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Abstract

Linear optimization aims at maximizing, or minimizing, a linear objective func-
tion over a feasible region defined by a finite number of linear constrains. For
several well-studied problems such as maxcut, all the vertices of the feasible re-
gion are integral, that is, with integer-valued coordinates. The diameter of the
feasible region is the diameter of the edge-graph formed by the vertices and the
edges of the feasible region. This diameter is a lower bound for the worst-case
behaviour for the widely used pivot-based simplex methods to solve linear opti-
mization instances. A lattice (d,k)-polytope is the convex hull of a set of points
whose coordinates are integer ranging from 0 to k. This dissertation provides new
insights into the determination of the largest possible diameter δ (d,k) over all
possible lattice (d,k)-polytopes. An enhanced algorithm to determine δ (d,k) is
introduced to compute previously intractable instances. The key improvements
are achieved by introducing a novel branching that exploits convexity and combi-
natorial properties, and by using a linear optimization formulation to significantly
reduce the search space. In particular we determine the value for δ (3,7).
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Chapter 1

Introduction

1.1 Polytopes

In this chapter we recall basic definitions and properties of polytopes. For addi-
tional properties, we refer to Ziegler [24] and references therein.

A (d,n) convex polyhedron P is defined by the intersection of a finite number n

of half-spaces in Rd . In other words, P can be defined as the set of solutions
to a system of linear inequalities: P = {x ∈ Rd : Ax ≤ b} where A is a d by n

matrix.

A bounded convex polyhedron is called a polytope; that is, there exists a scalar
M such that ‖ x ‖≤ M for x ∈ P. A polytope can also be defined as the convex
hull of a finite set of points in Rd . A lattice polytope is a polytope such that all its
vertices are integer-valued. A lattice (d,k)-polytope is a polytope in dimension d

whose vertices are drawn from {0,1, . . . ,k}d .
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1.2 Shortest paths in the edge-graph and diameter

Given a polytope P, its edge graph is the graph whose vertex set is the set of
vertices of the P, and whose edge set is the set of edges of P. A path between
two vertices (u,v) of P is a sequence of edges connecting u and v. A shortest

path is a path connecting u and v consisting of the lowest possible number of
edges. The number of edges of a shortest path that connects u and v is denoted by
d(u,v).

In terms of egde graph, the distance from a vertex u ∈ P to a face F is defined as
d(u,F) = min{d(u,v) : v ∈ F}, the minimum distance between u and v over all
vertices v in F .

1.3 Linear optimization and diameter of polytopes

The diameter of a polytope P is a lower bound for the worst-case number of itera-
tions required for pivot-based linear optimization algorithms to solve the problem
min{c ·x : x ∈ P}. The main goal of this work consists in better understanding the
structure of polytopes achieving large diameter. The search of a polytope is usu-
ally done by given parameters d and n, where d is the dimension and n corresponds
to the number of facets, that is the number of inequalities that are facet-inducing.
In this work, we use the range k for lattice polytopes.

The first part of the thesis summarizes the framework developed by Deza et al. [8]
to determine the largest possible diameter δ (d,k) over all lattice (d,k)-polytopes.
The second part presents a novel approach to determine a previously intractable
value for δ (d,k).

1.3.1 Simplex method

Dantzig’s simplex method [6] is one of the most widely used algorithms to solve
linear optimization instances. It was the first practical algorithm that exploits the

2



combinatorial properties of polyhedra. Originally introduced in 1947 by George
Dantzig, the algorithm derives its name from the concept of a simplex, i.e. a
generalization of a triangle to an arbitrary dimension. The method is pivot-based
and purely combinatorial. Starting from an initial vertex, found using a surrogate
formulation, the simplex method stays on the boundary of the feasible region until
reaching, in a finite number of iterations, a vertex maximizing a linear function.
Assuming for clarity of the exposition that every vertex of the feasible region is
simple; that is, satisfies with equality exactly d inequalities, the simplex method
travels from a vertex to an adjacent vertex using an edge which scalar product with
the objective function is nonnegative if we are maximizing. In the dual setting,
this corresponds to pivot from a simplex to an adjacent simplex sharing a face of
dimension d−1, hence the simplex method name. The set of inequalities satisfied
with equalities are associated to the basic variables and the other inequalities to
the nonbasic variables.

More specifically, the simplex algorithm is applied to linear optimization instances
which are in the so-called canonical form:

max cT x

Ax = b

and x≥ 0

where x = (x1, . . . ,xd) are the decision variables, c = (c1, . . . ,cd) the coefficients
of the objective function, and a set of constraints defined by an n×d matrix A and
b = (b1, . . . ,bn) being the non-negative right hand side of the n inequalities.

Each constraint defines a half-space in d dimensions which is convex. The inter-
section of the n half-spaces forms the set of all feasible solutions which is convex
as the intersection of n convex sets. If the feasible region is bounded, it is also
equal to the convex hull of its vertices. Assuming the instance is feasible and
bounded in the direction of the objective function, to solve the linear optimization
problem is to find a feasible solution maximizing the objective function. Since
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the set of maximizers form a face of the feasible region, the optimal solution must
occur at at least one vertex. This means that neighbouring vertices of an optimal
vertex cannot have a strictly larger objective value.

The simplex algorithm can be presented in a geometrical fashion as a path traver-
sal algorithm along the exterior of the polytope representing the set of feasible so-
lutions, see Figure 1.1. The algorithm starts at a vertex of the polytope and checks
adjacent vertices for a larger objective value. If a neighbour has a larger objective
value, then the algorithms moves to that vertex according to a given pivoting rule
and continues. The algorithm traverses along the exterior of the polytope, going
from vertex to vertex, until it reaches a vertex with no neighbour having a better
objective value.

When there are multiple neighbours with a better solution, a pivot rule is used to
decide which vertex to go to. There are several choices for the pivot rule such
as picking the largest value of the scalar product between the objective function
and the edge, that is an analogue of a steepest gradient, or some lexicographical
ordering. The chosen pivot rule can significantly affect the running time of the
algorithm. While in practice the simplex algorithm is quite efficient, a worst case
instance leading to an exponential number of iterations in know for nearly all
existing pivoting rules. Achieving a deeper understanding of the combinatorial
and geometric properties of polytopes achieving a large diameter would contribute
to the quest for novel pivoting rules.

1.4 Research objectives

The first aspect to consider for finding the largest diameter of all (d,k)-polytopes,
is the size of the lattice (d− 1,k)-polytopes input set. The search space can be
extremely large to examine even for small values of d and k. We first mention
structural properties to explain our novel approach for determining the maximal
diameter of lattice (d,k)-polytopes. Then we discuss our new linear optimization
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Figure 1.1: Iterations of the Simplex method, where the red point represents the current
basis and the green points represent previous bases.

based on algorithm that achieve an efficient reduction of the search space. In
Chapter 3 we explain an enhanced algorithm to determine δ (d,k) and a previously
intractable instance is computed.

The problem is described in Section 2.1 and the structural properties of lattice
(d,k)-polytopes are listed in Section 2.2. Our novel algorithm is presented in
Chapter 3. This algorithm determines the largest diameter of all lattice (d,k)-
polytopes. In detail we present how the search space can be efficiently examined
in Sections 3.1.4 and 3.1.5. Several illustrations for d = 3 of our linear optimiza-
tion techniques used to reduce search space are shown in Section 3.1.5. Section
3.1.5 explains how the techniques illustrated in 3.1.5 can be generalized to d = 4.
Finally, we show that our novel approach is able to compute δ (3,7) in Section
3.2.

5



Chapter 2

Current Framework for Lattice
Polytopes with Large Diameter

In this chapter we revisit the framework developed by Deza et al. [8] to com-
pute the largest possible diameter over all lattice (d,k)-polytopes. The structural
properties of lattice (d,k)-polytopes that achieve the largest possible diameter in-
vestigated by Deza et al. [8] are detailed in Section 2.2. The framework developed
by Deza et al. [8] improved on the framework introduced Chadder and Deza [4].
Chadder and Deza [4] proposed an algorithm to determine whether δ (d,k) is equal
to δ (d− 1,k)+ k. The work of Deza et al. [8] exploits the structural properties
showed in Section 2.2 and introduced the slack variable g. This variable is used
to set the target diameter to δ (d−1,k)+k−g. However, when the number of lat-
tice (d−1,k)-polytopes is large, checking whether if δ (d,k) = δ (d−1,k)+k−g

becomes computationally intractable.
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2.1 Introduction

In order to introduce and motivate our work, we recall the Hirsch conjecture and
review the progress made on the upper and lower bounds by researchers in the
second half of the 20 th century, and look at more recent results obtained in the
past few years.

The Hirsch conjecture was formulated by Warren Hirsch in 1957 and reported
in [5]. The conjecture states that for a polytope P in dimension d with n facets,
n− d is an upper bound for the diameter of P. The conjecture opened up a new
realm of research into the diameter of polytopes with many open questions related
to the diameter of polytopes and more generally to the combinatorial, geometric,
and algorithmic aspects of linear optimization. Santos [20] presented a counterex-
ample in 2012 to the Hirsch conjecture. Let ∆(n,d) be the maximal diameter of
the graph of d−dimensional polytope P with at most n facets, for n > d ≥ 2. De-
termining the behavior of ∆(n,d) has been for long time objective in this area. We
observe that the number of iterations required by the simplex method in the worst
case complexity, with any pivot rule, has as a lower bound, the value of ∆(n,d).
Therefore, the behavior of ∆(n,d) is related to simplex method complexity. Note
that the initial counterexample of Santos is of dimension 43 while further investi-
gation lead to a counterexample of dimension 20 [18, 21].

The search for an upper bound on the largest diameter ∆(d,n) over all polytope
in dimension d having n facets goes back at least to 1967 with the work of Klee
and Walkup [15] and the work of Larman [17] in 1970 who provided an upper
bound that was further improved by Barnette [1] to ∆(d,n) ≤ n2d/6. Note that
this bound, for fixed dimension d, is linear in n. In 1992, Kalai and Kleitman [14]
provided a bound of ∆(d,n) ≤ nlogd+2. This bound has since been tightened by
Todd [23] and Sukegawa [22] to ∆(d,n)≤ (n−d)log(d−1). For additional results,
we refer the reader to [2, 3] and references therein.

In the case of lattice (d,k)-polytopes, current work uses k as alternative to n and
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the value of the largest diameter δ (d,k) over all lattice (d,k)-polytopes have been
investigated by Naddef [19] in 1989 who showed that δ (d,1) = d, and we ob-
serve that lattice (d,1)-polytopes satisfy the Hirsch conjecture. A few years later,
Naddef’s result was generalized to any dimension by Kleinschmidt and Onn [16]
who proved that δ (d,k) ≤ kd. Del Pia and Michini [7] were able to strengthen
this upper bound to δ (d,k) ≤ kd − dd/2e when k ≥ 2, and they showed that
δ (d,2) = b3d/2c. The bound was further strengthened by Deza and Pournin [10]
to δ (d,k)≤ kd−d2d/3e− (k−3) when k ≥ 3.

In 2017, Deza, Manoussakis, and Onn [9] introduced a lower bound for small k,
that is achieved by a family of lattice zonotopes, referred to as primitive zono-
topes. They proved that δ (d,k)≥ b(k+1)d/2c for k≤ 2d−1. Furthermore, they
proposed conjecture 2.1.1.

Conjecture 2.1.1. For any d and k, δ (d,k) is achieved, up to translation, by

a Minkowski sum of lattice vectors. In particular, δ (d,k) = b(k + 1)d/2c for

k ≤ 2d−1.

Following this line of research, Chadder and Deza [4] developed a framework
to show computationally that the conjecture holds for (d,k) = (3,4) and (d,k) =

(3,5), that is, δ (3,4) = 7 and δ (3,5)= 9. Our research results further substantiates
this conjecture. This framework was enhanced by Deza et al. [8], introducing a
slack variable g.

Table 2.1 shows the latest results for the maximal diameter of lattice polytope,
δ (d,k) with our contribution in bold.

