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Abstract
Systems across nearly all length scales can experience elastic deformations. The
details of how a system deforms is generally determined by i) the way stresses and
loads are applied, ii) size, shape, geometry, and physical constraints, and iii) the
material properties of the system. Although the physical forces causing deforma-
tions are often simple in origin, the interplay between these forces and the physi-
cal constraints of these systems can produce instabilities – situations where small
changes in loading can cause large and sometimes surprising mechanical effects.
From an application-based perspective, These effects can lead to interesting and
useful techniques as well as sometimes beautiful patterns and features reminiscent
of complex, natural systems. This thesis centres on three research manuscripts,
each concerning different elastic instabilities observed in slender elastic fibers.

In the first paper (Chapter 3, published in the European Physical Journal E)
we explore the effect of tension, compression, and torsion on slender fibers, and
explain the looping and twisting behaviour observed with a simple linear elasticity
model.

The second paper (Chapter 4, published in Physical Review Letters), presents
a novel interaction between slender elastic fibers and liquid-air bubbles on the
surface of a liquid bath. We find that for certain combinations of fiber and bubble
(depending on size, thickness, material, etc), a fiber may partially penetrate and
spontaneously wrap around the bubble at its liquid-air interface.

In the third paper (Chapter 5, to be submitted), considers the elastic response
of coupled elastic systems with incompatible strains. In this case a thin film is
pre-strained before a slender fiber is affixed to its surface, acting like a strut or
support. Then, biaxial tension and/or compression is applied to the film, causing
the fiber to buckle and rotate in and out of the plane of the film in, ultimately,
predictable and controllable ways.

Lastly, an appendix is included, featuring several examples of the science writing
I have done for less technical audiences, broadly related to the themes presented
in this thesis.
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Chapter 1

Introduction

“Science” is used in all sorts of ways. Some refer to science as a domain of study
which includes biology, chemistry, physics (and many other fields), often contrasted
with the “Arts”. I like to think of it as a system or a set of philosophical techniques
designed to understand the natural world, such that “science” is less a thing and
more a process. Sometimes, informally, people may use it as a verb (though slang
usage like “sciencing a set of samples” is usually abandoned early during a young
scientist’s career). But regardless of how one thinks of it, I believe most people
would agree that the purpose of scientific inquiry is to uncover Nature’s hidden
machinery by discovering the way things work. Compared to other branches of
science though, physics can seem a little bit different – funny, even. On one hand,
physics could be considered the science of everything. By knowing the universe
of matter, energy, and forces on the most fundamental level, one could argue that
physics could explain how everything works. In practice though, such a theory
would be preposterously complicated and probably not as useful as one would
hope. What tends to be more useful is assuming the system has a certain level
of complexity (for example, in this thesis we will generally treat liquids and solids
as bulk materials, not collections of individual molecules or atoms), and apply the
techniques of physics in order to understand the system’s behaviors.

In this thesis I will make reference to a wide range of systems that aren’t always
thought of as the domain of “physics”. As I alluded to above, physics alone is not
always the right tool for the job. DNA replication is a lot easier to understand if we
make the assumption that fundamental particles can form atoms which can form
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the molecules that make up the rungs of the DNA ladder. But science can be funny.
Parallel fields of science may have grown out of an attempt to simplify certain types
of questions and make our collected knowledge more useful, but sometimes there
are problems that resist being solved with the tools of that field. In times like this,
trimming away reality’s excess (like gravity, friction, air resistance, chemistry, etc)
can shed new light on a problem. At its core, this is what this thesis is about –
finding the key physical details that bring these complicated problems into focus.

Consider again, a strand of DNA. The “double-helix” shape is perhaps one of
the most iconic symbols of biological research, evoking ideas of genetic sequencing
and cloning for many people. But in some ways, it’s not the most accurate way
to think of deoxyribonucleic acid. Another representation of DNA could have you
imagining it as a microscopic tangle of spaghetti noodles. In its natural state,
DNA is incredibly long (∼ 3 m) compared to the diameter of the nucleus it’s
usually confined to (∼ 6 µm) [1, 2]. The trick to packing it all in is to form
tangles and snarls of spaghetti-like globules [3–10]. And what is perhaps more
surprising is that the way the molecule tangles actually determine how it codes for
different proteins [11–13]. How DNA functions is a complicated question that may
seem like a purely biological or chemical problem. Yet, how DNA molecules (and
other strand-like systems like plant tendrils, tangled cables, yarn ply, etc. [14–23])
mechanically bend, twist, and wind is an aspect of the problem that physics is well
suited to, and is related to the results presented in Chapter 3.

When it comes to identifying the parts of a physical system to incorporate into
a model, it is useful to consider how the system’s scale influences its mechanics.
When engineers build large structures, they need to consider how the structure will
respond to the stresses caused by gravity. As the scale of the structure decreases,
the influence of gravity typically decreases as well. On small enough scales (like
the experiments contained in this thesis), the force of gravity is small enough to
be inconsequential to the mechanics of the system. Likewise, at certain scales,
forces that would usually be negligible can become significant. Elastocapillarity
has emerged as an exciting and active field over the last few years, focusing on the
competition between elastic forces and surface tension effects [24–29]. In day-to-
day scenarios, discussion of surface tension often begins and ends at liquids. For
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example, surface tension is what lets insects skate across the surface of a pond,
defines the shape of liquid droplets, and causes the meniscus often seen in glasses
of water [30–32]. But on small scales or coupled with soft solids, surface tension
can cause measurable and significant elastic deformations as well [29,33–35]. Thin
elastic sheets have been shown to bend, fold, crumple, and stretch in interesting
and ultimately predictable ways [36–46]. Hairs and fibers can be made to clump
together or even coil and wind spontaneously under the influence of surface tension
[47–54]. In fact, many small biological systems are overwhelmingly defined by
surface tension [17, 55, 56]. Chapter 4 focuses on such a system, exploring the
surprisingly dynamic interaction between thin elastic fibers and liquid bubbles.

Of course, natural systems do not decide what scale they develop on – nature
does what it will and scientists are left to make sense of it all. But scientists can
take inspiration from nature and apply what we learn to new technologies. For
instance, the push to smaller and smaller devices and the promise of “lab on a
chip” technologies has made microfluidics, self-assembled structures, and flexible
electronics attractive areas of development, but fabricating tiny devices is only
one piece of the puzzle [57–62]. Manipulating these devices on small scales is
also a challenge. Taking advantage of elastic instabilities and elastocapillarity,
researchers have been able to create self-propelled nano-robots, micropatterning
techniques, moisture collection tools, and unique, self-actuating structures [63–
67]. With this in mind, Chapter 5 explores the way deformations to thin elastic
membranes can be controlled with fiber-based elastic instabilities.

The research contained in this thesis draws inspiration from many natural and
human-made systems, and even though these systems may span different size scales
and can be made of many different materials, all of the experiments are linked by
a common thread. All of these systems exhibit similar behaviour to simple elastic
objects under stress. When applied to the right natural system, the results within
this thesis can provide predictions based on theoretical and experimental evidence
that will hopefully help future researchers understand more complicated real-life
phenomena. The work in this thesis is presented in a “sandwich” format, where the
original, peer-reviewed research resulting from my graduate studies is presented
in between introductory and supporting information, and concluding remarks on
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the presented work. The first chapter is intended to introduce the relevant physics
and theoretical techniques used throughout the thesis. The second chapter presents
the experimental techniques used in the following studies, and elaborates on some
of the details that could not find space in the peer-reviewed manuscripts. The
next three chapters comprise the centerpiece of the thesis and contain the original
research performed in support this degree. The final chapter culminates with
suggestions for possible directions this research can go, and ways to expand the
contained results. Lastly, an appendix is included, featuring several examples of
the science writing I have done for less technical audiences, broadly related to the
themes presented in this thesis.

1.1 Elasticity Theory: Extension, Compression,
and Shear

Much of the theory in this section and indeed in this thesis is derived from intro-
ductory elasticity. Because humanity has always had a need to apply mechanical
forces to objects, introductory texts on the subject are numerous. For the reader
completely new to the physics of elasticity who is inspired to learn more about
the subject, any first-year physics textbook will have several chapters devoted to
the study. Beginning here will provide a typical learning path typical of an under-
graduate education. However, a more committed reader may find Timoshenko’s
Theory of Elasticity to be a more complete and comprehensive starting point [68].
In this thesis I attempt to find a middle ground between the two approaches while
incorporating the results of modern research that more directly inspired the work
presented here.

1.1.1 Hooke’s Law and Forces

Hooke’s law is a phenomenological model that relates extension (or compression)
to the force required to affect such an extension (or compression) and in a sense,
is the centrepiece of this thesis. It was originally published in 1676 by British
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physicist Robert Hooke in the form of a Latin anagram 1, “ceiiinosssttuv” [69].
Two years later he provided the unscrambled theory, “ut tensio, sic vis ” which
means “as the extension, so the force”. A more explicitly (and less cryptic) version
of Hooke’s law can be written as such:

F = k∆x. (1.1)

In this equation, F is the applied force, k is a stiffness constant that depends on
the size, shape, and material properties of the object in question, and ∆x is the
change in length of the object when F is applied. Notice that in this equation,
the extension of the object is linearly related to the force being applied, doubling
F doubles ∆x. As the extension, so the force. Likewise, the equation does not
differentiate between extension or compression and is also valid when ∆x < 0.

The proportionality constant, k, is typically presented in units of Newtons per
meter, and relates extension to force. It is often called the stiffness constant,
or spring constant, and quantifies how difficult it is to stretch or compress the
object in question. Since k can vary from object to object, k is often determined
experimentally. However, it is possible to calculate k by considering the object’s
size and shape, and the intrinsic stiffness of the material that it is made from.
Determining k, or the stiffness of materials, will be a recurring theme throughout
this thesis so we will not discuss it in detail now.

It is worth noting some of the simplifications inherent in using Equation 1.1 to
describe a system. First, it assumes that F is linear with respect to ∆x. In re-
ality, most materials exhibit some stiffening or softening when they are stretched,
and particularly during large deformations. This detail can be added to Equa-
tion 1.1 in a number of different ways but often this assumption will hold for
elastic materials undergoing small extensions. Perhaps the biggest simplification
made within Equation 1.1 though, is how it deals with the size and shape of the
object. Equation 1.1 is essentially a 1-dimensional theory that can be applied to
three-dimensional objects; it only describes the absolute distance of extension or

1Apparently staking claim to a theory was important to 17th century scientists, but sharing
the theory was not; hence the practice of publishing work in the form of a secret code was
common.
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F
Δx

Figure 1.1: A rectangular prism extends by ∆x in response to a
force F applied to one end.

compression in one dimension, treating k as a phenomenological constant (a term
that is fit into the model based on experimental observations). However, k can
be related to real, measurable properties of elastic materials, like its geometry
and intrinsic stiffness, which we now properly identify as the material’s Young’s
modulus, E.

To quantify an object’s E, we can relate the force required to deform the ob-
ject to the object’s size and shape. Consider a rectangular prism made of some
unknown elastic material with length x0 and cross-sectional area A0. A stress
σx = F/A0 normal to A0 is applied to the ends of the prism. As a reaction to σx,
the length of the rectangular prism increases by ∆x, and we can define the strain
as,

εx = ∆x/x0. (1.2)

Relating stress to the strain it causes gives the following relationship:

σx = Eεx. (1.3)

Through dimensional analysis, we can see that E has units of N/m2 or Pa, and is
an intrinsic property of the material the object is made of. With this in mind, we
can re-write Equation 1.1 in terms of E,

F = EA0εx. (1.4)

What we have done so far is start with a simple model of elasticity and added
features to bring the model more in line with our real-life observations. Specifically,
the observation that two objects made from the same material won’t respond in
the same way to the same force if they have different sizes and shapes. There

6
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is another simple observation we can make while stretching or compressing an
elastic material that has so far not been included in this model. Were you to
stretch an elastic band, what you would find is that in addition to an extension,
the elastic band also experiences a contraction perpendicular to the applied force.
This phenomenon is known as the Poisson effect and is considered next.

1.1.2 Poisson Effect

When a stress is applied to a material, it will experience a strain and become
deformed. For example, if a block with a volume V0 = L × W × H is subjected to
a force along the direction of L, its length will change by ∆L = εL, resulting in
a new length L′ = L + ∆L and its volume will also change accordingly: L, V ′ =
L′ × W × H. While some materials (like cork and some types of foam mattresses)
appear to follow this behavior, other materials (like polymers and waterbeds) will
experience additional deformations in order to minimize the system’s changes in
volume. In fact, real materials exhibit the full range of behaviors when stressed,
from decreasing in volume, maintaining a constant volume, and in rare cases even
increasing in volume [70,71]. This kind of volumetric change in response to strain
is called the Poisson Effect, and is often a result of a material’s molecular structure.

Consider again our compressed block. If we do not know what material it’s
made from, we cannot tell if ∆V = V ′ − V0 will be positive, negative, or zero. But
what we can say is the mass of the block will remain the same. So, for our block to
exhibit a change in volume, it must also experience a change in density; a property
related to the packing of the molecules that make up the material. In many cases
(especially throughout this thesis) we wish to ignore molecular properties and treat
our systems as being made of a continuous bulk material. So instead of considering
what is happening at the molecular level, we can instead use an experimentally
determined material property – the Poisson ratio 2.

2Like many scientific concepts, this one was named after a prolific European mathematician.
In this case, French mathematician Siméon Denis Poisson, who was active during the turn of
the 19th century. Despite being a pioneer in the study of fluid mechanics and having the name
“Poisson”, he was not a fish.
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The Poisson ratio ν of a material is a unitless parameter defined by the negative
change in strain in the directions perpendicular to an applied stress (transverse:
εtrans) as a function of the strain in the direction of the applied stress (axial: εaxial):

ν = −dεtrans

dεaxial
. (1.5)

By inspection, we see that if the axial and transverse strains are independent,
ν = 0. If a compression in the axial direction causes an expansion in the transverse
directions (or if an extension in the axial direction causes a compression in the
transverse directions), ν > 0. Of course, we can also use ν quantitatively to
determine how the dimensions of an object is affected by an axial strain.

Figure 1.2: A rectangular prism undergoes extension in response
to an applied stress. It contracts in the directions perpendicular to
the extension according to its Poisson ratio.

If a stress σx is imposed on our block that results in a strain εx, we can describe
its new dimension in the x̂-direction as L′ = L + ∆L = Lεx, and the change in
length of an infinitesimal slice of our block is dL = Ldεx. Likewise, the response
of our block in the transverse directions can be described by W ′ = W + ∆W and
H ′ = H + ∆H and dW = Wdεy and dH = Hdεz respectively. Note that we will
assume the Poisson effect in each of the transverse directions is identical. Then,
from Equation 1.5 we can relate εy and εz to εx:

−ν
∫ L+∆L

L

dx

x
=
∫ W ′+∆W

W

dy

y
=
∫ H′+∆H

H

dz

z
, (1.6)

where we have already used the fact that dx = xdεx in each direction. Performing
these integrals and exponentiating our result gives,

(1 + εx)−ν = 1 + εy = 1 + εz. (1.7)
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Finally, making an approximation consistent with our small strain, linear elasticity
requirements,

−νεaxial ≈ εtrans. (1.8)

Returning to the volume of our block under a stress σx, we find (to a first-order
approximation),

∆V

V
= (1 − 2ν)εx. (1.9)

Now we can finally put some real numbers to our qualitative discussion at the be-
ginning of this section. An object whose strains in three-dimensions are completely
independent will have ν = 0, and the new volume corresponding to a strain εx is
V ′ = V (1 + εx). On the other hand, a material that conserves its volume perfectly
results in ν = 0.5.

Various polymers are used throughout this thesis, all of which exhibit a Poisson
ratio of ν ≈ 0.5, which puts them in a class of materials considered “incompress-
able” [68,72]. Incompressibility is an approximation often used in fluid mechanics
to describe liquids experiencing low to moderate stresses, and can be justified by
comparing the mobility of liquid molecules to the ability to change the molecule’s
packing density [32]. With many liquids, the molecules that make them up are
usually mobile – many are made up of small molecules held together by relatively
weak inter-molecular interactions (this will be further explained in Section 1.4.1).
This weak adhesion between molecules and their high mobility also means that
molecules are relatively free to find conformations that optimize the balance of
attractive and repulsive forces between molecules. In cases like this, it is more dif-
ficult to reduce the material’s inter-molecular spacing than it is for the molecules
to re-organize and find free volume to occupy (flow). In this sense, polymers can
be a lot like liquids (and at high enough temperatures, are liquids). Compared to
something like a crystal, polymer molecules can be quite mobile, exhibiting both
liquid-like and solid-like properties. Depending on the polymer, small deforma-
tions can be accommodated by flow and reorientation of the polymer molecules,
much like a liquid.

Materials with more regular and rigid inter-molecular spacing (like metals or
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crystals) however, are often much less mobile, often held together by strong chem-
ical bonds. In this case, an applied stress is more likely to flex and strain the
network of bonds holding the material together, which can increase or decrease
the distance between these bonds. Exactly how these materials respond varies,
but many metals have Poisson ratios around ν ∼ 0.33, exhibiting some coupling
between perpendicular strains, potentially causing changes in intermolecular den-
sity and volume.3

Depending on the geometry of the system and the magnitude of the strain, the
Poisson effect may be small, but it can also significantly affect the deformations
experienced by an object [60, 73–75]. In Chapter 5, an ultra-thin elastic film
undergoes biaxial strain where all four sides of the pseudo-two-dimensional sheet
are held fixed at their edges. When the sheet is stretched along one axis, the
Poisson effect would have the other axis contract. However, being fixed on all four
sides hinders the contraction, increasing the stress in the axis perpendicular to the
applied strain instead. In a way, this acts like a stiffening that a sheet otherwise
un-fixed on its sides would not experience.

1.1.3 Hooke’s Law and Energy

So far we have considered stress and strain in the context of forces. Force is
an intuitive starting point, but much of the analysis contained in the following
chapters uses the concept of potential energy and work. We will now consider how
energy can be stored and released in an elastic system.

If a stress is applied to a perfectly elastic material and it is deformed via some
strain ε, we assume it will return to its original shape once the source of stress is
removed. Energy is put into the material through work (applied stress) which is
stored as elastic potential energy. When the stress is removed, the elastic potential

3I mentioned cork and foam mattresses previously as materials with ν ≈ 0. This is less
about inter-molecular interactions and more about the microscopic structure of these materials.
Cork and foam are materials permeated by many air pockets. Stresses applied to such materials
can deform these air pockets in one direction without causing much distortion in the transverse
directions. A useful property when corking wine bottles and trying not to disturb a sleeping
partner.
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energy is released, restoring the material to its original dimensions. Under the as-
sumption of a perfectly elastic material, we can exactly equate the work performed
on the material W to the change in elastic energy stored by the material,

W = ∆U, (1.10)

where ∆U = Uf −Ui is the difference between stored elastic energy before and after
work has been done on the system. We can find ∆U by integrating the applied
force F along the distance that the material is strained, defined by ε,

∆U =
∫ ε

ε0

∫
A

σdA′dε′, (1.11)

where σdA′ = dF is the force applied to each increment of area dA′ that the force
is applied over. A few things we can see immediately is that the geometry, as well
as the elastic modulus of the material, will influence the work required to strain the
material, and how much energy the material will store elastically for a given strain.
This makes sense, since we would expect a larger, stiffer material would be harder
to deform than a smaller, softer one. However, we can also see that it is possible
σ may not be uniformly applied over A. This idea can be developed to model the
forces and energies related to bending and will be covered is Section 1.2.1. In the
mean time, if we assume σ is constant with respect to A′ and σ = Eε,

∆U =
∫ ε

ε0
EAε′dε′. (1.12)

Performing the integral with respect to strain gives,

∆U = 1
2EA(ε2 − ε2

0). (1.13)

Hooke’s law is an astoundingly simple model that does a remarkably good job
of describing a wide range of systems. This might not be all too surprising given
the constraints we’ve placed on the systems we use Hooke’s law to model. Knowing
when these constraints are satisfied is crucial to understanding when Hooke’s law
is valid, so it is worth restating them here:
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• Force is linear with respect to extension/compression (as the extension, so
the force);

• Extensions/compressions are relatively small and perfectly elastic.

