renewable resources 

and it is biodgradable.  

Other Polymers 

 Polymethyl Methacrylate (PMMA) 

 Acrylonitrile-Butadiene-Styrene (ABS) 

 Polytetrafluoroethylene (PTFE) 

 Polyetheretheroketone (PEEK) 

 Polyethersulfone (PES) 
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Table 1.5. Commercial Classification of Thermoplastics 
COMMODITY 

 

LDPE, HDPE, PP, PS, PVC, 

PMMA 

Low 

Performance 

ENGINEERING 

 
ABS, PC, PA (Nylon), PET 

 

ADVANCED 
Liquid-Crystal Polymers (LCP), 

PTFE, PEEK, PES, PPS 

Very High 

Performance 

 

1.6 Thermal Properties of Polymers 

In molten state, polymers are composed of entangled long molecules as shown in Fig. 

1.6-1.  “Entangled” does not mean that the molecules are knotted around each other, but that 

molecular displacements due to Brownian motion are highly restrained laterally. These 

impediments to motion have a determining role in the high viscosity of polymer melts and 

their viscoelastic properties. As it can be seen in the sketch of Fig 1.6-1, a polymer molecule 

is only allowed to move like a snake through the entangled mesh of other chains. That is why 

de Gennes (1979) coined the term reptation.  

 

 
Figure 1.6-1. A long polymer molecule entangled with other long molecules in polymer melt. From 

Graessley (1982). 

 

Solid polymers exist in crystalline (ordered) or amorphous (random) states. For 

amorphous polymers there is a certain temperature called the glass transition temperature, 
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Tg, below which the material behaves like glass, i.e. it is hard and rigid.  Crystalline polymers 

also exhibit Tg, but this is masked to some extent by the crystalline structure.  It corresponds 

to low mobility in the backbone of the chain.  Crystalline polymers are characterized by the 

capacity of their molecules to form 3-D ordered arrays.  Above their melting temperature Tm, 

they behave as highly viscous liquids. Increased crystallinity in a polymer is associated with 

increased strength and decreasing transparency. Most crystalline polymers are quite opaque. 

 For a truly amorphous polymer like polystyrene, we cannot talk about a melting point. 

 Most polymers are semi-crystalline, with crystallinity usually from 20% to 90%. 

 Traditionally semi-crystalline polymers were represented in terms of the fringed-micelle 

model shown in Fig. 1.6-2a. Recently, models involving folded lamellae as shown in 

Fig. 1.6-2b have been proposed, but no completely accepted model exists at present. 

 

 
Figure 1.6-2. (a) Fringed-micelle model of solid polymer structure, having ordered (crystalline) and 

disordered (amorphous) regions and (b) folded lamellae forming crystallites surrounded by amorphous 
regions (from a Cambridge University online resource). 

 

Specific Heat Cp is the amount of heat required to raise the temperature of a body (per 

kg) by one degree. Heat Capacity is the heat required per mole of a pure substance 

Typical values:  

o Water (at 20°C, 68°F) = 1 kcal/kg°C = 4182 J/kg°C  

o Air (approximately) = 0.239 kcal/kg°C = 1000 J/kg°C  

o Polyethylene (approximately) = 0.550 kcal/°C = 2300 J/kg°C  

o Steel (approximately) = 0.108 kcal/°C = 450 J/kg°C 

o Brick (approximately) = 0.215 kcal/°C = 900 J/kg° 
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For melting of  a solid, heat must be added to shake and demolish the crystal structure 

present. Heat of fusion (ΔHf) is the amount of  heat required to melt a crystalline solid without 

raising its temperature. It is equal in magnitude (but opposite in sign) to the heat of 

crystallization. For example, for ice 

ΔHf  = 333,000 J/kg = 80 kcal/kg 

This means that to melt 1 kg of  water we need the same amount of  energy as that required to 

raise 1 kg of  water by 80°C, and yet with the actual melting, there is no increase in 

temperature.  Here are some typical values for polymers:  

• HDPE ΔHf  = about 250,000 J/kg  

• LDPE ΔHf  = about 200,000 J/kg  

• Amorphous polymers like PS, PMMA and PC ΔHf  = 0  

Glass transition temperature, melting temperature, crystallization temperature, heat of 

fusion, heat of crystallization, heat capacity and crystallinity are measured by differential 

scanning calorimetry (DSC). In this technique, the difference in heat flow between a reference 

and a sample during controlled heating or cooling is measured. The melting temperature is 

determined from the valleys and the crystallization temperature from the peaks as shown in 

Fig. 1.6-3. It should be noted that the difference between melting and crystallization 

temperatures is small for HDPE and large for PP (homopolymer). 

 

 

Figure 1.6-3. DSC heating and cooling curves for HDPE, LDPE and PP showing melting and 

crystallization temperatures. From Throne (2015). 
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Thermal properties of various common polymers are given in Table 1.6 from Vlachopoulos 

and Wagner (2001). 

 
Table 1.6. Typical thermal properties of several common polymers, adapted from Vlachopoulos and 

Wagner (2001) 

 
* Melt densities have been estimated for roughly the mid-temperature of the processing range. See Mark (1996) for expressions in the 
form of p=A–BT±CT2 

* Amorphous resin does not possess crystallinity and consequently no melting point or heat of fusion (i.e. heat to break down crystal 
structure) can be determined.  

 

1.7 Molecular Weight and Molecular Weight Distribution 

Molar Mass (MM) is the term recommended by International Union of Pure and 

Applied Chemistry (IUPAC), having SI units of (g/mol). However, the term Molecular 

Weight (MW (dimensionless)) is used widely and it is the terminology throughout this book. 

The Molecular Weight (MW) of WATER H₂O is 2×1+16=18. The ethylene monomer -

(C₂H₄)- has molecular weight (MW): 12×2+4×1=28. Polyethylene is composed of many 

ethylene monomer units 

-X-X-X-X-X--(C₂H₄)-(C₂H₄)-(C₂H₄)-(C₂H₄)-(C₂H₄)-X-X-X-X-X-X- 

• If (C₂H₄)₅₀  it is  a wax  (MW: 50×28=1400) 

• If  (C₂H₄)₅₀₀₀ it is a polymer resin suitable for plastic films (MW: 5000×28=140,000) 
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Commercial polymers generally contain a distribution of molecular weights.  The 

Molecular Weight Distribution (MWD) is specified in terms of average molecular weights 

(Bueche, 1962): 

 Number-Average Mn 

 Weight-Average Mw 

 Z – Average  Mz 

 Z+1 – Average Mz+1 

 If the number of molecules with molecular weight Mi is given by ni, the total weight of 

the sample is ∑niMi and the total number of molecules is ∑ni, the number-average molecular 

weight is given by 

𝑀𝑛 =
∑ 𝑛𝑖𝑀𝑖

∑ 𝑛𝑖
 (1.7-1) 

If the weight fraction of material having a molecular weight Mi is wi, we have 

𝑤𝑖 =
𝑛𝑖𝑀𝑖

∑ 𝑛𝑖𝑀𝑖
=

𝑛𝑖𝑀𝑖

𝑊
=

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑀𝑖

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
 (1.7-2) 

Thus 

𝑛𝑖𝑀𝑖 = 𝑊𝑤𝑖 

𝑛𝑖 = 𝑊
𝑤𝑖

𝑀𝑖
 

(1.7-3) 

and the definition of Mn becomes 

𝑀𝑛 =
∑ 𝑛𝑖𝑀𝑖

∑ 𝑛𝑖
=

∑ 𝑤𝑖

∑ (
𝑤𝑖

𝑀𝑖
)
 (1.7-4) 

Other definitions of averages include the weight-average molecular weight 

𝑀𝑤 =
∑ 𝑛𝑖𝑀𝑖

2

∑ 𝑛𝑖 𝑀𝑖
=

∑ 𝑤𝑖𝑀𝑖

∑ 𝑤𝑖
 (1.7-5) 

the Z–average molecular weight 

𝑀𝑧 =
∑ 𝑛𝑖𝑀𝑖

3

∑ 𝑛𝑖 𝑀𝑖
2 =

∑ 𝑤𝑖𝑀𝑖
2

∑ 𝑤𝑖 𝑀𝑖
 (1.7-6) 

and the Z+1–average molecular weight 

𝑀𝑧+1 =
∑ 𝑛𝑖𝑀𝑖

4

∑ 𝑛𝑖 𝑀𝑖
3 =

∑ 𝑤𝑖𝑀𝑖
3

∑ 𝑤𝑖 𝑀𝑖
2 (1.7-7) 
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Example E1.7-1   

Consider a polymer for which 99% of the weight is material with M=20,000 and 1% with 

M=109.  Determine the Mn, Mw, Mz and Mz+1. 
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We note that the 1% of the very high molecular weight fraction has little effect on the 

number average molecular weight, but huge effect on the rest (because of the higher powers 

involved). The MWD can be narrow (monodisperse if all polymer chains have exactly the same 

molecular weight, which is practically impossible) or broad.  The size of the molecular chains 

and the breadth of the distribution determines several flow and end-use properties. For the 

“most probable” (Gaussian) distribution 

𝑤𝑖 =
𝑀

𝑀𝑛
2 𝑒𝑥𝑝 (−

𝑀

𝑀𝑛
) 𝑑𝑀 (1.7-8) 

is the weight fraction of polymer with molecular weight 𝑀 ± 𝑑𝑀 2⁄ ...  So, by replacing the 

summation with an integral, we end up with Mn=Mw/2=Mz/3=Mz+1/4 

 The ratio Mw/Mn is often called the polydispersity and it is used to denote whether a 

given polymer grade has narrow or broad MWD. For most commercial polymers, Mw~ 10,000 

- 500,000.  The polydispersity varies according to the polymerization method and conditions 

 Commercial PS: Mw/Mn ~ 2.5 - 4 

 Commercial PP: Mw/Mn ~ 2.5 - 10 

 Commercial PE: Mw/Mn ~ 2.5 - 30 
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The viscosity average molecular weight Mv is obtained from a dilute polymer solution 

viscosity called the Intrincic Viscosity (IV), usually denoted by [η], through the Mark-

Houwink equation  

[𝜂] = 𝛫𝛭v
𝑎 (1.7-9) 

where K and α are constants depending on the polymer-solvent system. IV is determined by 

dissolving less than 1% of polymer in a solvent and measuring the time required for certain 

volume of the solution to flow through a capillary tube for several different concentrations 

and extrapolating to 0% concentration. It reflects the capability of the polymer to enhance the 

viscosity of the solvent. Mv lies between the number and weight average molecular weights. 

Bottle-grade PET has IV in the range of 0.75 to 1.0 dL/g, which corresponds to average 

molecular weight between 24,000 and 36,000.  

 
Figure 1.7-1. Schematic representation of a typical molecular weight distribution (MWD).  

 

Measurement of the MWD is usually done by Gel Permeation Chromatography 

(GPC) (see Grulke, 1994) and the determination of Mn, Mw, Mz and Mz+1 it is a rather tedious 

process. A sketch of a typical MWD curve is shown in Fig. 1.7-1 and actually measured 

MWD curves for two LDPEs are shown in Fig.1.7-2. Fig. 1.7-3 exhibits a bimodal molecular 

weight distribution of an HDPE copolymer produced in two reactors for the purpose of 

combining beneficial properties. Values of Mz and Mz+1 are rarely provided in technical data 

sheets.  Determination of Mv is relatively easy and it is frequently available in technical data 
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sheets, in lieu of average molecular weight, for polymers like Ultra High Molecular Weight 

Polyethylene (UHMWPE), PET and Polyamide (PA, Nylon). 

 

Figure 1.7-2. Molecular weight of two LDPEs determined by GPC. Adapted from Grulke (1994).  

 

 

Figure 1.7-3. HDPE bimodal molecular weight distribution. Adapted from Hanik (2018).  

 

Recent developments in metallocene and other single site catalysts (Kaminsky, 2013) 

have enabled the production of polyolefins of controlled molecular weight and distribution, 

tacticity (that is spatial molecular arrangements) and long chain branching. It has become 

possible to produce HDPE, LLDPE, PP and other polyolefins having improved end-use 

properties. 
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1.8 Zero-Shear Viscosity and Molecular Weight 

At very low shear rates the viscosity of molten polymers approaches a limiting value 

which is called zero-shear viscosity η0. As expected, polymer viscosity increases with the 

molecular weight. In fact, it has been found that for linear polymers of low molecular weight, 

η0 is proportional to the molecular weight. However, when the molecular weight exceeds a 

certain value (Mc) the zero-shear viscosity is proportional to the molecular weight raised to 

the power of 3.4. 

𝜂0 = 𝛫𝑀                 𝑀 < 𝑀𝑐           

𝜂0 = 𝛫𝑀3.4            𝑀 > 𝑀𝑐  
(1.8-1) 

Mc is the critical molecular weight above which the molecules are long enough that they 

impede lateral motions, by some sort of an entanglement mechanism. The constant K and the 

critical molecular weight Mc depend on both the polymer and the temperature (for PE 

Mc=4,000 and for PS Mc=36,000). However, the exponent shows very little variation for linear  

 
Figure 1.8-1. Zero-shear viscosity versus molecular weight. 

 

polymers (between 3.4 and 3.6). For metallocene polymers with long chain branching (LCB) 

the exponent can exceed 6.0, as shown in Fig. 1.8-1.   

For linear monodisperse polyethylene, Dealy and Larson (2006) give 

𝜂0(𝑃𝑎 ∙ 𝑠) = 3.40 × 10−15𝑀3.60     𝑎𝑡     190𝑜𝐶 

for example, for a PE having Mw=200,000 (film grade), η0=41,227 Pa.s. 
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1.9 Mechanical Properties of Polymers 

The most common technique for measuring polymer properties is tensile testing as 

shown schematically in Fig. 1.9-1. For small deformations of the sample shown in Fig. 1.9-

1a, the applied stress σ is related linearly to the resultant strain ε (see Fig. 1.9-1b) 

𝜎 = 𝐸𝜀 (1.9-1) 

 

Figure 1.9-1.  Schematic representation of tensile testing. The slope in a stress-strain diagram (i.e. small 

deformations of the sample) is the Young’s (tensile) modulus E.  

 

where E is the Young's modulus of elasticity with units N/m2 [=] Pa. In the above equation 

the strain ε is given by 

𝜀 =
𝐿 − 𝐿0

𝐿0
 (1.9-2) 

and has no units. In technical data sheets it is usually expressed in percentage (%) and denotes 

how much the sample is elongated during the tensile test. 

Typical values of tensile modulus E in GigaPascals, GPa (Giga = 109) are shown in 

Table 1.9. 

Table 1.9. Typical values of tensile modulus E 

LDPE 0.2 GPa 

HDPE 1.0 GPa 

NYLON 66 2.0 GPa 

PVC 2.5 GPa 

PS 3.4 GPa 

STRUCTURAL STEEL 260 GPa 
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Figure 1.9-2. Schematic representation of Tensile and Flexural Testing. 

  

Frequently, the flexural modulus is given in data sheet of polymer materials, due to 

different experimental set up. A “dogbone” shaped specimen is stretched for tensile modulus 

determination. A three-point bending is used for the flexural modulus as shown in Fig. 1.9-2. 

It is crucial to bear in mind the following (see also Fig. 1.9-3): 

• Flexural Modulus and Tensile Modulus have exactly the same value for ideal elastic 

materials (although determined by different experimental setups), but for polymers 

Flexural Modulus is usually a bit higher (up to about 20% or so) than the Tensile 

Modulus. 

 
Figure 1.9-3. Schematic of strain-strain behavior of polymers and typical results for three common 

polymers. 
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• Stiffness is a property of  the structure and is proportional to the modulus of  the 

material e.g. We talk about the stiffness of  PE pipe, but the modulus of  PE.  

• Tensile Strength is the stress required to break a specimen measured in Pa. Another 

useful quantity is the stress at yield (yield strength) 

• Toughness is the energy required to break a material. It is determined, from the 

integral under the stress vs strain curve. A material may be strong and tough if  it breaks 

under high forces at high strains. Brittle materials are strong, but they break at low 

strains (glass is brittle, vulcanized rubber (e.g. tires) is tough). Toughness is measured 

in J/m³. 

         The “strength” of steel is derived from primary (chemical) bonds, while the “weakness” 

of most plastics is due to relatively weak (about 100 times smaller) cohesive forces (Van der 

Waals) between the entangled and coiled long chains. To produce super-strong plastics, we 

must align the polymer chains, because extended chains having carbon-carbon bonds give us 

a lot of strength.  High orientation of polymer chains can be achieved by special processing 

techniques. Ultra high molecular weight polyethylene (UHMWPE) is processed by gel 

spinning (Nakajima, 1994) for the production of widely available fibers like DYNEEMA 

having tensile modulus of up to 130 GPa (compare to 260 GPa for steel) and tensile strength 

of up to 3.9 GPa (compare to 400 MPa for steel). Also, high performance products are possible 

by solid phase processing (Ward et al., 2000). At low temperatures the chains have limited 

mobility and after stretching they cannot curl up again, so they retain their orientation. 

A systematic classification of tensile properties would be on a modulus E versus 

temperature T diagram as shown in Fig. 1.9-4. This figure shows that it is all a question of 

chain mobility (none for glass, a lot for melt). Crystallinity inhibits chain mobility and gives 

hardness to polymers. The modulus vs temperature diagram shows five regions: (1) Glass (the 

polymer is hard solid), (2) The glass transition region Tg (not sharp), (3) Rubbery plateau, (4) 

Melting region (sharp drop for semi-crystalline polymers) and (5) Liquid melt. 

            While Tg is not a sharply defined temperature (Dealy and Wissbrun, 1990), it can be 

measured within a few degrees by determining the change in heat capacity Cp by Differential 

Scanning Calorimetry (DSC). We consider Tg as the lowest temperature at which we can 

consider the material “flowable like a liquid”. The melting point Tm is meaningful only for 

semi-crystalline polymers. For Polystyrene (PS) which is amorphous, in practical situations 

we consider that it “melts”, i.e. that flows like a liquid, at 50°C above Tg=100°C. Rule of  
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Figure 1.9-4. Modulus versus temperature of semi-crystalline and amorphous polymers. 

 

Strain

break

breakSlow extension

Fast extension

Stress

 
Figure 1.9-5. Schematic representation of slow and fast stress-strain behavior. 

 

thumb: Tg (absolute Kelvin) ~ in the range 0.5Tm to 0.67Tm.  But, small variations in structure 

can affect chain regularity and the ability to pack, thus can change Tm a lot. 

One important characteristic of solid polymers is the time dependence (Crawford, 

1987) of their tensile properties. For example, rigid PVC may have a relatively high modulus 

at high extension rates (> 1 mm/s) while it has lower modulus at low extension rates (< 0.05 



1-22 

 

 
 

mm/s), as shown in Fig. 1.9-5. While the simple tensile test might be adequate for design 

purposes with steel, plastics must be subjected to additional testing especially for their long- 

 
Figure 1.9-6. Schematic representation of creep behavior. 
 

time properties. Under constant stress, polymers tend to “creep”, i.e. strain (deformation) 

increases with time as shown in Fig. 1.9-6. Time-dependence is due to molecular chain 

rearrangement, i.e. the solid plastics have a tendency “to flow” under the influence of stress. 

 

1.10 Density  

Density is defined as the mass per unit volume of a polymer in SI units it is kg/m3, for 

polymers it is usually given in g/cm3. It reflects the ability of the molecules to pack close 

together. Linear molecules have higher density than similar branched ones, because 

branching restrains packing. Density values of some common polymers, including medium 

density polyethylene (MDPE) and metallocene mLLDPE, are shown in Table 1.10. At 

processing temperatures, the density of the molten polymers is about 10-20% lower than the 

solid density. 

Table 1.10. Density of solid polymers in gr/cm3 

HDPE 0.941 – 0.965 

MDPE 0.926 – 0.940 

LLDPE 0.910 – 0.925 

mLLDPE 0.860 – 0.960 

LDPE 0.915 – 0.929 

PP 0.890 – 0.910 

PVC 1.30 – 1.58 
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Figure 1.10-1.  Density-property relations for polyethylene. Adapted from Nugent (2001). 

 

Density and crystallinity are closely related. For example, HDPE is typically 70-90% 

crystalline while LDPE has 45-65% crystallinity. Several other properties correlate with 

density as shown in Fig. 1.10-1 for polyethylene. In this figure shrinkage, refers to the 

tendency of plastic products to contract after cooling from the processing temperature to room 

temperature. Hardness is the ability of a solid polymer to resist indentation. Heat deflection 

temperature is the temperature at which a plastic specimen deforms under a specified load. 

Barrier properties refer to the resistance to permeation of gases or liquids. Weatherability is 

the resistance of plastics when exposed to simulated outdoor environments. Impact strength 

is the energy required to break a test specimen struck by a pendulum weight. ESCR 

(environmental stress cracking resistance) is the ability of plastics subjected to stresses to resist 

failure, when exposed to crack initiating substances. Ductility refers to the ability of a material 

to undergo deformation without fracture. 

 

1.11 Melt Flow Index (or Rate) and Intrinsic Viscosity 

ASTM International, formerly known as American Society of Testing and Materials, 

and the International Organization for Standardization, which uses the abbreviation ISO, 

include numerous standards for testing of polymer materials. One of them, that is usually 
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included in plastics technical data sheets, is for their “flowability”, by the Melt Flow Index 

(MFI) test (ASTM D1238, ISO 1133), which is in grams per 10 minutes flowing out of die 

of standard dimensions under the action of a load of specified weight in kilograms as shown  

 
Figure 1.11-1. Schematic of a Melt Indexer. 

 

Table 1.11-1. Characteristics of TOTAL MDPE HF 513 

 

            

in Fig. 1.11-1. The test is known also as Melt Index (MI) or Melt Flow Rate (MFR). 

Traditionally, the term MFR was used for PP, but it is now used interchangeably with MI or 

MFI for other polymers. The standard load is 2.16 kg, but also 5 kg, 10 kg and 21.6 kg are 

used. The temperature of the test is 190°C for PE and 230°C for PP. Other temperatures are 

specified by the corresponding ASTM and ISO standards, for other polymers. More 

information about MFI is included in Chapter 5 on rheological measurements. Table 1.11-1 
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shows part of the technical data sheet of a commercially available polymer from Total 

Petrochemicals (medium density polyethylene (MDPE)). 

It should be noted that under the action of a 2.16 kg load, 0.15 grams of polymer come 

out of the die in 10 minutes. With a ten times heavier weight (21.6 kg) we obtain 14.5 grams 

in ten minutes, almost one hundred times more. This high value is due to the shear-thinning 

property of polymer melts. The polymer exhibits less resistance (lower viscosity) at high rates 

of flow. In this table, Vicat temperature is the temperature at which a test specimen is 

penetrated to a depth of 1 mm by a needle of specified dimensions under the action of 

specified load. It is indicative of the softening point of the polymer. Table 1.11-2 shows the 

ranges of weight average molecular weights (MW) of PE, standard Melt Index (MI, 2.6kg), 

high load Melt Index (HLMI, 21.6 kg) and the corresponding products/processes. MI less 

than 1, is referred to as fractional Melt Index. Table 1.11-3 shows characteristics of two very 

high molecular weight polyethylenes from CELANESE corporation. For GHR 8110, which 

has average molecular weight of 610,000 it is only possible to measure HLMI (21.6 kg). For 

GUR413 it is impossible to measure it, due to its extremely high viscosity of this Ultra High  

 

Table 1.11-2. Molecular weight and melt index of various PE grades  

(adapted from J. Kron, Lyondell Basell, TAPPI presentation) 
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Table 1.11-3. Technical data sheet from CELANESE 

 

 

Molecular Weight Polyethylene (UHMWPE) of 3,900,000. This table also shows the 

corresponding intrinsic viscosity values (IV).  

For some polymer families (polyesters, Nylons etc) MFI is rarely supplied in technical 

data sheets due to experimental difficulties associated with degradation and moisture 

absorption. They choose Intrinsic Viscosity (IV) (ASTM D2857, D4603 or ISO 1628), 

where a dilute solution flow rate through a glass capillary tube is compared to pure solvent 

(as explained earlier). IV American units are 100 cm3/g (dL/g). IV European units are cm3/g, 

usually expressed as (mL/g).  IV for bottle grade PET resins is usually between 0.70 and 1.0 

dL/g (70 and 100 ml/g). IV is the inverse of  concentration and it is directly related to the 

molecular weight as explained earlier in Section 1.5. Higher IV means higher molecular 

weight. 

          PVC polymers are often graded according to their K-value, which is a measure of  their 

molecular weight. It is obtained from measurement of  intrinsic viscosity in cyclohexanone 

solution. K-values range usually 35 and 80. Low K-values imply low molecular weight (which 

is easy to process, but has inferior properties) and high K-values imply high molecular weight 

(which is difficult to process, but has outstanding properties). Here are some typical K-values:  

K-57 for injection molding, K-67 (Rigid) for pipe, profiles and K-72 (plasticized) for flexible 

films, wires and cables. 

 

1.12 Plastics in the Environment and Recycling 

Global plastics production is projected to exceed 400 million tons in 2020 and the 

production growth rate is likely to continue unabated in the foreseeable future, as more people 

around the world raise their standard of living. If current trends continue, production of 

plastics will swell to about 2 billion tons per year by 2050. According to a recent study (Geyer 

et al., 2017), from 1950 till 2015, 8.3 billion tons of plastics have been produced, 6.3 billion 

7
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tons of plastics waste has been generated and from this was 9% recycled, was 12% incinerated 

and 79% ended up in landfills. Plastics in the ocean is frequently in the news. According to 

some estimates (which are probably not terribly accurate) about 150 million tons circulate in 

the ocean and about 8 million tons of plastic waste end up in the oceans every year, which is 

totally unacceptable. Single use plastics like shopping bags, water and soft drink bottles, 

disposable tableware and most food packaging are the main source of plastics ocean pollution.  

        While plastics disposal in landfills appears safe in the short term, it will take hundreds of 

years for the waste to decompose. Actually there is a shortage of landfill space in many 

countries and the long term environmental impact of the byproducts of decomposition is 

unknown. Numerous organizations and some governments around the world are planning 

for zero plastics to landfills in the not too distant future. Plastics disposal in landfills is also 

wasteful of their value. Plastics are recyclable by one of three methods (Akovali et al., 1998), 

which are the subjects of major research efforts currently.  Mechanical recycling involves re-

melting and reprocessing into new plastic products. Chemical recycling is the conversion 

back to monomers and chemicals for the production of new polymers and other uses in the 

chemical and oil industries. Energy recovery is accomplished by incineration. The decision 

on which type of recycling to follow depends on economic, ecological and technical 

considerations (Rudolph et al., 2017, La Mantia, 2002). 

 
Figure 1.12-1. Plastics identification codes for recycling purposes. 

 

        Mechanical recycling is relevant for this book and in the opinion of most experts it is the 

most promising. It consists of two parts: Reclamation and reprocessing. Reclamation is 

concerned with the collection and separation of products and/or their constituent materials. 

Reprocessing may involve production of plastic products from 100% recycled materials or 

mixing with virgin polymers for upgrading the quality. The identification codes of                   
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Fig. 1.12-1 are very helpful for separating the various polymers at the consumer level. 

According to Vlachopoulos (2009), mechanical recycling is also beneficial of for reduction of 

the carbon footprint. For every ton of recycled polyethylene (PE) pellets produced for 

reprocessing, roughly two tons of CO2 are saved from the amount required for the production 

of a ton of virgin PE.  

        Biodegradable polymers (Chiellini and Solaro, 2003) have received a lot of attention in 

recent years, with PLA being at the forefront. They offer an excellent solution for single-use 

or short-term-use applications. These may include food packaging, disposable tableware, 

water bottles, shopping bags, kitchen-waste bags and agricultural mulch-films. They can be 

made from renewable resources (like corn and other natural products) or from petroleum 

and/or natural gas. The demand for biodegradable plastics is rapidly growing, but at present 

they are less than 1% of the total volume of plastics produced annually. Biodegradable plastics 

have their own end-of-life problems. Some of them break down at a temperature higher than 

that of the oceans. PLA, having density in the range 1210-1430 kg/m3, is not buoyant in 

water, so it sinks and by not being exposed to UV light it does not break down in ocean water. 

Biodegradable plastic products can easily contaminate a stream of recyclable plastics and 

significantly reduce their value. They are no easy solutions for reducing plastics pollution and 

its impact on the environment. Recycling is likely to play the most important role, while 

biodegradability will be for niche applications. 
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Chapter 2  

VISCOSITY AND UNIDIRECTIONAL MELT 

FLOWS 
 

 
 

 

2.1 Introduction 

The flow of molten polymers through processing equipment is primarily determined 

by their viscosity, which is the resistance to flow. Let us consider two long parallel plates 

placed a small distance h apart, the space between being filled with a fluid. One of the plates 

is fixed and the other moves parallel to it with a velocity U  by the application of a force F, as 

shown in Fig. 2.1-1. The fluid in contact with each plate "sticks" to it and does not "slip" 

relative to it. Consequently, the velocity of the fluid touching each plate is the same as that of 

the plate. 

 

Figure 2.1-1. Schematic of fluid flow between two flat plates. The top plate moves to the right with 

velocity U. 

 

Experiments have shown that for a large class of fluids (Newtonian) the velocity profile 

will be a straight line as shown in Fig. 2.1-1 and the force F is proportional to the velocity U, 

the area in contact with the fluid A and inversely proportional to the gap h 

𝐹 ∝
𝐴𝑈

ℎ
 (2.1-1) 
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The quantity F/A is called shear stress and is denoted by the Greek symbol τ (tau)                                                                           

𝜏 ∝
𝑈

ℎ
 (2.1-2) 

In the limit of small deformations, the ratio U/h can be replaced by the velocity gradient 

du/dy, which is called the shear rate. The proportionality constant between shear stress and 

shear rate is called viscosity and is denoted by the Greek symbol η (eta) in non-Newtonian 

fluid mechanics (frequently μ for Newtonian). Therefore, we may write                                                                        

𝜏 = 𝜂
𝑑𝑢

𝑑𝑦
 (2.1-3) 

Eq. 2.1-3 is referred to as Newton 's law of viscosity with η the viscosity of the fluid. The 

dimensions of viscosity are force per unit area divided by the velocity gradient. In SI units 

[𝜂] →
𝑁 𝑚2⁄

𝑚 𝑠⁄
𝑚

=
𝑁

𝑚2
⋅ 𝑠 = 𝑃𝑎 ⋅ 𝑠 (𝑝𝑎𝑠𝑐𝑎𝑙 ∙ 𝑠𝑒𝑐𝑜𝑛𝑑) 

Fluids obeying a linear relationship between shear stress and shear rate are called Newtonian. 

Non–Newtonian fluids are those that exhibit non–linear stress versus shear rate relationships 

such as Bingham plastic, pseudoplastic (shear thinning) or dilatant fluids (shear thickening) 

as shown in Fig. 2.1-2. With pseudoplastic fluids if we double the applied force we get more  

 

 
Figure 2.1-2. Shear stress (τ) versus shear rate (du/dy) for Newtonian and non-Newtonian fluids. 

 

than double the flow rate, while with dilatant fluids we get less than double. A Bingham fluid 

does not flow unless a certain stress (τo), called yield stress, is exceeded. For example, ketchup 
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usually does not flow when you turn a usual size bottle of it upside down, because the stress 

imposed by the weight is lower than the yield stress. But, when you tap it hard enough, it does 

(when τo is exceeded). 

 

2.2 Viscosity of Suspensions  

The non–Newtonian behavior is due to very complex fluid structure. It is important to 

point out that even the behavior of a dilute suspension of solid spheres is imperfectly 

understood. Einstein (Batchelor, 1977) formulated and solved the problem for the 

determination of resistance to shearing caused by the presence of a single sphere of neutral 

density. By extending the applicability, of the single sphere calculations, to a dilute suspension 

of spheres, Einstein showed that the response remained Newtonian and the viscosity of the 

suspension is given by                                                                 

𝜂𝑐 = 𝜂𝑓(1 + 2.5𝜑) (2.2-1) 

where ηc is the viscosity of the suspension, ηf the viscosity of the suspending fluid and φ the 

volume fraction occupied by the spheres. This model is valid for φ up to 1%. For larger values 

of φ, interactions between spheres (or particles in general) become important and non–

linearities appear. For higher concentrations the particle–particle interactions are important 

and Batchelor’s (1977) equation is valid up to perhaps φ=0.1, but it is frequently used for 

higher fractions                                                     

𝜂𝑐 = 𝜂𝑓(1 + 2.5𝜑 + 6.2𝜑2) (2.2-2) 

The volume fraction is related to the weight fraction by the expression 

𝜑 =
𝑤/𝜌𝑐

[𝑤 𝜌𝑐⁄ + (1 − 𝑤) 𝜌𝑚⁄ ]
 (2.2-3) 

where w is the weight fraction of the component, ρc is the density of the component added 

and ρm the viscosity of the matrix (suspending fluid). In very dilute solutions, particles will 

rotate due to the action of the shear field. As the concentration is increased, hydrodynamic 

interactions between the particles become important. Particles come close to particles on 

nearby streamlines and the fluid is disturbed in their vicinity. As the concentration is further 

increased, colloidal interactions (of attraction or repulsion) involve three, four or more 

particles and the rigorous analyses of Einstein and Batchelor no longer apply. 

Since the behavior of dilute suspensions of particles is so complex, it can be easily 

deduced that the mathematical description of behavior of concentrated suspensions having 
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different size and shape of particles (e.g. human blood, cement slurries, printing inks) and 

macromolecular solutions or melts would be a very challenging task. 

 

Example E2.2-1 

Assume that Batchelor’s equation is valid at any volume ratio and any suspending fluid. Dete- 

rmine the viscosity of a polymer melt (HDPE) if it has been filled with 30 PHR (parts per 

hundred) calcium carbonate (CaCO3) by weight. The density of the solid polymer is 950 

kg/m3 and the density of the calcium carbonate is 2710 kg/m3.  

Solution 

CaCO3 30 PHR 

Polymer melt 100 PHR 

 

Therefore, the weight fraction would be  

𝑤 =
30

(30 + 100)
≅ 0.23 

Using the density of the CaCO3 (ρc=2710 kg/m3) and the solid density of HDPE (ρm=950 

kg/m3), we can calculate the volume fraction at room temperature            

𝜑 =
0.23 2710⁄

[0.23 2710⁄ + (1 − 0.23) 950⁄ ]
≅ 0.0947 

At processing temperature, the density of HDPE will be reduced to perhaps 780 kg/m3 but 

the density of CaCO3 will pretty much remain unchanged. So, it is better to recalculate the 

volume fraction for 780 kg/m3 which gives 𝜑=0.07916. Therefore, from Eq. 2.2-2 we have  

𝜂𝑐 = 𝜂𝑓(1 + 2.5 × 0.07916 + 6.2 × 0.079162) ≅ 1.23𝜂𝑓 

which means that the viscosity of the filled polymer melt will be 1.23 times higher than the 

viscosity of the suspending fluid (unfilled polymer melt). 

Note: For much higher filler loadings the viscosity of a filled polymer can easily be more than 

5-10 times the viscosity of the neat polymer melt. When nanoparticles are added, even with 

loadings less than 5%, the viscosity can increase ten-fold, due to particle-particle interactions. 

 

2.3 Shear-Thinning Behavior of Polymers 

In fluid mechanics textbooks, pseudoplastic fluids are defined those which exhibit 

decrease in viscosity as the shear rate increases. This property is frequently called shear– 

thinning. It should not be confused with the term thixotropy, which is the reduction of 
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viscosity with time, due to structural changes. Dilatant fluids are defined those which exhibit 

increase in viscosity as the shear rate increases. This shear thickening effect should not be 

confused with rheopexy, which refers to increase of viscosity with time, due to structural 

changes. Time-dependent viscosity effects are beyond the scope of this chapter. 

 
Figure 2.3-1. Viscosity as a function of shear rate of a polymer melt. The straight line represents a 

power-law fit with m ≈ 20,000 Pa·sn and n ≈ 0.3. 

 

Polymer chains tend to align in the direction of flow and disentangle and they exhibit 

less resistance to flow as the rate of shearing increases (pseudoplastic or shear-thinning 

behavior). Fig. 2.3-1 shows a typical polymer melt viscosity curve. We note a Newtonian 

region at very low shear rates and it is possible to have another Newtonian region at very high 

shear rates in polymer solutions. A significant portion of the curve of Fig. 2.3-1 may be 

described by the power–law expression (also called Ostwald–de Waele model), which is   

𝜏 = 𝑚 (
𝑑𝑢

𝑑𝑦
)

𝑛

 or 𝜂 =
𝜏

(𝑑𝑢/𝑑𝑦)
⇒ 𝜂 = 𝑚 (

𝑑𝑢

𝑑𝑦
)

𝑛−1

= 𝑚𝛾̇𝑛−1 (2.3-1) 

Τhe shear rate is frequently designated with the Greek letter 𝛾̇, m is a measure of the 

consistency index of the fluid, the larger the m the more viscous the fluid. The power-law 

exponent n (always n<1 for polymer solutions and melts) indicates the degree of departure 

from the Newtonian behavior. For n=1 the fluid is Newtonian and the viscosity is constant. 

As n becomes smaller, the shear–thinning behavior is more pronounced. The power–law 

relation gives                                               

log 𝜂 = log 𝑚 + (𝑛 − 1)log 𝛾̇ (2.3-2) 
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where 𝛾̇ is the shear rate. Note that the consistency index m is the viscosity at 𝛾̇=1 s-1 and n-1 

is the slope on a log–log graph, as shown in Fig. 2.3-1. 

Typical values of the power–law exponent n for some common polymer melts are: 

polyethylene: 0.3–0.6, polyvinyl chloride: 0.2–0.5 and nylon: 0.6–0.9. The consistency index 

is usually in the range m=103–105 Pa·sn at processing temperatures and it is sensitive to 

changes in temperature. For the range from 150oC to 250oC, usual in the processing of many 

polymers, a common representation is                                                

𝑚 = 𝑚𝑜 𝑒𝑥𝑝[−𝑏(𝑇 − 𝑇𝑜)] (2.3-3) 

where mo is the consistency index at the reference temperature To and b is the temperature 

sensitivity coefficient. Typically, b is of the order of 0.01–0.04 K-1 for most common polymers 

implying a reduction of viscosity of roughly between 10% and 35% for a 10oC rise in 

temperature. Some polymer melts have more temperature sensitive viscosity and b can be as 

high as 0.1 K-1. A more accurate equation of temperature dependence (Arrhenius) is given in 

Chapter 5, on rheological measurements. 

The power–law equation is very useful for many engineering problems involving non–

Newtonian fluids. The drawback is that it cannot capture the upper or lower Newtonian 

regions of viscosity. There are two popular models, which capture both the low and high shear 

rate viscosity behavior of polymeric liquids: 

a) Carreau-Yasuda model                                                

𝜂 − 𝜂∞

𝜂𝜊 − 𝜂∞
= [1 + (𝜆𝛾̇)𝑎]

𝑛−1
𝑎  (2.3-4) 

b) Cross model                                                        

𝜂 − 𝜂∞

𝜂𝜊 − 𝜂∞
=

1

1 + (𝜆𝛾̇)1−𝑛
 (2.3-5) 

where ηο the viscosity at zero-shear, η∞ the viscosity at infinite shear and λ, a and n are fitted 

parameters. For a 5% polystyrene solution in Aroclor (see Bird et al., 1987), the Carreau–

Yasuda model is fitted with  

ηο=101 Pa·s      η∞=0.059 Pa·s     λ=0.84 s     n=0.380     α=2 

For a polystyrene melt at 180oC 

ηο=14800 Pa·s      η∞=0 Pa·s     λ=1.04 s     n=0.398     α=2 

Generally speaking, η∞=0 for polymer melts and Carreau-Yasuda and Cross models are used 

in their simpler forms without η∞. As we will see, there are several practically useful flow 
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problems for which we can obtain closed-form (analytical) solutions. However, there is no 

closed-form solution possible for any flow problem with either the Carreau-Yasuda or the 

Cross models. The meaning of the fitting parameters for the Carreau-Yasuda model is 

illustrated in Fig. 2.3-2. In the Cross viscosity model the parameter λ is equal to the inverse  

 
Figure 2.3-2. Meaning of the fitting parameters for the Carreau-Yasuda model. From Morrison (2001). 

 

of the shear rate at η =ηο/2. In the next sections of this chapter, we present analytical solutions 

to several unidirectional flow problems using the power-law model. “Unidirectional” means 

that the flow is only in one direction, the velocity varies in the perpendicular direction and 

may also vary the direction of the flow. 

 

Example E2.3-1 

A 600 mm long cylinder, 50 mm in diameter, rotates in another cylinder of the same length 

and 52 mm in diameter. The gap between the two cylinders is filled with molten polymer 

obeying the power-law model with m=2000 Pa·sn and n=0.4. The gap is assumed uniform and 

the inner cylinder rotates at 300 revolutions per minute. Calculate (a) the torque and (b) the 

power required for the rotation of the inner cylinder.  

 

Solution 

L=600 mm=0.6 m 

Di=50 mm=0.05 m 

Do=52 mm=0.052 m 

h=Do -Di=(0.052–0.05)/2=0.001 m 

𝑈 = 𝜋𝐷𝑖

𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒

60
= 𝜋 × 0.05 ×

300

60
= 0.785 𝑚/𝑠 
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(a) We start from Eq. 2.3-1  

𝜏 = 𝑚 (
𝑑𝑢

𝑑𝑦
)

𝑛

 

Approximating the velocity derivative as du/dy≈U/h, where U the velocity of the inner 

cylinder and h the gap between the cylinders we have  

𝜏 = 𝑚 (
𝑈

ℎ
)

𝑛

 

At the surface of the inner cylinder τ =F/A. Therefore, the torque will be 

𝑇𝑜 = 𝐹𝑅𝑖 = 𝜏𝐴𝑅𝑖 = 𝑚 (
𝑈

ℎ
)

𝑛

(𝜋𝐷𝑖𝐿)
𝐷𝑖

2
= 𝑚 (

𝑈

ℎ
)

𝑛 𝜋𝐷𝑖
2𝐿

2
 

𝑇𝑜 = 2000 [
0.785

0.001
]

0.4 𝜋 × 0.052 × 0.6

2
= 67.8 N · m 

(b) The power required for the rotation of the shaft is  

𝑃𝑜 = 𝐹𝑈 = 𝜏𝐴𝑈 = 𝑚 (
𝑈

ℎ
)

𝑛

(𝜋𝐷𝑖𝐿)𝑈 = 𝑚
𝑈𝑛+1

ℎ𝑛
(𝜋𝐷𝑖𝐿) = 

                 = 2000
0.7850.4+1

0.0010.4
(𝜋 × 0.05 × 0.6) = 2128.65 𝑁 ∙

𝑚

𝑠
= 2128.65 𝑊 = 2.12𝑘𝑊 

 

2.4. Stress and Conservation of Momentum 

 During fluid flow, stresses are developed either tangentially (shear) or perpendicularly 

(normal) to surfaces as shown schematically in Fig. 2.4-1. Pressure is a normal stress. Some 

engineering calculations can be easily carried out for simple shear flow fields. For example, if 

the viscosity of a fluid is known, the force required to move the plate in the parallel flow 

arrangement is shown in Fig. 2.4-2. 

 
Figure 2.4-1. Schematic representation of shear and normal stresses. 
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Figure 2.4-2. Schematic representation of force required to move the top plate in parallel flow 

arrangement. 

 

A (nearly) parallel flow field can be realized between two concentric cylinders if the gap to 

radius ratio is small. The torque To can easily be calculated by To=FR=τAR (Torque=Force × 

Radius = shear stress × Area × Radius) where R the distance from axis of rotation.  The power 

(Po) required to turn the inner cylinder will be  

𝑃𝑜 = 𝐹𝑈 = 𝜏𝐴𝑈 (2.4-1) 

To solve general flow problems, we must set up a momentum balance (for details see 

Vlachopoulos, 2016). It turns out that the momentum balance leads to an equation that can 

be stated verbally as 

{
𝑖𝑛𝑒𝑟𝑡𝑖𝑎
𝑓𝑜𝑟𝑐𝑒𝑠

} = {
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑓𝑜𝑟𝑐𝑒𝑠 } + {
𝑠𝑡𝑟𝑒𝑠𝑠
𝑓𝑜𝑟𝑐𝑒𝑠} + {

𝑔𝑟𝑎𝑣𝑖𝑡𝑦
𝑓𝑜𝑟𝑐𝑒𝑠

} (2.4-2) 

Mathematically, this is written in the following form 

𝜌 (
𝜕𝑉̅

𝜕𝑡
+ 𝑉̅ ∙ 𝛻𝑉̅) = −∇𝑝 + ∇𝜏̿ + 𝜌𝑔̅ (2.4-3) 

The left-hand side term represents the inertia forces, while the terms on the right-hand side 

are the pressure forces, stress forces and gravity forces respectively. Molten polymers are 

characterized by extremely high viscosities (usually over a million times more viscous than 

water). 

 The Reynolds number Re =ρUD/μ is very small under usual processing conditions 

(Re=10-1~10-4). Therefore, the flows are always laminar for polymer melts. The following 

approximations always apply: 

 The convective (inertia) forces are insignificant and may be neglected. 

 The gravity forces are normally negligible.  
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 The flow is dominated by the balance of pressure and stress forces. It is often referred 

to as creeping or Stokes flow. 

In Chapter 4, we examine viscoelastic stresses, but in this chapter only viscous forces 

are considered and polymer elasticity is neglected. Due to the above, Eq. 2.4-3 takes the form 

0 = −∇𝑝 + ∇𝜏̿ (2.4-4) 

The following should be noted: 

 Pressure p is a scalar. 

 Velocity is a vector: 𝑉̅ = 𝑉̅(𝑉𝑥, 𝑉𝑦,𝑉𝑧) which means it has components in x, y and z 

directions (frequently in the literature the velocity components are denoted as (u,v,w) 

respectively. 

 Stress is defined as the ratio Force/Area and can be normal or tangential (shear). 

 Stress is a second order tensor having nine components 

𝜏̿ = {

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

} (2.4-5) 

where 𝜏̿ is the symbolic notation of the stress tensor. τij is the so-called index notation of the 

same tensor. Actually in tensor manipulation it is easier to work with 1,2,3 rather than x,y,z 

so that the components may be written as 

𝜏𝑖𝑗 = {

𝜏11 𝜏12 𝜏13

𝜏21 𝜏22 𝜏23

𝜏31 𝜏32 𝜏33

} (2.4-6) 

The first subscript is perpendicular to the plane where the stress acts, while the second 

subscript indicates the direction of the stress (as shown in Fig. 2.4-3) 

 
Figure 2.4-3. Stresses exerted on three planes of an elemental volume. 
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With respect to Eq. 2.4-5, the following should be noted 

 Components τxx, τyy  and τzz  are normal stresses.  

 Components τxy, τyx, τyz, τzy, τzx and τxz are shear stresses.   

 Stress is a symmetric tensor, which means that τxy=τyx, τyz=τzy  and τzx=τxz 

However, it is important to keep the convention that the first index corresponds to the plane 

of action and the second the direction. 

 Using the Taylor expansion f (x+dx)=f (x)+(∂f/∂x)Δx the balance of pressure and stress  

forces for  planar flow between two parallel flat plates,  shown in Fig. 2.4-4, can be written as  

 
Figure 2.4-4. Force balance for a differential volume element. (Δz length is normal to the page). 

𝑝𝛥𝑦𝛥𝑧 − (𝑝 +
𝜕𝑝

𝜕𝑥
𝛥𝑥) 𝛥𝑦𝛥𝑧 = (𝜏 +

𝜕𝜏

𝜕𝑦
𝛥𝑦) 𝛥𝑥𝛥𝑧 − 𝜏𝛥𝑥𝛥𝑧 (2.4-7) 

which yields 

0 = −
𝜕𝑝

𝜕𝑥
+

𝜕𝜏

𝜕𝑦
 (2.4-8) 

In unidirectional flows, we balance the pressure in the direction of the flow with an opposing 

shear stress. So, we will only have just two terms in the equation of momentum. In fact, the 

component in the direction of the flow is the “governing equation” of motion, which we solve 

in order to obtain the velocity profile and other quantities, as we describe in Section 2.5. 

 

2.5. How to Derive the Governing Equation(s) for a Flow Problem 

A crucial step in problem solving is the derivation of appropriate governing equation(s) 

i.e. equation(s) that contain(s) all the essential information. We have seen that for flow 

between two flat plates the balance of pressure and stress gives Eq. 2.4-8 and since the stress 

is given by the viscosity relation 𝜏 = 𝜂
𝜕𝑉𝑥

𝜕𝑦
 the resulting governing equation is  
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−
𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
(𝜂

𝜕𝑉𝑥

𝜕𝑦
) = 0 (2.5-1) 

While it was easy to derive this equation from first principles (simple force balance), it can be 

difficult when the geometry of flow is more complicated. By far, the most common and 

reliable method is to start from the general conservation equations for mass, momentum (and 

energy if flow is non-isothermal). 

 The general equation of conservation of mass (continuity) for incompressible fluids 

(which is a reasonable assumption for molten polymers) is ∇ ∙ 𝑉̅ = 0 or 

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= 0 (2.5-2) 

The general equation of conservation of momentum (also known as Navier-Stokes equation) 

with the low Reynolds number or creeping flow approximation which is valid for virtually all 

polymer melt flows is  

0 = −∇𝑝 + ∇𝜏̿ (2.5-3) 

or in rectangular coordinates 

x-direction: −
𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
= 0 (2.5-4a) 

y-direction: −
𝜕𝑝

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
= 0 (2.5-4b) 

z-direction: −
𝜕𝑝

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+

𝜕𝜏𝑧𝑧

𝜕𝑧
= 0 (2.5-4c) 

where 

𝜏𝑥𝑥 = 2𝜂
𝜕𝑉𝑥

𝜕𝑥
 (2.5-5a) 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜂 (
𝜕𝑉𝑥

𝜕𝑦
+

𝜕𝑉𝑦

𝜕𝑥
) 

(2.5-5b) 

and similar expressions for the other stress components (Vlachopoulos, 2016). 

 For flow only in the x-direction, between two flat plates there is pressure variation in 

the x-direction (i.e. the pressure necessary to push the fluid through the channel) as shown in 

Fig. 2.5-1.  

 
Figure 2.5-1. Schematic representation of a pressure-driven flow between two parallel flat plates. 
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However, there is no pressure variation in the y or z directions and consequently 
𝜕𝑝

𝜕𝑦
=

𝜕𝑝

𝜕𝑧
= 0. 

Since the fluid is sheared as it is forced to flow through the channel, but without any velocity 

change along x or z, all the stress components are zero except for the term 
𝜕𝜏𝑦𝑥

𝜕𝑦
. Thus, we end 

up with the governing equation 

−
𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
= 0 (2.5-6) 

where  

𝜏𝑦𝑥 = 𝜂 (
𝜕𝑉𝑥

𝜕𝑦
) (2.5-7) 

The elimination of terms from the general conservation equations is a relatively easy process 

and almost failure-proof. The detailed step-by-step methodology is explained in Vlachopoulos 

(2016). 

 It is important to remember that for the unidirectional flow problems, the governing 

equation will always be the equation of momentum in the flow direction with at most two 

terms: one term for pressure variation and one term for stress variation. However, it is also 

possible to have flow in the absence of pressure (called drag or Couette flow) when the fluid 

is literally dragged by the moving wall.  

 In Table 2.5-1 we present the governing equations for some basic steady unidirectional 

flow problems of considerable practical significance. They involve a fluid flowing in one 

direction only and the velocity varying in the normal direction. Annular Couette flow should 

be used when the ratio of radius/gap is relatively small e.g. R/H<10, otherwise it can be 

treated as flow between two flat plates. Several worked out problems in great detail for 

Newtonian unidirectional flows by Vlachopoulos (2016). 

 

2.6 Pressure Driven Flow of a Power-Law Fluid Between Two Flat Plates 

Consider two flat plates of length L and spaced 2b apart. We will solve this problem 

by starting from the general conservation equations.  The continuity equation (Eq.2.5-2)) for 

flow in the x-direction is valid                                                              

𝜕𝑉𝑥

𝜕𝑥
= 0 (2.6-1) 

The x component of the stress form of the equation of conservation of momentum simplifies 

to the governing equation for this flow problem                                                        
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Table 2.5-1. Basic types of steady unidirectional flows 

Type of flow 
Schematic 

representation 
Governing equation Shear stress 

Planar flow 

 

𝑥 − 𝑑𝑖𝑟: 0 = −
𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
(𝜏𝑦𝑥) 𝜏𝑦𝑥 = 𝜂 (

𝜕𝑉𝑥

𝜕𝑦
) 

Axisymmetric 

flow 

 

𝑧 − 𝑑𝑖𝑟: 0 = −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) 𝜏𝑟𝑧 = 𝜂 (

𝜕𝑉𝑧

𝜕𝑟
) 

Radial 

(squeeze) 

flow 

 

𝑟 − 𝑑𝑖𝑟: 0 = −
𝜕𝑝

𝜕𝑟
+

𝜕

𝜕𝑧
(𝜏𝑟𝑧) 𝜏𝑧𝑟 = 𝜂 (

𝜕𝑉𝑟

𝜕𝑧
) 

Annular 

Couette flow 

 

𝜃 − 𝑑𝑖𝑟: 0 = −
1

𝑟

𝜕𝑝

𝜕𝜃
+

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝜏𝑟𝜃) 𝜏𝑧𝑟 = 𝜂𝑟

𝜕

𝜕𝑟
(

𝑉𝜃

𝑟
) 

 

 

 

 

 

 

 



2-15 

 

 
 

0 = −
𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
 (2.6-2) 

Although τxy=τyx (stress is a symmetric tensor) we write τyx in the above equation because the 

usual convention is that the second index indicates the direction of the stress component and 

the first index is the direction perpendicular to the plane where the stress component acts. The 

y component gives again                                                           

0 = −
𝜕𝑝

𝜕𝑦
− 𝜌𝑔 (2.6-3) 

and the z component again                                                                

0 = −
𝜕𝑝

𝜕𝑧
 (2.6-4) 

Eq. 2.6-3 means that pressure variation in the y-direction is hydrostatic, which we can neglect. 

Eq. 2.6-4 simply states that pressure is constant in the z-direction. 