Considering the largest diameter over all lattice (d,k)-zonotopes, δz(d,k), Deza,
Pournin, and Sukegawa [11] showed that, up to an explicit multiplicative constant,
δz(d,k) grows like kd/d−1 when d is fixed and k goes to infinity. Since δz(d,k)≤
δ (d,k), this result provides a new lower bound for δ (d,k).

8



k
1 2 3 4 5 6 7 8 9 . . .

d

1 1 1 1 1 1 1 1 1 1 . . .
2 2 3 4 4 5 6 6 7 8 . . .
3 3 4 6 7 9 10 11
4 4 6 8
5 5 7 10
...

...
...

d d
⌊3

2d
⌋

Table 2.1: Largest possible diameter δ (d,k) of a lattice (d,k)-polytope

2.2 Structural properties of lattice (d,k)-polytopes
with large diameter

In this section, we recall the properties exploited by Deza et al. [8], that provide
the building blocks for the new approach algorithm described in Section 3.1.

The following notation will be used throughout our work to describe how the
framework was developed. Given two vertices u and v of a polytope P, let denote
as d(u,v) the shortest distance between u and v on the edge-graph of P. Let F be
a facet of P, d(u,F) = min{d(u,v) : v ∈ F} is the shortest distance from u to any
vertex v ∈ F . The diameter of the edge-graph of P is denoted by δ (P), this value
corresponds to longest shortest path between any pair of vertices in the vertext set
of P. The coordinates of a vector x ∈ Rd are denoted by x1 to xd , and its scalar
product with a vector y ∈ Rd by x·y.

Lemma 2.2.1, introduced by Del Pia and Michini, is restated here. It provides an
upper bound for d(u,F) being u a vertex of P and F a facet of P. This lemma
allows to introduce additional structural properties.

Lemma 2.2.1 ([7]). Consider a lattice (d,k)-polytope P. If u is a vertex of P

and c ∈ Rd is a vector with integer coordinates, then d(u,F) ≤ c·u− γ where
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γ = min{c·x : x ∈ P} and F = {x ∈ P : c·x = γ}.

Assuming in Lemma 2.2.1 that c = ±ci where ci is the vector whose coordinates
are all equal to 0 except for the i-th coordinate that is equal to 1, following objects
are considered. Let γ

−
i (P) = min{xi : x ∈ P} and F−i (P) = {x ∈ P : xi = γ

−
i (P)}.

Similarly, let γ
+
i (P) =max{xi : x∈ P} and F+

i (P) = {x∈ P : xi = γ
+
i (P)}. F−i (P),

and F+
i (P) will be denoted by F−i and F+

i , when there is no ambiguity. For paths
connecting u to v that go through F−i (P) or F+

i (P), d(u,v) can be bounded as
follows. Note that under some maximality conditions, F−i and F+

i can be assumed
to be facets of dimension d−1.

d(u,v)≤ min
i=1,...,d

min{δ (F−i )+d(u,F−i )+d(v,F−i ),δ (F+
i )+d(u,F+

i )+d(v,F+
i )}.(2.1)

Setting c =±ci, inequality (2.1) can be rewritten as Corollary 2.2.2 which is a key
component to show by induction that δ (d,k)≤ kd.

Corollary 2.2.2. Let u and v be two vertices of a lattice (d,k)-polytope, then

d(u,v)≤ min
i=1,...,d

min{δ (F−i )+ui + vi,δ (F+
i )+2k−ui− vi}.

We use Proposition 2.2.3, borrowed from [12], see Corollary 12.2 and Proposition
12.4 therein, to prove Lemma 2.2.4.

Proposition 2.2.3. Let P1 and P2 be two polytopes in Rd and P = P1 +P2 their

Minkowski sum. Let v = v1+v2, such that v1 ∈ P1 and v2 ∈ P2. Then v is a vertex

of P if and only if (i) v1 and v2 are vertices of P1 and P2, respectively; and (ii)

there exists an objective function c ∈ Rd that is uniquely minimized at v1 in P1

and at v2 in P2. Moreover, if u and v are adjacent vertices of P with Minkowski

decompositions u = u1+u2 and v = v1+v2, respectively, then ui and vi are either

adjacent vertices of Pi, or they coincide, for i = 1,2.

10



Lemma 2.2.4. For any lattice (d,k)-polytope Q, there exists a lattice (d,k)-polytope

P of diameter at least δ (Q) satisfying γ
−
i (P) = 0 and γ

+
i (P) = k for i = 1, . . . ,d.

Proof. Assume that, for some i, γ
+
i (Q)− γ

−
i (Q) < k. Up to translation, we can

assume that γ
−
i (Q) = 0. Consider the segment σ i = conv{0,(k−γ

+
i (Q))ci}where

ci is the point whose coordinates are all equal to 0 except for the i-th coordinate
that is equal to 1. By construction, Q+σ i is a lattice (d,k)-polytope such that
γ
−
i (Q+σ i) = 0 and γ

+
i (Q+σ i) = k. Let u and v be two vertices of Q such that

d(u,v) = δ (Q). By Proposition 2.2.3, with c = ci, there exist two vertices u′ and
v′ of Q+σ i obtained as the Minkowski sums of u and v, respectively with two
(possibly identical) vertices of σ i. Moreover, for any path of length l between
u′ and v′ in the edge-graph of Q + σ i, there exists a path of length at most l

between u and v in the edge-graph of Q. Consequently, the distance of u and v

in Q is at most the distance of u′ and v′ in Q+σ i. Thus, δ (Q) ≤ δ (Q+σ i). If
γ
+
j (Q+σ i)−γ

−
j (Q+σ i)< k for some j 6= i, the above procedure can be repeated

until no such coordinate remains.

Deza et al. [8] introduces a slack variable g to quantify the gap between the triv-
ial upper bound, δ (d,k) ≤ δ (d− 1,k)+ k and a target diameter. Lemma 2.2.5
indicates how g can be used.

Lemma 2.2.5. Assume that δ (d,k) = δ (d− 1,k) + k− g for an integer g with

0≤ g≤ k.

(i) If u and v are two vertices of a lattice (d,k)-polytope such that d(u,v) =

δ (d,k), then |ui + vi− k| ≤ g for i = 1, . . . ,d.

(ii) There exists a lattice (d,k)-polytope P of diameter δ (d,k) such that the

intersection of P with each facet of the hypercube [0,k]d is, up to an affine

transformation, a lattice (d−1,k)-polytope of diameter at least δ (d−1,k)−
2g.
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Proof. Setting d(u,v) = δ (d−1,k)+ k−g in Corollary 2.2.2 yields:

δ (d−1,k)+ k−g≤ δ (F−i )+(ui + vi) for i = 1, . . . ,d, (2.2)

δ (d−1,k)+ k−g≤ δ (F+
i )+2k− (ui + vi) for i = 1, . . . ,d. (2.3)

Thus,

k−g≤ ui + vi +δ (F−i )−δ (d−1,k) for i = 1, . . . ,d, (2.4)

k+g≥ ui + vi +δ (d−1,k)−δ (F+
i ) for i = 1, . . . ,d. (2.5)

Hence, since both δ (F−i ) and δ (F+
i ) are at most δ (d−1,k), the inequality k−g≤

ui + vi ≤ k+g holds for i = 1, . . . ,d; that is, item (i) holds.

By Lemma 2.2.4, there exists a lattice (d,k)-polytope P of diameter δ (d−1,k)+
k− g such that the intersection of P with each facet of the hypercube [0,k]d is
nonempty. Let u and v be two vertices of P such that d(u,v) = δ (P). Inequalities
(2.4) and (2.5) can be rewritten as:

δ (F−i )≥ δ (d−1,k)−g+ k− (ui + vi) for i = 1, . . . ,d, (2.6)

δ (F+
i )≥ δ (d−1,k)−g− k+(ui + vi) for i = 1, . . . ,d. (2.7)

Thus, since k−g≤ ui + vi ≤ k+g for i = 1, . . . ,d by item (i), δ (F−i ) and δ (F+
i )

are at least δ (d−1,k)−2g for i = 1, . . . ,d; that is, item (ii) holds.

We recall that the bounds obtained by Del Pia and Michini [7] and Deza and
Pournin [9] hold in general for lattice polytopes inscribed in rectangular boxes.

Corollary 2.2.6 (Remark 4.1 in [9]). Let δ (k1, . . . ,kd) denote the largest possible

diameter of a polytope whose vertices have their i-th coordinate in {0, . . . ,ki} for

i = 1, . . . ,d and, up to relabeling, k1 ≤ k2 ≤ ·· · ≤ kd . The following inequalities

hold:
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1. δ (k1, . . . ,kd)≤ k2 + k3 + · · ·+ kd−dd/2e+2 when k1 ≥ 2,

2. δ (k1, . . . ,kd)≤ k2 + k3 + · · ·+ kd−d2d/3e+3 when k1 ≥ 3.

Observe that the statement of Remark 4.1 in [10] contains a typographical in-
correctness as k1 and kd were interchanged in (i) and in (ii). Conjecture 2.1.1
can also be stated for lattice polytopes inscribed in rectangular boxes; that is,
δ (k1, . . . ,kd) is at most b(k1 + k2 + · · ·+ kd +d)/2c, and is achieved, up to trans-
lation, by a Minkowski sum of lattice vectors. Note that this generalization of
Conjecture 2.1.1 holds for d = 2 and for (k1,k2,k3) = (2,2,3) and (2,3,3). More-
over, δ (k1,k2) = δ (k1,k1), and δ (2,2,3) = δ (2,3,3) = 5.

2.3 Computational framework to determine δ (d,k)

Since the hypercube [0,k]d has (k+ 1)d integer coordinate points, an exhaustive
generation of all lattice (d,k)-polytopes would require to perform 2(k+1)d

convex
hull computations. This task is computationally intractable even for small values
of d and k.

In the following sections we revisit the algorithm proposed by Deza et al. [8]. In
this branch and cut approach, the algorithm starts with a pair of points (u,v) as
initial node. This pair of vertices (u,v) is assume to be antipodal, that is d(u,v) is
equal to the target diameter. Each branch is validated to determine whether a lat-
tice (d,k)-polytope achieving target diameter can be found. When there is no lat-
tice (d,k)-polytope achieving target diameter, the branch is immediately pruned.
The validation of each branch requires convex hull computations. Such computa-
tions are a important component and, at the same time, a bottle neck for the search
space examination. For convex hull computations, the library of the double de-
scription method implemented in C by Komei Fukuda [13] is employed.
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2.3.1 Main algorithm

The algorithm contains the following four main steps:

• Enumeration of all (u,v) pairs of vertices such that d(u,v) = δ (P).

• Shelling step.

• Inner step.

• Generation of all lattice (d,k)-polytopes with an empty intersection with at
least one facet of [0,k]d.

For each pair (u,v) the algorithm attempts to construct lattice (d,k)-polytopes
P of maximal diameter starting with two initial vertices {u,v}. First, it tries to
embed lattice (d− 1,k)-polytopes onto the facets of the hypercube [0,k]d . Thus,
the size of the set of lattice (d−1,k)-polytopes available to embed impacts on the
algorithm performance. Denote by Γ the graph containing the known vertex and
edge sets. At the beginning Γ has as vertex set {u,v} and no edges.

The idea to consider each intersection of the [0,k]d was proposed by Chadder
and Deza [4], where it was checked whether δ (d,k) is equal to δ (d− 1,k)+ k.
There are lower bounds and upper bounds for the problem of finding the diameter
of lattice polytopes. To target a specific value in the gap between these bounds
Deza et al. [8] introduced a slack variable g. When g = 0 the target diameter is
the upper bound. During the branch and cut procedure a target diameter is fixed
as the optimal value. When an upper bound for d(u,v) of the current branch is
strictly less than the target diameter the branch is pruned.

In terms of Lemma 2.2.5, checking whether δ (d,k) = δ (d−1,k)+k is equivalent
to testing whether g= 0. Then main specificity when g= 0 is that F−i and F+

i must
be faces that have the maximal diameter δ (d− 1,k). Therefore the computation
is significantly easier as the number of lattice (d − 1,k)-polytopes that can be
embedded onto F−i or F+

i is relatively small.
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2.3.2 Generating all (u,v) pairs

In this section, we recall the four conditions stated by Deza et al. [8] to generate
all (u,v) pairs of vertices of a lattice (d,k)-polytope that satisfy d(u,v) = δ (d−
1,k)+ k−g. The first condition restricts the coordinates of u as follows:

ui ≤ ui+1 ≤ bk/2c for i = 1, . . . ,d−1.