As a final example of the ubiquitous nature of Hooke’s law, a reasonable approx-
imation of a solid’s elastic modulus can be calculated by applying Hooke’s law
to the intermolecular interactions making up the solid. The attraction between
molecules or even entropically unfavorable stretching of polymers can be described
by many different potential energy functions, but for small deformations, many of
these functions can be approximated as being Hookean [31,76,77]. In other words,
Hooke’s law can be used on a microscopic level to approximate the stiffness con-
stant required when using Hooke’s law on a macroscopic scale. Of course, this is
just a consequence of Hooke’s law having a simple (linear) mathematical form. In
the next section we will continue treating our materials as Hookean, but expanding
the types of deformations we impose on our materials.

1.1.4 Shear

Place the palms of your hands together and rub them back and forth, like you
are trying to warm them up. That is shear. A standard analogy used in many
engineering textbooks to describe shear is that of a deck of cards being forced to
slide past one another such that they extend in a direction parallel to the plane
of the cards. In both of these examples, we are considering discrete objects with
some amount of friction between them. For our purposes though, it is more useful
to think of these discrete slices as being glued together and having friction replaced
by the internal elasticity of the glue that resists deformation. The force per unit
area required to create this extension then, is called the shear stress and is defined
as τ = F/A, where A is the area parallel to the direction of τ . However, notice in
Figure 1.3 that while the change in length ∆x from shear stress is constant across
A, it varies with l. Put into terms of our deck of cards, each card will experience
the same displacement relative to the card below it, but a different displacement
relative to the bottom card. Like with linear stress and strain, we would like to be
able to quantify shear stress and strain in terms of material stiffness, independent
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F Δx A

l

Figure 1.3: A rectangular prism with height l and cross-sectional
area A experiences a shearing force F on its top surface, resulting
in a deformation that reaches a maximum magnitude of ∆x at its
top surface.

of geometry. In this case, we can define the shear strain,

γ = ∆x

l
. (1.14)

Referring again to Figure 1.3, we can see that γ is constant regardless of where
along l or A we look.

We can enact a similar strategy with F , scaling it by the surface area over which
it acts,

τ = F/A. (1.15)

τ is called the shear stress, and like linear stress, τ has units of N/m2.

Finally, we can relate γ to τ like we did in the case of extension and compression,

τ = Gγ, (1.16)

where G is the shear modulus; a parameter analogous to the elastic modulus E.
Though E and G have the same units and represent material stiffness, they are not
the same. However, they are closely related via the material’s Poisson ratio [68],

G = E

2(1 + ν) . (1.17)

For many polymer materials with ν ≈ 0.5, this gives the relation G = E/3.

Although we can consider compression/extension and shear independently, it
is more typical for real systems to experience some combination of these stresses.
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Additionally, these stresses can vary over the cross-sectional area of an object,
leading to more complicated deformations. We cover these deformations next.

1.2 Elasticity Theory: Bending and Twisting

So far we have spent a considerable amount of time focusing on stress and strain
in the form of compression, extension, and shear, but of course there are other
modes of deformation that a material can experience. In this section we will
consider bending and twisting within the linear, elastic regime. We will apply
these results to model systems similar to those featured in Chapter 3, Chapter 4,
and Chapter 5. Later we will see how the geometry and material properties of our
systems along with the way we apply stresses to them, can result in interesting,
useful, and sometimes counter-intuitive deformations. Where possible, we will
relate these interesting behaviors to the real-life systems and phenomena in nature
and engineering which motivate the later chapters. But before we get too far ahead
of ourselves, let’s start with bending.

1.2.1 Bending Moment

Bending has a lot in common with extension and compression. In fact, if we limit
our scope to small deformations within the realm of linear elasticity, we can model
bending as the sum of linear strains that vary along the cross-sectional area of the
object we are bending.

We can visualize the relationship between bending and extension/compression
by considering an elastic beam of length L and width 2r. If a load were applied
to the beam such that it formed a circular arc with constant curvature κ, the
strain within the beam varies from positive to negative along the cross-section
of the beam, as shown in Figure 1.4. If we think of our beam as a sequence of
thin cross-sectional slices, we can consider the strain in terms of small distances
ds between adjacent slices. When the beam is unbent, ds is constant along the
beam’s length as well as over each slice’s area. If the beam is bent, we can define
an axis passing through the centre of the slices as a “neutral axis”. This is a
length passing through our beam such that small curvatures neither increases nor

14

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca//
http://www.physics.mcmaster.ca//


Doctor of Philosophy– Adam Fortais; McMaster University– Department of
Physics and Astronomy

L
r θ

ρ = κ -1

a)

b)

c)

r' = 0

Figure 1.4: a) A beam before bending. b) The beam has width 2r
and length L, and can be thought of as a series of uniformly spaced
plates with a neutral axis passing through the mid-line of the beam.
c) Upon bending, the spacing of the plates above the neutral axis
(the convex side) increases while the spacing of the plates below
the neutral axis (the concave side) decreases. The curvature at
any point along the beam can be defined by its curvature κ or its
radius of curvature ρ, causing an internal bending moment M (red
arrows).

decreases its length. If we were to define an axis slightly above the neutral axis
(tending toward the convex side of our bent beam), we would see an increase in
length (ε > 1). Likewise, below the neutral axis (on the concave side) we would
expect a decrease in length (ε < 1). The exact amount of strain experienced by
any axis we draw through our bent object will then be defined by the curvature κ

and the distance it is from the neutral axis, r′,

ε = (r′ + ρ)θ − ρθ

ρθ
= r′

ρ
= r′κ. (1.18)

We can think of Equation 1.18 as describing the linear extension or compression
at a particular point along the length of an infinitely thin fiber.4 More commonly
though, we will be considering objects with finite thickness such that ε(r′) = r′κ

needs to be evaluated over the cross-sectional area A of the object. Note that
despite ε(r′) taking on a range of values from positive to negative over A, it
will generally cause an elastic restoring force (proportional to the elastic modulus
E) that acts to unbend the object, regardless of where along A one looks. In
particular, the restoring force acts as a rotational force acting around the neutral

4It is worth noting that for large κ, “shearing” may become significant within the object, in
which case a more comprehensive description of elasticity is required. This will be commented
on later in this section, but for a more detailed discussion on non-linear elastic theory and large
deflections, one can refer to Theory of Elasticity by Timoshenko [68].
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axis, as shown in Figure 1.5. Therefore, this restoring force can be calculated by
integrating the torque around the neutral axis caused by ε,

M = E
∫

A
r′2κdA′. (1.19)

Although κ and A can vary along the length of the object, for any particular
location along the objects length we will assume these values are constant, allowing
us to find,

M(x) = Eκ
∫

A
r′2dA′, (1.20)

where the leftover integral is a parameter often referred to as the second moment of
area I of an object. I describes the distribution of matter around the neutral axis
and, conveniently, has been computed and tabulated for many common geometries
such that it is usually easy to look up [78]. Thus, we arrive at a convenient and
compact expression for the bending moment of an object,

M(x) = EIκ. (1.21)

The bending moment M(x) is an important and useful quantity as it is essentially

L

q(x)	=	F

w(x)

Figure 1.5: A “cantilever” beam with length L and arbitrary
cross-sectional area A has been bent by a force F applied at its end
causing a deflection w(x).

Newton’s third law for bent, elastic objects. Recognizing that Equation 1.21 de-
scribes the bending forces internal to the object in the absence of external forces,
we can consider the response of an object, like the beam shown in Figure 1.5, to
an external load q(x) applied perpendicular to the neutral axis of the object. For
example, a beam of length L held fixed at one end, subjected to a perpendicular
load q(L) = F applied perpendicular at its end will undergo some deflection. In
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equilibrium, the applied load will be compensated by M(x) such that,

d2M(x)
dx2 = q(x). (1.22)

In much of this thesis, we will make the assumption that curvatures are small,
deformations are perfectly elastic, and beams are uniform. This leads to the Euler-
Bernoulli beam equation,

EI
d4w(x)

dx4 = q(x), (1.23)

where we’ve approximated the curvature κ = dθ/dx ≈ d2w/dx2. Solving this dif-
ferential equation and inserting the relevant boundary conditions allows us to solve
for the deflection w(x) along the beam, and in the case of the cantilever in Fig-
ure 1.5, results in a maximum deflection where the force is applied,

w(L) = FL3

3EI
. (1.24)

The technique demonstrated above is one of the more simple cases of balancing
the internal and external bending moments. Part of what makes this example so
simple are the approximations and assumptions we have included in the solution,
like linear elasticity, pure bending, and small deformations. For more compli-
cated systems, the strategy can be expanded to include rotational inertia (first
introduced by Rayleigh) as well as shear (Timoshenko-Ehrenfest beam theory) by
adding an additional (coupled) differential equation to Equation 1.22,

dw

dx
= ϕ − 1

KAG

d
dx

(
EI

dϕ

dx

)
, (1.25)

where K is called the Timoshenko shear coefficient, G is the shear modulus, and ϕ

is the angular deflection that the plane of A experiences. In general, the effect of
introducing the extra mode of deformation to the system is to lower the stiffness
of the beam. However, if G is taken to be arbitrarily large, the object can become
fully resistant to shearing effects and we recover the Euler-Bernoulli equation.

Though Euler-Bernoulli beam theory can be too simple to describe some sys-
tems, the experiments in this thesis are in fact well described by this more basic
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s

A

ρ = κ -1

x

y

z

Figure 1.6: A beam with arbitrary cross-sectional area A has
been bent by a force F into an orientation with curvature κ that
varies along its arclength s

model, addressing explicitly the times when the basic model appears to fail.

Naturally, if extension and compression can store elastic potential energy in a
system, so can bending. Next we will consider the elastic potential energy stored
in (or work required to illicit) the bends in our system.

1.2.2 Bending Energy

In Section 1.1.3 we calculated the stored elastic energy in a material as a function
of its geometry, elastic modulus, and strain. In that section, we took advantage
of the assumption that strain is uniform throughout the material. In the case
of bending, we know the strain over an object’s cross-sectional area varies (see
Section 1.2.1), but it is of course also possible that the curvature changes along
the length of the material like in Figure 1.6.

The strategy then, is to essentially use Hooke’s law to determine the total strain
energy over each infinitesimally thin slice of cross-sectional area. This is actually
easier than it may sound, since we did most of the hard work while calculating the
bending moment M(x). Rather than calculating the torque around the neutral
axis r′ = 0, we can first find the strain energy in a thin slice by integrating
UB = 1/2(EAε2) over the cross-sectional area,

dUB = 1
2

∫
A

Eε2dA′. (1.26)
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Using the result from Equation 1.18 we find,

dUB = 1
2Eκ2

∫
A

r′2dA′ = EIκ2

2 . (1.27)

The final step, then, is evaluating Equation 1.27 along the length of our object.
In the case of an object with constant curvature, this ends up being a matter of
multiplying EIκ2/2 by the object’s length. Otherwise, if κ varies with the object’s
arclength s, the solution will require evaluating κ2 at each point along s.

1.2.3 Torsion

Just as a description of bending could be derived from differences in strain across
an object’s cross-sectional area, torsion can be described as a type of shear de-
formation that also varies across the cross-sectional area of our material. In this
section we will develop a description of torsion for a uniform, elastic beam in terms
of shear.

A uniform, elastic beam of length L and radius r is shown in Figure 1.7. A
torque τ is applied to one end of the beam such that the one end is rotated an
angle θ relative to the other end. Taking just a thin, circular slice of our beam,

θr

L

τ

Figure 1.7: A cylindrical beam with cross-sectional radius r and
length L experiences a torsional force τ , causing one end beam to
twist by θ radians relative to the other end.

we can calculate its shear strain relative to an adjacent thin slice. Since the beam
rotates about its long axis, each point that is at a the same distance r′ from the
rotational axis will experience the same γ,

γ′ = r′ θ

L
. (1.28)
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Since the strain is uniform for a specific r′, we can calculate γ for the full strip
with radial thickness dr′,

dγ = 2πr′γ′dr′, (1.29)

dγ = 2πr′2 θ

L
dr′. (1.30)

We can calculate the twisting moment T for a cross-sectional slice of the beam –
a parameter analogous to the internal bending moment M from Section 1.2.1 – by
integrating dγ over its area,

T =JGθ

L
, (1.31)

where J = πr4/2 is the polar moment of inertia of a cylindrical beam. Like the
second moment of area I, J has been solved for many different geometries and is
easy to look up [78].

Like bending, elastic energy can also be stored in a system through torsion.
The amount of work required to twist a system with constant T by an angle ∆θ is
just UT = T∆θ, but for something like a beam or fiber from Section 1.2.1, T varies
with ∆θ. In this case, it’s more informative to think about the elastic energy being
stored between each successive slice of cross-sectional area A,

dUT =
∫

∆θ/L
JGϕ′dϕ′ =

JG(θ2
f − θ2

i )
2L2 , (1.32)

where ϕ′ is rotation per unit length, informing how much one slice has rotated in
reference to an adjacent slice. If we make the assumption that T is uniform along
the length of the object, evaluating dUT along the full arclength of is simply,

UT =
JG(θ2

f − θ2
i )

2L
. (1.33)

Like the results from Section 1.2.1, Equation 1.33 represents the first level of
complexity as far as a description of elasticity and torsion are concerned. Critically,
θ/L must remain small in order for our linear, Hookean elasticity description to
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be valid. But this doesn’t mean θ must be small, provided the length is long. We
take advantage of this detail in Chapter 4 where we explore the bending, buckling,
and twisting of long, slender fibers subjected to large degrees of twist.

1.3 Elasticity Theory in Three-Dimensions

Throughout Chapter 1 we have considered elasticity, one facet at a time. We
have developed Hookean descriptions of stresses and strains related compression,
extension, bending, and shearing, but so far we have only considered these modes
in isolation. In general, an object can experience more than one of these stresses
at any one time, and in more than one direction. In many cases, we can use our
intuition to identify the most important stresses within a system and focus only on
those, picking and choosing which results from the previous sections to use. But a
full description of the system should account for all of the stresses throughout the
body of our object. A succinct way of doing this is with mathematical tensors [68].

Some advanced treatments of elasticity theory may choose to begin with tensor
notation. There is merit in this approach, but as this is my thesis, I have decided
to treat it as an aside. I’ve decided to do this to reflect my own approach to
studying these systems, while acknowledging that a section explicitly linking the
work in this thesis to the wider literature is important.

Hooke’s law in one-dimension is one of the first things taught in physics and
engineering, and much of what follows is a sort of ad-hoc addition to the one-
dimensional description. By the time I encountered the elasticity matrix descrip-
tion, my physical intuition had become coloured by the more simplistic, piecemeal
version of elasticity described above. In some ways, this has been to my detri-
ment. In some ways, I see it as an advantage. From a mathematical perspective,
the matrix formulation is far superior as all of the above expressions and many
more relationships follow from just a few dense equations. This, paired with nu-
meric simulations and computer modelling, provides an incredibly powerful tool
for investigating all sorts of elastic phenomena. On the other hand, thinking of all
of these modes of deformation individually has pushed me to seek simple, intuitive,
and easily applied descriptions of elastic phenomena. If developing a model is like
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painting, I’ve specialized in expressionism. But nature is realism. The deepest
understanding comes from the union of both5.

1.3.1 Hooke’s Law in Three-Dimensions

The three-dimensional form of Hooke’s law incorporates the normal and shear
stresses in one dimension, for each Cartesian coordinate. This means a full three-
dimensional description will include the extension/compression in the normal di-
rection, two equations that account for the Poisson effect in the perpendicular
directions, and shear. Let’s first consider normal stresses.

If a stress σx is applied to a material in the x̂ direction, we can calculate the
resulting strains in the perpendicular directions σy and σz;

εx,x = 1
E

σx,x, (1.34)

εx,y = − ν

E
σx,x, (1.35)

εx,z = − ν

E
σx,x. (1.36)

It is important to note that here we have assumed an isotropic material, so εi,j =
εj,i. The calculation same can be done in the ŷ and ẑ directions, and combining
the all of these expressions gives,

εx,x

εy,y

εz,z

 = 1
E


1 −ν −ν

−ν 1 −ν

−ν −ν 1



σx,x

σy,y

σz,z

 (1.37)

Worth noting is that the stress-strain relationship does not have to be Hookean
or isotropic. ε can be re-written in this same form in terms of more complicated
elasticity models.

5Only now am I realizing how much of my scientific worldview I’ve taken from Pierre-Gilles de
Gennes. His 1994 Dirac Memorial Lecture was the first book I read when I started my graduate
studies in 2014, and apparently it stuck with me. Particularly his observation that “Simulations
and other numerical exercises are the analogue of photography... Thus I tend to compare our
community of soft-matter theorists to the amateur painters of a hundred years ago” [79]
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Shear stresses can also be added to this description. One alteration we need to
make before we can bring our shear description into matrix form though, is with
our definition of shear strain. In particular, we have been using engineering shear
strain. Instead, we use the true strain, which differs by a factor of two6:

γx,y = 2εx,y = 2(1 + ν)σx,y

E
. (1.38)

Including strain in all three Cartesian coordinates gives,
2εy,z

2εx,z

2εx,y

 =


γy,z

γx,z

γx,y

 = 1
E


2 + 2ν 0 0

0 2 + 2ν 0
0 0 2 + 2ν




σy,z

σx,z

σx,y

 . (1.39)

A full description incorporates both normal and shear strains, and combines
both Equation 1.37 and Equation 1.39:

εx,x

εy,y

εz,z

γy,z

γx,z

γx,y


= 1

E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 + 2ν 0 0
0 0 0 0 2 + 2ν 0
0 0 0 0 0 2 + 2ν





σx,x

σy,y

σz,z

σy,z

σx,z

σx,y


. (1.40)

Equation 1.37 may appear big and intimidating, but really it’s just the combi-
nation of all of the results we’ve seen so far. Better still, we can often simplify
Equation 1.40 by considering the geometry of the system we are studying. In this
thesis in particular, we can simplify Equation 1.40 significantly by treating certain
dimensions as significantly smaller than others.

6The reason for this difference is historical. The matrix formulation of elasticity was developed
long after engineers first started thinking about stresses and strains. At the time, engineering
shear strain was an intuitive and simple way to define shears. This definition, however, does not
give the correct relationship between stresses and strains when calculated in matrix notation. A
better definition was developed that fixed this problem. Specifically, the true strain is the change
in angle between two line elements which are initially perpendicular when undeformed. In short,
the difference is a factor of two.
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1.3.2 Slenderness and Plane Stress

The systems we study are three-dimensional, but sometimes we can pretend they’re
not. By treating a material as two-dimensional (or even one-dimensional), we can
significantly simplify its stress and strain description by ignoring some components
of Equation 1.40. Take for instance a thin, elastic sheet - something like the skin
of a balloon.