The pressure gradient in the x-direction is     

𝜕𝑝

𝜕𝑥
= −

𝛥𝑝

𝐿
 (2.6-5) 

thus Eq. 2.6-2 becomes                                                             

𝜕𝜏𝑦𝑥

𝜕𝑦
= −

𝛥𝑝

𝐿
 (2.6-6) 

Integration gives         

𝜏𝑦𝑥 = −
𝛥𝑝

𝐿
𝑦 + 𝐶1 (2.6-7) 

We now introduce the power–law equation in the form     

𝜏𝑦𝑥 = 𝑚 |
𝜕𝑉𝑥

𝜕𝑦
|

𝑛−1

(
𝑑𝑉𝑥

𝑑𝑦
) (2.6-8) 

The absolute value is necessary for avoiding problems with negative velocity gradient  

𝑚 |
𝜕𝑉𝑥

𝜕𝑦
|

𝑛−1

(
𝜕𝑉𝑥

𝜕𝑦
) = −

𝛥𝑝

𝐿
𝑦 + 𝐶1 (2.6-9) 

Since 
𝜕𝑉𝑥

𝜕𝑦
= 0 at y=0 (symmetry) we obtain C1=0. By replacing the partial differentiation by 

an ordinary one, we get  

𝑚 |
𝑑𝑉𝑥

𝑑𝑦
|

𝑛−1

(
𝑑𝑉𝑥

𝑑𝑦
) = −

𝛥𝑝

𝐿
𝑦 (2.6-10) 
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The right hand side is negative and the absolute value of the velocity gradient is raised to the 

power n-1, therefore dVx/dy must be negative and may be written as 

𝑑𝑉𝑥

𝑑𝑦
= − (

1

𝑚

𝛥𝑝

𝐿
)

1 𝑛⁄

𝑦1 𝑛⁄  (2.6-11) 

This is integrated to give 

𝑉𝑥(𝑦) = −
𝑛

𝑛 + 1
(

1

𝑚

𝛥𝑝

𝐿
)

1 𝑛⁄

𝑦(𝑛+1) 𝑛⁄ + 𝐶2 (2.6-12) 

The no–slip condition Vx=0 at y =b (the half-gap) gives 

𝐶2 = −
𝑛

𝑛 + 1
[

1

𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

𝑏(𝑛+1) 𝑛⁄  (2.6-13) 

Hence, the velocity profile is  

𝑉𝑥(𝑦) = (
𝑛

𝑛 + 1
) [

𝑏𝑛+1

𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

[1 − (
𝑦

𝑏
)

𝑛+1
𝑛

] (2.6-14) 

The maximum velocity is at y =0 

𝑉𝑚𝑎𝑥 = (
𝑛

𝑛 + 1
) [

𝑏𝑛+1

𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

 (2.6-15) 

and the velocity profile can be expressed as  

𝑉𝑥(𝑦) = 𝑉𝑚𝑎𝑥 [1 − (
𝑦

𝑏
)

𝑛+1
𝑛

] (2.6-16) 

The average velocity is  

𝑉𝑎𝑣𝑔 =
 𝑉𝑥𝑑𝑧𝑑𝑦
 𝑑𝑧𝑑𝑦

⇒ 𝑉𝑎𝑣𝑔 =
∫ 𝑉𝑥𝑑𝑦

𝑏

−𝑏

∫ 𝑑𝑦
𝑏

−𝑏

⇒ 𝑉𝑎𝑣𝑔 =
𝑛 + 1

2𝑛 + 1
𝑉𝑚𝑎𝑥 (2.6-17) 

The volume rate of flow per unit width is 

𝑄

𝑊
= 𝑉𝑎𝑣𝑔2𝑏 ⇒

𝑄

𝑊
=

2𝑛

2𝑛 + 1
[

1

𝑚

𝛥𝑝

𝐿
]

1 𝑛⁄

𝑏
1
𝑛

+2
 (2.6-18) 

and the pressure drop                        

𝛥𝑝 = 𝑚𝐿 [
2𝑛 + 1

2𝑛

𝑄

𝑊
]

𝑛

𝑏−(2𝑛+1) (2.6-19) 

where L is the channel length and b the half gap. By setting n=1 we obtain the corresponding 

results for the Newtonian problem. The velocity profile is exactly parabolic for n=1, more flat 

for n<1 and more elongated for n>1, as shown in Fig. 2.6-1.  
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Table 2.6-1. Important expressions for pressure driven flow between two parallel plates 

Shear rate at wall 𝛾̇𝑤 =
𝑛 + 1

𝑛

𝑉𝑚𝑎𝑥

𝑏
,         𝛾̇𝑤 =

2𝑛 + 1

𝑛

𝑉𝑎𝑣𝑔

𝑏
, 𝛾̇𝑤 =

2𝑛 + 1

𝑛

2𝑄

4𝑊𝑏2
 

Shear stress at wall 

𝜏𝑤 = 𝑚 [
2𝑛 + 1

𝑛

2𝑄

4𝑊𝑏2
]

𝑛

 

𝜏𝑤 =
𝛥𝑃

𝐿 𝑏⁄
 

 

Pressure drop 𝛥𝑝 = 𝑚𝐿 [
2𝑛 + 1

2𝑛

𝑄

𝑊
]

𝑛

𝑏−(2𝑛+1) 

Volume rate of flow 
(per unit width) 

𝑄

𝑊
=

2𝑛

2𝑛 + 1
[

1

𝑚

𝛥𝑝

𝐿
]

1 𝑛⁄

𝑏
1
𝑛

+2
 

Maximum velocity 𝑉𝑚𝑎𝑥 = (
𝑛

𝑛 + 1
) [

𝑏𝑛+1

𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

 

Average velocity 𝑉𝑎𝑣𝑔 =
𝑛 + 1

2𝑛 + 1
𝑉𝑚𝑎𝑥 
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Figure 2.6-1. Velocity profiles for power-law fluids flowing under a pressure gradient between two flat 

plates with n=0.25 n=0.5 (shear thinning), n=1 (Newtonian) and n=1.5 n=2.0 (shear thickening). 

 

2.7 Pressure Driven Flow of a Power-Law Fluid in a Tube 

Again we will solve this problem by starting from the conservation equations which 

are given by Vlachopoulos (2016). 

The continuity equation reduces to 

𝜕𝑉𝑧

𝜕𝑧
= 0 (2.7-1) 

The stress form of the equation of conservation of momentum simplifies to 

r component 0 = −
𝜕𝑝

𝜕𝑟
+ 𝜌𝑔𝑟 (2.7-2) 

θ component 0 = −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜌𝑔𝜃 (2.7-3) 

z component 0 = −
𝜕𝑝

𝜕𝑧
+

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜏𝑟𝑧) (2.7-4) 

The r- and θ- components are identical to those for the Newtonian problem and neglected (no 

flow in r- or θ-). The z- component is the governing equation which contains the shear stress 

term that will be replaced by the power–law equation  

𝜏𝑟𝑧 = 𝑚 |
𝜕𝑉𝑧

𝜕𝑟
|

𝑛−1 𝜕𝑉𝑧

𝜕𝑟
 (2.7-5) 

We have  
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−
𝛥𝑝

𝐿
=

1

𝑟

𝜕

𝜕𝑧
(𝑟𝜏𝑟𝑧) (2.7-6) 

Integration gives  

𝑟𝜏𝑟𝑧 = −
𝛥𝑝

2𝐿
𝑟2 + 𝐶1 (2.7-7) 

and dividing by r we have 

𝜏𝑟𝑧 = −
𝛥𝑝

2𝐿
𝑟 +

𝐶1

𝑟
 (2.7-8) 

C1 must be zero in order for the shear stress τrz to remain finite at r=0. Thus 

𝜏𝑟𝑧 = −
𝛥𝑝

2𝐿
𝑟 (2.7-9) 

Introducing the power–law equation (Eq. 2.7-5) we have 

𝑚 |
𝜕𝑉𝑧

𝜕𝑟
|

𝑛−1 𝜕𝑉𝑧

𝜕𝑟
= −

𝛥𝑝

2𝐿
𝑟 (2.7-10) 

The right hand side is negative and the absolute value of the velocity gradient is raised to the 

power n-1, therefore 
𝜕𝑉𝑧

𝜕𝑟
 must be negative and may be written as 

𝑑𝑉𝑧

𝑑𝑟
= − (

𝛥𝑝

2𝑚𝐿
)

1 𝑛⁄

𝑟1 𝑛⁄  (2.7-11) 

By integrating we have                                   

𝑉𝑧(𝑟) = −
𝑛

𝑛 + 1
(

𝛥𝑝

2𝑚𝐿
)

1 𝑛⁄

𝑟(𝑛+1) 𝑛⁄ + 𝐶2 (2.7-12) 

With the help of the no–slip boundary condition Vz=0 at r=R we determine the integration 

constant  

𝐶2 =
𝑛

𝑛 + 1
(

𝛥𝑝

2𝑚𝐿
)

1 𝑛⁄

𝑅(𝑛+1) 𝑛⁄  (2.7-13) 

and the velocity profile is                             

𝑉𝑧(𝑟) =
𝑛

𝑛 + 1
[
𝑅𝑛+1

2𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

[1 − (
𝑟

𝑅
)

(𝑛+1) 𝑛⁄

] (2.7-14) 

The maximum velocity is at r=0                                                   

𝑉𝑚𝑎𝑥 =
𝑛

𝑛 + 1
[
𝑅𝑛+1

2𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

 (2.7-15) 

and the velocity profile can be expressed as 
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𝑉𝑧(𝑟) = 𝑉𝑚𝑎𝑥 [1 − (
𝑟

𝑅
)

(𝑛+1) 𝑛⁄

] (2.7-16) 

The average velocity is obtained by integrating over the cross–sectional area and then dividing 

by the cross–sectional area 

𝑉𝑎𝑣𝑔 =
∫ ∫ 𝑉𝑧𝑟𝑑𝑟𝑑𝜃

𝑅

0

2𝜋

0

∫ ∫ 𝑟𝑑𝑟𝑑𝜃
𝑅

0

2𝜋

0

⇒ 𝑉𝑎𝑣𝑔 =
𝑛

(3𝑛 + 1)
[
𝑅𝑛+1

2𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

 (2.7-17) 

The volume rate of flow is  

𝑄 = 𝑉𝑎𝑣𝑔𝜋𝑅2 = 𝜋
𝑛

3𝑛 + 1
[

1

2𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

𝑅
1
𝑛

+3
 (2.7-18) 

and the pressure drop               

𝛥𝑝 = 2𝑚𝐿𝑅−(3𝑛+1) [
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

 (2.7-19) 

Again, by setting n=1 we obtain the corresponding expressions for Newtonian fluid. The 

velocity profiles are similar to those of Fig. 2.6-1. For n=1 we get the parabolic (Newtonian) 

profile, for n<1 the profile is more blunt and for n>1 more pointed.  

 

Example E2.7-1 

For the geometry of the melt indexer shown in Fig.1.11-1 (load of 2.16) of Chapter 1, assume 

that a polymer has melt density 766 kg/m3 and behaves like a Newtonian fluid (n=1). 

Determine the shear rate at the wall if we have a polymer with MI=1 another of MI=10 and 

a third of MI=50. 

 

Solution 

The MI value is measured in grams per 10 minutes. Generally, mass per time units, 

corresponds to flow rate. Therefore, the MI value is simply another form of flow rate. For 

convenience we convert the MI into to SI units                                                      

𝑀𝐼 =
1𝑔𝑟

10𝑚𝑖𝑛
=

10−3 𝑘𝑔

10 × 60 𝑠𝑒𝑐
= 1.666 × 10−6 𝑘𝑔 𝑠⁄   

and by dividing with the melt density we get the volumetric flow rate 

𝑄 =
𝑀𝐼

𝜌
=

1.66 × 10−6

766
= 2.175 × 10−9

𝑚3

𝑠
  

Therefore, the shear rate at the wall of the melt indexer die, can be calculated from (see Table 

2.7-1) 
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Table 2.7-1. Important expressions for pressure driven flow in a tube 

Shear rate at wall 

𝛾̇𝑤 =
𝑛 + 1

𝑛

𝑉𝑚𝑎𝑥

𝑅
 

𝛾̇𝑤 =
3𝑛 + 1

𝑛

𝑉𝑎𝑣𝑔

𝑅
 

𝛾̇𝑤 =
3𝑛 + 1

4𝑛

4𝑄

𝜋𝑅3
 

Shear stress at wall 
𝜏𝑤 = 𝑚 [

3𝑛 + 1

4𝑛

4𝑄

𝜋𝑅3
]

𝑛

 

𝜏𝑤 =
𝛥𝑃

2(𝐿 𝑅⁄ )
 

Pressure drop 𝛥𝑝 = 2𝑚𝐿𝑅−(3𝑛+1) [
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

 

Volume rate of flow  𝑄 = 𝑉𝑎𝑣𝑔𝜋𝑅2 = 𝜋
𝑛

3𝑛 + 1
[

1

2𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

𝑅
1
𝑛

+3
 

Maximum velocity 𝑉𝑚𝑎𝑥 = (
𝑛

𝑛 + 1
) [

𝑅𝑛+1

2𝑚
(

𝛥𝑝

𝐿
)]

1
𝑛

 

Average velocity 𝑉𝑎𝑣𝑔 =
𝑛 + 1

3𝑛 + 1
𝑉𝑚𝑎𝑥 
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𝛾̇𝑤 =
3𝑛 + 1

4𝑛

4𝑄

𝜋𝑅3
=

4𝑄

𝜋𝑅3
=

4 × 2.167 × 10−9

𝜋(1.0475 × 10−3)3
= 2.41𝑠−1  

where we have put n=1 since the polymer behaves like a Newtonian fluid. By the same token, 

we carry out the above for the rest given MI values. All the results are summarized in the 

following table and we note that 𝛾̇𝑤=2.41xMI 

 

MI Q [m3/s] 𝜸̇𝒘 [s-1] 

1 2.175×10-9 2.41 

10 2.175×10-8 24.10 

50 1.088×10-7 120.50 

 

Example 2.7-2 

Assume that the Newtonian expression of the wall shear rate is a reasonable approximation 

for the TOTAL HF 513 of Table 1.11-1 (Chapter 1) having melt density of 766 kg/m3. 

Determine the power-law parameters m and n (𝜏 = 𝑚𝛾̇𝑛) from the two melt flow rate (melt 

index MI) values. 

 

Solution 

 

DR (reservoir) =9.55 mm=0.00955 m 

Dd (die) =2.095 mm=0.002095 m 

L (die)=8 mm=0.008 m 

MI=0.15 

HLMI=14.5 

Ml (low load) =2.16 kg 

Mh (high load) =21.6 kg 

 

Assuming that the pressure drop in the reservoir of the melt indexer of Fig. 1.11-1 is 

small, the pressure drop in the die is essentially the pressure (force F divided by the load area 

A) is exerted to the melt in the reservoir. Therefore, we may write for each load 

Low load: 𝛥𝑝𝑙 =
𝐹𝑙

𝐴
=

4𝑀𝑙𝑔

𝜋𝐷𝑅
2   
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High load: 𝛥𝑝ℎ =
𝐹ℎ

𝐴
=

4𝑀ℎ𝑔

𝜋𝐷𝑅
2   

The wall shear stress, in the melt indexer die, may then be calculated from Eq. 2.7-9 for r =Rd 

the radius of the die. Substitution of the above equations in Eq. 2.7-9 and upon rearrangement 

gives 

𝜏𝑤,𝑙 =
2𝑔𝑅𝑑

𝐿𝜋𝐷𝑅
2 𝑀𝑙  

𝜏𝑤,ℎ =
2𝑔𝑅𝑑

𝐿𝜋𝐷𝑅
2 𝑀ℎ  

Dividing the above equations, we have 

𝜏𝑤,𝑙

𝜏𝑤,ℎ
=

𝑀𝑙

𝑀ℎ
  

Since we assume that the Newtonian value of the wall shear rate is a reasonable 

approximation (i.e. 𝛾̇𝑤 = 4𝑄 𝜋𝑅3⁄ ) we may write for each load 

𝜏𝑤,𝑙 = 𝑚 (
4𝑄𝑙

𝜋𝑅𝑑
3)

𝑛

  

𝜏𝑤,ℎ = 𝑚 (
4𝑄ℎ

𝜋𝑅𝑑
3)

𝑛

 
 

where Ql and Qh the volumetric flow rate for the low and the high load respectively. Dividing 

the above equations, we obtain                                                        

𝜏𝑤,𝑙

𝜏𝑤,ℎ
= (

𝑄𝑙

𝑄ℎ
)

𝑛

  

From the previous problem we saw that, in general, the volumetric flow rate is related to the 

MI by 

𝑄 =
𝑀𝐼 × 10−3

600𝜌
  

Therefore, we may rewrite for the ratio of the shear stresses τw,l/τw,h 

𝜏𝑤,𝑙

𝜏𝑤,ℎ
= (

𝑀𝐼 × 10−13

600𝜌

𝐻𝐿𝑀𝐼 × 10−13

600𝜌

)

𝑛

= (
𝑀𝐼

𝐻𝐿𝑀𝐼
)

𝑛

  

Therefore, we obtain 

𝑀𝑙

𝑀ℎ
= (

𝑀𝐼

𝐻𝐿𝑀𝐼
)

𝑛
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which can be solved with respect to the power-law index n by logging both sides 

𝑛 =
𝑙𝑜𝑔(𝑀𝑙 𝑀ℎ⁄ )

𝑙𝑜𝑔(𝑀𝐼 𝐻𝐿𝑀𝐼⁄ )
=

𝑙𝑜𝑔 𝑀𝑙 − 𝑙𝑜𝑔 𝑀𝑙

𝑙𝑜𝑔 𝑀 𝐼 − 𝑙𝑜𝑔 𝐻 𝐿𝑀𝐼
=

𝑙𝑜𝑔 2 . 16 − 𝑙𝑜𝑔 2 1.6

𝑙𝑜𝑔 0 . 15 − 𝑙𝑜𝑔 1 4.5
≈ 0.504 

The consistency index m, may be calculated by  

2𝑔𝑅𝑑

𝐿𝜋𝐷𝑅
2 𝑀𝑙 = 𝑚 (

4𝑄𝑙

𝜋𝑅𝑑
3)

𝑛

⇒
2𝑔𝑅𝑑

𝐿𝜋𝐷𝑅
2 𝑀𝑙 = 𝑚 (

4 × 𝑀𝐼 × 10−3

600𝜋𝜌𝑅𝑑
3 )

𝑛

 

from which we may calculate the consistency index m 

𝑚 =

2𝑔𝑅𝑑

𝐿𝜋𝐷𝑅
2 𝑀𝑙

(
4 × 𝑀𝐼 × 10−3

600𝜋𝜌𝑅𝑑
3 )

𝑛 =
8966.42 × 𝑀𝑙

(
1846.33

𝜌
× 𝑀𝐼)

𝑛 

and by substituting the rest of the values we have 

𝑚 =
8966.42 × 2.16

(
1846.33

766 × 0.15)
0.504 ≈ 32343𝑃𝑎 ⋅ 𝑠0.504 

 

2.8 Capillary Viscometer Analysis and the Rabinowitsch Correction 

The most frequently used instrument for the determination of viscosity of polymer 

melts is the capillary viscometer (schematically shown) in Fig. 2.8-1. The diameter is typically 

D=1~2 mm and the length to diameter ratio L/D=16~32.  

For Newtonian fluids the relation between pressure drop Δp and flow rate Q is used 

for measurement of viscosity. For non–Newtonian fluids like polymer melts the viscosity is  

 

Figure 2.8-1. Schematic of a capillary viscometer of diameter D=2R and length L. The polymer is 

heated and melted in the reservoir and then pushed by the piston through the capillary die, swelling 
at the exit. From Nielsen (1987). 
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not constant but a function of the shear rate. Therefore, in order to use the pressure drop and  

flow rate measurements, we must be able to express the shear stress and the shear rate in terms  

of these and then 

𝜂 =
𝜏

(𝑑𝑢 𝑑𝑦⁄ )
 (2.8-1) 

From the previous section we can see that the shear stress at the wall can be obtained from 

𝜏𝑤 = −
𝛥𝑝

2𝐿
𝑅 (2.8-2) 

This holds for both Newtonian and non–Newtonian fluids. The shear rate at the wall for 

Newtonian fluids can be obtained from Table 2.7-1 for n=1. We have  

𝛾̇𝑤 =
4𝑄

𝜋𝑅3
 (2.8-3) 

For non–Newtonian fluids we will develop a general expression for the shear rate at the wall 

by starting from the definition of the volume rate of flow 

𝑄 = 2𝜋 ∫ 𝑟𝑉𝑧𝑑𝑟
𝑅

0

 (2.8-4) 

An integration by parts yields 

𝑄 = 𝜋𝑟2𝑉𝑧|𝑅
0

− 𝜋 ∫ 𝑟2 (
𝑑𝑉𝑧

𝑑𝑟
) 𝑑𝑟

𝑅

0

 (2.8-5) 

Applying the “no–slip” boundary condition at R i.e. Vz=0 at r =R we have                                                    

𝑄 = −𝜋 ∫ 𝑟2 (
𝑑𝑉𝑧

𝑑𝑟
) 𝑑𝑟

𝑅

0

 (2.8-6) 

Since r/R = τrz/τw (τw is the shear stress at the wall), we can eliminate r from the above 

expression to get 

𝜏𝑤
3𝑄

𝜋𝑅3
= ∫ 𝜏𝑟𝑧

2 (
𝑑𝑉𝑧

𝑑𝑟
) 𝑑𝜏𝑟𝑧

𝜏𝑤

0

 (2.8-7) 

Differentiating both sides with respect to τw and using the Leibnitz rule we obtain 

(
𝑑𝑉𝑧

𝑑𝑟
)

𝑤
=

1

𝜋𝑅3
(𝜏𝑤

𝑑𝑄

𝑑𝜏𝑤
+ 3𝑄) (2.8-8) 

or                                               

𝛾̇𝑤 =
4𝑄

𝜋𝑅3
(

3

4
+

1

4

𝑑 𝑙𝑛 𝑄

𝑑 𝑙𝑛 𝜏𝑤
) (2.8-9) 

Eq. 2.8-9 is usually referred to as the Rabinowitsch equation. It gives the shear rate at the wall 

of a capillary in terms of Q, R and τw. The term in brackets may be considered as a “correction” 
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to Newtonian expression which is simply 4Q/πR3. To obtain 𝛾̇𝑤 we must plot Q versus τw, on 

logarithmic coordinates to evaluate the derivative dlnQ/dlnτw.  

In general, for polymer melts the relation of the measured lnQ versus the measured 

lnτw, is non-linear, which means that the derivative dlnQ/dlnτw needs to be evaluated at 

several points of the experimentally obtained lnQ versus lnτw curve. It is a time-consuming 

task. Below, an easier and faster, but less accurate method is presented.  For non-Newtonian 

fluids that obey the power-law equation  

𝜏 = 𝑚𝛾̇𝑛 (2.8-10) 

we may write an empirical expression                                         

𝜏𝑤 = 𝑚′ (
4𝑄

𝜋𝑅3
)

𝑛

 (2.8-11) 

in which n is the slope of the logτw versus log(4Q/πR3) plot, that is 

𝑛 =
𝑑 𝑙𝑜𝑔 𝜏𝑤

𝑑 𝑙𝑜𝑔(4𝑄 𝜋𝑅3⁄ )
 (2.8-12) 

So, Eq. 2.8-9 may be written as                                   

𝛾̇𝑤 =
4𝑄

𝜋𝑅3
(

3

4
+

1

4𝑛
) (2.8-13) 

Combining Eq. 2.8-11 and Eq. 2.8-13 we obtain 

𝑚 = 𝑚′ (
4𝑛

3𝑛 + 1
)

𝑛

 (2.8-14) 

This means that for a typical polymer melt having n=0.4 the consistency index will be 𝑚 =

𝑚′ (
4×0.4

3×0.4+1
)

0.4

= 0.88𝑚′. In other words, the consistency index will be 88% of its value 

obtained by plotting the shear stress τw against the apparent shear rate (4Q/πR3).  

 

Example E2.8-1 

(a) What should the load be in kg, in order that a power-law polymer melt with m=7909 

Pa·sn and n=0.46 flow out of a DT =3 mm diameter tube (see Fig. 2.6) so that the wall 

shear stress is τw=0.14 MPa? 

(b) What is the flow rate (kg/h) and the wall shear rate (s-1) under such conditions? The 

density of the molten polymer is ρ=800 kg/m3. 

Solution 

DR =30 mm=0.03 m 
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DT = 2RT =3 mm=0.003 m 

L=25 mm=0.025 m 

τw=0.14 MPa=0.14×106 Pa 

g=9.81 m/s2 

 

 

(a) First, we need to calculate the pressure drop in the 3 mm tube, using the following equation 

(Eq. 2.7-9) 

𝜏𝑤 = −
𝛥𝑝

2𝐿
𝑅𝑇 = −

𝛥𝑝

4𝐿
𝐷𝑇 

As the sign in the above equation is a matter of convention, we use the positive sign which 

represents stress exerted from the fluid to the wall. Therefore, solving with respect to Δp and 

introducing the numerical values   

𝛥𝑝 =
𝜏𝑤4𝐿

𝐷𝑇
=

(0.14 × 106) × 4 × (0.025)

3 × 10−3
= 4.66 × 106𝑃𝑎 

For the reasons outlined in Example 2.7-2, the weight mL of the load can be calculated from  

𝛥𝑝 =
𝐹

𝐴𝑅
=

4𝑚𝐿𝑔

𝜋𝐷𝑅
2 → 𝑚𝐿 = 𝛥𝑝

𝜋𝐷𝑅
2

4𝑔
 

where F is the force the load exerts on the fluid, mL the load weight, g the gravitational 

acceleration and AR the load cross-sectional area. Introducing the numerical values in the 

above equation gives 

𝑚𝐿 =
(4.66 × 106) × 𝜋 × 0.032

4 × 9.8
≅ 336 𝑘𝑔 

(b) The flow rate can be calculated from Table 2.7.-1 
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𝛥𝑝 = 2𝑚𝐿𝑅−(3𝑛+1) [
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

 

or 

𝑄 =
𝜋𝑅𝑇

1
𝑛

+3

1
𝑛 + 3

(
𝛥𝑝

2𝑚𝐿
)

1
𝑛

 

Introducing the numerical values in the above equation gives  

𝑄 = (
3.1414 × 0.0015

1
0.46

+3

1/0.46 + 3
) [

4.66 × 106

2 × 7909 × 0.025
]

1
0.46

= 1.06 × 10−6
𝑚3

𝑠
 

Therefore, the mass flow rate will be 

𝑚̇ = 800
𝑘𝑔

𝑚3
× 1.06 × 10−6

𝑚3

𝑠
3600

𝑠

ℎ
≅ 3

𝑘𝑔

ℎ
 

The wall shear rate can be calculated from Table 2.7-1 

𝛾̇𝑤 =
4𝑄

𝜋𝑅3
(

3

4
+

1

4𝑛
) 

Substituting the numerical values, we obtain 

𝛾̇𝑤 =
4 × 1.06 × 10−6

𝜋 × 0.00153
(

3

4
+

1

4 × 0.46
) = 519.72 𝑠−1 

 

2.9 Pressure Drop for Flow of a Power-Law Fluid Through a Tapered Tube  

Truncated conical dies (i.e. tapered tubes like that shown in Fig. 2.9-1) are used very 

often in processing of molten polymers which, as we have said earlier, are described by the 

power–law equation satisfactorily. The determination of pressure drop is of primary 

importance in process equipment design. Here, we will use the results of Section 2.7 to 

calculate the pressure drop for flow in a slightly tapered tube. We start with Eq. 2.7-19                                           

 
Figure 2.9-1. Geometry of a tapered tube of radius R and length L. 
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𝛥𝑝 = 2𝑚𝐿𝑅−(3𝑛+1) [
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

 (2.9-1) 

Thus, for an infinitesimal tube of length dz we may write                                            

𝑑𝑝 = 2𝑚𝑅−(3𝑛+1) [
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

𝑑𝑧 (2.9-2) 

For a tapered tube we may neglect the velocity in the r – direction (small if the taper angle is 

small) and simply integrate between z =0 and z =L, noting that                                                    

𝑅 = 𝑅𝑜 − (𝑅𝑜 − 𝑅𝐿)
𝑧

𝐿
 (2.9-3) 

We get                          

𝛥𝑝 = 𝑝𝑜 − 𝑝𝐿 =
2𝑚𝐿

3𝑛
[
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

(
𝑅𝐿

−3𝑛 − 𝑅𝑜
−3𝑛

𝑅𝑜 − 𝑅𝐿
) (2.9-4) 

Further noting that 

𝑅𝑜 =
(𝐿 + 𝑆)

𝑐𝑜𝑡 𝜃
 and 𝑅𝐿 =

𝑆

𝑐𝑜𝑡 𝜃
 (2.9-5) 

we may write                               

𝛥𝑝 =
2𝑚 𝑐𝑜𝑡 𝜃

3𝑛
[
𝑄

𝜋
(

1

𝑛
+ 3)]

𝑛

𝑅𝐿
−3𝑛 [1 − (

𝑅𝐿

𝑅𝑜
)

3𝑛

] (2.9-6) 

This equation gives good results up to half cone angles of 15o [see Vlachopoulos and Scott 

1985)]. 

It can further be shown that the maximum stretch rate at the narrowest passage is given by                                        

𝜀̇ = (
𝑑𝑉𝑧

𝑑𝑧
)

𝑚𝑎𝑥
=

𝑡𝑎𝑛 𝜃

2

3𝑛 + 1

𝑛 + 1

2𝑄

𝜋𝑅𝐿
3 (2.9-7) 

 

2.10 Flow Through a Tapered Slit 

 We start from the pressure drop expression which was derived for flow between two 

parallel plates                                              

𝛥𝑝 = 𝑚𝐿 [
2𝑛 + 1

2𝑛

𝑄

𝑊
]

𝑛

𝑏−(2𝑛+1) (2.10-1) 

For an infinitesimal slit of length dz                                           

𝑑𝑝 = 𝑚 [
2𝑛 + 1

2𝑛

𝑄

𝑊
]

𝑛

𝑏−(2𝑛+1)𝑑𝑧 (2.10-2) 

where                                                   
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Figure 2.10-1. Schematic representation of a tapered slit of length L and angle θ. 

 

𝑏 = 𝐻0 −
𝐻0 − 𝐻𝐿

𝐿
𝑧 (2.10-3) 

for a tapered slit. Integration between z =0 and z =L yields                                                        

𝛥𝑃 = 𝑃0 − 𝑃𝐿 (2.10-4) 

𝛥𝑃 =
𝑚𝐿

2𝑛+1𝑛
[

𝑄

𝑊
(

1

𝑛
+ 2)]

𝑛

(
𝐻𝐿

−2𝑛 − 𝐻0
−2𝑛

𝐻0 − 𝐻𝐿
) (2.10-5) 

Further noting that 

𝐻0 =
𝐿 + 𝑆

cot𝜃
,   𝐻𝐿 =

𝐿 + 𝑆

cot𝜃
    (2.10-6) 

We get                                   

𝛥𝑃 =
𝑚 𝑐𝑜𝑡 𝜃

2𝑛+1𝑛
[

𝑄

𝑊
(

1

𝑛
+ 2)]

𝑛

𝐻𝐿
−2𝑛 [1 − (

𝐻𝐿

𝐻0
)

2𝑛

] (2.10-7) 

The derivation of the above expression was based on the implicit assumption of nearly parallel 

flow. It is a very good approximation for half-angles θ of up to 15o. 

It can further be shown that the maximum stretch rate along the plane of symmetry is 

given by                                           

𝜀̇ = (
𝑑𝑉𝑧

𝑑𝑧
)

𝑚𝑎𝑥
= 𝑡𝑎𝑛 𝜃

2𝑛 + 1

𝑛 + 1

2𝑄

𝑊𝐻𝐿
 (2.10-8) 

 

2.11 Pressure Driven Flow of a Bingham Fluid in a Tube  

Although polymers melts do not exhibit yield stress, when mixed with particles or 

other polymers, they may exhibit both yield stress and shear thinning. The Herschel-Bulkley 

model is suitable 
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𝜏𝑟𝑧 = 𝜏𝑜 + 𝜇𝜊 (
𝑑𝑉𝑧

𝑑𝑟
)

𝑛

 if τ >το (2.11-1) 

𝑑𝑉𝑧

𝑑𝑟
= 0 

if τ≤το (2.11-2) 

We will examine the simplest version where n=1, that is the Bingham model. A Bingham 

plastic (or more precisely ideal Bingham plastic) will not flow unless the shear stress exceeds 

a certain value τo called yield stress. This behavior is mathematically expressed by 

𝜏𝑟𝑧 = 𝜏𝑜 + 𝜇𝜊 (
𝑑𝑉𝑧

𝑑𝑟
) if τ >το (2.11-3a) 

𝑑𝑉𝑧

𝑑𝑟
= 0 

if τ≤το (2.11-3b) 

as shown in Fig. 2.11-1 A Bingham plastic is not a “pure” fluid because it does not flow below 

the yield stress τo.  

In pressure driven flow in a tube the shear stress is zero along the axis and increases 

linearly with r as discussed in the previous sections. Thus the Bingham plastic will behave like 

a fluid near the tube wall and will move like a solid plug in the center region r <ro where τ ≤ 

το as shown schematically in Fig. 2.11-1.  

 

Figure 2.11-1. Shear stress and velocity profile for a Bingham fluid flowing between two flat parallel 

plates under the influence of a pressure gradient. In the central portion the fluid moves like a solid 
plug. 

 

The mathematical manipulations of Eq. 2.7-9 up to Eq. 2.7-16 apply here also. We have                               

𝜏𝑟𝑧 = −
𝛥𝑝

2𝐿
𝑟 (2.11-4) 

Thus, for the wall region ro<r <R                            
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𝜏𝑜 + 𝜇𝜊

𝑑𝑉𝑧

𝑑𝑟
= −

𝛥𝑝

2𝐿
𝑟 (2.11-5) 

This may be integrated with the no–slip condition at the wall (Vz=0 at r=R), to give the 

velocity distribution 

𝑉𝑧 =
𝛥𝑝

4𝜇𝑜𝐿
𝑅2 [1 − (

𝑟

𝑅
)

2

] −
𝜏𝑜𝑅

𝜇𝑜
[1 − (

𝑟

𝑅
)] ro<r <R (2.11-6) 

At r =ro this will be equal to the plug velocity  

𝑉𝑝𝑙𝑢𝑔 =
𝛥𝑝

4𝜇𝑜𝐿
𝑅2 [1 − (

𝑟𝑜

𝑅
)

2

] −
𝜏𝑜𝑅

𝜇𝑜
[1 − (

𝑟𝑜

𝑅
)] (2.11-7) 

Also, from Eq. 2.11-4 we have 

at r=ro, 𝜏𝑜 = −
𝛥𝑝

2𝐿
𝑟𝑜 

 
and at r=R, 𝜏𝑤 = −

𝛥𝑝

2𝐿
𝑅 (2.11-8) 

Eliminating ro and (Δp/2L)R, we get 

𝑉𝑝𝑙𝑢𝑔 =
𝜏𝑤

2𝜇𝑜
𝑅 [1 −

𝜏𝜊

𝜏𝑤
]

2

 (2.11-9) 

The total volume rate of flow is equal to the sum of the “plug” and the “fluid” regions 

𝑄 = 𝑄𝑝𝑙𝑢𝑔 + 𝑄𝑓𝑙𝑢𝑖𝑑 = 𝜋𝑟𝑜
2𝑉𝑝𝑙𝑢𝑔 + 2𝜋 ∫ 𝑉𝑧𝑟𝑑𝑟

𝑅

𝑟𝑜

 (2.11-10) 

Inserting Eq. 2.11-6 into the integral, integrating and using the expressions for το, τw and Vplug 

we have 

𝑄 =
𝜋𝑅3𝜏𝑤

4𝜇𝑜
[1 −

4

3
(

𝜏𝜊

𝜏𝑤
) +

1

3
(

𝜏𝜊

𝜏𝑤
)]

4

 (2.11-11) 

 

2.12 Viscous Dissipation (Frictional Heating) 

In the previous sections of this chapter, it is assumed that the flow of the polymer is 

isothermal, that means there are no temperature differences anywhere in the flow field. 

However, in the real world this is seldom the case. As a polymer is forced to flow through a 

narrow channel considerable heat is generated due to internal friction (viscous dissipation, 

frictional heating). 

There is an easy way to get an approximate estimate of temperature rise (not the 

temperature profile, but just an average value). By assuming adiabatic conditions (i.e. no heat 

transfer to or from the surrounding walls), we can say that the mechanical energy (due to 

pressure) is converted into heat, so that we may write 
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𝑓𝑜𝑟𝑐𝑒 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

= 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑄)  × ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝐶𝑝)

× 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝛥𝑇) 

(2.12-1) 

But 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑄

𝑎𝑟𝑒𝑎
, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 (𝛥𝑝) =

𝑓𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎
 (2.12-2) 

Therefore, 

(𝛥𝑝)𝑄 = 𝜌𝑄𝐶𝑝𝛥𝑇 (2.12-3) 

From which we obtain 

𝛥𝑇 =
𝛥𝑝

𝜌𝐶𝑝
 (2.12-4) 

It is interesting to note that the melt density of most polymers is close to ρ=1000 kg/m3 

and the heat capacity close to 𝐶𝑝=2000 J/kg . Thus if in Eq. 2.12-4 Δp is given in MPa then 

ΔT in Celsius is close to MPa pressure divided by 2. But, it should be noted that this is some 

sort of an average temperate at the exit of the die, while the true temperature profile has 

maximum near the wall, where the shear rate is highest. This is discussed in Example 2.12-1. 

To determine a temperature profile we need the conservation of energy equation. A 

general derivation in 3D can be found elsewhere (Vlachopoulos, 2016). For unidirectional 

flow in the x-direction between two flat plates the equation of conservation of energy, for a 

Newtonian fluid, becomes 

𝜌𝐶𝑝𝑉𝑥

𝜕𝑇

𝜕𝑥
= 𝑘

𝜕2𝑇

𝜕𝑦2
+ 𝜇 (

𝑑𝑉𝑥

𝑑𝑦
)

2

 (2.12-5) 

For a power-law fluid, the above equation takes the following form 

𝜌𝐶𝑝𝑉𝑥

𝜕𝑇

𝜕𝑥
= 𝑘

𝜕2𝑇

𝜕𝑦2
+ 𝑚 |

𝑑𝑉𝑥

𝑑𝑦
|

𝑛−1

(
𝑑𝑉𝑥

𝑑𝑦
)

2

 (2.12-6) 

and similarly for tubular (axisymmetric) flow 

𝜌𝐶𝑝𝑉𝑧

𝜕𝑇

𝜕𝑧
= 𝑘

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) + 𝑚 |

𝑑𝑉𝑧

𝑑𝑟
|

𝑛−1

(
𝑑𝑉𝑧

𝑑𝑟
)

2

 (2.12-7) 

In Eqs. 2.12-5 to 2.12-7 the last term in the right-hand side is the viscous dissipation term. 

These equations are P.D.E΄s and can easily be solved with numerical methods (e.g. finite 

differences (FD), finite element (FE) or the finite volume (FV) methods).  
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 However, for fully developed drag flow between two parallel flat plates, we will not 

have any convection (no change of temperature in the x-direction). Assuming that we have a 

power-law fluid, Eq. 2.12-6 may take the following form 

0 = 𝑘
𝜕2𝑇

𝜕𝑦2
+ 𝑚 |

𝑑𝑉𝑥

𝑑𝑦
|

𝑛−1

(
𝑑𝑉𝑥

𝑑𝑦
)

2

 (2.12-8) 

which may be written as 

0 = 𝑘
𝜕2𝑇

𝜕𝑦2
+ 𝑚 (

𝑑𝑉𝑥

𝑑𝑦
)

𝑛+1

 (2.12-9) 

First we need to calculate the velocity gradient of the above equation. Naturally, we start from 

Eq. 2.5-6 

0 = −
𝜕𝑝

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
 (2.12-10) 

For drag flow, there is no pressure gradient  in the flow direction (i.e. 𝜕𝑝/𝜕𝑥 = 0). Therefore  

𝜕𝜏𝑦𝑥

𝜕𝑦
= 0 (2.12-11) 

Substituting Eq. 2.6-8 in Eq. 2.12-11 we have 

𝜕

𝜕𝑦
[𝑚 |

𝜕𝑉𝑥

𝜕𝑦
|

𝑛−1 𝜕𝑉𝑥

𝜕𝑦
] = 0 (2.12-12) 

which may be written as 

𝜕

𝜕𝑦
[𝑚 (

𝜕𝑉𝑥

𝜕𝑦
)

𝑛

] = 0 (2.12-13) 

It can be easily verified that the solution of the above equation is simply 

𝑉𝑥 = 𝐶1𝑦 + 𝐶2 (2.12-14) 

where C1 and C2 constants. Notice that the same equation is also derived in the for drag flow 

of a Newtonian fluid. The boundary conditions of the present problem are the same to the 

Newtonian drag flow problem. Therefore, the velocity profile is  

𝑉𝑥 =
𝑉

𝐻
𝑦 (2.12-15) 

and is shown schematically in Fig. 2.12-1. The velocity gradient is then dVx=V/H, which 

upon substitution in Eq. 2.12-9 yields 

0 = 𝑘
𝑑2𝑇

𝑑𝑦2
+ 𝑚 (

𝑉

𝐻
)

𝑛+1

 (2.12-16) 
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Figure 2.12-1. Schematic representation of the drag flow velocity profile. y=0 is located at the bottom 

plate. 

 

The above differential equation can be easily solved, to give the following temperature profile 

𝑇(𝑦) = −
𝑚

2𝑘
(

𝑉

𝐻
)

𝑛+1

𝑦2 + 𝐶3𝑦 + 𝐶4 (2.12-17) 

The constants C3 and C4 can be calculated from the boundary conditions. Assuming that the 

bottom plate has a fixed temperature To and the top plate TH we have  

𝐴𝑡 𝑦 = 0  →   𝑇 = 𝑇𝑜 (2.12-18a) 

𝐴𝑡 𝑦 = 𝐻  →   𝑇 = 𝑇𝐻 (2.12-18b) 

From Eq. 2.12-18a we obtain C4=0 and from Eq. 2.12-18b we obtain 

𝐶3 =
𝑚

2𝑘

𝑉𝑛+1

𝐻𝑛
+

𝑇𝐵 − 𝑇𝑜

𝐵
 (2.12-19) 

Substituting Eq. 2.12-19 in Eq. 2.12-17 and rearranging the terms, we obtain 

𝑇(𝑦) − 𝑇𝑜

𝑇𝐻 − 𝑇𝑜
=

1

2
𝐵𝑟𝑛 (

𝑦

𝐻
) [1 − (

𝑦

𝐻
)] + (

𝑦

𝐻
) (2.12-20) 

where 

𝐵𝑟𝑛 =
𝑚𝑉𝑛+1

𝑘𝐻𝑛−1(𝑇𝐻 − 𝑇𝑜)
 (2.12-21) 

may be referred to as a generalized Brinkman number for a power-law fluid. Note that for 

n=1 in Eq. 2.12-20 the well-known Brinkman number is recovered 𝐵𝑟 =
𝑚𝑉2

𝑘(𝑇𝐻−𝑇𝑜)
, which is a 

measure of the importance of the viscous dissipation term. High Br number means large 

temperature rise.  For plates with the same temperature, TH=To, Eq. 2.12-20 can be written as  

𝑇(𝑦) − 𝑇𝑜 =
1

2

𝑚𝑉𝑛+1

𝑘𝐻𝑛−1
(

𝑦

𝐻
) [1 − (

𝑦

𝐻
)] (2.12-22) 

It is interesting to note that for the case of TH=To the maximum temperature Tmax occurs at 

y=H/2 

𝑇𝑚𝑎𝑥 − 𝑇𝑜 =
1

8

𝑚𝑉𝑛+1

𝑘𝐻𝑛−1
 (2.12-23) 
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Figure 2.12-2. Temperature profile of a power-law fluid in drag flow between two parallel flat plates of 

equal temperature, To=TH=150 oC. Power-law parameters: n=0.5 and m=10,000 Pa·s0.5. 

 

As an example to the above we plug in Eq. 2.12-23 some typical values encountered 

in polymer processing: m=10000 Pa·sn, n=0.5, V=0.15 m/s, k=0.25 W/m·K, H=0.001 m and 

To= TH=150 oC. The temperature profile is shown in Fig. 2.12-2. The temperature rise would 

be 

𝛥𝛵𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥 − 𝑇𝑜 =
1

8

𝑚𝑉𝑛+1

𝑘𝐻𝑛−1
=

1

8
∙

10000𝑋0.150.5+1

0.25𝑋0.0010.5−1
≅ 9.18 Co  (2.12-24) 

It should be noted that if the temperature rise is, in general, appreciable, the temperature 

dependence of the viscosity has to be taken into account (m=m(T)), which complicates more 

accurate calculations. 

 

Example E2.12-1   

Consider a polymer melt with the following properties  

Property Value [units] 

consistency index (m) 105 Pa∙sn 

power-law index (n) 0.5 

melt density (ρ) 1000 kg/m3 

specific heat (Cp) 2500 J/kg∙oC 

thermal conductivity (k) 0.2 W/m∙oC 
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Figure E2.12-1. Schematic representation of the conical extrusion die. Figure not to scale.  

 

The polymer melt with temperature 160 oC, flows inside a conical extrusion die (walls 

temperature 160 oC) with the relevant dimensions given in Fig. E2.12-1. The flow rate is Q=57 

kg/hr. Determine the pressure drop in the die. Determine also the average temperature rise.  

 

Solution 

Parameters in S.I. units: 

Ro=0.03175 m 

RL=0.0038 m 

L=0.3048 m 

Q= 57/1000/3600=1.583∙10-5=m3/s 

To calculate the pressure drop in the conical extrusion die we use Eq. 2.9-13. Upon 

substitutions we have 

𝛥𝑝 =
2 × 105 × 𝑐𝑜𝑡 6o

3 × 0.5
[
1.583 × 10−5

𝜋
(

1

0.5
+ 3)]

0.5

0.0038−3×0.5 [1 − (
0.0038

0.03175
)

3×0.5

]

≅ 26 𝑀𝑃𝑎 

Therefore, the average temperature rise may be estimated from Eq. 2.12-4. Upon substitution 

we have 

𝛥𝑇 =
26 × 106

1000 × 2500
𝐶𝑜 = 10.4 𝐶𝑜  

With this approximation we get only a rough idea on how much the bulk temperature of the 

melt will rise, near the exit of the die. In reality, however, there is a distribution of 
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temperatures across the exit gap, with the maximum temperature appearing near the die 

walls. This, temperature profile, may be determined analytically for simple flows with parallel  

 
Figure E2.12-2. Temperature distribution field in a conical die via numerical simulation.  Note only 

the final portion of the full length is shown. Far right: temperature profile at the die exit. Adopted from 
Polychronopoulos et al. (2018). (Color available only in electronic version). 

 

gap geometry. Otherwise, numerical simulations are imperative (e.g. 2D or 3D flows). For 

the case considered here, the 2D numerical simulations exhibit a 40oC temperature rise near 

the die walls as illustrated in Fig. E2.12-2, which is considerably higher of the roughly 11oC 

we calculated above. Therefore, such calculations should be carried out with caution.   

 

2.13 Wall Slip 

The no-slip condition (i.e. fluid velocity is equal to the velocity of the wall with which 

it is in contact) has been a cornerstone of fluid mechanics for about 150 years. Historically, 

the acceptance of the no-slip condition was problematic according to Day (2004). With 

polymer melts it has been observed that above a certain value of wall shear stress, slippage 

occurs (usually about 0.09 MPa for PE).  The slip velocity Vs is an important quantity but it 

is difficult to measure.  Here is a method developed by Mooney (1931) many years ago. The 

apparent shear rate is 

𝛾̇𝑎𝑝𝑝 =
4𝑄

𝜋𝑅3
 (2.13-1) 

The flow rate for an average velocity without slip Vavg, will be 

𝑄 = 𝜋𝑅2𝑉𝑎𝑣𝑔 (2.13-2) 

In the presence of a slip velocity Vs 
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𝑄𝑠 = 𝜋𝑅2(𝑉𝑎𝑣𝑔 − 𝑉𝑠) (2.13-3) 

and the apparent shear rate with slip is 

𝛾̇𝑎𝑝𝑝,𝑠 =
4𝑄𝑠

𝜋𝑅3
=

4(𝑉𝑎𝑣𝑔 − 𝑉𝑠)

𝑅
 (2.13-4) 

which may be written as 

𝛾̇𝑎𝑝𝑝,𝑠 =
4𝑄

𝜋𝑅3
−

4𝑉𝑠

𝑅
 (2.13-5) 

or                   

4𝑄

𝜋𝑅3
= 𝛾̇𝑎𝑝𝑝,𝑠 +

4𝑉𝑠

𝑅
 (2.13-6) 

 

SLIP

NO SLIP

1/R

4Q/R
3

 
Figure 2.13-1. Wall slip velocity measurement according to Mooney (1931). 

 

This means that a plot of 4Q/R 3 against 1/R should give a horizontal line to the x axis if 

there is no slip.  If slip is present, the slope of the curve should be equal to 4Vs as shown in 

Fig. 2.13-1. 

The results of measurements are frequently presented in the form 

𝑉𝑠 = 𝐴𝜏𝑤
𝛽 (2.13-7) 

where β = 2~4 (usually). 

For HDPE, slip is believed to occur above a critical value at shear stress of 0.09 MPa, and a 

representative expression would be (Hatzikiriakos and Dealy, 1992) 

𝑉𝑠 = 11050𝜏𝑤
3.29 (2.13-8) 

where w is in MPa and Vs in mm/s (valid approximately in the range 0.1 MPa<w< 0.3 MPa). 
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250 mm/s

55 mm/s

 
Figure 2.13-2. Velocity profile with wall slip. 

 

To put the above expression in perspective, here are some numbers in a typical 

extrusion experiment.  The wall shear stress might be 0.2 MPa and the maximum velocity at 

the center of a die might be 250 mm/s.  The above equation gives a slip velocity Vs = 55 

mm/s.  Thus, the velocity profile would look like in Fig. 2.13-2. 

Of course, all of the above calculations and estimates should be accepted with some 

caution.  In the majority of cases whenever we measure viscosity at high shear rates and 

stresses, there is probably going to be some slip involved.  So, what we call shear-thinning 

(reflected in the power-law index n) might also involve some slip.  Consequently, we may not 

have good m and n values for flow without slip and this demonstrates some of the difficulties 

in determining accurate viscosity as a function of the shear rate. 

 

2.14 Viscosity Models for Three-Dimensional Flow Analysis 

The power-law model for viscosity of polymers melts and solutions was introduced in 

connection with simple shear flow between two parallel plates. It was used in solving the 

various unidirectional flow problems in this chapter. The viscosity was simply a function of 

the shear rate (velocity gradient) and there was no problem in determining how the shear was 

defined 

𝜂 = 𝑚 (
𝜕𝑉𝑥

𝜕𝑦
)

𝑛−1

 (2.14-1) 

where m and n are constants, Vx the velocity in the flow direction x and y the coordinate 

normal to the flow direction.  
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Things were easy in several problems because we made the obvious choice of a 

coordinate in the direction of the flow and there were no velocity changes in that direction. 

In the tapered flow analysis there is velocity change in both directions, but we were able to 

come up with a straightforward solution by assuming a nearly parallel flow field. However, if 

we had examined a large convergence angle, obviously, we would have strong velocity 

gradients both in the direction of the flow and in the normal direction. Also, if we had chosen 

a rectangular coordinate system for pressure driven flow in a tube we would not be able to 

have a simple definition of the shear rate. Intuitively, we expect that the viscosity, which is a 

property of the fluid, should be independent of the system of coordinates we choose to solve 

a problem. So, we must find a measure of the strain rates, which does not depend on the 

coordinate system chosen. The strain rate for 3-D flow is a tensor (9 components) defined (see 

Vlachopoulos, 2016) in “short-hand” index notation as   

𝐷𝑖𝑗 =
1

2
(

𝑑𝑉𝑖

𝜕𝑥𝑗
+

𝑑𝑉𝑗

𝜕𝑥𝑖
) (2.14-2) 

which means 

𝐷 =
1

2
(

𝑑𝑉𝑥

𝜕𝑥
+

𝑑𝑉𝑥

𝜕𝑥
) =

𝑑𝑉𝑥

𝜕𝑥
 

 

 

 

 

 

(2.14-3) 

𝐷𝑦𝑦 =
1

2
(

𝑑𝑉𝑦

𝜕𝑦
+

𝑑𝑉𝑦

𝜕𝑦
) =

𝑑𝑉𝑦

𝜕𝑦
 

𝐷𝑧𝑧 =
1

2
(

𝑑𝑉𝑧

𝜕𝑧
+

𝑑𝑉𝑧

𝜕𝑧
) =

𝑑𝑉𝑧

𝜕𝑧
 

𝐷𝑥𝑦 = 𝐷𝑦𝑥 =
1

2
(

𝑑𝑉𝑥

𝜕𝑦
+

𝑑𝑉𝑦

𝜕𝑥
) 

𝐷𝑦𝑧 = 𝐷𝑧𝑦 =
1

2
(

𝑑𝑉𝑦

𝜕𝑧
+

𝑑𝑉𝑧

𝜕𝑦
) 

𝐷𝑥𝑧 = 𝐷𝑧𝑥 =
1

2
(

𝑑𝑉𝑥

𝜕𝑧
+

𝑑𝑉𝑧

𝜕𝑥
) 

A tensor has three scalar invariants (quantities that do not change under orthogonal 

coordinate transformation, see for example Hughes and Gaylord (1964). 

The first is the sum of the diagonal components  

𝐼 = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧 (2.14-4) 

The second is  
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Table 2.14-1. The second invariant of the rate strain tensor (
𝟏

𝟐
𝑰𝑰) in rectangular, 

cylindrical and spherical coordinates.  

Rectangular 

1

2
𝐼𝐼 = 2 [(

𝜕𝑉𝑥

𝜕𝑥
)

2

+ (
𝜕𝑉𝑦

𝜕𝑦
)

2

+ (
𝜕𝑉𝑧

𝜕𝑧
)

2

] 

+ (
𝜕𝑉𝑦

𝜕𝑥
+

𝜕𝑉𝑥

𝜕𝑦
)

2

+ (
𝜕𝑉𝑧

𝜕𝑦
+

𝜕𝑉𝑦

𝜕𝑧
)

2

+ (
𝜕𝑉𝑥

𝜕𝑧
+

𝜕𝑉𝑧

𝜕𝑥
)

2

 

Cylindrical 

1

2
𝐼𝐼 = 2 [(

𝜕𝑉𝑟

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝑉𝜃

𝜕𝜃
+

𝑉𝑟

𝑟
)

2

+ (
𝜕𝑉𝑧

𝜕𝑧
)

2

] 

+ [𝑟
𝜕

𝜕𝑟
(

𝑉𝜃

𝑟
) +

1

𝑟

𝜕𝑉𝑟

𝜕𝜃
]

2

+ [
1

𝑟

𝜕𝑉𝑧

𝜕𝜃
+

𝜕𝑉𝜃

𝜕𝑧
]

2

+ [
𝜕𝑉𝑟

𝜕𝑧
+

𝜕𝑉𝑧

𝜕𝑟
]

2

 

Spherical 

1

2
𝐼𝐼 = 2 [(

𝜕𝑉𝑟

𝜕𝑟
)

2

+ (
1

𝑟

𝜕𝑉𝜃

𝜕𝜃
+

𝑉𝑟

𝑟
)

2

+ (
1

𝑟sin𝜃

𝜕𝑉𝜑

𝜕𝜑
+

𝑉𝑟

𝑟
+

𝑉𝜃cot𝜃

𝑟
)

2

] 

+ [𝑟
𝜕

𝜕𝑟
(

𝑉𝜃

𝑟
) +

1

𝑟

𝜕𝑉𝑟

𝜕𝜃
]

2

 

+ [
sin𝜃

𝑟

𝜕

𝜕𝜃
(

𝑉𝜑

sin𝜃
) +

1

𝑟sin𝜃

𝜕𝑉𝜃

𝜕𝜑
]

2

 

+ [
1

𝑟sin𝜃

𝜕𝑉𝑟

𝜕𝜑
+ 𝑟

𝜕

𝜕𝑟
(

𝑉𝜑

𝑟
)]

2

 

 

 

 

 

 

 

 

 



2-43 

 

 
 

𝐼 = |
𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑦𝑥 𝐷𝑦𝑦
| + |

𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑦 𝐷𝑧𝑧
| + |

𝐷𝑥𝑥 𝐷𝑥𝑧

𝐷𝑧𝑥 𝐷𝑧𝑧
| (2.14-5) 

And the third is  

𝐼 = |

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

| (2.14-6) 

 Form the theory of constitutive equations (Bird et al., 1987, Denn, 1980, 2008) it turns 

out that the viscosity can be expressed as a function of the second invariant of the strain rate 

tensor in the following form 

𝜂 = 𝑚 |
1

2
𝐼𝐼|

𝑛−1
2

 (2.14-7) 

The function 
1

2
𝐼𝐼 is given in Table 2.14-1 in rectangular, cylindrical and spherical coordinates. 

