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PREFACE 

My interest in fluid mechanics started during my high school years at the 1st Gymnasion of 

Volos, Greece. I was fortunate to have a brilliant physics teacher, Andreas Koukorinis, who 

provided me with a very firm grounding in the basic concepts and applications of the laws of 

physics, including an early introduction to the fundamentals of fluid flow. I applied and received 

a travel grant from the Ministry of Education of Greece to visit the Prespa lakes region, in the 

borders of Greece with Yugoslavia and Albania, and carried out a summer student project ( 1959, 

a year before my high school graduation), on the possibility hydroelectric power generation. 

My strong interest continued during my undergraduate years at the National Technical 

University in Athens (1960-1965) and really peaked when I arrived at Washington University in 

St. Louis (WUSTL), USA for my doctoral studies and research (September 1965- July1968). I 

was smitten by NASA's efforts for space exploration and decided to work on high temperature 

turbulent impinging air jets. My doctoral advisor Eric Weger gave me a wonderful research 

project and boundless freedom to explore my ideas. I was fortunate to continue the project that 

John F. Tomich was completing for his dissertation, as I was starting. I was learning fast from 

Eric and John and from some excellent professors at WUSTL. From W.M. Swanson I learnt a lot 

about compressible supersonic flows. Kurt Hohenemser (student of Prandtl) showed us with 

exceptional clarity, in his course on continuum mechanics, how to make complex mathematical 

equations easy, with the index tensor notation. My doctoral research project was related to 

NASA's manned space vehicles, for testing the heatshield before launching. I was obviously 

very thrilled when a McDonnell Douglas engineer converted, with my help, the computer 

program, that I had developed for temperatures reaching several hundred °F, to several thousand 
op_ 

After starting at McMaster University as Assistant Professor in August of 1968, I focused my 

research mostly on computer aided mathematical modeling of molten polymer flows through 

process equipment. I have been, and continue to be, involved in several industrial projects as 

consultant. At McMaster, I was teaching fluid mechanics to undergraduate and graduate students 

in engineering. This book is based on my lecture notes. I was consulting numerous other 

monographs and publications, but overall two books had the greatest impact on my writing: H. 

Schlichting, Boundary Layer Themy, McGraw-Hill (1960) and R. B. Bird, W.E. Stewart and 

E.N. Lightfoot, Transport Phenomena, Wiley (1960) In writing this book, I decided to combine 

my undergraduate and graduate lecture notes in one single volume. Most of the chapters were 

completed by 1984. The chapter on Non-Newtonian fluid mechanics was written after I retired 

from active teaching and became Professor Emeritus in 2008. 
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How did I use this book in teaching fluid mechanics? At the post-graduate level it was easy: I 

would distribute the entire book to my class and then start from Appendix A on index tensor 

notation to make sure that everyone knew how to do tensor algebra. I would then derive the 

generalized constitutive equation for Newtonian fluids (Chapter 20) and subsequently work on 

the derivation, followed by simplifications, of the Navier-Stokes and other conservation 

equations. The various types of flow could easily be derived and studied, low and high Reynolds 

numbers, laminar and turbulent boundary layers, inviscid flows, compressible flows and all the 

rest. It was either a one- or a two-semester course. At the undergraduate level I was teaching a 

one-semester course to third year students and I would print a special abridged version for them. 

This usually included Chapters 1-11, 12, 14, 18, 19 plus Appendices A, C, D, E, F and the 

Subject Index. Although I was avoiding the use of tensors at the undergraduate level, they were 

there for any student who wanted a more rigorous approach. Copies of the entire book were 

available in the library and with my teaching assistants. If I had civil engineering students in the 

class, I would also include Chapter 16, on open channel flow. Of course, there was a lot of 

material for a one-semester course in the more than 400 pages of the abridged versions. 

However, the book was written with modularity in mind, so I could easily drop material that was 

not suitable for the class that I was teaching. 

In addition to my teachers and mentors that I have already mentioned, I should also acknowledge 

the help from my numerous students and teaching assistants. I will only mention chronologically 

the names of those who, due the intensity of intellectual exchange, had the greatest impact in 

formulating my ideas in writing, editing and revising this book: Stamos Katotakis, C.K. John 

Keung, Costas Stournaras, William Garland, Costas Kiparissides, Sedky El Shammaa, Osama 

ElRiedy, T. W. Chan, Amir Husain, Enno Agur, Evan Mitsoulis, Peter S. Scott, Costas 

Tzoganakis, Harry Mavridis, Aristotle Karagiannis, Paul Behncke, Alex Zahavich, Weining 

Song, Agustin Torres, Alberto Rincon, Farhad Sharif, Celine Bellehumeur, Marianna 

Kontopoulou, Vasilis Sidiropoulos, Hector Larrazabal, Velichko Hristov and Maryam Emami. 

Special acknowledgements go to my former postdoctoral fellows Norberto Silvi, Mukesh 

Bisaria, Jian-Jun Tian, Shih-Jung Liu, to my faculty colleagues Terry Hoffman, Archie E. 

Hamielec, Irwin Feuerstein, Brian Latto, Farooque A. Mirza, Archie A. Harms, Andrew N. 

Hrymak, Michael R. Thompson, to my colleague and friend John W. Bandier, and to my long 

term coworkers at McMaster University, Elizabeth Takacs and at Polydynamics Inc, David Strutt 

and Nickolas D. Polychronopoulos (who is also my nephew). 

John Vlachopoulos 

Burlington, Ontario, Canada 
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CHAPTER 1 

FUNDAMENTAL CONCEPTS 

1 . 1  INTRODUCTION 
All forms o f  matter can be classified in terms o f  their physical 

appearance , or phase , into three classes : sol ids , liquid s and gases . 
Liquid s  and gases are called fluids .  Webster' s  International Dictionary 
defines a fluid as "a sub stance that alters its _shape in response to any 
force however small , that tends to flow or to conform to the outline o f  
i t s  container , and that includes gases and liquids and mixtures o f  
solids and liquids capable o f  flow" . We will accept thi s elementary 
definition for the time being but will take up this question again . 

All gases and liquids are composed of conglomerations o f  molecules 
and atoms , whose spacing depends on the strength of the intermolecular 
forces . In solids these forces are very strong whereas in liquids and 
gases they are weak. The molecular dianeters are extremely snall , o f  

the order o f  1 0-8 cm , so that an extremely large nunber o f  molecules and 
atcms are contained in volunes no larger than the tip of a needle . 

In principle it is possible to study the flow o f  gases and l iquids 
from the molecular point of view. The mathematical complexity , howev er , 

renders this approach impractical for most engineering problems . It i s  
possible to treat many flow problems without a detailed knowl edge o f  
molecul ar motions and interactio n s .  We in troduc e the. continuum 
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hypothesis according-towhich a fluid i s  considered as an infinitely 

divisible substance so that it' s density ( mass/vol ume) has a definite 

v al ue at each point . Of cour se ,  the question might be asked as to how 

sm all a sampl ing vol ume are we allowed to consider in determining the 

ratio mass/volume .  Fig . 1 shows the expected values  o f  density as  the 

sampl i ng vol ume becomes gradually smaller . For volumes snaller than 

some critical value ¥ the density might be either v ery l arge or very 
C 

sm all depending on how man y ,  if  any ,  molecules are present within the 

vol um e .  

The density i s  usually denoted b y  the Greek symbol p ( rho) and ha s 

units of K g/m3 • The density of water at 1 5 . 5°c is 1 , 000 Kg/m3 ; and for 

air at 20°c and standard pressure ( 1 0 1 . 3 kPa) the density of 1 . 24 kg/m3 . 

The d ensity of most common fluids is g iv en in Appendix B.  

Specific weight is the weight per unit volume o f  a fluid and is 

usually d enoted by the Greek symbol y ( g amm a) . 

Specific gravity ( S . G . ) is defined as the ratio of the specific 

weight of a given li quid to the specific weight of water at a standard 
0 reference temperature usually 4 C .  The specific grav ity is therefore 

d imensionless . 

Specific volume is the volume occupied by a unit mass of fluid and 

is usually d enoted b y  u = 1 /p .  

Specific heat of a substance is defined as the amount of heat that 

must be transferred to a unit mass to raise its temperature by one 

degree . If the specific volume of gas remains constant while the 

temperature changes the speci fic heat is denoted by Cv . If the pressure 

is held constant during the change the specific heat is denoted by C .  p 
The ratio C I C is identified by the symbol k . k  = 1 . 666  for monatomic 

p V 

gases ( He ,  Ar , Ne , Kr , etc . ) , k = 1 . 40 for diatomic gases ( N2 , o2 , H2 , 

CO2 , NO,  Air , etc . ) , k = ·1 . 30 - 1 . 33 for polyatomic gases . Data for Cv ' 

C
P 

and k are given in Appendix C. 

1 . 2  THE EQUATION OF STATE 

The equation of state d etermines the rel ationship between d ensity 

and the thermodynamic pressure and temperature i . e .  p = p ( p , T ) . 

This relationship is extremely compl icated for l iquids ,  solid s and 

d uring phase changes . 
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The equation of state for a perfect gas ,  a s  it usually appears in 

thermodynam ic s  texts , is 
pV = n :R T  

where p = pressure 

V = vol une 
T = absolute temperature 

1 =  8 , 3 1 4 J/kg-mol• K ( un iv er sal gas constant) 

n = mnnber of moles 

( 1 • 1 ) 

A more conv en ient form of this e quation can be obtained by d iv id ing 

e quation ( 1 . 1 )  by V and the molecular weight 
p = p R T 

where p = d ensity 

R = <it 
molecular weight 

( 1 • 2 )  

Obviously R d epend s on the particul ar gas . Values of R for some common 

gases are g iv en in Append ix B .  
I t  c an b e  shown that f o r  an ad i a b a t i c  fr i c ti o n l e s s  process  

( i sentropic)  in a perfect gas  we have the relationship 

where 

1 .  3 

k = C I C  • p V 

VISCOSITY 

p p -k = constant ( 1 • 3 )  

A fl uid was defined a s  " a  substance that alters its shape in 

response to any force howev er small" . This elementary definition i s  

technically correct when a tangential force i s  specified . We cannot 

d i stinguish between an incompressible solid and an incompressible fluid 
subjected to normal forces as shown in Fig . 1 .  2 ( a) . Howev er , when a 

tangential force i s  appl i ed ,  as shown in Fig , 2 ( b) , a solid mater i al 
deforms but wil l  regain its  original shape upon removal of the force .  

On the other hand a fl uid subjected to a tangential force will deform 
continuousl y .  

In the study o f  fluid flow i t  turns out that i t  i s  easier to work 

in terms o f  stress rather than force . S tress is defined as the 

magnitude of force d iv id ed by the area of the surface upon whichit i s  

appl ied . When a normal force i s  appl i ed , as shown in Fig . 1 . 2 ( a) , we 
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have normal stresse s ,  whereas in Fig .  1 .  2 ( b) we have shear stresses . 

The most important and d istinctive characteristic of a fluid i s  that it 

deforms continuously under the action of a shear stress . 

Let us  now consider two long parallel plates placed a small 

d istance h apart , the space between being filled with a fluid . One of 

the plates i s  fixed and the other i s  moved parallel to it with a 

velocity U by  the appl ication of a force F ,  as shown in Fig .  1 . 3 .  The 

fluid in contact with each plate " sticks" to it and does not " sl i p" 

relative to i t .  Consequently the velocity of the fluid touching each 

plate is the same as that of the plate . Ex periments have shown that for 

a large class of fluid s the velocity profile wil l  be a straight l ine as 

shown in Fig . 1 . 4 .  The force F is proportional to the velocity U,  the 

area in contact with the fluid A and inversely proportional the the gap 

h .  

F AU 
a: h 

The quantity F/ A i s  called shear stress and i s  denoted by the Greek 

symbol , ( tau) 

u 
"( a: h 

In the l imit of small deformations the ratio U/h can be replaced by the 

velocity grad ient d u/dy,  which is often called the shear rate . 

The proportional ity constant between shear stress and shear rate i s  

called viscosity and i s  usually denoted by  the Greek symbol µ ( mu) . 

"( = du µ dy ( 1 • 4 )  

Equation ( 1 . 4 )  i s  referred to as Newton ' s  law of viscosity .  µ i s  

sometimes  called  t h e  v i scosity coeffici ent , absolute o r  dynamic 

viscosity .  

The d imensions o f  v iscosity are force per unit area d iv ided by the 

velocity grad ient . In SI  units 

Nlm2 N [µ ] + m/s = 
m2 • s = Pa • s ( pascal . s econd) 
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A 

velocity 
profile 

Fig . 1 . 3  A fluid subj ected to shearing between two parallel pl ates . 

Torque 

2r-. :-: 

�- Stationary 

Gap width---�• h  

Fig . 1 . 4  Concentric cylinder v i scaneter . Torque and revolutions per 
minute ( rµn) are d irectly measured .  
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Before the introduction of SI one o f  the most common v i scosity un its 

( c .g . s) was the poise ( p) ,  named after the 1 9 th century French scientist 

J .  L .  Poiseuil l e .  1 p  = 0 . 10 Pa . s .  The centipoise ( cp) (=0 . 0 1  p )  was 

frequently conv enient because the v i scosity of water at 20°c is 1 c P 
-3 ( = 1 0  Pa . s) . 

In many engineering problems the value of viscosity is  d iv ided by 

the fluid density . This quantity is called kinematic vi scosity and it 

is usual l y  denoted by the Greek symbol v ( nu) . 

V : l!. 

p 
( 1 • 5 )  

The absolute v iscosity o f  virtually all fluid s i s  practically 

i n d e pendent of pres sure , except in the r eg i on of ex t r em e l y  high  

pressures . The kinematic viscosity o f  gases , howev er , varies with 

pressure because of the dependence of d ensity on pressure . 

Temperature has a strong effect on v iscosity.  For gases the 

v i scosity increases with temperature . 

are the power-law and the Sutherland law:  

(I._) 
n 

.I:!__ "'  
µ o  T 

0 

(T/T ) 3/2 (T 
0 

µ o T + S 

The most common approximations 

( 1 • 6 )  

0 
+ s )  

( 1 • 7 )  

where µ 0 i s  the v iscosity at a given absolute temperature ( usually T0 = 

273 . 1 6  K )  n and S are empirical constants ( for air n=0 . 67 and S=1 1 0  K ) . 

For l i quids the viscosity decreases with temperature usually as an 

exponential function 
-bT 

µ "' a e 

where a and b are empi rical constants . 

Some typical values of viscosity of several common substances are 

g iven in Table 1 .  1 .  
provided in Appendix B .  

More accurate v i scosity tables and graphs are 
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TABLE 1 . 1  

Order of  magnitude of  v i scosity for various substances 

Substance 

Nitrogen gas (20°c) µ = 0 . 0 1 7  X 1 0-3 Pa• s 

Water (20°C )  µ = 1 0-3 Pa• s 

0 
X 1 0-3 Mercury (20 C) µ = , .  5 Pa• s  

Crude oil µ => 0 . 0 1  - o .  1 Pa• s 

Lubricating oil µ =>  0 .  1 - 1 Pa• s 

Ointments ( e . g .  Skin cream) µ => 1 - 5 Pa • s  

Molten plastic µ => 1 03 - 1 04 Pa• s 

Flour dough µ => 1 03 - 1 05 Pa• s 

Cheddar cheese µ => 1 o7 - 1 08 Pa• s  

In the l aboratory ,  the ideali zed flow configuration between the two 

flat plates o f  Fig .  1 . 3  i s  closely approximated in a concentric cyl inder 

v iscaneter ( cup-and-bob) which is schematically shown in Fig . 1 . 4 . The 

outer cyl inder is fixed and the inner cylinder rotates at a steady rate 

under the action of an applied torque . For such an experiment 

F = ( torque) /r  

A =  the area of  the inner cylinder 

U = ( r pm) x 2rrr 

The v iscosity is  obtained from the expression 

FIA 
µ 

= U/h  ( 1 • 8 )  

and it is  the slope of the l ine drawn through the experimental points as 

shown in Fig . 1 . 5 .  

From the  molecul a r  point  o f  view  v i scosity r e pr esents the  

resistance to  flow d ue to  the random motions of  molecules . It  is  well 

known that in a gas the molecules move randomly and collide  with each 

other . As the temperature increases the molecular motions becane more 



slope =µ 

U /h 

Fig . 1 . 5  Some typical shear stress versus shear rate results for a 
Newtonian fluid . 

(du/dy) 
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Fig .  1 . 6  Shear stress C T )  versus shear rate ( du/dy) for various fluid s .  
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v iolent and a s  a result the viscosity o f  gases increases with increasing 

temperature . It is  possible , from the kinetic theory of gases [ 1 , 2 , 3 ] , 

to actually estimate the v iscosity as  a function of temperature ,  

molecular mass and d iameter . 

In l iquids the random motions are pr imarily v ibrations of molecules 

which are packed closel y .  When the temperature increases the molecular 

v ibrations are enhanced , the overall structure weakens and as a resul t 

the v iscosity decreases . The molecular theory of liquid s is more 

complicated that the one for gases . More information may be found in 

Refs . [2 ] and [3 ] .  

Example 1 . 1  

The space between two plates , as shown in Fig . 1 , 3 ,  is filled with 

water . Find the shear stress and the force necessary to move the upper 

plate at a constant velocity of 10 mis .  The gap width is h = 0 , 1 mm and 

the area A is 0 . 2 m2
. 

Solution: According to equation ( 1 . 4 ) we have 

T = du 
µ d y  

= µ * = ( 1 0-3 Pa • s) ( 1 0  m/ s) 

(0 . 1  X 1 03 
m) 

= 1 00 Pa 

F = , .A =  ( 1 00 N
2

) x ( 0 . 2 m2 ) = 20 N 
m 

Example 1 . 2 

A 25 cm long shaft , 5 cm in diameter , rotates in a journal of the 

same length and 5 . 03 cm in d iameter . The gap between the shaft and the 

journal is filled with SAE 30 Eastern lubricating oil . The gap is  

assuned uni form and the shaft rotates at 1 800 rpm.  Calculate ( a )  the 

tor que ( b) the power requi red for the rotation of the shaft . 



Solution 

( a) From Newton' s law of  viscosity 

at the surface of the shaft , = FIA 

U D Then , torque To = Fr = , Ar = µ  h (,r DL ) 
2 

= 

where U = (,rD)  x ( r pm) 

A = 1r DL L = length o f  shaft 

µ = 4 x 1 0-2 Pa• s ( approximately) 

= 4 x 1 0-2 Crr O .05 / ( 1 800/6 0 )  x O .25 To 0 . 0003 /2 

To = 1 . 23 N .m 

0 .05 -
2-

= 1 .  23 N .m 

( b) The power required for the rotation of the shaft is  

Po = FU = , AU = µ AU2 (,rD ) [,rD ( rpm) J2 

L 
h 

= µ h 

(,rD ) 3 ( rpm) 2 

L = µ h 1 0-2 (,r 0 .05 ) 3 ( 1 800/60 ) 2 

: 4 X 0 . 0003 /2 
0 . 25 : 

= 232 N•m/ s  

Po = 232 W 

1 . 4  NON-NEWTONIAN FLUIDS 

1 / 1 1 

Newton ' s Law of  viscosity ( equation ( 1 .  4 ) )  represents a linear 

relationship between the shear stress , and the shear rate (du/dy) . 

Thi s  relationship is  obeyed by many fluids such as air , water , gasoline , 

glycerine and liquid metals to name just a few. Many other fluid s  

ex hibit a different type o f  behavior and are called non-N ewtonian . 

Typical ex amples of  non-Newtonian fluids include molten plastics , whole 

human blood , slurries and suspensions , pastes , etc . The study of these 

materials is the object o f  rheology [ 4 ,5 J .  See also Chapter 2 1 .  

Fig . 1 .  6 compares some o f  the most common types of  non-Newtonian 
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behavior wi th a Newtonian fluid . The ideal Bingham plastic model 

d escribes a fl uid that will not flow unless the shear stress exceeds a 

certain value , 0 called yield stress . Mathematically this behav ior i s  

expressed by 
du 

' = 'o + µ o dy 

du = 0 dy 

i f  '( > '( 
0 

if '( < '( 0 

( 1 • 9 )  

It i s  po ssible that the flow behavior after the yield may be non- l inear . 

The ideal Bingham pl astic model approx imates the behav ior of ord inary 

paints and pastes . Paints may be applied on vertical wall s  without a 

canplete r unoff because o f  their yield stress . Toothpaste will not flow 

out of the tube until a finite stress is applied by squeezing . 

The pseudoplastic and dilatant flu id s  can be approx imated by the 
power- law model 

( 1 . 1 0 )  

When n < 1 this model describes a pseudoplastic fluid , when n > 1 i t  

describes a d il atant fluid . For n = 1 and m = µ equation ( 1 . 1 0 )  reduces 
to Newton' s  law of v iscosity.  Pseudopl astic fluid behavior is exhibited 

by many l i quids such as molten pl astics , polymer sol utions , d i spersions 
of particles in water and generally l iquids composed of large molecul es . 

Dil atant fl uid s are not v ery corrmon ; for example , certain d ispersions o f  
iron oxide particles in water and some oil sands exhibit d il atant 
behav ior . 

The concept of v iscosity as defined in section 1 .  3 i s  strictly 

v al id for Newtonian fluids . µ i s  obtained from the slope o f , vs d u/dy 
l ine . For non-Newtonian fl uid s we define an apparent viscosity 

'( µ a = �(-d -.:.-
u/d-y�) ( 1 . 1 1 )  

For a Newtonian fluid µ = µ ( constant) . For pseudopl astic and dilatant a 
fluids the apparent v iscosity is a function of shear rate as shown i n  
Fig .  1 .  7 .  Molten pl astics and polymer solutions exhibi t  pseudoplastic 
behav i or . The i r  apparent  v i sc o s i t y  d e c r e a s e s  a s  the shear r a t e  
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(du/dy) 

Fig .  1 . 7  Apparent viscosity ( µ a) versus shear rate ( du/dy) . 

polymer 
molecules 
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u 

Fig . 1 . 8  Entangled polymer molecules subjected to shearing between two 
parallel plate s .  
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increases . This  can be explained i n  terms of  Fig . 1 . 8  which shows some 

entangled polymer chains (of  exaggerated si ze) in a shear field between 

two long parallel flat plates . The chains tend to al ign in the 

d irection of flow and d isentangle . Consequently the resistance to flow 

i . e .  v iscosity becomes smaller as the rate of shearing increases . 

The power-law model ( equation ( 1 .  1 0 )  with n < 1 )  describes fairly 

well  the behavior of polymer solutions and melts except in the region of 

low shear rates where it g ives an infinite apparent v i scosit y .  Actually 
these fluid s have a region of constant Newtonian viscosity as shown in 

Fig . 1 .  9 .  

1 . 5  SURFACE TENSION 

The molecules at a free liquid surface are surrounded by liquid 

molecules on only one side , whereas those considerably below the surface 

are complet.el..y surrounded . Consequently the molecules near the free 

surface exhibit a greater attraction for each other . The free l iquid 

surface behaves somewhat like a stretched membrane . With similar 

argunents we may explain an analogous behav ior at an interface between a 

liquid and a sol id and between two immiscible liquid s .  This  " tension" 

is called surface tension , is denoted by a ( sigma) , and has d imensions 

of force per length . The force necessary to hold a surface together at 

any line is g iv en by 

F = J a d t ( 1 . 1 2 )  

This force i s  responsible for maintaining the height o f  a liquid colunn 

in a capillary tube and for keeping the two halves of a liquid bubble or 

drop together , as shown in Fig . 1 . 9 .  

The sur face tens i on generally  decreases  with temperature  and  

becanes zero at  the critical point . Surface tension v alues of  a given 

surface may change considerably in the presence of contaminants like 

soap or detergents . At room temperature , the surface tension for a 

water- air interface i s  a = 0 , 01 3  N im and for mercury-air a = 0 . 48 N im .  

1 . 6  THE NO-SLIP CONDITION 

Experiments have shown that a fluid ad j acent to a sol id sur face 

cannot sl ip relative to the surface . This i s  true no matter how snall 

the viscosity of the fluid i s .  I n  other words all fluids a t  a point o f  
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Capil lary rise 

Fig .  1 . 9  Examples of sur face tension . 

bubble 
or 

drop 

1 / 1 5  

Fig . 1 . 1 0 Transition from laninar to turbulent flow i n  the snake o f  a 
burning cigarette . 
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contact wi th a solid take on t h e  velocity of the solid surface . 
ufl uid = uwall ( 1 . 1 3 )  

The no- sl ip condition lead s  to the conclusion that the material of the 
surface has absolutely no infl uence on the resistance to flow. This 
somewhat sur pri sing resul t was the subject of some controversy among 
nineteenth-century theoreticians . It was rather d ifficult to accept the 

no- sl ip cond ition for fl uids that do not "wet" ad j acent solid surfaces 
like water on wax . Howev er , the "wetting" phenanenon is related to 

surface tension which has absolutely nothing to do with the no-sl ip 
cond ition .  

Gases at extremely low pr essures do not obey the no- sl ip cond ition 
and are the obj ect of a special field of study called rarefied gas 

dynamics (6 ] . Some rheolog ically complex fl uid s exhibit a sl ip at the 
wall under certain cond itions (5 ) .  

1 . 7  VAPOR PRESSURE OF LIQUIDS 
Al l l iquids ex hibit a continuous molecular activity which at a fr ee 

surface becanes ev ident as evaporation . Molecules escape from the 
liquid sur face continuously and molecules from the v apor return to the 
l i quid phase . When the net rate o f  exchange of molecules between a 
liquid and its vapor is  zero the pressure is  known as the saturation 
vapor pressure or , simply ,  vapor pressure and is d enoted by Pv · 

The v apor pressure of water at 20°c is  2 .  34 kPa and that of 
g asol ine at 20°c is 55kPa . The intensity o f  molecular motions increases 
wi th temperatur e and thus the vapor pressure increases wi th temperature.  

A high rate of  evaporation is known as boiling .  Boiling can be  brought 
about ei ther by reducing the pressure in a container containing the 
l i quid or by increasing its temperature . 

1 . 8  COMPRESSIBILITY OF FLUIDS 
Al l material s are to some ex tent compressible . It is customary, 

howev er , to d iv ide the fl uids in two broad groups , compressible and 
incompressible fluid s ,  according to the sensitivity of their density to 
changes in pressure . 

The measure of dependence of the density on pressure is  provided by 
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the bulk modulus o f  elasticity ,  E ,  which is defined by the relation 

E = P ..9.£ dp 
( 1 . 1 4 )  

where p = density and p = pressure or in terms of the specific volun e ,  

15 ,  by its equivalent 

E = -u i_e dl) ( 1 • 1 5 )  

The compressibility of a liquid , usual ly  denoted by 8 ( beta) , is defined 

by the reciprocal of the bul k  modulus 

1 du 
8 - - - -

- 1.) dp  ( 1 . 1 6 )  

For liquids the bul k modulus 0 is very high ( for water at 20 C and 

atmo spheric pressure E = 2 , 1 40 , 000 kPa) and so the change of d ensity 

with increase of pressure is very small even for extremely large 

pressure changes . In the analysis o f  most ( but not all) flow problems , 

liquids are treated as incompressible fluid s .  Unl ike liquid s ,  gases are 

easily compressible . Whenever gases flow · at v elocities considerably 

lower than the speed of sound the density  changes inv o l v ed a r e  

relatively small and therefore gases are treated a s  incompressible 

fluid s .  Pressure ( and density) disturbances propagate with the speed of 

sound . As a consequence , compressibility effects become dominant at 

velocities approaching or larger than the speed of sound . 

1 . 9  LAMINAR VERSUS TURBULENT FLOW 

In the 1 840 ' s  the German engineer G .  Hagen , observed that that the 

flow o f  fl uids could be of two d i stinct types , laminar and turbulent . 

The structural features of these two types of flow can be observ ed in 

the smoke leaving a b urning cigarette , as shown in Fig . 1 . 1 0 .  The smoke 

stream is initial ly smooth and straight . At a certain height above the 

cigarette it becanes unstable and transition from 1 an inar to turbulent 

flow takes place . In the turbulent region the smoke is randomly 

d i spersed and the flow is highly irregul ar . 

In 1 883 Osborne Reynolds [ 7 ]  demonstrated clearly the essential 

nature of laminar and turbulent flow. Reynolds apparatus consisted of a 
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bell-mouthed glass tube into which a dye streak was inj ected with the 

water that entered the tube from a reservoir , He observed that for low 

velocity flow the dye would pass down the tube wi thout mix ing with the 

water as shown in Fig . 1 .  1 1  ( a) • By increasing the velocity a value was 

reached at which the stream began to waver and by further increases the 

dye became evenl y m ix ed in the downstrec111 portion of the tube , as shown 

in Fig ,  1 . 1 1 ( b) , 

Reynolds al so demonstrated that the transition from laminar to 

turbulent flow depended only on the v al ue of  the d im ension l e s s  

ex pression 

P V avg D 

µ 

where p denotes the density, V the mean flow v elocity, D the d iameter avg 
of the tube and µ the v iscosity of the fluid . This ratio is called the 

Reynolds number and it i s  usually denoted by Re . For smooth , straight , 

uniform circ ular pipes the critical v al ue for transition from laminar to 

turbulent flow i s  about 2300, This  value i s  sl ightly lower for pipes 

with the usual degree of roughness and it is u sually taken as 2 1 0 0 ,  The 

flow becomes turbulent when the critical value of Re i s  reached 

regardless of the ind iv id ual v alues of velocit y ,  densit y ,  v i scosity and 

pipe diameter , for either liquid s or gases . For other flow geometries 

and configurations the Reynold s number is generali zed as follows 

Re = P V L 
L µ 

( 1 . 1 7 )  

where p denotes the density , µ the v iscosity, V a characteri stic flow 

velocity and L a characteristic length . For pipe flow L = D, the pipe 

d iameter , The critical value of Re depends on the flow configuration 

and definition of Re i . e .  the choice of the characteristic v elocity and 

length . 

High speed photographs reveal that the no- slip condition i s  val id 

for laminar as well as for turbulent flow. In Fig , 1 . 1 2 the upper flow 

i s  turbulent and the lower flow is lam inar . 

surface of the plate the v elocity is zero . 

For both flows , at the 
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(a) Laminar flow 

Dye 

Water 
(b) Turbulent flow 

Fig.  1 . 1 1  Sc hematic diagram of Osborne Reynolds experiments .  

Fig . 1 . 1 2 Velocity profiles for flow past a tl:lin flat plate v i suali zed 
by a line of hydrogen bubbles discharged from a wi re,  The 
upper flow is turbulent the lower flow is l ani nar ( reproduced 
wi th perm i s s ion  from " Il lust ra ted Ex periments in Fluid  
Mechanics" The NCFMF Book of  Film Notes , The MIT  Press , 
Camb r i d g e ,  Ma s s . ,  Education  Dev elopm ent Center , In c . , 
co pyright 1 972 ) . 
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CHAPTER 2 

FLUID STATICS 

· 2 . 1 PRES.SURE DISTRIBUTION IN A FLUID AT REST 
The word statics is derived from the Greek word statikos , which 

means motionless . For a fluid at rest the three velocity canponents are 

zero by definition ( vx = 0, v· = 0 and v = 0 ) . Consequently there are 
y z 

no tangent.ial ( shearing) forces . The normal ( pressure) forces must be 

in static equilibrium with body �orces i .e .  forces which depend on the 

anount of m ass o f  the body,  like gravitational and electrcmagnetic 

forces . We will determine the pressure d istribution in a fluid at rest 

in which the only body force acting is due to grav ity . 

Consider the infinitesimal parallelpipedal volune element shown in 
Fig . 2. 1 ,  with grav ity acting in the negative z d irection . Pressure is 

a scalar quantity defined as the magnitude of force acting normal to a 

surface d iv ided by the area of that surface . The pressur:e may vary from 

po int to po int and also depend on tim e ,  p = p( x , y , z ,t ) . For 

sufficiently snall d istances ( infinitesimal) the pressure at a point in 

a continuum may be determined from its value at a neighboring point . 

Let p be the pressure at point 0( x ,  y ,  z) o f  Fig . 2 .  1 .  Using Taylor' s 

expansion formula with the higher order terms being negligible , we 

obtain 
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Fig . 2 • 1 Infinitesimal volune element �x �Y �z 
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F i� .  2 . 2 Temperature and pressure as a function of altitude in the 
standard atmosphere .  
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PA = p + l.E 6.X ( 2 .  1 )  a x 

PB = p + !E 6.y ( 2 .  2 )  ay 

Pc = p + l.E 6.Z ( 2 .  3 )  a z 

:Jhe principle of static equil ibrium states that the sun of forces in any 

d irection must be zero . Therefore 

E F X = 

E F y = 0 

E F z = 

Or , in terms of pressure forces , we have in the x d irection 

or 

p 6.Y 6.Z - ( p  + l_E 6.X) 6.Y 6.Z = 0 a x  

lE = 0 ax 

( 2 .  4 )  

( 2 .  5 )  

(2 . 6 )  

( 2 .  7 )  

wh i c h  means  that the pres sur e cannot v ar y  i n  the x d irection . 

Sim ilarl y ,  in the y d irection 

or 

p 6.X 6.Z 

lE = 0 ay  

( p  + 1_E t,.y) 6.X 6.Z : 0 ay  

( 2 .  8 )  

which means that the pressure cannot vary in the y d irection . Finally ,  

in  the z d irection the pressure forces must be balanced by the weight of  

the fluid element . 

or 

p 6.x 6.y - ( p  + l..e 6.z) 6.X 6.y - y 6.X 6.y 6.Z = 0 a z  

lE = -y a z ( 2 .  9 )  

where y i s  the specific weight which is the product of the density ( p )  

and the grav itational constant g ( at sea level g = 9 , 81 m/ s2 ) 

y = p g  ( 2 . 1 0 ) 
The m inus s ign m eans that as z becanes larger ( higher elev at ion) p be 

comes smaller . To find the pressure we must integrate equation ( 2 , 9 )  or 



2/4 

its equiv al ent 

�� + pg = 0 ( 2 .  1 1  ) 

This is the basic equation of fluid statics . 

Variations of the grav itational acceleration can be calculated from 
the relation 

g = g ( r / r) ( 2 .  1 2 )  
0 0 

where g
0 is the grav itational acceleration at the surface of  the sea and 

r0 is the earth ' s rad ius ( r0 � 6400 Km) . A sim ple  calculation reveal s 

that from the bottom of the deepest ocean to the max imun fl ight al titude 

of commercial aircraft the variations are less than 1 % .  Thus , for all 

practical purposes g will be taken constant . 

Integration of  Equation (2 . 1 1 )  

Case I Incompressible fluid s ( e .g .  l iquid s) 

p z 
! dp  = -pg ! d z  
P 1 z 1 

( p - P1 ) = - pg ( z  - z 1 ) 

Thu s ,  for a point at a d istance h below the sur face of a l iquid 

p = pgh 

where h is m easured from the free l i quid surface . 

( 2 .  1 3 )  

( 2 . 1 4 )  

( 2 . 1 5 )  

Case  I I  A l l  gases  are  com pr e s sible . The den s i t  y i s r o ug hl y 

proportional to pressure . Therefore , we must introduce the ideal gas 

law p = p/ RT or some other functional relation between density,  pressure 

and position . 

( a) isothermal cond itions : p = p/RT and T = T 1 

dp = p 
d z  RT g 

or by  separating the variables 

� =  
p 

1 
RT g dz  

(2 . 16 )  

( 2 .  1 7 )  



and 

( b) 

and 

p dp 
! - = 
p p 

1 

d z  

g (  z-z1 ) 
p = p 1 ex p [ - RT J 

1 

isentro pic cond itions : -k p p = const 

and by inserting the above expression into e quation ( 2 . 1 1 )  

p 
__iE_ l 1 / k  = 

P1 p 

( 1  - 1 /k) ( 1  - 1 /k) p P1 ______ ...:__ ___ = - .i_
1 /k g ( z  - z 1 ) ( 1  - 1 / k) 

[ ( k-1 ) / k  p = P1 

P 1 

( k- 1 ) p ( ) J k/ ( k -1 ) 
k ----;7iZ g z-z 1 p 1 
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(2 . 1 8 )  

(2 . 1 9 )  

(2 . 20 ) 

(2 . 21  ) 

(2 . 22) 

( 2 .  23 ) 

(2 . 24 )  

( 2 .  25 ) 

( c ) Tem perature decreasing l inearly with al titude . This corresponds to 

the standard atmosphere of Append ix B. By international agreement the 

temperature is assuned to v ary  from 288 . 1 6 K ( 1 5  C)  at sea lev el to 
21 6 . 5  K (-56 . 5°C) at altitude of 1 1 , 000 m .  This  lower portion o f  the 

atmosphere is called the troposphere . The l apse rate is 

Here , we have 

B = 0 , 00650 K/m ( 2 . 26 )  

T = T - Bz 0 

p d p  = - RT g d z  

(2 . 27 ) 

(2 . 28 ) 
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Then upon integrating 

wher e  

� = p 
g d z  

R ( T  -Bz) 
0 

T -Bz g/ RB 
P = ( 0 ) Po T 

0 

�B = 5 , 26 ( air )  

(2 . 29 )  

( 2 . 30 )  

and p , T represent the pr essur e and temperatur e respectiv el y ,  at sea 
0 0 

level . 

Beyond elev ation 1 1 , 000 m and up to about 20 , 000 m the temperature 

has been observed to be approx imately constant at -5 6 , 5°
c .  This portion 

of the atmosphere is called the stratosphere . The pr essure and 

temperature v ariation in the standard atmo sphere is schematically shown 

in Fig . 2 . 2 ,  from refs . [ 1 ]  and [ 2 ] .  

Example 2 .  1 

If the air were incompr essible and had a constant density p = 1 . 24 

kg/m3 what �uld be the height o f  air surro und ing the earth to produce a 

pr essure of 10 1 . 3  KPa at sea lev el? 

Solution : 

For this problem e quation ( 2 . 1 4 )  is applicabl e :  

Example 2 .2  

z = P1 
pg 

= 

N p 1 = 1 0 1 , 300 2, z
1 

= 0 ,  p = 0 
m 

1 0 1,3 0 0  N / m2 

1 .  2 4 kg / m 3 x 9 .  8 1  m / s2 

1 0 1  , 300 N lm2 

= 1 . 24 x 9 , 81 Nim = 8 328 m 

Compute the atmospheric pr essure at an al titude of 5000 m if the 

pressure at sea lev el is 1 0 1 . 3  k Pa by the following four method s :  ( a) 



a s s  um e a i r o f c o n s t a n t  ct e n s  i t  y p = 3 1 .  24  k g/m , 
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( b )  i s o t h e r m a l  

cond itions , ( c )  i setropic cond i tions , and ( ct)  tem perature decrea s i ng 

l inearly with al titud e ( B  = 0 . 00650 K/m ) . 

( a)  

( b)  p = 

( c) p = 

p - p1 = - pg ( z - z1 ) 

p 

p == 

P 1  ex p [ -

[ k-( 1 /k) 
P1 

1 0 1 . 3  kPa = ( 1 . 24 K�) x ( 9 . 8 1 .!!!_) x ( 5000 m) 
m s2 

4 0 .  5 k Pa 

g(  z-z 1 ) 

RT ] 
1 

ck-1 ) k 

= 1 0 1 .  3 k Pa ex p [ -

== 5 6  k Pa 

_P_ g( z - z  ) ] k/ ( k-1 ) 
1 /k 1 

P 1  

9 .8 1 2 m/ s x 5000 m 
2 2 287 m / s  k x 288 . 1 6  K 

J 

1 •24 
X 9 , 8 1 X 5000 ] 1 ' 4/ ( 1 . 4-1 ) 

( 1 0 1 . 3 ) 1 /1 . 4 

== 5 2  k Pa 

T - Bz g / RB 
( d)  p = Po ( o 

T ) 

2. 2 THE HYDROSTATIC PARADOX 

From e quation ( 2 . 15 )  we concl ud e  that the pr essure at a po int in a 

fluid de pend s on d ensit y ,  grav ity and the depth only .  The shape or s i ze 

o f  the conta iner or the orientation o f  the sur face hav e abso lutely 

nothing to do with the pressure at the g iv en point . The force ex erted 

on a sur face e qual s the product of the area o f  the sur face and the 

pressure which al wa ys acts normal to it . This resul t is som et im e s  

referred t o  a s  Pascal ' s  principl e .  Consequent l y  for the same area A and 

the same l i qu id elev ation ( z-z 1 ) the total force on the pl ates at the 

bottom of the four v essel s shown in Fig . 2 . 3  is the sam e ,  regardless o f  

the total weight o f  1 i quid they support( ! )  

The conclusion that d ifferent quantities o f  fl uid above a sur face 

can produce the sane force on this surface is contrary to a per son' s 

intuition and it i s  o ften referred to as the hydrostatic paradox . We 
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- p 

A 

Fig. 2 .3 

· _,,,.,, same llquld '-..... 
� /  l "' �  

---------
----· 
---
----
-- --
---
- --
- -
- p - p - p - p 

A A I A A 

The total force on the plates at the bottom of these four 
v essels is the sane (hydrostatic paradox) . 

gage pressure 

� ._ _____ __,:t ____ -T" ______ _ en en 
w 
0:: a. 

vacuum absolute pressure 
( negative gage pressure) 

·----------- I h . 

Fig. 2 .4 

. atmosp er1c pressure 
absolute pressure j . 

i absolute zero 

Definition of absolute and gage pressure .  
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can actuall y  ex pl ain this paradox by determ ining all the hydrostatic 
forces acting on the various surfaces and by taking into account their 
directions and their points of action . 

2 . 3 ABSOLUTE AND GAGE PRESSURE 

Pressure of a fluid can be expressed relative to that of vacuum 
( zero) and the result is known as absolute pressure . In practice , 
howev er , pr essure is usually ex pr essed as the d ifference between the 
pressure of the fluid and that of the surround ing atmosphere . This 
d ifference is recorded by the usual pressure gages and it is called gage 
pressure . Thus 

Pabs = Patm + Pgage  ( 2 . 3 1 ) 

It is po ssible to have either positiv e  or negat iv e  gage pressures as 

shown in Fig .  2. 4. Unless otherwise specified , all numerical pressure 
v al ues throug hout this tex t refer to g age pressures . 

Th e a b so l ute pressure  o f  the  a tmosphere i s  measur ed b y  the  
barometer . This consists of an inverted gl ass tube with its lower end 

immersed in a l iquid ( usuall y  m ercur y) as shown in Fig . 2 . 5 .  Mercur y  i s  
used i n  baran eters because o f  its high d ensity and its relativ ely low 
vapor pr essur e at room temperature . The pressure at A within the tube 
is equal to the atmospheric pressure ( outside the tube) . Conse quentl y 

Pa = pgh + Pv ( 2 . 32 )  
where p is the ab sol ute pressure o f  the atmosphere , p the d ensity o f  
mercur y and h the height of column above A .  The vapor pressure Pv is  
usually negl ig ible . At sea level the atmospheric pressure is  1 0 1 . 33 

kPa , which corresponds to h = 760 mm of Hg or h = 1 0 . 33 m of H20 .  

2 .  4 MANOMETERS 

Manometers are dev ices in wh ich one or more columns of a l iquid are 
used to d eterm ine the pressure d ifference between two points . Such a 
manometer is  shown in Fig . 2 .  6 .  The U-tube manometer measures the 
pressure d ifference bet ween the pressure tank A and the atmosphere . To 
determ ine the pressure at A we wil l  use equation (2 . 1 4 ) . 
impl icitly  assumed that both fl uid s are incanpress ible . 

It is 



2/1 0 

Fig. 2 .5 Barometer 

h 

liquid A 

F ig. 2 .6 U-tube mananeter 

. i ------
------------

Pvapor 

tatm 

8 

liquid 
M 
' 

T 

· c  

z 
C 



Bet ween A and B :  

Bet ween B and C :  

SUITining up 

PA - Pc = -pAg ( zA - z B) - pMg ( zB - z c)  

But zA - z
8 = -h 1 and z

8 - zc = -h2 

PA - Pc => is the gag e pressure at A 

( pA )g ag e  = p Agh 1 + pMgh2 

Example 2 . 3 

2/1 1 

De t erm i n e  the g ag e  pr e ssur e i n  the a i r  t a n k  shown i n  the 
accanpanying Fig . E . 2. 3 . 
Solution 

We appl y equation ( 2 . 1 4 ) . 

between A and B :  

bet ween B and C :  

bet ween C and D ; 

b y  summ ing up , we obtain 
PA - PD = -pHgg ( zA-zB) - PH Og( zB-zC ) - PHgg( zC-zD) 

2 

PA-PD => is the gag e  pr essure in the tank Pr ·  There i s  no need to 

consider the col unn o f  air  between T and A , because of its snall 
density . 

k m2 k m2 

P - 1 0 00 � x 1 3 . 6  x 9 . 81 x 0 . 15  m - 1000 � x 9 . 81 x 0 . 1 2  m T - 3 s 3 s m m 

+ 1 000 kg 
X 1 3 . 6  X 9 . 81 � X 0 . 42 m 

m3 

= 200 1 2 . 40 1 1 77 . 20 + 56034 . 72 Pa = 74 . 87 k Pa 
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j � 

T 
air 

D 
- - --

H20 � 
'--': � Hg 

'= 
·= 

8 r:!--.
� 

Hg 

A � 
....... wS_c_m_J 

20 
cm - c 
sI 

w + -

Fig . E .  2 .  3 

GAS 

pressure p throughout 

50cm 

F ig. 2 .7 Pressures on the walls of tank confining a g as 
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2 . 5  HYDROSTATIC FORCES ON PLANE SURFACES 

Pressure always acts normal to a surface , by definition . Thus for 

an infinitesimal area dA the normal force d ue to pressure will be 

dF = pdA  (2 . 33 )  

The total fo rce acting o n  a f inite  s ur face can be obtained b y  

integration 

F = 11 pdA 
A 

( 2 .  34 )  

To per form the integration shown in equation ( 2 . 34 )  we must know how the 

pressure v aries ov er the area under consideration . When a gas i s  

enclosed in  a tank as shown in  Fig . 2. 7 the pressure is always constant 

ov er the wall s of the tank irrespective of their orientation . The 

vertical variation is neglig ible because of  the small density of gases . 

Therefore 

F = pA ( for gases) ( 2 .  35 ) 

Let us  now consider a plane sur face of  area A sutmerged in a l i quid 

of constant density p .  h is the depth measured from the free surface of 

the l i quid as shown in Fig . 2. 8 .  From equation ( 2 . 34 )  we have : 

F = fl 

A 

= pg 

l l y dA  
A The quantity -'-'-A--

pdA = fl pgh dA = fl pgy sin e dA  
A A 

If y dA 

sin fl y dA pg sin e A A ( 2 .  36 ) e = A A 

repr esents the d istance of the centroid y ( see 
C 

Append ix C) of sur face A from point O.  

F = pgyc sin e A =  pghc A C 2 .  37 ) 

The quantity pghc represents the pressure at the centroid . Consequentl� 

the force exerted on a sutmerg ed plane surface is g iv en by the product 

of the area and the pressure at the centroid . 

Example 2 . 4  

Determine the force exerted by water on the vertical , rectangular 

wall of width W and height H ,  shown in Fig . E . 2. 4 .  
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free surface - - - - - -- - - ---- - - --- -- -

F ig. 2 .8 . Hydrostatic force.s on a submerged plane surface . 

atmospheric 
pressure 

.- -- -- -
pressure of 

h liquid on the 
front of 
the wall 

atmospheric 
·�---_.... pressure 

on the back 
of the wall 

( rectangular wal l )  

- - - -- - -

( triangular wal l )  

F ig. E .2 .4 F ig. E .2 .5 



Solution 

The centroid H0 = H/2 
Therefore 

H H 2 

F = pg 2 (HW) = pgW 2 

This result  can al so be obtained d irectly from 

E xample 2 . 5  

F = f f  pdA = f f  pgh dA = pg f Wh dh  = pgW f h dh 
A A 

H2 
= pgW -

2 
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Assume that the wall  in the prev ious ex anple has a triangular 

shape , The width at the top is W and at the bottom is zero as shown in 

Fig . E . 2 . 5 .  Determ ine the force . 
Solution 

The centroid 

and 

This result  can also be 

H 
C 3 

A _ LH 
- 2 

LH2 

F = pg -
6 

obtained by  d irect 

H 
F = pg f hW dh  

0 

h 
w = L ( 1 - -) H 

H 
- .!:!) F = pg f L ( 1 H 

0 

h2 h3 H 
= pgL [- - -] 2 3H 

integration 

h dh  

H2 
= pgL -6 
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2 . 6  CENTER OF PRESSURE FOR PLANE SURFACES 

The point where the l ine of  action of the hydrostatic force 

intersects the plane sur face . is called the center of pressure [2 . 3 . 4 ] :  

The manent of the resultant force about any ax is must be equal to 

the sum of the manents of all forces . Taking the manents about ox. in 

Fig . 2 . 8 .  

pg sin e ff y2 dA = pg sin e I
0 A 

where I i s  the manent of inertia of the area [ 5 ]  about OX. 
0 

equation ( 2 .  37 ) .  

The manent of  inertia about OX can be expressed as 

(2 . 38 ) 

Then . using 

( 2 . 39 )  

(2 . 40 )  

where I is  the moment of inertia of area A about its centroid al ax i s .  
C 

Thus 

A y2 + I 
C C C 

(2 .  4 1 )  y = = Ye + --p Ye A y A 
C 

From this last ex pression we conclude that the position of  the center of  

pressure i s  independent of the angle e .  and it i s  always below the 
centroid . 

The x-coordinate of the center of pressure may be determined by 

taking the manents about ax is OY 

xp F = pg sin e ff xy dA  
A 

Thus , using equation ( 2 . 37 ) , 

f f  xy dA  
A 

y A 
C 

( 2 . 42 )  

( 2 .  43 ) 

When the area has an ax is of symmetry in the y d irection . we can choose 

OY to coincide with the ax is of symnetry .  Then the integral ff A x y  d A  

vanishes and the center o f  pressure i s  located on the ax is o f  symmetry.  
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Example 2 . 6 :  

Determine the force and the po sition of the center of pressure on 

the sem icircular end of Fig . E2 . 6 .  

Solution: 

From Append ix C 

h = 
C 

4r  
3n 

h p 

= 

= 

2D 
3n 

F = 

yp = 

I 0 

pgh A = 
C 

nD4 

128 2D 
3 n 

4r pg -
3n 

1 

nD2 
. --

8 

u..r 
2 

= 

2. 7 HYDROSTATIC FORCES ON CURVED SURFACES 

2 2 pgr3 = 
3 

1 2 nD 1.__ nD = 
1 28 32 

On a curved surface the infinitesimal forces pdA v ary in d irection 

along the sur face and thus cannot be added algebraicly as impl ied by the 

integral in equation ( 2 . 34 ) . 

We must take into account the orientation of each element and the 

d irection of the force exerted on it . In other words we must consider 

the force vector . Equation ( 2 . 34 ) can be general ized as 

F = ff p dA ( 2. 44 ) 

where p represents the local pressure and d A  is now a v ector quantity . 

This  relation can be ex pressed wi th respect to a system of 

coord inate ax is  ( x , y , z) hav ing I ,  3 ,  K as the base vectors , as 

F = iF x + j F y + k F k = i ff pdAx + j ff pdA
Y + k ff 

Ax Ay Az 

pdA z 

where dAx , dA
Y

, dAz are the canponents o f  v ector aA and Ax , Ay , Az the 

proj ected areas in the y-z ,  x-z and x-y pl anes respectively as shown in 

Fig . 2 . 9 .  

Therefore , the three force components are 

ff 
A 

X 

ff 
A y 

pdA y F = JJ 
z 

A 

pdA z ( 2 .  45 ) 
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free surface 

y 

z 

surface - - --- - -

Fig. E .2 .6 

/
//v dAy 

p� 
I I 
I I 

.>--1---1--------1>-X 

I I 
I I � dAz 

F ig. 2 . 9 Proj ections of  a c urv ed surface on planes y-z , x-z and x-y . 



The hori zontal component in x d irection is  

rr 
A 

X 
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( 2 .  46 ) 

where h is  the depth measured from the free surface of the l iquid . This 

is the pressure force on the plane-area proj ection onto the v ertical y-z 
plane . The other hori zontal component , FY

, is just the pressure fo rce 

·on the plane-area proj ection onto the v ertical x-z plane . Thus we may 
state in general that : 

The hori zontal component o f  force on any sur face equals the 
force on the projection of that surface onto a v ertical plane 
normal to the component . 

The v ertical component is  

rr pgh dA
2 A 

( 2 .  47 ) 

which repr esents the weight of the fluid abov e the surface . Thus we may 
state in general that : 

The v ertical component o f  force on any sur face equal s the 
weight of a fluid col unn extending from the surface up to the 
lev el of the free surface . 

The three force component s ,  t� hor i zontal and one v ertical , may not 

i ntersect at a single point . Consequentl y ,  in general , there is  no 
single resultant fo rce . In many practical problem s ,  howev er , t� forces 
may l ie on the sane plane and can be combined as v ec tors to g iv e  a 
single resultant force . In such a case the center of pr es sure can be 
located in exactly the sane manner as for the plane surface . 

Example 2 .7 
Determ ine the total hydrostatic force on the parabolic dan shown in 

Fig . E 2 . 7 ,  with a = 5m and b = 15m . The width o f  the d am is W = 50 m .  
Solution 

The vertical proj ection of this parabolic sur face is a rectangle of 
15 m x 50 m .  The centroid is located at a depth of h = 7 . 5  m .  Thus , 
the hori zontal force Fx is  
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Fx = pgh A C X = ( 1 000 Kg) ( 9 . 8 1 m
2 ) ( 7 . 5  m) ( 15 m) ( 50 m) 

m3 s 

= 5 .  52 x 1 0  7 N 

Actually  this fo rce can also be calcul ated by d irect integration o f  one 

of e quations ( 2 . 45 )  

b 
F

x = II pdA x
= I 

Ax o 

22 b 
= pgW [ bz -

2
] 

= 5 . 52 x 107 N 

b 
( pg h) W d z  = pW I ( b-z) d z  

0 

b2 

= pgW - = 2 

2 
( 1 00 0 )  (9 . 81 ) (50 )  (.l.2_) 2 

The vertical component equal s the weight of the fluid from the parabolic 

surface up to the free surface of water . From Append ix C, the area is 

2/3 ab and the volume of water 2 /3 abW . Thus , 

Fz = - p g  <J abW) = 

= -2. 45 X 1 07 N 

( 1 000 Kg ) (9 . 81 .!!!._) (.£) (5 ) ( 1 5 )  (50 ) m 2 3 s 

the minus sign was introduced because the weight acts in the neg ativ e z 

d irection . Ag ain , this force can be d etermined b y  d irect integration 
a a 

F = - II pd A = - I pghW dx = - pgW I ( b-z) dx z z 
AZ 

O O 

a 
= -p gW I 

0 

2 
( b - b (�) ) dx a 

b x3 a 
= -pgW [ bx - - -] 

a2 3 o 

ab 
= -pgW [ ab -

3
J = 

2 -pgW (- ab) 
3 

= -2 . 455 x 1 07 N 

The mag ni tude of the total hydrostatic fo rce i s  

F ( F2 + F2) 1 /2 1 4 N : : 6 . 04 X 1 Q  
X Z 



a =5m 
free surface -------

water 
b= l5m 

Fig. E .2 . 7 

free Ii uid surf ace - - -----

z 

y 

F ig. 2 . 1 0  Hydrostatic forces on a subnerged bod y .  

parabolic 
dam 

2/2 1  
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2.  8 BUOYANCY 

The hydrostatic pr essur e increases wi th depth in a fluid at rest . 
Therefore , a fluid exerts a resultant upward force on any body which i s  
wholly  or partially immersed in it . Thi s  fo rce i s  known a s  buoyancy and 
can be d etennined by appl ying the m ethods used to ccmpute hydrostatic 
forces on surfaces . Archimedes discov ered in the third centur y B . C .  
that the b uo yant force i s  e qual to the we ight o f  the fluid d isplaced . 

We wil l  prov e this pr inciple by  referring to Fig . 2 . 1 0  which shows 
a body wholl y inrnersed in a l iquid o f  constant d ensity p . There is 

obv iously no net force on a hori zontal d irection because the forces on 
the v ertical proj ections cancel each other out . 

The upper surface of the body is  subj ected to a force which is  
sn aller than that on  the lower sur face . Conse quentl y ,  there is  a net 
force upward s .  For an infinitesimal element we wil l  hav e a net force 

d F B = ( p R, - pu) d A
Z 

Howev er , from e quation ( 2 . 1 4 )  

Thus , 

and 
F8 

= p g fl ( z  - z
0 ) d A 

A u ,., z 

The vol une o f  the sol id body is 

and the b uo yant force is 

which represents the weight of fluid d isplaced . 
This  der iv ation can easily be general i zed to include compr essible 

fl uids or b uo yant forces at the inter face of t wo inm isc ible fl uids . 
To determine the center o f  buoyancy we must take the manents about 



x ,  y and z .  For ex c111ple the manent about ax is y i s  

The vol ume of  the infinitesimal element is dV 

lll X dV 
"lj. 

= ( z  - z )  dA , thus u R, z 
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which means that the x component of  the center of buoyancy i s  id entical 
to the x component of the centroid of the fl uid vol ume d is placed . By 
taking the manents about x and z we conclude that the center of buoyancy 
is at the centroid of  the vol ume of  fluid d isplaced . It should further 
be noted that when the density of a fluid v aries with po sition this 

con cl us ion is not tr ue . Howev er , in many practical problems snall 
density v ariations can be neglected . 

The pr inciple of buoyancy i s  used in the measurement of specific 
weight ( or spec ific grav it y) with a dev ice called hydrometer . This 
consists of a glass bulb partl y filled with lead shot and a graduated 
stem as shown in Fig . 2 . 1 1 .  When placed in a -l i quid the hydrometer 

floats in the vertical po sition and the graduated stem ex tends above the 
surface . The hydraneter will float d eeper or shallower depend ing on the 
densi ty of the l iquid in which it is immersed . The grad uated scale on 
the stem prov ides d irec tly the specific we ight or the specific grav it y 
of  the l i quid . 

Example 

The hydrometer bulb of Fig . 2 .  1 1  has a volume of 10 cm3 and the 

c yl indrical glass stem has a d ianeter of 5 mm and a l ength of 20 cm . 
The bul b and the lead shot in it hav e a mass of  1 8  g and the glass stem 

2 g .  Determine at what lev el this d ev ice will float in l i quids hav ing 
specific grav ities O.  8 ,  1 .  O and 1 .  2. 
Solution 

The vol ume of the immersed part of the cylindr ical stem i s  

Vs = � (0 . 5 )2 z ( cm3 ) = 0 . 7  z cm3 
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---- -- - -- --· 
l iquid 

F ig. 2 . 1 1  Hydrometer 

stable 

- graduated 
- � scale 

A""""lead shot 

free sur.face 
- - -- --- - - -- -

neutral unstable 

G = center of g ravity B = center of buoyancy 

Fig. 2 . 1 2  Stab il ity of a submerged ( i .e .  ful l y  immersed) bod y .  
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where z is  the immersed length of  the stem in cm . The total we ight of  
hydraneter is equal to the weight fluid d is pl aced : 

( 1 8 + 2 )  g = ( 1 0  + 0 .  79 z )  pg 
20 = ( 1 0  + 0 . 7 9  z) p 

Div id i ng by the d ensity of water pH O = 1 g/ cm3 

2 

for S. G .  = p/ pH 0 2 

for S . G .  = 0. 8 

for S. G .  = 1 . 0  

for S. G. = 1 .  2 

It should be noted that 

20 = ( 1 0 + 0 . 7 9  z) (-P-) 
PH 0 2 

z = 1 9. O an 

z = 1 2 . 66 

z = 8 . 44 

the graduations are not 

the buo yancy is not d irectly proportional to the 

2 . 9  STABILITY OF IMMERSED AND FLOATING BODIES 

equally 
s pec ific 

spaced because 
grav ity . 

The stab il ity of  a body in static e quil ibr iun can be determined b y  
examining whether a restoring ( or right ing) mcment is  produced when a 
sn all rotation is impo sed . For a fully immersed body the production o f  
such a restoring manent depends o n  the relativ e po sition o f  the center 
of grav ity  and the center of b uo yancy .  By referring to Fig . 2 . 1 2 ,  we 
can easil y conclude that the body is 
( a) stable , if the center of  grav ity is  located below the center of 

buo yanc y 

( b) neutral , if the center of  grav ity coinc ides wi th the center of 
pressure 

( c) unstable , if the center of grav ity is located abov e the center of  
buo yancy . 

