
A FORMAL APPROACH TO ONTOLOGY

MODULARIZATION AND TO THE

ASSESSMENT OF ITS RELATED

KNOWLEDGE TRANSFORMATION

A FORMAL APPROACH TO ONTOLOGY MODULARIZATION

AND TO THE ASSESSMENT OF ITS RELATED KNOWLEDGE

TRANSFORMATION

BY

ANDREW LECLAIR, M. A. Sc.

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy in Engineering

c© Copyright by Andrew LeClair, March 2021

All Rights Reserved

Doctor of Philosophy in Engineering (2021) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: A Formal Approach to Ontology Modularization and to

the Assessment of its Related Knowledge Transformation

AUTHOR: Andrew LeClair

M. A. Sc.,

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Ridha Khedri

NUMBER OF PAGES: x, 140

ii

Abstract

Knowledge-based systems are composed of multiple agents that each must utilize their

understanding of the world to deduce new facts and make intelligent decisions. The

understanding of the world that each agent has is formalized using an ontology: a

structure which conceptualizes the domain as a set of concepts and their relations. To

accommodate the numerous agents, and to minimize the cost of a single monolithic

ontology, modularization is used to provide each agent with only the knowledge they

require.

This thesis addresses the problems related to defining the transformation of the

domain knowledge due to ontology modularization. Existing ontology modularization

techniques are evaluated so that they can be assessed with respect to how they trans-

form knowledge, as well as their computational performances. A primary objective is

to adapt the existing modularization techniques so that they can be compared based

on how they transform domain knowledge.

The objectives of this thesis were addressed systematically by first comprehen-

sively evaluating the literature regarding both ontologies and ontology modulariza-

tion. Then, we adapted the prominent ontology modularization techniques to the

ontology formalism used in this thesis: a Domain Information System. New modular-

ization techniques were then explored which utilized aspects of the domain ontology’s

iii

algebra.

This research consolidates the many approaches to ontology modularization into

a single set of formal techniques for a domain ontology. As a result, we further the

modularization field by unifying the modularization field under a common formalism,

creating relations between the modularization techniques, as well as formulating how

the knowledge of the ontology is transformed for each technique. Additionally, we

introduce a new modularization technique which capitalizes on the Boolean algebra

of a domain ontology, and enables the determination of a module based on the desired

granularity of the domain knowledge under consideration.

The research of this thesis furthers the ontology modularization field by system-

atically analyzing current limitations with respect to their ability to determine how

knowledge is transformed. We demonstrate that by using the formalism of the do-

main ontology, we are able to formulate different modularization techniques, each

with its own transformations to the domain knowledge. Expressing the knowledge

that is transformed via modularization is unique. It is also instrumental in providing

the agents of a knowledge-based system with modules that capture the exact domain

knowledge they require to make their decisions.

iv

Acknowledgements

To all those who were my soundboard, the ideas would not be formed as much as

they are in this thesis without you. And to all those who mentored me, the pride I

have in this work is thanks to you.

And to my family who supported me through these five years, nurturing me to com-

plete this thesis despite all circumstances. This would not have been possible without

you.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Specific Context . 3

1.2 Motivation . 5

1.3 Problem Statement . 7

1.4 Research Questions . 7

1.5 Objectives . 9

1.6 Methodology . 10

1.7 Main Contribution . 12

1.8 Related Publications . 15

1.9 Thesis Outline . 18

2 Literature Review 20

2.1 Ontology Representations and Formalisms 20

2.2 Ontology-based Systems . 28

2.3 Ontology Modularization Techniques 32

vi

3 Background 45

3.1 Mathematical background . 45

3.2 Domain Information System . 51

3.3 Conclusion . 61

4 Module and Modularization 62

4.1 Definition of a Module . 63

5 Lattice-based Modules 72

5.1 View Traversal . 73

5.2 View Traversal Knowledge Loss . 86

5.3 Principal Ideal Subalgebra Module 89

5.4 Summary and Conclusion . 95

6 Algebraic Modules 97

6.1 The Algebraic Module . 97

6.2 The Lattice of Algebraic Modules . 100

6.3 The Search Space of Algebraic Modules 106

6.4 Summary and Conclusion . 107

7 Future Work and Conclusion 109

7.1 Future Work . 109

7.2 Conclusion . 112

A Correspondance of an Ontological Module to a Mathematical Mod-

ule 115

vii

List of Figures

3.1 High-level representation of a Domain Information System 57

3.2 The Boolean lattice for the Park Properties 60

4.1 The Boolean lattice of the module extracted from the Park Ontology

with c = Park . 64

5.1 The Boolean lattice for the Park Ontology with the view traversal

module highlighted for c = Neighborhood Feature 75

5.2 The view traversal module using c = Neighborhood Feature 76

5.3 Normalizing the starting concept c = Child 79

5.4 Modularization with c1 = Long.⊕ Acres and c2 = Acres ⊕ Prop. Type 81

5.5 The relationship between the kernel and the homomorphism f 87

5.6 The Boolean lattice for the Park Ontology with the principal ideal

subalgebra module highlighted for c = Neighborhood Feature 91

5.7 The Boolean lattice of the principal ideal subalgebra module extracted

from the Park Ontology with c = Neighborhood Feature 91

6.1 The Boolean lattice of the module extracted from the Park Ontology

with c = Park . 99

6.2 The partition lattice for Park . 100

6.3 The lattice of Boolean subalgebras for Park 102

viii

A.1 Depiction of performing the xor operator on the two magenta concepts

to produce the cyan concept. 119

A.2 Depiction of scaling the principal ideal formed over A⊕La⊕PT by

Lo⊕La⊕PT . 120

ix

List of Tables

1.1 Correlation between objective and chapters or sections 9

3.1 Park Property Dataset . 59

6.1 Percent of Tables with Number of Attributes (borrowed from [125]) . 107

x

Chapter 1

Introduction

With the advancement of modern computer systems and the ease of collecting data,

systems that can reason new facts, referred to as knowledge systems, have become a

significant area of research. As a result of the cost-effectiveness and improved tech-

nology of storage, the amount of data that is a part of these systems is enormous, and

further, the data comes from an assortment of domains [98]. Machine learning tech-

nology and data processing can be utilized to process the large volumes of data [100].

However, these techniques do not utilize the knowledge of the domains from which the

data comes. Knowledge systems instead aim to reason new facts by processing the

data in the context of a domain to produce domain knowledge [5]. One difficulty of

creating knowledge systems is the necessity of defining a domain so that it is possible

to incorporate it to the reasoning process. A domain should provide a context for the

data by describing the relationships and concepts that exist in the domain, and how

the data relates to these relationships and concepts. The definition of the domain

must also be formal so that it can be used in automated reasoning tasks. One method

of formally defining a domain is using an ontology.

1

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

An ontology is used as the structure for knowledge systems and is defined in [49] as

“a formal, explicit specification of a shared conceptualization”. As previously stated,

an ontology provides the formalization necessary to reason and acquire knowledge

from a domain. The above definition requires an understanding of what a concep-

tualization is, what a formal and explicit specification is, and what it means to be

shared. A conceptualization is often understood as a relational structure, that is,

the world being conceptualized can be represented using concepts and relations. Sec-

ondly, the formal and explicit specification is often accomplished using a logic such as

Description Logic (DL) [10]. Lastly, the conceptualization may be shared among sev-

eral agents via ontological commitments. An ontological commitment is an agreement

on how the domain (and the concepts and relationships therein) is understood [48].

Therefore, although an agent may not need an entire conceptualization but rather a

smaller part, it understands the concepts and relations in the same way as another

agent that shares the same ontological commitment to the ontology. This ensures that

two agents using the same ontology do not come to different conclusions, resulting in

inconsistency or contradictions.

Current ontologies are typically represented as either a taxonomy of concepts (e.g.,

[102]) or as a graph of concepts (e.g., [31]). They often do not incorporate the data

into the hierarchy, and thus, are less suited for the problems associated with the data

itself. In particular, a traditional ontology suffers from problems such as informa-

tion evolution and integration, and data heterogeneity. There is developing research

for efficiently utilizing data with an ontology, and most utilize the notion of XML

schemas or using the Web Ontology Language (OWL) language [18]. However, a

primary issue is that the incorporation of data into the ontology results in bloating

2

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

the system which makes reasoning tasks difficult [29]. An alternate approach is to

design a system that separates the data from the ontology (e.g., [40]). Such a separa-

tion ensures that the ontology is strictly a conceptualization and is not encumbered

with data. These systems allow for data storage technologies, such as databases, in

conjunction with ontology conceptualization technologies, such as utilizing the Termi-

nological Box (T-Box) of DL. Since the data is separated from the conceptualization,

a mapping must be defined to relate the data to the concepts. Examples of systems

that separate the data from the concepts are Ontology-based Data Access (OBDA)

[130] and Domain Information System (DIS) [84, 85, 86]. These systems both in-

volve a mapping function that relates the data component (where the data is) to the

ontological component (where the concepts are).

1.1 Specific Context

In an ontology-based system, there are many agents interacting with a single ontology.

The single ontology conceptualizes a domain for the many agents thanks to the agents

agreeing on an ontological commitment. Via an ontological commitment, each agent

will interpret each concept and relation in the same way. Often, an agent does not

need to use the entire ontology because either they are concerned with only a small

subset of concepts, or they have the authorization to access only a subset of concepts.

The subset of concepts that an agent is provided with is referred to as a module,

and a module is produced via a process referred to as modularization. We will be

elaborating further on modules and the process of modularization in Chapter 4. It

should be the case that it is known a priori what knowledge the agent can learn from

the given module. By doing this, we are able to address questions regarding what an

3

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

agent can learn. For instance, whether the agent has a module that is appropriate for

their decision-making, or whether the agent has a module that allows them to learn

facts they do not have the authorization to learn. Therefore, any knowledge the agent

needs or is able to learn ought to be within the module. Ideally, from the agent’s

perspective for a given query, the knowledge they can learn from the module should

be no different than what they can learn from the ontology. Governing bodies, such as

the European Union Agency for Network and Information Security, articulates needs

those needs with titles such as provable privacy and agent autonomy for a knowledge

system [28]. They state that it should not be the case that an agent is able to learn

facts from a module that it was not intended to know. To ensure that an agent

cannot learn unintended facts, it is required that the knowledge within a module be

determined a priori in its scope, at the stage of modularization.

If we are to use autonomous agents in a multi-agent system, the problems intro-

duced in [28] must be addressed. These problems include provable privacy in mod-

ules [9, 19], agent autonomy over their knowledge [35], and domain evolution [13, 25].

To tackle these problems, we need to determine the knowledge that can be learnt

within a module. We must formally define a module, and the associated modulariza-

tion that produces it. In doing so, the knowledge that can be determined via reasoning

can be determined much like how the knowledge is determined in an ontology.

A result of determining what knowledge can be learnt through a module is the

ability to measure or quantify the knowledge that is lost or modified due to modu-

larization. Although it was stated that ideally a module should allow for an agent

to reason facts as though it were reasoning on the ontology, this is often not the

case. A module is a subset of concepts, and so there will be an absence of knowledge

4

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

associated with the absence of concepts. Therefore, we should be able to determine

what knowledge has been lost due to the modularization process. This is no easy

task as the knowledge can be transformed in many ways due to modularization. For

instance, knowledge refinement, or the change in the granularity of knowledge, de-

scribes how knowledge can be modified rather than strictly lost. The granularity of

knowledge is an abstract property of knowledge and is related to understanding what

the elementary building blocks of knowledge are [97]. Knowledge loss, on the other

hand, refers to the knowledge being absent or indeterminable in the module. The lost

knowledge can be determined and then characterized through the property of com-

pleteness [20]. However, determining the lost knowledge is not trivial and requires

the use of a formal ontology (i.e., based on a logic system), such as one formalized

with DL or DIS. The ability to refine knowledge, or determine if a specific subset

of knowledge is more refined than another is a complex task and often requires en-

tire systems catered to it [34, 63]. Thus, an approach to modularization that better

facilitates the determination of knowledge loss or knowledge refinement is essential.

1.2 Motivation

The formalization of modularization techniques presents many challenges to the on-

tological field. A primary challenge is the formulation of a modularization technique

that is based on established algebra so that the module’s properties can be expressed

with an algebra’s theory. This in turn allows for determining the knowledge in the

module using algebraic approaches. The process of modularization leads to the sec-

ond challenge of quantifying or characterizing the knowledge of a module. There are

several different motivations for why one would modularize an ontology, and they all

5

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

require the ability to communicate what knowledge can be learnt from the module.

However, characterizing the knowledge is a difficult and abstract task. Thus, we focus

on characterizing the domain knowledge within a module.

The modularization approaches that can be applied to an ontology depend on

how the ontology is formalized or articulated. Since the modularization approach

produces a module, the formalism of the ontology restricts what kind of module can

be produced. The research in this thesis is focused on modularizing domain ontologies

that are in a DIS. In this structure, a domain ontology is composed of a Boolean lattice

and a set of graphs, where each graph is rooted to some element of the lattice. The

algebraic representation of the domain ontology allows for a formal representation of

domain knowledge. A modularization technique, and the resulting module, can also

be expressed using the established theory for Boolean lattices and their respective

Boolean algebras.

DIS, as a newer formalism for ontology-based systems, does not yet have any

modularization approaches developed for it. However, the theory of modularization

techniques for other ontology formalisms, such as DL or graph theory, can be applied

to the domain ontology of a DIS. The domain ontology presents a unique potential

for modularization because it can be represented as both a Boolean lattice and a

Boolean algebra. This allows us to apply both logical modularization approaches

to the Boolean algebra and graph-based modularization approaches to the Boolean

lattice. By doing this, we bridge these two areas of research for ontology modulariza-

tion that are currently distinct. The research of this thesis is motivated by utilizing

the dual nature of logical and graphical modularization approaches to a DIS domain

ontology so that the knowledge of a module can be formally characterized. The

6

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

characterization of knowledge can lead to further applications in knowledge hiding,

privacy, security, personalization, or scoped reasoning.

1.3 Problem Statement

The domain ontology in a DIS is able to be captured using a Boolean Lattice. A

Boolean lattice is isomorphic to a Boolean Algebra. Hence, we can use either of these

two mathematical structures when discussing the domain ontology of a DIS.The mod-

ularization techniques developed for a DIS domain ontology ought to utilize aspects

of either the lattice, the algebra, or both. Additionally, the domain knowledge that

is preserved or lost due to modularization should be able to be characterized using

the language of the used mathematical structures. We first require a formal under-

standing of what a module is in the context of a DIS domain ontology. Following

this, we require how one can modularize a DIS domain ontology to produce such a

module. If there are multiple ways to modularize, then the differences–communicated

using the defined properties of a module–must be expressed. The proposed research

aims to develop modularization techniques that utilize the different aspects of the

domain ontology, and to characterize the knowledge that is preserved or lost using

each technique.

1.4 Research Questions

In this section, we introduce the research questions that this thesis addresses. We

decompose each question into smaller subquestions which are answered by this re-

search. By answering the subquestions, we answer the more broad question that they

7

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

are related to.

1. How can we define key concepts needed for modularizing a domain ontology of

a DIS

(a) What is a module, and what are the properties that are useful in describing

it?

(b) What is the process of modularization?

(c) What is the relationship between a module and the domain ontology, from

which it is modularized?

2. Under what conditions can we modularize a domain ontology of a DIS, and

what are the consequences?

(a) What ontology modularization techniques from literature can be applied

to a domain ontology?

(b) How can these modularization methods be formalized using the language

of the domain ontology?

(c) How do the implemented methods compare to the methods found in the

literature?

(d) What properties can be expressed of the modularization method and the

produced module(s)?

3. Can we determine how the knowledge of the domain ontology transformed due

to modularization?

(a) How can we define or characterize the knowledge within a module?

(b) How is the knowledge transformed?

8

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

1.5 Objectives

The following objectives are a response to the previously stated research questions.

These objectives, and are markers for the accomplishments of the research presented

in this thesis. We show the chapter and section that each objective is addressed in in

Table 1.1.

Objective Chapter & Sections

Obj. 1 Chapter 4
Obj. 2(a) Chapter 2
Obj. 2(b) Section 5.1, 5.3, 6.1, 6.2
Obj. 2(c) Section 5.4, 6.4
Obj. 2(d) Section 6.3

Obj. 3 Section 5.2, 6.2

Table 1.1: Correlation between objective and chapters or sections

The objectives that this thesis addresses are as follows:

Obj. 1: Formalizing Key Concepts Related to Ontology Modularization for a Domain

Ontology. The following are its subobjectives:

(a) Define a Domain Ontology Module and Modularization

(b) Establish a Relationship Between a Module and a Domain Ontology

Obj. 2: Formalize Ontology Modularization for a Domain Ontology. The following are

its subobjectives:

(a) Explore Current Ontology Modularization Techniques

(b) Articulate the Modularization Techniques

(c) Compare the Articulated Techniques to those in Literature

9

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

(d) Articulate the Properties of Domain Ontology Modularization and the As-

sociated Module

Obj. 3: Determining how Knowledge is Transformed due to Modularization. The fol-

lowing are its subobjectives:

(a) Articulate what Knowledge is within a Module

(b) Determine how the Knowledge has been Transformed

1.6 Methodology

The objectives were conducted in a sequential and procedural way. The first objective

requires the formal definition of what a module is, and what modularization is. Pre-

dominant definitions of a module were explored in Chapter 2, and common properties

were determined that must also be exhibited by a module of a domain ontology. The

definition of a module was provided using the theory of DIS. To express the proper-

ties that were determined useful in describing a module, the DIS theory was extended

with relations that allowed for module comparison. Finally, modularization itself was

defined using this definition of a module.

The second objective requires that the existing modularization techniques for on-

tologies is examined so that new techniques can be developed for a DIS domain

ontology. This objective was accomplished by surveying existing literature following

a systematic process outlined by Kitchenham et al. [64]. The literature review was

produced as a self-contained paper, which can be found in [79]. The goal of the

literature review was to determine what ontology modularization techniques exist,

what ontology formalisms they can be used on, and any notable properties of the

10

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

modularization technique, such as what components of the ontology is utilized for

the modularization process. We completed a quantitative study of the existing liter-

ature to extract this data. Ontology modularization techniques that operated on the

same ontology formalism and sought similar goals could be compared to one another

quantitatively (such as in terms of complexity or tractability) but were unable to be

compared to modularization techniques that operated on entirely different ontology

formalisms. For instance, the comparison of a technique that operates on a specific

DL fragment could not be fairly compared to one that operates on a simple relational

graph structure in terms of complexity. Thus, there was a qualitative component

to the assessment that fulfilled this comparison which was guided by questions such

as the determination of what the motivation for modularization was, and what the

desired properties of the module are. Since the literature review that is produced

is used to guide the development of modularization techniques in this research, it

was essential that the literature review be conducted with the utmost scrutiny and

attention to detail.

The remainder of Objective 2 involves the articulation of modularization tech-

niques and elaboration of DIS theory. The first modularization technique articulated

utilized lattice theory to express a module. Specifically, it utilized the theory of

Boolean lattices, and the theory of ideals. Boolean lattice theory is necessary to

properly understand and use the central component of a domain ontology of DIS: a

Boolean lattice. The theory of ideals, and specifically of principal ideals, is used to

communicate what a module is, and how it can be determined. The second modular-

ization technique expanded the first technique by incorporating the theory of filters,

Boolean algebras, and Boolean subalgebras. The relationship between a Boolean

11

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

lattice and its respective Boolean algebra is crucial for formulating the second mod-

ularization technique. To understand this relationship, it requires an understanding

of group and ring theory. The third and final modularization technique utilized the

theory of partition sets, and how one is related to the lattice of all Boolean subal-

gebras of a given Boolean algbera. The modularization techniques in this thesis are

defined as functions, and so the theory of binary relations is necessary to be able

to characterize these transformations. As this theory is then added to the theory of

DIS, the underlying theories of DIS are also required: graph theory, cylndric algebra,

and higher-order logic. All of these are used to communicate how a modularization

technique produces a new DIS.

The third objective aims to characterize the knowledge within the ontology and,

by extension, the modules. To accomplish this, the isomorphism theorems and kernel

theory are used. In the first modularization technique proposed, the modularization

is defined as a homomorphism between ideals. Using the first isomorphism theorem,

this implies the existence of a kernel. Using kernel theory, we use a kernel to charac-

terize the knowledge loss of the defined modularization technique. Additionally, the

theory of Boolean algebras and subalgebras is used to communicate knowledge loss

through the preservation of the algebra’s operator. Finally, using the relationship

between the partition lattice (and its respective refinement relation) and the lattice

of all Boolean subalgebras of a given Boolean algebra, we define and present results

regarding knowledge refinement.

1.7 Main Contribution

The research of this thesis provides the following contributions:

12

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

1. The formalization of a module and modularization

The research presented in this thesis introduces, defines, and explores ontology mod-

ularizaton techniques that utilize all aspects of a domain ontology. Currently, there is

no generally agreed on definition of what a module is. Typically, a module is defined

loosely with no mathematical foundations, leading to the inability to compare mod-

ules from different techniques. By extension, since there is no formal understanding

of what a module is, there is no formalization for the process of modularization. This

also makes it difficult to objectively and quantifiably compare modularization tech-

niques to one other. This research resolves this issue by formalizing both a module

and modularization. By establishing formal definitions, we can quantitatively com-

pare the modularization techniques and modules which were previously incomparable,

or at worst, qualitatively compare.

2. The development of three modularization techniques to a DIS domain ontology

The ontology modularization field is wide and has numerous techniques that all differ

based on approach or type of module produced. The most prominent techniques are

adapted to a domain ontology, determined by an in depth literature review. Specifi-

cally, we adapt view traversal and the logic-based approach. In addition to adapting

existing techniques, an entirely new technique which utilizes the Boolean algebra of

the domain ontology is introduced. The adaptation of the two existing techniques

demonstrates the simplicity in applying existing techniques to DIS. The development

of the third technique demonstrates the utility of the underlying Boolean algebra and

how it can be used to develop new and innovative approaches to modularization.

3. The unification of graph-based and logic-based modularization approaches

13

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Although this contribution does not directly correlate with an objective, it is impor-

tant to note that there currently exists a rift between the graph-based modularization

techniques and the logic-based. Although much of the work related to using OWL

seeks to bridge this, often, OWL techniques isolate and use just the graph part or just

the DL. The work in this thesis bridges this rift by demonstrating how a graphical

approach on a domain ontology can be related to a logic based approach (and vice

versa). Limitations to this bridging are addressed, specifically showing that not all

graph-based modules can be extended to a logic-based. However, the ability to relate

the two types of modules under a single ontology representation is a novel finding and

is the first step to consolidating the ontology modularization field.

4. The characterization and communication of the knowledge within a domain

ontology and module

The field of knowledge with respect to knowledge-based systems is increasing in pop-

ularity at an extreme rate. The use of knowledge-based systems and producing means

to determine the knowledge associated with a set of data is becoming more impor-

tant. However, all this research is dependant on how knowledge is defined, and what

it is. Currently, knowledge is considered nothing more as deducible facts, and there

is no sure way of knowing what is not known in a system. The research in this thesis

formalizes what knowledge is, and further, what knowledge can exist for a module

given the domain ontology it comes from. This is significant when related to topics of

provable privacy in an autonomous agent setting. To determine what an agent does

(or does not) know, it is essential to be able to determine what it could know.

5. The determination of knowledge loss and knowledge refinement due to modu-

larization

14

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

The formalization of what knowledge is allows us to describe how it is transformed.

Further, the formalization allows for a more nuanced approach to the transformation

of knowledge by differentiating between knowledge loss and knowledge refinement.

This research demonstrates how we can measure the knowledge that is lost due to the

modularization process, and also how knowledge can be refined by modularization.

Further, it allows us to compare the knowledge from one module to another using

these properties. For example, whether one module contains more knowledge than

another, or whether one module has more refined knowledge than another. The

ability to compare the knowledge of one module to another allows for the comparison

of agents in a multi-agent system based on the knowledge that they contain.

1.8 Related Publications

We present the publications that are results from the research of this thesis in the

following list. We elaborate the impact of each paper in the paragraphs that follow.

1.8.1 Journal Articles

1. A. LeClair, A. Marinache, H. Ghalayini, R. Khedri, and W. MacCaull. A sys-

tematic literature review and discussion on ontology modularization techniques.