A balloon is a great example of a stretchable, elastic material. Readers may
recall the tactile memory of stretching and snapping a balloon like a rubber band,
or the difficulty of blowing into a particularly stiff one that just wouldn’t inflate.
You may also recall the frustration of losing control of a balloon while blowing it
up, sending it flying across the room and ending up back in its limp and floppy
initial state. These experiences are made possible by the thin elastic skin of a
balloon being much harder to stretch than it is to bend. This is not because of
some sort of anisotropic stiffness or exotic material property but rather, it is due
to the thinness of the elastic sheet.

In a sense, the thinness of an elastic sheet lets you bend it “for free”, or at a
much lower energetic cost compared to stretching it. In terms of geometry, we can
develop a scaling argument to compare the energetic cost of bending a thin sheet
to stretching the same sheet. Earlier (via Hooke’s law in Section 1.1.1) we saw that
stretching a three-dimensional material scales with its cross-sectional area, while
bending energy scales with the material’s second moment of area (via bending in
Section 1.2.1),

Estretch

Ebend
∝ A0

I
= hw

h3w
= 1

h2 . (1.41)

This result says that the balance of bending and stretching depends on the thick-
ness of the material squared. Sometimes bending will be more difficult than
stretching (when h >> 1). When h << 1, this expression tells us bending will
be much easier than stretching. With a typical balloon, h << 1, and can be con-
sidered to experience “plane stress”, named after the stresses that are dominant.
In terms of Equation 1.40, σx,z = σy,z = σz,z = 0. This leads to a simplified
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expression, 
εx,x

εy,y

2εx,y

 = 1
E


1 −ν 0

−ν 1 0
0 0 2 + 2ν



σx,x

σy,y

σx,y

 . (1.42)

Taking these components individually, the set of constitutive equations are then,

εx,x = 1
E

(σx,x − νσy,y), (1.43)

εy,y = 1
E

(σy,y − νσx,x), (1.44)

2εx,y = 1
E

(2 + 2ν)(σx,y). (1.45)

Stresses in these directions then, in a sense, limit the sorts of deformations a thin
sheet will experience. We will expand on this idea in the next section when we
consider elastic instabilities and deformations via energy methods.

As a final note, a similar argument can be made for slender beams like fibers,
hairs, or cables as well. With slender beams we assume the cross-sectional area is
small compared to its length, then bending can happen readily. For example, in
Chapters 3, 4, 5, we assume our thin fibers are a) inextensible, and b) buckle before
experiencing significant compression. These are approximations we can make only
after we have considered the relevant forces in the system, which can include more
than just elasticity. The next section is dedicated to some of the other forces
encountered in this thesis.

1.4 Capillarity and Other Forces

Here is a seemingly simple question: how do the stresses on the surface of an
inflated balloon and the stresses on the surface of a soap bubble compare? Both
are described by a sort of “tension” that resists increases to their surface areas,
but do they work in the same way? I was caught under-prepared by this question
during my M.Sc defence and subsequently “flubbed it”. I bring it up now7 because
the question brings into focus an important point: elasticity and surface tension

7to bait a question for my PhD defense.
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are similar, but are not the same. For instance, elasticity and surface tension
often result in stresses that are different by orders of magnitude, but even this
is not always the case. This question, and the competition between elasticity
and surface tension is the focus of Chapter 4 and will be explained further in the
following section.

1.4.1 Surface Tension, Capillarity, and Interfacial Energy

When you inflate a balloon its skin stretches causing a plane-stress over its surface.
The more air you blow into it, the more the balloon inflates, which increases the
stress. In general we can assume that the stress is uniform across the surface of
the balloon, and provided the balloon’s thickness is also uniform, the strain or
stretching the balloon experiences at any point on its surface should be uniform
too. A similar phenomenon occurs with a liquid bubble, but for different reasons.
Liquids have a physical property called surface tension that describes the self-

Figure 1.8: A schematic of the intermolecular interactions of liq-
uid molecules within the bulk of the liquid compared to the surface.
The molecules at the surface of the bath are in an energetically un-
favorable state compared to the ones in the bath.

cohesion a liquid experiences [32, 80]. Liquids are made up of molecules held
together by relatively weak inter-molecular forces. In the absence of these forces,
a liquid may be free to dissociate into a vapor. Although the liquid molecules are
relatively free to move within their bulk, in some ways surface tension imposes
a sort of elasticity we would more often attribute to a solid. In particular, the
surface tension of a liquid (or in general, the interfacial tension of a material) acts
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to reduce the interface between itself and other materials by reducing its interfacial
area, much like a rubbery sheet resists being stretched.

The exact origin of of the intermolecular interactions within liquids vary de-
pending on the liquid. For molecules like water with powerful hydrogen bonds,
each molecule’s polarity causes a mutual attraction between oppositely charged
poles. Non-polar molecules can experience attraction from van der Waals forces
and the attraction from induced dipole moments at short ranges, and repulsion
at short ranges from the electron clouds surrounding atoms [81]. The combina-
tion of the attractive and repulsive interactions between non-polar liquids is often
modelled using a Lennard-Jones potential,

ULJ(r) = 4ϵ

[(
σ

r

)12
−
(

σ

r

)6
]

, (1.46)

where r is the distance between molecules, ϵ is the potential energy minimum, and
σ is the distance where ULJ = 0.

A classic schematic explaining how the potential energy between liquid molecules
relates to surface tension is shown in Figure 1.8. Liquid molecules are shown to
each experience an attractive potential (arrows) for each other molecule that sur-
rounds it [30]. Since there are fewer liquid molecules to surround those at the
liquid-vapor interface, meaning these interfacial molecules will be at a higher po-
tential energy than they would be in the bulk. It is from this unfavorable energy
state at the liquid-vapor interface that surface tension effects originate.

The schematic in Figure 1.8 is useful for describing the origin of interfacial
tension, but a better way to probe the analogy between interfacial tension and
elasticity is through a simple thought experiment. In this experiment we imagine
a liquid film (like a soap film) suspended across a rectangular wire frame with one
of length L that can be slid along the frame. When the movable wire is a distance
x along the parallel sides of the frame, the liquid film has a surface area 2Lx, where
the factor of two comes from the fact the film has both a top and bottom side. If a
force F is applied to the movable wire so that it slides along the frame a distance
dx, the area of the liquid film will increase by 2L dx. However, increasing the
area of the liquid film also increases the amount of liquid-air interface the film has.
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Figure 1.9: A three-sided wire frame and a movable bar of length
L support a liquid film. A force F is required to move the bar and
increase the surface area of the liquid film by 2Ldx.

F

dx

L

Since forcing liquid molecules to the liquid-air interface increases their potential
energy, work needs to be done on the system. This work comes from F as the bar
is moved by dx. Equating the work done with the increase in energy of the liquid
film,

Fdx = 2γLdx, (1.47)

where γ is the surface tension of the liquid and has units of J/m2. It quantifies the
work that it takes to increase the amount of interface a liquid has with another
material, or how hard it is to increase the surface area of a liquid. The value of γ

differs from material to material, and depends on what the material is sharing an
interface with.

Another way to think of the experiment described above is to consider what
would happen to the movable wire when the force F is released. In this scenario,
the liquid film is free to reduce its own surface area. By doing this, the liquid
releases some of its interfacial energy which is now able to pull the wire in the
opposite direction. If one were to actually perform this experiment, they might
find that the movable wire fires off the frame, giving the liquid the opportunity to
coalesce on the remaining sections of frame. And as more and more liquid accu-
mulates, gravity may eventually pull droplets of liquid off the frame. If we could
observe these falling droplets in the absence of air resistance, what we’d find is that
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they would continue to minimize their surface area, leading them towards forming
perfect spheres. This is why, in micro-gravity environments like the International
Space Station, water and other liquids can be seen forming beautifully spherical
volumes.

The fact that liquids are driven to become spherical to minimize its surface area
and interfacial energy leads directly to one of the more common ways of measuring
a liquid’s surface tension [32]. When a small volume of liquid is deposited on a
smooth, flat surface, and providing other forces (like gravity) are minimal, the
liquid will form a spherical cap like the one shown schematically in Figure 1.10 [26].
What happens to the liquid above the surface is not too surprising – to minimize

θy γ

γ

γs,l s,v

Figure 1.10: A liquid droplet sits atop a flat, smooth, non-
deformable solid surface. In the absence of other forces, the droplet
takes on the shape of a spherical cap with contact angle θy defined
by the competition of interfacial energies.

its interface with air (or vapor), it takes on a spherical shape. However, the sphere
is truncated where the liquid comes into contact with the solid. To be clear,
forming a spherical cap does not result in a smaller surface area than forming a
true sphere. What it actually does is minimize the interfacial energy of the entire
system, including that of the solid-liquid and the liquid-vapor interfaces.

As a novice physicist, I attempted to solve for the final shape a volume of
liquid would make with a smooth flat surface by minimizing the interfacial energies
(surface areas times surface tension) of each of the three phases (solid, liquid,
vapor) using a three-dimensional model. While certainly possible, a far more
effective strategy is to identify the symmetry of the system (any way you slice it,
each cross-section has the same contact angle and interfacial tensions) like the one
shown in Figure 1.10) and model what happens at the point where the three phases
meet. One way to think of this is to recognize that while surface tension has units
of J/m2, that is also equivalent to units of N/m. So in a sense, surface tension

29

http://www.mcmaster.ca/
http://www.physics.mcmaster.ca//
http://www.physics.mcmaster.ca//


Doctor of Philosophy– Adam Fortais; McMaster University– Department of
Physics and Astronomy

acts like a force at this three-phase contact point, where the solid-vapor surface
tension (γs,v) works to make the liquid spread across the surface, the solid-liquid
surface tension (γs,l) pulls in the opposite direction to minimize the solid-liquid
interface, and the liquid-vapor surface tension (γ) acts tangent to the surface of
the spherical cap. By balancing these surface tensions in the direction parallel to
the plane of the solid8, we obtain Young’s law:

cos θy = γs,v − γs,l

γ
, (1.48)

where θy is the “contact angle” a liquid makes with the underlying solid. As
we can see from Equation 1.48, changing any of the three materials will affect
the value of θy. In many everyday situations the vapor phase is simply room
temperature9 air. Keeping with that assumption, θy can be used as a good measure
of a liquid’s affinity for the underlying material. For example, the interfacial energy
between water and a typical polytetrafluoroethylene coating (PTFE is a dominant
component of Teflon coatings on cooking pans) is high, which leads to a large θy

resulting in water forming nearly-spherical beads over its surface. On the contrary,
cooking oil has a higher affinity for PTFE and thus a smaller θy when it makes
contact with a PFTE surface.

Although we normally think of surface tension as being a liquid property, the
same property can be more broadly described as interfacial energy, describing the
amount of energy stored in a system at the interfaces between different materials
[46, 82, 83]. Solids exhibit this property reciprocally with liquids, but also with
vapor phases, just as a liquid does, though often the work required to increase
the amount of interface between a solid and vapor is overshadowed by another
property – elasticity. Often, the work required to stretch a material elastically is
far greater than the work that needs to be done to increase the interface between
a solid and another phase. To illustrate this separation of scales, we finally return
to the balloon and the liquid drop (or soap bubble). Specifically, we ask, “How
much work does it take to inflate a balloon, and how does this compare to inflating

8If we assume the solid is rigid and non-deformable, the vertical component of γ is compen-
sated for by the elasticity of the solid.

9Yes, all of these surface tension values depend on temperature.
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a soap bubble?”

Consider a spherical, elastic (Hookean) balloon with skin thickness h and a
radius r. We can assume r >> h, which means we can use our plane-stress
argument and consider the balloon to be stretching-dominated, thus ignoring the
bending energy in the skin. When the balloon is inflated, it retains its spherical
shape while its radius increases by dr. This corresponding to a strain ε = dr/r that
affects the surface of the balloon uniformly. For reasonably small deformations,
the elastic energy in the balloon depends on the following scaling:

UE ∝ Ehπr2ε2. (1.49)

On the other hand, inflating a soap bubble (which is a lot like a liquid droplet,
the main difference being an additional factor of 2 due to the interior interface) is
much simpler. Since we no longer need to consider elasticity, the surface energy
only depends on the change in area of the bubble and its surface tension γ,

Uγ ∝ 2γπr2. (1.50)

Comparing the two types of “tension” (elastic and interfacial) for the type of bal-
loon and soap bubble you might expect at a birthday party, we find that elasticity
is typically much stronger than surface tension:

UE

Uγ

= Ehε2

2γ
≈ 108, (1.51)

where we have taken E ∼ 10 MPa and γ ∼ 10 mN/m, reasonable values for many
rubbery materials and soapy water respectively.

Doing this calculation demonstrates two things. First, it emphasizes the dif-
ference in magnitude between surface tension and elastic tension. Despite having
surface energy like a soap bubble, the balloon’s mechanics are elasticity-dominated,
which is generally true of all but the softest solids. The calculation also shows that
surface tension and elastic tension exhibit different “scaling”. Elasticity depends
on the thickness of the elastic skin of the balloon as well as how much it has
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been stretched, while surface energy depends only on the change of surface area10.
Though typically E >> γ, the difference in scaling suggests that in some systems
with particular geometric features (like slenderness) exist in a regime where elas-
ticity and capillarity are comparable. This will be explored further in the next
section.

1.5 Comparing Forces at Different Scales

If one considers the previous parts of this chapter as the introduction to an aca-
demic paper, Section 1.5 could be considered the “Conceptual Methods” section.
The typical strategy employed in the original research presented in the following
chapters begins with observing the system we wish to study, identify the dominant
forces that define the system’s mechanics, and discard lower-order effects. For in-
stance, in the balloon example above, we may argue that the shape of the balloon is
elasticity-dominated and therefore ignore the surface energy of the material when
trying to describe its shape change. But there are in fact many systems where the
magnitude of elastic effects are comparable to surface tension effects, and such a
simplification would not be appropriate.

This chapter includes several examples of the strategy used throughout this
thesis. By comparing the effect of gravity, elasticity, and surface tension in three
different systems, we will see how these forces can work together (or opposite each
other) at different scales to produce interesting and complicated effects. Likewise,
as was hinted to in Section 1.3, the size and shape of the elastic solids we study
as well as the way forces are applied to them can produce interesting competitions
between modes of deformation. This will be introduced in Section 1.6.

Finally, the goal of this section is more than describing the conceptual methods
used in this thesis. The examples are also intended to demonstrate the importance
of size and scale when designing experiments. One of the benefits of working in

10This is a simplification. In crystals, it has been long understood that surface energy can
be strain-dependent as stretching the bonds between atoms can also increases the interfacial
energy of the material. Recently, it has been shown that this is also true of amorphous solids
like polymers. This is called the Shuttleworth effect and while it is a small effect, it is in fact
quite important in certain soft systems [46,83]
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the Dalnoki-Veress lab is having access to the kind of expertise that lets one
develop unique experiments that use scale to their advantage. This section should
emphasize that idea, and provide a good introduction to Chapter 2 which focuses
on Experimental Techniques.

1.5.1 Surface Tension and Gravity

The first comparison we will make does not come up explicitly in the original
work of the thesis but sets an upper limit on the size of the systems we explore
in Chapter 5. An important assumption that is made throughout this thesis is
that the force of gravity is much smaller than the other forces affecting the system
such that it can be ignored. In Chapter 5, capillarity is the main driving force
acting on an elastic material. In order to ensure that the force of gravity is either
compensated for or negligibly small, we can ensure our experiments do not exceed
the capillary length. The capillary length, lc, is a characteristic length scale below
which capillary forces are comparable in magnitude to the force of gravity acting
on the system, and is defined as,

lc =
√

γ

ρg
, (1.52)

where γ is the liquid-vapor surface tension, ρ is the density of the fluid, and g is
the gravitational acceleration acting on the fluid [32]. For a liquid with the surface
tension and density of water, lc ∼ 2.5 mm, which is approximately the size of the
meniscus visible in a typical glass of water. By keeping the scale of our surface
tension experiments below this length, we can generally treat gravity as a negligible
contribution to the system. On the other hand, systems with sizes on the order
of lc can exhibit some interesting and complicated phenomena. For example, you
can look to a dewy spiderweb to see spherical water droplets decorate its lengths
of silk. In isolation, a single droplet on a strand can either envelope the strand
like a bulging, axi-symmetric cylinder (barrel orientation) or hang from one side
of it (clam shell orientation); the orientation being a function of surface tension,
fiber geometry, liquid volume, and gravitational forces [47, 51, 84–91]. Some other
related effects include "capillary rise" in things like thin glass tubes or between
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parallel fibers and films [86,92], and when fibers are thin enough or droplets large
enough, elastic deformations can complicate these effects further.

1.5.2 Elasticity and Surface Tension

As we saw with the balloon example, elasticity and surface tension are often sep-
arated by several orders of magnitude, owing to the geometry, scale, and material
properties of the system. However, there are many examples of soft or slender
solids that experience considerable “elastocapillary” deformations due to surface
tension [29]. In recent years the study of elastocapillarity has blossomed into a
rich and diverse, interdisciplinary field including biophysical systems, materials re-
search, microfluidics, and all manner of engineering topics [25,27,28,34,93–95]. It
was the subject of my Masters research, and is also the subject of Chapter 4 [45].
Therefore, as an introduction to elastocapillarity and ultimately Chapter 4, let’s
consider a liquid droplet on a solid surface.

As we have seen in Section 1.4.1, a liquid droplet in contact with a smooth, solid
surface will form a spherical cap. This assumes that the force of gravity is small,
and that the solid surface is non-deformable. However, a sufficiently soft or thin
solid can in fact undergo measurable deformations [26,33,35,40,41,82,83,96–100].
In principle, even a material with a high stiffness will undergo some amount of
stretching or shear, though it may happen only on the smallest of scales. This
length scale can be approximated by comparing the shear modulus G to the surface
stress of the solid Γ, which includes the surface tension γ as well as any strain-
dependent deviations to the surface energy. This results in a length scale known
as the elastocapillary length,

ls = Γ
G

. (1.53)

This is the length scale that sets the boundary below which one could observe
capillary-induced shearing. An example of such a deformation is shown in Fig-
ure 1.11 a). It’s important to note that ls only depends on the surface energy of
the system and the shear stiffness of the solid. This means that elastocapillary
shearing may be observed in any system that is sufficiently soft, regardless of the
size and shape of the underlying solid.
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Figure 1.11: Elastocapillary deformations at different scales.
a) Even stiff or thick solids can experience capillary-based shear,
though the characteristic length scale of these deformations ls may
be small and isolated to the surface of the solid. Softer materials
experience larger deformations. b) Compliant materials (which are
not necessarily soft, but are thin) can experience stretching with
characteristic strains S or c) bending with a length scale lB.