It can easily be shown (by eliminating all the terms equal to zero) that for the case Vx=Vx(y) 

and Vy=Vz=0 we have 𝜂 = 𝑚 (
𝜕𝑉𝑥

𝜕𝑦
)

𝑛−1

. 

Also, the shear rate 𝛾̇ in the Carreau-Yasuda and Cross models must be expressed in 

terms of the second invariant, just as for the power-law model. In fact, this type of models is 

referred to as the Generalized Newtonian Fluid, as opposed to the viscoelastic models, 

which are briefly discussed in Chapter 4. 
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Chapter 3  

VISCOELASTICITY 

 

 

 

3.1 Unusual Rheological Phenomena 

In Chapter 2 we defined Newtonian and Non-Newtonian fluids in terms of the 

viscosity as a function of shear. We discussed extensively the shear thinning behavior of 

polymer melts. Actually, the term “non–Newtonian” is broader and the flow phenomena 

exhibited by non–Newtonian fluids are much more interesting and complex than just the 

departure from linearity between stress and shear rate. Liquids with complex structure, such 

as polymer solutions, polymer melts, suspensions of particles, soap solutions, whole human 

blood, slurries, pastes etc behave in unusual ways. The flow behavior of these liquids is the 

object of rheology (Bird et al. 1987, Tanner, 1985, Macosko, 1994, Münstedt, 2019). Rheology 

is the science of deformation and flow of materials. The Society of Rheology was founded in 

1929 in the USA and adopted the Greek motto (Heraclitus c.535- c.475 BCE) παντα ρει 

(panta rei, all things flow). The philosophical implication is that given enough time all 

materials will flow. Macromolecular (polymeric) solutions and melts exhibit many 

unexpected flow phenomena beyond their shear thinning behavior and they are perhaps the 

most interesting from the rheological point of view. Some of these are explained pictorially in 

Figs. 3.1-1a to 3.1-1f.  

Fig. 3.1-1a shows the rod–climbing or Weissenberg effect (after the Austrian born 

physicist Karl Weissenberg 1883-1976). While a Newtonian fluid would have a parabolic 

depressed surface near a rotating rod (Vlachopoulos, 2016), polymeric liquids would climb 

up the rod. Fig. 3.1-1b shows the phenomenon of extrudate swell exhibited by polymeric 

liquids. The diameter of the jet emerging from a tube can increase up to 400% while for 
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Newtonian fluids, like water, it remains approximately the same as the diameter of the tube 

(actually 13% larger, see Section 3.8). Fig. 3.1-1c shows a siphon experiment. For Newtonian 

fluids, the siphon works as long as one end of the tube is beneath the surface of the liquid. For 

polymeric liquids the siphon can work even if the tube end is above the liquid surface! 

 
Figure 3.1-1a. Polymeric liquid climbing up a rotating rod (Weissenberg effect). From Thornton Centre 

of Shell Research Ltd.  

 

 
Figure 3.1-1b. Extrudate swell of polymeric liquid emerging from a long tube. From Bird et al. (1987). 

 

Fig. 3.1-1d compares the flow pattern for very slow viscous (creeping) flow from a large 

reservoir into a smaller diameter tube. The polymeric liquid forms a large toroidal vortex. 

Fluid particles trapped in the vortex will circulate continuously and will not move into the 

small diameter tube (capillary). Fig. 3.1-1e shows the behavior as the fluids are pumped 

through tubes. We follow the motion by inserting a streak of dye. Before the motion starts the 

streak is flat and after starting up the pump, progressively looks like an elongated parabola. 

When the motion stops (by turning off the pump) the Newtonian fluid comes to rest while the 

polymeric liquid “recoils”. Fig.3.1-1f shows a pressure difference between the inner and the  
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Figure 3.1-1c. Siphon experiment with a polymeric liquid. From Bird et al (1987). 
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Figure 3.1-1d. Entry from a reservoir into a small diameter (capillary). Top photo: Newtonian. Bottom 

photo: polymer. From Bird et al. (1987). 
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Figure 3.1-1e. Recoil of a polymeric liquid and lack thereof of Newtonian liquid when pumping is 

stopped. From Bird et al. (1987). 

 

 

Figure 3.1-1f. Pressure differences during annular flow of Newtonian (left) and polymeric (right) 

liquids. From Darby (1976). 

 

outer tube for annular flow of a polymeric liquid, while for the same flow field there is no 

pressure difference for Newtonian flow.  

 To describe mathematically the various effects, we can start from the equations of 

mass, momentum (and energy, if temperature differences are present). However, it is 

necessary to introduce complex constitutive equations that relate stresses to the rates of strain.  

 

3.2 Basic Concepts of Viscoelastic Behavior   

 The response of polymeric liquids to an imposed stress may, under certain conditions, 

resemble the behavior of a solid, in addition to the non–linear dependence of stress on shear 

rate. These liquids are composed of very long molecular chains of molecular weight usually 
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in the range of 10,000 to 10,000,000 with many commercial products being in the range of 

50,000 to 500,000. 

 When these liquids are at rest, the molecular chains are randomly distributed. When 

an external stress is applied, the intermolecular bonds are stretched, the chains commence to 

flow past another, to disentangle and to align in the direction of the flow. However, for these 

processes to occur certain time is required. On the other hand, the response of small molecular 

weight liquids, like water, can be instantaneous. From molecular arguments it can be 

estimated that steady shearing can be established in water in about 10-12 seconds and, of 

course, mechanical instruments would have a much larger response time, so it is impossible 

to measure directly that constant. With polymeric liquids we can measure characteristic 

response times usually in the range of 10-3 to 103 s (the lower values for solutions and the 

higher for melts).  

 It is apparent that time constants are necessary to describe the behavior of polymer 

melts and solutions. In 1964 Marcus Reiner (Denn, 2011) used the biblical expression that 

“mountains flowed in front of the God” to define a dimensionless group known as the Deborah 

Number, which is the ratio of a characteristic material time (λ) to a characteristic experiment 

or process time (θ). The biblical name is due to the allusion that in God’s (infinite) time solid 

mountains flow (like liquids) 

𝐷𝑒 =
𝜆

𝜃
=

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒
 (3.2-1) 

 Let us choose a typical polymer melt with a characteristic time λ=1 s. If the process 

time is very large (θ →∞ and De →0) the material will behave like a fluid. However, when the 

process time is very short (θ →0 and De →∞) the polymer melt will behave like a solid. Many 

polymer processing operations require times comparable to the characteristic material times. 

For example, in polymer shaping and forming operations, the passage through a die or filling 

of a mold may take place in 0.1 to 10 seconds and De might be in the range of 1–10. 

Consequently, the polymer melt behavior will have both fluid (viscous) and solid (elastic) 

characteristics and it is said to be viscoelastic. 

 To study the behavior of viscoelastic materials, we must develop mathematical models 

(called constitutive equations, which are much more complicated than the Newtonian 

version). The simplest of them involves a simple combination of a Newtonian fluid and an 

elastic (Hookean) solid. 
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 For the Newtonian fluid we have a linear relation between stress τ and rate of strain 

𝛾̇𝑓  

𝜏 = 𝜂𝛾̇𝑓 (3.2-2) 

where η the viscosity. 

For the elastic (Hookean) solid we have a linear relation between stress τ and the strain 𝛾𝑠 

𝜏 = 𝐺𝛾𝑠 (3.2-3) 

where G the modulus of elasticity. 

We assume that the combined material will have a shear rate equal to the sum of the two 

shear rates   

𝛾̇ = 𝛾̇𝑓 + 𝛾̇𝑠 (3.2-4) 

or  

𝛾̇ =
𝜏

𝜂
+

𝜏̇

𝐺
 (3.2-5) 

or 

𝜏 +
𝜂

𝐺
𝜏̇ = 𝜂𝛾̇ (3.2-6) 

The ratio η/G has dimensions of time and is usually denoted by λ 

𝜏 + 𝜆𝜏̇ = 𝜂𝛾̇ (3.2-7) 

This mathematical model is referred to as a Maxwell fluid. 

 Actually, it is easier to understand the behavior of this mathematical model by 

referring to the mechanical analogue of Fig. 3.2-1. The spring represents the Hookean solid  

𝜏 = 𝐺𝛾𝑠 and the dashpot the Newtonian liquid 𝜏 = 𝜂𝛾̇𝑓. 

 Let us assume that the mechanical model of Fig. 3.2-1 is suddenly extended to a 

position and held there. This means that we impose a constant extension (strain γ =const) and 

therefore 𝛾̇ = 0. Eq. 3.2-7 takes then the following form  

 
Figure 3.2-1. A mechanical contraption representing the Maxwell fluid model. 

 

𝜏 + 𝜆𝜏̇ = 0 (3.2-8) 

or  
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𝜏 + 𝜆
𝑑𝜏

𝑑𝑡
= 0 (3.2-9) 

from which  

𝑑𝜏

𝜏
=

𝑑𝑡

𝜆
 (3.2-10) 

that yields 

𝜏 = 𝐶1𝑒−𝑡 𝜆⁄  (3.2-11) 

Let us set τ =S at t =0 

𝜏

𝑆
= 𝑒−𝑡 𝜆⁄  (3.2-12) 

We see that for t =λ 

𝜏

𝑆
= 𝑒−1 =

1

𝑒
≅ 0.37 (3.2-13) 

Thus, λ represents the time for the stress to decay by a factor 1/e ≅ 0.37 and is called the 

relaxation time. The physical meaning of this quantity can be better understood by referring 

to the mechanical analogue of Fig. 3.2-1. If we impose a sudden extension and stop, the spring 

will respond instantaneously. However, the stress will be relaxed gradually (exponentially) as 

the dashpot will start moving (viscous flow). Given enough time the stress will become zero.  

 This model is too crude to represent quantitatively the stress relaxation behavior of 

polymeric liquids, but it gives a good qualitative picture. The sudden stop of extension and 

subsequent relaxation of the mechanical model corresponds to the following fluid flow 

experiment: Assume that a polymeric liquid is sheared in a concentric cylinder viscometer, 

like that of Fig. 3.2-2a. If the rotation is suddenly stopped i.e. 𝛾̇ = 0, the measured stress will 

not become instantaneously zero (as for Newtonian fluids) but will decay in an exponential–

like manner as shown in Fig. 3.2-2b. 

 
Figure 3.2-2. (a) Coaxial cylinder viscometer and (b) schematic representation of stress relaxation after 

shear flow cessation for Newtonian (top) and polymeric liquids (bottom). 
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Figure 3.2-3. Stress “overshoot” at flow start-up. 

 

The relaxation behavior is not the only unusual time response for polymeric liquids. If we 

start suddenly shearing from rest, a Newtonian fluid will respond instantaneously, while a 

polymer solution or melt will exhibit an overshoot as shown in Fig. 3.2-3. 

Under shearing, the long molecular chains can be thought of as acting as springs or rubber 

bands. By shearing, the springs are stretched around a rotating shaft in Fig. 3.1-1a and exert 

a contraction force toward the axis of the rotation like a “strangulation” (Darby, 1976) which 

forces the fluid towards the axis. This results in the rod climbing, or Weissenberg effect. 

Similarly, when a polymeric liquid exits from a tube (Fig. 3.1-1b) the “springs” which are 

extended inside the tube, contract and this causes the phenomenon of extrudate swell. The 

contraction of fluid elements which is responsible for the characteristic “puff up”, can also be 

thought of as originating from the relaxation of the viscoelastic forces at the exit. 

The pressure difference between the inner and outer cylinder in steady axial flow in an 

annulus (Fig. 3.1-1f) is due to development of stresses that do not exist in Newtonian fluids. 

These stresses which are developed in viscoelastic fluids under shear in directions normal to 

the direction of flow are called normal stresses. They increase with shear rate and disappear 

when the fluid is at rest. The simple molecular picture given earlier, that of stretched springs 

or rubber bands, is too crude to present reality. There is, of course, some stretching of the 

macromolecular chains during shear, but also disentaglements and other interactions. There 

is a great variety of polymer types some of them of equal size chains (monodisperse), other of 

different size (polydisperse), yet others with branches (short or long) and molecular weights 

ranging from a few thousand to several million. The development of an accurate description 

of the various processes at the molecular level during shear or other deformation is an 

extremely daunting task. We will adopt the continuum mechanics approach and will consider 

only the stresses developed and the balance of the corresponding forces. 
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 Whenever a polymeric liquid is sheared as shown in Fig. 3.2-4, normal stresses are 

developed because shearing results also in extension in the x-direction and compression in the 

y- and z-directions. A measuring device would record the total normal stresses i.e. there will 

be contributions from both the static pressure in the fluid and the normal stresses developed 

due to shear. Following the convention adopted that pressure forces are compressive and 

therefore negative, we may write the total stresses as 

𝜎11 = −𝑝 + 𝜏11 (3.2-14) 

𝜎22 = −𝑝 + 𝜏22 (3.2-15) 

𝜎33 = −𝑝 + 𝜏33 (3.2-16) 

 

 

Figure 3.2-4. Simple shear flow of a polymeric liquid between two flat parallel plates. 

 

Measurements of σ11, σ22 and σ33 will not be useful in assessing the elasticity level of the fluid 

because the pressure p can be set arbitrarily from an external source (e.g. pump). To eliminate 

the contribution of pressure we take the differences 

𝑁1 = 𝜎11 − 𝜎22 = (−𝑝 + 𝜏11) − (−𝑝 + 𝜏22) = 𝜏11 − 𝜏22   𝐹𝑖𝑟𝑠𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (3.2-17) 

𝑁2 = 𝜎22 − 𝜎33 = (−𝑝 + 𝜏22) − (−𝑝 + 𝜏33) = 𝜏22 − 𝜏33  𝑆𝑒𝑐𝑜𝑛𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (3.2-18) 

The first normal stress difference can be measured directly with a cone–and–plate instrument, 

which is also known as the Weissenberg rheogoniometer (see sketch in Fig. 3.2-5). As the 

cone turns the tendency to climb up the rotating shaft is converted in a normal force NF which 

can be measured by a suitable mechanical or electronic device.  
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Figure 3.2-5. Cone-and-plate instrument (also known as Weissenberg rheogoniometer). 

 

From flow analysis of the cone-and-plate instrument, it turns out that the first normal stress 

difference is  

𝑁1 = 𝜏11 − 𝜏22 =
2𝑁𝐹

𝜋𝑅2
 (3.2-19) 

The second normal stress difference is much more difficult to measure. For different 

measurement methods the reader is referred to Tanner (2000) and Macosko (1994). Up to the 

mid 1960’s it was thought that N2=0. More recent measurements showed that N2 is negative 

and approximately 10–20% of the magnitude of N1 (see also Chapter 5). 

The normal stress differences are functions of the shear rate and there are sometimes 

expressed in terms of the so–called normal stress coefficients which are defined as follows 

𝛹12(𝛾̇) =
𝛮1

𝛾̇2
=

𝜏11 − 𝜏22

𝛾̇2
 (3.2-20) 

𝛹23(𝛾̇) =
𝛮2

𝛾̇2
=

𝜏22 − 𝜏33

𝛾̇2
 (3.2-21) 

Τhe above definitions are analogous to the definition of apparent viscosity coefficient 

𝜂 =
𝜏12

𝛾̇
 (3.2-22) 

The square of the shear rate in Eq. 3.2-20 and 3.2-21 is due to experimental evidence that at 

very low values of 𝛾̇ the normal stress differences are proportional to 𝛾̇2.  

 For molten polymers the first normal stress difference obeys expressions in the form 

𝑁1 = 𝐴𝜏12
𝑏 (3.2-23) 

Usually b is less than 2 (see Section 3.8 on extrudate swell). 

 Under usual processing conditions, for the fabrication of plastic parts by extruding a 

molten polymer through a die, the shear stress is likely to be τ12 = 105 Pa. Using the above 
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equation, we get approximately N1 ≈ 7×105 i.e. under customary processing conditions the 

first normal stress difference is much larger than the shear stress. 

  

3.3 Extensional (Elongational) Viscosity 

 We consider the uniaxial stretching of a cylinder of fluid as shown in Fig. 3.3-1. Of 

course, stretching of a liquid like water is difficult to visualize. However, molten polymers 

have considerable melt strength (see Chapter 5) and can be stretched a lot without breaking. In 

fact, this property enables the production of synthetic fibers for fabrics, clothing, ropes, and 

other products.  

 

Figure 3.3-1. Stretching of a conceptual liquid cylinder. 

 

 As the cylinder is elongated in the x–direction it will contract in the y– and z–directions. 

If the stretch rate is 

𝜕𝑉𝑥

𝜕𝑥
= 𝜀̇ (3.3-1) 

then the contraction in the other two directions will be  

𝜕𝑉𝑦

𝜕𝑦
=

𝜕𝑉𝑧

𝜕𝑧
= −

1

2
𝜀̇ (3.3-2) 

so that the equation of continuity will be satisfied (∇ ∙ V = 0)  

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= 0 (3.3-3) 

𝜀̇ −
1

2
𝜀̇ −

1

2
𝜀̇ = 0 (3.3-4) 

The stretch (or elongation or extension) rate for a rod of length L that is stretched at a velocity 

V is   

𝜀̇ =
𝜕𝑉𝑥

𝜕𝑥
=

𝑉

𝐿
=

1

𝐿

𝑑𝐿

𝑑𝑡
 (3.3-5) 

In a manner analogous to the definition of shear viscosity we define the extensional 

(elongational) viscosity as the ratio of the stretching stress to the stretch rate  

𝜂𝑒 =
𝜎11

𝜀̇
=

𝐹 𝐴⁄

𝜀̇
 (3.3-6) 
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where F is the force normal to the cross–sectional area A of the cylinder. The (ordinary) shear 

viscosity η represents the resistance to shearing. The elongational viscosity represents 

resistance to extension (stretching). Since both quantities represent resistance to flow 

(shearing in one case and stretching in the other), a question that might be asked is how η and 

ηe are related.  

 Starting from the Newtonian constitutive equation (Vlachopoulos, 2016) we have for 

the total stress tensor 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗 (3.3-7) 

where p is the pressure, δij the Kronecker delta and τij the viscous stress tensor. Alternatively 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜂𝑒𝑖𝑗 (3.3-8) 

where 𝑒𝑖𝑗 =
1

2
(

𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜕𝑉𝑗

𝜕𝑥𝑖
) which gives  

𝜎11 = −𝑝 + 2𝜂
𝜕𝑉𝑥

𝜕𝑥
 (3.3-9) 

𝜎22 = −𝑝 + 2𝜂
𝜕𝑉𝑦

𝜕𝑦
 (3.3-10) 

𝜎33 = −𝑝 + 2𝜂
𝜕𝑉𝑧

𝜕𝑧
 (3.3-11) 

Summing up we get  

𝜎11 + 𝜎22 + 𝜎33 = −3𝑝 + 2𝜂 (
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
) (3.3-12) 

The quantity in the parenthesis is equal to zero (due to the continuity equation (∇ ∙ V̅) for 

incompressible fluids). Thus  

𝑝 = −
(𝜎11 + 𝜎22 + 𝜎33)

3
= −

𝜎𝑖𝑖

3
 (3.3-13) 

For the uniaxial stretching experiment of Fig. 3.3-1, we have σ22=0, σ33=0 and from Eq. 3.3-

6 and Eq. 3.3-13 

𝑝 = −
𝜎11

3
 (3.3-14) 

2

3
𝜎11 = 2𝜂

𝜕𝑉𝑥

𝜕𝑥
= 2𝜂𝜀̇ (3.3-15) 

Thus  

𝜂𝑒 =
𝜎11

𝜀̇
= 3𝜂 (3.3-16) 
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Therefore, the elongational viscosity is equal to three times the shear viscosity for Newtonian 

fluids. This is known as the Trouton relation (see Macosko (1994) historical information). 

 The (shear) viscosity of polymeric liquids is a function of shear rate and usually obeys, 

as we have seen in the previous chapter, a power–law relation in the form 

𝜂 = 𝑚𝛾̇𝑛−1 (3.3-17) 

where usually 0.2<n<0.8 except for a Newtonian plateau at very low–shear rates. The 

elongational viscosity for very low stretch rates (𝜀̇ < 10−3) obeys the Trouton relation, 

exhibits a maximum and drops as a power–law function as shown in Fig. 3.3-2. This may be  

 

 
Figure 3.3-2. Extensional (elongational) viscosity ηe as a function of stretch rate and shear viscosity η 

as a function of shear rate.  
 

expressed mathematically as 

𝜂𝑒 = 𝐿𝜀̇𝑞 (3.3-18) 

Usually n<q<1.0 which means that stretch “weakening” is less prominent than shear 

thinning.  

 The elongational viscosity of polymeric liquids at high stretch rates is many times 

larger than the corresponding shear viscosity. It is a material property in its own sake and 

should be measured independently (see Chapter 5). 

 

3.4 Flow in a Sudden Contraction 

 Flow from a large reservoir into a small diameter tube is encountered in practice very 

frequently and it is perhaps the most extensively studied problem in rheology. We consider 
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the axisymmetric sudden contraction problem as shown in Fig. 3.4-1. The Reynolds number 

is assumed to be very small (creeping flow). Therefore, fluid inertia is negligible and the flow 

is determined by the balance of viscous and pressure forces. Under these conditions 

Newtonian fluids exhibit a very small and weak vortex at the corner as shown in Fig. 3.4-1. 

In fact, the fluid within the vortex is so slow that led some people in the past, to believe that 

it was a region of stagnant fluid. On the other hand, polymeric liquids for the same low 

Reynolds number (e.g. Re = 10-3–10-4) as shown in Fig. 3.1-1d exhibit very large and strong 

vortices. The vortex size and strength depends on the elongational viscosity of polymeric 

liquids. 

 

Figure 3.4-1. Newtonian entrance flow into a capillary with sketched streamlines.  

 

Another difference between Newtonian and polymeric fluids is in the pressure drop. Within 

the reservoir or the small diameter outlet tube of Fig. 3.4-2 the pressure drop is linear. At the 

tube entry there is an additional pressure drop which is small for Newtonian fluids and large 

for polymer solutions or melts. The vortex, the entrance and the (relatively small) exit 

pressure, can be determined (Tanner, 2000, Han, 2007) by solving numerically the creeping 

flow equations   

∇ ∙ 𝑉̅ = 0 (3.4-1) 

0 = −∇𝑝 + ∇𝜏̿ (3.4-2) 

The calculated excess pressure drop is equal to the total pressure drop minus the (linear) 

pressure drop in the reservoir for Poiseuille flow minus the same for the small diameter 

(capillary) tube (neglecting Pexit) 

𝛥𝑝𝑒 = 𝛥𝑝𝑡𝑜𝑡. − 𝛥𝑝𝑟𝑒𝑠. − 𝛥𝑝𝑐𝑎𝑝. (3.4-3) 
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Figure 3.4-2. Polymeric liquid entrance vortex and pressure drops at entry and exit. 

 

where Δptot. is determined from the numerical solution of the conservation Eqs 3.4-1 and 3.4-

2. Δpres. and Δpcap. are determined from the Poiseuille flow equations (see Chapter 2). 

The large excess pressure drop at the entrance for polymeric liquids is apparently due 

to large elongational viscosities exhibited by these substances. Entry flow is mainly 

elongational in character. Fluid elements are stretched as they enter from a large reservoir 

into a small diameter tube. Obviously, this stretching is resisted by the fluid elongational 

viscosity, which is relatively small for Newtonian fluids (3η) and large for polymers (from 3η 

to more than 100η at very high stretch rates). When the elongational viscosity is very large a 

portion of the fluid is obstructed from entering to the capillary and a flow recirculation region 

(vortex), near the corners of the reservoir, is formed.   

 The excess pressure drop at the entry, which is also called entrance loss, is usually 

expressed in dimensionless form as 

𝑛𝐵 =
𝛥𝑝𝑒

2𝜏𝑤
 (3.4-4) 

where τw is the shear stress at the wall of the outlet tube and is known as the Bagley correction 

in capillary viscometry (Macosko, 1994, Han, 2007).  
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For Newtonian fluids accurate finite element simulations (Tanner, 2000) gives 

𝑛𝐵 =
𝛥𝑝𝑒

2𝜏𝑤
= 0.587 (3.4-5) 

For polymer melts measurements usually range from the Newtonian value at low shear rates 

to about nB=10. Finite element simulations of polymer melt flow in abrupt contraction is a 

challenging task and the reader is referred to specialized textbooks (Tanner, 2000, Han, 2007) 

and publications (Mitsoulis et al., 2003). 

 

3.5 Cogswell’s Method for Elongational Viscosity Determination 

Cogswell (1972, 1996) proposed a simple method to relate the elongational viscosity 

ηe to the entrance pressure drop Δpe. He assumed that the polymer melt flows in a convergent 

tube (similar to a funnel), with boundaries defined by the broken lines in Fig. 3.5-1. On the 

boundaries Cogswell assumed that the velocity of the material is zero. Inside the convergent 

tube it was assumed that the flow field is a combination of simple shear and elongational flow.  

For each type of flows (simple shear and extensional) the pressure drop was determined 

separately by applying a force balance on a differential cross-section of the convergent tube  

 
Figure 3.5-1. Schematic representation of Cogswell’s idealized convergent tube in a sudden 

axisymmetric contraction. The excess pressure drop is developed in the convergent section. 

 

followed by an integration over the entire section. Under the above assumptions, Cogswell 

determined the stretch rate  

𝜀̇ =
4𝜂𝛾̇𝛼

2

3(𝑛 + 1)𝛥𝑝𝑒
 (3.5-1) 
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and the corresponding value of the elongational viscosity  

𝜂𝑒 =
9

32

[(𝑛 + 1)𝛥𝑝𝑒]2

𝜂𝛾̇𝛼
2  (3.5-2) 

where ηe the elongational viscosity, n the power-law index, Δpe the entrance pressure drop, 𝛾̇𝛼 

the apparent shear rate and η=m𝛾̇𝛼
𝑛−1 the shear viscosity. Eq. 3.5-2 may be written in a more 

compact form by using the wall shear stress 𝜏 = 𝑚𝛾̇𝛼
𝑛 and performing some algebraic 

manipulations 

𝜂𝑒 = 𝜂 [
(𝑛 + 1)𝛥𝑝𝑒

1.89𝜏𝑤
]

2

 (3.5-3) 

Let us now examine how good is the Cogswell method for predicting the Trouton ratio 

ηe/η=3. In Eq. 3.5-3 we introduce n=1 and Δpe=2×0.587×τw and we obtain ηe/η=1.54. Of 

course, this result is less accurate than we hoped. However, for n=0.5, numerical simulation 

(Kwag and Vlachopoulos, 1991) for a 6:1 contraction gives Δpe=2×1.078×τw and thus 

ηe/η=2.9, which is awfully close to Trouton value of 3.0. Due the enormous difficulties for 

measuring elongational viscosity by stretching a strand for polymer under precisely controlled 

isothermal conditions, Cogswell’s method is frequently used as an approximation. 

 

Example E3.1-1 

Assume a polymer with m=10,000 Pa·sn and n=0.35. The calculated pressure drop through 

an L=16 mm and D=1 mm die is Δp=6.69 MPa for shear rate 818 s-1 and a measured total 

pressure drop is Δptotal=8.69 MPa, thus Δpe=(Δptotal–Δpcapillary) = 2 MPa. Determine the 

elongational viscosity. 

 

Solution 

We start by calculating the wall shear stress 

𝜏𝑤 = 𝑚𝛾̇𝑛 = 10000 × 8180.35 = 104584 𝑃𝑎 

Therefore, the shear viscosity will be  

𝜂 = 𝑚𝛾̇𝑛−1 = 10000 × 8180.35−1 = 128 𝑃𝑎 ∙ 𝑠𝑛 

The elongational viscosity can be calculated from Cogswell’s formula 

𝜂𝑒 = 𝜂 [
(𝑛 + 1)𝛥𝑝𝑒

1.89𝜏𝑤
]

2

= 128 [
(0.35 + 1) × 2 × 106

1.89 × 104584
]

2

= 23883 𝑃𝑎 ∙ 𝑠 

It is useful to calculate also the stretch rate 
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𝜀̇ =
4𝜂𝛾̇2

3(𝑛 + 1)𝛥𝑝𝑒
=

4 × 128 × 8182

3 × (0.35 + 1) × 2 × 106
= 42 𝑠−1 

Note also the following:  

At shear rate 𝛾̇ = 42 𝑠−1 the shear viscosity is 𝜂 = 10000 × 420.35−1 = 881 𝑃𝑎 ∙ 𝑠𝑛 while at 

stretch rate 𝜀̇ = 42 𝑠−1 the elognational viscosity was calculated above 𝜂𝑒 = 23883 𝑃𝑎 ∙ 𝑠, 

therefore  

𝜂𝑒

𝜂
= 27 

 

3.6 The Bagley Correction of Capillary Viscometry 

A typical capillary viscometer (see Fig. 2.8-1) consists of a reservoir having a diameter 

of about 10 mm and a capillary having diameter around 1mm and length over diameter ratio 

L/D=16–20. When determining the viscosity, the Rabinowitsch correction to the shear rate 

must be applied (Section 2.8). The shear stress can be obtained from the force exerted on the 

molten polymer by the piston in the reservoir. As explained, in the previous section, there is 

also a substantial amount of pressure drop at the entrance to the capillary. This pressure drop 

Δpe must be subtracted from the total pressure (Δptot) imposed by the piston, to determine the 

pressure due to the capillary of length L and diameter D=2R from  

𝛥𝑝𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 = 𝛥𝑝𝑡𝑜𝑡. − 𝛥𝑝𝑒 (3.6-1) 

Modern capillary viscometers (two bore) have two pistons and two dies. The long die will be 

typically of L/D=16–20 and the short die of practically zero length (say L=0.3 mm). The 

pressure drop caused by the zero length die is simply subtracted from the total pressure, to get 

the Δpcapillary. Then, the shear stress at the wall is 

𝜏𝑤 =
𝛥𝑝𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦

2 (
𝐿
𝑅)

 (3.6-2) 

The true viscosity is then calculated by dividing the above value of wall shear stress by the 

Rabinowitsch corrected wall shear rate.  

Originally, Bagley (1957) perhaps did not believe in the existence of a zero length die (well, 

there is always a bit of length) and proposed a more elaborate method. He used a single bore 

viscometer and several dies of same diameter but with different lengths. He plotted the total 

pressure drop against L/R as shown in Fig. 3.6-1 and obtained the correction by adding  
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Figure 3.6-1. Schematic representation of the Bagley method to correct the wall shear stress for 

capillary viscosity measurements. 

 

to the total die length at the intercept (see Fig 3.6-1) of the straight line 

𝜏𝑤 =
𝛥𝑝𝑡𝑜𝑡.

2 (
𝐿
𝑅 + 𝑒)

 (3.6-3) 

The zero length die method and the Bagley method are equivalent as explained pictorially in 

Fig. 3.6-1. Actually, the Bagley method is a bit more accurate, and it may reveal 

characteristics not possible with single zero length capillary. In fact, there is at least one 

manufacturer/vendor of three bore capillary viscometers (Göttfert GmbH). Occasionally, the 

Bagley method may not produce a straight line and there is also another problem: The 

pressure at the exit of a long capillary is not zero for polymer melts (Han, 2007, 

Polychronopoulos and Papathanasiou, 2015) as shown schematically in Fig. 3.4-2. The exit 

pressure, is related to the first normal stress difference (Vlachopoulos and Mitsoulis, 1985). 

For most practical applications the Rabinowitsch and Bagley corrections are of sufficient 

accuracy, for determination of viscosity of polymer melts.  

    

3.7 Constitutive Equations  

To describe the flow behavior of polymer solutions and melts it is necessary to develop 

constitutive equations capable of representing not only the departure of viscosity versus shear 

rate from linearity (e.g. power–law) but also stress relaxation, stress overshoot, normal 

stresses and elongational viscosity that does not obey the Trouton relation of Newtonian 

fluids. This is a very challenging task beyond the scope of this book, but we will present a very 
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brief introduction based on a previous book chapter that we published (Vlachopoulos and 

Polychronopoulos, 2012).  

Constitutive equations are relations between stresses and strains (deformations). In its 

simplest form, the Newtonian equation is a linear relation between shear stress and shear rate  

𝜏 = 𝜂𝛾̇ = 𝜂
𝑑𝑉𝑥

𝑑𝑦
 (3.7-1) 

This is valid for simple shear flow between two flat plates as explained earlier in this chapter 

and it is directly applicable to unidirectional flows. In polymer processing, however, 

numerous interesting flow problems require two- or three- dimensional analyses, of creeping 

(low Reynolds number, Re<<1) flows. For incompressible steady flow the mass conservation 

equation is  

∇ ∙ V̅ = 0 (3.7-2) 

or 

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= 0 (3.7-3) 

and the momentum equation 

0 = −∇𝑝 + ∇𝜏̿ (3.7-4) 

where p is the pressure (which is a scalar) and the stress, which is a (second order) tensor 

given by 

𝜏̿ → [

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

] (3.7-5) 

To generalize the Newtonian equation in 3–dimensions we must propose a linear relation 

between stress components and strain rate components. The strain rate tensor is   

𝐷̿ =
1

2
(∇𝑉̅ + ∇𝑉̅𝑇) =

1

2
(

𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜕𝑉𝑗

𝜕𝑥𝑖
) (3.7-6) 

where  

𝐷̿ → [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] (3.7-7) 

and 𝐷𝑥𝑥 =
1

2
(

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑥

𝜕𝑥
) =

𝜕𝑉𝑥

𝜕𝑥
, 𝐷𝑥𝑦 =

1

2
(

𝜕𝑉𝑥

𝜕𝑦
+

𝜕𝑉𝑦

𝜕𝑥
) and similarly the other components can be 

written out explicitly in terms of the components in the x, y and z directions.  

 


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The Newtonian constitutive equation may then be generalized in the form  

𝜏̿ = 𝜂(2𝐷̿) (3.7-8) 

This means that 𝜏𝑥𝑥 = 𝜂(2𝐷𝑥𝑥) = 2𝜂
𝜕𝑉𝑥

𝜕𝑥
, 𝜏𝑥𝑦 = 𝜂(2𝐷𝑥𝑦) = 𝜂 (

𝜕𝑉𝑥

𝜕𝑦
+

𝜕𝑉𝑦

𝜕𝑥
) etc. 

The models expressing shear thinning behavior of polymer melts (power–law, 

Carreau–Yasuda and Cross) are generalized by replacing 𝛾̇ by a function of the second 

invariant of the strain rate tensor 2𝐷̿. It is called “invariant”, because this quantity remains 

unchanged under rotation of the coordinate axes. It is given in rectangular, cylindrical and 

spherical coordinates in Table 2.14-1 (Section 2.14). Thus, we have the generalized power–

law equation written as 

𝜂 = 𝑚 |
1

2
𝐼𝐼|

𝑛−1
2

 (3.7-9) 

Using the expression of the second invariant in rectangular coordinates, it can easily be shown 

that for simple shear flow (x-velocity only, varying in y-direction only) we have  

𝜂 = 𝑚 (
𝜕𝑉𝑥

𝜕𝑦
)

𝑛

 (3.7-10) 

The above fluid model which expresses simply the shear thinning behavior is referred to as 

the Generalized Newtonian Fluid (GNF) in the rheological literature. This model cannot 

explain any of the viscoelastic flow phenomena, such as stress relaxation, normal stresses or 

extrudate swell. 

As explained in Section 3.2 the simplest way to mathematically describe the dual 

behavior of polymers (viscous like fluids and elastic like solids) is the Maxwell equation 

𝜏 + 𝜆𝜏̇ = 𝜂𝛾̇ (3.7-11) 

For the mechanical contraption of Fig. 3.2-1, the derivative of the stress term is simply with 

respect to time. However, if we want to use this equation to describe a flowing fluid, the stress 

term will be function of position and time 

𝜏 = 𝜏(𝑥, 𝑦, 𝑧, 𝑡) (3.7-12) 

Consequently, the substantial (material) derivative (Vlachopoulos, 2016) will be 

𝐷𝜏

𝐷𝑡
=

𝜕𝜏

𝜕𝑡
+ 𝑉𝑥

𝜕𝜏

𝜕𝑥
+ 𝑉𝑦

𝜕𝜏

𝜕𝑦
+ 𝑉𝑧

𝜕𝜏

𝜕𝑧
 (3.7-13) 

There is considerable amount of mathematical literature that shows this equation must be 

further modified in order for the derivative to be independent of the frame of reference 
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(Astarita and Marrucci, 1974, Bird et al., 1987, Tanner, 2000). With this modification a 

Convective Maxwell Model for 2-D flows takes the form 

𝜏𝑥𝑥 + 𝜆 [
𝜕𝜏𝑥𝑥

𝜕𝑡
+ 𝑉𝑥

𝜕𝜏𝑥𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝜏𝑥𝑥

𝜕𝑦
− 2

𝜕𝑉𝑥

𝜕𝑥
𝜏𝑥𝑥 − 2

𝜕𝑉𝑥

𝜕𝑦
𝜏𝑦𝑥] = 2𝜂

𝜕𝑉𝑥

𝜕𝑥
 (3.7-14) 

𝜏𝑦𝑦 + 𝜆 [
𝜕𝜏𝑦𝑦

𝜕𝑡
+ 𝑉𝑥

𝜕𝜏𝑦𝑦

𝜕𝑥
+ 𝑉𝑦

𝜕𝜏𝑦𝑦

𝜕𝑦
− 2

𝜕𝑉𝑦

𝜕𝑥
𝜏𝑥𝑦 − 2

𝜕𝑉𝑦

𝜕𝑦
𝜏𝑦𝑦] = 2𝜂

𝜕𝑉𝑦

𝜕𝑦
 (3.7-15) 

𝜏𝑥𝑦 + 𝜆 [
𝜕𝜏𝑥𝑦

𝜕𝑡
+ 𝑉𝑥

𝜕𝜏𝑥𝑦

𝜕𝑥
+ 𝑉𝑦

𝜕𝜏𝑥𝑦

𝜕𝑦
−

𝜕𝑉𝑥

𝜕𝑦
𝜏𝑦𝑦 −

𝜕𝑉𝑦

𝜕𝑥
𝜏𝑥𝑥] = 𝜂 (

𝜕𝑉𝑥

𝜕𝑦
+

𝜕𝑉𝑦

𝜕𝑥
) (3.7-16) 

Note that in Eq. 3.7-14 to 3.7-16, τxy=τyx (the stress tensor is symmetric). Let’s see how good 

the above equation is in describing polymer melt flows. Let’s examine the simple steady-state 

shear experiment of Fig. 2.1-1. We see that equations 3.7-14 to 3.7-16 become respectively 

𝜏𝑥𝑥 − 2𝜆
𝑑𝑉𝑥

𝑑𝑦
𝜏𝑦𝑥 = 0 (3.7-17) 

𝜏𝑦𝑦 = 0 (3.7-18) 

𝜏𝑥𝑦 = 𝜂 (
𝑑𝑉𝑥

𝑑𝑦
) (3.7-19) 

and then we have the first normal stress difference 

𝜏𝑥𝑥 − 𝜏𝑦𝑦 = 2𝜆𝜂 (
𝑑𝑉𝑥

𝑑𝑦
)

2

  (3.7-20) 

This means that the Maxwell Model predicts a Newtonian viscosity fluid because 𝜏𝑥𝑦 =

𝜂(𝑑𝑉 𝑑𝑦⁄ ), which also has normal stress difference in simple shear flow 𝜏𝑥𝑥 − 𝜏𝑦𝑦 =

2𝜆𝜂 (
𝑑𝑉 

𝑑𝑦
)

2

. Actually, the first normal stress difference prediction is not bad, when you 

compare it to experimental data with polymer melts at low shear rates. 

It must be noted that if we solve the 2D Maxwell equations or the corresponding 

axisymmetric equations for flow through a die we will obtain extrudate swell because the 

model predicts normal stresses. 

         If the flow is not steady, then the simplification of Eq. 3.7-16 for the simple shear flow 

experiment of Fig. 2.1-1 gives 

𝜏𝑥𝑦 + 𝜆
𝜕𝜏𝑥𝑦

𝜕𝑡
= 𝜂

𝜕𝑉𝑥

𝜕𝑦
 (3.7-21) 

If the non-steady shear flow is suddenly brought to rest, then Vx=0 and the above equation 

becomes 
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𝜏𝑥𝑦 + 𝜆
𝜕𝜏𝑥𝑦

𝜕𝑡
= 0 (3.7-22) 

This equation is identical to Eq. 3.2-8 derived for the mechanical contraption of spring and 

dashpot of Fig. 3.2-1, when extended and then held there. We have already shown that the 

stresses relax in an exponential manner. So, another good feature of the Maxwell model, is 

that it predicts stress relaxation. 

Next, let’s determine the elongational viscosity of the Convective Maxwell Model 

given by equations 3.7-14, 3.7-15 and 3.7-16, which is defined as  

𝜂𝑒 =
𝜏𝑥𝑥 − 𝜏𝑦𝑦

𝑑𝑉𝑥

𝑑𝑥

=
𝜏𝑥𝑥 − 𝜏𝑦𝑦

𝜀̇
 

(3.7-23) 

For steady extension in the x-direction and contraction in the y- and z-directions (see also 

Section 3.3), Eqs. 3.7-14 and 3.7-15 take respectively the following form  

𝜏𝑥𝑥 + 𝜆 [−2
𝜕𝑉𝑥

𝜕𝑥
𝜏𝑥𝑥] = 2𝜂

𝜕𝑉𝑥

𝜕𝑥
 (3.7-24) 

𝜏𝑦𝑦 + 𝜆 [−2
𝜕𝑉𝑦

𝜕𝑦
𝜏𝑦𝑦] = 2𝜂

𝜕𝑉𝑦

𝜕𝑦
 (3.7-25) 

Using Eqs. 3.3-1 and 3.3-2 we may write Eqs. 3.7-24 and 3.7-25 as  

𝜏𝑥𝑥 − 2𝜆𝜀̇𝜏𝑥𝑥 = 2𝜂𝜀̇ (3.7-26) 

𝜏𝑦𝑦 + 𝜆𝜀̇𝜏𝑦𝑦 = −𝜂𝜀̇ (3.7-27) 

It can be easily shown that by solving Eqs. 3.7-26 and 3.7-27 with respect to τxx and τyy and 

substituting the results in Eq. 3.7-23, we obtain the elongational viscosity  

𝜂𝑒 =
3𝜂

(1 − 2𝜆𝜀̇)(1 + 𝜆𝜀̇)
 (3.7-28) 

Note that for 𝜀̇ = 0, the model predicts the Trouton ratio ηe=3η. However, for increasing 𝜀̇, 

ηe grows in an unbounded manner. Specifically, for 𝜀̇ → 1 2𝜆⁄  the elongational viscosity 𝜂𝑒 →

∞. In reality, ηe increases and then decreases as we have shown schematically in Fig. 3.3-2.                             

Thus, the verdict on this version of Convective Maxwell Model is the following: Reasonable 

in prediction of first normal stress difference, but very bad for elongational viscosity. This 

means that it could be used for the study of extrudate swell, but not for entry flow problems.    

Actually, the above-described 2-D version is one of the possible generalizations which 

satisfy mathematical invariance (the model does not depend on the system of coordinates 

used to describe the motion, stationary or moving with the flow field). In general, the Maxwell 

model is written as 
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𝜏̿ + 𝜆
𝛥𝜏̿

𝛥𝑡
= 2𝜂𝐷̿ (3.7-29) 

where the derivative Δ/Δt is referred to as the upper convective derivative, given by 

𝛥𝜏̿

𝛥𝑡
=

𝐷𝜏̿

𝐷𝑡
− [𝜏̿ ∙ (∇𝑉̅) − (∇𝑉̅)𝑇 ∙ 𝜏̿] (3.7-30) 

with D/Dt the substantial (material) derivative. There is also the lower convective derivative 

as well as other forms (e.g. co-rotational) which are the subject of specialized handbooks (Bird 

et al., 1987, Astarita and Marrucci, 1974, Tanner, 2000) and numerous articles, which have 

been published in the J.  Rheol., Rheol. Acta, J. Non-Newt. F.M. and other journals. 

There are several possible extensions and generalizations of simple models. For 

example, the convected Maxwell model can be written in the form 

𝜏̿ + 𝜆(𝐼𝐼𝐷)
𝛥𝜏̿

𝛥𝑡
= 2𝜂(𝐼𝐼𝐷)𝐷̿ (3.7-31) 

where λ(IID) and η(IID) represent the relaxation time and the viscosity respectively, both of 

them functions of the second invariant of the strain rate tensor. In this form the model is 

known as White–Metzner. When a generalization is proposed the key criterion is to satisfy 

the principle of material indifference, which states that the predicted response of a material 

must be the same for all observers irrespective of their coordinate system of reference. As a 

consequence of this, in the development of constitutive equations, a coordinate system which 

moves, rotates and deforms with the material should be used. This requirement results in 

mathematically complex constitutive equations. Despite their mathematical sophistication, 

and the requirement of fitting numerous parameters, most viscoelastic constitutive equations 

fail to predict with any precision most of the unusual rheological phenomena exhibited by 

polymeric liquids. The most successful constitutive equation is the so–called K–BKZ integral 

model inspired by the theory of rubber elasticity (Astarita and Marrucci, 1974) and involves 

more than two dozen experimentally fitted parameters. Current trends involve the 

development of models based on macromolecular motions. De Gennes proposed the snake–

like motion of polymer chains called reptation (Dealy and Larson, 2006, Macosko, 1994] and 

deduced from scaling relations that the zero shear viscosity must be ηo≈M3.0, while 

experiments give ηo≈M3.4 (M is the molecular weight). Based on the reptation concept, Doi 

and Edwards (Dealy and Larson, 2006, Macosko, 1994) developed a constitutive equation 

which leaves much to be desired before it can be used for predicting viscoelastic flow 

phenomena. Several attempts were made to fix the Doi–Edwards theory (Dealy and Larson,  
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Figure 3.7-1. Schematic representation of De Gennes’s conceptual snake–like motion of polymer 

chains, called reptation. 

 

2006). The most talked about viscoelastic model recently, is the Pom–Pom polymer model, 

developed by McLeish and Larson [McLeish and Larson (1998), Dealy and Larson (2006)]. 

The motivation for its development was that the K – BKZ equation fails to predict the 

observed degree of strain hardening in planar extension when certain functions are adjusted 

to fit the observed degree of strain softening in shear. The failure to describe the rheology of 

long – branched polymers suggests that some new molecular insight is needed into the 

nonlinear relaxation processes, which occur in such melts under flow. The Pom – Pom model 

uses an H – polymer structure, in which molecules contain just two branch points of chosen 

functionality and a “backbone” which links the two pom – poms. The Pom – Pom model 

exhibits rheological behavior remarkably similar to that of branched commercial melts like 

LDPE. It shows strain hardening in extension and strain softening in shear. It can describe 

both planar and uniaxial extension. The constitutive equation is integro–differential. For 

successful application at least 32 parameters must be obtained by fitting experimental 

rheological data. Of course, fitting 32 or more parameters in a complicated constitutive 

equation is a mathematical challenge.  

Modeling polymer viscoelastic behavior has always been a very controversial subject. 

While viscoelastic constitutive equations have contributed towards understanding of various 

deformation mechanisms and flow, they unfortunately have not provided us with quantitative 

predicting power for polymer process and equipment design. Very often the predictions 

depend on the model used for the computations and are not corroborated with experimental 

observations. Some viscoelastic problems can be solved with the appropriate viscoelastic 

constitutive equations, but this is still an area of academic research with very limited practical 

applications at the moment. 



3-27 

 

  

For design of polymer process equipment such as extruders, dies and molds, computer 

simulations are carried out in 2- or 3- dimensions, using the Generalized Newtonian Fluid 

(GNF) model. The Carreau–Yasuda and Cross models have a clear advantage over the 

power–law, because they can capture the viscosity behavior from the Newtonian plateau at 

low shear rates to high shear regions with substantial shear thinning.       

 

3.8 Extrudate (Die) Swell 

 Extrudate swell is observed whenever a molten polymer emerges from a die. In 

polymer extrusion through a round die the diameter of an emerging molten polymer stream 

is larger than the diameter of the die. This phenomenon is sometimes called the “Barus effect” 

(Vlachopoulos, 1981), while in industry it is usually referred to as die swell. For the case of a 

tube with diameter D and the extrudate with diameter d as shown in Fig. 3.8-1, the swelling 

ratio is simply defined as d/D. 

 
Figure 3.8-1. Schematic representation of an extrudate emerging from a round die.  

 

 Even Newtonian fluids exhibit swelling. It is 13% for cylindrical channels and 19% for 

2-D slits at a very low Reynolds number. This swell is due to streamline rearrangement at the 

channel exit.  Increasing the Reynolds number, the swelling becomes smaller and eventually 

a thinning of the emerging Newtonian liquid jet is observed. This is shown in Fig. 3.8-2 where 

d/D is plotted as a function of the Reynolds number (Re) for a capillary die. For Re=16, d/D 

≈ 1. At higher Re, but still laminar flow, a thinning of the liquid jet (d/D=0.87) is obtained 

from a momentum and mass balance (inside the tube the profile is parabolic and outside it is 

flat) as explained by Vlachopoulos (2016). 

 
Figure 3.8-2. Experimental data on die swell versus Reynolds number for several Newtonian fluids 

from a long capillary into air. From Middleman (1977). 
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 Polymers are typically extruded at a very low Reynolds number (Re=10-4~10-2) and 

they may exhibit extrudate swell ratios of up to 400% or even more, under certain conditions. 

This is usually attributed to the viscoelastic nature of polymers. As we saw in Section 3.2, 

when a viscoelastic liquid flows in a channel, shearing results in development of normal 

stresses. With reference to the round die of Fig. 3.8-3, the stress developed in the flow 

direction is τzz and normal to the flow τrr. As the polymer is sheared inside the tube, the long 

chains (which can be imagined as behaving like springs) are highly extended in the flow 

direction z and compressed in the r direction. The first normal stress difference, N1=τzz-τrr, is 

positive and it is released as the polymer emerges from the die. The first normal stress 

difference release results in a contraction of the polymer chains in the flow z direction and 

expansion in the normal r direction. This implies a large extrudate swell (just like a release of 

a bunch of stretched imaginary springs). 

 
Figure 3.8-3. Schematic representation of a polymer elemental volume deformation as it emerges from 

a tube. 

 

Extrudate swell is very important in extrusion due to the need to know the exact 

dimensions of extruded products. Consequently, numerous attempts have been made 

(Vlachopoulos, 1981) to determine equations for the prediction of the swell ratio from the 

shear stress and first normal stress difference N1 developed in capillary (round) and slit 

(planar) dies. Some of these equations, stem from the theory of rubber elasticity (Treloar, 

1975), under the assumption that extruded molten polymers behave as rubber-like solids. The 

basic idea is an imaginary stretching of the extrudate, so that it will thin back to the diameter 

of the capillary from which it emerged (Vlachopoulos, 1972, 1981). By replacing the required 

imaginary tensile force, required to produce the thinning of the extrudate, with N1, the 

following equation can be obtained 
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𝑁1

2𝜏
= [(𝑑 𝐷⁄ )4 +

2

(𝑑 𝐷⁄ )2
− 3]

1 2⁄

 (3.8-1) 

In the technical literature the left hand side of Eq. 3.8-1 is usually referred to as the recoverable 

shear (here, is the average), 𝑆𝑅 = 𝑁1 2𝜏⁄  with τ the shear stress. Vlachopoulos et al. (1972) 

modified Eq. 3.8-1 by assuming a parabolic velocity profile inside the capillary to arrive at 

𝑁1𝑤

2𝜏𝑤
= √3 [(𝑑 𝐷⁄ )4 +

2

(𝑑 𝐷⁄ )2
− 3]

1 2⁄

 (3.8-2) 

where the subscript “w” means that the respective quantities are evaluated on the capillary 

wall. For the case of planar extrudates, emerging from slit dies, Malkin et al. (1976) derived 

another equation, which after a minor correction becomes  

𝑁1𝑤

2𝜏𝑤
= √5 [(ℎ 𝐻⁄ )2 +

2

(ℎ 𝐻⁄ )
− 3]

1 2⁄

 (3.8-3) 

where h the extrudate thickness and H the slit die gap. 

 Another equation for extrudate swell determination was developed by Tanner (1970) 

for a Maxwell-type constitutive equation of a viscoelastic fluid. It was assumed that when the 

material is sheared in a die, normal stresses develop, which are “released” when the die wall 

instantaneously “disappears” at the die exit, to end up with 

𝑑

𝐷
= 0.13 + [1 +

1

2
(

𝑁1𝑤

2𝜏𝑤
)

2

]

1 6⁄

 (3.8-4) 

for round extrudates. The value of 0.13 was added by Tanner to account for the Newtonian 

swell. Tanner’s theory for planar extrudates, predicts 

𝑑

𝐷
= 0.19 + [1 +

1

5
(

𝑁1𝑤

2𝜏𝑤
)

2

]

1 4⁄

 (3.8-5) 

where 0.19 accounts for the Newtonian swell. Several years later, Tanner (2005) revised Eq. 

3.8-4 and Eq. 3.8-5 assuming the first normal stress difference obeys    

𝑁1 = 𝑘𝜏𝑚 (3.8-6) 

(rather than the original assumption 𝑁1 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝜏2) and obtained, for round extrudates 

𝑑

𝐷
= 0.13 + [1 + (

4 − 𝑚

𝑚 + 2
) (

𝑁1𝑤

2𝜏𝑤
)

2

]

1 6⁄

 (3.8-7) 

 and for planar extrudates 
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𝑑

𝐷
= 0.19 + [1 + (

3 − 𝑚

𝑚 + 1
) (

𝑁1𝑤

2𝜏𝑤
)

2

]

1 4⁄

 (3.8-8) 

where for m=2 the equations reduce to Eq. 3.8-4 and 3.8-5 respectively. Comparison of Eq. 

3.8-2 with Eq. 3.8-3 (or Eq. 3.8-4 with Eq. 3.8-5), shows that for the same 𝑁1𝑤 2𝜏𝑤⁄ , the 

extrudate of planar dies exceeds that of capillary dies. With planar dies, swelling occurs only 

in one dimension (y, where x is the flow direction), while in capillaries in two dimensions 

(r(x,y), with z being the flow direction axis). This is of considerable importance in extrusion 

of profiles. For example, for a “keyhole” die, like than shown in Fig 3.8-4, it is difficult to 

determine the exact dimensions of the extruded profile, because one part emerges from a 

round die and another from a planar one. The swelling at the corners is another challenging 

problem.  

 
Figure 3.8-4. Schematic representation of a so-called “keyhole” die. R the radius of the round part, H 

the thickness of the rectangular one and L the length. 