IEEE Transactions on Knowledge and Data Engineering, 2020. Review

This survey explored all modularization techniques on ontologies, regardless of how

the ontology was formalized. A discussion on open areas of research, specifically on

developing a modularization technique that incorporates aspects from both logical

and graphical approaches (which are topics discussed in the survey). The results

15

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

of this paper were used as motivation for the following papers regarding ontology

modularization, and identified techniques and key properties that a modularization

technique for a DIS domain ontology must have.

2. A. LeClair and R. Khedri. An algebraic approach to ontology modularization

and knowledge refinement. Journal of Theoretical Computer Science, 2021.

Review

To complement the graphical modularization technique applied to a DIS domain

ontology, an algebraic technique was developed to demonstrate the ideas of the logical

modularization techniques. In this paper the set of all Boolean subalgebras is utilized

to determine specific modules that satisfy the properties of local correctness and local

completeness that logical modularization techniques require. The use of the Boolean

subalgebras also allows for the definition of knowledge refinement using the partition

refinement relation. To the extent of our knowledge, this is one of the first explorations

for formally defining knowledge refinement in the context of an ontology.

3. A. LeClair, J. Jaskolka, W. MacCaull, and R. Khedri. Architecture for ontology-

supported multi-context reasoning systems. Data & Knowledge Engineering,

2021. Review

An architecture for an ontology-supported multi-context reasoning system is pro-

posed. The architecture is independent of ontology formalism, and thus, the modu-

larization approaches proposed in this thesis are not necessarily used in the paper.

However, the approach of maintainability promoted by modularization is used as a

major motivation for the architecture. It is the impetus for utilizing the Presentation-

Abstract-Control style as the basis of the architecture thanks to its natural separation

of concerns.

16

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

1.8.2 Conference Papers

4. A. LeClair., R. Khedri., and A. Marinache. Toward measuring knowledge loss

due to ontology modularization. In Proceedings of the 11th International Joint

Conference on Knowledge Discovery, Knowledge Engineering and Knowledge

Management - Volume 2: KEOD. INSTICC, SciTePress, 2019

In this paper, the ideas of graphical modularization techniques are applied to the

domain ontology. In particular, utilizing the relational structure of the ontology to

extract concepts that constitute a module that is defined and characterized by size and

closeness of concepts. The work goes beyond this by formalizing the view traversal

technique using the underlying Boolean algebra. This allows for the declaration of

lost knowledge due to view traversal on a DIS domain ontology, specifically due to

the inability to preserve the complement operator. It is in this work that knowledge

loss is first formally defined.

5. A. LeClair, R. Khedri, and A. Marinache. Formalizing graphical modularization

approaches for ontologies and the knowledge loss. In J. Dietz, D. Aveiro, and

J. Filipe, editors, Knowledge Discovery, Knowledge Engineering and Knowledge

Management, volume 1297 of Communications in Computer and Information

Science series, pages 1–25. Springer, 2021. Invited

In this paper, the view traversal modularization technique, comparable to a graphical

modularization approach, is extended so that it satisfies the definition of an algebraic

module. The introduced module, a principal ideal subalgebra module, demonstrates

how the graphical approach for a DIS domain ontology is not separate from the

algebraic approach.

17

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

6. A. Marinache, R. Khedri, A. LeClair, and W. MacCaull. Dis: A data-centred

knowledge representation formalism. In 2021 Reconciling Data Analytics, Au-

tomation, Privacy, and Security: A Big Data Challenge (RDAAPS), pages 1–8.

IEEE, 2021

A case study which demonstrates the construction of a DIS for a movie domain is

presented. In this work, it is shown how the domain ontology is constructed from a

dataset, and improved with the addition of rooted graphs. Modularization is discussed

(although the techniques of this thesis are not applied in this paper) as a means to

maintain the domain ontology.

1.9 Thesis Outline

The remainder of this thesis is structured as follows.

In Chapter 2, we perform a literature review on ontology formalisms and ontology

modularization. We also examine existing ontology-based system formalisms.

In Chapter 3, we present the mathematical background necessary for understanding

the research in this thesis. We introduce the DIS formalism, and we introduce the

motivating example that will be used to illustrate the modularizations of throughout

this thesis.

In Chapter 4, we formally define the concepts of what a module is, and what mod-

ularization is. It is here we explore the properties related to these concepts.

In Chapter 5, we present the first set of modularization techniques on a DIS domain

ontology based on the lattice structure. In this chapter we also explore the knowledge

that is lost due to the defined modularization techniques.

18

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

In Chapter 6, we present the other modularization technique that is based on the

algebra associated to the domain ontology. Notions of knowledge refinement are also

introduced in this chapter, and we explore ways in which modules can be created

based on what the desired granularity of knowledge.

Finally, in Chapter 7, we explore the direction of future research and address re-

maining open questions. We then conclude the thesis and present any final remarks.

19

Chapter 2

Literature Review

In this Chapter we evaluate the literature regarding ontology modularization tech-

niques. To evaluate the ontology modularization techniques, we first examine ontology

formalisms and methods for representing ontology-based systems. This evaluation al-

lows us to explore the different types of modularization techniques, and the different

motivations that exist for them. After each exploration of a topic in the literature,

we provide our thoughts on the current state of the literature, and how it relates to

the research presented in a discussion. Often, we compare the current literature to

DIS, which is further elaborated in Chapter 3.

2.1 Ontology Representations and Formalisms

2.1.1 Description Logic

The first investigated ontology formalism is DL, which is the predominant formalism

used. It is the underlying logic for OWL, a language for writing ontologies [87]. DL

20

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

is composed of a family of fragments, each with a different level of expressiveness. A

primary motivator for using DL as an ontology formalism is that the core reasoning

tasks, such as materialization and consistency checking, are decidable for specific

fragments [10]. Within DL, there are two components: the T-Box and the Assertional

Box (A-Box). The T-Box contains all axioms which define the concepts and relations

of the ontology. Examples of T-Box axioms are

Mother v Parent (2.1.1)

which states that the concept Mother is a subconcept of the concept Parent. With

this understanding, any data that is a Mother is therefore also a Parent, but not vice

versa. The axiom

Person ≡ Human (2.1.2)

states that the concept Person is equivalent to the concept Human. This relation is

more strict than the above, because all data that is a Person is also a Human, and

vice versa. Richer assertions can be declared using quantifiers or symbols introduced

in specific fragments. For example,

Mother ≡Woman u ∃hasChild.Person (2.1.3)

states that the concept Mother is equivalent to the intersection of those that are a

Woman and those that are apart of the relationship hasChild with another concept

that is a Person. The use of the existential quantifier increases what can be expressed,

however, it can potentially make reasoning more difficult. Depending on which frag-

ment of DL is used, or on the assertion, reasoning can become undecidable [8]. An

21

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

example of a fragment is O, which allows for the use of nominals in an assertion. An

example of a nominal is

Beatle ≡ john t paul t george t ringo (2.1.4)

which states that the concept Beatle must take on one of the four values of john,

paul, george or ringo. Other examples of fragments are H which allows role hierarchy

properties (i.e., subPropertyOf), and the U which allows for concept union. For

examples of all fragments, we direct the reader to [10].

The A-Box contains the axioms which instantiate the concepts with data. Exam-

ples of A-Box axioms are

Mother(julia) (2.1.5)

which states the data value ‘julia’ is an instance of the concept Mother, and

parentOf (julia, john) (2.1.6)

which states that the data value ‘julia’ is related to the data value ‘john’ via the

parentOf relation. Some implementations of a DL-based ontology have an additional

third component to the T-Box and A-Box: the Rule Box (R-Box). The R-Box con-

tains axioms pertaining the relations that would normally be found in the T-Box [60].

However, the incorporation of an R-Box is not standard and not found in all DL-based

ontologies.

Depending on the authors, an ontology is defined as only the T-Box, excluding

the A-Box entirely [68]. With the onset of big data, there has been efforts to more

formally include the A-Box to produce results that are more respective of the domain

22

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

and its data. Examples of extending DL to account for problems such as the veracity

and variety of the data are fuzzy DL [114] and contextual DL [115]. Despite these

efforts to account for the veracity and variety of data, the sheer volume often requires

a basic fragment of DL, such as ALC, to be used [33, 56, 127, 132]. The use of a basic

fragment of DL restricts what can be expressed, and therefore, limits novel results

from reasoning.

2.1.2 OWL

Ontologies that are formalized with DL are often written and implemented using

OWL, such as GALEN [101], FOAF [41], and the Semantic Web [11]. Much like

there are different fragments of DL with varying expressiveness, there are several

sublanguages of OWL, each supporting different levels of expressiveness [87]. OWL

Lite allows for the creation of a hierarchy with simple constraints on it, such as

restricted cardinalities, property restrictions, and class intersection. OWL DL allows

for the maximum expressiveness while still retaining computational completeness and

decidability, and corresponds to the SHOIN (D) fragment of DL [54]. It contains all

language constructs but restricts their use, such as not allowing a class to be an

instance of another class. OWL Full allows for the maximum expressiveness with no

computational guarantee. OWL2 is an update to the OWL language and corresponds

to the SROIQ(D) DL fragment [54]. Regardless which OWL sublanguage we refer

to, OWL is built using Resource Description Framework (RDF) triples [57]. An

RDF triple relates a subject to an object via a predicate. In this way, OWL can be

represented as a graph, where the predicate is the edge, and the subject and object

are the nodes.

23

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

2.1.3 Graph-theory

An ontology can also be formalized using graph-theory. In this way, the ontology is

a tuple 〈D,R〉, where D is the domain, represented as a set of concepts and R is the

set of relations on D [47]. The graphs are directed acyclic graphs so that the ontology

can be a hierarchy [26]. Unlike DL, the simplistic representation of a graph allows

for a quick and intuitive approach to designing the ontology. Additionally, it allows

for existing notions from graph theory to be applied to the ontology to perform tasks

such as modularization [92]. Since OWL can be represented as a graph thanks to the

RDF triples, graph-theory concepts can also be applied to it.

An analogue to increasing the expressivity of a DL by choosing a more expressive

fragment in graph-theory is introducing weighted edges. A weighted edge allows for

the expressing of one relationship being more important than another by having a

higher weight. For instance, in [137], weighted edges are used to assist the clustering

process. Weights are calculated using a correlation between concepts, and so the

clustering algorithm can then use the weights to determine clusters of similar concepts.

The formality of a graph-based ontology can be further increased by defining it

as a lattice-structure using Formal Concept Analysis (FCA). A lattice structure al-

lows for the use of lattice-theory when discussing ontological concepts [93]. FCA

conceptualizes a domain where the concepts are described by properties, and the

properties determine the hierarchy of concepts. The hierarchy is not fully designed

by an ontology engineer, which is different from other graph-based ontologies. With

a graph-based ontology, all concepts and relations must be introduced by the ontol-

ogy engineer, nothing is automatically constructed. By using FCA, it is possible to

formalize the focusing on the concepts which exhibit a specific property by utilizing

24

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

the theory of sublattices.

2.1.4 Domain Ontology

The final formalism we introduce is the domain ontology found within DIS [85]. The

domain ontology is a structure that itself is formed of three substructures: a Boolean

lattice, a set of rooted graphs, and a monoid of concepts. Each of these substructures

are formally defined using a theory, such as the Boolean lattice formalized using lattice

theory, the rooted graphs using graph theory, and the monoid using universal algebra.

These three structures work in harmony to conceptualize a domain. The Boolean

lattice is the central anchor which conceptualizes the domain and how concepts relate

to one another via a partOf relation. The rooted graphs are concepts that are not

related via the partOf relation but instead via some other relation. Each rooted graph

must have a root that belongs to the Boolean lattice. Finally, the monoid of concepts,

defined as C = (C,⊕, ec), simply represents all possible concepts, represented by the

set C, that exist within the domain (i.e., the concepts of the Boolean lattice and the

rooted graphs).

The expressivity of a domain ontology comes from the richness of the underlying

formalisms. For instance, the Boolean lattice allows for expressing the relationship

between concepts via an ordering. However, the Boolean lattice is restricted to only

the partOf relation. To express more rich relationships between concepts, rooted

graphs can be made. Finally, the Boolean lattice can be instead represented as a

Boolean algebra, and so the operations associated with that, such as the complement,

can be used for expressions. The domain ontology is further detailed in Chapter 3.

25

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

2.1.5 Discussion

On the spectrum of expressivity, graph-theory is the least expressive of the three

and DL is the most expressive. A graph is able to conceptualize a set of concepts

and only one relation. The introduction of additional relations can be introduced to

increase expressivity, as well as weighted edges, but it is still limited to using binary

relationships. On the other hand, DL allows for several relations as well as quantifiers

and–depending on the fragment used–inverse relations, cardinality, nominals, and

more. The increase in expressivity comes at the cost of computational complexity for

reasoning tasks, and the increase in difficulty in creating the ontology. The difficulty

of creating DL ontologies comes from the need to understand the fragment to be

used to properly conceptualize the domain, as well as the need for understanding

writing DL. OWL can be thought of as a representation which is in between DL and

graph-theory for the ontology representation. The reason it is considered in between

is because it can be represented as a graph, and although OWL DL corresponds to a

DL fragment, it cannot go beyond that fragment. That is, you cannot extend OWL

DL with new DL fragments. Additionally, there exist OWL sublanguages (such as

OWL Full) which do not have any corresponding DL fragment.

An issue that is prevalent within the DL field is the ‘Tower of Babel’ problem [52].

As a result of the numerous DL fragments, it has become an issue where two on-

tologies may not be compatible although both are formalized in DL. This is because

one ontology may be formalized with a highly expressive fragment of DL and con-

tains axioms that cannot be written in a less expressive fragment. As an ontology

formalized using graph-theory is only a set of concepts and a set of relations on those

concepts, the ‘Tower of Babel’ problem is not as prevalent. However, it does still

26

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

exist for ontologies which further restrict the ontology, such as FCA which imposes

the lattice structure.

Finally, the inclusion of data to the ontology is something often not discussed.

For an OWL ontology, one can easily add data through individuals. Although this is

an easy process, each piece of data must be individually added. However, for graph-

theory or DL, this is not true. For DL, the data would exist as assertions in the

A-Box if the A-Box is considered to be a part of the ontology. For a graph, the data

must be included with the set of concepts or not at all.

The domain ontology in a DIS can be compared to each of these ontology represen-

tations because of the underlying Boolean lattice and Boolean algebra. The Boolean

lattice is formed over the relation part Of, and since it is a lattice, it is comparable

to FCA. Additionally, it can be compared to a graph if we take the set of concepts

L (from the Boolean lattice) and the relation part Of. In other words, we interpret

the lattice simply as a graph and ignore the order of the relation. Further, the rooted

graphs are themselves graphs, and so are directly comparable to graph theory. How-

ever, the domain ontology can also be compared to DL because of the Boolean algebra

that the Boolean lattice is related to. The Boolean algebra allows for axioms to be

written using the operators such as the complement or join. The Boolean algebra is

not able to directly express the most expressive fragments of DL, such as the exis-

tential operator. However, not only can axioms be made within the domain ontology

that do allow for these expressions, but often, the expressivity is limited in DL to

ensure decidability. Since we are able to utilize both the Boolean lattice structure and

the Boolean algebra of a domain ontology, we are able to compare findings to other

ontology formalisms. For example, results regarding the Boolean lattice are relatable

27

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

to graph-based ontologies, and results regarding the Boolean algebra are relatable to

(or other formal) ontologies.

2.2 Ontology-based Systems

2.2.1 Ontology-based Data Access

OBDA is a technology that seeks to provide access to various types of data sources

using semantic technology [130]. An OBDA instance is defined as the pair (P ,D)

where P is an OBDA specification, and D is a source database. An OBDA specifica-

tion is defined as P = (O,M,S) where O is an ontology, S is a data source schema,

andM is a mapping from S to O. The O provides a conceptual view of the data, and

allows for queries to be made using the language of the ontology. A goal of OBDA

is that by allowing the user to make queries using concepts from the ontology, the

queries can be made with a more natural and convenient vocabulary (when compared

to data schemas).

In an OBDA system, the ontology is formalized using DL. The queries can be

submitted as a SQL query using the language of the ontology. However, the queries

are not submitted as SQL, they are instead re-written as a first-order logic query.

This way, the data is queried using an FO query. However, re-writing, in the worst

case, is of exponential complexity [130]. Therefore, it is not a trivial task to perform

the queries on an OBDA system.

Another aspect of concern regarding OBDA is the manual writing of the mappings.

Each mapping between the data and the ontology must be written manually, and

updated upon each modification to the ontology or data schema [130]. This is often

28

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

remedied by version-controlling the ontology so that it is not susceptible to quick

changes. Although fixing the issue of needing to constantly re-write mappings, it

prevents the ontology from evolving. New concepts cannot be added or existing

concepts cannot be modified unless the version is being updated.

2.2.2 DOGMA

DOGMA is an approach for engineering highly reusable and usable ontologies that

can be used over several domains and applications [61]. In the DOGMA framework,

there is an ontology base which captures the domain axiomatizations, and a set of

application axiomatizatons by which different applications commit to the ontology

base. The ontology base serves the purpose of conceptualizing the domain, and is

formalized as a set of binary relations and a set of concepts. In [61], an example of

a bibliography domain is provided. In this example, the ontology base is exemplified

as a set of relationships and the concepts they relate. For example, the concept

Book is related to the concept Written Material by the Has-Type relation. There

are application axiomatizations which provide specific views of this ontology base for

specific applications. In one application axiomatization, the concept Book is related

to the concept Product. In another product axiomatization, the concept Product

does not exist. Despite being different, both of these application axiomatizations

have made commitments to the same bibliography ontology base. One or several

applications can subscribe to the application axiomatization that fits their needs.

The ability to have multiple applications commit to a single ontology base by

choosing the application axiomatization that best fits their needs results in a unique

understanding of a context. In a DOGMA system, a context plays a scoping role at

29

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

the ontology base level. A term is within a context refers to a concept in the ontology

base.

2.2.3 Domain Information System

The domain ontology introduced earlier as an ontology formalism is a part of the

Domain Information System [85]. The DIS is composed of a domain ontology, a

domain data view, and a mapping function. The domain data view, as introduced,

is composed of three substructures: the Boolean lattice, the rooted graphs, and the

monoid of concepts. The domain data view is a cylindric algebra which models a

structured dataset. Finally, the mapping function is an operator which maps elements

of the cylindric algebra to the Boolean lattice. The components are more formally

introduced in Chapter 3.

DIS is a formal system that is composed of several different algebras and theories.

This formality allows for an expressiveness that is not found in other ontology-based

systems. Additionally, it ensures the system is able to handle evolution easily. Similar

to OBDA, the separation of the ontological component from the data component

ensures that evolution is isolated to only one component. For instance, an update to

a concept would only exist within the domain ontology. However, since the mapping

function maps specifically from the domain data view to the domain ontology, data

evolution is much easier to handle. If the data schema were to be modified (e.g.,

the addition of a column in a database), the domain ontology can be appropriately

updated with minimal work. A concept must be created in the domain ontology that

conceptualizes the new column as well as the mapping function needed to relate the

two. There is no need to modify SQL queries or a translation function.

30

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

2.2.4 Discussion

OBDA and DOGMA both share the assumption that the data component either

already exists, or is built independently from the ontology component. This results

in the ontology being made for the data component, or for the ontology being fit to the

dataset. In both of these systems, the matching of the data schema to the ontology is a

non-trivial and inefficient process. Since in a DIS the domain ontology is constructed

from the data view, there is no need to fit the domain ontology to the data view.

Additionally, mappings are straight forward as there is a 1:1 correspondance between

the data schema attributes and the atoms of the domain ontology.

OBDA and DIS are two systems that are composed of three components: an

ontology component, a data component, and a mapping component which relates the

data to the ontology. However, OBDA uses DL to formalize the ontology, whereas

DIS uses a Boolean lattice for the core of the domain ontology, a monoid for the set

of all concepts, and rooted graphs for the remainder of the domain ontology. Also,

in an OBDA system, the data component and the ontology component are built

independently. In a DIS, the atoms of the Boolean lattice come from the attributes

of the data component. This relationship also allows for changes resulting from data

evolution; data can be changed or modified without influencing the domain ontology.

In the case that the schema were to be changed, then the Boolean lattice would need

to be recreated. Likewise, any changes in the rooted graphs would not influence the

data component as they use concepts that are not part of the Boolean lattice (and

thus, not directly related to the dataset).

31

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

2.3 Ontology Modularization Techniques

2.3.1 Ontology Modularization Motivations

In the field of ontology modularization, there are four primary motivations that mo-

tivate the modularization process: engineering, reasoning, knowledge hiding, and

alignment [79]. In several papers, although the motivation(s) of the author(s) may

not be explicitly stated as one of the listed four, it can be considered similar enough

to one of the four such that it can be compared and related to other papers of that

similar motivation. For instance, in the literature, there is similarity between the

motivations of matching and alignment. In particular, although matching seeks to

merge two ontologies and alignment seeks to equate concepts between two ontologies,

they both aim to produce modules such that the concepts within can be compared to

each other. So, in the survey, alignment and matching are considered to be the same

motivation.

The papers that are motivated by engineering produce a set of modules so that the

ontology better follows software engineering principles. Often, the modules increase

the usability or maintainability of the ontology, and thus improves the life-cycle. For

example, in [129], the ontology is modularized so that it is more easily used as an an-

notation source by reducing the ontology to a more manageable set of modules which

can be manually annotated. In [37], Ghafourian et al. state that their goal is to re-

duce the size and complexity of ontologies by improving the reusability of ontologies.

An improvement to the reusability of an ontology allows for the easy design of a new

ontology using modules from previously made ones. Finally, in [116], Stuckenschmidt

32

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

and Klein address the need to partition large ontologies (dubbed monolithic ontolo-

gies) into entities of meaningful and self-contained modules. This process seeks to

help individuals maintain the ontology by instead of reviewing thousands of concepts,

they instead review individual modules.

The papers that are motivated by reasoning produce a module that is used for

reasoning purposes. The reduction of the ontology to the module seeks to improve the

efficiency of the reasoning process. The improvement to efficiency is typically achieved

by using a smaller set of axioms in the module rather than the entire ontology, or by

parallelizing the reasoning algorithm to operate over multiple modules. In [36], Gatens

et al. proposes a technique that ultimately extracts a module that is conservatively

extended by the ontology. This is similar to the techniques of Del Vescovo et al. in

[23] and Grau et al. in [42]. They are all founded on the same idea of utilizing locality-

based modules. These, by definition, preserve the knowledge of the ontology in the

context of the module, and so can be used for reasoning purposes and not produce

incorrect or contradictory results. However, they all operate on some fragment of

DL. Modularization techniques that are motivated by reasoning can also be seen by

Noy and Musen in [92] and Sen et al. in [111]. In both of these works, DL is not

used to formalize the ontology, but rather, it is represented as a graph. Since it is not

as formal as DL, the modularization techniques do not seek to produce as rigorously

defined modules. Rather than being able to correctly answer any query, they seek to

extract the concepts and relations necessary to correctly answer the input query.

The papers that are motivated by knowledge hiding produce a module that en-

capsulates a specific view of the ontology. The reason for having a smaller view of the

ontology can be for a personalized experience for the user, hiding concepts to increase

33

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

the security and privacy, or for abstracting the ontology into a more digestable and

user-friendly format. These techniques are typically user-driven, guided by either a

query or seed of concepts and relations, to determine what the view is to be about.

They are also light-weight in that they are produced when needed. In [128], Wang

et al. develop a technique that forgets specific concepts and relations so that the

resulting view is a reduced ontology. They also propose three different query-based

forgetting operators. This is similar to Koopmann and Schmidt who use the inter-

polant to define a forgetting process in [73]. In [7], Aroua and Mourad develop a

technique for an interactive system that allows for a personalized experience by mod-

ularizing the underlying ontology according to the user’s selected preferences. The

preferences are formed by what the user wants to specifically see from the ontology,

with the addition of some additional concepts that the system recognizes as similar.