The second condition is based on the item (i) of 2.2.5. Accordingly the coordinates
of u and v are restricted by the following set of inequalities:

k−g≤ ui + vi ≤ k+g for i = 1, . . . ,d.

For the third condition, let assume all u are generated in lexicographical order
denoted by ≺. Let w̃ the point consisting of the coordinates of w reordered
lexicographically. Then u and v can be assumed to satisfy the following condi-
tions:

{vi ≤ vi+1 if ui = ui+1} for i = 1, . . . ,d−1,

u≺ w̃ where w = (k, . . . ,k)− v if {vi ≥ dk/2e for i = 1, . . . ,d}.

The next condition exploits the fact that a set of lattice (d− 1,k)-polytopes with
sufficiently large diameter will be used during embedding process. Thus, when u

or v belong to the hypercube facets, they must be vertices of at least one of the
lattice (d−1,k)-polytopes that the algorithm is trying to embed. Let Vd,k,g be the
set that contains all vertices of all the lattice (d,k)-polytopes with diameter at least
δ (d,k)−g and let v̄i be the point in Rd−1 consisting of all coordinates of v except
vi. Then we define g−i = g+ui+vi−k and g+i = g+k−(ui+vi). In order to u and
v be vertices of a lattice (d,k)-polytope with diameter at least δ (d−1,k)+ k−g,
the following conditions must hold:
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{ūi ∈ Vd−1,k,g−i
if ui = 0} for i = 1, . . . ,d,

{v̄i ∈ Vd−1,k,g+i
if vi = k} for i = 1, . . . ,d.

Finally, the last condition exploits convexity and the properties of the set of all
lattice (d− 1,k)-polytopes to consider for embedding. It also provides another
condition to restrict the (u,v) pairs to consider. Let Pd,k,g be the set of all the in-
teger value coordinate points belonging to the intersection of all the lattice (d,k)-
polytopes of diameter at least δ (d,k)− g. Let C u,v

d,k,g be the convex hull of {u,v}
and the following set:

[
d⋃

i=1

{x ∈ Rd : xi = 0 and x̄i ∈Pd−1,k,g−i
}

]
∪

[
d⋃

i=1

{x ∈ Rd : xi = k and x̄i ∈Pd−1,k,g+i
}

]
.

The following condition must be met for u and v to be vertices of a lattice (d,k)-
polytope with diameter at least δ (d−1,k)+ k−g:

u and v are vertices of C u,v
d,k,g.

2.3.3 Shelling step

In the shelling step, for a given pair (u,v), the algorithm tries to embed a set of
lattice (d− 1,k)-polytopes with sufficiently large diameter onto the 2d intersec-
tions of P with the facets of the hypercube [0,k]d . For each resulting shelling
the inner step is performed. During the inner step all subsets of inner points in
{1,2, . . . ,k−1}d are considered to be added as vertices of P.

The input of the shelling step is a triple (d,k,g) and a pair (u,v) of initial vertices.
The target diameter is defined by d(u,v) = δ (d− 1,k)+ k− g. Only 0,1, . . . ,k-
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valued coordinate vertices are considered and g is the slack variable.

Section 2.3.3 presents the ordering criteria to select next hypercube facet for in-
tersecting. Recalling the branch and cut approach presented by Deza et al. [8],
the shelling step attempts to build skeletons or shellings of lattice (d,k)-polytopes
embedding lattice (d− 1,k)-polytopes onto the 2d hypercube facets, one at the
time. Let assume that we have selected the next facet F−i or F+

i to embed. Then a
set of all consistent lattice (d−1,k)-polytopes of diameter at least δ (d−1,k)−g−i
or δ (d−1,k)−g+i respectively are listed. Consistency implies that if before em-
bedding we know that:

• Some vertices belong to the next hypercube facet to embed.

• Some points can not be considered as vertices in the next hypercube facet
to embed.

Then iteratively each lattice (d−1,k)-polytope is evaluated using the two certifi-
cates detailed in Section 2.3.3. If a lattice (d−1,k)-polytope meets the conditions,
a branch is created. Otherwise the current node is pruned.

When a lattice (d−1,k)-polytope is considered, its vertices and edges are added
to Γ. The values of γ , C Γ

d,k,g and gap scores of non-embedded yet hypercube facets
in the shelling are updated. The gap scores g−i , and g+i , are updated accordingly
to g−i = g+ d̃(u,F−i ) + d̃(v,F−i )− k and g+i = g+ d̃(u,F+

i ) + d̃(v,F+
i )− k. If

either Certificates 1 or 2 of non-existence is fulfilled, then the current node can be
pruned and the search continues checking to the next candidate for the selected
intersection.

The output of the shelling step is a set of skeletons or shellings. Because the
vertices of the shelling could not be enough to define a lattice (d,k)-polytope such
as d(u,v) = δ (d−1,k)+ k−g. One more step may be required to perform. This
further step is called the inner step. Essentially, this step considers the inner points
of the hypercube for completing the construction of polytope P with maximal
diameter. Each skeleton could be completed adding further vertices in order to
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build a lattice (d,k)-polytope that achieves target diameter d(u,v) = δ (d−1,k)+
k−g.

Key ideas to reduce the search space

The algorithm starts with only u and v as vertices. Then one of the facets of the
[0,k]d is selected to be embedded as the first intersection with P. For each non-
embedded hypercube facet, the available number of lattice (d−1,k)-polytopes to
intersect depends on the information that we currently know. Therefore different
ordering sequences will impact in the required computational time for the exam-
ination of search space. We are interested in an embedding sequence such as the
output of the shelling step can be obtained as efficiently as possible.

To estimate which facets of the hypercube correspond to the lowest number of
lattice (d− 1,k)-polytopes available to intersect we use the gap parameters g−i
and g+i . Such gap parameters are calculated as follows:

g−i = g+ui + vi− k

g+i = g+ k− (ui + vi)

A lower score is assume to yield a lower number of lattice (d− 1,k)-polytopes.
Thus, for the next intersection with hypercube we are interested in the lowest
possible gap score. Typically we select the score equal to zero. If there are non-
embedded intersections with the same lowest score, the number of known vertices
in the corresponding intersections is considered as tie breaker. Finally if a tie
persists, the algorithm uses a default order. The following tie breaker criteria are
employed by the framework developed by Deza et al. [8] in the order:

1. The lowest facet gap parameter, g−i or g+i .

2. The number of known vertices in F−i or F+
i .

3. Finally, the default order of F−1 , ...,F−d ,F+
1 , ...,F+

d .
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We recall Certificates 1 and 2 introduced by Deza et al. [8] that show no lattice
(d,k)-polytope with vertices u and v can exist such that d(u,v) = δ (d−1,k)+k−
g.

Certificate 1: Shortest path in shelling is less than δ (d−1,k)+ k−g

During the shelling step the algorithm starts the construction of a lattice (d,k)-
polytope P with only two vertices {u,v}. The algorithm continues to embed a
lattice (d−1,k)-polytope onto a facet of [0,k]d . It is important to determine with
the lowest possible number of embeddings whether the current shelling potentially
can be or not part of lattice (d,k)-polytopes that achieve the target diameter. Given
an intersection F−i or F+

i of P with the hypercube, Certificate 1 consists of an
upper bound calculated as the sum of following three terms:

• The minimum distance from u to any vertex of any F−i or F+
i .

• δ (F−i ) or δ (F+
i ).

• The minimum distance from v to any vertex of any F−i or F+
i .

Note that u or v are not always connected via Γ with vertices in F−i or F+
i . The

following values are upper bounds for the distance in Γ between u or v and the
intersection of P with a facet of the hypercube [0,k]d:

d̃(u,F−i ) = min
w∈Γ
{dΓ(u,w)+wi} for i = 1, . . . ,d,

d̃(u,F+
i ) = min

w∈Γ
{dΓ(u,w)+ k−wi} for i = 1, . . . ,d,

d̃(v,F−i ) = min
w∈Γ
{dΓ(v,w)+wi} for i = 1, . . . ,d,

d̃(v,F+
i ) = min

w∈Γ
{dΓ(v,w)+ k−wi} for i = 1, . . . ,d.
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d̃(u,F−i ) = min
w∈Γ
{dΓ(u,w)+wi} for i = 1, . . . ,d,

d̃(u,F+
i ) = min

w∈Γ
{dΓ(u,w)+k−wi} for i = 1, . . . ,d,

d̃(v,F−i ) = min
w∈Γ
{dΓ(v,w)+wi} for i = 1, . . . ,d,

d̃(v,F+
i ) = min

w∈Γ
{dΓ(v,w)+k−wi} for i = 1, . . . ,d.

We observe that the distance from a vertex to an intersection of P with the hyper-
cube can not exceed the minimum of the value of the coordinate in said dimension,
ui or vi, and k−ui or k− vi. Define d◦(u,v) as follows:

d◦(u,v)= min
i=1,...,d

{min{d̃(u,F−i )+ d̃(v,F−i )+δ (F−i ), d̃(u,F+
i )+ d̃(v,F+

i )+δ (F+
i )}}.

Where d◦(u,v) is an upper bound for d(u,v) defined by inequality (2.1). When the
diameters δ (F−i ) and δ (F+

i ) are not known yet, we use the corresponding upper
bound δ (d−1,k).

Every time a lattice (d− 1,k)-polytope is successfully embedded onto a facet of
[0,k]d , Γ is updated by adding new vertices an edges of the lattice (d − 1,k)-
polytope. Γ can be considered a sub-graph of the edge-graph of the final polytope
P. Therefore dΓ(u,v) also represents an upper bound for d(u,v). Given the target
diameter δ (d − 1,k) + k− g and two upper bounds for d(u,v), we are able to
determine efficiently if the current subgraph of the edge-graph corresponds to a
shelling that potentially could become in a lattice (d,k)-polytope P of maximal
diameter. Define the following parameter γ:

γ = δ (d−1,k)+ k−g−min{dΓ(u,v),d◦(u,v)}.

When γ > 0 we conclude that from the current node the search space tree, no lat-
tice (d,k)-polytope such that d(u,v)= δ (d−1,k)+k−g can be constructed.
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Certificate 2: u or v is not a vertex of C Γ
d,k,g

If the vertices u or v are inner points of [0,k]d , the algorithm must check whether
u and v remain as vertices of polytope P during the shelling step. Let Pd,k,g

be the set of all integer points that belong to the intersection of all lattice (d,k)-
polytopes of diameter at least δ (d,k)− g. The set Pd,k,g and the current vertex
set of Γ make possible to establish a condition for determining whether the current
shelling can be pruned. Denote by C Γ

d,k,g the convex hull of the vertex set of Γ and
the following set of points:[

d⋃
i=1

{x ∈ Rd : xi = 0 and x̄i ∈Pd−1,k,g−i
}

]
∪

[
d⋃

i=1

{x ∈ Rd : xi = k and x̄i ∈Pd−1,k,g+i
}

]
.

The current shelling is removed from consideration if:

u or v is not a vertex of C Γ
d,k,g.

2.3.4 Inner step

The inner step takes as input a set of shellings or skeletons in order to find lattice
(d,k)-polytopes that achieve diameter δ (d− 1,k)+ k− g. For each shelling, the
following points p are considered:

• pi ∈ {1, ...,k−1} for i = 1, . . . ,d.

• p /∈ vertex set of Γ.

• p is a vertex of convex hull of vertices in Γ∪ p.

During the inner step, Deza et al. [8] considered all subsets of points satisfying
conditions above to attempt constructing lattices (d,k)-polytopes achieving target
diameter. Even for a small number of inner points of [0,k]d , performing con-
vex hull computations for all possible subsets makes the search computationally
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intractable.