Soft materials are not the only materials susceptible to elastocapillary deforma-
tions. Stiff materials can also undergo capillary-induced bending and stretching
provided they are “compliant”, or thin and flexible [17,38,39,41–45,47–54,101–106].
For instance, a sheet floating on the surface of a liquid will experience a force at
the boundary of the sheet ζ = γ − γsv − γsl as the solid, liquid, and vapor phases
attempt to minimize their surface energies [29]. If ζ > 0 then the film experiences
a tension which can result in a strain, εγ = ζ/Et. From this, we can define a more
generic but related parameter that quantifies the strain one can expect in a thin
elastic material due to capillarity,

S = γ

Et
. (1.54)

For a material like plastic wrap that typically has a thickness of t ∼ 10−5 m,
stretching can be extremely small, on the order of S ∼ 10−9. But the thin films
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in Chapter 6 are considerably thinner (t ∼ 10−7 m) and thus considerably more
compliant, which makes these films susceptible to capillary stretching. In the
context of a liquid droplet sitting on a compliant solid like in Figure1.11 b), this
kind of deformation can result in a stretching-dominated bulge in the solid below
the surface of the liquid.

Capillary bending can also occur in sufficiently compliant elastic materials. For
a beam with a cylindrical cross-section with radius r, a bending elastocapillary
length scale lB can be defined that balances capillary energy and bending energy,

lB =
√

Er3

8γ
. (1.55)

The exact definition of lB depends on the geometry of the elastic solid, but is
largely determined by the thickness of the deformed solid on account of the bending
stiffness being related to the object’s second moment of area (see Section 1.2.1).
In Chapter 4 we will see how lB can be used as a metric to relate experiments done
at various length scales.

1.6 Elastic Instabilities

At last, we arrive at the main topic of the thesis. Now that we have developed a
foundation in elasticity and discussed the types of forces that will drive the elastic
deformations we observe in later chapters, we will explore how the geometry of a
system and the way forces are applied to the system can generate interesting and
non-trivial elastic deformations.

Elastic instabilities are one of those types of phenomena that are so ubiquitous
that they can easily go overlooked. The wrinkle in your furrowed brow as you
read this obtuse sentence, trying to guess the first example I will introduce, is
in fact one of the types of instabilities that will become the topic of Chapter 5.
Here, a competition between the compression caused by your forehead muscles
(see Section 1.1.1), and bending (see Section 1.2.1) results in periodic undulations
defined by the thickness, stiffness, and elasticity of your skin [57, 107–112]. The
competition between compression and bending does not always result in something
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beautiful like laugh lines though. If supporting columns are not designed to with-
stand high enough compressive loading, they too can undergo buckling though in
this case, the result can be catastrophic mechanical failure as the columns lose a
significant amount of compressive strength during buckling.

Torsion (see Section 1.2.3) can also cause unique and interesting deformations.
Why, for instance, will a twisted headphone cable form loops and knots [21,113]?
Perhaps more marvelous, how did our bodies learn to bend, twist, and otherwise
organize and cram massive strands of DNA into sub-cellular packages, like the
aforementioned headphone cable jammed in a pocket [114–118]? Even though
torsion may not seem like it would necessitate a compressive stress, we will find
in Chapter 3 that tension can in fact stabilize a twisted beam from buckling and
tangling, and removing that tension can allow a beam to take on a multitude of
different orientations.

Although these examples cover a wide range of types of deformations across
many different scales, there is a unifying principle that relates them all; each of
these systems are put in a situation where they are presented with several different
ways of relieving some of the stress and elastic energy that they are loaded with.
Like we have seen in previous sections, many of these phenomena are in fact
scale invariant, instead depending on the relative geometry of the system. This
means that many of the phenomena we see in macroscopic systems can apply to
microscopic systems as well, which can has allowed for biology-inspired flexible
electronics and devices [119]. But the relationship goes in the other direction as
well. As we will see in the following chapters, macroscopic experiments can also
be used to model and understand prohibitively small systems as well. In this final
section then, we will explore what this means exactly with regard to the systems we
will encounter in the following chapters, and how we will approach characterizing
these elastic instabilities.

Though there are a wide range of instabilities that we could cover, this section
will be limited in scope to those encountered in this thesis. In particular, we will
focus on instabilities caused in slender structures subjected to compressive and
torsional loading, which typically lead to buckling. For a more complete look at
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Figure 1.12: An elastic beam buckles in response to being sub-
jected to a compressive force F .

elastic instabilities, Theory of Elastic Stability by Timoshenko and Gere is one of
many textbooks that approaches the topic from an engineering perspective [120].

1.6.1 Buckling of Slender Structures: Critical Load and
Stability

When an object is compressed, it has a tendency to decrease in length; we know this
well by now. Imagine a beam of length L with a cylindrical cross-section of radius
r held between two movable boundaries, shown schematically in Figure 1.12. If a
force (or load) F is applied to the beam via the boundaries being forced together,
the space the beam is able to occupy decreases. As a first guess, we may assume
the beam will simply compress according to Hooke’s law, storing an elastic energy
Ec =

∫ εL
0 F (x)dx = 1/2Eπr2ε2, where E is the beam’s elastic modulus and ε is

the compressive strain on the beam. But there are other ways for the beam to
conform to its new, reduced boundary. Alternatively, the beam can buckle, or in
other words, bend. Although the exact details of how the buckling occurs will
depend on the boundary conditions, in essence, a sufficient compressive loading
will create a situation where both compression and buckling can occur. How the
beam responds will be determined by what orientation minimizes the energy of the
system and what solutions are stable. Determining this involves building a model
that can compare both bending and compression.

If the beam does not simply compress and instead buckles, we still need to be
able to relate the applied force to the resulting deformation. This is more difficult
than the pure compression case, as we will see, because there can be multiple
solutions. Let’s take our same beam from above and make the assumption that
the ends of the beam are pinned to the boundaries (such that they can rotate but
not slide). By equating the bending moment M = EI d2w

dx2 to the applied torque
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T = Fw(x) along the arclength of the beam, we get a differential equation,

Fw(x) = EI
d2w

dx2 , (1.56)

where w is the displacement of the beam in a direction perpendicular to x̂. Equa-
tion 1.56 is an ordinary, second-order differential equation with the solution,

w(x) = A cos(kx) + B sin(kx), (1.57)

where A and B are integration constants determined by the boundary conditions,
and k2 = F/EI. Applying our boundary conditions, we know that w(0) = 0 and
w(kl) = 0, meaning A = 0. From here, we can have two sets of solutions. If B = 0
we get the case where no bending occurs, resulting in the simple compression
scenario described above. If B ̸= 0, our solution becomes,

w(x) = B sin(kx). (1.58)

Equation 1.58 defines a set of solutions that satisfy kl = πn, where n are integer
values. The first several solutions are demonstrated in Figure 1.12.

So we have solutions defining the possible shapes an axially-loaded beam can
take on. We can also use this information to calculate how much load the beam can
take before it can take on one of these shapes. Using our definition of k2 = F/EI,
we get,

Fn = EI
n2π2

l2 , (1.59)

where Fn is the minimum force required to achieve each of the n solutions.

One important thing to note about this result is that applying a perfect axial
load won’t cause a buckle unless there is some sort of lateral perturbation. How-
ever, once a lateral perturbation is initiated, buckling will often occur readily. To
illustrate this point, we can comparing the compression caused by a perfectly axial
load to the deflection caused by the same load applied perpendicular to the axis
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of the beam,
∆L

δ
= FL/πr2E

FL3/3EI
∝ r2

L2 (1.60)

where δ is the maximum lateral deflection at the end of a cantilever-style beam with
a load applied perpendicular at its free end. This result shows that for the kind of
long, thin beams used in this thesis where r/L << 1, lateral deflections happens
much more readily. In fact, if we let the angle the applied force F makes with the
axial length of the beam vary by an angle θ, we can find how much the angle of
the applied force can deviate from perfectly axial such that the compression and
deflection are of comparable magnitude:

∆L

δ
∝ r2

L2 cot θ. (1.61)

For an typical experiment described in any of the following chapters, r/L ∼ 10−4,
meaning simply deviating by an angle θ ∼ 10−9 radians could destabilize an axially-
loaded beam at its buckling threshold.

The second important aspect of this result is that creating more buckles stores
more energy in the beam, which means more work must be done on the beam,
which is expressed in the fact that Fn ∝ n2. But the critical load applying the
required amount of force is not all it takes to create multiple buckles. The way the
beam is loaded, the energy stored in the system, and the stability of the system
all contribute to determining how the beam buckles exactly.

1.6.2 Energy Methods

“Energy methods” are the predominant technique used in this thesis to predict
the onset and stability of elastic deformations. This relatively vague term can
refer to several different techniques, but here I use it to describe the strategy of
comparing the energy stored in several possible states the system could be in, with
the assumption that a system can release some of the stored energy in the form of
motion in order to drive it towards a lower energy state.

For example, in Chapter 3, we consider elastic instabilities that also incorporate
twisting. We compare the energy stored in a thin fiber where one side of the fiber
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Figure 1.13: A schematic plot of the elastic energy in a fiber as
a function of tension/compression for its initial twisted state (Ui)
and final bent state (Uf ). By calculating ∆U = 0 (circled) we
can predict at what point it becomes energetically favorable for the
fiber to deform into its bent orientation.

has been subjected to some amount of rotation relative to the other side, and
with variable amounts of tension or compression. Though twisting complicates
the system some, many of the details and strategies remain the same. Namely,
we present a model that calculates the energy stored in the system before and
after an instability-driven deformation occurs, based on the orientations the fiber
in the before and after states. By equating the energy stored in the system in each
state, before and after our predicted deformation occurs, we calculate under what
conditions our fiber will transition to the new orientation. This strategy is shown
schematically in Figure 1.13, where a plot of a system’s energy before (Ui) and after
(Uf ) an elastic instability occurs is plotted as a function of tension/compression.
By setting ∆U = Uf −Ui = 0, we can identify the conditions where it will be more
energetically favorable for the system to transition to the new, deformed state.

In Chapter 4, a similar strategy is employed. The energies in the initial state are
based purely on the interfacial energy between a fiber’s material and the liquid bath
it floats atop. The initial interfacial energy is compared to the interfacial energy
between the same fiber and liquid after an air bubble has been injected below
the fiber. Having a volume of air below the fiber ends up reducing the system’s
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interfacial energy, which drives the fiber to reorient and deform elastically. And
finally, Chapter 5 combines the elastic responses of fibers and thin films, exploring
how the size, shape, and orientations of buckles can be controlled by applying
different stresses to the thin film.

Rather than take the approach described in Section 1.6.1 to determine the
different orientations the fibers in these chapters will take on, much of the analysis
in the following chapters are informed by experimental observations. This is one of
the conveniences afforded by working in the Dalnoki-Veress lab. During my time
in the lab, I benefited from many experimental techniques developed by myself
and my colleagues to make small, uniform, and (relatively) easy-to-manipulate,
idealized experimental systems which allowed me to try many different stress,
strain, and loading experiments, making detailed observations of the resulting
deformations along the way. In Chapter 2 I will elaborate on some of the techniques
used throughout this thesis.
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Chapter 2

Experimental Methods

The subject of Chapter 2 is the technical details of the experiments presented
in Chapter 3, Chapter 4, and Chapter 5. Each of the papers contained in these
chapters include their own experimental methods sections, so this chapter will serve
as a supplement to those. The details contained in this chapter can be considered
a how-to guide for future students who are interested in expanding on the results
of this thesis, or using similar systems for their own studies. In general, the
materials used in this thesis are polymer-based, and care has been taken in selecting
the specific polymers for their material properties. These considerations will be
covered in Section 2.1.1. The polymers are used to create micro and nanometric
elastic structures like thin films and fibers. Section 2.1.3 and Section 2.1.2 will
cover the details of producing these structures. Throughout this thesis, thin elastic
structures were subjected to carefully controlled stresses. Controlling the stresses
applied to such small structures required the development of several techniques
which are described in Section 2.2. The main results contained in this thesis come
from observations and measurements of these small structures as they respond to
the applied stresses, which involved initial characterization of the elastic structures,
imaging the geometry of the elastic structures take on in response to stresses, and
measuring extremely small elastic forces. How this was accomplished is discussed
in Section 2.3.
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2.1 Sample Preparation

2.1.1 Polymers

The experiments featured in the following chapters focus on the elastic responses
of a variety of simple, idealized structures like thin fibers and films. These struc-
tures were created with specific geometries in mind, and required consistent me-
chanical properties. Fabrication of fibers and films was achieved with carefully
selected polymer materials, two which were physically cross-linked elastomers and
one glassy polymer at room temperature. To create these structures, the polymer
materials needed to be either made into a solution using a compatible solvent, or
melted at high temperature.

For some applications, a physically cross-linked elastomer styrene-isoprene-
styrene (SIS) triblock copolymer (Sigma-Aldrich) with a 14% styrene content was
used. Typically, it would be dissolved in toluene (Fisher Scientific, Optima grade)
at mass concentrations c ranging from 4% to 20%. Other applications required the
SIS be dissolved at much higher but unspecific c. When made into a thin film or
fiber, SIS exhibited a slightly sticky surface, a feature that was used in Chapter 5.

Another physically cross-linked elastomer used in this thesis was Elastollan. So-
lutions of Elastollan TPU 1185A (BASF) were made using cyclohexanone (Sigma-
Aldrich, puriss p.a. >99.5%) with c ranging from 2% to 7%. Alternatively, Elas-
tollan was also melted by bringing to to 240◦ C on a heating stage.

Finally, Polystyrene (PS) with a range of molecular weights and polydispersities
(Scientific Polymer Products, see specific papers for details) was used. PS solutions
were made by dissolving in toluene between c = 3% and c = 20%.

2.1.2 Fibers

A common feature of the experiments described in this thesis is the use of slender
fibers. In all three papers, polymer fibers with cylindrical cross-sections and radii
on the order of microns are used as the subject of some applied stress. The ge-
ometry of these fibers is simple and is nothing more than an idealized cylindrical
beam of the kind described in Chapter 1, but the small scale and uniformity of
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the fibers make them a fairly unique experimental system. This section explains
the techniques used to fabricate these fibers. The fibers in this thesis are made
through a manual process that involves “pulling” them from a liquid polymer melt
or solution. Elastollan, PS, and SIS were each used to make fibers, and the pulling
technique used for each of these polymers was similar between them. With PS
and SIS, the polymer was first dissolved in toluene at a high solid concentration.
The exact concentration was not recorded as the process required some amount
of solvent evaporation, subsequent thickening of the solution, and trial and er-
ror. When the solution was sufficiently thick and viscous (similar to cold honey
or a viscous oil), a droplet was placed on a small silicon wafer approximately 1
cm by 1 cm. A micropipette with tip diameter on the order of tens of microns
was then dipped into the viscous droplet and pulled out rapidly, dragging a vol-
ume of solution along with it. As the polymer solution was removed from the
droplet, it formed a thin cylindrical thread with a high surface area to volume ra-
tio that solidified quickly as the solvent evaporated. This process resulted in long,
slender, and solid polymer fibers that naturally adhered to the tip of the pulling
micropipette. Lengths of fiber could easily span tens of centimetres and while the
fibers varied in diameter along these lengths, smaller lengths of the fiber exhibited
high uniformity with deviations to the diameter often being unmeasurable under a
50x optical objective. A nearly identical process was used to pull Elastollan fibers
but instead of dissolving the polymer in a solvent, it was heated to 240◦ C on a
heating stage before applying the dip and pull technique to the polymer volume.
While the dip and pull technique is a relatively simple process1, being successful
with the technique takes some amount of trial and error and above all, patience.
To reduce the stress of learning this technique, I have complied a list of tips and
tricks to help guide a potential fiber puller to hone their technique.

1. I have not been able to pull fibers with exactly specified dimensions, however,
multiple fibers can be pulled rapidly from the same setup. Having several
micropipettes at the ready and pulling multiple fibers will allow you to select
from a range of lengths and sizes.

1Fun fact: this is how cotton candy (candy floss) is made; sugar is heated until it melts, and
thin filaments are lifted from the liquid. Typically these filaments are wound around a paper
cone.
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2r	~    mμ

l	~	0.5 cm

Figure 2.1: A micropipette is dipped into a liquid polymer and
pulled out, resulting in thin fiber.

2. The pulling technique has a lot in common with dip coating, and much of
the fine control of fiber thickness follows from this fact. Perhaps counter-
intuitively, pulling a fiber faster will typically result in a thicker fiber, while
slower pulling leads to thinner fibers.

3. The viscosity of the polymer melt or solution is critical and not only affects
the thickness of the fiber that you pull, but also if a fiber can be pulled at
all. If your polymer is too viscous, you will pull large globs of polymer from
your silicon wafer. If this happens, dilute your solution with more solvent (or
ensure your Elastollan is up to temperature and has time to melt). On the
other hand, a polymer that is too inviscid will not entrain enough polymer
onto the micropipette as you pull it out. Allow the polymer solution some
time so that excess solvent can evaporate, or reduce the temperature of the
Elastollan.

4. Since it takes some time for bulk polymer to dissolve in solvent, it is useful
to pre-dissolve a volume of polymer at a high concentration and store it in
a vial in the lab. From this volume you can produce your droplets and also
re-dissolve polymer droplets that have become too viscous to pull fibers from.

5. Elastollan needs to be brought to a high temperature in order to pull fibers
from it, but this also causes Elastollan to degrade over time. The first signs
of degradation appears almost like a separation between a solid and liquid
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portion of the polymer. A thicker, stiff volume of polymer may begin accu-
mulating in the melt, leaving a thin lubricating layer between the polymer
blob and the silicon wafer. Fibers can still be pulled from the polymer blob
but they will tend to be thicker. After more time, the Elastollan sample will
begin to yellow. At this point, the sample should be discarded and a new
sample should be prepared.

Finally, while these fibers are useful as idealized elastic “beams”, care must be
taken to ensure they are not overly stressed. As a glassy polymer, PS is highly
elastic but brittle and susceptible to breaking at small strains. It is not the ideal
fiber for twisting experiments (see Chapter 3) since shear stress can easily cause
kinks or breaks in the fiber. Additionally, PS fibers cannot undergo large exten-
sions. However, of the three polymers discussed in this chapter, it exhibits the
least amount of creep and hysteresis during extension-based experiments, and is
not sticky or tacky. PS is best used for compression-based experiments and bend-
ing experiments where the radius of curvature of the fiber is large. SIS fibers, on
the other hand, are very soft and do exhibit creep and significant extension-based
hysteresis. For this reason, applied strains should be small (10% extension or less)
and SIS fibers should not be left in a stressed state for long periods of time. It is
also important to note that SIS fibers are sticky, though their small surface area
limits how strongly an SIS fiber will adhere to another material. Like PS, SIS
is useful during compression-based experiments, but can also be used in bending
experiments where the radius of curvature is smaller. Twisting and shear-based
experiments are not recommended. Elastollan fits in between SIS and PS in a lot
of ways, and offers many attractive properties. It is a softer polymer than PS and
is highly deformable like SIS. However, it is stiffer than SIS and does not exhibit
any significant creep over a fairly wide range of extensions. Elastollan exhibits
some amount of hysteresis during large extensions, but does not seem to flow like
SIS. Elastollan is minimally tacky. Elastollan is essentially the workhorse of the
polymer fibers and should be the first choice for the majority of fiber-based ex-
periments whether they are extension-compression or shear-based. It also has an
elastic modulus that is between PS and SIS, making them useful as comparison
materials to Elastollan.
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2.1.3 Films

Thin polymer films are a specialty of the Dalnoki-Veress lab and are used in
Chapter 5 as a deformable, free-standing membrane. Films with thicknesses on
the order of ∼ 100 − 500 nm were made by spincoating a polymer solution onto
a mica substrate which could be transferred from the mica substrate to a biaxial
straining device (which will be described in Section 2.2.2). The spincoating process
is shown schematically in Figure 2.2 a) and described below.