Finally, the papers that are motivated by alignment produce modules that can be

compared to the modules, formed by a similar modularization technique, of another

ontology. This comparison may be done to determine the similarity of the two on-

tologies, or determine if one module can be swapped for the other and preserve the

conceptualization of the domain. This allows for individual modules to be compared

to one another rather than entire ontologies. In [80], Li et al. reduce large scale ontolo-

gies to smaller modules, which can then be compared in a matching phase. In [109],

Seddiqui and Aono use modularization to reduce two massive, conceptually similar

ontologies into modules so that the two ontologies may be aligned. The technique

reduces the ordinarily polynomial time process of alignment to logarithmic time.

It is important to point out to the reader that a single technique can strive for

multiple motivations; they are not exclusionary. For instance, the technique proposed

34

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

by Noy and Musen in [92] can be thought of as one that strives for reasoning, as it

seeks to produce a module that answers a specific query. However, the intent of the

technique is to produce a customizable, personalizable view for the user so they are

interacting with a smaller part of the ontology. Thus, it is also motivated by knowl-

edge hiding. This is because there is often great overlap between the motivations. It is

often the case that by modularizing an ontology so it can be compared to another, as

one does for alignment, they also are trying to make more reusable and maintainable

components, which aligns with engineering.

2.3.2 Ontology Modularization Approaches

In the field of ontology modularization, there are two primary approaches: graphi-

cal and logical [79]. A graphical modularization technique determines the concepts

that will compose the module using the graph structure of the ontology [116]. The

concepts are determined in ways such as traversing the relations of the graph [92],

using semantic similarity [37], or clustering techniques [4]. A logical modularization

technique determines the concepts that will compose the module using the knowledge

and deducible facts of the ontology [43]. Given an input seed, such as an axiom, the

module will contain everything necessary to preserve the knowledge of that seed in

the module [22]. The survey mentions a third approach, referred to as a hybrid, but

there are so few techniques adhering to it, with no uniformity amongst them that

they are not further discussed.

Of the two considered approaches, graphical modularization approaches are the

most prevalent [79]. From the survey of ontology modularization techniques, nearly

two-thirds were graphical approaches. Examples of modularization techniques that

35

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

follow the graphical approach are [92] by Noy and Musen, [117] by Stuckenschmidt

et al., and [37] by Ghafourian et al.. In [92], the modularization process is initiated

by providing a concept. The relations of the graph are traversed, starting from the

provided concept, up to a depth that was also provided. All concepts that are part

of the traversal are included in the module. In [117], the graph is partitioned by

transforming the graph into a dependency graph. Weights are assigned to the relations

that can be used to partition the graph into a finite set of islands through an iterative

partitioning process. The technique in [37] is similar to that of Stuckenschmidt et al.

in [117] because it also partitions the graph, but uses a neighborhood random walk

distance rather than a dependency graph. However, it still uses weights of edges to

ensure that concepts related to each other with a high weight value are in the same

partition. Although the three techniques presented use the graphical structure in

different ways to extract a module, they all use the relations, either for traversal or

for assigning a weight, to determine the concepts.

As the graphical modularization approach utilizes the ontological structure to

acquire the concepts for the module, they are often devised for ontologies represented

as a graph. For instance, [4, 14, 17, 27, 30, 32, 38, 39, 59, 80, 81, 90, 92, 96, 99, 105,

106, 109, 110, 111, 116, 117, 121, 136, 131, 133] are all techniques that operate on an

ontology defined as a graph. There may be slight variances to the exact definitions

used, such as whether the graph is directed or undirected, but all of the ontologies

the techniques operate on are composed of a set of concepts, and a set of edges on

those concepts. OWL ontologies are also often used for techniques of the graphical

approach, such as [3, 7, 37, 62, 89, 108, 107, 120, 123, 129]. These techniques, similar

to the techniques that use a traditional graph, use the hierarchical structure that is

36

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

formed using the underlying RDF triples.

A logical modularization approach differs from a graphical modularization ap-

proach by how the concepts that constitute the module are determined. Examples of

modularization techniques that follow the logical approach are [23, 44, 70]. In [23],

locality-based modules are used to present an approach that utilizes atoms, which are

defined in the paper as “a set of axioms such that, for any module, it either contains

all axioms in the atom or none of them.”. The atoms are said to be induced over an

ontology by locality-modularization. Locality-modularization is often referred to as

a relaxed form of a conservative extension-based module [43]: whereas a conservative

extension-based module requires minimality of the module, a locality-based module

does not. In [70], the module is determined via interpolation. A module defined using

interpolation is similar to a module defined using conservative extension because they

both use the same theory regarding Σ-inseparability. However, whereas conservation

extension and techniques derived from it seek to extend the signature of the module to

that of the ontology, interpolation techniques seek to reduce (or forget) the ontology’s

signature to that of the module’s. Finally, in [44], Grau et al. present a technique

that partitions an ontology such that the partitions are related using connections

called ε-connections. It seeks to partition the language of the ontology such that each

partition (referred to as a sub-domain) is independent from each other. The three

presented techniques each utilize the logical side of the ontology in that the objective

of modularization is to create a module that preserves the knowledge of the ontology

with respect to the language of the module. Each of the techniques use the language

of the ontology to do this, whether by extending the language of the module, reducing

the language of the ontology, or partitioning the language of the ontology.

37

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

As the logical modularization approach seeks to preserve knowledge, it requires

a formal representation of the ontology. In [6, 16, 23, 24, 36, 44, 55, 66, 67, 70, 69,

73, 82, 103, 104, 118], we see several logical modularization techniques that all use

some fragment of DL. DL is the prominent formal representation of an ontology and

is the typical representation used for a logical modularization technique. The axioms

and existing reasoning methods can be used to determine whether, for instance, the

ontology conservatively extends the module. Similar to graphical modularization

techniques, logical modularization techniques can utilize OWL, as shown with [22,

42, 43, 71, 72, 122, 128]. However, it utilizes the respective DL fragment of the OWL

ontology, or it uses only the OWL sentences to produce the module rather than the

hierarchical structure that is formed like graphical modularization techniques.

2.3.3 Ontology Module Properties

A modularization technique is guided by some property that it is either trying to

satisfy or optimize when creating the module. Although many properties exist, sev-

eral are so similar that they can be categorized together. In [79], these properties are

grouped into four prominent categories: conservative extension, structural proximity,

semantic similarity, and disjointedness. A modularization technique that seeks to sat-

isfy conservative extension is, as the name implies, one that produces a module that is

conservatively extended by the ontology, using the definition of conservative extension

as defined in Section 3.1.3. Since it produces a module that is conservative extended,

it is a binary property: either the module is conservatively extended by the ontology,

or it is not. A modularization technique guided by structural proximity is one that

aims to preserve the ontological structure within the module. This is achieved by

38

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

preserving specific relationships, such as nearness of neighbors, adjacency of neigh-

bors, or other structural measures. Often times structural proximity is a property

that is optimized (as the full ontology certainly cannot be preserved by the definition

of a module), and utilizes measures reminiscent of software engineering principles,

such as cohesion and coupling to measure it. A modularization technique that uses

semantic similarity is one that aims to preserve the context or understanding of the

ontology. Whereas a technique optimizing structural proximity uses the ontological

structure with little heed to the specific relations or concepts that make it up, a tech-

nique optimizing semantic similarity focuses less on the physical structure and more

on the relations and importance of concepts. The preservation is determined using

an assigned importance of relations to prioritize them for inclusion to the module,

determining central concepts based on number of connections or inclusion in specific

relationships, and more. Finally, a modularization technique seeking to satisfy dis-

jointedness aims to produce modules that are independent from one another. This

can be achieved through partitioning techniques, specifically of the signature of the

ontology. Similar to the property of conservative extension, disjointedness is a binary

property that is either satisfied or not.

The graphical modularization approach, because of its heuristic approach, pro-

duces modules that exhibit structural proximity or semantic similarity properties.

Techniques such as [3, 12, 27, 39, 59, 62, 90, 92, 96, 105, 106, 108, 109, 116, 117,

120, 123, 136] all seek to optimize structural proximity in one way or another, and

[4, 7, 14, 17, 32, 37, 38, 81, 80, 89, 94, 99, 107, 109, 110, 111, 121, 123, 129, 131,

134, 133, 135] all seek to optimize semantic similarity. There were no techniques

39

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

that seek to satisfy disjointedness or conservative extension that were also a graph-

ical modularization approach. This aligns with the fact that those two properties

require a formal ontology representation so that it may be proven that, for instance,

the module is conservatively extended by the ontology. Graphs, which are what the

graphical modularization approaches operate on, are not as formal as an ontology

written in description logic. Of the techniques that use structural proximity, the

prevalent measures found were the f-measure (found in [27]) and the compactness

factor (found in [62]). The f-measure uses two metrics called precision and recall to

determine the quality of the module. The precision is the number of relationships

found in the module that are also found in the ontology, and recall is the number of

relationships in the ontology that are also in the module. The compactness factor is

a repertoire of aggregated measurements, such as the interconnectedness of concepts,

cohesion, lexical similarity, and euclidean distance. In [39] there is a blurring of the

structural proximity and semantic similarity properties. In this work, Ghazvinian et

al. use a similarity measurement to ultimately determine the structural proximity of

classes. Despite being a mix of the two, it does not share any properties with that of

a conservative extension-based technique, or a disjointedness-based one.

Unlike the intuitive-nature of the graphical modularization approach, the logical

modularization approach is based on formal logic, and so produces modules that ex-

hibit the properties of conservative extension and/or disjointedness. The techniques

of [6, 16, 22, 24, 36, 42, 43, 44, 70, 69, 71, 73, 82, 104, 118, 122, 128] all produce

modules that are conservatively extended by the ontology, but may vary in how the

module is defined: a minimal module, a locality-based module, or interpolation. The

techniques of [23, 55, 66, 72, 103] all produce modules that exhibit the disjointedness

40

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

property. The observation that all techniques that produce a module that is conserva-

tively extended by the ontology are categorized as a logical approach is not surprising.

The intent of a logical modularization approach is to preserve the knowledge of the on-

tology with respect to the module, which is realized through conservatively extending

it by the ontology. The finding that all disjointedness-based modules are also a logical

modularization approach results from the necessity of being able to reason knowledge

to ensure a partition contains the necessary axioms to preserve that knowledge.

2.3.4 Component of Ontology Utilized

A modularization technique can modularize the ontology using whichever component

of the ontology: the data (such as the A-Box in a DL ontology), the concepts (such

as the T-Box in a DL ontology), or both. The super majority of techniques utilize

only the concepts. They use the relations that relate the concepts and the concepts

themselves to create the modules. This is true for graphical approaches that traverse

the conceptual structure (i.e., the hierarchy or the graph) to determine the modules,

as well as for logical approaches that utilize the axioms that define the concepts. A

small minority however, also use data.

In [126], Wandelt and Möller propose a technique that uses the data in the A-Box

to guide the modularization process. Partitions (referred to as islands) are created

using queries, and the T-Box is then updated to continue the modularization process.

The technique in [91] by Nikitina et al. is similar in that the A-Box is partitioned

so that the T-Box can be revised to adhere to the A-Box partitions. Pujara et al.

propose a technique for an ontology represented as a graph which utilizes both data

and concepts in [99]. In this case, the graph nodes can be either concepts or data, so

41

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

the partitioning technique, which partitions the graph nodes, will partition on both

the concepts and the data. The ontology alignment technique proposed by Ochieng

and Kyanda in [94] calculates similarity using the data of the two concepts from the

two ontologies so that they can be related to each other.

The absence of modularization techniques that utilize data is not surprising as the

issues the amount of data introduces to computation complexity is often considered

not worth it. Or, the data is simply not considered part of the ontology and thus not

in scope of ontology modularization. However, if an ontology-based system is to be

considered in this research, which includes a data view, then data cannot be entirely

ignored from the modularization process.

2.3.5 Discussion

The motivations, module properties, and component of the ontology utilized for mod-

ularization are dependent on the approach that is used. A logical approach is more

associated with reasoning motivations, produce modules that are conservatively ex-

tended by the ontology, and utilize only the concepts. In contrast, graphical ap-

proaches are typically associated with engineering or alignment motivations, produce

modules that exhibit a certain structural proximity or semantic similarity property,

and largely utilize the concepts (although some techniques are hybrid). For both

approaches, there do not exist techniques that heavily use, or consider, the data for

the modularization.

The dependency between the modularization approach and the motivations, mod-

ule properties, and component of the ontology utilized for modularization is made

42

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

more significant because of the separation between graph-theory ontology represen-

tations and DL. An ontology formalized with graph-theory is limited to graphical

modularization approaches, which is in turn limited to certain motivations, module

properties, and component of the ontology utilized. This is also true for an ontology

formalized with DL, which is limited to logical modularization techniques.

As it was introduced in Section 2.1.5 that OWL can be thought of as an inter-

mediary between DL and graph-theory ontologies. This is because depending on the

sublanguage used, OWL can be interpreted as the related DL fragment, or as a graph

formed from the RDF triples. However, not all DL fragments correspond with an

OWL sublanguage, and vice versa. For example, OWL Full does not correspond to

any single DL fragment. Therefore, for an OWL ontology, it is not necessarily true

that any modularization technique that follows a logical approach can be applied to

it. Additional to this issue is that although an OWL ontology has both logical and

graphical aspects to it, it is not often that a modularization technique utilizes both.

For example, modularization techniques for an OWL ontology may utilize just the

graph aspect, or just the underlying DL, but not both. In this way, modularizing an

OWL ontology is no different than modularizing an ontology formalized as a graph,

or with DL. Ideally, there would be a modularization technique that is a combination

of both a logical and graphical approach so that it does not limit the motivation,

module properties, or component of the ontology utilized.

The limitations of the ontology modularization field–specifically with the sepa-

ration between graphical and logical modularization approaches–is used as a launch

pad for the research of this thesis. The duality of the graphical structure and the al-

gebra of the domain ontology in a DIS has been discussed, and it is the goal that this

43

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

duality allows for the bridging between the research between these two approaches

of modularization. The bridging of these approaches allows for the light-weight and

intuitive approaches associated with graphical approaches to be enhanced with the

knowledge-preserving and computationally minimal properties associated with logical

approaches.

44

Chapter 3

Background

In this chapter, we introduce the necessary concepts relevant for the proposed re-

search. First, we introduce the mathematical background, which contains all the

theories that are essential for understanding the modularization techniques intro-

duced in this research. Second, we introduce the Domain Information System (DIS),

which is the structure used to represent the data and the domain conceptualization.

3.1 Mathematical background

We first introduce lattice theory and Boolean algebra, which are essential for un-

derstanding the underlying algebraic structure of the domain ontology that is to be

modularized. Second, partition lattices and Boolean subalgebras are introduced as

they are the used when defining a module. Finally, we introduce the notion of con-

servative extension, which is used to formalize logical modularization techniques, and

is adapted to the modularization techniques of this thesis.

45

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

3.1.1 Lattice Theory and Boolean Algebras

A lattice is an abstract structure that can be defined as either a relational or algebraic

structure [21]. In our work, we use both the algebraic and the relational definitions

of lattices, therefore we provide both of them and we present the connection between

them.

Let (L,≤) be a partially ordered set. For an arbitrary subset S ⊆ L, an element

u ∈ L is an upper bound of S, if s ≤ u for each s ∈ S. Dually, an element l ∈ L is

a lower bound of S if l ≤ s for each s ∈ S. An upper bound (resp., lower bound)

u is defined as a least upper bound (resp., a greatest lower bound) if u ≤ x for each

upper bound x ∈ S (resp., x ≤ l for each lower bound x ∈ S). A least upper bound

is typically referred to as a join, and a greatest lower bound as a meet. If every two

elements a, b ∈ L have a join, then the partially ordered set is called a join-semilattice.

Similarly, if every two elements a, b ∈ L have a meet, then the partially ordered set

is called a meet-semilattice. As a relational structure, a lattice is a partially ordered

set that is both a join- and meet-semilattice.

A lattice can also be defined as the algebraic structure (L,⊕,⊗), which consists

of a set L and the two binary operators ⊕ and ⊗ that are commutative, associative,

idempotent, and satisfy the absorption law (i.e., a ⊕ (a ⊗ b) = a ⊗ (a ⊕ b) = a, for

a, b, c ∈ L).

The relational and algebraic structures can be connected by the equivalences

a ≤ b ⇐⇒ (a = a ⊗ b) ⇐⇒ (b = a ⊕ b). The connection between the relational

and algebraic definition of a lattice allows us to freely interchange the relational and

algebraic aspects in discussion; some concepts are easier to express or explain in one

structure over the other.

46

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

We also require the notion of a sublattice, which is simply defined as a nonempty

subset M of a lattice L that satisfies x⊕ y ∈M and x⊗ y ∈M for all x, y ∈M .

A Boolean lattice [112] is defined as a complemented distributive lattice. A com-

plemented lattice is bounded. A bounded lattice contains two distinguished elements,

referred to as the top {1} and the bottom {0}. These elements are comparable to

every other element of the Boolean lattice, and follow that for any element a ∈ L,

a ⊕ 1 = 1 and a ⊗ 0 = 0. A Boolean lattice is also complemented which means

that every element a has a complement. We have an unary operator ′ that gives for

every a ∈ L its complement a′ such that a ⊕ a′ = 1 and a ⊗ a′ = 0. A distributive

lattice is one where the join and meet operators distribute over each other (i.e., a

lattice L is distributive if for all x, y, z ∈ L, x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and

x⊕ (y ⊗ z) = (x⊕ y)⊗ (x⊕ z)).

The algebraic structure for the Boolean lattice is defined as a 6-tuple consisting

of a set B, the two binary operators ⊗ and ⊕ (the meet and join), a unary operator

′ (the complement), and two elements 0 and 1 in B (the bottom and top). We write

this algebraic structure as B = (B,⊗,⊕,′ , 0, 1). The complement operator ′ is defined

as above for a complemented lattice. In a finite Boolean algebra, an atom is defined as

an element a ∈ B where for any b ∈ B, either a⊗b = a or a⊗b = 0 [50]. In this work,

we consider only finite Boolean algebras. The Boolean lattice and its corresponding

Boolean algebra are thus generated from the power set of the atoms [53]. As a result,

all Boolean algebras with the same number of atoms are isomorphic to each other.

Other results regarding Boolean lattices that are useful for this research are:

• Any Boolean lattice is isomorphic to a field of sets.

• A Boolean lattice is complete and atomic iff it is isomorphic to the power set

47

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

of P(E) for some set E.

Ideals and Filters

Two distinguished substructures of a Boolean algebra that are used in this research

are the ideal and filter. For a Boolean algebra B with the carrier set B, I ⊆ B is

called an ideal in B if I is nonempty and if for all i, j ∈ I and for all b ∈ B we have

i⊗ b ∈ I and i⊕ j ∈ I. A filter is the dual of an ideal. For a Boolean algebra B with

the carrier set B, F ⊆ B is called a filter in B if F is nonempty and if for all i, j ∈ F

and for all b ∈ B we have i⊕ b ∈ F and i⊗ j ∈ F .

An ideal is called proper if I 6= {0} or B. It is possible to generate an ideal (filter,

respectively) using an element, referred to as the principal ideal (principal filter,

respectively). Let B be a Boolean algebra with carrier set B, and b ∈ B. The principal

ideal (principal filter, respectively) generated by b is defined as L↓b = {a ∈ B | a ≤ b}

(L↑b = {a ∈ B | a ≥ b}, respectively). An ideal is maximal (or a prime ideal) if

I 6= B and the only proper ideal containing I is B itself. The dual of a maximal

ideal is the ultrafilter. It is also established that for any maximal ideal (ultrafilter,

respectively) I ⊆ B and any element x ∈ B, I contains exactly one of x and x′.

3.1.2 Partition Lattices and Boolean Subalgebras

To later present algebraic modularization techniques, we use partition lattices to

identify the Boolean subalgebras of a Boolean algebra. A partition lattice is the

structure that is created by imposing the refinement relation over all the partitions

of a set. Let P(X) be the power set of X. A partition P is a non-empty subset of

P(X) such that ∀(A,B | A,B ∈ P : A ∩ B = ∅) and
⋃
A∈P

A = X. Let A and B

48

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

be partitions of a set X. The refinement on partitions, denoted by ≤P , is defined as

follows:

A ≤P B ⇐⇒ ∀(s | s ∈ A : ∃(t | t ∈ B : s ⊆ t))1 (3.1.1)

Thus, the top of the partition lattice is the partition with a single element, {X},

and the bottom of the lattice is the partition formed by the singleton sets.

It is well known that for a finite Boolean algebra, all of its subalgebras can be

related to one another as a lattice that is dually isomorphic (i.e., the lattice ordered

using the inverse relation) to the corresponding finite partition lattice [15]. In other

words, if we have a Boolean algebra B with carrier set B, then there is a bijection

between the lattice of all Boolean subalgebras of B and the partition lattice of the

set of atoms of B. The lattice of Boolean subalgebras is ordered using the inverse

of the refinement relation, and so the top element is the finest partition from the

partition lattice, which is B. The bottom element is the coarsest partition, which is

the trivial Boolean subalgebra where 0 = 1. For instance, let S = {a, b, c, d} be a

set of elements, then A = {{a}, {b}, {c, d}} and B = {{a}, {b, c, d}} are certainly two

partitions of S, and that A ≤P B because every element of A is a subset of an element

of B. In fact, if we take C = {{a}, {b}, {c}, {d}} to be the partition formed by all

singleton sets, then C is the most fine partition. Each of these partitions correspond

to a Boolean algebra formed by using the sets within a partition as the atoms. Thus,

as we described, C–the finest partition–corresponds to the original Boolean algebra

where a, b, c, and d are the atoms.

1We adopt the uniform linear notation provided by Gries and Schneider in [46]. The general form
of the notation is ?(x | R : P) where ? is the quantifier, x is the dummy or quantified variable, R is
predicate representing the range, and P is an expression representing the body of the quantification.

49

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

3.1.3 Conservative Extension

Conservative extension is a notion from mathematical logic, and often used in fields

such as proof theory. In [88], we find the (proof theoretic) definition of conservative

extension that is given by Definition 3.1.1.

Definition 3.1.1. Let L and L′ be logics of the same type (i.e., same signature),

and φ be a formula in L. We call L′ a (proof theoretic) conservative extension of L

provided that the following two properties hold:

1. L |= φ =⇒ L′ |= φ

2. For every φ in the language of L, L′ |= φ =⇒ L |= φ

In addition to the definition provided, there exists a stronger notion of conservative

extension called model theoretic conservative extension. It is presented as follows:

Definition 3.1.2. Let T and T ′ be theories. We call T ′ a (model theoretic) conser-

vative extension of T if every model of T can be expanded to a model of T ′.

In Chapter 1 of [83], both Definition 3.1.1 and 3.1.2 are used to discuss the prop-

erties of an ontological module. In this paper, the T-Box concept assertions are the

formulas in referred to in Definition 3.1.1. It is common that the proof for showing

that the ontology conservatively extends the module is done in two steps, as exempli-

fied by [45]. The first step, referred to as local correctness corresponds to determining

the first property: that every formula of the module is a formula of the ontology. The

second part, referred to as local completeness corresponds to determining the second

property: that every formula of the module written in the language of the ontology

is a formula of the ontology.

50

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

3.2 Domain Information System

A Domain Information System (DIS) [84] consists of three components: A domain

ontology, a domain data view, and a function that bridges between the two.

3.2.1 The Domain Ontology

The first component of a Domain Information System is the Domain Ontology. The

domain ontology is the conceptualization of the domain as a set of concepts and

relations. We refer to the knowledge that is captured by these concepts and relations

as the domain knowledge.