The generated lattice (d,k)-polytopes whose diameter is less or equal δ (d−1,k)+
k−g−1 as well as duplicates, up to the symmetries of the hypercube [0,k]d , are
removed. When the inner step output is empty, we conclude that δ (d,k)< δ (d−
1,k)+k−g. If it is non-empty, the inner step provides, up to the symmetries of the
hypercube [0,k]d , all lattice (d,k)-polytopes of diameter δ (d−1,k)+k−g having
non-empty intersection with the 2d facets [0,k]d . Additional computations are re-
quired to find, if possible, all lattice (d,k)-polytopes of diameter δ (d−1,k)+k−g

with at least one empty intersection with facet of [0,k]d . This will be detailed in
Section 2.3.5.

2.3.5 Generation of all lattice (d,k)-polytopes of diameter at
least δ (d−1,k)+ k−g

In this section, we recall from the work of Deza et al. [8], how the lattice (d,k)-
polytopes with an empty intersection with at least one facet of [0,k]d can be de-
rived from the output of shelling step.

The main idea behind generating all lattice (d,k)-polytopes with diameter at least
δ (d− 1,k)+ k− g whose intersection with one of the facets of [0,k]d is empty
is to use the idea from Lemma 2.2.4. We will attempt to expand the polytope
in a direction, s, to check the possibility of contracting P in the direction of −s.
If a possible contraction exists, we can then check the diameter of the resulting
polytope to see if a new valid polytope of diameter at least δ (d−1,k)+k−g with
an empty intersection with one of the facets of [0,k]d .

Let I(Q) denote the set of the coordinates i such that γ
+
i (Q)− γ

−
i (Q) < k. Con-

sider a lattice (d,k)-polytope Q of diameter at least δ (d− 1,k)+ k− g such that
I(Q) 6= /0. For all i ∈ I(Q), we can assume, up to translation, that γ

−
i (Q) = 0 and

consider the segment σ i = conv{0,(k− γ
+
i (Q))ci}. Let S denote the Minkowski

sum of all σ i for i ∈ I(Q). As shown in the proof of Lemma 2.2.4, Q+ S is a
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lattice (d,k)-polytope of diameter at least δ (Q) satisfying I(Q+S) = /0. In other
words, Q+ S is, up to the symmetries of [0,k]d , in the output of the algorithm
ran for (d,k,g). Note that setting P1 = Q and P2 = [0,s] where si ≥ 0 for all i in
Proposition 2.2.3 gives Remark 2.3.1.

Remark 2.3.1. Consider a segment σ = [0,s]; a point v′ is a vertex of Q+σ if

and only if there exists an objective function c ∈ Rd that is uniquely minimized at

v in Q and (i) v′ = v and c is uniquely minimized at 0 in σ , or (ii) v′ = v+ s and

c is uniquely minimized at s in σ . Moreover, if u′ and v′ are adjacent vertices of

Q+σ , then either (u′,v′) is equal to (u,v) or to (u+ s,v+ s) where u and v are

adjacent vertices of Q, or it is equal to (u,u+ s) where u is a vertex of Q.

Consequently, up to translation and up to the symmetries of the hypercube [0,k]d ,
the set of the lattice (d,k)-polytopes Q of diameter at least δ (d−1,k)+k−g such
that I(Q) 6= /0 can be generated as follows:

1. for each lattice (d,k)-polytope P in the output of the algorithm for (d,k,g),
check whether P=Q+σ where Q is a lattice (d,k)-polytope and σ a lattice
segment. By Remark 2.3.1, this can be done by checking whether P and
P+σ have the same number of vertices.

2. for each P such that P = Q+σ found at step (i), determine Q and check
whether δ (Q)≥ δ (d−1,k)+ k−g.

As for the shelling and inner steps, the symmetries of the hypercube [0,k]d are
used to remove duplicates generated within steps (i) and (ii). The set of lattice
segments σ considered in step (i) can be limited to a few segments whose coor-
dinates are relatively prime and used iteratively. One can check that, in order to
perform step (i) for d = 3, it is enough to consider for σ , iteratively, the 3 unit
vectors and the 3 sums of 2 unit vectors.
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Chapter 3

Enhanced Framework for Lattice
Polytopes with Large Diameter

In this chapter we present a novel approach to determine the largest possible di-
ameter over all lattice (d,k)-polytopes, denoted by δ (d,k). From a theoretical
perspective, the framework developed by Deza et al. [8] can determine δ (d,k).
However, in practice when the number of lattice (d − 1,k)-polytopes is large,
the problem to determine whether δ (d,k) is equal to δ (d−,k)+ k− g becomes
quickly intractable. In Section 3.1, we explain an linear optimization based al-
gorithm to determine δ (d,k), focusing on the case when d = 3 and d = 4. In
addition, new ideas to reduce the search space are introduced. Finally, we present
in Section 3.2 a new, previously intractable, entry δ (3,7) and summarize the key
challenges. Given a shelling, the main contribution of this new approach allows
the new algorithm to determine early on whether a shelling can be removed. Thus,
a significantly lower number of embeddings is required in comparison with the
framework developed by Deza et al. [8]. For some (u,v) pairs the search space
reduction is in the order of thousands of times.
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3.1 Enhanced algorithm to determine δ (d,k)

In this section, we formally describe our new approach based framework to de-
termine δ (d,k). We introduce three types of improvements to the framework
developed by Deza et al. [8]:

• The first improvement is a simple combinatorial property that was over-
looked in the work of Deza et al. [8]. For k even, a new condition is added
to the pair (u,v) generation process. Consequently, fewer (u,v) pairs are
considered as input of shelling step. In Subsection 3.1.2, this condition is
introduced and illustrated for (d,k,g) = (3,4,1). While it is not used for
(d,k) = (3,7), this property is considered for (d,k) = (4,4) which is cur-
rently under computation.

• The second improvement consists of efficient convexity based branching.
For u or v strictly inner points of the hypercube additional edges can be
added to Γ. These edges allow to connect u or v with F−i or F+

i respectively,
leading to decrease the gap scores with a lower number of embedding in
comparison with the framework developed Deza et al. [8]. Furthermore,
there are points on the facets of the hypercube that can not be vertices of
polytope P. These points can be removed from consideration before starting
shelling process, decreasing the number of lattice (d−1,k)-polytopes to list
for each facet of the [0,k]d .

• The last improvement is a linear optimization-based addition of edges not
belonging to any F−i or F+

i . During the shelling step new edges of P and
weighted virtual edges are added to Γ, increasing the likelihood of discov-
ering new paths connecting u and v with a lower number of embeddings,
in comparison with the framework developed by Deza et al. [8]. These
edges plays a key role in the pruning. They can be seen as diagonal,that
is, connecting vertices in dimension d instead of within a (d− 1) dimen-
sional space. Given a shelling or skeleton that corresponds to a lattice (d,k)-
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polytope P, the problem min{c · x : x ∈ P} and integrality conditions make
possible to identify additional faces in the shelling. Consequently new edges
from the edge graphf of P can be added to Γ. Moreover, we will show how
weighted virtual edges can be added to Γ. The improvements to shelling
step are detailed in the subsection 3.1.5.

3.1.1 Limitations of the framework developed by Deza et al. [8]

The algorithm developed by Deza et al. [8] is unable to determine the shelling step
output when the number of lattice (d−1,k)-polytopes is large. As illustration, in
dimension d = 3, the maximum value of k that can be verified by using mentioned
algorithm is 6. For example for (d,k) = (3,7) the framework developed by Deza
et al. [8] would require thousands times more effort than (d,k) = (3,6).

In this subsection, we list the two main reasons why under this scenario the al-
gorithm developed by Deza et al. [8] can not determine whether lattice (d,k)-
polytopes with large diameter exists:

• Convex hull computations are a key component of the algorithm. They
are required during the shelling and inner steps. Significant number of lat-
tice (d− 1,k)-polytopes, requires a large number of executions of convex
hull computation. These convex hull computations significantly slow down
the algorithm. Therefore it is important to find an alternative and efficient
strategies to verify convexity during the exploration of the search space.

• The previous version of the shelling step generates shellings of lattice (d,k)-
polytopes with diameter lower than the target diameter. These partial shellings
should be pruned early as they never lead to (d,k)-polytopes achieving the
target diameter. The framework developed by Deza et al. [8] is able to de-
termine whether those shellings can be part of lattice (d,k)-polytopes that
achieve target diameter only after the inner step. We will illustrate in Section
3.1.5 that such shellings can be removed before completing the 2d embed-
dings onto the facets of the [0,k]d by our novel framework. Furthermore,
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unnecessary shellings lead to unnecessary executions of the inner step.

These limitations suggests the idea of finding an alternative approach to verify
the convexity condition at every attempt to add vertices during shelling and inner
steps. In the shelling step and under specific conditions, exploiting convexity and
integrality of the problem min{c · x : x ∈ P} we can identify additional faces of
P. Additional faces allow to add new edges to Γ. Furthermore, there are other
cases where adding weighted virtual edges to Γ is possible. As a result, new paths
from u to v, previously undiscovered until the end of inner step, can be identified
in our new approach of the shelling step. Thus upper bounds for d(u,v) can be
achieved early on in the shelling step in comparison with the framework developed
by Deza et al. [8]. This yields a reduction of processing times and the size of the
shelling step output. The linear optimization formulation min{c · x : x ∈ P} also
allows us to identify critical inner points of the hypercube to be used as branching
criteria.

This new approach creates a new order criteria to select the next facet of the [0,k]d

for intersecting. The useful fact that during the shelling step we can connect
through Γ previously disconnected intersections of P with the hypercube, allows
us to introduce a new order embedding criteria. In the work of Deza et al. [8],
the number of currently known vertices of P that belong to the next candidate
intersections was used as the main criterion to select next facet of the [0,k]d to
intersect. This was a reasonable choice when the mentioned algorithm is trying
to build paths from u to v, and adjacent embeddings having empty intersections
remain disconnected in Γ during construction of shellings.

The most challenging scenario for the framework developed by Deza et al. [8]
corresponds to the case when k is large and vertices u or v are inner points of the
hypercube. For a large value of k there is a significant number of (u,v) pairs of
inner points to consider. This is one of the reasons why δ (3,7) was intractable.
The following changes are proposed for this entry:

• Prior to starting the shelling step some integer value coordinate points in the
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facets of hypercube can be removed from consideration. By convexity this
leads to list a lower number of lattice (d−1,k)-polytopes as candidates for
each embedding onto the 2d intersection of P with the hypercube.

• If ui = 1 for some i, then we know that an edge [u,w] exists for w ∈ F−i . We
will branch on the possible choices for w. Similarly, if vi = k−1 for some
i, we will branch for w ∈ F+

i .

• Finally, in the inner step an efficient examination of subsets of inner points
of the hypercube is added. This avoid unnecessary examinations of subsets
of points as candidates to be vertices of the polytope P. A branching pro-
cess is also included to exploit the upper bound certificates for determining
if a current construction can be or not a polytope P that achieves the target
diameter. Convex hull computations are performed as last resort to verify
potential vertices of polytope P.

These improvements make a significant impact in the search space tree growing
process. Basically the new algorithm prunes early on shellings that were consid-
ered by the framework developed by Deza et al. [8] as potential skeletons of lat-
tice (d,k)-polytopes with large diameter. Therefore the inner step was processing
shellings that correspond to lattice (d,k)-polytopes that can not achieve maximal
diameter.