The stab ility cond itions are more ccmpl icated for a body floating 

on a free surface . Sur prisingly ,  the center of  grav ity can be abov e  the 
center of buoyancy and the floating body may be stable , neutral or 
unstable . 
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D C --=.- 0 1 

water 

Fig . 2 . 1 3  Stabil ity o f  a floating body.  
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Let us consider the hull section of a ship of arbitrary configur ation as 

shown in Fig . 2. 1 3 . The center o f  grav ity  is assuned to be above the 

center of buo yancy .  Suppose that the ship is rolled through a small 

angle e .  The position o f  the center of grav ity remains unchang ed . 

Howev er , the po sition of the center o f  buoyancy wil l  generally  chang e .  

The point o f  intersection o f  the l ines o f  action o f  the buoyant force 

before and after the til t is called the metacenter M .  The d i stance GM 

is called the metacentric height . 

The shift o f  the center of buoyancy from B to B '  is a resul t o f  the 

change in d isplaced vol une . By taking the moments about O we can 

determine the length HB.  The stabil ity criter ion is  

MB  - GB  > 0 

The frequency of osc illations about O can be d etermined by considering 

the ship as a pend ul un , the motion of which is governed by the relation 

between torque and annular acceleration [ 6 ,  7 ] .  Al thoug h the basic 

principles for the calculation of stab il ity are relativ ely  simple and 

s t r a i g ht fo r wa rd  [ 6 ,  7 ,  8 ]  the appl i c a t i o n  to ship  d e s i g n  r e qu i r e s  
ex tensiv e ex perience [9 J .  
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CHAPTER 3 

KINEMATICS OF FLOW 

3 . 1  INTRODUCTION 

The \<K>rd ldnematics is derived from the Greek word kinesis , which 

means motion . Kinematics is that part of mechanics which deals with . the 

study o f  motion . In fluid mechanics we are interested in the determina

tion of v elocity , acceleration and all other quantities derivable from 

displacement and time .  

Two points of v ie w  are possible for the study o f  fluid motion . In 

the Lagrangian approach the motion of a particle of fixed identity i s  

followed as a function o f  tim e .  If a particle i s  characterized by 

position �o at time t:O ( initial position) and by position r at time 

t; t ,  the trajectory of the particle will be given by 

( 3 . 1 )  

or in terms of Cartesian components 



+b.t 

' V=V(r,t) . ' ' / F+E 

. ,.. -7•,-
/ ' / 

/ 

0 0 

( a ) ( b )  

Fi g .  3 . 1 ( a) Lagrangian point of v iew 

( b) Eul erian point of v iew 

r(fixed) 

w 
........ 
N 
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X : r 1 ( xo ' Yo ' z o ' t) 
y = r2 ( xo ' Yo ' z o ' t) ( 3 . 2 )  
z = r/ x

0
, Yo ' 

z o ' t)  

The v elocity of the particle which at t=O i s  at position F;o i s  

V i · t:."r ( aF) v c  � , t) = 1m - = = 
t.t at - 0 

t,t + 0 F;o 
( 3 . 3 )  

The particle acceleration i s  

( av ) 
2-a r a(� o 't)  = = 

(at ) �  = a t F;0 0 
( 3 . 4 )  

In the Eulerian method a position i s  c hosen and the v el ocity o f  the 
particles at thi s position is described as a func tion of tim e ,  i .e .  

v = v c r , t) ( 3 . 5 )  

or in terms o f  Cartesian components 

V = v1 ( x , y , z ,t)  
Vy = v2 ( x , y , z , t )  ( 3 . 6 )  

= v/ x , y , z , t) 
z 

The d i ffer ence  b e t ween  the Lag r ang ian and E u l e r i a n  method s o f  
d escri ption is illustrated in Figure 3 . 1 .  

The Lagrangian method is used mainl y in par ticle mechan ic s .  In 
contin uun m echanics this method requires the descri ption o f  motion o f  an 
infin ite nunber of particles and thus becomes ex tremel y cunbersom e .  The 
Eul erian method i s  easier to use in con tinuun mechanics because it i s  
concerned with the description o f  motion at a fixed position . 

3 . 2  MATERIAL OR SUBSTANTIAL DERIVATIVE 
Let us consider a fluid property ct, which i s  function of posi tion 

and time : 
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4> = 4> ( x , y , z , t) 

The total d i fferential i s  

d 4>  = � d x + � d y + � d z + � d t  ax a y  a z a t  

and the total d er ivative i s  

We note that 

� a4> dx + 1,1 � + ll dz + ll 
d t = ax dt a y d t a z d t  a t 

d y  = V d t  y 

d z 
d t  = V 

z 

( 3 .  7 )  

C 3 .8 ) 

( 3 .9 )  

( 3  . 1 0 )  

wher e  v , v and v are the vel ocity components i n  x , y and z d irections 
X y Z 

respectivel y .  Thus , 

� 
d t  = 

or in v ector notation 

V ]i +  V ]i + V 1.,! + _li  x ax y a y z a z a t 

� = d t  

( 3 . 1 1 )  

(3 .  1 2 )  

In thi s ex pression the operation d/dt i s  the total time rate o f  chang e ,  

a/ at  the time rate o f  change at a fixed point in space ( local der iv a

tive) and v• v i s  the var iation in the time it takes the fluid to move an 
i n fi n i te s im al d i stance  ( d x , d y ,  d z) ( conv e c t iv e d e r i v a t iv e ) . To 
d istinguish the Eul er ian time rate o f  change from the Lagrangian time 

rate o f  change , sane authors use the s ymbol D/Dt , i .e .  

d D a -
d t = Dt = at + V • V ( 3 . 1 3 )  
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Thi s  d er i v at i v e  i s  usua l l y  c al l ed the mater i a l  or s ub sta n t i a l  

d er ivative . 

If  the property that changes with time i s  the velocity V then the 

acceleration in the Eulerian frame i s  

dV 
a = d t  = DV = 1Y 

+ V •  vV Dt at 
( 3  . 1 4 )  

Thus , the relation between the particle acceleration i n  Lagrangian and 
Eulerian frames i s  

- = < av)- dv __ a 
a t f,;0 

= d t  ( 3 . 1 5 )  

Example 3 . 1  

and 

the 

The veloc ity components of a fluid particle are given as \r x = At 

v = Bt2 ( Eulerian frame) where A and B are constants . Determine y 
d ispl acement of the fl uid particle and the particle acceleration . 

Solution 

Her e , we have 

At d x  = = d t  X 

V = Bt2 dy 
y = d t  

Thus 

dx = Atdt 

d y  = Bt2 dt 

d s = dx i + d yj 

and 

The length of the path ( i .e .  d i spl acement) i s  
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t 1 /2 
s = I ( A 2 t 2 + s2 t 4 ) d t 

t 1 /2 
: l J ( A2 + st2) d t2 : 

0 2 0 

The particle acceleration is g iven b y  

av 
v• vv a = - + a t 

av 
X 

av x av 
a = + V -- + V --

X a t X ax y a y 

= A + 0 + 0 

av av av 
a y = y 

at + vx 
y 

V � ax + y a y 

= 2Bt + 0 + 0 

Thus 

3 . 3  THE SYSTEM AND CONTROL VOLUME CONCEPTS 
A system is de fined as an arbi trary v ol une of a substance across 

whose bound ar ies no mass is exchanged . The system may ex per ience a 
c hange in its mcxnentun and energy but no c hange in mass . A system can 
be stationar y or in motion . In a moving system the bound ar y will move 
with the system so that the mass within the system remains always the 
sam e .  

In contrast , a control volume is  an arb itrar y volune across whose 
bound aries not onl y mcxnentun and energy ,  but al so mass is  transferred . 
The control vol un e  may be stationar y or in motion . Whether stationar y 
or in motion mass is  allowed to be exchanged across its boundaries . 

The concept o f  system and control v ol un e  are related to the 
Lagrang ian and Eul erian viewpoints . When a mathematical expression o f  a 



z 

y 

Fi g .  3 .2 Control vol une in a flow field 

317 
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physical l aw is attempted we may use either one of these concepts . 

Suppose we try to state the ax iom o f  conservation o f  mass . For a system 
we simpl y state that the mass cannot be created nor destroyed , i .e .  

d( mass) 
d t  = 0 ( 3  . 1 6 )  

Since we have fixed the identities o f  all particles b y  the fact that 
they ex i st within the system bound ar ies , thi s is a Lagrang ian point o f  

v iew. Howev er , i f  we choose an arb itrar y vol une i n  space across who se 
boundaries mass i s  allowed to be transported , we no l onger keep track o f  
particles o f  certain identity,  Thi s i s ,  therefore ,  a n  Eul erian concept . 
The ax iom of conservation of mass should then be stated as  

[ d ( mass) J _ [ d ( mass ) J = d t  in  d t  out 
d ( mass) 

[ dt ] inside the C . V .  ( 3 ,  1 7 )  

Further mathematical mani pulations o f  the above ex pression are presented 
in Chapter 4 .  

3 , 4  REYNOLDS TRANSPORT THEOREM 
We will consider the time rate o f  chang e o f  a fluid property ¢> 

integrated in an arb i trary vol une ¥ ( see Fig . 3 .2 ) , with ¥ being a 
func tion of time 

d 
d t f f  f 4> d¥ 

V. 

Since ¥ =¥ (  t) , we have 

d 
d t  f f  f 4>d¥ = 

V. 
� dV. 

ff f d t d¥ + f f  f 4> d t V. ¥ 

We note that i f  V. is expressed by 1::.x1::.y1::. z ,  we will have 

d 
d t (¥ ) 

Thus 

= �t ( t:. xt:. yt:.z) = t:.yt:.z d ( t:. x )  + t:. xt:. z  d( t:,y)  
d t  d t  + t:,Xt:. y d( t:,z) 

d t  

( 3 . 1 8 )  

( 3 . 1 9 )  



1 dlJ - --
t:,,l/- d t 

l:,,V l:,,V l:,,V X y Z = - + - + -t:,,X t:,,y l:,,Z 

In the l im it as t:,,x + O ,  t:,, y  + O and t:.. z  + 0 ,  we have 

t:,,v av 
� - _y 

t:.. Y - a Y ' 

t:,,v a v 
z z 

t.z - a z and t.� = dl,l 

Consequentl y ,  we may write in general 

Now, 

or 

1 dl,l - -
dl/- d t 

equation 

d 
d t  111 

V-

d 
d t  1 JJ 

av av av 
X y Z = - + - + -ax a Y  a z 

( 3  . 1 8 )  with the 

<pdl,l � = 111 d t d� 
l,l 

<pdl,l = Jfl (� d t  + 
l,l 

= v•V 

hel p of equation ( 3  . 22 )  

+ 1 JJ <p < v • v )  dl,l 
l,l 

<p (v •  V ) )  dl,l 

Using the definition of material derivative ,  we have 

and 

� _ j! 
d t  - a t + V• V<p 

d 
d t  l!J <p dlJ  = 

lj. 
111 <ft + V • vV + <p V •V) dl,l 
JJ 

= 111  * dV- + 111 v • ( <pV )  dl,l 
')j. lj. 

Finally ,  with the use of the Gauss d iv ergence theorem 

d 
d t 111 <pdlJ = 

l,l 
111 (Ji) dl/- + Fi (V•n) <pdS 
l,l at s 

319 

( 3 . 20 )  

( 3 . 21 ) 

( 3  . 22 )  

becomes 

( 3 . 2 3 )  

( 3  . 2 4 )  

( 3 . 25 )  

( 3  . 26 )  

(3 . 2 7) 

This relation is known as the Reynolds transport theorem . We note that 



3/10 

d 
d t J J J cj>dV. i s  the total rate o f  chang e of property ct> 

V. 

integ rated in a vol une V. .  

J JI cl!) d\L i s  the rate of chang e o f  property ct> contained 
¥ a t 

momentar il y in vol une JJ.  

V•n dS is the total flux of v ector V through dS and /::j ( v•n) cj>dS the 
s 

net flux of pro perty ct> across the sur face of vol une JJ .  
In the Reynolds  transport theorem cj> can be any scalar or v ec tor 

pro perty.  Let us ex amine the case <l> = p , where  p is the fluid density . 
We have 

d 
d t  1 J J pd¥ = 

V. 
!JI i.e. d'J/. + # (V• n) p d¥ v. a t s 

= JI! a� d'J/. + JI! v• ( pV) d'J/. v. a v. 

= JI! (.i.e. + v• C pV ) )  dV. v. a t 
( 3  . 2 8 )  

In the absence o f  sources o f  sin ks within vol un e  V. ,  the time rate o f  

c hange o f  mass must be e qual to zero , i .e . 

and 

d 
d t  JI! p dV. = 0 ( 3 . 29 )  

1£. + v• C pV )  = o 
a t ( 3 . 30)  

This i s  the equation of conservation o f  mass which is  red eriv ed b y  a 
more straightforward method in Chapter 4 .  

3 . 5  PATHLINES , STREAMLINES AND STREAKLINES 
Three generally  d i fferent types of curves are con sidered in the 

stud y of fluid motion : Pathlines ,  Streamlines and Streakl ines .  A 
pathl ine is the path or traj ectory traced out by a s ingl e fluid particl e 

ov er some period of time . To determine a pathl ine we may identify a 
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fl uid with a l uninous d ye and then take a long exposure photograph . The 

c urve appear ing on the photograph would be a pathl ine . The pathline i s  
d escribed in the Lagrangian frame ( see Fig .  3 . 1 ( a) )  by 

r = 
-
r ( � 0 , t) ( 3 . 3 1 ) 

The streamline is  a l ine which is  tangent to the d irection of flow a t  

ever y  point i n  the flow field . I f  a camera were to take a very short 
t ime exposure of a flow field , each particle v.Quld trace a short path 
which would ind icate its velocity d ur ing that interv al . A curve drawn 
tangent to these v el ocity v ectors would be streaml ine . Since a stream-
1 ine is tang ent to the v elocity v ector there could not be any flow 
across a streaml ine . 

From equation ( 3 . 3 ) the veloc ity of the fluid particle in the 
Lagrangian frame i s  

dr 

v = d t = v < �o ' t) ( 3 . 32 )  

A g eometr ical representation o f  a streamline is  g iv en in Fig .  3 . 3 .  
Since ds and V are in the same d irection 

dx = dy 
= 

dz  
V X V y V z 

( 3 . 33 )  

A streakline i s  a l ine joining the temporar y location of all the 
par ticles that have passed through a given point in a flow field . A 
pl une o f  smoke or dye injected at one point gives a strea kl ine . Some 
pathl ines  and streakl ines for an unsteady flow field are shown in Fig .  

3 . 4 .  
In stead y flow, the veloc ity at each point in the flow field 

remains constant with t ime . Consequently , the streaml ines remain 
unchanged as time passes .  Since there is no flow across a streamline , 
all particles passing fran a point in space will remain on a g iv en 
streaml ine .  Thi s means that in stead y flow, pathl ines , streamlines and 
streaklines coincide . This is not true , howev er , for unsteady flow . 
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Fi g .  3 .3 Streamline in a flow field . 

x ,y 
t=B 

s 

...., ____________________ .,..x 
0 

Fig . 3 . 4  Pathlines o f  particles passing through ( x ,  y) at times a 

and strea kl ines indicating the posi tion o f  particles at 

times t .  
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3 . 6 ROTATION , VORTICITY AND CIRCULATION 
A fluid element can be subj ected to three types of flow , namely :  

transl ation , rotation and deformation . These types o f  elemental motions 
are depicted in Fig . 3 .  5 .  The concept of tran slational motion is sel f
evident . The d eformational motion will be examined in greater detail in 
the chapter on constitutive equations . Here it suffices to say that i f  
the relative orientation o f  the ax is a s  shown in Fig .  3 . 5  changes the 

flow i s  said to be deformational .  Deformational flow also ex ists  i f  one 
or more ax i s  are stretched or compressed . Here  we focus our attention 
on rotational flow, which i s  depicted by the fluid el ement of Fig . 3 .5  
turning around . 

Let us examine the flow in a fluid with circul ar streaml ines as  
shown in Fig . 3 . 6 .  The fluid rotates li ke a r igid body . Each element 

turns around at a certain angular velocity.  The arrows shown rotate at 
the same rate . This is unquestionably a case o f  rotational flow. 

Now let us consider the flow between two hori zontal flat plates , 
where the bottcxn plate is  stationary while the top one moves at velocity 
VO as shown in Fig .  3 .  7. We note that the hor i zontal arrow is simpl y 
translated , while the v ertical one turns . It is not clear whether this 
is a case of rotational flow or not . To determine that we propose to 
use the average rate at rotation of the two arrows as a measure . If the 
aver age  rate of rotation is zero the flow is said to be irrotational , i f  
not the flow i s  rotational . For general ity we refer to Fig . 3 . 8 .  We 
d efine the ang ul ar velocity w about the ax is z as  the average rate o f  z 
counterclockwise rotation of the two l ines 

w = 

In the l imit o f  small angles 

da 
d t  = 

� = d t  

1 ( da _ �) 2 d t  d t  

we would have 

b.Y b. y 
d (�) d (�) 

b.X b.t = d t  dx  

b.X b.X 

d(-a )  d (-a )  
b.Y !).t = d t  dy  

( 3 . 34 )  

a v 
= _y 

a x  
(3  . 3 5 )  

av 
X 

ay ( 3 . 36 )  
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T R ANSLATION 

ROTATlON 

DEFORMATION 

Fig .  3 .5 Three types of  fluid motion . 

Fig . 3 . 6 A fluid rotating l i ke a rigid bod y .  



Fi g .  3 .7 Shearing flow between two flat plates . 

y 

AX 

a 

Fig .  3 . 8  Change of  relative position o f  arrows 
AX and A Y in an arb itrary flow field . 

· AX 
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Thus , 

1 wz = 
2 

Sim i l arl y 

wx = 1 
2 

1 Wy = 2 

av av y X 
(- - -) ax ay 

av av 
(-z - �) a y a z  

av av 
(-x z - -) a z a x 

( 3  . 3 7 )  

( 3 . 3 8 )  

( 3 . 39 )  

The vector w = 1wx + Jwy + k wz i s  thus one- hal f the curl of the 

v elocity v ector 

i j k 
1 

VxV 
1 a a a 

2 2 a x  a y a z  ( 3 . 40) 

V V y z 

or , e quivalentl y in index notation 

w = ( 3 . 4 1 ) 

Referring b ac k  to the simple flow configuration of Fig . 3 . 7  we note tha t 

The flow i s  rotational . 

V : V : 0 
y z 

V = V y X 0 

To avoid the factor 1 /2 we define the vorticity r; a s  e qual to twice 
the rotation v ector � .  Then 

r; = 2w = vxV ( 3 . 42 )  



with com ponents 
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av av 
= (-2 - -Y) ( 3 . 43 )  z; x a y a z 

a v  a v  X Z z; y = <
32 

- ax) < 3 . 44 )  

av av 
z; = (-Y _ _  x) ( 3  . 45 )  z ax a y 

The quantity v•  ( vxV) i s  the divergence o f  v orticity.  It  can be easily 

shown that 

v• <vxV)  = o ( 3  . 46 )  

or 

This i s  known as the e quation of conservation of vorticity.  

In  cal cul us boo ks the closed line integral of a vector is g iv en the 
n am e  c i r cu l a t i on , I f  the v ec to r  r e pr e se n t s  a for c e  field  t h e  
circ ul ation i s  e qual to the wor k  done i n  moving a particle around the 
closed l i ne . This nane has a spec i fic meaning when the v ector 
represents the velocity and is d enoted by the Gree k l etter r ( gamma) 

r = 1> V • dr 

From Sto ke s' theorem ( see Appendi x  A)  we hav e 

r = </> V• dr = fl  ( vxV)  • ndS = Jf  � •ndS 
C S S 

( 3  . 4 8 )  

( 3 . 49 )  

Thi s  means that the circul ation i s  e qual to the total vorticity i n  the 
area S bounded b y  the contour C .  

It i s  possible to have a circul atory motion and the flow to b e  
irrotational . This i s  shown i n  Fig . 3 .  9 .  The average rotation o f  the 
arrows is zero ( because the d iagonal s are paral lel ) . The v elocity i s  
inv ersely proportional to the r ad i u s  ( see al so Section 1 1 . 3 ) . It i s  
physically impossible for such a motion to exist up to the center 
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flow 
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because the v elocity tends to imfinity.  Therefore , a reasonable 

a ssunption is that there ex ists a central core where the flow is that o f  

a sol id bod y or v er y  nearly so . Such a comb ination i s  called a vortex 

or eddy . 

3 . 7 ONE-, TWO- and THREE-DIMENSIONAL FLOW 
When the flow parameters , v el ocity and pressure , v ar y  in all three 

coordinate d irec tions the flow i s  termed three-dimensional . Man y 

problems , howev er , can b e  greatl y simpl ified when all signi ficant 

v ariations occur in t'l<K> coord inate d irections . The flow field can then 

be fully d escribed in terms o f  

V : V ( X ,  y) 
X X 

V : V ( X ,  y) 
y y 
p : p( X ' y) 

( 3 . 50 )  

and is termed two-d imensional . In another class o f  problems we may have 

v ar iation of a s i ngle v el ocity component in one d ir ection onl y ,  i .e .  

v : v  ( y) whi le the pressure v ar i e s  in another d irection , i .e .  p: p( x) . 
X X 

This i s  the case o f  unidirectional flow because the fluid flows in one 

d irection onl y  a s  shown in Fig .  3 .  1 0 .  The fluid flows in x-direction 

under the influence of a pressure grad ient d p/dx . 

Sometimes we use the one-d imensional flow approximation in which 

all flow parameters may be expressed as functions of one space coord i
nate onl y .  In pipe flows we may assume that the veloc i t y  and pressure 

v ar y  only in the ax ial d irection and we may neglect any v ariation over 

the crosS- sectional area . Thus the veloc ity profile is flat as shown in 

Fig . 3 .  1 1  • Actual l y  such a case i s  never true in the strict sense 

because the fluid v iscosity introduces the no-sl ip cond ition at the wall 

and produces a v el ocity that decrease s  to zero at solid bound ar ies . 

Neverthel ess , the one-dimensional assumption is v er y  useful in the 

anal ysis of gas flows ( see chapter on compressible flo w) • 

Ax isymmetr ic flow can be anal yzed in the t'l<K>- d imensional sense 

because all flow parameters can be ex pressed as func tion s  at two space 

coord inates ( x  and r) . 

If one or more flow parameters v ar y  with tim e the fl ow i s  said to 

b e  unsteady. If there i s  no v ariation with time the flow i s  said to b e  

steady .  
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Fig. 3 . 1 0  Unidirectional flow · 

Fig . 3 . 1 1 One-dimensional flow. 
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CHAPTER 4 

CONSERVATION OF MAs·s 

4. 1 THE DIFFERENTIAL CONTINUITY: EQUATION 

· The philosophioal recognition tha� matter c.annot be created nor 

destroyed was first olearly stated by the Greek philoso pher Anaxagoras 

in the 5th century B. C .  This principle was reiterated by suoh natural 

philo so phers as Sir Francis  Bacon ( 1 6 th century) � but the first 

experimental proof was made ,  on the basis of precise weight measurements 

involving ohemical reactions , by the French chemist Antoine Lavoisier 

( 1 8th century) . In the light. of modern physics this principle was 

ex tended to inol ude the sun of mass and energy, because mass can be 

conv erted to energy and vioe-versa . We will use this principle in the 

classical sense , that is by neglecting any mass generation from or 
2 conv ersion to energ y,  thereby disregard ing Einstein' s  equation E = me 

Let us consider a control vol une lJ'. hav ing a surface S w1 th its 

bowdaries fixed in space as shown in Fig . 4. 1 .  A fluid is assumed to 

flow through this volune in . arbitrary directions . The principle of  

con·serv at ion of  mass for this control vol une can be stated as 

rate of 

mass 

in 

rate of 

mass 

out 

= 

rate of 

mass 

ace unulation 
( 4 .  1 )  

• 
1he rate of mass now is generally denoted by m ( i .e . kg/s) . We will 
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z 

y 

Fig . 4 . 1 A control volune in a flow field 
z 

m z+t:..z 

F ig. 4 .2  Infinitesimal volune element t:.xt:J.yt:.z 

X 
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derive the d ifferential equation for the conservation of mass b y  
applying the above principle for a volume element 6.xt:.yt:.z within the 
control vol um e  'J/., which is al so fix ed in space as shown in Fig . 4. 2 .  In 
this figure �

x is the rate of mass in , in the x d irection crossing the 
• 

vol ume face per pend icular to x and passing through O ( x , y , z) . m i s  
X+/::,. X  

the rate of mass out through the face which i s  per pend icular to x at 
• • 

X+6. X .  The quantity m may be related to mx with the hel p of the 
X+/::,. X  

Ta ylor series 

• 
m x+t:.x 

2 
= � + i._ ( � ) 6.x + a ( � ) ( 6. x )  

x a x  x ax2 x 2 ! 
a • ( t:.x ) 3 

+ ( m ) 
ax3 3 ! + 

( 4 .  2 )  

Because t:.x is an infinitesimal the higher powers are negl ig ible with 
respect to the term containing t:.x . Thus , we may write 

By analogy ,  we may 
d irections 

m = m + i._ ( m ) 6.x x+t:.x x a x  x 

write for the rate of 

• • a • 
m = m + - ( my) 6.y y+6.y y a y  

• . a • 
m = m + - ( m ) 6.z z+t:.z z a z  z 

( 4 .  3 )  

mass flow in  the other two 

( 4 .  4 )  

( 4 .  5 )  

By summ ing up equations ( 4 . 3 ) , ( 4 . 4 ) and (4 . 5 )  and rearrang ing , we yet 

The fir st sum of  terms on 

= - [!x < �
x ) t:.x + !y < �y ) t:. y  + !z < �z) 6. z] 

( 4 .  6 )  

the left hand side of e quation ( 4 . 6 ) , 
represents the rate of  mass in and the second sum of terms the rate of  
mass o ut of  the volume element 6.x 6.y6.z.  The rate o f  m ass flow m is the 
product ( density).>< ( veloc ity) >< ( area) . Thus by denoting vx ' v y and vz the 
v elocities in the x ,  y and z d irections respectiv ely we may write 

• 
m = p V 6.Y 6. Z X X 
• 

( 4 .  7 )  m = p V 6.X 6. z y y 

m = p V 6.Y 6.X z z 
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Then , b y  introd uc ing these relations in the right hand side of e quation 

( 4 . 6 ) , we g et 

rate of 
mass 

in 

rate of 
m ass = 
out 

[:x ( p  vx ) + :Y ( p  v y) + :z ( p  v z ) J  ax  ay a z  

The rate o f  m ass acc unulation within the vol une element is 

a at ( p  ax ay a z) 

Because the volune is fixed in space ( constant) , we may write 

rate of 
mass 

acc umulation 
-2..Q. : 6. X  /J. y  6. Z  a t  

Thus the conservation principle for the vol un e  element becomes 

a ( pv ) X 
[ a x  

a ( pv ) 
+ --�y_ + a y  

a ( pv ) 

a z 
z J ax  ay a z = 

or , by eliminating the vol une axayaz <= constant) 

a p  
a t  ax  ay az  

· ap  a a a - + - ( n  V )  + - ( p  V )  + - ( p  V )  : 0 a t  a x  � x a y  y a z  z 

( 4 .  8 )  

( 4 .  9 )  

( 4 . 1 0 )  

( 4 . 1 1 )  

This is the d ifferential e quation for the conserv ation o f  mass , which is  

often called the equation of continuit y .  In symbol ic v ector notation we 

may write e quation ( 4 . 1 1 )  as 

where p 

time . 

In 

..2..2. + V • ( p  V) = 0 ( 4 . 1 2 )  a t  

is the density ( scal ar) , v is the veloc ity v ector and t denotes 

V • < P V) is the d iv e rg ence o f  the vector p V .  

cartesian index notation this equation may be written as 

ap  
at + a .  ( p  vi ) 0 ( 4 . 1 3 )  

Obviousl y ,  equation ( 4 . 1 3 )  can be ex pressed in the form o f  equation 

( 4 . 1 1 )  by applying the range and surnnation conv entions of Append ix A .  

The continuity equation i n  cyl indrical and spherical coord inates is 

g iv en in Append ix D .  

For a fluid of constant density the continuity equation reduces to 



( incompressible fl uid ) v • V 
av X = 
a x  
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= 0 ( 4 . 1 4 )  

Thi s  equation i s  used fr e quentl y not onl y for l i quid s which are nearly 

incompress ible , b ut al so for g ases at rel ativ el y low flow v elocities . 

As it i s  shown in the chapter on compr essible flow a gas may be 

considered incompress ible for speed s up to about 30% of the speed o f  

sound . 

4 . 2 THE INTEGRATED CONTINUITY EQUATION 

We will integrate the continuity e quation ov er the vol une V. of Fig . 

4 . 1 .  Thus 

!!! a p  < pV ) )  d\L 0 (
at + 'v • = 

V. 
( 4 . 1 5 ) 

or 

ff! ( i.e.) dV. = !ff 'v • ( pV) dV. at  V. 
( 4 . 1 6 )  

Let n be a unit vector normal to the surface S enclosing the vol une \L ,  

By appl ying Gauss' d iv ergence theorem for the vector field pV , we get 

!ff 'v • < pV ) d\L = # pV • n d s  ( 4 . 1 7 )  
s 

Thus , 

!!! (i.e.) d\L = I=! < pV • n) dS 
V. a t s 

( 4 . 1 8 )  

Equation ( 4 . 1 8 )  is the integral continuity equation . The left hand side 

of this e quation is the acc umulation term for the whole vol une 'lJ. o f  

fl uid . Obv iousl y i f  the fl uid i s  incompr essible a p / a t  = o and this term 

drops out . The dot prod uct V• n can be interpreted as the proj ection o f  

v ector V in the d irection o f  n which is normal to the surface d S .  Then , 

the prod uct ( p V • n) d S  is the rate o f  m ass flow through the surface S .  
The integral 

# p V • n d S  
s 

r epresents the total rate of mass out of vol une V. ( because n points 

o ut ward s) which is completely enclosed by sur face S. Thus e quation 

( 4 . 1 8 )  simpl y states that the rate of mass accunulation within the 
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volune is equal to the negative mass rate of flow out of this vol un e .  

We will now apply the integral continuity e quation to the branching 
flow problem ill ustrated in Fig . 4 . 3. It is assumed that the fluid 

d ensity does not v ar y  with time but may v ar y  with po s i tion ( i .e .  
a p / a t=O , p 1 i p 2 i p 3 ) .  Therefore , equation ( 4 . 1 8 )  becomes 

# p V . • n dS = o ( 4 . 1 9 )  

V 1 , v2 and V3 represent the v elocity v ec tors at positions 11 1 11 , "2" and 
"3 11 and n1 , n2 and n3 the correspond ing unit vectors normal to surfaces 

A 1 , A2 and A
3 • Note that V 1 is in o ppo site d irec tion to n

1
. A 1 , A2 , A

3 
are the areas and p 1 , p 2 , p 3 the densities at po sitions 11 1 11 , "2 11 and 11 3 11 

respectiv el y .  Thus , we may write 

The dot product between a v ec tor V and the unit v ector n is the 

proj ection of v onto n and it is equal to the magnitude of V , which is 

here d enoted simply as V, because V and n are parallel v ectors . 

v 1 • n 1 = -v 
1 

v2 . n2 = v2 

Further assum ing that neither densities nor veloc ities var y over their 

respective areas , we get 

for a single pipe this e quation becanes 

E x ample 4 ,  1 

The velocity field in an incompr essible fl uid is giv en by 

V = x 4 y z2 I +  ( x 3 y2 z2 - 1 / 2  y2 ) 3 - (2 x 3 y z3 - yz) K ,  



Fig . 4 .3  Branching flow 
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z = water level 

Fig. E .4 .2 
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Show that this velocity field satisfies the continuity equation . 

Solution 
For an incom pr essible fluid 

Here . we hav e  

av av a v z v • V = ___! + -y + -- = 0 a x  a y a z 

y) - (6 x 3 y z2 - y) = O 

This  is identical to zero for all values of x .  y ,  z .  

Example 4 . 2 

A v ertical c yl indrical tan k of 1 m in d iameter is being filled wi th 
water at a rate of 1 1  kg per m in ute . Water al so escapes from a hole o f  

5 cm d iameter at a veloc ity o f  10 cm/ s .  Determ ine the rate at which the 

water lev el in the tank is rising or fall ing . 
Solution 

A simple mass balance , by taking the c yl indrical tank as our 
control vol ume • g iv es 

Therefore 

• • dm ( m\n - ( m) out = d t  

< �\n = 1 1  kg/min = 1 83 . 33 g/ s 

2 
� 

X ( .!......2...._ cm 2 ) 
X 

1 0  � : 1 96 • 25 g/ S 
3 4 s cm 

dm 
d t  = 1 83 . 33 - 1 96 . 25 = -1 2 . 92 g/ s 

Which means that the water lev el in the tank is  fall ing 

dm 
d t  = P A vtank = P A dz 

d t  

-1 2 . 92 � = s 

dz 
dt = 

� x ( � 1002 
cm2 ) dz  

3 4 X d t  cm 

-0 . 0052 cm/ s 

which means that the water level is fall ing at a rate o f  0. 0052 cm/ s .  
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Example 4 .3 

A piston mov es with a constant velocity V inside a cyl inder o f  
d iameter D ,  which is filled with a l i quid . The l i quid leaving the o pen 

end o f  the c yl inder is assumed to hav e a conical v elocity profile as 
shown in Fig . E.  4 .  3 .  Detenn ine the vol une rate o f  flow leav ing through 
the two ex haust holes . 
Solution 

From equation ( 4 . 1 8 )  

l l l ( l.e.) d¥ = ¥ a t  # ( p V • n) d S  
s 

The fl uid d ensity does not change with time : a p/ a t  = O .  Therefore 

or 

where 

Therefore 

l=i ( p  V • n) dS = o 

s 

11 c p v
P 

• n) ds + 11 c p v • n) ds + 11 c p v • n) d s = o 
A holes h A 

A = the cross-sectional area o f  the cylinder 
V p 

= the v elocity o f  the piston 
V = the veloc ity of the liquid leav ing throug h the open 

end : V 
= V m ax ( 1 - 2 ( r/D ) )  

fl ( p Vh • n) dS = the mass flow rate leav ing through the 
holes 

- P 

- V  p 

Q 

ex haust holes , p Q = ( density) x 

( vol une flow rate) . 

,r 
D2 • D/2 

V -4- + p Q + l p V 21rrdr = p 
0 

,r 
D2 . D /2 

-4- + Q + 2,r l V max 
0 

,r 
D2 

D2 = V - 2
,r 

V p 4 max 

,r 
D2 

D2 V V 4 - 21T p max 

,r 
D 2 

(V 
1 

) = 4 - - V p 3 max 

( 1  - 2 Ci) )  

[ c..! 
2 

( .!: ) 2 D 

1 2 
[8 - 24 ] 

2 

3 

rdr = 0 

3 1 /2 

c.!: ) J D 
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CHAPTER 5 

BASIC CONCEPTS OF FLUID 

DYNAMICS 

5 . 1  INTRODUCTION 
The word d yn amics i s  derived from the Greek word dynamis , which 

mem s  force . Dynamics is the branch of mechcn ics which i s  devoted to 

the study of the relationships between forces an d  the motions that they 

cause . 
The forces acting oo a fluid are generally characterized either as 

body forces or surface forces. Body forces act on every mass elemen t of 
the body and are proportional to the total mass of the bod y .  The gravi
tatioo al force , electromagnetic or centri fugal forces are body forces . 
These forces are exerted on an arb itrary body without the necessity of 
physical con tact between the body and the surroundings where such a 
force is presen t .  

01 the cootrary surface forces , as the n ame implies , require a 
surface coo tact with the surroundings causing these forces .  Pressure 

c11d the viscous resistance forces, which are described in Chapter 1 ,  are 
surface forces . 

In the case o f  static eqt,tilibrium ( Fluid Statics) the body an d  
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surface forces ca1cel each other . When motion i s  involved the algebraic 
sum of body and surface forces must be proportion al to the mass times 
the accel eration of the body ( Newton ' s  second law of motion ) . 

5 . 2  DEFINITION AND NOTATION OF STRESS 
It is easier to illustrate the con cept of stress for a solid body 

rather than a fluid . Of course , both sol id s an d fluids , whether liquids 
or gases , are con tin ua and the var ious defin i tion s are appl icable 

irrespective of the physical state . 
Let us con sider a body subjected to forces as  shovKl in Fig .  5 . 1  ( a ) . 

We pass a cuttin g  plan e  through the body an d draw a sketch of the lower 

hal f as shovKl in Fig .  5 . 1  ( b ) . Assume that a d istributed load acts over 
the en tire cross section and con sider a con cen trated force F actin g on a 
smal l area A .  Resolvin g  F in to Fn , a n ormal compon en t , and F s ' a 
tangen tial compon en t , as sho\<Kl in Fig.  5 . 1  ( b ) , we can defin e  the n ormal 
stress as 

IF  I 
N tim n 

A A + 0 
( 5 .  1 )  

and the shear stress as 

s iim 
I F  s I 
A A + 0 

( 5 . 2 )  

where 1Fn I en d  I F  s I are the magn itudes o f  the force vectors Fn a1 d F s , 

respectively .  
It should be n oted here that while forces are vector s ,  the 

correspon d in g  stre sses  are scalars , an d have un its  of force d iv ided by 
2 area (Nim = Pa) . 

It i s  customary to choose a system of coord in ate s with x an d  y 
parallel to the cutting plan e an d further resolv e the tangen tial force 
in to a compon en t in the x direction an d an other in the y direction . 
Thus , the force v ector acting on i t  i s  resolved in to on e  n ormal and two 
ta1gen tial compon en t s .  The correspon d in g  stresses are d efined by 
divid in g  the magn itudes of the force compon en ts b y  the area . 

Let us n ow coo sider an in fin eti simal volume elemen t formed by six 
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cutting planes as shoW1 in Fig .  5 . 2 .  There will be on e n ormal stress 
and two shear stresses for each of the three pairs of planes  as shovKI in 
the figur e .  Thus , to defin e the state of stress at a poin t in a 

con tin uum , we n eed n in e  stress compon en t s .  These stress compon ents  form 

a'l array of n in e  scalar quan tities which coo be written as 

Txx T T xy x z  
TyX Tyy T yz 
Tzx Tzy T zz 

or equivalen tly 
T 1 1  T1 2  T1 3  
T2 1  T22 T23 
T3 1  T32 T33 

It coo be shoW'I rigorously ( see Appen d ix A) that the stress array obeys 
a l in ear tran sformation law an d i s  therefore a ten sor . Thi s ten sor i s  
denoted in symbolic form as 

or in Cartesian index n otation as 
T • •  

l.J 

The stress is a symmetric ten sor , therefore Tij = T ji which mean s Txy = 
� T - T etc 'yx ' xz - zx • 

To den ote the v ar ious stress compon en ts we use certain conven tion s 

which are followed b y  most authors in North Amer ica . Namely 

( i) the first sub script i refers to the plan e  which is n ormal to the i 
ax i s  an d on which the stress acts ( ind icate s the rows in matr ix 
n otation ) 

( ii )  the second sub script j refers to the coordin ate direction j of the 
stress ( ind icate s column s in matrix n otation ) . 

Thus , Txy is  a shear stress which acts on a plan e  n ormal to the 
x-ax i s  an d in the y-d irectioo . T is a n ormal stress which acts on a xx 
pla1 e  n ormal to the x-ax i s  and in the x-direction . 

When makin g force bal an ces  a sign convention i s  also n ecessary : 
Stresses are positive i f  ten sile and n egative i f  compressive .  



y 

Tzx 

Txz 

'l"'yz 

'yx 
z 

Tyy 

X 

Fig. 5 .2 Stresses exerted on three plm es of an el emen tal 

parallelepiped . 
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Pressure is a n ormal stress and compressiv e ,  therefore , it i s  

n egative according to our conven tioo . 

stress ten sor as 

Thus , we may write the total 

- p+,1 1 ' 1 2  '1 3 = 
p6  + 

= = '( = p o . .  + '( . . => '21 P+•22 '23 (5 . 3 )  l J  l J  

'3 1 '32 
- P+<33 

'f is often called the deviatoric stress ten sor . The deviatoric stress 

ten sor i s  related to the deformation ( for solid s)  or the rate of 

deformation ( for fluids ) .  In the simple shearing flow of a Newtonian 

fluid between two flat plates of Chapter 1 ,  we had 

We may write in general 

dvx 
'yx = 'xy = µ ( dy ) 

' ·  . l J 

av . 
= function of  (--J )  ax . 

l 

Such relations  are called constitutive equations ( see Chapter 1 6 ) . 

4 . 3  PROBLEM SOLVING IN FLUID DYNAMICS 

( 5 . 4 )  

A flow field can b e  fully described in terms of the three velocity 

components (v , v , v ) ,  the pressure p ,  the density p , and the tempera-x y z 
ture T .  To determine these quantities we must first express mathematic-
ally the conservation principles of mechanics [ 1 ] .  These are the con

servation of mas s ,  conservation of momentum and conservation of energy . 

Momentum i s  a vector quantity and thus the principle of conservation 

yields three scalar equation s .  In addition , a thermodynamic equation o f  

state relating p ,  p and T is needed . To summarize we may write 

UNKNOWNS 

6 

EQUATIONS 

conservation of mass 1 

conservation of  momentum 3 

conservation of energy 1 

equation of state p = p ( p , T) 1 

6 
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Thus, we have 6 equations and 6 unknowns and in principle we can obtain 

solutions to all flow problems if we can come up with the appropriate 

methods and techniques. However, such general solutions are extremely 

complicated and often virtually impossible. Actually most problems (but 

not all) can be reasonably well approximated by determining two or three 

of the above variables. For example, the unidirectional flow problems 

require only the determination of one velocity component and pressure 

(v ,p). Two-dimensional problems require v , v and p. 
X X y 

Thus to obtain solutions to flow problems we will invoke some 

classical approximations, such as unidirectional flow (Chapter 7), 

creeping flow ( Chapter 8), boundary layer flow ( Chapter 9), inviscid 

flow (Chapter 11), and one-dimensional flow (Chapter 15), 

In problems involving turbomachines we use, in addition, the 

principle of conservation of angular momentum (see section 6. 7). 

In Magnetohydrodynamics we need also the equation of conservation 

of charges and Maxwell's equations of electromagnetism ( see Chapter 1 7). 

5. 4 SIMILARITY AND MODELLING 

Two flow fields are said to be similar if all their corresponding 

important parameters are one by one proportional. These parameters can 

be geometric, kinematic or dynamic. 

Geometric similarity means that all geometrical boundaries and the 

corresponding interior points between two flow fields are different by a 

constant scale. Kinematic similarity implies that the velocity ratios 

at corressponding points between two flow fields are constant. Dynamic 

similarity means that all ratios of the corresponding forces in two flow 

fields are constant. The forces that control the motion of fluids are 

usually inertia, pressure, viscous (stress) forces, gravity, and surface 

tension and electromagnetic forces for conducting fluids. The various 

force ratios are dimensionless numbers and are given specific names. 

The Reynolds number, which was introduced in Chapter 1, represents the 

ratio of inertia to viscous forces. The ratio of inertia to gravity 

forces is called the Froude number (see section 6.8). We have 

P VL 
Re =-

µ
-(Reynolds number) (5,5) 
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Fr v2 

(Froude number) (5.6) = gL 

In the above expressions p is the fluid density, µ the viscosity, V a 

characteristic velocity and L a characteristic length. 

Let us consider the flow of fluids in two long horizontal pipes of 

different diameters. It is well known that the flow in such pipes is 

governed by the inertia and viscous forces. Consequently, the Reynolds 

number in the two pipes must be the same, i.e. 

(Re)1 = (Re)2 (5.7) 

in order for the two flow fields to be completely similar. By taking 

the average velocity as the characteristic velocity and the diameter as 

the characteristic length, we have 

(5.8) 

This means that the two flow systems might have totally different p,V,D 

or µ but they will behave in the same manner if the above relation is 

satisfied. This in turn implies that we can use small scale models in 

order to determine the flow behavior of larger prototypes. Such small 

scale models are commonly used to predict the performance not only of 

pipelines but also of aircraft, ships, fluid machinery, bridges and 

other structures. The models are vastly less expensive and can be well 

instrumented for testing in wind tunnels, water tunnels or towing tanks. 

The Reynolds number is just one of many parameters used in 

similarity analysis and modelling. For free surface flows the gravity 
forces are also important in addition to the inertia and viscous forces. 

Thus, both the Reynolds number and the Froude number must be matched 

between model and prototype, i.e. 
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pmVmLm pPVPLP 

µm µp 
(5.9) 

and 

v
2 

v
2 

m 
�Lm 

= gL p 
(5.10) 

In other flow problems the behavior may also be governed by such forces 

as pressure and surface tension and may involve energy and mass transfer 

phenomena. For such problems the proper dimensionee.s, groups (numbers) 

must be considered which express the ratio of the forces involved. 

These groups appear in the appropriate sections of this book. 

The analysis of flow problems in terms of dimensional groups is 

called dimensional analysis. In this method the objective is the 

determination of the functional relationship between certain flow 

quantities and the appropriate dimensionless groups. For example for 

flow through pipes it has been found that the flow resistance which is 

expressed by the pressure drop between two locations in the pipe is a 

function of the Reynolds number. This is usually written in the form of 

the so-called friction coefficient as 

2AP /L f = �D = F(Re) 
pVavg 

PV D 
= F( 

avg 
) 

µ 
(5.11) 

where Ap is the pressure drop between two points L distance apart in a 

pipe of diameter D and with average velocity of Vavg
· For laminar flow (Re< 2100) it has been found that 

64 f = Re 

for turbulent flow in smooth pipes (Re> 2100) 

f = 
0.316 
(Re) 1/4 

(5.12) 

(5.13) 

A formalized procedure for the identification of the proper 

grouping of dimensionless terms has been developed which is based on the 

so-called Buckingham's pi theorem. According to this theorem a function 
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of n independent physical variables x1, x2, ••• , xn 

f( x 1 , x 2, ••• , xn) = 0 (5.14) 

can be expressed as a function of n-m dimensionless groups of the 
original n variables. 

• • •  1rn )= 0  -m (5.15) 

Each group is called a pi group and may contain any number of the 

independent variables x 1, x2, ••• , xn. m is the number of the primary 
units, which in fluid mechanics are usually three (length, time and 
mass). 

[2-4]. 
Detailed description of this method can be found elsewhere 
Nowadays, this procedure is seldom used, Instead, it is 

preferable to work with the dimensionless forms of the conservation 
eauations and thus identify directly the important dimensional groups 
( see Chapters 13 and 14) . 
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CHAPTER 6 

CONSERVATION OF MOMENTUM 

6.1 THE LINEAR MOMENTUM BALANCE 

The first significant advance in understanding motion was made by 
the Italian astronomer and physicist Galileo who discovered· the 

principle of inertia: if a body is at rest or moving at a constant 
speed in a straight line, it will remain at rest or keep moving in a 
straight line at constant speed unless it is acted. upon by a force. 
Newton restated the Galilean principle of inertia which is usually 

called Newton's first law of motion. Newton's second law is a 

quantitative description of the changes that a force can produce in the 
motion of a body and can be stated as: the time-rate-of-change of 
manentum (mass x velocity) of a body is equal to the sum of forces 
acting upon it, or mathematically 

Ill d - . 
E r = dt (mV) (6. 1) 

This law as stated here applies to an identified particle moving in 

space, that is in the Lagrangian sense. In the study of fluid motion, 

however, it is difficult to identify a 11 fluid body1' and apply Newton's 

second law. It is therefore appropriate to reformulate the momentum 
principle in the Eulerian sense. We choose a vollllle of fixed size and 
position in space (control volune) as shown in Fig. 6. 1 and write a 
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z 

y 

Fig. 6.1 A control volume in a flow field 

Fig. 6.2 Uniform flow through a converging nozzle 



momentum balance in the form 

RATE OF 
MOMENTUM 

ACCUMULATION 

or mathematically 

where m represents 

Equation C6.3) 

RATE OF 
= MOMENTUM 

IN 

RATE OF 
MOMENTUM 

OUT 

the mass rate of flow. 

is a vector equation and 

SUM OF FORCES 
+ ACTING ON 

CONTROL VOLUME 

can be represented 

scalar equations i.e. for a rectangular system of coordinates 

d 
dt Cm 

d Cm dt 

d 
dt Cm 

vx) 

V ) y 

V ) z 

= Cvx\n 

= Cv ) . y 10 

= Cv z\n 

. 
min 

• 
m. 1n 

. 
m. 10 

C vx \ut 

Cv ) y out 

CV ) t Z OU 

• 
m out + E F 

X 

m out + E F 
y 

m + E F out z 
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C6.2 ) 

C6.3) 

by three 

C 6. 4 )  

C6. 5 )  

C 6. 6 )  

The above forms of Newton's second law are valid for a coordinate 

system fixed in space or any coordinate system translating with a 

constant velocity. These types of coordinate systems are usually 

referred to as inertial frames of reference [1,2]. 

6.2 APPLICATIONS OF THE LINEAR MOMENTUM BALANCE 

6.2. 1 FORCE ON A NOZZLE 

We will determine the force exerted by the fluid on the walls of 

the horizontal nozzle shown in Fig. 6.2. The fluid is assuned to have 

uniform densities p 1, p 2 and velocities V 1, V 2 at boundaries 1 and 2 

respectively. The flow is steady so that there is no variation of 

momentum with time. The momentum balance in the x-direction C equation 

C6.4)), for a control volune indicated by the broken line, gives: 

C6. 7) 
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The forces acting on the control volume in the x direction are 

(6.8) 

where A represents the cross-sectional area, p the pressure and Fwx the 

force exerted by the nozzle wall on the fluid in the control volume. 
• • • 

The principle of conservation of mass gives m1 = m2 where m1 = p 1 A1 v 1 
and �2 = p

2 
A2 v2 • Thus, the manentum balance becomes 

and, since vx1 = v1 and vx2 = V2 

(6. 9) 

(6.10 ) 

is the force exerted by the nozzle wall on the fluid in the control 
volume. Consequently the force exerted by the fluid on the nozzle wall 
should be opposite. 

The only forces acting on the fluid in the y direction are the 
weight W of the fluid and the force exerted by the nozzle wall on the 
fluid in the control volume Fwy· Thus the manentum balance in the y
direction (equation (6.5)) simplifies to 

and 

Example 6. 1 

0 = -W + F wy 

F = W wy 

(6. 11) 

(6.12 ) 

The fluid flowing through the nozzle of Fig. 6.2 is water (p = 1000 
kg/ms) and p 1 = 1000 kPa gage, p2 = Patm = 101.33 kPa, D1 = 2 5 cm, D2 = 
5 cm, v2 = 50 mis. 

Solution 
Water is virtually incompressible under these conditions P1 = P

2 
= 

1000 kg/m3• 
The principle of conservation of mass gives 

5 2 
= < 2 5) (50) = 2 � s 
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Then, introducing the numerical values in equation (6. 10), we obtain 

N N 3 ,r 2 3 N ,r ( 2 F = -(1000 - + 101.33 -
2

) x 10 x -4 C.2 5m) + 101.33 x 10 -
2 

-4 .05m) wx m2 m m 

+ 1000 k
� f [-(0.25m)2 (2 �)2 + (0.05m)2 (5 0 �)2 ] 

m 

= -54030 + 199 N + 4710 N = -4912 1 N 

= -49. 12 kN 

The negative sign means that the force exerted by the nozzle on the 
fluid CF wx) acts in the negative x direction. Therefore the force 
exerted by the fluid on the nozzle is 49. 12 N acting in the positive x 
direction. 

The question of a positive or negative sign in front of the 
external force term is often confusing. For this problem one might be 
tempted to introduce the negative sign in front of Fwx in equation 
(6.8), because one would expect Fwx to act in the negative x direction. 
Such practice, however, is not recommended. Very often the direction of 
an external force is not known beforehand and intuition might be 
misleading. It is preferable to introduce the force exerted by the 
surroundings on the fluid as a positive quantity in equation (6.8). The 

correct direction of the force would thus be determined after the 
introduction of the numerical values. 

6.2.2- FORCE ON A PIPE BEND 

We will determine the force exerted by the fluid on the pipe bend 
shown in Fig. 6.3, The control volume is shown by the dotted line. 

We apply the manentum balance for steady flow in the x and y 
directions (equations (6.4) and (6.5) respectively). 
x direction: 

( V x2 
) m

2 
+ L F 

X 
(6.13) 

where 
(6.14) 

A represents the cross sectional areas, p the pressures and F wx the 
force exerted by the pipe wall on the fluid in the control volume. 
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Fig. 6. 3 Uniform flow through a pipe bend 

X 

Fig. 6.4 Liquid jet impinging on a moving blade 
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y direction: 

= ( vy 1) 
• 
m1 - ( V ) y2 

m
2 

+ L F y (6. 15) 

where 

L F = -p
2 A

2 y sin e + Fwy - w (6. 1 6) 

F represents the force exerted by the pipe wall on the fluid in the ,wy 
control volume in the y direction, and W the weight of the fluid. • • 

The principle of conservation of mass gives m1 = m
2
, 

where 

We note that 

= v1 

= v
2 

cos e 

= 0 

= v
2 

sin e 

Thus, we have in the x direction 

P1 A 1 v� - P2 
A

2 
v� cos e + P1 A 1 - P2 A

2 
cos e + Fwx = 0 

or 

p2 A
2 

cos A1 
2 A1 v2 

Fwx = e - P1 + P2 
A2 

V
2 

cos e - p1 1 

and in the y direction 

-P2 A
2 

v� sin e - P2 
A

2 
sin e + F wy -W = 0 

or 

F = wy w + P2 
A

2 
sin e + P2 

A
2 

v2 

2 
sin e 

(6. 17) 

(6. 18) 

(6.19) 

(6. 20) 

It is repeated here that Fwx and Fwy represent the forces in the x and Y 
directions exerted by the pipe walls on the fluid. Consequently the 

forces exerted by the fluid on the pipe bend should be opposite. It 

should also be noted that in setting up the linear manentum balance 

(equations (6.13) through (6. 16)), Fwx and F were assumed to be wy 
positive i.e. acting in the positive x and y direction respectively. 

Whether this is the case in a particular problem it would depend on the 

numerical values of velocities, pressures, angle of bend, areas etc. 
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6. 2 • 3 FORCE EXERTED BY A JET ON A MOVING BLADE 

The blade shown in Fig. 6.4 moves at a constant velocity Vb and 
receives a liquid jet which leaves the nozzle at a velocity V. We will 

determine the forces in the x and y directions and the total force of 

the blade. 

We choose a control volume as shown in Fig. 6.4, which moves with a 

constant velocity equal to the blade velocity for steady flow . For 

steady flow the momentum balance in the x direction gives 

where Fbx is the force exerted by the blade on the fluid. v xl and v x2 
are the velocities entering and leaving relative to the moving control 

volume. We note that 

Thus, 

V x1 
= (V-Vb) 

vx2 = - (V-V b) cos e 
• 
m

1 
= m2 = p A(V-Vb) 

F bx = pA(V-Vb) [-(V-Vb) cos e - (V-Vb)] 
2 

= -pA(V-Vb) [cos e + 1] 

The x direction force on the blade should have the opposite sign. 

The momentum b alance in the y direction gives 

Obviously, 

Thus, 

V y1 = 0 

vy2 = (V-Vb) sin e 

Fby = pA(V-Vb) [(V-Vb) sine - OJ 

= pA(V-vbl sin e 

(6.22) 

(6.23) 

(6.24) 

This expression gives the force exerted by the blade on the fluid in the 

y direction. 

opposite. 

The force exerted by the fluid on the blade should be 
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The magnitude of the total force on the blade can be calculated 

from 
(6. 25) 

and the direction from 

tan e ( 6. 26) 

It should be noted that the weight of the fluid jet was not taken into 
consideration. 

Example 6 .2 

Consider a blade moving with Vb= 10 m/s. A water jet leaves the 

nozzle at 50 mis and has a diameter D = 5 cm. Determine the total force 

exerted on the blade if e = 60 °. 

S olution 

Introducing the numerical values into the equations of Section 

6.2.3.we obtain 
2 

Fbx = - ( 1000 k;) (rr 0
·�

5 m2) (50; - 10 ;)2 [cos 60° 
+ 1] 

m 

= -4710 N = -4.71 kN 

which means that the force on the blade would be Fx = 4.71 kN 

Similarly 
2 

= ( 1000 
k�) (rr 0

·�
5 m2) (50; - 10 ;) 2 sin 60° 

m 

= 2719 N "' 2. 72 kN 

or Fby = -2.72 on the blade 

The magnitude of the total force is 

IFI = {4.71
2 

+ (-2.72) 2 } 112 = 5.44 kN 
The direction is determined from 

tan e = 2 ·72 -0.5775 - 4.71 
= 

The negative sign indicates that the force acts downward as shown in 

Fig. 6. 4. 
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6. 2. 4 Ma-1ENTUM BALANCE IN ROCKET PROPULSION 

A rocket is driven forward by the reaction of an exhaust gas jet 

which is produced by a combustion of an appropriate fuel and oxidizer. 

We will apply the linear momentum balance for two problems: ( a) 

Stationary rocket on a test stand ( b) Rocket tr av ell ing in space. 

(a) Stationary rocket on a test stand 

A schematic diagram is shown in Fig. 6. 5(a). We apply the manentum 

balance, for the control volune indicated by the broken line, in the 
vertical z direction 

where 

d • 

d t ( m V z) = -( v z) out mout + E F z 

E F = -p A + Pe Ae + F TS z atm e 

( 6. 27) 

(6.28) 

Patm is the atmospheric pressure, Pe the pressure of the exhaust gas jet 

assumed uniform over the cross-sectional area of the exhaust Ae, and F TS  
is  the force exerted by the test stand on the fluid in the rocket. 

For a stationary rocket we may assume d/dt (m v2) = 0, This is not 

strictly correct because of the internal fuel motions. However if the 

amount of fluid which participates in these motions is small, it may be 

a reasonable approximation, Thus, 

(6.29) 

or 

-FTS = -(v ) m t + (p - p t ) A z out ou e a m  e (6.30) 

Obviously FTS and ( v2)out are directed in the negative z direction. The 

force exerted by the rocket on the test stand is usually referred to as 
thrust 

Thus, for a uniform exhaust 

Thrust = 

where 

Thrust = FR = -F TS 

velocity V = -(v ) t e Z OU we 

FR = V mout + (pe 
-

Patm ) e 

. 
m = Pe A V out e e 

have 

A e (6.31) 
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( a )  

Fig. 6 . 5  ( a) Stationary rocket on a test stand 

( b) Rocket travelling in outer space 
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( b )  
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Example 6 . 3 

Determine the rocket thr ust for a ground test if  the velocity of 

the exhaust g ases is 2 000 m/s and their pressure p = 150  kPa ab solute . 

Both velocity and pressure are assumed uniform over the exhaust area of 

500 cm2 • The mass rate of flow is assumed constant at 1 0  kg/s . 

Solution 

= 

= 

( 2 000 �) 

20000 kgm 
2 s 

= 2 2 . 4 3 kN 

X ( 1 0  kg) s 

+ 2 43 3  N 

N N 
X 1 03 -4 m2 + ( 1 50 2 - 1 0 1 . 3 3  2) X 500 X 1 0  

m m 

= 224 33 N 

It should be noted that pe > Patm because the exhaust gas j et i s  

super sonic ( see chapter on compressible flow) . For a sub sonic jet 

( uncommon for rockets) we would simply hav e Pe = Patm . The exhaust 

pressure p e for supersonic j ets is determined from the geometrical 

character i stics  of the nozzle and the gas pressure inside the rocket . 

( b ) R ocket travell ing in space 

It is assumed that the rocket moves in a straight l ine in outer 

s p a c e  ( Pa t m  = 0 ) , where w e  c a n  n e g l e c t  t h e  a i r  r e s i stance and 

grav itational force .  The rocket burns ex kg/ s  o f  fuel . Thus , i f  the 

initial mass of rocket and fuel is M for any subsequent instant o f  t ime 

we would have m = M - at . The exhaust gas j et velocity relative to the 

rocket i s  Ve and pressure Pe · The v elocity of the rocket relative to a 

system of coord inates fixed in space is VR . We will determine VR a s  a 

function of time . 

We choose a control volume moving with the rocket which i s  

ind icated b y  a broken l ine in Fig . 6 . 5 (  b) . The rocket i s  accelerating 

and this problem , therefore , should involve a noninertial frame o f  

reference [ 1 , 2 J .  We will use a simpl ified approach which prov ides a 

reasonable approximation . We write a l inear manentum balance for an 

inertial control vol ume moving with the rocket in the po sitive z 
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direction 

(6 . 32 )  

where the subscript r denotes the velocities relative to the control 

volune which moves at velocity VR with respect to a fixed system of 

coordinates. The only external force acting on the fluid in the control 

vol une is p A ( = E F ) which is obviously directed in the positive z 
,, e e z 
direction . 