The domain is conceptualized using three structures: a monoid over the set of

all concepts, a Boolean lattice formed over the atomic concepts, and a set of rooted

graphs with a root concept that belongs to the Boolean lattice. To formally present

the domain ontology, we first introduce the monoid structure. Let C be the set

of all concepts under consideration, which are all concepts that conceptualize the

domain. We define the combination operator ⊕ defined on the set of concepts that

is commutative and associative, and a distinguished concept, e
C

, that represents the

empty concept. The empty concept is neutral to the concept composition, that is,

for any concept c ∈ C, c ⊕ e
C

= c. The structure C = (C,⊕, e
C

) is therefore a

commutative idempotent monoid. The idempotency allows us to express that if one

were to combine a concept with itself, it would return the same concept rather than

a new concept (i.e., c⊕ c = c). Using the composition operator, we define the partOf

relation as follows:

k1 vC
k2 ⇐⇒ k1 ⊕ k2 = k2 (3.2.1)

51

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

We also distinguish a subset of concepts as atoms, denoted by At(C), where an atom

is defined as:

k1 is atomic ⇐⇒ ∀(k2 | k2 ∈ C : (k2 vC
k1) =⇒ (k2 = k1 or k2 = e

C
)) (3.2.2)

Equation 3.2.2 states that the only concept that is a part of an atom is the empty

concept. With this definition, the atoms can be understood as the building blocks of

the domain. They are unitary, non-decomposable concepts that can be combined into

the other concepts of the domain. This method of combining the atoms is the con-

ceptualization of a Cartesian perspective of the domain. We can then understand the

composition operator as determining the concept that is formed from the atoms of the

two concepts. This understanding demonstrates the significance of the idempotency

property: if two concepts which have the same atoms are combined, the result is a

concept that is also formed from the same atoms, and therefore, the same concept.

We now introduce the second structure, the Boolean lattice. The subset of atoms

corresponding to the attributes of the data schema is denoted by T ⊆ At(C). The free

Boolean lattice generated over T is denoted by L =
(
L,v

C

)
, where L = P(T), the

power set of T . An algebraic representation of L is described as B = (L,⊗,⊕,′ , e
C
,>).

The composition operator ⊕ represents the join operator, and its dual ⊗, the meet

operator. The two operators distribute over each other. For a given concept k, its

complement is a concept k′ such that k⊕k′ = >L and k⊗k′ = e
C

, where >L is the top

of the lattice L. Inductively, we define a concept in L as follows: a concept c is either

the empty concept, an atomic concept as defined in Equation 3.2.2, or a combination

of atoms.

52

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Let k, k1, k2 ∈ L:

k1 ⊕ k2
def
= ⊕(c | c ∈ At(L) : c v

C
k1 or c v

C
k2)

k1 ⊗ k2
def
= ⊕(c | c ∈ At(L) : c v

C
k1 and c v

C
k2)

k′
def
= ⊕(c | c ∈ At(L) : ¬(c v

C
k))

We can show that k1 ⊗ k2 = (k′1 ⊕ k′2)′, k1 vC
k2 ⇐⇒ k1 ⊗ k2 = k1, and ⊗ is

associative and commutative (and idempotent), as the dual of ⊕.

We now introduce the third and final structure needed to formally present the

domain ontology, the set of rooted graphs. Let Ci ⊆ C,Ri ⊆ Ci × Ci, and t ∈ Ci. A

rooted graph at t, Gt =
(
Ci, Ri, t

)
, is a connected directed graph of concepts with t

as a root. We call t the root of Gt, and define it as follows:

t ∈ Ci is root of Gt ⇐⇒ ∀(k | k ∈ Ci : k = t or (k, t) ∈ Ri
+).

Definition 3.2.1 (Domain Ontology). Let C =
(
C,⊕, e

C

)
be a commutative idempo-

tent monoid. Let L =
(
L,v

C

)
be a Boolean lattice, with L ⊆ C, such that e

C
∈ L.

Let G = {Gt | Gt is a rooted graph at t and t ∈ L}. A domain ontology is the mathe-

matical structure O def
=
(
C,L,G

)
.

3.2.2 The Domain Data View

The second component of a Domain Information System is the Domain Data View

that corresponds with an ontology. The domain data view is the structure that is

modeled by the data of the domain, such as log data or relational database data.

A crucial aspect of the domain data view is that it has the open-world assumption:

incomplete or empty data is interpreted as unknown (i.e., it can be anything) rather

53

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

than nothing (i.e., no data). This assumption allows us to interpret incomplete data

into what it could be by allowing the sort that has an empty value to be anything,

through a process called cylindrification. For instance, for a row in a data table, an

empty value in a column can be interpreted as any possible value rather than null.

Since cylindrification can only be performed using a column in the dataset, and the

columns correspond to an atom of the Boolean lattice of the domain ontology, we say

that the domain data view corresponds with an ontology.

The domain data view is formalized as a cylindric algebra. The cylindrification

operator of the algebra allows us to formalize the process described above. We define

the domain data view as follows

Definition 3.2.2 (Domain Data View associated with an ontology). Let O =
(
C,L,G

)
be a domain ontology. A domain data view associated with O is a diagonal-free cylin-

dric algebra A =
(
A,+, ?,−, 0A, 1A, {cκ}κ∈L

)
, where L is the carrier set of L.

For the properties of a cylindric algebra, we refer the reader to [119]; we do not

need these properties as our work mainly focuses on and uses the domain ontology

of DIS. The elements of A are understood as n-dimensional objects, such as tuples

of varying size from 0 to n. For example, let P,Q,R be three sorts of a table,

such that p1, p2, ..., pi ∈ P , q1, q2, ..., qj ∈ Q, and r1, r2, ..., rk ∈ R. A tuple such

as {(p1, q1, r1)} is an element of A, and is a tuple of size 3. The tuple {(p2, q2)}

is also an element of A despite not having an element of the R dimension. The

Boolean operators ofA (i.e., +, ?,−) create new elements in A [119]. Finally, applying

the cylindrification operator on an element a ∈ A, on the i-th dimension, can be

understood as a extension of a on i. For example, if we let a = {(p1, q1, r1)} ⊆

P ×Q× R be an element of A, then cR(a) = {(p, q, r) | p = p1 ∧ q = q1 ∧ r ∈ R}.

54

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

The cylindrification on R takes the tuple and extends the R-dimension so that its

value can be anything that belongs to that sort. It does not affect the P and Q

dimensions, which is why the tuple still has bounded variables p1 and q1. Therefore,

we can have {(p1, q1, r1), (p1, q1, r2), ..., (p1, q1, rk)}. We are also able to cylindrify on

a sort that does not exist in the tuple, but does exist in the data, i.e., we can extend

a tuple. If a has instead been defined as {(p1, q1)} ⊆ P × Q, we would still be able

to cylindrify on R. This is the process of extending the tuple from dimension P ×Q

to P ×Q× R, where we retain the values p1 and q1, but allow the value of r be any

value from R. It should be observed that for both definitions used for a, a tuple of

dimension P × Q × R or a tuple of dimension P × Q, the cylindrification on R will

produce the same set of tuples.

On the elements a ∈ A, we define a focusing2 operator that corresponds to the

projection operator in Codd’s relation algebra. We adopt the notation a / κ for

indicating the focusing of the datum a ∈ A on the index κ. If κ is a part of τ(a),

to focus a on κ means to find the element b ∈ A such that τ(b) = κ and b is

the projection of a on the concepts given by κ. This can be expressed using the

cylindrification operator, by ensuring that cylindrification of both a and b is invariant

on κ. Thus, the data view provides us with a language to describe properties on data

elements. The focusing operator is used to obtains parts of a datum. If κ v
C
τ(a),

the operator is defined as a / κ
def
= {b | b ∈ A ∧ τ(b) = κ ∧ c(τ(a)\κ)a = c(τ(a)\κ)b}.

Otherwise, a / κ
def
= 0A.

2The term focusing is borrowed from information algebra [65].

55

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

3.2.3 The Domain Information System

With both the domain ontology and data view introduced, we now can define the

Domain Information System. Figure 3.1 illustrates an example DIS at a high level.

The blue shaded component, which contains the datasets, is an illustration of the

domain data view. The red shaded component is a representation of the domain

ontology. It is here that we can see a Boolean lattice with the composing concepts

denoted by red nodes, and several rooted graphs with concepts denoted by the yellow

nodes. The third and final component to define a Domain Information System is

the τ operator. The τ operator is a function that maps elements from the domain

data view to the Boolean lattice in the domain ontology. In Figure 3.1, an instance

of using the operator is shown by the dashed green line which shows that the data

element a43 is mapped to the concept titled Attr3. We define a Domain Information

System as follows.

Definition 3.2.3 (Domain Information System). A Domain Information System

(DIS) is the structure D = (O,A, τ) such that:

• O is a Domain Ontology

• A is a Domain Data View associated with O

• τ : A → L is a function that maps between the Domain Data View and the

Domain Ontology and satisfies the following properties for a, b ∈ A:

56

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Attr1 Attr2 Attr3

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

Attr1 Attr2 Attr3

: Domain Ontology: Dataset(s)

Figure 3.1: High-level representation of a Domain Information System

τ(0A) = e
C

(3.2.3)

τ(1A) = > (3.2.4)

τ(−a) =∼ τ(a) (3.2.5)

τ(a+ b) = τ(a)⊕ τ(b) (3.2.6)

τ(a ? b) =

τ(a)⊗ τ(b), if a ? b 6= 0A

e
C
, if a ? b = 0A

(3.2.7)

τ(cκa) =

τ(a)⊕ κ, if a 6= 0A

e
C
, if a = 0A

(3.2.8)

With this understanding of the τ operator, we see how the remaining concepts

in the Boolean lattice are mapped from combinations of elements in A using the +

and ? operators.

We are able to express the following relationship between the two orders of the

57

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

domain data view and Boolean lattice of a DIS:

Lemma 3.2.1. Let a, b ∈ A. Then a ≤ b =⇒ τ(a) v
C
τ(b)

Proof.

a ≤ b

⇐⇒ 〈 Definition of ≤ 〉

a+ b = b

=⇒ 〈 Apply τ to both sides of equation 〉

τ(a+ b) = τ(b)

⇐⇒ 〈 Property 3.2.6 〉

τ(a)⊕ τ(b) = τ(b)

⇐⇒ 〈 Definition of v
C
〉

τ(a) v
C
τ(b)

3.2.4 Motivating Example

The work presented in this thesis involves different approaches for modularizing a

domain ontology in a DIS. In order to contextualize the modularization techniques,

as well as facilitate discussion, a motivating example is introduced. The example that

is introduced in this section will be carried through the remainder of this paper, and

is the reference whenever mentioning ‘the’ domain ontology.

We remind the reader that a domain ontology is defined as O def
= (C,L,G) where C

is a monoid which is composed of the set of concepts C, L is a Boolean lattice, and

G is a set of rooted graphs. The atoms of the Boolean lattice relate to the schema of

a dataset in A. An example dataset is provided in Table 3.1.

58

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Table 3.1: Park Property Dataset

Longitude Latitude Acres Property Type Realtor Neighborhood City
-122.39982015 37.7955308 2.012 Civic Plaza Financial Distric San Francisco

-122.49239745 37.7219234 608.486 Regional Park Lake Shore San Francisco

-122.41742016 37.79642235 0.1489 Mini Park Nob Hill San Francisco

-122.45465821 37.73906281 40.7118 Regional Park Miraloma Park San Francisco

-122.40750049 37.78793123 2.5997 Civic Plaza Downtown San Francisco

-122.41204637 37.74706105 2.2460 Neighborhood Park Bernal Heights San Francisco
...

...
...

...
...

...

Table 3.1 contains a reduced data set taken from the Open Data Sets for the City

of San Francisco [1]. In this table there is data which is related to specific parks

within the city of San Francisco. The data set has been reduced from 32 attributes

to just 6 for both visualization and comprehension purposes. In the table, there

are several attributes which are either redundant or not significant with respect to

the conceptualization of the domain, such as an attribute for who last edited a park

property. Ultimately, each attribute of the data set is composed with one another

to produce the concept of a Park Property. Therefore, using this dataset, we freely

construct the Boolean lattice of the Park Property domain using the attributes of

the schema to create the set of atomic concepts. In Figure 3.2 we show the produced

Boolean lattice, where each of the atoms corresponds to an attribute of the data

set. For legibility purposes, we have shortened some of the attribute names, such as

Longitude to simply Long.. The concepts within the Boolean lattice are those that

are formed by combining two or more atoms. Concepts denoted by a non-filled circle

node have a significance that is recognized by the domain expert. For instance, the

concept formed by the combination of Longitude and Latitude is a non-filled node

that is referred to as a Location. This concept is the conceptualization of how, with

both a longitude and latitude, you have the location of a park. The remaining nodes

do not have a recognized significance, but are still conceptualized. For instance, the

59

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Acres Prop. Type Neighborhood CityLat.Long.

Park

Park Property

Safety

Child

Elder

Positive

Negative

Film Song

Romance

Comedy

Film

Romance

assocWith

hasScore

Figure 3.2: The Boolean lattice for the Park Properties

concept formed from Neighborhood ⊕ City may not carry a significance like Location,

but it still requires a conceptualization. We also direct attention to the empty concept

of the monoid, e
C

, which is a part of the Boolean lattice. Specifically, it is the bottom

element.

Rooted graphs are added to the domain ontology to further enrich the domain

with concepts that cannot be defined as a combination of the atoms, as per the guid-

ance of the domain experts. For instance, a park may have different sentimental

interpretations based on what type of film or songs it is a part of. A park which is

featured in someones favorite movie will be viewed in a positive light than if they

had not seen that movie. Likewise, the park can be thought of negatively for similar

reasons. Thus, the domain expert creates two rooted graphs, one for positive sen-

timent and one for negative, which is rooted to the concept Park, which is defined

as Lat.⊕Long.⊕Acres⊕Prop.Type. Additionally, a domain expert may recognize that

60

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

specific City Neighborhoods have specific safety scores, such as how safe it is for chil-

dren or elders. These can also be represented as a rooted graph, rooted to the concept

defined as Neighborhood⊕City. In Figure 3.2, these rooted graphs are denoted by the

yellow graphs.

It is important to note that each rooted graph is distinct from one another. In

Figure 3.2, although there are two rooted graphs that each have a concept titled

Film, they are not the same concept. This is due to how the family of rooted graphs

is defined in a domain ontology. The result of this is that although the two rooted

graphs share concepts with the same name, have the same root, and both are formed

using the relation assocWith, they can be thought of as two entirely distinct and

unique structures. Thus, the concept titled Film within the rooted graph of Positive

is not the same as the concept of the same name within the rooted graph of Negative.

3.3 Conclusion

In this chapter, we introduced DIS, the underlying Boolean algebra of a domain

ontology, as well as the mathematical theory of lattices, conservative extension, and

Boolean subalgebras. This thesis utilizes each of these theories to develop and present

modularization techniques for a domain ontology, and also to express the properties

of these modularization techniques. We also introduced a motivating example, which

is carried throughout the thesis, and is used as the example that each developed mod-

ularization technique is applied to. It provides a common starting domain ontology

so that each modularization approach can be fairly compared to each another based

on how it utilizes the domain ontology as well as by the module that is produced.

61

Chapter 4

Module and Modularization

In Chapter 2, Section 3.3, we indicated that in the literature, the notion of a module is

vaguely introduced. The only characteristic of a module that is agreed upon is that it

is a smaller component of the ontology. Since there are no precise definitions, it is not

necessarily possible to compare two modules. Since they may be two entirely different

structures, it may not be possible (or sound) to say which one is more suitable for a

given task. The shortcomings with respect to defining a module cascade to not being

able to sufficiently formally define the process of modularization. With no clear and

formal definition of what a module is, we cannot reasonably define what the process

of making a module is. This research proposes modularization techniques, so it is

essential that we articulate a formal definition of what a module is, and by extension,

what modularization is.

In this Chapter, we define a module with the characteristics provided by Doran et

al. in [27] in mind. According to Doran et al., the module should be a reusable and

self-contained component that bears resemblance to the ontology.

62

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

4.1 Definition of a Module

Let D = (O,A, τ) be a DIS with a domain ontology O. A module is a sub-component

of the domain ontology O such that itself is a domain ontology. We define it as

follows:

Definition 4.1.1 (Module). Given a domain ontology O = (C,L,G), a module M

of O is defined as as a domain ontology M = (CM ,LM ,GM) satisfying the following

conditions:

• CM ⊆ C

• LM = (LM ,vC
) such that LM ⊆ CM , LM is a Boolean sublattice of L, and

ec ∈ LM

• GM = {Gn | Gn ∈ G and tn ∈ LM}

where CM and C are the carrier sets of CM and C, respectively.

The definition we present of an ontological module is compared to a mathematical

module in Appendix A.

We present in Figure 4.1 a module of the domain ontology that is given in Fig-

ure 3.2. It can be seen that the set of concepts that exist in this module are certainly

a subset of the set of concepts of the ontology; no new concepts have been introduced.

Additionally, the rooted graphs that exist in the module also exist in the ontology,

and the roots of the rooted graphs are unchanged. Finally, the Boolean lattice of the

module is a Boolean sublattice of the ontology.

Since a module is defined using sets of concepts and rooted graphs, the question

follows as to whether a new module can be determined using set operations on two

63

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Long. Lat.Acres Prop. Type

Location

Geography

Park

Positive

Negative

Film Song

Romance

Comedy

Film

Romance

assocWith

Figure 4.1: The Boolean lattice of the module extracted from the Park Ontology
with c = Park

modules from the same domain ontology. For the following two claims, we let O =

(C,L,G) be a domain ontology, and let O1 = (C1,L1,G1) and O2 = (C2,L2,G2) be

two modules of O. We focus on showing that the domain ontology formed via the

set intersection or set union of O1 and O2 is a module. It is trivial to show that the

intersection and union of the two module’s set of concepts is a subset of the domain

ontology’s set of concepts, conforming to Definition 4.1.1. Likewise, the set of rooted

graphs that is included to the module are those that have a root in the Boolean

lattice. Thus, from the intersection or union of the two module’s rooted graphs, we

only include those that have root in the Boolean lattice to the module.

Claim 4.1.1. Let O3 = (C3,L3,G3) be the structure where C3 = C1∪C2, L3 = L1∪L2,

and G3 = G1 ∪ G2. Then O3 is a module if and only if L1 ⊆ L2.

Proof. We prove this directly.

L1 ⊆ L2

⇐⇒ 〈 Definition of subset 〉

64

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

L1 ∪ L2 = L2

⇐⇒ 〈L3 = L1 ∪ L2〉

L3 = L2

⇐⇒

L3 is exactly L2.

Claim 4.1.2. Let O3 = (C3,L3,G3) be the structure where C3 = C1∩C2, L3 = L1∩L2,

and G3 = G1 ∩ G2. Then O3 is a module.

Proof.

L3 = L1 ∩ L2

⇐⇒ 〈 Definition of set intersection 〉

At(L3) = At(L1) ∩ At(L2)

⇐⇒ 〈 Definition of concept composition 〉

∀(k | k ∈ L3 : (k = c1 ⊕ c2 and c1 ∈ At(L3) and c2 ∈ At(L3)) =⇒ k ∈ L3)

⇐⇒ 〈 Definition of Boolean lattice and v
C
〉

L3 = (L3,vC
) form a Boolean lattice

In both of the above claims, we can form O3 = (C3,L3,G3) as follows. L3 is formed

as the above proofs show. G3 is the set of all rooted graphs from G1 ∪ G2 (G1 ∩ G2,

respectively) that have root in L3. C3 is formed by all concepts in L3 and of each

rooted graph of G3.

The two claims we have introduced both describe how modules can be determined

from two existing modules of the same domain ontology. Although, with the set union

operation, it is not possible to determine a new module.

To compare modules, we introduce the module size relation ≤S that is a subset of

O ×O. Utilizing the previously introduced domain ontology O and two modules O1

65

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

and O2, we can compare the two modules via module size in the following way

O1 ≤S O2 ⇐⇒ C1 ⊆ C2 and L1 ⊆ L2 and G1 ⊆ G2.

This relation states that O1 is smaller than O2. If we let S0 be the set of all modules

of a domain ontology corresponding to a DIS, we can define a partial order using S0

and ≤S, described in the following Claim.

Claim 4.1.3. Let O be a domain ontology, and let S0 be the set of all modules of O.

The ≤S forms a partial order over S0, denoted as (S0,≤S).

Proof. To show that (S0,≤S) is a partial order, we must show that ≤S is reflexive,

anti-symmetric, and transitive.

The ≤S relation is defined using the subset relation, which is itself reflexive, anti-

symmetric, and transitive. Thus, the ≤S relation inherits each of these properties,

and is itself an ordering.

We also distinguish that this partial order is bounded. That is, there is an upper

and lower bound. Within S0, the original domain ontology O is the upper bound,

and the module formed over e
C

is the lower bound. This is because for any module

M ∈ S0, it is true that M ≤S S0. There is no module that is larger than the domain

ontology it came from. This includes the domain ontology S0 itself because of the

transitivity of ≤S. The lower bound, the module formed over e
C

, denoted as MZ , is

the smallest module that can be formed. That is, for any module M ∈ S0, it is true

that MZ ≤S M . This module is formed from stripping away all rooted graphs and

Boolean lattice concepts except e
C

and > (and setting them to be equal).

We remind the reader that according to Doran et al. [27], a module should be

a self-contained, reusable component that bears resemblance to the ontology. Since

66

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

each module is itself a domain ontology, they are certainly self-contained and reusable.

Additionally, a module can be related to the ontology it comes from using the ≤S

relation. Although the ≤S relation describes a module that is no larger than the

domain ontology it comes from, it does not necessitate that it is smaller. This is due

to the reflexivity of the relation; the module may be of the same size as the domain

ontology. Thus, to capture this ability to communicate a module that is strictly

smaller than the ontology, we introduce the strict module size relation <S, defined as

O1 <S O2 ⇐⇒ C1 ⊂ C2 and L1 ⊂ L2 and G1 ⊂ G2

This definition is the same as the module size relation definition where each instance

of the subset relation has been replaced with a proper subset relation.

Claim 4.1.4. Let O be a domain ontology, and let S0 be the set of all modules of O.

The <S forms a strict partial order over S0, denoted as (S0, <S).

Proof. The proof that <S is a strict partial order results from its definition. The

irreflexivity, asymmetry, and transitivity are all inherited from the ⊂ relation.

With the strict module size relation, we are able to describe modules that are

definitely smaller than the domain ontology they come from, a property often desired

in a module.

4.1.1 Definition of Modularization

Since the module is itself a domain ontology, it is also correct to say the module is

a sub-ontology for the original domain ontology. Using this, we introduce the notion

of modularization. Intuitively, modularization is the process of determining a module

67

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

from a given domain ontology. As a module is itself a domain ontology, it must be

the case that one can modularize a module. Therefore, we introduce O as a set of

domain ontologies. We then declare modularization as the function

M : O→ O

such that M(O) = OM whereOM is a module ofO. Much of the research of this thesis

is devoted to defining the modularization function in multiple ways. Each definition of

the modularization technique must take in a domain ontology and produce a domain

ontology (i.e., a module). The aim is that each modularization technique will be

able to be compared to one another as they all take a domain ontology as input

and produce a domain ontology as output, but they will be differentiated by their

definitions and implementations.

Although the modularization definition provided operates on domain ontologies,

to produce new domain ontologies (modules), we can define a DIS around the module.

Since the module is formed by taking subsets of the domain ontology–the concepts,

the Boolean lattice, and the rooted graphs–the resulting DIS would be formed by

restricting the necessary components to only those that occur in the module. For

example, the data components in A that are mapped to concepts in the domain

ontology’s Boolean lattice and that are not in the module’s Boolean lattice are no

longer necessary in the context of the module. Thus, the mapping function must be

restricted as such. This is more formally defined as follows:

Definition 4.1.2 (Data Mapping Function). Given a DIS D = (O,A, τ), and let

OM be a module of O. We denote the concept in L that corresponds to the top of the

Boolean lattice of OM as >M . We define a data mapping of A into a new dataset,

68

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

AM , as follows

f(a) = a / (τ(a)⊗>M) (4.1.1)

where τ(a) is a concept in L, / is the focusing operator on the data, and ⊗ is the

Boolean lattice join operator.

With the data mapping function, we define the AM of the module as follows.

Definition 4.1.3 (DIS Module Data View). Given a DIS D = (O,A, τ) and a module

OM , we define the respective data view for OM as

AM = (AM ,+M , ·M ,−M , 0M , 1M , ckM)kM∈LM

where AM is defined using the data mapping function, and each operator is the re-

striction to AM of its corresponding function in A.

From the definition of the DIS Module Data View and the data mapping function,

we note the following:

• 0M = 0 / e
C

• 1M = 1 />M

That is, τ(0M) = e
C

and τ(1M) = >M . With these, we define a DIS Module as

follows.