During the exploration of strategies to reduce as much as possible the size of
search space tree, we identified a new condition for k even during generations of
all (u,v) pairs, that can be used for (d,k) = (4,4). We start the study of the men-
tioned improvements, by illustrating this extra condition for the pair generation
process in Section 3.1.2.
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3.1.2 Extra condition for generation of all (u,v) pairs

The shelling step is performed for every pair (u,v). Therefore, it is crucial to
remove redundant pairs prior to its execution. We add the following new condition
on v for k even:

vi ≥ k/2 if ui = k/2

As illustration, Table 3.1 shows coloured in red the (u,v) pairs for (d,k,g) =

u v
(0,0,0) (3,3,3), (3,3,4), (3,4,4), (4,4,4)
(0,0,1) (3,3,2), (3,3,3), (3,3,4) , (3,4,2), (3,4,3), (3,4,4), (4,4,2), (4,4,3)
(0,0,2) (3,3,2), (3,3,3), (3,4,2), (3,4,3), (4,4,2)

(3,3,1), (3,4,1), (4,4,1)
(0,1,1) (3,2,2), (3,2,3), (3,2,4), (3,3,3), (3,3,4), (4,2,2), (4,2,3), (4,3,3)
(0,1,2) (3,2,2), (3,2,3), (3,3,2), (3,3,3), (3,4,2), (4,2,2), (4,2,3), (4,3,2)

(3,2,1), (3,3,1), (3,4,1), (4,2,1), (4,3,1), (4,4,1)
(0,2,2) (4,2,2), (4,1,1), (4,1,2), (4,1,3)
(1,1,1) (2,2,2), (2,2,3), (2,3,3), (3,3,3)
(1,1,2) (2,2,2), (2,2,3), (2,3,2), (2,3,3), (3,3,2)

(2,2,1), (2,3,1), (2,4,1), (3,3,1), (3,4,1), (4,4,1)
(1,2,2) (2,2,2), (2,2,3), (3,2,2), (2,1,1), (2,1,2), (2,1,3), (3,1,1), (3,1,2)

(3,1,3), (4,1,1), (4,1,2), (4,1,3)
(2,2,2) (1,1,3), (1,2,3)

Table 3.1: All pairs (u,v) pairs for (d,k,g) = (3,4,1)

(3,4,1) that are removed based on the new condition for k even. Consequently,
25 out of 71 original pairs are removed, representing a considerable reduction of
pairs to consider.

3.1.3 (u,v) as inner points of the hypercube

In this subsection, we present how u or v can be connected in Γ with current em-
beddings. When u or v are inner points of [0,k]d and have at least one coordinate
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equal to 1 or k− 1, it is possible to connect these vertices via Γ to F−i or F+
i

respectively. Given a shelling and without loss of generality, assume:

• F−i is the next intersection to embed.

• ui = 1.

• w is a vertex in F−i .

We know there is at least one edge connecting u with F−i , in the edge graph of P.
Considering that convex hull computations should be performed only when it is
strictly necessary, the upper bounds for d(u,v) are used to discard potential edges
between u and F−i . For each vertex w of F−i a branch is created. Each branch in-
cludes corresponding edge [u,w] in Γ and up to two conditions are verified:

• The upper bounds given by distances via Γ are updated to determine whether
the branch can be pruned or not.

• If a branch satisfies the upper bound certificates, the algorithm determines
whether the edge [u,w] is valid by convexity.

For the second condition let the point q = u
2k +(1− 1

2k)w. Denote by S the set
formed by the vertex set of Γ and the following set:[

d⋃
i=1

{x ∈ Rd : xi = 0 and x̄i ∈Pd−1,k,g−i
}

]
∪

[
d⋃

i=1

{x ∈ Rd : xi = k and x̄i ∈Pd−1,k,g+i
}

]
.

A necessary condition such as there is an edge [u,w] in P, is

q is a vertex of S∪{q}\{u}.

Note that if there is no edge satisfying the upper bound verifications, the shelling
is pruned from the search space tree.
The illustrations in Figures 3.1 and 3.2 show for the triple (d,k,g) = (3,7,1) and
target diameter δ (2,7)+7−1 = 12 how elements of a shelling can be connected
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Figure 3.1: Shelling pruned after the first embedding onto F−1 for (u,v) =
((1,1,2),(6,6,5)).

through new paths. Figure 3.1 illustrates how a shelling is removed without per-
forming convex hull computations being u and v inner points of the cube.

Given a shelling, for each vertex w in F−1 a new branch is created. The Γ graph
of each branch has as vertex and edge sets, the corresponding sets of the shelling.
Then edge [u,w] is added to Γ and the upper bounds for d(u,v) are updated. If
for all edges [u,w], the target diameter can not be achieved, as illustrated at Fig-
ure 3.1, the lattice (d− 1,k)-polygon that the algorithm is trying to embed onto
F−1 is not considered and all new branches are pruned. Prior to any convex hull
computation, Γ graph and upper bounds are updated to check whether a node can
be pruned.

Otherwise if at least one vertex w satisfies the certificates, corresponding branches
are not pruned. We remark that any verification using Γ is computationally more
efficient than convex hull computations.

Figure 3.2 shows an example where the first embedding onto F−1 met the certifi-
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cates. To determine whether [u,(0,3,1)] can be added to Γ or not, the algorithm
verifies if the point q is a vertex of S∪{q} \ {u}. In this case, the construction
satisfies the upper bound certificates and it is considered for further attempts of
embedding. We will call real edges, those edges of the edge graph of a lattice
(d,k)-polytope P that are discovered before the completion of inner step. Only
the real edge [(1,1,2),(0,3,1)], coloured in green, satisfies convexity and the up-
per bound certificates.

Figure 3.2: A real edge is added for connecting the inner vertex u with F−1 for (u,v) =
((1,1,2),(6,6,5)). The partial shelling meets the upper bound certificates.

3.1.4 New approaches to reduce the search space

The algorithm during the shelling step attempts to sequentially embed lattice (d−
1,k)-polytopes onto the facets of the [0,k]d . Thus a large number of lattice (d−
1,k)-polytopes implies that determining whether the shelling step output is empty
or not can be computationally intractable. For each non-embedded facet of the
hypercube there are a number of lattice (d−1,k)-polytopes available to intersect,
that can vary depending on available information. Given a shelling and the next
facet of the [0,k]d to embed F , this information consists of:
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• The number of known vertices in F .

• The number of points that cannot be considered as vertices, either by con-
vexity or determined by previous embeddings.

• Gap scores g+i or g−i .

In fact, different sequence orderings impact on the computational time required
for the search space examination. We want to follow an embedding sequence
such that shelling step output can be obtained as efficient as possible. Hence it is
important to follow a strategy that allows us:

(i) To select a facet of the [0,k]d with the lowest possible number of lattice
(d−1,k)-polytopes available to intersect.

(ii) To select a facet of the [0,k]d such that u and v can be connected via Γ

or the upper bounds can be updated with the lowest possible number of
embeddings. This determines whether the node satisfies the upper bound
certificates or it can be pruned.

To identify the facet of the hypercube corresponding to the lowest number of
lattice (d−1,k)-polytopes available to intersect, Deza et al. [8] proposed the gap
parameters g−i and g+i , calculated as follows:

g−i = g+ui + vi− k

g+i = g+ k− (ui + vi)

A lower score is associated with a lower number of lattice (d−1,k)-polytopes. It
is common to have the same g−i and g+i scores for different candidate intersections.
Thus a tie-breaker criteria should be defined to select the most suitable facet of the
[0,k]d for embedding. We propose the following order criteria:

1. The facet gap parameters, g−i and g+i , for i = 1, ...,d. A gap score equal to
zero is the highest priority.
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2. The number edges of F−i or F+
i , that do not contain vertices of P. It is

important to prioritize a facet of the [0,k]d restricted to a lower number of
integer value coordinate points.

3. argmin{mini=1,...,d{ui,k−vi}}. For example if u = (1,1,2), then F−1 or F−2
have a higher priority than F−3 due to edges that could be added to Γ as
presented in subsection 3.1.3.

4. The number of currently known vertices of P belonging to the intersec-
tions F−i or F+

i , with more points contained being higher priority. A higher
number of points reduces number of lattice (d−1,k)-polytopes being more
likely to discover paths from u to v.

5. Finally, the default order of F−1 , ...,F−d ,F+
1 , ...,F+

d .

When both vertices u and v have at least one coordinate equal to 0 or k, it is not
necessary to verify whether they are vertices of the set C u,v

d,k,g. Therefore Certificate
2 can be omitted in this case. On the other hand, when vertices u or v are inner
points to the hypercube, this condition must be verified as we continue intersecting
with the hypercube faces.

Let assume that u or v are inner points of the hypercube. In this case, Certificate 2
should be checked. But, the large number of convex hull computations to perform
leads to an intractable search space. A preprocessing step that allows us to reduce
the search space is added. The following verification is proposed for each point
p with at least one coordinate equal to 0 or k. Let p a point with at least one
coordinate equal to 0 or k and let Su,v,p

d,k,g denote the convex hull of u, v, p and the
following set:[

d⋃
i=1

{x ∈ Rd : xi = 0 and x̄i ∈Pd−1,k,g−i
}

]
∪

[
d⋃

i=1

{x ∈ Rd : xi = k and x̄i ∈Pd−1,k,g+i
}

]
.

Given the pair of vertices (u,v), the following condition is necessary for p to be
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a potential vertex of a lattice (d,k)-polytope such as d(u,v) = δ (d− 1,k)+ k−
g:

u,v and p are vertices of Su,v,p
d,k,g.

Thus we can remove points p for which the previous condition is not satisfied, re-
ducing the computational time. In this chapter, we determine δ (3,7). To illustrate
the size of search space and the impact of selection criteria of the following facet
of the [0,k]d to intersect, Table 3.2 shows the number of lattice (2,7)-polygons of
diameter 5 or 6. If we know that (0,1) and (0,2) must be vertices in the next inter-
section, fewer lattice (2,7)-polygons are considered for embedding as presented
in Table 3.3. Finally Table 3.4 presents the polygons without points (0,∗) or (∗,7)
as vertices.

Diameter Polygons
5 801986
6 2660

Table 3.2: Number of lattice (2,7)-polygons with diameter 5 or 6.

Diameter Polygons
5 52308
6 167

Table 3.3: Number of lattice (2,7)-polygons with diameter 5 or 6 such that (0,1) and
(0,2) are both vertices.

Diameter Polygons
5 11472
6 4

Table 3.4: Number of lattice (2,7)-polygons with diameter 5 or 6 such that neither (0,∗)
or (∗,7) are vertices.

Identifying paths between u and v with the lowest possible number of embeddings
is critical to reduce the processing time. In the present work, we explain several
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results that allow us to identify additional faces. Previously the work of Deza
et al. [8], after completing the 2d embeddings, during the inner step all edges
belonging to Γ were added. Now, we propose to add additional edges, during the
shelling step, tightening upper bounds from early stages.

When an upper bound for d(u,v) is strictly lower than δ (d− 1,k)+ k− g , there
cannot exist a candidate in the current branch capable of achieving the target di-
ameter. Finally in subsection 3.1.4, a new certificate is introduced, consisting of a
new upper bound for d(u,v).

Certificate 3: Upper bound for d(u,v)

The following are upper bounds for the distance between u and v, d(u,v):

d1(u,v) = min
i=1,...,d

{min{d̃(v,F−i )+ max
w∈F−i

{dΓ(u,w)}, d̃(v,F+
i )+ max

w∈F+
i

{dΓ(u,w)}}}

d2(u,v) = min
i=1,...,d

{min{d̃(u,F−i )+ max
w∈F−i

{dΓ(v,w)}, d̃(u,F+
i )+ max

w∈F+
i

{dΓ(v,w)}}}

These upper bounds provide a new alternative when d(u,v) is undetermined or
current upper bounds do not allow to conclude whether shelling can be pruned.
When there is not a path from u to v in Γ, d(u,v) is considered as undetermined.
These upper bounds are useful when one of u and v are disconnected in Γ by real
edges. As illustration, let d = 3, u = (0,1,2) and v = (6,5,5), and two inter-
sections with the cube [0,k]3 have been selected: F−1 and F+

2 such that F−1 ∩F+
2

is not empty. Consequently there is a path from u to every vertex w ∈ F+
2 , and

d1(u,v) can be updated. The values of d1(u,v) and d2(u,v) are updated every time
a choice for the intersection with a facet of the hypercube [0,k]d is selected. Thus
we define the following non-negative integer parameter η :

η = δ (d−1,k)+ k−g−min{d1(u,v),d2(u,v)}.
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Therefore similar to Certificate 1, η > 0 is a certificate that no lattice (d,k)-
polytope with vertices u and v such that d(u,v) = δ (d−1,k)+k−g exists.

3.1.5 Enhanced shelling step

In this subsection, the enhancements of shelling step are explained. First, findings
for dimension 3 are presented, followed by their generalization to dimension 4
and higher. Given a lattice (d,k)-polytope P that achieves target diameter, con-
vexity and integrality of the formulation min{c ·x : x∈ P} are exploited to identify
additional faces of P during the embedding process.