The mass balance for this control volune gives 

dm 
dt 

= m out (6 . 33 )  

by multiplying the above expression by VR and adding equation ( 6 . 32 ) , we 

obtain 

( 6 .  34 ) 

We now assune that the internal velocities are small as compared to the 

rocket velocity VR (i.e. V r << VR). Thus , we may write 

d 
dt ( m VR) = - [ (V ) + r out VR J mout + Pe 

We note that 

m out 
= Ct 

m = M - at 
therefore 

d VR J 
- [ (V ) t + V R ] a + p A - [ (M-a.t) = 

dt r ou e e 

dVR d 
( M-at) ctt + VR d t  ( M-at) = -a(V ) t - aVR + p 

r ou e 

-a.(V ) t - a.VR + p A r ou e e 

dV R 
(M-a.t) d-t = -a(V ) + p A r out e e 

A 
e 

A e (6 . 35 ) 

( 6 .  36 )  

( 6 .  37 ) 

(6 . 38 ) 

( 6 . 39 )  

Assuming - (V ) = V is a uniform exhaust gas velocity relative to the r out e 
rocket , we have 
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(M-at) 
dVR 

aV A dt = e + Pe e 

dVR CaV A ) dt 
+ Pe M-at e e 

which integrates to 
aV + Pe VR = ( e e) in ( M-at) a 

here we assume VR = 0 at t = 0 and we obtain 

Pe Ae M 
VR = (Ve + a ) in C M- at) 

( 6 .  40) 

(6 . 41) 

+ c ,  (6 . 42 )  

(6 . 43) 

In this expression all the quantities (including Ve) should have 

positive numerical values , We note that the negative sign in the 
exhaust gas velocity was introduced in equation (6 . 40).  

6 . 3  GENERALIZAT ION OF THE LINEAR MOMENTUM BALANC E  
Newton ' s  second law of motion was formulated in section 6 .  1 in the 

Eulerian sense , that is for a control vol ume of fixed position and size 
as shown in Fig, 6 . 1 ,  and was written in the form 

d - - • - • -
dt (mV ) = (Vin min - Vout mout) + EF (6. 3) 

The left-hand side represents the rate of accumulation of manentum 
within the control volune . The term (Vin �in - Vout �out) expresses the 
net rate of manentum (momentum flux) into the control . The term EF 
represents the sum of forces acting on the control volume boundaries . 
Let us now generalize this expression using integrals . 

The momentum of the fluid within the control volume '4 may be 
ex pr es sect as 

mv = > !fl pV d\L 
\L 

where p represents the fluid density . 
We note the volume is fixed in space , and the derivative d()/dt 
expresses a local change with respect to time . Therefore the left-hand 
side of equation (6 , 3) should be written as 



d - a 
v dt ( mV) => 

at 
JJJ P dlJ. 
lJ. 
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Now, let us consider an infinitesimal surface area dS on the control 

volume lJ. and n a unit vector normal to it. The dot product V •n is the 

proj ection of V onto an axis normal to dS. Therefore the mass rate 

through dS would be 

pV • n dS (scalar) 

and the momentum rate of flow 

V ( pV • n) dS (vector) 

Thus, the net momentum rate of flow out of the control volume V. which is 

completely enclosed by surface S would be 

# V ( pV • n) dS 
s 

Then by referring to equation (6. 3), we note that the first term (in 

parentheses) of the right-hand side represents the net momentum rate of 

flow into the control volume and can be expressed as 

CV . � - - v t 
� t) =>  - # v ( pV • n) dS 

1n 1n  OU OU 

Thus the linear manentum balance represented by ( 6 . 3 ) can be rewritten 

as 

# v ( pv · n) ds + L F 
s 

(6. 44) 

Since the volume lJ. is independent of time the order of differentiation 

and integration are interchangeable. Thus 

111 !t ( pv) dv. + M v < Pv . n) ds = L F 
V. s 

Then using Gauss' divergence theorem 

# V  
s 

and 

JJJ 
lJ. 

(pV • n) 

a -
(
at 

( pV) 

dS = 

+ 'i/ • 

JJJ 'i/ • cv pV) di.t 

<v pV)) dlJ. = E F 

(6.45) 

( 6. 46) 

(6.47) 
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Note that 

V • cv pV) = v V • < pV) + < r,V) • w (6.48) 

Thus 

JJJ 
a < r,V) + v < r,V) + < pV) V V) 1: J:' ( 6. 49) (at V • • d\L = 

lJ. 

111 aff - a p  v < r,V) + < r,V ) V) r F ( 6 .  50 ) 
( p at +  V at +  V • • V dlJ. = 

lJ. 

or , b y  r egrouping 

111 av 
PV V V + v 

a P < r,V) ) J F ( 6 . 5 1 ) [ p at +  • <-rr + 'i/ • dlJ. = 1: 
lJ. 

Then , using the equation of conserv ation of mass 

we obtain 

a r, -- + 'ii • ( pV ) - 0 
at 

-

av 
111 ( p at + p V • V V) d¥- = r F 
lJ. 

( 6 .  52 ) 

(6 . 53 )  

There are two types o f  forces acting on the fluid in the control 

vol ume :  Sur face forces and body forces . The surface forces ( or stress 

forces) are normal and tangential ( shear ) forces acting on surface S 

which encloses volume ¥-.  Let n be a unit v ector normal to an 

infinitesimal area dS in a stress field cr. The quantity 

� • n dS 

represents the stress force acting on this sur face . Thus , the sum o f  
surface ( stress) forces acting on sur face S which encloses volume lJ. 

would be 

t::f CJ • n dS 

Body forces act on the whole mass of fluid . These are either 

grav itational or electromagnetic forces ( for conducting fluid s) . In 

thi s  section we wil l  consider onl y grav ity i .e .  the weight of the fluid 

in the control volume , which i s  



J J J pg d\L 
\L 

Therefore, equation (6. 53) becomes 

av - -
JJJ ( p at +  pV • 'vV) d\L = fl a 

lj. s 
• n 

Using Gauss' divergence theorem 

Thus 

11 a ·  ri ds =  
s 

J J J 'v • (J d\L 
lj. 

av 111 ( p at +  pV • vv) d\L = 
lj. 

JJJ 'v .  
lj. 
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d s + J J J pg d\L (6 . 54) 

(6. 55) 

�d\L + JJ J pg dS ( 6 .  56 ) 

which yields the stress form of  the differential equation of momentum 

av - - = -p at + p V • 'vV = 'v • o + pg (6 . 57 )  

The stress tensor cr represents an array of  nine stress components 

cr 1 1  cr 12 cr 1 3 
= = >  o = (J .  . (J2 1 (]22 023 l J  

(6.58) 

(J31 (]32 033 

It includes the stresses due to viscosity of  the fluid and pressure. 

Since pressure forces are normal to surfaces and compressive (i.e. act 

in a direction opposite to unit vector n )  we may write 

-p+-r11 -r 12 'r1 3  

-pi + = 
o = 'r = -p 6 . .  + l J  

=> (6. 59) 'r . . 'r2 1 -p+ -r22 'r23 lJ  

'r3 1  'r32 -p+ -r 33 

where p denotes pressure and 
= 
'r the so-called deviatoric stress tensor. 

Noting that 
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V • 0 = V • (- p� + �)  = - Vp + V • T 

We obtain 

P ! : + P V • vV = - v p + v • -r + P g 

This equation can be written in Cartesian index notation as 

a p 
a x . 

or , in terms of three Cartesian components 

a v  a v  a v  a v  !E X X X _x ) 
f (

at 
+ V - + V + V = + 

X a x  Y a y  z az  ax  

a v  a v a v a v a p  p < a t
y + vx _.:x. +  V _.:'f.. + V az 

Y) = - - + a x  Y a y  z a y  

a v  a v  a v  a v  !E z z z _z) p (
at

+ V - +  V - +  V = + 
X a x  Y ay z az az 

a-rij pg . + -- + a x .  J 

a ,  
(__!! ax  

a-r xy 
<ax 

a, 
(� ax  

a,  yx zx) + -- + --ay az 

a-r  h 
+ _fl + _E.) a y  az  

a,  yz zz) + -- + --a y  az  

( 6. 60) 

(6.61) 

( 6. 62 ) 

+ pg 
X 

(6. 63) 

+ pg y 
(6.64) 

+ pg z 

( G .  65) 

6.4 AN ALTERNATIVE DERIVATION OF T HE DIFFERENTIAL EQUATION OF MQ"IENT UM 

In this section we will derive the differential equation for the 

conservation of linear momentum by referring to a volune element �x�y�z 

which is fixed in space with respect to the system of coordinate x, y 
and z as shown in Fig. 6.6 . Again, we start from Newton' s  second law 
for a control volune 

RATE OF RATE OF RATE OF SUM OF FORCES 
M OMENT UM = MOMENTUM MOMENTUM + ACTING ON ( 6. 2 )  

ACC UM ULATION IN OUT SYSTEM 

Let us now consider this momentum balance in the x-direction . The rate 

of momentum accunulation is 

rate : (AC C UM) 
X 

( 6. 66 ) 

where m is the mass within the volune element, m = p �x �y �z and the 
rate of momentum accumulation becomes 



oo-zx 
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0 2 
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. I 

y 

. 'k-D,.� 
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£:lY. 

·/ 
/ 

7 �- --·--

rryx 

Fig. 6.6 Total stress components acting in the x direction 
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X 
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(6. 67) 

The rate at which the x component of momentum enters the volume through 

the plane area perpendicular to coordinate x at point x, y z is 

( 6 .  68 ) 

• 
where mx is the rate of mass entering this area, mx = pv x 6..Y 6.%, thus 

The rate of which the x component of momentum leaves the volume through 

the plane area perpendicular to x at point x + 6.x, y, z is 

( x-MOM) • = ( pv v )  • tJ.y 6.z 
X+ uX X X X+ uX 

Thus, using Taylor's expansion formula, we get 

(6.70) 

(6. 7 1 )  

The rate at which the x component of momentum enters the volume through 

the plane area perpendicular to coordinate y at point x, y, z is 

(x-MOM) = (� V ) = (pv 6.x 6.z V ) 
y y X y X (6.72) 

The rate at which it leaves the plane area perpendicular to coordinate y 

at point x, y+6.y , z is 

Thus 

rate : 

Similarly 

rate : 

(x-MOM) • = ( pv 6.x 6.z v )  • y+uy y X y+uy 

( x--MOM) y - ( x-MOM) • y+uy 

a 
( x-MOM) - ( x-MOM) • = - �z ( Pv v ) 6.x 6.y b.z 

Z z+uz o Z X 

C 6. 73) 

(6.74) 

(6.75) 

Consequently the rate of momentum in minus the rate of momentum out in 

the x direction is 

rate : (x--MOM)in - ( x-MOM)out = a a 
[- ( PV V ) + - ( PV V ) ax X X ay y X 

a 
+ 3z ( PV Z V X) J�xAy�: 

(6.76) 
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The net normal force on the fluid in the control volume can be obtained 

by referring to Fig. 6. 6. 

(Net normal force in x direction) = 
acr  xx 

ax 
Ax) Ay AZ - cr

xx 
Ay AZ 

= 
acr xx 

ax 
Ax Ay Az 

The net shear force on the fluid in the control volume is 

(Net shear force in 
a cr  

the X direction) = (cryx 
+ _E_ 

ay 

acr 
( (1 

zx 
Az) Ax Ay -+ + -- (1 zx az zx 

acr a crzx = ___I! Ax Ay Az + -- Ax Ay Az ay az 

Ay) Ax 

Ax Ay 

Thus, the sum of surface forces on the fluid is 

a cr  a cr  a cr  

( 6 . 77 )  

Az - (1 Ax Az yx 

(6. 78) 

(Sum of surface forces in x direction) = ( a�
x 

+ a�
x 

+ a:
x
) Ax Ay Az 

( 6 .  79 ) 
The gravitational force exerted on the fluid in the x direction is 

(gravitational force in x direction) = Pg
x 

Ax Ay Az ( 6 .  80 ) 

Finally, by substituting the various terms in the verbal statement 

of manentum balance (equation (6. 2)) in the x direction, and by 

eliminating Ax Ay Az, we have 

or 

= - [ :x 
( pv

x
v

x
) + :Y 

(pvyv
x
) + :z ( pvzv

x
)J 

a cr  a cr  a cr  
+ (� + _E_ + �) ax ay az + pg

x 

a ( PV Z) + V + PV
Z az 

acr a cryx 
a cr  

( xx zx) = -- + + -- + pg
x ax ay az 

av  
--
az 

( 6 .  81 ) 

(6. 82) 
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by grouping various terms we obtain 
avx avx avx av 

( V �) p at + VX ax + Vy ay + Z az + V X 

(6. 83) 

The second term on the left-hand side ( in brackets) represents the 
continuity equation ( multiplied by vx) 

a p a a a 
at + 3x ( Pvx) + ay ( Pvy) + az ( PV Z

) : 0 

Thus, the x component of the momentum equation becomes 

av av av av 
p ( at

x + V __ x 
+ V X + V -.-!) = x ax y ay z az 

a cr a cryx a cr 
(� + -- + �) ax ay az + pgx 

(6 . 84) 

( 6 .  85) 

Similarly, we may der ive  the corresponding differential momentum 
equations in the y and z directions. Further, by introducing the 
relation between the total stress and pressure 

(6 . 86) 

We can obtain the three components of the stress form of the equation of 
momentum of the previous section ( i . e .  equations ( 6 . 63), ( 6 . 64), and 
( 6. 65)) • 

6 . 5  NA VIER-STOKES EOOATIONS 
The stress form of the differential momentum equation contains the 

stress tensor cr. As shown in the chapter on constitutive equations for 
a Newtonian fluid we have 

where 

a = - p5 + � 

= p o  . .  + ·r . .  
l J  l J  

av . av . 2 avk 
'i j = µ [ C ax �) + C a/ ) - ��C ax k

) J 
J 1 

or in Cartesian components 

(6 . 87) 

(6 .  88) 



where 

-rxx = 

"Cyy = 

-rzz = 

'xy = 

'yz = 

'xz = 

av 
� ( 'v [2  

X • V )  J µ ax 3 

av 
µ 

y 2 
[2 - - - ( 'v ay 3 

• V )  J 

µ [ 2  

'yx 

T zy 

T zx 

av z 2 -- - - ( 'v  • V ) J  az 3 

= µ 

= µ 

= µ 

av av 
X y [- + -J ay ax 

avy avz [- + -] az ay 

av av 
X Z [- + -] az ax 

av av av 
'v .  V = --x + _x, + __ z 

ax ay az 

6/2 3 

( 6 .  89) 

Substitution of the Cartesian components of the deviatoric stress tensor 
into equations ( 6 . 63) , ( 6 . 64) and ( 6 . 65) gives 

av av 
X X p(

at 
+ vx -- + ax 

avy avy p (
at 

+ V -- + x ax 

av av z z p (
at 

+ V -- + ax 

av av 
X X vy ay +  V z az) = ap  - - + ax µ 

V 

V 

1 a ( 'v V)  + + µ ax 
• pgx 3 

av av 
- ap y 

V _l) -- + = + µ Y ay z az ay 

1 a ( 'v • V ) + 
3 

µ ay 
+ pgy 

av av ap z _z) -- + V = - - + 
Y ay z az az 

1 a -
+ 3 µ az ( 'v  • V) + pgz 

µ 

2 a V 
(--x 

ax2 

a2v 
(--y 

ax2 

a2v 
(--z 

ax2 

a 2v a2v 
X + __ x ) + --

ai az2 

a2v a2v 
+ --y 

ai 
+ __ y) 

az2 

a2v a2v z z + -- + --) 
a/ az2 

These equations can be written in Cartesian index notation as 

( 6. 90) 

(6 . 91) 

( 6 .  92 ) 
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or in 

av j av j ap P<a"t + vi ax."") = - -- + ax j 1 

symbolic vector notation 

av V p(
at 

+ • iv) = - 'vp + µ 

2 avk a V .  1 a 
µ __.J. + 

3 µ ax. (a'x") + pgj 2 ax .  J k 
1 

(6.93) 

as 

v2 ij + 1 
µ 'iJ ( 'iJ • V) + pg 

3 
(6.94) 

Equations (6.90), (6.9 1) and (6.92) or their equivalent shorthand forms 

(6.93) and (6 . 94) are known as the Navier-Stokes equations [ 3 , 4 ]. They 

were first derived for incompressible fluids (i.e. 'iJ • V = 0) by the 

French engineer Navier in 1 822 using molecular arguments and generalized 

by the British physicist and mathematician Stokes in 1845. 

A restricted form of the Navier-Stokes equation for µ = 0 is the 

Euler equation 

av - - -
p (

at 
+ V • 'iJV )  = - Vp + pg 

which was derived by the German mathematician Euler in 1755 .  

C 6. 95) 

In the absence of fluid motion V = 0, this equation further reduces 

to 
-

0 = - 'vp + pg 

or in Cartesian component form 

_!E 
ax = p gx 

3-E = p gy ay 

3-E = p gz az 

For z pointing in the vertical direction (upward) 

Thus 

g = g = 0 X y gz = -g (earth ' s  gravitational constant) 

iE 
ax  = 0 

_!E = 0 ay 

_!E 
az + pg = 0 

(6. 96) 

(6. 97) 

(6 . 98) 
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These are the equations of fluid statics which were derived by applying 

the principle at static equilibrium in Chapter 2. 

The Navier-Stokes equations in  cylindrical and spherical co

ordinates are given in Appendix D.  

6.6 F LUID STATICS REVISITED-UNIFORM LINEAR ACCELERATION 

In the absence of relative fluid motion there are no stresses in a 

fluid. Therefore, Euler ' s  equation applies 

av 
P < at + v • iv) = - Vp + pg ( 6. 99 ) 

As discussed in Chapter 3 the linear acceleration of a fluid particle is 

given by 

- av 
v vv (6. 1 00) a = at + • 

Thus - -
(6.101) pa = -Vp + pg 

and 

Vp = p (g-a) (6. 102) 

Let z be the vertical axis and assume that the fluid mass is accelerated 

uniformly ( constant magnitude and direction) in the z-x plane as shown 

in Fig. 6.7. We would have g = -g , g = g = 0 and a = 0. Z X y y 
Thus, the pressure gradient components in x and z directions are 

� = - P a ax x 

le = - P ( g  + a ) az z 

The total differential of the pressure is 

or 

Integrating, we get 

dp = iE dx + iE dz ax az 

dp = - p a dx - p ( g + a ) dz 
X Z 

p ( x , z) = - p ax x - p (g  + az) z + const. 

If p = p
0 

at (x
0

, z
0

) 

(6.103) 

(6.104) 

( 6. 105) 

(6. 106) 

( 6. 107) 
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z a 

X 

Fig. 6. 7 Uniformly accelerated fluid mass 

LIQUID 
SURFACE-I 

airplane 

� 

z 

(6 
8 = 55.75° 

Fig . 6 . 8  



p = p - p a ( x - x ) - p ( g + a ) ( z  - z ) 
0 X O Z 0 

6/2 7 

( 6 .  1 08 )  

Sur faces o f  contant pressure ( e .g .  the free sur face) are determined by 

setting p = const . or  d p  = 0 

- p ax d x  - p ( g  + az) d z = O 

Solv ing for the slope 

( dz ) = dx p=const 

2 where x is hori zontal , z v ertically upward and g = +9 . 8 1 m/s • 

Example 6 . 4 

( 6 . 1 09 )  

(6 . 1 1 0 )  

An airplane i s  trav ell ing downward with acceleration components ax 
= -1 0  m/s 2 and az = -3 m/ s2 • The fuel tank is partly filled with 

gaso l ine S . G .  = O. 75 to a height of 2 0 cm . ( a) Determine the pressure 

at the bottom of the fuel tank before and d ur ing the downward trav e l ;  

( b) Determine the slope o f  the free surface o f  gasol ine in the tan k .  

( a )  The pressure o n  the bottom o f  the fuel tank before the downward 

travel is 

kg m p :  pg h : 0 . 75 X 1 000 3 X 9 . 81 X 0 . 20 m 
m s2 

= 1 47 1 . 50 N/m2 

Dur i ng the downward travel it i s  

p = -
k g  ( m 8 .1E..-) 0 2 0 p ( a

z
+g) ( 0- h) = 0 . 75 x 1 000 2 x -3 2 + 9 .  1 2 x • m 

m s s 

= 1 0 2 1  • 50 N /m2 

( b ) The slope o f  the free sur face i s  

d z 
dx = -1 0  1 0  ---- = + --

-3 + 9 . 81 6 . 81 

e = 5 5 .  75 ° 

The results are shown schematically in Fig .  6 .  8 .  Note that the body 

force from the acceleration acts in a d irection opposite to the 

acceleration . The free l iquid sur face is perpend icular to the effective 

body force . 
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6. 7 THE ANGULAR MOMENTUM BALANCE 

Newton ' s  second law for a particle of infinesimal mass m can be 

written as 

L F 
d 

= dt < mV )  (6. 1 11) 

We take the cross product of r on each side of the above equation, where 

r is the position vector to the particle as shown in Fig. 6.9. We have 

r X 

- d -
( E F ) = r x d t ( mV ) 

Using the product rule of vector analysis 

d - -
dt ( r x mV) dr d -= d t X ( mV) + r X d t ( mV) 

(6. 1 1 2) 

(6. 113) 

where dr/dt = V and therefore the first term on the right hand side is 
zero (since V x V = 0). 

Thus, equation (6. 1 13) may be written as 

r X 

- d - -
( E F)  = d t ( r x mV) (6. 1 1 4) 

The left-hand side is the manent of the sum of forces acting on the 

particle about the origin (i.e. torques). Thus , this equation states 

that the manent of the sum of forces on the system is equal to the time

rate-of-change of mcxnent of mcxnentum. 

The moment of momentu m balance for a control volume may be written 

in the form 

RATE OF MOMENT 
OF MOMENTUM 

ACCUMULATION 
= 

or mathematically 

RATE CF MOMENT 
OF MOMENTUM 

IN 

RATE OF MOMENT 
OF MOMENTUM 

OUT 

SUM OF TORQUES 
+ ON CONTROL 

VOLUME 
(6. 1 15) 

�t ( r  X mV) = (r X V)in 
�

in - ( r  X V)out 
�

out + L To (6. 1 1 6) 

This equation can then be easily generalized (in a manner analogous to 

the one for manentum in section 6. 3) as 

a 
!ff p (r X V ) d� + f f  (r X V )  ( pV • n) dS = L To at � s (6. 117) 
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z 

Fig. 6.9 Fluid particle in motion 
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Fig . 6 .  1 0  
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This equation is often referr ed to as the moment of momentum equation or 

angular momentum equation . It is used ex tensively in the analysis o f  

rotating fluid machines , such a s  turbines and pumps ( 5 , 6 ] .  

In most appl ications the moment i s  taken about an axi s  rather than 

a point . If this ax is is the z-ax is in cylindr ical coordinates then the 

magnitude of the cross product r x V is equal to r v 0 where r is the 

�istance from the z-ax is to the fluid particle and v 0 its tangential 

component of v elocity. In steady flow through turbomachines the left 

hand side of equation ( 6 . 1 1 6 )  is zero , therefore the magnitude of the 

torque is given b y  

T = If I 0 0 

This expression is known as Euler ' s  turbine equation . 

E x ample 6 . 5  

( 6 . 1 1 8 )  

A pipe bend connects two straight pipe sections as shown in Fig . 6 .10 

V is the steady flow v elocity which is  assumed uni form over the cross

sectional area A =  n 02 /4 and p the fluid density.  De termine the torque 

which must be applied by a support at point O to prevent rotation . 

Solution 

We choose a control volume as shown by the broken l in e .  Applying 

e quation ( 6. 1 1 6 )  for steady flow, we have 

f < r  V) out 
• 

< r  V) . 
. 

= X m out 
- X m .  in in 

. • nD2 

m .  = mout = p AV = pV -4-in 

Since r .  = -r 
0 

< r  X V \ut = < r  
0 

X V) 

and < r  X V\n = < ri X V) = -< r 
0 

X V )  

Thus T 
0 

= 2 p A V <r X V )  
0 

where 
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l ro X V I = (ro sin e) V = hV 

Therefore, the magnitude of the torque which must be applied (counter
clockwise) to prevent rotation is 

Example 6 .6 

T = 2 p A h  V2 
0 

2 
= 2 p ( 1rD ) h v2 

4 

The impeller of a centrifugal water pump rotates at 1800 rpm 

(revolutions per minute). The water flows into the central inlet as 

shown in Fig. 6.11, is spun outward and flows out at the periphery of 
the blades . The inlet pipe has a diameter of 5 cm and the blades a 
diameter of 50 cm. The water rate of flow is 1 m3/min. Determine the 

torque exerted by the rotating shaft. 

Solution 
It is reasonable to assume that the tangential velocity of the 

water as it enters and leaves the pump are equal to the tangential 
velocity of the impeller at the corresponding radii. 
have : 

• • • 

(V 0) .  = r .  w = r .  (2 1rr) N 1n 1n 1n 

m = min = mout = 1000 kg/ min 

• 2 
= m ( 2 1TN )  [ rout 

: 1000 kg 
X ( 2 1T 60 s 

= 194. 29 N •m 

2 r .  J 1n  

Therefore, we  

This is the net torque exerted by the impeller shaft on  the water 
flowing through the pump . 
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inlet 5cm dia. 

50cm dia. 
blade 

Fig . 6 . 11 
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6 . 8  DIMENSIONLESS GROUPS 

The pr inc iple of conservation of manentum led to the development of 

the Nav ier-Stokes equations for Newtonian fluids . It i s  helpful in the 

study of fluid motion to explain the physical significance of the 

v ar ious tenns as they appear in these equations . To simplify the 

d iscussion we will use the steady state form of the x canponent of the 

equation o f  conservation of momentum for an incompressible Newtonian 

fluid : 

av av av 
X X X 

V -- + V -- + V : x ax  y ay z az 
1 ap µ - - + -
p ax p 

a 2v a2v a2 v 
X X X (-- + -- + --) 

ax2 al az2 
+ g X 

Let us now introduce the following notation : [M] = Mass , [L] = Length 

[T J = Time . Therefore , we will have Force F = [MLT-2 J ,  Velocity V = 

[LT-1 ] ,  Are a = [L2 J ,  Vol t.nn e  = [L3 J , Pressure p = [FL-2 ] .  We note that : 

( a) The left-hand sid e term v av / a x  + v av / ay + v avx/ az has �2 X y X z 
d imensions [L 2T-2 J /L = 

mass = [LT-2 J and can 

[LT J which can be interpreted as force/ 
2 be approx imated by V /L where V i s  a 

character i stic v elocity and L is a char acter i stic length . This 

term represents the forces ( per unit mass) due to the velocity of 

the fl uid i . e .  the inertia forces . 

( b) The term 1 / p ap/ ax  has d imensions 1 /[ML-3 ] • [FL-2 ] /[L ] = [F J /[ M ]  = 

( c)  

( d )  

[LT-2 ] and can be approx imated by p/pL .  It expresses the force 

( per un i t  mass) due to the pressur e .  

from the definition o f  v i scosity ( Chapter 1 )  we hav e , = µ av{/ ay 

which means that the v iscosity has d imensions µ = > [FL-2 /T- J = 
-2 2 2 2 2 2 2 [FL T J .  The term µI p ( a u / a x  + a u  l ay + a u  / az ) has 

X X X 

dimensions [ F L-2T J /[ML-3 J • [LT-1 J /[L 2 ] = [F ] /[M ] = [LT-2 ] ,  and 

represents the force ( per unit mass) d ue to the vi scosity of the 
2 fluid . An appro x imate estimate wil l  be µV/ pL • 

The term g has d imension s [LT-2 ] and represents the force ( per X 
un it mass) due to gravity ( g = g cos e ,  where e i s  the ang le X 
between x and the v ertical) . 
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We now establish the following force ratios: 

INERTIA FORCES 
VISCOUS FORCES 

INERTIA FORCES 
GRAVITY FORCES = 

PRESSURE FORCES 
INERTIA FORCES = 

2 µV/pL 

V2/L = g 

p/pL = 
V2/L 

= pVL = Re 
µ (Reynold s Number) 

v2 

Fr (Fr oude Number) = gL 

_E._ Eu ( Euler Number) = 
pV

2 

Of these three dimensionless groups the Reynolds number is the most 
significant because it is involved in virtually all types of flow 
problems. We noted in Chapter 1 that for flow inside a tube the 
Reynold s number (with L = D tube diameter, V = Vavg) Re = p Vavg D/µ is 
used as the criterion for the transition from laminar to turbulent flow 
(Re > 2100). An elementary explanation of this flow instability can be 
given in terms of force ratio established above. When the inertia 

forces ( which tend to disperse the fluid) become 2100 times larger than 
the viscous forces (which are cohesive) the flow becomes hig hly 
irregular and it is called turbulent . The Fr oude number is important in 
gravity driven flows especially those in open channels. The Euler 
number merely represents a dimensionless form of pressure. It is rarely 
important except for flow problems involving pressure drops low enough 
to cause vapor formation in liquid s ( see Cavitation, Chapter 12). We 
will see some more dimensionless groups in other parts at this book. 

We now define the following dimensionless variables 
x* = x/L 
y* = y/L 
z* = z/L 
v* = v/V 
p* = Eu = 

* gx gx = --
V2/L 

t* = tV/L 

p/ pV 2 

+ co se = 
V /L 

= 1 
Fr cose 

( 6. 120) 
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The x-component of the equation of conserv ation of mcmentum becomes 

* * * * . 2 * 2 * 2 * 
av av av av * a V a V a V 

X * X X * X ap  1 X X __ x) 
* 

(G' . 121) --* + V --* + V --* + V -- = - --* + Re (� 
+ � + + g 

X y z a z  2 X a t  a x  ay ax ax ay a z  

This dimensionless form is often useful in assessing the relative 
magnitude of the various terms. For example when Re <<  1 the flow is 
dcminated by viscous effects whereas the inertia effects are negligible. 
When Re >>  the visous effects are not important except i n  the 
inrnediate vicinity of solid surfaces where large velocity gradients are 
present. 

6. 9 F LOW PROB LEMS AND THEIR SOLUTION 
Generally speaking there are two types of flow problems: ( a) 

Macroscopic and ( b) Microscopic. The distinction is, to some extent, 
arbitrary, but it is helpful as a problem solving tool. In macroscopic 
problems we are mainly interested in overall effects, whereas in 
microscopic problems we are interested in the detailed structure of the 
flow field. To illustrate the difference we refer back to section 6.2.5 

( stationary roe ket on a test stand) . The method of approach and the 

r esults as presented suggest a macro scopic pr oblem. We simply 

determined the overall thrust produced by the exhaust gas jet. However, 

one might also wish to determine the velocity and pressure distribution 
in the jet itself and the structure at turbulence ( if the jet happens to 
be turbulent). This is, then, a microscopic problem. 

As pointed out by Denn [ 7 ]  macroscopic problems generally require a 
great deal of intuition but the resulting mathematical models are 
simple. Somehow, we must identify the physical principles involved 

( continuity, momentum, etc.) and express them in the proper mathematical 
form. Such a procedure varies widely from one problem to another and 
does not always follow an identified rational approach. 

The determination of the appropriate mathematical models 
( differential equations) for microscopic problems is usually 
accomplished by the systematic elimination of terms from the general 
conservation equations. For example, in analyzing a certain problem we 
may realize that the velocity does not vary in, say, the z direction and 
remains constant with time. Consequently ,  the corresponding terms may 
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be elim inated from the gen eral d ifferential equations for conservation 
of m ass and momentum . Even after the s impl ifications many of the 
resulting d ifferential equations require the application of elaborate 
anal ytical and n umerical method s .  The 1 imitations in problem solv ing  

are  ver y  often d ue to  limitations in  mathem atical techniques rather than 

lack of mathematical model s .  However , i t  should not be m isunder stood 
that problem solving is mainly mathematics  with a l ittl e physic s .  On 

the contrar y ,  it is  the understand ing o f  the physical principles and 
their appl ication that lead s to simplified mathematical equations which 

can be solved and which prov ide the re quired in formation . 
The differential continuity equation ( deri v ed in Chapter 3) and the 

Nav ier-Sto kes e quations together represent a system of four , coupled , 
non-linear equations with four unknowns [ the three velocity components 

( vx , vy ' vz) and either pr essure ( p) or d ensit y ( p ) ] .  Exact analytical 
sol utions of the general equations are possible in a ver y l im ited number 

of cases . With the use of modern high speed computers solutions can b e  
obta i n ed for m an y  pract i c a l  problem s .  Ve r y  o ften , howe v er , the 

computational cost i s  prohibitive or po ssibl y the n umerical proced ure 
introduces arti facts that mask the essential features of the problem 

its elf .  It is  nearly always necessary to i ntroduce a n umber o f  

approximations which wil l lead to acceptable solutions . It i s  often 

hel pful to antic ipate the form of " a  reasonable solution" and then 
i n t roduce  t he app r o pr i ate appr o x im at i o n s  to o b t a i n  t he e xact 

ex pressions . Anticipation in  this context should always be based on  
sound physical reaso n i n g .  The student of fluid mechanics soon reali zes 

that the setting up of the appropriate mathematical model and the 
solution itsel f are intertwined . 
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CHAPTER 7 

UNIDIRECTIONAL 

LAMINAR VISCOUS FLOW 

7 . 1  INTRODUCTION 

All viscous flows are necessarily two- or three-dimensional because 

of the no-slip condition on solid boundaries. However ,  there is a large 

class of laminar flows which were called unidrrectional in· Chapter 3 ,  

In this class of flows , the fluid moves in one direction only , e.g. in 
the x-direction in rectangular coordinates or perhaps in the r- or 8-

directions in curvilinear coordinates. The velocity varies as a 
function of one space coordinate only, The pressure may also vary as a 

function of one space coordinate . ( which may be the same or , more 

commonly, different than that of the velocity variation). This class of 

flows includes both steady and unsteady problems. 
Most of the problems examined in this chapter can be termed as 

"classical" because they were the first ones historically to be solved 

exactly and now appear in nearly every textbook on fluid mechanics . 

Schlichting [ 1 ]  and Bird et al [2 ] pres.ent several other problems of 
this type . 

7 , 2  PRESSURE-DRIVEN FLOW BETWEEN TWO FLAT PLATES 

We will consider steady laminar flow of an incompressible , 
Newtonian fluid between two hori zontal parallel plates under the 
influence of a pressure gra9ient as shown in Fig. 7. 1 .  The plates are 

unidirectional

unidirectional
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y 

... 

2b 

Fig , 7, 1 Flow between two parallel plates. The width 
(in the z direction) is practically infinite 
and the gap (2b) is small. 

Fig. 7. 2 Force balance for a differential volume element 

,=O 'w 
SHEAR STRESS 

2b 

v =O X 

VELOCITY 

Fig, 7 ,3  Velocity and stress profiles for pressure-driven 
flow between �wo parallel plates. 
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suffic ientl y long so that the flow i s  ful ly developed which means that 

there are no velocity vari ations in the x direction . To der ive the 
a p p r o pr i a t e  d i ff e r e n t i a l  e qu a t i o n  we m a y  e i t h e r  per fo rm a simple  

momentum b alance for a d i fferential element bet ween the plates or 
s i m pl i fy the general con s e r v a t i o n  e qu a t i o n s  ( i . e .  c o n t i n u i t y  a n d  
Nav ier-Stoke s )  . 

( a )  Momentum balance for a volume element 

From the description of the problem it is apparent that the 
pressure grad ient causes the fl uid to flo w  from left to right . The 

v i scosity of the fluid exhibits resi stance to flow which i s  mani fested 
as a shear stress . There is no change of momentum in the x direction . 

Con sequently ,  we must balance pressure forces aga inst shear stress 
force s .  

We have 

F = [Pressure]  x [Area ( normal ) ]  Pressure 
FSh = [ Shear stres s ]  x [Are a ( tangential ) ]  ear 

For the d ifferential element shown in Fig ,  7 . 2  we note that 

( a ) The pressure is p on the left-hand s ide and by using 

ex pan sion we get p + !� t>x on the right-hand sid e .  

( b )  The stress is T on the lo wer s ide and by using 
ex pansion we get T + O T  6. - y a y  o n  the upper sid e ,  

Ta ylo r ' s  

Ta ylor ' s  

It i s  intuitiv ely obv ious that pressure forces and stress forces acting 
o n  o ppo s i t e  s i d e s  o f  the vol um e  e l ement should  act in o pp o s i t e  
d irections . 

We used a ver y  defin ite sign convention in choosing the d irection 

of the arrows . A positive stress acts in the po sitive x direction and 
on a sur face facing the direction o f  increase o f  y .  The pressure i s  a 

compressive normal stress and according to the s ign convention o f  
Chapter 5 i t  i s  negativ e .  

A s imple force bal ance g ives 
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p/J.y/J.z - (p + :� /J.x) /J. y/J.z + (T + :; /J.y) /J. X /J. Z  - , /J.X/J. Z = 0 (7. 1 )  

After eliminating certain terms and dividing by /J.x/J.y!J. z, we get the 

differential equation 

For a Newtonian fluid 

Thus 

or 

a v  
X = µ a y 

a v  
a + - X 

(
µ 

ay) a x a y 

a2v 
_!E X 
a x  = µ--2-a y  

(7 . 2 )  

(7 .  3 )  

= 0 (7 . 4 )  

( 7 .  5) 

We note that the left-hand side of the above equation is a function of x 

only. Toe right hand side is a function of y only. Since x and y are 

independent variables , we conclude that both s ides must be equal to a 

con stant , say K
1

• 

Thus we have 

and 

The boundary conditions for pressure are 

X = 0 

X = L 

The general solution for pressure is 

(7. 6 )  

( 7 .  7 )  



and 

dp 
K1  = dx = 

where �p represents the pressure drop (p0>pL ) 

The velocity profile will be determined from 

= ( - � p )  L 

with the boundary conditions (no-slip at the wal ls) 

B .  C. 1 

B . C . 2  

V : 0 X 
V : 0 

X 

at 

at 

y:b 

Y=-b 

A first integration gives 

dv X 
dy (- �p) C L y + 1 

and a second integration 

7 /5 

( 7 .  8 )  

( 7 .  9 )  

( 7 .  1 0 )  

( 7 . 1 1 )  

( 7 . 1 2 )  

( 7 . 1 3 )  

The constants of integration can be determined by appl ying the boundary 

conditions B . C .  1 and B . C . 2  

B . C . 1 :  0 - 2
µ 

( -

B C 2 0 1 (- � p )  b2 C b C . .  : = 2µ L - 1 + 2 

Solving these two simul taneous equations for c
1 

and c2 we get 

( 7 . 1 4 ) 

( 7 .  1 5 )  
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c , = 0 

c
2 

1 c tiP ) b2 = 
2µ L 

and the solution is expressed as 

or 

Thu s ,  t h e  

center plane 

1 
V = 

2µ X 

b2 

V 
X 2µ 

v el ocity 

( y:O) as 

V max 

( tip ) L ( b2 -y2) 

( tip ) 
L [ 1 

pro file is 

shown in Fig . 

cX) 2J b· 

p a r abolic with 

7.3. The maximum 

and the v elocity profile can be expressed as 

(7. 16)  

( 7 . 1 7 )  

( 7 .  1 8 ) 

(7. 1 9 ) 

a maximum at the 

velocity is 

( 7.20 )  

(7.21 )  

The average velocity can be obtained by integrating the velocity over a 

c r o s s- s ection ( in finite in the z d ire ct ion)  and d iv  id in g by t h e  

cross- sectional area 

vavg = = 
Jfv xd zdy 

f ! d zdy 

I 
-b 

V d y  
X 

= - --
b 

J 
-b 

dy 

= ?._ V 3 max ( 7.22) 

Note that the average velocity is equal to t wo-thirds the maximum 

v elocity. 

The shear stress profile can be calculated from the definition o f  

shear stress , = µ ( a v J ay) X (i.e .  by differentiating the velocity 

pro file) or preferably from equation 7 , 2 which is written as 
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dp d, 
dx 

= dy 
(7. 23 ) 

The pressure gradient was dp = AP thus 
dx L ' 

and 

at y = b 

Since , =  

1 = w 
Ap b 
L 

. 

d, A P  
dy = - L 

(7 . 24) 

A P + c , T = - y:- Y (7.25)  

= 0 at y = 0 (symmetry) ( 7 . 26 ) 

( 7 .  27 ) 

(7.28 ) 

The negative sign indicates that this quantity 

when multi plied by the surface area gives the force exerted by the plate 

on the fluid w-1ich is, of course, directed in the negative x direction. 

The force exerted by the fluid on the wetted plate should, therefore,  be 

positive. The linear variation of shear stress in the fluid is usually 

ex pres sect as 

1 

' w  
= y 

b 

where , is taken as a positive quantity by convention. w 

( 7 . 2 9 )  

The shear stress profile is shown together with the velocity 

profile in Fig. 7, 3. 

It is interesting to note that instead of using the no-slip 

condition on both plates (e quation 7. 11 )  we could have used the no-slip 

condition on one plate and a symmetry boundary condition at y=O, i.e. 
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u = 0 y = b 

( 7.30 ) 
au 0 y 0 = = 
ay 

Obviously, c1:o could be easily obtained from equation 7. 12. The 

rest of the results are, of course, identical to those determined 

earlier. 

(b) Simplification of the general conservation equations: 

We will establish the differential equation for the pressure-driven 

flow by simplifying the equation of conservation of mass (eq. 4. 11)  and 

the Navier-Stokes equations ( e qs. 6.90 ,  6.91 and 6.92) . 

From the statement of the problem it is apparent that : � i. 0 and 

V i. 0.  
X 

There is no motion in either the y or z direction, thus 

V : V  : 0 .  y z The plate s are horizontal thus g =g =0 and g = -g. X Z y 
The continuity equation for an incompress ible fluid is 

av 

F 
+ :xz X 0 + a x  y 

0 
Thus 

av  
X 0 --

a x 

(7. 31 ) 

(7.32) 

which means that the velocity does not vary in the x direction ( fully 

developed flow). The plates are infinite in the z direction thus we may 

assume ( a v  / a z) = 0. However, we note that the velocity becomes zero at 
X 

the two plates, thus v = v ( y) .  
X X 

The x component of the equation of conservation at momentum ( eq. 

6.90) simplifies to the form 

avx 
p V -

X a X 
E.2 
a x + µ 

Using equation 7.32, we get 

a V 
X 

2 ay  
(7. 33) 
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(7 . 34 )  

whi c h  is identical to the d ifferential equation established by a direct 

differential momentum balance. 

The y component o f  the equation o f  conservation of momentum (eq. 

6 . 91 )  reduces to 

a p 
0 = - - + p g 

ay Y 
( gy = -g) (7. 3 5 )  

The z component o f  the equation o f  conservation o f  momentum (eq. 

6. 92 ) red uces to 

0 = - � 
a z  

(7.36 )  

Thus , the pressure-driven flow problem between two flat places i s  

de scribed by the following equations 

a 
0 - 1E = + µ a x  2 

a y 

0 = - !E - p g  
a y 

0 = - �  
a z  

Integrating equations (7.38 )  and (7. 3 9 )  we get 

p = -pgy + c
1

(x, z )  

and 

(7 . 3 7 )  

(7.38 ) 

( 7 .  3 9  

(7 . 40)  

(7. 41 ) 

Differentiating equations (7.40) and (7.41 ) with respect to x and 

e quating the results, we get 
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a x  a x  ( 7 .  42 ) 

The left-hand side o f  the above equation i s  not a func tion o f  y and the 

r ight-hand s ide i s  not a function of z .  Con sequentl y ,  we conclude that 
the der ivatives of c 1 and c2 can onl y  be functions of x , i ,  e .  

a P = 
a x 

a c1 < x ) 

a x 
= (7 . 43 ) 

No w, that we hav e  shown that the pr essure grad ient :� i s  a function of  x 
onl y ,  we can solve equation ( 7 . 37 )  as presented in sect ion 7. 2 ( a) . 

7 . 3  PRESSURE-DRIVEN FLOW IN A TUBE 
We wil l  con sider ste ad y  l am inar flow of an incompressible fluid in 

a hori zontal , smooth , round tube under the infl uence of a pressur e  
gradient a s  shown i n  Fig .  7 . 4 .  The tube is  sufficientl y long so that 
the flow i s  full y  developed , which means that the velocity does not vary 
in  the ax ial d ir ection . Again , we wil l  use both the d irect manentum 
bal ance and the s impl i fication of  the Nav ier-Sto kes equations in order 
to der ive the appropr iate d i ffer ential equations . Pressur e-driven flows 
are o ften called Poiseuille flows in honor of the French physician 
J . L . M .  Po i se u i l l e  who pe r fo rm ed a long and accurate se r i e s  o f  
ex periments in the 1 840 ' s  with the obj ect o f  stud yi ng blood flow through 
v eins . 

( a) Momentum balance for a volume element 
We c hoose an annular fl uid element as shown in Fig . 7. 5, The 

momentum pr incipl e , for the cond itions of  thi s probl em , red uces to a 
simple force balance 

F + F = 0 pressure stress ( 7 .  44 ) 

where 

F pressure = p 2,rrt.r - ( p  + !� t. z )  2irrt.r = !E 
a z  2irrt.zt.r ( 7 . 45 )  
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Fig. 7. 4 Axial flow in a long tube 

_ _ _ _ _  __,A 
\ � I \  a P  

p --1)»> I I T 
I I ..,.�If-- ( p  + aZ  

AZ) 
\K I \ I 

/ \ ------� 

Fi a .  7. S Force balance for an annular volune �lernent 

2R 

SHEAR STRESS 

V. =O
z 

VELOCITY 

Fig. 7. 6 Velocity and stress profiles for 
pressure-driven flow in a tube 
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7/ 1 2  

and 

F stress  
= - T 2n r t:.z + h + !!.. t:. r )  2n ( r+t:. r) t:. z a r  

= -T2nrt:.z + T 2nrt:.z + � 2n rt:.rt:.z + T2n t:. r t:. z  a r 

( 7 .  46 ) 

2 The term having ( t:. r )  is  negl igible as compared to the rest o f  the 
term s , thus 

F = (� r + T )  2nt:. r t:. z  = L ( rT ) 2n t:. r t:. z  str ess a r  a r 

= 1 a ( rT )  2nrt:.rt:.z r a r ( 7 . 47 )  

After substituting in equation ( 7 . 4 4 )  and divid ing by 2n r t:.r t:. z ,  we 
get 

For a Ne wtonian fl uid 

thus 

or 

- 2__E + l � ( r  T )  : 0 
a z r a r 

a v 2 
T = µ a r 

a p  _1 _a a v z 
- = C r  µ -a r  ) a z r a r 

1 a v  z lE = - _a C r -) a z  µ r a r  a r 

(7 . 48 ) 

( 7 .  49 ) 

( 7 .  5 0 )  

The left-hand side o f  equation ( 7 .  5 0 )  i s  a function o f  z only and the 

r ight-hand s ide i s  a function of r onl y .  Since z and r are independent 

v ar iables both sid es of equation ( 7 . 50 )  must be e qual to a constant ,  say 
K 1 • Th us , we have 
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dp = K 2_ _s!._ ( r jyz
) dz 1 and � r dr dr = K 1 
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(7 . 5 1 ) 

The first equation ( 7 .  5 1 ) can be easily sol ved to give a l inear pressure 

drop with pressure gradient 

dp 
dz = 

po - PL 
L 

The second equation (7 . 51 ) can be integrated once to give 

dv 2 z - ti p c 1 r -- = r + dr 2µ L 

then dividing by r 

dv c 1 z tip = r + ct r  2µ L r 

A second integration g ives 

The boundary conditions are 

B .  C . 1 vz = 0 r = R (no-sl i p  at the wall) 

B.C.2 
a v 

z 0 0 (symmetry) -- = r a r 

The integration constants can be easily determined 

C 1 = 0 

(7 . 52 ) 

( 7 .  53 )  

(7 . 54 ) 

( 7 .  55 ) 

( 7 .  56)  

(7 . 57)  

Note that c 1 = 0 also follows directly from equation (7. 55 ) .  The 

l og arithmic term w:iuld g ive an infinite velocity for r=O if c 1 were not 

zero ( ph ys icall y impossible) . 

Thus , the velocity profile takes the parabolic form ( shown in Fig. 

7 .  6 ) . 
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(7. 5 8 )  

The ma ximum velocity occ ur s  along the axis ( r= O )  

V = !P_ R 2 
max 4µ L (7. 5 9 ) 

The a verage velocity is determined by integrating the velocity over a 

cross-section and then dividing by the cross-sectional area 

2,r 
f 

V 0 = 2,r a vg 
f 

0 

Note that V = l V avg 2 max 

R 
f V rdrde z 

_ LIP R2 0 

R - 8µL ( 7 . 60 )  

I rdrde 
0 

The volume rate of flow is equal to the produc t of the cross-sectional 

area and the average velocit· y 

(7. 61 ) 

This result is known as the Hagen-Poiseuille formula in honor o f  the two 

scientists who did extensive work on fluid flow through t ubes , and 

established an empir ical rel ation between ti P, Q, L and R4 • However , 

neither Hagen nor Poiseuill e  ever derived s uch an expression. When 

using the Hagen-Poiseui l l e  formula one must remember that it is valid 

for steady , l aminar . flow of a Newtonian, incompressible fl uid in a long 
t ube . 

Toe she ar str ess profile can be obtained by either differentiating 

equation ( 7.58 )  and using the definition , = µ ( a v  / a r) or pre ferabl y z 
from equation ( 7 .  48 ) as fol l ows 

dp = d z  

The pressure gradient i s  

1 d 
r ct r  ( r  , ) (7 . 62) 



and 

Integrati ng, we get 

av 
Since z 0 at ' = µ 

-- = r a r 

and 

d p  
dz= ti p  

- L 

ti p  1 a - r- = r a r 

ti p  r r, = - r:- 2 

= 0 

c1 = 0 

= ti p  - 2L r 

(r-r ) 

2 
+ c 1 

7/15 

(7 .  63 ) 

( 7 .  64 ) 

( 7 .  65 ) 

( 7 .  6 6 )  

( 7 . 67 ) 

( 7 .  6 8 )  

At the tube wall r = R  we have , = w 
tip 
2L R .  The fr ictional force ex erted 

by the tube wall on the fluid i s  

Ff = - ti p _ R (2nRL)  2L 
2 = -nR ti P  (7 . 69 ) 

The force exerted by the fl uid on the we tted tube wall should be 
o pposite 

2 F f : n R ti p  

The l inear shear stress var iation in the fluid i s  expr essed as 

' r 
= R 'w 

(7.70 )  

(7 . 71 ) 

where , i s  taken b y  conv ention a po sitive quantity ( shown in Fig .  7 . 6 ) . w 

( b ) S implification of the general equations 

In thi s problem it is obvious that there is no swirl ing motion i .e .  
v6 = 0 and no flow in the r direction i .e .  v r = O. The pressure varies 

in the x direc tion and the axial v el ocity c omponent v aries a s  a function 
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of r .  The tube is hor i zontal so that g = 0 .  z 

The continuity equation for an incompress ible fluid in c yl indr ical 

coord in ates ( from Append ix D )  i s :  

1 a 
c/) f. 

a v  
z 0 + + --r a r  r a e  a z  ( 7 .  72 ) 

Thu s  
a v 

0 --
a z  (7. 73 ) 

Thi s  mean s that the ax ial veloc ity does not var y  in the ax ial d irection . 
Thi s result was expected from the fully d evelo ped flow assumption . 

The e qu a t i o n s  o f  c o n se r v at i o n  o f  m om en tum ( from Append ix D )  
s impl i fy to the forms 

r com ponent 0 = !E + P gr a r  

e component 0 = - l a P + P ge r a e 

z component - a p  1 a a v  z 0 = + µ - - C r -) a z  r a r  a r 

Integrating equations ( 7 . 74 )  and ( 7 . 75 ) , we get 

and 
P = P ! gr dr + C 1 C e , z )  

p = p r ! g0 de + c 2 C r , z ) 

( 7 . 74 )  

C 7 .  75 ) 

(7 . 76 ) 

( 7 .  77 ) 

( 7 .  7 8 )  

Di ffer entiating equa tions ( 7 . 77 )  and ( 7 . 78 )  with respect to z and 

equating the resul ts , we get 

a z a z 
(7 . 79 )  

The left-hand side o f  the above equation i s  a func tion o f  e and the 
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right-hand side is  a fun c tion o f  r .  Conse quen tl y ,  we conclude that the 

d er ivative s of c 1 and c2 can only be functions of z ,  i .e .  

!E = 
a z  

a c1 ( z) 
a z  

= (7 . 80 ) 

No w ,  that we have sho wn that the pressure grad ient i s  a func tion o f  z 

only , we can solve e quation ( 7 . 76 )  as  pre sen ted in section 7 . 3 ( b) . 

7 .  4 THE DIRECT DIFFERENTIAL MOMENTUM BALANCE VERSUS THE SIMPLIFICATION 
OF THE NAVIER -STOKES EQUATIONS 

We have used two method s in solv ing the pressure-driven flow 

problems o f  sections 7. 2 and 7. 3 .  The d i rect differential momentum 

b alance method requires more intuition , because the var ious force terms 

must be identi fied and properly expressed . With every new problem a new 

balance is  requ i r ed and all ex pr essions must be e stabl ished anew. It i s  

pos s ible that some terms might be entirely neglected without a clear 

reaso ning as to the ir relative importance or simpl y forgotten . On the 
other hand , the s implification o f  the general conservation equations 
( continuity and Navier-Stoke s )  is  fa irly straightforward . We hav e all 

the pos sible terms in front of u s  ( Append ix D) and we must exerci se our 

j udgement in el iminating those that are not important .  As i t  will be 

shown in the chapter on boundary la yer flow we may al so a s sess the order 

of magnitude of each term . Cl ear l y  then , starting from the general 

conservation e quat ions and el iminat ing the appropriate terms is a far 

better method . Thi s  method will therefore be used almost entirel y for 

the rest of the book in sett ing up the appropriate equations for 
m icro scopic flow problem s . 

Referring bac k to sec tions 7 . 3  and 7 . 4  we note that in simplifying 

the components of the momentum equation we ended up with three e quation s 
t wo o f  whi c h  contained ver y  l ittle information ( var iation o f  pressure as 

expec ted from hydrostat ics) . The component of the equation of momentum 
in the direction o f  the flow had all the essential parameters o f  the 

problems . To avoid repetition in s ub sequent probl ems we will refer to 

the simpl ified equation o f  momentum in the direction o f  flow as the 
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governing e quat i on of motion for flow problems with parallel 
streamlines. 

7. 5 DRAG F LOW BETWEEN PARALLEL PLATES 

We consider two flat parallel plates separated by a distance b as 

, shown in Fig. 7. 7 (  a). The top plate moves in the x direction at a 

constant speed V while the botton plate remains stationary. The fluid 

between the plates i s  assumed incompressible and Newtonian. As the top 

plate moves the fluid is dragged along . This type of flow is often 

referred to as C ouette flow [after M. F.A. Couette (1 858-1 943 ) ]. 

The governing equation for this problem can be easily obtained 

after simplifying the Navier-Stokes equations in the form 

d 2v 
X 

dy2 
= 0 

Integrating this equation t wice , we get 

(7 . 8 1 ) 

( 7 .  82 ) 

The integration constants can be determined from the boundary conditions 

B. C. 1 y = 0 

B.C . 2  y = b 

We get c , = 

Thus 

V/b and c
2 

V : - y 
X b 

V 

V 

= 0 
X 

= V 
X 

= 0 

This linear velocit¥ profile is shown in Fig. 7.7( b) .  

(7. 83 ) 

( 7. 84) 



v �  

(CX ) ( b) 

Fig . 7 ,7 (a) Drag (also called Couette) flow. 

( b )  The velocity profile in drag flow. 

I 

Fig. 7 ,8 

� '" 
-. ' 

-' 
-I 

- I - ,, --

b 

Typical velocity profiles for combined 

pressure and drag flow. 

7 /1 9 
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7.6 COMBINED PRESSURE AND DRAG FLOW BETWEEN PARALLEL PLATES 

We now consider the previous problem with an imposed pressure 
gradient. The governing equation is 

0 = 

The bound ar y conditions for pressure are 

B .  C. 1 
B.C.2 

X : 0 

X = L 

The bound ar y conditions for velocity are 

B .  C .  1 

B . C . 2 
y = 0 
y = b 

V : 0 

V = V 
X 

( 7 .  85 ) 

(7.86 ) 

(7. 87 ) 

If p0 > PL the pressure gradient is  aiding the drag flow . If p0 < PL 
the pressure gradient is opposing the drag flow. Again, the pressure is 

a function of x only whereas the velocity is a function of y only. 
Thus, we may write 

where 

and 

dp 
dx 

dp = dx 
p o - PL = llP 

L - L 

( 7. 88 ) 

(7.89 ) 

After integrating twice and determining the integration constants , we 
get 



V 1 ti p  v x = b y + 2µ L y ( try) 
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( 7 .  90 ) 

The veloc ity pro files are sketc hed in Fig. 7 , 8 for both aid ing and 

opposing pressure gradients. It i s  obvious that if the pressure  

grad ient i s  zero we get the l inear veloc ity pro file  o f  section 7. 5. 
The vol une rate of  flow for t wo  pl ates each of width W may be 

ex pressed as 

Q : W / V X dy 

and a fter per forming the integrat ion we get 

or in terms of the pressure grad ient 

Q _ Vb (1 
t2 dp) W - 2 - 6µV dx 

(7. 91) 

(7. 92) 

(7. 93 ) 

Thi s  may be integrated to give the pressure as a l inear func tion o f  x 

where p = p at x = x • 
0 0 

p - p 0 = 12µ (Vb  
b3 2 

7.7 PRESSUR E-DRIVEN FLOW IN AN  ANNULUS 

(7 . 94 ) 

We cons ider flow in the annular space between two t ubes as shown in 

Fig . 7 , 9. 
Newtonian .  

The flow i s  stead y and the fluid i s  incompressible and 

The governing equation is 

� 1 ct av z 

d z  = µ r ctr ( r  ar) (7. 95 ) 
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/ 

- -� � z- - --- +;� 2� -(n ___ ____ §9 _ _  _J:_ --r 

Fig. 7 . 9  Pressure-driven flow in an annul us 

Fig .  7 . 1 0  Flow of a liquid film over an inclined plate 



The bound ar y cond itions are 

V : .o'· z 

vz = 0 

r - · R  ' . :- i 

r = R 
0 

The general solution may be written as 

1 dp 2 C 1 v z = 4µ dz r + µ .i nr + c2 

After de termining c
1 

and c
2 

we get 

where dp = tip 
dz - L 

The vol une rate of flow i s  

7 , 8 FLOW OF A FALLING LIQUID FILM 

2 r 

t,p = p p o - L 

R . 2 2 

[ 1  - (_!_) J 
---R--- J  

0 
.i n (

R.
) 

7 123 

( 7 . 96 )  

( 7 .  97 ) 

( 7 .  98) 

( 7 .  99 ) 

The flo w  o f  a l i quid film over a flat plate is schematical l y  shown 

in Fig . 7 . 1 0 . The plate is sufficiently long so that entry and ex i t  

d isturbances may b e  neglec ted . Again , ful l y  developed flow i s  assumed 

in thi s case , which means that the v elocity does not vary in the 

d irection of flow. For stead y flow o f  an incompressible , Ne wtonian 

fluid the governing di fferential equation can be easil y  obtained b y  

simpl ifying the x component ·or the equation o f  momentum . In thi s case 

there i s  no pressure grad ient because everywhere above the film the 

pressure is equal to atmospheric pressure . We note that gx = g co s e ,  
thus , we have 
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d 2v 
0 X = µ -- + p gx dy2 

( 7 .  1 00 )  

or 

d2 v 
X = µ -- + P g co s e 

di 
( 7 . 1 0 1 ) 

At the plate surface the no- sl ip cond ition appl ies , i .e .  B. C . 1 :  vx=O at 

y = 6 . At the air-liquid inter face the air i s  dr agged downwards by the 

flowing liquid . At the interface the shear stress on the l i quid side 

must be e q ual to the shear stress on the air s ide . We have 

or 

' = ' a i r  

d v  
X 

µ d y  µ air 

(7 . 1 02 )  

( 7 .  1 03 )  

The v i scosity of air is  s igni ficantly smaller than that o f  l i quids . 
Thus , the right-hand side o f  the above ex pression is  practical l y  e qual 
to zero , which lead s  to a boundary condition 

B.  C. 2: = 0 at y = 0 ( 7 .  1 04 )  

In tegrating equation ( 7 . 1 0 1 ) twi ce and determining the integration 

constants with the help of the boundary cond itions , we get 

2 2 
V : p g  6 COS 8 [ 1 _ (X.) ] X 2µ 6 ( 7 , 105 ) 

Thi s  i s  a parabol ic velocity profi l e  as sketched in Fig . 7 .  1 0 .  The 

max imum v elocity occ urs at y:O,  which i s  

2 
V = pg 6 cos e 

max 2µ 
(7 . 1 06 )  
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The average v elocity can be easi l y  obtained by carrying out the 
integrations shown in the ex press ion 

w iS 
f f V d zd y  

0 0 = w avg iS 
f f d zd y  

0 0 

1 iS 
= - 1  V dy 

iS 0 X 

p gi5 2 cose ( 7 .  1 07 )  = 3µ 

The vol une rate o f  flow i s  equal to the product of the average velocity 
and the cross-sectional ar ea : 

where W i s  the film width . 