 

 In the previous discussion on extrudate swell, it was assumed that the dies are long 

enough to avoid any influence of the entrance. A question that naturally arises, is, what 

happens if the length of the channel through which a molten polymer flows is short, as for 

instance through an orifice die L/D≈0. Experiments have shown that as L/D → 0, the 

swelling increases for same mass flow rate, as shown schematically in Fig. 3.8-5. It is generally  

 
Figure 3.8-5. Schematic representation of swelling as a function of the L/D ratio (die length/die 

diameter) for same flow rate. Swelling reaches an asymptotic value. 



3-31 

 

  

 
Figure 3.8-6. Schematic representation of the memory of entrance that applies only for short dies. The 

cylinder corresponds to a conceptual fluid volume.  
 

believed, that this behavior is due to memory of entrance. This may be explained in the 

following simple way: If we assume an imaginary fluid cylinder in the reservoir as shown in 

Fig. 3.8-6, the cylinder is stretched and thins as it is forced through the die, so when it comes 

out it swells. For long dies, the memory of entrance fades away (essentially the cylinder 

“forgets” the state it was in the reservoir) and the swelling is due only to the release of normal 

stresses at the exit. Further lengthening of the die does not affect the extrudate swell and an 

asymptotic value is reached as shown in Fig. 3.8-5. Therefore, for short dies, swelling is a 

combination of two mechanisms: memory of entrance and release of normal stresses at the 

exit. A short die for PS would be roughly L/D<15 and for LDPE perhaps L/D<30. The reason 

is that LDPE (branched) is generally more elastic than PS (linear) and it takes longer for the 

stresses to relax. It should be noted, that the previous simple models (rubber elasticity, Tanner) 

for determination of extrudate swell, apply only for long dies, that is, only to the asymptotic 

region of Fig. 3.8-5. 

 
Figure 3.8-7. Schematic representation of thermal swelling. 

 

 Thermal effects may also contribute to the extrudate swell. If the walls of a die are 

colder than the polymer melt flowing through, as shown in Fig. 3.8-7, the viscosity near the 

wall will be higher than in the center. Therefore, the fluid is “restrained” as it comes out of 

the die and the swelling is increased. The opposite occurs, if the die is hotter than the polymer 

melt flowing through. In this case, the viscosity near the wall is lower than the viscosity at the 

center. This facilitates the flow and the resulting swelling is decreased as shown schematically 
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in Fig. 3.8-7. Extrudates, in general, may swell up to perhaps 15%, due to thermal effects. It 

can be easily calculated with numerical analysis methods [(Vlcek and Vlachopoulos (1989)].  

Swelling from annular dies is important in pipe extrusion, film blowing and blow molding. In 

blow molding, a tube, called the parison, is extruded and subsequently, by gas pressure from 

the inside, the extrudate wall is blown against the mold walls for the formation of bottle-

shaped products. As the polymer emerges from the extrusion die, a swelling in thickness and 

at the same time an increase in the diameter is observed as shown in Fig. 3.8-8, before any 

gas pressure is applied. The swelling may be followed by sagging or draw-down (due to the 

extruded material weight), which induces an opposite change in the dimensions: thinning of 

the thickness and decrease of the diameter. The ratio h/H is referred to as thickness swell and 

the ratio d/D as the diameter swell. In blow molding technology the term “weight swell” is 

used to indicate the ratio of the weight of a given length of the extruded parison to  

 
Figure 3.8-8. Schematic representation of swell from an annular die. H is the thickness of the annulus 

with outer diameter D, and h the thickness of the swelled extrudate with larger outer diameter d. 

 

the weight of the same length of a parison having the same inner and outer diameters as the 

die. These swell parameters determine the quality and the cost of extrusion blow molded 

products. Determination of swelling from annular dies used in blow molding, where the 

thickness is usually relatively small compared to the diameter, is difficult. The shear history 

imposed by straight, converging or diverging channels is different for each one of the flow 

geometries shown in Fig 3.8-9. Extrusion blow molded products include small bottles and 

large fuel tanks, for cars and other vehicles. 
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 Extrudate swell is also encountered in film casting (with flat dies), for the production 

of thin sheets or tapes and in melt spinning (round dies or dies of various shapes) for fiber 

production. Upon emergence from the die, the swelled polymer is subsequently drawn by a 

chilled roll (or a pair of rolls) to form final products with dimensions usually lower than the 

die dimensions. The process of film casting is shown schematically in Fig. 3.8-10.  

 
Figure 3.8-9. Various types of extrusion blow molding dies. From a Hoechst technical guide. 

 

 
Figure 3.8-10. Schematic representation of the film casting process. The film, after emergence of the 

die swells and afterwards thins out due to the rolling action of the chilled cylinder. (Figure not to 
scale). 

 

In film casting, the final sheet is thicker at the lateral sides than at the center. This is called 

edge beading that will not be discussed here. Clearly, the flow history of the material changes 

a lot during these processes (similarly to blow molding), especially if the die is relatively short 

and memory of entrance phenomena come into play. It has been shown experimentally and 

computationally (mostly 2D numerical simulations with viscoelastic models for long dies), 
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that small increase of the drawing speed results in a rapid decrease of the swell 

(Polychronopoulos and Papathanasiou, 2015). 

.  
Figure 3.8-11. Effect of MWD on extrudate swell for linear polymers. A broad MWD means that the 

polymer has a few, but very long chains. 

 

The molecular structure of the polymer has a large effect on extrudate swell. The first normal 

stress difference (N1) released at the exit of the die, is very sensitive to the Molecular Weight 

Distribution (MWD). N1 depends strongly on the Mz and Mz+1 molecular weight averages 

discussed in Chapter 1 of this book. Broad MWD implies that there is a high Molecular 

Weight (MW) tail (i.e. there are some very long polymer chains) and high values  

 

Figure 3.8-12. Extrudate swell of PS for different molecular weight distributions, identified by their 

different Mw, Mz and Mz+1 averages. Arrows indicate the flow instability. From Vlachopoulos et al., 

1972).  
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of Mz and Mz+1. Such polymers possess large first normal stress difference, which results in 

large swell. In Fig. 3.8-11, we show schematically the effect of MWD on extrudate swell. 

Some actual data for PS (Vlachopoulos et al., 1972) are shown in Fig. 3.8-12. For the case of 

branched polymers, it has been shown that the presence of long branches (Long Chain 

Branching) increases the extrudate swell (Hamielec and Vlachopoulos, 1983). 

 In summary, the extrudate swell is the result of the following contributions: (1) 

Newtonian swell (13% for rod and 19% for sheet), (2) memory of entrance, for short dies (can 

be very large for orifice dies) (3) normal stress release at the die exit (frequently the largest) 

and (4) thermal effects (usually about 5~10%). It is debatable whether the individual 

contributions can be simply added, but we can perhaps write the following expression as a 

reminder of the various mechanisms, without intention of actually making any calculations  

𝑑

𝐷
≈ (

𝑑

𝐷
)

𝑁𝑒𝑤𝑡.
+ (

𝑑

𝐷
)

𝑀𝑒𝑚.
+ (

𝑑

𝐷
)

𝑁1

+ (
𝑑

𝐷
)

𝑡ℎ𝑒𝑟𝑚𝑎𝑙
 (3.8-9) 

Under certain conditions the first normal stress difference can be negative (liquid crystal 

polymers, polymers filled with carbon nanotubes). In such cases instead of swelling, a 

thinning of the extrudate is observed at the low Re values of polymer processing. This is a 

rather rare occurrence (Pasquali, 2004).  

 
Figure 3.8-13. Numerical prediction of die swell. The arrows correspond to the predicted velocity 

profiles. 
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Numerous papers have been published in the literature describing numerical analyses 

of the extrudate swell problem. Comparisons with experiments have not been very successful 

to the degree of accuracy required in precision extrusions, but they provided an understanding 

of this phenomenon.  In Fig. 3.8-13 the swelling and the velocity rearrangement at the exit of 

die is shown from some computer simulations using a commercially available software 

package (POLYCAD). In this software, rather than using a constitutive equation, the first 

normal stress difference is introduced in the form 𝛮1 = 𝛢𝜏𝑏. Despite the oversimplification, 

the velocity vectors are fully in agreement with theoretical considerations on how a nearly 

parabolic profile inside the die becomes flat at a certain distance from the exit.  For more 

rigorous approaches see Ganvir et al. (2011) and Robertson et al. (2017). 

 

Example E3.8-1 

Experiments using rotational rheometer, have shown that for polystyrenes the first normal 

stress difference obeys the following relation 

𝑁1 = 3.47 × 10−3𝜏𝑤
1.66 

Using a capillary rheometer, it was found that the swell ratio of this polystyrene is d/D=1.78 

for 𝛾̇𝑤 = 166 𝑠−1 and 𝜏𝑤 = 1.069 × 105 𝑃𝑎. Determine the swell ratio from rubber elasticity 

and Tanner’s theories and compare. 

Solution 

We start by calculating the first normal stress difference at the wall, from the wall shear stress 

obtained from the capillary rheometer 

𝑁1,𝑤 = 3.47 × 10−3𝜏𝑤
1.66 = 3.47 × 10−3(1.069 × 105 )1.66 = 7.73 × 105 𝑃𝑎 

 From rubber elasticity (Eq. 3.X) 

7.73 × 105

2 × 1.069 × 105
= √3 [(𝑑 𝐷⁄ )4 +

2

(𝑑 𝐷⁄ )2
− 3]

1 2⁄

 

It turns out, after manipulations, that the above equation is a cubic polynomial if we set 

(d/D)2=A 

𝐴3 − 7.3573𝐴 + 2 = 0 

which can be easily solved using a symbolic package. Here, we use MuPad (embedded in 

Matlab) for the algebraic solution. The solution has three values: a negative (non physical) 

and a value less than unity which suggests that the extrudate thins (non-physical). The third 

one gives A≅ 2.5646. Therefore 
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(
𝑑

𝐷
)

𝑟𝑢𝑏.𝑒𝑙𝑎𝑠.
= √𝐴 ≅ 1.6 

By taking into account, the 13% of Newtonian swell we may write 

(
𝑑

𝐷
)

𝑟𝑢𝑏.𝑒𝑙𝑎𝑠.
≅ 1.6 + 0.13 = 1.73 

which is remarkably close to the measured swell ratio (d/D) of 1.78. 

 From Tanner’s theory (Eq. 3.8-4) 

(
𝑑

𝐷
)

𝑇𝑎𝑛𝑛𝑒𝑟
= 0.13 + [1 +

1

2
(

7.73 × 105

2 × 1.069 × 105
)

2

]

1 6⁄

≅ 1.53 

The predicted swell appears to underestimate the measured one. 

 From Generalized Tanner’s theory (Eq. 3.8-7 with m=1.66) 

(
𝑑

𝐷
)

𝐺𝑒𝑛.  𝑇𝑎𝑛𝑛𝑒𝑟
= 0.13 + [1 + (

4 − 1.66

1.66 + 2
) (

7.73 × 105

2 × 1.069 × 105
)

2

]

1 6⁄

≅ 1.58 

The predicted swell is still lower than the experimental one. It appears that both versions of 

Tanner’s equation underestimate the swelling, despite their rigorous theoretical basis. In 

contrast, the rubber elasticity theory predicts a result very close to the measured one. This is 

probably fortuitous. Measurement of the first normal stress difference is extremely difficult at 

high shear rates and the equation used above (𝛮1 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝜏1.66) based on measurements by 

Oda et al. (1978) is highly suspect, for its validity at the shear rate level where a swelling ratio 

of 1.78 was measured. 

 

3.9 Melt Elasticity and Stress Relaxation  

Polymer melts are composed of entangled macromolecular chains. These long chains 

require some time to move and rearrange themselves upon imposition of a stress. In short 

times they behave as elastic solids, but in long times they behave as liquids. This dual nature 

of solid-like (elastic) and liquid-like (viscous) behavior can easily be demonstrated by the 

silicone-based polymer toy of Silly Putty: One can easily form a ball of Silly Putty, which can 

bounce on a table like a rubber ball. However, if this bouncing ball is left undisturbed for a 

few hours on a table it slowly flows like a very thick syrup and spreads on the table surface. 

Chapter 2 of this book is entirely devoted to the viscous (inelastic) flow of polymer melts. To 

understand the processing of polymers, we must also investigate their elastic nature, which is 

exhibited at short process or experiment times. Firstly, we must determine a characteristic 
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time λ, such that at times t>>λ, the entangled polymer chains are able to rearrange themselves 

and result in liquid-like behavior of the material. In other words, we must determine the time 

for the stresses to relax. The relaxation time is specific for each material. It is a material 

property which must be taken into consideration whenever we analyze a process involving 

molten polymers, design equipment or produce plastic products. 

Depending on chain length and macromolecular architecture, relaxation times usually 

range from 10-3s for dilute polymer solutions to 103s for polymer melts. They are frequently 

in the same range as process or experiment times. For example, in blown film extrusion a thin 

molten polymer film emerges from annular die lips and solidifies at a short distance. The time 

required to travel from the die lip exit to the freeze-line is of the same order of magnitude as 

the relaxation time of the extruded polymer. Consequently, blown film bubble stability and 

film properties will be influenced by polymer elasticity and the time it takes for the stresses to 

relax. It is one thing to produce a film by extruding a very elastic polymer and entirely another 

if the extrusion involves a polymer of little elasticity.  

In Section 3.2 we have introduced the dimensionless Deborah number, which is the 

ratio of a characteristic time for the material to a characteristic time of the process  

𝐷𝑒 =
𝜆

𝜃
=

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑡𝑖𝑚𝑒

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒
 (3.9-1) 

A good choice for a characteristic process time would be the residence time. It is not obvious 

which is the best choice of a characteristic material time, and there are plenty of possible 

choices.   

In Section 3.2 we introduced the Maxwell model and noted that the ratio of viscosity 

to the modulus of elasticity η/G has dimensions of time, it is usually denoted by λ and 

expresses the time required for an imposed stress to relax. Let us use this relation to evaluate 

the relaxation time for water. At room temperature the viscosity of water is about 10-3 Pa·s. 

In the Maxwell fluid model G is the shear modulus. However, a fluid like water cannot sustain 

shear so we will use the bulk modulus. The bulk elastic modulus of a material determines how 

much it will compress under a given amount of external pressure. For water this bulk modulus 

is 2.2. GPa. Thus 

𝜆 =
𝜂

𝐺
=

10−3

2.2 × 109
≈ 0.5 × 10−12 𝑠 (3.9-2) 
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This means that applied stresses in water would relax instantaneously, as explained pictorially 

in Fig. 3.2-2b (Newtonian). 

From viscosity data available to the authors for a polystyrene melt at 170 oC at shear 

rate 𝛾̇ = 10−3 s-1, viscosity 𝜂=1.03×105 Pa·s and shear modulus G=1.03×102 Pa, which gives 

λ=103 s-1,  while at 𝛾̇ = 3 × 102 s-1 we have 𝜂=4.71×102 Pa·s, modulus  G=1.41×105 Pa and 

λ=3.33×10-3 s. Since viscosity 𝜂 and modulus G of polymer melts varies with both temperature 

and shear rate, we need a spectrum of characteristic times to describe the relaxation behavior. 

This matter will be dealt with in Chapter 5 of this book on rheological measurements. If we 

have to choose just one relaxation time we would pick its value at zero shear, which is 

measurable no lower than 𝛾̇ = 10−3~10−4 s-1, with currently available instruments. Thus this 

polystyrene polymer would be characterized by two values, its zero shear viscosity 

𝜂𝑜=1.03×105 Pa·s and the “longest relaxation time” λo=103 s-1. Another suggestion is made in 

Chapter 5 on measurements. We would expect that polystyrene product properties to be 

influenced by both the viscous and the elastic nature of the polymer. Thus, for systematic 

material selection it would be meaningful to carry out experiments with different polystyrene 

grades and then develop correlations, like impact strength=F(ηο, λο,….), toughness= F(ηο, 

λο,….) and other similar ones. 

From the analysis of flow of a Convected Maxwell fluid model we have obtained the 

relation for the first normal stress difference 

𝜏𝑥𝑥 − 𝜏𝑦𝑦 = 2𝜆𝛾̇𝜏𝑥𝑦 (3.9-3) 

thus the characteristic time related to the elastic normal stress difference is 

𝜆 =
𝜏𝑥𝑥 − 𝜏𝑦𝑦

2𝛾̇𝜏𝑥𝑦
 (3.9-4) 

This quantity represents the time for the elastic normal stress to relax. In fact, the ratio 

(dimensionless number)  

𝑆𝑅 =
(𝜏𝑥𝑥 − 𝜏𝑦𝑦)

𝑤

2(𝜏𝑥𝑦)
𝑤

 (3.9-5) 

where w denotes stress values at the channel wall, is known as the recoverable shear. The 

term “recoverable” is used because of the elastic normal stresses that are generated by the 

application of shear.  

Another dimensionless group is the Weissenberg number 
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𝑊𝑖 = 𝜆𝛾̇   𝑜𝑟   𝑊𝑖 = 𝜆
𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠𝑐𝑎𝑙𝑒
 (3.9-6) 

The Weissenberg number is used mostly in numerical simulations of polymer flows. Again 

this dimensionless number can be interpreted as the ratio of elastic to viscous forces. 

It appears confusing that there are three different definitions for representing the ratio 

of elastic to viscous forces. We will try to clarify somewhat the situation by examining the 

flow inside a straight channel of circular cross-section or between two parallel flat plates, 

which is called viscometric (fluid particles on any streamline remain at same distance apart). 

An obvious choice for a characteristic process time would be the inverse of shear rate at wall 

1/𝛾̇𝑤 Another obvious choice for the characteristic material time would be Eq. 3.9-4  

evaluated at wall. Then the three dimensionless numbers are equal 

𝐷𝑒 = 𝑆𝑅 = 𝑊𝑖 (3.9-7) 

However, this is not always the case. It might be preferable to chose some sort of average 

process time for the Deborah number and a local characteristic time in the Weissenberg 

number. In extrusion through a die we may want to use the residence time (can be long) as 

the characteristic time in the Deborah number, but at die lips the shear rate could be very 

high. So, we could have a small De and large Wi. Also the two definitions of Wi differ by the 

factor relating the ratio (length scale/velocity scale) to the shear rate. For flow in a tube 

𝛾̇𝑤=8×(velocity average/diameter). These differences in definition must be kept in mind when 

reading the technical literature. The Weissenberg number is the preferred dimensionless 

parameter in viscoelastic flow simulations.  

Another difference is related to the characteristic material time. Frequently, in industry 

the characteristic time is the parameter λ (e.g. Leal et al., 2006) in the Cross or the Carreau-

Yasuda or other such viscosity model (which is a curve fitting parameter of shear thinning, 

that has dimensions of time). This choice is not the best, because it does not appear to have a 

direct link to the elasticity of the polymer, but not entirely without merit. Molecular theories 

show that there is a link between the shear thinning behavior and elasticity (Bird et al. 1987). 

The previously defined λ by Equation 3.9-4 shows a direct link to the elasticity of the polymer, 

expressed by the normal stresses, and it is a much better choice. When the dimensionless 

groups De and Wi were first introduced in the 1960s, it was hoped that they would play a 

significant role for scale up purposes, similar to that of Reynolds Number (Re) in Newtonian 

fluid mechanics and Nusselt Number in heat transfer. However, due to the difficulties in 
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defining meaningful characteristic times for the various polymeric materials, the 

dimensionless groups are of very limited usefulness. In Chapter 5 on rheological 

measurements we discuss other measures of characteristic times. See also Denn (2008) and 

Dealy and Wang (2013). 

Elasticity is the cause of the various (and to some extent counter-intuitive) phenomena 

discussed in Section 3.1. The phenomenon of extrudate swell is mainly due to stress relaxation 

of the first normal stress difference at the die exit, as discussed in Section 3.8 in greater detail. 

It is of practical importance in extrusion because it determines the final dimensions of 

extruded products. The second normal stress difference generates some unexpected flow 

patterns in flow through channels of non-circular cross-section. For polymer melt flows in  

 
Figure 3.9-1. Coordinates in a rectangular and cylindrical channel. 

 

straight tubes (z-axis, r-radius) we have only first normal stress difference N1=τzz-τrr). 

However, for flow in the x-direction in a straight square channel as shown in Fig. 3.9-1 we 

have two normal stress differences 

𝑁1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 (3.9-8a) 

𝑁2 = 𝜏𝑦𝑦 − 𝜏𝑧𝑧 (3.9-8b) 

The first normal stress difference is positive (it means the fluid is extended in the direction of 

the flow) and the second normal stress is negative (that is compressive) and about 20% of the 

value of the first normal stress difference. Since the second normal stress difference is not zero 

there must be flow in the transverse direction. This transverse flow generates some unexpected 

flow patterns, as it has been demonstrated by Dooley (2002). He extruded continuous layers 

of colored and uncolored polystyrene through a square channel having 0.9525 cm sides and 

61 cm long. Due to the transverse flow the layers which are circular at entry take the patterns 

shown in Fig.3.9-2a and Fig.3.9-2b. This means that rectilinear flow (having streamlines 

parallel to the channel walls) is only possible in the absence of second normal stress difference. 



3-42 

 

 
 

 
Figure 3.9-2. (a) and (b) flow rearrangement patterns of polystyrene in a square cross-section straight 

channel as observed by Dooley (2002). (c) secondary flow pattern of a straight channel with elliptical 
cross-section from Rivlin (1965). 
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Secondary flow in a straight channel having elliptical cross-section, as shown in Fig. 

3.9-2c, has been determined by Rivlin (1965). US patent application 2013/0084355 describes 

“…a melt channel wherein at least a portion of the melt channel has a noncircular cross-section for 

balancing shear in a melt stream of moldable material that flows therethrough. The noncircular cross-

section of the melt channel portion may be, for example, capsule-shaped, extended egg-shaped, oval, 

teardrop-shaped, or peanut-shaped”. In all these, unusually shaped, channels polymer melt flow 

generates non-zero second normal stress difference, which creates transverse flow and helps 

in melt homogenization. An internet search at the time of writing of this book resulted in 

finding two manufacturers advertising the merits of oval shaped melt channels.  

Another example that demonstrates the practical importance of melt elasticity is 

related to stress relaxation, after cessation of shearing in a parallel plate rotational rheometer, 

as shown in Fig. 3.9-3. Each specimen was subjected to a shear rate of 0.024 s-1 for 1 min,  

 
Figure 3.9-3. Stress relaxation results of different polymers at 190 oC in a parallel plate rheometer. 

From Kontopoulou et al. (1997). 

 

then the rotation was stopped and the shear stress was recorded after the cessation of the 

rotational motion. We can see that for LLDPE, the shear stress relaxes to 5% in less than 10 

s while copolymers 3 and 4 require more than 100 s. The differences are due to molecular 

structure and architecture. If these resins were used for production of plastic products by 

extrusion or injection molding, stresses would freeze-in during the process of cooling from 

perhaps 200oC or 250oC to room temperature. The level of frozen-in stresses depends on the 

rate of cooling. However, much higher stresses would be frozen-in in parts made by 
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copolymers 3 and 4 than LLDPE. Frozen-in stresses can be released upon reheating, even 

when plastic parts are left in a hot storage area or during transportation in a vehicle on a hot 

summer day. The result is warped plastic products. 

 
Figure 3.9-4. Streakline photographs illustrating vortex shape and vortex growth at different Wi 

numbers. (a) Wi=0.63, (b) Wi=0.96, (c) Wi=1.43 and (d) Wi=1.63. (From Boger et al 1986). 

 

Elastisity is the cause for the growth of the vortex in Fig. 3.9-4 for 0.04% 

polyacrylamide in water and corn syrup solution. For Wi=0.63 the vortex is virtually identical 

to that for inelastic Newtonian creeping flow. Above Wi=1.63 the vortex becomes asymmetric 

and unstable. Experiments with polymer melts are much more difficult than polyacrylamide 

in water and corn syrup solutions and some pictures available in the open literature are less 

dramatic. LDPE melts exhibit corner vortices in entrance flows from a large reservoir to a 

smaller diameter tube in a 180 entrance angle, which grow with extrusion rate. PS also 

exhibits vortices which also grow with extrusion rate. In HDPE, PP and PVC melts the flow 

pattern at the entrance is virtually without vortices, similar to that of inelastic Newtonian 

fluids. It appears that an increasing elongational viscosity with stretch rate (LDPE, PS) creates 

significant elongational stresses that lead to the formation of large vortices. White (1990) 

suggests that both elongational viscosity behavior and normal stresses determine the flow 

patterns in entrance flows. 
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Chapter 4 

SHARKSKIN, MELT FRACTURE, DIE LIP 

BUILD UP AND SURFACE TEARING 
 

 

 

4.1 Flow Instabilities and Extrusion Defects 

In Newtonian fluid mechanics the transition from rectilinear flow (laminar) to chaotic 

flow (turbulent) is the most important and most frequently studied instability. It occurs at a 

critical Reynolds Number (𝑅𝑒 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟/𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦) frequently 

quoted as 2300 for flow in tubes. The Reynolds Number is the ratio of inertia to viscous forces. 

In polymer processing the Reynolds number is usually in the range of 0.01 to 0.0001 and an 

instability of the turbulent kind is not possible. However, instabilities do occur in polymer 

extrusion and they appear above a critical wall shear stress in the range of 0.1 to 0.5 MPa, 

which is actually the range for flow through dies in many industrial extrusion operations. The 

extrusion instabilities are related to wall slip and viscoelasticity, with manifestations ranging 

from surface irregularities to gross extrudate distortions    

The most common flow instabilities are usually observed with a naked eye on the 

extrudate emerging from a capillary viscometer, as shown in Fig. 4.1-1. The surface 

irregularity and the distortions are observed at different shear rates (flow rates). At sufficiently 

low shear rates, the extrudate is smooth. As the shear rate is increased, a phenomenon that 

may appear as a loss of surface gloss or some sort of exaggerated haze is observed, commonly 

referred to as sharkskin (occasionally also called mattness). At higher shear rates, the shear 

stress exhibits oscillations manifested by alternating smooth and irregular sections of 

extrudate (usually called spurt). At even higher shear rates, a gross flow instability with a 

chaotic pattern of volume distortion occurs, known as gross melt fracture. 
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These extrusion instabilities/defects are usually investigated in conjunction with the 

corresponding flow curve. A flow curve is simply a plot of shear stress as a function of the 

apparent shear rate. The shear stress is obtained from the pressure drop and the capillary 

length to the radius ratio 𝜏 = 𝛥𝑝/2(𝐿/𝑅). The apparent shear rate is obtained from the volume  

rate of flow and the radius, 𝛾̇ = 4𝑄/𝜋𝑅3. No Rabinowitsch or Bagley corrections are made, 

because they would interfere with the interpretation of the observations. The onset of 

extrusion defects is manifested, for some polymers, by mild to steep slope changes of the flow 

curve as shown in Fig. 4.1-2. 

 
Figure 4.1-1. Different HDPE extrudate irregularities with increasing shear rate (flow rate) from top to 

bottom. 

 
Figure 4.1-2. Flow curve (shear stress as a function of shear rate) for a Unipol LLDPE at 155oC. The 

flow in the stick-slip region oscillates with the average values shown by symbol “x”. Wavy corresponds 

to gross melt fracture. Adapted from Denn (1994). 
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Figure 4.1-3. Extrudates from a capillary die at different apparent shear rates 𝛾̇𝑎. (a) HDPE with τw 

values from left to right: 0.20, 0.27 and 0.33 MPa, (b) LDPE with τw values from left to right: 0.1, 0.21 

and 0.32 MPa and (c) LLDPE. Adapted from Moynihan (1990). 
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Some pictures of round extrudates and the corresponding apparent shear rates 𝛾̇𝑎 are 

shown in Fig. 4.1-3 for three polymers: HDPE, LDPE and LLDPE. It should be pointed out 

that LDPE goes from smooth to grossly distorted extrudate without exhibiting any kind of 

ridged surface that could be called sharkskin. On the other hand, LLDPE exhibits a very 

pronounced sharkskin. In fact, it was the increased production of LLDPE from the late 1970s, 

having sharkskin onset at relatively low shear rates, that spurred extensive research in 

extrusion instabilities. Vergnes (2015) cites 291 papers in his review. Due to the importance 

of this subject for imposing limitations on output rates, other reviews have been published by 

Denn (2001), Agassant et al. (2006), Malkin (2006) and books by Hatzikiriakos and Migler 

(2004) and Koopmans et al. (2011). 

Die lip build up (drool), is accumulation of material at the die exit which may damage 

the surface quality of the extruded product. It requires stopping the extrusion and cleaning of 

the die. It is not related to sharkskin or melt fracture. It is an extrusion defect, but it is not 

referred to as instability. Very few studies are available in the open literature on die lip build 

up. Surface tearing is a phenomenon which appears in extrusion of fiber filled polymers, such 

as wood plastic composites (WPC). It appears like some short of exaggerated sharkskin at 

very low shear rates and its severity varies with filler loadings.  

 

4.2 Sharkskin 

The sharkskin phenomenon is shown with high detail in Fig. 4.2-1 and Fig. 4.2-2. It 

may be described as the appearance of ridges perpendicular to the flow direction, visible to 

the naked eye. The onset of sharkskin occurs at a critical wall shear stress usually quoted as 

τw≈0.14 MPa for HDPE and it is associated with stick-slip phenomena at the die exit. 

 
Figure 4.2-1. Typical sharkskin on an extrudate of about a 2 mm, exaggerated due to the enlargement. 

Note the formation of ridges perpendicular to flow direction. Adapted from Dennison (1967). 
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Figure 4.2-2. Extrudates of linear low density polyethylene (LLDPE) exhibiting sharkskin (left picture) 

and alternating sharkskin and somewhat smooth surface in the stick-slip regime (right picture). 
Adapted from Pudjijanto and Denn (1994). 
 

Ramamurthy (1988) suggested that loss of adhesion is responsible for sharkskin, i.e. 

good adhesion prevents sharkskin. He used dies made of different materials (aluminum, 

copper, bronze, brass) and noticed that the die material has some influence on the loss of 

extrudate surface gloss and onset of distortions as shown in Table 4.2-1. Recent evidence 

shows that adhesion may diminish sharkskin, but continuous slip is more beneficial. Stick-

slip phenomena have always a detrimental effect. The effects of chemical and morphological 

conditions of the die wall on critical conditions and the role of adhesion and slip, were 

investigated by Larazzabal et al. (2006a, 2006b). 

Table 4.2-1. Effect of die material on the critical stresses. From Ramamurthy (1988). 

Measured Critical Apparent Shear Stress Values 1 MI, LLDPE, 220oC; 1 mm × 20 L/D Capillary 

Capillary Die Metal 
Critical Stress for Loss of Gloss, 

MPa 

Shear Stress for Gross 

Distortions, MPa 

Aluminum 0.137 0.391 

Beryllium Copper 0.104 0.377 

Carbon Steel (SAE-4140) 0.144 0.435 

Alpha Brass (CDA-360) 0.172 0.413 

Bronze (Ampco 45) 0.146 0.434 

Copper 0.132 0.415 

Stainless Steel 0.151 0.441 

 

The most recent and prevailing point of view suggests that sharkskin is the result of 

tensile failure (rupture) of the emerging extrudate surface at the die exit (Rutgers and Mackley, 

2000, Agassant et al., 2006, Vergnes, 2015). This is due to the abrupt change of the flow inside 

and outside the die as shown schematically in Fig. 4.2-3a: the skin of the extrudate accelerates 
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from rest (nearly no-slip at the die wall) to the extrusion velocity outside of the die. This 

acceleration causes a stretching of the extrudate skin and produces tensile stresses which are 

generally higher than the stresses the material can withstand, leading to surface rupture 

(Agassant et al., 2006). If the material slips very close to the die wall, as shown in Fig. 4.2-3b, 

the velocity change from the die wall to the extrudate skin is small. Therefore, it accelerates 

less, the stretching is lower and the extrudate comes out of the die smoother. A numerical 

simulation of the velocity profile inside and outside the die is shown in Fig. 4.2-4 where the 

 

Figure 4.2-3. Schematic representation of the velocity profile rearrangement at the die exit (a) without 

slip and (b) with slip. Adapted from Agassant et al. (2017). 

 
Figure 4.2-4. Extrudate swell with velocity profiles out of a slit die as simulated with POLYCAD®-2D 

without wall slip.  
 

size of the arrows corresponds to local velocities. With additives, we can postpone sharkskin 

to a higher apparent shear rate (than that corresponding to a critical wall shear stress of 0.14 

MPa). For instance, minute amounts of fluorocarbon polymers are used as polymer 
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processing aids (PPA) in LLDPE. This is probably because they act on die surface to promote 

slip, eliminate stick-slip and eventualy delay of the onset of sharkskin to higher flow rates. 

Commercially available fluorocarbon polymers include: VITON from Dupont, DYNAMAR 

from 3M and KYNAR from Arkema. Boron nitride is also used as a processing aid (PA) due 

to its flow enhancement and instability elimination properties (Achilleos et al., 2002). 

Fluorocarbon processing aids are used extensively in blown film extrusion of LLDPE at 

weight fractions of less than 1%. It has been observed that at the start of extrusion of a polymer 

blended with the processing aid no beneficial effect is obtained. However, after a short period 

of perhaps 20-30 minutes, a hazy extruded film becomes clear and sharkskin-free. Apparently 

fluorocarbon polymers have affinity with the metal surface and get absorbed (but it requires a 

certain time) and the extruded polymer slips on a deposited thin layer of the fluorocarbons. 

The book by Wang (2018) includes considerable amount of details on slip phenomena. 

Very pronounced sharkskin is usually observed in linear polymers with a narrow 

molecular weight distribution (i.e. low polydispersity) and a high molecular weight such as 

HDPE and LLDPE. These types of polymers tend to have a lower melt strength than 

polymers with long chain branching (LCB), like LDPE. In branched polyolefins, sharkskin 

and stick-slip phenomena are almost non-existent. Branched polymers like LDPE possess a 

high melt strength. Therefore, the skin can stretch and subsequently relax without exceeding 

a critical tensile stress that may cause rupture. At very high flow rates, they do exhibit 

extrudate volume distortions, which are at first usually of a regular helical pattern that 

progressively becomes more and more chaotic, resulting in what we have called gross melt 

fracture. Sharkskin is also sensitive to the length of the capillary (L/D). Generally, longer 

capillaries delay the onset of sharkskin to significantly higher shear rates. This is perhaps due 

to the viscous dissipation effect. Longer dies means, increased temperature rise that leads to 

viscosity decrease and postponement of sharkskin to higher shear rates (Miller and Rothstein, 

2004).   

Sharkskin may be prevented by offsetting the die lips as shown in Fig. 4.2-5a in 

multilayer extrusion, because the wall shear stress at the die lip exit of sharkskin-prone 

LLDPE is significantly reduced. Wall shear stress reduction, and consequently postponement 

of sharkskin to higher flow rates, can also be achieved by opening the gap at the die lip exit 

as shown in Fig. 4.2-5b. Sharkskin is a die exit phenomenon and the geometrical, chemical, 

morphological or thermal conditions at that location are crucial. 



4-8 

 
 

 
Figure 4.2-5. Different die designs to prevent sharkskin in multilayer film extrusion (a) Offset die design 

and (b) die lips designs with upstream flow constrictions. Adapted from Kurtz (1984). 

 

  

4.3 Melt Fracture 

 While sharkskin (critical τw ≈ 0.14 MPa) is a surface defect originating at the die exit, 

melt fracture (with critical wall shear stress being in the range of τw = 0.25~0.5 MPa) is a 

volumetric gross flow instability that originates at the die entry or in the die land. In addition 

to the previous pictures, in this chapter, of polyolefin extrudates exhibiting sharkskin and melt 

fracture instabilities, we show some photographs of biodegradable PLA in Fig. 4.3-1 and the 

corresponding flow curve in Fig. 4.3-2. At 200 s-1 the sample clearly shows sharkskin, which 

gets progressively worse. At 2500 s-1 we observe a volumetric distortion of the extrudate, 

(gross melt fracture). The term “fracture” is really a misnomer, considering that there is no 

breaking of anything involved. It came about because researchers in the 1950s were hearing  
 

 
Figure 4.3-1. PLA 4042D extrudates at different shear rates and wall shear stresses. From left to right 

the values of 𝛾̇𝑎𝑝𝑝 are 100, 200, 600 and 2500 s-1,  while the corresponding values of 𝜏𝑤 are 0.16, 0.22, 

0.33 and 0.45 MPa. From Kanev et al. (2007). 
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Figure 4.3-2. Flow curve and onset of extrudate instabilities for PLA 4042D at 180oC in a stainless 

steel die with D=1 mm and L/D=16. From Kanev et al. (2007). 

 

some cracking noises. However, it soon became clear that the noises were due to exit of 

trapped air bubbles, but the term remained and subsequently translated in other languages 

(rupture d’extrudat (Fr), Schmelzbruch (Ger.) and fractura del fundido (Sp.)). Melt fracture 

has received less attention than sharkskin by the scientific community, because sharkskin 

appears at lower shear rates and poses an upper output limit in extrusion of thin film having 

smooth surface and haze-free optical clarity. 

Industrial extrusions usually do not go beyond the shear rate for the onset of sharkskin. 

However, in the production of pellets (frequently of about 3 mm in diameter) the melt is 

extruded through numerous holes and extrudates are water cooled and cut by moving knives. 

At high output rates the critical stress for the onset of melt fracture can easily be exceeded. 

Cutting of highly distorted polymer strands usually results in production of fine particles, 

together with the pellets, which are an impediment to subsequent handling operations and 

feeding of extruders. Thus melt fracture is not only of scientific interest, but also of practical 

importance. 

         For some polymers, melt fracture is apparently related to entry flow instabilities. Both 

experiments and computer simulations have shown that in contraction flows from a large 

diameter tube into a smaller one, corner vortices form. This is shown in Fig. 4.3-3 for a 

Newtonian fluid in a 4:1 contraction. The toroidal (doghnut shaped) vortex remains steady 

even at high laminar flow rates. However, the vortices formed in molten LDPE flow in a planar 
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Figure 4.3-3. Newtonian creeping flow in a 4:1 circular contraction. There is a small and weak vortex 

at the corner (strength 0.00181) as determined by POLYCAD®. The flow pattern is in agreement with 

experimental one shown on the left half of the figure and taken from Boger et al. (1986). 

 

contraction, shown Fig. 4.3-4, would become unstable if the Weissenberg number Wi (see 

Section 3.9) was to increase beyond a certain value. This vortex instability is related to the 

viscoelastic nature of LDPE. Obviously, unstable vortex in the entry region would result in 

unstable extrudate coming out of the die. However, HDPE is also viscoelastic but it flows like 

a Newtonian fluid with a nearly stagnant region at the corner, even at very high flow rates 

beyond the onset of the volume instability (melt fracture) as shown schematically in Fig.4.3-

5b. Both LDPE and HDPE exhibit gross melt fracture, even though they have different entry 

flow patterns, with onset being at a somewhat lower critical shear stress for LDPE than 

HDPE, according to Vlachopoulos and Alam (1972). The flow curve for LDPE remains 

pretty much undisturbed at the onset of melt fracture, while for HDPE a discontinuity 

appears. The apparent shear rate increases abruptly up to a certain value and then increases 

along a curve. Decreasing the applied pressure, a hysteresis loop is obtained as shown in Fig. 

4.3-5.  

        The vortex formation in LDPE is apparently related to its high elongational viscosity, as 

shown in Fig. 4.3-5a. As the LDPE melt approaches the entry to the capillary the stretch rate 

increases and so does the elongational viscosity, that is the resistance to extension, which 

results in a large vortex forming, as shown in Fig. 4.3-5b. Large vortex flow patterns have also 

been observed with PS. The flow curve for PS is similar to that of LDPE as well as the PLA 

shown in Fig. 4.3-2. LLDPE has a flow curve with a hysteresis loop similar to that of HDPE. 
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Figure 4.3-4. Streamline patterns obtained by means of streak photography for LDPE at 150oC in a 

4:1 planar contraction. (a) 𝛾̇= 1 s-1, Wi=0.876, (b) 𝛾̇=2.5 s-1, Wi=1.01, (c) 𝛾̇=10 s-1, Wi=1.21 and (d) 

𝛾̇=80 s-1, Wi=1.38. From White and Baird (1998). 
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Figure 4.3-5. Comparison of rheological and flow behavior of HDPE and LDPE. (a) elongational 

viscosity, (b) schematic representation of the flow in a 4:1 sudden contraction and (c) flow curves. 
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Some researchers suggested that melt fracture occurs when the recoverable shear 

exceeds a certain value. Recoverable shear is the ratio of the first normal stress to twice the 

wall shear stress(N1/2τw). It can be interpreted as the ratio of elastic forces to viscous forces.  

Bagley (1961) observed experimentally that when the recoverable shear is about 7 units, melt 

fracture sets on. This implies that the flow becomes unsteady even in rectilinear flow (parallel 

streamlines) in the die land (straight, parallel walls). In fact, there have been some 

mathematical stability analyses confirming such a mechanism. 

Vlachopoulos and Alam (1972) determined the critical recoverable shear of PS from 

extrudate swell measurements (at the onset of melt fracture) using Tanner’s equation (Eq. 3.8-

4 in Chapter 3). In contrast to Bagley’s results, they reported that the onset of melt fracture 

for PS occurs over a wide range of critical recoverable shear depending on molecular weight 

distribution (MWD) 

(
𝑁1

2𝜏𝑤
)

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

= 2.65 × (
𝑀𝑧𝑀𝑧+1

𝑀𝑤
2 ) (4.3-1) 

where the MWD term in the parentheses is equal to 1 for monodisperse PS, equal to 3 for PS 

having Gaussian molecular weight distribution (see Section 1.7) and a much higher value for 

a sample having a long high molecular weight tail.  

This criterion is not useful from the engineering point of view because it is difficult to 

determine N1. The criterion of a critical wall shear stress in the range of 0.25 MPa to 0.5 MPa 

remains the most reliable. 

 
Figure 4.3-6. Extrudate samples of metallocene polyethylene. Sample A exhibits sharkskin at low shear 

rates and B gross melt fracture at higher shear rates, both with no boron nitride. Sample C is smooth 
by adding 0.01% boron nitride for the same shear rate as sample B. From Rosenbaum et al. (2000). 
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In slit dies onset of melt fracture to occurs at higher shear stress values (Vlachopoulos 

and Chang, 1977, Ebrahimi et al., 2018). Addition of boron nitride as a processing aid in a 

polymer melt may also postpone the onset of melt fracture to considerably higher shear rates, 

therefore improving processability and increasing production rates. In Fig. 4.3-6, the 

suppression of gross melt fracture is shown by adding only a small amount (0.01%) of boron 

nitride in a metallocene polyethylene. 

 

4.4 Die Lip Build-Up (Drool) 

 Die lip build-up or drool, is not related to sharkskin or melt fracture. It is the 

undesirable gradual formation of material deposit at the die exit as shown schematically in 

Fig. 4.4-1. In Fig. 4.4-2 actual photographs of the phenomenon are shown. Frequently, the 

deposited material may partially or completely break away from the die and adhere to the 

surface of the extrudate, thus reducing the aesthetic quality and engineering performance of  

 
Figure 4.4-1. Schematic representation of the phenomenon die lip build-up.  

 

 
 

Figure 4.4-2. Die lip build-up at two different shear rates. Adapted from Musil and Zatloukal (2011). 
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the product. Observations suggest that the formation of die lip build-up is not continuous but 

intermittent. The deposited material is rich in low molecular weight polymer fractions, 

pigments, colorants and other low molecular weight additives. Die cleaning is necessary when 

significant die lip build-up occurs and this is a costly procedure for plastics manufacturers, as 

it requires periodic shutdowns of the production line.  

The onset of drooling is a complex phenomenon with perhaps more than one 

mechanisms and sources contributing. According to Gander and Giacomin (1997), possible 

sources include the following: Low molecular weight species, volatiles, fillers, poor dispersion 

of pigments, draw down, die swell, low die exit angle, short land length, pressure fluctuations 

in screw, dissimilar viscosities in blends, dirty die start-up, high melt temperature, processing 

near degradation temperature.  

There are some remedies for reduction or elimination of die lip build-up, which include 

repairing missing plating and removing surface imperfections from die lips. Also, sharp die 

lips produce more build-up that may be partially relieved using a small angle at the exit 

(flaring) as shown in Fig. 4.4-3. In an industrial production line of PC optical fiber, a die with 

sharp die lips required cleaning roughly every 8 hours, while a flared one (6 o to 12 o) usually 

every 6 days. Chaloupková and Zatloukal (2009) reported that for a metallocene LLDPE, 

build-up was significantly reduced using dies with angle range at the exit 15o-45o. Also, die lip  

 

Figure 4.4-3. Schematic presentation of sharp and flared die lips.   

 

build-up may be decreased by removing moisture from the feed material, lowering the 

extrudate temperature and adding stabilizer to the feedstock resin. As in the case of sharkskin 

and melt fracture, polymer processing aids (PPA) are sometimes helpful. Regarding the 
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molecular architecture, polymers with a wide MWD cause more problems, so choosing a 

more narrow molecular weight distribution may provide some relief. 

 

4.5 Surface Tearing in Extrusion of Fiber Filled Polymers 

 Natural fibers are used with increasing frequency for the production of composites 

usually abbreviated as either NFC (natural fiber composites) or WPC (wood plastic 

composites).  These materials are especially popular for decking, fencing and other housing 

applications due to their advantages in the performance/price equation. Some applications 

also include injection molded products for automotive applications.  The use of recycled 

polymers for these composites further improves their price performance.  

 HDPE is the most widely used polymer in WPC, followed by PVC and polypropylene. 

Other than wood, various types of natural fibers are also used, such as pineapple fibers, rice 

hulls, jute and hemp fibers (see for example George et al., 1996 and Polychronopoulos et al., 

2018). Addition of natural fibers creates miscellaneous processing difficulties including a 

surface defect.  

The surface defect is usually referred to as surface tearing, a phenomenon which has 

been well known since the inception of WPC extrusion in the early 1980s. It appears like some 

short of exaggerated sharkskin at very low shear rates. Surface tearing is affected by filler 

loading level. Goettler et al. (1982) reported on observations of significant surface irregularities 

in fiber filled rubber. Hristov et al. (2006) carried out detailed observations of the surface 

quality of HDPE/wood flour composites. A neat HDPE extruded at 20 s-1 exhibited a smooth 

surface, as shown in Fig. 4.5-1a. However, when filled with wood-flour at 25% by weight and 

extruded again at 20 s-1 it exhibited surface tearing, as shown in Fig. 4.5-1b. At 50% loading 

the surface of the extrudate became even rougher, as shown in Fig. 4.5-1c, but at 60% loading, 

the roughness was significantly reduced. Increasing the loading to 70% an extrudate of 

relatively smooth surface was obtained, as shown in Fig. 4.5-1d. The surface tearing 

phenomenon has also been observed in industrial extrusions, as shown in Fig.4.5-2a. It is 

apparently due to lowering of melt strength of the polymer as the filler increases, poor addition 

between matrix and filler and weak shear forces that allow the fibers to move at an angle to 

the main flow direction. Some patents (Lave, 1996, Muller and Wittenberg, 1998, Nishibori, 

1998, Suwanda, 2001) use cooling to freeze a solid skin layer and avoid surface tearing, as  
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Figure 4.5-1. Optical photographs of HDPE/wood composites at 20 s-1 at different wood loadings. (a) 

neat HDPE, (b) 25%, (c) 50% and (d) 70%. Adapted from Hristov et al. (2006).   

 
 

 
Figure 4.5-2.  (a) Surface tearing at the extrusion die exit as observed in an industrial operation (cm 

scale) and (b) smooth extrudate emerging from a cooled die attached to a laboratory extruder. Adapted 
from Santi et al. (2006). 

 

shown in Fig. 4.5-2b, from Santi et al. (2009). Smoothening of the surface at very high loadings 

is due to enhancement of wall slip. Lubricants are helpful for improving surface quality at any 
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loading (Hristov and Vlachopoulos, 2006). The presence of sharp edges on a die results in the 

worst surface tearing phenomena (Charlton, 2001). 
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Chapter 5 

RHEOLOGICAL MEASUREMENTS AND 

THEIR INTERPRETATION 
 

 

 

5.1 Introduction 

From the four previous chapters it is abundantly evident that good measurements of 

shear viscosity, elongational viscosity, normal stresses differences and characteristic 

relaxation time are necessary for equipment design and troubleshooting purposes in polymer 

extrusion and in other polymer processing operations. Of course, shear viscosity is, by far, the 

most important property for any calculations related to equipment design, output, pressure 

drop and temperature. The other properties provide intrinsic information about the polymer. 

There are numerous methods of measurement described in publications and commercial 

equipment brochures. In this chapter, we present basic information for the most widely used 

methods. The book by Macosko (1994) is perhaps the most authoritative and comprehensive 

reference for all kinds of rheological measurements.  

For reliable measurements we must have either a simple shear flow (where particle 

pathlines are parallel and the velocity varies only in one direction) or simple elongational flow 

(involving stretching, but no shearing). For more rigorous definitions of simple shear, simple 

shear-free and viscometric flows, we recommend the books of Morrison (2001) and Bird et al. 

(1987). The basic idea is not to have any mixed flow situations, no instabilities, to have good 

temperature, pressure, force, torque measurements and to minimize potential errors. The 

person carrying out rheological measurements and the person interpreting the results must be 

aware of all sources of errors in the measurable quantities. Frequently, corrections may have 

to be applied. 
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5.2 Melt Flow Index (Melt Flow Rate) 

As explained in the Chapter 1 (Section 1.11), Melt Index (MI), Melt Flow Index (MFI) 

or Melt Flow Rate (MFR) is the number of grams per 10 minutes flowing out of die of 

standard dimensions under the action of a load of specified weight in kilograms, as shown in 

Fig. 5.2-1.  Traditionally, the term MFR was used for PP, but it is now used interchangeably 

with MI or MFI for all polymers. Also, the ASTM D1238 and ISO 1133 standards include 

the melt volume rate (MVR) measurement in cm3/10 minutes. MVR can be converted to  

 
Figure 5.2-1. Schematic of a Melt Indexer (originally called extrusion plastometer). 

 

MFR (MFI) by multiplying it by the melt density of the material. In fact, instruments capable 

of measuring both MVR and MFI are used for measuring the melt density, which is simply 

the ratio MFR/MVR. Roughly speaking, the melt density is 90% of solid density for 

amorphous polymers and 80% of solid density for semi-crystalline polymers. The standard 

load is 2.16 kg, but also 5 kg, 10 kg and 21.6 kg are used. The temperature of the test is 190°C 

for PE and 230°C for PP. Other temperatures are specified by the ASTM D1238 and ISO 

1133 standards, for other polymers. Depending on the capabilities of melt indexer and 

procedure followed, measurements can be made in the range of 0.10 to 1500 g/10 minutes. 

Of course, the usual range is much narrower: For extrusion grades of polyethylene the MFI 

with the standard load (2.16kg) is usually in the range 0.1 to perhaps 12, while for injection 

molding grades it may exceed 50. 
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With the help of equations presented in Chapter 2, it is easy to determine the shear 

rate, shear stress and the corresponding apparent viscosity from the volume flow rate Q, 

density ρ and load (kg). The apparent shear rate at the die wall (4Q/πR3), is 

𝛾̇𝑤 =
1846.33

𝜌
𝑀𝐼      (s−1) (5.2-1) 

and the apparent wall shear stress is 

𝜏𝑤 = 8966.42 × 𝐿𝑜𝑎𝑑      (Pa) (5.2-2) 

The corresponding apparent viscosity will then be 

𝜂 =
𝜏𝑤

𝛾̇𝑤
=

4.86

𝑀𝐼
× 𝜌 × 𝐿𝑜𝑎𝑑      (Pa ∙ s) (5.2-3) 

To put these quantities into perspective, we calculate the apparent shear rate, shear stress 

and viscosity (for MFI=1, standard load 2.16 kg and assuming melt density of polyethylene 

766 kg/m3) 

𝛾̇𝑤 =
1846.33

766
× 1 ≅ 2.41 s−1  

𝜏𝑤 = 8966.42 × 2.16 ≅ 19376 Pa  

𝜂 =
4.86

1
× 766 × 2.16 ≅ 8041 Pa ∙ s 

 

We see that the shear rate is very low. However, the measurement with a high load could be 

more than 100 times higher (depending on how shear-thinning the material might be). 

Frequently, the ratio of two Melt Flow Index values, obtained with a high and a low load are 

reported in material data sheets as the Flow Rate Ratio (FRR). The higher the FRR the more 

shear thinning the material. 

 

Calculation of Power-Law Parameters 

The Melt Indexer is not specifically designed for measurement of viscosity. It is used 

for material specification and quality control purposes. Low melt index means high viscosity, 

high molecular weight polymer. High melt index means low viscosity, low molecular weight 

polymer. Saini and Shenoy (1996) present several correlations between molecular weight and 

melt index. Having two values of MFI does provide an approximation of the shear viscosity 

of the polymer. Errors stem from the entrance pressure, due to elongational viscosity (see 

Section 3.4 in Chapter 3), which is not taken into consideration. For the standard load the 

entrance pressure loss is relatively small (due to low shear rate), but for the high load the 
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entrance pressure could perhaps be comparable to that caused by the die (L/D=8/2.095=3.82) 

for some polymer grades. The entrance pressure loss is high for LDPE (branched, high 

elongational viscosity) and lower for linear polymers like HDPE, LLDPE and PP, especially 

those with narrow molecular weight distribution. Thus, LDPE viscosity estimates are likely 

to have larger errors than estimates for some linear grades of polymers. 

Despite the possible errors, we present an approximate calculation of both m and n by 

using two values of the melt index (MI, and HLMI), i.e. using a standard melt indexer having 

a die of 8 mm length and diameter of 2.095 mm (according to ASTM D1238). MI refers to 

standard weight of 2.16 kg and HLMI to “High Load” melt index (frequently 10 kg or 21.6 

kg).  By manipulating the appropriate equations for pressure drop, shear stress and flow rate 

(Chapter 2), we have  

𝑝𝑜𝑤𝑒𝑟 − 𝑙𝑎𝑤 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡: 𝑛 =
log 𝐿𝐿 − log 𝐻𝐿

log𝑀𝐼 − log𝐻𝐿𝑀𝐼
 (5.2-4) 

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥: 𝑚 =
8966.42 × 𝐿𝐿

(
1846.33

𝜌 × 𝑀𝐼)
𝑛 

(5.2-5) 

where LL is the standard load (usually 2.16 kg) and HL the high load (usually 10 kg or 21.6 

kg). The same expressions apply for any two sets of loads and corresponding MI values. Of 

course, the melt indexer is no substitute for a rheometer, but it is the most frequently used 

instrument in industry. So, whatever rheological information can be obtained, it may be used 

for problem solving by doing calculations of pressure drop, shear stress and shear rate and 

eventually for deciding whether more accurate rheological measurements are necessary.  

Occasionally, in the extrusion industry another low cost method is used for the 

determination of the power-exponent n. From the equations presented in Chapter 2 we note 

that the pressure drop is roughly proportional to the flow rate raised to exponent n, that is 

𝛥𝑃~𝑄𝑛 (5.2-6) 

thus we will have 

𝛥𝑃1

𝛥𝑃2
= (

𝜌𝑄1

𝜌𝑄2
)

𝑛

 (5.2-7) 

from which 

𝑛 =
log𝛥𝑃1 − log𝛥𝑃2

log(𝜌𝑄1) − log(𝜌𝑄2)
 (5.2-8) 
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Thus, from two measurements of pressure drop versus flow rate in an industrial extrusion die, 

we can obtain the power-law exponent n. Best results can be obtained when the flow rates 

(kg/hr) are far apart and at the same temperature. Obviously, this is a very rough 

approximation, but it could be useful in the absence of more reliable rheological information 

(see Example 5.2-2). With heavily filled polymers, especially when particle size is large, it is 

difficult to make good measurements in rheological instruments having narrow gaps and this 

approximation might be one of the few options available (Polychronopoulos et al., 2016).  