Spincoating is a process whereby a thin, uniform polymer film can be deposited
on a smooth, flat substrate. This was done with a commercial spincoater (Headway
Research Inc., Model PWM32) which featured a rotational stage that could achieve
speeds of several thousand revolutions per minute. A fresh mica substrate was first
cleaved to obtain an atomically-smooth surface which was then placed smooth-
side-up on the rotating stage. A small volume of polymer-solvent solution was
then placed on the mica surface before beginning the spinning cycle. During the
spin cycle the polymer solution is accelerated outward, thinning the liquid layer
and ejecting excess volume from the substrate. As the stage continues to spin,
solvent evaporates from the residual polymer solution causing the film to further
thin and increase in viscosity until a thin, solid film remains. At this point the
film can be transferred to another surface using a float-and-stick technique shown
in Figure 2.2 b) and c). The thin film and mica sample is dipped into a water bath
at an angle so that the film begins to lift off the mica surface, remaining on the
surface of the bath. Before the film is fully removed from the mica surface, it is
gently removed from the bath which traps a thin layer of water between the film
and the mica. The sample can then be placed film-side-down onto a new substrate
where the mica can be peeled off due to the water layer. Finally, the residual water
is allowed to evaporate, leaving behind only a thin, uniform polymer film.
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a) b)

c)

Figure 2.2: a) A thin polymer film is made by placing a polymer
solution on a mica substrate and spun at several thousand revolu-
tions per minute. b) The resulting polymer film is dipped into a
water bath trapping water between the polymer film and the mica.
c) The polymer sample is placed film-side-down on a new substrate.
The mica is lifted away from the new substrate, leaving behind the
polymer film which is now adhered to the new substrate.
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2.2 Experimental Methods

2.2.1 Manipulating Fibers

In all three papers we investigate the deformation of fibers however, only in Chap-
ter 3 do we manipulate the fibers directly. Rather, in Chapter 4 the fibers are
deformed via surface tension and in Chapter 5 the fibers are deformed by the ad-
hesive forces between fiber and film (which is described further in Section 2.2.2).

In Chapter 3, each end of a polymer fiber is wound around then glued to a
post using a solvent-polymer solution, shown schematically in Figure 2.3. Gluing
the fiber ends to the posts ensures that the fibers are unable to rotate and remain
fixed to the posts, while winding ensures the fiber does not slip. It is important
that the solvent used does not dissolve or swell the polymer fiber. When using
Elastollan fibers, the glue solution was SIS and toluene.

More than serving as a fixed boundary for the fiber, the posts each served
an additional purpose. One post consisted of a thin force transducer pipette
(details in Section 2.3.2) capable of measuring tension in the fiber. The other
was connected to a computer-controlled rotational motor which was also capable
of acting as a computer-controlled translation stage (Newport Universal Motion
Controller/Driver, Model ESP300).

The post with the force transducer pipette could be manually moved in three
dimensions so that the ends of the fiber could be lined up before beginning each
experiment. During the experiment, this post remained stationary so that the force
transducer and the fiber could be imaged with a stationary optical microscope (see
Section 2.3.1).

2.2.2 Manipulating Films

In Chapter 6 we explore the deformations of a fiber adhered to the surface of a
thin polymer film that can experience biaxial strains. Though the fiber is not
strained directly, manipulating the film caused various stresses to be transmitted
to the fiber through their mutual adhesion. The system shown in Figure 2.4 was
designed to create biaxial stress in the thin films.
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Δx

Figure 2.3: A polymer fiber is attached to two posts. The left post
can be translated and rotated. The right post is a force transducer
that deflects as a response to tension in the fiber.

The system consisted of an elastic sheet that was connected to four translation
stages. The elastic sheet was thick (200 µm) compared to the films we were
interested in, and were made from Elastosil (Wacker Chemie). A round hole with
a radius of a few millimeters was punched out of the centre of this elastic sheet,
which was where the thin film and fiber samples were transferred to in order to
perform an experiment.

Once a film was transferred to the elastic sheet (which it adhered to on account
of both materials being moderately sticky), the four translation stages could be
moved independently to impose specific strains on the film which could be quan-
tified by measuring the deformation of the circular hole in the elastic sheet.

2.3 Sample Measurements

2.3.1 Imaging

Most of the data collected and used in this lab was derived from optical imaging.
Often, top-down microscopy images were collected and analysed using ImageJ or
MATLAB.
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a) b)
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Figure 2.4: a) Top-down view of the biaxial strain device. An
X-shaped elastic sheet with a hole in the centre is connected to
four translational stages. A thin film adheres to the sheet and a
polymer fiber adheres to the film. b) The translational stages allow
for tunable biaxial stress.

A modified optical microscope, depicted in Figure 2.5, was used in Chapter 5
in order to take images of the fiber-film system at various angles. A computer-
controlled, motorized ring-shaped stage (Newport Universal Motion Controller/Driver,
Model ESP300) was used to mount a camera with optical tube and lens. The ring-
stage was arranged such that the fiber-film sample was in line with the ring’s centre,
which allowed the camera to be rotated around the sample while maintaining the
same distance and focus.

2.3.2 Measuring Forces

In Chapter 3, the tension in polymer fibers was measured. Because the fibers were
so thin (∼ 10−6 m), the magnitude of the tension in a typical experiment was very
small ( 10−5 N). To resolve these small forces, a micropipette deflection technique
was used which is shown schematically in Figure 2.3 [121].

The micropipette deflection technique entails heating and pulling a micropipette
with a diameter of 1.0 mm (World Precision Instruments, USA) with a pipette
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Figure 2.5: Side view of the biaxial strain device with rotating
camera lens. The rotating lens can image the polymer film sample
at multiple angles.

puller (Narishige, Japan) such that one end of the pipette would be stretched and
tapered to a diameter of tens of micrometers. Because of the length and thinness of
the pipette tip, and in spite of glass’ high elastic modulus, pulling on a fiber glued
to the micropipette would cause the pipette to deflect by a measurable amount ∆x.
By calibrating the size of deflection with several known masses, a spring constant
k could be calculated for each micropipette according to F = k∆x. Knowing k

allowed for visible deflections observed during an experiment to be converted to
Newtons.

Finally, images of the experiment were taken rapidly and an automated MAT-
LAB program was used to track the deflection of the pipette between frames. A
cross-correlation algorithm was used to track the pipette to sub-pixel resolution
which gave the force transducer system a lower limit on the order of tens to hun-
dreds of pico-Newtons [121].
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Chapter 3

Energy release by twisted,
compressed fibers via hockling
and writhing

The first paper included in the thesis is about the shapes a rod, fiber, or wire
makes when subjected to twisting, tension, and compression. It has been accepted
to be published in The European Physical Journal E.

It is known that fibers under small or no tension will form loops when twisted,
and that increasing the twist causes loop to wind and “writhe”, forming a double-
helix-like structure called a plectoneme. This paper builds on the work of many
engineers interested in the kinking and twisting of cables, where a hockle can mean
a irreparable damage to the cable [22, 122–125]. Recently, the physics of hockling
and writhing of “rods” has found application in describing the conformations of
DNA [6,7, 126–128].

In this paper we present a purely geometric theory that predicts the onset and
removal of hockles in linear elastic fibers. This theory can be used to calculate the
tension in the fiber when hockles form or are removed, or predict the size of the
hockle at either point. We also explore the relationship between tension in a fiber
and the onset and removal of plectonemes. We find that the tension during removal
of plectonemes exhibits a non-monotonic behaviour that has gone unreported by
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most of the literature. We develop a friction-based theory that accounts for this
unexpected phenomenon.

The experiments, theory, and data analysis presented in this paper were de-
signed and performed by myself, with assistance on the experimental side by un-
dergraduate thesis student Elsie Loukechenko and theory contributions by Kari
Dalnoki-Veress. The paper was written by myself and Kari Dalnoki-Veress.
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Writhing and hockling instabilities in twisted elastic fibers
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The buckling and twisting of slender, elastic fibers is a deep and well-studied field. A slender
elastic rod that is twisted with respect to a fixed end will spontaneously form a loop, or hockle,
to relieve the torsional stress that builds. Further twisting results in the formation of plectonemes
– a helical excursion in the fiber that extends with additional twisting. Here we use an idealized,
micron-scale experiment to investigate the energy stored, and subsequently released, by hockles and
plectonemes as they are pulled apart, in analogy with force spectroscopy studies of DNA and protein
folding. Hysteresis loops in the snapping and unsnapping inform the stored energy in the twisted
fiber structures.

INTRODUCTION

Take a cord, twist one end with respect to the other,
then relax the tension in the cord. We have all likely en-
countered the spontaneous looping and subsequent helix
that will form with additional twisting. Hockling, or the
buckling and looping of a twisted rod, is a well known
and intensely studied phenomenon [1–16]. When a cord
is twisted, a significant amount of elastic energy can be
stored in the twists of the fiber. By introducing slack
in the fiber, this stored energy can be released by un-
twisting, however, if the rotation at the ends of the cord
are fixed, untwisting is accompanied by bending into a
hockle or plectoneme (a double-helix structure terminat-
ing in a loop) since the ends are fixed. When this occurs,
hockling is preceded by a modified Euler buckling that
results in sinusoidal buckles, eventually coarsening into a
single loop [2–4].

Because hockling can result in damage to cables, de-
termining the criteria for hockling is of practical engi-
neering concern. Research has focused on experiments
using braided cables, nickel-titanium (nitinol) rods, and
plastic fibers with thicknesses ranging from millimeters
to centimeters [3, 4, 6, 10, 12, 13, 17–20]. However, per-
forming these experiments at such large scales leads to
complicating factors such as gravitational sagging, ma-
terial defects, and non-uniformity. Furthermore, few ex-
perimental studies have explored the removal of hock-
les [10, 12, 19, 21, 22]. Additionally, the choice of material
in these studies are often prone to plastic deformation at
low strains, limiting the study of hockle removal to small
degrees of twist.

Beyond hockling – the creation of the first loop – a
highly twisted rod may begin writhing, where the asso-
ciated rotation of the loop results in the formation of
a plectoneme [2, 3, 6, 9, 13, 18, 23–32]. While this is
less common in engineering applications, it occurs fre-
quently in biological systems like DNA and plant ten-
drils [23, 33–41]. However, it is difficult to study this
process in-vitro, and in the particular case of DNA, ther-

mal fluctuations, and electrostatic interactions may both
initiate plectoneme formation as well as introduce noise
into any potential force measurements [25, 26, 28, 42–49].
Gaining a deeper understanding of twisted fibers could
help in developing bio-inspired smart materials [9, 50, 51].

In this study, uniform, cylindrical, elastic fibers with
diameters on the order of ∼ 10 µm are used to experimen-
tally investigate the hockling and writhing phenomena.
Much like force spectroscopy measurements carried out
with DNA and magnetic tweezers [43, 44], here on larger
length scales we employ a micro-pipette deflection tech-
nique [52, 53] to quantify the tension, twisting, and bend-
ing energies in the system as a fiber hockles, writhes, and
is pulled apart again. Extending the work of Ross and
Yabuta, we first derive exact, material-independent hock-
ling and hockle-removal criteria [12, 21]. The expression
derived is purely geometric with no fit parameters, and
accurately describes experiments performed with fibers
of various sizes. We then focus on the formation and re-
moval of plectonemes from a twisted fiber, with the latter
revealing an especially rich force response.

EXPERIMENT

A cylindrical, elastic fiber with a radius of ∼ 10 µm
is attached to two thin glass capillary pipettes acting as
posts. One glass post is mounted on a rotational step-
per motor (1.8◦ resolution) and linear actuator, allowing
precise control of tension, slack, and degree of twisting in
the fiber. The other post, a capillary that acts as a sen-
sitive force transducer, is capable of measuring the ten-
sion in the fiber directly. The force transducer pipette is
mounted perpendicular to the length of the fiber to facili-
tate force measurement. A schematic of the experimental
setup is shown in Figure 1a).

Both posts are made from glass capillary tubes with a
diameter of 1.0 mm (World Precision Instruments, USA).
The force transducer is made by pulling a capillary tube
with a pipette puller (Narishige, Japan) to be long (∼
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FIG. 1. a) A fiber with radius r and length L was glued to two
posts, a mobile post (left) and a force-transducer post (right).
The left post is rotated by an angle θ◦, and moved toward the
right post. b) As the posts move together, the fiber untwists
with the formation of a loop. c) Upon further decreasing the
distance a plectoneme forms. The process is then reversed
and the glass pipettes are separated. Tension in the fiber is
measured by observing the deflection d of the force-transducer
pipette and D >> d. d) Optical image sequence of a r ≈ 10
µm fiber during a typical experiment.

1 cm), thin (∼ 10 µm) enough to deflect when tension
was applied to the fiber. By calibrating this pipette,
its spring constant k (∼ 0.5 N/m) can be determined,
allowing for force measurements as small as hundreds of
pN by monitoring the deflection of the pipette d using
cross-correlation image analysis [52, 53].

The fibers used in this experiment were made from
Elastollan (Wacker Chemi AG), a commercially available
elastomer with Young’s modulus E = 11± 3 MPa which
was determined via extensional stress-strain tests per-
formed on several different fibers with r ≈ 10 µm (not
shown). Fibers were made by heating a pellet of Elas-
tollan to 240◦ C, dipping a glass pipette into the melt,
then rapidly pulling the pipette out of the melt. The
resulting fibers have uniform, cylindrical cross-sections
with a diameters of ∼ 10 µm. The fibers were inspected
optically for uniformity, then glued across the posts with
a dilute polystyrene-toluene solution. A droplet of the
solution was placed at the contact point between the
fiber and posts, and as the toluene evaporated, a layer of
glassy polystyrene was left which holds the fiber in place.
Toluene was selected as the solvent as it selectively dis-
solves polystyrene and not Elastollan.

In a typical experiment the fiber is rotated at one end
by an angle of θ◦ = 2πn corresponding to n full revolu-
tions [Fig. 1a)], while the fiber of length L, is held at an

initial tension such that the fiber remains straight and
unbuckled. The tension is then released by moving the
left post by a distance D and bringing the posts together
at a speed of 30 µm/s [Fig. 1b)]. Strictly, the slack in-
troduced into the fiber δ = D+ d, but since the distance
the post is moved is ∼ 103 times greater than the de-
flection of the force sensing pipette, we can take δ ≈ D.
As the slack is increased, the fiber is observed and found
to hockle and writhe as the elastic energy stored in the
twisted fiber is converted into bending energy [Fig. 1c)].
An optical image sequence of the fiber during a typical
experiment is shown in Fig. 1d). Since the fiber is radi-
ally symmetric, twisting in either direction is equivalent
and experiments are repeated with an initial twist of −θ◦
(note that θ◦ is defined as positive). Repeating the exper-
iment for θ◦ and −θ◦ compensates for any effects related
to errors in defining θ◦ = 0 or radial non-uniformities.
The deformations in the fiber as well as the deflection of
the force transducer are simultaneously measured with
optical microscopy.

RESULTS AND DISCUSSION

Formation and removal of a hockle

We consider the fiber as a slender rod with a large
length to width ratio. We follow the argument outlined
by Ross, which uses the results of Timoshenko and an
analysis of the relevant energies in the system, to derive
criteria for hockling related to the tension and torsion
within a twisted fiber [12, 54, 55]. Notably, we find two
different criteria for the creation and removal of a hockle,
consistent with a bifurcated conformation pathway de-
scribed by Neukirch et al. [56].

A twisted fiber will hockle and form a loop when the
torsional energy stored in the fiber is large enough to
overcome any stabilizing tension in the fiber. The bend-
ing energy within the resulting loop must be balanced by
the work released as the ends of the fiber are brought to-
gether and the fiber untwists. To form a single loop, there
are three energy contributions to consider: i) energy is
required to bend the fiber into a loop; ∆Ub, ii) work is
released as the two ends holding the fiber are brought
closer, ∆WT; and iii) energy stored in the twisted fiber
is released, ∆WM, because upon formation of a loop the
fiber unwinds by one full rotation.

For the formation of a single loop, the bending energy
is calculated assuming the fiber undergoes a linear elastic
deformation into a perfect circle with radius R,

∆Ub =
EI

2R2
2πR =

πEI

R
, (1)

where E is Young’s modulus and I is the second area
moment of the cylindrical fiber, I = πr4/4. The work
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done by bringing the two posts together is given by

∆WT = −T∆D, (2)

where T is tension in the fiber, and ∆D is the change
in the distance between the posts needed to form a loop
(∆D is defined as positive when the pipettes are brought
together and negative as they are pulled apart). Lastly,
the work done via untwisting, ∆WM, is given by,

∆WM = 2πM, (3)

where M is the twisting moment of the fiber, and 2π is
the angle through which the fiber must unwind to form
a single loop. Within the linear elastic regime, M varies
linearly with the twist angle and is,

M =
JGθ◦
L

, (4)

where J is the torsional constant for a cylindrical fiber,
J = πr4/2 = 2I, and G is the shear modulus of the ma-
terial (note that this assumption remains valid for large
θ◦ provided L is also large). The balance between the
three energy contributions is then given by,

πEI

R
+ T∆D = 2πM. (5)

Equation 5 can be applied to the formation of a loop
as well as the removal of a loop, and each case will be
considered in turn.

In the experiment presented here, a twisted fiber is sta-
bilized against buckling by beginning in a state of tension.
As the ends of the fiber are brought together, T decreases
rapidly. For small values of θ◦, the tension T at the point
of hockling is minimal and we make the approximation
that T = 0. This allows for Equation 5 to be simplified:

M =
EI

2R
. (6)

From Equation 4 and Equation 6 we obtain,

JGθ◦
L

=
EI

2R
. (7)

Making the generous assumption that the fiber outside
the loop remains straight and all slack in the fiber goes
into forming a perfect circle, we can define the slack as
δ = 2πR. We note that the assumption of a circular loop
results in a small systematic error for small θ◦ which will
be discussed below. Equation 7 can then be written as,

δ =
πEI

JG

L

θ◦
. (8)

For a cylindrical fiber made from a material with a Pois-
son ratio of ν ≈ 0.5 (typical of elastomers), E = 2G(1+ν)
and J = 2I, the amount of slack required to form a hockle
is given by

δ

L
=

3π

2θ◦
. (9)

FIG. 2. Slack δ normalized by natural length L of fibers
with initial twist θ◦ at the point of hockling (circles, solid
line) and removal of the loop (squares, dashed line) and their
corresponding theoretical predictions. The data is the average
of 10 fibers with lengths varying from L = 6 mm to 300 mm
and radii varying from r = 10 µm to 1000 µm. Error bars are
calculated as the standard deviation of the data.

We see from this expression that the amount of slack
that needs to be provided in the fiber for loop formation
is independent of the material properties of the fiber, and
only dependent on geometry and how much the fiber is
twisted. This result is to be expected since the formation
of a hockle depends on equating the energy to form a
loop with the energy stored in the twisted fiber, both
of which depend on the modulus. In order to validate
this expression, the slack required for a hockle to form
for different values of θ◦ was measured for 10 fibers with
lengths varying from L = 6 mm to 300 mm and r =
10 µm to 1000 µm. The results are plotted in Figure 2
(circles). A systematic increase in δ/L for small values
of θ◦ can be seen, which is due to the assumption of a
perfectly circular loop and straight fiber outside the loop.
The assumption becomes increasingly valid at higher θ◦.
Interestingly, the results described above are consistent
with the work of Strick et al. when the tension in the
fiber approaches zero (hockle formation) [55]. Likewise,
a comparable analysis using Crosserat rod theory has also
been performed, yielding similar results by Neukirch and
co-workers [56].