= pgWi5 3 cose Q 3µ 
(7 . 1 08 )  

The film thickness iS may be ex pr e ssed in terms o f  the average velocity, 
the volune rate o f  flow or the mass rate o f  flow ( � = p Q )  

3 µ  V 1 /2 
iS = ( avg) pgco s e  

• 1 /3 
= ( 3µ m ) 2 p Wgcose 

7. 9 PRESSURE -DRI VE N  FLOW OF TWO IMM ISC IBLE FLUIDS 

BETWEEN PARALLEL PLATES 

(7 . 1 09 ) 

No w, we will consid er the steady fl ow o f  two incompr essible 

Newtonian fl uid s  bet ween t wo long par al l el plates under the infl uence o f  
a pressure grad ien t ,  a s  shown in Fig .  7 . 1 1 .  

The governing e q uations o f  motion are 
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_ 1£ A ,/
vA 

0 = + µ (--x ) ( for fluid A )  a x  a /  
(7. 110) 

- �  B 
a 2vB 

0 = + µ (--x ) (for fluid B) a x  a /  
(7 . 11 1 ) 

The pressure is  a function o f  x onl y  and the velocities are func tions o f  

y onl y .  Thus , we may write 

dp A 
d 2vA 

= µ (--x ) dx ct/ (7 . 1 1 2 ) 

dp B 
d 2vB 

= µ (- -x ) d x  ct/ (7 . 113) 

Integrating each equation twice , we get 

(7 . 11 4 )  

(7 . 115 )  

Now, we must determine the fo ur integration constants b y  using the 

boundary condit ions . At the upper and lower plates the velocity is  zero 

( no- slip cond ition) . At the interface the veloc ities must be equal 

( . A B) ( 
. A B) Th th 1 .e . v = v as well as the shear stresses 1 . e .  , = , • us , e 

X x ·  
four bound ar y cond itions may be written as 

B . C . 1  A 0 -b V = y = 

B . C . 2 
B 0 b V = y 

B . C . 3  A B 0 ( 7 . 1 1 6 )  V = V y = 
X 

B . C . 4  A B 0 T = T y = 

A 
A 

B 
B a v  x a v x o r  µ (�) 

= µ (aY) y = 0 



FLUID A 

Fig. 7 . 1 1  Pressure-driven flow o f  t wo  immiscible fluids 
between tv«:> parallel plates 

STATIONARY CYLINDER 

ROTATING 
CYLINDER 

Fig. 7 .12 Tangential drag flow between two concentric cyl inders 

1121 
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From B.C.3, we have 

From B.C. 4 ,  we h ave 

F urther , using B. C. 1 and B.C. 2 we get 

(dp ) b A B 
c

1 
= 2 (µ -µ ) d x  A B 

µ +µ 

c
2 

( dp) b2 
2µ

A 

B
) = 

2µ
A A dx 

µ +µ 

Thus , the velocity profiles are 

A 
V = 

X 

B 
V = 

X 

where 

( dp) dx 

(
dp

) dx 

b2 

( ( 
2/ 

b2 

2µ 
B ( ( 

Po-PL 
L 

2 / A B 
(µ - µ  ) AB ) + A B 

µ +µ µ +µ 

2µ B A B 

AB) + (µ -µ ) A B 
µ +µ µ +µ 

(7. 1 1 7 )  

(7 , 1 1 8 )  

(7. 1 1 9 )  

(7. 1 20 )  

2 y 
(b) - (t) J (7. 1 21 ) 

2 

c.x)  -
b ( .x)  b J ( 7.1 22 ) 

A These velocity pro files are sketched in Fig. 7. 1 1 .  We note that i f µ = 
B µ the velocity profiles for both fluids are identical and equations 

( 7. 1 2 1 )  and (7. 1 22 ) reduce to the single parabolic ex pression of section 

7.2. 

7. 1 0  TANGENTIAL DRAG F LOW IN AN ANNULUS 

In this section we will ex amine the flow in the annular gap between 

two concentric cylinders as sho wn in Fig. 7 ,  1 2. The outer cylinder is 

stationary and the inner cylinder rotates with a constant angular 

velocity n and the fluid in the gap is incompressible and Ne wtonian. 

The c ylinders are a s s umed to be s u f ficiently long so that end 
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d isturbances may be neglected . 

As the inner c yl inder rotates it d rags along the fluid in the gap . 
Obv iously then v 2: 0 ,  vr =O and ve = ve ( r) .  

The Nav ier-Stokes equa tions in c yl indrical coord inates ( from Appendix D)  
may be simpl i fied to 

2 
r component - p ( .!) = r a r 

e componen t 0 = µ a 
car 

1 a <; ar ( r  ve ) ) J 

z component 

Equa tion ( 7 . 1 24 )  may be integrated once to g ive 

1 a ( rve ) = C 1 r a r 

A second integrat ion yield s 

The boundary cond i tions are 

r = R .  
l 

r = R 
0 

Determination o f  the integration constants c
1 

and c2 
g ives 

R . R . r  
[ (�) - (-1-) J 

R2 
R .  0 = n R .  2 e 

[ 1 - (�) J R 
0 

( 7 .  1 23 )  

( 7 .  1 24 )  

( 7 .  1 25 )  

( 7 . 1 26 )  

( 7 .  1 27 )  

( 7 .  1 28 )  

( 7 .  1 2 9 )  

To determine the torque exerted b y  the rotating c yl i nder o f  l ength L o n  
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the fluid we must mul ti ply the shear stress on the inner c yl inder 
( T  e ) R . b y  the sur face area of the cyl i nder and the r adius R . . From r r =  1 1 
append ix D we find that 

Thu s  

a 
ve 1 a v r 

Tre : µ [ r ar (
r

) + r �] 

( ' re ) 
d V 

= µ [ r  - (�) ] ctr r r=Ri r =R . 
1 

T : ( T ) ( 21T R 
1
· L ) R 

1
· o r e r =R .  

= 
2 4,rµ LR . n 1 
R . 2 

1 - (�) 

= 2µ n 

(7 . 1 3 0 )  

( 7, 1 3 1 )  

(7 , 1 3 2 )  

The negativ e  sign ind icate s that T i s  the torque exer ted b y  the fluid 0 
on the cylinder . The torque required to turn the c yl inder \.-.OUld be 
equal in mag nitude and po sitiv e .  

7 , 1 1 SHAPE OF LIQUID SURFACE I N  A ROTATING VESSEL 

A v er tical cyl indrical v essel par tl y  filled with an incompressible 

Ne wtonian l iquid rotates about its axis at a constant angular v elocity 
n .  We will determine the shape of the l i quid surface in the vessel . 

We note that for a vertical vessel as shown in Fig . 7. 1 3  we hav e  
g = g =0 and g =-g .  It i s  obvious that v = 0 ,  v =0 and v = ve ( r) . r e z r z e 

The Nav i e r -Sto ke s e q u a t i o n s  i n  c yl i nd r ical c o o rd inate s ( fr om 

Append ix D )  reduce to 

r component 

e component 0 = µ -0 -(1 ° ( r v ) ) a r  r ar e 

( 7 , 133 ) 

( 7 , 1 3 4 )  



z component a p  O = - az + p gz ( g = -g) z 
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( 7 . 1 3 5 ) 

The v elocity d i stribution v6 = v6 ( r) may be obtained from equation 

(7 . 1 3 4 ) . The pressur e  d istr ibution p = p( r , z )  is  d ue to centr ifugal and 

grav itational forces and may be obtained from e quations ( 7 . 1 33 )  and 
( 7 . 1 35 ) .  

Integration o f  e quation ( 7 . 1 3 4 )  gives 

Since ve = nR at r=R and ve = O at r= O ,  we get 

v = n r e 

Sub stituting this result into e quat ion ( 7 . 1 3 3 )  we hav e 

� 
a r 

Equation ( 7 . 1 3 5 )  may be written 
a p 
a z 

= pfl r 

a s  
= - p g 

The total pressure d i fferential i s  

d p  = a p d r  + lE d z  
a r a z 

2 - p gd z = pfl rdr 

Integrating , we get 

p = 1 2r2 
2 pn - p gz + C 

Since p = p at z= z and r=O a tm o 

C = 

(7 . 1 3 6 )  

( 7 .  1 3 7 )  

( 7 .  1 3 8 )  

( 7 , 1 3 9 )  

(7 . 1 4 0 )  

( 7 , 1 4 1 ) 

(7 . 1 42 )  
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T 
zo 

LIQUID I 
SURFACE / i Patm 

_L ..__ _ ___..z-1ti _ _, 
. r 

.- R --.J 

Fig. 7 .13 Free liquid sur face of a rotating liquid 

F ig .  7.1 4  The fluid flows r adially from the inner sphere 
towards the outer sphere. 
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Thus 

( 7 , 1 43 )  

The pressure on all poin t s  o f  the free liquid sur face must be 

atmospheric i.e. p = p t . Thus , the shape of the sur face is g iven b y  a m 

or 

z - z 0 

(7. 1 4 4 )  

( 7 , 1 4 5 )  

which means that it is a par aboloid o f  rev olution as shown in Fig. 7 ,  13. 

7.1 2  RADIAL FLOW BETWEEN CO NCENTRIC S PHERES 

We now consider steady flow of an incompressible , Ne wtonian fluid 

in the s p ace between t wo  porous spherical shells as shown in Fig. 7 ,  1 4. 

The fluid is somehow generated in the inner sphere and flows through the 

p orous sur face r adially towards the outer s p here s ur face. The 

v olumetric rate o f  flow is Q. 

The continuity equation in spherical coordinates ( from Appendix D ) 
reduces to 

and further simplifies to 

Integration gives 

d ( r2 V ) : 0 
ctr r 

V 
r 

= C 
2 r 

(7 , 1 46 )  

(7 , 1 47 )  

( 7 , 1 48 )  
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Since Q 2 : 4,r R . ( V ) 
1 r 

Therefore 

and 

r=R . 
1 

we have 

Q --2 
= 

4,rR . 

C 

V r 

(v ) = 
R2 r r=R . 

1 1 

Q = 4,r 

=
� 4,r r 

The Navier-Stokes equations in sperical coordinates reduce to 

r component 

e component 

<I> component 

av r pV 
r a r  

0 = l lE  
r a e  

0 = rsine 

+ P ge 

a p  pg
<!> 

- + a <1>  

Substituting v = Q/4irr2 into equation (7. 1 52 ) we get r 

(7. 1 49 )  

(7 . 1 5 0 )  

(7 , 15 1 ) 

(7 . 1 52 ) 

(7 . 1 53 )  

( 7. 1 5 4 )  

P c9-) 1 Q 2 - (- - -) = 
4,r 2 4,r 3 

- !E 
a r  

1 a + - --[r 
2 a r 

2 (- g_ � ) ]  4,r 3 
� g_ -1 + pg (7. 1 55 )  

2 4ir 2 r 

or 

� = 
a r  

or 

!E 
a r  

r r 

Q 2 
2 p (-) - + 

4,r " 5 r 

Q 2 2 p (-) - + 4,r 5 r 

c9-) 4,r 

pgr 

Integrating ,  we get 

r 

2 c9-) 
4

- 4,r r 

2 
4 + P gr 
r 

r r r 

(7 . 1 5 6 )  

(7. 1 57 )  



p = 

Let 

p -

p 

1 Q 2 1 
2 P ( 41r 

) 4 + P gr r + C 
r 

= P R .  at r:R .  , thus 
l 

l 

1 2 
Q c!) [ 1 PR . = 2 p(-- )  -

41r l r 
l 
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( 7. 1 5 8) 

4 pgr 
J 

r 1 ) + -R- CR - (7 . 159) 

This is the equation for the pressure distribution in the gap between 

the two porous spherical shells .  

7 ,  13 SOME PRESSURE AND GRAVIT Y  DR IVEN FLOWS 

It is not always obvious how to differentiate between the pressure 
term � and the gravity term pg ( where x is the flow direction) . To do a x  x 
just that it is best to think of the pressure gr adient :� as being 
somehow "externally imposed on the flow" ¼hereas the gravity term "is 
due to the flow region itself". The three examples de scribed below will 
help illustr ate this point. For all three cases the flow is steady and 
laminar and the fluid is incompressible and Ne wtonian. Also, the flow 
is assumed to be one-dimensional and fully developed in the region AB of 
Figs. 7.1 5, 7.16 and 7.17. This means that any disturbances at the tube 
entry or exit are neglected and the velocity v arie s only in a direction 
per pendicular to the flow direction . 

(a)  Tube flow due to an imposed pressure gradient 

The pressure gradient is due to the large reservoir shown in Fig . 
7. 1 5. It remains practically constant. The outflow tube is horizontal 
which means g = 0. The governing equation is  z 

[l L 
a v 

- l.E z z component 0 = + µ (r ar) J az r ar (7.160 ) 

We note that z = 0 p = PA = P gH + Patm 
(7 , 161 ) 

z = L p = P B  = Patm 
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LARGE 
RESERVOIR H 

A 

-- · 2R 

F i g ,  7 . 1 5  Pressure-driven flow in a hor i zontal tube 

INFLOW 

g i  

OUTFLOW 

F i g .  7 ,  1 6  Flow in a tube under the infl uence o f  gravity 

. LARGE t 
RESERVOIR 

H 

F ig. 7 . 1 7  Flow in an inc l ined tube under the in fluence 
of a pressure grad ient 

B 

OUTFLOW 



Since 

We have 

� =  
a z const 1 a v z = µ [ - L C r  -) ] , r a r a r 

� dp p gI-1 
a z = dz = - -r-

The vel oc ity boundar y  cond itions are 

a v 
0 z 0 r = -- = 

a r 

r = R V = 

7 /3 7 

(7 . 1 62 )  

(7 . 1 63 )  

C 7 .  1 64 )  

The veloc ity pro fil e  can be ex pressed by the equation o f  a parabola ( see 
section 7 . 3 ) . 

( b) T ube flow due to gravity 

There is  no external ly imposed pressur e  grad.ient in thi s  case , i f  

we n eglect the l iquid in the funnel shown i n  Fig . 7 . 1 6 . The fluid flows 
under the in fluence of grav ity.  The pressur e  d i fference ( hyd ro static) 
between A and B is  accounted for by the gravity term p g  . z 

The z com ponent o f  momentum reduces to 

C gz = g cos e )  ( 7 .  1 65 )  

The boundary cond itions are 

a v 
0 z 0 r = = 

a r 
( 7 .  1 6 6 )  

r = R V = 0 

The velocity pro file can be easi l y  determined ( parabol ic ) . 

( c ) C ombined pressure and grav i ty flow i n  a tube 

Thi s  i s  a mere combination of the previous two problems as shown in 
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Fig . 7. 1 7 .  The flow in the tube is d ue  to the ( hyd ro static) pressure 

g r ad ient impo sed by the rese rvo i r  and to gravity . 
The z component o f  momentum reduces to 

0 - 12 [.l_ _a a v
2 = + µ ( r ar) J + p gz ( g = a z  r a r  z 

We note that z = 0 p = PA 
= p gH + Patm 

z = L p = PB 
= patm 

Since 

a p = 
a z const 1 a a v  z = µ [r ar ( r  ar) ] + p gcose 

We have 

� d p  p gH 
a z = dz = - ----i:-

The veloc ity boundary cond itions are 

a v 
0 z 0 r = = 

a r 

r = R V = 0 z 

g cos e )  ( 7 , 1 67 )  

( 7 .  1 68 )  

( 7 .  1 6 9 )  

( 7 .  1 70 )  

( 7 .  1 71 ) 

Integ ration o f  equa tion ( 7 , 1 69 )  yield s a pa rabol ic velocity profile , 

7 . 1 4  DIAMETER OF A FREE LIQUID JET 

Whenever a l i quid j et emerges from a tube into air its d iameter ( d) 

i s  general l y  not equal to the t ube d i amete r (D) . For low Reynold s 

n umber flows ( Re< 1 0 )  the j et swells  and the d iameter ratio d/D m ay reach 

a value of 1 . 1 3  for Ne wtonian fl uids . Fo r non-Newtonian fl u id s  the 

observed swell ing is much larger with d/D v al ue s  between 1 . 5  and 3 , 0  

being c ommon fo r molten pol ymers ( see ex t r udate swell in the chapter o n  
non-Newton ian flow) . Fo r a larg er Re ynol d s  n umber the d iameter o f  the 
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jet becomes smaller than that of the tube. We will now use the 
one-dimensional approach to determine the reduction in the diameter of 
the jet . We note that we are in terested in the overall diameter change 

and not in the deta iled flow str ucture. This pro bl em can there fore be 

classi fied as a macroscopic one. 

We consider a liquid emerging from a long horizontal tube as shown 

in Fig. 7. 1 8. The liquid has a parabolic velocity profile ins ide the 

tube. In the free jet the velocity profile is practically flat because 

the resistance to flow at the liquid-air interface is negl igible . 

The pr inciple of conservation of mass gives 

ff p v dA = ff p vzdA 
t ube z jet 

( 7 , 1 72 )  

or 

V '1TD2 

V .  '1T
d2 

-4- = -4-av g J 
( 7 .  1 73 )  

which reduces to 

V D2 = V .d2 

avg J 
( 7 , 1 7 4 )  

The pr inciple of conserv ation of momentum ( for steady flow and in the 

absense of external forces) gives 

f f  p v 2dA = f f  p v2dA 
tube z jet z ( 7 .  1 75 )  

or 

2'1T R 
2 

2 

f f V rdrde = v2
� 

z j 4 
0 0 

(7 , 1 76 ) 

Since vz = 2Vavg 
[ 1 - (�) 2 ) R we get 

! v2 

3 avg D2 = V�d2 

J 
( 7. 1 77 )  
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Fig. 7. 1 8  _ Liquid jet emerging from a tube 

V = O  X 

V = V  X 

V 

Fig. 7.1 9 Flow near a plate suddenly set in motion at velocity V 
2.0�--------------

1 .5 

0.5 

, cp = I -erf ( 77) 

I 

0.2 . 0.4 0.6 
V 

cp= J 

0.8 1.0 

Fig. 7.20 Di mensionless velocity profile near 
a plate suddenly set in motion 
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Using equation ( 7 .  1 74 )  to eliminate the velocities we obtain a d iameter 

ratio 

d = 13 = 
0 2 0 . 87 (7 . 1 78 )  

Thi s  result i s  close to experimental ob serv ations for Reynold s  number s 

in the neig hborhood of 1 0 0. For smaller Re ynold s n umbers the approach 

fol lowed in thi s section is not val id because the veloc ity pro fil e  

changes substantially  before the end of the tube . Note also that under 

certain cond itions surface tension becomes important . 

7 . 1 5  FLOW NEAR A PLATE SUDDENLY SET IN MOTION 

We consider the flow in the immed iate v icinity of a plate which i s  

adjacent to a large body of a flu id . For all time t<O the plate i s  

stationar y .  At time t:O + the plate is set in motion at velocity V in 

the po sitive X d irection . Because o f  the no-sl i p  cond i t ion 

drags along par t  of the fluid as shown in Fig .  7 . 1 9 .  

In this case the flow i s  one-dimensional and unsteady , that is 

vx = v ( y,  t) and v = v = 0 
X y Z 

the plate 

It is clearly a drag flow situat ion without an external pressure 

grad ient . For an incompressibl e ,  Newtonian fluid the Nav ier-Stokes 

e quations red uce to 

x componen t 

y component 

z component 

a v  

P a t  = µ 

0 = 

0 = - � 
a z  

= 0 )  ( 7 . 1 7 9 ) 

( gy = -g) ( 7 .  1 80 )  

(7 . 1 81 ) 

Equations ( 7 . 1 80 )  and ( 7 . 1 81 ) desc ribe mer el y the static equil ibrium in 

y and z d irections respectively . Equation ( 7. 1 7 9 )  i s  a partial 

d i fferential equation which may be sol v ed to g iv e  the velocity v as a X 
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function o f  position y and time t .  

The initial and boundary conditions are 

I .  C . : V 
X 

= 0 at t = 0 for y � 0 

B .  C .  1 : V = 
X 

V at y = 0 for t > 0 ( 7 . 1 82 )  

B. C . 2: V X 
= 0 at y = 

To solve e q uation ( 7 . 1 79 )  we will introduce a similarity transformation 
( for more on sim ilarity see Chapter 8 ,  Laminar Bo undary La yer s ) . 

The kinematic v i scosity i s  defined a s  v = µ / p , thus equation ( 7 . 1 7 9 )  may 
be written as 

a v  X 
a t  

= 
V 

2 
a V X 

2 
a Y  

Let us now define a relative d istance n = _Y_ 
/ 4vt 

We a ssune that a solution can be fo und in the form 

Thus , we h ave 

a v  
X 

a t  

a v  X 
ay 

dv d = __ x _!1. = ctn d t  -V<j> 
y 

2t/ 4vt 

dv d : X n = ctn dy V<j> 

d a v ct , , 
= (-2 )  _!l. = V<j> 

cty a y cty 
1 

4v t 

Sub sti tut ing these ex pressions into equation ( 7 .  1 83 )  we get 

( 7 .  1 83 )  

( 7 .  1 84 )  

( 7 . 1 85 )  

(7 . 1 86 )  

( 7 .  1 87 )  



- V4> y I I 

= vV4> 
1 

¾t 

which simplifies to the ordinary differential equation 

I I I 
cl> + 2n4> = O 

7 /43 

(7. 188 ) 

( 7 . 189 ) 

The initial and boundary conditions in terms of the new variable n are 

B. C. 1 :  at n = O 4> = 

I.C.+B.C.2 : at n = 00 4> = 0 

A first integration of e quation (7. 189 ) giv es 

and a second integration yields a general solution in the form 

n 
4> = c1 r 

0 

Using the boundary condition n = 0 

c2 = 

Thus 

4> = c1 r 
n 

e-n 
0 

From boundary condition n = 00 4> = 
00 

4> = c , r e-n 

0 

4> = 1, we obtain 

2 
dn + 1 

0 ,  we obtain 

2 
ctn + 1 

( 7.190 ) 

( 7.191 )  

( 7 .  192 )  

(7 . 1 93 ) 

(7 . 194 ) 

(7 . 195 )  

The value of the definite integral f� e-n 2  ctn = (hr /2) can be found 

in standard tables of integrals (e.g. re ference [3 J )  • 
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Thus, we have 

c1 = 2 

In 

and the solution can be expressed as 

2 n 2 
- - f e-n dn 

In o 

(7 . 196 ) 

( 7 .  1 97 )  

'2. 
The quantity ;n f� e-n dry is the so-called " error function" and is 
denoted by er f( n ) .  The error function is tabulated in standard 
mathematical tables (e.g. reference [ 3  J ) .  A plot of the dimensionless 
velocity profile 

is given in Fig. · 7, 2 0. 

= 1 - erf (-Y-) 
/4vt 

7 .  16 UNSTEADY FLOW BETWEEN PARALLEL PLATES 

(7. 198) 

An incompressible , Newtonian fluid is flowing bet ween two long , 
horizontal, parallel plates separated by a distance 2b. This is again a 
pressur e-driven flow ( see section 7, 2 )  with the additional assumption 
that the pressure gradient changes which means that the flow is 
unsteady. We wish to determine the velocity profiles as a function of 
time i.e. v = v ( y ,t ) .  

X X 
To do that we must know the initial velocity 

profile and how the pressure changes as a function of time . Two 

problems will be examined : (a) Sudden removal of a pressure gradient and 
( b) Sudden imposition of a pressure gradient . 

(a) Sudden removal of a pressure gradiennt 
The flow is initially stead y and fully d eveloped under the  

influence of a constant pressure gradient .  The velocity profile (from 
section 7 .2 )  can be expressed as 



V X 

At time t = o+ the pressure 

of motion is 

= 1 v  2 avg 

gradient 

a
2

v X = \) -
2
-

a Y  

[ 1 

is 

The initial and boundary conditions are 

1 v  
2 

I .  c. V = ( 1  - (J_) ] X 2 avg b 

B. C. 1 vx = 0 

B. C.2 V = 0 
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- (i..) b 

2 
] (7. 199 ) 

removed . The governing equation 

(7. 200 ) 

at t=O (7. 201 ) 

at y:b for all t>O 

at y:-b for all t>O 

The solution to this problem can be obtained by the method of separation 

of variables [4 ] .  The result is 

V 
X -v-- = 
avg 

48 co (-1 ) n 

3 E 3 
1r n= 0 (2n+ 1 ) 

cos 
( 2 n+ 1 )n y ( 2 n+ 1 ) 2 

1r 
2 v t] 2 b exp [ - 2 4 b  

(7. 202 ) 

Several velocity profiles are given in Fig. 7.2 1 for different values of  

vt/ b2 . Initially the vel ocity profile is parabolic and becomes more 

" flat" as time pr ogresses. 

throughout. 

For t+co there will be no flow and v =0 X 

( b) Sudden imposition of a pressure gradient 

Here the fluid is initially at rest and at time t=O+ a constant 

pressure gradient is imposed. The governing equation of motion is 

a v  
X 

a t  
= (7. 203 ) 
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1 .0 

0.6 

0.4 

0.2 

y 
b 

0 

-0.2 

-0.4 

-o.s 

-a.a 
-1.o-......i.-..i...-.... ....1----..i...-i..-....1 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
v

.,, / Vavg 

Fig. 7 .21 Dimensionless velocity pro files for unsteady 
flow between t� parallel plates with sudden 
removal of the pressure gradient . 

1.0 

0.4 

0.2 

J_ 0 
b 

-0.2 

-0.4 

0.6 0.8 1.0 1.2 1.4 1.6 

vx/Vovg 

Fig. 7.22 Dimensionless velocity profiles for unsteady 
flow between two parallel plates with sudden 
imposition of a pressure gradient. 
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The initial and bound ar y conditio ns are 

I . C .  V = 0 at t:O for -b < y .s. b 
X -

B .  C .  1 V =O 
X 

at y:b for all t > 0 (7 . 204 ) 

B.C . 2  V =0 at y:-b for all t > 0 

Again the method o f  separ ation o f  v ar i ables can be used . The velocity 

profiles are expressed , in terms of V for steady flow , in the form avg 

V avg 
= 1 [1 2 

48 ; (- 1 ) n 

cos[(2n+1 ),r 1.J exp[-
(2n+1 )1r

2
vt] 

3 3 2 b 4b2 1r n= O  (2n+ 1 ) 

( 7 . 205 ) 

Several velocity profiles are given in F ig. 7 . 2 2  for different v alues o f  

vt/b . In i tially the velocity is zero everywhere. As time progresses a 

pro file dev elops which looks more and more like a par abola . For t + 00 

the steady-state parabolic profile is obtained . 

The unsteady one-dimensional flow problems , l i ke those o f  sections 

7. 15 and 7 .  16, are gover ned by exactly the same equations that describe 

one-dimensional unsteady heat conduction in solids. Generally the 

method o f  separation o f  v ariables is used to obtain solutions .  A book 

by Carslaw and Jaeger [5] contains a very large number of solutions o f  

such problems . Many heat conduction solutio ns can be applied directly 

to flow problems by noting that velocity (v ) corres ponds to temperature 
X 

(T ), kinematic v iscosity (v ) corresponds to thermal diffusivity ( a )  and 

the pressure gradient corres ponds to heat generation . 

7. 1 7  THE USUAL TYPES OF BOUNDARY CONDIT IONS 

In t h i s  sec t ion we s ummari ze the v a r io u s  t ypes o f  boundary 

conditions which were used in the determination of the solutio ns for the 

problems examined in this chapter . u denotes the velocity component in 

the direction o f  flow and y i s  per pendicular to the direction o f  flow. 
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(a) FLUID-SOLID I �TERFACE 

The fluid takes the velocity o f  the solid wall (no-slip condition) . 

This velocity will be either zero or will have a certain value V 

(constant or varying with time) . 

B . C . (a):  u = 0 or  u = V (7 . 20 6 )  

(b) LIQUID-LIQUID INTERFACE 

At the interface o f  two immisc ible liquids A and B the velocities and 

shear stresses from both sides must be respectively identical . 

B. C .(b1 ): (7 . 207 ) 

B .  C .  ( b2 ): 'A = ' B  (7 . 20 8 )  

The equality o f  shear stress (B. C .(b2 ) )  implies the following relation 

in terms of  the velocity gradients: 

B .  C .  ( b2 ): (7. 2 0 9 )  

( c )  LIQUID-GAS INTERFACE 

The velocity of  the liquid at the interface must be equal to the 

velocity of  the gas uL = uG and the shear stress from the liquid phase 

must be equal to the shear stress from the gas phase, , L = 'G. We would 

normally be interested in determining the velocity pro file in the 

liquid . Since the gas velocity will generally be unknown, the boundary 

condition uL = uG provides no information . 

stresses may be rewritten as 

B . C . (c):  

The equality of  shear 

(7 . 21 0 )  

Fo r  many practical problems µ L » µG and the above ex pression simply 

reduces to 
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B . C.(c) : (7, 21 1 )  

Note that in the study of wind driven currents in l akes and oceans 

e quation (7,21 0 )  rather than (7,2 1 1 )  is used (see chapter on o pen 
channel flows ) . 

' (d) AXIS OR PLANE OF SYMMETRY 

For  symmetrical flows , at the axis (or plane) of symmetry the 
derivative must be zero. 

B . C. (d): 
a u  

X : 0 
a Y  

(e) FAR FROM THE SOURCE O F  MOTION I N  INFI NITE FLUID 

(7. 2 1 2 )  

In section 7. 1 5  (plate suddenly set in motion),  we noted that at 

large distances from the plate the velocity is zero . 

B.C. (e) : y + a, u = 0 (7. 2 1 3 )  

It is possible , however, that the outside fluid has a velocity of its 
o wn  ( free stream velocity V ) not connected with the impulsive plate . 

a, 

motion . Thus , we may generalize to 

B. C . (e): y + a, u = V (7. 21  4 )  

This type o f  boundary condition is particularly common in boundary layer 

flows which are discussed in Chapter 9� 

7. 1 8  SOME N UMER ICAL E XAMPLES 

E xample 7. 1 8 .  1 

Determine the pressure drop for each 1 OOm of length for flow o f  an oil 

(µ =0 . 1  Pa•s, S. G, :0, 9 )  through a pipe having a diameter of 5 cm, when 

the volume rate of flow is 200 liters per minute . 
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Solution 

We must fir st ex amine whether the flow is laminar 

P vavg D 
Re = 

V 
Q ( 0 . 2m3 ) / (60 s) 1 .  70 m/ s = A = 

n ( 5 x 1 0-2 ) 2 m2/4 
= avg 

and 

Re (900 kg/m3 ) X ( 1 • 70 m/s) X (5  X 1 0-2 m) 765 = 
2 

= 
o. 1 N• s/m 

Since Re < 2 1 00 the flow in the pi pe is indeed laminar . We can 

therefore u se the Hagen-Po i seuille formula (eq . 7, 61 ) which g ives 

Introducing the numer ical value s ,  we get 

LIP = 

= 

( 0 .2 m\ 8 x ( 0 . 1  N•  s/m2 ) x ( 1 00m) 
60 S 

1T X ( 2_ X 1 0 -2 m) 4 
2 

2 1 7409 N/m2 = 2 1 7 . 4 k Pa 

E x ample 7 .  1 8  . 2 

A c ommon method for measuring viscosity ( particul arl y o f  o i l s  and 

pol ymer sol ution s) requires the determination of the t ime needed for a 

certa in quanti t y  o f  the fluid to flow through a capi l l ar y  tube under the 

influence o f  a pressure gr ad i ent which i s  held nearly constant . If the 

flow in the tube is l am in ar and the tube is rel ativ el y long the 

Hagen-Po i se uille formula ( e q .  7 .  61 ) appl ies . To illustrate this method 
let us con sider a large reservoir and a capil l ar y  outl et tube having a 

d i ameter o f  2mm , as shown in Fig . E . 1 8 . 2 . We will determine the 

absol ute ( µ )  and kinematic v iscosity ( v =µ /p ) if 7 , 5 cm3 of the fluid 

flow through the tube per minute and the density i s  p = 0 , 9  g/cm3 . 
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L = 50 cm 

2 mm dia. 

Fig. E . 1 8 .2 
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S olution 
The Hagen-Poiseuille formula is 

Q 
,r ( ti p )  R4 = 8µL 

Here , the pressure drop ti p consi sts o f  two par ts : the ex ternal l y  impo sed 
, press ure tip 1 = pgH and the hydrostatic pressure in the t ube tiP2 

= p g L .  
Thi s  result can b e  easi l y  obtained by wor king out the solution for the 

case of combined pressure and gravity flow of section 7 . 1 3 ( c) .  
Thus , we have 

or 

Q = ,r ( p gH + p gL )  R4 
8µ L 

Q = P g,r ( !:!_ + 1 ) R 4 
8µ L 

The kinematic v i scosity can be determined from 

\) = g,r H 4 
8Q <r + 1 )  R 

and the absolute vi scosity from 

µ = vp  

Introducing the n t.llller ical val ues , we have 

= 3 6 . 96 x 1 0-6 m2 / s  = 3 . 69 x 1 0-5 m2 / s  
-6 2 3 µ = (3 6 . 9 6  x 1 0  m / s) x ( 9 0 0  kg/m ) 

= O .  03 3 N • s/ m2 = 0 .  03 3 Pa• s 

E x ample 7 . 1 8 . 3 

Oil having an absolute v iscosity µ = 0 . 1 Pa• s ,  p :0 . 9  g/cm3 flows over a 
flat plate incl ined at an angle e = 3 0° to the vertical . The thicknes s  
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of  the film formed is 5mm . 

Re ynolds n umber • 

De term ine the max imum veloc ity and the 

Solution 

We use equation ( 7 .  1 06 )  

= pg o
2 

cos a 
2µ 

= 0. 55 m/s 

The Re ynolds n umber i s  

p V o 
Re = avg 

Us ing equation ( 7 . 1 07 )  we have 

V pg o 2 cos = 
avg 3µ 

which means that V 
avg 

= � v  
3 max 

Thus , the Reynolds number i s  

= 0 . 3 7  m/s 

Re = (900 kg!m3 ) x (0 .37 m/s) x (5x 1 0 -3 m) = -2 2 
1 0  N•s/m 

1 66 

Note that the flow i s  l aminar for falling li quid films when the Re ynold s 

number is less than about 500 . 

Example 7 . 1 8  . 4  

We will now re- ex amine ex ample 1 . 2 wi thout using the fl at plate 

approx imation for the 25 cm long shaft , D .  = 5cm ,  which rotates 

j ournal , D 
0 

-2 1 
= 5 . 03 cm (µ  = 4 x 1 0  Pa • s  and N = 1 800 rµn) . 

in a 
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Solution 
The tor que ex erted by the rotating shaft i s  g iv en by e quation (7 .132 ) 

4,r µ LR�o l 
T =----

where R .  = 2.5 cm, R = 2.515 cm, o = 2ir N l 0 
Thus , 

T 
0 

-2 2 -2 2 ) 4,r x ( 4 x 1 0  N • s/m ) x (0.25m) x (2.5x 1 0  m) x 2ir( 1800/60s 

1 _ ( 2 .50 / 
2.515 

= 1.244 N• m 

Thi s  result i s  very close to the value obtained ( 1 . 232 N"m)  by 

ma king use of the two flat plates approx imation because the gap i s  very 
narrow. 
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CHAPTER 8 

LOW REYNOLDS NUMBER FLOW 

8 . 1  INTRODUCTION 

It is evident from Chapter 7 that the Navier-Stokes equations must 

be simplified before solution of certain simple flow problems is  

attempted . In this chapter , we consider a special class of viscous flow 

problems having low Reynolds number ( Re :: pVL/µ ) . We have noted that 

the Reynolds number expresses the relative magnitude of inertia to 

v i scous forces . Consequently , for Re < < 1 the inertia terms can be 

eliminated from the Navier-Stokes equations ( 6 . 90 ,  6 . 9 1  and 6 . 92 ) .  For 

incompressible steady flow of a Newtonian fluid , we have 

continuity 
av � 

av z � + + -- :: 0 ax ay az ( 8 . 1 ) 

momentum J.Q 
a 2v a2v a2v 

__ x X 0 = + µ(-- + 
al 

+ --) + pgx ax ax2 az2 
( 8 . 2 )  

a2v a2v a2v 
0 ...a.I?. ___:/_. ___:/_. + µ (  

2 
+ 2 + 2 ) + pgy ay 

ax ay az 
( 8 . 3 )  
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lQ O = - az + 

or in Cartesian index notation 

continuity 

momentum 0 = 

and in vector notation 

= 0 

1.JL + ax . 

2 
a V .  

__J_ µ 2 + pg . 
ax . J 

2- -
0 = - v'P + µ V V + Pg 

+ pg z ( 8.4 ) 

(8.5 ) 

(8.6 ) 

( 8 .7 )  

( 8.8 ) 

The gravity force term can be absorbed into the pressure term by 

introducing an equivalent pressure P = p + pgh where h is measured 

upwards while the gravity acts downward i . e. 

thus 

C, 0 = - VP + µ v' V ( 8.9 ) 

This is the so-called creeping motion or Stokes flow equation . It 

is important to note the significant simplifications achieved by 

imposing the restriction Re < <  1. The creeping motion equations 

represented by ( 8.9 ) are linear partial differential equations , whereas 

the Navier-Stokes equations are non-linear , because they contain the 

quadratic inertia terms. The restrictive condition Re = pVL/µ « 1 

implies that creeping motion does not necessarily require extremely 

small characteristic velocities . For highly viscous fluids like polymer 

melts we have Re « 1 even for relatively high velocities. Generally 

speaking low Reynolds number flows are encountered in several important 

technological applications . These include : processing of plastics and 

rubbers , processing o f  suspensions , emulsions , foam and powders , 
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flotation and settling operations in mining engineering , flows of water 

or oil through porous soils and many others. There are two excellent 

books by Happel and Brenner [ 1 ]  and Langlois [ 2 ] which are devoted 

exclusively to low Reynolds number flows. 

or 

Taking the divergence of equation ( 8.9 ) , we have 

2::-0 =-v • vP + v• ( v  V )  

2 2 -
o =-v p + v ( v•v ) 

(8.10 ) 

(8.11 ) 

Since the fluid is assumed incompressible v•v = O ,  equation (8.11 ) 

becomes 

(8 .12 )  

Thus , the pressure field P(x , y , z )  satisfies the Laplace equation and is , 

therefore , a harmonic function . 

. For two-dimensional creeping flows the equations of motion can be 

expressed in a particularly simple form by the introduction of the 

stream function f ,  which is defined by 

V 
X 

= V y = 
cl'i' 
ax (8 .13 ) 

The two-dimensional continuity equation i s  automatically satisfied, 

because 

LL � 
ax ay ax ay 

The equations of motion are 

0 = 

0 = 

_ar_ - + ax 

aP - - +  ay 

= 0 ( 8.14 ) 

a2v a2v 
X __ x ) µ(-- + 

ax2 a/ 
( 8.15 ) 

a2v a
2v 

µ ( ____y + ____y) 
ax2 a/ 

( 8 . 16 )  

By differentiating equation ( 8.15) with respect to y and equation 

( 8.16 )  with respect to x and then subtracting , we find 
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...L 
ay 

a 
+ 

ax 
( 8.17 ) 

which , by the introduction of definitions ( 8.13) , becomes 

(8.18 ) 

or , equivalently 

(8.19 ) 

Because of equation ( 8.19 ) the stream function f is said to be 

biharmonic . 

There are at least four d ifferent types of flow problems which are 

described by the creeping motion equations : 

( a )  Fully developed laminar flows . These problems were dealt with in 

Chapter 7 ,  in  the framework of what was re ferred to a s  

unidirectional 

( b )  L aminar flows through narrow  b u t  v a r i a b le w i dth pa s sage s .  

( Sections 8.2 and 8.3 ).  This class of  problems comprise the 

so-called hydrodynamic lubrication theory, because it was first 

developed for the study of the lubrication mechanism of thin fluid 

films. Detailed expositions can be found in the books by P inkus 

and Sternlicht [ 3 ]  and Walowit and Anno [ 4 ].  

( c )  Creeping flow s about immersed bodies. Starting with Stoke s 

solution for flow around a sphere ( see Sec. 8 . 4) , many other 

problems have been treated in the relevant literature. A thorough 

treatment is presented in Happel and Brenner ' s  book [1]. 

(d )  Flow through porous med ia . ( Sec.  8.5 ) These  problems are  

important in  the study of  water or  oil flow through porous soils 

and in fluid flow through process equipment like filters and 

catalyst beds. Specialized texts by Muskat [5 ] ,  Scheidegger [ 6 ]  
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and Dul lien [ 7 ]  cover most theoretical and practical aspects of 

this type of flow. 

In the following sections of this chapter we present a detailed 

analysis of some classical low Reynolds number flow problems . 

8 .e SQUEEZE FILM FLOW 

A fluid of constant density p and v iscosity µ is contained in the 

gap between two disks of radii R .  The lower disk is stationary and the 

upper one is forced down slowly at a constant velocity V. As the gap 

between the disks decreases the fluid is squeezed out radially as shown 

in Fig. 8 .  1.  We will determine the force F required to  sustain disk 

velocity V and the time required for the disks to reach a distance h .  

We assume that the flow is sufficiently slow so that fluid inertia 

effects can be neglected. Since there is no rotation , v 6 = 0 and 

a ; a e  = o .  If  Q is the volume rate of flow , the principle of 

conservation of mass gives 

2 h 
nr V = Q = 2nr f V dz r ( 8.20 ) 

where V is the velocity of the upper disk and h is a function of t ime t .  

For a sufficiently small gap h the main fluid motion is in the r 

direction. The flow field can , therefore , be determined by the r 

component of the equation of conservation of momentum for creeping 

motion , which is 

0 lQ [.L ( .1 ( rv ) ) = - ar+ µ ar r r 

a
2

v r + -2-J 
az 

(8.2 1 )  

We note that the pressure varies from a finite value a t  r = O ,  to p =  0 

at the edge of the disks ( r = R ) . Thus , the flow occurs under the 

influence of a non-zero pressure gradient ap/ ar. The first viscous term 

can be eliminated from equation ( 8 . 21 )  because the velocity change in 

the z direction is much larger than the change in the r direct ion. 

Thus , we have 
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0 = 

The no-slip condition at 

vr = 

V = r 

..fil2. - + ar 

lower 

0 at 

0 at 

a2v r 
µ --

az2 
(8.22 ) 

and upper plates gives 

z = 0 
(8.23)  

z = h 

This problem is , therefore , mathematically identical to the pressure 

flow problem between two flat plates of Section 7. 2. (Note that the 

horizontal axis , here , lies on the lower plate rather than on the 

midplane) .  Thus , the velocity profile is of the form 

(8.24 )  

By introducing v into equation (8.20 )  and performing the integration we r 
find 

(8 . 25 )  

By integrating this first-order differential equation with p = 0 a t  r = 

R ,  we get 

(8.26 ) 

We note that the pressure distribution is parabolic having a maximum at 

the center (r -= 0 ) .  

The total force required to sustain the upper disk velocity V is 

2n R R 
F = J J prdrde = 2 n J 

0 0 0 

which gives 

4 
F = 3uuVR 

2h3 
(8. 27) 
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Fig. 8.1: Squeeze film flow between two parallel disks. 
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Fig. 8.2: Velocity and pressure distributions in the slider 

bearing problem. 
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The disk velocity can be expressed as 

V :: dh 
dt 

(8.28) 

where the minus sign is needed because the plate moves downwards, while 

the positive z direction is upwards. Thus, we may write 

dt = 

and integrating by assuming h ::  H at t :: 0, we get 

1 h :: c- + 
H2 

4Ft 
)
-1/2 

4 
31rµR 

(8.29) 

( 8. 30) 

This equation is known as the Stefan equation. More details on the 

squeeze film flow problem can be found elsewhere [8,9]. 

8.3 THE SLIDER BEARING PROBLEM 

Films of lubricants are usually found between two soiid objects 

which are supposed to stay apart. The most common application is in 

lubricated bearings. To keep the bearing surfaces apart the film must 

be capable of sustaining forces normal to these surfaces. Imposition of 

a high pressure from an external source can generate the normal forces 

required. This is known as hydrostatic lubrication. More often, 

however, the load carrying capacity is generated by the lateral motion 

at the two surfaces (slider bearings). It should also be noted that the 

squeeze film flow has a load carrying capacity as shown in Section 8.2, 

because of the relative surface motion. These types of lubrication are 

known as hydrodynamic lubrication. Here, we focus our attention to load 

carrying capacity due to lateral motion of the bearing surfaces. 

If the two surfaces are parallel and one is stationary while the 

other moves, we have the classical drag flow problem (Sec. 7. 5). In 

such a case the same pressure acts uniformly over the entire surfaces. 

Consequently, such a configuration has no load carrying capacity. To 

generate a pressure between the two surfaces the width must be variable. 

Figure 8. 2 shows a greatly exaggerated angle between the two slider 

bearing surfaces. The upper surface is stationary while the lower one 
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moves at a constant velocity V. 

For slightly inclined surfaces the equation of momentum in x 

direction should be identical to that describing combined pressure and 

drag flow between parallel surfaces (Sec. 7.6). In this case, however, 

the pressure gradient is no longer constant. In the film between the 

two surfaces the pressure must reach a maximum and drop to the ambient 

value, say p , at the two edges. The flow rate between the surfaces 
0 

must be the same at all x positions. Thus, we have 

h(x) 
q = J vxdy = const 

0 
(8.31) 

where q = Q/W is the flow rate per unit width. The momentum equation 

for creeping motion in the x direction simplifies to 

The boundary 

·/v l.12. X = µ--ax al 

conditions are 

y = 0 V 
X 

= 

y = h vx = 

X = 0 p = 

X = L p = 

(8. '32) 

0 
(8.33) 

Po 

Po 

The velocity profile must, therefore, be identical to that of Section 

7.6. 

y_ (h-y) 
_1 .Q.Q 

V = h 
-

2µ dx y(h-y) 
X 

(8.34) 

and 

q Vh � QP_ = 2 12µ dx (8. 35) 

Solving for dp/dx, we have 

dx = (8.36) 

and integrating 
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p (x) (8.37) 

Introducing the boundary condition p = p at x = L, we get an expression 
0 

for the volume rate of flow per unit width 

q = (8.38) 

This means that q can be determined if the shape of the gap as expressed 

by h = h (  x) is known. For a wedge having two flat surfaces h(  x) = 
o (a-x) where a and o are geometrical constants as shown in Fig. 8.2, we 

have 

and 

= Vo a(a-L) q 2a-L 

p (x) = Po + 6µV 2 2 o (a-x) (2a-L) 

x(L-x) 

(8.39) 

( 8. 40) 

Alternatively, introducing the two gap widths h1 and h2 and using the 

geometrical relations 

and 

we get 

p (x) - Po 

.£ 
L 

(8.41) 

= (8.42) 

(8.43) 

Thus, the net normal force acting on the upper surface for plate width W 

is 



FN = W J (p(x) - p
0) dx 

0 

The force FN has a maximum for h1/h
2 

= 2.189. Thus, 

F N, max 
uVL2 

= 0.1602 
2 h
2 

w 

The force required to pull the lower plate is 

L 
F3 = - W J 

0 

The negative sign is needed because 

T xy 

is the stress exerted by the fluid on the plate. 

previous geometrical relations, we get 

µVLW h1 
F s = (h _ h ) (4 ln�)-1 2 2 
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(8.44) 

(8.45) 

(8.46) 

Introducing the 

(8.47) 

Then, for h1 /h2 = 2. 189, which corresponds to maximum upward force 

(FN ) ,  we have , max 

F = 0.754 µVL W S, max h
2 

(8.48) 

The ratio F3 /FN is a measure of the coefficient of friction of , max ,max 
the bearing and is equal to 4.702 h

2
/L. This can be made very small for 

sufficiently small h
2 

values. Sketches of the pressure and velocity 

distributions are shown in Fig. 8. 2. 

Here are some typical numerical calculations per unit width W = 1m. 
-1 For V = 10 m/s, L = 10 cm, µ = 10 Pa•s and h

2 
= 0.1 mm, we get 

FN,max = 160,200 N 
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F8 = 754 N ,max 

and the coefficient of friction is 

F /F = 0.0047 5,max #,max 

It. is interesting to note for comparison that in the absence of a 
,1 

lubricant the coefficient of friction for two clean metal surfaces is of 

the order of 0.3 to 0.4. 

For a slider bearing of finite width we must also consider the flow 

in the z direction where z is perpendicular to the plane of Fig. 8. 2. 

Thus, the equation of continuity is 

av av 
_..x + __ z = O  ax az 

Integrating from y = 0 to y =  h, we have 

h 

_L J ax V dy 
X 

a +az 

h 

f 

0 

(8.49) 

(8.50) 

If U is the velocity of the boundary in the z direction, we would have 

an expression for the flow rate in the z direction analogous to that 

given by equation (8. 35). 

(8.51) 

By introducing equations (8.35) and (8.51) into equation (8.50) we get 

_a (h3 JQ) + _L (h3 JQ) = 6µ [�z (hV) + �z 
(hU)] (8.52) 

ax ax oz oz a a 

This is the so-called Reynolds lubrication equation. It is often the 

starting point for the study of lubrication in journal bearings of 

finite width and other configurations. For more information the reader 

is referred to Langlois [2], Massey [10] and Schlichting [11]. The more 

practical aspects of lubrication, in addition to  the theoretical 

developments, may be found in the books by Pinkus and Sternlicht [3], 

Walowit and Anno [4] and Gross [12]. 
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We now consider the case of  steady and slow viscous flow o f  an 

incompressible Newtonian fluid around a sphere as shown in Fig. 8. 3. 

For this case the Reynolds number is defined by 

p V D 
Re = 

a, (8.53) 

where D is the diameter of the sphere. When Re << 1 equation (8.19) is 

applicable, i.e. 

v 4 '¥ = O ( 8 . 54 ) 

In sperical coordinates r, e, cp the stream function '¥ can be defined 

from the continuity equation, with cp-direction symmetry, which is 

_1 _L (r2 V) 1 
2 ar r + rsine 

a 
ae (ve sine) = 0 

This is satisfied automatically by setting 

1 V = -�-
r 2 . e r sin 

a'¥ 
ae 

V 6 = a'¥ 
rsin e er 

(8.55) 

(8.56) 

(8. 57) 

It can be shown that in spherical coordinates, with cp-symmetry, equation 

(8.54) becomes 

a sine .L 1 a 2 [2 + 2 ae (sine ae)] '¥ = 0 
ar r 

The no-slip boundary conditions at the sphere surface are 

r = R 

r = R 

V : 0 : r 
a'¥ 

2 . e ae r sin 

ve = O = - rsine 
a'¥ 
ar 

(8.58) 

(8.59) 

(8.60) 

Far from the sphere, the velocity in the direction o f  the polar axis z, 

vz, must approach the uniform velocity Va,. Thus, by referring to Fig. 
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N 

.. 



8.3, we have 

r + oo v = V cose r oo and v = -V sine 
e 00 

or in terms of the stream function I 

and 

1 a t = V 2 .  ae oo 
r sine 

cose 

a, = r2 v cose sine a e oo 

and 

and 

Integration yields 

Thus, 

2 
.!::_ V . 2 K( ) t = 
2 00 

sin e +  r and 

r2 

I =  2 V
00 

sin2e + constant 

at = r v sin
2e 

a r 00 

2 
t = .!::_ v sin

2e + K(e) 2 00 
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(8.61a) 

(8.61b) 

(8.62) 

(8.63) 

(8.64) 

The arbitrary constant can be set equal to zero, and equation (8.58) can 

now be solved with bou ndary conditions (8.59), (8.60) and (8.64). 

The condition (8.64) suggests a trial solution of the form 

iv = f( r) sin
2e 

which, when substituted into equation (8.58), yields 

d 2 (-2 dr 

2 d2 
2 

2)(-2 - 2) f(r) = 0 
r dr r 

(8.65) 

(8.66) 

This is a linear, homogeneous equation that can be satisfied by a sum of 

terms at the form crn, where each n satisfies the algebraic equation 

[(n-2)(n-3) - 2 ][n(n-1) - 2 ] = 0 (8.67) 
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The roots are n = -1, 1, 2, 4, so that 

f (r) = .! +Br + cr2 + Dr4 

r 

The third boundary condition (Eq. 8.64) requires that 

The no-slip 

2 sine r 

1 
rsine 

boundary 

C = l V and D = 0 2 co 

conditions (eqs. 8.59 and 8.60) 

a't' 2 
- - f (r) COSS = 0 at r = R ae - 2 r 

a'¥ a f{r} sine 0 at R ar = ar = r = r 

give: 

Introducing equation (8.68) into (8.70) and (8.71), we have 

Thus 

A B Vco 
0 -+-+- = 

R3 R 2 

A B 
- - + - + V = 0 

R3 R co 

B = - 4 Vco R 

Hence, the stream function is 

and the 

V r 

V
S 

velocity 

1 V (R
3 .311 2) . 26 '¥ = 2 co 2r - 2 

r + r sin 

components take the form 

a, 1 V [ 1 - .3. (B.) (B.)3] cose = 2 ae = + -co 2 r 2 r sine 

1 a, V [-1 + .3. (B.) + l (B.)3] sine = rsine ar = 
co 4 r 4 r 

(8.68) 

(8.69) 

(8.70) 

(8.71) 

(8.72) 

(8.73) 

(8.74) 

(8.75) 

(8.76) 

(8.77) 



8/17 

Streamlines (i.e. lines of constant I) and velocity profiles 

computed from equations (8.75), (8.76) and (8.77) are shown in Fig. 8.4. 

It is interesting to subtract the free stream velocity V from equations 
00 

( 8. 75) , ( 8. 76) and ( 8. 77) and plot the corresponding streamlines and 

velocity profiles for a sphere moving at a constant velocity V 
00 

in an 

infinite otherwise undisturbed fluid, as shown in Fig. 8.5. It should 

be 1 noted that in both Figs. (8.4) and (8.5) the streamlines are the same 

ahead of  and behind the sphere, a preculiarity which will not hold when 

inertia effects become important. 

To determine the pressure distribution we must go back to the 

original creeping flow equation of Section 8.1 (neglecting gravitational 

forces): 

2 0 = -Vp + µV V 

which in spherical coordinates, with $-symmetry (see Appendix 

be written as 

J_ lI?. 
µ ar 

av av 
= -1- .L cr2 ---1:) + _.,___ .L ( sine "e

r) 
r2 ar ar r2sine ae a 

2v 
__ r 

r2 

_1 lg 
µr ae 

L ave 
2 ae r 

2v 0 cote 

2 

_1_ .L 2 ave 1 
= 2 ar ( r �) + -

2
--'--

r r sine 

a 
ave 2 

avr 
ae (sine ae) + 2 ae r 

(8.79) 

) can 

(8.80) 

(8.81) 

Introducing equations (8.76) and (8.77) into the above expressions, we 

get 

lQ 
ar = ( 

3µRV 
00 

r3 ) cose (8.82) 

lQ 
3µRVOO 

= ( ) sine 
ae 2r2 

(8.83) 
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------ --

------

Fig. 8.4: Streamlines and velocity profile for creeping flow past 

fixed sphere. 

--- --. -- -

---- --

Fig. 8.5: Streamlines and velocity profile caused by a slowly moving 

sphere in a fluid. 
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so that 

3µRV.., 
p = p... - ( ) cose 

2r2 
(8.84) 

where P.., denotes the pressure far from the sphere. The pressure on the 

sphere surface can be obtained from equation (8.84) by setting r = R and 

p 
,; = 0): co 

µ v ... 
= 3. -- cos& - 2 R 

The maximum value occurs at the upstream stagnation point (6:,r) 

µ V 

(8.85) 

(8.86) 

and the minimum value occurs at the downstream stagnation point (6=0) 

(8.87) 

The pressure distribution around a sphere is shown in Fig. 8.6. 

The total drag exerted on the sphere is the sum of the pressure 

drag or form drag FDr and friction .drag F DF. The pressure drag is the 

resistance to flo� due to the pressure p (i.e. z component of pressure 

force). Referring to Fig. 8.7, we have 

where dS = R2sineded� and 

2,r 'If 

FDP = - J J (pr=R) R2 cose sine dOdt 
0 0 

Using equation ·c8.85), we get the magnitude of the pressure drag 

FDP : 2,rµ RV.., 

(8.88) 

( 8. 89) 

( 8. 90) 

The friction drag is due to the resistance to flow caused by the 

shear stress on the sphere surface. The shear stress on the r8-plane 
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1.5· 

t 
pr= R . 1.0 

JJ-V00/R 

-2 -I 

2 3 
�-

-1.o-----+--,----

-1.5---------

Fig. 8.6: Surface pressure distribution for creeping flow around· 

a sphere. 

Fig. 8.7: Shear stress and pressure forces acting on the surface 

of a sphere. 

,.., 



is 
a v e 1 av r 

T : µ [r - (-) + --J 
re ar r r ae 

Using Equation (8.76) and (8.77), we get 

(. e) R = r r= 
.3. µ V

ao 

2 R sine 
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(8.91) 

(8.92) 

The ffid(on drag is the z component of the tangential stress force ( see 

Fig. 8. 7) 

= 

JJ (, e) R sinedS 
S r r= 

2,r 1T 

J J ('re)r=R R2sin e 2ded� 
0 0 

= 4irµRV 
a, 

Thus, the magnitude of the .total drag is 

(8.93) 

This expression is known as Stokes' law (13). It is interesting to note 

that for a solid sphere of density ps falling with terminal velocity Vt 
under the influence of gravity in a fluid of density p and viscosityµ, 

we have 

weight of sphere = drag + buoyant force 

or 

(8.95) 

The above equation can be used to calculate either the terminal velocity 

( steady state) Vt or the viscosity of the fluid ( see example 8. 1). It 

should be noted, however, that the expression for total drag (Eq. 

(8.94)) is valid for small Reynolds number values (typically Re< 0.5). 
For larger Reynolds numbers the inertia effects cannot be  

neglected. Oseen [ 14] suggested that the inertia term in the 

Navier-Stokes equations, pV • vV, can be reasonably approximated by 
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pV •vv and equations (8.7) and (8.8) can now be simplified to read 
co 

(8.96) 

PV • vv co 
2 = -Vp + µV V + pg (8.97) 

We' note that by replacing pV•vV by pV •vV, Oseen linearized the 
co 

Navier-Stokes equations (since V = constant) and simplified the co 
solution. The results of this analysis show that the streamlines are no 

longer the same in front of and behind the sphere. The total drag has 

been found to be 

J_ FD = 6wµ RVco (1 + 16 Re) (8.98) 

An improvement of Stokes' and Oseen' s solution has been suggested by 

Proudman and Pearson [15] which leads to 

( 8. 99) 

where ReR = Re/2. 

Some questions have been raised in connection with the range 

validity of the above equations (see for example refs. [1, 2]). However, 

these methods of treatment also give solutions for the two-dimensional 

problem (i.e. flow around a cylinder) whereas Stokes' equations (8.7) 

and (8.8) do not possess a solution (Whitehead's paradox). Some 

experimental results and Stokes' and Oseen's solutions are given in Fig. 

8.8 in terms of a drag coefficient which is defined by 

CD 

FD FD 

V 2 = 2 p co pVCO 2 - A  -- wR 2 2 

(8.100) 

Using equation (8.94), we get 

(8.101) 

and using equation (8.98) we get 
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Fig. 8. 8: Drag coefficient for flow around a sphere as a function of 
Reynolds number. The solid line represents the best fit for 
the experimental data. l)ashed line ( 1) is Stokes' law ( Eq. 

8.101) and (2) Oseen's equation (8.102). 
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CD = �� (1 +�Re) (8.102) 

The figure shows that equation (8.101) gives good agreement with 

experiments up to Re: 1 whereas equation (8.102) up to Re: 1 whereas 

equally (8.102) up to Re : 2. For higher Reynolds number flows the 

reader is referred to the book by Cliff et al [16]. 