 

Example E5.2-1 

Given that MI=1 (for load 2.16 kg), HLMI=50 (for 10 kg) and melt density 766 kg/m3, 

calculate m and n. 

Solution 

Using Eq. 5.2-4 we have 

𝑛 =
log 2.16 − log 10

log1 − log50
≅ 0.39 

and from Eq. 5.2-5 

𝑚΄ =
8966.42 × 2.16

(
1846.33

766 × 1)
0.39 = 13,742 Pa ∙ s 

The Rabinowitsch corrected (see Section 2.8, Eq. 2.8-14) consistency index m will then be  

𝑚 = 𝑚′ (
4𝑛

3𝑛 + 1
)

𝑛

= 13,742 × (
4 × 0.39

3 × 0.39 + 1
)

0.39

= 12082 Pa ∙ s 

Therefore, the Rabinowitsch (corrected) viscosity is  

𝜂 = 12082𝛾̇−0.61 

Let us now make an estimate of errors due to the entrance pressure loss that was not taken 

into account. The entrance pressure loss is expressed in terms of the Bagley correction (see 

section 3.6 in Chapter 3). Eq. 3.6-3 may be rewritten here as 

𝛥𝑝𝑡𝑜𝑡. = 2𝜏𝑤 (
𝐿

𝑅
+ 𝑒) 

From some LDPE data by Laun (1983) e=8 approximately, corresponding to HLMI=50, thus 

we have 

𝛥𝑝𝑡𝑜𝑡. = 2𝜏𝑤 (
8

2.095 2⁄
+ 8) = 2𝜏𝑤(7.6 + 8) 
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Which means that the pressure drop due to entrance (elongational viscosity) is slightly larger 

(!) than the pressure drop due to the shear viscosity in the die. This would result in a large 

error. However, for linear polymers like HDPE, LLDPE and PP which are known to have 

smaller elongational viscosities than LDPE, the Bagley correction, expressed as an equivalent 

dimensionless capillary length e (White, 1990, Hristov and Vlachopoulos, 2007), is likely to 

be perhaps less than 2 and the error is acceptable. This example shows the limitations of the 

melt indexer as a rheological tool and of its usefulness for   material specification purposes.  

 

Example E5.2-2 

In an extrusion plant the following pressure drop versus flow rate data were obtained 

ΔP1=12.58 MPa for output 80 kg/hr 

ΔP2=15. 92 MPa for output 140 kg/hr 

Calculate the power-law exponent. 

Solution 

From Eq. 5.2-8 we have  

𝑛 =
log12.58 − log15.92

log80 − log140
= 0.42 

This indirect method can be used in the absence or any other viscosity information. We are 

missing, of course, the consistency index m. However, if these data were obtained from a die 

of simple geometry (like tube, slit die or convergent die), we could determine m using an 

equation from Chapter 2. For this approximate method to provide meaningful results, we 

must be very careful with temperature control. The assumption has been implicitly made, in 

the above calculations, that the temperature is the same in both 1 and 2 conditions. 

 

5.3 Capillary Rheometer 

It consists of a cylindrical heated reservoir where polymer pellets or powder are melted 

and subsequently forced to flow through a small diameter tube (capillary), as shown in Fig. 

5.3-1. The plunger (piston) moves by means of an imposed pressure (constant stress) or at a 

fixed speed (constant shear rate). In fact, the melt indexer discussed in the previous section is 

some sort of a low-tech capillary viscometer, with the pressure imposed by the load. The 

dimensions of the capillary dies used at McMaster University’s polymer processing laborato- 
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Figure 5.3-1. Schematic representation of a capillary rheometer (figure not to scale). To the right: a table of the 

available capillary dies at McMaster University.  

 

-ries are also given in Fig. 5.3-1. That is a constant shear rate rheometer. An older instrument 

had constant pressure imposed by a nitrogen gas cylinder. 

Measurements are carried out at different piston speeds and the viscosity is obtained 

from the measured pressure drop ΔP and the measured volume flow rate Q, determined by 

the piston speed. In accordance with the equations of Chapter 2, the apparent shear rate 

(Newtonian) at the capillary wall is 

𝛾̇𝑎,𝑤 =
4𝑄

𝜋𝑅3
         (apparent) (5.3-1) 

and the corresponding apparent shear stress   

𝜏𝑤 =
𝛥𝑃

2(𝐿 𝑅⁄ )
        (apparent) (5.3-2) 
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The ratio 𝜏𝑤 𝛾̇𝑎,𝑤 = 𝜂𝑎⁄  is the apparent or nominal viscosity. To get the true shear rate for 

non-Newtonian fluids we must use the Rabinowitch correction equation which was derived 

in Section 2.8 that reads 

𝛾̇𝑡,𝑤 =
4𝑄

𝜋𝑅3
(

3

4
+

1

4

𝑑 𝑙𝑛 𝑄

𝑑 𝑙𝑛 𝜏𝑤
) (5.3-3) 

and the Rabinowitsch corrected viscosity is  

𝜂 =
𝜏𝑤

𝛾̇𝑡,𝑤
 (5.3-4) 

There is also another correction necessary, which was discussed in Section 3.6, because the 

measured (total, from the force on the piston) ΔP includes also the entrance pressure loss 

which is due to the elongational viscosity (Bagley correction). Modern viscometers are of 

double bore, the second die being of practically zero length (at McMaster’s capillary 

rheometer the “zero” length die is actually 0.25D long). The zero length die measures only 

the entrance pressure loss which is subtracted from the long die pressure drop, i.e. 

ΔPcap.=ΔPtotal–ΔPentrance. Thus, the Bagley corrected shear stress is    

𝜏𝑡,𝑤 =
𝛥𝑃𝑐𝑎𝑝.

2(𝐿 𝑅⁄ )
 (5.3-5) 

Thus the true viscosity is the ratio of the Bagley corrected shear stress to the Rabinowitch 

corrected shear rate 

𝜂𝑡𝑟𝑢𝑒 =
𝜏𝑡,𝑤

𝛾̇𝑡,𝑤
 (5.3-6) 

The entrance pressure loss is equivalent to the pressure drop caused by a few capillary 

diameters (usually from 1 to 5), depending on polymer and shear rate. Thus, if we were to use 

a very long capillary it would be negligible. However, flow of a highly viscous polymer 

through a very long capillary would cause a very high pressure drop. Let us assume a polymer 

having m=10,000 Pa∙s, n=0.5 flowing through a capillary twice as long as the longest in Fig. 

5.3-1, that is L=64 mm and D=1 mm. With the help of equations of Table 2.7-1 for wall shear 

rate 𝛾̇𝑤=1000 s-1, we get pressure drop through the capillary ΔP≅80.92 MPa and adiabatic 

average temperature rise due to viscous dissipation (Eq. 2.12-4) at the exit ΔT≅40.46 C. Such 

a temperature rise would result in great uncertainty in temperature at which the viscosity is 

actually being measured. Problems associated with shear heating in capillary rheometry have 

been dealt with in the technical literature (Tzoganakis et al., 1987, Laun, 2004). 
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The entrance correction is used for the estimation of elongational viscosity (Cogswell’s 

method), as explained in Section 3.5 

𝜂𝑒 = 𝜂 [
(𝑛 + 1)𝛥𝑃𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒

1.89𝜏𝑤
]

2

 (5.3-7) 

This method is not very accurate, but it is the only one available for elongational viscosity 

determination at high stretch rates. 

Capillary dies are also used for measurement of wall slip velocity by the Mooney 

method (Dealy and Wissbrun, 1999) as explained in Section 2.13. This is done by plotting the 

apparent wall shear rates (4Q/πR3) against the inverse of the radius (1/R) for capillaries of 

different R having the same L/R. In fact, three of the dies whose dimensions are given on Fig. 

5.3-1 having diameter 1, 1.5 and 2mm are used for such measurements at McMaster 

University. Using the above dies Hristov and Vlachopoulos (2007) obtained the Mooney plots   

 
Figure 5.3-2. Mooney plots for a polypropylene with 50% by weight, filled with wood fibers, containing also a 

lubricant. Adapted from Hristov and Vlachopoulos (2007). 

 

shown in Fig. 5.3-2 for a composite containing also a lubricant for the purpose of enhancing 

wall slip. To determine the slip velocity, we must use Eq. 2.13-6 which is rewritten here 

4𝑄

𝜋𝑅3
= 𝛾̇𝑎𝑝𝑝,𝑠 +

4𝑉𝑠

𝑅
 (5.3-8) 

The shear stress was determined from τw=ΔP/(2L/R). The slope of each line is equal to 4Vs 

at that stress value. For example, for τw=150 kPa, we have (as best as we can read off the 

numbers): 4Vs=(450-330)/(2-1)=120 and the slip velocity is Vs=30 mm/s. The same 
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calculation can be done for the other lines and eventually develop a correlation in the form 

(see also Section 2.13)  

𝑉𝑠 = 𝐴𝜏𝑤
𝛽 (5.3-9) 

Capillary rheometers are also used for measurement of extrudate swell. The diameter 

of solidified extrudate can easily be measured with the help of a micrometer. However, there 

are might appreciable errors: As the molten polymer exits from the die it thins under the action 

of its own weight (sagging). To reduce this error, it is advisable to cut the extrudate in short 

lengths of no more than 3 cm long and measure the diameter at about 1 cm from the leading 

edge. High crystallinity polymer extrudates exhibit significant differences in diameter when 

measured before or after annealing in a hot liquid bath (Vlachopoulos, 1981). The best way 

to measure extrudate swell is to extrude into a hot bath of silicone oil and capture images with 

the help of a laser beam. Buoyancy prevents sagging and with the high temperature in the 

bath, contraction of extrudate is avoided.  

 

5.4 Rotational Rheometer in Steady Shear 

There are two very useful instruments in this category: cone-and-plate and parallel 

plate. The coaxial (Couette) viscometer could be included, but it is not suitable for polymer 

melts due to loading/unloading difficulties and possibility of solidification. 

 

Cone-and-plate instrument   

A schematic of the cone-and-plate geometry is shown in Fig. 5.4-1a. The cone rotates 

with an angular velocity Ω and the torque on the plate M and the total thrust Fz is measured. 

The cone angle is very small (usually β<6°) so that we can intuitively regard the flow to be 

locally that between two parallel plates and the shear rate will be constant throughout the 

cone-plate gap (Bird et al., 1987, Macosko, 1994). It can be shown that for very small angles 

the shear rate is given by the ratio of the angular velocity Ω (radians/s or degrees/s) to the 

cone angle 

𝛾̇ =
𝛺

𝛽
 (5.4-1) 

It can further be shown that the shear stress is 

𝜏12 = 𝜏𝜑𝜃 =
3𝑀

2𝜋𝑅3
 (5.4-2) 
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Figure 5.4-1. Schematic representation of (a) cone-and-plate and (b) parallel plate rheometers, adapted from 

Macosko (1994) and (c) edge instabilities adapted from Pahl et al. (1995). Similar edge instabilities also occur in 

the parallel plate rheometer. 

 

and the viscosity   

𝜂 =
𝜏12

𝛾̇
=

3𝑀𝛽

2𝜋𝑅3𝛺
 (5.4-3) 

and the first normal stress    

𝑁1 =
2F𝑧

𝜋𝑅2
 (5.4-4) 

On some instruments it is also possible to measure the local pressure distribution from which 

N2 can also be obtained. 

There are three important assumptions associated with the derivation of the above 

equations: (i) the inertia forces are neglected, (ii) there are no secondary flows and (iii) the 

free surface is spherical. For highly viscous polymer melts, there are instabilities at the edges 

(as shown in Fig. 5.4-1c), which limit the usefulness of this instrument usually to shear rates 
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of less than 5 s-1. Other problems may relate to eccentricity and misalignment, which can be 

serious due to the very small angles.    

 

Parallel plate instrument 

A schematic of the parallel plate geometry is shown in Fig. 5.4-1b. As with the cone-

and-plate, the angular velocity Ω, torque M and total thrust Fz is measured. The difference is 

that the shear rate in the cone-and-plate is uniform throughout the gap, whereas in the parallel 

plate it varies linearly as a function of the radius r (zero at axis, maximum at the rim). By 

simplifying the equations of conservation of momentum in cylindrical coordinates the 

following expressions can be obtained (Bird et al., 1987, Macosko, 1994) 

Shear rate:      𝛾̇ =
𝑟𝛺

ℎ
 (5.4-5) 

where h the gap between the plates. Also 

Shear rate at the edge (at 𝑟 = 𝑅):      𝛾̇𝑅 =
𝑅𝛺

ℎ
 (5.4-6) 

The shear stress is calculated from the following equation 

𝜏12 = 𝜏𝜃𝑧 =
M

2𝜋𝑅3
[3 +

𝑑ln𝑀

𝑑ln𝛾̇𝑅
] (5.4-7) 

Thus, the viscosity is 

𝜂 =
𝜏12

𝛾̇𝑅
=

𝑀ℎ

2𝜋𝑅4𝛺
[3 +

𝑑ln𝑀

𝑑ln𝛾̇𝑅
] (5.4-8) 

and the normal stress  

𝑁1 − 𝑁2 =
𝐹

𝜋𝑅2
[2 +

𝑑ln𝐹𝑧

𝑑ln𝛾̇𝑅
] (5.4-9) 

Instruments are usually capable of both cone-and-plate and parallel plate geometry. Thus after 

obtaining N1 from cone-and-plate N2 can be determined from Eq. 5.4-9. 

In the parallel plate rheometer it is easier to load or unload solid polymer samples 

(disks) than the cone-and-plate, and it is the preferred geometry for measurements with 

polymer melts. Eccentricities and misalignments are less important, but it suffers with the 

same instability problems at the edges as the cone-and-plate (Fig. 5.4-1). In the parallel plate 

it is easily possible to change the shear rate by both changing the angular velocity Ω and the 

gap h. The range is wider than with the cone-and-plate geometry, but it is difficult to go above 

10 s-1 with highly viscous polymer melts. 
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5.5 Oscillatory Shear Rheometry 

Instead of applying rotational motion on cone-and-plate or parallel plate rheometers, 

we can also apply a sinusoidal deformation. The response will be a sinusoidal stress, which 

might be in phase or out-of-phase as shown in Fig. 5.5-1. We would like to keep the analysis 

as simple as possible, and we know that materials exhibit linear stress-strain behaviour at 

small deformations (Hooke’s Law). So, this analysis is called Small Amplitude Oscillatory 

Shear (SAOS) or linear viscoelasticity. 

 Let us now elucidate the imposition of a sinusoidal strain and the corresponding stress 

response with the help of some simple mathematical models. The applied strain is a function 

of time in the following form 

𝛾(𝑡) = 𝛾𝜊 sin(𝜔𝑡) (5.5-1) 

If the sample between the disks happens to be a Hookean solid (having the mechanical 

equivalent of a spring), the stress would be 

𝜏(𝑡) = 𝐺𝛾(𝑡) = 𝐺𝛾𝜊 sin(𝜔𝑡) = 𝜏𝜊 sin(𝜔𝑡) (5.5-2) 

where G the elastic modulus, γo is the strain amplitude, ω the frequency, t the time and τo is 

the stress amplitude. This means that the strain and stress are in-phase. The maximum of 

deformation (strain) and maximum of stress occur at the same time. If the sample between 

the disks happens to be a Newtonian liquid (having the mechanical equivalent of a dashpot), 

we have 

𝛾̇(𝑡) = 𝜔𝛾𝜊 cos(𝜔𝑡) = 𝛾̇𝜊 cos(𝜔𝑡) (5.5-3) 

and the corresponding stress will be 

𝜏(𝑡) = 𝜂𝛾̇𝜊 cos(𝜔𝑡) = 𝜂𝛾̇𝜊 sin(𝜔𝑡 + 𝜋 2⁄ ) = 𝜏𝜊 sin(𝜔𝑡 + 𝜋 2⁄ ) (5.5-4) 

where 𝛾̇𝜊 is the strain (shear) rate amplitude and η the viscosity. This means that strain and 

stress are 90o out-of-phase. 

 If the sample between the disks is a viscoelastic fluid then we intuitively expect a phase 

angle δ, between 0o and 90o 

𝜏(𝑡) = 𝜏𝜊 sin(𝜔𝑡 + 𝛿) (5.5-5) 

This response is customarily analyzed by decomposing the stress wave into two waves of the 

same frequency, one in-phase with the strain wave (sin(ωt)) and one 90o out-of-phase with 

this wave (cos(ωt)). Thus, we may write 

𝜏 = 𝜏′ + 𝜏′′ = 𝜏𝜊′ sin(𝜔𝑡) + 𝜏𝜊′′ cos(𝜔𝑡) (5.5-6) 

This suggests the following definition of an in-phase modulus (therefore elastic) 
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Figure 5.5-1. Schematic representation of oscillatory strain and stress response. 
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𝐺′ =
𝜏𝑜′

𝛾𝜊
 (5.5-7) 

and an out-of-phase modulus (therefore viscous) 

𝐺′′ =
𝜏𝑜′′

𝛾𝜊
 (5.5-8) 

where G΄ is referred to as storage modulus and G΄΄ is referred to as loss modulus. With the 

help of trigonometry we can easily show that 

tan𝛿 =
𝐺′′

𝐺′
 (5.5-9) 

δ is occasionally referred to as the “mechanical loss angle” but more frequent reference is 

made to simply tan-delta, which is the ratio to the lost energy to the stored energy.  

 The magnitude of the complex modulus is simply 

|G∗| = (𝐺′2 + 𝐺′′2)1 2⁄ =
𝜏𝜊

𝛾𝜊
 (5.5-10) 

We may further define the dynamic viscosity 

𝜂′ =
𝜏𝜊′′

𝛾̇𝜊
=

𝐺′′

𝜔
 (5.5-11) 

and  

𝜂′′ =
𝜏𝜊′

𝛾̇𝜊
=

𝐺′

𝜔
 (5.5-12) 

and the magnitude of the complex viscosity 

|𝜂∗| = (𝜂′2 + 𝜂′′2)1 2⁄ = [(
𝐺′

𝜔
)

2

+ (
𝐺′′

𝜔
)

2

] =
1

𝜔
|𝐺∗| (5.5-13) 

The parameters G΄, G΄΄, η΄, η΄΄ and tanδ are material functions used for characterizing the 

behavior of polymeric materials. The question is “how do these relate to the most important 

property of polymer melts, that is the shear viscosity?”.  

 There is no rigorous proof of any correlation between the dynamic data and the steady 

shear viscosity. But, there is a very useful empirical relationship, called the Cox-Merz rule, 

which is valid frequently up to high shear rates for most common polymers. This rule states 

that the steady state viscosity η is equal to the complex viscosity η*  

𝜂(𝛾̇) = |𝜂∗(𝜔)|   𝑤𝑖𝑡ℎ   𝛾̇ = 𝜔 (5.5-14) 

where 𝛾̇ is in s-1 and ω in rad/s. This is of great significance because it extends the range of 

useful measurements of rotational rheometers from a maximum of no more than 5 s-1 (in 
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steady shear) to over 103 s-1. Using a parallel plate rheometer in dynamic (oscillatory) mode 

is the fastest and most accurate way to obtain viscosity data from perhaps less than 10-2 s-1 to 

103 s-1, thus covering the entire range of practically useful measurements. But, there is a caveat: 

The Cox-Merz rule may not hold for some polymers e.g. polymers with fillers, additives, 

reinforcements and polymers with unusual molecular architecture. 

 
Figure 5.5-2. Strain sweep showing the small amplitude oscillatory shear (SAOS) and the large amplitude 

oscillatory shear (LAOS) regions.  

 

The cone or the plate of the instrument, instead of rotating, oscillates around the axis 

and the electronics and software readily provide plots of G΄, G΄΄, G*, η΄ and η΄΄ versus the 

frequency ω (rad/s). The first thing to do is the strain (amplitude) sweep to determine the 

linear region of viscoelasticity.  The amplitude of the deformation (strain) is varied while the 

frequency is kept constant and G΄ and G΄΄ are plotted as a function of strain (%) as shown in 

Fig. 5.5-2. In this figure we see that at low strain amplitude G΄ and G΄΄ are constant. For 

polymer melts this usually happens at strain amplitudes γo of the order of 1 % to 10 %. G΄ 

describes the rigidity of the sample and G΄΄ relates to the viscosity. If G΄> G΄΄ as shown in the 

figure, the sample behaves like a viscoelastic solid. If G΄<G΄΄ in the linear viscoelastic region, 

the sample behaves like a viscoelastic fluid. The definitions of the moduli are based on the 

assumption of sinusoidal input of strain and sinusoidal stress response. This happens only in 

the linear region. In the non-linear region the stress response is not sinusoidal and the analysis 

presented thus far is not valid. Other, more complex methods are needed for the study of 

Large Amplitude Oscillatory Shear (LAOS). LAOS could perhaps provide new insights into 

the behaviour of polymer melts and it is currently of intense research interest (Hyun et al., 
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2011). However, there have not been any analyses, which could be used for improving the 

understanding of polymer processing thus far, and consequently LAOS remains outside the 

scope of this book. 

 
Figure 5.5-3. Storage and loss moduli as a function of frequency for a monodisperse polymer melt. In 

broader distribution polymers the minimum in the G΄΄ curve would disappear. Adapted from Dealy 

and Wissbrun (1999). 

 

During a frequency sweep, the frequency is varied while the amplitude of the 

deformation (strain) is kept constant. The storage and loss moduli against frequency are 

schematically shown in Fig. 5.5-3 for a polymer melt. At the limit of low frequency, the 

storage modulus G΄ is proportional to the frequency ω2 and the loss modulus G΄΄ is 

proportional to ω. The cross-over point Gc (where G΄=G΄΄) has been found to correlate 

approximately to the polydispersity index (Mw/Mn) of polypropylenes, by Zeichner and Patel 

(1981) and by Shang (1993)  

𝑃𝐼 =
𝑀𝑤

𝑀𝑛
=

105

𝐺𝑐
 (5.5-15) 

Caution has been pointed out by Shroff and Mavridis (1995) in using rheological data to infer 

molecular weight distribution. 

The complex viscosity curve coincides with the steady shear viscosity (Cox-Merz rule) 

as shown in Fig. 5.5-4, for many commercially available polymers. However, for polymers 
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filled with fibers or particles the Cox-Merz rule is not valid, as shown for a HDPE filled with 

CaCO3 in Fig. 5.5-5, adapted from Santi et al (2009). 

 
Figure 5.5-4. LDPE viscosity data at 150oC in accordance with Cox-Merz rule. C stands for 

Rabinowitsch corrected and U uncorrected. Adapted from Garcia-Franco (2013). 
 

 
Figure 5.5-5. Complex viscosity (parallel plate) and steady shear viscosity data (capillary rheometer, 

Haake mixer) not obeying Cox-Merz rule (HDPE 40% filled with CaCO3). Adapted from Santi et al. 

(2009). 
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There are also correlations between dynamic (G΄, G΄΄) data and the first normal stress 

difference N1. From theory in the limit of small frequencies and shear rates 

𝛮1 = 2𝐺΄ (5.5-16) 

For higher shear rates and frequencies Laun (1986) proposed an empirical correlation 

𝛮1 = 2
𝐺΄

𝜔2
[1 + (

𝐺΄

𝐺΄΄
)

2

]

0.7

 (5.5-17) 

This correlation seems to compare very well to with cone-and-plate measurements (Garcia-

Franco, 2013) as shown in Fig. 5.5-6. 

 
Figure 5.5-6. First normal stress difference versus shear stress obtained from Laun’s correlation and 

cone-and-plate data. Adapted from Garcia-Franco (2013). Approximately N1=0.034τ1.44. 
 

From the above discussion it is obvious that from SAOS measurements of G΄ and G΄΄ 

we further obtain other useful properties, like viscosity and first normal stress difference. 

Actually, there is much more information contained in G΄ and G΄΄ plots, because the first 

parameter is related to the elastic and the second to the viscous nature of the polymer melt. 

Dealy and Wissbrun (1999) and Dealy and Wang (2013) provide numerous examples and 

detailed discussion on what information G΄, G΄΄, tanδ, η΄ and η΄΄ contain and how it can be 

examined and evaluated. Even just by visual inspection something can be inferred about the 

polymer molecular weight distribution. In the caption of Fig. 5.5-3 it is indicated that for 

broader molecular weight distribution, the minimum in the G΄ curve would disappear. Fig. 

5.5-7 shows the G΄ and G΄΄ for a HDPE melt filled with wood fibers at different loading levels 
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from Hristov et al. (2006). As the loading level is increased so does the G΄. In the low frequency 

region for the neat HDPE, 25% and 50% loaded, G΄<G΄΄ which is indicative of liquid-like 

behavior. At 70% loading G΄ is close to being horizontal, indicative of solid-like behaviour 

and G΄>G΄΄ throughout the frequency range. 

 
Figure 5.5-7. Storage (G΄) and loss (G΄΄) moduli as a function of frequency. For clarity G΄΄ for 25% and 

60% loadings have been omitted. From Hristov et al. (2006). 

 

Actually, just by plotting G΄ versus G΄΄ some insights might be gained. These are known 

as Cole-Cole plots originally introduced for dielectric relaxations in 1941. Another plot is 

known as the Van Gurp-Palmen: the loss angle δ is plotted as a function of G*. Dealy and 

Wang (2013) provide several references on interpretation of Cole-Cole and Van Gurp-Palmen 

plots. It must be pointed out that the essential information is embedded in the G΄ and G΄΄. The 

various ways of plotting simply make it easier to extract some important information related 

to the material.   

Numerous investigations for the analysis of G΄ and G΄΄ data have resulted in 

sophisticated mathematical methods. Usually, the analysis starts from the Maxwell Model 

discussed in Chapter 3 

𝜏 +
𝜂

𝐺
𝜏̇ = 𝜂𝛾̇ (5.5-18) 

where G is the elastic modulus and η the viscosity. The ratio η/G is the relaxation time λ 

𝜏 + 𝜆𝜏̇ = 𝜂𝛾̇ (5.5-19) 

Introducing a sinusoidal γ and τ, as earlier on this section, and using complex variables 

mathematics, we end up with 



5-21 

 

  

𝐺΄(𝜔) =
𝐺𝜆

(1 + 𝜆2𝜔2)
 (5.5-20) 

𝐺΄΄(𝜔) =
𝐺𝜆2𝜔

(1 + 𝜆2𝜔2)
 (5.5-21) 

However, if we try to fit any of the G΄ or G΄΄ curves of this section, we quickly realize that just 

one pair of parameters G and λ is insufficient. For better fitting we need the so-called 

Generalized Maxwell Fluid (GNF) which has a mechanical equivalent of several Maxwell 

elements in parallel as illustrated schematically in Fig. 5.5-8. Then we end up with 

𝐺΄(𝜔) = ∑
𝐺𝑖𝜆𝑖

(1 + 𝜆𝑖
2𝜔2)

𝑖

 (5.5-22) 

𝐺΄΄(𝜔) = ∑
𝐺𝑖𝜆𝑖

2𝜔

(1 + 𝜆𝑖
2𝜔2)

𝑖

 (5.5-23) 

About 8-12 pairs of G and λ are sufficient for fitting the G΄ and G΄΄ curves by some sort of 

nonlinear regression method (e.g. Least Squares). These parameter pairs comprise the 

“discrete relaxation spectrum”. They are curve fitting parameters which are useful for 

calculating one rheological property from another. 

 
Figure 5.5-8. Schematic illustration of the mechanical analog of Generalized Maxwell model. 

 

Of particular interest in polymer processing is the calculation of zero shear viscosity ηο and 

the corresponding characteristic (longest relaxation) time λ=ηο/G, from  

𝜂𝑜 = ∑ 𝐺𝑖𝜆𝑖

𝑖

 (5.5-24) 

𝜆 = ∑ 𝐺𝑖𝜆𝑖
2

𝑖

 ∑ 𝐺𝑖𝜆𝜄

𝑖

⁄  (5.5-25) 
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Figure 5.5-9. Polystyrene G΄ and G΄΄ data at 170oC. Adapted from Laun et al. (1979). 
 

 

Table 5.5-1. Relaxation times λi and moduli Gi for 

fitting the G΄ and G΄΄ data of Fig. 5.5-9. 

i λi in s Gi in Pa 

1 500 1.44×101 

2 83 1.98 ×102 

3 15 2.52×103 

4 2.8 9.60×103 

5 0.5 2.46×104 

6 0.083 3.98×104 

7 0.015 3.72×104 

8 0.0028 4.42×104 

9 0.0005 1.36×105 

 

An example of fitting some polystyrene data at 170οC of Fig. 5.5-9 is shown in Table 

5.5-1. From the data of Table 5.5, using equations Eq. 5.5-24 and Eq. 5.5-25 we have 

𝜂𝑜 = ∑ 𝐺𝑖𝜆𝑖

𝑖

= 104667.2 Pa ∙ s  

𝜆 =
∑ 𝐺𝑖𝜆𝑖

2
𝑖

∑ 𝐺𝑖𝜆𝜄𝑖
= 53.62 s  

There is actually commercially available software (IRIS)) for doing this and much more. From 

G΄ and G΄΄ data with the help of such software a lot of information can be obtained including 

viscosity (with the Carreau-Yasuda parameters), tan-delta, elongational viscosity and even 

molecular weight distribution. A caveat should be added: determination of molecular weight 
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distribution from rheological data is a mathematically “ill- posed problem” and the results for 

various polymers have varying degrees of success, due to short or long chain branching and 

other aspects of the macromolecular architecture. 

 

5.6 Determination of a Characteristic Relaxation Time 

In Chapter 3 we introduced an important parameter of viscoelastic analysis: relaxation 

time. We first defined a relaxation time in connection with the Maxwell model, as the time 

required for the stresses to relax after a sudden imposition of strain  

𝜆 =
𝜂

𝐺
 (5.6-1) 

where η the viscosity and G the elastic modulus. Further analysis for simple shear flow 

resulted in Eq. 3.7-20, which can be rewritten as  

𝜆 =
𝑁1

2𝜂𝛾̇2
 (5.6-2) 

In Section 3.9 we were talking about a characteristic relaxation time in the definition of 

Deborah and Weissenberg numbers, which express the ratio of elastic forces to viscous forces. 

Then, we presented some results in Fig. 3.9-3 of stress relaxation after cessation of shearing. 

In the Section 5.5 we concluded that several relaxation times are needed to describe G΄ and 

G΄΄. Frequently, in industry, correlations of properties are developed involving the time 

constant obtained from fitting viscosity data to Carreau-Yasuda or Cross models as shown in 

Fig. 5.6-1. It is unclear, from all this, which is the most characteristic relaxation time of a 

polymer melt and how could it be measured. 

 
Figure 5.6-1. Relaxation time in the Cross model 𝜂 = 1 [1 + (𝜆𝛾̇)1−𝑛]⁄  is simply the inverse of the 

shear rate (which is the same as frequency) at η=ηο/2. Αdapted from Ohlsson (1996).  
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The shear stress relaxation experiment after cessation of shear of Fig. 3.9-3 appears as 

a good method for differentiation of polymers having different relaxation times. In fact, not 

only the shear stress but also the first normal stress difference N1 relaxes, as shown in Fig. 5.6-

2. However, sudden cessation of shearing (or sudden imposition) depends a lot on the 

response of both the instrument (noise) and on the material. It is not a common technique 

and there are relatively few such experimental data available in the open literature. The most 

common and most accurate method to study the relaxation behavior of polymer melts is by 

small amplitude oscillatory shear (SAOS).  

 

Figure 5.6-2. Shear stress and first (primary) normal stress difference relaxation after cessation of 

steady-state shearing. Adapted from Laun (1978). The shape of the curves is different from Fig. 3.9-3 
because of the logarithmic scale on the vertical axis. 

 

In connection with the measurements of Fig. 5.5-9 we presented relaxation times λi 

and moduli Gi pairs in Table 5.5-1. These are simply curve fitting parameters without any 

physical meaning. They are useful in obtaining from G΄ and G΄΄ data other quantities like 

viscosity, tan-delta etc. Let’s take another look at the sketch of G΄ and G΄΄ as a function of 

frequency, as shown in Fig. 5.6-3 and at the same time think about the meaning of the 

Deborah number 

𝐷𝑒 =
characteristic material time

characteristic process time
 (5.6-3) 

At very low frequencies the process time is very long and the polymer behaves like a viscous 

fluid. At very high frequencies the time is very short and the polymer behaves like an elastic 
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solid. At intermediate frequencies we call the behavior rubbery in Fig. 5.6-3 because the (near) 

plateau in G΄ is an indication that there is little relaxation occurring due to the chain 

entanglements, which act similarly to the cross-links in rubber. For a perfect rubber G΄ would 

be constant and G΄΄ would be zero. Thus, from this behavior we can choose two frequencies 

for determination of physically meaningful characteristic times: in the limit of ω approaching 

zero (corresponds to zero shear viscosity) and the crossover point where the viscous polymer 

becomes rubbery.  

 
Figure 5.6-3. Typical results of G΄ and G΄΄ as function of frequency. 

 

We have already given an equation (Eq. 5.5-23) for calculating λo but let’s look at 

another way of calculating it: In the zero limit of frequency and viscosity, N1=2G΄ thus from 

Eq. 5.6-2 we have 

𝜆𝜊 =
2𝐺΄

2𝜂𝜔2
 (5.6-4) 

We may then replace η with η΄=G΄΄/ω and then   

𝜆𝜊 =
𝐺΄

𝐺΄΄𝜔
 (5.6-5) 

Using Table 5.5 associated with Fig. 5.5-9 we calculated λo= 53.62 s. Let’s see how close we 

can get by reading, as best as we can, the data of Fig. 5.5-9. Because extrapolation on a 

logarithmic plot is hazardous, we will use as zero frequency 10-3. We roughly have 

𝜆𝜊 =
𝐺΄

𝐺΄΄𝜔
=

5

102 × 10−3
= 50 s  

which is close to the previous estimate from the Gi, λi summation. 
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Another characteristic time would be the inverse of frequency at the crossover point 

which appears roughly to be 1 s. Of course, more accurate values than visual inspection could 

be obtained from a sophisticated software package like IRIS. 

From the two characteristic times (longest and reciprocal of frequency at crossover) 

which one is better to use?  The reciprocal of frequency at the crossover point has significant 

meaning. It is where G΄=G΄΄ and the storage modulus appears to approach a plateau, which 

implies rubber-like behavior. In property correlation the zero shear viscosity does account for  

 
Figure 5.6-4. Viscosity, moduli curves for a LLDPE and Carreau-Yasuda viscosity model parameters. 

Adapted from Stadler and Mahmoudi (2011).  
 

 
Figure 5.6-5. Relaxation time in the Carreau-Yasuda model and reciprocal of frequency as a function 

of molecular weight Mw. Adapted from Stadler and Mahmoudi (2011). 
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the molecular relaxation processes are near zero shear (or frequency), while the crossover 

point is related to the start of elastic behavior. It has been observed that the crossover 

relaxation time is close to the relaxation time in the Carreau-Yasuda viscosity model. This is 

shown in Fig. 5.6-4 and Fig. 5.6-5. 

 

5.7 Melt Strength and Elongational Viscosity 

 Elongational (or extensional) viscosity is the resistance to stretching of a liquid. For 

Newtonian fluids Trouton’s relation is valid (Section 3.3) 

𝜂𝑒

𝜂
= 3 (5.7-1) 

that is the elongational viscosity is three times the shear viscosity. For polymer melts the 

Trouton relation is valid at very low stretch and shear rates, but the ratio can exceed 100 and 

for some polymer solutions it can exceed 1000 at high rates. 

In Fig. 5.7-1 it can be seen that the elongational viscosity of LDPE (branched) is higher 

that that of HDPE (linear) as expected. Due to long chain branching, LDPE is stiffer in 

stretching than HDPE. Stretching is involved in several polymer processing operations, like 

fiber spinning, blown film extrusion, flat film extrusion, blow molding, thermoforming and 

production of foamed plastics. 

.  

Figure 5.7-1. Steady-state elongational viscosities for three polyethylene melts as a function of 

extensional strain rate. Adapted from Pahl et al. (1995). 

 

Melt strength is the most widely used test in industry for assessing the resistance to 

stretching of polymer melts. It is the force required to break a polymer extrudate emerging 

from a capillary rheometer under the influence of two rotating rolls, as shown in Fig. 5.7-2, 
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according to Laun and Schuch (1989). It can be seen that the melt strength decreases as the 

temperature increases, while the draw down speed increases. The draw down speed is a 

measure of drawability, which determines the ability of polymer melt to be drawn down to 

thin gages. Linear polyolefins such as LLDPE, HDPE and PP (especially) have poor melt 

strength, but they can also produce very thin films under proper processing conditions 

 
Figure 5.7-2. Melt strength test using the Goettfert Rheotens attached to a capillary rheometer, of a 

low density polyethylene. From Laun and Schuch (1989). 

 

The melt strength/drawability test is not an accurate rheological measure because the 

extruded melt is cooled at room temperature and the stretching is also influenced by shearing 

in the capillary. It is used widely in industry because it resembles the processing conditions 

for the production of fibers and films. Melt strength is frequently used to assess processability 

of polymer resins as shown in Fig. 5.7-3. 

 

Figure 5.7-3. In was reported (Mod. Plast, Oct.1999, p.22) that CHISSO (Japan) has achieved 

increased melt tension (melt strength of their Newstren) by introducing long chain branching in the 
polypropylene chain, which allows the production of large thermoformed and blow molded parts (not 
possible with conventional (low melt strength) PP). 
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 Elongational viscosity measurements are difficult, due to the requirement of stretching 

a molten polymer sample, under isothermal conditions of the desired thickness, free of any 

residual stresses resulting from the preparation of the sample itself. The first such instrument 

was designed by Meissner (1971) at BASF in Germany. The cylindrical sample is stretched 

by a pair of gear-like rotors, floating on the surface of an oil bath, as shown schematically in 

Fig. 5.7-4.  

 
Figure 5.7-4. Schematic of the Meissner (BASF) rheometer. 

 

The Meissner (BASF) extensional rheometer was capable for providing some accurate 

useful measurements of elongational viscosity, but it was not suitable for routine 

measurements. Several other instruments were designed, built and marketed, but without 

much technical or commercial success. After the development of the SER extensional 

rheometer (Sentmanat, 2004 Xpansion Instruments) elongational viscosity measurements 

(Sentmanat et al., 2005) are possible for routine laboratory work. SER is a fixture to standard  

 
Figure 5.7-5. Sentmanat extensional rheometer (SER), which is a fixture to standard rotational 

instruments. 
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Figure 5.7-6. Extensional stress growth coefficient at various strain rates as a function of time. PE-3 is 

more strain hardening than PE-4 and some other PE samples not shown. Adapted from Emami et al. 

(2014). 

 

rotational rheometers. Two drums are rotated and the force is calculated from the torque (Fig. 

5.7-5). The results are obtained in the form of the stress growth coefficient, which is the ratio 

of the tensile stress σE to the stretch rate 𝜀̇ 

𝜂𝐸
+ =

𝜎𝐸

𝜀̇
 (5.7-2) 

Emami et al (2014) evaluated several grades of PE resins and concluded that resin PE-3 (Fig. 

5.7-6) which had the highest strain hardening characteristics was also the most suitable for 

rotational foam molding. This conclusion was corroborated with actual rotomolding (RM) 

experiments in the laboratory and pilot scale. High resistance to stretching favors the 

production of more stable bubbles in foaming, which really involves biaxial stretching. 

 

5.8 Torque Rheometers 

They are called rheometers, but they really are batch mixers. They consist of a mixing 

chamber with two counter-rotating blades similar to those shown in Fig. 5.8-1. They are used 

mostly for evaluating compounding of polymers with additives and fillers. The torque 

required for rotating the blades is related to viscosity. Bousmina et al. (1999) developed a 

method for converting torque and speed of rotation into viscosity measurements. They used  
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Figure 5.8-1. Sketch of a typical torque rheometer (batch mixer). 

 

a Couette analogy in which each mixing chamber was replaced by a cylinder rotating inside 

another larger cylinder. An expression for an effective radius of the mixer was obtained for 

the power-law viscosity model. It was found that the effective internal radius varies only 

slightly with power-law exponent n, and from this fact a calibration procedure can be 

performed using a Newtonian fluid or any other well-characterized power-law fluid, for which 

the consistency m and exponent n are known. This method was used by Santi et al. (2009) for 

the Haake (mixer) data reported in Fig. 5.5-5. 

 

5.9 Temperature and Pressure Dependence of Viscosity 

 As the temperature supplied to a polymer increases the molecular motions become 

more rapid and the viscosity of the melt decreases significantly. However, other properties, 

like the tensile modulus of a solid specimen, are less sensitive. Viscosity dependence on 

temperature is frequently expressed in a simple exponential form 

𝜂 = 𝜂ref exp[−𝑏(𝑇 − 𝑇ref)] (5.9-1) 

or, for the power-law model, the consistency coefficient 

𝑚 = 𝑚ref exp[−𝑏(𝑇 − 𝑇ref)] (5.9-2) 

while the exponent n is virtually independent of temperature. ηref is the reference viscosity at 

Tref and b the temperature sensitivity coefficient with typical values for various polymers given 

in Table 5.9, together with some typical values of the corresponding power-law exponents. 

Of course, these values are not meant to be a replacement for good measurements, but rather 

for rough estimates (“ballpark” in North American parlance). For T–Tref = 10°C (18°F) and b 

= 0.015 (e.g. for HDPE), the above expression gives a decrease in viscosity (or m) of 14% (for 

a 10°C temperature increase). Branched polyethylene (LDPE) is more sensitive to 
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temperature, having b=0.03, which gives a viscosity decrease of 25% for a 10°C temperature 

rise. 

 

Table 5.9-1. Typical values of the power-law exponent n and the temperature coefficient b. 

Polymer Power-law exponent n Temperature Coefficient b (C-1) 

HDPE 0.45 0.015 

LDPE 0.35 0.03 

LLDPE 0.60 0.015 

PP 0.35 0.015 

PVC (rigid) 0.30 0.10 

PS 0.30 0.05 

PMMA 0.25 0.10 

PET 0.65 0.03 

ABS 0.25 0.10 

NYLON 6,6 0.75 0.025 

PC 0.75 0.04 

 

 The simple exponential expression is the preferred model in extrusion flow analysis, 

but in injection molding and in polymer physics the Arrhenius expression is used  

𝜂 = 𝜂(𝑇𝑜) exp [
𝐸

𝑅
(

1

𝑇
−

1

𝑇𝑜
)] (5.9-3) 

where E activation energy and R=1.987 cal/mol-K =8.314 J/mol-K the gas constant. Typical 

values for E are 6 kcal/mol linear PE, 12 kcal/mol branched PE, 85kcal/mol for PC and 

PVC. The Arrhenius expression is valid over a wider range than simple exponential. Good for 

Tg+100oC and up (Tg is glass transition temperature). Closer to Tg the WLF equation is used 

𝑙𝑜𝑔
𝜂

𝜂𝑔
=

−𝐶1(𝑇 − 𝑇𝑔)

𝐶2 + (𝑇 − 𝑇𝑔)
 (5.9-4) 

where reference temperature Tg is the glass transition temperature and the “universal 

constants” C1=17.44 and C2=51.6 K. Actually C1 and C2 vary a lot for various polymers (Ferry, 

1980). The above expression is based on the free volume theory, according to which polymer 

chain segments jump into unoccupied sites or holes. 
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Pressure has similar effect to that of temperature, but opposite in sign. As the pressure 

increases the molecular mobility decreases and consequently the viscosity increases.  The 

dependence is usually expressed in the form 

𝜂𝑝 = 𝜂𝑟𝑒𝑓exp[𝛽(𝑃 − 𝑃𝑟𝑒𝑓)] (5.9-5) 

The value of β is of the order of 10-8 Pa-1. There are limited data available on pressure 

dependence of viscosity, in the open literature. Cogswell (1996) made a suggestion of a 

pressure dependence by an equivalent temperature change for a very rough estimate. Some 

results would indicate that applying 10 MPa is equivalent to decreasing the temperature by 

about 5°C.  

           Frequently, it is assumed that the flow is incompressible, and in fact this is almost a 

universal assumption in analyzing screw extruders and dies. In most extrusion operations it 

is unlikely to have pressure build-up of more than 50 MPa in the melt conveying zone, and 

pressure dependence is seldom considered in any calculations. However, in injection molding 

pressure can reach 200 MPa, and pressure dependence of viscosity is frequently taken into 

consideration (Volpe and Pantani, 2018). 
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Chapter 6 

SINGLE SCREW EXTRUDERS 

 

 

 

6.1 Historical Remarks  

The word “extrusion” is derived from the Latin words ex and trudere, which mean 

respectively, “out” and “to push” or “to shove”. The earliest extruders were short used mainly 

for rubber processing during the late 19th and early 20th centuries. Rubber does not require 

melting per se, but merely softening and pumping through a shaping die, that is why the early 

extruders were short. The single screw extruder (SSE) is the workhorse of the polymer 

processing industry. The vast majority of plastics are processed at least once in their lifetime 

through a SSE. Polymer pellets, flakes or powder are fed into a heated barrel in which an 

Archimedean screw rotates. The solid polymer particles are compacted as they transported 

forward, melted and pumped through a die for the purpose of shaping into the desired 

product. The operating principles of the so-called plasticating screw extruder had started to 

be understood after the publication of a series of papers in the early 1950’s by a Dupont team 

(Gore, 1953, Carley and Strub 1953a, 1953b, Carley et al., 1953, McKelvey, 1953, Mallouk 

and McKelvey, 1953, Carley and McKelvey, 1953, Jepson, 1953) and independently, a 

doctoral thesis by Maillefer (1952). More information on early developments can be found in 

Bernhardt (1959), McKelvey (1962) and Schenkel (1963). Further research work by Maddock 

(1959), Tadmor (1966) and Tadmor and Klein (1970) and theoretical and technological 

developments, as summarized by Torner (1973), Middleman (1977), Tadmor and Gogos 

(1979, 2006), Chung (2011), Spalding and Campbell (2013) and Rauwendaal (2014) and 

Agassant et al. (2014), laid the foundations for modern extruder technology. The purpose of 

design developments and innovations is to increase the output rate of stable, high quality melt, 

free from unmelts and degraded material. 
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6.2 Designing a Melt Screw Pump 

 Pump is a device that moves fluids and generates pressure. In classical fluid mechanics 

the so-called rotodynamic (i.e. centrifugal) pumps generate pressure by transferring the kinetic 

energy of the rotating impeller to the fluid. These pumps do not work (they cannot even turn) 

with highly viscous fluids like molten polymers. 

 The Bernoulli  principle, 𝑉2 2𝑔⁄ + 𝑝 𝜌𝑔⁄ = 𝑐𝑜𝑛𝑠𝑡., does not apply for highly viscous 

fluids, since the inertia (i.e. kinetic energy) is negligible. In molten polymer flow we have a 

balance of pressure and stress forces. So, somehow we must generate pressure from stress 

(i.e. from the fluid viscosity). Let’s see how this can be done. In drag flow between two flat 

plates, for the open ended channel we have no pressure generation as we saw in Chapter 2. 

The fluid is just being dragged with the velocity profile being simply a straight line as shown 

schematically in Fig. 6.2-1.  

 
Figure 6.2-1. Drag flow between two flat plates. Top plate moves to the right with velocity V. The fluid 

sticks to both the moving and stationary plate (no slip condition). 

 

 
Figure 6.2-2. Drag flow between two flat plates with the one end partially closed causing a pressure 

build-up. The device is known as the Rayleigh step in the science of tribology. 
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However, if the end of the channel is partially closed, then a portion of the fluid is still 

being dragged due to the movement of the plate and at the same time pressure is generated, 

just as in the case of lubricated bearings (Vlachopoulos, 2016), where two slightly non-parallel 

surfaces are in relative motion. The anticipated pressure variation and velocity profile in this 

case are shown schematically in Fig. 6.2.-2.  

 The simple concept shown in Fig. 6.2-2 is a pump, because it is capable of transporting 

liquids and generating pressure. Let’s see how this simple principle can be put into real 

practical use. A possible (conceptual) design would be a shallow channel of finite length 

covered by an infinite moving plate, as shown schematically in Fig. 6.2-3. Another possibility 

would be to keep the plate stationary and move the shallow channel. 

 
Figure 6.2-3. Conceptual design of a melt screw pump. A plate with velocity V0 moves over a shallow 

rectangular channel. From Tadmor and Gogos (1979).   

  

 
Figure 6.2-4. A “twisted” and “turned”, in a helical manner, shallow channel inside a rotating barrel.  

From Tadmor and Gogos (1979). 
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Figure 6.2-5. Schematic representation of a simple single screw extruder. From Tadmor and Gogos 

(1979).    

 

Of course, a channel filled with a hot melt and an “infinite” moving plate does not 

represent a practical solution. Let’s do a “Gedankenexperiment”, as Einstein used to say, (i.e. 

a thought experiment) for the construction of a practical device. We convert the “infinite” 

moving plate into a rotating barrel (i.e. a hollow cylinder) and the shallow channel, by twisting 

and turning, into a helical channel inside the barrel as shown in Fig. 6.2-4. The constructed 

geometry is reminiscent of a screw inside a hollow cylinder. Therefore, we end up with a melt 

screw extruder like the one shown in Fig. 6.2-5.  

In the above approach we made the assumption that the barrel rotates and the screw 

is stationary. We made this assumption, to simplify the analysis presented subsequently. Of 

course, in reality extruders operate in the opposite manner, that is, the screw rotates and the 

barrel is stationary. The question of whether the simplifying assumption of a stationary screw 

and a rotating barrel, impacts any further extruder analysis, is to some extend controversial. 

Some researchers claim significant differences between the rotating barrel and the rotating 

screw analyses (for screws having deep channels see Campbell and Spalding, 2013). 

 

   6.3 Output Determination of a Melt Fed Extruder  

          We will assume that the flow is isothermal and the melt behaves like a Newtonian fluid. 

Before presenting any mathematical analysis for the flow of a molten polymer, it is instructive 

to understand which are the most essential geometrical parameters, used frequently in screw 

design terminology. These parameters are illustrated schematically in Fig. 6.3-1 for a 

representative section of a screw. We write below an explanation of each design parameter in 

Fig. 6.3-1  

 Ds: screw diameter (taken at the tip of the flight) 

 Db: barrel diameter = Ds+2δ 



6-5 

 

  

 Ls: screw lead or pitch (Ls= πDstanθ) 

 e: flight width 

 W: channel width (W=Lscosθ-e= πDstanθcosθ) 

 Frequently: Ls=Ds and it is called square pitched screw then θ=17.66o (tanθ=1/π).  

To simplify the analysis we will neglect the flight clearance δ (which very small), so 

we will assume Ds=Db=D. 

 

 
Figure 6.3-1. Screw design terminology in a representative screw section. Polymer melt is transported 

from left to right.  The left flight is frequently referred to as the pushing flight and the right the trailing 
flight. 

 

 
Figure 6.3-2. Notation of the down-channel direction. θ  is the helix angle. 

 

 To develop a mathematical model let us (conceptually) unwind the channel, and turn 

it (conceptually) into a channel between two flat plates. We shall use the assumption that the 

screw is stationary and the barrel rotates with 𝑉𝑏 = 𝜋𝐷𝑁 where N is the rotational speed in 

the screw (e.g. rpm). If Z is the down channel direction as shown in the rough schematic of 
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Fig. 6.3-2, the down channel velocity component will then be 𝑉𝑏𝑧 = 𝑉𝑏𝑐𝑜𝑠𝜃 = 𝜋𝐷𝑁𝑐𝑜𝑠𝜃. Also 

the down channel distance z is related to the axial distance L by z=L/sinθ.  

 Let us now use the flat plate equations for drag flow with an opposing pressure flow. 

For this case, the flow rate is a drag flow term (half the moving plate velocity multiplied by 

the flow cross-sectional area) minus a pressure term (which is equation 2.6-18 for a Newtonian 

fluid (n=1) and b=H/2)  

𝑄 =
1

2
𝑉𝐻𝑊 −

𝐻3𝑊

12𝜇

𝑑𝑃

𝑑𝑧
 (6.3-1) 

But we must use the helical geometry of the channel i.e. the polymer melt moves in the down 

channel z-direction. We have  

𝑊 = 𝐿𝑐𝑜𝑠𝜃 = 𝜋𝐷𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜃 (6.3-2) 

𝑉 = 𝑉𝑏𝑐𝑜𝑠𝜃 = 𝜋𝐷𝑁𝑐𝑜𝑠𝜃 (6.3-3) 

𝑊
𝑑𝑃

𝑑𝑧
=

𝑑𝑃

𝑑𝐿
𝑠𝑖𝑛𝜃 =

𝛥𝑃

𝐿
𝑠𝑖𝑛𝜃 

(6.3-4) 

where N=revolutions per second (rpm/60) of the screw. Substitution in Eq. 6.3-1 we have 

𝑄 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜋𝐷𝐻3

12𝜇
𝑠𝑖𝑛2𝜃

𝛥𝑃

𝐿
 (6.3-5) 

where:  ΔP = P2(exit)-P1(entrance) 

  L: length of the screw (usually L=10~15D for melt fed extruders) 

  θ: helix angle 

  D: barrel diameter (usually 1~8 inches i.e. 25mm ~ 200 mm) 

  H: channel depth (usually 2- 10 mm) 

  N: speed of rotation (usually 50-200 rpm) 

  μ: Newtonian viscosity  

If the clearance δ between the screw flight and the barrel is not negligible, we must subtract 

the amount of leakage flow rate (i.e. the amount of fluid that escapes over the flight), which 

can be easily shown (again based on equation 2.6-18) to be given by  

𝑄𝐿 =
𝜋2𝐷2𝛿3

12𝜇𝑒
𝑡𝑎𝑛𝜃

𝛥𝑃

𝐿
 (6.3-6) 

Therefore, the volume rate of flow equation reads as  

𝑄 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜋𝐷𝐻3

12𝜇
𝑠𝑖𝑛2𝜃

𝛥𝑃

𝐿
−

𝜋2𝐷2𝛿3

12𝜇𝑒
𝑡𝑎𝑛𝜃

𝛥𝑃

𝐿
 (6.3-7) 

Multiplication with density gives the mass rate of flow, usually reported in kg/hr. 
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Figure 6.3-3. Schematic representation of the pressure distribution in an extruder followed by a die. 

 

 
Figure 6.3-4. Schematic representation of a simple drag flow between flat plates. 

 

Of course, polymer melts are shear thinning fluids. Therefore, we need to somehow use an 

“equivalent” Newtonian viscosity to perform calculations.  

 For a given extruder L, D, H and θ are fixed so (neglecting the leakage flow) we may 

write in a general form  

𝑄 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝑁 − 𝑐𝑜𝑛𝑠𝑡
𝛥𝑃

𝜇
 (6.3-8) 

where N is the screw speed, ΔP=Pexit - Pentrance is the pressure rise in the extruder as shown 

schematically in Fig. 6.3-3 and μ is the melt viscosity (Newtonian). This shows that Q 

increases linearly with screw rotation and Q versus ΔP is a straight line with negative slope. 