Having examined the formation of a hockle, we now
turn to the removal of a hockle as the two ends of the fiber
are pulled apart. If the ends of the fiber are pulled apart,
R decreases, and the bending energy ∆Ub increases, un-
til it becomes more energetically favorable to remove the
loop and re-twist the fiber. In this case, T is no longer
negligible and the work done in pulling apart the ends
corresponds to the increase in bending energy in the in-
creasingly small loop. The energy balance in Equation 5
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then becomes M = EI/R. When compared to Equa-
tion 6, there is an extra factor of 2, which results in the
prediction of δ (and size of the loop) when a hockle is
removed,

δ

L
=

3π

4θ◦
. (10)

Again, there are no material parameters in the crite-
rion for the removal of a hockle, and the data are shown
in Figure 2 (squares). We note that, with the approx-
imation of a circular hockle, the formation of a hockle
requires twice as much slack in the fiber as does the re-
moval of a hockle (compare Equations 9 and 10). In other
words, the circumference of the loop which forms is twice
as large as the circumference of the loop when the loop
is removed. Since neither criteria depend on the mate-
rial properties of the fiber, Equations 9 and 10 are valid
for all uniform elastic rods with circular cross-sections
within the linear elastic regime. Effects like sagging due
to gravity which would affect large scale systems would
modify this model.

Plectoneme Growth and Removal

In the previous section we investigated the formation
and removal of hockles. After a hockle forms in a highly
twisted fiber, bringing the ends even closer together can
allow a double-helix structure – a “plectoneme” – to form
through a process called writhing. A plectoneme is shown
schematically in Figure 3 (see also video in the Supple-
mental Information). Similar to destabilizing a hockle
via tension, a plectoneme can also be destabilized, and
this has been done in a number of studies on DNA using
and magnetic tweezers [43, 57–60]. In this section we will
investigate the growth and removal of plectonemes.

A plectoneme forms by exchanging the twist in the
fiber for loops, resulting in points of self-contact as the
fiber winds around itself. The “linking number”, Lk, is
defined as the sum of the “twist number” Tw and the
“writhe number” Wr, both of which are integers [61, 62].
Tw counts the number of complete 2π radians of twist in
the fiber, while Wr counts the number of self-contacts of
the plectoneme [2, 18, 27, 28, 45]. If both ends of the fiber
are unable to rotate, then Lk = Tw + Wr is a constant.
For example, a fiber with θ◦ = 8π of twist and no self-
contacts has Lk = Tw = 4, and Wr = 0. As expected,
we observed that as the ends of the fiber were brought
together, Tw decreased in steps of 1 with simultaneous
increases in Wr. When Wr = 1, we observe a hockle in
the fiber and when Wr > 1, a plectoneme is observed.

The results of a typical experiment are shown in Fig-
ure 4 where we plot T as a function of D (see movie in
the SI [63]). The experiment proceeds as follows: a fiber
is initially held under a small tension and twisted by θ◦.
At this point, D = 0, Wr = 0, and Lk = Tw = θ◦/2π.

W = 4

T = 0

r

w

W = 4

T = 0

r

w

W = 3

T = 1

r

w

a) b) c)

T

FIG. 3. Schematic of a plectoneme formed from a fiber with
an initial twist angle corresponding to four full rotations (θ◦ =
8π). a) The stable plectoneme has minimal tension, and all of
the energy stored in the twisted fiber is stored in the bends of
the plectoneme. Lk = 4, Tw = 0, and Wr = 4. b) The tension
is increased by separating the boundaries, and the bending
energy in the loop at the base of the plectoneme increases. c)
When the bending energy stored in the base loop is enough
to destabilize the base loop, the twist in the fiber increases
by one full rotation, and decrease the writhe number by 1:
Tw = 1, and Wr = 3.

One post is then translated with the motorized trans-
lation stage, increasing D (this sequence is labelled as
compression in the figure). Small variations in the ten-
sion are observed as a plectoneme forms and Wr increases
by forming self-contacts in a quantized manner. The pro-
cess is then reversed (labelled as extension in the figure).
Remarkably, a rich tension response emerges with much
larger tension required to unwind a plectoneme compared
to the formation. We observe large peaks in T , followed
by sudden drops that are concurrent with decreases in
the writhe number: Wr →Wr−1. The peaks increase in
magnitude as Wr decreases, with the highest peak corre-
sponding to the final removal of the hockle.

To understand the origin of the rich non-monotonic
changes in tension, we now investigate what happens
whenWr →Wr−1. Studies have found that a completely
frictionless plectoneme experiences increased bending
throughout the entire plectoneme structure [25, 26, 57].
Other studies, however, find that friction at fiber con-
tact points plays an important role when a plectoneme is
pulled apart [16, 64]. Our model is based on the impor-
tance of friction between fiber contacts for the discontin-
uous plectoneme unwinding. In the experiments shown,
we observe that typically the self-contact at the base of
the plectoneme slips, while the next self-contact sticks.
Thus, as the tension is increased, the increase in bending
is localized at the base of the plectoneme, and similar to
pulling apart a hockle, the rotation of the plectoneme is a
sudden event [see Fig. 3b) and c)]. While previous stud-
ies have sought to describe the bending energy contained
in the plectoneme [2, 3, 6, 9, 10, 13, 18, 35, 38], we seek to
understand this largely unreported phenomenon of dis-
continuous plectoneme unwinding: from the experiments
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FIG. 4. a) T is measured in a twisted fiber with L = 6 mm
and r = 18 µm for several values of θ0 as its ends are brought
together (compression) and then reversed (extension). b) For
clarity, θ0 = 12π has been plotted and annotated separately.
As the fiber is compressed, small but distinct tension peaks
are observed corresponding to an increase in the writhe num-
ber, Wr, until the tension vanishes within the resolution of the
experiment. During extension T and M are initially small,
allowing the plectoneme to unwind smoothly. After Wr de-
creases by 2, peaks and valleys in the tension corresponding
to a reduction in Wr were observed (shaded area, numbered)
and were determined by noting the image frames where the
plectoneme begins rotating and where it stops rotating. Ad-
ditional peaks (in dashed circles) are the result of stick-slip
events as the fiber moved past itself that are not associated
with a change in Wr. These stick-slip features are visible in
the movie in the SI [63] when focussing on the vibrations of
the right force-measurement pipette.

we observe that as tension is applied the plectoneme does
not continuously unravel, rather, there are sudden and
non-monotonic changes in the tension corresponding to
the quantized decrease in Wr [25, 31, 64].

The schematic shown in Fig. 3 illustrates loops in the
plectoneme. The size of these loops depend on the twist

FIG. 5. Schematic of a plectoneme formed from a fiber with
a high twist number and a correspondingly high twisting mo-
ment of the fiber M .

number: if the energy stored in twists is high compared
to the energy required to bend the fiber, then tight loops
form; conversely, a low twist number results in a low
twisting moment, M , and open loops. In this study, M
is low, and the experiments are carried out in a regime
where loops form along the plectoneme. We find that
the non-monotonic changes in the tension are coincident
with the removal of a base loop. It is instructive to con-
sider the limiting case of a fiber dominated by a high
value of M with a plectoneme that is tightly wound as
shown schematically in Figure 5, where the dominance of
M means that we can ignore the contribution of bending
energy. In this case, if we imagine pulling the boundaries
apart then as the tension T increases, so does the twist
angle, θ, in the fiber. In fact, any unit of length increase
in the boundaries is directly proportional to an increase
in θ. Thus θ ∝ −∆D for separation of the boundaries
(note the negative sign is the result of defining compres-
sion as positive). Next, the work done by tension goes
into undoing the plectoneme and increasing the twisting
energy of the fiber which scales as θ2. We can then ap-
proximate −T∆D ∝ θ2, which results in a linear change
in the tension with separation of the boundaries like a
Hookean spring, T ∝ −∆D, for this continuum approach.
Indeed the data shown in Figure 4 is bound by a linear
envelope with the upper and lower boundaries in the ten-
sion corresponding to the transition from Wr to Wr − 1.

During the Wr → Wr − 1 transition, the tension
decreases suddenly from the initial value at the upper
bound, to the final value after the transition at the lower-
bound, Ti and Tf . We can understand this from the
change in energy immediately before and immediately
after the destabilization of the base-loop [see Fig. 3b)
and c)]. Prior to destabilization, the tension increases
and the work,

∫
T (D)dD, increases the energy stored in

bending at the base loop. A fraction of that bending en-
ergy is released when a loop is removed and a twist is
added to the fiber: Wr → Wr − 1 and Tw → Tw + 1,
resulting in a sudden decrease in the tension from Ti to
Tf . As the tension decreases, the distance between the
boundaries increases by some length roughly equal to the
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slack created through the loss of the base-loop, l. Thus
we have (Tf − Ti)l ∼ Ub,f − Ub,i, where Ub,i and Ub,f

are the bending energies before and after the destabiliza-
tion of the base-loop. However, since the loss in bending
energy is transferred into twist energy, we can write

−(Tf − Ti)l ∼
JG

L
(θ2f − θ2i ) =

JG

L
[4π(θi + π)]. (11)

We see that finally we obtain a linear dependence on the
twist angle which bounds the maxima and minima in
the tension given by this expression. Furthermore we see
from Eq. 11, that Ti − Tf increases with the degree of
twist in the fiber, which is validated by the data since θ
increases in Figure 4 as D decreases. Making the assump-
tion, as in the continuum model above, that the variation
in θ is linear in D, since each loop of the plectoneme is
the same size, explains why the upper bound and lower
bound are also linear in D.

We noted above that the discontinuous change in the
tension associated with the quantized nature of destabi-
lizing a plectoneme has been reported by few studies in
the literature, while the sudden drop in tension associ-
ated with destabilizing a hockle is well known [25, 31, 64].
We attribute our success in measuring this effect to the
small scale of our experiment. Since the magnitude of the
tension peaks are linearly dependent on the twist angle θ
(see Eq. 11), experiments for which θ◦ is small may not
exhibit large peaks until the final removal of a hockle.
However, to stay within the linear elastic regime, θ◦/L
must remain small. Because our fibers are exceedingly
slender, we are able to perform experiments with rela-
tively large θ◦ while still remaining in the linear elastic
regime. Finally, because our fibers are so small, sagging
due to gravity is eliminated, facilitating the study of plec-
toneme formation and unravelling.

CONCLUSION

We have extended the energy analysis of Ross and
Yabuta [12, 21] to predict the point at which the hockle is
formed and destabilized, and validated both criteria with
precise micron-scale experiments. The idealized system
was also used to explore the formation and removal of
plectonemes, observing multiple instabilities associated
with the change in number of self-contacts within the
plectoneme. The changes in tension observed with the
experiments are well described by a simple model.
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Chapter 4

Spontaneous elastocapillary
winding of thin elastic fibers in
contact with bubbles

The second paper included in the thesis is about elastocapillary. It has been
accepted to be published in Physical Review Letters.

This paper builds on several articles studying the way thin fibers deform in and
around liquid droplets via capillary forces [49, 50]. In it, fibers are found to wind
and wrap around liquid bubbles, spontaneously forming unique fiber coils.

The experiments, theory, and data analysis presented in this paper were de-
signed and performed by myself, with assistance on the experimental side by un-
dergraduate thesis student Kathleen Charlesworth and theory contributions and
helpful discussions with Kari Dalnoki-Veress and Rafael Schulman. The paper was
written by myself and Kari Dalnoki-Veress.
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Spontaneous elastocapillary winding of thin elastic fibers in contact with bubbles

Adam Fortais,1 Kathleen Charlesworth,1 Rafael D. Schulman,1 and Kari Dalnoki-Veress1, 2, ∗

1Department of Physics and Astronomy, McMaster University,
1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada

2UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
(Dated: September 29, 2021)

We study the elastocapillary interaction between flexible microfibers in contact with bubbles
trapped at the surface of a liquid bath. Microfibers placed on top of bubbles are found to migrate to
and wrap into a coil around the perimeter of the bubble for certain bubble-fiber size combinations.
The wrapping process is spontaneous: the coil spins atop the bubble, thereby drawing in excess
fiber floating on the bath. A two-dimensional microfiber coil emerges which increases the lifetime of
the bubbles. A simple model incorporating surface and bending energies captures the spontaneous
winding process.

Surface wetting is common to many natural and in-
dustrial processes like the clumping of wet hairs and
fibers [1–5], and the spreading of liquids on surfaces [6–
8], which can result in beautiful and useful elastic de-
formations of the solid surface [9–17]. Even simple sys-
tems consisting of a stiff fiber which is partially wet by
a drop is more complicated than it may first appear, as
it can take on two equilibrium states: an axisymmet-
ric “barrel” where the fiber penetrates the drop, and
non-axisymmetric “clam-shell” configuration where the
droplet is sessile on one side of the fiber [6, 7, 16, 18–21].
More compliant fibers are able to buckle and collapse in-
side the drop when tension is reduced [5, 22–26]. In some
cases this process has been shown to result in spooling a
fiber within a liquid drop, and is used by some types of
spiders in web construction [25]. Alternatively, a droplet
may take on a clam-shell configuration when placed on a
fiber if the liquid drop is small compared to the radius of
the fiber, or if the fiber is less wettable [12, 20, 21, 27].
In the clam-shell configuration, capillary forces can be
strong enough to induce large deformations in a thin strip
or fiber [27], in some cases even causing the fiber to wrap
entirely around the drop [12, 28].

In all of these elastocapillary systems, where capillar-
ity and elasticity compete, a natural length-scale emerges
which sets an approximate upper-bound on the size of
elastic deformations caused by capillary forces [16, 17].
The bending elastocapillary length, lb, represents the ra-
tio between bending and capillary energies in a system,
and for a fiber can be defined as, lb =

√
EI/2πrγ, where

EI is the bending stiffness of the elastic fiber, 2πr is
the circumference of the fiber, and γ is the liquid-vapor
surface tension [16]. EI, which depends on the Young’s
modulus of the fiber E and the second-moment of area
I, has a strong dependence on the radius of the elastic
fiber r. For a uniform, cylindrical fiber, I = πr4/4, which
explains why elastocapillary deformations are easily ob-
served in slender objects like thin fibers.

Here we explore the elastic deformation of a fiber due
to capillary forces at a liquid bath with an air-bubble.
An elastic fiber is introduced at the liquid membrane at

FIG. 1. An elastic fiber (SIS) with a radius r = 5 µm winds
around the liquid film at the top of an air bubble at the inter-
face of a glycerol bath before (A), and after (B), the bubble
bursts (in this case a small air bubble remained trapped below
the coils on the right side of (B). (C) A time sequence of the
winding process. The fiber can coil spontaneously, forming
structures like these in no more than 2-3 minutes. For scale,
the diameter of the coil in (A) and (C) is ∼ 500 µm.

the top of an air bubble. If the fiber diameter is greater
than the thickness of the film, the fiber bridges across
the film, and, under some conditions causes the fiber to
spontaneously wind around the circular periphery of the
liquid membrane. The resulting coil is shown in Fig. 1
before (A) and after the air bubble bursts (B) (video in
Supplemental Material (SM) [29]). The bridging mecha-
nism is reminiscent of Pickering emulsions and techniques
for bubble stabilization involving the absorption of solid
inclusions at the liquid interfaces [30–38]. In short, the
fiber has a lower free energy when bridging the liquid film
on the top of the bubble, compared to that at the liquid
interface, where less fiber is in contact with air. Using
a simple model which balances the energy cost of bend-
ing the fiber against the reduction in the surface energy
when the fiber bridges the liquid film, we predict the on-
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set of winding. This coiled structure bears a striking re-
semblance to the packing of genetic material within viral
capsids, a process that requires large lengths of fiber-like
materials to pack and orient within small volumes [39–
42]. We observe that the wound structure stabilizes air
bubbles at the interface.

In the experiment a fiber with radius r ∼ 10−6 m
is placed on the surface of a glycerol (γ ≈ 64 mN/m)
bath. Small air bubbles with radii ranging from approxi-
mately Rb ∼ 10−4 to Rb ∼ 10−3 m are introduced below
the surface of the bath with a syringe connected to a
micropipette. Buoyancy carries the air bubbles to the
surface, lifting the fiber as the bath’s surface deforms
locally into a shape well approximated by a spherical
cap. A schematic of the air bubble is shown in Fig. 2(A).
The air bubble and fiber are observed with optical mi-
croscopy from above [see Fig. 2(B)-(G)]. Worth noting
is that the bubble cap can be related to Rb through the
Bond number, Bo, which relates the relative importance
of gravity to surface tension, in our experiments is small.
Bo = ρgR2

b/γ, where ρ ≈ 1.3 · 103 kg/m3 is the differ-
ence in density between the air and the liquid, and g is
gravitational acceleration. Here Bo << 1, and a bubble
at the surface of a liquid will remain nearly spherical and
protrude only about ∼ 0.05Rb above the surface of the
liquid [46–48].

The polymer fibers used in the experiment are made
from several materials: polystyrene (PS), a glass at
room temperature with a molecular weight of Mn =
25000 kg/mol, polydispersity index of PDI = 1.04 (Poly-
mer Source Inc.), Elastollan 1185A-10 (BASF Inc.), a
polyether-based physically cross-linked elastomeric solid
at room temperature, and styrene-isoprene-styrene (SIS),
a triblock copolymer (14% styrene content, Sigma-
Aldrich) which is a physically crosslinked elastomeric
solid at room temperature. The elastic modulus of Elas-
tollan is Eelast = 10±3 MPa (determined via extensional
stress-strain tests performed on fibers with r ∼ 10−6 m).
The elastic moduli of PS and SIS are taken from the
literature (EPS = 3.4 GPa, ESIS = 0.8 MPa) [43, 44].
Fibers are made by either melting or dissolving the poly-
mer, dipping a glass pipette into the viscous polymer
liquid, then rapidly pulling the pipette out of the poly-
mer. PS and Elastollan were melted by heating a small
sample (170◦C for PS and 235◦C for Elastollan), while
the SIS was dissolved into toluene (Optima-grade, Sigma
Aldrich) to form a viscous polymer solution. The result-
ing fibers have uniform, cylindrical cross-sections with
diameters ∼ 10 µm, which were inspected optically for
uniformity.

When a fiber and bubble come into contact, depend-
ing on the size of the air bubble and fiber, one of two
processes occur. Either the fiber remains at the apex of
the liquid film until the bubble eventually ruptures, or
the fiber begins to bend, thereby increasing curvature,
and migrate down the cap toward the perimeter of the

B C D

E F G

topview

A sideview

glycerol
air

liquid membrane

FIG. 2. (A) A schematic of an air bubble which deforms the
surface of a liquid bath via buoyancy. (B-G) A SIS fiber spon-
taneously winding around an air bubble in a bath of glycerol
over approximately 30 second. The scale bar is 200 µm.

bubble where it remains bridged but bounded by a mem-
brane of increasing thickness. If the fiber migrates to the
perimeter of the liquid film, the fiber winds around the
portion of the bubble that is extended above the unde-
formed surface of the bath, and forms a coil. A sequence
of the winding process taken with an optical microscope
from above the experiment is shown in Fig. 2(B-G). For
a fiber to spontaneously wrap around a bubble, the sys-
tem must overcome the energy cost of bending around
the perimeter of the liquid film atop the bubble, which
is driven by a decrease in the system surface energy. We
turn our attention first to the bending energy, before de-
scribing the surface energy.