Example 8.1 The Falling Sphere Viscometer 

A small steel ball of 5 mm diameter (p = 7800 k /m3) is allowed to 
s g 

fall vertically down the center of a glass cylinder containing a fluid 

of density 1100 kg/m3 as shown in Fig. 8.9. The terminal velocity is 

determined by measuring the time required for the steel ball to travel 

between the two lines shown and is found to be 4.2 cm/s. Determine the 

viscosity at the fluid. 

Solution 

Solving equation (8.95) forµ we get 

µ = 

= 
2(2.5 x 10-3 m) 2(7800 kg/m3 - 1100 kg/m3)(9.81 m/s2) 

9(4.2 x 10-2 mis) 

2 = 2.17 N •s/m = 2.17 Pa •s 

We now check the Reynold's number to see whether it is within the region 

of applicability of Stokes' law. 

p Vt D (1100 kg!m3)(4.2x10-2 m/s)(5x10-3 m) 
Re = -�- = 

µ 2 
2.17 N•s/m 

For such a Reynolds number Stokes' law is valid. 

= 0. 106 

It should be noted that falling sphere viscometers are useful only 

for highly viscous fluids (low Re). The viscosity measurement, however, 
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1----o1 x=O 

..,_ __ -t x=L 

Fig. E.8.1 
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might not be terribly accurate because Stokes' law was based on flow 

around a sphere in an infinite fluid. In the falling sphere viscometer 

the cylinder walls will influence the flow pattern and consequently the 

velocity of fall. 

8.5 FLOW THROUGH POROUS MEDIA 

The flow of fluids through porous media occurs in many 

technologically important processes (see references [5], [6] and [7]). 

Common examples include flow of water or oil through porous rocks and 

flow of various fluids through filters and packed bed reactors for the 

production of chemicals. For most common applications the flow is slow 

enough so that the simplications carried out in section 8.1 are valid. 

The pressure field is described by the La place equation for an 

incompressible fluid. 

or, equivalently 

v2 (p + pgh) = 0 

If we consider variation in the z direction only, we have 

and 

a2(p ) -- + pgh - 0 az 

a (p + pgh) = 
az 

const 

(8.103) 

(8.104) 

(8.105) 

(8. 106) 

Assuming that the porous medium can be described as an assemblage of 

small conduits in the z-direction, we would expect that the volume rate 

of flow be expressed by a Hagen-Poiseuille type expression ( see Sec. 

7.3), i.e. 

Q = _ const lt 
µ az 

or by defining a superficial velocity 

(8.107) 



.Q. volume of  fluid u = A
= 

cross-sectional area of porous medium 

we get 

u = �R 
µ az = � L (p + pgh) 

µ az 
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(8.108) 

(8. 1 09) 

' ,, 
This is known as Darcy's law after the French engineer who established 

the above expression by performing experiments of water percolation 

through sand filters [ 1 7  J. The constant K is usually called 

permeability, and it has dimensions of length squared. Measurement of 

the permeability constant can be simply performed by determining the 

flow rate through a cylindrical porous sample confined in a tube at a 

given pressure gradient. Some typical values are given in table 1. For 

a porous medium having the same permeability in all directions (i.e. 

isotropic), we may write 

u = 

u = y 

u = 

or in vector notation 

u = 

� 
µ 

.IS. 
µ 

� 
µ 

K - -
µ 

V 

a(p + 
ax 

a(p + 
ay 

acp + 
az 

(p + 

pgh) (8.11 0) 

pgh) (8.111 ) 

Pgh) (8.1 1 2) 

pgh) (8.11 3) 

It should be noted that Darcy's law is valid only for laminar flow 

conditions with inertial effects being negligible. 

For a porous medium having porosity or voidage fraction E (where E 

is the ratio of pore volume to total volume) we can write the continuity 

equation in terms of the suferficial velocity 0. This can be done by 

referring to the derivation of Chapter 4 and noting that the mass rate 

of flow per unit area is now pO rather than pV and the fluid mass per 

unit volume is EP rather than p. Thus, we can easily end up with an 

equation of continuity analogous to (4.12), which reads 
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TABLE 1 

TYPICAL VALUES OF POROSITY AND PERMEABILITY FOR POROUS MATERIALS 

Porosity or 
Permeability K{m22 Material Voidage Fraction € 

Silica powder 0.37 - 0.49 1.3 X 10- 1 4  
- 5. 1 X 10-14 

Loose sand 0.37 - 0.50 2 X 10-11 - 1. 8 X 10-10 

Soils 0.43 - 0.54 2.9 X 10- 11  - 1 • 4 X 10-10 

Sandstone 0.08 - 0.38 5 X 10-16 
- 3 X 10-12 

Limestone 0.04 - o. 10 2 X 10-16 
- 4.5 X 10-14 

Brick 0. 12 - 0.34 4.8 X 10-15 
- 2.2 X 10-13 

Leather 0.56 - 0.59 9.5 X 10-14 
- 1 • 2 X 10-13 

Fiber glass 0.88 - 0.93 2.4 X 10-11 
- 5. 1 X 10-11 

Reproduced from R.E. Collins, "Flow of Fluids through Porous Materials", 

Van Nostrand Reinhold, New York (1961). 
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ap E at + V • ( pU ) = 0 (8.114) 

Introducing Darcy's law (Equ. 8.113) into the above equation, we have 

ap PK Ea[ - V • [µ V(p + pgh) = 0 (8. 115) 

For a fluid of constant viscosity µ and constant permeability K, we have 

�.!£_ - V • [pV (p + pgh)] = 0 
K at (8.116) 

For an incompressible fluid p = canst. 

described by the Laplace equation 

Thus, the pressure field is 

v2 (p + pgh) = o (8.117) 

In many cases, however, we may write an equation of  state for the fluid, 

in the form 

(8. 1 1 8) 

Liquids under certain conditions can be considered slightly 

compressible, with m = 0 and Si 0. Gases are compressible with S = 0 

and m = 1 ( for isothermal flow) or m = C /C ( for adiabatic flow). 
V p 

Introducing the appropriate form of  the equation of  state we can easily 

obtain various simplified forms of  equation (8.116) (see for example, 

Longwell [18]). The solution of these equations yields the pressure as 

a function of position. The superficial velocity can then be obtained 

from Darcy's law. 

Several attempts have been made to determine Darcy's constant 

theoretically. Kozeny's approach [19], which was further elaborated by 

Carman [20], is based on the assumption that a porous medium consists of  

a bundle of parallel capillaries, as shown in Fig. 8.9 (a). The 

superficial velocity can be expressed as u = (Vavg) E where Vavg is the 

average velocity through each capillary and E the porosity or voidage 

fraction (volume of  voids/total volume porous medium). We can define a 
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mean hydraulic radius as the ratio of the cross-sectional area and the 

wetted perimeter. Here, we have 

cross section of flow area RH = 
wetted perimeter 

total volume of voids 
total area of particles 

= (total volume of voids)/(total volume of porous medium) 
(total area of particles)/ (total volume of porous medium) 

= porosity 
(total area of particles)/(total volume of porous medium) 

(8.119) 

The porosity is E and thus the (total volume of the particles) should be 

equal to (1-E) (total volume of porous medium). Consequently, 

R -
H -

€ 

(1-E) total area of particles 
total volume of particles 

= € 

(1-E)S 
p 

(8.120) 

where S is the specific area of particles. 
p 

For an assemblage of 

spherical particles of diameter D
P
, we have 

1T D2 

s = 
trD3 /6 p 

p 

= .L 
D 

p 

(8.121) 

For laminar flow through a tube of radius R the average velocity ( see 

Sec. 7.3) is given by 

A.JL 2 A.l2_ 2 
vavg = 8µL R = 2µL RH 

1 (Note that for a single tube of radius R, RH = 
2 R as 

(8.122) 

defined by 

equation 8.119).  

ex pression, we get 

Introducing the superficial velocity into the above 

A.lL 2 u = 2µL RH € 
3 D

2 
3 A.lL € A.Q _p_ € = ---- = -�-

2µL (1- €)2 32 L 72µ (1- €)2 
p 

(2.123) 
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(b) 

Fig. 8.9: (a) Kozeny's hydraulic model for a porous medium consisting 

of an assemblage of  parallel capillaries. 

(b) A likely tortuous flow path through a porous medium. 



8/32 

The length L in Kozeny's hydraulic model of  Fig. 8.9 (a) is shown to be 

equal to the height of  the porous medium. It is reasonable, however, to 

anticipate that the fluid through the capillaries should follow a 

tortuous path as shown in Fig. 8.9(b). Thus, the effective length is 

longer than L. Large number of  experimental data suggest that the 

numerical factor 72 should be changed to 150, to give the so-called 

Blake-Kozeny equation [24] 

D
2 

3 
u = !,Q__L_...::.€ __ 

L 150µ ( 1-E )2 

which can be solved for bp/L to give: 

� 
L 

(8.124) 

(8.125) 

This equation is valid for laminar flow with negligible inertia forces. 

It is customary to define a Reynolds number as 

ReH 
P vavg (4RH) 

= (8.126) 

Since V = u/e and RH = e/(1-dS we get avg p 

4 QU 
4pD u 

ReH (1-E)Sp 
= 6 (1-d (8.127) 

Most authors, however, prefer a definition of  Reynolds number with out 

the numerical factor 4/6, i.e. 

Re 
p 

p D u 
12 

(1-e)µ (8.128) 

Comparison with experiments 

valid up to about Re : 10. 
p 

range of Rep from about 1 to 

shows that the Blake-Kozeny equation is 

A large number of  experimental data in the 

about 2500, as shown in Fig. 8.10, obey the 

Ergun equation [22], which is 

.AI2. 
L 

..1.5Qy_ 11.::. € .i. 
= u 2 3 + 

D E 

(8. 129) 
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Fig. 8.10: Friction factor for flow through a packed bed of particles 

[reprodu ced from S. Ergun, Chem. Eng. Progr., 48, 93 

(1952)]. 
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This equation is often written in dimensionless form as 

D e:3 

AI2. l2Q f = = Re + 1.75 (8.130) 
p 2 ( 1 -e: ) L 

PU p 

where f is the packed-bed friction factor. For more on packed beds and 
p 

industrial filtration processes the reader is referred to the books by 
\ 

Bennet and Myers [23] and Orr [24]. 
When a fixed bed of particles is subjected to upward flow, 

depending on the superficial velocity, the bed may remain fixed, loosen 

up as to attain maximum voidage or may become fluidized as shown in Fig. 

8. 11 . At the point of incipient fluidization the weight of the 

particles minus buoyancy must be equal to the pressure drop multiplied 

by the cross-sectional area. Thus, we have 

( pp - p) gAL = (�p) A (8.131) 

Assuming that the Blake-Ko zeny equation is valid we can combine 

equations (8.125) and (8.131) and then solve for the superficial 

velocity to obtain the fluidization velocity 

(pp - p) g D� e:3 

uf = 150 µ (1-e:)2 (8.132) 

Detailed expositions on theoretical as well as practical aspects of 

fluidization can be found in the books by Zenz and Othmer [25], Kunii 

and Levenspiel [26] and Davidson and Harrison [27]. 

Example 8.2 

An incompressible liquid flows radially through a porous 

cylindrical shell as shown in Fig. E.8.2. Determine: (a) the pressure 

distribution, (b) superficial velocity, and (c) the volume rate of flow. 

Solution 

The Laplace equation is a pplicable in this case 
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l l l 
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(a) (.b) (c) 

Fig. 8.11: Schematic representation of a packed bed of particles (a), 
which attains maximum voidage (b), and eventually becomes 
fluidized (c), as the velocity u increases. 
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v2 (p + pgh ) = 0 

Neglecting gravitational effects and writing the Laplace equation in 

cylindrical coordinates, we have 

There is no pressure variation in either e or z directions, thus 

J_ L (r 1:Qar ) = o r ar 

The boundary conditions are 

r = r 0 

The solution of the differential equation is 

p = c1 tnr + c2 

After determining the coefficients c 1 and c2 and rearranging, we get 

p - pi 
p - P . 

0 l 

tn(r/r . )  . l = tn(r /r . )  
0 l 

The superficial velocity can be obtained from Darcy's law 

u = � 1-Q. = 
µ ar 

K pO - pi 
µr tn (r

0
/ri ) 

The volume rate of flow is 

Q = l u l  A(r)  = 

Example 8.3 

l u l  21rrL = 21rKL Po - Pi 
µ .in(r /r . ) 

0 l 

A bed of  graded sand of 10 m2 cross-sectional area and 1.5 m deep, 

is used for clarification of  water. The sand particles are assumed to 

be spherical of  1 .  2 mm diameter. The bed porosity is e: = O. 2. The 
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water surface is maintained at a level of 5 m above the top surface of 

the sand as shown in Figure E.8.3. Determine the volume rate of flow. 

Solution 

We start from the Blake-Kozeny equation 

D
2 

3 
Jill. _Q_ --'"---u = L 150µ 2 ( 1-e:) 

Here, we have 

P P = tp = ngH o - atm " 

D 2 
3 

_p_g[ _Q_ e: 
u = --"--- = L 150µ (1 -e:)2 

= (1000 kg/m3)(9.81 m/s2)(5m) (1.2 x 10-3 m)2 

= 0.00392 mis 

1 · 5  m 
150x10-3 N m-2

s 

Q = (0. 00392 m/s)(10 m2) = 0.0392 m3/s 

We will now check the Reynolds number 

0.2
3 

2 
(1-0.2) 

Re 
p D u 

= p 
(1-e:)µ 

= (1000 kg/m )(1.2 x 10-3 m)(0.00392 m/s) = 
(1-0.2) 10-3 Nm- 2 s 

5 .8  

Since the Reynolds number is less than 10 the Blake-Kozeny equation used 

above is valid. 

Example 8.4 

Determine the minimum fluidization velocity for a bed of mineral 

particles 100 µm in diameter in air having viscosity of 0.02 x 10-3 

Pa• s .  The particle density is 5.25 x 1 03 kg/m3 and air density 1.24 



Solution 

The air density can be neglected. Thus, we have 

(5 .25 x 103 kg/m3)(9.81 m/s)(1 00 x 10-6 m)2 

150 x 0 . 02 x 10-3 Nm- 2s 

= 0 . 0156 m/s 

The corresponding particle Reynolds number is 

0.091 

Re p 
= 

p D uf p = 
3 -6 ( 1 . 2 4 kg Im ) ( 1 0 0 x 1 0 m )( 0 . 0 1 5 6 m/ s ) 

(1-e:) µ  (1-e: ) (0.02 x 10-3 Nm-2s )  

0.0967 = 
(1-e: ) 

8/3 9 

Since (1-e: ) is less than 1, Rep is well within the range of validity of 

the Blake-Kozeny equation, on which we based the calculation of uf. 
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CHAPTER 9 

LAMINAR BOUNDARY LAYERS 

9. 1 INTRODUCTION 

In this chapter we consider the flow o f  fl uids at high Reynolds 

numbers ( Re»1 ) .  With this assumption we will simplify the � eneral 

Nav ier-Stokes equations . When the Reynolds number is very high the flow 

is dcxninated by inertia forces. It is tempting to try to eliminate the 

term 

2 * 
cl V 

(� Re ax 

which represents the viscous fo rce s ,  from equation (6. 121 ) .  Howev er , 

the no- s l i p  cond i tion s ugg ests the po s s i b il i t y  o f  large  v el o c i t y  

gradients near solid boundaries , wh ich might b e  o f  the same order o f  
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magnitude as the Reynolds number , Re . In order to be able to simpl ify 

the Nav ier-Stokes equations we must assess the relative magnitude of the 

var ious term s .  

In 1 904 Ludwig Prand tl ( 1 ]  introduced the concept o f  boundary layer 

and showed how the Nav ier-Stokes equations co uld be simpl i fied .  Thi s 

cohcept l iterally revolutionized the science o f  fluid mechanics . The 

most comprehensive and authoritative reference on the subj ect is a tex t 

by Schlichting (2 ] .  More recently other scientists succeeded in 

d eriv ing the boundary layer equations in the framework of perturbation 

theory ( 3 ] .  In thi s chapter we will essential ly follow Prandtl ' s  

approach because of its simpl icity . 

According to Prandtl ' s  boundary layer concept v iscous effects at 

high Reynolds n umbers are confined in thin fl uid layers adjacent to 

solid boundar ies . Outside these thin boundary l ayers the flow may be  

considered inv iscid (µ  = 0 )  and can , thus , be descr ibed by the Euler 

equation ( 6 . 95 ) .  Within a boundary layer the v elocity component in the 

main flow d irection ( x)  c hanges from v = 0 (at the sol id bound ary) to 
X 

v � v� ( the free stream velocity at the "edge" of the boundary layer ) . 
X 

An exaggerated sketch o f  the boundary layer formed around a body is  

shown in  Fig .  9 . 1 .  To make the simpl i fications we must introduce the 

assumption that the boundary layer thickness o is small relative to any 

other significant d imension L o f  the flow field ( e . g . body size ,  radius 

of curvature , channel width etc . ) :  

o « L 

Let us now wr ite the equation of conservation of mass and momentum for 

steady two-d imensional flow of an incompressible , Newtonian fl uid ( where 

\) = µ/ p) :  



FREE STREAM ( inviscid flow) 

Fig. 9 .1 Boundary layer form ation around a blunt body.  

y 

t 
8 

F ig. 9 .2 Boundary layer flow over a flat plate 

9/3 
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a V a V 

continuity X + __ y 0 
a X a Y 

( 9 .  1 ) 

a V a V 
_!_ !E 

a 2v a2v 
X X X __ x ) x momentum V + V = + v (-- + + gx X Y a Y 

2 2 
a X p a x  a X a Y 

( 9. 2 )  

a V a V 

_!_ !.E + 
a2v a2 v 

y momentum V 
__ y+ V 

__ y = v (--y + __ y ) + g 
X a X 

y a Y ay a x 2 a Y
2 y 

p 

(9.3 ) 

We now convert these equatio ns to their dimensio nless fo rms by 

introducing the following dimensionless variables 

Equations (9.1 ) , 

* 
av 

continuity X 
--. 
a x  

* 
X component V 

X 

* 
V = V /V 

X X CX) 

* 
V = V IV y y CX) 

* 
X = x/L 
* 

y = y/L 

* 2 p = p/pV 
CX) 

/x = g / (V 2/L ) X ex, 

p V L V L 
CX) 

Re = --- = 
\) 

(9. 2 ) and (9.3 ) take the 

* 
av 

+ __y_ * = 0 
ay 

* * * 
a v  

X 
av 

X 
a p  

+ V --. = --. + 
ax y ay ax Re 

(9 . 4 )  

form 

(9 . 5 )  

2 * 2 * 
a V a V gx X X 

C 9 .  6 )  (� + 
�) + 

v2 /L ax ay 
CX) 



y component 

* 
av 

X --* + 
ax 

* 

* av 
X 

V -- : 

Y a/ 

* 
a p  

- --* + 
ay 

2 * 2 * 
a v a v 

( � + *�) + Re ax ay 

9 /5 

( 9 .  7 )  

These equations may describe the flow over a flat plate as shown in Fig . 

9 .  2 .  The plate is in an infinite fluid wh ich ha s a flat velocity 

profile (V ) as it approaches the lead ing edge . At the lead ing edge the 
a, 

veloc ity becomes zero and a veloc ity profil e  ( v ) develops as shown in 
X 

Fig . 9 .  2 .  The " edge" of the boundary layer i s  defined b y  the 

approx imation v "' 0. 99 V • Because of the boundary layer growth the 
X a, 

fl uid i s  " pushed" away from the plate , which means that the velocity has 

al so a component in the y d irection , vy . We would expect that v «v • 
y X 

* 
The d imensionless v elocity v = v /V i s  of order 1 .  The characteristic 

X X a, 

* 
l ength L i s  chosen so that x = x/L i s  also of order 1 .  Thus the 

* * 
d erivative a v  / a x  i s  of order 1 .  

X 
The d imensionless v elocity v = v /V 

y y a, 

should be of order A ,  where A<<l.  Because the boundary layer thickness 

o is small compared to any significant body d imension ( o< <L ) , we v.Q uld 
* 

ex pect y = y/L to be of order A .  We can summarize these approximations 

in the form 
* 

V 
X 

+ [ 1 ] 
* 

V + [ A ]  
y 
* 

X + [ 1 ] ( 9 .  8 )  
* 

y + [ A ]  

Introduc ing the order of magnitude approximations into the continuity 

e quation , we have 
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* * 
av  av  

+ __:t_ 0 (9. 9 )  --* * = 
ax ay 

[ l J 1 [ A J 
t:,, 

[ 1 J [ 1 J 

Th'i. s means that both terms in the continuity equation are of order of 

magnitude 1 .  

momentum gives 

The x component of the equation of conservation o f  

* * * av 
X * av 

X 
V --* + V * = 

X Y ay ax 

[ 1 1 J [t:,,  l J 
1 l!. 

[1 ] [ 1 J 

We note that the term 

* 2 * 2 * 
ap a V a V * X X --* + (� + �

) + gx ax Re ax ay 

[ ? ]  [ 
1 l J [ ? ]  
�2 2 Re l!. 

[ ? ]  [ 1 l J [ ? ]  
Re / 

9. * *2 ( av / ax  ) 
X 

is much smaller than 

( 9. 1 0 )  

(1 « ( 1 /t:,,2 ) )  and can be eliminated from the above ex pression. The 

viscous term is , therefore,  of order [ 1/ Re] [11/ J. Our original 

boundary layer hypothesis was that vi scous effects are important , which 
2 means that the viscous term should be o f  order 1 or Re of order [ 1 /t:,, J .  

This result implies that for boundary layer flow the Reynolds number 

must be large or alternativ ely we may conclude that the fluid viscosity 

must be small , because 

V L 
Re = 

(9. 1 1 )  
[l J [ 1 J 
/ [ \I J 
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We al so note that for g: to be order 1 we must have gx of order V00

2/L , 

A typical value of L might be of the order of 1m. Since g can be at 
X 

most equal to 9.81 m/s we must have V less than about 3m/s. In most 
00 

( but not all) engineering applications of boundary layer theory the 

gravitational term can be eliminated from equation (9 , 10 ) because the 

velocities are generally larger. 

conservation of momentum is 

* * * 
* av * av ap 

vx 
__y_ + V __y_ = - --* + * Y ay 

* 
ax ay Re 

[ 1 6. ] [ 6. 6. ] [ ? ] 6.2 

6. 

The y component of the equation of 

2 * 2 * 
a V a V * 

(
�

+ 
�) + g (9.12) y ax ay 

[ 
6. � ] [ ?]  �2 t:i.2 

2 
The gravitational term will be of order 1 only if gy is of order V /L. 

00 

All the other terms shown are of order 6. or  less , thus the pressure 

gradient can be estimated from 

0 = (9 . 13)  

This is the equation of static equilibrium in the y direction (see 

Section 2. 1 ).  Thus , for a thin bo undary layer (with g generally a 
y 

small number) it is reasonable to conclude that the pressure will be 
* * 

constant in t he y direction. The pressure gradient ap /ax  in equation 

(9.10 ) can be determined from the inviscid flow (µ = 0 )  analysis of the 

flow region outside the boundary layer ( see Chapter 1 1 ) .  

We now summarize the most important conclusions of the order of 

magnitude analysis : 

(a)  Both terms in the continuity equation are of the same order 
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( b )  

2 * 
a V X « � ay 

(c )  The pressure across the boundary layer is constant 
* * 

( d )  The pressure gradient ( ap / a x  ) is prescribed by the inviscid flow 

outside the boundary layer. 

(e )  For most boundary layer flow problems grav itational effects will be 

unimportant. 

Thus , reverting to d imensional quantities we can wr ite the 

simplif ied form of equations ( 9 ,  1) , ( 9 . 2 )  and ( 9 , 3 )  as 

continuity 

x momentum 
X 

y momentum 

av 
X 

av 
+ _ _  

y 

a x  ay 

av  
X 

av 
-- + V 

a x y 
ay 

� = 0 
ay 

= 0 (9. 1 4 )  

1 ap a2v 
X X = - - + \I 2 

a x  p a y 
( 9 . 1 5 )  

(9 .  1 6 )  

These are the boundary layer equations for steady flow with boundary 

conditions usually in the form 

y = 0 

y = 0:, 

V : 0,  V : 0 X y 
v = V ( x )  

X o:, 
( 9 . 1 7 )  

Note that the y component does not contain any information except that 

p = const across the boundary layer. 

To determ ine the velocities at any point ( x ,y )  we must , in 

add ition , specify a velocity prof ile at a starting position x = x where 
0 

V
X 

: V ( X , y ) , 
X 0 

For unsteady flow problems the boundary layer equations are 
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av  av  
X _'f_ 0 -- + = (9 . 1 8 )  

ax ay 

2 
av av av ap a V 

x momentum 
X X X X 

-- + V + V = - + \) 2 
at X y 

ax ay p ax ay 
( 9 . 1 9 )  

wi�h boundary cond itions 

y = 0 V : 0 
X 

V : 0 

y = a, ( 9 . 2 0 )  

Compariso n  o f  equations ( 9 . 2 )  and ( 9 . 3 )  with equatiOns ( 9 . 1 5 )  and 

( 9 ,  1 6 )  shows the significant simpl ifications achiev ed . The y component 

has been compl etely dropped . The three unknowns v , v and p have been 
X y 

red uced to two , vx and vy ' because the pressure grad ient is  prescribed 

by the inv iscid flow outside the boundary layer ( see Chapter 1 1 ,  

Inv i sc id Flow) . Al so ,  one of the two v i scous terms has been dropped 

from the x component . The boundary layer equations are parabolic 

whereas the g eneral Nav ier-Stokes equations are elliptic ( for such 

classifications see for ex ample reference [ 4 J ) . Consequentl y ,  the 

boundary la yer development and the velocity pro f iles a t  any station x 

are independent of further developments downstr eam . It should be noted , 

however , that downstream development s may affect upstream condi tion s in 

flows involv ing wake formation . The boundary layer approximation is  

i ndeed power ful but  it  has its  l imi tations . 

9 . 2  BOUNDARY LAYER ON A FLAT PLATE 

We wil l  now pr esent a solution for the boundary l ayer flow on a 

flat plate , as  shown in Fig . 9 . 2 ,  in the absence o f  a pressure grad ient . 

The governing equations are 



9/ 1 0  

av  av  
X ___J_ 0 -- + = (9. 21 ) 

ax ay 

av av a2 v 
X X X 

V + V -- = \) -
-2 X ax y ay a y 

( 9 .  22) 

The bound ary conditions are 

vx = 0,  V
y 

= 0 at y = 0 (9. 2 3 )  

V = V at y = ()0 

X ()0 

This problem was first solved by Blasius [ 5  J with the introduction of a 

simi larity transformation. 

Blasius assumed that the solution can be ex pr essed in the form 

V 
X 

()0 

(9 . 24) 

This means that the normal i zed (v /V ) velocity v aries as a function o f  
X co . 

the nonnalized d istance (y/ o ) .  Such a transformation was used for the 

flow near a flat plate suddenly set in motion ( section 7. 1 5 ) .  In that 

problem the thickness o was proportional to M. For a particle at the 

edge of the boundary layer t = x/V , so that o wil l  be proportional to 
()0 

./vx/V • The proportional ity factor may be incorporated into the 

function � .  Thus , we may write in general 

= � (n)  where n = y y/V /vx 
00 

( 9. 25 ) 
./v x/V 

It is convenient  to in troduc e a str e am fun c t ion l!J( x ,y )  wh ich  

automatically satisfies the continuity equation ( 9. 21) . Let the strellm 

function be defined by 
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V : � 
X 

� 
ax 

(9. 26 ) 
ay 

The continuity equation becomes 

ft _ ft = o  
ax ay ax aY (9.  27 ) 

We can further introduce a dimensionless function f ( n )  and let 

Thus , the velocity 

"' = lvxV f (  n )  
00 

components in terms of 

= 
X 

V = 
y 

= 

� = � l!l  = 
aY an a Y  

- �  = - f (  n ) 
a x  

J,/
v V

00 , 

-- ( nf 2 X 

f ( n) are 

V f 
00 

a (lvxV 
ax 

- f )  

00 ) 

(9. 28 ) 

(9. 29 ) 

1-v- df an 
VX - -

00 

dn ax 

(9. 30 ) 

2 2 Ex pressing av / a x ,  av / ay and a u  / ay in terms of f ( n )  and substituting 
X X X 

the resulting expressions in equation (9. 22 )  we get 

v
2 

00 I 

- 2 x n f 
I I v

2 

00 I I I 

+ ( n f - f)  f 2x : V 

v
2 

00 I I I 

f xv (9. 3 1 ) 

which simplifies to the ordinary , nonl inear , third-order differential 

e:quation . ' 

f f l I + 2 f l I I : Q (9. 32 ) 

The boundary conditions (eqs. 9. 23 ) in terms of the new variable n are 

f = 0 f I 
: 

Q 
at n = o 

f I : 1 at n = 00 (9. 33 )  

These three boundary cond itions are sufficient for the determination of 

the solution of the third o rder ordinary d ifferential equation (9. 32 ) .  
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However . the solution of this equation cannot b e  giv en in closed form. 

Blasius [5 ]  obtained a power series solution . Howarth [6 J obtained a 

more accurate solution and recently purely numer ical methods have been 

used . The results given on tabl e 9 .  1 are taken from Howarth' s paper 

[ 6 ] .  The velocity profile vx is in ex cellent agreement with exper iments 

by' Nikuradse [7 ] as shown in Fig. 9 .  3 .  The var iation of the v elocity 

component v with d imensionless d istance n is shown in Fig .  9 .  4. It . is y 
interesting to note that v is not zero at the outer edge of the y 
boundary layer C n + m) . Finite d ifference solutions of equations (9 . 21 )  

and (9 . 22 )  have also been presented (e .g. reference [8 ] ) . 

The boundary layer thickness . that is the value of y for which 

vx = 0. 99 V
00

• can be obtained from Table 9 . 1  (n � 5 )  

6 5 . 0  5x 17--
m /Re 

X 

(9 . 34 )  

p V X V X m m 
where Re = 

X 
( 9. 35 ) 

\) 

The ex per imental determination of the boundary layer thickness is very 

d i ffi cult b ecause the v elocity approaches asymptotically the free 

stream v alue V 
00

• The " edge" of the boundary layer is poorly defined . 

For this· reason alternative thicknesses which can be measured more 
* 

accurately are o ften used . The displacement thickness 6 is obtained by 

equating the vol ume rate of flow which is "missing" because of the 
m 

boundary layer J (V - u ) dy to that for a fictitious layer hav ing a 
0 m X 

* 
flat profile (V 6 ) .  Thus m 

= 1 
V 

X c 1  - v ) dy 
0 m 

( 9 .  36 ) 
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Table 9 . 1 

Howarth'  s [6 ] resul ts for laminar boundary la yer flow on a flat plate . 

TJ = ff; f I f' = �1 f "  y 
X vro 

0 0 O' 0·33206 
0·2 O·� 0-0664.l 0·33199 
0·4 0·02656 0·13217

° 

0·331!7 
0·6 0·05974 0·19894 0·33008 
0·8 0·10611 0·26471 0·32739 
l·O 0·16557 0·32979 0·32301 

1·2 0·23i95 0·39378 0·31659 
1·4- 0·32298 0·45627 0·30i87 
1·6 0·-12032 0-51676 . 0·29667 
1·8 0·52952 0·57477 0·28293 
2·0 0·65003 0·62977 0·26675 

2·2 0·78120 0·68132 0·24-835 
2·4 0·92230 0·72899 0·22809 
2·6 l·Oi252 0·77246 0·20646 
2·8 1·23099 0·81152 0·184-01 
3-0 1·39682 0·84605 0·16136 

3·2 1·56911 0·87609 0·13913 
3·4 1·74696 0·90177 0·11788 
3·6 1·92954- 0·92333 0·09809 
3·8 2·11605 0·94112 0·08013 
4·0 2·30576 0·95552 0·064-24 

4·2 2·4-9806 0·96696 0·05052 
4·4 2·69238 0·97587 0·03897 
4·6 2·88826 0·98269 0-0294-8 
4·8 3·08534 0·98779 0·02187 
5·0 3·28329 0·99155 0·01591 

5·2 3·4S1S9 0·99425 0·01134 
5·4 3·68094- 0·99616 . 0·00i93 
5·6 3·88031 0·99748 0·00543 
5·8 4·07990 0·99838 0·00365 
6·() 4·27964- 0·99898 0·00240 

6·2 4·4i948 0·99937 0·00155 
6·4 4·67938 0·99961 0·00098 
6·6 4·87931 0·99977 0·00061 
6·8 5·07928 0·99987 0·00037 
7·0 5·27926 0·99992 0·00022 

7•2 5-47925 0·99996 0·00013 
7·4 5·67924 0·99998 0·00007 
7·6 5·8792-1 0·99099 0·00004 
7·8 6·07923 1·00000 0·00002 
8·0 6·27923 1·00000 0·00001 

8·2 6·-1,9:!3 l ·00000 0·00001 
8·4- 6·67923 1 ·00000 0·00000 

-8·6 6·87923 1 ·00000 0·00000 
8·8 7·0,923 1·00000 0·00000 
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7.0 

VCl)x · 
Rex = v 

j 6.0 6. l.08xl05 

"- l.82xl05 

o 3.64 xl05 

• 5.46xl05 

5 . 0  o 7.28xl05 

4.0 J ff. 71 : y  

/ 
3 .0 

2.0 

1 . 0 BLASIUS SOLUTION 

0.4 0.6 0.8 1 .0 

Fig. 9 .3 Comparison of  Blasius simil arity solution and Ni kuradse ' s  
ex perimental liata for the lonp:itudinal velocity vx. 

5 

4 

77 = y�:; 3 

2 

o .__-� __ ....i.. __ _._ __ 1.--_-J 
04 0.8 

Vy �Veg X 
- 11 
V 

Fig. 9 . 4  The tran·sverse velocity component v , in laminar boundary layer 
......;;;.....,;._o.;;..n_a flat plate , as a function of dislance from the plate surface 

according to Bl asius solution .  
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Simil arl y ,  the momentum thickness e i s  defined b y  equating the r ate o f  
co 

momentum "missing" because of the boundary layer l p v (V - v ) d y  to 
0 X co X 

the r ate of momentum of a fictitious boundary layer having a fl at 

pro file p v2 e. Thus co 

e = l 
co V V 

X X 

v <1 - v) dy 
0 co co 

A rough compari son between the various thicknesses gives 
* 

o = o /3 and e = o /8 

( 9 .  37 ) 

(9 . 38 ) 

The displacement and momentum thicknesses appear in the integral method s 

anal ys i s  ( Section 9 . 6) .  

The shear stress at the wall (or skin fr iction) can be determined 

from the expression 

av X 
't' : µ (-) w a y  

Y = 0 
( 9. 39) 

The slope o f  the d imensionless v elocity profile at the wall ( y  = 0 )  is  

O. 332 ,  that i s  

a 

a 

o r  

a V 
(--x )  = 

a y  y = 0 

which g iv e s  

w 

( v /V ) X co 

< q v co
) 

\I X  

0 . 332 V 

t 
= 

0 = 

f· co 
X 

µ V 

o. 332 

V 
co --

0. 332 - /Re 
X 

X 

= co --
O.  332 -- /Re 

X 

(9. 40)  

(9. 41 ) 

( 9. 42 ) 
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or 

v2 
p a:, 

T
W 

: 0.  332 -=== 
/Re X 

(9 . 43 ) 

For generality we introduce a d imensionless local friction coefficient 

which i s  defined by 

cf 
w = 
v

2 

p a:, 
2 

Inserting the expression for T from equation ( 9 . 43 )  we get w 

0 .664 

I� 
X 

(9 . 44 ) 

(9 . 45 ) 

The local skin fr iction coefficient is plotted as a function of Re in  X 

Fig . 9 . 5 .  

In man y practical problems the average fr iction coeffic ient for a 

plate of finite l ength L is useful . It can be easily obtained by 

integrating the ex pression fo r the local fr iction coefficient from x = 0 

to x = L and d iv id i ng by L :  

o r  

C omments 

1 L 1 L 
f 

0 .664 J c f d x  = 
L o L o 

I
p V a:,x 

µ 

c = 1 . 33  
f 

dx = 1 . 3 3  

�>L 

( 9 .  46 ) 

( 9 .  47 ) 

( a )  From the ex pr ession for the boundary layer thickness ( eq ,  9 . 3 4 )  we 

note that 6 = 0 at the lead i ng edge ( x  = 0 ) . Downstream the 

boundary layer grows and 6 a: x 1 12
• For a given x station the 
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boundary layer thickness decreases as the v elocity V increases .  
00 

( b) Fran the ex pression for shear stre ss at the wall ( eq. 9.43) we note 

that T i s  very large near the leading edge ( infin ite at x = 0 )  and w 
decreases with increasing distance , 

( c) The boundary layer approximation is not v al id in the immediate 

v icinity of the leading edge because the assumption a2v / ax2 « X 

a2 v / ay2 cannot be sa tisfied.  This region however is insignificant X 
for engineering problems . 

( d) For large distances from the l ead ing edge the Reynolds number is 

large and the inertia forces are much larger than the vi scous 

forces . Transition from laminar to turbulent flow usually takes 

place at Re � 500, 000. X 
E xample 9 .  1 

A flat plate of practically infinitesimal thickness is towed behind a 

boat trav elling at 1 2  km/ hr . The plate has dimensions 25 cm x 25 cm and 

the temperature of the water is 1 5°c .  We wil l  determine the boundary 

layer thickness at the trailing edge and the total force required to tow 

the plate . 

S olution 

We must first calculate the Reynolds number at the trailing edge to see 

whether the flow is laminar 

p V x 
00 

µ 

12000 
= ( 1 000 kg/m3 ) ( 3600 ml s )  

2 0 . 0012 N • s/m 
(0 .25 cm) = 694444 
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10-1 ' -
. 

, .... ...... ....... 
......... 

........ 
....... r-.... I"-. 

ro,.._ .... � ...... 
l""io,.. TRANSITION 

....... •;· 
..... : ... 

F ig. 9 .5 The local skin friction coefficient Cf as a function of the 
Reynolds number Re for a laminar boundary layer on a flat plate. 
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w· 
a:: 

GROWING 
BOUNDARY LAYER 

::> - - -Cf) 
Cf) 
w 
a:: 
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PARABOLIC 
VELOCITY PROFILE 

/ v2 (r) 

LINEAR PRESSURE 

DROP 

'--------------------------i� x 

Fig. 9 .6 Velocity profile development and pressure drop in the entry 
r egion in a tube. 
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This value is above the usually accepted critical value of 500 , 000. 

However , if the external flow is undisturbed and the plate is smooth it 

is possible to have laminar flow up to Re = 1 , 000 , 000. Thus , assuming 

the boundary layer to be laminar over the whole plate , we have 

0 = 

cf = 

l = w 

5 x  5 X 0.25m O. 00 1 5 m  1 . 5mm = = = 
/Rex 16 94444 

1 . 33 1 . 33 1 .  6 1 o-3 = = 
/Re 

X 1694444 

1 - 2 - C  p V  
2 

f 00 
= l x 1 . 6  x 10-3 ( 1 000 kg/m3 ) c 1 2000 m/s) 2 = 

2 3600 

Thus , the force required ( for two sides) is 

F = 2 'w A =  2 (8 . 87 N
2
) (0 . 25 x 0 . 25 m2 ) = 1. 1 1  N 

m 

9 .  3 Laminar Entry Flow 

N 8 .  87 -
2 m 

In Chapter 7 we examined laminar flow in long tubes and obtained 

the well known parabol ic v elocity pro file. In the entry region , 

ho wev er , we have the development of a boundary layer just as in the case 

of flow ov er a flat plate . For the tubular geometry , the boundary layer 

develops around the inside cyl indrical surface , grows downstream and at 

some distance its thickness becomes equal to the tube radius. From this 

distance downstream the streaml ines are paral lel , the velocity profile 

is parabolic and the pressure drop is l inear as we have seen in Section 

7 . 3 . This is the region of fully developed flow . The development of the 

boundary layer , the v elocity profiles and the pressure drop for en try 

flow is shown in Fig. 9 .  6. 

In the entry region of a tube the boundary layer equations , for 

steady flow of an incompressible Newtonian fluid , are : 
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continuity 1 a (r vr) + 
a ( vz ) 0 = ( 9. 48 ) 

r ar az 

z momentum 
av av 

� 1 a av 
p ( vr 

z _z ) z + v
z 

= + µ [- - (r -) ] 
ar az az r ar ar 

(9 . 49)  

The integral continuity equation for this type of flow ma y be written as 

2 2,r R 
V 2,rR = 1 ! v

z 
rdrde ( 9 .  50 ) 

0 
0 0 

R2 or V = ! vz rdr (9 . 51 )  
0 

0 

The boundary conditions are 

X : 0 v
z 

= V 0 

a V 
0 z 0 (9. 52 ) r = = ar  

r = R V = 0 t vr = 0 

The unknown variables are three vz ' vr and p. The three equations 

(9 . 48 ) ,  (9. 49 ) and (9 . 5 1 )  can be solved simultaneously by the method of 

fin ite differen c es fol lowing Hwang and Fan ' s  ( 9 ]  approach or by 

approx imate analytical methods [2 ] , [10 ]. Both methods of solution are 

rather involved and they are beyond the scope of this book . An 

interesting result of the analysis is the entry length L .  The entry e 

length is usually defined as the distance from the plane of entry at 

which the c en terl ine v elocity is within U o f  its f inal  v al ue . 

Downstream from z = L the flow is fully developed and the v elocity 
e 

profile is parabolic as shown in Fig. 9 . 6 .  The solutions of the 

differential equations yield an estimate for the entry length in tubes 

which is in good agreement with ex perimental data , An approx imate v alue 



i s  given by 

L e 

D 
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0.056 R e0 ( 9 .  53 ) 

For entry flow in the gap between two flat plates separated by a 

d i\Stance H ,  the entry length i s  [11 J :  

L e 

H 
= O .  04 4 R eH ( 9 .  54 ) 

The above expr essions are often used in design considerations. For 

example if we were asked to design an exper iment to demonstrate the 

parabolic vel ocity profile and the l inear pressure drop in tubes we 

could determ ine the shortest possible length required . Assuming Re0 = 

1000 and D = 5 cm we would need at least 5 X 56 = 280 cm of pipe length 

for the flow to become fully d ev elo ped . 

9 . 4 LAMINAR JETS 

Whenever a fl uid is issuing from an opening into a large body o f  

the same fl uid we observe the formation o f  a j et which spread s  

downstream as shown in Fig . 9. 7 .  If the opening i s  an orifice the 

v elocity profile will be nearly flat at the exit. If the o pening is the 

end of a long tube the velocity profile wil l  be parabolic at the ex it . 

In either case the j et will spread and the v elocity profile at a certain 

d istance wil 1 look 1 ike a bel 1-shaped curv e .  Because of the j et 

s pr e ad ing there i s  al so a v elocity com ponent in a d i r ection 

perpendicular to the main flow d irection. It i s  reasonable to assume 

that this type of flow is described by the boundary layer equations o f  

section 9 .  1 .  We note , howev er , that there wil l  not be a pr essure 

grad ient because the pressure in the bo undary layer ( the jet in this 
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(y ,z) OR ( r ,z) COORDINATES 

Fig. 9.7  S chematic of  j et spread ing and v elocity profile dev elopment . 
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0.0 

of�I PARABOLIC =:.(. � AT z = 0 

0.1 0.2 

-- SCHLICHTING 

._..... NUMERICAL 

0.3 
Z=  z/ORe 

0.4 0.5 

F ig. 9 .8 Comparison of centerline v elocity drop between Schl ichting' s 

[ 2  J simil ar ity solution and V lachopo ulos [ 1 3 ]  finite d ifference 

calculations for an axisynmetric j et.  
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case ) i s  prescribed by conditions outsid e .  For an air j et issuing into 

air the outside pressure is patm ' throughout , therefore the pressure 

grad ient is zero . 

For a two-dimensional jet of an incompr essible and Newtonian fluid 

under steady state cond itions we have the boundary la yer e quations 

a vy a vz 
+ -- = 0 ay az 

a v a v z z 
V + V 

Y ay z az 

The bo undary cond itions are 

z = 0 v = V (y)  (must be known) 
Z 0 

a V 

0 z 0 0 y = = V = 
ay y 

y = Q) V = 0 

(9 .  55 ) 

(9 . 56 ) 

(9 . 57 )  

Schl ichting [2 ] developed a simil arity solution for equations ( 9 . 55 )  and 

( 9 . 56 ) .  Fini te d i fference sol utions have al so been presented [ 1 2 , 1 3 J .  

Schl ichting ' g solution pr ed icts a midplane ( max imum) velocity drop in 

t he form 

2 1 /3 
V = o .  4543 (-J-) max pµ Z 

H/2 2 where J = [ p l V dy] and H = orifice width 
-H/2 z z = 0 

i f  v2 = V0 ( fl at v elocity pro file) at z = 0 we get 

J
2 = 2 V4 82 

p 0 

(9 . 58 ) 

(9 . 59 ) 

Then , b y  sub stituting into equation ( 9 . 58 )  and rearranging we can 
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ex press the v elocity drop at the center plane in dimensionless form as 

V c2 1 / 3  max 0 . 4543 ( ) V z 
H Re 

where c2 = 1 for v z = V 
0 

at z = o .  

Similarly,  we can obtain equation (9. 60) with 
,\ 

for V : V (1 - (1./) at Z : 0 z o H 

(9. 60) 

In equation (9 . 60) Re = p V0H/ µ. The j et width b is defined as twice 

the distance y where vz ::: O. 01 v and it is given by the following max 
ex pression : 

2 1 /3 
b = 2y l 0 • 01 = 2 1.8 c�P) 2 /3 z (9. 61 )  

It should be noted that Sehl ichting' s analysis is valid for a j et 

issuing from a point so urce at x = 0 where the predicted maximum 

velocity becomes infinite . Ther efore the results are not valid in the 

irrrnediate v icinity of an o pening of width H. 

For an axisymmetric jet (also called round j et) the boundary layer 

equations are 

continuity 1 a ( r V ) 
a (v ) 0 + - = r z r ar a z 

z momentum 
a V a V 1 a a V z vr + V = \/ C r --) 
ar z az a r  a r  r 

and the boundary conditions 

z = 0 

y = 0 

v = V (r) (must be known) 
Z 0 

a V 
z 

ar 
= 0 

(9. 62) 

(9. 63) 

(9. 64) 
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Schlichting ' s  [ 2 ]  similarity solution for an axisymmetric jet gives 

V = 3 J 
max 

8,r µZ 

D 2 where J = 2 1T p f V rdr z 

In dimensionless form we have 

where 

V max 3 C = 32 -z-

pV 
Re 0 = 

C = 1 

C = 1 /3 

D Re 

D 

for V = V 
0 

at z = 0 

for vz = V ( 1 - ( ..!:. ) 2) at z = 0 
o D 

The jet width increases linearly with axial position , i.e 

2 1 /2 
b = 2r l 0 • 01 = 49.10 <1P

) z 

(9. 65 ) 

( 9 .  66 )  

(9. 67 ) 

A c om pa rison of v from Schlichting ' s  simil arity solution and max 

numerical calculations [13 ] is given in Fig. 9, 8. We note that the 

similarity solution is not valid in the neighborhood of the jet origin. 

The dimensionless velocity profiles v and v as obtained by the finite z r 

difference method [13 ] are shown in Figs 9.9 and 9.10. The axial 

velocity component v tends to flatten out as the dimensionless distance 
z 

Z = z/DRe increases . It is interesting to note that at short distances 

from the centerline the radial velocity v is positive whereas at large r 

distances it is negative. This means that near the centerline the jet 
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spread s towards the outside whereas near the j et boundaries fluid is 

entrained from the surroundings. The fluid entrainment in a j et 

explains physically the diminution of its veloc ity. The total momentum 

must be the same at any cross-section at the j et. At larger distances 

from the exit more and more fluid mass participates with a correspond ing 

red uc tion in j et v elocity. 

Measurements of Andrad e  ( 1 4 ]  on two-dimen sional j ets confirmed the 

bound ary layer theory as presented above. It should be noted . howev er .  

that j ets tend to become turbulent at a surprisingly low Reynolds number 

( Re = p V H/µ of about 30 ) .  Ex perimental v elocity profiles in the avg 
ex it region of a laminar j et hav e been obta ined by Samuel s and Wenzel 

( 1 5 )  • 

The bound ary layer equations for two-dimensional and ax isymmetric 

j ets describe al so the flow field in a _wake C shown in Fig. 9. 1 1 )  or the 

mixing layer between two uniform streams ( shown in Fig. 9. 12 ) .  The 

bo undary conditions are of course . different in each case. Again . 

simil ar ity type solutions can be obtained ( 2 .  16 ]. The main features of 

these flow fields . which are usually called free shear flows . are 

summarized in Table 9. 2. 

E xample 9 .2. 

In a fluidic valve an air j et is issuing from a long 0. 2 mm diameter 

tube at an average v elocity of 10 mis. Determine the centerl ine 

v elocity in the jet at a distance of 1 cm from the tube ex it. 

S olution 

The Reynold s number with respect to average velocity (Vavg = 1 12 V0 ) is 

Re a = 
V D avg 

" 
(10 m/s ) (2 x 10-4 m) = .....:..... _ _;__.;.....;.... ____ --'- "' 

1. 3 X 10-5 1 54 
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-

BOUNDARY 
- LAYE�R--�-;j---f:::)"-

F ig. 9 • 1 1  S chematic of a wake formed behind a thin fl at pl ate 

F ig. 9.12 Schematic of the mix ing zone of  two uniform streams having 
different v elocities . 



Table 9 .2  

La yer width and centerline velocity decay as 

a function of  po si tion for free shear flows 

Fla.N 

TWO-DIMENSIONAL JET 

AXISYMMETRIC JET 

TWO-DIMENSIONAL WAAE 

AXISYMMETRIC WAKE 

TWO UNIFORM STREAMS 

(LAMINAR) 

SKETCH 

r-----
. --- ---
---
-- f

--
- ---

- a----
--__... - - -- K----
--__... - --

- �-
---
-----� --

WIDTH 

2213 

z 

2112 

2V2 

2112 
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CENTERLINE 

VELOCITY 

-1/3 z 

- I  
z 

-1/2 
z 
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Al though the Re ybolds number i s  larger than 3 0  i t  i s  possible that the 

j et will be l am inar at a di stance 1 cm from the tube ex it . We will 

therefore , use the laminar theory to determine the centerl ine velocity.  

The d imensionless ax ial d i stance i s  

z 
D Re 

= = 
( 2 x 1 0-4 m) 308 

o .  162 

The v elocity at the end of a long tube is nearly parabol ic . Thus , 

referring to Fig .  9 . 8  we note that the numerical and analytical 

sol utions are very close at z/D Re "' O .  326 .  We will use equation 

( 9 .  66 ) : 

and 

vmax 
V = l_ C __ = 32 z 

D Re 

3 1 
32 3x0. 162 

v = 3 . 85 m/ s max 

= o. 1 92 

9 . 5 F URTHER COMMENTS ON SIMILARITY SOLUTIONS 

The success of the simil ar ity transformation is due to the fact 

that many bo undary layer flows ex hibit geometrically similar v elocity 

pro files . Thi s  means that the v el oc ity pro files at all x po sitions 

d i ffer only by scale factors in v and y ,  or mathematicall y X 

(9 . 68 ) 

For boundary layer flow over a fl at plate ( sec . 9 .  2 )  we used V ( x) = V 00 

and h( x )  = o( x )  ( see eq . 9 . 24 ) .  It i s  not possible , however , to state a 

pr ior i whether a particular problem wil l  have simi l ar solutions.  We can 

only antic i pate such sol utions either by compar i son to other problems o f  
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the same type o r  by " guessing" the probable development o f  the v elocity 

pro files. By introd ucing a simil arity transformation we may reduce the 

partial differential equations to an ordinary differential equation 

which is then solv ed. Numerous sol utions o f  this type have been 

devel oped before the advent of the modern high speed computers. Besides 

Sc'hl ichting (2 ]  and Cebeci and Bradshaw (16 ] ,  Dorrance ( 1 7 ]  presents a 

most general approach to simil arity in boundary l ayer flows. 

The ra p i d  dev elo pment o f  n umer i cal techn i ques l i ke f i n i t e  

differences , ha s l imited the usefulness of simil arity transformations. 

Howev er ,  the study of similarity solutions is still v ery important not 

only because of their hi storical significance but also because they 

prov ide more physical insight to flow problems than computer solutions. 

9. 6 THE INTEGRAL MOMENTUM APPROXIMATION 

The in troduction o f  the bo undary layer concept  l ed to the 

simpl ication o f  the general conserv ation equations for " thin" flow 

regions to the form 

a V a V 
X __J_ 0 + ax ay (9. 69 ) 

2 
a V a V 

!e 
a V 

( v  X X X -- + V --) = + µ -2-X y aY ax ax ay 
( 9. 70 ) 

The pressure grad ient is  prescribed by the flow outside the boundary 

layer where the inv i scid flow approx imat ion ( µ  = 0) i s  val id. For 

inv iscid flow Eul er ' s equation (6. 95 ) can be used. When the flow is  

steady and the grav i tational effects negl igible we have 

p V • V V = - V p ( 9 .  71 ) 
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a V 

since V 0 ,  
X 

0 and O ,  V = V = = V "" 
a, '  z y ay 

d V 
- dp V = 

a, 

dx dx 

Introducing equation (9 . 72 )  into ( 9 . 70) , we obtain 

We now 

a V a V 
X p ( v -- + v x ax Y ay 

integrate over y from y = 
"' V V 

d V 
X 

V --) 
a, 

dx 

0 to y = "', thus 
d V a 

X 

p I ( v  -- + x ax 

a 
X 

V --

Y ay 

a V "' 
_

_ x
i V -) = - µ 

a, 

0 dx ay 

where ,: is w the shear stress at the wall . 

The second term can be integrated by parts to give 

a, a V a, a, a V 
X 

V I __ y dy V V I + I V = V -- I V = I y y X X a, y "' 0 ay 0 0 ay 

Integrating the continuity equation , we obtain 

"' a V 
X 

V I = - I -- dy 
Y .., o a x  

a, 

0 

we can write 

(9 . 72 ) 

C 9 .  73 ) 

= - w y = 0 
( 9.74 ) 

a 
X 

V --dy 
X a x  

C 9 .  75 ) 

C 9 .  76 ) 

Substitution of equations (9 . 75 )  and (9 . 76 )  into equation (9 . 74 )  gives 

"' 
I 

0 

(2 V x ax 

a V 
X 

ay 

d V 
a, 

V --) d y  = "' 
dx 

w 

p 

which can be further rearranged to the form 

d V .., 
a, vx ) J  dy + -- / 

dx o 
(V 

a, 
V ) dy : 

X 

'w  

p 

C 9 .  77 ) 

C 9. 78 ) 

Introducing the definitions for displacement and momentum thicknesses 
* 

( o  and e from eqs ( 9 . 36 )  and ( 9 . 37 ) )  we have 



-rw d 2 * d V 
Q) 

P 
= dx (V 

Q) 
e )  + o V 

Q) dx 

9133 

(9 . 79 ) 

This equation is usually referred to as the integral momentum equation 

for two-dimensional boundary layer flow . 

In the absense of a pressure gradient ( d  V /dx) = 0 and equation 
00 

,, 
(9.79) reduces to 

de 

7 dx 
p Q) 

(9 . 80 ) 

0 V V 
X 

( 1  - � )  dy e = ( 9 .  81 ) 
0 V V 

00 

It is possible to solve equation (9. 80) by introducing probable forms of 

the velocity profile v /V = <I> (y/ o ) . 
X oo 

Assuming that the velocity profile can be represented by the cubic 

pol ymanial 

(9. 82 ) 

we can determine the coefficients by applying the usual boundary 

conditions 

V 
X 

= 0 at y = 0 

V = V at y = 0 
X 00 

(9. 83 ) 

and in addition the condition 

a 
0 at 0 = y = (9 . 84 ) 

ay 
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W e  have  

a : 0 

b : 3/ 2 

C : - 1/ 2 

Thus 

V 1 cX) 1 3 X 
ex) : - 2  V 2 o 0 

Therefore , equation (9. 80 ) becomes 

d 1 
[1 cX) 

3 
_ 1 cX) 1 

dx { o l l cX) ] [ 1 + 2 2 o 2 o 2 o 

'w 

v2 
00 

1 
: - µ 

PV2 
00 

o V 

(--x ) ay Y 

After per fonning the integrations we get 

which further g ives 

0 � : 1 40 " 

dx 13 V 

0 = 4 .64 X 
{ V :x 

00 

The local fric tion coefficient is 

1" 
_k._ 0.646 

c
f 

= = = 
v

2 
pV o 

f-? 
p 

00 

( 9 .  85 ) 

(9 .  86 ) 

3 
cX) J d cX) } 

0 0 

1 3 
V 

: - - µ  0 (9 . 87 ) : 0 pv2 2 a, 

( 9 .  88 ) 

(9 . 89 )  

(9. 90 ) 

We note that the numerical coefficients of  o and Cf are very close to 

those obtained by Blasius exact solution of  section 9. 2. Actually these 

num eric al coefficien ts a r e  r el a ti v ely  insensitive  to the fo rm o f  
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function used . This is shown in Table 9 . 3  where A and B ar e  defined by 

A = ! IV
,.,;· 

X \1 

TABLE 9 . 3  

Coeffic ients of  o and C
f 

for various approximations 
o f  the ve ocity profile 

Assumed function A B 

Blasius exact solution (Sec . 9. 2 )  5 ( asymptotic ) 0 . 664 

vx J.. = V 0 3. 5 0. 577 
()0 

V 
1 (1.) 1 3 

X cJ.. )  
v 

= 2 2 o 0 4 . 6  0. 646 

X sin (!. J..) V = 
2 o 

4 . 8  0. 654 
()0 

(9 . 91 ) 

( 9 .  92 ) 

For laminar boundary layer flows with pressure grad ients the most 

widely known approx imate method is that o f  Pohlhausen [18 ] .  

method the velocity is approximated by an ex pression o f  the form 

In this 

V 2 3 4 
X 

( J..) + b ( J..) + C ( J..) + d (i..) ( 9 .  93 ) 
v 

= a 0 0 0 0 
()0 

The coefficients are determined by using the usual boundary conditions 

V = 0 
X 

at y = 0 

V = V at y = 0 ( 9 .  94 ) 
X ()0 
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and in add ition the cond itions 

a V a2v 
X 0 and X 0 at y 0 = --2 = 

aY aY 
(9 . 95) 

Toe whole procedure i s  rather tedious . 

Scnl ichting ' s book [2 ] .  

More deta i l s  are given · in 

Al though the approx imate integral momentum methods  hav e  now been 

super sed ed b y  the modern nuner ical techniques they still merit some 

stud y mainly for hi storical and educational pur po se s . 

9 . 7  F URTHER REMARKS ON LAMINAR BOUNDARY LAYER FLOW 

We have seen that the boundary l ayer equations describe the flow 

field not only in thin layers adj acent to sol id bound aries but al so in 

j ets , wakes and mix ing zones . The term bound ar y layer has been 

translated from the german "grenzschicht" and it is to some extent a 

misnomer . Perhaps it i s  more appropr iate to speak o f  " shear layers" 

than j ust boundary layers . It i s  the assumption of a slender flow 

region in which viscous effects are  important that leads to the 

simpl ification of the general conservation equations . The ex i stence o f  

a so l id boundary for some problems i s  merely incid ental . 

In this c hapter we presented sol utions to some class ical bo undary 

layer flow problem s .  Numerous other problems are dealt with i n  the 

l i terature . A l arge number of sim il arity and approx imate sol utions can 

be found in references [ 2 ] ,  [ 1 6 ] , [ 1 7 ]  and [ 1 9 J .  Numerical solutions of 

the finite d i f ference type have al so been dev eloped . Some fairly 

general computer programs are now available  in references [ 1 6 ] ,  [ 2 0 ]  and 

[21 ] .  

Most of the problems studied in the l iterature are either for 
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two-dimensional or ax isymmetric boundary layers .  We note that the 

boundary layer equations can be generally written in the form 

au 
ax 

av + ay 

au au 

E V  + - = 0 y 

p U  - + p V : ax  ay 

( 9 .  96 ) 

( 9 .  97 ) 

where u is velocity component the direction of flow ( x) and v is the 

velocity component in a direction perpendicular to flow direction ( y) , 

E = 0 for the two-dimensional case and E = 1 for the axisymmetric case . 

The above formulation is particularly useful whenever a general computer 

solution fo r bo th two-dimensional and ax isymmetric problems is 

a t tem pted . Three-dimensional flow p roblems are considerably more 

difficult and require large computational times . 