For drag flow (see Fig. 6.3-4) a characteristic (reference) shear rate would be 

𝛾̇𝑟𝑒𝑓 =
𝜋𝐷𝑁

𝐻
 (6.3-9) 

We will calculate the “equivalent” Newtonian viscosity via a simple example. Let 𝜂 =

10000𝛾̇−0.6, N=100 rpm, D=90 mm and H=4 mm. We may then define the reference shear 

rate as   
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𝛾̇𝑟𝑒𝑓 = 𝜋
90

4

100

60
≈ 117 𝑠−1 

which gives 𝜂 ≈ 571 𝑃𝑎 ∙ 𝑠. This is the “equivalent” Newtonian viscosity μ in the melt 

extruder equation for Q (Eq. 6.3-8). 

The question may be asked: How good is this simplified (Newtonian) theory? We 

could say “satisfactory” for prediction of output rate. How could this be improved? Shape 

factors could be introduced Fd for the drag flow term and Fp for the pressure flow term to 

account for the reduced flow in the down channel Z-direction, due to the presence of the 

flights. They depend on the ratio H/W. Both factors are essentially 1 for small aspect ratios. 

Also the loss of volume due to the flight thickness e could be taken into consideration. A 

formula including shape factors and flight thickness is given in Section 6.11.    

We note that: 

1. If there is no pressure build-up in the extruder (i.e. restriction to flow at the end of the 

extruder), the output would be maximum, i.e. drag flow only 

𝑄𝑚𝑎𝑥 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (6.3-10) 

2. If the end is closed, Q=0 and we may equate drag and pressure flow  

1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 =

𝜋𝐷𝐻3

12𝜇
𝑠𝑖𝑛2𝜃

𝛥𝑃

𝐿
 (6.3-11) 

This gives the maximum possible pressure 

𝑃𝑚𝑎𝑥 =
6𝜋𝐷𝐿𝑁𝜇

𝛨2𝑡𝑎𝑛𝜃
 (6.3-12) 

Since μ is large for polymer melts, extremely large (and very dangerous) pressures can 

develop. 

The above equations enable us to examine the role of channel depth by drawing a 

straight line between Qmax and Pmax as shown in Fig. 6.3-5. Then by plotting pressure versus 

flow rate for a die (non-linear for power-law fluids, see Chapter 2, Q~ΔP1/n) we can determine 

the operating point as shown in Fig. 6.3-5. The matching procedure will be more clear in 

Section 6.12, where we present a numerical example. Well-running extruders if they are also 

well-matched to their dies are unlikely to have outputs less than 75% of the drag flow output 

(Eq. 6.3-10). 
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Figure 6.3-5. Operating point determination for a melt fed extruder. 
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6.4 Solids Conveying in an Extruder 

 Conventional single screw extruders (also called plasticating) are composed of three 

different zones as shown schematically in Fig. 6.4-1. After the feed hopper the polymer pellets, 

powder or flakes get packed into a solid “bed” in the solids conveying zone (also called feed 

section), which is pushed forward and melted in the melting zone. It can be seen that in the 

feed zone the channel is deep and progressively becomes shallow to compensate for the 

reduction of the volume, from solid material and air, into a hopefully air-bubble-free melt 

Subsequently, the melt is pumped (mainly dragged) through the final flights of the metering 

zone to the die. 

 
Figure 6.4-1. Schematic representation of a single screw extruder and the various functional zones. 

 

 Single screw extrusion is perhaps the most effective way to melt and pump molten 

polymers through extrusion dies for final continuous shaping into film, sheet, pipe, profiles, 

fiber and wire coating. From a general perspective, extruder and screw design calls for output 

maximization, avoidance of material degradation, extrusion stability and melt quality. There 

are many possible variations of barrel and screw design. The most common are smooth or 

grooved feed or entire grooved barrel, conventional single flight screws with or without 

mixing sections and barrier screws. The latter consist of a main flight plus a barrier flight. 

To understand how the solid bed is transported in an extruder, we use an analogy of 

the movement of a nut along a screw shown in Fig. 6.4-2. The nut must be held in place if 

one wants to move the screw. Thus, for the polymer bed (corresponding to the nut) to move, 

the friction coefficient on the barrel (corresponding to the fingers) must be larger than the 
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friction coefficient on the screw. For this reason, the barrel’s inner surface is rough and 

sometimes intentionally grooved to increase the friction coefficient. The screws, on the other  

hand, have always a smooth (polished) surface to keep the friction coefficient as low as 

possible. 

 
Figure 6.4-2. A simple nut-screw “experiment” to explain the movement of the packed solid bed in an 

extruder. 

 

 At the start of the screw (under the hopper), the particulate solid bed is loosely 

compacted. As the solid bed progresses towards the melting section, frictional forces and 

torques are exerted by the “rotating” barrel. These forward forces are opposed by the 

retarding forces exerted by the root of the screw as well as the flight. This results in pressure 

build-up in the direction of the flow and the low bulk density solids (previously loosely 

compressed) are now compressed into a “sturdy” (hopefully) solid bed, which slides down 

the channel. In fact, Darnell and Mol (1956) developed an isothermal model that relates the 

mass flow rate of the solid bed to the ratio of outlet to inlet pressure. Their model predicts a 

downstream pressure rise, which can be simplified in the form 

𝑃 = 𝑃𝑜𝑒𝑥𝑝 {[𝐶𝑏𝑓𝑏𝑐𝑜𝑠(𝜑 + 𝜃) − 𝐶𝑠𝑓𝑠]
𝑘𝑍𝑏

𝐴
} (6.4-1) 

where fb and fs are friction coefficients on the barrel and the screw respectively, Cb and Cs are 

the wetted perimeters, φ is the solids conveying angle, which is different from the helix angle 

θ, Zb the down-channel distance and k a constant. The predictions of the model are very 

sensitive to values of fb and fs. The exponential pressure rise is schematically shown in Fig. 

6.4-3. 

As explained earlier, the friction coefficient of the barrel must be higher than the screw 

(i.e. fb>fs). Typical values for the barrel is fb≈0.4 and for the screw fs≈0.25. The friction 

coefficients fb and fs depend on pressure, temperature, surface condition (new, old, worn out), 

presence of lubricants or additives in the feeding section, type of feed (i.e. pellets, powders or  
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Figure 6.4-3. Exponential pressure rise in the feed (solids conveying) zone. 

 

 

Figure 6.4-4. Shapes of grooves used in the feed section (usually no more than L/D=4 of the extruder). 

Huge pressures can be developed within a short distance, due to high friction coefficient on the 
grooved barrel wall.  
 

 

Figure 6.4-5. Grooved feed barrels. From Extrusion Technical Guide, Qenos, Australia (2015). 
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Figure 6.4-6. Schematic representation of the pressure build-up in a (a) conventional smooth barrel 

and (b) grooved feed barrel extruder. Notice that the screw channel compression for grooved feed 
barrel extruders, is almost not existent (not needed, the pellets are compressed in the feed section).  
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flakes), shape of pellets and their size, pellet surface (whether smooth or rough). Thus, it is 

very difficult to make good, reproducible and meaningful measurements.  

 Grooved feed extruders feature axial grooves or slots in the part of the barrel 

immediately following the feed throat (usual range 2D~4D). The grooves can have different 

shapes are shown in Fig. 6.4-4 and Fig. 6.4-5. Axial rectangular slots seems to be the preferred 

geometry. Recently, helical slots are also becoming popular.  

The grooved barrel can significantly enhance the solid transport rate due to high 

friction on the barrel and increase the pressure buildup significantly, very close to the feed 

throat. Maximum pressures usually exceed 100MPa and up to 300MPa have been reported. 

A typical pressure build-up of a grooved feed extruder is illustrated schematically in Fig. 6.4-

6, where the case of a typical smooth barrel extruder is also shown. In grooved feed extruders, 

the compression ratio (i.e., the channel depth in the feed over the depth in metering section) 

is roughly 1–1.2, while in smooth barrels, higher compression ratios are met ranging from 2 

to 4. Grooved barrel extruders can deliver up to double the output rate given by the drag flow 

equation above (Eq. 6.3-10). High-speed extruders (with screws rotating above 400 RPM to 

perhaps 1200 RPM) usually have the entire barrel grooved (Grünschloß, 2007a, 2007b) and 

can deliver very high output rates.  

With grooved feed, the extruder is capable of better flow stability (almost independent 

of head pressure) and somewhat lower melt temperature due to the increased output. Grooved 

feed extruders are used extensively in Europe. The perform best, for fractional melt index 

(MI<1) HDPE and PP, for film, pipe and blow molding. They are not suitable for very hard 

pellets like PET, or powders like PVC, soft thermoplastic elastomers or regrind. If there is 

compounding of masterbatches, there is likely to be problems due to insufficient mixing. 

Other negatives include: high drive power, performance is sensitive to particle characteristics 

(size and shape of pellets). Grooved feed extruders are not suitable for regrind due to the 

irregular shape of the particles. Due to these negatives, acceptance has been very slow in 

North America. 

 

6.5 Melting in an Extruder 

 In the late 50’s, Maddock (1959) observed and analyzed the melting of polymers on 

the screw using a simple experimental technique. Under steady-state operating conditions, 

the extruder was abruptly stopped, and both the barrel and screw were left to cool. Afterwards,  

y
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the screw was pulled out of the barrel and subsequently the solidified helical polymer was 

unwound. After that, thin representative sections perpendicular to the flights were cut and 

observed. It was concluded that melting really occurs in a melt film between the barrel and 

the solid bed, as shown in the rough schematic of Fig. 6.5-1a. This melt film is subjected to 

intense shearing in the thin gap and because of the extremely high viscosities of molten 

polymers, high rates of viscous dissipation (frictional heating) result. Due to the drag flow 

caused by the barrel movement, the melt film is subsequently collected in a melt pool formed 

in front of the pushing flight (see Fig. 6.5-1a). Finally, the generated heat melts the packed 

solid bed completely (see Fig. 6.5-1b). It should be noted that in well-designed extruders, the 

solid packed bed is melted usually at 2/3 of the screw length from the feed. A real case of 

HDPE melting is illustrated in Fig. 6.5-1c and 6.5-1d, where the extruder is equipped with a 

glass-window for visualization purposes. On the basis of Maddock’s experiments, Tadmor 

(1966) developed a model for the melting rate and this model or variations thereof are used 

for computer simulation of single screw extruders (e.g. NEXTRUCAD). 

A basic assumption of Tadmor’s model is that the width of the packed solid bed is 

gradually reducing downstream until it disappears when the pellets are fully melted. However, 

in reality, there is possibility for solid bed segregation in the channel before complete melting 

(see for example the last picture in Fig. 6.5-1d). Yet, Tadmor’s melting model is a reasonable 

approximation.  

 

6.6 Melt Pumping in an Extruder (Metering Zone) 

After the solid bed is fully melted, the polymer melt is dragged by the “moving” barrel 

surface in the metering section. Essentially, in the metering section the extruder works as a 

pump that delivers the molten material into the extrusion die. Therefore, the simple 

mathematical analysis presented in Section 6.3 can be used to make calculations of the 

potential (in fact close to the actual) output of the extruder. We stress, once again, that the 

assumption of a rotating barrel suggests that there exist two velocity components as shown in 

Fig. 6.6-1. It is actually the down channel component Vbz that drags the melt towards the 

discharge end. The cross channel component Vbx induces a cross-channel circulatory-type 

pattern that results in relatively good mixing. 

The flow rate in the metering section is determined by the following equation 
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Figure 6.5-1. (a) and (b) schematic representation of Maddock’s melting mechanism (Tadmor and 

Gogos, 1979). (c) and (d) HDPE melting in an extruder equipped with glass window with melt pool 
formation in front of the pushing flight and solid bed segregation behind the trailing edge (Zhu, 2001).  
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𝑄𝑠𝑚𝑜𝑜𝑡ℎ 𝑏𝑎𝑟𝑟𝑒𝑙 = 𝑄𝑑𝑟𝑎𝑔 − 𝑄𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(ℎ𝑒𝑎𝑑) − 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒 (𝑜𝑣𝑒𝑟 𝑓𝑙𝑖𝑔ℎ𝑡𝑠) (6.6-1) 

This equation is no different to Eq. 6.3-7 derived in a Section 6.3 and it is written here in a 

simpler form. It was derived for smooth barrel extruders under the assumption of a 

Newtonian and isothermal fluid, but it is also a good approximation for Non-Newtonian, 

non-isothermal conditions. 

In conventional smooth barrel extruders, the pressure distribution follows qualitatively 

the schematic showed in Fig. 6.4-6a. The fact that the pressure is rising downstream, led to 

the term back flow, in that the pressure drives the material opposite to the direction of the net 

flow. This leads to the erroneous concept that essentially, in some part of the channel, the 

actual flow is directed towards the feed section. It is imperative to note that under no 

condition does the material flow backward along the melt axis. This is evident from sketches 

of calculated velocity profiles shown in Fig. 6.6-2 for different values of the ratio Qp/Qd where 

Qp and Qd the pressure flow and drag flow respectively. The axial velocity component is 

always positive. In the most general sense the flow may be described as a helix-within-a-helix 

(see Fig. 6.6-3a), in that the fluid follows a helical flow pattern inside the helical channel of 

the screw. From the velocity profiles, one may deduce the path of fluid particles in the channel 

as shown in Fig. 6.6-3b. 

 To obtain estimates for the throughput an extruder may deliver, we may identify three 

categories of simple flow situations in the down channel direction depending upon the 

extruder-die parameters. No matter what happens in the solids or melting zones, the 

throughput is eventually determined by the metering zone. We may have either: 

i. Ideal drag flow (e.g. smooth barrel extruders) as shown in Fig. 6.6-4a, if the die 

head pressure is too low.  

 
Figure 6.6-1. Schematic representation of the involving velocity components induced by the barrel 

rotation.  
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Figure 6.6-2. Cross-channel, down channel and axial velocity profiles for various Qp/Qd values (Qp: 

pressure flow and Qd: drag flow) in shallow square-pitched screws (leakage over flights is neglected). 

From Tadmor and Gogos (2006). 

  

 
Figure 6.6-3. (a) Schematic representation of the concept flow path helix-within-a-helix in the screw 

channel. (b) Calculated path of a fluid particle in the screw channel for different values of Qp/Qd. Solid 

lines show the path of the fluid in the upper portion of the channel and the broken lines show the path 
of the same fluid particle in the lower portion of the channel. From Tadmor and Gogos (2006). 
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ii. Drag flow plus pressure flow (positive), as shown in Fig. 6.6-4b, if the extruder 

tends to “overbite” in the solids zone. This is for the case of grooved barrel 

extruders. 

iii. Drag flow minus pressure flow (negative), as shown in Fig. 6.6-4c, if the die head 

pressure is too high. 

 
Figure 6.6-4. Different possible flow situations in a single screw extruder. (a) drag flow, (b) drag flow 

with aiding pressure gradient, caused by a grooved feed and (c) drag flow with adverse pressure 

gradient, caused by flow restriction in the die. 

 

Industrial experience suggests that for well-running extruders, the throughput should 

not be less than 75 % of drag flow throughput which we have calculated in the melt screw 

pump section (Section 6.3). The drag flow throughput is essentially the maximum pumping 

capacity of the extruder  

𝑄𝐷 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (6.6-2) 

where D is the barrel diameter, H is the channel depth in the metering section, N is the 

rotational speed (rpm) and θ is the screw helix angle (usually 17.66o i.e. square pitched screw). 

The above equation may be corrected to account for the screw flight width 

𝑄𝐷 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃(1 − 𝑒 𝑇⁄ ) (6.6-3) 

where e is the screw flight width and T the screw pitch. Output less than 75% of drag flow is 

indication of something wrong. Possibly the die is partially plugged, the screw may be 

corroded and/or the barrel damaged. 



6-20 

 
 

For the case of a grooved barrel, the pressure flow caused by the “overbite” (i.e. 

grooves) must be added. Grooved feed extruders are able to deliver a higher output than the 

smooth ones. Usually, the following applies 

𝑄𝑔𝑟𝑜𝑜𝑣𝑒𝑑 ≈ 1.5𝑄𝑠𝑚𝑜𝑜𝑡ℎ ~ 2𝑄𝑠𝑚𝑜𝑜𝑡ℎ (6.6-4) 

for extruders that have the same diameter at same screw rotational speed.  

            The curvature of the radius at the screw base, formed between the screw flight and the 

screw root, is a very important design parameter. Small angles, defined by the ratio R/H as 

shown in Fig. 6.6-5a, are known to result in polymer resin degradation. This is shown in Fig.  

 
Figure 6.6-5. (a) Screw a flight angle at screw root defined by the ratio R/H and (b) resin degradation 

due to Moffatt eddies, from Spalding et al. (2016). 

 

 
Figure 6.6-6. (a) Numerically computed pathlines for a Newtonian fluid near the pushing flight region 

showing the primary flow and Moffatt eddies (secondary flow) (b) Moffatt eddies in front of a pushing 
flight flank (left) and behind a trailing flight flank (right) for a Carreau fluid. From Polychronopoulos 
and Vlachopoulos (2018). 
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6.6-5b from Spalding et al. (2015), attributed to the so-called Moffatt eddies (Moffatt, 1964). 

Moffatt eddies appear in the form of spiraling flow, as shown in computer simulations of a 

screw having sharp corners, by Polychronopoulos and Vlachopoulos (2018) in Fig. 6.6-6. Due 

to very long residence times the degradation products accumulate, eventually get dislodged 

and produce defects on the extruded product. Experience based guidelines in industry suggest 

that the screw flight angle should not be less than 0.5. 

 

6.7 Barrier Screws 

 Let us recall at first, for conventional single flighted screws, the concept of melt pool 

existing side by side with a packed solid bed in the channel, shown schematically in Fig. 6.5-

1a and 6.5-1b.  In all screws at least the first 70% or so of the melting is due to the shear stress 

in the melt film formed between the barrel and the solid bed surface. However, it is frequently 

evident that in the metering section, there is still unmelted material in the melt as shown in  

 
Figure 6.7-1. Schematic representation of a conventional single-flighted screw with unmelted material 

near the end. From SPIREX (1997). 

 

the schematic of Fig. 6.7-1. Such unmelts may cause severe problems on machine 

performance and quality of extruded product. For example, unmelts may partially or fully 

clog the die, leading to excessive (and possibly dangerous) pressures. Surging, which is 

fluctuation of pressure and output may also occur. Presence of unmelts will affect the 

properties of the final product, such optical clarity due to presence of visible gels in transparent 

films, low tensile modulus and poor tensile and impact strength. This occurs, frequently in 

conventional metering sections, due to the fact that the solid bed can easily break up, 

especially at the end of the compression section. The remaining solids will receive very little 

shear as illustrated pictorially in Fig. 6.7-2, thus it will result in unmelted material.   
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Figure 6.7-2. Schematic representation of unmelted material in a conventional metering section. 

Arrows inside the channel, indicate the movement of the sheared molten material. From Barr (1993). 

 

 
Figure 6.7-3. Schematic representation of the concept of a barrier screw. From SPIREX (1997). 

 

For increased melting efficiency, barrier screws have been invented, starting from the 

late 1950’s and early 1960s. In such screw designs, a secondary flight is added, that usually 

starts at a “pushing” flight and ends further downstream at a “trailing” flight, separating the 

solid bed from the molten material. A section of a typical barrier screw is presented in Fig. 

6.7-3. It should be noted that the clearance of the secondary flight is generally larger than the 

one of the primary flight, to allow melt, but not solids to pass. Thus, the solid bed near the 

trailing flight (solids channel) is separated from the melt pool (melt channel) located at the 

pushing flight. In such screw-types, the cross sectional area of the solids channel continually 

decreases as the solid particles are melted downstream. It is possible to melt at least 80% of 

the material due to shear over the solid bed with very little conductive heating provided by 

the heaters. 
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 Several barrier-type screw designs have been patented and currently used in the plastics 

industry. Two of them are the most common. The first type, which is actually the first barrier 

screw design by Maillefer (1959, 1963), is shown in Fig. 6.7-4a. In this case the width of the 

solids channel is gradually decreasing while the melt channel is gradually increasing 

downstream. The second type is referred to as parallel flight barrier screw also known as MC3 

or Hartig Barr screw. 

 

Figure 6.7-4. Schematic representation of the two most common barrier screws. (a) Maillefer screw 

and (b) parallel flight barrier screw also known as MC3 or Hartig Barr Screw. In both cases, grey color 
denotes the melt. From Spirex (1997). 

 

In this type, the width of the melt and solids channels is constant throughout the length of the 

barrier section. However, the depth of the melt channel is increasing downstream (to 

accommodate the increasing melt flow rate) and the depth of the solids diminishes till both 

channel converge. The melting capacity of the parallel flight barrier screw is significantly 

higher than that of the Maillefer screw, since the surface area for melting is larger (by a factor 

of about 1.3). It may be noted that barrier screws have some negatives. Two are the most 

important: 

i. The continuous reduction of the solids channel width might be a source of 

instabilities, since the solid bed resists deformation in width (Maillefer barrier 

screw). 
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ii. Excessive shear heating results in very high (melt) temperature, especially for 

LLDPE (which is less shear-thinning than LDPE). Also high temperatures are 

observed with the new metallocene resins in conventional or barrier screws, 

because they are not very shear-thinning.  

One possible solution, to remedy the above, may be the Barr energy screw, also known as 

Energy Transfer (ET) screw (Chung and Barr (1983)). In such screws, there is a secondary 

flight with the clearance (undercut) being much greater than the clearance of the secondary 

 

 
Figure 6.7-5. Top: schematic representation of Energy Transfer (ET) Screw. Notice that the unshaded 

flights are undercut. Bottom: Schematic of an ET cross-section where the solid circles represent the 

migration of unmelts (e.g. pellets) over the undercut. Adapted from Barr (1993). 

 

flight of the MC3 barrier screw, as shown in Fig. 6.7-5. This allows for some unmelted pellets 

to escape from the solid bed and pass through to the melt channel. Because the clearance is 

large, the shear rates are relatively low. Once in the melt channel, the pellets are mixed with 

the melt promoting melting by conduction from the melt to the pellets. Therefore, the viscous  
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Figure 6.7-6. Comparison of 2.5 inch diameter screws, L/D=24, extruding PET 0.8 IV. Conventional 

(metering) versus barrier screw. From E. Steward, Davis-Standard Corporation.  
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dissipation due to shearing is low and the primary conducting mechanism is conduction 

which results in reduced melt temperature (Myers and Barr, 2002).    

Barrier screws generally give higher output rates, lower melt temperature, less pressure 

and temperature fluctuations, as shown in Fig. 6.7-6. Most screws used today in the extrusion 

industry are of barrier type and include a mixing section. 

 

6.8 Screws with Mixing Sections 

 Polymers are often compounded (mixed) with pigments, reinforcing agents, fillers, and 

other polymers for value-added purposes. Single-screw extruders are primarily melting and 

pumping machines. They have poor mixing capabilities. To improve the mixing capability, 

mixing elements are incorporated towards the end of the screw, near the die, as shown in Fig. 

6.8-1.  

 

Figure 6.8-1. Mixing elements at the end of an extrusion screw. 

 

In order to understand how good mixing can be achieved, it is necessary to understand 

the role of shear and elongational flow. Shear can easily be generated. Stirring a cup of liquid, 

or just shaking it, shear flow occurs. When a surface moves near another stationary surface 

shear flow is generated in the gap. Fig.6.6-2 shows shear flow profiles in single screw extruders  
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Figure 6.8-2. Elongational flow at the entrance of a small diameter tube.  

 

 
Figure 6.8-3. Schematic of dispersive and distributive mixing as adapted from Gale (1997). 

 

Elongational flow requires stretching of a liquid as we have seen in Chapter 3 when a liquid 

flows from a large reservoir to a small diameter tube, also shown in Fig. 6.8-2. The flow field 

has a large diameter in the reservoir and smaller in the tube. 

Mixing is a crucial operation in the following sense: the minor component must be 

dispersed (i.e. broken-up, reduced in size) and distributed (i.e. spread randomly) throughout 

the polymer matrix as shown schematically in Fig. 6.8-3.  

Dispersion, in general, is determined by the balance of cohesive forces holding solid 

agglomerates or liquid drops together and the hydrodynamic disruptive forces. Dispersive 

mixing is dominated by the stress level within the deforming liquid matrix: a critical stress  
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Figure 6.8-4. Drops deforming in shear (a) and (b) and elongational flow (c). Adapted from Han (2007).  

 

level must be exceeded to break up whatever cohesive forces hold a solid or liquid particles 

together. The stresses exerted by a flowing matrix will deform the liquid drops dispersed in it, 

may overcome the surface tension forces and eventually break them up. Intuitively, 

elongational flow appears more effective in deforming and breaking up liquid drops as shown 

in Fig. 6.8-4. 

Taylor (1932, 1934) studied the breakup of a single Newtonian drop in a simple shear 

field. The drop size was modeled using the capillary number  

𝐶𝑎 =
𝜏𝑅𝑑

𝑆
≡

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑠𝑡𝑟𝑒𝑠𝑠 ∙ 𝑑𝑟𝑜𝑝 𝑟𝑎𝑑𝑖𝑢𝑠

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑡𝑒𝑛𝑠𝑖𝑜𝑛
 (6.8-1) 

and the viscosity ratio 

𝜂𝑑

𝜂𝑚
≡

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝑑 𝑝ℎ𝑎𝑠𝑒

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑝ℎ𝑎𝑠𝑒
 (6.8-2) 

Grace (1982) is the author the most frequently cited publication on breakup of Newtonian 

drops in shear and elongational flows. The results are summarized in Fig. 6.8-5 which are 

usually referred to as Grace curves. In shear flow, when roughly ηd/ηm> 4, the matrix does   
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Figure 6.8-5. Grace curves for breakup of droplets in a matrix in shear and elognational flow. Adapted 

from Grace (1997). 

 

 
Figure 6.8-6. Schematic representation of baker’s transformation. Adapted from Manas-Zloczower 

(2009). 

 

not exert sufficient stress to cause rupture. However, elongational flow is very effective in 

causing rupture for virtually all ηd/ηm values. Although Grace curves are for Newtonian fibrils 

or threads, they correlate qualitatively very well with concentrated blends of polymers.  

Distributive (or laminar) mixing is quantified by the growth of the interfacial area 

between two components. This can best be understood by the so-called baker’s 

transformation, since it resembles to the way dough is mixed by repeatedly rolling and folding  

(Manas-Zloczower, 2009) as shown in Fig. 6.8-6. For the distributive mixing to be effective, 

the layers of the material need to undergo a combination of stretching, folding, and re-

orientating steps. Elongational flow is more effective than shear for both dispersive and 

distributive mixing. 
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 In single-screw extrusion of plastics, we need both good dispersion and good 

distribution as illustrated pictorially on the right bottom corner of Fig. 6.8-3. Mixers must be 

designed in such a way so as to create both shear and elognational flow regions. Different 

mixing section designs may be used involving pins or pegs, broken flight sections and other 

configurations. The mixing elements of Fig. 6.8-1 are referred to as distributive, because they 

involve shear and flow reorientation, but no elongation. For a mixer to be called dispersive, 

it must have elongational flow regions. A very common dispersive mixing element is the 

Union Carbide Maddock mixer which consists of parallel axial flutes. A schematic of the 

mixer and some details of the flow pattern are shown in Fig. 6.8-7a.  The Maddock mixer is 

categorized as dispersive, because of the narrow flow gaps just over the flights, which generate  

 

Figure 6.8-7. Schematic representation of a Union Carbide Maddock mixer and flow patterns (15-

25mils are equal to 0.381-0.635 mm). Adapted from Maddock (1988). 



6-31 

 

  

                   
Figure 6.8-8. Schematic representation of an Egan Mixer. 

 
Figure 6.8-9. Schematic of a Kenics static mixer showing also that the stream is halved each time it 

passes a new mixing element and the interfacial area between the two streams is growing fully in 
accordance with baker’s transformation. From Middleman (1977). 
 

elongational flow as illustrated schematically in Fig. 6.8-7b. Another common type that 

performs both distributive and dispersive mixing is the Egan mixer shown in Fig. 6.8-8. The 

geometry of the mixer is reminiscent of a barrier screw. 

         Actually, after the end of the screw the melt to be supplied to the die might not have the 

required degree of homogenization. Static mixers are used for as post-extrusion mixing 

devices. A schematic of a Kenics static mixer is shown in Fig. 6.8-9. It can be seen that it is 

an excellent application of baker’s transformation for distributive mixing. Static mixers also 

provide temperature homogenization which is frequently required in extrusion. 
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6.9 Power Requirements 

In the hopper, polymer pellets are usually at room temperature (e.g. 20°C). They are 

packed in the solids conveying zone, melted and subsequently the melt is pumped through 

the die, coming out at perhaps 200°C, lower or higher, depending on polymer. We will see 

that most of the energy comes from the rotating screw.  Of course, some energy is supplied 

by the heating bands around the barrel.  In well running extruders usually net input of energy 

occurs in the first section (near the hopper) and net output in the second section (near the die) 

i.e. the heat generated by frictional heating (viscous dissipation) is really heating the barrel.  

Power is needed to:        

i. Raise the hopper temperature to extrusion temperature at die entry (i.e. mass × 

specific heat × ΔΤ, where ΔT=Tout -Tin the temperature difference). 

ii. Melt the polymer (i.e. mass × heat of fusion). 

iii. Pump the molten polymer (ΔP × volume flow rate, ΔP the pressure drop in the die). 
 

Table 6.9-1 List of symbols and representative values for the parameters of Eq. 6.9-1 

Symbol Name Typical Values 

CP Specific Heat (average) 1500 – 3000 J/kg oC 

Tin Usually room temperature 20 oC 

Tout Melt temperature in the die 200 oC – 300 oC 

ρ Density (average) 750 kg/ m3 - 1500 kg/ m3 

Q Volume flow rate 
(Note that the mass flow rate is: 

𝑚̇ = 𝜌𝑄 usually in kg/hr) 

Mass rate of flow (𝑚̇ = 𝜌𝑄) 

from a few kg/hr to over 1 ton/hr depending 
on diameter and rotational speed 

ΔP Pressure rise 5 MPa – 50 MPa 

 

 
 
 
 

 

 
Hf 

 

 
 

 
 

 

 
Heat of fusion 

Most polymers are semi-crystalline and the 

following are some typical values of the heat 
of fusion 

 LDPE: 130,000 J/kg 

 HDPE: 200,000 – 240,000 

J/kg 

 PP: 230,000 J/kg 

 PET:  130,000 J/kg 

 Nylon-6,6: 200,000 J/kg 

 PS: theoretically zero 

 (amorphous) i.e. non-
 crystalline 

For comparison  
Ice (water): 333,000 J/kg 
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Thus, the total power required can be expressed as 

𝑃𝑜 = 𝜌 ∙ 𝑄 ∙ 𝐶𝑃 ∙ (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) + 𝜌 ∙ 𝑄 ∙ 𝛥𝐻𝑓 + 𝛥𝑃 ∙ 𝑄 (6.9-1) 

Let us now make some calculations to find the relative contributions of each term of 

Eq. 6.9-1. Assume that the molten polymer is LDPE (melt density 760 kg/m3), output rate of 

124.22 kg/hr and pressure rise of 30 MPa. We substitute the above and the material 

parameters from Table 6.9-1 in Eq. 6.9-1 that gives 

𝑃𝑜 = 124.22 × 2500 × (200 − 20) 

     + 124.22 × 130,000 

     + 30 × 106 × 124.22/760 

= 55,889 kJ/hr (most important) 

+ 16,148 kJ/hr (somewhat important) 

+ 4,903 kJ/hr (insignificant, the extruder is an inefficient pump) 

= 76,950 kJ/hr (then we multiply with 1/3600) 

= 21.37 kJ/s = 21.37 kW × (
1

0.746
) ≈ 28.65 HP 

Therefore, we can size the HP (horsepower) of a motor turning the screw. We must take also 

into account its efficiency. Assume the efficiency is 90%, then the motor power would be 

𝑀𝑜𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟 =
1

0.90
× 21.73 = 24.14 kW = 32.36 HP 

Very frequently, the specific energy consumption (SEC) is a useful quantity 

𝑆𝐸𝐶 =
𝑃𝑜

𝑚̇
=

24.14

124.22

kW

kg/hr
= 0.194

kWhr

kg
  

since 1kWh=3600 J  

SEC=694 J/s 

According to Campbell and Spalding (2013) the specific energy consumption in extrusion, 

usually ranges from 450 J/g for some amorphous polymers to 900 J/g for semicrystalline. 

 

6.10 Generic Screw Design Characteristics 

 In general, the design of a screw (i.e. compression ratio, channel depths, lengths etc) 

depend on the polymer type extruded. There is, however, a screw design with generic features 

which is suitable for a range of different polymers and not necessary tailored to a single 

polymer. This screw type is usually referred to as a general-purpose (GP) extrusion screw. 

The typical GP screw length is in the range of 24D~36D. The feed section is usually small 

3.6 MJ

g

8
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compared to the total length, i.e. 4D~8D, and the metering section is usually longer 6D~10D. 

Note that in injection molding (IM) screws, the length of the feeding section is roughly 50% 

of the total length, while the transition and metering section take up roughly 25% of the total 

length respectively. Frequently, screws have helix angle is θ=17.66o and in this case the screw 

is referred to as square-pitched, because the lead is equal to the barrel diameter. The flight 

width is usually 0.1D. One of the key design parameters is the channel depth in the feed and 

metering sections. A good first guess for the depth Hf in the feed section would be  

𝐻𝑓 = 0.11(𝐷 + 25) (6.10-1) 

in millimeters. The above equation is somewhat different for injection molding screws 

𝐻𝑓 = 0.08(𝐷 + 25) (6.10-2) 

The compression ratio (i.e. depth at the feed section divided by the depth at the 

metering section) is usually, Hf/Hm=2~4 and it is highly dependent on the material. The low 

end value of the range (shallow channel) is used for shear sensitive materials such as PVC and 

the high end value usually for grades with high melt flow rate (MFR) like PP. Some typical 

compression ratios for different polymers are shown in Table 6.7.  

Table 6.10-1 Typical compression ratios for different polymers 

Polymer Compression Ratio (Hf/Hm) 

HDPE 3.0 ~ 3.5 

LDPE 3.5 ~ 4.0 

PP 3.0 ~ 4.0 

U-PVC 1.75 ~ 2.75 

P-PVC 2.5 ~ 3.5 

PMMA 1.8 ~ 2.8 

PET 2.3 ~ 3.2 

PC ~ 2.25 

PA66 3.0 ~ 4.0 

TPE ~ 3.5 

 

             The length L of the screw is usually expressed with respect to the screw diameter D.  

In single screw extrusion (SSE) screws are usually L/D=24~36. Shorter screws are used in 

injection molding (IM) with L/D=18~24. In extrusion, pressure is generated by the rotating 

screw and longer screws can generate higher pressure. In injection molding pressure is mostly  
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Figure 6.10.-1. Schematic representation of earlier screw designs used in single-screw extrusion (SSE) 

on top and in injection molding (IM) at the bottom. Notice that earlier IM screws had shorter feed 
section. Adopted from Womer (2011). 

 

 
Figure 6.10-2. Recommended channel depth dependence on diameter for injection molding (IM) 

screws. Adapted from BASF (2007). 
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generated by the forward action of the screw. Generally, longer screws have higher output 

(limited by their melting capacity) and better mixing. SSE screws are more sophisticated than 

IM screws, usually of the barrier type with specially designed mixing sections. IM screws have 

frequently general-purpose characteristics. Lately, barrier screws are used not only in SSE but 

also in IM.  In early IM screw designs, the feed section was shorter than a typical SSE screw 

of the same total length as shown in Fig. 6.10-1. The reduction in the length was used to 

compensate for the reciprocating movement of the screw to fill the mold. Based on better 

understanding of screw design, more recent IM screw designs involve generally longer screws 

compared to earlier designs. Helix angle θ=17.66o (square -pitched) is frequently encountered 

in both SSE and IM. A greater angle means less shear and higher output, whereas a smaller 

helix angle implies more shear and less output. Geometrical characteristics of some IM screws 

are given in Fig. 6.10-2. 

 

6.11 Multi-flighted Screws 

In barrier screws (Section 6.7) we have a main flight and barrier flight which separates 

the solids from the melt pool. Here we are talking about two or more identical flights. In Fig. 

6.11-1 a conventional single-flighted screw section and a double-flighted one are shown. 

Something must be said about terminology: lead is the distance the screw moves in one turn. 

Pitch is the distance between two adjacent screw flights. So, for single flighted screws 

lead=pitch.  For double-flighted screws the lead is twice the screw pitch.  

 

Figure 6.11-1. Schematic of a single-flighted and a double-flighted sections. In single-flighted screws 

lead=pitch. In double-flighted screws lead=2×pitch. Adapted from Frankland (2014). 
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Double flights provide more balanced pressure around the circumference than single 

flights. The double-flights provide more bearing or support area for the screw, thereby 

preventing screw deflection caused by possibly high pressure loads. Also, double-flighted feed 

sections work best when teamed with grooved barrels according to Frankland (2014). In terms 

of the throughput capacity, double flighted screws deliver less output due to the presence of 

the additional flight that takes up more space in the channel and provides more flow 

obstruction. For output calculations with multi-flighted screws, the metering zone equation 

of Section 6.3 is used by including the volume reduction caused of the additional flights 

(Vlachopoulos and Wagner, 2001). The correction factors (also known as shape factors) Fd 

for drag and Fp for pressure flow are also included. These account for the flow restriction 

caused by the flights, while in the derivation of Eq. 6.3-7, we considered only the “rotating” 

barrel. For shallow channel screws Fd=Fp=1. When the channel depth h approaches the width 

w, the correction factors approach 0.5 (Campbell and Spalding, 2013)  

 

Table 6.11-1 Metering flow equation for multi-flighted screws, including correction factors 

accounting for the effect of flights on drag and pressure flow. 
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑄𝑑𝑟𝑎𝑔 − 𝑄𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  

𝑄𝑑𝑟𝑎𝑔 =
𝐹𝑑 ∙ 𝜋2 ∙ 𝐷2 ∙ 𝑁 ∙ ℎ (1 −

𝑛 ∙ 𝑒
𝑡

) sin𝜃 ∙ cos𝜃

2
  

𝑄𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐹𝑝 ∙ 𝜋 ∙ 𝐷 ∙ ℎ3 (1 −

𝑛 ∙ 𝑒
𝑡 ) sin2𝜃 ∙ Δ𝑃

12 ∙ 𝜇 ∙ 𝐿
  

 

Qd Drag flow pumping term 

Qp Pressure flow resisting pumping 

Fd (channel correction factor) 0.140× (h/w)2 – 0.645×(h/w) + 1 

Fp (channel correction factor) 0.162× (h/w)2 – 0.742×(h/w) + 1 

D Screw diameter 

N Screw speed (RPM) 

h Screw’s metering section channel depth 

n Number of flights of the screw 

e Thickness of the flight 

t Flight lead (pitch) 

θ Flight helix angle 

μ Viscosity of the melt calculated at shear 
rate = πDN/h 

L Length of the metering section  
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6.12 Simple Analysis of a Typical Extruder 

 For understanding the operation and for getting an idea of the magnitude of the 

parameters involved, we present in this section an example involving a typical single screw 

extruder and a die. This example is written up as a student homework assignment for the 

purpose of providing understanding into the various concepts, parameters and quantities 

involved in extrusion calculations. We assume a typical 4-inch diameter (L/D=26) screw 

extruder which is a very common machine in the extrusion industry. Nominal diameter is 

D=2R=100 mm and the length is L=26×0.1=2.6 m. The compression ratio for this screw is 3. 

This means that the channel depth in the feed zone is 3 times larger than the metering zone. 

The relative lengths of feed/transition/metering zones: 8D/8D/10D as shown in Fig. 6.12-1. 

 

Figure 6.12-1. Schematic representation of the screw geometry.  

 

The channel depth in the metering zone is H=5 mm. The screw is square pitched (helix angle 

θ=17.66o). The material extruded has melt density ρ=780 kg/m3, viscosity at T=250 oC 

 Pa·sn (i.e. power–law exponent n=0.4 and m=10,000 Pa·s0.4), specific heat 

Cp=2,300 J/(kg oC) and heat of fusion ΔHf= 200,000 J/kg. The polymer pellets enter at To=20 

oC and the product exits at T=250 oC into a round die having radius Rd=4 mm and length 

Ld=480 mm. The screw rotates at N=60 RPM.  

a. Calculate the drag flow output. 

b. Calculate the operating point by taking into consideration the head pressure generated by 

the die. 

c. Calculate the power for the motor assuming that it produces 100% of the energy needed to 

raise the melt temperature from To to T, to melt and pump the polymer. 

6.0000,10  γη 
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d. Calculate the torque by recalling that  

(i) Power:  (force × velocity) from which  

(ii) Torque:  (force × radius) from which  

where N is the speed of rotation. 

e. Then, after these calculations go “backwards”. That is, you are going to start from 

calculation of torque from To=F · radius, where F=τw·A=wall shear stress × area and then 

calculate the power from Po=F·V=τw·A·V. Although the feed and compression sections have 

different base screw diameter, assume it is the same from feed to screw exit (i.e. for the length 

of L=26D). Assume also that the radius for torque equation calculation is the barrel radius 

minus the gap in the metering zone (R-H=50-5=5 mm), therefore To=τw·A·(R-H). Based on 

the above, calculate the power and torque from shear stress calculations. 

f. Comment on the differences in calculations between (c), (d) and (e) and describe what one 

should have done to minimize the differences. 

 

Solution 

We have already derived an equation for output in Section 6.3. 

 
Figure 6.12-2. Schematic representation of a typical single-flighted screw section. 

 

We will repeat a few things by focusing on the screw geometry of Fig. 6.12-2, where  

Ds: screw diameter (taken at tip of flight) 

VFPo 
V

P
F o

RFTo 
Νπ

P
R

RNπ

P
R

V

P
T ooo

o
22





6-40 

 
 

Db: barrel diameter = Ds+2δ 

Ls: screw lead or pitch (Ls=πDstanθ) 

W: channel width (W=Lscosθ-e)=πDs tanθ cosθ (neglecting flight width e) 

and 

𝑄 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 −

𝜋𝐷𝐻3

12𝜇
𝑠𝑖𝑛2𝜃

𝛥𝑃

𝐿
 (6.12-1) 

where ΔP =P2(exit)-P1(entrance), L the length of the screw, θ helix angle, D barrel diameter, H 

channel depth, N speed of rotation and μ an equivalent (Newtonian) viscosity calculated at 

𝛾̇ = 𝜋𝐷𝑁/𝐻. We have 𝜂 = 10000𝛾̇−0.6, N=60 rpm, D=100 mm and H=5 mm. Hence, the 

reference shear rate is 

𝛾̇𝑟𝑒𝑓 =
𝜋 × 100

5

60

60
≈ 62.8 𝑠−1 (6.12-2) 

Therefore, 𝜂 = 10000 × 62.8−0.6 = 834.11 Pa∙s0.4. This is the “equivalent” Newtonian 

viscosity μ in the melt extruder equation for Q (Eq. 6.12-1). 

1. If there is no pressure build-up in the extruder (i.e. no constriction of flow at the end of 

the extruder), the output would be maximum, i.e. drag flow only 

𝑄𝑚𝑎𝑥 =
1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (6.12-3) 

2. If the end is closed, Q=0 and we may equate drag and pressure flow  

1

2
𝜋2𝐷2𝐻𝑁𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 =

𝜋𝐷𝐻3

12𝜇
𝑠𝑖𝑛2𝜃

𝛥𝑃

𝐿
 (6.12-4) 

This gives the maximum possible pressure 

𝑃𝑚𝑎𝑥 =
6𝜋𝐷𝐿𝑁𝜇

𝛨2𝑡𝑎𝑛𝜃
 (6.12-5) 

We now proceed with calculations for our problem. 

a. To calculate the drag flow output of the extruder (i.e. no die attached at the end) we will 

use Eq. 6.12-3, which is of course the maximum flow rate the extruder may deliver when 

there is no die at the end to restrict the flow. Since we have the very common square pitched 

screw (θ=17.66o), Eq. 6.12-3 may be written in a useful for quick-calculations form 

𝑄𝑚𝑎𝑥 = 1.42𝐷2𝐻𝑁 (6.12-6) 

and since the mass flow output is given 𝑚̇ = 𝜌𝑄 we may rewrite Eq. 6.12-6 in another useful 

form    

𝑚̇𝑚𝑎𝑥 = 1.42𝜌𝐷2𝐻𝑁 (6.12-7) 
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We then substitute the known values (all in SI units) 

𝑚̇𝑚𝑎𝑥 ≅ 1.42 × 780 × 0.12 × 5 × 10−3 ×
60

60
× 3600 = 199.37 kg/hr (6.12-8) 

This is the maximum mass flow rate 𝑚̇𝑚𝑎𝑥 when there is no die attached to the end of the 

extruder. 

b. To calculate the operating point of the extruder/die we must plot the operating lines for 

the extruder and the die. The calculation of the operating line of the extruder needs only two 

set of points in the space of (𝛥𝑃, 𝑚̇). The first point is for the maximum mass flow rate 𝑚̇𝑚𝑎𝑥 

(no die at the extruder end), and the second point is for the maximum possible pressure 𝑃𝑚𝑎𝑥 

when the die is completely closed. The maximum pressure is calculated from 

𝑃𝑚𝑎𝑥 =
6𝜋𝐷𝐿𝑁

𝛨2𝑡𝑎𝑛𝜃
𝜇 (6.12-9) 

and by making the proper substitutions (all in S.I. units) we have 

𝑃𝑚𝑎𝑥 =
6 × 3.1415 × 104 × 0.1 × 1 ×

60
60

0.0052 × 𝑡𝑎𝑛17.66𝑜
× 834.11 ≅ 197.53 MPa 

(6.12-10) 

This is based on the Newtonian constant viscosity assumption for a screw length of L=10D 

(i.e. the length of the metering (pumping) zone). For the operating line of the extruder we 

have the two reference points which are (199.37 kg/hr, 0) and (0, 197.53 MPa) and we know 

that flow rate and pressure have a linear relation (Eq. 6.3-8). To plot the operating line for the 

die the well-known Hagen–Poiseuille formula for a power–law fluid is used. The equation, in 

terms of the mass flow rate, is the following (see Table 2.7-1 in Chapter 2) 

𝑚̇𝑑𝑖𝑒 = 𝜋𝜌 (
𝑛

3𝑛 + 1
) [

1

2𝑚
(

𝛥𝑃

𝐿𝑑
)]

1
𝑛

𝑅𝑑

1
𝑛

+3
 (6.12-11) 

We give a typical example of the mass flow rate calculation for the pressure drop of 10 MPa 

(everything in S.I. units) 

𝑚̇𝑑𝑖𝑒 = 780 × 3.1415 (
0.4

3 × 0.4 + 1
) [

1

2 × 104
(

107

0.480
)]

1
0.4

(0.004)
1

0.4
+3 × 3600

≅ 3.637 kg/hr 

(6.12-12) 

In Table 6.12 we show some results for different mass flow rate through the die and then plot 

the die operating line in Fig. 6.12-3 together with the extruder. The operating point is 

determined from the crossing of the extruder line and the die curve. Approximately, by 

rounding the numbers, 𝒎̇≈150 kg/hr and ΔP ≈ 45 MPa.   
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Table 6.12-1 
Pressure drop (ΔP)  

for the die (MPa) 

Mass flow rate 

(kg/hr) 

0 0 

10 3.6 

20 20.5 

30 56.6 

40 116.4 

50 203.1 
 

 
Figure 6.12-3. Calculated operating point by the crossing of extruder with die operating line.  

 

(c) The power supplied by the motor of 100% efficiency is spent for (i) raising the temperature 

from To to T, (ii) melting the polymer and (iii) pumping the polymer. To calculate the amount 

of the power we shall Eq. 6.5-1, which we write it in terms of the mass flow rate (i.e. 𝑚̇ = 𝜌𝑄) 

𝑃𝑜 = 𝑚̇𝐶𝑃(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) + 𝑚̇𝛥𝐻𝑓 + 𝛥𝑃
𝑚̇

𝜌
 (6.12-13) 

Upon substitution (using the  and ΔP values corresponding to the operating point) we have  

𝑃𝑜 =
150

3600
× 2300 × (250 − 20) +

150

3600
× 2 × 105 + 45 × 106 ×

150

3600 × 780
 

= 22041.67 + 8333.33 + 2403.85 = 32778.85 W = 32.78 kW = 43.96 HP 

(6.12-14) 

(d) We calculate the torque from power, as follows 

𝑇𝑜 = 𝐹 ∙ 𝑅 =
𝑃𝑜

𝑉
𝑅 =

𝑃𝑜

2𝜋𝑅𝑁
𝑅 =

𝑃𝑜

2𝜋𝑁
=

32778.85

2𝜋 ×
60
60

= 5217.07 N ∙ m (6.12-15) 

m
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(e) To calculate the power from shear stress considerations we have 

𝑃𝑜 = 𝐹 ∙ 𝑉 = 𝜏𝑤𝐴𝑉 = 𝑚𝛾̇𝑛𝐴𝑉 = 𝑚 (
𝑉

𝐻
)

𝑛

𝑉𝐴 = 𝑚
(2𝜋𝑅𝑁)𝑛+1

𝐻𝑛
𝐴 (6.12-16) 

where A is the area on which the wall shear stress acts on. It is given by 

𝐴 = 2𝜋(𝑅 − 𝐻)𝐿𝑠 (6.12-17) 

where Ls should be the length along the helix (the melt is dragged along the helical channel) 

which is expressed as Ls=L/sinθ. Substituting this into Eq. 6.8-25 we arrive at 

𝐴 =
2𝜋(𝑅 − 𝐻)𝐿

sin 𝜃
 (6.12-18) 

Substituting this in Eq. 6.8-24 we have 

𝑃𝑜 = 𝑚
(2𝜋𝑅𝑁)𝑛+1

𝐻𝑛

2𝜋(𝑅 − 𝐻)𝐿

sin 𝜃
 (6.12-19) 

and then we substitute the known quantities (everything in S.I. units) 

𝑃𝑜 = 104
(2𝜋 × 0.05 ×

60
60)

0.4+1

0.0050.4
×

2𝜋 × (0.05 − 0.005) × 2.6

sin 17.66
= 39.88 kW 

(6.12-20) 

Now, to calculate the torque we have  

𝑇𝑜 = 𝜏𝑤𝐴(𝑅 − 𝐻) = 𝑚𝛾̇𝑛𝐴(𝑅 − 𝐻) = 𝑚 (
𝑉

𝐻
)

𝑛

𝐴(𝑅 − 𝐻) = 𝑚 (
2𝜋𝑅𝑁

𝐻
)

𝑛

𝐴(𝑅 − 𝐻) (6.12-21) 

Substituting in the above equation the area from Eq. 6.8-26 we have  

𝑇𝑜 = 𝑚 (
2𝜋𝑅𝑁

𝐻
)

𝑛 2𝜋(𝑅 − 𝐻)𝐿

sin 𝜃
(𝑅 − 𝐻) = 𝑚 (

2𝜋𝑅𝑁

𝐻
)

𝑛 2𝜋𝐿(𝑅 − 𝐻)2

sin 𝜃
 (6.12-22) 

where upon substitution we have 

𝑇𝑜 = 104 (
2𝜋 × 0.05 ×

60
60

0.005
)

0.4

2𝜋 × 2.6 × (0.05 − 0.005)2

sin 17.66
= 5712.97 N ∙ m (6.12-23) 

(f) The present estimates are surprisingly close (fortuitously) to the ones from total energy 

calculations (power = 32.28 kW and torque = 5217 N∙m). 

A more accurate calculation would require determination of the frictional heating 

generated in each of the regions of the screw, the local viscosity and the local shear rate, to 

determine an accurate wall shear stress. In the metering zone this can be done by integrating 

the quantity over the fluid volume and determination of local temperatures. However, 

in the transition and feed zones we have a mixture of solids and melt and it is virtually 

impossible to arrive at good estimates of the stress developed. Thus, the power and torque 

VF 
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calculations based on the energy required to raise the temperature, melt and pump the 

polymer are easier to do. 

In the present calculation, we assumed that the stress generated by the motor is the same 

throughout the screw and we calculate it at a distance of H = 0.005 m from the barrel wall at 

an assumed temperature of T=250oC throughout, which ended up giving reasonable estimates 

of power and torque, even though the actual values are different 

 

Comments: 

In the present simple calculations, the pressure grows monotonically till the entrance to the 

die as it is shown schematically in Fig. 6.12-4a.  However, the real extruder has a compression 

section as shown in Fig. 6.12-5. In the compression section there would be some pressure 

generation and the pressure profile would look like the one shown schematically in Fig. 6.12-

4b. However, this cannot be calculated by unidimensional flow equations. 

 

Figure 6.12-4. Schematic representation of typical pressure profiles  

 

 

Figure 6.12-5. Schematic representation of a screw compression section. Virtually no compression is 

needed in grooved feed extruders because of the very high pressure generated in the grooved section. 
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If a grooved barrel extruder was used there would be significant pressure rise in the solids 

conveying zone. In grooved feed extruders there is almost no compression like that shown in 

Fig. 6.12-4c. The compression ratio is about 1.2 to 1.0, i.e. in the feed section the channel has 

about the same depth (5 mm) as in the metering (pumping) zone. The pressure rise could be 

100–200 MPa. The higher pressure would likely result in at least 50% higher output than drag 

flow. However, this is impossible to determine with simple calculations. 

 

Comparison to computer simulation with NEXTRUCAD 

NEXTRUCAD (2013) is a commercially available software package for simulating 

the operation of single screw extruders. We carried out a simulation and the results are shown 

in Figs. 6.12-6, 6.12-7 and 6.12-8.  

 

Figure 6.12-6. Pressure as a function of position and other quantities. 
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Figure 6.12-7. Set barrel temperature and calculated melt temperature along extruder and die. 

 
Figure 6.12-8. Relative solid bed width along the extruder length. 

 

NEXTRUCAD also determines the solid bed width. This is very important to know, because 

no screw would have acceptable performance if the solid bed is not fully melted before the 
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end of screw. The various quantities by the two methods of calculations are compared in 

Table 6.12-2. 

Table 6.12-2. Comparison of calculations 

 Simple Analysis NEXTRUCAD 

Output (Q) in kg/hr 150 157.97 

Power (P) in kW 32.77 35.08 

Torque (To) in N∙m 5217.77 5582.94 

Solid bed zero width N/A Predicted at L/D=19 

 

It can be seen that the output rate, power consumption and torque can be determined with 

the simple flow analysis method. The solid bed profile cannot be determined by simple 

calculations. Of course, calculations with barrier screws (MacGregor et al., 1997 and Castillo 

et al., 2002), which are the most common types of screws used today, are not possible with 

simple flow analysis. For screw design purpose computer simulation is necessary. One of the 

great advantages of computer software is that “what if” scenarios can be easily and quickly 

examined. 
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Chapter 7 

FLAT FILM AND SHEET EXTRUSION 

 

 

 

7.1 Introduction  

 The first objective in flat film or sheet production is to spread a continuous polymer 

melt stream coming from an extruder into a die, which terminates in a rectangular and wide 

cross–section, having a small gap. After the die, the molten extrudate is cooled on chilled 

rollers and solidifies. Products of less than 0.25 mm in thickness are usually referred to as 

films (also cast films) and those over 0.25 mm are referred to as sheets (Ivey, 2001). For this 

chapter the authors present an abridged version of one of their publications in another book 

(Vlachopoulos et al., 2012). 