Let suppose the algorithm is trying to embed the second intersection with the
cube [0,k]3. Under certain conditions, it is possible to identify additional faces
in P, that is additional edges in Γ. These edges make possible to connect u and
v or tightening the upper bounds defined by Certificates 1 and 3 with a lower
number of embeddings in comparison with the the algorithm developed by Deza
et al. [8].

Without loss of generality, assume that the partial shelling consists of F−1 , F−2 and
F−3 . And illustrate the Lemma 3.1.1 by considering the minimization problem
min{ix1 + x2 : x ∈ P} to add information from additional discovered faces during
the construction of a lattice (3,k)-polytope P of large diameter.

Lemma 3.1.1. Assume that, up to the symmetry of the cube [0,k]3:

(i) v+ = (1,0,v+3 ) and v− = (1,0,v−3 ) are vertices of P for some (v+3 ,v
−
3 ) ∈

{0,1, . . . ,k}2 where v+3 ≥ v−3 .

(ii) w+=(0,w+
2 ,w

+
3 ),w

−=(0,w−2 ,w
−
3 ) are vertices of P for some (w+

2 ,w
+
3 ,w

−
3 )∈

{0,1, . . . ,k}3 where w+
2 = w−2 and w+

3 ≥ w−3 .

(iii) x = (0,0,x3) is not a vertex for any x3 ∈ {0,1, . . . ,k}.

(iv) x = (0,x2,x3) is not a vertex for any (x2,x3) ∈ {0,1, . . . ,k}2 and x2 < w+
2 .

Then, (v+3 ,w
+
3 ) and (v−3 ,w

−
3 ) form edges of P and d(v+3 ,w

+
3 ) = d(v−3 ,w

−
3 ) = 1.
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Proof. Consider α = min{w+
2 x1 + x2 : x ∈ P}. Note that α = w+

2 by items (iii),
(iv) and the integrality of the coordinates of P. Thus argmin{w+

2 x1 + x2 : x ∈ P}
forms a face f of P. To identify the vertices of f , we observe that v+,w+,v−,w−

are the only {0,1,2, ...,k} value vertices of P satisfying w+
2 x1+x2 = w+

2 . Since no
more than two vertices can belong to the same line, (v+3 ,w

+
3 ) and (v−3 ,w

−
3 ) form

edges of P and d(v+3 ,w
+
3 ) = d(v−3 ,w

−
3 ) = 1.

Note that in Lemma 3.1.1 the face f can be a line, triangle or a rectangle. In the
framework developed by Deza et al. [8], for 2 adjacent embeddings with empty
intersection, only Certificate 1 was updated. Now Lemmas 3.1.1 and 3.1.2 make
it possible to connect embeddings under the mentioned conditions and Certificate
3 is included as an additional upper bound for d(u,v) to determine whether current
partial shelling can be pruned or not. As a remark, having more paths on Γ from u

or v to F−i or F+
i , respectively, is more likely to decrease gap parameters. Lower

gi scores of non embedded facets of the cube [0,k]3, reduce the number of lattice
(2,k)-polygons to list for next intersections of P with the cube [0,k]3.

Figure 3.3: Facet of P with vertices {v+,v−,w+,w−}= argmin{x1 +x2 : x ∈ P} is identi-
fied by Lemma 3.1.1, where v+ =(1,0,3), v−=(1,0,2), w+ =(0,1,3) and w−=(0,1,2).

Lemma 3.1.2. Assume that, up to the symmetries of the cube [0,k]3:
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(i) v+=(2,0,v+3 ),v
−=(2,0,v−3 ) are vertices of P for some (v+3 ,v

−
3 )∈{0,1, . . . ,k}2

where v+3 ≥ v−3 .

(ii) w+ = (0,2,w+
3 ),w

− = (0,2,w−3 ) are vertices of P for some (w+
3 ,w

−
3 ) ∈

{0,1, . . . ,k}2 where w+
3 ≥ w−3 .

(iii) x = (0,0,x3) is not a vertex for any x3 ∈ {0,1, . . . ,k}.

(iv) x = (x1,x2,x3) is not a vertex for any (x1,x2,x3) ∈ {0,1, . . . ,k}3 and x1 +

x2 = 1.

Then d(v+3 ,w
+
3 )≤ 2 and d(v−3 ,w

−
3 ) =≤ 2.

Proof. Consider α = min{x1+x2 : x ∈ P}. Note that α = 2 by items (iii) and (iv)

and the integrality of the coordinates of vertices of P. We observe {v+,v−,w+,w−}⊆
f = argmin{x1 + x2 : x ∈ P} and at most 3 points x = (1,1,x3) for some (x3) ∈
{0,1, . . . ,k} can be also vertices of f . Therefore the weighted virtual edges [v+,w+]

and [v−,w−] of length 2 are added to Γ.

Lemma 3.1.2 considers inner points of the cube [0,k]3 to add weighted virtual
edges to Γ, make it possible to remove partial shellings before the inner step.

Lemma 3.1.3. Assume that, up to the symmetry of the cube [0,k]3:

(i) (0,0,0) is not a vertex of P.

(ii) F−3 a non-embedded facet of the cube [0,k]3.

(iii) x = (c1,0,0) is a vertex of P for some c1 ∈ {1,2,3,4}.

(iv) w = (0,c2,0) is a vertex of P for some c2 ∈ {1, . . . ,k}.

Define vector c = (c1,c2), we determine the following values for d(x,w)

(i) If c = (1,c2), d(x,w) = 1.

(ii) If c = (2,c2), d(x,w)≤ 2.

(iii) If c = (3,c2), d(x,w)≤ 2.
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Figure 3.4: Weighted virtual edges [v+,w+] and [v−,w−] of length 2, coloured in red,
are added to Γ by Lemma 3.1.2, where v+ = (2,0,3), v− = (2,0,2), w+ = (0,2,4) and
w− = (0,2,3).

(iv) If c = (4,c2),d(x,w)≤ 3.

Proof. Consider α = min{c1x1 + c2x2 : x ∈ P}. For each case, by the integrality
of the coordinates of vertices of P, we can see that a path with at most 1,2 or 3
edges respectively can connect x with w via Γ.

Lemmas 3.1.3 and 3.1.4 present the conditions to add weighted virtual edges in
order to connect vertices through non-embedded facets of the cube [0,k]3. In the
illustrations, weighted virtual edges are labelled with the corresponding weight. If
the node is pruned after adding weighted virtual edges induced by Lemmas 3.1.3
and 3.1.4, we are avoiding to list all lattice (2,k)-polygons available to embedding
on the corresponding facets of the cube.

Lemma 3.1.4. Assume that, up to the symmetries of the cube [0,k]3:

(i) v− = (0,1,v−3 ) is a vertex of P for some v−3 ∈ {0,1, . . . ,k}, and (0,1,x3) is

not a vertex of P for any x3 < v−3 .
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Figure 3.5: Weighted virtual edge [p1, p2], coloured in red, of length 2 is is added to Γ.
p1 = (3,0,0) and p2 = (7,3,0).

(ii) w = (w1,0,0) is a vertex of P for some w1 ∈ {0,1, . . . ,k}

(iii) x = (0,0,x3) is not a vertex of P for any x3 ∈ {0,1, . . . ,k}

Then d(v−,w)≤ w1.

Proof. Note that the vertex v− corresponds to the vertex v− used in the proof of
Lemma 3.1.1. Similarly, items (ii) and (iii) yield a vertex w− = (w−1 ,0,w

−
3 ) such

that (w−1 ,0,x3) is not a vertex of P for x3 < w−3 . By Lemma 3.1.1, d(v−,w−) = 1.
Note that w− and w both belong to the face f of P of dimension at most 2 defined
by f = argmin{cT x : x ∈ P} where c = (0,1, . . . ,1,0). Thus d(w−,w)≤ w1−w−1 .
Since d(v−,w)≤ d(v,w−)+d(w−,w), d(v−,w)≤w1 if w1 6=w−1 and d(v−,w)= 1
if w1 = w−1 as this occurs only if w− = w.

Lemma 3.1.5. Assume that 3 intersections of P with the cube [0,k]3 such that

the 3 supporting hyperplanes share a common vertex are known, up to symmetry

without loss of generality F−i for i = 1,2 and 3. Let α = min{x1+x2+x3 : x ∈ P}
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Figure 3.6: Weighted virtual edge [v−,w] of length 4 is added to Γ By Lemma 3.1.4.
Points v− = (0,1,2) and w = (4,0,0) are vertices.

and f = argmin{x1 + x2 + x3 : x ∈ P}. Thus,

(i) If α = 2 and f contains at least 3 vertices, f is a face of P.

(ii) If α = 3, f contains at least 3 vertices and (1,1,1) is not a vertex of convex

hull of {(1,1,1)}∪P then vertices in f form a face of P.

(iii) If α = 3, f contains at least 2 vertices and (1,1,1) is a vertex of convex hull

of {(1,1,1)}∪P then vertices in f form a face of P.

Proof. Consider the problem α = min{x1 + x2 + x3 : x ∈ P}. By integrality
of coordinates of the vertices of P and conditions expressed in items (i),
(ii), (iii). We observe argmin{x1 + x2 + x3 : x ∈ P} forms a face f of P.

Previous findings allow to identify new paths from u to v when trying to embed
three adjacent facets of P to a corner of the cube. Lemma 3.1.5 exploits the prob-
lem min{x1 + x2 + x3 : x ∈ P} at an empty corner and new edges can be added to
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Γ.

The results in this section allow to find new paths through Γ that potentially can
connect u and v, tightening upper bounds and decreasing gap scores. Thus, more
alternatives are available to conclude whether the current shelling can be pruned.
Resultant shellings most likely adopt two patterns. First, given x ∈ P a corner
of hypercube [0,k]d , (k, . . . ,k)–x will be also a vertex of P. Second, embeddings
onto the facets of the [0,k]ds will be relatively centred and far from edges of the
facets of the [0,k]d , avoiding edges can be added during shelling step. Given the
convex hull computations to perform during inner step, decreasing the number
of duplicate shellings up to symmetry impact on the execution time of the algo-
rithm.

In the work of Deza et al. [8], during the shelling step, only the 2d intersections
with then facets of the [0,k]d were considered as facets of polytope P. This is
equivalent to use hyperplanes with normal vectors c parallel to coordinate axis for
identifying facets of polytope P. Our novel approach considers different vectors
c from the problem min{c · x : x ∈ P}, to identify existing facets of P, or adding
weighted virtual edges. Hereinafter denote by g+ and g− the vectors whose coor-
dinates are the scores g−i and g−i respectively.

Shelling step illustrations for d = 3

The new framework can efficiently process previously intractable instances. In
this subsection we present several illustrations of our new approach and how most
of the shelling can be pruned with at most two embedding onto facets of the cube.
We consider the triple (d,k,g) = (3,7,1) and its corresponding target diameter
δ (2,7) + 7− 1 = 12. For this input the most challenging pair to process was
(u,v) = ((1,1,2),(6,6,5)). Right from the start for the framework developed by
Deza et al. [8], this pair is intractable due to three reasons:

• The large number of lattice (2,7)-polygons to consider for embedding onto
each facet of the [0,k]d .
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• Vertices u=(1,1,2) and v=(6,6,5) are inner points of the cube [0,7]3. The
gap vector scores g+ and g− do not change during shelling step due to these
vertices remain disconnected via Γ in the algorithm developed by Deza et
al. [8]. In the mentioned algorithm the use of Certificate 2 , which involves
convex hull computations, would have reduced the search space. However,
in an extremely slow computational time. As result the determination of the
shelling step output was an impossible task.

• The algorithm developed by Deza et al. [8] does not consider the case when
the edges of the cube do not contain vertices of P during shelling step. As
a result, the upper bounds for d(u,v) are not tightened with 2 or 3 embed-
dings. This yields an intractable growing of the search space tree from the
first 2 embeddings.

In this subsection the weighted virtual edges are shown as red dotted segments to
differentiate from edges of P. The real edges are coloured in green. For the next
example, Figure 3.7 illustrates Lemmas 3.1.1 and 3.1.3. These Lemmas allow to
identify edges of P when trying to embed onto F+

2 . Identified edges of additional
faces are added to Γ.