Some unsteady boundary layer flows are discussed by Schlichting 

[2 ] .  However , before proceeding wi th the unsteady momentum equation 

( 9 .19 ) one must assess the relative magnitude of the term avx/ a t .  If 

this term is to be retained in equation (9 . 19 )  it must be of the same 

order of magnitude as v ( av / a x ) . This means that 
X X 

and 

V v
2 

a, a, 

t "' L 
0 

Assuming L = 1 m and V = 100 mis we have 
a, 

= 1 m 
100 ml s = 100 s 
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In certain cases it i s  l i kely that changes in such short times ( 0 . 01 s )  

will not be present . Thus , for many eng ineer i ng probl ems a quasi-steady 

state approx imation might be appropr iate . By " quasi-stead y11 we mean 

that al t ho ugh a particular problem might be unsteady in a strict sense 

the main features of the flow can be d escribed reasonab l y  well by the 

steady state equations at any instant of t ime . 
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CHAPTER 10 

TURBULENT FLOW 

10.1 INTRODUCTION 

In chapter 1 it was explained that in laminar flow fluid particles 

move in straight lines whereas in . turbulent flow they follow random 

paths. Reynolds exper.iment (Sec.1. 9 )  offers an excellent visualization 

of the phenanenon of transition from laminar to turbulent flow . The 

complete dispersion of the dye injected in a tube , as shown in Fig. 1.11 

for high rates of water flow , illustrates the chaotic character o f  

turbulent flow. At a given point in a turbulent flow field neither the 

velocity nor the pressure are constant. They exhibit inceiSantly highly 

irregular , high-frequency fluctuations. It is  impossible to have the 

canplete description of a turbulent flow field as a function of position 

and time .  It is possible , however , to 
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d i sting ui sh an average v elocity and pressure over a short time 

interv al .  Hinze ( 1  J gives the following definition for turbulent fluid 

motion : " An irregular cond ition of flow in which the various quan titie s 

show a r andom variat ion with time and space coordinates , so that 

statist i c a l l y  d istinct average values can be d i scerned . "  

It was stated in C�apter 1 that experiments involving flow in tube s 

with c ircul ar cross-section have shown that on slowly increasing the 

v el oc ity the streaml ines remain smooth and straight up to about Re0 = 

2 3 0 0 .  

p l a c e . 

For higher Re
0 

transition from laminar to turbulent flow takes 

S om e  i nv e s t ig a t o r s  man aged to r e ac h  Re
0 "' 4 0 , 0 0 0  w h i l e  

maintain ing laminar flow i n  c arefully controlled experiments . In a 

v ibration-free environment and v irtual elimination of d i sturbances a t  

the tube inlet i t  is  po ssible to raise further thi s "upper bound" o f  the 

critical Reynold s number . The reverse experiment , that is , start i ng 

from turbulent flow and slowly decreasing the velocity , shows that the 

" lower bound" for the critical Reynolds number where the flow ceases to 

be turbulent i s  about 2000 . Below this Vdlue the flow is  always l am inar 

e v en w i t h  t he pre s e n c e  of strong d i s t u r b a n c e s . For p r a c t i c a l  

applications , engineers usually a ssume a critical value o f  Re
0 

= 2 1 00 .  

For flow over a flat plate the first part o f  the boundary layer 

( S e c . 9 . 2 ) , n ear the l e ad ing ed g e ,  i s  a l wa y s  l am inar . Fu r ther 

down stream the Reynolds number Re0 
= V

00
x/µ increases and transition to 

turbulent flow occurs at about Re = 300, 000 . 
X 

For j ets and wakes 

transi tion occurs at surprisingly low Reynolds number e . g .  for the 

two-dimen sional jet ( Sec . 9 .  4 )  the critical Reynolds number is Re
8 

= 

pV /µ  = 3 0  where H i s  the d iameter of the jet at the orifice exi t .  
avg 

When spe c i fying a critical Reynolds number we must clearly identify the 
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characteristic length ( also called hydrodynamic length) D or x or H or 

whatever else happens to be the appropriate one. 

The transition from laminar to turbulent flow is due to the 

amplification of certain small disturbances which are always present in 

laminar flow no matter how carefully an experiment is conducted. When 

the Reynolds number is low the disturbances which are superimposed on 

the main flow decrease and die out with time. At high Reynolds numbers 

some distu rbances are amplified and eventually the resulting 

irregularity of motion dominates the flow field , which is then called 

turbulent. The prediction of the critical parameters for the onset of 

turbulence is the object of the theory of hydrodynamic stability., 

The description of growth or diminution of 

certain forms of disturbances is a formidable mathematical task. An 

elementary explanation as to the reason for having the Reynolds number 

as the critical parameter was given in section 6 .  8. Re represents the 

ratio ( inertia forces/viscous forces). When the inertia forces are much 

larger than the viscous forces ( i .e. for flow in tubes Re0> 2100) the 

main flow has enough kinetic energy to provide for the amplification and 

maintenance of the disturbances. However, at low Reynolds numbers the 

cohesive viscous forces tend to diminish and eventually eliminate all 

disturbances. 

When the flow is turbulent the velocity and pressure fluctuate very 

rapidly. To measure the turbulent fluctuations we use probes with fast 

response (see chapter on flow measurements) . The results of some actual 

measurements [ 2 ] with fast response probes are shown in Fig . 10. 1. The 

velocity components at a point in a turbulent flow field fluctuate about 

a mean value as shown . A probe with sufficiently slow response would be 
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Fig. 10.1 Local velocity components i n  turbulent flow in an o i l  
channel, Re . = 7000 ( x i s  the main flow direction and y is 
normal to the wall). Reproduced from reference [2]. 

LAMINAR 

TURBULENT 

Fig. 10.2 Velocity profiles for laminar and turbulent flow in tubes 
having approximately equal flow rates. 
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unable to follow these rapid fluctuations and would simply record the 

velocity components averaged over a period of time. Since the complete 

description of a flow field is impossible we will focus our efforts to 

the determination of the time-averaged velocity components and 

time-averaged pressure. 

For laminar flow in tubes with circular cross-section the velocity 

profile was found to obey the parabolic equation (Sec.7.3). 

vz 
V z,max 

2 
= [ 1 - (I.) ] R (10.1) 

and the average velocity (over the cross-section) was found to be 

one-half of the maximum: 

V 
� 
V z ,max 

1 = 2 (10.2) 

These classical results have been fully verified by experimental 

measurements by numerous investigators. 

As it will be shown in subsequent section the determination of 

velocity profiles for turbulent flow is not easy and in most cases it 

requires direct experimental measurements. The experimental data are 

usually interpreted and expressed in terms of certain mathematical 

models. The resulting expressions can, thus, be termed semi-empirical. 

For turbulent flow in tubes the time-averaged velocity profile can 

be expressed in terms of the 1/7- power law equation 

V 
z 

z,max 

1 /7 
=(1-f) 

for Re0 of the order of 10 5. 

We introduced the quantities with bars 

(10.3) 

v2 
and V 

z ,max to indicate the 
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mean values (over a period of time), whereas the quantities without bars 

v and V would represent fluctuating values, when the flow is z z ,max 

turbulent. The ( area) average velocity can be obtained by integrating 

the time-averaged velocity over the cross-section and dividing by the 

cross-sectional area. 

2rr 

rdrde J J z 
,.., 4 -v 0 0 ::::; 0.807Vz,ma,'< (10.4 ) = -v avg 2,r R ,v 5 z ,max 

J rdrde 
0 0 

We note that the velocity profile for turbulent flow is more flat than 

that for laminar flow, as shown in Fig. 10.2. 

The Hagen-Poiseuille formula of Section 7.3 shows that for laminar 

flow in a pipe the pressure drop is proportional to the volume rate of 

flow. It has been established experimentally that for turbulent flow 

the pressure drop is approximately proportional to the 1.75 power of the 

volume rate of flow ( for sm ooth pipes). 

schematically shown in Fig. 1 O. 3. 

These conclusions are 

A closer examination of turbulent flow reveals that the fluid 

motion is not entirely random throughout the tube. At the center of the 

tube the velocity fluctuations are completely irregular. Near the 

immediate vicinity of the wall the fluctuations virtually disappear. It 

is often assumed that there exists a laminar sublayer near the tube wall 

in which the flow is smooth and dominated by the viscosity of the fluid. 

This is followed by the buffer zone which is dominated by both viscosity 

and turbulent fluctuations, and the turbulent core where the flow is 

almost completely random, as shown in Fig. 10.4. 

An analogous situation may be assumed to exist in a turbulent 
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Fig. 10.4 A sketch of the velocity profile and the various flow regions 
for turbulent flow in a tube. 
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boundary layer formed over a flat plate as shown in Fig. 10. 5. It 

should be understood that there are no sharp boundaries between the 

various flow regions and their existence, in either tube or flat plate 

flow, should not be interpreted too rigidly. 

The velocity profile in the turbulent boundary layer on a flat 

plate can be approximated fairly well by the 1/7 - power law expression 

(10. 5) 

00 

It will be shown that the boundary layer thickness varies with x415 for 

turbulent flow, whereas, 6�x112 for laminar flow. 

10. 2 FLUCTUATIONS, EDDIES AND TIME-AVERAGING 

The velocity at a p_oint inside a tube having a constant flow rate 

remains constant with time when the flow is laminar (see Fig. 10.6(a)). 

For turbulent flow with a constant flow rate the local velocity 

fluctuates around a mean value as shown in Fig. 10.6(b)). In other 

words, in turbulent flow the velocity is always locally unsteady. The 

time-averaged local velocity v is defined by z 

1 T 
V : - f V dt z T z (10.6) 

This definition also holds for unsteady turbulent flow. Fig. 10.7 shows 

the irregular oscillations of local velocity about a mean value in a 

turbulent flow field with varying flow rate. The time interval T, over 

which the velocity is averaged, should be large with respect to 

turbulent fluctuations but small with respect to changes in the overall 

flow rate. 



10/ 10 

N 
. >  ... >- ,_ ____________ _ 
� STEADY 
o LAMINAR 
� 

L

_FLOW 

TIME 1 t 

Vz 
STEADY 
TURBULENT 
FLOW. 

TIME 1t 
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Fig. 10.7 Local velocity in unsteady turbulent flow. 
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The instantaneous local velocity v may be written as the sum of the z 

time-averaged velocity v and a velocity fluctuation v': z z 

V : V + V 1 
z z z (10,7) 

Similar expressions may be written for the other velocity components and 

the pressure, i.e. 

vx 
= V 

X 
+ v' 

X 
(10.8) 

V y = V y + v' y (10.9) 

p' (10. 10) p = p + 

Fran the foregoing discussion it is clear that the time-averaged values 

of the fluctuations are identical to zero 

v' = v' = v' = 0 
Z y X 

p'  = 0 (10.11) 

However, the roots of the time-averaged squares (root mean squares) of 

the fluctuations will not be zero. The quantities 

( <2/12 (v '2)''� G:2/'2 
-- , -__:/___;, and --
V v v ref ref ref 

(10.12) 

where Vref is a suitable reference velocity (usually the maximum 

velocity) are used as measures of the magnitude of turbulent 

fluctuations, and are referred to as turbulence intensities or turbulence 

levels. The variation of turbulence intensities as measured by 

Reichardt [3] in a wind tunnel is shown in Fig. 10.8. We note that the 

intensities in the immediate vicinity of the wall are very small, they 

increase with distance , reach their maximum values and drop in the 

central portion of the wind tunnel. The existence of maximum values of 

intensity at relatively short distances from the wall is due to the fact 

that many flow disturbances have their origin at the surface. Towards 
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Fig. 10.8 Variation of turbulence intensities and the time-averaged 
velocity profile as measured in a wind tunnel by Reichardt[3 ]. 
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Fig. 10.9 Schematic representation of eddy structure in pipe flow, 
according to Davies [4]. 
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the center of the conduit, however, the influence of the wall is 

diminished and the turbulence intensities drop. For internal channel 

flows, the maximum turbulence intensity is usually less than 15%. In 

free jets turbulence intensities may repch maximum values of up to 30% 

near the outer edges because of fluid entrainment from the surroundings 

and violent mixing motions. 

In discussing turbulent flow we emphasi zed the irregularity of 

motion and the appearance of random fluctuations. Locally the velocity 

field exhibits gradients which correspond to recirculating flow and 

formation of eddies of various si zes. The upper size of these eddies is 

limited by the size of the equipment. The lower size is determined by 

the viscosity of the fluid and generally decreases as the mean flow 

velocity increases. The smallest eddies can be very small and the 

corresponding frequency of the fluctuations very high.· Davies [4] gives 

an excellent schematic representation of eddy structure in a pipe as 

shown in Fig. 10. 9. Because of the large velocity gradients near the 

wall the large eddies are broken up into small ones which dissipate the 

kinetic energy by the action of the fluid viscosity. 

The turbulent effects are far removed from molecular scale as 

pointed in a simple example by Hinze [ 1 J: For mean air flow of 100 ml s 

the smallest eddy will be about 1 mm, large compared to mean free path 

which is of the order of 10-4 mm. 1 mm3 of air contains roughly 1. 7x10 16 

molecules under atmospheric conditions. The turbulent fluctuations will 

be at most of the order of 10 mis whereas the mean velocity of molecules 

is of the order of 500 mis. The turbulence frequencies will be less 

than 10,000 s-1 whereas molecular collision frequencies for air are 

about 5x10 9 s-1 • 
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Since the scale of turbulent motions is sufficiently different from 

the scale of molecular motions it is reasonable to apply the principles 

of conservation of mass and momentum as developed for a continuum in 

Chapters 4 and 6. 

Example 10. 1 

At a given point in a flow field the instantaneous velocity is given by 

v = 10 + 2 sinnt and v = sinnt. We will evaluate the following 
X y 

quantities: 

( a) 
-
V 

y 

( b) v'v' 
X y 

( c) vxv y 

Solution 

A sketch of the velocity components is shown in Fig. E10. 1 

obviously the minimum time interval for averaging is T=2 

( a) we have 

1 
T 

V = -T f V dt y 
O 

y 

1 T 
=ff (10+2 sinnt)dt = 

0 
}c1 Ot 

2 1 . t = 
2 f Sln,r = 

0 
2,r 

2 
COS,rt I 

0 

2 
� COS,rt) I 1T 

0 

= 0 

(b) 
-,-, 
V V 

X y 
1 T I ' 

= T ! V V dt = 
0 

X y 
1 2 

2 ! (2 sinnt)cosntdt = 

( c) 
1 T 

= T ! V V dt = 
0 

X y 

1 T 

2 ! (10+2 sinnt)sinnt = 
0 

= 10 

1 10 t 1 2 

2[-;--cosnt + 2 (2 - � sin2 nt)] = 
0 

= 



20· 

-
(J 
o· 10 -' 
1..U 
> 

oL 
Oi 

I 

>el <--

/ VY 
--�:::=::==-==-'t..,:,;�.,:-:_-_ --_:::w...,...., . .:c:::�:::._=.=:--:;:.,J 

10/15 

1: I 2 3 4: 

TIME (t)' 

Fig. E.10.1 

' ' 



10/16 

1 O. 3 THE TIME-AVERAGED CONSERVATION EQUATIONS FOR AN INCOMPRESSIBLE 

FLUID 

The eq uation of con servation of ma s s  (continuit y) for an 

inccxnpre s sible fluid (Sec. 4.1) i s: 

In trod uc ing V = V 
X X 

or 

= 0 

+ v' V = V + v' and V = V + v' z' X 

a (v 
X 

y y y z z 
I I + V ) a (v + V ) a (v + 

ax 
X y y z + + 

ay az 

_ _ I I 

av av av av av av 

V ) z 

__ x + _.:t_ + __ z + __ x + _.:t_ + z = 0 ax ay az ax ay az 

(10.13) 

we get 

= 0 (10.14) 

(10.15) 

We will now take the time-average of thi s equation by u sing the 

definition 

-(-) )dt (10.16) 

where T i s  a suitable time con stant. With thi s definition of 

time -average the following rule s can be ea sily e stabli shed for 

quantitie s A =  A+ A' and B = B + B': 

-, -, -, 
A = A + A = A + A = A + A thu s A = 0 

A B = A B = A B 

--, --, -, 
B = A B = A B = 0 since B = 0 

--, --, -, I 
B A = B A = B A = 0 since A = 0 

(10.17) 



10/17 

A B = (A + A ') (B + B' ) = A B + A BI  + � + A ' BI 

aA aA = ax ax 

' 
B�A cs I 

acA + A = + B ) ax ax 

= 

-,-, 
=A B+ A B  

- aA 'oA -aA Ba� B a� B-ax 

-aA 'aA ' B- + B -ax ax 

I 
'oA + B ax 

' 
= 

Thus, the time-average form of equation (10. 15) may be written as 

' ' I 
av av av av av av 

X _J_ z X + _J_ z 0 -- + + -- + -- + -- = 
ax ay az ax ay az (10. 18) 

' ' 
Since vx = V y = V z = 0, we get 

av av av 
X 

_J_ + z 0 + = 
ax ay az (10. 19) 

This means that the time-averaged continuity equation for an 

incompressible fluid is identical to the continuity equation for laminar 

flow with the velocity components replaced by their time-averages. 

Let us now apply this time-averaging procedure to the x-component 

of the equation of conservation of momentum (Sec. 6. 5) starting from 

avx avx avx avx ap 
p (-at + V -- + V -- + V --) : - - + x ax y ay z az ax 

-

2 
µ 'v vx + pgz ( 1 0. 20) 

I 

Introducing v 
X 

: V 
X 

I 
+ V 

X 
V y : V y 

' 
+ V y V = V + V and p:p+p • z z z 

we get 
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cv y + 

= 

I 

V ) y 

a 

a --(v ay X 

- ax (p + 

I + V ) 
X 

I 

p ) + 

I a -+ c"v + Vz )az
( V X 

+ V )] z X 

2 - I 
µ V (v + vx) + pgx X 

(10. 2 1) 

Thus, taking the time average according to the definition given by 

equation ( 1 O. 16) and observing the rules established above (Eqs. 1 O. 17) 

we have 

av avx av av ap 
( 

X - X __ X) 
p -at + V -- + V -- + V = - - + x ax y ay z az ax 

I I 

I av I av 
X X -p[v -- + ax V ay 

We note 

I 

V 
X 

X 

that 

I 

avx 
ax 

' 
av 

X 

= 

y 

a I 
-(v ax x 

I 

V 
X 

a I I 

) 

V -- : 
Y ay -(v vy) 

ay X 

I 

av 
X vz az 

a I I 

: -(v V ) az x z 

+ V 

- V 

I 

I av 

azJ z 

I 

' av 
X 

X ax 

I 
, av 

z vx az 

2 -
µ V V + pg 

X X 

Thus, the last group of terms in equation (10.22) becomes 

I I I 

(10. 22) 

(10. 23) 

, av av , av 
X X X a I I a I I a I I 

-(v v) + -(v v) + -(v v) v -- + v  -- + v  x ax y ay z az 

I I I 
, av av av 

_ v (--x + _l + __ z) 
x ax ay az 

= ax x x ay x y az x z 

(10.24) 
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With the help of the continuity equation we can eliminate the second 

group of terms of equation (10.24) and thus rewrite equation (10.22) as 

avx av av av ap 2 
p(-

at + vx __ x + v __ x + v __ x) = - - + µ v vx + P gx ax y ay z az ax 

( 1 o. 25) 

By a similar procedure we can obtain the time -averaged y and z 

components of the equation of conservation of momentum: 

av av av av 
P (_L + V _L + V _L + V _..:t_) = at x ax y ay z az 

---
I ' ' I I a a a +[-(-p V V ) + -(-p V V ) + -(-p V V ) ] ax X ay az y y y y z 

av av av av 
� 

µ 
v2 z - z z _z) p(

tt 
+ V -- + V --+ V = az + 

X ax Y ay z az 

a ' a -,--, a ' ' 
+[-ax(-p V V) + -(-p V V) + -(-p V V )] z x ay z y az z z 

10. 4 REYNOLDS STRESSES AND EDDY VISCOSITY 

( 1 o. 26) 

V + z p gz 

( 1 o. 27) 

In the formulation of laminar flow problems we ended up with four 

equations (continuity and three components of the equation of 

conservation of momentum) and four unknnowns ( v , v , v and p). By 
X y Z 

time-averaging the various terms for turbulent flow we still have four 

equations, but the number of unknowns is now seven namely vx, vy, vz, p 

and v' v' v' 
x• y• z '  To solve turbulent flow problems we must reduce the 

number of unknowns to four V and p). z By referring to 
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equations (6.93) , (6. 64) and (6.65) we note that the viscous terms 
2 µV V , X 

2 2 µ V v y and µV v z have been derived from the deviatoric stress 

tensor T .. i .e for an incompressible Newtonian fluid in laminar flow 
lJ 

(10.28) 

These stresses represent the resistance to flow which at the microscopic 

level is due to random molecular motions. The random eddy motions also 

exhibit resistance to flow. Thus , it is reasonable to assume that the 

term involving the velocity fluctuations in equation (10.25) can be 

expressed in terms of the components of the so-called turbulent stress 
-(t) tensor T. . i .e 

lJ 

-( t) aT yx + --ay 

-( t) h zx + --
az 

(10.29) 

Similar expressions may be written for the groups of terms containing 

the velocity fluctuations in equations (10.27) and (10.28) with 

-(t) 
T xx 

-(t) Tyy 
I I 

= -p V V y y 

-(t) 
T xy 

-(t) Tyz 

-( t) = TyX 

-( t) : Tzy 
I I 

= -p V V y z 

-( t) 
Txz 

-(t) 
T zz 

-( t) 
= 't zx 

The turbulent stress tensor may , therefore, be written as 
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I I I I I I 

pV V pV V pV V 
X X X y X z 

( t) I I 

T = - pv V pv V pV V (10.30) 
X y y y y z 

I 

PV
X 

V PV
Y 

V PV V z z z z 

These are called the Reynolds stresses. In analogy to viscous stresses 

the Reynolds stresses may be expressed by relations of the form 

-(t) (t) dvx 
'yx = µ dy ( 1 0. 31 )  

where µ ( t) is the so-called turbulent or eddy viscosity. We may also 

define a kinematic eddy viscosity as 

( t) ( t) 
= .JL_  

p 
( 1 o. 32) 

Many problems involving the Reynolds stresses will be of boundary layer 

nature. The time-averaged form of the unsteady boundary layer equations 

(9. 18) and (9. 19) may be written as 

2-a V 
X 

a/ 

(1 0.33) 

( 1 0.  34) 

We note that the viscous term has two coefficients of viscosity, µ and 

( t) µ The viscosityµ is due to the random motions of molecules. The 

eddy viscosity µ (t) is due to random motions of lumps of fluid. Because 

of the relatively large size of fluid lumps we may conclude that 
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( t)  except in the immedia te vicini ty o f  walls where µ +O. 

The viscosity µ is a f undamental property of the fluid and for 

certain simple fluids it can be determined entirely from kinetic 

arguments ( see Chapter , Molecular Hydrodynamics ). On the other hand 

the concept o f  eddy viscosity µ ( t) is based on conjectures rather than 

a fundamental theory and can only be determined by direct measurement of 

the fluctuating velocity components and the definition 

( t) (t) dvx = µ dy (10. 35 ) 

Since µ ( t ) depends on the magnitude of the velocity fluctua tions it 

should vary from point to point within a flow field. It sho uld also be 

different for different flow configurations and vary with the size of 

experimental equipment. The variation of / t ) with position in pipe 

flow is shown in Fig. 10. 10 from reference [ 1 ]. 

( t) µ is about 100 or 200 times larger than µ. 

Usually for pipe flows 

For jets and wakes µ ( t ) 

is usually more than 1000 times larger than µ, because of the highly 

irregular and s trong mixing motions involved . 

10.5 PROBLEM SOL VING IN T URBULENT FLOW 

Basically the same approach as in laminar flows can be followed for 

the solution of t ur b ulent flow pro blems. We start from the 

time-averaged conservation equations and eliminate the appropria te 

terms. The res ulting equations are identical to those for the 

corresponding laminar flow problems with velocities replaced by their 

time-averages and viscosity replaced by the effective viscosity (i .e . 
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Fig . 10 .11 Schematic representation of the mixing length concept. 
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laminar plus turbulent contribut ion 

(T ) ( t) µ = µ + µ ( 1 0 .  36 ) 

The d ifficulty l ies in the fact that µ ( t ) i s  a very compl icated function 

of many parameters . General l y  we may sta te symbol ical ly that 

( t )  µ = f ( position , velocity ,  flow configura t ion , size , roughness ) 

It i s  of course impossible to take all those fac tors into considerat ion 

and present general sol ut ions . We must apply this methodology to each 

problem and in addition exploit the special  features tha t each problem 

may have . In following this approach it i s  essential to have an 

expression for µ ( t) . The l iterature o f  fluid mechanics abound s wi th 

such ex pressions , most of them for speci fic problems . Here , we present 

some of the more po pular ones . 

1 0 . 5 , 1  P randtl ' s  mixing length model 

Thi s  model attempts to describe in a crude manner what actually 

happens in turbulent flow [5 ] ,  [6 ] .  The turbulent exchange mechani sm is 

assumed to be described by the motion of lumps of fluid transverse to 

the v elocity field . Let us focus our attention to one such a fluid lump 

of mass lim and velocity v which is moved in the y d irec tion a t a 
X 

d i stance 1 ,  under the influence of the fl uctuat ing velocity component 

v� , as shown in Fig .  1 0 . 1 1 .  Obvious l y ,  in  order to sati sfy continui ty 

another fluid 1 ump of equal mass must move in the opposite d irection . 

It is assumed tha t these lumps retain their momentum while they travel 

through the fl uid .  The complete exchange is accomplished ( t hrough the 

v i scosity) after they travel the d istance 1 ,  which i s  thus called m i x ing 

length , 
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The x-momentum transported by tim is timtiv • The shear force acting 
X 

between the two fluid layers will be 

(tim) (tiv ) 
F = -.,....._,,--,---x_ (tit) 

(10 . 37) 

where tit is the time required for the travel of mass tim. Thus , we can 
i 

define an apparent (turbulent) shear stress 

( t) F 1 (tim) (tivx) 
=

A
= 

A (6t) 

where A is the area over which force F acts. 

( 1 O.  38) 

Using the Taylor series expansion one may write approximately 

dv 
ti V 

X 
V + "' V + i --

X X X dy (10. 39) 

dv 
X 

ti V "' i dy 
X 

(10. 40) 

( tim) Further , we note that ( tit) is the mass rate of flow and according to 

continuity 

(tim) 
(tit) = p I v  I A  y 

(10. 4 1 )  

Introducing equa tions ( 1 0 . 40) and (10 . 41 )  into equa tion (10. 38) we get 

( t) 
dv 

dy 

To determine , < t ) we must know i and V • 

l vy l = const l (tivx) I  

Prand tl assumed that 

dv 
= canst i i-x i dy 

Thus, incorporating the constant into i we may write 

( 10.  42) 

(10. 43) 
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(10.44 ) 

Prandtl also assumed that the mixing length is proportional to the 

distance fran the wall i.e. 

.R. = KY 

and wrote equation (10.44 )  as 

dv dv (t ) = P K2 2
1
_x

l (-x) T y dy dy 

where K is an experimentally determined constant. 

Von Karman's similarity model 

(10. 45 ) 

(10.46) 

Von Karman [ 7 ] made the assumption of geometrical similarity (see Sec. 

9.5 ) and deduced an expression for the mixing length. He expressed the 

turbulent stress as 

- ( t) T yx = - p (10.47 ) 

where K is known as von Karman's universal constant (approximately 

K:0.4 )  

Deissler ' s  empirical formula 

Deissler [8] proposed an empirical expression for eddy viscosity, which 

is applicable in the immediate neighborhood of solid s urfaces, in t he 

form 

( t) 
µ = - p m  vxy [1 - exp(- m vxy/ v ) J  m=0.0154 (10.48 ) 

Prandtl's formula for free shear flows 

For jets , wakes and mixing zones, Prandtl' s mixing length model leads to 



th e followin g formula 
( t)  

µ = K p b (V - ij . ) max min 

10/2 7 

(10.49) 

wh ere b is th e wid th of th e sh ea r layer a t  a giv en cross-section V max 
and Vmin a re th e maxi mum and min imum v eloc ity res p ecti v ely a cross th e 

la yer and K an ex p erimen tally d e termin ed con stan t. 

10. 6  TURBULENT FLOW IN A TUBE. THE LAW OF THE WALL 

We now con sid er th e steady turb ul en t flow o f  an in comp ressibl e 

fl uid in a horizon tal , round tub e und er th e in fl uen ce o f  a p ressure 

grad ien t a s  shown in F ig. 7. 4. Th e tub e  i s  a ssumed to b e  suffi c ien tly 

lon g so tha t  th e flow i s  fully d ev elop ed (i.e. no va r ia tion in vz). Th e 

ti me-a v era ged eq ua tion of momen tum in th e z d irection red uces to 

!E = az 

(T ) 
wh ere T rz 

1 a -( T )  
- -(r-r r a r  rz 

= T + T rz 

) 

(t) 

rz 

( 10 . 50 ) 

Follow in g  th e a rgumen ts used in th e la m ina r flow analys i s  (S ec. 7. 3 )  w e  

con cl ude tha t  th e l eft-hand sid e  i s  a fun ction z only and th e righ t-hand 

sid e  is a fun ction of r only. Th us , w e  may w ri te 

1 d -(T ) 
= - -(r-r ) r d r  rz 

d v  
I t .  · th -- (µ+µ ( t) )_z -n tegra 1n g w 1  -rrz d r  0 a t  r=O w e  get 

T 
(T ) = -r + � ( t) = - AE r rz rz 2L 

(10 . 5 1 ) 

( 1 0 .  52 ) 
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w here '( r z  
-(t ) 

and , 

I F · 10 12 th t t 1 h t :;: (T ) and t · 1 · 
t 1 n 1g. • e o a s ear s r ess , som e  yp 1ca exp er 1men a 

results for , C t ) = - P v' v' are s hown as a fun c tion of r. W e  note tha t z r 
( t) t he maximum valu e of 'r z  is n ear r / R = 0.9 w her e t he veloci ty 

flu ctua tions are also ver y  large. 

To ob tain the velocit y profile w e  mus t introdu ce in to equa tion 
( t) (1 0.5 1 ) an ex pr ession w hi ch d es cri bes µ over t he en tir e d omain O<r <R. 

T he eddy vis cosi ty µ C t ) is a com pli ca ted fun c tion of r (se e  Fig. 1 0. 10 ) 

and thus the veloci ty profil e can be ob tain ed only wi th n umeri cal 

m e thods . It is i m p or tan t , how e v er , to pr es en t t he classi cal 

semi -em piri cal analysis w hi ch leads to the s o-called "la w of the w all " 

From e qua tion (1 0.52) w e  have  

at R - CT ) - A2 R r = '( = r z  2L (1 0 . 53 )  

Le t AER 
-

thus = '( 2L w 
- (T ) r -
'r z  = - R 'w  ( 1 0. 54 ) 

Note that i t is merely a conven tion w he ther a minus or a plus sign in 

equa tion ( 1 0.54 ) s hould be us ed (s ee also s ection 7.3 ). 

W e  will n o w  assu m e tha t the to tal s hear s tr ess will be 

a p proxima tely constan t and equal to (-,w ) in the immedia te vi cini ty of 

the wall ( r "'R ) 

(1 0.55 ) 
- ( T ) = - '( rz w 

or 

- (t )  
'( + '( = - '( r z  r z  w ( 1 0. 5 6 ) 
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Fig. 10. 1 2  Variation of shear stress for turbulent flow in a tube. 
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or dv dv 
µ (-z) + ( t)( z) = dr µ F - 'w 

For the region where µ (t) � 0 we can simply write 

dv 
µ CF) = - '

w 

Let R and d d 
r = - y dr = dy 

Thus dv -
µdy = T w 

Solving we get 

T - w c 1 V = y µ 

C -0 because v =0 at y=O 1 - z 

( 1 0 . 57) 

( 1 0 . 58) 

( 1 0 . 59) 

( 1 0.  60) 

Thus the velocity profile very close to the wall where the viscous 

effects dominate (i .e. in the laminar sublayer) is 

- w vz = µ y = 1 'w 
p \) y 

It is customary to rewrite this equation in dimensionless form as 

�
= 

p 

�· y If 

( 1 0. 61 )  

( 1 o .  62 ) 

where the quantity / 'w/p  has dimensions of velocity and is it called 
* 

shear velocity v
2 

or by letting 

V y � - + z and 
+ p V = y = z 

� 

\) 
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we have 

( 10.63 ) 

Just outside the region of the laminar sublayer we assune that µ ( t ) »µ 

and introduce Prand tl's mixing length model 

or 

and 

dv 
( t )  z µ dr = 

dv ( t) z 
µ dy = ,: w 

w 

2 2 dvz 2 

p K y  ( dy ) : ,:W 

dv z 
dy 

or in terms o f  the dimensionless variables v + and y+ 
z 

= 1 1 
K + 

Integrating we get the velocity distribution as 

-+ 1 + 
v = - tny + C 

Z K 

( 1 0 .  64 ) 

( 1 0 .  65 ) 

(10.66 ) 

( 10 . 67 )  

( 1 o. 68 ) 

( 10.69 ) 

Al though several assumptions of questionable valid ity were made 

[e .g. T (T )  = ,: ( const . ) rather than T (T ) = (y/ R) ,: and discontinuity in w w 

µ (T )  from µ to µ ( t ) J experimental turbulent profile measurements yield a 

logarithmic relationship between v + and Y+
. In fact this relationship z 

is obeyed over a large part of the cross-sectional area except in the 

irrunediate vicinity o f  the wall where the linear relation ( Eq . 10.63 ) 

applies. Equations (1 0.63 ) and (10 . 69 ) involve only the d istance from 

the wall and compare well with turbulent velocity profile measurements 
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in other flows , not just for flow through tubes. Thus , the relations 

between v; and y+ constitute a universal turbulent velocity profile , 

which is also called the law of the wall. 

The universal turbulent velocity profile is usually described in 

terms of one , two or three separate algebraic equations. Perhaps the 
,\ 

most often quoted profile is the one used for the interpretation of 

Nikuradse ' s  extensive data [9 ]. It consists of three distinct equations 

the first + for y <5 , which is interpreted as the region of laminar 
+ sublayer , the second for 5 <y <30 ,  the buffer layer , and the third one 

+ for y >30,  the turbulent core. These are 

5<y+ (30 

(or 

y+>30 

(or 

-+ + vz = y 

5. 00lny V = z -
+ 

1 1. 50logy V = z -

-
+ 

+ vz = 2.5lny +5. 5 

3.05 

- 3. 05 ) 

- + 
V = 5. 75 logy +5. 5 )  z 

(10 , 70 )  

( 10. 7 1 )  

(10.72 ) 

where log is the logarithm to base 1 0. Fig. 1 0.13 shows the excellent 

agreement between Nikuradse ' s data (for water) and equations 10. 70 , 

10, 71  and 10.72, The above equations are also in good agreement with 

Laufer ' s data [ 1 0 ]  (for air) and measurements by other investigators 

[ 1 1 , 12 ]. Note that from equations ( 1 0.69 ) and (10. 72 )  we have for 

Prandtl ' s  mixing length constant K:0.4 (since 
K 

1 
0 ,4 = 2.5). Another 

commonly used value is K :0. 36 which also fits the data as a two equation 

velocity profile 

y+<10 -+ + (10. 73 )  V = y z 

y+>10 -+ 3.8 + 2.78 ln y (10.74 ) V 

The agreemen t ,  however , is not good in the region from about + 5 to y = 
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+ a bou t y = 20 . Us ing De i ssle r' s [ 8  J em p ir ical formula it i s  eas y to 

sh ow tha t 

v+ = r z 
0 

d + 

-+ + -+ + l +m v
2 

y [ 1  - exp(-m v 2 y )  
( 1 0. 75 ) 

wh 'ich fits a la rge bod y  of li te ra tu re da ta (m =0.0 1 54 ) in the reg ion 

0 5:_Y+
5:_26 w ith e qua tion (1 0. 74 ) be ing used for Y+ >2 6. 

Ve ry often , h owe ve r ,  the em p i r ical p owe r-la w e qua tion 

V z 

z ,max 

1 /n 
= (1 _ .!:.) R (1 0.76 ) 

i s  u sed ins tead of the un ive rsal vel ocity p ro files. The a bove e qua tion 

fits the l ite ra tu re da ta ve ry we ll w i th 1 / 1 0 <n < 1 /6 for a la rge range o f  

Re yn old s num be r s (4 x 10 3 <Re 0 <3. 24 x 1 0 6) a ccord ing to Schl ich ting [6 ]. 

Ca re mus t be taken when us ing the p re v iou s e qua ti on s  to pe r form 

fu rthe r cal cula tion s. An illus tra tion o f  the p os si ble p itfalls can be 

g iven by trying to de te rm ine the shea r s tres s a t  the wall u s ing the 

usual rela tion 

( 1 o. 77)  

Both the l oga rithm ic vel ocity p rofile (Eq. 10. 69 )  and the p owe r-la w 

e qua tion (1 0.76 ) g ive in fin ite wall s tre ss , wh ich is un real i s tic. 

It i s  p os s ible , h owe ve r ,  to obta in exp re ss ion s  for Tw in te rm s o f  

the fr iction fa ctor f whi ch is de fined by 

f = 4 TW 
-2 

pV a vg 

(10. 78)  
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By determining Vavg for the logarithmic pro file and after some 

adjustments in the coefficients (see for example re ference (12 ]) we get 

the von Karman-Nikuradse equation ,  which fits the experimental data very 

well over a large Re range : 

1 
I f = 2.0 log ( Re0 I f )  - 0 .8 (10 . 79 ) 

This equation , however , is somewhat inconvenient because it cannot be 

solved explicitly for f. 

A simpler expression is o ften used which approximates the data very 

5 well for turbulent flow in smooth pipes up to Re0 = 10 

f = 0 •316 (turbulent) 
( Re )  1 /4 

( 1 0. 80 ) 

This is known as the Blasius equation and it is based on direct pressure 

drop measurements in pipes . The friction factor in laminar flow can be 

easily obtained from the results o f  Sec. 7. 3 :  

Thus 

or 

For , = ( Ap/2L)R and V = ( Ap/8µL)R2 we get w avg 

f = 4 

4V µ avg 

'w 

V 2 
� 

2 

= 

8 vavgµ 
= D 

8 V avg 
D 

4 
V 2 

� 
2 

f _ 6 4 
- Re (laminar) 

µ 

= 

( 10.81 ) 

64 (10.82 ) 
p V D 

avg 
µ 

(10.83) 

Note that some authors prefer a definition o f  the friction factor f 

without the numerical factor 4 in the right-hand side of equation 

( 10 . 78 ). 
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The pressure drop tip as a function of the vol ume rate of flow can 

be detennined ea sily by combining the definition for the fr iction factor 

(Eq. 1 0. 78 ) with the expression for the shear stress at the wall.  We 

have 

� R  
T 2L 

f 4 w 4 2 (t.p)D ( 1 0. 84) = 
- 2 = 

- 2 = - 2 
P V P V P L V a v� av� avg 

2 2 

Using Blasius empirical equation for turbulent flow in smooth tubes ,  we 

get 

and solv ing for tip 

we have 

_0....;.3;;...1_6 ___ = 2 ( tip)D 

p V D 1/4 pL V 
2 

( avg ) avg 

( tip) 

(tip) 

p 3/4 µ 1 /\ -7 /4 = 0 ,  158 .:..,....._.,___ V 
05/4 

0 , 75 0.25L 5 = 0.241 P µ 
Q 1 • 7 

04.75 

( 1 0.  85) 

( 1 0. 86) 

( 1 0. 87) 

More pressure drop calculations for smooth and rough tubes are 

presented in Chapter 13 as  applications of the Bernoul l i  equa tion. It 

i s  intere st ing to compare the above equation to the Hagen-Poi seuille 

formula (Equ. 7. 61 ) which is  val id for laminar flow. A log- log plot o f  

ti p  vs. Q for laminar and turbulent flow has already been g iven in 

section 10. 1 (Fi g .  10. 3 ) .  
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Examp le 10.2 

Air flows through a smooth 20 cm diameter pipe at 

velocity of 10 mis. We will determine the total stress 

Reynolds stress .��) and the viscous stress 'xy at rlR = 0.9. 

Solution 

From equations ( 10. 78) and ( 10.80) we have 

Thus 

f 4 
'w = 

P V avg 
2 

f 0.3 1 6 = 
( Re) 1 14 

[ (T ) J 'rz 

v2 P avg = = 0.0395 -��-
'w (Re) 1 14 

Re = 

r=R 

V D avg = ( 10 mls) (0. 2 m) _ 1 _33x 105 
v -5 2 -1 .5x10 m Is 

an avet'o'3e 

( T) th T , e xy 

and 
2 

0. 256 Nim = 0. 256 Pa 

Since ¼- = 1f we have ,0 _9 = 0 ,9x0. 256 = 0 , 23 Pa 
w 

The stress due to viscosity is 

T : 

av 
z 

µ - = ar 
a 

CV ( 1 - _r ) )  µ -ar max R = µ V ( 1  - ..!:.) max 7R R 

-617 

,0 _9 = ( 1 .5x10-5 m2ls) x (¾x10 mis) 7:0 • 1 
( 1  - 0.9)-6 17 = 0.0019 Pa 
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0.256 We note that the total stress is 0 _ 0019 "' 135 times larger than the 

viscous one. 

av ( t) ( t) av (T) ( t ) z (-z) and Since ' = µ (�) ' = µ ' =,+, 
r/ R =0.9 

ar r/ R=O. 9 

( t) 0 ,256-0 ,00 1 9  J!..__ = "' 134  0,00 19 

10 , 7  TURBULENT BOUNDA RY LA YER ON A FLAT PLA TE 

For turbulent boundary layer flow on a flat plate the equa tions of 

conservation of mass and momentum are identical to those of Section 9 . 2, 

(T ) ( t )  with viscosi ty replaced by the effective or total viscosi ty µ =µ+µ 

Thus , we have 

2-a V 
X 

a/ 

( 1 0. 88 ) 

(10 .89) 

Because µ ( t ) varies widely over the boundary layer thickness it is very 

difficult to ob tain analytical solutions . Finite difference solutions 

have been used to ob tain the velocity profiles by several investiga tors . 

Detailed discussions and resul ts can be found in the monographs by 

Patankar and Spalding [13 ]  and Cebeci and Bradshaw [14 ]. 

In this section, we use the approximate integral momentum method 

and confine our efforts to the determina tion of shear· stress at the wall 

and boundar y layer thickness. 

Equation ( 9 , 79 )  of Sec tion 9 , 6  applies readily to turbulen t 
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bou ndar y layer s  by su b stituti ng t he i nsta nta neou s v elociti es by t heir 

tim e a v erag es. In t he a bsence o f  a pr essur e gradi ent , w e  ha v e  

w here 

Aft er sane 

de 
dx = 

0 V 
X ( 1 e = f v 

0 00 

T w 

-2 
pV 

00 

V 
X - v)dy 
00 

r earra ng em ent s , we get 

d 0 

dx f V (V 
X 00 

0 

( 1 0 .  90 

(10 . 9 1 )  

- v )dy = 
X w ( 1 o. 92) 

Not e t hat t he a bov e equation ca n al so be d eri v ed dir ect l y  by p er formi ng 

a n  ov eral l  m anent um  bala nce to t he bou ndary layer. T he l e ft- ha nd sid e  

r epr esent s t he rat e of  cha ng e  of  m omentum a nd t he rig ht -ha nd sid e  t he 

shear str ess at t he w all. 

I ntrodu ci ng t he 1 /7 p ow er -la w expr ession 

i nto equat ion 

a nd 

vx Y... 1 /7 
v = ( 0) 

( 1 0. 92) , w e  ha v e  

d 0 
[V

2 (1'..) 1 /7 
'w 

= P dx f 0 

v2 d 7 
= P 00 dx <72 o) 

T w 

P v2 
00 

= 
L �  
72 dx 

v2 
00 

(1'..) 2 /7 ]d 0 y 

( 1 0 .  93 ) 

(10 . 94 ) 

( 10 . 95 ) 



We will now use Blasius equation (10.80 ) for pipe flow and the 

definition o f  the friction factor. We have 

'f 

__ w __ = ..!. f 
v2 8 

P avg 

1 = 8 [0.316 
P V 

( a vg 
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(10 .96 ) 

For the boundary layer it is reasonable to replace D by 2 6. The average 

velocity can be determined by the general expression for the 1/n - power 

law profile 

1 2 rr 
V ! avg

= 
2 

R 
J 

0 

1 /n 
(i.) R 

= 

rrR o 

2 V R max 
1 

R2 
0 

max 

R-r 1/n 
(-R-) rdr 

which gives 

and for n = 7 

V 2n 2 

� = �---,----,-
v 

( n+ 1 ) (2 n+ 1 ) 
max 

V = 0 .817 avg 

Thus, equation (10 .96) becomes 

'w 

P v 2 
00 

1 p V o 
= 8 [0.316 ( 

µ

00 

= 0 .8 17 V 

and after performing the numerical calculations 

rdrd e 

( 1 o .  97 ) 

( 1 0 .  98 ) 

(10 . 99 )  

(10 . 100 ) 
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'w 

P v2 
0) 

P V o -1  /4 
= 0. 023 ( 

00 
) 

µ 

Combining equation (10 . 95 )  and (10. 101 )  we have 

or 

Integrating 

- 1 /4 
p V o 0) 

0 . 023 (--) 
µ 

= L � 
72 dx 

P V 0) 
- 1  /4 

L o 1 ;4 d o  72 = 0 . 023 (--) 
µ 

L o5 !4 
90 

P V oo 
= 0,023 (--) X + C 

\) 

( 1 0. 101 ) 

( 10.106) 

dx ( 10. 10 7 )  

(10 . 108 ) 

Assuming a boundary condition o=O at x=O w e  get C:O, and 

0 : 0 .38 X 

p V X 
1 /5 

( 
0) 

) 
µ 

= 0 .38 x  

(Re ) 1 /5 X 

(10.10 9 )  

Note that the turbulent boundary layer thickness increases with the 

4 /5-pow er of distance from the leading edge x .  Actually near the 

leading edge the boundary layer is laminar and equation (10. 108 ) is not 

valid. However, it seems like a reasonable approximation to extend the 

turbulent boundary layer up to x=O where o=O. 

For flow over a flat plate the local friction coefficient is 

defined by 

= � P V 0) 

Introducing equation (10 . 10 1), we get 

( 1 0.110 ) 



P V o - 1  /4 
= o. 0 4 6 (-00-) 

Fu rt he r  by in se rting t he value of o into t he a bove equation 

0 .0 58 = _.;_.....:;...;_= 
(Re ) 1 /5 

X 

10/4 1 

(10 . 1 1 1 ) 

(1 0 . 1 1 2 )  

T he a ve rage f riction coeffic ient for a p l ate of lengt h L i s  obtained 

f rom 

1 L 1 cf = [ f cf dx = L f 0 .0 58 
1 /5 dx 

0 0 p V X 
0) 

µ ) 

= 0 .0 72 (10 . 1 13 ) 
p V x 1 /5 

0) 

(--) 

or 

cf 
0.0 72 (1 0 . 1 1 4 ) = 
(Re ) 1 /5 

According to Sc hlic hting [6] t he expe ri mental re su lt s a re a p pa rent ly in 

bette r ag reement if t he n ume rica l coeff icient O .  0 72 i s  re placed by 

0 . 0 74. For some w hat more accu rate form ul a s see W hite [ 1 5 ] .  

T he main re su lt s  of t he anal ysi s for a tu rbulent bounda ry la ye r 

ove r a flat p l ate a re summa ri zed in Ta ble 1 0 . 1 t oget he r  wit h t hose of 

t he lamina r bounda ry la ye r . 

e x p re s sion s a re u sed [6 ] e .g .  

0.0 74 

(Re ) 1 . 5 

For t he t ran sition region em pi rical 

A 

Re 
(1 0 . 1 1 5 ) 
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where A=1050 for 

6 ( Re) . t:10 and cr1 

(Re) · t=3 x 1o5, A=1 700 for cr1 
6 A :8700 for ( Re) . t=3 x 10  • cr1 

plates is given in Fig .  10 . 14. 

5 ( Re) · t=5x10 , A=3 300 for cr1 

A plot of Cf for smooth 

All of the above equations are valid for smooth surfaces where the 

Reynolds number is the only parameter that determines the velocity 

profile and friction. For rough surfaces the magnitude of roughness £, 

form and d i s tribution also become important parameters . For 

artificially roughened surfaces the magnitude € can be established from 

the geometrical characteristics, as shown in Fig. 1 O .  15 . For naturally 

rough surfaces the magnitude € is expressed by an equivalent sand grain 

roug hness . This is established exper imentally by comparing the 

hydrodynamic behavior of a given rough surface to that of a smooth 

surface having uniform sand grains cemented on i t .  The form and 

distribution of roughness are also relevant par�meters. However , there 

is not any generally accepted method of characteri zation . 

The surface irregularities ( natural or artificial) disrupt the 

laminar sublayer and may disturb the whole flow field in amounts 

depending on the magnitude of roughness € .  Let cS '  be the thickness of 

the laminar sublayer. If € / cS '  < 1 the roughness has a negligible effect 

on the friction coefficient , and such surfaces are considered 

hydrodynamically smooth . For € /  cS '  > 1 the roughness effects become 

important and the formulas developed for the velocity distribution and 

wall stress for smooth surfaces no longer apply. When € / cS '  exceeds 15 

to 25 the velocity distribution and wall stress depend only on € and are 

independent of the Reynolds number. Empirical correlations for rough 

surfaces are preserited by Schl ichting [ 6 ]. The effect of  



Laminar 

cf 

T w 

0. 664 

I Re 
X 

1. 33 

I Re1 

V 2 
p (X) = ---

2 

o 5 -- --
X 

X 

cf 

Table 1 0  . 1  

Comparative results for 
flow over a flat plate 

Turbulent 

U "' (1.
-)

1/7 
V o 

(X) 

cf 
= 

T w 

0 
X 

= 

0. 0
5
8 

(Re )
1/5 

X 

0. 074 

(ReL)
l/

5 

v2 
p (X) 

2 cf 

0. 38 

(Re ) 1/5 
X 

1 0/ 4 3  
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1 0-2 
8 

6 

4 

2 

I"--. -.. --
,_ .... 

------.:t.YRauLcN; 
� 

� --� -. ,_ ·""' 
� ... i---TRANS\T\ON .--.-

r-,.... ' .... r,... .... 
� 

Ir 
2 4 2 4 

_ 1 .33 0 .074 1700 0.074 
LAMINAR Cf : Fe , TRANSITION Cf =  Rel/5 - ffe ,  TURBULENT Cf = Re l/5 

Fig. ' 1 0  . 14 The a verage f ri ction c oe f fi cient for bounda ry laye r flow 
over a fla t p la te 

· � 0. ½ 0. 
E IS EXPRESSED I N  HYDRODYNAMIC 
EQUIVALENTS TO UNIFORM SAND 

RANDOM 

__ (' E 
UNIFORM SAND GRAIN 

Fig. 10 . 15 De finition of  roug hn ess e: for na tu rally and a rti fi cially 
roug h surfa ces . 
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roughness o n  the local skin friction coefficient is illustrated in Fig. 

10.16 (from White [15 )). Note that at long distances x from the leading 

edge the effect decreases because o '  increases. 

Example 10. 3 

We will repeat the calculations for the data given in example 9. 1 

assuming that the bo undary layer is turbulent throughout the whole plate 

sur face. 

S olution 

We found Rex = 694444 

Thus, o 0.38 x = = 
( Re ) 1 /5 

X 

0 .38 X 0 .25 m 

(694444) 115 0.0065 m  = 6.5 mm 

we note that the turbulent boundary layer is much thicker than the 

laminar one (fran example 9. 1, o = 1.5 mm) 

0.07 4 
cf = 

< Re ) 1 /5 
X 

= 0.07 4 
= 0.005 

(694444) 115 

1 - 2 1 3 12000 2 
'w = 2 cf p v� = 2x0.005 x (1000 kg/m ) (  3600 m/s) 

N = 27. 782 
m 

and the force required to tow the plate is ( for two sides) 

F = 2 t A 
w 

N 2 
: 2 (27.78 2) (0.25 X 0.25 m )  : 

m 
3.47 N 

Perhaps a somewhat more accurate calculation would be to assume a 

laminar bo undary layer up to distance x where Re = 300,000 and 
X 

turb ulent thereafter. For most practical problems, however, the laminar 

portion would probably be insigni ficant. 

Example 10 .4. 

Determine the thickness o f  the laminar sublayer and the thickness o f  the 
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bu ffe r  zone for t he data u s ed in e xa mple 10 . 3. 

S olut ion 

In de vel op ing t he uni ve r sal l oga r it hmic p ro file w e  a s su med t hat t he 

l a m ina r s u blaye r extend s  u p  t o  

+ 5 y = 

y 
T hu s , w 5 

at t he t railing edge of t he p lat e , = 2 7 . 7 8  N /m2 and w 

y = 5\1 
I ' w / p  

-6 2 1 = 5 ( 1 . 2 x 10 N • s /m )-_;_ ___ _ 
N /m2 

-5 -2 �3. 6 x 10 m�3. 6 x 10 mm 
27 .  78 

I 10 0 0  

T h  b ff t d to Y+ 30 e u e r  zone ex en s u p  = 

T hu s  30 -2 y = 5 x 3.6 x 10 mm = 

kg!m3 

6 -1 2. 1 x10 mm 

It i s  inte re sting t o  compa re t he va ri ou s t hi ckne s se s :  In p roble m 9.1 w e  

found t hat i f  t he b ounda ry laye r i s  la mina r o = 1 .  5 mm. F or tu rbu lent 

fl ow t hroug hout t he plate w e  found t hat at t he t ra iling edge t he l a m ina r 

s u blaye r i s  onl y  O. 0 3 6 mm t hick .  T he bu ffe r  zone occu p ie s  t he regi on 

from O. 0 3 6 mm to O. 2 1 6  mm and t he tu rbul ent core from O. 2 1 6  mm t o  6 .  5 

mm. 

10 .8 ENT RY LENGT H F OR T URBULENT PIPE F LOW 

T he ent ry reg ion p robl e m  for la mina r fl ow wa s exa min ed in Se c.  9. 3. 

F or tu rbul ent fl ow t he analys i s  i s  con s ide ra bl y  more di ffi cult be cau s e  
( t )  of t he un ce rta int y in t he valu e  o f  t he eddy vi s co s it y  µ and t he 

a s s ociated mat he mati cal comp l e x it ie s .  How e ve r ,  w e  can get a roug h 

e sti mat e by u sing t he re sult s o f  t he b ounda ry laye r  analysi s for fl ow  
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0. 1 

' 

E= 10 

cf 0.01 � 100 

1 ,000 
1 04 � 

r---_: 
1 05 --

SMOOTH WALL -:,r 106 

0.001 CX) 

3 X  105  107 108  

Fig. 10 . 1 6 The influence of  roughness on  the l ocal friction 
coefficient 

11 

y 

(c) 

Fig. 10. 1 7 Turbulent free shear layers (a) jet ( b) wake ( c) mixing zone 
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over a flat plate . 

As the fluid enters the pipe it has a nearly flat velocity pro file. 

Downstream fran the entry a boundary layer grows in the inside tube 

sur face . At some distance the boundary layer " fills" the tube , thus, 

cS=R =D/2. Fran this distance downstream the velocity pro file can be 
.i 

approximated fairly well by the 1/7-power law expression. 

We can rewrite equation (10 . 109) as 

cS p V 
00

x 1 /5 
X 

"' 0. 38 ( a ) (10.116) 

Since at x=L cS=D/2 and from equation (10.99) V =V /0.817 we have e 00 avg 

or 

L 4 /5 "' _D _ ____,. 
e 2x0.38 

P V 
x 1 ( avg) 

( 0 • 81 7 ) 1 15 µ 

1 /5 

L e p V D 1 /4  
"' 1.48 ( 

avg ) "' 1. 48 Re 1 14 (10.117) 

Kirsten [ 16] made entry length measurements in the range of 50 to 1 00 

pipe diameters and Ni kuradse [9 ] in the range of 25 to 40 pipe 

5 diameters. Nikuradse's 40 -diameter value was for Re0 = 9x10 whereas the 

equation develo ped above gives L /D = 45. e 
The agreement is actually 

better than one might anticipate and must be regarded as fortuitous. 

For most practical problems the 40-diameter value is recommended as a 

minimum length for turbulent flow to become fully developed. 

10.q TURBULENT JETS ,  WAKES AND MIXING ZONES 

Turbulent jets, wakes and mixing zones between two uniform streams , 

are called free shear flows because o f  the absence of solid boundaries . 

These types o f  flow are schematically shown in Fig .  10 . 17. We note that 
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the fluid in the shear layer itself is the same as the surrounding fluid 

i.e. a jet of air in air or a jet of water in water. These types of 

flow can be treated with the turbulent boundary layer equations. Since 
( t) µ(<µ throughout a free shear layer, we may eliminate the viscosity µ. 

The eddy ( or turbulent) viscosity can be usually expressed (sec. 10. 5) 

as 
( t) 

µ = Kpb(V - V . ) max min (10. 118) 

Thus by substituting expressions of the above type into the boundary 

layer equations we may solve these equations to obtain the longitudinal 

and transverse velocity distributions. Detailed discussions on 

theoretical developments as well as experimental data may be found in 

the monographs of Pai [17 ] ,  Abramovich [ 18]  and Rajaratnam [12 ]. The 

classical solutions for jets , wakes and mixing zones are also presented 

by Schlichting [6 J. In this section we will summari ze some of the main 

results following closel y  Schlichting's  presentation. 

10 .9� . 1  Axisymmetric turbulent jet 

For the axisymmetric turbulent jet of an incompressible fluid the 

time-averaged boundary layer equations are 

a(rv ) av 
___ r_ + � = 0 r ar az 

av av 
p(V � + V __ z) : r or z az 

The boundary conditions are 

z = 0 vz = V 0(r) (must be known ) 

(10. 119 )  

( 1 0. 120 ) 
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r = 0 
av  

0 0 = V = ar r (1 0.1 2 1) 

r = 0) V = 0 

It tur ns ou t tha t the i ncreas e of je t wid th is b « z ,  the velocity de cay 
- -1 -
V « z a nd e qua tion (10.1 1 8 ) w ith V . = 0 g ives max m in 

µ C t) = pKb vmax = P KZO = cons t (1 0.122 ) 

Thus , fr an the ma thema tical p oi nt of v ie w  the e qua t ions des cr ib ing the 

turbule nt f re e  je t are ide ntical to those for the lami nar je t (Se c .  

9.4 ). How e ver , the v is cous te rm is now due to ra nd om  eddy motions 

ra ther tha n mole cular moveme nts. Tollm ie n  [ 20 J ob ta ined a s im ilar ity 

type solu tion wh ich g ives the axial velocity com p one nt as 

V z 1 = 2 
+ .!1 z ,max 4 

where a "' 1 5. 1 8 

or 

c!!.) 1 12 1 V = 7. 4 1  - a nd J = [2 ,r p z ,max 

Thus , for a 

p z 

fla t velocity prof ile 

V z ,ma x = 6.5 6 
V (3-) o D 

V = z 

The rad ial velocity com pone nt v is r 

3J 1 /2 1 2 n4 n --

V 

n = 

D /2 
I 

a t  
0 

V : (-) r ,r P 1 2 2 z( 1 "*4n ) 

or 
z 

-2 
V rdr ] z z=o 

z = 0 ,  w e  ge t 

(1 0.123) 

(1 0.1 24 ) 

(1 0.1 2 5) 

(1 0 . 12 6 )  

=Bz

B



The volune rate of flow at a position z is given by 

Q = 2,r J v rdr z 

10/ 5 1  

( 1 0. 1 27) 

Then , by introducing the axial velocity component into the above 

equation , we get 

Q = 8 n  µ (t) z = 0. 404 ( J p ) 1 12 z (10 . 128) 

This means that the volume rate of flow increases linearly with 

distance , because of fluid entrainment from the surroundings. Note that 

the n umerical constants appearing in Equations ( 1 0. 1 23) - (10.128) have 

been determined by Schlichting [5 ] by fitting the theory to Reichard's 

[21 ]  experiments. Other investigators s uggest somewhat di f ferent 

numerical values ( see Rajaratnam [ 1 9]). 