The rate at which the extrudate is cooled determines several important properties of 

the finished product. Longer cooling means there is more time available for crystal growth 

and thus the crystallites will be larger (Osborn and Jenkins, 1992). Crystallinity affects the 

density, optical properties, coefficient of friction, impact, barrier and other properties. 

Compared to blown film (see Chapter 8), the cast film process shows better optical properties, 

higher output rate per hour and lower gauge variation. Most cast film lines manufactured 

today are co-extrusion lines. Co-extrusion is defined as the process of simultaneous extrusion 

of two or more materials through a common die. It is used for the purpose of combining 

material properties and reducing the cost at the same time. Thickness uniformity in 

monolayer extrusion and layer uniformity in co-extrusion are the key measures for quality 

(Vlachopoulos et al., 2012). 

Sheet lines, as noted earlier, are lines that produce film with a thickness exceeding 0.25  

mm. Typically a sheet line will have a three-roll cooling stack after the die, as shown in Fig.  
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Figure 7.1-1. Schematic of a typical sheet line with a three roll cooling stack after the die. 

 

7.1-1, and again the cooling rate plays a very important role in determining the properties of 

the finished product. A detailed troubleshooting guide of monolayer and coextruded sheet is 

available in the open literature (Powers, 1996). Several issues relating to film processing, 

materials and properties are discussed in a handbook (Butler, 2005). 

 

7.2 Flat Die Design 

 The molten polymer stream coming from an extruder must be distributed as uniformly 

as possible into a rectangular shaping area so that a thin wide sheet or film of uniform 

thickness is continuously produced. Between the melt pipe, coming from the extruder, and 

the rectangular die lips a distribution channel (usually called a manifold) is needed. The most 

common dies (Michaeli, 1992, Kanai, 1999) utilize either the simple ‘T-slot’ or the ‘coat-

hanger’ geometry. T-slot dies are the simplest to manufacture. They have a large manifold of  

 
Figure 7.2-1. T-slot die with a constant cross-section circular manifold. From Garton (1992). 
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usually circular cross-section, which is constant across the entire width of the die, as shown 

in Fig. 7.2-1. There is very little resistance to flow from the center (feed) to the side ends of 

the die and even flow distribution is accomplished by the flow controlling action of the die 

lips. Such dies are used for low viscosity polymers (high melt flow index resins) mainly for 

extrusion coating applications. A less common type of die, is the ‘fish-tail’ design, shown 

schematically in Fig. 7.2-2. Coat-hanger dies usually involve (Garton, 1992) a manifold, a 

preland, possibly a flow restrictor (also called a ‘choker bar’), a secondary manifold and finally 

the primary land (die lips) as shown schematically in Fig. 7.2-3. A picture of the lower half of 

a modern flat die is shown in Fig. 7.2-4. 

 
Figure 7.2-2. Schematic of a fish-tail die. From Michaeli (1992). 

 

 
Figure 7.2-3. Schematic of a typical coat-hanger die having a teardrop shaped manifold with a 

diminishing cross-sectional area from the center to the sides. (A) region is the manifold, (B1) and (B2) 
are lengths of the preland, (C) corresponds to a secondary manifold and (D) the land (die lips). From 
Garton (1992). 
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Figure 7.2-4. Picture of the lower half of a modern flat die having a lower sliding lip, which can be 

adjusted during production. From Vlachopoulos et al. (2012). 

 

The manifold cross-sectional area is frequently teardrop shaped (see Fig. 7.2-5) and is 

gradually reduced from the center (feed) to the side ends. Rectangular manifolds (Fig. 7.2-5) 

are used in coextrusion and again the cross-sectional area is reduced from the center to the 

sides. The function of the manifold is to force the polymer to the sides and downstream, at 

the same time, for the generation of a nearly uniform flow distribution by the end of the 

preland, so that the necessity for subsequent corrections is minimized. The shape and the 

dimensions of the manifold are crucial in designing a die capable of producing a film or sheet  

 
Figure 7.2-5. Schematic of the common types of manifold cross-sections. 

 

of uniform cross-section from the die lips. This design is known to reduce what is usually 

referred to as the ‘M’ or ‘W’ flow output problem of the film or sheet produced, being heavy 

on each end then having a thin area followed by a thick area in the center (which can be 

perceived as having the shape of the letter W or an inverted one). The flow distribution in a 

coat-hanger die is shown schematically in Fig. 7.2-6. A typical coat-hanger die with 

dimensions is shown in Fig. 7.2-7.  
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Figure 7.2-6. Flow distribution in a coat-hanger die. From Cloeren (1993). 

 

 

 

 

 
Figure 7.2-7. Typical dimensions of a coat-hanger die. From Cloeren (1993). 
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Most flat dies include some kind of lip-adjusting systems for fine-tuning of the 

uniformity. These might be simple adjusting screws or very sophisticated arrangements 

involving thickness measurement and feedback control. However, these adjusting systems are  

not capable of correcting large flow non-uniformities which result from poor manifold and 

preland design. All channel sections must be streamlined, as much as possible, and capable 

of providing smooth melt flow without any stagnating or recirculating flow regions. A 

mechanical drawing of a cross-section of a die having a restrictor bar and lip adjustment is 

given in Fig. 7.2-8. 

 
Figure 7.2-8. Mechanical drawing of the cross-sectional area of a die having a restrictor bar and a lip 

adjustment system. From Vlachopoulos et al. (2012). 

 

Flat die design practitioners also recommend that for film production (especially if 

transparent) the minimum wall shear rate must not be less than 8 s-1. Low wall shear rates are 

likely to result in visual defects on the film due to polymer degradation, which may look like 

brown or black spots, haze bands or even a generalized deterioration of the appearance of the 

sheet or film. Occasionally, such defects might be confused with sharkskin. The origin, 

however, is totally different. Sharkskin occurs at the die lip exit as discussed in Chapter 4. The 

low wall shear rate effect originates upstream where the flow channels are deep and 

consequently the corresponding shear rates may be very low. The previously mentioned 
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minimum wall shear rate value of 8 s-1 has been known and quoted by die designers for several 

years, even before the extensive use of computer simulation tools, which make possible the 

accurate determination of the shear rate for a given geometry and given flow rate. Due to long 

residence times and some sort of sticking of the polymer melt at the die surface, chain scission, 

cross-linking or other thermal degradations may occur. Some temperature sensitive polymers, 

notably ethylene-vinyl alcohol (EVOH), polyvinyl chloride (PVC), polyvinylidene chloride 

(PVDC) and ethylene-vinyl acetate (EVA), are particularly susceptible to this defect. For such 

materials, the minimum required wall shear rate value to avoid degradation, is probably 

higher, but there have not been any published studies about this available in the open 

literature. In co-extrusion, EVOH or the EVA layers may contain defects as a result of this 

sort of degradation but the other layers could be defect-free, even though low wall shear rates 

might be encountered in all layers. In such a case, the degradation of the temperature sensitive 

layer might be confused with interfacial stability (Shroff and Mavridis, 1994, Vlachopoulos 

and Strutt, 2010). Interfacial instabilities are discussed in Chapter 9.  

In addition to good flow channel design, it is important that the die body be free from 

temperature variations during production. Locally higher temperature is likely to produce a 

heavy-gauge band, due to higher flow rate, while a locally lower temperature is likely to 

produce a thin-gauge band. Insulation and temperature control of the die body are essential 

for achieving film or sheet with low thickness tolerances. Flat dies are usually manufactured 

in widths ranging from 700 mm to 3,500 mm but may occasionally exceed 5,000 mm. Film 

or sheet thicknesses usually range from 10 μm to 30 mm. Deckling systems are used to reduce 

the width of film or sheet produced. As Garton (1992) put it, they are considered a necessary 

evil in the industry. They compromise the flow distribution because of the restrictions on the 

two sides of the die. They should definitely be avoided when extruding thermally degradable 

polymers. Garton (1992) recommends that no more than 25% of the total die width should 

be deckled. Despite the fact that deckling systems do not produce anything resembling a 

streamlined flow (which is dictated by rheology), many dies are deckled down to almost 50% 

of the original slot width. 

Due to the large forces that may develop during extrusion and because a flat die is 

clamped together at the edges, deflection of the die may occur with the largest magnitude at 

the centre. This is usually referred to as clamshelling. It results in increased flow in the central 

region, which must be compensated for through lip adjustments. 
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Early approaches for design methodology of flat dies based on flow analysis, may be 

found in Tadmor and Gogos (2006). The momentum and continuity equations presented in 

Chapter 2 can be easily simplified to the generalized Hele-Shaw approximation with the 

assumption of narrow gap geometry (Dantzig and Tucker, 2001). It applies to geometries in 

which the gap varies with position (provided there are not abrupt changes). Newtonian and 

the Generalized Newtonian Fluid (GNF) models of power law, Carreau-Yasuda and Cross 

models can easily be incorporated. For die design, if we assume that x is the direction of flow 

from the extruder end to the die lips, y is the lateral direction towards the side ends and z the 

perpendicular, we can write the Hele-Shaw approximation as: 

𝜕

𝜕𝑥
(𝑆

𝜕𝑃

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑆

𝜕𝑃

𝜕𝑦
) = 0 (7.2-1) 

The quantity S (x,y), called the flow conductance, is defined as: 

𝑆(𝑥, 𝑦) = ∫
𝑧2𝑑𝑧

𝜂(𝑥, 𝑦, 𝑧)

ℎ

0

 (7.2-2) 

where h is the z-direction gap. The primary variable is the pressure and, after finding it, the 

gap-wise average velocity components are given by 

𝑉𝑥̅ = −
𝑆

ℎ

𝜕𝑃

𝜕𝑥
         𝑉𝑦̅ = −

𝑆

ℎ

𝜕𝑃

𝜕𝑦
 (7.2-3) 

and the full velocity distributions can also be calculated using 

𝑉𝑥(𝑧) = −
𝜕𝑃

𝜕𝑥
∫

𝑧′𝑑𝑧′

𝜂(𝑧′)

ℎ

0

         𝑉𝑦(𝑧) = −
𝜕𝑃

𝜕𝑦
∫

𝑧′𝑑𝑧′

𝜂(𝑧′)

ℎ

0

 (7.2-4) 

where z΄ is a dummy variable of integration. The energy equation can be subsequently used 

to determine the temperature. This is a very useful approximation because it reduces 

significantly the complexity required to solve the fully three-dimensional (3D) problem. A 

version of this approximation was used in a comparative study of computer simulations and 

experiments with very good results (Vlcek et al., 1991). 

 

7.3 Flat Die Coextrusion 

The earliest coextruded sheets and films were produced using multi-manifold dies. In 

this technology the layers are formed individually in separate dies, which have the usual 

manifold preland and land sections, and then the layers are joined together before the exit as 

shown schematically in Fig. 7.3-1a. There is a limitation with such dies due to geometry and 
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the necessity of having metal walls for each die manifold thick enough for tool integrity and 

avoidance of non-uniformity arising from clamshelling. While construction is relatively easy 

for up to three layers, the mechanical complexity and cost increase significantly with each 

additional layer. 

 
Figure 7.3-1. Schematic representation of multilayer extrusion. (a) multi-manifold, (b) feedblock and 

(c) combination of feedblock and multi-manifold. From Wirtz (1996). 

 

Chrisholm and Schrenk (1971) and Schrenk et al. (1973) developed a new production 

technology in which, the layers are joined together in a device called a feedblock prior to the 

die, as shown schematically in Fig. 7.3-1b. Then, the layered structure is extruded through a 

single manifold. Feedblock systems are a lot simpler and easier to manufacture than multi-

manifold dies. They are also easier to assemble, disassemble, clean, operate and are more 

flexible for implementing whatever changes might be necessary. The main challenge in 

feedblock die coextrusion is the maintenance of layer uniformity, from the feedblock through 

the spreading in the manifold, flow in the preland and die lips, to the exit. Despite this 

challenge, feedblock coextrusion is the dominant technology. In fact, by combining multi-

manifold and feedblock dies (see Fig. 7.3-1c) it is possible to produce multilayered films 

comprising hundreds of layers (Schut, 2006). This is accomplished in a coextrusion feedblock 

by first splitting the melt flow, then realigning and subsequently stacking a small number of 

melt streams. 

Multi-manifold dies are used for products which are difficult or impossible to fabricate 

by means of feedblock coextrusion. These include structures which are required to have very 
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thin skin layers compared to the total thickness and structures with very large viscosity and 

temperature differences in adjacent layers. The layer nonuniformities in feedblock 

coextrusion might be due to encapsulation tendencies of the more viscous polymer by the less 

viscous one (Han, 1981) as it is explained in Chapter 9. Feedblock profiling is used for the  

 
Figure 7.3-2. Feedblock profiling and the resultant effect. From Cloeren (1993). 

 

production of uniform multilayer melt streams by counteracting the encapsulation tendency 

as shown schematically in Fig. 7.3-2 adapted from Cloeren (1993). Mathematical modelling 

of coextrusion flows is challenging even for inelastic fluids for two layers only (Torres et al., 

1994). Layer spreading in coextruded structures remains “a problem solved more often with 

art than science” according to Powers et al. (2000). This was true at the time of the cited 

publication in 2000 and it is true today. 
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7.4 Beyond the Die Exit 

As the polymer emerges from the die lips, it swells, it is thinned due to stretching and 

it is quenched by contacting the cooling rollers. The effect of stretching on extrudate swell of 

cast film has been studied by Polychronopoulos and Papathanasiou (2015). Three defects 

occur after the polymer melt leaves the die lips (Sollogoub et al., 2006): draw resonance, neck-

in and edge beading. Draw resonance is a periodic fluctuation of film width, thickness and 

tension. This occurs at a critical draw down ratio (take-up velocity at the chill roll divided by 

the average velocity at the die exit). Neck-in is the contraction of the lateral width of the 

extruded film due to the tension imposed by the chill roll as shown schematically in Fig. 7.4-

1a. Edge beading (or dog bone effect) is due to the film edges undergoing extension while the 

neck-in phenomenon is occurring. The thickness of the film on the lateral edges is higher (res- 

 
Figure 7.4-1. (a) Neck-in (top view) and (b) edge beading (cross-section view) phenomena during the 

extrusion film casting process. From Barborik and Zatloukal (2018). 

 

-embling to beads) than the thickness in the central region as demonstrated schematically in 

Fig. 7.4-1b. Edge beads must be trimmed off before film products are collected in rolls. The 
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above defects are responsible for reduction in productivity. Apparently, the melt rheological 

properties play a significant role in their formation and the die designer must be aware of their 

potential occurrence. 

 

Bibliography  

Barborik T. and Zatloukal M., Effect of die exit stress state, Deborah number, uniaxial and 

planar extensional rheology on the neck-in phenomenon in polymeric flat film production, 

J. Non-Newt. Fluid Mech., 255, 39 (2018) 

Butler T.I., Film Extrusion Manual, 2nd Edition, TAPPI (2005) 

Chisholm D., and Schrenk W.J., inventors; Dow Chemical, assignee; US 3,557,265 (1971) 

Cloeren P., Proceedings of Advances in Extrusion Technology, RETEC Extrusion Division and the 

Ontario Section of the Society of Plastics Engineers, Brookfield, NJ, USA, (1993) 

Dantzig J.A. and Tucker III C.L., Modeling in Materials Processing, Cambridge University Press 

(2001) 

Garton D.R., “Cast Film Die Design” in: Film Extrusion Manual, Butler T.I. and Veazey E.W. 

(eds.), TAPPI (1992)  

C.D. Han, Multiphase Flow in Polymer Processing, Academic Press, New York, NY, USA, 

(1981) 

Ivey J., Cast Film and Sheet Extrusion, in: The SPE Guide on Extrusion Technology and 

Troubleshooting, Vlachopoulos J. and Wagner J. (eds), Society of Plastics Engineers, 

Brookfield, USA (2001) 

Kanai T., Flat Die Analysis, in: Film Processing, Kanai T. and Campbell A. (eds.), Hanser 

Publishers (1999) 

Mavridis H. and Shroff K.N., Multilayer Extrusion: Experiments and Computer Simulation, 

Pol. Eng. Sci., 34 (7), 559 (1994) 

Michaeli W., Extrusion Dies for Plastics and Rubber, 2nd Edition, Hanser Publishers (1992) 

Osborn K.R. and Jenkins W.A., Plastic Films, Technomic Publishing, Lancaster, PA, USA 

(1992) 

Powers J., Troubleshooting Tips to Cure your Sheet Extrusion Headaches, Plastics 

Technology, August 1 (1996) 

Polychronopoulos N.D. and Papathanasiou T.D., A study on The Effect of Drawing on 

Extrudate Swell in Film Casting, Appl. Rheol., 25(4), 42425 (2015) 



7-13 

 

  

Powers J., Dooley J., Reinhardt C. and Oliver G., Evaluation of Layer Spreading in 

Coextruded Structures via a Modular Die, Proceedings of ANTEC 2000, Orlando, FL, USA 

(2000) 

Schrenk W.J., Chisholm D.S., Cleereman K.J. and Alfrey Jr. T., inventors; Dow Chemical, 

assignee; US 3,579,647 (1973) 

Schut J.H., Microlayer Films: New Uses for Hundreds of Layers, Plastics Technology, 52 (3), 

54 (2006) 

Sollogoub C., Demay Y. and Agassant J.F, Non-Isothermal Viscoelastic Numerical Model 

of the Cast-Film Process, J. Non-Newt. Fluid Mech., 138 (2-3), 76 (2006) 

Tadmor Z. and Gogos C.G., Principles of Polymer Processing, 2nd Edition, Wiley-Interscience 

(2006) 

Torres A., Hrymak A.N., Vlachopoulos J., Dooley J. and Hilton B.T., Boundary Conditions 

for Contact Lines in Coextrusion Flows, Rheol. Acta, 32 (6), 513 (1993); correction errata 

in Rheol. Acta, 33 (3), 241 (1994) 

Vlachopoulos J. and Strutt D., Rheology of Molten Polymers, in: Multilayer Flexible Packaging, 

Wagner J.R. (ed.), Elsevier (2010) 

Vlachopoulos J., Polychronopoulos N.D., Tanifuji S. and Peter Müller J., Flat Film and Sheet 

Dies, in: Design of Extrusion Forming Tools, Carneiro O.S. and Nobrega M. (eds.), Smithers 

Rapra, London (2012) 

 Vlcek,J., Mailvaganam G.N., Perdikoulias J. and Vlachopoulos, J. Computer Simulation 

and Experiments of Flow Distribution in Flat Sheet Dies, Adv. Polym. Tech., 10, 309 (1991) 

 

 

 

 

 

 

 

 

 

 

 



7-14 

 
 

 

 

 

 

 

 

 

 

KARL ZIEGLER (1898-1973) and GIULIO NATTA (1903-1979) 

Ziegler Natta catalysts are used for the production of more than 100 million 

tons of polyolefins annually 

Nobel Prize Chemistry (1963) 

 

 

 

 

 



8-1 

 

  

J. Vlachopoulos and N.D. Polychronopoulos “Understanding Rheology and Technology of Polymer 

Extrusion”, First Edition, Polydynamics Inc, Dundas, Ontario, Canada (2019) 

 

Chapter 8 

BLOWN FILM EXTRUSION 

 

 

 

8.1 Introduction 

 Blown film extrusion is the most important process for the production of plastic films, 

ranging in thickness from 0.5 mm to as thin as 5 μm according to Butler (2001). The polymer 

is melted in an extruder and the hot melt is pumped through a die to form a thin-walled tube 

(usually called bubble), which is simultaneously axially drawn and radially expanded. The 

inside air pressure required is just few kPa. In most installations the extruder(s) are horizontal 

and the blown film bubble is formed vertically upward as shown in Fig. 8.3-1. For this chapter, 

the authors present an abridged version of one of their publications in another book 

(Vlachopoulos et al., 2012) and some material from Vlachopoulos and Sidiropoulos (2013). 

 
Figure 8.1-1. Schematic of the film blowing process. Adapted from Sidiropoulos (2000). 
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The amount of radial and axial stretching plays a very important role in the 

determination of end-use properties. The blow-up ratio (BUR) is defined as the ratio of the 

final bubble diameter to the die diameter and it is a good indicator of the amount of expansion 

in the radial or transverse direction (TD). In typical installations, BUR ranges from 1.2 to 4. 

The amount of stretching in the machine direction (MD) is characterized by a different 

dimensionless number, the take-up ratio (TUR), which is defined as the ratio of the final film 

velocity over the velocity at the die lips. In the literature the TUR is often called draw-down 

ratio (DDR).  

Extruder sizes range usually from 25 to 200 mm in diameter with length over diameter 

(L/D) ratios from 24 to 36:1. Smooth barrel extruders are used in most blown film lines, with 

grooved feed barrels used increasingly in modern installations for achieving higher output 

rates (see Chapter 6). The screws are usually of the barrier type. Barrier screw designs have 

channels machined into their geometry which divide the molten from the solid polymer being 

processed through the extruder. The purpose of dividing the solid from the molten polymer is 

to increase melting and hence production rates (see Chapter 6). The goal of any feed screw 

design is to provide a stable rate of 100% molten homogeneous polymer to the die attached 

to the extruder. Die lip gaps usually range from 0.76 to 3 mm and the exiting melt stream is 

typically drawn down to film thicknesses ranging from 0.01 to 0.5 mm. Coextrusion of three 

to seven layers (sometimes up to 11) is often used for production of film for food packaging. 

The applications of coextruded films are highly diverse, and cover various industries from 

industrial to consumer ones. 

The main function of the die is to distribute the polymer melt evenly so that the 

thickness measured around the circumference of the tube being produced is uniform. Due to 

variations in distribution in the die and uneven cooling after the melt exits the die lips, there 

is always some film thickness non-uniformity. It is virtually impossible to eliminate film 

thickness variation, but systems have been developed to reduce it through flow modulation of 

the melt or the cooling air. If the film thickness variation is left unaddressed, when the film is 

wound up into a roll, thickness non-uniformity will be evident because the thicker or thinner 

spots (gauge bands) in the film will cause the roll to be of an uneven diameter. A way to 

address uneven diameter film rolls is to randomize the bands so that when the film is wound 

into a roll, the thick spots are spread across the width of the roll. Gauge band randomization 

(i.e. the distribution of thicker and thinner bands) can be accomplished by employing various 
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techniques involving rotation or oscillation of the film bubble as it is being produced, by 

rotating/oscillating the apparatus that collapses the bubble and the nip rolls that pull the film 

upwards. It is possible that some gauge variation may be caused by the collapsing process 

itself because the distances from the points where the bubble first touches the collapser to the 

nip line are not all the same around the bubble circumference, as the cylindrical bubble is 

flattened (Waller, 2010, Cantor, 2011). 

Polymers that are typically used in blown film are low density polyethylene (LDPE), 

linear low density polyethylene (LLDPE), HDPE and metallocene polyethylene (mPE), 

although several other polymers are sometimes used including ethylene copolymers, 

propylene copolymers, polyvinyl chloride, nylon and polypropylene homopolymer (Hensen, 

1997). LLDPE gave a big boost to the industry with its excellent drawability and varied end 

use properties and applications. However, compared to LDPE, LLDPE has weaker melt 

strength and is prone to bubble instability. To address this issue, blends of LDPE/LLDPE, 

usually at a ratio of 70/30, are frequently used to combine the best of both polymers (the melt 

strength of LDPE and the drawability of LLDPE).  

 

8.2 Blown Film Die Design 

The purpose of an extrusion die is to impart the desired shape to the polymer melt 

stream produced continuously by the extruder. In blown film extrusion a thin tubular film is 

formed as the melt flows through the die lips. The die lip gap usually ranges from 0.76 mm to 

3 mm and the die diameter from a few centimeters for laboratory lines to more than one meter 

for industrial installations producing more than one ton of film per hour. Production rates can 

easily exceed 1kg/h/mm of diameter for LDPE while for LLDPE it is usually less than 

1kg/h/mm of diameter. The annular flow is formed in the gap between the inner mandrel 

and the outer die body. Several types of die have been proposed and built (Hopmann and 

Michaeli, 2016) as shown in Fig. 8.2-1, involving mandrels supported by spider legs, screen 

packs or a breaker plate. 

Sometimes, side-fed as opposed to bottom-fed dies are used. The problem with these 

designs is that they result in the formation of weld lines (Perdikoulias et al., 1999) in the 

machine direction. These are formed when two polymer streams merge together. Along these 

merging lines (weld lines), the polymer is poorly bonded due to very low diffusion coefficients 

of the large polymer molecules within the highly viscous melt. By far the most common die 
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Figure 8.2-1. Different types of dies for blown film extrusion. From Hopmann and Michaeli (2016). 

 

 
Figure 8.2-2. Schematic of a spiral die. The polymer melt flows from extruder through a melt pipe at 

the bottom into the runners which guide it to the ports from where the spiral originates. From 
Perdikoulias (1997). 
 

geometry for blown film production is the spiral mandrel geometry shown schematically in 

Fig. 8.2-2. The polymer is fed by a number of melt tubes ending with a port at the start of each 

spiral. The melt flows both along the spirals and in the gap between the mandrel and outer 

body of the die. The flow rate becomes progressively more uniform around the circumference 
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Figure 8.2-3. Relaxation chambers designs. From Vlachopoulos et al. (2012). 
 

towards the die exit. After the end of the spirals the melt may pass through a low shear 

relaxation chamber of the type shown in Fig. 8.2-3, for the purpose of reducing the memory 

of its complex strain history. 

Typically, the number of spirals in a mandrel die should be enough to accomplish 

uniform distribution of the polymer melt before it exits the die. One generally accepted notion 

among die designers is that a mandrel die should have one spiral per 25 mm of die diameter. 

Traditionally, it was believed that the more spirals in a mandrel die, the better the distribution 

would be. This is not so, since the entire length of each spiral can (and should) be used to 

distribute the polymer melt. With this in mind, fewer spirals can be used to provide adequate 

distribution and result in a uniform film thickness distribution at the die exit. Each spiral is 

machined into the outer diameter of the mandrel and travels a certain distance around the 

mandrel. Typically, a spiral starts deep and becomes progressively shallower the further down 

its length. The area which separates the spiral channels is known as the land. The gap over 

the land formed by the outer body that encloses the mandrel is what determines how much 

polymer flows over the land and how much travels down the spiral. As the spiral becomes 

shallower, the gap above the land becomes greater, allowing more polymer to travel over the 

land as opposed to in the spiral channel. The length of the spiral is another variable that is up 

for discussion amongst die designers. The length of a spiral is determined by the number of 

ports it overlaps on the mandrel from start to finish.  



8-6 

 
 

It is sometimes believed that a longer spiral, or a spiral with many overlaps, provides 

better distribution than a spiral with fewer overlaps. This, also, is not so since polymer 

distribution has a stronger dependence on the gap size between land and outer body. As noted 

before, if the entire length of the spiral is used for distribution, a shorter spiral that is properly 

designed will work better than a longer spiral whose length is not being used fully for 

distribution. Typically, a die with six to eight overlaps is acceptable for blown film die design. 

The spiral should be long enough for adequate distribution to take place. 

As the molten polymer exits the die, the plastic tube being produced should ideally 

have a uniform thickness. When this molten tube is inflated (into a bubble) and stretched, any 

excessively uneven thicknesses tend to be exaggerated around the bubble circumference, 

resulting in film of an unacceptable quality. Mass flow variation and resultant thickness 

variations of more than 5% above the end of the spirals is usually unacceptable. In a poorly 

designed die, polymer melts tend to flow preferentially directly above the ports, resulting in 

periodic thick and thin patterns as shown schematically in Fig. 8.2-4. 

 Characteristically, the number of thick spots or peaks will correspond to the number 

of ports in the die. Long die lips and relaxation chambers are sometimes used to reduce the 

mass flow variation, but they also tend to increase the pressure drop resulting in a reduced 

production rate. This type of thickness distribution deficiency is a result of an incorrectly 

designed spiral die which is not distributing the molten polymer properly. The poor flow 

distribution is caused along the spirals and between mandrel and die body. Fig. 8.2-5 shows 

schematically the flow rate in the spiral direction as a function of distance. Correspondingly, 

spiral leakage is the amount of material that flows out of the spiral. If a die has too much  

 
Figure 8.2-4. Schematic representation of circumferential thickness variation as a function of position 

for a four port die. From Vlachopoulos et al. (2012). 
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spiral leakage, a large portion of the spiral will remain unused for distribution purposes, 

resulting in a stagnant flow region which may cause polymer degradation and other 

production problems. 

 
Figure 8.2-5. In a good spiral die design, polymer flow in the channel has to be maintained to the very 

end. From Vlachopoulos et al. (2012). 

 

Several studies have been carried out to model and predict the flow in blow film dies 

(see Vlachopoulos et al., 2012). The equations of conservation of mass, momentum and 

energy along with a suitable constitutive equation must be solved simultaneously. The Hele-

Shaw approximation described briefly in Chapter 7 is also used for blown film die flow 

simulation and design. The objective is to design dies with low thickness variation (below 5%) 

and wall shear rates preferably less than 8 s-1 when transparent films are extruded. Low wall 

shear rate areas are responsible for hazy films or films with black or brown spots, just as in 

flat film extrusion (Chapter 7).  

 

8.3 Blown Film Co-extrusion 

A significant part of blown film being produced is coextruded, that is, it consists of two 

or more polymer layers. Nowadays, co-extrusion of three to seven layers (sometimes up to 

11) is common. Food packaging films are almost exclusively multilayered because they are 

required to possess barrier and other physical properties. In barrier film co-extrusion, the film 

structure has thin layers of the expensive barrier polymer, such as ethylene-vinyl alcohol 

(EVA), while layers of high strength polymers like polyamide (PA) provide the required 

mechanical properties. Typically, spiral mandrel dies are the standard for producing coextru- 
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Figure 8.3-1. Mechanical drawing of three-layer co-extrusion die. From Vlachopoulos et al. (2012), 

courtesy of BE, Brampton, ON, Canada.   

 

ded blown film. In co-extrusion spiral mandrel dies, the spirals are nested one inside the other 

(as shown in Fig. 8.3-1 for a three-layer die) and are fed by different extruders. 

Contrary to the traditional spiral dies (where the spiral channels are cut in the surface 

of a cylinder), in flat plate stackable designs the spirals are cut on plates radially, and stacked 

one on top of another. A stack of such flat plates, as shown in Fig. 8.3-2 can produce 

multilayer film structures, while being still easy to disassemble and maintain. The flat plates 

are interchangeable, so the types of polymers and the order of the layer structure are easily 

customized. Fig. 8.3-3 shows how the spirals are laid on the surface of each plate. One of the 

other main differences between cylindrical and stackable dies is the omission of a bottom fed 

block in the latter. In the stackable die format the polymer melt is fed to the spirals from the  
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Figure 8.3-2. Schematic of a flat plate (stackable) blown film extrusion die, for five layer coextrusion 

(A, B, C, D and E). From Vlachopoulos et al. (2012), courtesy of BE, Brampton, ON, Canada.   

 

 
Figure 8.3-3. A side-fed flat spiral modular distributor. From Vlachopoulos et al. (2012), courtesy of 

BE, Brampton, ON, Canada.   
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side, directly connected to the extruder, as opposed to being bottom-fed in the cylindrical die 

design format. This format change has led to a die design that results in the entire melt flow 

passage from extruder adapter to the exit of the die being highly streamlined with no sharp 

bends to cause dead spots. Furthermore, all the layers have roughly the same wetted surface 

area because distribution takes place on the surface of the disc. 

 

8.4 Beyond the Die Exit 

Upon emergence from the die, the hot melt is cooled externally (and sometimes 

internally) by annular streams of high velocity air from film cooling devices called air rings. 

The external air rings are situated close to the die lips outside and cooling air is blown onto 

the molten polymer as it is being extruded from the die. Blown film lines may have a single 

lip air ring or dual lip air rings as shown in Fig. 8.4-1 and occasionally triple lip air rings for 

better bubble stability. The cooling air helps to cool the hot melt as it exits the die and 

stabilizes the shape of the molten tubular film. The objective is to cool the extruded melt, so   

 
Figure 8.4-1. Schematic representation of air rings for external cooling. To the left, single lip air ring 

and to the right dual lip air ring. Arrows indicate air flow. Reproduced from Sidiropoulos (2000). 

 

that it solidifies at highest possible rate. The maximum achievable output rate of the 

production line is often limited by the air cooling capability of the air rings. Specific output 

rate is a means to determine and compare the production rate of a die irrespective of the die 

diameter. The specific output rate is determined by dividing the output rate of the die in units 

of kg/h by the diameter of the die lips in mm. The die specific output rate for lines equipped 

with dual lip air rings, which cool the bubble from the outside, varies from 0.45 to 1.1 
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kg/h/mm of die diameter according to Butler (2001). Internal bubble cooling (IBC) increases 

the cooling capacity of the line by providing cooling from the inside of the bubble. The 

increased cooling capacity generally produces throughput rates from 0.7 to 2.0 kg/h/ mm of 

die diameter. 

Bubble shapes vary from a conventional bubble shape for LDPE to a high stalk wine-

glass like for HMW-HDPE (and some other linear, low melt flow index (MFI) materials). 

The long and narrow neck usually extends from 5 to 9 die diameters above the die followed 

by a quick bubble expansion (BUR ranging from 3.5 to 5). The long molecular length of 

HWM-HDPE (MI less than 0.1) prevents its drawdown below 50 microns when blown in 

conventional bubbles. The high stalk bubble is achieved simply by reducing the amount of 

cooling air to allow the freeze line to rise and lengthen the neck. This is illustrated 

schematically in Fig. 8.4-2 and contrasted with a typical LDPE bubble. 

 
Figure 8.4-2. Schematic representation of a conventional and a high stalk bubble (Bourgeois, 1992). 

 

 The general bubble shape may be predicted using the “thin shell” approximation, that 

describes the balance of forces on the bubble. Details may be found in Sidiropoulos (2000) 

and Vlachopoulos and Sidiropoulos (2014). Simplification of the thin shell approximation is 

possible if the bubble is approximated by a quasi-cylindrical geometry (Liu et al., 1995). In 
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this context, the bubble may be represented by a series of “tubular elements” as shown in Fig. 

8.4-3. The simplified equation is 

𝛥𝑃 =
ℎ

𝑅
𝜎𝑡 (8.3-1) 

where ΔP the inflation pressure, h the thickness of the tubular element, R the radius of the 

element and σt the stress exerted circumferentially (t direction in Fig. 8.4-4) called the hoop 

stress. This is the same equation derived for pipes in Section 10.5 (Barlow’s formula).  

 
Figure 8.4-3. Diagram showing the “quasi-cylindrical” approximation of a blown film bubble. From 

Vlachopoulos and Sidiropoulos (2014). 
 

 
Figure 8.4-4. Blown film bubble and intrinsic coordinate system (n, m, t). From Vlachopoulos and 

Sidiropoulos (2014). 

 

The rate at which the tubular film is being cooled (mainly by the radial air jet(s) from 

the air ring(s)) has a great influence on the process because it determines the distance above 

the die, where solidification is complete (frequently referred to as Freeze Line Height, FLH). 
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Radiative heating may be responsible for as much as 20% of the heat transfer and must be 

taken into account. A heat balance (Vlachopoulos and Sidiropoulos, 2014) gives   

𝜌𝐶𝑝𝑄𝑐𝑜𝑠𝜃
𝑑𝑇

𝑑𝑧
= −2𝜋𝑅[ℎ𝑡(𝑇 − 𝑇𝑎) + 𝜅𝜀(𝑇−𝑇𝑎

4)] (8.4-1) 

where ρ the density, Cp the heat capacity, Q the polymer flow rate, angle θ is denoted in Fig. 

8.4-4, Τ the temperature, z the axis of symmetry of the bubble, ht the convective heat transfer 

coefficient, κ the Stefan-Boltzmann constant and ε the emissivity.  

Two important aerodynamic phenomena are associated with the cooling airflow, 

namely the Venturi and Coanda effects (Sidiropoulos, 2000, Sidiropoulos and Vlachopoulos, 

2000a). The well-known Venturi effect is caused when a fluid flows through a constricted 

area: its speed increases and the pressure drops. In film blowing, the lower orifice air is flowing 

through the narrow gap between the bubble surface and the air ring cone. The resulting 

Venturi effect causes the bubble to be pulled towards the air ring cone, visibly deforming the 

bubble. The Coanda effect occurs when a free jet emerges close to a surface: the jet tends to 

bend, “attach” itself and flow along the surface. The surface may be flat or curved and located 

inclined or offset to the jet. The Coanda effect is more pronounced near curved surfaces. 

Blown film bubble surfaces with the cooling air impinging on them at an angle, offer the 

possibility of Coanda type jet attachments and detachments. Fig. 8.4-5 shows a simulation 

example depicting the calculated airflow streamlines around a typical blown film bubble 

(Sidiropoulos and Vlachopoulos, 2000a, 2000b). The two simulated airflows (presented on 

the left and right side of the same figure) correspond to slightly different setups for the 

adjustable part of the air ring. Although the geometrical differences are minute, the simulation 

predicts significant differences in the local airflow pattern. The local heat transfer rates are 

different in the two cases and the onset of the Coanda effect may stabilize or de-stabilize the 

bubble. 

Once solidified, the tubular film must be collapsed to form a lay-flat tube. This 

particular task is handled by the collapsing system. Some films need sophisticated collapsing 

systems (for example “tacky” films need low-friction or even non-contact collapsers) while 

others do fine with simple, roller-equipped collapsing frames. Most collapsing systems induce 

some form of distortion to the film. Simple triangulation reveals that the distances the film 

has to travel in the collapsing system are not even across the tube circumference and the film 

has to stretch in some areas before assuming the final layflat shape. The following equation  
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Figure 8.4-5. Cooling air streamlines around an LLDPE blown film bubble for different setups of the 

adjustable ring (moderate air-flow) left side: low position, right side: high position. From Sidiropoulos 
and Vlachopoulos (2000b). 
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Figure 8.4-6. Film stretching during bubble collapsing process. From Knittel (1992). 

 

can be used to calculate the relative distance (Knittel, 1992) as a function of the 

position across the tube circumference, 

𝐿 = √𝐻2 + [(1 +
𝜋

2
− 𝑎) 𝜋𝐷 + 4 − 𝐷𝑐𝑜𝑠𝑎 + 2]

2

+ [𝐷𝑠𝑖𝑛𝑎 + 2]2 (8.4-2) 

Notation of the parameters in Eq. 8.4-3 is shown in Fig. 8.4-6. The uneven stretching creates 

“stretched” and “loose” regions in the final lay-flat roll. During the collapse, soft, pliable 

polymers (like LDPE) extend and the film becomes slightly thinner in the “stretched” regions. 

In higher modulus materials (like HDPE, PET etc.) the strength of the film prevents 

stretching, resulting in broad wrinkles in the “loose” regions. 
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Chapter 9 

CO-EXTRUSION INSTABILITIES 

 

 

 

9.1 Introduction  

Co-extrusion is the process in which two or more polymers are extruded and joined 

together to form a single structure with multiple layers. Each layer in the layered structure is 

chosen to provide a specific end-use characteristic to the product (e.g. barrier properties, heat 

sealability, strength, chemical resistance etc) resulting in a product that integrates all these 

properties. Key measures for a good quality final coextruded product are: (i) each layer must 

have uniform thickness (ii) the layers must adhere perfectly to each other and (iii) free from 

interfacial instabilities. 

The ultimate goal of coextrusion is the production of multilayer films or sheets with 

good properties, at a lower cost than extruding a single layer as explained schematically in 

Fig. 9.1-1.  

 
Figure 9.1-1. The goal of coextrusion as suggested by Finch (1990). 
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 Coextruded films are used extensively in food packaging. For example, a three-layer 

film would have an outside layer suitable for good printing (brand name, company logo, 

content description and other information) without any ink spreading or other problems. The 

inside layer would be a barrier material, that is a resin (e.g. Polyvinylidene Chloride (PVDC, 

commercial name Saran)) which has very low permeability to oxygen, flavors and moisture, 

so that the shelf-life of the packaged food product is extended. The layer in contact with food 

should not have any toxicity. Coextrusion is used in blown film, cast film/sheet (flat film 

thickness less than 0.25mm, flat sheet thickness more than 0.25mm), tube/pipe, profile, 

extrusion coating and blow molding. For the production of fuel tanks for cars Ethylene Vinyl 

Alcohol (EVOH), which is a barrier to gasoline vapors, is co-extruded in tubular form with 

layers of HDPE and subsequently inflated to take the mold shape. Typically, the fuel tank 

wall is comprised of six layers: a barrier layer, adhesion promoting layers on both sides of it, 

a layer of regrind (granules made from rejected fuel tanks, to reduce cost) and two layers of 

virgin HDPE (inside and outside). 

        Three layer blown film lines are very common, but lines with up to 11 layers are also 

manufactured and sold. With feed-block technology, for flat film, over 1000 layers can be 

coextruded. The question may be asked: Why more than three layers in coextrusion for food 

packaging if just one layer can do what is needed? The reason is that during production the 

thin polymer layers may have defects at certain points. However, it is highly unlikely that 

defects from several layers will occur at exactly the same location. So, with more layers there 

is assurance of defect-free packaging film. 

 

9.2 Layer Encapsulation and Non-uniformities 

The main cause of non-uniformities the tendency of the less viscous polymer to go to 

the region of high shear (wall) to reduce the energy required for the flow, thereby 

encapsulating the more viscous polymer as illustrated in Fig. 9.2-1 for a round and a flat die. 

The degree of encapsulation depends primarily on the extent of the viscosity difference and 

the residence time. Difference in wall adhesion, viscoelastic characteristics of polymers, 

relative layer thicknesses and length of the flow path are contributing factors (Karagiannis et 

al. 1995). Layer non-uniformities in feed-block flat dies occur when there is a large enough 

viscosity mismatch. Low-viscosity polymer migrates to the die wall, producing encapsulation 

as shown in Fig. 9.2-2. This migration can start in the die manifold due to the uneven flow  
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Figure 9.2-1. Cross-sections of a low viscosity polymer encapsulating a more viscous one. Top: at the 

exit of a capillary die and bottom: at the exit of a flat die. Numbers below or next to the cross-sections 
correspond to time (in minutes). From Minagawa and White (1975).  

 

 
Figure 9.2-2. Layer non-uniformity due to uneven flow leakage in a typical coat-hanger die. From 

Cloeren (1993).  
 

leakage, resulting in increased layer thickness for low-viscosity polymer at the edges of the 

film or sheet (Dooley, 2005). A remedy is to profile the feed-block slot so as to compensate 

for the possible layer migration. The feed-block profiling method has been discussed in 

Chapter 7 (see also Fig. 7.3-2). 
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           Layer rearrangement may also exist even if the layers are of the same material (same 

viscosity). In this case, the non-uniform thickness of the two co-extruded melt streams, of the 

same material, is attributed to flow rearrangement due to high second normal stress difference 

N2 (see section 3.9 in Chapter 3). In Fig. 9.2-3 both polycarbonate (PC) and polystyrene (PS)  

 
Figure 9.2-3. Co-extrusion of two-layer polymers of the same material in a square channel. To the left, 

the low elasticity PC exhibits a rather small non-uniformity, which is not the case of the high elasticity 
PS. From Dooley (2005). 

 

layers were even at the entry to the channel of square cross-section. PC is not very elastic, 

which means that the normal stress differences are not large, and it shows little rearrangement. 

On the contrary, PS is very elastic and it shows a significant layer rearrangement, which is 

counter-intuitive. This means that highly elastic polymers have encapsulation phenomena 

due to both viscosity mismatch and their large second normal stress difference. 

 

9.3 Interfacial Instabilities  

Interfacial instability is an unsteady-state process in which the interface location 

between layers varies locally in a transient manner. Interface distortion due to flow instability 

can cause thickness non-uniformities in the individual layers while still maintaining a constant 

thickness product. These instabilities result in irregular interfaces and even layer intermixing 

in severe cases (Karagiannis et al., 1995).  

There are two types of interfacial instabilities: zig-zag instability and wave pattern 

instability. Zig-zag instability appears usually as chevrons pointing in the flow direction as 
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shown in Fig. 9.3-1, from Zatloukal and De Witte (2006). It is initiated in the die land and it 

is characterized by a critical interfacial shear stress, in the range of 60-90 kPa (while the critical 

wall shear stress for the onset of sharkskin is usually quoted as 140 kPa (Vlachopoulos and 

Strutt, 2010). Optical film clarity is affected significantly by zig-zag instability at the interface. 

As it can be seen in Fig. 9.3-2a both the "good" and "bad" films have the same contact clarity, 

as it is evident by the legibility of the text through the film. However, when the film is moved 

some distance away from the text, Fig. 9.3-2b, the difference in see-through clarity between 

the two films becomes quite apparent. The text is still legible through the "good" film, but not 

through the "bad" film. The problems can be remedied by reducing the interfacial shear stress 

below the critical level. 

Wave pattern instability appears as a train of parabolas across the width of the sheet 

and is oriented in the flow direction as shown in Fig. 9.3-3. It occurs when a fast moving 

polymer stream merges with a much slower moving stream in a feedblock in flat film 

coextrusion. When the skin layer is thin relative to the second layer, the wave instability can 

be more pronounced. Large differences in extensional viscosities between adjacent layers can 

also make the defect more likely. Dies with large lateral expansion ratios (die lip width divided 

by manifold entry width) seem to be more susceptible (Ramanathan et al., 1996). Increased 

melt elasticity appears to promote these types of instability (Martyn et al. 2009). 

 
Figure 9.3-1. Zig-zag instability in co-extrusion. From Zatloukal and De Witte (2006). 

 



9-6 

 
 

 
Figure 9.3-2. Film (a) in contact with paper and (b) roughly 2.5 cm above the paper. From Shroff and 

Mavridis (1991). 
 

 
Figure 9.3-3. Wave interfacial instability. From Dooley (2005). 
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9.4 Co-Extrusion Flow Analysis 

A simplified approach for two layers is presented, to provide a basic understanding on 

how flow description of co-extrusion can be carried out. It should be noted that a complete 

modeling of the fluid flow would require 2D or 3D numerical solution of the flow equations. 

Several investigations have been carried out on this basis (see for example the works by 

Karagiannis et al. (1988, 1995), Mavridis et al. (1998), Zatloukal et al. (2002) and Huang et al. 

(2015)). 3D numerical simulations are a rather challenging task due to the presence of multiple 

free surfaces inside and outside the die, combined with the swelling of the emerging 

viscoelastic polymer. 

 We consider the steady flow of two incompressible Newtonian polymer melt streams 

between two long parallel plates as shown in Fig. 9.4-1. The fluid motion is from left to right 

due to an imposed pressure gradient (Vlachopoulos, 2016). The governing equations for each 

melt stream are the following 

0 = −
𝜕𝑝

𝜕𝑥
+ 𝜇𝛢

𝜕2𝑉𝑥
𝐴

𝜕𝑦2
 (for fluid A) (9.4-1) 

0 = −
𝜕𝑝

𝜕𝑥
+ 𝜇𝐵

𝜕2𝑉𝑥
𝐵

𝜕𝑦2
 (for fluid B) (9.4-2) 

with μA the viscosity of the fluid A and μΒ for fluid B. The pressure is a function of the x-

direction only and the velocities are functions of the y-direction only. Thus, we may write 

𝑑𝑝

𝑑𝑥
= 𝜇𝛢 (

𝑑2𝑉𝑥
𝐴

𝑑𝑦2
) (9.4-3) 

𝑑𝑝

𝑑𝑥
= 𝜇𝐵 (

𝑑2𝑉𝑥
𝐵

𝑑𝑦2
) (9.4-4) 

 
Figure 9.4-1. Pressure-driven flow of two co-extruded melt streams between two parallel plates. 
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Integrating each equation twice, we obtain 

𝑉𝑥
𝐴 =

𝑦2

2𝜇𝛢
(

𝑑𝑝

𝑑𝑥
) + 𝐶1𝑦 + 𝐶2 (9.4-5) 

𝑉𝑥
𝐵 =

𝑦2

2𝜇𝐵
(

𝑑𝑝

𝑑𝑥
) + 𝐶3𝑦 + 𝐶4 (9.4-6) 

In the next step, we must determine the four integration constants by using appropriate 

boundary conditions. At the upper and lower plates, the velocity is assumed to be zero (no-

slip condition). At the interface, the velocities must be equal (i.e. Vx
A=Vx

B) as well as the shear 

stresses (i.e. τA=τΒ). Thus, the four boundary conditions may be written as  

B. C. 1 𝑉𝑥
𝐴 = 0 𝑦 = −𝑏 

(9.4-7) 

B. C. 2 𝑉𝑥
𝐵 = 0 𝑦 = 𝑏 

B. C. 3 𝑉𝑥
𝐴 = 𝑉𝑥

𝐵 𝑦 = 0 

B. C. 4 𝜏𝐴 = 𝜏𝐵 𝑦 = 0 

 or   𝜇𝛢 (
𝜕𝑉𝑥

𝐴

𝜕𝑦
) = 𝜇𝐵 (

𝜕𝑉𝑥
𝐵

𝜕𝑦
) 𝑦 = 0 

From B.C.3 we have 

𝐶2 = 𝐶4 (9.4-8) 

and from B.C.4 we have  

𝜇𝛢𝐶1 = 𝜇𝛣𝐶3 (9.4-9) 

Further, using B.C.1 and B.C.2 we obtain 

𝐶1 = (
𝑑𝑝

𝑑𝑥
)

𝑏

2
(

𝜇𝛢 − 𝜇𝛣

𝜇𝛢 + 𝜇𝛣
) (9.4-10) 

𝐶2 = − (
𝑑𝑝

𝑑𝑥
)

𝑏2

2𝜇𝐴
(

2𝜇𝛢

𝜇𝛢 + 𝜇𝛣
) (9.4-11) 

Thus, the velocity profiles are the following 

𝑉𝑥
𝐴 = − (

𝑑𝑝

𝑑𝑥
)

𝑏2

2𝜇𝐴
[(

2𝜇𝛢

𝜇𝛢 + 𝜇𝛣
) + (

𝜇𝛢 − 𝜇𝛣

𝜇𝛢 + 𝜇𝛣
) (

𝑦

𝑏
) − (

𝑦

𝑏
)

2

] (9.4-12) 

𝑉𝑥
𝐵 = − (

𝑑𝑝

𝑑𝑥
)

𝑏2

2𝜇𝐵
[(

2𝜇𝐵

𝜇𝛢 + 𝜇𝛣
) + (

𝜇𝛢 − 𝜇𝛣

𝜇𝛢 + 𝜇𝛣
) (

𝑦

𝑏
) − (

𝑦

𝑏
)

2

] (9.4-13) 

where  

−
𝑑𝑝

𝑑𝑥
=

𝛥𝑝

𝐿
=

𝑝𝑜 − 𝑝𝐿

𝐿
 (9.4-14) 
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The velocity profiles are sketched in Fig. 9.4-1. It should be noted that if μΑ=μΒ, the velocity 

profiles for both fluids are identical and Eq. 9.4-13 and Eq. 9.4-14 reduce to the single 

parabolic expression of Chapter 2.  

            In a similar fashion, the velocity profiles for power-law fluids can also derived. An 

example of calculated velocity profiles for power-law fluids is shown in Fig. 9.4-2 for the 

parameters given in the figure caption.  

 
Figure 9.4-2. Velocity profiles for 2-layer co-extrusion of power-law polymer melts. Flow rates for each 

layer: QA=QB=0.5 m3/hr, consistency index: mA= 1000 Pa∙s, power-law index: nA=nB=0.5, plates 

width: W=2 m and gap: h=1 mm. Viscosity ratios refer to mB/mΑ ratios. From Karagiannis et al. 

(1995).  
 

It is apparent from Fig. 9.4-2 that as the viscosity ratio increases the velocity profile for 

the two layers becomes different. The less viscous layer (melt A) exhibits higher velocities 

than layer B, which leads to a characteristic slope discontinuity at the interface. It is also 

observed that the viscosity ratio influences the position of the interface. Increase in the 

viscosity ratio moves the interface from the center of the channel towards the less viscous 

melt, for this case of flowrate ratio of 1. 

As in the flow of a single fluid flowing between two plat plates, the shear stress is zero 

where the velocity has a maximum and varies linearly from zero to its maximum value at the 

wall (τw) because τ=μ(du/dy) throughout the flow area. A velocity and shear stress for three 

coextruded layers is schematically shown in Fig. 9.4-3.  



9-10 

 
 

 

Figure 9.4-3. Schematic representation of the velocity and shear stress profile for a three-layer 

coextrusion (flat die or tube).  

 

Let us assume that at interface 1 the value of the shear stress (τ1) exceeds the critical 

value for the onset of zig-zag instabilities (which is supposed to be 80kPa). The following 

actions can be taken to reduce the interfacial shear stress and therefore avoid the instability: 

a. Reduction of the total extrusion rate. The wall stress on the die is reduced (lower 

pressure drop) 

b. Increase of die gap opening. Similarly, the wall stress level is reduced.  

c. Increase of skin layer thickness (by pumping at higher rate the layer near the wall). 

This will shift the interface away from the wall where the shear stress is maximum. 

d. Reduction of skin layer viscosity.  

It should be pointed out that viscosity matching is a popular remedy that does not always 

work. It is often advisable to mismatch the viscosities (add low viscosity skin layer) to reduce 

the interfacial shear and prevent the onset of zig-zag instability. 
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Chapter 10 

PIPE AND TUBING EXTRUSION 

 

 

 

10.1 Introduction  

Diameters of commercial plastic pipes and tubing range from a couple of millimeters 

to a couple of meters. Millimeter diameter medical tubing is used in medical devices such as 

balloon catheters for angioplasty. Large diameter pipes are used for transporting water for 

drinking or irrigation and other fluids including oil and sewage over large distances. Plastic 

pipes can be single wall of multiwall and they might be reinforced with external corrugations, 

embedded fibers or metal inserts. Certain medical tubes are reinforced with metal or fiber 

braids embedded in the tube wall. 

Various grades of polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) 

and other polymers are extruded for water transportation applications. Materials for medical 

tubing include polyamides (PA, Nylon), PEBAX, PET and polyurethane. The selection of 

the resins is carried out on the basis of molecular weight (usually expressed by their Melt Flow 

Index) and mechanical and other properties depending on the intended application. New 

types of resins and products have been developed for replacement of copper in residential 

plumbing. C-PVC (C- for chlorinated) pipes can be used for hot water at higher temperatures 

than PVC. PE-RT (Polyethylene-Raised Temperature) has enhanced mechanical properties 

at higher temperatures, due to special catalysts used during polymerization. PEX is a cross-

linked PE pipe used extensively in home plumbing. Cross-linking takes place either during 

extrusion (with the help of peroxide) or after the pipe is extruded (with silane or radiation). 

The cross-linking of molecules provides enhanced mechanical properties. 

A typical pipe production line is shown schematically in Fig. 10.1-1. The molten 

polymer is supplied from an extruder to a die having annular lips. After the die exit, the pipe  
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Figure 10.1-1. Schematic representation of a typical pipe production line. From Haudin et al. (2012). 

 

travels some distance through the air and subsequently passes through a calibrator (that is a 

sizing fixture) to a cooling bath. The final stage usually consists of a saw or a rotary knife that 

cuts the pipe into desired lengths. In medical tubing extrusion, the line is situated inside a 

clean room with controlled pressure and temperature conditions, so any possible external 

contamination of the product can be avoided. 