Note that the plane−2x1+x2 = 5 contains a face of P. This face has the following
vertices: {(0,5,0),(0,5,1),(1,7,3),(1,7,4)} and additional edges are added to Γ.
Additional edges [(0,5,0),(1,7,3)] and [(0,5,1),(1,7,4)] allow a new path in Γ

from u to F+
2 . Furthermore Lemma 3.1.1 states the conditions for adding weighted

virtual edge [(0,5,0),(3,7,0)] of length 2 to Γ. Then, upper bound is calculated
as follows:

d(u,v)≤ d̃(u,F+
2 )+ d̃(v,F+

2 )+δ (F+
2 ) = 11

Given that d(u,v) = 11, the second polygon can not be embedded onto F+
2 and

partial shelling is pruned.

The following case considers the triple (d,k,g) = (3,4,1) that corresponds to a
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Figure 3.7: Weighted virtual edge and real edges are added to Γ for (u,v) =
((1,1,2),(6,6,5)). Shelling pruned after two embeddings due to d(u,v) ≤ d̃(u,F+

2 ) +

d̃(v,F+
2 )+δ (F+

2 ) = 11.

maximal diameter of 7. Figure 3.8 illustrates how the algorithm removes a partial
shelling by Lemma 3.1.5 when it is trying to embed 3 adjacent facets to the cor-
ner (0,4,0). Note that the plane −x1 + x2− x3 = 2 contains the following three
vertices {(0,3,1),(0,3,1),(1,4,1)} which form the facet argmin{−x1 + x2− x3 :
x ∈ P}. Therefore the edge [(0,2,0),(1,4,1)] is added to Γ and d(u,v) = 6.

In general as result of adding additional edges upper bounds for d(u,v) are de-
creased early on in the shelling process in comparison with the framework devel-
oped by Deza et al. [8]. It is likely to discover new paths from u to v in Γ. Conse-
quently, we could conclude that d(u,v)< δ (u,v)+ k−g and partial shellings can
be pruned with a lower number of embedding as mentioned before. Preventing the
search tree from growing in an intractable manner. For this reason, fewer lattice
(2,k)-polygons are considered for the next embeddings.

It is important to detail how Lemma 3.1.5 is included during shelling step to add
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Figure 3.8: Shelling pruned after 3 embeddings: F−1 , F+
2 and F−3 for (u,v) =

((0,0,2),(3,4,2)). The edge [(0,2,0),(1,4,1)] is added to Γ by Lemma 3.1.5 allowing
d(u,v) = 6.

additional edges. Denote by P a lattice (3,7)-polytope and assume the following
conditions:

• Non-empty intersections F−1 , F−2 and F−3 .

• F−1 ∩F−2 ∩F−3 = /0.

Let α = min{x1 + x2 + x3 : x ∈ P} and f = argmin{x1 + x2 + x3 : x ∈ P}. Next
we detail how Lemma 3.1.5 is used during implementation. Note that case when
α = 1 is already considered in Lemma 3.1.3.

α = 2 and f contains at least three vertices
When f contains 3 or 4 vertices, edges of corresponding facet can be added with-
out calling a convex hull subroutine. We notice that f can contain at most 4
vertices, as observed in Figure 3.9.
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Figure 3.9: All non-negative integer value points that belong to the plane x1+x2+x3 = 2.

α = 3 and f contains at least two vertices
In this case, note that the inner point of the cube [0,k]3, (1,1,1) belongs to the
plane x1+x2+x3 = 3. In Figure 3.10 we can observe that if plane x1+x2+x3 = 3
contains 4 points of the current shelling, (1,1,1) can not be a vertex. We branch
into 2 cases depending on whether (1,1,1) is a vertex or not:

• First, if f contains at least 4 vertices of shelling, we know that (1,1,1) can
not be a vertex and the new facet is identified.

• Second, assume f contains 3 vertices and let v1, v2, v3 vertices in f , we
consider two sub-cases whether (1,1,1) is vertex or not of the convex hull
of the set of points {v1,v2,v3,(1,1,1)}.

– First sub-case, (1,1,1) is a vertex of the convex hull of the set of
points {v1,v2,v3,(1,1,1)}. Then the edges in common among triangle
{v1,v2,v3} and edges of {v1,v2,v3,(1,1,1)} are added to Γ.
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– Second sub-case, (1,1,1) is not a vertex of the convex hull of the set
of points {v1,v2,v3,(1,1,1)}. Then edges of the triangle are added to
Γ.

Under the conditions of Lemma 3.1.5 different vectors from c = (1,1,1) are con-
sidered. As result following two cases are included in the algorithm to systemati-
cally add edges to Γ.

Figure 3.10: All non-negative integer value points that belong to the plane x1+x2+x3 = 3.

α = 2 and f contains one or two vertices
If the plane x1+x2+x3 = 2 contains 1 or 2 vertices, the vertices in x1+x2+x3 = 3
are considered to identify new faces of P and add new edges to Γ.

α = 4 and f contains at least two vertices
In this case, the algorithm considers two cases, whether (1,1,1) is vertex or not
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of the shelling:

• If (1,1,1) is not a vertex, new edges from f are added to Γ.

• If (1,1,1) is a vertex, vertices that belong to the plane x1 + x2 + x3 = 4 are
used to identify new faces and add additional edges to Γ.

Figure 3.11: Shelling pruned by Certificates 2 and 3 after two embeddings F−1 and F+
2 .

Points (u,v) = ((1,1,2),(6,6,5)) and w = (0,3,1) are vertices of the shelling.

The order in which the results of the previous section are considered has an impact
on the processing time of the algorithm. Figure 3.11 shows a partial shelling
with two embeddings which are removed due to Certificates 2 and 3. Once the
additional edges that do not require convex computations are added to Γ, upper
bounds are updated. Only if the node satisfies the upper bound certificates, convex
hull computations are performed to determine if additional edges can be added to
decide whether the node can be pruned or not.
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u Search space reduction
(1,1,1) 25%
(1,1,2) 81%
(1,1,3) 89%
(1,2,2) 98%

Table 3.5: Space reduction out of 804646 available polygons for the first embedding after
integer points are removed from the facets of [0,7]3.

Among the strategies to reduce search space, removing points from the facets of
the cube is quite useful. For this reason, this strategy is used before starting the
embedding process. Once points in the facet of the cube that can not be vertices
of P are removed for (d,k,g) = (3,7,1), the search space is reduced. Table 3.5
shows the percentage of polygons from the set of lattice (2,7)-polytopes that are
considered for the first embedding after removing the points that cannot be ver-
tices of the polytope. As the coordinates of vertex u become larger, a smaller
percentage of lattice (2,7)-polytopes will be considered.

According to Table 3.5, it could be counter-intuitive that the pair (u,v) = ((1,1,2),
(6,6,5)) is the hardest to determine the shelling step output considering that the
pair (u,v) = ((1,1,1),(6,6,6)) has larger search space. The reason is that (1,1,1)
and (6,6,6) can be connected to the 3 corresponding intersections of the cube
[0,7]3. For the pair (u,v) = ((1,1,2),(6,6,5)), considering the first two embed-
dings F−1 and F−2 the search space was reduced approximately 35000 times in
comparison to the framework developed by Deza et al. [8].

Finally, let consider the case when an edge of [0,k]3 contains vertices of P. Fig-
ure 3.12 shows two embeddings F−1 and F+

2 having (0,7,4) and (0,7,5) as in-
tersection. Conditions of Lemma 3.1.4 are met, thus the weighted virtual edges
[(0,5,6),(3,7,7)] and [(0,2,0),(2,7,1)] of length 3 and 5 respectively, are added
to Γ. These weighted virtual edges are coloured in red in Figure 3.12.

After adding these weighted virtual edges, the partial shelling presented in Fig-
ure 3.12 is not pruned yet due to d(u,v) = δ (2,7)+ 7− 1 = 12. Taking one of
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Figure 3.12: Shelling met the certificates after two embeddings for (u,v) =
((0,0,1),(6,6,6)). Weighted virtual edges [(0,5,6),(3,7,7)] and [(0,2,0),(2,7,1)] are
added by Lemma 3.1.4.

the vertices in the intersection between F−1 and F+
2 , (0,7,4) and its two adjacent

vertices (0,6,2) and (0,7,4), the plane 2x1−2x2+x3 =−10 can be defined. This
plane is used to branch the current partial shelling into two cases. Each branch is
analyzed, concluding whether target diameter is achieved or not. From the search
space, only one point can be a vertex, (1,6,0), so there are 2 cases to check:

(i) Figure 3.13 illustrates when (1,6,0) is assumed to be vertex. The real
edges [(1,6,0),(2,7,1)] and [(1,6,0),(0,2,0)] respectively are added to Γ

by Lemmas 3.1.1 and 3.1.3. These two edges are coloured in green. A path
of length 9 is identified, thus the branch is removed from the search space
tree.

(ii) For the second case Figure 3.14 shows that the additional edge [(0,6,2),
(1,7,2)] is added to Γ due to the plane 2x1− 2x2 + x3 = −10 containing a
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facet of P. These real edge is coloured in green. A path of length 11 is
labelled, thus the branch is removed from the tree.

Figure 3.13: Shelling pruned as d(u,v) = 9 for (u,v) = ((0,0,1),(6,6,6)). The point
w = (1,6,0) is assumed to be vertex. Virtual weighted edge [(0,2,0),(2,7,1)] of length 5
is added to Γ.
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Figure 3.14: Shelling pruned due as d(u,v) = 11 for (u,v) = ((0,0,1),(6,6,6)). The point
w = (1,6,0) is assumed not to be a vertex. The virtual weighted edge [(0,2,0),(2,7,1)]
of length 5 is added to Γ.
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Shelling step for d = 4

In this subsection we generalize the results presented in Section 3.1.5 for d >

3.

Lemma 3.1.6. Let P a lattice (4,k)-polytope and F−1 , satisfying the following

conditions:

(i) F−1 ∩F−2 ∩F−3 ∩F−4 = /0.

(ii) Let the vertices v+ = (1,0,0,v+4 ), v− = (1,0,0,v−4 ), w+ = (1,0,0,w+
4 ),

v− = (1,0,0,w−4 ), z+ = (1,0, i,z+4 ), z− = (1,0,0,z−4 ) where v+4 ≥ v−4 , w+
4 ≥

w−4 , z+4 ≥ z−4 respectively.

(iii) Point x = (0,0,x3,x4) such as x3 < i, is not a vertex of P.

Then, plane ix1 + ix2 + x3 = i defines a face of the hypercube [0,k]4 and its edges

can be added to Γ.

Proof. Consider the problem min{ix1 + ix2 + x3 : x ∈ P}. Given that min{ix1 +

ix2+x3 : x ∈ P}= i, argmin{ix1+x2+x3 : x ∈ P} forms a face f of P. To identify
the vertices of f , we observe the {0,1,2, ...,k}-valued vertices of P satisfying
ix1 + ix2 + x3 = i are (1,0,0,x4), (0,1,0,v4), (0,0, i,w4). Since no more than two
vertices can be aligned, we obtain that f has at most 6 vertices and edges can be
added to Γ.

Note that we can assume without loss of generality that P∩F+/−
i 6= /0 for i =

1, . . . ,d.

Lemma 3.1.7. Assume that, up to the symmetries of the hypercube [0,k]d ,

(i) v = (0,1,0 . . . ,0,vd) is a vertex of P for some vd ∈ {0,1, . . . ,k}

(ii) w = (w1,0,0 . . . ,0,wd) is a vertex of P for some (w1,wd) ∈ {0,1, . . . ,k}2

(iii) x = (0, . . . ,0,xd) is not a vertex of P for any xd ∈ {0,1, . . . ,k}
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Then we can define the following two vertices of P

i v− = argmin{cT x : x ∈ P,xi = 0 for i /∈ {2,d}}
where c = (0,k+1,0 . . . ,0,1),

ii w− = argmin{cT x : x ∈ P,xi = 0 for i /∈ {1,d}}
where c = (k+1,0 . . . ,0,1),

and (v−,w−) form an edge of P; that is d(v−,w−) = 1.