Because the outer "edges" of the jet are poorly defined it is 

c ustomary to define the half-velocity width (r
1 12) which is a line along 

which v IV = 1 / 2. z max From Tollmien's solution [20 ]  and Reichart' s 

results [ 21 ] , [6 ] ,  we get 

and 

Since r 1 1/z 
0 angle o f  5 • 

( r1 12) = 0.0848z 

( t) 
= -%--- = 0.02 56 Cr112

) 

( t) -
V = 0.002 17 Z V z ,max 

( 1 0. 1 29) 

V z ,max (10.130) 

(10. 1 3 1 ) 

0 � 0.0848 � tan 5 the axisymmetric jet is a cone with half 

It is important to note that this angle is independent o f  

the mass rate o f  flow. On the contrary, the rate of spreading o f  a 

laminar jet as given by equation (9.67) depends on the mass rate o f  flow 

J. The difference in spreading behavior is due to the fact that the 

viscosity is a property o f  the fluid whereas the eddy viscosity is a 

property o f  the flow field itself. 
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{a) AXIAL VARIATION OF VELOCITY AND TURBULENCE 
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OISTAtiCE FROM NOZ.ZLE EXITr z/D 

( b) RADIAL VARIATION OF VELOCITY ANO TURBULENCE 

0 l. 
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0 

0 I ----------

0 0 . 1  0.2 

VELOCITY 

TURBULENCE 

Fig. 10. 1 8  S c hematic repr esentation o f  v el ocity and turbul ence 
variation in a round jet , according to Corrsin (22 ] .  
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The results of the above similarity analysis have been found in 

relatively good agreement with experimental data for distances usually  

larger than 8 nozzle diameters from the plane of  exit . In the exit 

region these solutions do not apply because of flow development in the 

exit region ( 22 ] ,  (23 ] ,  as shown in Fig. 10. 18. In this figure the 

corresponding turbulence levels are also shown for the various regions 

of the jet . 

10 �9, 2 Two-dimensional wake 

The wake formed behind a circular cylinder in cross-flow as shown 

in . Fig. 1 O. 17 ( b) is a two-dimensional one . It looks like a jet drawn 

backward, however , its hydrodynamic characteristics are quite different. 

It represents a "defect" in a flow field of relatively high velocity. 

Consequentl y the inertia forces in a wake are much larger than those in 

a jet. 

The time -averaged boundary layer equations which apply in this case 

are 

We may assune that the term 

av av 
_.:t.. + _z : O  ay az 

(t) µ 

2-
a V 

z 

ay 2 

av 
z v -- is small compared to 

Y ay 

( 1 0. 1 32 )  

( 1 0 .  1 3 3 )  

av 
z 

V -
Z az 

Moreover, since a wake is a "defect" in a flow field we may also assume 

that 
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"' V 
av z 

oo az Thus, the momentum equation becomes 

av z 
P V 

oo az = µ 
( t) 

2-
a V 

z 

al 
We now introduce the velocity difference 

V = V 1 00 

and rewrite the manentun equation as 

av1 
P V oo az 

The boundary conditions are 

y = 0 

y = 00 

( t) = µ 

av1 
ay - o 

V 1 : 0 

2-
a V 1 

a/ 

( 10. 34) 

( 10.135) 

(10 . 136) 

(10. 137) 

Schlichting [6] used Prandtl's mixing length model (Eq .  10 . 118) and 

obtained a similarity solution in the form 

V 1 , max 

3 /2 2 
= ( 1  - ex) J b (10 . 138) 

where b represents the wake width which is related to the drag 

coe fficient ( see Chapter 12) of  the upstream cylindrical body causing 

the wake . By matching theory and experiment Schlichting [6 ] gives 

(10 .139) 

where c
0 

is the drag coefficient of  a cylinder of  diameter D .  



Table 10 .2 

Layer width and centerline velocity decay as a function of position 
for free shear flows 
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TWO-DIMENSIONAL WAKE 

AXISYMMETRIC WAKE 

lWO LXIIIFORM STREAMS 

(Turbulent Flow) 

SKETCH 

f 
---
--- ---

f
-----

--- ---
- 1----

·-
----- - -

�--_1-�-- --
- 1i----

-=.:--- --

WIDTH 

z 

2 

F2 

z
lfl 

z 
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Equation ( 10 . 139) is in good agreement with experiments for z> 10C 0D. 

The v elocity difference at the midplane of a wake decays according to 

the relation 

V 1 ,  max C D 1 /2 

� o .  98 (�) z 

This relation is accurate for distances of z>50 C0D. 

( 1 0. 140 )  

The time-averaged boundary layer equations also describe the flow 

field in mixing zones . Again similarity solutions have been developed 

[6 ],  [ 1 9 ] . The width and mid plane velocity variation as a funct ion of 

position of a mix ing zone between two uniform streams are given in table 

10 . 2. The corresponding results for jets and wakes are also shown for 

comparison. Note that Table 9.2 ( in Sec. 9 . 4 )  prov ides the same kind of 

information for laminar j ets, wakes and mixing zones. 

E xample 10 .5 

We will repeat the max imum velocity calculation for the data of example 

9. 2 assuning turbulent flow . 

Solution 

(�) 
1 /2 1 

V = 7 . 4 1 z ,max p z 

D/2 -2 where J = 2 ,r p I v rdr = 2,r p I z 
0 

= 2,r p 2 r2 8r4 16 r6
]
0 12 

V o [2 -
402 + 

604 o = 

D /2 
v2 < 1 (2 r) D 

0 
0 

2 D2 
211 P V o 2 4  = 

2 2 

) rdr 

12 



Thus , 

V z ,max 

,rV 2D2 

o 1 = 1 .  41 (-1 2
-) z -

= 3 .79 x (20ml s) x (0. 2 x 10 -3m) x -1�-0 . 0 1 . m 
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= 1 .  52m l s 

The change of velocity as a laminar jet becomes turbulent is used in 

certain dev ices to cause pressure d ifferences large enough to drive 

mechanical switches (known as fluidics). 

Example 1 0  .6 

A cross-flow heat exchanger consists o f  a parallel row o f  tubes 2. 5 cm 

in d iameter , spaced at 25 cm apart. Determine the distance downstream 

at which the wakes formed behind the tubes will meet and find the 

max imum velocity d i fference at this point assuning no interactions . The 

cross-flow velocity V i s  1 00 m i s and kinematic v iscosity of the fluid 
-5 2 (air) i s  v = 1 . 3x 1 0  m I s  

Solution 

V D (100 mis) x (0 .025 m) 

1 . 3 x 1 0 -5 m 2 l s  

5 = 1 .  92 x 1 0  

From Chapter 1 2  w e  choose an approximate value o f  the drag coefficient 

C -D -

The 

0. 9 .  Thus , we 

b 

for b 

z 

have : 

= 0. 57 

= 1 2 . 5  

(z CDD) 1 12 

cm , we get 

(0 .  1 25) 
2 1 

= 
0 . 025 0. 57 

= 1 .  92 m 

maximum velocity difference in the absence of interactions 

(0 .9 x0 . 025m) 
1 12 

V = o. 98 ( 1 00 m l  s) 1 0. 6  m i s  1 ,max 1 .  92 m X = 

i s  
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A lthough z>50 c0D (1 . 92 >1 . 1 3) the maximum velocity difference estimate 

might not be terribly accurate. 

1 0. lO STATISTICAL THEORIES OF TURBULENCE 

The first step in the solution of the time-averaged conservation 

e qua t i ons i s  the introduction of an appropr iate eddy viscosity 

coefficient µ ( 
t) We discussed several models for µ ( t) which contain 

one or more adjustable parameters . We noted that , unlike µ, µ(t)  is not 

a property of the fluid but a property of the flow field. The eddy 

viscosity increases with the size of the flow field and its overall 

velocity. The fluid flow in a large pipe appears to be dominated by an 

eddy viscosity larger than the same fluid in a small pipe. Also , at 

high flow rates the effective viscosity is larger than at low flow 

rates. ( t)  µ is usually several hundred or thousand times larger than µ 

depending on flow configuration and velocity ,  but it does not bear any 

definite relation to them. Virtually for every new experiment a set of 

parameters must be adjusted in the theoretical models . Consequently , 

this is not a fundamental theory on which to base a thorough study of 

turbulent fluid f low.  It is usually referred to as the phenomenological 

theory of turbulence 

Statistical approaches to the study of turbulent flow have been 

developed by such dist inguished scientists like G. I. Taylor, Von Karman , 

Kolmogoroff and Heisenberg ( see references [2 4 ]  and [2 5]). Most of the 

classical papers have been compiled in a single volume edited by 

Friedlander and Topper [2 5]. More recent advances can be found in books 

by C, C. Lin [2 7 ] ,  Monin and Yaglom [28 ] ,  Orszag [2 9 ]  and Tennekes and 

Lumley [ 3 0  J .  
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F or most of the statistical theories the basic step is the 

definit ion of correlat ions of veloc ity fluctuations at two or three 

points . Actually the Reynolds stresses (Sec . 10 . 4 )  are statistical 

correlat ions of the velocity fluctuat ions at one point . The correlat ion 

concept can be simply explained by the pictorial representation ( F ig .  

10 . 19) taken from Brodkey [31 J .  

Most of th e stat ist ical th eories have b e en d ev eloped for 

homogeneous and isotropic fields of turbulence in the absence of mean 

motion 

turbulence 

' 2  and B VA X 

= V = V z = 0 ) .  Homogeneity implies that the various 

quantities are 

I 2 1 2 = vBx ' v Ay = 

independent 

' 2  v8Y 
etc . 

of posit ion i .e .  for t wo points A 

Isotropy means that the various 

measures of turbulence at a part icular point are equal irrespective of 

the ir direction in space i .e .  v:2 ' 2  = V 
' 2  = V 

' 2  = u An approximately 

homogeneous and isotropic turbulent flow field can be reali z ed beh ind a 

grid in a wind tunnel . The eddies generated must be  relatively small 

otherwise there m ight be preferred d irect ions in space i .e .  anisotropy . 

To facilitate the presentation we will alter our notation . The symbols, 
I I 

u ,  v ,  w will be representing the velocity fluctuat ions in the x ,  y 

and z d irections respectively. For the two po ints A and B, shown in 

F ig .  10 . 20 ,  we define a longitudinal correlation coefficient f (r) by 

= f( r)  (10 . 1 4 1) 

Sim ilarly we define a transverse correlation coefficient g(r ) by 
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>
t: 
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g 
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a 
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F ig. 10.19 Sketch illustrating the correlation of velocity fluctuations 
in turbulent flow. 

f ( r )  

g ( r )  

Fig . 10 .20 L ongitud inal and transverse velocity  correlations in a 
turbulent flow field. 
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Because of i sotropy we may also write 

'2 u 

= g(r) 
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( 1 0. 1 42 )  

( 1 0 . 1 43 )  

All th  th • bl 1 t • b t I I I d I I I e o er poss1 e corre a ions e ween uA, vA , wA an u8, v8, wb 

will be zero i .e .  uA v8 = 0, u8 w8 = 0 etc. because of isotropy. 

Thus, we may define a correlation tensor for the two points A and B 

with all its elements zero except those on the diagonal i.e. 

f( r) 

0 

0 

0 

g(r) 

0 

0 

0 

g(r) 

The above tensor can be decomposed to 

(f(r) - g(r) )  0 

0 

0 

0 

0 

0 

0 + g( r) 0 

0 0 

0 

0 

0 

0 

l 

In a ne w coordinate system defined by , 1 = x8 - xA, ,2 = Y8 - YA 

,3 = z8 - zA we will have a general correlation tensor in the form 

'i'j 
= (f(r) - g(r)) 

r2 
+ g(r) o . .  lJ ( 1 0. 1 44) 
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where 
2 r 

The continuity equation at point B is 

and 

u A Mul ti plying by -- which i s  independent o f  .x6 , v8 and z5 , and 
� /i 

time-averaging 

-, -, -, -, -, -, 
a UAUB a UAVB a UAWB 0 + - + -

ax8 '2 ayB '2 az8 
u u u 

or 

a (R 1 1  ) a (R 1 2) 
-f-

a 0 + - � (R 1 3) a r,; 1 a r,;2 3 

From equation (1 0. 1 44) we have 

2 

R 1 1  (f(r) - g (r) ) r,; 1 + g( r) = 2 r 

R 1 2  (f(r) - g(r)) 
r,; 1  r,;2 

= 2 r 

R 1 3  ( f (  r) - g (r) ) 
r,; 1 r,;3 -2-r 

0 
1 
0 � ) 

(1 0.  1 45) 

(1 0. 1 46) 

(1 0 . 1 47) 

(1 0. 1 48) 

(1 0. 1 49) 

( 1 0. 1 50) 

Sub stituting the e x p r e s sions for R 1 1 , R 1 2  and R 1 3  i n to equation 

(1 0. 1 47) , perfonning the differentiations and rearranging we get  

,; 1 [2 (f - g) + r (:�) ] = 0 (1 0. 1 5 1 )  



T hi s  relati on m ust be t rue for a ny � 1 t hus 

r of 
g = f + 2 ar 
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( 1 0. 1 52) 

Thi s  mea n s  t hat i n  hom oge ne ous i s ot ropi c t urb ule nce  t he c orrelati ons ca n 

be e x p re s s ed i n  t e rm s  at a si ngle functi on , say f( r) . 

relati o n  w a s fir st de ri ved b y  v on Ka rma n [3 2 ] .  

T he ab ove 

Ex p e rime ntal 

ve ri fi cati ons ha ve bee n p e r formed by a n umber of i nve stigat ors usi ng hot 

w i re a nem omet ry ( s e e  Cha pt e r Fl ow Mea s ureme nt s ). Fig . 10.2 1 s ho w s 

s uc h  a ve ri fi cati on ( from Hi nze [ 1  J) . We note from t he de fi niti on o f  

f ( r) a nd g ( r) ( Eq s .  10.14 1  a nd 10.142) , t hat t he c orrelati on functi on s  

w ould be c ome eq ual t o  unit y i f  t he s e p arati on r w ere red uc ed t o  zero . 

Si mila rly, f( r) a nd g (  r) w ould red uce t o  ze ro i f  t he s e pa rati on w e re 

la rge e no ug h  s o  t hat no c orrelati on oc c urred . Fig . 10 . 22 (a )  s how s f(r) 

a s  a functi on o f  p o siti on r [33 ] ,  W hile f( r) i s  al w ays p o siti ve g ( r) 

may b e c ome negati ve for c e rtai n val ue s o f  r b e c a u s e  a negati v e  

c orrelati on i s  e x p e cted bet w e e n t he vel ocitie s on o p p o site side s o f  a n  

eddy. 

T he tri ple vel ocit y c orrelati on for t w o  p oi nt s  A a nd B ca n b e  

de fi ned i n  ge ne ral t e n s orial form b y  

( 10 . 1 53 )  

T hi s  t e n s or ha s 27 c om p one nt s. It t urns out , be ca us e  o f  t he c onditi o n  
2 o f  i s ot ro p y ,  t hat t he only non-ze ro te rms a re uA uB, uA v B v B, uA w A w B' 

-
2
--

2 v A u B a nd w A u B. F rom t he s e fi ve te rm s  t he se c ond a nd t hi rd re p re s e nt 

t he same c on fig urat i on.  T he fourt h a nd fi ft h term s  al s o  re p re s e nt a n  

ide nti cal c on fig urati on.  T hus , t he t hre e di sti nct c om p one nt s  o f  t he 

t hird orde r t e n s or a re 
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K(r ) = T 1 1 , 1  = 

h( r )  = T 22 1 = ' 

g( r )  = T -2 1 , 1 -

Usin g the continuit y e quation it is p ossi ble to show that 

k = - 2h 

= - h - .!:. � g 2 ar 

(1 0 . 154 ) 

(1 0 . 1 55) 

( 1 0 .  1 56) 

(10.1 57) 

(1 0.1 58) 

This means that the tri ple correlation tensor for a homogen eous and 

isotropi c fi eld of tur bulen ce can be r e presented by a sin gle fun ction , 

sa y k or h .  Fi g .  10. 22 (b) shows the tri ple correlation k(r )  as a 

f un ction of p osition (a fter Kistler et a l  [33 ] ). 

To det ermin e th e or eti call y the statisti ca l p r o p erti es of 

t ur bu l e n ce , su ch as the t ur bu l e n ce intensit y and the corr elat i on 

fun ctions w e  must start from the Na vier -Stokes e quations whi ch ar e ( in 

t ensorial form) : 

(1 0 . 1 59) 
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Fig . 10 .2 1  Verification of relation between g( r) and f(r )  
( from Hinze [ 1 ])  
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6 

Fig . 10 .22 (a)  Double velocity correlation f( r) and (b) Triple velocity 
correlation k ( r) as functions of distance ( from reference 
[33 J )  
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In the absence o f  mean flow we can write the x component for the 

fluctuations at point A as 

I I I I 2 I 2 I 2 I 

auA auA I 
au A I 

auA 1 apA a uA a uA a uA 
at

+ UA + v A 3y + w A az:- = -- + v (-- + -- + -) ax p ax ax2 a/ az2 

( 1 0 .  160) 

To establish the correlation functions we must multi ply by u8 and then 

interchange the role of A and B .  For example the unsteady state term 

becomes 

I I 

' auA ' auB 
UB at + uA at

= 

Then , by t ime-averaging, we get 

a '2 at (u f(r ) ) 

The convective term 

w ill obv iously g ive rise to triple correlat ions . 

(10 . 161 ) 

The pressure term will disappear after multiplying by u8 and 
-,-,-

time-averag ing because pAuB = 0 due to isotropy. Von Karman and Howarth 

[34 ] showed that for homogeneous, isotropic turbulence the Navier-Stokes 

equations become 

a 1 2 '3 <-ah 4h 
at (u f)  + 2 u ar + r) ( 1 0 .  162 ) 

We note that we have just one equation but two unknowns f and h. Thus , 

i f  we are to determine the double correlation f we must introduce a 

relat ion connect ing it to the tri ple correlation h .  There lies the 
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funda mental d if fi culty in t he de velopment of  stat ist ical t heori es o f  

turbu len ce .  Sane progress , how e ver , has been made by suggesting 

p lausib l e  forms of  re lat ion bet w e en f(r) and h(r) . 

It has been found hel p f ul  to introdu ce t he Fourier trans form of  

equat ion (10.14 1). [For an introdu ction to Four ier trans form s e e  for 

e xa mp l e re feren ce [35 J ]. T his a p proa ch is t here fore cal l ed s pe ctral 

ana l ys is .  

form 

T he von Karman -Howart h equation can now b e  wr it ten in t he 

(10.1 63) 

w here F and W are conne ct ed to f(r) and h(r) res p e ct ivel y  b y  t he 

a p propriate relat ions w hich in vol ve t he Fourier trans forms [27 J .  K is 

t he wa ve nu mber w hich is related to t he wa vel engt h A and frequen cy f b y  

t he relat ion 

( 1 0. 1 64 )  

Eq uation ( 1 O.  1 63) is mu ch s im p l er t han t he orig inal von Karman -Howart h 

eq uat ion ( 10 . 1 62) . How e ver , w e  cannot proce ed an y furt her w it hout 

introdu c ing re lat ions bet w e en W and F .  Considerabl e  ad van ces ha ve b e en 

made in t his as p e ct by introdu cing Kolmogorof f' s ideas [30 , 36,3 7 J into 

t he s p e ctral formu lat ion. 

Kol mogoro f f  p ost u l at ed t hat at larg e  Re yn olds nu mbers t he 

turbulen ce f ie ld is l oca l l y  isotrop ic w het her t he large s cale mot ions 

are isotrop ic or not. T he large eddies break down into s maller edd ies 

due to in ertia forces . T hese in turn break down into st il l  s ma l l er 

edd ies and so on . T he mot ions of  t he very s ma l l  edd ies are govern ed by 

vis cous forces and are e ventual l y  dissi pat ed into heat. T he eddy 

brea kdown process can be si m p l y  visual ized by t he brea kdown of  drops o f  
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ink or milk that are put in water. Kolmogoroff ' s  postulates seem to be 

very near the truth and became the start ing po int for many modern 

theories. In these theories the small scale motion is assumed to be 

governed by the dissipation rate e: per unit mass 2 -3 
( m  s ) and the 

kinematic viscosity 2 -1) v ( m  s • With these two parameters one can 

construct characteristic length , time and velocity scales as follows : 

3 1 /4 
n 

= 
( .:£. ) 

E: 

1 /2 
e = ( �) 

E: 
V :  ( ve:) 1 /4 ( 1 0 .  1 65 ) 

We can get an estimate of e: by noting that the kinetic energy per unit 

mass is '2  proportional to u The energy supplied by the large eddies 

should be equal to the energy dissipated by the smallest eddies . Thus, 

we have 

du '2  '2  ' 3 u u 
E: ex - --

dt .e, ( 10. 166) 

u '  

where R., represents the size of the largest eddies and is of the same 

order of magnitude as the mix ing length of Prandtl' s model (Sec. 

10 . 5 . 1 ) .  

Let us now use equation ( 10. 165 ) and (10 . 166) to get an estimate of 

the size of the smallest eddy in a wind tunnel of 1m diameter and 100 

m/ s velocity. 
I 

The largest fluctuations will be of the order of u = 

0 . 10 x 100m/s = 10 m/s . The length R., w ill be at most .e, = 1m. Thus, e: "' 

10 3 m2 !s 3 and since v "' 10 -5 m2 /s we get n "' 0 . 3x10-4m = 0 .0 3 mm. We 

note that the smallest eddy is much larger than the mean free path of 

air molecules which is of the order at mm. If the same 
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cal cu lations w er e  repeat ed for t he atmos pheri c bou ndary layer i � 1 km = 

10 3m a nd a t ypi cal u' = 1 m / s w e  s hould g et n = 1 mm. T he freq uency of 

t he flu ctuations i s  i nv er s ely proportional to t he size of eddi e s . Mo st 

of t he t urbul ent energy i s  a s sociat ed wit h t he larg e eddi es , i.e. ,  t hos e 

wit h l ow er freq uenci e s , a s  s how n i n  Fig. 10. 23 . Detail ed cal culations 

on eddy si zes a nd ot her eddy chara ct eri sti c s  ca n b e  fou nd i n  Davi es' 

book [4 J. 

D e s pit e t he larg e n umb er of t heoreti ca l  w ork done on t he 

stati sti cal t heory of t urbu l ence w e  are still far from havi ng a fu l l y  

predi ctiv e t heory. Perha ps ,  t he most sig nifi ca nt adva nces i n  recent 

years w ere mad e on t he s o-cal l ed clos ure probl em. By t hi s  it i s  m ea nt 

t he d ev el opm ent of a pproximations b et w een t he various m ea s ures of 

t urb u l ence so t hat w e  are l eft wit h t he sam e n umb er of u nk now n s  a s  t he 

n umb er of conservation equations. Krai chna n  [ 38 ], [3 9 ]  (s ee al so Or szag 

[ 2 9 ] )  ha s la yed t he fou ndations  i n  t hi s  dir ection , how ev er ,  t he 

mat hemati ca l com pl exiti e s  a s s ociat ed wit h t he s e d ev elopm ent s are 

ov er w helmi ng . S ane sim pl er a nd v ery i nt eresti ng m et hod s of cal culation 

a nd experim ental data for turb ul ent flow s by various aut hors hav e  b een 

recently publi s hed i n  a si ngl e vol ume [ 4 1 ]. 



10/ 70 

z 
Q 
...... 
C) 
2 
::::> LL 

10 1 ---,.-----------1 

� 
0:: 164 
w 
z w 

r65 

166 '------"-------'-.lol-----U 

10 10
2 

10
3 

FREQUENCY (Hz or s- 1 ) 

Fig. 10 .2 3 Measured energy spectrum function F(n) where n is the 
frequency of the fluctuations n. F( n)dn represents the 
fraction of the root mean square of the fluctuations that 
fall within frequency range dn. The dotted line summarizes 
the results for a higher velocity. (From Patterson and 
Zakin [40] as quoted by Davies [4 ] ) . 
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CHAPTER 1 1  

INVISCID INCOMPRESSIBLE FLOW 

1 1 . 1  INTRODUCTION 

Th e  difficulties in solv ing the complete Navier-Stokes equations 

arise mainly from the non-1 inear inertia force term pV • VV and from the 
2- 1 -

viscous force term µll V + 3 µV.( v •V) . Even for incompr essible flow 

( v•V = 0)  the rema ining viscous force term µ v2v is  still the source o f  

great complications . In Chapter 8 ,  we examined a spec ial class of 

inertialess flows ( Re « 1 ) . In Chapters 9 and 1 0  we examined several 

types of high speed flow ( Re » 1 )  and managed to simpl i fy the viscous 

force tenn by invo king Pr and t l '  s boundary layer theory.  In this Chapter 

we introduce the assumption of inviscid flow ( µ = 0) , so that we may. 
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e l i m inate the v is cous force t e rm com p l et e l y  from the Na v ie r-St okes 

e q uat ions . 

For su ch an inv is c id fl ow field the mot ion is gove rn ed by the Eu l e r 

equat ion (Se c .  6 . 5 )  wh i ch is 

av 
p (

at 
+ V • 'i/V ) = -'i/p + pg ( 1 1 . 1 ) 

Obv ious l y ,  the equat ion of cons e rvat ion of momentum is now g reatly 

s im p l i fied and is more amena ble to fu rthe r  mathemat ical man i pulat ions 

wh i ch l ead to solut i ons . How eve r ,  g reat ca re must be ta ken in 

int e r p ret ing the va rious solut i ons , be caus e  natu re does not p rov ide us 

w ith fl u ids that a re inv is cid. This class of flows is , thus , cal l ed 

ideal. W e  not ed in Cha pt e r 9 that v is cous e ffe cts a re con fined to a 

th in fl u id laye r ad ja cent to sol id bounda ries , outs ide th is laye r the 

flow  field can be cons ide red inv is c id (s ee F ig. 9.1 ) .  Thus , inv is cid 

fl ow solut i ons can a p p roximate real  fl ow fields in reg ions devoid of 

shea r st ress es , that is , outs ide w all bounda ry la ye rs , jets , m ix ing 

zones and wa kes. 

In the a bs e n ce o f  v is cos it y the fl ow is fr ict i on l ess. No 

d iss ipat ion m e chan ism is p oss i ble  and the force fi elds a re conse rvat ive , 

thus , de r iva ble from a force pot ent ial . The work done by a cons e rvat iv e 

force is a fun ct ion of p os it ion and is inde p endent of the path follow ed 

B 
W = J F •ds = �

A 
- �B (1 1 . 2) 

A 

w he re � is a scala r fun ct ion call ed the force p ot ent ial . For a closed 

path the w or k  is ze ro 

W : J F •ct s = � A - �B = 0 (1 1.3) 



We can now show that 

F = 'H 

because 
- H a 4>  d a �  W :  f (V�)•(ds) = f (

a°x 
dx + ay y + � z ) = 

which also yields for a closed path 

f(V�)• (ds) = 0 
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(11. 4) 

Jd� = �A 
- �B (1 1 . 5) 

(11.6) 

In a flow field a fluid element can be rotated only under the 

influence of frictional (i. e. viscous) forces. In an inviscid flow 

field such rotations are impossible and the flow is termed irrotational , 

which means that the angular velocity or vorticity t must be zero 

· ·; -: 2; = V x V = 0 (1 1 .  7) 

T he velocity field is , thus , derivable fran a velocity potential 

V = V� (1 1. 8) 

since 

� .: 2 w  = V x V = V x V � = 0 (1 1 .  9) 

This flow is usually called potential. The velocity potential is 

connected to the velocity components by the relations : 

In rectangular coordinates x , y , z  

V 
X 

V 

V 

= a �  
a x  

a �  = -
aY  

= -
a z  

(11 .  10) 

(11 . 11 )  

(1 1 .  12) 
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In cylindrical coordinates r . e . z 

and in 

vr 

V 

e 

V 

sph erical 

vr 

V 
$ 

a� = -
ar 

1 a� = r ae 

= i!. 

= 

= 

= 

az 

coo rd in ates 

a� 
ar 

1 a� 
r ae 

1 a� 
rsine a(j> 

r .  e • $ 

If the fluid is incompressible , the continuity equation yields 

v•v = o 

(1 1. 13 )  

(1 1. 14 )  

(1 1. 15) 

(1 1. 16 )  

(1 1. 17 )  

(1 1. 18 )  

(1 1. 19 ) 

and using e quation (1 1. 8 )  we get 
2 v · v� = v � = o c 1 1. 20 )  

which is the w ell known Laplace e quation. This equation may be solved 

· to give the · velocity potential � and the velocity field can be  

determined from e quation ( 1 1. 8 )  • 

It is interesting to note that the equation of motion is not 

involved in determining the velocity field in an inviscid incompressible 

fluid. Th e velocity field is determined entirely from the kinematical 

equation (1 1.2 0). The dynamical e quation (the Euler form of the 

conservation of momentum . Eq. 1 1. 1 )  is needed only in the determination 

of the pressure from the velocity field . 
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Milne-Thomson ' s  book [ 1 ] is the most authoritative reference on the 

subj ect of inviscid flow . while Lamb ' s  [ 2 ]  and Prandtl and Tietj ens '  [3 ] 

classics contain a weal th of information. For introductory up-to-date 

treatments the reader is also referred to Streeter and Wylie [4] . Currie 

[5] and Eskinazi [6 ]. 

1 1 . 2  TWO-DIMENSIONAL POTENTIAL FLOW 

The velocity potential � satisfies the Laplace equation . which for 

two-dimensional flow becomes 

( 1 1 . 2 1 )  

The velocity field can be obtained from � by making use of the relation 

..... · . ... ...., a� a� ...., V = V i + V 
Y J = - i  + aY J X ax 

where 

a� 
V = a x 

a �  
V

y ay 

In Chapter 3 the stream function was defined by the equation 

a'¥ 
V = 

X ay 

V = a, 
ax 

Using the irrotationality condition (Eq. 1 1 . 7) in two dimensions 

av 

ay 
av 

- _J__ = 0 
a x  

( 1 1 .  22) 

( 1 1 . 23) 

( 1 1 . 24) 

( 1 1 .  25) 
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we get .the Laplace equation 

2 2 
a 'l' a 'l' 
-2- + � =0 
ax ay 

( 1 1 .  2 6 )  

Similarly in plane polar coordinates the stream function 'l'(r,e)  is 

defined by  

V : 
r r ae 

a'l' 
ar 

The condition of irrotationality gives 

= 1 a 
r a r (- r l!) ar 

.l � c.l !!.) = 
r ae r ae 

2 - v 'l' Cr , e ) 

which is the Laplace equation in plane polar coordinates 

1 a a'l' 1 a 2'!' ( r -) + -2 -2 = 0 r ar ar r ae 

( 1 1 . 27 ) 

(1 1 . 28 )  

( 1 1 .  29 ) 

The str eam function for axisymmetric flow 'l'(r , z) does not satisfy 

the Laplace equation. For the three dimensional flow the stream 

function cannot be defined in the conventional sense. 

Comparing equations (1 1 . 23 )  and (1 1 . 24), we find that 

a� 
ax 

a'l' = -
aY  

and = ( 1 1 .  30 ) 

These are the so-called Cauchy-Riemann equations. From them if either 

the velocity potential or the stream function is known the other may be 

computed . The corresponding expressions in plane polar coordinates can 

be obtained by direct transformation. These are 



a41 1 a'¥ 
V : - : 
r ar r ae  

a'¥ 
a r  
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( 1 1.31 ) 

We will now show that in two dimensional potential flow the streamlines 

and the potential lines are orthogonal. A streamline is defined by 1jl = 

const and a potential line b y  41 = const. Thus , we have 

d'f = 0 = :: dx + :; dy ( 1 1. 32 ) 

a41 a41 
dlfi = 0 = ax dx + ay dy C 1 1. 33 ) 

From equation (1 1. 32 )  

V a'¥ / ax 
= - HI aY = + J. 

and from equation ( 1 1. 3 3 )  

a 41/ ax 
= - a41/ aY = 

Thus 

V 
X 

V 
y 

( 1 1. 34) 

C 11. 35 ) 

(1 1. 36 ) 

Geometricall y ,  this means that the streamlines and the potential lines 

are orthogonal (ever y where perpendicu lar to each othe r ) .  The 

streamlines '¥ = '¥ . and the potential lines 41 = 41. where '¥ . and 41 .  have 
l l l l 

equal increments between adjacent lines form an orthogonal net work as 

shown in Fi g • 11  • 1 • 

While the velocity profile can be determined entirely from the 

above mentioned kinematic relations we need the equation of conservation 

of momentum for the determination of pressure. Euler' s equation for 

steady flow is 

P V• vv = - Vp + pg C 1 1. 37) 
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/ Streamlines 

I/ 

Fig.  1 1 . 1 :  An orthogonal flow net for two-dimensional flow . 
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Defining an equivalent pressure P = p + pgh , where h is pointing in a 
ah direction opposite to the direction of gravity ' i.e. gx = - g ax' gy = 

ah -g a y '  g z = ah - g - we have a z '  

pV• vv + VP =  0 (1 1. 38 )  

Using the identity (see Appendix A ) 

we find that 

v <½ v2
) = v• vv + v x ( v  x V) 

1 -2 - -
p V ( 2 V ) - p [V X ( V X V ) ] + VP = 0 

( 1 1. 39 ) 

( 1 1. 40 )  

For an irrotational flow field of  an incompressible fluid V x V = 0 and 

p = const. Thus , 

p + V (-) = 0 
p 

which integrates to 

.l v2 

2 
p + - = const 
p 

or in terms of the velocity components 

and 

l ( v2 + vy
2 ) + P = const 2 X p 

1 <i 2 X + v 2 ) + .E. + gh = y p 
const 

(1 1. 4 1 )  

( 1 1. 42 ) 

(1 1. 43) 

( 1 1. 44 ) 

Equations (1 1.42 ), (1 1 . 43) and (1 1.44) are different forms of the 

Bernoulli equation which is named after the Swiss mathematician Daniel 

Bernoulli (1700 -82 ). 

We now summarize the equations necessary for the description of a 

two-dimensional potential flow field : 
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and 

v2� 

V 
X 

:: 0 

a� - - -- -
ax 

a'!' 
ay 

1 (v 2 v�) 2 + 
X 

(1 1 .45) 

a� a'!' 
V :: - :: y ay ax ( 1 1. 46) 

p + - const (1 1 .47) 
p 

A question may now be asked regarding the reasons for going through 

the definitions of � and '!' rather than proceeding directly to the 

inviscid flow solution of the original equations, in terms of the 

primitive variables v , v and p ,  which are 
X y 

irrotanionalit y ( 'v x V = 0 )  

continuit y ( v • V  = 0) 

momentum 

av 
X 

av 
- _x 

ay ax 

av av 
X _x + :: 

ax ay 

1 2 
- ( V + 
2 X 

v2) y 

0 (1 1 .48 ) 

0 (1 1.49 ) 

p 0 + ( 1 1. 50) 
p 

We note that with the introduction of the velocity potential � the 

velocity field is determined by solving one differential equation 

(Laplace) rather than the two partial differential equations (1 1.48) and 

(1 1 .49 ). Th ere are centuries of mathematics which apply to the solution 

of the Laplace equation. Even with modern numerical techniques the 

Laplace equation route is generally simpler [see Chapter 25]. 

There are usually three distinct types of boundary value problems 

which involve the potential flow equations in two-dimensions: 

TYPE I: Given the potential �. A velocity potential � is given 

throughout a flow field. '!' ,  V and p are to be determined. 

TYPE I I: Given the control volume boundary conditions. The geometrical 

boundaries and distributions of V and p at one boundary are given. 



11 / 1 1 

� .  � .  V and p are required throughout the control volume . 

TYPE I I I :  G iven the pressure or velocity distribution for an unknown 

body contour. The desired p or V on an unknown body contour is given 

and the shape of the body (e.g. an airfoil) is to be determined. 

The simplest class of potential flow problems are those of type I .  

The most complicated are those of type II I .  We will give in the next 

five sections some examples of type I and type II. 

For sane problems we make use of the principle of superposition 

which applies to linear equations. According to this principle if �1 
and �2 are two different solutions of the Laplace equation (which is 

linear ) then their sum �3 = �1 + �2 is also a solution. However , the 

corresponding pressures cannot be added because the Bernoulli equation 

is non-linear. 

It is important to note that since there is no flow across the 

streaml ines any streamline C t = const) can represent a solid boundary. 

11. 3 SIMPLE POTENTIAL FLOWS 

In this section we consider several simple solutions of the Laplace 

equation . 

Ca)  Uniform Flow 

The simple po tential function � = Ax , where A = const , obviously 

satisfies the Laplace equation . Thus , the velocity components for the 

potential flow field are 

V 
X 

= � = A ax (1 1 . 51) 

( 1 1. 52) 
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The streamlines can be determined from 

A a'i'  = -
aY 

( 1 1 . 53 )  

0 = 
ax ( 1 1 . 54 ) 

From equations ( 1 1 . 53 )  and ( 1 1 . 5 4 )  

'i' = Ay + C ( 1 1 . 5 5 )  

where C is an arbitrary constant . By setting this constant equal t o  

zero , we have 

'¥ = Ay ( 1 1 . 56 ) 

Thus , the streamlines are parallel to the x-ax i s  and the potential lines 

are par allel to the y-ax is as shown in Fig . 1 1 .  2 .  

constant and equal to A ( uni form flow) . 

The velocity i s  

In polar coord inates with the constant velocity taken along the 

polar z-ax is , we have 

Thus 

and 

vr 
= A cose and ve = -A sine 

V r 
= a�  

a r  A cose  

� = A rcose + C ( e ) 

V 
e 

1 a� = - - = - A sin e r a e  

� = A r c o  se + C ( r )  

( 1 1 .  57 ) 

( 1 1 .  58 )  

( 1 1 .  59 ) 

( 1 1 . 60 ) 

( 1 1 . 6 1 )  

Conse quently ,  C i s  a constant , which i s  taken equal to zero to yield 

� = Arcose 

'¥ = Ar sine 

( 1 1 . 62 ) 

( 1 1 . 6 3 )  



y 

J ' 
Potential l ines 

/�\ cl> increasing 
ream!ines 

i 't' in creasing 

X 

Fi g .  1 1 .  2 :  St rea mlin es and potential lin es fo r  uni f orm fl ow in the 

x di re cti on • 

Fig .  1 1 . 3: 0 Sta gnati on fl ow on a plate or 90 c orne r  fl ow. 

1 1/1  3 
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Th e p lot of course is e xa ctly the sam e  as Fig .  1 1. 2. 

( b )  Stagnation Flow 
2 2 Th e fun ction ¢> = 1 /2 A( x - y ) satis fi es the La pla ce eq uat ion and 

the re fore re p res ents the p ot entia l of s ome flow field . 

com p on ents a re 

a t  - Ax vx = ax 

at V = Ay 
Y aY  - -

Th e st ream fun ct ion '¥ can be found from Equat ions ( 1 1 .  24 ) 

'¥ = f V d y  = Axy + C( x )  

'¥ = - f V d y  = Axy + C(y) y 

The re fore C is a constant , wh ich is tak en eq ual to ze ro t o  

'¥ = Axy 

The v elocit y 

g iv e  

( 1 1 . 64 ) 

( 1 1 . 65 )  

(1 1 . 6 6 ) 

(1 1 . 67 )  

( 1 1. 68 )  

The st reamlines a re the re fore hyp e rbolas and can be eas ily p lott ed as 

show n in F ig .  1 1  • 3 .  We  n ote that the velocit y  is e v e rywh e re finite 

exce pt at x = y = 0 ,  the stagnation p o int . Th is flow net de p icts flow 

in a corn e r or sta gnation flow on a plan e s ur fa ce . Obviously , a real 

(v is cous ) fl uid cannot follow th is flow patt e rn in the i ll111ed iat e  

v ic inity of the s ur fa ces involved be ca us e  even at the s ur fa ce itsel f the 

v elocity is ass t.nned to be fin it e . , The inv is cid flow ass um pt ion allows 

sli p at the wall which is un real ist i c .  It should be po inted out , 

ho w ev e r ,  that the a bove p ot ent ial flow s ol ut ions a re us e ful for 

stagnat ion flow reg ions outs id e the bounda ry laye r formed n ea r  the 

bounda r ies . 
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We consider a thin pipe discharging a fluid at a uniform rate in 

the space between two parallel disks as shown in Fig. 11. 4. Far from 

the origin the flow is expected to be purely r adial. The amount of 

fluid crossing the cylindrical surface of width b and radius r ,  should 

be 

Thus 

Q = 2nrb v = const r 

Q /b 1 

The velocity potential can be obtained from 

� = Q /b ln r + const 2n 

( 1 1 .  6 9 )  

( 1 1. 70 ) 

(1 1. 71 )  

( 1 1. 72 ) 

This function satisfies the Laplace equation because there is no flow in 

e or z directions and 

1 a (r �) r ar ar 
= 1 a (r Q /b l) = o 

r ar 2n r 

The stream function is obtained from 

V r 
1 a q, 

= - - = 
r a e  

Q/b 'i' = - e + const 2n 

( 1 1  • 73) 

(1 1. 74 ) 

( 1 1. 75 ) 

It can be verified by direct substitution that the Laplace equation is 

satisfied by  the stream function. Lines of constant � are circles 

distributed logarithmical ly with respect to radius. Lines of constant 'i' 

(streamlines)  are str aight l ines t hrough t he origin as shown in 
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Fig .  1 1 . 5. 

If Q/b is positive we have a source , if Q/b is negative we have a 

sink .  For both sources and sinks the continuity equation is satisfied 

everywhere except at the origin r = 0 (singularity) . Since only 

differences in potential and stream functions are of significance the 

constants are usually set equal to zero . 

In rectangular coordinates the velocity potential � and the stream 

function o/ transform to 

� = Q/b ln ( 2 2 ) 1/2 and 2 ,r  X + y 

(d) Line Vortex 

o/ = Q/b tan -1 Y.. 2 ,r  X (1 1 .76 ) 

Si nee both the velocity potential � and the stream function o/ 

satisfy the Laplace equation in the previous example , their roles may be 

interchanged to give another , yet unspecified , flow field . 

taking 

� = K 1e and o/ = K2 ln r 

where K 1 and K2 are constants, we have 

and 

1 a �  
V : : 
e r ae 

a' 

ar 
= r 

K 
r 

Thus , by  

( 1 1. 77 ) 

(1 1 . 78)  

( 1 1. 79) 

This is no longer a source or sink flow field . The flow is seen to be 

purely circulating with tangential velocity being proportional to 1/r as 

shown in Fi g .  1 1 .  6 .  Again, a singularity appears at the origin r = 0 

where the velocity v becomes infinite . e 
This flow is irrotational everywhere except at the origin , because 
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Fig . 11. 4: A simple demonstratio n o f  h o w  a l ine sour ce { two 
dimensional) can be approximated . The fluid flows radially 
in the gap between the two parallel disks . 

a1b e 
<P= - nr 2 7T  

Fig. 1 1. 5 :  Streaml ines and potential lines for a line source . 
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IT\_Qlb 1T 
�-2-,,- 2 

cp=Q/b 1T 
2 -rr  4 

X 
cp= O 

Fig .  1 1 . 6 : Streamlines and potential lines for a line vortex . 



- - 1 'i/ X V = k (r 
a (rv ) e 
a r  

This flow is called a vortex . 
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for r > 0 ( 1 1 .  80 ) 

Circulation of the velocity field V is defined as the line integral 

around a closed path 

r = / V •ds (1 1.81) 

From Stokes ' theorem (see Appendix 

is related to the vorticity 

) it is seen that the circulation 

r = J v • d s = ff < v x v) · dA < 1 1. 82 ) 
C A 

where surface A is bounded by contour C. For a potential flow field the 

circulation is seen to be zero around any closed path . However , in the 

present case if we take a path enclosing the origin the circulation has 

a finite value: 

21T 
r = J V • ds = J v0 rde = J 

C C o 

K - rd e = 2,rK r ( 1 1. 83) 

Thus the constant K ,  which is called the vortex strength is given in 

terms of r by 

r K = 2 1T 

The tangential velocity is 

V 
e 

= r 

2 1T r 

The velocity potential 

r 41 = - e 21T 

( 1 1  • 84) 

( 1 1 .  85) 

( 1 1. 8 6) 
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The str eam fun cti on 

r '¥ = - '2"; ln r ( 1 1 .  87) 

A com pr e hensi ve treatment of v orte x m oti on can be f ou nd in Eskinazi '  s 

b oo k  [ 6  J .  

1 1 , 4  COMBINAT I ON OF S I MPLE F LO W S  

It w as n oted in Se c .  1 1 . 2  t hat be caus e of t he linearity of t he 

La pla ce equati on , s oluti ons can be added t o  f orm a ne w s oluti on 

(prin ci ple of su p er p ositi on) . Thus , any lin ear combinati on of vel ocity 

p otentials or stream fun cti ons of gi ven fl ow  fie lds will pr odu ce a ne w 

p otential fl ow  fi eld . Her e  ar e s ome e xam p l es : 

(a) T w o  S our ces of Equal Str en gth 

W e  consider t w o s our ces of e qual str engt h se p arated by a distan ce 

2a . The vel ocity p otential and str eam fun cti on ar e 

'¥ = Q /b C e + e 2) 2 1r 1 

or in r e ctangular coordinates 

and 

1 Q /b 2 2 2 2 
� = 2 21T ln [y + ( a -x) J [y + Ca +x) J 

Q /b -1 ::L_ -1 y '¥ = - (tan + tan --) = 21r a - x a+x 
Q /b - 1  
-- tan 21r 2 X 

2yx 
2 - y 

b e cause tan c e 1 
+ 02) = ( tan e , + tan 02) / ( 1 - tan e , 

2 - a 

tan 

p otential lines and str eamlin es ar e s how n in Fi g . 1 1  • 7 ,  

( 1 1  • 88 ) 

( 1 1 .89) 

( 1 1  • 90 ) 

02) • T he 

This fl ow 

p attern may al so  be considered t o  re pres ent a fl ow  fie ld near a w a ll 

Ci .e . s our ce an d mirr or image) 



y 

P(x.y) 

� ' - _r ' ! '.*: 1 • X 

y 

• I I I I I� I ,. )I( • I �l l I I I . ,. x 

Potential lines 

Fig. 1 1 . 7: Streamlines and potential lines for a pair 0£ sources of 
equal strength . � � ....... 

I\) 
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(b) Source and Sink of E qual Strength 

Th e streamlines of the flow f ield formed by the combination of a 

source and an equal sink are shown in Fig. 1 1 .  8. 

function is 

Here, the stream 

Q/b Q/b 
f = 2n 0 1  -

2n 02 
= 

or in rectangular coord inates 

Q/b - 1 -v f = (tan -"-- - 1  V tan -"--) = Q/b tan -1 
2n 

2ya 

because 

2n a - x 

The velocity potential is 

� Q/b ln r - Q/b 1 
'It 

= 21r 1 2rr n r 2 

= 1 Q/b ln (a+x / + y2 

2 � 2 2 (a -x) + y 

( c )  D oublet 

a+x 2 2 2 X + y - a 

1 Q/b (a- x ) 2 + / 
= - -- ln ....:...:;__..:..:...:__._,L_ 

2 2 n ( a+ x )  2 + y 2 

(1 1.91 ) 

(1 1.92 ) 

(1 1 .93 )  

As the distance 2a in a source -sink pair becomes smaller the flow 

pattern resembles more and more a family of circles tangent to the 

origin . In the limit 2a + 0 the streamlines are circles tangent to the 

x axis and the potential 1 ines are circles tangent to the y -axis at the 

origin as shown in Fig. 1 1 .9. 

doublet . 

The stream function is 

f lim (Q/b tan - 1  2ya 
a+O 2n x2+y 2-a 

Since tana - a 
a+O 

This type of flow field is called a 

) 
Q/b 2ay Q/b 2a sine = 

2 2 = 2 2n 2 n 2n r X +y 
( 1 1. 94 ) 



1 1/2 3 

Fig ._ 1 1 . 8: Str eamlines and potential lines for a source-sink pair . 

)( 

Fig. 1 1 . 9 :  Streamlines and potential lines for a doublet . 
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The velocity potential can be determined with the help o f  a ser ies 

ex pansion for l n  [ ( 1 +x ) / ( 1 -x ) J  = 2 x 3 + O ( x  ) .  

1 Q /b 2 2 Q /b 4> lim[- ln C a+ x )  + y ] = - -- = 
a...0 

2 2,r 2 2 2 ,r  ( a-x )  + y 

( d )  U n i form F low and a Source-Sink P air 

2ax 

x2+y2 

Thus 

Q/b 2a cos0 C 1 1 .  95 ) = 
2 1T r 

We consider a source and a sink o f  e qual strength and a uniform 

stream par allel to the l ine joining the source and sink . The velocity 

potential i s  

4> = V rcos0 + Q /b l n  r -
2 ,r 1 00 

= V 
00 

Q/b r 1 rco s0 + ln 
2 ir r2 

2 2 1 Q/b ln C a+ x )  + y = V X + ______ ...,.,.. 
00 2 � 2 2 

(a-x) + y 

The stream function is 

If V rsin0 Q/b 0 1 
Q /b 

9 2 
= + 

2,r 

-
2,r 00 

V r sin0 
Q/b c 9 1 0

2
) = + --

2 ,r 

V Q/b (tan -1 _J_ _ tan -1 = 
00 

y + --2 ,r x+a 

V Q /b tan - 1  -2ya = 
00 

y + --
2 ,r 2 2 2 + y - a 

( 1 1 .  96 ) 

J.._) x-a 

( 1 1 .  97 ) 

because tan ( 0 1 - 0
2

) = ( tan 0 1 
- tan 02 ) / ( 1  + tan 0 1 tan 0

2
) .  Th e 

streaml ines are shown in Fig. 1 1 . 1 0 . The ov al streamline can be 

considered an oval shaped body called the Rankine oval . By varying the 

d i stances between the hypothetical so urces and sinks and varying the 



y 

p 

'{/= const.� 

V
oo 

Fig .  1 1 . 10: Streamlines for flow around a Rankine oval . 

X 

...... 
...... ' 
N 
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strengths Q/b more complicated body shapes can be generated in order to 

approx imate the flow around ships , air foils , br idge piers , etc . 

11 . 5  POTENTIAL FLOW AROUND A CYLINDER 

As the spac ing 2 a in the uniform stream, s ource and s ink 

combination (Sec. 1 1. 4 ( d ) )  becomes smaller the Rankine oval looks more 

and more like a circle . In the l im it 2a + 0 ,  this is equivalent to a 

uniform stream plus a doublet . Thus , we have 

� = V Q /b (2a )  case r cose + --
2,r r ( 1 1 .  98 ) 

The pl us sign is needed rather than the minus given in Sec. 11 . 4 (c) , 

because the source is located on the negative x-axis ( compare Figs . 11 .  8 

and 1 1. 10 ) 

'l:' = V 
00 

Q /b s ine r sine - (2a) --
� r 

( 1 1 .  99 ) 

Again , the sign is opposite to that given in Sec .  11. 4 ( c) for 'l:' 

( doublet) because the source is on the negative axis. In order for the 

cylinder surface of rad ius R to be a streamline 

'¼' = 0 and V 
00 

R2 = Q�� ( 2a )  (1 1 .  100 ) 

Thus , the velocity potential and the stream function for uniform flow 

around a cylinder of rad ius R are 

R2 
� = V ( r + -) cos e oo r 

'l:' = V 
00 

R2 

( r  - -) sine r 

Using equation ( 1 1 . 31 )  we obtain the velocity components 

( 1 1. 10 1 )  

( 1 1. 10 2 ) 
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V (1 R 2 

vr = - 2) cose 
0) 

(1 1. 103) 
r 

V (1 R2 

Ve = + 2) sine 
0) 

(1 1. 104) 
r 

At the cylinder sur face r = R 

V = 0 and Ve 
= - 2 V sine 

r 0) 
C 1 1. 105) 

Using the Ber noulli e quation C 1 1. 44) without the grav itational term,  we 

have 

p 
00 + 2 p V: = p 

s + ½ p (- 2 V 
00 

Sine ) 2 C 1 1  • 106 ) 

or 

C 1 . 1 07) 

where p i s  the sur face pressur e  and p the free stream pressure. 
s 0) 

The streaml i nes for potent i al flow around a cylinder are shown in 

Fig. 1 1. 1 1  and the pressure distribution in Fig. 1 1. 1 2. The deviation 

from the experimental results i s  due to boundar y layer separation (see 

Chapter 1 2). Integrating the horizontal pressure force components for a 

cyli nder o f  length W (perpendicular to the plane o f  the paper in Fig. 

1 1 . 1 1 ), we fin d  the surprising result that the drag force is zero : 

2rr 
F = - W J C p  - p ) R cose de = O  

p 
O 

s 0) 
(1 1. 108) 

This is known as d'Alembert ' s  paradox , a fter J.R. d ' Al embert who 

concluded in 1 75 2 that an inviscid incompress ible fluid ex erts no drag 

on a body of any shape immersed in it , in contradiction with pr actical 

experience. This contr adiction cast doubt to the i nv i scid flow theor y 

and impeded greatly the progress o f  hydrodynamics dur ing the eighteen 
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· p cosedS 

( a )  

<P =  const. 

'¥=canst. 

z 

( b )  

Fi g .  1 1 .  1 1 :  ( a) Velocity components and pressure force components for 
flow around a cylinder . 

( b) Str eamlines and potential lines for flow around a 
cyl inder . S d enotes stagnation points . 
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, 
Pot��tial flow 

o-1--\.------+-�- e 
90° 180° 

' Experiment 

Fig .  1 1. 1 2 : Sur fa ce pr essur e varia tion for flow around a cylinder. 
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and nineteen centur ies . The par adox ical results were explained after 

the introduction of Prand tl ' s  boundary layer theory in 1 90 4 .  

1 1 . 6  POTENTIAL FLOW AROUND A CYLINDER WITH CIRCULATION 

If we superimpose a potential vortex at the doublet center of the 

pr ev ious problem , we have the velocity potential and stream function at 

a flow field composed of a uni form stream plus a doublet plus a vortex : 

4) V ( r + R2 r 
-) cose + - e  r 2n 

( 1 1 . 1 0 9 )  

V C r  - R2 
r 

'I' = -) sine -
2n ln r 

CX) r ( 1 1 . 1 1 0 )  

The flow field i s  phys ically real i zed by a rotating cylinder in a 

uni form stream . 

Th e velocity components are obtained with the help o f  eqw=1tions 

( 1 1 . 31 )  

V ( 1 n 2 

vr = - 2) cose 
r 

- V  ( 1 R2 r 1 
Ve 

= + -) sine + 
r2 2n r 

At the cylind er surface r = R 

V r = 0 and r 
00 

sine + 
2nR v = - 2 V e 

( 1 1 , 1 1 1 )  

( 1 1 , 1 1 2 ) 

( 1 1 , 1 1 3 )  

The streaml ines are shown in Fig.  1 1 . 1 3  for d i fferent r /4nRV v alues . 
CX) 

Th e pres sur e d istr ibution at the surface p i s  obtained from the s 

Bernoulli e quation ( 1 1 . 44 ) , without the grav i tational term 

1 
v2 p(X) + 2 P co = 

1 ( 2 V . _r_) 2 

Ps + 2 P -
oo 

s ine + 2nR 
( 1 1 , 1 1 4 )  
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v(J:) 

(c) r/41rRV(J:)>I  

Fi g .  1 1.1 3 :  Stre amli nes f or flow arou nd a cyli nde r  wi th ci rcul ation for 
di f fere nt v al ues of the qu anti ty r /411'RV a,• , S de notes 
s tagnation poi nts . 
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or 

(1 1 . 1 1 5) 

Again the horizontal pressure force ( drag) is  found to be e qual to zero 

from 

2 ,r 

f 
0 

( p  - p )  Rcose d e = o 
s 00 

( 1 1 . 1 16) 

The vertical pr essure force i s  called l i ft and i s  calculated from 

2 ,r 

FL = - W J 
0 

(p - p )  Rsine  de  
S 00 

(1 1 . 1 17) 

We note that onl y the third term in the parenthesis o f  equation (1 1 .  1 1 5) 

g ives a non-zero integral : 

1 v2 4 r  FL = - 2 P 00 2,rRV 
00 

WR 
2 ,r 

f 
0 

. 2 d s in e e = 

or the l i ft per unit c yl inder length is 

- p V r 

-p V 
00 

rW ( 1 1 . 1 1 8) 

( 1 1. 1 1 9) 

The minus sign is included because r po sitive i s  in the counter

clockwise d irection and the l i ft force should be downwards. Actually i t  

is  easier to determine the d ir ection o f  the l ift force o n  a rotating 

c yl inder by noting that Berno ull i ' s  e quation states that the min imum 

pr essure is v.here the velocity i s  maximum. Th is location i s  obviously 

on the v er t ical ax is of Fig. 1 1. 1 3 where the v elocity i s  (V +V f ) .  
00 sur ace 

The ex istence of such a transverse force is known as the Magnus effect 

a fter the n in e t e enth c en tury German ph y s i c i st H . G .  Magn u s .  The 

pec uliar l y  curv ed traj ectory of a rotating baseball , gol f ,  tenn is or 
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soccer ball etc. is due to this effect. In the 192 0 's rotor ships were 

designed and built in Germany with large vertical cylinders on the deck 

[7 ]. The rotating cylinders were replacing the sails, These were able 

to cross the Atlantic ocean but practical problems relating to  

maneuverability, speed and other mechanical complications made them 

uneconomical. A detailed account of the investigations on the Magnus 

effect was presented by Swanson [8]. 

Equation 11, 119 is known as the Kutta-Joukowski theorem, after the 

German Wilhelm Kutta and the Russian Nicolai Joukowski, who showed 

independently that for two-dimensional flow around a body the lift force 

per unit length is equal to -p V r. 
C0 

11,7 POTENTIAL FLOW AROUND A SPHE RE 

Potential flow around a sphere is an ax isymmetric flow problem and 

must be examined in spherical coordinates with qi-s ymmetry. The velocity 

potential is found to be [4,6]: 

V R3 
4> = V rcose + --- cose 

2/ 

The corresponding stream function is 
V r 2 V R3 

� = 00 

sin2 e -
00 sin2 e 

2 2r 

With the help of equations 

we find 

a4> 
V : r ar 

1 a 4> v e = r ae 

1 a� 

/sine ae 

= 

(11,12 0) 

(11, 121) 

(11,12 2 )  

(11. 123) 
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R3 
vr = V

00 
cose (1 - �) 

1 R
3 

- V sine (2 + -
3

) 2 co 

The velocity at the surface, r = R, is 

( v ) = - l V sine e r=R 2 co 

(11.12 4) 

(11 .125) 

(11 .126) 

and the pressure distribution is obtained from the Bernoulli equation 

(11 ,127) 

The streamlines and potential lines for this flow are shown in Fi g .  

11.14(a). 

The velocity potential and the stream function for a sphere moving 

through a fluid at rest can be easily obtained from equations ( 11. 120) 

and ( 11, 121) by subtracting the contribution of the uniform stream. 

Thus, we have 

cose 'f = 2r 
. 2 sin e (11.128) 

Now, V represents the velocity of translation of the sphere. 
co 

streamlines and potential lines are sketched in Fig. 11.14(b), 

11,8 COMPLEX VARIABLES AND CONFORMAL MAPPING METHODS FOR POTENTIAL 

FLOW PROBLEMS 

The 

In the previous sections we considered the velocity potential � and 

stream function 'f as functions of the independent real variables x and 

y .  We now consider a new variable combination z = x + iy, where 
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<P = canst. 

---)::Jo,-

{a) 

· q>= canst. 

/ 

{b) 

Fig. 11. 14 (a) Streamlines and potential lines for uniform flow past a 
stationary sphere. 

( b) Streamlines and potential lines due to the motion of 
sphere at a constant velocity. 
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i = .r-:f with x and y representing the real and imaginary parts of the 

complex variable z .  It can be shown [9 J that because � and '¥ satisfy 

the Cauchy- Riemann equations ( 1 1. 30 ) they represent the real and 

imaginary parts of an analytic function F(  z) , which is called the 

complex potential: 

F (z) = Hx,y) + i '¥(x,y) (1 1. 1 29)  

Thus, any analytic function F (  z)  represents a solution to the 

two-dimensional Laplace equation. Whether �(x,y) and '¥(x,y) represent a 

flow field of interest is not a priori known but must be determined in 

the course of flow analysis. All of the examples in the previous 

sections are special cases of the complex potential 

F (z) = -1 - (Q/b + ir) lnz + 2,r 

00 

where A ,  B are constants and n is an index. n n 
In polar coo rd in ates ( r, e) we have 

Z = X + iy ie = re = r(cose + isine) 

(11. 1 30 )  

(11.13 1 )  

ie Since ln(re ) = lnr + ie, we can express the velocity potential � and 

the stream function '¥ as 

Q/b Q/b 
00 

� lnr - n (An cosne + Bn sinne) = 2,r 2rr e + E r 
_co 

( 1 1  . 132)  

Q/b r lnr + n (An sine+ cosne) '¥ = 2,r 
e +- E r Bn 2,r 

( 11. 1 3 3) 
_co 

As mentioned earlier any other analytic function F(z) will represent a 

solution to some potential flow problem which may or may not be of any 

practical significance. 