Definition 4.1.4 (DIS Module). Given a DIS D = (O,A, τ), a DIS-module of D is

the DIS DM = (OM ,AM , τM) such that:

1. OM = (CM ,LM ,GM) is a module of O

69

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

2. AM = (AM ,+M , ·M ,−M , 0M , 1M , ckM)kM∈LM
is the module data view respective

to OM

3. τM ⊆ τ ∩ (AM ×LM) is the restriction of the τ operator to only the data in the

data view and the concepts of LM .

where LM is the carrier set of the Boolean lattice LM , A is the carrier set of A, and

AM is defined via the data mapping function.

Since we define a DIS-module from a domain ontology, we elaborate the module

size relation to characterize and compare DIS-modules. We let S0 be the set of all

modules of a domain ontology O, and let M1 and M2 be two modules that belong to

S0. In the case that M1 ≤S M2, then L1 ⊆ L2. From this, the co-domain of the data

mapping function for M2 will include the co-domain of the data mapping function

for M1 with the additional concepts found in M2 but not M1. Thus, we see that

the relationship between two domain ontology modules can be extended to their DIS

modules as well, defined as follows:

D1 ≤D D2 ⇐⇒ O1 ≤S O2

where O1 is the domain ontology that corresponds to D1 and O2 is the domain

ontology that corresponds to D2.

Conclusion

With this definition of the ≤D relation, we see how when comparing the size of two

domain ontology modules, we are also (perhaps inadvertently) comparing the size of

the respective DIS modules. The opposite is also true: when we compare two DIS

70

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

modules, we are also comparing their respective domain ontology. The research in this

thesis is focused on the development and comparison of modularization techniques

for a domain ontology, and the scope of discussion is focused on the domain ontology

itself rather than the large DIS level. However, as the above relation states, it should

be implicitly understood that when we define a modularization technique and the

resulting module that is produced, the results can be used to define and compare DIS

modules as described above.

71

Chapter 5

Lattice-based Modules

We established in Chapter 2.3.2 that the two primary ontology modularization ap-

proaches are the graphical and the logical approaches. Graphical modularization

approaches are more intuitive and simpler than logical approaches. They often have

straightforward approaches which utilize the visual structure of the ontology. This

results in modules that do not necessarily guarantee any properties with respect

to knowledge preservation. Thus, they are also considered simple. However, their

straightforward approach often means they are easy to understand and extremely

intuitive. Because of this intuitiveness, it is the first type of modularization ap-

proach explored for application to a DIS domain ontology. Since the Boolean lattice

is the core of the domain ontology, we refer to graphical modularization techniques as

lattice-based approaches to reflect that the lattice is what is used for the technique.

Appropriately, we refer to the modules produced via a lattice-based approach as a

lattice-based module. In this Chapter, we develop and apply lattice-based approaches

to a DIS domain ontology, define lattice-based modules, as well as discuss results re-

garding the knowledge transformation from the aforementioned modularization.

72

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

5.1 View Traversal

The first technique we develop for a DIS domain ontology is inspired by the view

traversal approach [92]. As introduced, view traversal follows the graphical modular-

ization approach paradigm, and is an extremely intuitive approach to modularizing

an ontology.

The view traversal modularization technique introduced by Noy and Musen [92]

operates by using a starting concept c to guide a travel directive. The travel directive

is what determines which concepts will populate the module. It starts at c and any

concept that is related to c is added to the module. From here, it continuously

iterates through the concepts that have been added to the module, further adding

the related concepts to the module, increasing the set of concepts in future iterations.

The number of iterations is specified by the travel directive. Additionally, a travel

directive can specify the relation that a concept must be related to c (or any concept

in the module) by to be included in the module, and ignore other relations.

If we apply view traversal directly to a domain ontology, we do not necessarily

produce a module in accordance with the definition of a domain ontology module

found in Section 4. This is because a domain ontology module must include the

empty concept, a restriction that is not a part of view traversal. To conform to

the definition of a domain ontology module, we impose the requirement that for a

view traversal on a starting concept c, the relation of the Boolean lattice must be

‘traversed’ such that the empty concept is included. Since the empty concept is the

bottom element of the lattice, to traverse from c to it requires the travel directive to

descend to the bottom of the lattice. If we gather all concepts that are traversed to

‘between’ c and e
C

, we produce the principal ideal generated by c. Therefore, the act

73

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

of modularizing a domain ontology using view traversal with travel directive starting

at c is equal to the act of determining the principal ideal generated by c.

The principal ideal generated by c, written as L↓c, is the Boolean sublattice such

that it contains every concept that is partOf c. To be a domain ontology module,

we must also define the set of rooted graphs that belong to it. However, this can be

trivially accomplished by taking only the rooted graphs with a root that belongs to

L↓c. The view traversal module is defined as follows:

Definition 5.1.1 (View Traversal Module). Let O = (C,L,G) be a domain ontology

and let c ∈ C be a concept that is referred to as a starting concept. A view traversal

module of O starting from a concept c is defined as Mc = (Cc,Lc,Gc) where the

following is true:

1. Lc = (L↓c,vC
) is a Boolean lattice

2. Gc = {Gi | Gi ∈ G and ti ∈ Lc}

3. Cc = {k | k ∈L↓c∨ ∃(Gi | Gi ∈ Gc : k ∈ Ci)}.

A view traversal module certainly meets the criteria for a module as defined in

Definition 4.1.1. A principal ideal is defined as a Boolean sublattice, and so it meets

the criteria that the Boolean lattice of the module is a Boolean sublattice of the

domain ontology. The only rooted graphs included in the view traversal module are

those that have roots in the Boolean sublattice, and so they are a subset of the original

set of rooted graphs. Lastly, the set of concepts for the view traversal module is the

union of the concepts of the Boolean lattice and all rooted graphs. Since these two

components are a part of the domain ontology itself, the union of these concepts must

also be a subset of the domain ontology’s concepts.

74

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Acres Prop. Type Neighborhood CityLat.Long.

Park

Park Property

Safety

Child

Elder

Positive

Negative

Film Song

Romance

Comedy

Film

Romance

assocWith

hasScore

Figure 5.1: The Boolean lattice for the Park Ontology with the view traversal
module highlighted for c = Neighborhood Feature

We now reintroduce the San Francisco park example from Chapter 3, Section 2.4.

Figure 5.1 shows the domain ontology with concepts that will populate the mod-

ule with starting concept c =Neighborhood Feature, which is defined as Prop.Type ⊕

Neighborhood ⊕ City. Figure 5.2 shows the module after it has been extracted. In

this module, any concept that is defined as the composition of the parts of Neighbor-

hood Feature is included. For instance, City Neighborhood is included in the module

because it is the composition of Neighborhood and City. Additionally, we include the

empty concept e
C

and the rooted graphs from the domain ontology with the root

belonging to L↓c. In this example, there is the rooted graph that conceptualizes the

safety score of city neighborhoods.

From the definition of the view traversal module, it is evident that the principal

ideal generated by c is a critical component for a view traversal module. The rooted

graphs are determined using the produced principal ideal. Thus, it is important to

determine the complexity of the principal ideal’s computation. The computation

75

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Prop. Type Neighborhood City

City Neighborhood

Neighborhood Feature
Safety

Child

ElderhasScore

Figure 5.2: The view traversal module using c = Neighborhood Feature

involves the determination of the elements in the Boolean lattice that are a part of

the principal ideal generated by c. This is a straightforward process in which for all

elements x ∈ L, we determine whether x ⊕ c v
C
c. If so, x is a part of the ideal.

Otherwise, it is not. Since v
C

is transitive, we need to iterate through the set L only

once. Hence, the complexity of an algorithm for the determination of the principal

ideal generated by c is linear to the size of L.

Given what a view traversal module is, the modularization process to get such a

module for a domain ontology in a DIS is defined as follows:

Definition 5.1.2 (View Traversal). Let O = (C,L,G) be a domain ontology. We

also let MD be the set of all possible view traversal modules obtainable from O. View

traversal v is a function that is declared as follows

v : MD × C →MD (5.1.1)

Where v(O, c) = (Cc,Lc,Gc) is a view traversal module starting from the given con-

cept c.

76

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

According to Definition 5.1.2, given a view traversal module and a starting con-

cept, conducting view traversal will produce a new view traversal module. We note

that the original domain ontology belongs to the set of all possible view traversal

modules, i.e., O ∈MD. This is because the entire set L is equal to the trivial princi-

pal ideal generated by >. We also distinguish two view traversal modules: the empty

ontology module O0, and the atomic ontology module Oa. The empty ontology mod-

ule is defined as the view traversal module in which C = {e
C
}. Since it has only the

single concept e
C

, the Boolean lattice is formed of that single element. This Boolean

lattice has 20 = 1 concepts, and the unique property that e
C

= >. The atomic ontol-

ogy module is defined as the view traversal module in which L = {e
C
, a}, where a is

an atom of L. This Boolean lattice has 21 = 2 concepts.

As the single element in O0 is e
C

, there are no rooted graphs in this module, and

thus, C = L. We refer to this as O0 characterizing both C and L. This is not true for

Oa since it can potentially have rooted graphs with root a (if any exist in the domain

ontology). The concepts in these rooted graphs will populate C, and thus, it is not

necessarily true that C = L. Therefore, we cannot say Oa characterizes both C and

L. With these distinguished view traversal modules, we provide the following lemma.

Lemma 5.1.1. Given a domain ontology O and a concept a ∈ At(L), then the

following are true:

1. v(O,>) = O

2. v(O, e
C

) = O0, the empty ontology module

3. v(O, a) = Oa, the atomic ontology module

4. ∀(c1, c2 | c1, c2 ∈ C : (c1 6vC
c2 and v(O, c2) = (Cc2 ,Lc2 ,Gc2)) =⇒ c1 /∈ Cc2)

77

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

This lemma describes how the two distinguished view traversal modules, O0 and

Oa, can be determined using the view traversal modularization technique. It also

establishes that in the situation that we have two concepts c1 and c2, where c1 is not

a part of c2, then c1 will not be in the view traversal module determined using c = c2.

The distinguished view traversal modules can also be extended to describe their

respective DIS modules. v(O,>) will correspond to the DIS module that is the origi-

nal DIS. Since the domain ontology was not changed, the data will not be restricted,

and thus, the DIS is not changed. O0 only contains the single concept e
C

such that

e
C

= >. Since in this domain ontology module we have no concepts beyond the top

and bottom, we have the corresponding data view that has only the 0 and 1. Finally,

for the domain ontology module Oa, we have that a = >. When considering the

data mapping in Definition 4.1.2, for any α ∈ A, f(α) = α / (τ(α) ⊗ a). Using the

definition of an atomic concept in Definition 3.2.2, τ(α) ⊗ a must equal either a or

e
C

. Thus, f(α) will only return the data that corresponds to the concept a.

5.1.1 Normalizing the Starting Concept

The principal ideal is generated using c, so it is essential that c is well-defined. The

only restriction is that c must be a concept in C, which means that it does not neces-

sarily have to belong to the Boolean lattice–it can be in a rooted graph. Additionally,

to better correspond to the view traversal proposed by Noy and Musen in [92] –which

allows the travel directive to be defined over a set of concepts– we add that there can

be multiple starting concepts. Thus, we have the following three cases for c:

1. c is in the Boolean lattice

2. c is in a rooted graph

78

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Prop. Type Neighborhood City

City Neighborhood

Neighborhood Feature
Safety

Child

ElderhasScore

Figure 5.3: Normalizing the starting concept c = Child

3. There are several starting concepts, {c1, c2, ..., cn}

The first case is the business-as-usual case, i.e., the principal ideal is determined

using c, and the view traversal module is formed using it. In the second case, the

principal ideal cannot be determined using c as c is not in the Boolean lattice. For

example, let c = Child, a concept in a rooted graph such as the one shown in Fig-

ure 5.3. Since the determination of a principal ideal requires a concept in the Boolean

lattice, we use the root of the rooted graph that Child belongs to as the starting con-

cept. As the definition of the rooted graph requires the root to belong to the Boolean

lattice, it is a safe assumption to use it for view traversal. We refer to this as the

projected concept and is denoted as cp. Since Child belongs to the rooted graph with

root City Neighborhood, City Neighborhood is the projected concept. Thus, the view

traversal with c = Child is found by determining the principal ideal generated by

cp = City Neighborhood . Since the rooted graphs of any concepts in the principal

ideal are included in the view traversal module, the rooted graph that Child belongs

to will be included in the view traversal module created by cp.

Finally, for the third scenario, since we have more than one starting concept, we

79

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

are unable to determine the principal ideal as it uses only a single starting concept.

We let Cv be the set of concepts that are submitted for view traversal such that

Cv ⊆ C. Since it is a subset of C, it may be the case some concepts belong to a

rooted graph. In this case, for any concept c /∈ L, we first take the projected concept.

We then define the starting concept ultimately used for the view traversal as

c = ⊕(c | c ∈ Cv : c). (5.1.2)

This states that, when given multiple starting concepts, we compute a single con-

cept as the combination of all submitted concepts (or their projected concept). For

example, referring to Figure 3.2, imagine that we use Cv = {Neighborhood Fea-

ture, City Neighborhood, Child}. Since Child is in a rooted graph, we take the

projected concept City Neighborhood. Then, we apply Equation 5.1.2 to Cv =

{Neighborhood Feature,City Neighborhood ,City Neighborhood}. Since City Neighbor-

hood v
C

Neighborhood Feature, then we can reduce Cv by keeping only the join of the

two, Neighborhood Feature, i.e., Cv = {Neighborhood Feature,Neighborhood Feature}.

Finally, since ⊕ is idempotent, we can further reduce Cv so that the starting concept

used for view traversal is Neighborhood Feature. The resulting module will be that in

Figure 5.2, i.e., as if we had taken the view traversal with c = Neighborhood Feature.

To illustrate why, when given multiple concepts for a view traversal, we use

Equation 5.1.2 rather than taking the individual view traversal for each concept,

we refer to Figure 5.4. Given two starting concepts, c1 = {Long. ⊕ Acres} and

c2 = {Acres ⊕ Prop. Type}, Equation 5.1.2 results in using c = c1 ⊕ c2 for view

traversal. The bold lines denote the relationships that would be in the view traversal

80

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Long. AcresLat. Prop. Type

Location

Park

Figure 5.4: Modularization with c1 = Long.⊕ Acres and c2 = Acres ⊕ Prop. Type

modules had we taken the two individual view traversals using c1 and c2. Compara-

tively, the view traversal using c results in the module that contains the relationships

denoted by the bold lines and the dashed lines–the principal ideal generated by c. By

taking the view traversal on c, we ensure the two concepts c and Long.⊕Prop. Type

are in the view traversal module; concepts that are not in either view traversal module

found using only c1 or only c2. Thus, to ensure the view traversal module contains

information about the way atoms can be combined from two different concepts, such

as Long. and Prop. Type, we use Equation 5.1.2 and determine c.

When considering multiple starting concepts, there are two trivial cases: the first is

for ci, cj ∈ Cv we have ci vC
cj for any ci, cj ∈ Cv, and the second is the composition of

concepts in Cv produce c = >. The earlier example of when both City Neighborhood

and Neighborhood Feature belonged to Cv is an example of the first case because

City Neighborhoodv
C

Neighborhood Feature. As it was shown, the result was simply

Neighborhood Feature because ci vC
cj implies ci ⊕ cj = cj. Thus, in this scenario,

ci can be ignored. In the second case, the view traversal module will be the original

domain ontology, i.e., Mc = O. Although it is counterintuitive to the purpose of

modularization as the module will not be smaller than the ontology, this aligns with

81

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

the motivation that a view traversal module should contain the concepts necessary

to answer queries regarding the starting concept(s). If Cv = >, then it implies that

the desired module requires the knowledge of all of the domain ontology’s atoms.

For the remainder of this paper, when referring to c, it is assumed that it has

been normalized. That is, c is the projected concept if the submitted concept was

outside of the Boolean lattice, or Equation 5.1.2 has been applied so that c is a single

concept.

5.1.2 Properties of View Traversal

View Traversal Composition and Chaining

Since view traversal is a function, we are able to define the composition and chaining

of view traversals as follows

Claim 5.1.1 (View Traversal Composition). Let O = (C,L,G) be a domain ontology.

Let c1, c2 be two concepts in the carrier set of L such that c2 vC
c1.

v(v(O, c1), c2) = v(O, c2)

Proof. A direct proof. Let L1 be the carrier set of the Boolean lattice of O

v(O, c1)

=⇒ 〈 Definition of View Traversal 〉

∀(c | L1 : c v
C
c1)

=⇒ 〈c2 vC
c1〉

c2 ∈ L1

=⇒ 〈 Defining the application of View Traversal v(v(O, c1), c2)〉

∀(c | L1 : c v
C
c2)

82

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

=⇒ 〈 Definition of View Traversal 〉

v(O, c2)

Composing view traversals is, in essence, ‘modularizing a modularization’. The

above claim uses the assumption that c2 vC
c1 for if c2 is not a part of c1, then the

result of the view traversal composition is O0. If v(O, c1) does not contain c2; this

is attempting to perform the modularization of the ontology on a concept that does

not exist. Since we are modularizing on a concept that does not exist, it results in

‘nothing’, i.e., the empty ontology.

The combination of view traversal modules is the act of combining two modules

into a single module, and is defined as follows. Let D = (O,A, τ) be a DIS. Let ∗ be

an operator with the signature

∗ : MD ×MD →MD

and is defined as v(O, c1) ∗ v(O, c2) = v(O, c1 ⊕ c2).

The view traversal combination function inherits the commutativity and associa-

tivity from ⊕.

Claim 5.1.2. Let D = (O,A, τ) be a DIS. Let c1 and c2 be any two concepts from L

such that c1 vC
c2. Then

v(O, c1) ∗ v(O, c2) = v(O, c2)

Proof. We prove this directly.

v(O, c1) ∗ v(O, c2)

⇐⇒ 〈 Definition of view traversal combination 〉

v(O, c1 ⊕ c2)

83

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

⇐⇒ 〈c1 vC
c2 ⇒ c1 ⊕ c2 = c2〉

v(O, c2)

Boolean Algebra of View Traversal Module

The Boolean lattice of a view traversal module is a Boolean sublattice of the domain

ontology’s Boolean lattice, as defined in Definition 5.1.1. This means that there is a

Boolean algebra that corresponds to the Boolean lattice of the view traversal module.

However, for any view traversal module formed using c 6= >, although the Boolean

lattice of the view traversal module is a Boolean sublattice of the domain ontology’s

Boolean lattice, the Boolean algebra of the view traversal module is not a Boolean

subalgebra of the domain ontology’s Boolean algebra. This is formally written in the

following proposition.

Proposition 5.1.2. Let O = (C,L,G) be a domain ontology and Mc = (Cc,Lc,Gc)

be a view traversal module obtained from O formed such that c 6= >. Then:

1. The Boolean algebra associated with the view traversal module’s ontology does

not preserve the complement operator of the Boolean algebra associated with the

original ontology.

2. The Boolean algebra associated to Lc is not a Boolean subalgebra of that asso-

ciated to L.

3. The view traversal module is locally complete but not locally correct with respect

to the original ontology.

Proof. The proof of this proposition is shown through example. LetMv be any view

traversal module formed using c 6= >. In the view traversal module, e′
C

= c. This

84

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

implies that in the domain ontology, c = > so that e′
C

= > is preserved. However,

we stated that c 6= >. Since the complement operator is not preserved, it is not a

Boolean subalgebra of the domain ontology’s Boolean algebra.

The local completeness of the view traversal module comes from the ideal being

closed under the join and meet operations from the ontology. In combination with

all concepts that are a part of c being in the set L, then any formula written with

the join or meet operations using concepts from the view traversal module will be

true in the ontology and the module. However, it is not locally correct due to the

complement operator not being preserved.

Although Proposition 5.1.2 states that the view traversal module does not preserve

the complement operator from the domain ontology, that does not mean that the

significance of the domain knowledge of the module is diminished. For example, as

stated, the join and meet operators are preserved. The join and meet operators are

the description of how concepts can be combined (the join) to create a new concept,

or how certain atoms within a concept can be focused on (the meet). Within the

view traversal module, the way you can combine or focus on concepts remains correct

with respect to the domain ontology. Thus, any domain knowledge related to the

combination (or focusing) of concepts that is learned within the module will remain

true in the domain ontology. Since the complement of a concept is the description of

determining the concept that is composed of all the atoms that are not a part of the

concept being complemented, it makes sense that when the scope of the domain is

reduced via modularization, the complement operator returns a concept within this

restricted scope.

85

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

5.2 View Traversal Knowledge Loss

It was established that the view traversal modularization technique produces a module

that does not preserve the complement operator. Due to this, domain knowledge

pertaining the complement of a concept is lost or changed. For instance, for any

a, b ∈ L and a ∈ LM but b /∈ LM , if in the domain ontology a′ = b then we will lose

the knowledge that a′ = b in the module. The concept a will have a complement in

the module, but it will not be b, thus the domain knowledge has changed. Since view

traversal is defined as a function, we are able to quantify the domain knowledge that

is lost (or changed) using the kernel of the function.

The Boolean lattice of the view traversal module is determined as the principal

ideal generated by c. The first theorem of isomorphism [124] states that the ideal

(i.e., the module) is the kernel of a homomorphism from the domain ontology to some

other Boolean algebra (i.e., some other module). We denote the homomorphism that

maps one Boolean algebra to another as f : B1 → B2. In Figure 5.5, we show the

relationship between f , the view traversal module, and the kernel. In this figure, we

depict the Boolean algebras of the homomorphism by their respective Boolean lat-

tices, a representation more familiar when discussing ontologies and modules. In the

leftmost circle, labelled B1, is the original domain ontology that is being modularized.

The rightmost Boolean lattice, in the circle labelled B2, is the module mapped to by

the function f . Finally, the third Boolean lattice at the bottom of the figure, labelled

ker(f), is the byproduct of the homomorphism and corresponds to the first theorem

of isomorphism, as described. The kernel is populated by all elements from B1 that

are mapped to the identity element e
C

of B2 by f .

For example, we define an instance of f as the fp0 for a given p0 ∈ B1 and for

86

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

City
Neighborhood

CityNeighborhood

Figure 5.5: The relationship between the kernel and the homomorphism f

every p ∈ B1:

fp0(p) = p⊗ p0 (5.2.1)

The kernel of fp0 is defined as the set of all elements which map to the identity

element by fp0 :

ker(fp0) = {p ∈ B1 | fp0(p) = e
C
} (5.2.2)

With this definition of fp0 , we set p0 = Park, where Park = Lat⊕ Long⊕Acres⊕

Prop Type. We then use Equation 5.2.1 to determine the concepts that will be in the

second carrier set of the second Boolean algebra. For example,

fp0(Lat) = Lat⊗ Park = Lat,

fp0(Park Property) = Park Property⊗ Park = Park

fp0(Lat⊕ City) = (Lat⊕ City)⊗ Park = Lat

fp0(City) = City⊗ Park = e
C

87

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

fp0(City⊕ Neighborhood) = (City⊕ Neighborhood)⊗ Park = e
C

The function fp0 maps any concept that is a part of Park–such as Lat–to itself, e.g.,

fp0(Lat) = Lat. Any concept with a part that is also a part of Park is mapped to

the concept that is a part of Park, such as the example with fp0(Lat ⊕ City). The

remaining concepts that do not meet either of these two conditions are mapped to the

empty concept, which populate the kernel of f . We recognize that these remaining

concepts are those that do not share any parts with Park. Thus, with the starting

concept p0 = Park, the kernel of the homomorphism fp0 is composed of the concept

p′0 = City⊕ Neighborhood and all of its parts:

ker(fp0) = {c ∈ L | c v
C
p′0} (5.2.3)

Equations 5.2.1 and 5.2.2 together state that any concept p ∈ B1 where p⊗p0 = e
C

belongs to the set of ker(fp0). Using the definition of the concept complement and

Boolean lattice meet, we get p′0 ⊗ p = e
C

. Therefore, p′0 ∈ ker(fp0). For any c v
C
p′0,

according to the definition of partOf, c v
C
p′0 ⇐⇒ c ⊗ p′0 = c. With this definition

of partOf and Equation 5.2.1, we get fp0(c) = (c ⊗ p′0) ⊗ p0. Using the associativity

of ⊗ operator, we get fp0(c) = c ⊗ (p′0 ⊗ p0) = c ⊗ e
C

= e
C

. Therefore, any element

c v
C
p′0 also belongs to the kernel of fp0 , which explains Equation 5.2.3.