Proof. Let f 1 = argmin{cT x : x∈P,xi = 0 for i /∈{2,d}}where c=(0,k+1,0 . . . ,
0,1). Note that f 1 6= /0 due to item (i), item (iii) and the integrality of the coor-
dinates of the vertices of P. f 1 consist of a unique vertex v− = (0,1,0 . . . ,0,v−d )
such that (0,1,0 . . . ,0,xd) is not a vertex of P for xd < v−d . Similarly, let f 2 =

argmin{cT x : x ∈ P,xi = 0 for i /∈ {1,d}} where c = (k+ 1,0 . . . ,0,1). Note that
f 2 6= /0 by item (ii) and, by item (iii) and the integrality of the coordinates of
the vertices of P, f 2 consist of a unique vertex w− = (w−1 ,0 . . . ,0,w

−
d ) such that

(w−1 ,0 . . . ,0,xd) is not a vertex of P for xd < w−d . Consider γ = min{cT x : x ∈ P}
where c = (1,w−1 ,k+1, . . . ,k+1,0). Note that 0 < γ ≤ w−1 by items (i) and (iii).
In addition, by the integrality of the coordinates of the vertices of P, γ = w−1 and
f is a face of P of dimension at most 2 that contains, besides the vertices v− and
w−, at most 2 more vertices v+ = (0,1,0, . . . ,0,v+d ) and w+ = (w+

1 ,0,0, . . . ,0,w
+
d )

such that v+d > v−d and w+
d > w−d . Consequently the vertices (v−,w−) form an

edge.

Lemma 3.1.8. Assume that, up to the symmetry of the hypercube [0,k]d ,

(i) v− = (0,1,0 . . . ,0,v−d ) is a vertex of P for some vd ∈ {0,1, . . . ,k}, and

(0,1,0 . . . ,0,xd) is not a vertex of P for any xd < v−d

(ii) w = (w1,0,0 . . . ,0) is a vertex of P for some w1 ∈ {0,1, . . . ,k}

(iii) x = (0, . . . ,0,xd) is not a vertex of P for any xd ∈ {0,1, . . . ,k}

Then d(v−,w)≤ w1.
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Proof. Note that the vertex v− corresponds to the vertex v− used in the proof of
Proposition 3.1.7. Similarly, items (ii) and (iii) yield a vertex w−=(w−1 ,0 . . . ,0,w

−
d )

such that (w−1 ,0 . . . ,0,xd) is not a vertex of P for xd < w−d . By Proposition 3.1.7,
d(v−,w−) = 1. Note w− and w both belong to the face f of P of dimension
at most 2 defined by f = argmin{cT x : x ∈ P} where c = (0,1, . . . ,1,0). Note
that w1 = w−1 if only if w = w− and then d(w−,w) ≤ w1−w−1 = 0. If w1 6= w−1
then d(v−,w)≤ d(v,w−)+d(w−,w) and d(v−,w)≤ w1. Finally, d(v−,w) = 1 if
w1 = w−1 and this occurs only if w− = w.

3.1.6 Enhanced inner step

In this subsection we propose an efficient examination of the inner points in the
search space for performing convex hull computations only when it is strictly
necessary. Given a shelling and its graph Γ, denote by G the vertex set of Γ. The
following enhancements are part of inner step in the new framework:

• We know by convexity that at most two points can be aligned in P. Thus
some inner points of the hypercube can be removed from consideration. Let
v1 and v2 be 2 vertices in G such as they differ only in one coordinate. Under
this condition all inner points of [0,k]d belonging to the line defined by v1

and v2 can be removed.

• The next idea consists of building paths on Γ considering some inner points
of [0,k]d . Let p an inner point of [0,k]d and without loss of generality as-
sume that pi = 1. We note that there is an edge between p and one of the
vertex of F−i . In this case, a branching process can be performed connecting
p with F−i , one vertex at a time. Certificates can be verified to determine
whether target diameter can be achieved or not. Thus, it is possible to re-
move additional inner points without invoking a convex hull subroutine.

• For the inner points of hypercube p that satisfy the previous two verifica-
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tions, we check the condition whether the number of vertices in convex hull
of G∪ {p} is equal to |G|+ 1. Denote by V the set of points for which
|G∪{p}|= |G|+1. In order to avoid verifying the 2|V | subsets of V , the al-
gorithm will not consider redundant examinations. As illustration let p and
q the two points in V , if |G∪{p,q}| < |G|+ 2 for {p,q}, then any subset
of V containing {p,q} will not be examined. Hence, this allows to decrease
the number of convex hull function callings and speed up the computations
during the inner step.
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3.2 Results

In this section, we detail the result that was obtained using the new framework.
The main result is Theorem 3.2.1 which provided the value for δ (3,7).

Theorem 3.2.1. δ (3,7) is equal to 11.

Theorem 3.2.1 is obtained by computationally verifying that the output of the
shelling step is empty for (d,k,g) = (3,7,0) and (d,k,g) = (3,7,1). Therefore,
δ (3,7)< 12 and since we can verify the Minkowski sum of the vectors {(0,0,1),
(0,1,0),(1,0,0),(0,1,1),(0,1,1),(1,0,1),(1,0,1),(1,1,0),(1,1,0),(1,1,1),
(1,1,1)} forms, up to translation, a lattice (3,7)-polytope with diameter 11 there-
fore δ (3,7) = 11. Running the algorithm for (3,7,1) requires the determination
of all lattice (2,7)-polytopes of diameter 5 or 6.

The algorithm is implemented in C# and SQL Server database. Calculations were
carried out on a Dell G3 with a 2.2GHz i7 processor and 32GB of RAM.

3.2.1 Determination of δ (3,7)

The number of lattice (2,7)-polygons with diameter 5 or 6 to be checked during
each attempt to embed onto the cube’s facets is large. This is an intractable task
for the algorithm developed by Deza et al. [8] due to the following reasons:

• Given a pair (u,v) where both points belong to the cube facets, the search
space tree significantly grew up from the second embedding.

• The input of inner step contained shellings that can not be the skeleton of
lattice (3,7)-polytopes with diameter 12. Therefore, unnecessary convex
hull computations were performed during this step, making the problem
computationally intractable.

• Given a pair (u,v) with at least one vertex as inner point of the cube, the
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verification of Certificate 2 was performed at every attempt of embedding.
The verification of Certificate 2 requires a convex hull computation, that is
performing the most time consuming operation a large amount of time.

As presented in Table 3.2, there are 804646 lattice (2,7)-polygons with diameter 5
or diameter 6. During the shelling step, it is important to determine whether there
is a path connecting u and v in Γ graph with at most 3 intersections with the cube
[0,7]3. Otherwise the problem becomes computationally intractable. The first
step is to generate the sets V2,7,0, V2,7,1, and all potential pairs (u,v) for (d,k,g) =
(3,7,1).

Figure 3.15: The sets V2,7,0 and P2,7,0

Figure 3.16: The sets V2,7,1 and P2,7,1

Table 3.6 lists the 91 considered pairs (u,v) of vertices of a lattice (3,7)-polytope
P such that d(u,v) could be potentially equal to 12 and P is assumed to have a
non-empty intersection with each facet of the cube [0,7]3.

Because the shelling step output is empty, the inner step is never reached. Thus we
state that no lattice (3,7)-polytope has a diameter of 12. As we mentioned in the
previous section a Minkowski sum of 11 vectors forms, up to translation, a lattice
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u v
(0,0,0) (6,6,6), (6,6,7), (6,7,7), (7,7,7)
(0,0,1) (6,6,5), (6,6,6), (6,6,7), (6,7,5), (6,7,6), (6,7,7), (7,7,5), (7,7,6)
(0,0,2) (6,6,4), (6,6,5), (6,6,6), (6,7,4), (6,7,5), (6,7,6), (7,7,4), (7,7,5)
(0,0,3) (6,6,3), (6,6,4), (6,6,5), (6,7,3), (6,7,4), (6,7,5), (7,7,3), (7,7,4)
(0,1,1) (6,5,5), (6,5,6), (6,5,7), (6,6,6), (6,6,7), (7,5,5), (7,5,6), (7,6,6)
(0,1,2) (6,5,5), (6,5,6), (6,6,4), (6,6,5), (6,6,6), (6,7,4), (6,7,5), (7,5,4)

(7,5,5), (7,5,6), (7,6,4), (7,6,5)
(0,1,3) (6,5,5), (6,6,3), (6,6,4), (6,6,5), (6,7,3), (6,7,4), (7,5,3), (7,5,4)

(7,5,5), (7,6,3), (7,6,4)
(0,2,2) (6,4,6), (6,5,5), (6,5,6), (6,6,6), (7,4,4), (7,4,5), (7,5,5)
(0,2,3) (6,5,5), (6,6,3), (6,6,4), (6,6,5), (7,4,3), (7,4,4), (7,4,5), (7,5,3)

(7,5,4)
(0,3,3) (7,3,3), (7,3,4), (7,4,4)
(1,1,1) (5,5,6), (5,6,6), (6,6,6)
(1,1,2) (5,5,6), (5,6,5), (5,6,6), (6,6,4), (6,6,5)
(1,1,3) (5,6,5), (6,6,3), (6,6,4)
(1,2,2) (5,5,6), (6,5,5)

Table 3.6: All pairs (u,v) for (d,k,g) = (3,7,1)

(3,7)-polytope with diameter 11 (see Figure 3.17), we conclude that δ (3,7) =
11.

Considerations during Implementation

It should be emphasized that performing convex hull computations thousands of
times has a significant impact on the algorithm performance. During the imple-
mentation, the convex hull subroutine was invoked only when it was strictly nec-
essary.

When at least one of the vertices u,v is an inner point of the cube [0,7]3, the
execution time increases, due to the following two reasons.

• Assume that v is an inner point of the cube. The first reason is that the
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Figure 3.17: A lattice (3,7)-polytope of diameter 11 for (u,v) = ((0,1,3),(7,6,4)).

certificate 2 is evaluated every time the algorithm tries to embed a lattice
(2,7)-polygon onto a facet of the cube. This is to determine if v is vertex of
the convex cell of C Γ

d,k,g.

• Second reason, for each vi equal to k−1, an attempt is made to connect via
Γ with vertices of F+

i , using the process described in the section 3.1.5.

Out of 91 pairs presented in Table 3.6, pair (u,v) = ((1,1,2),(6,6,5)) was the
one that took by far the largest computational time to determine the shelling step
output. During the preprocessing stage we determined that the points showed
in Table 3.7 can not be vertices of a lattice (d,k)-polytope P for the pair (u,v) =
((1,1,2),(6,6,5)) as vertices. Table 3.7 presents these points organized according
to the intersections with the cube [0,7]3 for which they belong.

The first facet of the cube [0,7]3 to intersect is F−1 . We note from Table 3.7 that
7 points cannot be vertices, as a result there are 154007 lattice (2,7)-polygons
available to intersect. This gives us an idea about the search space size. If the
second intersection with the cube [0,7]3 to consider is F+

2 , similarly, we know
beforehand which points can not be considered as vertices.
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F Points
F−1 ,F−2 (0,0,0), (0,0,1), (0,0,2), (0,0,3)
F−1 ,F−3 (0,1,0)

F−1 (0,1,1), (0,1,2)
F−2 ,F−3 (1,0,0)

F−2 (1,0,1), (1,0,2)
F+

1 (7,6,5), (7,6,6)
F+

1 ,F+
3 (7,6,7)

F+
1 ,F+

2 (7,7,4), (7,7,5), (7,7,6), (7,7,7)
F+

2 (6,7,5), (6,7,6)
F+

2 ,F+
3 (6,7,7)

7

Table 3.7: Points for pair (u,v) = ((1,1,2),(6,6,5)) that can not be vertices for (d,k,g) =
(3,7,1).

3.3 Future Work

Further research can focus on how to exploit the problem min{c · x : x ∈ P} and
the integrality of coordinates of the search space to identify properties or pat-
terns of lattice (d,k)-polytopes for higher dimensions and values of k equal to
4 or less. Such properties could allow to discover more results for introducing
new certificates and identifying new faces of P and tightening the current upper
bounds. The next two strategies, which are not exclusive, are proposed for further
research:

• Considering values of k ∈ 2,3,4 and for d ≥ 4, to try to identify new faces
of P with the lowest possible number of embeddings.

• Given a fixed dimension d, to explore the search space in order to find more
patterns for adding virtual weighted edges to Γ.
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