When a fiber winds, it is observed to wind around the
periphery of the bubble cap that extends above the sur-
face of the liquid bath. We measure the radius of the
bubble cap Rc by imaging the bubble from above with
monochromatic light, resulting in a distinct light circle
corresponding to the extended cap. An example of one
of these images is shown in Fig. 3(A) and (B). Assum-
ing linear elastic deformation of the fiber (typical strains
< 0.02 [29]), the bending energy per unit length for a fiber
can be described with Euler–Bernoulli beam theory,

Eb =
πEr4

8R2
; (1)

when the fiber bends to a radius of curvature R. As the
fiber winds, it takes on a radius of curvature R = Rc,
resulting in an increase in bending energy.

Bending in the fiber will only proceed spontaneously
if the system free energy is reduced. Here the bending is
accompanied by a reduction of interfacial energy associ-
ated with the fiber bridging the liquid film at the apex
of the bubble. The liquid membrane at the apex of the
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FIG. 3. (A) and (B) Top-down, monochromatic optical im-
ages of a fiber-bubble system before and after migrating to
the perimeter of the bubble cap. Red circles are numbered
1-3 and correspond to the different states of a segment of
fiber shown in (C). The scale bar is 250 µm, and the inset
shows the interference fringes from the meniscus surrounding
the bridged fiber. (C) Schematic of the fiber-bubble system
side-on. The fiber is shown in light blue in position 1, 2, and
3, representing the unbridged, pre-winding and post-winding
positions of the fiber. (D) and (E) are schematics of a fiber
cross-section floating on a fluid bath (unbridged), and bridged
across a fluid membrane respectively. The schematic in (E)
omits the bridging meniscus for clarity.

air bubble is an air-glycerol-air film shown schematically
in Fig. 3(C). The film is the region where the air bubble
extends above the surface of the bath. The curvature of
the membrane causes liquid to drain from the cap back
into the bath, resulting in radial thinning of the cap.
When the cap thins sufficiently, a fiber laid across the
cap may “bridge” or straddle the liquid membrane, trad-
ing solid-liquid interface for liquid-vapor interface. This
is observed experimentally as the fiber suddenly sinking
into the liquid membrane, and the appearance of inter-
ference fringes resulting from a small meniscus that is
created along the length of the fiber when viewed with
monochromatic light. An example of these interference
patterns are visible in the inset of Fig. 3(A), and an ide-
alized schematic of a fiber before and after bridging is
shown in Fig. 3(D) and (E). The bridging process occurs
if there is a net reduction of interfacial energy per unit
length of fiber which is given by,

∆Es = 2rθy(γsv − γsl); (2)

where θy is the glycerol/fiber contact angle, γsv is the
solid-vapor interfacial tension, and γsl is the solid-liquid
interfacial tension. The term on the right corresponds
to the change in interfacial energy on the part of the
fiber that bridges across the liquid membrane and goes
from a solid-liquid interface to a solid-vapor interface.
When γsv − γsl < 0, surface energy is reduced when the
fiber bridges the liquid membrane. Using Young’s law
for partial wetting, γsv = γsl + γ cos θy, Equation 2 can

be re-written,

∆Es = 2rγθy cos(θy). (3)

Since the thickness of the liquid membrane defining the
air bubble increases radially from the center of the bub-
ble, there will be a point where the liquid membrane is
too thick for the fiber to bridge. At this point, the change
in surface energy per unit length of fiber ∆Es results in a
driving force, pulling more fiber on to the air bubble and
into the bridged state. As more fiber is pulled on to the
air bubble, the fiber must bend and reorient to accom-
modate this extra length. Wrapping around the perime-
ter of the liquid membrane allows more fiber to bridge.
Fig. 3(A) and (B) show a top-view of a fiber-bubble sys-
tem before and after the fiber migrates to the perimeter
of the air bubble, immediately before the fiber begins to
wind around the perimeter of the membrane. Thus, we
have the remarkable result that a fiber will wrap itself
around the capped film at the apex of the bubble when
the increase in bending energy is less than the decrease in
interfacial energy (see video [29]). Although the driving
force causing this spontaneous winding comes from the
bridging phenomenon, bridging alone is not sufficient to
initiate winding, and many bridged samples do not pro-
ceed to wind. The energy released through bridging must
be sufficient to overcome the increase in bending energy
during the winding process.

We formulate a simple model by taking the initial
state of the fiber as unbridged and straight [Fig. 3(D)],
and comparing the energy to the the final state of the
fiber which bridges the liquid film and is bent around
the perimeter of the bubble cap [Fig. 3(E)]. The criti-
cal radius of the bubble cap, Rc, that distinguishes the
non-winding regime, R < Rc, from the winding regime,
R > Rc, is given by the point where the change in
bending energy is balanced by change in surface energy:
∆Es + ∆Eb = 0. We obtain 2rγ(θy cos θy) = πEr4/8R2

c .
Re-arranging this expression allows one to calculate Rc

as a function of lb, and θy,

Rc =
lb√

2θy cos θy
. (4)

Since θy is different for different polymer-liquid combi-
nations, contact angle measurements were performed by
placing small droplets of glycerol on films of each mate-
rial. Droplets were imaged from the side to determine
the contact angle θy for each polymer. The contact an-
gles were 78◦±2◦, 82.5◦±3◦, and 67.5◦±3◦ for PS, SIS,
and Elastollan respectively [29].

Equation 4 was tested by observing fibers and bub-
bles of various sizes as they were brought into contact.
After bridging, if the fiber migrated to the perimeter of
the cap and continued to pull more fiber onto the cap, it
was considered to have begun winding, and the point was
plotted in green (light grey) in Fig. 4. Otherwise, if the
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FIG. 4. Phase diagram of the winding criterion for Elastollan
(circles), SIS (diamonds) and PS (triangles) fibers in glycerol.
The slope defining the transition from Equation 4 is m = 1.
Green (light grey) points designate fiber-bubble combinations
which wind, red (dark grey) points designate those that do
not wind.

fiber came to rest without winding around the perimeter,
the point was plotted in red (dark grey). If any result
was ambiguous (for example the bubble bursts while the
fiber is migrating but has not begun to wind), the ex-
periment was discarded. Notably, bubbles could be ex-
pected to burst prematurely if the time required to wind
is longer than the typical lifespan of a bubble. Although
the winding speed is expected to depend on the energy
balance described above, the dynamics of the process is
also related to the length of the fiber away from the bub-
ble and the viscous drag this segment of fiber experi-
ences. For this reason, the ability to see winding should
be taken as an upper bound. By plotting Rc as a func-
tion of lb/

√
2θy cos θy as suggested by Eq. 4, we obtain a

winding phase diagram for all data with different bubble
size, fiber radius, and three polymers spanning several
orders of magnitude in modulus. The data is in excellent
agreement with the model with a line passing through the
origin and a slope of 1, defining the winding/no-winding
boundary. The phase diagram indicates that winding
is possible for bubbles with large radii and thin fibers,
whereas thick fibers will not wind around a small radius.

Fibers which had completely wrapped around the bub-
ble resulted in 2-dimensional coils as shown in Fig. 1(A)
(video in SM [29]). By winding around the bubble cap,
the fiber creates a spontaneous barrier which impedes
drainage from the bubble cap to the bath. Thinning of
the membrane is hindered, which enhances bubble stabil-
ity. Though bubble stabilization depends on the viscosity
of the liquid, winding speed, evaporation rate, and details
as to how curved liquid membranes drain, we observe a
qualitative increases of bubble lifetime. To test this, the

Preliminary

FIG. 5. A macroscopic demonstration of how the fiber coil
can collapse to a flat surface, forming a unique, non-circular
shape.

lifetime of 20 bubbles with radii between 170 – 600 µm
was measured without coils and found to be 110±50 s. In
contrast, for 22 similarly sized bubbles, fibers with radii
between 2 – 11 µm were allowed to wind, and the wound
bubbles were observed to have a lifetime of 440 ± 190 s,
even after the winding was complete (a process which
takes approximately 1 – 2 minutes). Since the winding
process is dependent on the fiber thickness and bubble ra-
dius, the lifetime of wound bubbles presented should be
taken as a lower bound. In fact, some bubbles survived
hours, which is consistent with the stabilizing qualities
of Pickering emulsions [45].

In instances when the fiber is thin, long, and the air
bubble is large, the fiber migration process creates an S-
shaped curve at the apex [see Fig. 1 (A)]. The S-shaped
curve is formed when the length of fiber extending from
both sides of the bubble are long. In that case, an S-curve
must appear to satisfy the fiber lying on a 2D surface
and winding in the same orientation (see the SM [29]).
Fig. 1(B) shows the shape the fiber coil took after the
bubble burst, and demonstrates another interesting as-
pect of the fiber coil geometry that is produced through
winding. As a fiber completely surrounds a bubble cap,
pulling more fiber onto the bubble perimeter requires the
existing coil to be displaced. By migrating up the cap,
more area around the perimeter of the cap can be liber-
ated. The result is a coil which begins to trace the three-
dimensional surface area of the spherical cap. When
the bubble finally bursts, if there is low fiber-fiber ad-
hesion, the coil will violently unwind in a process similar
to the “entropic explosion” seen in viral capsids [39–42].
If there is sufficient adhesion between fiber surfaces, cap-
illary forces pull the coil onto the surface of the bath,
forcing the coil, which conforms to a spherical cap, to
collapse onto an unfavourable flat surface. The deforma-
tion results in the unique shape shown in Fig. 1(B). One
can replicate this easily by winding a rope around the
apex of a sphere, and collapsing the structure onto a flat
surface as shown in Fig. 5.

Here a unique self-assembly process is presented which
occurs when thin polymer fibers are brought in contact
with air bubbles located at the surface of a liquid bath.
Fibers were found to bridge the liquid membrane defined
by the air-liquid-air interface of the air bubble at the sur-
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face of the bath. Doing so reduces the interfacial energy
of the fiber-liquid system. The decrease in interfacial
energy of the system comes at a cost of increasing the
bending energy of the fiber as more fiber is pulled into
the bridged state and forced to reorient on the bubble
cap. A simple expression depending on the bubble size,
bending elastocapillary length lb, and liquid/solid contact
angle of the fiber predicts the onset of this spontaneous
winding process. This expression was confirmed experi-
mentally for fibers of various sizes and materials in a bath
of glycerol. By wrapping a bubble cap with a spiral of
fiber, the flow of liquid from the cap back into the bath
is impeded which significantly increases bubble lifetimes.
The self-assembly process may be used in the fabrica-
tion of 2D microcoils, the production of metamaterials,
or harnessed to stabilize or pattern micro-bubbles.
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Chapter 5

Buckling of elastic fibers confined
to a thin elastic film

The third paper included in this thesis studies elastic instabilities that result from
the combined effects of differentially-strained fibers and thin films.

This paper was inspired by work that considers the deformation of fibers em-
bedded in elastic media [60, 64, 67, 74, 129,130]. In particular, we explore the case
where the fiber is much thicker than the elastic medium it is constrained by. Pre-
vious work has explored the way a fiber is able to buckle out of the plane of its
elastic medium when the medium is very thin, or how it will be confined to buck-
ling in plane if the medium is thick [107,108]. Here we explore a system that can
switch continuously from in-plane to out-of-plane buckling affecting the strain in
the elastic medium in two dimensions.

The experiments, theory, and data analysis presented in this paper were de-
signed and performed by myself, with theory contributions by Kari Dalnoki-Veress.
The paper was written by myself and Kari Dalnoki-Veress.
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When an elastic beam is embedded in a deformable matrix which is then compressed, the beam
may undergo ”traction-based buckling”. This buckling is a result of the friction forces between
the beam and the matrix and is common in biological and technological systems like living cells
containing microtubules, electrodes embedded in tissue, fiber-reinforced composites and stretchable,
wearable electronics. Traction-based buckling typically results in periodic buckles with amplitude
and wavelength determined by the geometry and stiffness of the beam and matrix. Work has been
done on systems where the thickness of the embedding matrix is semi-infinite and much softer than
the embedded beam, resulting in buckles with no preferred orientation. In this work we explore
systems where an elastic fiber is adhered to a thin, compliant film. By altering the stress profile
in the film and the thickness of either the film or the fiber, we are able to continuously control the
orientation of the buckles with respect to the plane of the film.

I. INTRODUCTION

An unsupported elastic beam will buckle when sub-
jected to a large enough compression, but by embedding
it in another material, the beam can withstand a larger
compressive load before buckling [1]. Beyond just sta-
bilizing the beam, systems like this can also exhibit a
wide range of interesting and unique morphologies that
would otherwise be difficult to realize with a unsupported
elastic beam [2–7]. For example, it has been shown that
periodic buckling can develop in a supported beam where
amplitude and wavelength of the buckles are determined
by the relative stiffness and geometry of the beam and
the embedding material [2, 8–14]. Being able to embed
thin, fiber-like conductors within elastomeric substrates
has been shown to be an effective way to design stretch-
able and wearable electronic devices [11, 15–19]. Stan-
dard conductive wiring is not typically stretchable but by
taking advantage of strain-related deformations in thin
fiber-like wires, wearable electronic devices can be de-
signed such that the device can follow the elastic defor-
mations of a user’s skin without damaging the wiring;
an important feature to consider when designing non-
invasive, wearable medical devices [15, 17, 20, 21].

The way fiber-substrate systems deform and respond
to stresses can be affected by a wide range of parameters.

∗ dalnoki@mcmaster.ca

Material properties like the elastic modulus and Poisson
ratio of both a fiber and its embedding substrate can de-
termining the types of deformations that are possible in
the system and likewise, the geometry of the fiber and
substrate can be just as important [5–7, 12, 14, 22–25].
For example, when a fiber is embedded in an ideal semi-
infinite substrate (with dimensions much larger than the
radius of the fiber), there is a radial symmetry to the
compression on the fiber that makes for no preferred ori-
entation when buckles form [8, 10, 21, 26–33]. Several
methods for breaking this symmetry and altering the ori-
entation of buckles have been presented in the literature,
specifically in ultra-thin films, the energetic cost of bend-
ing can be small compared to the bending energy in the
fiber, and the buckles will form perpendicular to the film
to minimize the stretching energy experienced by the film
[14, 17, 22, 24, 34–42]. By increasing the thickness of the
film, the energy cost of bending increases and the orien-
tation of buckles were found to form to the undeformed
film.

In the following experiments, we explore a similar sys-
tem, now open to the possibility of bi-axial tension and
continuous, reversible changes in the orientation of the
buckles. By altering the stress parallel and perpendic-
ular to the length of the fiber, we observe that a single
sample can exhibit buckling that can be rotated continu-
ously from perpendicular to parallel relative to the plane
of the undeformed film. We present a simple theory that,
through energy minimization of the fiber-film system, de-
scribes the orientation of buckles as a function of bi-axial
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FIG. 1. a) An Elastollan film adheres to a “+-shaped” Elas-
tosil sheet. A hole (diameter 1 cm) has been removed from
the sheet. A strain εi = 0.5 ± 0.02 is applied to the system.
b) An Elastollan fiber (radius 10 µm) adheres to the film
before the strain in the film is reduced to εf = 0.38 ± 0.02
causing a compressive stress on the fiber. c) The fiber deforms
in response to the compressive stress. Depending on εp, de-
formation can occur in the plane of the sheet (εp is large) or
out of the plane of the sheet (εp is small).

tension.

II. EXPERIMENT

A. Methods

The following experiments use a strain-control de-
vice made with a 250 µm-thick Elastosil sheet (Wacker
Chemie AG) cut into an “+” shape with a hole with a 1
cm diameter punched into the center. The arms of the
sheet are fixed to four actuating posts that allow a con-
trollable biaxial strain to be applied to the sheet. The
device and the experimental method is shown schemati-
cally in Figure 1.

In each experiment, a thin elastic film is transferred to
the hole at the center of the Elastosil sheet so that a 1
cm diameter circular section of the film would be free-
standing. The film adheres to the sheet, and the biaxial
strain applied to the sheet is in turn applied to the film.
The strain can be measured by comparing the dimensions
of the circular hole before and after the Elastosil sheet is
stretched.

The Elastosil sheet (and thus the thin film) is first
strained by εi = 0.50±0.02 while keeping the perpendic-
ular direction fixed. An thin elastic fiber is then placed
on the film along the direction of εi. Since Elastollan is
somewhat sticky, bringing the fiber and film in contact
caused them to adhere to each other.

a) b)
~5 mm ~1 mm

FIG. 2. Optical image of out of plane buckling by a fiber
adhered to a film. The free-standing portion of the film is
outlined (red dotted line). a) Top-down, the deformation in
the fiber is hard to see, but the deformation causes reflective
patches in the film, apparent as light spots along the length
of the fiber. b) Side-on, the same fiber-film system is seen
buckling out of plane of the sheet.

Once the fiber adheres to the film, strain in the film
is reduced such that the new strain on the film is εf =
0.38 ± 0.02. This creates a traction-based compression
on the fiber sufficient for all fibers to buckle out of the
plane of the film with wavelengths λ and amplitudes R
that depends on the specific fiber-film combination. In
the first experiment, this wavelength is measured for a
variety of fiber and film thicknesses and an image of a
typical experiment is shown in Figure 2.

In the second experiment, the same process is repeated
after which the strain in the perpendicular direction εp is
varied as εf = 0.38 is kept constant. When εp increases,
the buckles are observed to rotate continuously, coming
more in-plane with the film. The angle of rotation is
measured by rotating an optical microscope in a circu-
lar orbit with it’s center of rotation and focus fixed on
the fiber. When the camera is imagining parallel to the
amplitude of the buckles, the amplitude of the buckles
appears to approach R = 0, providing a convenient way
to determine the angle the buckles make with the film.
θ = 0 is defined when the buckles are perpendicular to
the undeformed film while θ = π/2 is when the buckles
are oriented parallel to the plane of the film.

B. Materials

The thin elastic films in this work are made by first
dissolving Elastollan, a commercial grade thermoplastic
polyurethane elastomer (BASF Polyurethanes) into cy-
clohexanone (Sigma-Aldrich). This solution is spin-cast
onto freshly cleaved mica sheets (Ted Pella Inc.) result-
ing in uniform films that that range in thickness, h, from
250 nm to 650 nm depending on spin-speed and solution
concentration.

To determine the thickness of the spin cast films, one
part of the film from each mica sheet is transferred to a
silicon wafer and measured via ellipsometry (Accurion,
EP3). The remaining parts of the film are used in the
biaxial strain experiments.
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The elastic fibers used in these experiments are made
from Elastollan by dipping a micropipette into an Elas-
tollan melt held at 240◦C and then quickly pulling the
pipette out again. Using this procedure, Elastollan fibers
with cross-sectional radii, r, on the order of several mi-
crometers can be made rapidly. Particularly uniform seg-
ments of the resulting fibers can then be cut out and used.