 

10.2 Pipe Dies 

 Two main types of die designs are used in pipe (and tubing) extrusion. The first one is 

spiral die design, discussed in detail in Chapter 8. The shape of a spiral die for pipe production 

is similar to those used for blown film extrusion, but with different considerations for a thicker 

tubular extrudate. In such dies the mandrel is supported from the back of the die body. There 

is no flow obstruction in the channel formed between the mandrel and the body. A mechanical 

drawing of a spiral die is shown in Fig. 10.2-1, from Kainth (2018). The second type is the 

spider leg design. In this case the central mandrel is supported by rods arranged like legs of a 

spider. A schematic of a spider leg die is shown in Fig. 10.2-2. The legs are regularly 

distributed around the mandrel circumference. Some typical spider leg arrangements are 

illustrated in Fig. 10.2-3. Due to the spider legs the polymer melt flow is split and reattached 

again downstream to form weldlines, as shown schematically in Fig. 10.2-4. At weldlines, the 

pipe has reduced mechanical properties due to the slow diffusion of the long polymer chains, 

essentially poor bonding, which is frequently responsible for failures. General rules may be 

followed, according to Hopmann and Michaeli (2016), for acceptable spider leg design: the 

spider lengths should not be longer than 30 to 80 mm, not wider than 9 to 12 mm and the cor- 
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Figure 10.2-1. Spiral die drawing with dimensions in millimeters. From Kainth (2018). 

 
Figure 10.2-2. Schematic representation for a typical geometry of a spider leg die. From Haudin et al. 

(2012). 
 

 

 
Figure 10.2-3. Some typical spider leg arrangements (cross-section view of the die, the flow is normal 

to the page). From Hopmann and Michaeli (2016). 
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Figure 10.2-4. Schematic representation of a weldline (the flow is from left to right).  

 

ners at the root of the spider legs (see Fig. 10.2-3) should be designed to avoid stagnant melt 

flow regions. Weldline problems may be reduced with the following (Hendess and Bessemer, 

2001, Hopmann and Michaeli, 2016): 

1. Melt homogeneity  

2. Higher melt temperature (so that the molecules will have more kinetic energy for faster 

diffusion and better bonding of the two merging melt streams) 

3. Higher pressure (may be accomplished with a longer die or constrictions) 

4. Special spider leg design. For example, in Fig. 10.2-5 there will be more than one 

weldline forming, but only for part of the thickness. In Fig.10.2-3 the design on the left 

side will result in weldlines from inner to outer surface, while the design on the right 

the weldlines will be bent and less prone to failure under compression.  

 

Figure 10.2-5.  A special type of spider leg. The molten polymer splits on the left and reattaches to 

the right at the two tails of the leg. From Lupke and Lupke (2000). 
 

 

Figure 10.2-6.  Schematic representation and assembly of the extrusion die of a typical two-lumen 

micro-tube. From Tian et al. (2015). 
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At the end of the die there are lips which give the shape to the pipe and determine the 

dimensions. In customary round pipe extrusion and certain types of medical tubing extrusion, 

the lips usually have annular geometry of a constant gap. In several medical applications, 

such as balloon angioplasty, tubes with multiple lumens are widely used. For this case the lips 

have a more complex geometry. In Fig. 10.2-6, typical double lumen lips are shown. Five-

lumen tubes are also possible to fabricate (Jin et al., 2014). 

 

10.3 Pipe Calibration and Cooling 

 After the polymer exits the forming die, it travels some distance in air before entering 

the cooling tank. The cooling tank may contain a cold water bath or jets. At the entrance of 

the cooling tank there is a calibration unit. The purpose of this device is to control the outer 

diameter of the pipe or tube before final solidification takes place. In the technical literature, 

it is also referred to as sizing.  

Calibration in pipe and tubing extrusion may be performed in two ways. In the first, 

pressure is applied internally to the extruded pipe so that the external pipe surface contacts 

the calibrator surface as shown in Fig. 10.3-1a. Water is used to control the cooling rate, but  

 
Figure 10.3-1. Pipe extrusion calibration with (a) application of pressure internal to the pipe and (b) 

vacuum. From Carneiro and Nóbrega (2012). 
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there is no direct contact between water and pipe. This calibration type is usually called dry 

cooling (Carneiro and Nóbrega, 2012). In the second way, shown in Fig. 10.3-1b, the external 

pipe surface is brought into contact with the calibrator surface by the application of vacuum. 

At least part of the heat is removed with direct contact of water with the pipe external surface 

and for this reason it is referred to as wet cooling (Hendess and Bessemer 2001; Carneiro and 

Nóbrega, 2012). The properties of extruded pipe are significantly affected by the rate of 

cooling. The magnitude of residual stresses is determined to a large extent by the cooling 

operation. Cooling simulation software is available for optimization purposes (Chillware: 

www.shs-plus.de/index.php/en/)    

 

10.4 Double-Walled Corrugated Pipes 

Corrugations increase significantly the stiffness of metal, paper or plastic sheets. 

Corrugated pipes are usually double-walled with an inner smooth surface and corrugated 

external layer, as shown in Fig.10.4-1. Double (or sometimes triple) wall corrugated pipes  

 
Figure 10.4-1. PVC 48 inch (1219 mm)  pipe produced on Corma (www.corma.com) equipment. 

 

 
Figure 10.4-2. Sketch of double-wall corrugated pipe extrusion as the corrugator blocks continuously 

rotate. From Vlachopoulos and Lupke (2018). 

http://www.shs-plus.de/index.php/en/
http://www.corma.com/
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made of high density polyethylene (HDPE), polypropylene (PP) or polyvinyl chloride (PVC) 

are used extensively for sewer and rainwater applications. Dies are either of the spiral or spider 

variety. Inner and outer layers are extruded simultaneously and the corrugations are formed 

by the application of internal pressure and external vacuum as a series of mold blocks rotate, 

usually mounted on two vertical or horizontal chain-like oval tracks, as shown in Fig. 10.4-2. 

The forming of corrugations is somewhat similar to extrusion blow molding. 

 

10.5 Hoop Stress  

 Plastic pipes are heavily regulated products and several ASTM and ISO standards 

apply. For example, polyethylene pipes are classified by the type of material grade used: PE 

100 is for very demanding piping applications having a Minimum Required Strength (MRS), 

according to ISO 4427, of 100 bar (10 MPa) at 50 years and 20°C. PE 80 has MRS of 80 bar 

(8 MPa) for somewhat less demanding applications and PE 40 has MRS of 40 bar (4 MPa) 

for low pressure systems. Part of a PE 100 data sheet is shown in Table 10.5-1 We note that 

the Melt Flow Rate (same as MFI) with 5 kg load is 0.25 g/10 minutes, while MFI with 2.16 

kg load is not reported because it is less than 0.1 g/10 minutes and it is not measurable. Also 

from the same resin producer (www.borouge.com) a PE 80  (for 5 kg load ) MFI= 0.3 g/10 

minutes  (which means a somewhat lower molecular weight). 

 

Table 10.5-1 Polyethylene (PE 100) BorSafe HE3490-LS part of data sheet 

 

 

A key design parameter in pipes is the circumferential stress which is frequently 

referred to as hoop stress σH , as shown schematically in Fig. 10.5-1a. The hoop stress is a 

function of the applied pressure and the pipe geometric characteristics. This can be obtained 

from a simple force balance on the half-cylinder in Fig. 10.5-1b. It is assumed that the cylinder 

wall is thin (i.e. thickness<<diameter). The applied internal pressure generates a force acting 

on the pipe, which is given by 

http://www.borouge.com/
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Figure 10.5-1. Schematic representation of the hoop or circumferential stress on a typical cross-section 

of a pipe with length L normal to the page. 

 

𝐹𝑝 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 × 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 = 𝑝𝐷𝐿 (10.5-1) 

where D the diameter and L the length of the pipe. The force that resists the pressure force is 

given by  

𝐹𝐻 = ℎ𝑜𝑜𝑝 𝑠𝑡𝑟𝑒𝑠𝑠 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 × 𝑙𝑒𝑛𝑔𝑡ℎ = 𝜎𝐻ℎ𝐿 (10.5-2) 

where h the thickness of the cylinder. The force balance then requires that 

𝐹𝑝 − 2 × 𝐹𝐻 = 0 (10.5-3) 

Substituting Eq. 10.5-1 and 10.5-2 in Eq. 10.5-3, we obtain 

𝑝 =
2𝜎𝐻ℎ

𝐷
 (10.5-4) 

which is usually referred to as Barlow’s formula. This formula can be used for the 

determination of the maximum allowable pressure to avoid bursting, by using the value of 

tensile strength of the material for the hoop stress. Depending on diameter and wall thickness 

PE pipes for water might have bursting pressures perhaps exceeding 10 bar (1 MPa), while 

some small diameter tubes for angioplasty up to perhaps 40 bar (4 MPa). 

 

Example E10.5-1 

Pipe manufacturer FIRAT (www.firat.com) reported the production of 1600 mm PE 100 pipe 

having wall thickness of 61.2 mm. Determine the pressure rating assuming a safety factor of 

1.25. 
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Solution 

PE 100 has Minimum Required Strength of 10 MPa at 50 years and 20 °C. For safety factor 

of 1.25 the maximum allowable hoop stress will be 10/1.25=8 MPa. The hoop stress analysis 

presented above is for a very thin tube. However, frequently the diameter of the center of the 

wall (rather than inner or outer diameter) is used in the calculations. Consequently, the 

pressure rating for this pipe, using equation Eq. 10.5-4, will be 

𝑝 =
2 × 8 × 61.2

1600 − 61.2
= 0.636 𝑀𝑃𝑎 𝑜𝑟 6.36 𝑏𝑎𝑟 

This result is fully in agreement with what has been reported (below) at the company’s 

website. SDR stands for Standard Dimension Ratio (outer diameter/thickness). 
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Chapter 11 

PROFILE EXTRUSION 

 

 

 

11.1 Introduction  

Profile extrusion is the continuous production of plastic or rubber products having 

generally complex cross-sections. The products may range from simple U-like shapes and 

corner moldings to refrigerator and vehicle gaskets and window lineals, with very complex 

cross-sections. Some typical extruded profiles are shown in Fig. 11.1-1.  

 

 
Figure 11.1-1. Schematic representation of some simple extruded profiles, from Schenkel (1966), on 

the left, and a UPVC profile cross-section like those used for windows, on the right. 

 

 In profile die design, the most crucial problem is flow balancing, that is to have 

uniform outflow velocity at the exit, so that a product of multiple local thicknesses is produced 

continuously. The window profile shown in Fig. 11.1-1, has thick and thick sections, which 

means that the die lips, would have thick and thin gaps. Since polymer melts have an 

overwhelming tendency to flow through areas of least resistance, the melt will flow with a 

higher velocity in the thick gaps. To obtain a quantitative understanding of this, consider the  
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Figure 11.1-2. Schematic representation of a die section with slightly different gaps. 

 

simple schematic in Fig. 11.1-2 showing a die which has a central section with a 10% larger 

gap.  From the flow between two flat plates analysis, presented in Chapter 2, the average 

velocity will be for each section 

𝑉𝑎𝑣𝑔 =
𝑛

2𝑛 + 1
[

1

𝑚
(

𝛥𝑝

𝐿
)]

1 𝑛⁄

(
𝐻

2
)

1
𝑛

+1

 (11.1-1) 

where H is the gap and 𝛥𝑝 the pressure drop. The above equation may be written in the 

following simpler form 

𝑉𝑎𝑣𝑔 = 𝐴 (
𝐻

2
)

1
𝑛

+1

 (11.1-2) 

For the two different gaps in Fig. 11.1-2, assuming a Newtonian fluid (n=1), we may calculate 

the outflow velocity ratio  

𝑉𝑎𝑣𝑔,2

𝑉𝑎𝑣𝑔,1
~

(
𝐻2

2 )

1
𝑛

+1

(
𝐻1

2 )

1
𝑛

+1
=

1.12

1
= 1.21 (11.1-3) 

which means that the flow through the 10% larger gap H2 is 21% faster. For a polymer with a 

power-law value n=0.33 the outflow velocity ratio is given by 

𝑉𝑎𝑣𝑔,1

𝑉𝑎𝑣𝑔,2
~

(
𝐻2

2 )

1
𝑛

+1

(
𝐻1

2 )

1
𝑛

+1
=

1.14

1
= 1.46 (11.1-4) 

which for this case means that flow through the 10% larger gap is 46% faster. Obviously, if 

the thickness ratio was larger the ratio of the outflow velocities could be huge. The challenge 

then is to design the local channel gaps from the end of the extruder to the die lips, so that the 
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thickness-averaged outflow velocity will be the same in all areas. The last part of the die (lips) 

is referred to as the die land, where the walls are parallel to the flow path. A long land length 

is necessary for imparting the desired local thickness and for eliminating or reducing the 

effects of previous shear history. With a long die land, the effects of any upstream changes in 

operating conditions will be minimized.  The minimum land length to gap ratio is usually 8:1, 

with values up to 25:1 according to Cykana (2010), for high output rates. However, long land 

lengths can cause significant pressure drop, when highly viscous materials are extruded, and 

temperature rise due to viscous dissipation as discussed in Chapter 2. 

 

11.2 Flow Balancing of a Simple Die 

 In the previous section we discussed differences in the gap thickness and shear-

thinning behavior of the material that may lead to large flow imbalance. The smaller the value 

of the power-law exponent n (more shear-thinning) the larger the flow imbalance. A question 

that naturally arises is how one may design a die to eliminate or at least suppress flow 

imbalance. The simplest and perhaps the most intuitive technique is to shape the channels 

from the end of the extruder to the die lips, so as to bring the appropriate amount of polymer 

melt in each section. By adjusting the channel length behind the die lips the flow resistance in 

each desired section of the die may be controlled and more material can be brought in where 

it is needed and less material where it is not needed.   

Let us explain the above described methodology with a simple profile die design 

example. Assume that we want to manufacture a product, the cross-section of which looks 

like a “keyhole” as shown in Fig. 11.2-1a. The product comprises of two sections, a circular 

and a rectangular, with prescribed dimensions for radius, gap and width. The lips of the profile 

die, from where the material is extruded, will have the shape of the product and for simplicity 

we are going to neglect extrudate swell. Hopmann and Michaeli (2016), recommend that each 

section of the lips must be designed with a specific length, as shown pictorially in Fig. 11.2-

1b, such that in each section the same amount of polymer melt is delivered. In this way, a 

uniform exit velocity is achieved.  

For the flow in the rectangular (slit) section we will use Eq. 11.1-1, which is 

𝑉𝑠,𝑎𝑣𝑔 =
𝑛

2𝑛 + 1
[

1

𝑚
(

𝛥𝑝

𝐿𝑠
)]

1 𝑛⁄

(
𝐻

2
)

1
𝑛

+1

 (11.2-1) 
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Figure 11.2-1. Schematic representation of an example profile die consisting of a cylindrical and a 

rectangular section. From Hopmann and Michaeli (2016). 

 

In a similar fashion, for the flow through the circular section we will use the equation of the 

average velocity for flow in a tube from Chapter 2, that is  

𝑉𝑅,𝑎𝑣𝑔 =
𝑛

3𝑛 + 1
[(

1

2𝑚
) (

𝛥𝑝

𝐿𝑅
)]

1 𝑛⁄

𝑅
1
𝑛

+3
 (11.2-2) 

For the requirement of balanced flow, Vs,avg=VR,avg, we equate Eq. 11.2-1 with Eq. 11.2-2 to 

arrive at  

𝐿𝑅

𝐿𝑠
= (

4𝑛 + 2

3𝑛 + 1
)

𝑛

(
𝑅

𝐻
)

𝑛+1

 (11.2-3) 

Note that the above result shows that the ratio of the lengths for balancing the flow is not a 

function of the consistency index m. It should be also pointed out that the above analysis does 

not take into account (Hopmann and Michaeli, 2016) mutual influence of the two melt 

streams, possibility of cross-flow or the effects of the sidewall of the rectangular section (notice 

that Eq. 11.2-3 neglects the width W, because the analysis is based on the assumption of 

infinitely wide flat plates).  

Let us now examine what will happen if we attach a die like that shown on the right 

side of Fig.11.2-1 at the end of an extruder. There will be some overflow of material from the 

one part to the other, the flow might not be very well balanced and we might not obtain 

exactly the desired keyhole shaped profile. However, we could use a separator (also called 
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web). In fact, separators are used in industry for flow balancing purposes. The flow will be 

balanced, but due to extrudate swell, we will have problems with the final shape. While this 

flow balancing method is not the sure solution to profile die design it is the first step in that 

direction, which might be followed by computer assisted design and eventually a trial-and-

error on the factory floor. Profile die design is not easy. However, flow balancing either with 

the help of simple unidirectional flow equations or computer simulations (described in Section 

11.4) will help reduce the number of trial-and-error procedures on the factory floor. 

 

Example E11.2-1 

Suppose we want to manufacture the profile of Fig. 11.2-1a. Assume that the polymer melt 

obeys a power law behavior with n=0.4.  The rectangular section of the profile must have H=2 

mm and W=10 mm. The round section must have a radius R=2.5 mm. What should the 

lengths behind the profile die lips be so that the flow is balanced?  

 

Solution 

For Eq. 11.2-3 to be applied for design calculations, one has to assume a reasonable length 

behind one of the two sections and then determine the other. We choose to give a length in 

the rectangular section. A typical value may be LS=10H=10×2=20 mm. Using Eq. 11.2-3, we 

have  

𝐿𝑅 = 20 (
4 ∙ 0.4 + 2

3 ∙ 0.4 + 1
)

0.4

(
2.5

2
)

0.4+1

= 33.28 mm 

This is one of many possible solutions to the design problem. Better but more expensive 

designs would be of the stepped or streamlined variety discussed in Section11.3.  

 

11.3 Types of Profile Dies 

 Profile die channels must be designed for the purpose of transforming a circular cross-

section (just as the polymer melt exits the extruder) into a shape similar to the desired profile 

product. Depending upon the application, the cost and the ease or difficulty of machining, 

three types of profile extrusion dies may be distinguished. 

(a) Plate dies (also called “flat back” dies) 

A schematic representation of such a die is shown in Fig. 11.3-1. The polymer melt flows 

through a channel of initially cylindrical cross-section that is abruptly changed into the desired 



11-6 

 
 

profile shape. These dies have low manufacturing cost due to the simplicity in machining. 

They can be easily cleaned and mounted-dismounted from the production line. A drawback  

 
Figure 11.3-1. Schematic representation of a plate die. From Nóbrega and Carneiro (2012).  

 

is that at the region of abrupt cross-section change (flat back), some material may accumulate 

due to the presence of vortices. As explained in Chapter 3, in such vortices, the material will 

recirculate and its residence time, will be very large, or theoretically “infinite” in completely 

stagnant regions (dead spots). Consequently, degradation and burning will occur, which is a 

very common problem especially with thermally sensitive materials. Plate dies are used for 

polyolefins, plasticized PVC and rubber. They are mostly used for the production of small 

profiles (Hopmann and Michaeli, 2016). They are of low cost, easy to develop and easy to 

modify if needed (Cykana, 2001). Used for short production runs and low outputs. 

(b) Stepped dies 

In stepped dies the circular cross-section channel at the inlet of the die is transformed in a 

gradual and stepwise manner as shown in Fig. 11.3-2. This is accomplished by connecting 

several die plates in series. The end of each die plate is connected in a beveled manner with 

the inlet of the consecutive die plate. According to Hopmann and Michaeli (2016), these 

transitions are critical for rigid PVC processing. Stepped dies are used only for relatively 

simple profiles.  

(c) Streamlined dies  

In such dies the initial circular cross-section is smoothly transformed to the desired final 

shape as shown schematically in Fig. 11.3-3. These dies are required for cases where a high 

dimensional accuracy in the profile is needed. However, the machining cost is high, as 

compared to plate and stepped dies (Nóbrega and Carneiro, 2012). According to Cykana 
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(2010) on a plate die (flat-back) “the running time can be from one to eight hours with some polymers, 

a fully streamlined die can run for weeks without stopping to be cleaned out”. 

 There are four distinctive zones comprising streamlined dies, which are shown 

schematically in Fig. 11.3-4 (Nóbrega and Carneiro, 2012, Hopmann and Michaeli, 2016) 

 

 
Figure 11.3-2. Schematic representation of a stepped die. From Nóbrega and Carneiro (2012).  

 

 
Figure 11.3-3. Schematic representation of a streamlined die. From Nóbrega and Carneiro (2012).  

 

 
Figure 11.3-4. Schematic representation of the distinctive zones in streamlined dies. From Nóbrega 

and Carneiro (2012).  
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 Adapter: A zone of circular cross-section equal in diameter to the extruder barrel, 

positioned after the breaker plate and the filter. 

 Transition zone: This zone serves as a transition section between the adapter and the pre-

parallel zone. 

 Pre-parallel zone: The pre-parallel zone exhibits downstream a convergent shape where 

the flow of the molten polymer becomes very restrictive.  

 Parallel zone: This is the most important section of a streamlined profile die. It consists of 

channels with constant cross-section. The presence of this zone allows for a polymer melt 

to relax the upstream developed stresses. Due to the relatively narrower gaps, as compared 

to the previous sections, it contributes to a large extent to the total pressure drop. A very 

long parallel zone may diminish problems related to upstream flow variations and reduce 

extrudate swell, but it may generate unnecessary large pressures.  

 

11.4 Computer Assisted Profile Die Design 

 The design guidelines and mathematical formulation presented in Section 11.2 can be 

used for relatively simple profile dies. That methodology can also be applied for the parallel 

zone of the streamlined profile die of Fig. 11.3-4. For a full design of a profile die, meaning 

from the end of the extruder to the very end of the lips, the previously mentioned design 

principles are rather difficult to be applied.  

Trial-and-error procedures on the factory floor involve several hours of machining, 

running the production line, correcting the die channels and running again and again. As 

many as ten trials might be necessary for simple profile shapes, and dozens for complicated 

designs. The manufacturing cost can increase significantly, before a final acceptable design is 

reached. An alternative is computer assisted die design, which applies to all types of extrusion 

dies, but it is even more important for profile dies. The main advantage is that the cost is 

reduced, in the sense that the machining tryouts are carried out on a computer screen. It is 

tempting to try to use a fully 3D commercially available flow simulation software, especially 

because of recent availability of significant computer power. Introduction of viscoelasticity 

though a suitable constitutive equation, is unlikely to produce any useful results for 3D non-

isothermal flows. However, the most important information can be obtained from shear 

thinning, non-isothermal flow simulations, which are demanding, but feasible, even for the 
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most complicated flow channel geometries. The challenge is to perform numerical shape 

optimization (Elgeti et al., 2012, Rajkumar et al., 2018) using a 3D non-Newtonian, non-

isothermal simulation software. A simplified approach is described below. 

Practicing profile die designers (Lee and Stephenson, 1992) know that, as Levy (1981a, 

1981b) states, “the cases where the die orifice geometry can permit flows across the machine direction 

make die design difficult”. A strategy for the design of profile dies has been suggested, termed as 

the “Avoid Cross Flow Strategy” (Koziey et al., 1996). In this approach the material flows 

through a series of cross-sections perpendicular to the machine direction. Each cross-section 

is subsequently divided into separate segments. The geometry of each cross-section is then 

adjusted so that the flow rate through each segment is in the same proportion as the area 

percentage of that segment of the cross-section, relative to the total cross-section area of the 

final profile. The flow solution on each cross-section is simplified assuming fully developed 

flow in the machine direction (z) and the equation of conservation of momentum is reduced 

to 

𝜕

𝜕𝑥
(𝜂

𝜕𝑉𝑧

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜂

𝜕𝑉𝑧

𝜕𝑦
) =

𝜕𝑝

𝜕𝑧
 (11.4-1) 

in the flow z-direction which is perpendicular to the x-y plane of the cross section. In Eq. 11.4-

1, η is the viscosity, p the pressure and Vz the velocity in the z-direction. Since there is only 

one equation involved, the results are obtained rapidly. Ettinger et al. (2013) also used equation 

11.4-1 in developing their numerical design procedure. The method was applied by Koziey et 

al. (1996) for the L-shaped die shown in Fig. 11.4-1. The final 3D die geometry is shown in 

Fig. 11.4-2. Several cross-sections at different locations along the length of the die are taken 

which are also shown individually in Fig. 11.4-3. 

 
Figure 11.4-1. Schematic representation of a simple L-profile. From Koziey et al. (1996). 
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Figure 11.4-2. 3D representation of L-profile die flow channel. From Koziey et al. (1996).  

Note: This simple profile die could have also been designed with the method of Section 11.2. The 
corresponding lengths between cross-sections 2 and 1 above, could have been adjusted, just as in the 
“keyhole” profile die of Fig. 11.2-1. That kind of design would be of less precision than the above 
streamlined profile die.  

 

 
 
 

 



11-11 

 

  

 
 

 
Figure 11.4-3. Sequence of channel cross sections for the L-profile die. From Koziey et al. (1996). 
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 It should be pointed out that due to the effect of extrudate swell, the final dimensions 

of the profile may differ substantially from the dimensions of the die exit, especially for 

polymer melts exhibiting a high elasticity level. Taking this phenomenon into account is a 

challenging task and the approach may vary depending on the complexity of the cross-section, 

from simple cross-type profiles (Gifford, 2003) to complex two-lumen tubular products for 

cardiovascular angioplasty (Tian et al., 2015).  Inverse design methods (Legat and Marchal, 

1993, Debbaut and Marchal, 2008), that is finding the die shape which produces an extrudate 

of prescribed dimensions, have also been developed for profile dies, but without much impact 

on die design technology. 

 

11.5 Beyond the Profile Die Exit 

As the polymer melt exits from the die it swells as a result of viscoelasticity. We have 

seen in Section 3.8 that even Newtonian fluids swell as they emerge from flow channels (13% 

for round and 19% for planar). Polyolefins with broad molecular weight distribution swell a 

lot. PVC does not swell very much. The die designer must take into consideration the 

anticipated extrudate swell, a task which is not easy. After the exit, the extrudate is drawn 

down to the desired dimensions of the final product. The percentage of drawdown usually 

ranges from 3% for certain PVC profiles to perhaps 20% or even 30% for some polyolefin 

products.  As Cykana (2010) put it “without any drawdown the extrudate would drape and sag”, 

while with proper amount of drawdown the profile remains aligned and taut. 

Due to the difficulties in obtaining the required profile dimensions, calibration (that is 

sizing) and cooling systems are used for establishing the final dimensions of the product. 

Calibration/cooling systems for profiles are similar to those for pipes, which are discussed in 

Chapter 10. More information can be found in Nóbrega and Carneiro (2012). 
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Chapter 12 

TWIN-SCREW EXTRUDERS 

 

 

 

10.1 Introduction  

Two-screw machines were originally developed, not for plastics, but for conveying of 

ceramic masses to form bricks and for kneading of bread dough (Andersen et al., 2009) in the 

1800’s. According to Martelli (1983) the first twin screw extruders, for polymers, were 

developed in the late 1930s by Roberto Colombo of LMP (Lavorazione Materie Plastiche, 

Torino, Italy) and Carlo Pasquetti, also of Torino. Significant improvements to the 

technology were made by Erdmenger (Bayer, Germany) in the 1940s, followed by the Werner 

and Pfleiderer corporation in the 1950’s also in Germany. The historical development of the 

counter-rotating twin-screw extruder is discussed by Schneider (2005).  

The screws can rotate in the same direction (co-rotating) or opposite direction 

(counter-rotating). They can be intermeshing (if the flights of one screw penetrate the channel 

of the other) or non-intermeshing if the screw flights do not mesh or engage with each other, 

and classified accordingly in Fig.12.1-1. They can be fully intermeshing or partially 

intermeshing as shown in Fig. 12.1-2. The screws can be parallel or conical. 

            The material transport in twin-screw extruders (TSEs) is different from single-screw 

extruders (SSEs). In SSEs it is drag flow, whereas in TSEs it can be drag flow for non-

intermeshing, but positive displacement in intermeshing counter-rotating TSEs. Actually, as 

Martelli (1983) put it “Construction differences such as screw placement, shape of the flights, and 

direction of rotation make TSEs as different from each other as they are, as a group, different from single-

screw extruders”. TSEs are usually modular, having removable screw and barrel sections, while 

SSEs are nearly always one piece. The most common twin-screw extruders are co-rotating 
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and fully intermeshing TSEs and perhaps the second most common is counter-rotating fully 

intermeshing. These two types will be discussed in the subsequent sections of this chapter. 

 
Figure 12.1-1. Twin-screw extruder classification. From Andersen et al. (2009). 

 

 

 
Figure 12.1-2. Different types of twin-screw extruders. From Kimura et al. (2018). 
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12.2 Co-rotating Fully Intermeshing Twin Screw Extruders 

Co-rotating TSEs with very closely intermeshing (self-wiping) screws are used 

extensively for compounding of masterbatches, pelletization, devolatilization, and reactive 

extrusion. Masterbaches are concentrated blends of pigments, additives, fillers etc, in a base 

polymer. A masterbatch is added in small amounts to large volume material (the same as or 

compatible with the base polymer) to achieve desired properties. Frequently, the output of 

polymer reactors includes high level of solvent, which must be removed (devolatilization) 

during twin screw extrusion for the production of pellets. Reactive extrusion frequently 

involves the chemical modification of a resin by addition of other molecules to its backbone 

chain (grafting). Co-TSEs usually operate at high speeds up to 1400 rpm (sometimes even 

higher) and production rates of up to 100,000 kg/hr, while single screw extruders seldom 

exceed 5,000 kg/hr. Twin-screw extruders are usually starve-fed from an external feeder with 

the degree of fill frequently less than 40%, while single extruders are usually flood fed (degree 

of fill 100%).  

 

Figure 12.2-1. Werner & Pfleiderer ZSK self-wiping screws. From Todd (1998). 

 

Screws are typically segmented, involving helical flight sections, usually having pitch 

(distance between the flights) from 0.5D to 2D and mixing elements. Fig. 12.2-1 shows screws 

having kneading disks for mixing and Fig. 12.2-2 shows screws having gear elements for 

mixing. The screw sections and mixing elements are assembled on shafts. There is virtually 

an unlimited number of screw configurations which can be assembled.  
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Figure 12.2-2. Mixing elements on a Berstorff ZE90A. Parallel gear rings on the left and gears cut on 

a helix. From Todd (1998).  

 

The screw sections convey the material forward and mixing elements facilitate the 

compounding of the resin with the additives, fillers, reinforcements and blending with other 

resins, as it may be required. Increasing the screw section pitch results in faster conveying 

rate, but less pressure build-up. The kneading disks are either three-lobal or two-lobal as 

shown in Fig. 12.2-3. It can be seen that the two-lobal elements have more free volume for 

material and they have become more common in todays twin-screw extrusion lines. Fig. 12.2-

4 shows screw and two-lobal kneading disk profiles. The number of possible configurations is 

practically infinite, as screw pitch, kneading disk thicknesses and offsets can be chosen. The 

no-limits flexibility presents also a challenge in choosing the most suitable configuration for 

the desired tasks associated with local unit operations of conveying, melting, mixing, 

devolatilization and pumping. Considerable experience is required for optimizing the design 

and performance.   

 
Figure 12.2-3. (a) Two-lobal and (b) three-lobal kneading disks. From Martin (2016). 
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Figure 12.2-4. A double-flighted screw segment and two kneading blocks composed of disks of different 

thicknesses, but with the same apparent helix angle as the screws. K-1 kneading disks are 0.0062D 

thick and angularly offset 22.5°. K-2 are 0.125D thick and angularly offset 45°. From Todd (1991). 

 

12.3 Machine Design and Assembly of Self-Wiping Co-Rotating TSEs 

The construction is modular comprising of barrel sections, shaft and screw 

components. Usually the barrel sections are 4D long. The extruder L/D for standard 

compounding tasks is between 24 and 48, with up to 60 commercially available. Thus a L/D 

=36 machine will have 9 barrel sections of 4 L/D each. The barrel sections are of rectangular 

cross-section, as shown in Fig.12.3-1, for providing uniform heat flow around the figure-8 

bore.  

Screws have evolved from having three-flighted conveying screw sections and three-

lobal kneading disks to two-flighted sections and two-lobal disks. A screw conveying section 

is shown in Fig. 12.3-2.  

A very important parameter is the outer diameter to inner diameter ratio (OD/ID). 

The larger the ratio, the more free-volume is available, as shown in Fig. 12.3-2. Of course, as 

the ratio increases the available shaft diameter for torque transmission becomes smaller. Cur- 
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Figure 12.3-1. JSW corporation co-rotating intermeshing TSE. From Kimura et al. (2018). 

 

 

Figure 12.3-2. Conveying screw section showing inner (ID) and outer diameter (OD). From Wagner 
et al. (2014). 

 

rently, many industrial extruders have OD/ID ratio up to 1.80. For high torque transmission, 

shaft technologies have evolved from a single keyway to hexagonal, octagonal and lately to 

spline shafts, as shown in Fig.12.3-4. 
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Figure 12.3-3. Extremes of OD/ID ratios for two-lobal TSEs. From Todd (1998). 

 

 

 

Figure 12.3-4. Shaft technology evolution from keyways to splines. From Wagner et al (2014). 
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Terminology is important for understanding the various types of commercially 

available machines. Conveying screw sections are shown in Fig.12.3-5 from Wagner et al. 

(2014). This sections are referred to as 45/45, 60/60 and 30/30, with the first number being 

screw pitch (length required for one complete revolution of a flight) and the second number 

is the section length as shown. 

 
Figure 12.3-5. Theysohn corporation conveying screw sections. From Wagner et al. (2014). 

 

Conveying sections can be “right-handed”, if they convey the material forward, or 

“left-handed” if the conveying is rearward. Fig 12.3-6 shows a sequence of a right-handed 

followed by a left-handed and then another right-handed section.  In the right-handed section 

there is no pressure build up because the material, which is only partially filling the channel, 

is conveyed forward. In the left-handed section the obstruction results in building up pressure. 

 

 
Figure 12.3-6. Sequence of right- and left-handed Theysohn corporation screw sections. From Wagner et al. 

(2014). 

 

Between the conveying screw sections there are kneading blocks as shown in Fig.12.3-

7, consisting of disks arranged for forward or rearward conveying or neutral (non-conveying).  
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The terminology involves three numbers: the first is the rotation angle, the second is 

the number of disks and the third length in mm. In Fig.12.3-8, the sketch on the top 90/10/40 

indicates a kneading block of 40mm in length, having 10 disks rotated at 90o.   

 
Figure12.3-7. Conveying screw sections and a kneading block. From Nakayama et al. (2018). 

 

 
Figure 12.3-8. Kneading block arrangements. From Alsteens et al (2004). 
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Another important parameter is the specific torque, which relates the available power 

to the volume of the extruder expressed as the torque divided by the centerline distance cubed 

To/a3 (Nm/cm3). Specific torque values have progressed from 13.7 Nm/cm3 to 18 Nm/cm3, 

according to Andersen (2013). Speeds up to 1800 rpm are possible with commercially 

available machines. High speeds are possible because the deeper channels, having lower shear 

rates, do not raise the material temperature to undesirable high levels. The (nominal) shear 

rate is the ratio of the circumferential velocity to the maximum channel depth. As it has been 
 

 
Figure 12.3-9. Schematic representation of shear rate reduction with increasing channel depth. From 

Andersen and Lechner (2013). 
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shown in Section 2.12 the temperature rise due to viscous dissipation is proportional to the 

shear rate raised to the power of (n+1) for power-law fluids having shear-thinning exponent 

n. The reduction in shear rates with increasing channel depths is shown schematically in 

Fig.12.3-9, from Andersen and Lechner (2013).  

There are numerous types of mixing elements (i.e. gears, slotted vanes, blister rings), 

however, kneading disks account for 90% of those used in corotating TSEs, according to 

Martin (2017). The kneading disks must be designed for the type of mixing desired: Wide 

disks have elongational flow regions, because the lobal pool is squeezed between kneading 

disk and barrel wall, as shown in Fig. 12.3-10. As discussed in Section 6.8, elongational flow 

 
Figure 12.3-10. Mixing by kneading disks. Courtesy of Charlie Martin of Leistritz (2018). 
 

 

is needed for dispersive mixing, which involves break-up of particles or liquid drops. With 

narrow disks the molten polymer escapes from the sides generating shear and distributive 

mixing (spatial rearrangement and spreading). While elongational flow is more effective for 

both dispersive and distributive mixing, the squeezing of the lobal pool may generate high 

local temperatures and narrow disks might be more suitable for processing of certain 

materials. 

 

12.4 Unit Operations in Co-rotating TSEs 

FEEDING: Twin-Screw extruders are usually starve fed and the output rate is 

determined by the rate of feeding. Gravimetric or loss-in-weight feeders provide a 
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predetermined amount of kg/hr. The degree of fill is usually less than 40% of the available 

volume. The output is independent of screw speed. The screw rotation speed is used for 

optimization of compounding, by matching the extruder power to feeding rate. Secondary 

downstream feeding is possible, because there is no pressure gradient in the partially filled 

channels. It is frequently used for reinforcing fillers, for various types of solid additives and 

for liquid additives. 

MELTING: Melting takes place in the kneading disks due to repetitive squeezing of 

the particulate solids. Most of the energy for melting comes from the rotating screws with 

some energy input also from electrical heaters from the outside. The specific mechanical 

energy (SME) in Co-TSE usually varies between 0.15 kWh/kg and 0.25 kWh/kg, which 

includes the energy required for raising the temperature of the polymer particles, melting, 

mixing and pumping. The exact value depends on several variables relating to screw section 

design, operating conditions and material extruded. It is interesting to compare these numbers 

with calculation for a single screw extrusion example in Section 6.9, which gave 0.194 

kWh/kg. 

MIXING: As explained in the chapter on single screw extrusion (Section 6.8) and is 

also discussed in the previous section, mixing involves two processes: dispersion (break up of 

particles or drops) and distribution (spatial rearrangement and spreading). This is mainly 

accomplished by the kneading blocks and can also be assisted by left-hand screw elements 

which produce rearward flow. The screw assembly is very crucial for obtaining the desired 

mixing quality.   

DEVOLATILIZATION and DEGASSING: It is frequently necessary to remove 

entrained air, residual solvents, water and other undesirable volatile contaminants.  This is 

accomplished in one or more vents either by simple openings to the atmosphere or drawing 

vacuum. Several techniques have been developed for preventing the melt to escape with the 

volatiles. 

PUMPING: Co-rotating intermeshing self-wiping twin screw extruders are excellent 

compounders/mixers, but they have poor pressure generation capabilities. Fig. 12.4-1 shows 

the pressure variation along a typical co-rotating twin screw extruder. 1000 PSI (6.9 MPa) is 

much lower than pressures encountered in single screw extruders (SSEs), which may be as 

high as 50 MPa at the die head and in grooved feed SSEs much higher near the hopper. 
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Figure 12.4-1. Typical pressure variation along a co-rotating intermeshing twin screw extruder. From 

Martin (2017). 1000PSI is 6.9 MPa. 

 

12.5 Flow and Pressurization in Co-rotating TSEs 

From the previous sections, it is obvious that mathematical modeling of co-rotating 

intermeshing twin screw extruders is a formidable task, due to geometrical complexity, which 

is further complicated by the virtually unlimited possibilities in assembling screw segments.    

The research findings of several authors are discussed in the books by Todd (1998) and 

Tadmor and Gogos (2006), White and Kim (2009), Manas-Zloczower (2009) and Agassant 

et al. (2017). Todd (1998) showed that, as a first approximation, the expression derived for 

single screw extruders, relating flow rate and pressure (see Section 6.3), is also applicable for 

fully filled conveying screw sections and kneading blocks, in the following form  

𝑄 = 𝐴 ∙ 𝑁 − 𝐵
𝛥𝑃

𝜇𝐿
 (12.5-1) 

where N represents the rotation speed, ΔP is the pressure, μ viscosity (Newtonian) and L the 

length. While the constants A and B were derived from first principles in single screw 

extrusion, A and B depend on the type of segment (forward or rearward, screw section or 

kneading block). This equation is the basis of 1D models for co-rotating intermeshing twin 

screw extruders, which take also into account the degree of fill of the channels and are capable 

of predicting the pressure and temperature along the extruder and energy consumption. Fig. 

12.5-1 shows satisfactory agreement between experimental results and predictions with three 
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different software packages. Fully 3D simulations have also been carried out by several 

investigators (e.g. Bravo et al., 2000, Kohlgrüber, 2008 and Nakayama et al., 2018) which 

provide information on flow and mixing phenomena within the conveying and kneading 

block channels. Fig. 12.5-2 shows schematically the flow in a starved co-rotating TSE.  

Usually, co-rotating TSEs are not capable of providing enough pressure to pump the 

polymer through the die. Thus at the end of the TSE a pressure generating device like the gear 

pump shown in Fig. 12.5-3, is attached. Gear pumps can generate and stabilize the pressure 

because they are positive displacement devices. 

 
Figure 12.5-1. Experimental results and simulations of a COPERION corotating intermeshing twin 

screw extruder of 70 mm diameter. From Utracki (2017). Transport is from left to right. 

 

 
Figure 12.5-2. Schematic diagram of flow in a self-wiping co-rotating TSE. From Martin (2018). 
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Figure 12.5-3. Schematic of a gear pump. From Martin (2018). 

 

12.6 Counter-rotating Twin-Screw Extruders  

Historically, counter-rotating TSEs have received significantly less research and 

development efforts than co-rotating. There are many more co-rotating TSEs than counter-

rotating in operation today. The limitation of counter-rotating devices is mainly due to 

pressure development in the calendering gap (Speur et al., 1987), which results in a separating 

force, as shown in Fig.12.6.1. From the flow analysis of the process of calendering (rolling of 

a viscous polymer melt between two counter-rotating cylinders), it can be shown (Middleman, 

1977) that the separating force is given by the following expression (for a Newtonian fluid) 

𝐹1 = 1.22 (
𝜇𝑈𝑅

ℎ𝑜
) 𝐿 (12.6-1) 

where μ is the viscosity, R the radius, ho the minimum gap between the cylinders, L the length 

of the cylinders and U the velocity of rotation. 

 
Figure 12.6.1. Separating force in the calendering gap of a counterrotating TSE and upward lubrication 

force, forcing the screws towards the “10 o’clock and 2 o’ clock” position. 

This problem has been fully analyzed by A. Demirci et al Polymers 2021, 13, 990, https://doi.org/      10.3390/polym13070990



12-16 

 
 

It can be seen from Eq. 12.6-1 that the separating force increases as the velocity 

increases and/or as the gap decreases. There is also gravity and a lubrication force, akin to a 

slider bearing (Vlachopoulos,2016), acting upwards, which also increases as the speed 

increases. The result is that the screws are pushed towards the “10 o’clock and 2’oclock” 

positions, as shown in Fig.12.6-1. Considerable wear and tear can occur at these positions. 

This is why todays counter-rotating fully intermeshing TSEs run at low speeds. The speed of 

rotation is usually less than 60 rpm and of course the output rate is lower than co-rotating 

machines of same diameter running at much higher speeds. The screws are connected to the 

gear box at the rear end through splines and are free on the front end, so they are deflected 

away from each other. Higher speeds (200 rpm or more) are achieved for partially 

intermeshing counter-rotating TSEs, because the gap is larger and the separating force can be 

tolerated, even at higher rpm. 

Low speed closely intermeshing counter-rotating TSEs are primarily used for PVC 

extrusion of pipe and profiles. The screws are one piece, not modular like the co-rotating 

TSEs. Higher speed non-intermeshing counter-rotating extruders are used in applications 

related to blending, devolatilization and reactive extrusion. There are also conical counter-

rotating intermeshing TSEs, distinguished by their cone-shaped screws. In the feed the screw 

diameter might be 100mm and at the discharge perhaps less than 50mm. Due to the 

converging shape, conical screw designs provide a natural compression over the entire length. 

Generally, they are shorter than parallel screw designs. Conical TSEs are used in extrusion of 

wood plastic composites and other products, but, they are less common than parallel designs. 

 

12.7 Low Speed Counter-rotating Intermeshing Twin Screw Extruders 

In counter-rotating closely intermeshing extruders, as the screws rotate, they enclose 

and transport the material in a helically distorted C-shaped chamber, which is sketched in 

Fig.12.7-1 (top). The C-shape is also shown in a photograph (Fig.12.7-1, bottom) of two 

intermeshing screws in which the channel segments of one screw were filled with silicon 

rubber. Two segments have been pulled out and it can be seen that the un-stretched piece 

retains its C-shape, while the other piece is flattened out by stretching, from Tadmor and 

Gogos (2006). The material is transported forward, just like in a positive displacement pump. 

However, there are leakages: Qf (through the gap between flight and barrel wall, similar to  
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Figure 12.7-1. C-shaped chamber sketched and photographed. From Tadmor and Gogos (2006).  

 

SSEs), Qc (between the bottom of the channel of one screw and the flight of the other screw), 

Qt (between the flanks of the flights) and Qs (between the flanks of the flights perpendicular to 

the plane through the screw axis) as shown in Fig.12.7-2. So, the total transport is that of 

positive displacement minus the leakages. Because of the positive displacement there is small 

amount of shear involved and consequently little viscous dissipation (frictional heating). For 

this reason, the low speed counter-rotating twin screw extruders are suitable for extrusion of 

unplasticized PVC (U-PVC, also called rigid PVC (R-PVC)) and other temperature sensitive 

materials. U-PVC has a very narrow temperature processing window, melting at about 175°C 

and starting to degrade at 205 °C, while for HDPE it is roughly 140°C and 250°C respectively. 

Schenkel (1963), proposed a simple expression for the determination of the theoretical 

output by assuming that it is equal to the number of C-shaped chambers becoming free per 

unit time multiplied by their volume 

𝑄𝑡ℎ = 2𝑖𝑁𝑉𝑐 (12.7-1) 

where Qth is the theoretical mass throughput, N is the screw rotation speed, Vc is the C-shaped 

chamber volume per screw and i the number of flights. Further, Janssen (1978) developed a 

more detailed analytical model by assuming that the volume of C-shaped chamber can be  
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Figure 12.7-2. Computer generated sketch of two co-rotating screws showing areas of flow leakage. 

From Goger (2013). 
 

 

calculated by subtracting the volume of a given length of screw from the same length of the 

empty barrel. The volume, V1, of one side of the barrel bore over one screw lead was calculated 

as 

𝑉1 = [(𝜋 −
𝑎

2
) 𝑅2 + (𝑅 −

𝐻

2
) √𝑅𝐻 −

𝐻2

4
] 𝑆 (12.7-2) 

where the variables of R, H and S are shown in Fig. 12.7-2 and α, defined as the overlapping 

angle in radians (as shown in Fig.12.7-3), is given by the formula 

𝑎 = 2 tan−1 (
√𝑅𝐻 − 𝐻2 4⁄

𝑅 − 𝐻 2⁄
) (12.7-3) 

 

 
Figure 12.7-3. Definition of the overlapping angle. 

counter-rotating screws showing areas of flow leakage
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The volume, V2, of the screw root over one lead is: 

𝑉2 = 𝜋(𝑅 − 𝐻)2𝑆 (12.7-4) 

The volume, V3, of one screw flight is: 

𝑉3 = 2𝜋 [(𝑅𝐻 −
𝐻2

2
) 𝑊𝑓 + (𝑅𝐻2 −

2

3
𝐻3) tan 𝜃] (12.7-5) 

The total volume of the C-shaped chamber is then  

𝑉𝑐 =
𝑉1 − 𝑉2 − 𝑖𝑉3

𝑖
  (12.7-6) 

Then multiplying Eq. 12.7-1 by the melt density 𝜌 we can obtain the mass rate of flow  

𝑚̇ = 2𝑖𝑁𝜌 𝑉𝑐 (12.7-7) 

The above simple model provides a rough estimate of the flow rate for flood fed counter-

rotating closely intermeshing TSEs. In fact, flood feeding is the usual practice in extrusion of 

U-PVC. Goger (2013) calculated also the leakages for a given screw design. Detailed 

mathematical analysis of such machines has been carried out by a number of investigators 

including Lewandowski et al. (2015).  Shah and Gupta (2004) compared the flow in co-

rotating and counter-rotating TSEs. Generally speaking, there are fewer publications on 

modeling counter-rotating TSEs than Co-rotating. 
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Manufacturers of the first continuous twin-screw device in the 1880’s 

 

 



Index 1 
 
J. Vlachopoulos and N.D. Polychronopoulos “Understanding Rheology and Technology of Polymer 

Extrusion”, First Edition, Polydynamics Inc, Dundas, Ontario, Canada (2019) 

 

 

SUBJECT INDEX 

 

 

A 
 

Amorphous 1-9, 1-20 

 
 

B 
 
Bagley correction 3-16, 3-19, 5-8 

Barlow’s formula 10-8 
Barrier properties 1-23 
Barrier screws 6-21 

Bingham fluid 2-2, 2-30 
Biodegradable 1-28 

Block copolymer 1-8 
Blown film 8-1 

Blow-up ratio 8-2 
Branched polymers 1-5 
Brinkman number 2-35 

Brittle 1-20 
Bubble collapsing 8-15 

BUR 8-2 
 

 

C 
 
Capillary 2-24, 5-6 

Carreau-Yasuda model 2-6 

Cast film 7-1 

Chemical recycling 1-27 
Coanda effect 8-13 
Co-extrusion 9-7 

Co-extrusion (blown film) 8-7 
Co-extrusion (flat die) 7-8 

Co-extrusion (instabilities) 9-1 
Cogswell 3-17 

Cole-Cole plots 5-20 



Index 2 
 

Complex viscosity 5-15 
Cone-and-plate 3-11, 5-10 
Conservation of momentum 2-8 

Consistency index 2-5 
Constitutive equations 3-6, 3-20 

Convective Maxwell Model 3-23 
Copolymer 1-6 

Co-rotating 12-2 
Corrugated pipe 10-6 
Counter-rotating 12-2, 12-15 

Cox-Merz rule 5-15 
Creeping flow 2-10 

Cross-linked 1-6 

Cross model 2-6 

Cross-over point 5-17 
Crystalline 1-9, 1-20 
 

 

D 
 

Deborah number 3-6, 3-38 
Density 1-22 
Die design (blown film) 8-3 

Die design (flat) 7-2 
Die design (profile) 11-5, 11-8 

Die lip build-up 4-14 
Dilatant 2-2 

Dispersion 6-27 
Distribution 6-27, 6-29 
Drag flow 6-6 

Draw resonance 7-11 
Drawability 5-28 

Drool 4-14 
Ductility 1-23 

Dynamic viscosity 5-15 
 
 

E 
 
Edge beading 7-11 

Elastomers 1-6 
Elongational viscosity 3-12, 5-27 
Encapsulation 9-2 

Energy recovery 1-27 
Environmental Stress Cracking (ESCR) 1-23 

Extensional viscosity 3-12, 5-27 
Extrudate swell 3-2, 3-27 



Index 3 
 

Extruder 6-1 
 
 

F 
 
Film blowing 8-1 

Flat film 7-1 
Flexural modulus 1-19 
Flow balancing 11-1, 11-3 

Fractional melt index 1-25 
Frequency sweep 5-17 

Frictional heating 2-32 
 

 

G 
 
Generalized Newtonian Fluid (GNF) 2-43, 3-22 

Glass transition temperature 1-9, 1-20 
Grace curves 6-29 

Graft Copolymer 1-5 
Grooved feed 6-10, 6-12, 6-14 
 

 

H 
 
Hardness 1-23 

Heat capacity 1-10 
Heat deflection temperature 1-23 

Heat of crystallization 1-11 
Heat of fusion 1-11 

Hele-Shaw 7-8 
Herschel-Bulkley 2-30 
Homopolymer 1-5 

Hoop stress 10-7 
 

 

I 
 
Instabilities 4-1 

Instabilities (co-extrusion) 9-1 
Interfacial instabilities 9-4 

Intermeshing 12-2 
Intrinsic viscosity (IV) 1-26 

Invariant 2-42 
 
 

 



Index 4 
 

 

K 
 
K-Value 1-26 

Kneading disks 12-4 
 

 

L 
 
Lamellae 1-10 

LAOS 5-16 
Linear polymers 1-5 

Long Chain Branching (LCB) 1-5 

Loss modulus 5-15 
 

 

M 
 
Maddock mixer 6-30 

Maillefer screw 6-23 
Maxwell model 3-7, 5-20 

Mechanical recycling 1-27 
Metallocence catalysts 1-4 

Melt elasticity 3-37 
Melt Flow Index (MFI) 1-23 
Melt Flow Rate (MFR) 1-23 

Melt fracture 4-8 
Melt pumping 6-15 

Melt screw pump 6-2 
Melt strength 3-12, 5-27 

Melting in extruder 6-14 
Melting temperature 1-10 
Metering zone 6-15 

Mixing sections 6-26, 12-4 
Moffatt eddies 6-20 

Molecular Weight 1-12 
Mooney method 2-38, 5-9 

Multi-flighted screws 6-36 
 
 

N 
 
Neck-in 7-11 

NEXTRUCAD 6-45 
Normal stresses 3-9, 3-28, 5-19 
 

 



Index 5 
 

O 
 

Operating point 6-8 
Oscillatory 5-13 

 
 

P 
 

Parallel plate 5-12 
Pipe Calibration 10-5 

Pipe dies 10-2 
Pipe extrusion 10-1 

Polydispersity 1-14, 5-17 

Power-law 2-5 
Power requirements 6-32 

Pressure dependence of viscosity 5-31 
Pressure flow 6-6 

Profile dies 11-5 
Profile extrusion 11-1 

Pseudoplastic 2-4 
 
 

R 
 
Rabinowitsch correction 2-25, 5-8 
Recycling 1-26 

Relaxation time 3-8, 5-21, 5-22, 5-23, 5-25 
Reptation 1-9, 3-26 

Rheopexy 2-5 
 

 

S 
 
SAOS 5-13 

Scalar 2-10 
Screw design 6-33 

Sharkskin 4-4 

Shear-thickening 2-5 
Shear-thinning 2-4 

Sheet extrusion 7-1 
Shrinkage 1-23 

Solids conveying 6-10 
Specific energy consumption 6-33 

Specific heat 1-10 
Spiral die 8-4 
SSE 6-1 

Static mixer 6-31 



Index 6 
 

Stiffness 1-20 
Storage modulus 5-15 
Strain at break 1-19 

Strain at yield 1-19 
Strain sweep 5-16 

Stress 2-8 
Stress relaxation 3-37, 3-43 

 
 

T 
 

Take-up ratio 8-2 
Tan-delta 5-15 

Tapered slit 2-29 
Tapered tube 2-29 
Temperature dependence of viscosity 5-31 

Tensile modulus 1-19 
Tensile strength 1-20 

Tensor 2-10 
Thermoplastics 1-6 

Thermosets 1-6 
Thixotropy 2-4 
Torque rheometers 5-30 

Toughness 1-20 
Trouton relation 3-14, 5-27 

TSE 12-1 
Tubing extrusion 10-1 

TUR 8-2 
Twin screw extruders 12-1 
 

 

U 
 

Unidirectional flow 2-7 
 
 

V 
 
Van Gurp-Palmen 5-20 
Vector 2-10 

Venturi 8-13 
Vicat temperature 1-25 

Viscoelasticity 3-1 
Viscosity 2-2 

Viscosity average molecular weight 1-15 
Viscous dissipation 2-32 

 



Index 7 
 

W 
 

Wall slip 2-38, 5-9 
Weatherability 1-23 

Weissenberg effect 3-1 
Weissenberg number 3-39 

Weldlines 10-2 
 
 

Y 
 
Yield strength 1-20 

Yield stress 2-30 

Young’s modulus 1-18 
 

 

Z 
 
Zero-shear viscosity 1-17 

Ziegler-Natta catalysts 1-4 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 