The cardinality of the kernel is associated with the injectivity of the homomor-

phism. That is, the larger the kernel is, the less injective the homomorphism is. This

is a result of the homomorphism mapping concepts from the first domain ontology,

B∞, to the second, B∈. If B2 is much smaller in size than B1, then more concepts

from B1 will be mapped to e
C

, and thus, populate the kernel. As an exercise, con-

sider p0 = >, then B2 = B1 and ker(f) = {e
C
}. This, although trivial, states that

88

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

we are modularizing around the top concept, and so we should lose no knowledge–as

we established when defining view traversal modules, we produce the original domain

ontology when modularizing on the > concept. Since we know that every concept

that is a part of p0 maps to itself, if p0 = >, then we will have every element be

mapped to itself. Thus, the kernel will only contain one element: the empty concept.

With this, we make the connection between the domain knowledge lost due to modu-

larization and the kernel of f . Since the kernel is populated by the concepts that are

being lost due to the modularization, it is the embodiment of the domain knowledge

that is lost. This is why the kernel is only the empty concept when modularizing on

the top concept: we are losing no domain knowledge.

We now relate the results regarding the kernel to the view traversal module.

Referring to Figure 5.5, the homomorphism f is equivalent to determining the view

traversal on c. The kernel is used to generate the view traversal on c′, shown in

Equation 5.2.3, where p0 = c. Therefore, it is possible to deterministically quantify the

domain knowledge lost when extracting a module using view traversal by determining

the view traversal on c′. Not only is the domain knowledge lost quantifiable as a set

(the kernel), but it can be reasoned on or further modularized as it itself is a module.

5.3 Principal Ideal Subalgebra Module

Proposition 5.1.2 states that the Boolean algebra of the view traversal module is not

a Boolean subalgebra of the domain ontology it is modularized from. We use the

results of Harding in [51] to provide a means of transforming a view traversal module

such that it preserves the complement operator, i.e., it is a Boolean subalgebra of the

domain ontology.

89

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

The view traversal module is formed using the principal ideal generated by c. The

concepts that are a complement of those in the principal ideal generated by c are

absent. Since the principal filter generated by c′ is the dual of the principal ideal

generated by c, for every concept in the principal ideal, its complement will be in the

principal filter. Thus, we union the principal ideal generated by c with the principal

filter generated by c′ to form a Boolean subalgebra.

We introduce the following notation so that a definition can be made. Let L and

Lc be Boolean lattices such that Lc is a Boolean sublattice of L. Let B be the Boolean

algebra associated with L, let c ∈ L and let c′ be the complement of c. Let L↓c be

the set of concepts in the principal ideal generated by c (i.e., the view traversal of

c), and let L↑c′ be the set of concepts in the principal filter generated by c′. Let

Llc
def
= L↓c ∪ L↑c′ be the carrier set for a Boolean algebra Bc. We call the module

that is formed using this set as the principal ideal subalgebra module and it is defined

as follows.

Definition 5.3.1 (Principal Ideal Subalgebra Module). Let O def
= (C,L,G) be a given

domain ontology. Let c be a concept in the carrier set L of L. Let Llc
def
= L↓c ∪ L↑c′.

The principal ideal subalgebra module Mc = (Cc,Lc,Gc) is defined as:

1. Gc = {Gi | Gi ∈ G and Gi = (Ci, Ri, ti) and ti ∈ Llc }

2. Cc = {c | c ∈ Llc or ∃(Gi | Gi ∈ Gc : c ∈ Ci)} is the carrier set for Cc

3. Lc = (Llc ,vV
), where v

V
is the restriction relation of v

C
to Llc .

We present an example of the principal ideal subalgebra module in Figures 5.6 and

5.7. Similar to how the view traversal module’s rooted graphs are determined, the

principal ideal subalgebra module’s rooted graphs are those that are in the domain

90

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Acres Prop. Type Neighborhood CityLat.Long.

Park

Park Property

Safety

Child

Elder

Positive

Negative

Film Song

Romance

Comedy

Film

Romance

assocWith

hasScore

Figure 5.6: The Boolean lattice for the Park Ontology with the principal ideal
subalgebra module highlighted for c = Neighborhood Feature

eC

Neighborhood CityProp. Type Long.⊕Lat.⊕Acres

City Neighborhood

Neighborhood Feature

Park Property

Figure 5.7: The Boolean lattice of the principal ideal subalgebra module extracted
from the Park Ontology with c = Neighborhood Feature

91

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

ontology with root belonging to the set Llc . In Figure 5.6 we show the domain

ontology that is being modularized. The magenta highlighted concepts and relations

are those that belong to the view traversal module with c = Neighborhood Feature.

The principal filter generated by c′ are the concepts and relations highlighted by

cyan. Since c is Neighborhood Feature–the concept composed of the atoms Prop.Type,

Neighborhood, and City–the concept c′ is the one composed of Long, Lat, and Acres.

It is important to observe that the sets for the principal ideal and the principal filter

are disjoint. In Figure 5.7, the Boolean lattice that is formed from Llc is shown.

The set of atoms for the Boolean lattice in Figure 5.7 is formed from the atoms of

the principal ideal with the addition of the bottom element of the principal filter, c′.

This set of atoms is not a subset of the atoms of the ontology; Long⊕Lat⊕Acres is not

an atom in the ontology but it is an atom in the module. Conceptually, the domain is

modelled by the combinations of the atoms. They are the unitary, non-decomposable

elements. To have an atom in one domain that is a composite concept in another (i.e.,

it is not an atom) implies that we are losing the domain knowledge associated with

the individual parts. Afterall, in the module, we cannot decompose Long⊕Lat⊕Acres

into its sub-components of Long, Lat, Acres, or any combination of two; the concept

is now non-decomposable. This is referred to as the coarsening of the domain, and

that the domain knowledge that can be derived from the module is coarser than the

domain knowledge that can be derived from the original ontology. For all intents and

purposes, in this module, the concepts of Long, Lat, or Acres simply do not exist.

Although the domain knowledge within the principal ideal subalgebra module is

coarser, it preserves the complement operator from the ontology. Thus, we have the

following claim.

92

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Claim 5.3.1. Let Mc be the module obtained by view traversal using concept c. Let

c′ be the complement of c. When we extend Mc with the principal filter generated by

c′, we produce a module that is both locally correct and locally complete.

Proof. The above claim holds by construction. The principal ideal subalgebra module

is formed using a Boolean subalgebra that is conservatively extended by the domain

ontology’s Boolean algebra.

According to Claim 5.3.1, every satisfiable formula in the module is satisfiable in

the domain ontology, and every satisfiable formula in the domain ontology written in

the language of the module is satisfiable in the module. For example, noting that e
C

is in the language of the module, the formula e′
C

= Park Property is true in both the

module and domain ontology. The fact that this formula is true is what differentiates

the principal ideal subalgebra module from the view traversal module. The formula

Long v
C

Long ⊕ Lat ⊕ Acres is true in the domain ontology but not in the module

because the concept Long does not belong to the language of the module.

We refer to Figure 5.6 to relate the view traversal module and the correspond-

ing principal ideal subalgebra module. The view traversal module would contain

only the magenta concepts–the principal ideal generated by c. The principal ideal

subalgebra module contains these concepts in addition to the concepts in the cyan

Boolean sublattice. Therefore, we can extend a view traversal module to a principal

ideal subalgebra module by extending the carrier set of the Boolean lattice of the

view traversal module with the carrier set of the principal filter generated by c′ (and

the respective rooted graphs). Conversely, a principal ideal subalgebra module can

be truncated to a view traversal module by removing any element belonging to the

principal filter generated by c′ (and the respective rooted graphs) from the carrier set

93

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

of the Boolean lattice.

A primary motivation for modularization is to acquire a smaller component that

is more usable. Since a principal ideal subalgebra module extends a view traversal

module, it will be greater in the number of concepts it contains than the respective

view traversal module. However, this is the cost in ensuring all domain knowledge

is retained when modularizing. Although the principal ideal subalgebra module will

be larger than the respective view traversal module, we present the following claims

which describe how we can easily determine if the requested principal ideal subalgebra

module will be smaller than the domain ontology. If it is smaller than the domain

ontology–even by a small amount–then it is still adhering to the motivation that a

module is more usable.

Claim 5.3.2 (Maximal Principal Ideal Subalgebra Module). Let c be a concept in an

ontology’s Boolean lattice L. If the principal ideal generated by c is a maximal ideal,

then the resulting principal ideal subalgebra module is equal to the original ontology.

Proof. This follows from the definitions of a maximal ideal and ultrafilter. More

specifically, for any x ∈ L, a maximal ideal I contains exactly one of x or x′. As the

corresponding ultrafilter, F , is the dual of I, then for every x ∈ I, x′ must belong to

F . Therefore, every element from L is in either I or F .

Claim 5.3.3. Let c be a concept in the Boolean lattice L. If the principal ideal

generated by c is not a maximal ideal, then the resulting principal ideal subalgebra is

not isomorphic to the original Boolean algebra.

Proof. We prove this by contradiction. We assume that the principal ideal generated

by c is not maximal. We also assume that every element x ∈ L belongs to either the

94

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

principal ideal I, or the corresponding filter F . This implies every atom a belongs

to either I or F . For the principal ideal to be proper, it cannot include every atom

in its set. Similarly, for the filter to be proper, it can at most contain one atom.

Therefore, I must contain every atom save for one that must belong to F . An ideal

that contains all atoms save one is a maximal ideal (and a filter generated using an

atom is an ultrafilter), contradicting the assumption they are not maximal.

As a result of the final claim, a principal ideal subalgebra module generated using

a concept that is directly related to the top concept with the v
C

relation (i.e., a

concept that is the combination of all but one atom) is guaranteed to be smaller in

size than the original domain ontology. Thus, we see a trade-off between the view

traversal module and principal ideal subalgebra module: the view traversal module

is smaller than the principal ideal subalgebra module, but it does not preserve the

domain knowledge regarding the complement operator.

5.4 Summary and Conclusion

In this Chapter, we introduced and explored lattice-based modularization techniques

for a domain ontology. These techniques are comparable to the graphical modu-

larization techniques thanks to their utilization of the lattice relation to determine

which concepts are added to the module. The techniques introduced in this Chapter

produce the view traversal module and the principal ideal subalgebra module. The

view traversal module is shown to be light and easy to compute, but does not pre-

serve the complement operator, and thus, the knowledge within is not locally correct.

The principal ideal subalgebra module remedies this at the cost of including more

95

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

concepts, and thus is larger.

The relationship between the module’s Boolean lattice and the domain ontology’s

Boolean lattice, as well as their Boolean algebras, is explored as well. Results re-

garding which knowledge is lost and the ability to quantify it is made. Specifically,

utilizing the concept of the kernel. These results are novel and to the best of our

knowledge, the first related to quantifying how knowledge is lost and transformed

due to the modularization process.

As mentioned, the techniques in this Chapter align with the graphical modulariza-

tion techniques. However, we are able to relate the view traversal module, a module

comparable to a graphical-based module, to the principal ideal subalgebra module,

one more comparable to a logic-based module. This is a unique finding because

it demonstrates how the domain ontology can be evaluated in a holistic way with-

out compromise. The relationship between the Boolean lattice –the ‘graph-based’

component– and the Boolean algebra –the ‘logic-based’ component– is what enables

this perspective. We can communicate meaningful properties related to both modules

and modularization in both graphical and logical terms. Ultimately, with a domain

ontology, and the DIS it is a part of, we can unify the divide between graphical and

logical modularization approaches introduced in Chapter 2.3.2.

96

Chapter 6

Algebraic Modules

6.1 The Algebraic Module

In the previous chapter, a principal ideal subalgebra module was introduced as a

module formed using a Boolean subalgebra of the domain ontology’s Boolean algebra.

The Boolean algebra of the principal ideal subalgebra module is formed by taking

the union of a principal ideal formed over c and the principal filter formed over c′.

However, in this Chapter we show that we can use other Boolean subalgebras to form

a module. Thus, in the following we generalize a principal ideal subalgebra module

to an algebraic module to account for these additional Boolean subalgebras.

Definition 6.1.1 (Algebraic Module). Let O def
= (C,L,G) be a given domain ontology.

An algebraic module Ma = (Ca,La,Ga) is defined as:

1. Ga = {Gi | Gi ∈ G and Gi = (Ci, Ri, ti) and ti ∈ La}

2. Ca = {c | c ∈ La or ∃(Gi | Gi ∈ Ga : c ∈ Ci)} is the carrier set for Ca

97

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

3. La = (La,va), where va is the restriction relation of v
C

to La and the Boolean

algebra associated with La is a Boolean subalgebra of the Boolean algebra asso-

ciated with L.

From Definition 5.3.1, it is clear that all principal ideal subalgebra modules are also

algebraic modules. However, we will show that the inverse is not true: all algebraic

modules are also principal ideal subalgebra modules. This implies, as all principal

ideal subalgebra modules can be found by extending a view traversal module, there

must be algebraic modules that cannot be found from extending a view traversal

module.

To formally conclude this, we introduce a function f that transforms a view

traversal module to a principal ideal subalgebra module. Let O def
= (C,L,G) be a

domain ontology, with L def
= (L,v

C
). The lattice L corresponds to the Boolean alge-

bra B def
= (L,⊗,⊕, e

C
,>,′).

Claim 6.1.1. Let P be the set of all principal ideals of B and let B be the set of all

Boolean subalgebras of B. For every p = (L↓c,vC
) ∈ P , we denote by (L↑c′ ,vC

) the

principal filter generated by c′. Let f : P −→ B, where f(p) = (L↓c ∪ L↑c′ ,⊗,⊕, eC ,>,′).

The function f is total, injective, and non-surjective.

Proof. We prove this claim in three steps. First, the proof of the totality of the

function follows from the existence of a principal filter for any principal filter in a

Boolean algebra. For every element x in a principal ideal, its complement, x′, belongs

to a principal filter. The Boolean algebra formed using the respective principal ideal

and principal filter is a Boolean subalgebra.

Second, the proof of the injectivity follows from the uniqueness of a principal ideal

to the concept that generates it. The corresponding principal filter is also be unique

98

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Long. Lat.Acres Prop. Type

Location

Geography

Park

Figure 6.1: The Boolean lattice of the module extracted from the Park Ontology
with c = Park

because it is the dual of the principal ideal. Therefore, the Boolean subalgebra formed

from the principal ideal and principal filter is also unique.

Finally, the non-surjectivity is shown through an example. Let B be the Boolean

algebra that corresponds to Figure 3.2 and let B be the Boolean algebra with the

atoms B1 = {Acres⊕Lat,Long⊕Prop Type}. B is certainly a Boolean subalgebra of

B, but it does not contain a principal ideal. Therefore, B1 is a Boolean subalgebra

that does not have an image by the inverse of f because no principal ideal can be

extended to form B1.

Since we can utilize the isomorphism between the Boolean algebra and respective

Boolean lattice, we call f(p) the view traversal extension of p.

The non-surjectivity of f implies that there exist Boolean subalgebras that cannot

be made by extending a principal ideal (i.e., a view traversal module). As algebraic

modules are formed from Boolean subalgebras, this means that the set of principal

ideal subalgebra modules is a proper subset of the set of algebraic modules. We

utilize the lattice of all Boolean subalgebras of a finite Boolean algebra, introduced

in Chapter 3.1, to characterize the remaining algebraic modules.

99

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

{{A}, {Lo}, {La}, {PT}}

{{A,Lo},
{La}, {PT}}

{{A,La},
{Lo}, {PT}}

{{A,PT},
{Lo}, {La}}

{{Lo, La},
{A}, {PT}}

{{Lo, PT},
{A}, {La}}

{{La, PT},
{A}, {Lo}}

{{A,Lo, La},
{PT}}

{{A,Lo, PT},
{La}}

{{A,Lo},
{La, PT}}

{{A,La},
{Lo, PT}}

{{A,PT},
{Lo, La}}

{{A,La, PT},
{Lo}}

{{Lo, La, PT},
{A}}

{{A,Lo, La, PT}}

Figure 6.2: The partition lattice for Park

6.2 The Lattice of Algebraic Modules

6.2.1 Algebraic Module Refinement

The Boolean subalgebras of a domain ontology can be ordered as a lattice structure,

which implies that there is an ordering relation over the set of Boolean subalgebras.

We present three figures to illustrate the ordering of all Boolean subalgebras of a finite

Boolean algebra. We present Figure 6.1 as the Boolean lattice we are investigating

for all algebraic modules. The top concept is Park and is a combination of the four

atoms Acres, Long., Lat., and Prop.Type. Figure 6.2 shows the partition lattice of

the set formed by the four atoms. Each partition can be made into a Boolean lattice

in the following way: let P be a partition of a set of concepts X, we derive the set of

atoms AP corresponding to P as:

AP = {B | B ∈ P : ⊕(x | x ∈ B : x)} (6.2.1)

100

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

For example, in Figure 6.2, the element highlighted in magenta corresponds to

the partition P = {{A,La}, {Lo, PT}}. Applying Equation 6.2.1 to P , we determine

AP = {A⊕ La, Lo⊕ PT}.

The partition can be related via the partition refinement relation. We remind the

reader that the partition refinement is defined as follows. Let P(X) be the power set

of X. A partition P is a non-empty subset of P(X) such that ∀(A,B | A,B ∈ P :

A ∩ B = ∅) and ∪ A∈P = X. Let A and B be partitions of a set X. The refinement

on partitions, denoted by ≤P , is defined as:

A ≤p B ⇐⇒ ∀(s | s ∈ A : ∃(t | t ∈ B : s ⊆ t)) (6.2.2)

Thus, the top of the partition lattice is the partition with a single element, the set

{X}, and the bottom of the lattice is the partition formed by the singleton sets.

In the same way that partitions can be related to one another in Figure 6.2 using

the partition refinement relation, the Boolean lattices created using Equation 6.2.1

can also be related using a module refinement relation. This is thanks to the face

that the lattice of Boolean subalgebras is order isomorphic to the dual of the partition

lattice. Figure 6.3 is the lattice that is formed after transforming each partition into a

respective Boolean lattice and relating the lattices. The magenta node in this lattice

corresponds to the Boolean lattice formed from the partition P , the magenta node in

Figure 6.2.

The partition lattice is ordered using the partition refinement relation. We define

the algebraic module coarsening/refinement refinement relation used to order the

lattice of Boolean subalgebras as follows:

101

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Park

eC

A⊕ Lo⊕ La PT

Park

eC

A⊕ Lo⊕ PT La

Park

eC

A⊕ Lo La⊕ PT

Park

eC

A⊕ La Lo⊕ PT

Park

eC

A⊕ PT Lo⊕ La

Park

eC

A⊕ La⊕ PT Lo

Park

eC

Lo⊕ La⊕ PT A

Park

eC

A⊕ Lo La PT

A⊕ Lo ⊕ La A⊕ Lo ⊕ PT La ⊕ PT

Park

eC

A⊕ La Lo PT

A⊕ La ⊕ Lo A⊕ La ⊕ PT Lo ⊕ PT

Park

eC

A⊕ PT Lo La

A⊕ PT ⊕ Lo A⊕ PT ⊕ La Lo ⊕ La

Park

eC

Lo⊕ La A PT

Lo⊕ La ⊕ A Lo⊕ La ⊕ PT A ⊕ PT

Park

eC

Lo⊕ PT A La

Lo⊕ PT ⊕ A Lo⊕ PT ⊕ La A ⊕ La

Park

eC

La⊕ PT A Lo

La⊕ PT ⊕ A La⊕ PT ⊕ Lo A ⊕ Lo

Park

L

Figure 6.3: The lattice of Boolean subalgebras for Park

Definition 6.2.1 (Module Coarsening/Refinement). Let M1 and M2 be two alge-

braic modules that are built from the partitions P1 and P2 of a set of concepts, re-

spectively. We say that M1 is a coarsening of M2, or M2 is a refinement of M1, iff

P2 ≤p P1, and is denoted by M1 ≤M M2

The module in the magenta box of Figure 6.3, hereby referred to as At1, is a

refinement of the module at the bottom of the lattice which contains only Park and

e
C

. The module highlighted in magenta is one of several ways to refine the bottom

algebraic module. Every module in the same row as At1 is a refinement of the bottom

algebraic module. Additionally, At1 can be refined into one of two modules: one with

a Boolean lattice formed by the atoms {A⊕ La, Lo, PT} (referred to as At2) or one

with a Boolean lattice formed by the atoms {A,La, Lo ⊕ PT} (referred to as At3).

This can be seen in Figure 6.3 as the two Boolean lattices that are related to At1.

102

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

6.2.2 Algebraic Module Composition

As all of the Boolean subalgebras of a domain ontology are ordered using the algebraic

module refinement relation, it is possible to utilize the operators of the resulting lattice

to compute algebraic modules based on input parameters. Let MA and MB be two

algebraic modules of the same domain ontology. The query ofMA ∨MB, where ∨ is

the join operation of the lattice of Boolean subalgebras, is the request for an algebraic

module that is the refinement of both MA and MB. Module refinement is defined

using the underlying partition sets, and so the query is the act of determining the

algebraic module formed from the partition set P such that P ≤p PA and P ≤p PB,

where PA and PB are the partition sets for MA and MB respectively. Therefore, we

understand the process of module refinement as the process of forming an algebraic

module from a partition set where every element in that partition set is a subset

of an element in the partition set used to form the algebraic module that is being

refined. The atoms of the refined algebraic module are formed by ‘breaking up’ one

or more of the atoms of the algebraic module it refines. Therefore, the join operator

is determining an algebraic module that is ‘breaking up’ element(s) from both PA and

PB.

Whereas MA ∨MB determines an algebraic module that is a refinement of both

MA and MB, MA ∧ MB results in a module that is the coarsening of both MA

and MB. If the join operator is the process of determining an algebraic module

that breaks up an atom in the two algebraic modules, then the meet operator is the

process of determining an algebraic module that combines atoms in the two algebraic

modules. This is the process of losing the parts of a concept and instead making it

unitary, i.e., an atom. This is achieved by making a concept that may not be an atom

103

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

in the ontology into an atom in the algebraic module. The partition sets of MA and

MB, PA and PB respectively, are both a refinement of P .

As the refinement of an algebraic module is defined using the partition refinement

relation, it follows that the more refined a module is, the larger it is in cardinality

of the carrier set of the lattice. This is demonstrated in Figure 6.3 by the bottom of

the lattice containing the Boolean subalgebra with only two concepts; the minimal

Boolean subalgebra composed of only the constants. As you ascend the lattice of

Boolean subalgebras, the number of atoms within the Boolean subalgebra at a given

node of the lattice increases until you reach the top of the lattice that contains the

original Boolean algebra. Thus, if one thinks of using the join and meet operations

as a means to traverse the lattice, one can utilize the join and meet operations to

determine larger (or smaller) algebraic modules. For instance, given two algebraic

modules MA and MB, the operation of MA ∨MB returns the module that refines

both MA and MB: MC . As a more refined algebraic module was described as

having more concepts, it follows that MC is larger than both MA and MB so long

as MA 6≤M MB or MB 6≤M MA.

In the case that MA ≤M MB, then MA ∨MB = MB and MA ∧MB = MA.

This results in the algebraic module that satisfies the operation is not a third module

MC , but is eitherMA orMB. These relationships are communicated via the module

refinement relation as follows:

MA ≤M MB ⇐⇒ MA ∨MB =MB ⇐⇒ MA ∧MB =MA (6.2.3)

104

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

6.2.3 Knowledge Refinement of Algebraic Modules

In the example we had three Boolean subalgebras with atoms At1 = {A⊕La, Lo⊕

PT}, At2 = {A⊕ La, Lo, PT}, and At3 = {A,La, Lo⊕ PT}. Both At2 and At3 are

refinements of At1, and so not only is At1 ∧ At2 = At1 and At1 ∧ At3 = At1 but also

At2 ∧ At3 = At1. These relationships allow for the explicit communication that At1

shares concepts with both At2 and At3. However, since At1 is coarser than both, it

is losing knowledge that At2 has and knowledge that At3 has. This loss of knowledge

comes with the trade-off that At1 corresponds with a smaller module than either At2

or At3.