III. RESULTS AND DISCUSSION

A. Wavelength and amplitude of emerging buckles

A fiber adheres to the surface of a thin, pre-strained
elastic film. When some of the strain is released it creates
a compressive force on the fiber. Since the fiber is highly
slender (r/L � 1), the fiber is prone to buckling, which
it does out of the plane of the film. The lowest energy
conformation is for the fiber to make one large-amplitude
buckle however, the film resists large-amplitude deforma-
tions. As a result, the fiber forms multiple buckles with
amplitude R and wavelength λ determined by a compe-
tition between bending energy in the fiber and stretching
in the film,

EB + ES = 0 (1)

Of course as the fiber bends the film follows, provided the
bending happens out of the plane of the film. However,
the film is much thinner than the fiber (r/h ∼ 103) so
the film’s bending energy will be much smaller than that
of the fibers. In the following experiments, r is several
orders of magnitude larger than h, and we can neglect
the bending energy in the film.

In the following experiments, we model the bending
and stretching energies in the system as linear, and ap-
proximate the curvature of the beam as forming uniform,
semi-circular arcs with a radius of curvature R,

EI

R2
=

1

2
EA(ε2f − ε2i ), (2)

where A = hdL is a small cross-sectional area of the thin
film. In the following experiment, ε2f−ε2i is kept constant
while the thickness of the fibers and films are varied.

Approximating the buckles as uniform, circular arcs
with radii of curvature R, and recognizing the length of
the buckling fiber is fixed and bounded on either end by
the much thicker Elastosil sheet, R can be related to the
wavelength of the buckles, λ = L/2n = 2πR where n are
integer values, resulting in the following prediction for
the wavelength of the observed buckles:

λ =

√
2π3r4

hL(ε2f − ε2i )
. (3)

Several fiber and film combinations were used to test this
relationship and the results are shown in Figure 3. Intu-
itively, we would expect that a thick fiber or a thin film

FIG. 3. Wavelength λ observed for fibers of various radii r
after a 7% compression, normalized by the film thickness h
according to Equation 2. In this experiment, ε2f − ε2i and L
are kept constant between trials.

would result in a longer wavelength since in the limit of a
fiber buckling with no film would result in a single buckle.
Likewise, a very thin fiber or very thick film may stabi-
lize the fiber such that it cannot buckle at all. Likewise,
when εi is large, the stress in the film is also large which
can act to suppress the amplitude of buckles.

B. Biaxial Strain and the orientation of buckles

When perpendicular strain is applied to a film-fiber
system with out of plane buckles, the out of plane ampli-
tude of the buckles become suppressed. In general, the
suppression can happen via a reduction in the amplitude
of buckles or a rotation of the buckles. Like in the pre-
vious experiments, we fix the compression on the fiber
by fixing the length of the film. Therefore, the buckles
have two options: rotate to become more in-plane with
the film to reduce out-of-plane stretching in the film, or
spontaneously form another buckle. Since the rotation
is a continuous process while the formation of another
buckle requires overcoming a relatively large energy bar-
rier, the rotation process is what we observe.

Beginning again from the stretching-bending energy
balance from Equation 2 after the buckles emerge but
this time the film can be strained in the direction per-
pendicular to the length of the fiber. When a strain εp
is applied perpendicular to the length of the fiber, the
buckles are observed to rotate by an angle θ with respect
to their initial out-of-plane orientation. θ is measured as
a function of εp, and the results are shown in Figure 4.

Additionally, the length of the film parallel to the fiber
is kept fixed during the experiment, so increasing εp also
increases the stress in the film parallel to the length of the
fiber according to its Poisson ratio. This suppresses the
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FIG. 4. Orientation of buckles defined by the angle θ the
buckles make with the undeformed film as a function of per-
pendicular strain ε, normalized by the fiber radii r and film
thickness h according to Equation 5.

amplitude of the buckles via rotation, and we model the

out of plane portion of R as R̃ = R/ cos θ. Incorporating
these additional pieces into Equation 2, we can calculate
the angle of rotation as a function of εp,

EI

(R/ cos θ)2
= −1

2
EA((ε+ νεp)2f − ε2i ). (4)

Using the relationship found in the previous section (or
by setting εp = 0 and θ = 0) we find R2 ∝ EI

EA(ε2f−ε2i
)

which sets the amplitude of buckles before a perpendic-
ular strain is applied. This relationship leads to the fol-
lowing expression:

sin θ ∝
√

(νεp)2 + 2νεpεf
ε2i − ε2f

. (5)

In the context of an energy balance, we can think of the
bending energy in the fiber as fixed for any given trial
since the fiber is geometrically constrained. As εp is in-
creased, the length of the film parallel to the fiber is held
constant, so the elastic energy stored in the film increases
and the energetic cost of maintaining an amplitude R in-
creases as well. This extra stress is released when the
fiber rotates. Because the fiber and film are made from
the same materials, the only parameters the rotation de-
pends on are εi, εf , and νε.

IV. CONCLUSION

The buckling of a fiber embedded in an elastomeric
substrate is a widely studied phenomena with exciting
applications in stretchable and wearable electronics with

~5 mm

a) b)

c)

FIG. 5. Optical images of multi-fiber and film systems. a)
Multiple fibers can be arranged on the same pre-strained
film. The film appears pink because of the optical interference
caused by the film. b) When tension in the film is released,
the fibers and film deform. The film color changes to blue
according to the small thickness change due to the Poisson
effect. c) A different system showing the deformations of two
nearly-parallel fibers. On the right of the image, the fibers
are far enough apart that their deformations happen inde-
pendently. On the left of the image, the deformation of the
film caused by the fibers extend far enough that they begin
to interact with the deformations caused by the other fiber.
A technique like this could be used to create structures that
would otherwise not be possible with a single fiber.

the majority of the focus on semi-infinite substrates [].
However, embedding or adhering fibers to thin elastic
films presents another type of system with its own unique
modes of deformation []. Previous work has focused on
the out of plane deformations the fiber-film systems make
in response to compression, particularly in the case of
uni-axial compression. In this paper we explore the de-
formations that occur when fiber-film systems are sub-
jected to bi-axial stresses. The result is a highly tunable
system where the amplitude, wavelength and orientation
of buckles can be controlled. In particular, this work
demonstrates that with thoughtful selections of fiber and
film thicknesses and stiffness, along with a well-chosen
pre-strain, a single system can be made to change the
size, number, and orientation of buckles in a reversible
manner.

While we explored the phase-space of buckles formed
by a single fiber adhered to a thin film, we have not yet
explored the range over which deformations caused by
the fiber extend throughout the film. However, we have
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seen that multiple fibers adhered to the same system can
be made to influence each other through the film. This
points to an even richer set of tunable deformations that
can be produced by combining several fibers (or other-
wise elastic support structures) throughout a film. One
of the goals of such a system could be a collapsible struc-
ture that can take on any one of several spontaneously-

forming geometries depending on how strains are applied
and released.

Finally, while these experiments were performed with
micron-scaled materials, the results are independent of
scale. Though systems of the scale presented here may
find use in stretchable, flexible, and wearable electronic
devices, there is no reason larger or smaller structures
could not be made following these results.
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Khun, Jean Sautereau, Annie Robbe-Vincent, Paul Brey,
Michel Huerre, and Odile Bain. Visualizing non infectious
and infectious anopheles gambiae blood feedings in naive
and saliva-immunized mice. PLOS ONE, 7(12):1–13, 12
2012.

[34] Jun Young Chung, Adam J. Nolte, and Christopher M.
Stafford. Surface wrinkling: A versatile platform for mea-
suring thin-film properties. Adv. Mater., 23(3):349–368,
2011-01-18. Number: 3.

[35] Qun Huang, Jie Yang, Wei Huang, Gaetano Giunta,
Salim Belouettar, and Heng Hu. The boundary effects

on stretch-induced membrane wrinkling. Thin-Walled
Structures, 154:106838, 2020-09.

[36] Yinji Ma, Yeguang Xue, Kyung-In Jang, Xue Feng,
John A. Rogers, and Yonggang Huang. Wrinkling of a
stiff thin film bonded to a pre-strained, compliant sub-
strate with finite thickness. Proceedings of the Royal Soci-
ety A: Mathematical, Physical and Engineering Sciences,
472(2192):20160339, 2016-08.

[37] Rafael D. Schulman, John F. Niven, Michiel A. Hack,
Christian DiMaria, and Kari Dalnoki-Veress. Liq-
uid dewetting under a thin elastic film. Soft Matter,
14(18):3557–3562, 2018.

[38] Benjamin Davis-Purcell, Pierre Soulard, Thomas Salez,
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Chapter 6

Discussion and Conclusions

When I tell people that I am a physicist, they often assume I study the smallest
particles, the biggest celestial bodies, or some breed of exotic material. When they
find out that I play with elastic objects, they are usually quite surprised. I think the
surprise comes from the fact that most people can picture what it means to deform
elastic materials, meanwhile most untrained people’s imaginations and intuitions
fail when presented with some of the more extreme branches of physics. Even
still, that elasticity theory feels more graspable than some of the topics covered by
“modern physics” does not mean there are no more interesting questions in the field
of elasticity. In fact, one could argue that the opposite is true; the more we learn
about the natural world, the more soft, squishy and fluid systems we encounter,
giving us more interesting problems that elasticity theory can be applied to.

All of the work presented in this thesis shares a common foundation - the phe-
nomena we explored can be understood as types of small, linear, and elastic defor-
mations. Bending, twisting, or stretching an object under these assumptions is not
unto itself novel. But throughout this thesis, the combination and competition be-
tween these different modes of elastic deformation create unique, complicated, and
–hopefully you agree– interesting effects with the potential to help us understand
different aspects of the natural world.

In Chapter 3, we explored what happens when various amounts of tension or
compression are applied to a thin, elastic fiber. Early studies of this type of system
focused on applications to the kinking, twisting, and “hockling” (looping) of cables
and wires [22, 131]. Later, researchers noted the similarity between the hockling
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of cables and the beautifully complicated coiling of biological materials like vines,
tendrils, and even strands of DNA [16, 20, 23]. The original work presented in
Chapter 3 begins by expanding on and experimentally validating earlier theories
that characterized the formation and removal of a single hockle as a competition
between bending and twisting within a long, slender fiber. We demonstrated
with great precision that this description of the hockling phenomenon works, and
can be expressed as a fully geometric, material-agnostic description, provided we
can assume the material behaves elastically. The work goes further, exploring
a peculiar phenomenon that has gone unreported – the non-monotonic tension
required to unwind a highly twisted “plectoneme”.

A plectoneme is the structure formed when a fiber undergoes a large degree of
twisting while under relatively low tension. The result is a double-helix-like ex-
cursion between the two free ends of the fiber, terminated by a single loop. These
structures can be found at all length scales, from twisted wires and cables to the
supercoiling of DNA [10, 22]. Many studies have considered the tension required
to keep a twisted fiber from forming a plectoneme, or the tension required to pull
one apart, and have either not observed or failed to characterize the sudden and
non-monotonic changes in tension as the plectoneme forms or is removed. In our
model, we explain this effect as a result of a friction-based self-interaction where
the fiber meets in the plectoneme. In experimental studies using macroscopic fibers
and cords, it is reasonable to assume frictional forces would be small in compari-
son to the tensions experienced by the fiber during plectoneme formation/removal.
This would make the formation and removal processes appear to proceed smoothly
with no significant jumps in tension. On the other hand, when similar experiments
are performed on microscopic structures like DNA, thermal fluctuations and other
sources of experimental noise can mask secondary effects like friction. Our ex-
periments were performed on an intermediate scale with a force transducer that
allowed tensions across a large range to be measured without a loss of resolution
in the data. Using this system, we validate a model that treats the large changes
in tension during the unwinding of a plectoneme as the transition between two
linear, elastic regimes separated by a stick-slip friction event.

Though this experiment is essentially controlled by only two degrees of freedom
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(rotation of one fixed end relative to the other, and tension/compression), there
are plenty of other phenomena that this experiment can be used to explore. When
a fiber is held under low tension and twisted, a hockle forms. When it is twisted
further, a plectoneme forms. Both of these deformations can be thought of as
out-of-plane excursions of the fiber; deformations that cause segments of the fiber
to extend perpendicular to the length of the fiber. This is only possible because
the tension in the fiber is low, and is also why increasing the tension in the fiber is
a method of removing these features. Were one to perform the same experiment
but with a higher tension, completely different structures form, called solenoids.
These are corkscrew-like structures that form along the length of the fiber and
to date, there is only a small amount of literature devoted to understanding the
formation, removal, and applications of these structures [132]. Going even further,
solenoids can be further twisted under different amounts of tension to form tertiary
structures highly reminiscent of the disorganized and wild tangles of supercoiled
DNA. Supercoiling is an important part of the way DNA stores and transfers DNA
and has been studied extensively in-situ and computationally, but has only just
begun to be explored with idealized, model experiments. It is possible that our
experimental system could be used for this type of study.

Finally, I have only described fibers with no initial curvature. However, with
the help of thesis student Michael Costa-Parke, we have begun exploring pre-coiled
polymer fibers. Much of our work up to this point has been focused on fabricating
these micro-coiled fibers, an example of which is shown in Figure 6.1. With the
techniques in this thesis, the system could lead to some interesting and unexpected
results.

In Chapter 4, we explored a system where a thin elastic fiber winds and wraps
around the liquid membrane of a bubble. This is an example of an elastocapillary
interaction, where surface tension acts as the driving force causing an elastic defor-
mation. Because the size of the bubble defines the size of the fiber coils produced,
larger bubbles allow fibers to form larger coils, requiring less bending of the fiber.
Likewise, thinner and softer fibers will have a lower bending stiffness, which means
it is easier to force the fiber to take on more bent orientations. We present a simple
energy-based model that, based on the size of the bubble and bending stiffness of
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Figure 6.1: A polymer fiber with intrinsic curvature. A mm-scale
ruler is included for scale.

the fiber, accurately predicts for what fiber-bubble pairs will exhibit the winding
phenomenon and which will not.

This work is ripe for applications, as it presents a unique, spontaneous pro-
cess for creating micron-scale structures. In particular, fabricating microfluidic or
micron-scale devices can be difficult on account of their small sizes [119,133]. Using
the unique self-assembly process described in Chapter 4 could be useful wherever
micron-sized coils and loops are needed. To that end, it is worth noting that this
technique does not depend on the fiber being made from polymers; the physics
describes the way metal or any other flexible material would interact.

Besides the visually attractive coiling that is possible with this fiber-bubble
system, there are more fundamental questions about the way fibers and bubbles
interact. The way the fiber penetrates the liquid membrane of the bubble by
bridging across the membrane seems to stabilize the bubble from popping. We
speculate that this is a result of hindered drainage of the membrane due to the
fiber cutting the cap off from the rest of the bubble. Exploring this bridged state
and the way it influences fluid flow in the liquid membrane could be of interest to
the bubbles and foams industry.

The coiling described in Chapter 4 also exhibited some variation that we did
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not investigate. Exploring the ways the coils pack onto the surface of a bubble
could result in even more control over the fabrication process of these micro-coils,
or provide an experimental system for studying the way things like proteins pack
into geometrically constrained environments.

In Chapter 5, thin elastic fibers are used as deformable struts, adhering to the
surface of thin elastic membranes. The buckling is a competition between bending
of the strut and stretching of the membrane, and when these struts are compressed,
they form multiple buckles. Since the struts are confined to the membrane, the
wavelength and amplitude of the buckles are intimately connected to the geometry
of the membrane as well as any stresses that are applied to the membrane. Most
notably, we show that the orientation (in-plane or out-of-plane of the membrane) of
the emergent buckles can also be controlled within one single sample. While other
studies in the literature explored the orientation of buckles with respect to the
stiffness of the adherent membrane, we show that there are many fiber-membrane
systems that can exhibit either in-plane or out-of-plane buckling depending on
the stress applied to the membrane before the buckles form, that the buckling
is reversible, and that a new orientation can be obtained by altering the applied
stress before allowing the buckles to re-form.

Knowing that the orientation of buckles are sensitive to the pre-stress in the at-
tached membrane, the next step would be to characterize the local stress through-
out the membrane in real-time such that the resultant buckles could be exactly
configured. In addition, having multiple fibers included on a single membrane
means the local deformations in the membrane caused by a fiber will influence
the surrounding fibers. These interactions could find utility in a new type of
self-assembly process based on stretching, bending and twisting.

Reaching the end of this thesis, I am proud to look back on how a few simple
(and sometimes silly) ideas have grown into a cohesive body of work. I am hopeful
that the results contained – though an ending for me – become the beginning
for someone else. But more than this, I am excited to see what completely new,
weird, and wonderful (and why not funny?) ideas come from the students of the
Dalnoki-Veress group.
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Appendix A

Science Writing

Here is a statement I would not consider controversial: One of the more important
parts of research is communicating the results of said research. But “communi-
cating” research results can mean different things to different people. Securing
financial support to pursue new research often depends on a well crafted and well
argued presentation of the state of the literature in a field, the previous results
achieved by the researcher’s program, and what the funding agency (or society as
a whole) stands to gain from funding this research. So in a very real sense, a scien-
tist’s ability to communicate their results can define their success as a researcher.
But for others, communicating research can mean something different entirely; the
public needs to know where their publicly-funded research dollars are going for a
variety of reasons, so someone needs to fill them in.

Science is a process, but results get money. Communicating research pub-
licly gives people a chance to satisfy their curiosity (entertainment), context for
large-scale decisions (public policy), and can potentially improve the quality of
life through a changed worldview for the consumers of this type of “product”. In
return, researchers stand to draw more attention to their work, prove to funding
bodies that there is interest in the work (even if the utility of the results are un-
clear), and perhaps most importantly, provide an opportunity to emphasize the
researcher’s understanding of process, which can hopefully provide a little relief
from the pressure of results-oriented funding decisions.

Throughout my graduate career, I’ve grown to appreciate the importance of
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science communication and in fact found myself drawn to the challenge of absorb-
ing, internalizing, and sharing the work of others to the point where I’ve begun to
enjoy finding ways to communicate results more than actually producing the re-
sults. Thankfully I’ve been supported in this pursuit by the unflagging enthusiasm
of my supervisor. As a result, I’ve had the chance to start building a portfolio of
articles and blog posts for a variety of publications. Considering the importance
of this work on my development as a scientist, researcher, and communicator, I
have included an additional bibliography of the writing I have done for online and
print publications. A new technique for crafting optical components: simple, easy,
and cheap.
Cambridge CORE Blog (Journal of Fluid Mechanics), 2021

Weathering the storm at the Qingtu Lake observation array
Cambridge CORE Blog (Journal of Fluid Mechanics), 2021

Scientists capture the inner workings of the click beetle’s explosive jumps.
MassiveSci.com – syndicated to Salon, 2021

The range of microbes in your sourdough starter affect its smell and rise.
MassiveSci.com, 2021

How to make sense of recent CERN finding that challenges the Standard Model
of particle physics.
MassiveSci.com, 2021

Soft electronics with liquid-metal veins.
PhysicsToday.org, 2020

Physics in the pandemic: mailing lab kits to students enhances learning at
home.
PhysicsWorld.com, 2020

All conferences should be virtual in a post-coronavirus world.
MassiveSci.com – syndicated to Salon, 2020

You can mimic the physics happening on the surface of the Sun in your kitchen.
MassiveSci.com, 2020
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Coffee baristas were right all along — grinding coffee finer doesn’t always pro-
duce a stronger cup of espresso coffee.
MassiveSci.com, 2020

Researchers play with elastic bands to understand DNA and protein structures.
Softbites.org, 2020

Mechanism of Contact between a Droplet and an Atomically Smooth Substrate.
Softbites.org, 2019

Elastogranularity and how soil may shape the roots of plants.
Softbites.org, 2018
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