The knowledge that is lost in the coarsening process can be found, if the correct

algebraic modules are available. The join operation can be used to re-construct the

knowledge that was lost during the coarsening process. For instance, the coarsening

of At2 into At1 implies there must exist some Boolean subalgebra that when joined

with At1, results in At2. This Boolean algebra, referred to as At4, contains the

knowledge that was lost in the coarsening of At2. Referring to Figure 6.3, we see

there are in fact two Boolean subalgebras that satisfy the requirement of At4. The

two Boolean subalgebras are the ones formed over the sets {A ⊕ Lo ⊕ La, PT} and

{A⊕Lo⊕PT, La}. If we let At4 equal either of those two sets, then At1∨At4 = At2 is

true. Thus, we see that although knowledge is lost in the modularization process – as

demonstrated in the coarsening of a module – it can be reconstructed. Additionally,

the reconstruction process demonstrates that the knowledge that is lost is embodied in

other module(s). In the example, this is demonstrated by the existence of a At4. The

existence of more than one module that satisfied the requirements for At4 implies that

the knowledge needed to reconstruct At2 from At1 exists in more than one module.

105

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

6.3 The Search Space of Algebraic Modules

The ability to create new modules using the operators of the lattice becomes more

important when considering the magnitude of how many modules can exist for a

domain ontology. As a partition lattice is formed using the atoms of the Boolean

lattice of the domain ontology, the number of partitions that exist for a given Boolean

lattice generated from n atoms is given by the Bell number, defined recursively:

Bn =

1, if n = 0.
n∑
k=0

(
n

k

)
Bk, if n ≥ 1.

(6.3.1)

It should be noted that the Bell number grows at a rate with n that makes manual

determination of modules infeasible, for instance, for n = 8, the Bell number B is

equal to 4140. This means that there are 4140 partitions, and thus, 4140 algebraic

modules. However, this is not a concern because in [125] it is shown that the majority

of database tables have schema with less than ten attributes. Table 6.1 gives a table

taken from [125] showing that a small percentage of investigated tables have schema

with more than ten attributes. Additionally, it is envisioned that the user who is

modularizing has a set of goals with respect to the module they seek. It would not

be the case that they want to investigate all possible modules, but rather, modules

of specific size or with specific concepts. These restrictions on the module further

restrict the size of candidate modules. Therefore, with both the realistic size of

database schemas and the restriction of candidate modules, the growth of the Bell

number is not an expected limitation.

106

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Table 6.1: Percent of Tables with Number of Attributes (borrowed from [125])

> 5 5− 10 < 10
atlas 10.23% 68.18% 21.59%
biosql 75.56% 24.44% 0.00%

coppermine 52.17% 30.43% 17.39%
ensembl 54.84% 38.06% 7.10%

mediawiki 61.97% 19.72% 18.31%
phpbb 40.00% 44.29% 15.71%
typo3 21.88% 31.25% 46.88%

opencart 57.20% 33.05% 9.75%
Average 46.73% 36.18% 17.09%

The other consideration is the calculation and determination of all of the parti-

tions. However, the determination of all set partitions is a trivial task in terms of

complexity, as shown in [95]. In fact, in practice, the computation is constant time.

6.4 Summary and Conclusion

In this Chapter, we introduced and explored algebraic-based modularization tech-

niques for a domain ontology. These techniques are comparable to the logical modu-

larization techniques thanks to their utilization of the Boolean algebra to determine

which concepts are added to the module. The algebraic modules of this Chapter were

inspired by determining that there must be other algebraic modules other than those

of the principal ideal subalgebra modules. What we determined is that not only are

there other modules, but that they can be related to one another via the partition

lattice. The partition lattice is an indirect representation of all the algebraic modules

for a given domain ontology, and how the modules are related to one another via a

refinement relation. The refinement relation is used to introduce the notion of knowl-

edge refinement. The atoms of an algebraic module does not necessarily need to be

107

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

a subset of the atoms of the domain ontology. In such a case, the algebraic module

has a less refined (or coarser) set of knowledge than the domain ontology.

The total set of algebraic modules and the process of determining them aligns

with the notion of logic-based modularization techniques. A primary focus of these

techniques is preserving the axioms of the domain ontology in the module. However,

the notion of knowledge refinement introduces a unique scenario where there is cer-

tainly knowledge of the atoms missing. This finding leads to an interesting notion of

knowledge refinement rather than loss. The knowledge of the atoms is not absent in

the same way that knowledge is lost due to view traversal, but rather, knowledge of

the lost atoms is absorbed into a new atom. Findings such as this are unique to the

modularization of a domain ontology.

108

Chapter 7

Future Work and Conclusion

7.1 Future Work

In this thesis, we propose two different types of modules that can be produced from

modularizing a domain ontology: the lattice-based modules and the algebraic mod-

ules. These two types of modules correspond, respectively, to the graphical-based

modules and logic-based modules found in the literature.

The theory of these modules is explored, but we did not further explore the au-

tomation of the respective modularization techniques. Time complexities of deter-

mining such modules, such as the principal ideal subalgebra module requiring linear

time to compute, was established. However, the implementation and optimization of

the modularization should be further explored to demonstrate both application and

feasibility of these techniques. Algorithmic analysis should also be explored to ensure

the implementation aligns with the hypothesized results. For example, it was stated

that the number of partitions of a domain ontology’s carrier set, and thus number

of algebraic modules, can be determined using the Bell number. This number grows

109

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

exponentially with the size of the carrier set. However, we claim that the set of al-

gebraic modules that one would need to “search” is greatly reduced based on desired

properties, such as size or concept granularity. This claim should be explored and

verified by automating the process of generating algebraic modules, and allowing for

one to reduce the set of algebraic modules based on these example properties.

The modularization techniques explored in this paper are implementations of only

two techniques found in literature: view traversal and conservative extension. These

were manifested as the lattice-based and algebraic modules, respectively. However,

the field of research for modularization techniques of an ontology is vast and diverse,

and the exploration and implementation of other techniques could prove fruitful.

For example, in the field of logical approaches, there are interpolation techniques in

addition to the traditional conservative extension techniques. These interpolation

techniques focus on hiding parts of the signature while ensuring that the module is

still locally correct and locally complete. We hypothesize that although the imple-

mentation of other techniques may not result in new types of modules (i.e., a module

different from lattice-based or algebraic) it will result in new motivations or ways of

measuring or characterizing the existing modules.

Additionally, the research of this thesis was focused on the introduction and elab-

oration of the theory for modularization of a domain ontology. Future research should

explore case-studies and applications for modularization. Several claims in this re-

search point to potential areas of optimization or different use cases for modular-

ization, that should be demonstrated via a case study. For instance, the difference

between a view traversal module and a principal ideal subalgebra module is found

in the size and preservation of the complement operator. We presented that a view

110

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

traversal module is a small, light-weight module that is determined via a starting

concept. Similarly, a principal ideal subalgebra module is determined via a starting

concept, but is not as small since it contains additional concepts so the complement

operator is preserved. Future work that establishes scenarios where a view traversal

module is appropriate versus a principal ideal subalgebra module (and vice versa)

should be explored to better formulate use-cases, and in turn, engineering practices

for modularizing a DIS.

Finally, this work introduces a formal approach to understanding and characteriz-

ing knowledge in a domain ontology. We introduce two different types of knowledge,

and methods in preserving them. When discussing view traversal, we introduced the

preservation or loss of domain knowledge via the kernel. With this, we explored the

quantification of knowledge via the absence (or presence) of specific concepts. With

the introduction of algebraic modules, we explored a more nuanced understanding of

knowledge via knowledge refinement. With knowledge refinement, a specific concept

may not be absent, but rather, indistinguishable from a composite concept. The topic

of knowledge and the various ways in characterizing it is an extremely rich field of

research, and deserves to be further explored. The underlying theories of DIS al-

lows for the distinguishing of different types of knowledge, but with case-studies and

a further exploration of modularization techniques, new types of knowledge can be

characterized. Much like how the exploration of case-studies can establish use-cases

and engineering practices for modularization of a DIS, it can also establish use-cases

for which types of knowledge should (or can) be preserved. The modularization tech-

nique can be chosen based on the requirements regarding knowledge preservation.

This work is an exploratory body of research which established the theory for the

111

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

modularization of a domain ontology in a DIS. There are several significant results,

such as the unification of graph-based and logic-based modularization approaches,

that this research discusses. Ontology modularization is an extremely rich field of

research with several different applications. This work establishes a solid founda-

tion of theory which can be used to further explore applications and case-studies of

modularizing a domain ontology. The theory can also be further explored to discuss

innovative findings regarding topics such as engineering practices or knowledge.

7.2 Conclusion

Ontology modularization is a field of research which addresses the complications that

result from ontologies growing to an unmanageable size, or to mitigate the effects

of the evolution of the domain. The size of the ontology, whether it be measured

by the number of concepts or relations, affects how practical tasks such as reasoning

can be performed. This is magnified when only a small component of the ontology

is needed for the reasoning. Additionally, as the domain evolves, it is often the case

that existing concepts need to be modified, new concepts be added, or old concepts

be removed. This can result in a need to recompile the entire ontology. DIS is a

formalism that was introduced to address the needs related to incorporating data to

an ontology. This research explores how the domain ontology component of a DIS can

be modularized to address the listed problems. In particular, how a module can be

extracted so a smaller component of the ontology is used for reasoning, rather than the

entire domain ontology. This research focuses on establishing a formal foundation for

modularizing a domain ontology by utilizing the Boolean lattice and Boolean algebra

theories associated with the domain ontology.

112

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

The graphical approaches for modularization in literature were applied to the lat-

tice structure of the domain ontology. Specifically, the view traversal modularization

technique was applied. The unique duality of representing the domain ontology as a

lattice and also as an algebra allowed us to go beyond measuring the module formed

from view traversal using strictly graphical properties. For instance, we could mea-

sure the knowledge preservation of the view traversal module by determining if it

was a Boolean subalgebra, and thus, preserving all operators. Since the view traver-

sal module is not a Boolean subalgebra, it can be proven that knowledge related to

the complement operator is lost. Specifically, the lost knowledge is quantified using

the mathematical structure of the kernel. The principal ideal subalgebra module was

introduced as an extension of the view traversal module which does preserve the com-

plement operator, and thus, preserves the knowledge related to the operators since

the associated Boolean algebra is a Boolean subalgebra of the domain ontology. Fi-

nally, we introduce the set of algebraic modules respective to a domain ontology, and

how they parallel the logical approaches of modularization found in the literature.

The result of how the Boolean subalgebras are related to the partition lattice allow

us to compare the algebraic modules based on the refinement of knowledge–a way of

formally understanding knowledge that is unique to the use of a domain ontology.

This research establishes a formal foundation of research for the modularization

of a domain ontology. However, we discussed venues of future work for demonstrating

the applicability of these techniques. For instance, the automation of the proposed

techniques should be explored to demonstrate how one might modularize a domain

ontology. Additionally, the exploration of case-studies will high-light different use-

cases for modularizing a domain ontology. This in turn may exemplify the scenarios

113

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

in which one would use one technique, such as view traversal, over another, such

as determining a principal ideal subalgbera module. Additionally, there are other

modularization techniques or approaches that can be applied to a domain ontology,

such as interpolation.

We conclude this research by saying that this research set out to explore the

feasibility of modularizing a domain ontology in a DIS, and to unify the currently

disparate fields of graphical and logical modularization approaches. The simplicity

in communicating the results of modularizing using the underlying Boolean algebra

demonstrates the usefulness of formalizing in DIS, and the algebra allows for the

simple determination of the modules. We imagine with the future implementation

that uses the theory of this research, one could easily and simply extract modules

based on the knowledge they wish to preserve or refine, and to combine the modules

to create a new domain ontology. This in turn would allow for several co-operating

agents in a single domain, each with their own sets of knowledge. The field of ontol-

ogy modularization is a rich field, and one that has many different use-cases. It is

shown how utilizing DIS and its underlying Boolean algebra allows for a flexibility to

approaches, whether it be a graphical or logical approach, where each have their own

distinct usefulness.

114

Appendix A

Correspondance of an Ontological

Module to a Mathematical Module

In this appendix, we compare the definition of a domain ontology module to that of a

mathematical module. A mathematical module is the generalization of a vector space

over a field, and is defined as follows.

Definition A.0.1 (Mathematical Module [74]). Let R be a ring and 1R is its multi-

plicative identity. A (left R-) module M consists of an abelian group (M,+) and an

operation · : R×M →M such that for all r, s ∈ R and for all x, y ∈M we have:

1. r · (x+ y) = r · x+ r · y

2. (r + s) · x = r · x+ s · x

3. (rs) · x = r · (s · x)

4. 1R · x = x

A right R-module is defined similarly except that the ring acts on the right of the

· operator. If R is commutative, then left R-modules are the same as right R-modules

and are simply called R-modules.

115

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

Within a module, it is common to refer to the carrier set of the ring as the

scalars, and the · operator as scalar multiplication. Intuitively, a module allows for

the transformation of the elements within the group by scaling it by some value. For

instance, within a vector space, the scalar values allow one to scale a vector’s length

or direction.

We present a structure that is a mathematical module, and will later compare it to

the definition of a module we have earlier presented. We first introduce the ring, the

structure that will make up the scalar values that can be multiplied with the group.

It was established that a Boolean lattice is interchangeable with a Boolean algebra,

and as shown in [58, 113], determining a Boolean ring from a Boolean algebra is a

straightforward process. To do so, the Boolean ring is formed using the same carrier

set and multiplicative operator as the Boolean algebra, which in this case is L and ⊗

respectively, and the additive operator is instead xor, denoted �. The xor operator

is defined in the following way. Let x, y be any two elements in L, then we define xor

as

x� y = (x⊕ y)⊗ ¬(x⊗ y) (A.0.1)

where ¬ is the complement operator, and ⊕ is the additive operator used in the

Boolean algebra (the lattice join operator). The Boolean ring borrows the multiplica-

tive and complement operator from the Boolean algebra, as well as the constants.

Therefore, the Boolean ring is defined as R = (L,�,⊗, e
C
,>,¬), where e

C
is the iden-

tity of the additive operator xor, > is the identity of the multiplicative operator ⊗,

and the complement operator is defined the same as the Boolean lattice. Therefore,

in this module, the scalars are simply elements from the set L, which compose the

Boolean lattice.

116

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

The second component necessary for defining a mathematical module is the abelian

group M . The elements of the group are what are transformed by the scalars. We

introduce the set of all principal ideals of a Boolean lattice, and denote it P . For this

module, we let P be the set of all principal ideals of the Boolean lattice L. For any

principal ideal p ∈ P , we let >p be the element that generates it, i.e., the top. Before

we present the definition of the + operator, we introduce two notions: a concept c,

and the principal ideal generated by a concept c, denoted by L↓c. For two principal

ideals, p, q ∈ P , we define the concept c as

c = (>p ⊕L >q)⊗L (>p ⊗L >q)′L (A.0.2)

where ⊕L, ⊗L, and ′
L are the join, meet, and complement operators from the Boolean

lattice L. With the concept c, we define p+ q as

m+ n = L↓c. (A.0.3)

Thus, the + operator takes two principal ideals, and returns a principal ideal. This

principal ideal is formed from the concept that is the result ofxor ’ing the tops of the

two submitted principal ideals. With the set P and the + operator, we form the

abelian group M = (P,+). It is known that xor is associative, commutative, and

is closed under its carrier set [2]. Additionally, the identity element is e
C

, and any

element is self-inversable, i.e., for any p ∈ P , p+ p = e
C

.

The final component necessary for defining the mathematical module is the scalar

multiplication operator. With the currently defined Boolean ring as our scalars,

and the set of principal ideals forming our group, we introduce an operator which

117

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

scales a principal ideal by some element of the Boolean algebra. We present the ·

operator which takes a principal ideal and element from the Boolean ring, and returns

a principal ideal. Let p ∈ P and r ∈ R, we then define a concept c2 such that

c2 = >m ⊗ r. (A.0.4)

We then define · as

m · r = L↓c2 . (A.0.5)

In this, the · operator functions similar to + in that it operates on the top of a

principal ideal to produce a new concept that is used to generate a principal ideal.

We claim the structure Z = ((M,+), ·) is a module.

Claim A.0.1. Let O be a domain ontology with Boolean lattice L, and let R be the

Boolean ring that corresponds to it. Let (P,+) be the Abelian group formed over the

set of all principal ideals of L, denoted P , and the xor over principal ideals operation,

denoted +. Finally, let · be the scalar multiplication of a principal ideal by an element

in R.

Then the structure Z = ((P,+), ·) is an R-module.

Proof. To show that the structure Z is a module, it must satisfy the four properties

in Definition A.0.1. Since our operations are defined using the tops of the principal

ideals, we can reduce the proof of the properties to the lattice operations that they

are built from. For example, let r, s ∈ R and x, y ∈ P . Then r · (x + y) reduces

to r ⊗ (>x � >y). In this way, it functions the same as a ring. The left and right

distributivity is of course satisfied. Likewise, the property (rs) · x = r · (s · x) can

be rewritten as (r ⊗ s) ⊗ >x = r ⊗ (s ⊗ >x). Trivially, the multiplication operator

118

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Long. Lat.Acres Prop.Type

A⊕La A⊕PT La⊕PT

Park

Figure A.1: Depiction of performing the xor operator on the two magenta concepts
to produce the cyan concept.

is associative by definition. Finally, the property 1R · x = x is demonstrated by

recognizing 1R = > and rewriting the property as >⊗>x = >x, which is true by >

being the identity of the ⊗ operator.

The definition of the module Z in this way utilizes two forms of the xor opera-

tor. The first, �, belongs to the Boolean ring and operates on two concepts in L.

Intuitively, given two concepts c1 and c2, c1 � c2 is the query for the concept c3 that

is composed of parts that exist in either c1 or c2 but not both. For example, in Fig-

ure A.1, we take the query of (A⊕La)� (A⊕ PT). In this example, Acres is a part

of both submitted concepts, so it will not be a part of the resulting concept. The

concepts Latitude and Property Type are a part of one of the input concepts but are

not shared between both, thus, the resulting concept will be the composition of these

two concepts. This is shown as the cyan concept La⊕PT which is the combination

of Latitude and Property Type.

The second xor operator, the + operator, operates on two principal ideals. It

determines the principal ideal that is formed from the concept that results from the

xor ’ing of the tops of the two principal ideals.

119

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

eC

Long. Lat.Acres Prop.Type

A⊕La A⊕PT
La⊕PT

A⊕La⊕PT Lo⊕La⊕PT

Park

(a) The principal ideal and the scalar.

eC

Long. Lat.Acres Prop.Type

A⊕La A⊕PT
La⊕PT

A⊕La⊕PT Lo⊕La⊕PT

Park

(b) The resulting principal ideal

Figure A.2: Depiction of scaling the principal ideal formed over A⊕La⊕PT by
Lo⊕La⊕PT

The final component to the module Z is the scalar multiplication · which takes

a principal ideal of L and a concept from L, and returns a new principal ideal. The

concept from L is referred to as the scalar value that multiplies the principal ideal.

Figure A.2 is an example of scalar multiplication, where the magenta principal ideal is

formed from the concept A⊕La⊕PT, and the scalar constant that is to be multiplied

with it is Lo⊕La⊕PT. As the scalar multiplication is guided by the join of the scalar

and the top of the principal ideal, we are determining the principal ideal that is

formed from the concept (A⊕La⊕PT) ⊗ (Lo⊕La⊕PT), which is La⊕PT. Thus, the

result is the principal ideal formed over La⊕PT.

The abelian group of the module is formed using the set of all principal ideals P ,

and a type of xor operator. For a principal ideal p ∈ P , a subgroup can be formed

by letting Q be the set of all principal ideals that are a part of p, written as

Q = {L↓c | c ∈ L ∧ c vC
>p}. (A.0.6)

This equation states that Q is populated by all principal ideals formed from a concept

in the Boolean lattice that is a part of the principal ideal p and no others. Thanks

120

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

to the requirement that the generating concept c must be in L, and thus, associated

with a principal ideal in P , we have Q ⊆ P . Thus, (Q,+) is a subgroup of (P,+),

and further, ZQ = ((Q,+), ·) is a R-submodule.

As Q is a subset of P , the submodule ZQ is smaller than Z. As the concept

that generates Q must be partOf >p, we can order the submodules. For instance, let

Z1 = ((P1,+), ·) and Z2 = ((P2,+), ·) be two R-submodules of the same R-module.

Then

Z1 ≤ Z2 ⇐⇒ P1 ⊆ P2.

With this relation, we will always eventually bottom out to the submodule with the

group formed over the set {e
C
} after a finite number of steps. This notion of decreasing

size and bottoming out is established in the following claim.

Claim A.0.2. Let Z = ((P,+), ·) be a module. Z is an Artinian module.

Proof. We prove this by contradiction. Let Z = ((P,+), ·) be a R-module, and let Z1

be a submodule of Z. If Z is not artinian, then there exists a submodule Z2 such that

Z2 < Z1, i.e., we can always find a smaller submodule. If we let Z1 = (({e
C
},+), ·)),

then Z2 must be formed over a subgroup of ({e
C
},+) that is not equal to the group

itself. Since e
C

is the smallest element in the Boolean lattice, it is impossible to

acquire a smaller group. Therefore, Z1 is the smallest submodule, and Z must be

Artinian.

For any R-module Z = ((P,+), ·), e
C
v

C
>p. Then Zt = (({e

C
},+), ·) is a R-

submodule of Z.

The point to distinguish in this claim is that for any R-module, we will always

eventually bottom-out to the R-submodule Zt = (({e
C
},+), ·). This is due to the

121

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

empty concept being a part of every concept in the Boolean lattice, i.e.,

∀(c | c ∈ L : e
C
v

C
c).

Thus, the Zt module is a R-submodule of every module, and is where the descending

chain of submodules stabilizes.

The mathematical modules are a different structure than the ontologicals module

discussed in this paper. An ontological module is defined as a domain ontology with

restrictions such as the Boolean lattice is a Boolean sublattice of the domain ontology

it is modularized from. On the other hand, a mathematical module is a structure

formed over a set of ontological modules and an xor operator. Thus, when referring to

a mathematical module, one is not referring to a single ontological module but rather a

set of ontological modules. Additionally, the mathematical module describes how one

can scale a module with a concept. In conclusion, there is a relationship between the

ontological module and the mathematical module, but they are not interchangeable.

122

Bibliography

[1] Recreation and parks properties. https://data.sfgov.org/

Culture-and-Recreation/Recreation-and-Parks-Properties/gtr9-ntp6.

Accessed: 2021-07-18.

[2] Accu. All about xor, Jun 2012.

[3] S. S. Ahmed, M. Malki, and S. M. Benslimane. Ontology partitioning: Clus-

tering based approach. International Journal of Information Technology and

Computer Science (IJITCS), 2015.

[4] A. Algergawy, S. Babalou, M. J. Kargar, and S. H. Davarpanah. Seecont: A

new seeding-based clustering approach for ontology matching. In East European

Conference on Advances in Databases and Information Systems, pages 245–258.

Springer, 2015.

[5] S. S. Anand, D. A. Bell, and J. G. Hughes. The role of domain knowledge in data

mining. In Proceedings of the fourth international conference on Information

and knowledge management, pages 37–43, 1995.

[6] A. Armas Romero, M. Kaminski, B. Cuenca Grau, and I. Horrocks. Module

123

https://data.sfgov.org/Culture-and-Recreation/Recreation-and-Parks-Properties/gtr9-ntp6
https://data.sfgov.org/Culture-and-Recreation/Recreation-and-Parks-Properties/gtr9-ntp6

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

extraction in expressive ontology languages via datalog reasoning. Journal of

Artificial Intelligence Research, 55:499–564, 2016.

[7] E. Aroua and A. Mourad. An ontology-based framework for enhancing person-

alized content and retrieval information. In Research Challenges in Information

Science (RCIS), 2017 11th International Conference on, pages 276–285. IEEE,

2017.

[8] F. Baader. Terminological cycles in a description logic with existential restric-

tions. In IJCAI, volume 3, pages 325–330, 2003.

[9] F. Baader, D. Borchmann, and A. Nuradiansyah. The identity problem in

description logic ontologies and its application to view-based information hid-

ing. In Joint International Semantic Technology Conference, pages 102–117.

Springer, 2017.

[10] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, D. Nardi, et al.

The description logic handbook: Theory, implementation and applications.

Cambridge university press, 2003.

[11] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology languages

for the semantic web. In Mechanizing mathematical reasoning, pages 228–248.

Springer, 2005.

[12] S. Babalou, A. Algergawy, and B. König-Ries. An ontology-based scientific

data integration workflow. In 29th GI-Workshop Grundlagen von Datenbanken,

pages 30–35, 2017.

124

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[13] S. Benomrane, Z. Sellami, and M. B. Ayed. An ontologist feedback driven

ontology evolution with an adaptive multi-agent system. Advanced Engineering

Informatics, 30(3):337–353, 2016.

[14] L. Bi, X.-q. Di, and Y. Zhang. Ontology modularization method based on the

k-pso algorithm. In Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI), International Congress on, pages 2009–2013. IEEE,

2016.

[15] G. Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.

[16] J. Chen, G. Alghamdi, R. A. Schmidt, D. Walther, and Y. Gao. Ontology

extraction for large ontologies via modularity and forgetting. In Proceedings of

the 10th International Conference on Knowledge Capture, pages 45–52, 2019.

[17] D. Cirella and H. Gu. Generating abstraction networks using semantic similar-

ity measure of ontology concepts. In 2017 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pages 840–843. IEEE, 2017.

[18] I. F. Cruz, H. Xiao, et al. The role of ontologies in data integration. Engineering

intelligent systems for electrical engineering and communications, 13(4):245,

2005.

[19] B. Cuenca Grau. Privacy in ontology-based information systems: A pending

matter. Semantic Web, 1(1, 2):137–141, 2010.

[20] M. d’Aquin, A. Schlicht, H. Stuckenschmidt, and M. Sabou. Criteria and evalu-

ation for ontology modularization techniques. Modular ontologies, pages 67–89,

2009.

125

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[21] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge

university press, 2002.

[22] C. Del Vescovo, D. D. Gessler, P. Klinov, B. Parsia, U. Sattler, T. Schneider,

and A. Winget. Decomposition and modular structure of bioportal ontologies.

In International Semantic Web Conference, pages 130–145. Springer, 2011.

[23] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure

of an ontology: Atomic decomposition and module count. In WoMO, pages

25–39, 2011.

[24] C. Del Vescovo and R. Penaloza. Dealing with ontologies using cods. CEUR,

2014.

[25] J. L. Dietz. What is Enterprise Ontology? Springer, 2006.

[26] Z. Ding and Y. Peng. A probabilistic extension to ontology language owl. In 37th

Annual Hawaii International Conference on System Sciences, 2004. Proceedings

of the, pages 10–pp. IEEE, 2004.

[27] P. Doran, V. Tamma, and L. Iannone. Ontology module extraction for ontology

reuse: an ontology engineering perspective. In Proceedings of the sixteenth ACM

conference on Conference on information and knowledge management, pages

61–70. ACM, 2007.

[28] P. Drogkaris and A. Bourka. Towards a framework for policy development in

cybersecurity - security and privacy considerations in autonomous agents. Tech-

nical report, European Union Agency For Network and Information Security,

March 2019.

126

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[29] J. Du, K. Wang, and Y.-D. Shen. A tractable approach to abox abduction

over description logic ontologies. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 28, 2014.

[30] K. Etminani, A. R. Delui, and M. Naghibzadeh. Overlapped ontology parti-

tioning based on semantic similarity measures. In Telecommunications (IST),

2010 5th International Symposium on, pages 1013–1018. IEEE, 2010.

[31] W. Fang, L. Ma, P. E. Love, H. Luo, L. Ding, and A. Zhou. Knowledge graph

for identifying hazards on construction sites: Integrating computer vision with

ontology. Automation in Construction, 119:103310, 2020.

[32] G. Figueiredo, A. Duchardt, M. M. Hedblom, and G. Guizzardi. Breaking into

pieces: An ontological approach to conceptual model complexity management.

In 2018 12th International Conference on Research Challenges in Information

Science (RCIS). IEEE, 2018.

[33] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas. The sum-

mary abox: Cutting ontologies down to size. In International Semantic Web

Conference, pages 343–356. Springer, 2006.

[34] F. Fonseca, M. Egenhofer, C. Davis, and G. Câmara. Semantic granularity in

ontology-driven geographic information systems. Annals of mathematics and

artificial intelligence, 36(1-2):121–151, 2002.

[35] A. Freitas, A. R. Panisson, L. Hilgert, F. Meneguzzi, R. Vieira, and R. H.

Bordini. Applying ontologies to the development and execution of multi-agent

systems. In Web Intelligence, volume 15, pages 291–302. IOS Press, 2017.

127

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[36] W. Gatens, B. Konev, and F. Wolter. Lower and upper approximations for

depleting modules of description logic ontologies. In ECAI, pages 345–350,

2014.

[37] S. Ghafourian, A. Rezaeian, and M. Naghibzadeh. Graph-based partitioning

of ontology with semantic similarity. In Computer and Knowledge Engineering

(ICCKE), 2013 3th International eConference on, pages 80–85. IEEE, 2013.

[38] S. Ghafourian, A. Rezaeian, and M. Naghibzadeh. Modularization of graph-

structured ontology with semantic similarity. In Workshop on Modular Ontolo-

gies (WoMO) 2013, page 25, 2013.

[39] A. Ghazvinian, N. F. Noy, and M. A. Musen. From mappings to modules: using

mappings to identify domain-specific modules in large ontologies. In Proceedings

of the sixth international conference on Knowledge capture, pages 33–40. ACM,

2011.

[40] A. Giovannini, A. Aubry, H. Panetto, M. Dassisti, and H. El Haouzi. Ontology-

based system for supporting manufacturing sustainability. Annual Reviews in

Control, 36(2):309–317, 2012.

[41] J. Golbeck and M. Rothstein. Linking social networks on the web with foaf: A

semantic web case study. In AAAI, volume 8, pages 1138–1143, 2008.

[42] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount:

extracting modules from ontologies. In Proceedings of the 16th international

conference on World Wide Web, pages 717–726. ACM, 2007.

128

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[43] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. A logical framework for

modularity of ontologies. In IJCAI, volume 2007, pages 298–303, 2007.

[44] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Extracting modules from

ontologies: A logic-based approach. In Modular Ontologies, pages 159–186.

Springer, 2009.

[45] B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web on-

tologies. In KR, pages 198–209, 2006.

[46] D. Gries and F. Schenider. A Logical Approach to Discrete Math. Springer Texts

And Monographs In Computer Science. Springer-Verlag, New York, 1993.

[47] N. Guarino. Formal ontology in information systems: Proceedings of the first

international conference (FOIS’98), June 6-8, Trento, Italy, volume 46. IOS

press, 1998.

[48] N. Guarino, M. Carrara, and P. Giaretta. Formalizing ontological commitment.

In AAAI, volume 94, pages 560–567, 1994.

[49] N. Guarino, D. Oberle, and S. Staab. What is an ontology? In Handbook on

ontologies, pages 1–17. Springer, 2009.

[50] P. R. Halmos. Lectures on Boolean algebras. Courier Dover Publications, 2018.

[51] J. Harding, C. Heunen, B. Lindenhovius, and M. Navara. Boolean subalgebras

of orthoalgebras. Order, pages 1–47, 2017.

[52] M. J. Healy and T. P. Caudell. Ontologies and worlds in category theory:

implications for neural systems. Axiomathes, 16(1-2):165–214, 2006.

129

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[53] R. Hirsch and I. Hodkinson. Relation algebras by games. Elsevier, 2002.

[54] P. Hitzler, M. Krotzsch, and S. Rudolph. Foundations of semantic web tech-

nologies. CRC press, 2009.

[55] M. Horridge, J. M. Mortensen, B. Parsia, U. Sattler, and M. A. Musen. A

study on the atomic decomposition of ontologies. In International Semantic

Web Conference, pages 65–80. Springer, 2014.

[56] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: Dl reason-

ing with large numbers of individuals. In Proc. of the 2004 Description Logic

Workshop (DL 2004), pages 31–40, 2004.

[57] I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen. From shiq and rdf

to owl: The making of a web ontology language. Journal of web semantics,

1(1):7–26, 2003.

[58] J. Hsiang and G.-S. Huang. Some fundamental properties of boolean ring nor-

mal forms. In Satisfiability Problem: Theory and Applications, pages 587–602,

1996.

[59] W. Hu, Y. Zhao, and Y. Qu. Partition-based block matching of large class

hierarchies. In Asian Semantic Web Conference, pages 72–83. Springer, 2006.

[60] U. Hustadt, B. Motik, and U. Sattler. Reducing shiq-description logic to dis-

junctive datalog programs. KR, 4:152–162, 2004.

[61] M. Jarrar and R. Meersman. Ontology engineering–the dogma approach. In

Advances in Web Semantics I, pages 7–34. Springer, 2008.

130

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[62] M. Kachroudi, S. Zghal, and S. Ben Yahia. Ontopart: at the cross-roads of

ontology partitioning and scalable ontology alignment systems. International

Journal of Metadata, Semantics and Ontologies, 8(3):215–225, 2013.

[63] C. M. Keet. A formal theory of granularity. Free University of Bozen-Bolzano,

2008.

[64] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and

S. Linkman. Systematic literature reviews in software engineering–a system-

atic literature review. Information and software technology, 51(1):7–15, 2009.

[65] J. Kohlas and R. F. Stärk. Information algebras and consequence operators.

Logica Universalis, 1(1):139–165, 2007.

[66] B. Konev, C. Lutz, D. K. Ponomaryov, and F. Wolter. Decomposing description

logic ontologies. In KR, 2010.

[67] B. Konev, C. Lutz, D. Walther, and F. Wolter. Logical difference and module

extraction with cex and mex. In Description Logics, 2008.

[68] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modulari-

sation. In Modular Ontologies, pages 25–66. Springer, 2009.

[69] B. Konev, C. Lutz, D. Walther, and F. Wolter. Model-theoretic inseparability

and modularity of description logic ontologies. Artificial Intelligence, 203:66–

103, 2013.

[70] B. Konev, D. Walther, and F. Wolter. Forgetting and uniform interpolation in

large-scale description logic terminologies. In IJCAI, pages 830–835, 2009.

131

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[71] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and

M. Zakharyaschev. Minimal module extraction from dl-lite ontologies using qbf

solvers. In IJCAI, volume 9, pages 836–841, 2009.

[72] R. Kontchakov, F. Wolter, and M. Zakharyaschev. Logic-based ontology com-

parison and module extraction, with an application to dl-lite. Artificial Intelli-

gence, 174(15):1093–1141, 2010.

[73] P. Koopmann and R. A. Schmidt. Count and forget: Uniform interpolation

of shq-ontologies. Technical report, Tech. Rep., The University of Manchester,

2014.

[74] J. Lambek. Lectures on rings and modules, volume 283. American Mathematical

Soc., 2009.

[75] A. LeClair, J. Jaskolka, W. MacCaull, and R. Khedri. Architecture for ontology-

supported multi-context reasoning systems. Data & Knowledge Engineering,

2021. Review.

[76] A. LeClair and R. Khedri. An algebraic approach to ontology modularization

and knowledge refinement. Journal of Theoretical Computer Science, 2021.

Review.

[77] A. LeClair., R. Khedri., and A. Marinache. Toward measuring knowledge loss

due to ontology modularization. In Proceedings of the 11th International Joint

Conference on Knowledge Discovery, Knowledge Engineering and Knowledge

Management - Volume 2: KEOD. INSTICC, SciTePress, 2019.

132

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[78] A. LeClair, R. Khedri, and A. Marinache. Formalizing graphical modularization

approaches for ontologies and the knowledge loss. In J. Dietz, D. Aveiro, and

J. Filipe, editors, Knowledge Discovery, Knowledge Engineering and Knowledge

Management, volume 1297 of Communications in Computer and Information

Science series, pages 1–25. Springer, 2021. Invited.

[79] A. LeClair, A. Marinache, H. Ghalayini, R. Khedri, and W. MacCaull. A sys-

tematic literature review and discussion on ontology modularization techniques.

IEEE Transactions on Knowledge and Data Engineering, 2020. Review.

[80] Y. Li, Z. Jianhui, J. Liu, and Y. Hou. Matching large scale ontologies based on

filter and verification. Mathematical Problems in Engineering, 2020, 2020.

[81] J. Lozano, J. Carbonera, M. Abel, and M. Pimenta. Ontology view extraction:

an approach based on ontological meta-properties. In Tools with Artificial Intel-

ligence (ICTAI), 2014 IEEE 26th International Conference on, pages 122–129.

IEEE, 2014.

[82] M. Ludwig and B. Konev. Practical uniform interpolation and forgetting for alc

tboxes with applications to logical difference. In Proc. Int. Workshop Tempor.

Represent. Reason., pages 318–327, 2014.

[83] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive

description logics. In IJCAI, volume 7, pages 453–458, 2007.

[84] A. Marinache. On the structural link between ontologies and organised data

sets. Master’s thesis, 2016.

133

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[85] A. Marinache, R. Khedri, A. LeClair, and W. MacCaull. Dis: A data-centred

knowledge representation formalism. In 2021 Reconciling Data Analytics, Au-

tomation, Privacy, and Security: A Big Data Challenge (RDAAPS), pages 1–8.

IEEE, 2021.

[86] A. Marinache, R. Khedri, and W. MacCaull. A data-centered framework for

domain knowledge representation. Technical Report CAS-19-09-RK, McMaster

University, 2019.

[87] D. L. McGuinness, F. Van Harmelen, et al. Owl web ontology language

overview. W3C recommendation, 10(10):2004, 2004.

[88] R. K. Meyer. Conservative extension in relevant implication. Studia Logica,

31(1):39–46, 1973.

[89] T. Mittra and M. M. Ali. Parallelized and distributed task based ontology

matching in clustering environment with semantic verification. CSI Transac-

tions on ICT, 5(3):265–279, 2017.

[90] M. A. Movaghati and A. A. Barforoush. Modular-based measuring semantic

quality of ontology. In Computer and Knowledge Engineering (ICCKE), 2016

6th International Conference on, pages 13–18. IEEE, 2016.

[91] N. Nikitina, B. Glimm, and S. Rudolph. Wheat and chaff–practically feasible

interactive ontology revision. In International Semantic Web Conference, pages

487–503. Springer, 2011.

[92] N. Noy and M. Musen. Traversing ontologies to extract views. Modular On-

tologies, pages 245–260, 2009.

134

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[93] M. Obitko, V. Snasel, J. Smid, and V. Snasel. Ontology design with formal

concept analysis. In CLA, volume 128, pages 1377–1390, 2004.

[94] P. Ochieng and S. Kyanda. A statistically-based ontology matching tool. Dis-

tributed and Parallel Databases, 36(1):195–217, 2018.

[95] M. Orlov. Efficient generation of set partitions. Engineering and Computer

Sciences, University of Ulm, Tech. Rep, 2002.

[96] S. K. Pati, S. Mallick, A. Chakraborty, and A. Das. Informative gene selection

using clustering and gene ontology. In Emerging Technologies in Data Mining

and Information Security, pages 417–427. Springer, 2019.

[97] Z. Pawlak. Granularity of knowledge, indiscernibility and rough sets. In 1998

IEEE International Conference on Fuzzy Systems Proceedings. IEEE World

Congress on Computational Intelligence (Cat. No. 98CH36228), volume 1,

pages 106–110. IEEE, 1998.

[98] A. Pomp, A. Paulus, A. Kirmse, V. Kraus, and T. Meisen. Applying semantics

to reduce the time to analytics within complex heterogeneous infrastructures.

Technologies, 6(3):86, 2018.

[99] J. Pujara, H. Miao, L. Getoor, and W. W. Cohen. Ontology-aware partitioning

for knowledge graph identification. In Proceedings of the 2013 workshop on

Automated knowledge base construction, pages 19–24. ACM, 2013.

[100] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng. A survey of machine learning

for big data processing. EURASIP Journal on Advances in Signal Processing,

2016(1):1–16, 2016.

135

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[101] A. Rector, J. Rogers, and P. Pole. The galen high level ontology. 1996.

[102] A. A. Salatino, T. Thanapalasingam, A. Mannocci, A. Birukou, F. Osborne,

and E. Motta. The computer science ontology: A comprehensive automatically-

generated taxonomy of research areas. Data Intelligence, 2(3):379–416, 2020.

[103] G. Santipantakis and G. A. Vouros. Modularizing ontologies for the construction

of e-shiq distributed knowledge bases. In Hellenic Conference on Artificial

Intelligence, pages 192–206. Springer, 2014.

[104] G. M. Santipantakis and G. A. Vouros. Modularizing owl ontologies using

ehq+ddl shiq. In Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th

International Conference on, volume 1, pages 411–418. IEEE, 2012.

[105] S. Sarkar and A. Dong. Characterizing modularity, hierarchy and module inter-

facing in complex design systems. In ASME 2011 International Design Engi-

neering Technical Conferences and Computers and Information in Engineering

Conference, pages 375–384. American Society of Mechanical Engineers, 2011.

[106] K. Saruladha, G. Aghila, and B. Sathiya. Neighbour based structural prox-

imity measures for ontology matching systems. In Proceedings of the Interna-

tional Conference on Advances in Computing, Communications and Informat-

ics, pages 1079–1085. ACM, 2012.

[107] K. Saruladha, G. Aghila, and B. Sathiya. A partitioning algorithm for large

scale ontologies. In Recent Trends In Information Technology (ICRTIT), 2012

International Conference on, pages 526–530. IEEE, 2012.

136

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[108] B. Sathiya, T. Geetha, and K. Saruladha. Psom 2—partitioning-based scalable

ontology matching using mapreduce. Sādhanā, 42(12):2009–2024, 2017.

[109] M. H. Seddiqui and M. Aono. An efficient and scalable algorithm for segmented

alignment of ontologies of arbitrary size. Journal of web semantics, 7(4):344–

356, 2009.

[110] J. Seidenberg and A. Rector. Web ontology segmentation: analysis, classifi-

cation and use. In Proceedings of the 15th international conference on World

Wide Web, pages 13–22, 2006.

[111] J. Sen, A. R. Mittal, D. Saha, and K. Sankaranarayanan. Functional partition-

ing of ontologies for natural language query completion in question answering

systems. In IJCAI, pages 4331–4337, 2018.

[112] R. Sikorski, R. Sikorski, R. Sikorski, P. Mathématicien, R. Sikorski, and

P. Mathematician. Boolean algebras, volume 2. Springer, 1969.

[113] M. H. Stone. The representation of boolean algebras. Bulletin of the American

Mathematical Society, 44(12):807–816, 1938.

[114] U. Straccia. Towards a fuzzy description logic for the semantic web (preliminary

report). In European Semantic Web Conference, pages 167–181. Springer, 2005.

[115] T. Strang, C. Linnhoff-Popien, and K. Frank. Cool: A context ontology lan-

guage to enable contextual interoperability. In IFIP International Conference

on Distributed Applications and Interoperable Systems, pages 236–247. Springer,

2003.

137

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[116] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept

hierarchies. In International semantic web conference, volume 3298, pages 289–

303. Springer, 2004.

[117] H. Stuckenschmidt and A. Schlicht. Structure-based partitioning of large on-

tologies. In Modular Ontologies, pages 187–210. Springer, 2009.

[118] B. Suntisrivaraporn, G. Qi, Q. Ji, and P. Haase. A modularization-based ap-

proach to finding all justifications for owl dl entailments. In Asian Semantic

Web Conference, pages 1–15. Springer, 2008.

[119] A. Tarski, L. Henkin, and J. Monk. Cylindric Algebras. North-Holland, 1971.

[120] A. Tiwari and A. Kumar. Comparative analysis of optimized algorithms for

ontology clustering. In 2018 5th IEEE Uttar Pradesh Section International

Conference on Electric al, Electronics and Computer Engineering (UPCON),

pages 1–7. IEEE, 2018.

[121] D.-T. Tran, D.-H. Ngo, and P.-T. Do. An information content based partitioning

method for the anatomical ontology matching task. In Proceedings of the Third

Symposium on Information and Communication Technology, pages 272–281.

ACM, 2012.

[122] D. Tsarkov. Improved algorithms for module extraction and atomic decomposi-

tion. In 25th International Workshop on Description Logics, page 345. Citeseer,

2012.

[123] P. van Damme, M. Quesada-Mart́ınez, R. Cornet, and J. T. Fernández-Breis.

From lexical regularities to axiomatic patterns for the quality assurance of

138

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

biomedical terminologies and ontologies. Journal of biomedical informatics,

84:59–74, 2018.

[124] B. L. Van der Waerden, E. Artin, and E. Noether. Moderne algebra, volume

31950. Springer, 1950.

[125] P. Vassiliadis, A. V. Zarras, and I. Skoulis. How is life for a table in an evolving

relational schema? birth, death and everything in between. In International

Conference on Conceptual Modeling, pages 453–466. Springer, 2015.

[126] S. Wandelt and R. Möller. Islands and query answering for alchi-ontologies. In

International Joint Conference on Knowledge Discovery, Knowledge Engineer-

ing, and Knowledge Management, pages 224–236. Springer, 2009.

[127] S. Wandelt and R. Möller. Towards abox modularization of semi-expressive

description logics. Applied Ontology, 7(2):133–167, 2012.

[128] Z. Wang, K. Wang, R. Topor, and J. Z. Pan. Forgetting for knowledge bases

in dl-lite. Annals of Mathematics and Artificial Intelligence, 58(1-2):117–151,

2010.

[129] P. Wennerberg, K. Schulz, and P. Buitelaar. Ontology modularization to im-

prove semantic medical image annotation. Journal of biomedical informatics,

44(1):155–162, 2011.

[130] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and

M. Zakharyaschev. Ontology-based data access: A survey. IJCAI Organization,

2018.

139

Ph.D. Thesis – A. LeClair McMaster University – Ontology Modularization

[131] X. Xu, Y. Wu, J. Chen, and J. Shen. Sub-ontology mapping based web ser-

vices discovery framework. In Advanced Computer Theory and Engineering

(ICACTE), 2010 3rd International Conference on, volume 3, pages V3–363.

IEEE, 2010.

[132] J. Xua, P. Shironoshitaa, U. Visserb, N. Johna, and M. Kabukaa. Module

extraction for efficient object query over ontologies with large aboxes. 2014.

[133] X. Xue, J. Lu, and J. Chen. Using nsga-iii for optimising biomedical ontology

alignment. CAAI Transactions on Intelligence Technology, 4(3):135–141, 2019.

[134] X. Xue and J.-S. Pan. A segment-based approach for large-scale ontology match-

ing. Knowledge and Information Systems, 52(2):467–484, 2017.

[135] X. Xue and A. Ren. A large scale multi-objective ontology matching framework.

In International Conference on Intelligent Information Hiding and Multimedia

Signal Processing, pages 250–255. Springer, 2017.

[136] X. Xue and Z. Tang. An evolutionary algorithm based ontology matching

system. Journal of Information Hiding and Multimedia Signal Processing,

8(3):551 – 556, 2017. High heterogeneity;Matcher combination;Matching sys-

tem;Ontology matching;Optimal model;Recall and precision;Semantic corre-

spondence;State of the art;.

[137] L. Zhang and Z. Wang. Ontology-based clustering algorithm with feature

weights. Journal of Computational Information Systems, 6(9):2959–2966, 2010.

140

	Abstract
	Acknowledgements
	Introduction
	Specific Context
	Motivation
	Problem Statement
	Research Questions
	Objectives
	Methodology
	Main Contribution
	Related Publications
	Thesis Outline

	Literature Review
	Ontology Representations and Formalisms
	Ontology-based Systems
	Ontology Modularization Techniques

	Background
	Mathematical background
	Domain Information System
	Conclusion

	Module and Modularization
	Definition of a Module

	Lattice-based Modules
	View Traversal
	View Traversal Knowledge Loss
	Principal Ideal Subalgebra Module
	Summary and Conclusion

	Algebraic Modules
	The Algebraic Module
	The Lattice of Algebraic Modules
	The Search Space of Algebraic Modules
	Summary and Conclusion

	Future Work and Conclusion
	Future Work
	Conclusion

	Correspondance of an Ontological Module to a Mathematical Module