Working in terms of complex variable z greatly simplifies the 

mathematical manipulations involved and expands the horizon of solution 
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of potential flow problems. However, a good knowledge of conformal 

mapping [9 J is required in order to determine the complex potential for 

given flow fields. 

In the physical plane z or ( x ,y) , '¥ = const and � = const represent 

streamlines and potential lines which are orthogonal. It is possible to 

introduce a transform r; = f(z) from the z plane to another plane 

r; = n+i�. Such that the orthogonality at'¥ and� is preserved, For an 

illustration let us examine the transform 

F( z) 2 = = z 
2 i2e = r e 

cx
2 2 = - y ) + 2xyi 

= � + i '¥ C 1 1 • 134) 

Because of the first one of the above expressions, a point making an 

angle e with the real axis in the z-plane transforms into a point 

making an angle 20 with the real axis and is located at a distance r2 

from the origin in the r;-plane as shown in Fig. 11.15. Lines of � = 

const and '¥ = const are parallel to the axes in the r;-plane and form a 

uniform flow network. In the z-plane 

2 
� = X 

2 
y = const 

'¥ = 2xy = canst 

These are hyperbolas as shown in Fig. 11.15. 

C 11. 135) 

C 11 . 136) 

Thus, the uniform flow 

field in the r;-plane is mapped into a flow field around a 90° corner in 

the z-pl ane • 

This example indicates that it is possible to construct flow 

patterns about complex shapes if we know the flow pattern F( z) about a 

simple shape. Co nformal transformation tables can be found in 
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(a) 

z-plane � -plane 

'¥ = const. '¥ =const. 
i
�

� 

\ 

q:>=const. 

2 Fig. 11. 15: Flow field mapping with the transformation� = z .  

z· plane C plane 

Fig. 11.16: The synmetrical Joukowski airfoil (a) mapping planes , (b) 

uniform flow past the airfoil. 
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specialized books [ eg, refs. [ 9  ], [ 10 J ). Several transformations for 

some important flow problems can be found in books dealing extensively 

with potential flow theory [ 1, 2,3,5,6]. The most famous of these 

transformations is the Joukowski transformation for airfoils 

c
2 

i;; = (z + -) 
z 

( 11. 137 )  

2 where C 1 s real. The mapping planes and the flow patterns are shown in 

Fig. 11.16. It is interesting to note that the potential flow results 

for airfoils are much closer to reality than those for the cylinders. 

The reason is that an airfoil is much more streamlined than a cylinder 

and thus the boundary layer separation effects (see Chapter 1 2) are less 

pronounced. 

Al though comformal mapping methods are indeed very powerful tools 

for potential flow analysis, they have been largely displaced in modern 

applications because of the increasing use of numerical techniques (see 

C hapter 25). The Laplace equation can be easily solved by either finite 

difference or finite element methods. The latter method is particularly 

well suited for problems having irregular boundaries as discussed in 

Chapter 25. 

11. 9 SO ME WORKED OUT EXAMPLES 

E xample 11 .9  .1 

The stream function for a two- dimensional incompressible flow field 

2 3 is '¥ = 3 x y - y . Show that the flow field is irrotational, determine 

the velocity magnitude IVI and the velocity potential�. 

Solution 

The irrotationality condition is V x V = 0 or in two-dimensions 
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Since 

av av 
X --

ay 
_x = 0 ax 

a'i' vx = ay and V : a'i' 
ax 

av av 
_x - _J_ 
ay ax 

2 2 
a 'i' a 'i' =-

2+-
2

= 0  

ay ax 

i.e. the stream function must satisfy the Laplace equation. 

We have 

2 2 a 'i' a 'i' a 2 3 a 2 3 -+ - - ( 3x y - y ) + ( 3x y - y ) = 

a/ ax2 - a/ ax2 

= - 6y + 6y = 0 

Therefore, the flow is i rrotational. The velocity magnitude at a point 

(x,y) is given by 

where 

and 

V = IVI 

V = IVI ( 
V

2 2 1 /2 

: + V ) 
X y 

a'i' a 2 
V = - - (3x y 

X ay ay 
3 2 

- y ) = 3 x - 3/ = 2 2 
3(x - y) 

a'i' a 
V = - - = y ax ax 

2 (3x y - y3) = - 6 xy 

4 2 2 4 2 2 112 
= (9(x - 2x y + y) + 36x y) 



y 

y 

'¥=� �-�=2 
'f=�-l_:=-_-1._.;::====�\l'�=�l_._x 

'11=0 

'¥=0 

E.11.9.1 
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'¥=0 
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The t. t ( 2 2) 1 /2 quan 1 y x + y = r is the distance from the origin x = 0, 
2 

y = o. Thus, V = 3 r • 

or 

and 

Toe velocity potential can be determined from 

V : 
x ax and a4> V : 

Y ay 

3 2 4> = x - 3y x + const 

a 4> - = - 6xy 
ay 

2 4> = - 3xy + C(x) 

In Fig. E.11.9.1(a) we sketched the streamlines. Toe potential 

lines will be orthogonal. Since there is no flow across the streamlines 

any streamline may represent a solid boundary. If we take '¥ = 0 as a 

solid boundary, we have the flow in either one of the corners shown in 

Figure E . 11.9.Hb) and E.11,9,1 (c) . 

Example 11 .9 . 2  

A line source is located at a distance a from a wall. Determine 

the velocity distribution along the wall and the total pressure force on 

the wall. (Assume Q/b = 0,5 m21s, a =  30 cm, p = 1000 k g/m3 ). 

S olution 

We noted in Sec. 11. 4 (a) that the flow field for a line source at a 

distance a from a wall is described by the same eq uations as the flow 

field for two sources placed a distance 2a apart. The stream function 

was given as 

'¥ = Q/b <e + e2) 
21r 1 

or in rectangular coordinates (see Fig, 11. 7) 



� = Q/b (tan-1 .J_ + tan-1 .J_) 
2 ,r x-a x+a 

which can be written as 

� = Q/b tan-1 
2 ,r 

2 yx 
2 2 2 X -y -a 

11/4 3 

At the wall x:O the velocity component v = 0, The velocity component X 

in the y-direction can be calculated from 

V y 
= [- i!J 

ax x=O 
= Q/b [-------

21r 1 + ( 2xy / 
2 2 2 X -y -a 

= Q/b _3.x_ 
2 ,r 2 2 y +a 

This has a maximum which is obtained from 

dv 

ct/ = 0 = 
2 2 2 

(y + a ) - 2y Q/b 

(y
2 + a2/ ,r 

2 2 2 2 
( x -y -a ) 2y-4yx J 

2 2 2 2 ( X -y -a ) 

We find that the maximum velocity vy is located at y = ±a. 

x=O 

We now assume that the presure in the back of the wall is the same 

as that of the fluid at a large distance, p where v : 0, The 
co y 

Bernoulli equation gives 

or 

1 2 p + 2 p Vy : p + 0 
co 

1 2 p - p
co 

= - 2 p \ 

Thus the total force on the wall is 
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+oo 
F = f 

_oo 

= 

+oo 
2 

( p - p oo) 
x= 0 d y = 

2 p f V dy : 
y 

+oo 
4 2 

J -,---Y�-=-- dy = 
( 2 2) 2 

Y +a 
( Q/b)2 p 

4alT 

2 2 3 
F = 

(0.5 m /s) (1000 kg/m ) 6 6  N 4(0. 3 m) lT 
- = . 35 

Example 11 .9 . 3 

A tornado can be idealized as a line vortex formed by the 

interaction of wind-currents. It can be asst.nned that the flow field is 

irrotational and the tangential velocity is given by ( Sec. 11.3( d)) v0 = 

r/2lTr = K/r. The irrotationality property, however, cannot hold all the 

way to the axis, because v 0 tends to infinity. In a central core region 

( say r 1 = 30 m) viscous effects will be of importance. In such a 

tornado the tangential wind velocity at a radius of 250 m has been 

measured by a meteorological station as 45 km/hr ( 1 2. 5 m/ s) and the 

pressure as 97 kPa. Determine the pressure and the tangential velocity 

at the edge of the central core. Discuss the consequences of the 

pressure force on a house at a distance of 70 m from the path of the 

center of the eye of the tornado. 

kg/m3 ). 

Solution 

Let 

r1 
= 30 m 

r
2 

= 70 m 

r3 = 250 m 

We have ( V 0) 1 
= K/r1, ( V 0) 

2 
= K/r

2
, 

( Assume density of air p = 1. 2 

( V 0) 3 
= K!r3 
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( V 0) 1 
r1 ( 12. 5 m/ s) 25 0  104.17 m/s (3 7 5 km/hr) = (v ) - = = e 3 r

3 
3 0  

(ve)2 ( V 0 ) 3 

r
2 ( 12. 5 m/ s) 250  4 4. 64 (161 km/hr) = r
3 

7 0  

For an irrotational flow field the Bernoulli equation is 

applicable, thus 

P2 

P1 = -+ 
p 

2 v1 

2 \/ (kg/m3) (104. 11 2 - 12. 52 Hm2/s2) = 97,000 Nim -

= 

= 

97,000 

p p - -
3 2 

2 
Nim 

2 (v2 -

2 
= 97,000 Nim 

6,417 
2 90,583 Nim = 

2 v
3
) = 

2 2 = 97,000 Nim - 1102 Nim = 95,898 Pa 

N!m
2 = 90,5 83 Pa 

The house is originally at ambient pressure probably close to 97 kPa 
2 (97,000 N/m ) .  As the tornado passes at a distance of 7 0  m the pressure 

2 on the outside drops suddenly by 11 02 N/m • This exerts a force of 

about 22 KN on a 4m x 5m wall. The house will literally explode. There 

will also be very large drag forces, because of the very high 

velocities, which will increase the overall destructive force of the 

tornado. 

K = 

The strength of the tornado is usually expressed in terms of 
2 Here, we have K = 312 5 m /s. For very strong tornados K may 
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Pressure gradient 

1/. 
',�from potential theory 

\ 
... potential vortex flow 

visco us core 

E.11.9.3 
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2 be as large as 10,000 m /s. 

The interaction of the potential vortex flow with the ground where 

the velocity becomes zero results in inward directed flow near the 

ground and inverted funneling in the viscous core region as shown in 

Fig. E 11. 9. 3. The velocity distribution v e throughout the tornado flow 

field and v in the central core is al so sketched. 

E xample 11 .9 .4 

A Quonset hut (having the shape of half cylinder) is subjected to 

winds of up to 100 km/hr. Determine the lift force if the hut has a 

hole at A as  shown in Figure E. 11. 9. 4. If hole at A is closed what 

should be the angle e for a new hole that would result in zero lift? 

Solution 

F rom Sec .  11. 5 for uniform flow around a cylinder, we have 

1 v2 2 p co = 2 p co ( 1 - 4s in e ) 

where p is the pressure at the cylinder surface and p the pressure far s co 

from the cylinder. Thus, 

If p. is the pressure in the inside of the hut, then the net lift l 

(upward) is 

F = W f (p. - p )  R sine de l s 

where W is the length perpendicular to the plane of the paper. Thus 

p v2 + 2 p v2 sin2e) sine de 2 co co 

V2) 8 V2 WR = 2 ( pi - p co 2 P co WR + 3 P co 
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Voo 
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E.11.9.4 
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If there is a hole at A, pi is equal to the stagnation pressure (VA = 0) 

P = P + .l P v 2 

i CD 2 CD 

Thus 

F = S p v2 WR = 
3 CD 

= 4939 N 

8 3 2 
. 

( 1.2 k g/m )(27.78 m/s) x 1m x 2m 
3 

In order for the lift to be zero 

2 (p. - p 
i CD 

In Sec. 11. 5, we found that at the cylinder surface 

A pplying the Bernoulli equation, we get 

Introducing pi into equation (E.1), we obtain 

Therefore 

or 

. 2 8 2 4 p V sin e + - p V = O 
CD 3 CD 

. 2 2 sin e = 3 

e = 54. 6° 

e = 90  + 54.6 = 144 .6° 

(E. 1 ) 
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CHAPTER 12 

LIFT AND DRAG 

1 2. 1  INTRODUCTION 

A body . immersed in a flowing fluid will ex perience pressure and 

v iscous forces from the flow . The sum of forces perpendicular to the 

direction of the now i s  called lift and is responsible for the ability 

o f  birds , insects and aircraft to fly. Buoyancy may also contribute to 

an upward d irected forc e ,  however , this has nothing to do with the term 

l i ft as it is used in this chapter . The sum of forces acting in the 

direction of the flow is called drag and must be overcome by all bod ies 

moving in a fluid . In this chapter we describe how these forces are 

generated and how they can be cal culated . 

1 2. 2  THE MOMENTUM EQUATION ALONG A STREAMLINE OUTSIDE THE BOUNDARY LAYER 

Let us consider the flow of an otherwi se undistur bed fluid around 

an air foil as shown in Figure 1 2. 1. As it was explained in Chapter 9 ,  

the in flue n c e  o f  fl u i d  v i scosity dominates the momen tum transfer 
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I nviscid F low 
Streaml ine  

Fig. 1 2 .1 Boundary l ayer flow ar ound. an a i r fo il. 
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Fig. 1 2 . 2  Boundar y l ayer se paration. 

Wake 
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mechanism only inside the boundary layer. The boundary layer can be  

either laminar or  turbulent. Outside the boundary layer, however , the 

fluid can be considered as inviscid ( µ = 0 ). The momentum equation 

( 6. 94 ) for an inviscid, incompressible, two-dimensional, steady flow 

with negligible gravitational effects reduces to 

av av 
X X 

V -- + 
V x ax y ay  

v 
avy + v 

a vy = 
x ax y ay 

( 1 2. 1 )  

1 1£ 
P ay ( 1 2. 2 )  

In  Section 3 . 5  a streamline s(x,y) wa s defined as  a curve d rawn tangent 

to the velocity gradient, i.e. the velocity vector V ( vx, vy) is  parallel 

to ds (dx,dy) which means that 

dx dy 
V V 

X y 
( 1 2 . 3 )  

Thus we have 
dx 

V = V dy X y ( 1 2. 4 ) 

V = V 
dy 

y X dx  ( 1 2. 5 )  

By substituting the above expressions into equations ( 1 2 . 1 )  and ( 1 2 . 2) ,  

we get 

V x ax + v dy avx = 
x dx ay 

dx a vy a v  
V - + V  __I :  

X dy ax y ay 

These equations can be rewritten as 

_!_ le 
p a x  

l ie  
P ay 

( 1 2. 6 )  

( 1 2. 7 )  

l 1.E 
p ax ( 1 2. 8 )  
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.l le 
P ay  ( 1 2 . 9 )  

Multiplying through equation ( 1 2 . 8 ) by dx and equation ( 1 2 . 9 ) by dy, we 

get 

1 a ( v2 ) d x + .l !-. ( v2 ) d y = 2 fi X 2 ay X 
.l � dx 
p ax  

and by summing up ( 1 2 . 1 0 )  and ( 1 2 . 1 1 )  

.l L ( v2 + v2 ) dx  + 1 a ( v2 
+ 2 ax  x y 2 ay x 

- - le dy 
P ay  

.l (le dx + le dy) 
p ax ay 

Since the square of the magnitude of the velocity vector is 

v2 = V 
2 

+ V 
2 
y 

we may write equation ( 1 2. 1 2 ) as 

_l . L  ( V 2) dx  + _l .L (V 2) dy = 
.l 

<
ap dx  + l.E dy) 

2 a x  2 ay p ax ay 

( 1 2. 1 0 )  

( 1 2 . 1 1 )  

( 1 2. 1 2 )  

( 1 2 . 1 3 )  

( 1 2. 1 4 )  

Both sides of the above equation represent total differentials and may 

be put in the form 

Consequently, we have 

2 
d (�) = 2 

1 
- - dp 

p 

v2 

d (- + ..E) = 0 
2 p 

v2 P - + - = const 
2 p 

( 1 2 . 1 5 )  

( 1 2 . 1 6 )  

( 1 2 . 1 7 )  

Thi s  is  the simple form of the Bernoulli equation , whi ch was derived by 

a somewhat different method in Section 11. 2. It is important to note 
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that the Ber noul l i  equation is an algebraic r e l at ion between pre ssure 

and velocity along a str eamline. 

g reatest whe r e  the pr essur e i s  l east . 

It impl ies that the veloc ity i s  

1 2. 3  PRESSURE DISTRIBUTION AROUND A N  AIRFOIL 

The boundary l ayer formed around an air foil has a very small 

thickness as compared to the air foil  d imen sions ( much smaller than what 

is shown in Fig. 12 . 1) . Thus , we may apply the Bernoul l i  equation along 

the " edge" of the boundary and get roughly the same qualitative r esul t s  

as i f  the a ppl ication wer e  made o n  the air foil  sur fac e .  For the 

streaml ine patern of Fig . 12. 1, the flow velocity over the top i s  l arger 

than the v elocity along the bottom because of the longer fluid par ticle 

trajector i e s  over the top .  The Bernoulli equat ion would then g iv e  a 

l ar g er pr e ssur e on the bottom than on the top .  Consequently,  a forc e  

per pend icular to the flow d ir ect ion i s  pr od uc ed , which i s  called l i ft .  

To calcul ate this for c e  we must integrate the normal pr essure force  on 

the body over its sur face , as it was done in Section 11 . 6. 

Let us now ex amine the pr e ssur e gradient along the curved sur face 

ABC in Fig . 1 2. 1 .  Fr om A to B ,  the velocity i s  increasing , there for e 

the pr e ssur e i s  d ecreasing . Thi s  means that the outside inv isc id flow 

produces a pre ssure g r ad ient in the direct ion of motion .  Fr om B to C ,  

the velocity i s  d ecreasing , the r e fore the pre ssure i s  increasin g .  Th i s  

means that the outside inv i sc id flow produces  a pressure gr adi ent 

ag a i n st the d ir e c t i o n  of motion ( us u a l l y  c al l ed a d v e r se p r e s s u r e  

gr adient) . 

In the bound ary laye r  from B to C the fluid flows from left to 

r ight and it i s  o pposed by the externally imposed ( adver se) pressur e 
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gradient. Thus, the flow in the boundary layer decelerates, may be 

brought to a halt and gradually reverse in direction as shown ( in an 

exaggerated way) in Fig. 1 2. 2. This phenomenon is known as boundary 

la yer separation. The region of  reverse eddying flow is called the 

wake. 

It is interesting to compare the boundary layer separation between 

laminar and turbulent flow conditions. As shown schematically in Fig. 

12. 3 the velocity profiles are more " flat" for turbulent flow. Thus for 

turbulent flow, a longer distance from the leading edge would be 

required for the flow to be reversed and for the boundary layer to 

separate than for laminar flow conditions. The wake would be larger for 

laminar separated boundary layer than for a turbulent one as shown in 

Fig. 12.3. 

It should be pointed out that i f  the flow is slow the boundary 

la yer may not separate at all. Separation occurs in relatively high 

speed flow and with surface curvatures such that a large enough adverse 

pressure gradient can be generated. 

12. 4 FRICTION AND FORM DRAG 

The total resistance to steady rectilinear motion of a body 

immersed in a fluid will consist of two parts : The resistance due to the 

fr iction at the wall (friction drag) and the loss of  momentum due to the 

disturbance o f  the streamline pattern, called form or shape drag 

(because of its dependence on the shape of  the body ) .  

The frictional drag can be calculated from 

F = 
av 

= µ (-x )  
ay y:O 

A w (1 2.1 8)  
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Fig. 1 2 .3 Comparison of laminar and turbulent boundary 
layer separation . 
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where Tw is the shear stress at the wall, µ the viscosity of the fluid 

( a v  /ay) 0 the velocity gradient at the wall and A the wall area in X Y= w 
contact with the fluid. 

The form drag for slow viscou s  f l ow can be d ete rmined by 

integrating the component of pressure force in the main flow· direction 

as it was done in Section 8 .  4. However, for high speed flow separation 

occurs and the form drag increases with the size of the wake, which is 

difficult to describe mathematically. For very high speed flow the 

total resistance is mainly due to form drag, the friction drag being 

negligible. The opposite is true for very slow flow, which can occur 

without boundary layer separation. 

The streamlining of a body has a great influence on drag. The 

streamlined body and the wire shown in Fig. 12. 4 are sketched to scale 

and both exhibit approx imately the same d rag ( ! ) in high speed cross 

flow, despite the great difference in surface and cross sectional areas. 

The cylinder and the streamlined body of Fig. 12. 5 have the same cross

sectional areas perpend icular to the flow direction. In high speed flow 

the streamlined body exhibits much lower d rag than the cylinder because 

the wake formed behind it is smal ler. The opposite is true for very low 

speed flow. At very low speeds there is no boundary l ayer separation 

and the total resistance is mainly due to friction drag which is 

proportional to the surface area of the body. 

Fig. 1 2.6 shows the wakes formed behind two equal diameter spheres 

in high speed flow (same Re0) .  One of the spheres has a smooth surface 

while the other a rough one. Separation of a laminar boundary layer 

occurs at about 82 ° from the horizontal for the smooth sphere. However, 

the enhanced turbulence created by the surface irregularities forces the 
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• 

Fig. 1 2.4  Relative si ze of  a streamlined body and a wire  having 
the same drag in cross flow at high speed. 

Voo ... 

Fig. 1 2.5  

Identical 
Cross- Sectional 
Areas 

A streamlined body and a cyl inder having the same 
frontal areas in cross flow. 
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s 2° 

+ 
Smooth 
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+ 
Rough 
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/ 

Narr� 
Woke 

Fig. 1 2 .6 Wake formation behind spheres in high speed flow. 

(a) (b) 

Fig. 1 2. 7  Photographs showing the wakes formed behind ( a) a smooth 
bowl ing bal l ,  and ( b )  a bowl ing ball wi th a roughened 
nose patch ( U . S. Navy photgraphs , Ordnance Test Station , 
Pasadena· annex) . 
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separation point to move back to something l ike 120 ° ( see also Fig. 

1 2.7). The rough sphere, therefore, exhibits much smaller ( about four 

ti mes) resistance to flow than the smooth one . This explains why golf 

balls are manufactured with various designs of dimples on the surface . 

The total drag on immersed bodies usually expressed in terms of the 

drag coefficient C D as follows 

v 2 
FD = CD P 2 A (1 2. 19) 

where p is the density of the fluid, V the flow velocity and A the 

projected area of the body normal to the flow (i .e . the frontal are.a) . 

The drag coefficient can be determined from the solution of the 

Navier-Stokes equations for certain simple geometrical shapes like 

spheres and cylinders at relatively low Reynolds numbers ReD (see 

Section 8.4 and references [1 ] and [2] ) ,  For most shapes, however, the 

drag coefficient is determined experimentally by placing the obj ect in a 

wind or water tunnel and measuring the resistance as a function of ReD. 

Fi g .  1 2. 8 gives C D for two-dimen s i onal and Fig . 1 2 . 9  for 

three-dimensional bodies. Some additional C D values are given in Table 

12. 1. 

In  recent years a considerable effort has been made by the world ' s  

maj or autanakers to reduce the drag of automobiles by streamlini ng the 

body (see Fig . 12. 1 0 )  and consequently to reduce the fuel consumption. 

Some modern car designs exhibit drag coefficients which might be as low 

as 0. 3. Fuel savings are significant at higher speeds because the drag 

increases with the square of the speed while the rolling resistance 

increases linearly with speed . According to White [ 3 ]  when a typical 

tractor-trailer travels at a speed of 90 Km/hr the total power is 
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Table 1 2 .  1 Approximate Drag Coefficients for Re > 104 

Shape CD Based on Frontal Ar.ea 

� D square rod 2 . 00 

__. <> square rod 1 .  50 

--. <J 60° triangular rod 1 .  40 

-+ [:> 60° triangular rod 2 . 00 

� C Semicircular shell 1 .  20 

- J Semicircular shell 2. 30 

_. ' Infinite flat plate 2. 0 

D I Flat plate L /D = 5 1 .  20 
�- ·..- L.. - I  

-. o  Cube 1 .  1 0  

_. <) Cube 0 . 8 1  

_. <9 60° Cone 0 . 50 

Elli psoid L /D 

CD

T 
2 o .  13 

- D 4 0 . 1 0  

L -I 8 0 . 08 

' Parachute 1 .  2 

1 
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F ig. 1 2 . 1 0  An advertisement that appeared in a number of magazi nes, 
showing the streamlined features of a _  Por sche sportscar. 

Deflector 

Fig. 1 2 . 1 1  A tractor-tr ailer with a deflector to reduce the air drag. 
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consumed about evenly by air drag and rolling resistance. Addition of a 

deflector (see Fig. 1 2. 1 1) may reduce the air drag by up to 20% which 

re sults in reduction o f  total power con sumption by about 10%. 

Additional in formation on drag may be fou nd in re ferences [3-5 ]. 

Example 12. 1  

An automobile with CD = 0. 31 , A = 2 .  1 2 m tr avels at 100 km/hr. 

Determine the power required to overcome the air resistance (assume air 

3 density p = 1. 2 kg/m ). 

Solution 

The total drag force is  

0.  3 X 1, 2 X 
2 

X 2,  1 = 29 1. 67 N 

Thus, the power req u i red to over come the air  resi stance c a n  be 

calculated by multiplyi ng the drag force by the velocity 

Po = FD •V = 29 1. 67 1 ��0 = 8101, 94 W 

Example 1 2. 2  

A man jumps out o f  an air plane at high al titude. Determine the velocity 

of fall at 3000 m above see level (assume p = 0, 909 kg/m3 ) 

(a ) wi thout having opened his parachute 

(b) with a parachute open having a di ameter of 6m. 

Determine also the percentage of change of  the speed of fall at sea 

level ( p = 1. 225 kg/m3 ). The mass of  man and par achute i s  90 kg. 
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Solution 

An object falling in air ,  or in any other flui d ,  will attain its 

terminal velocity after an initial per iod of acceleration. At terminal 

velocity the sum of forces exerted on the object must be zero. Here we 

have : 

F - F - F  = 0  Weight Drag Buoyancy 

Because the density of air is small as compared to the density o f  the 

human body, the buoyancy term is  negligible and we can wr ite 

= F Drag 

1 /2 

For the man falling without having opened his p.:;irachute we may guess a 

drag coefficient of CD 
2 � 1 . 1  and assume an area A =  0 . 5  m . Hence 

2 X 90 X 9 ,81 )
112 

V = < 1 , 1  x 0, 909 x 0 , 5  = 59. 43 mis (or 213, 9 km/hr ) 

When the parachute is  open CD "' 1. 2 (from Table 12. 1 )  

Thus 

28. 26 m2 

2 X 90 X 9 ,81 )
112 

V = < 1. 2 x o. 909 x 28, 26 = 7 , 57 m/s ( or 27 . 25 km/hr ) 

Thi s  is  equal to the velocity of  free fall of an object from a height 

H = v2 

2g 
= 7 , 572 

2x9,  81 2. 92 m 

At sea level the above velocities will be reduced approximately to 
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1 /2 1 /2 (p /p ) = ( 0. 909/1. 2 2 5 )  = 0. 86 = 86%. It should be noted that in 
0 

both cases the Reynolds number is sufficiently high and that validates 

the choice of the drag coefficients. 

12. 5 VORTEX S HE DDING FRa,t A CYLINDER IN CROS S -FLOW 

The flow pattern around a cylinder in crossflow depends on the 

Reynolds number ReD = pVD/µ. At low Reynolds numbers , say Re � 5,  there 

is no flow separation. The drag is mainly due to friction at the 

cylinder surface. The streamlines are regularly spaced around the 

cylinder as shown in Fig. 12. 12 and the entire flow field is dominated 

by the viscous forces. As the Reynolds number increases the inertia 

forces become appreciable and flow separation occurs. This gives rise 

to the formation of a vortex pair immediately behind the cylinder and a 

laminar wake further downstream. At about Re "' 4 0, the wake dev elops a 

waviness and eventually a periodic pattern known as the Karman vortex 

s treet , after Theodore Von Karman, who presented a theoretical 

explanation in 1912. This pattern consists of v ortices shed alternately 

on either side of the c ylinder as shown in Fig. 12. 12. The shedding 

frequency increases as the flow velocity increases. In the range ReD = 

150 - 3 00 the frequency becomes irregular because of the turbulent 

fluctuations which accompany the shedding of vortices. The vortex 

street is fully turbulent in the range Re = 3 00 - 3 x 1 o5. A sub

stantial rearrangement of the wake and a re-establishment of a turbulent 

v ortex street occurs at higher Reynold' s numbers , as shown in Fig. 

12. 12. 

The phenomenon of vortex shedding is not restricted to flows over 

cylinders , but is observ ed in flows over all types of blunt bodies. It 



Rt < 5 REGIME OF UNSEPARATED FLOW 

5 TO 1 5  < R, < 40 A FIXED PAIR OF 
VORTICES IN WAKE 

40 < Rt < 90 AND 90 < Re < 150 
TWO REGIMES IN WHICH VORTEX 
STREET IS LAMINAR 

150 < Re < 300 TRANSITION RANGE TO TURBU
LENCE IN  VORTEX 

300 < Re <: 3 X 1 05 VORTEX STREET IS FULL V 
TURBULENT 

3 X 1 05 <'. Re < 3.5 X 1 06 

LAMINAR BOUNDARY LAVER HAS UNDERGONE 
TURBULENT TRANSITION AND WAKE IS 
NARROWER AND DISORGANIZED 

3.5 X 1 06 < Re 
RE-ESTABLISHMENT OF TURBU
LENT VORTEX STREET 

F ig. 1 2 . 1 2  Flow patterns around a cyl inder in cross-flow 
according to Blevins (6 J .  

12/1 9 



12/2 0 

i s  of major importance in engineering design because the periodic,  

alternate shedding of vortices produces large periodic lift forces ( and 

small er drag force variations) . If the Reynolds number is  such that the 

vortex shedding frequency is  at the natural frequency of the body, a 

resonant condition will occur . This phenomenon was the primary cause of 

the d isastrous failure of the Tacoma Narrows suspension br idge in 

Washington State in 1940 .  In addition , many failures  of smokestacks 

and heat exchanger tubes in cross flow have been attr ibuted to the 

periodicity due to vortex shedd ing . This phenomenon is  al so responsible 

for the "singing" of wires in the wind . 

The frequency of vortex shedding is  given in terms of the Strouhal 

number which is  a dimensionless quantity defined as  

S - fD 
- V 

where f = frequency (cycles/second = Hz )  

D = diameter of cylinder 

V = free stream velocity 

( 12. 20) 

A plot of the Strouhal number versus the Reynolds number is  given in 

Fig. 1 2 . 1 3  on the basis of a large number of l iterature data. 

More information on flow induced var iations can be found in 

reference [6 ] .  

12. 6 APPARENT OR VIRTUAL MASS OF ACCELERATING BODIES 

The force required to sustain a body in steady motion in a fluid is  

equal and opposite in d irection to the drag force. However , to bring a 

body from a state of rest to a state of steady motion , the propell ing 

force must overcome not only the fl uid drag but al so the inertia of the 



0.4...----,------t-----.---��------

0.3 
Data spread +. 

ol> I . ,JJ. It-- 0.2 
II 

,H:+:H I I 1 1 1 I I I I I I I I ±+-1 I I I 111 I I I I I I 
. 

I 1111 I 11 I ttttttnl 11111111111111 

0. 1 

0 ----------...._ _______ _..... __ ___, 
10 102 1 03 104 105 1 06 107 

p_VD 
Re

= 

µ, 

Fig . 12. 1 3  The Strouhal number as a fun ction o f  the Reynolds n umber 
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body and the inertia of any fluid set in  motion. In general , the 

additional resistance due to an accelerating fluid can be considered as  

the inertia of an added fluid mass mf. Thus , in  accelerating motion a 

body of mass mb behaves as having an apparent or virtual mass mb + mf ' 

and Newton ' s second law of motion can be stated as 

( 1 2. 21 ) 

The added fluid mass depends only on the shape of the body , because the 

shape determines the quantity of fluid which can be set in motion. 

Obviously , a cylinder moving in the axial direction woul d have a 

different added fluid mass than when it moves in a transverse direction .  

The total kinetic energy required to set a body in  motion should be 

equal to the kinetic energy of the body pl us the kinetic energy of the 

added fluid mass :  

1 2 1 2 = m V + -2 mf V
00 2 b (X) 

( 1 2 . 22) 

where V is  the steady velocity of the body moving in an otherwise 
(X) 

undisturbed fluid. If V(v , v , v )  is the local fluid velocity and p 
X Y Z 

the fluid density, we may wr ite 

: l J J J  p ( V
2 

+ V
2 

2 X Y 
( 1 2 . 23 )  

where the integration i s  carr ied out over all the fluid affected by the 

motion. 

For simple geometr ical shapes moving in inviscid irrotational 

fluids the flow field is usually known. For example , for a sphere of 

radius R we can easily determine the velocity components from equations 
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( 1 1 . 1 24 )  and ( 1 1 . 1 25 )  by subtracting the contr ibution of the un i form 

fl uid stream. Thus we have 

6 
V2 (R ) ( 2 1 . 2 ) = = r cos e + 4 sin e ( 1 2 . 24 ) 

An infinitesimal volume element in spher ical coord inates i s  g iv en by 
2 d¥ = r sined�d edr , thus , we may write equat ion ( 1 2 . 23 )  as 

S .  2 1nce cos e 

to get 

( 1 2 . 25 )  

= 1 -sin2e ,  we can ea sily per form the integrations indicated , 

( 1 2 . 26 )  

Thus , the add ed fl uid mass of a sphere moving in an infinite fl uid of 

d ensity p i s 

2 3 
mf = 3 rr p  R ( 1 2 .  27 )  

and the apparent or vir tual mass o f  a sphere o f  d ensity Pb i s  g iven by 

4 R3 2 3 
� + mf = 3 rr pb + 3 rrp  R ( 1 2 . 28 )  

With a similar treatment , it can be shown that the added fl uid mass 

of a cyl inder of r adius R (moving in a d irect ion per pend icular to its 

ax is in an in finite fl uid) is 

( 1 2 . 29 )  

The determination o f  added fluid mass o f  bod ies hav ing sharp  

corner s or other irregular shapes requires direct exper imentation . 
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Mironer [ 6 ]  gives an added fl uid mass of 8/3 p R 3 of a disk of radius R 

moving perpendicular to its surface and 2. 3 2 pa 3 for a cube of side a 

moving perpendicular to one of its  surfaces .  The exi stence of a free 

surface or a wall near an accelerating body has an influence on the 

val ue of the added fluid mass .  Toe reader is  referred to Mi roner [ 6 ]  

for further details . 

Example 12. 3 

An aluminum sphere { p s = 2700 kg/m3) of 1 0  cm diameter is  dropped in a 

large water tank . Determine the terminal velocity VT and · the time 

required to attain it . 

Solu tion 

When the aluminum sphere moves wi th a constant { terminal ) velocity we 

will have the balance of forces 

or 

where 

and 

or 

F - F - F : 0 Weight Drag Buoyancy 

A 2 D = ,rR ' = 2R 

4 3 v2 2 4 -
PS 

1rR - C 
PW 

,rR - PW 3 D 2 t 3 

4 1 /2 

Vt = tps-pw) <3 D )  
J CDpw 

,rR 3 = 0 

Since the drag coefficient is a function of velocity { see Fi g .  12. 9 ), we 

mu st start the calculations by making a guess, say CD = 1. 0 .  We have 
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9 • 8 1( 2700 -1 000 ) cf X 0 . 1 )  

VT
= 

[ 

1 x 1 000 ] 

wh ich g ives  a Reynolds number 

= 1 .  4 9  mi s 

= pVD = 
µ 

_1 0_0_0_x_l�. 4�9_x_0_._1 _ 1 49 , 0 0 0  
1 o-3 

1 2 /25 

For such a Reynolds number we get , fr om Fi g .  1 2 .  9 ,  CD " 0 .  48 .  We can 

r ec alculate 

which g ives 

4 
9 . 8 1 ( 2700 -1 000 ) (3 X 0 . 1 )  

VT
= 

[ 

0. 48  x 1 000 ] 

1 000 X 2 . 1 5 X 0 . 1  = - ------........:=--=-- = 
1 o-3 

1 /2 

= 2 . 1 5 m/ s 

2 1 5 , 00 0  

a nd CD about the same a s  b e fore .  

need ed . 

Th us , n o  further iterations  a r e  

For the i n i t ial pe r iod of accelerat ion we must wr ite Newto n ' s  

second l a w  o f  motion , which s tates that the sum o f  forces ac t i ng on a 

body i s  e qual to the mass  times the acceleration , i . e .  

F - F - F Weight Dr a� Buoyancy 
dV = m eit 

In th i s  c a se ,  s ince there i s  a con siderable mass of water set in motion 

with the fal l ing sphere , we must take into account the added m a s s  a s  

wel l .  Thus , we have 

where 

FWe ight F Dr ag 
dV F = ( ms + mf ) dt Buoyancy 

F = C D _2
1 

P V2 A Dr ag 



1 2/2 6 

when the sphere attains the terminal velocity V = VT , dV/dt = 0, hence , 

we may rewrite the above eq uation as 

Assuming that CD is constant we may integrate with V:O at t=O and then 

rearrange to the form 

V - V T 

This equation represents a familiar exponential decay, with VT being the 

limiting velocity. 

For V = 0. 99VT ' we have 

VT - 0. 99 VT 
VT + 0. 99 V = exp (-

o. 005 

and 

t = 

For a sphere, we have 

thus  

t = 5. 29 3C
2
� [ � + � ] 

D T PW 

CD pVTA 
t) m + mf s 

2 A =  nR and R = 2D 
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with D = 0 . 1m.  c0 � 0 . 48. ps = 2700 kg/m3 and pw = 1 000 kg/m3 • we get 

2 x 0 . 1  1 t : 5• 29 3 X 0 . 48 X 0. 687 [ 2 • 7  + 2 ] :  3 • 42 S 

Note that the relative contr ibution of the added mass is  significant in 

this case . 1/2 versus  ps/ pw = 2 .7 .  

1 2. 7 LIFT OF AIRFOILS 

From Chapter 11 it is apparent that the inviscid fluid theory does 

not pred ict a force in the main direction of the flow. This  means that 

the drag force on an object moving in an inviscid incompressible fluid 

is zero ( see for example Section 1 1.5 .  d ' Alember t ' s paradox) .  However . 

the Kutta-Joukowski theorem ( see Section 1 1. 6) gives reasonably accurate 

values of lift by u sing the invi sc id flow theory. 

For an airfoil section like the one shown in Fig. 12. 1 4  we define a 

lift coefficient CL as  

2
1

p v2- A  
a, p 

( 1 2. 30) 

where FL i s  the lift force (perpendicular to the main flow d irection) .  p 

the density . V00 
the free stream velocity and A

P 
the platform area , that 

is the area seen in plain view (equal to the product of the chord length 

and the span) .  The potential airfoil theor y ( see for example references 

[ 3 ] .  [ 7-9]) gives for an infinitely long airfoil and small angles of 

attack a 

For high angles of attack . separation of flow will occur near the 

lead ing edge and that will produce deviations from this theory. Exper i-
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(Adapted from reference [ 10 ] . )  
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ments in a wind-tunnel are necessary t o  evaluate the performance of an 

air foil of a given shape. For example , Fig. 12. 1 5  shows the lift 

coefficient CL as a function of the angle of attack a for various values 

of the Reynolds number Re = pV c/ µ ,  As the angle of attack increases 
C ex, 

the separation point moves forward towards the leading edge. At a 

certain angle of attack (usually between 15° and 20°) the flow is separ

ated completely from the upper surface, as shown in Fig. 12. 16 , The 

lift drops off dramatically while the drag increases significantly. The 

airfoil is said to be stalled. The existence of a maximum in the CL vs 

a curve implies the existence of a minimum speed, below which an airfoil 

cannot support its weight. 

calculated from 

W(weight) 

This is the stall speed V and can be s 

= F = C (.l_ p v2 A ) L L,max 2 s p ( 12. 32 ) 

The stall speed of aircraft usually varies between 20 and 60 mis . 

Pilots are usually required to maintain a speed at least 20% greater 

than the stall speed to avoid the possibility of stall under any 

conditions. 

Airfoils of finite span exhibit a reduced lift and an increased 

drag as a result of vortices formed at the airfoil tips. These wing-tip 

vortices are formed because the pressure is higher at the lower surface 

than at the upper one and the fluid is forced to circulate , as shown in 

Fig. 12. 17. The lift and drag characteristics of three wing sections 

with aspect ratios ( i (span)/ c(cord) ) 3, 5 and 7 are shown in Fig. 12. 1 8, 

according to Prandtl [ 12 ]. Using this figure we may calculate the lift 

with the help of equation (12.30 )  the drag from 

(12.33) 
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F ig. 12 . 16 Flow separation over the entire upper sur face .  The  air foil 
is said to be stalled . ( From reference [ 11 J . )  

Tip Vortex 

@ 

Low Pressure Region 

. J High Pressure Region 

Fig. 1 2 . 1 7  Wi ng tip vortex formation. 

Tip Vortex 
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F ig. 1 2. 18 Li ft and drag coeffic ients for three wing sections 
( t  = span , c = cord) according to reference [ 1 2 ] .  

Leading -Edge 
Slat 

Airfoil 

Trailing-Edge 
Flap 

Fig. 1 2 . 1 9  Modern aifoil design with a leading edge sla� and 
a trailing edge tlap . 
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Modern airfoil designs include deflecting flaps at the trailing 

edge and slats at the leading edge in order to increase the lift 

coefficient at low speeds ( see Fig. 12. 19) . Some modern aircraft types 

are equipped w ith wings having CL o f  about 3. 5. ,max 

Example l 'Z. 't 

A small plane weighs 2 000 kg, including passengers and fuel, has a 

wingspan of 14 m and a chord length of 2 m. Determine the angle o f  

attack at take-off i f  the take-off speed i s  1.2 times the stall speed 
3 and p = 1. 225 kg/m • Assume that the lift characteristics of the wing 

are given by Fig. 12. 17. 

S olution 

We first calculate the stall speed, by noting that ! C 
7 and 

C L,max = 1. 2. We have, from equation ( 12. 32 ) , 

( 2W (2 X 2 000 X 9. 81 ) 
1 /2 

= ) = = 3 0. 88 m/s 
s cL,max p A 1. 2 'x 1. 225 X 28 p 

According to the statement of the problem the take-off speed should be 

V = 1. 2 V = 1.2 x 3 0. 88 = 3 7. 05 m/s = 133. 4 km/hr 
0 S 

The corresponding li ft coefficient is 

CL = 1 V2 A 2 p O p 

2 000 X 9.81 
: l X 1.225 X (3 7.05 )2 

X 28 � 2 
0. 833 

From Fig. 12. 17  w e  can determine the required angle of attack, about 7°. 
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CHAPTER 13 

CONSERVATION OF ENERGY 

1 3 . 1  THE TOTAL ENERGY EQUATION 

The first law of thermodynamics for a system ( i . e .  a material 

volume across whose boundaries no mass is exchanged) is usually stated 

as 

tiE = Q - W ( 1 3 , 1 )  

where E is the internal energy of the system , Q the heat transferred to 

the system and W the work done EL the system to the surroundings .  In 

some textbooks the plus sign rather than minus appears in front of W .  

Here , we adopted the convention that energy transfer to the body i s  a 
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positive quantity. 

The dynamic form of the first law of thermodynamics involves the 

rate of change of energy (i .e. power) and may be stated as 

d d 
dt [ t.E] = dt [Q] ( 13 . 2) 

The work is done by forces which have been identified previously as 

inertia forces , body forces and surface ( or stress) forces . Thu s ,  we 

may write 

= d 
[Q] - .9.__[W J d [W J d [W ] dt  dt stress - dt  body - dt inertia 

For a system of volume ¥ surrounded by a surface S, we have 

d d 
dt [ t.E] = dt !!!  ped¥ 

¥ 

where p is  the density and e the internal energy per unit mass 

2 2 2 2 where V = v1 + v2 + v3 the velocity of the system 

- !!!  V • ( pg)  d¥ 
¥ 

(13 . 3 )  

(13 . 4 )  

(1 3 . 5 )  

(13.6 ) 

where the minu s  sign was introduced because work is done by the external 

body force g 2!!. the system 

.9.__[ w ] = dt stress ! !  V •(�•n) dS 
s 

(13 . 7 )  

again with the minus  sign i n  front of the integral because the work is 

done by the surface (stress) force �·n on the system 



- ff q •n dS 
s 
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(1 3 .8) 

where q is the heat flux vector given by the Fourier law of heat 

conduction q = - k VT (k = thermal conductivity coeffi cient and 

T = temperature) . 

Finally, after putting the internal energy and the energy due to 

inertia for ces under the same integral sign , the rate form of the first 

law of thermodynami cs becomes 

d 1 2 
dt ff! p(e+2 V )  ct¥ = ff q •n dS + ff v·� ·n dS + !ff V• pgd¥ (13. 9 )  

¥ s s ¥ 

Using Gauss ' divergence theorem 

Thus , 

ff q •n dS = f f! (v•q) d¥ 
s ¥ 

ff  V •�•n dS = 
s 

equation (1 3 . 9 )  takes 

d 
dt ff! 

¥ 
p(e + .lv2 ) ct¥ 2 = 

J ff v•(V •�) ct¥ 
¥ 

the form 

JJJ(v•q) d¥ + 
¥ 

ff! v• <v · �) ct¥ 
¥ 

( 1 3 . 1 0 )  

(13 . 11) 

( 1 3 . 1 2 )  

The total rate of change on the left hand side can be written for a 

control volume by using the special case of Reynolds transport theorem 

of example 3 .1, we have 

D 
!ff p(e + _l V 2) ct¥ Dt ¥ 2 = !ff 

D (e + .l v2) ct¥ P Dt 2 ¥ 

where D/Dt is the material derivative 

(13 . 13 )  
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�� ) = g� ) = !� ) + V • v C  ) (13.14) 

Equation ( 1 3 . 1 2) becomes 

- JJJ C v•q)d¥ + JJJ v• C V • �)d¥ + JJJ V • pg d¥ 
¥ ¥ ¥ 

Therefore 

D 1 2 -
P Dt C e + 2 V )  = - v•q + v• (v • cr) + V • pg 

( 1 3. 1 5) 

( 1 3.16) 

The body force is usually derivable from a potential ( e.g. gravity from 

the geopotential) , therefore we may let 

and 

We note that 

g = - vn 

Dn 
Dt = 

Since the geopotential at a fixed point is  independent of  time 

D n  
p Dt = pV • vn 

and equation ( 1 3 . 1 6) becomes 

P D C e + l v2 + n) = - v• q + v• CV •�) Dt 2 

( 1 3. 1 7) 

(13 . 1 8) 

(13. 1 9) 

( 1 3 .  20) 

( 1 3.2 1 )  

The total stress tensor cr i s  usually written as the sum of pressure 

and the v i scous stress tensor 

= a = 
= 

pi + l (13.22) 

Thus , the term v• (V • �) becomes 



= 

= v .  a .  p +  v .  a .  L • •  - p a . v .  + -r . .  a . v .  
1 1 1 J J l  1 1 lJ J 1 

Equation ( 13 . 21) may now be written as 

D 1 2 
P Dt C e +  2 V + n) = 

1 3/5 

C 1 3. 23 )  

( 1 3 .  24 ) 

This equation is usually known as the total energy equation. It should 

be noted, however , that chemical, ·nuclear , radiative or electromagnetic 

energy terms have not been included in the derivation. Such terms can 

be easily added in the final equation if the rate of these forms of 

energy generation or absorption is known . 

1 3. 2  THE MECHANICAL ENERGY EQUATION 

Each term of the equation of conservation of momentum represents a 

force acting on a fluid particle at a point in a flow field. If we take 

the dot product of each term of this equation with the velocity of 

motion V ,  we should get the balance of the rates of the various forms of 

mechanical energy ( i.e. the mechanical power ) .  

Thus , starting from the stress form of the equation of conservation 

of momentum, we have 
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DV P Dt : 'iJ• a + pg ( 13 . 25 ) 

( 13 . 26 )  

( 13 . 27 )  

Introd ucing a potential n (g = -vn) ,  as in Section 13. 1  ( see eq. 1 3 .19 ) ,  

we get 

P 
O cl v2 + n)  = V · v · �  Dt 2 ( 1 3.28) 

The total stress tensor cr is now written as the sum of the pressure and 

the v i scous stress tensor T ,  i .e .  

cr = = 
P8 + "[ . 

By converting to index notation the term V • v • �  becomes 

= 

= 

Thus , equation ( 1 3 . 28 )  may be rewritten as 

P Q_ < .!. v2 + n)  = Dt 2 

This is the mechanical energy equation . 

( 1 3.29)  

( 1 3.30)  

( 1 3.3 1 )  
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Using the definition of material derivative and noting that 

an/ at=O, we get 

a cl V2) v • v  p at + p 
2 

cl v2 

2 
+ n) - V• vp + V • v• � C13 , 32) 

For steady flow and p = const equation C 13. 32) becomes 

v • v  cl 
2 

pV2 
+ p + pn) = 

If the flow is frictionless, �= 0. 

Bernoulli equation 

V • v • T  C13 , 33) 

Thus , equation C13,33) yields the 

-½ P v2 + p + pn = o C 13. 3 4) 

which is usually written with n=gz, where z is the height above some 

datum plane as 

v2 

+ J?. + gz = 0 
2 p 

13, 3 THE THERMAL ENERGY EQUATION 

C 13,35) 

The total energy equation was derived from the first law of 

thermodynami cs. The me chanical energy equation was derived f r om 

Newton' s second law of motion. These are , therefore, two distinct 

equations. By subtracting C 13. 3 1 )  from C 1 3 .  2 4) we obtain the thermal 

energy equation, 

De 
P Dt = - v• q C 13 . 36) 

The left-hand side pDe/Dt represents the rate of change of the in

ternal energy, v•q is the rate of heat transferred by conduction, Pv•V 

is the rate of compression work C v• V=O for incompressible fluids) and 

�: VV is the rate of work done by the viscous stresses, usually called 
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viscous dissipation. 

Introducing the Fourier law of heat conduction 

we get 

q = - kVT 

De 2 
P Dt = kv T - pv•V + T : vv 

or equivalently 

The last term � : vV is  usually written as 

v iscous dissipation function. From the relation 

( 1 3. 37 ) 

( 1 3 .  38 ) 

(13.39 ) 

µ �  , where � is  the 
V V 

it is  easy to calculate �v in terms of the components of the velocity 

gradient. �v in rectangular , cylindrical and spherical coordinates is  

tabulated in  Table 13 .1 . 

Equation ( 13. 39 ) can be further simplified by introducing the 

appropriate expressions for the internal energy e for various classes of 

flui d s ,  using well-known thermodynamic relations . 

For a perfect gas we have de = CvdT, assuming Cv = const equation 

( 1 3 . 39 )  takes the form 

(13. 41)  

For a perfect gas the specific heat under constant volume Cv and the 

specific heat under constant pressure are related by the expression 

( 13. 42) 



Table 1 3 .  1 

THE DISSIPATION FUNCTION <I>
V

FOR NEWTONIAN FLUIDS 

Rectangular coordinates x, y, z 

<I> = 21, _-< . + _v + _• [ ( 
au )! ( av 

)
' 

( 
av 

)
2] 

·-1 ax ay az 

[(
avv avr

)
2 

(
av. ai'v

)
2 

(
av, avz

)
2

] + µ - +
- + - + - + - + -ax ay ay az ax az 

Cylindrical Coordinates r, 0, z 

<I> = 2µ - + - - + - + -[ ( 
aur

)
' 

( 
1 ai•8 vr)

2 ( av,
)
2] 

V ar r a0 r az 

[ 
a 

(
u8) 1 ( avr

)J 
2 [1 ( au.

) ( 
ov8)] 1 

+ µ r - - + - - + µ  - - + -or r r a0 r ae oz 

( 
ovr av.

)
' + ,, - + -az ar 

Spherical Co�rJinatcs r, 0, cf, 

<t> = 21
, [ ( aur)' + (� at'o + Vr)

2 + (
-� _ OtJ4> -f- � t - V9 Crot 0)1] 

., ar r ao r r s in O a1 r 

[ 
a (u8) I ovr]

2 [ 1 ovr a (uip)] ' + I' r - - -f- - - + I' -.- - + r - -or r r o0 r Stn O acp or r 

+ '  -- - -- + -- -[
sin O a ( v<I> ) I ov8 ] '  

/ r ao sin fJ r si n fJ o,f, 

13/9 



13/10 

aT DT Multipl ying through by p (at + V• vT)  = p Dt ' we get 

DT DT DT pC
P Dt - pR Dt = pCv Dt < 13 , 43 )  

Differentiating the equation of state for a perfect gas p =  pRT, we have 

pR D
Dt

T = Dp - .E Q..e. ( 1 3.44 )  Dt p Dt 

W ith the help of the continuity equation 

D p  -
Dt + p V•V = 0 

we can write equation ( 13 . 44 )  as 

DT Q.E. -pR Dt = Dt + pV •V  

Then equation ( 1 3. 43)  becomes 

pC DT - Q..e - p v• V = pCv 
D
D
T
t p Dt Dt 

Introducing the above expression in equation ( 13. 4 1) we get 

pC
P 

<11. + V •vT) = at 

or equivalently 

for steady state 

For any fluid at constant pressure 

de = - pd¥ + C dT 
p 

( 1 3. 45) 

( 13 . 46 )  

( 1 3 . 47 )  

( 1 3. 48) 

( 1 3.49 ) 

( 13 . 50)  

( 13 , 5 1 )  
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and 

De D¥ pC DT P Dt = - PP - + Dt Dt p 

D 
( .!.) pC DT = PP Dt + Dt p p 

1 D p  pC DT = p - - + Dt p Dt p (13.52)  

Using the continuity equation (13 . 45 ) ,  we hav e 

De 
P Dt = (13 . 53 )  

Thus ,  equation (13 . 38) becomes 

(1 3.54)  

For liquid s ,  which are practically incompressible , we have 

p = const , v•V=O ,  C =C and de = C dT.  Therefore ,  equation ( 13.38) can 
V p p 

be simpl ified to 

or equivalently ,  

13. 4 A SIMPLIFIED DERIVATION OF THE THERMAL ENERGY 

EQUATION FOR AN INCOMPRESSIBLE FLUID 

(13. 55 )  

(13.56)  

In  this section we present a der ivation of  the thermal energy 

equation by r eferr ing to a volume element �x �y�z as shown in Fig . 1 3 , 1. 

This  derivation is in many respects similar to those presented for the 

conservation of mass ( Section 4 .  1 )  and the conservation of momentum 

( Section 6 . 4 ) . We first state verbal l y  the pr inciple of conservation of 
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z 

I 
Ox----... - �  laz 

I 
� - -AX 

/ O {x,y,z) 
AY/ · . 

• - ---· ,yx 

---1--� 0x + .¢.X 

X 

Fig. 1 3. 1 :  Infinitesimal vol ume element in a flow field with 

heat transfer. 



thermal energy for a control volume in a flow field as 

RATE OF 
THERMAL ENERGY 

ACCUMULATION 
= 

RATE OF 
THERMAL ENERGY 

IN 

RATE OF 
THERMAL ENERGY + 

OUT 

The rate of energy accumulation within the volume element is 

13 /13 

RATE OF 
FRICTIONAL 

ENERGY 
PRODUCTION 

(1 3.57)  

where e is the internal energy per unit mass of the fluid , Since the 

element has a constant volume and p = const, we have 

RATE OF 
THERMAL ENERGY 
ACCUMULATION 

ae : t:,X t:,y !:,Z p at 

The energy is transferred to the volume by heat conduction ( Q ) and 

convection ( Q ' ) .  With the help of the Taylor series we may write for 

the x direction 

Q 
X+ !J.X 

a = Q + - (Q ) tix x ax x 

a 
Q '  : Q '  + - (QX ) !:,X x+ tix x ax 

I I 

(13.58) 

(13 .59 )  

where Qx and Qx represent the rates of energy in  and Qx+tix'  Qx+tix the 

rates of energy out of the control volume . 

Using Fourier ' s  law of heat conduction 

Q = - kA aT = - kt:,y !:,Z cl.!) x ax ax (13.60)  

the minus sign is needed because heat is conducted from higher to lower 
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temperatures i . e .  in the direction of negative temperature gradients . 

The convected energy in the x direction is 

I 

Q = X pevx 6y6z ( 1 3 . 6 1 ) 

Thus , we have 

2 

Qx -
0

x+ 6x 
= k (.LI) t:,.xt:,yt:,.z 

2 ax 
( 1 3 . 62) 

I I a( ev ) 
Qx 

- QX+ /:,X 
X 

t:,.xt:,.yt:,z = - p ax ( 1 3 . 63) 

Similar expressions may be derived for the energy transferred in the y 

and z directions , so that 

RATE OF 
THERMAL ENERGY 

IN 

RATE OF 
THERMAL ENERGY 

OUT 
= 

a( ev ) a2T a2T a2T [ k  ( -- + -- + -) 
ax2 ai az2 

- p ( 
X 

ax + 

a2r a2r 2 
[ k  Ll) p [ V ae = (-- + -- + - - +  

ax2 
ay2 

az2 X ax 

a( ev ) 
y + ay 

V ae - +  V y ay z 

+ e 
av av 

(-x + � 
av 

+ -2) J J ax ay az 

<
a

2T + a
2T + 

2 
[ k  Ll) ( v  

ae 
V ae 

V = - p - + - +  
ax2 ay2 az2 X ax y ay z 

= [ k  v
2r - p V • veJ  1:,x 1:,y1:,z 

because for i ncompressible fluids 

a( ev ) z 
az ) J 6xt:,.yt:,.z 

� 
az 

t:,Xt:,yt:,.z 

�) ] az t:,.X t:,y !:,.Z 

( 1 3 . 64) 
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( 13. 65 ) 

The fri ctional energy produ ction is due to the stresses and is 

usually referred to as viscous dissipation . The rate of energy (power) 

is the dot produ ct between for ce and velocity of a parti cle , 1.e. F•V. 

Thus, the rate of energy generated by a stress in the control volume of 

Fig.  13. 1 should be given by 

( STRESS ) ( AREA ) (DIFFERENCE OF VELOCITY IN THE DIRECTION OF STRESS ). 

For example the rate of energy produ ced by the stress component 'yx ,  

should be 

( T YX) 
!:,.X /:iZ ( /:iV ) = 

X 

= 

L !:i X !:iY /:iZ yx 

av x 
( 'yx ay) 

/:iV 
(-x) 

t:iy 

!:,.X/:iY /:iZ 

= 

= 

, /:iX /:iY/:iZ yx 

av x 
( 'xy ay) 

av 
X 

ay 

!:iX!:iY/:iZ ( 13.66) 

Thus , the rate of energy produ ced by all nine stresses can be written as 

or in 

av 
( ,  

X 
xx ax 

av 

av av 
X X + T 

-- + T xy ay xz az 

av 
+ T _][_ + T _][_ + T 

� 
yx ax yy ay yz az 

av av av z z 
�) + T + T + T zx ax zy ay zz az 

index notation as 

/:iX /:iY/:iZ 

( 1 3.67 ) 

By substituting the various expressions into the verbal statement 

of the principle of conservation of thermal energy, we obtain 
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or 

ae  -
p <at: + pV• ve) 

De 2 = k VT + T :  "'� P Dt •• 

(1 3.68) 

(13. 6 9 )  

This equation can also be obtained from the more general equation 

(1 3. 38) by using the incompressibility condition v •V = O. 

1 3. 5  PROBLEM SOLVING IN NON-ISOTHERMAL NEWTONIAN FLOW 

The eq uations of cons ervation of mass (continu ity ) ,  moment um 

(Navier-Stokes ) and energy (thermal) for viscous flow have been derived 

in Sections 4 . 1 ,  6 . 3  and 1 3. 3  respectively. For a perfect gas, we may 

group them together as 

ap -at + v• ( pV ) = 0 

av 
P <

at
+ V• vv) = 

C 1 3 .  70 ) 

(1 3. 7 1 )  

(1 3.72) 

In rectangular coordinates with the Newtonian constitutive equation (see 

Section 6 .5 and Chapter 1 7 ), these equations yield 

ap  - + 
at 

a (  pV ) 
X --- + 

ax 
a (  pV ) 

__ Y...._ + 
ay 

a (  pV ) 
z 

az = 0 

av av av av 
( X X X __ X )  p -- + v  - + v  -- + v  = at x ax y ay  z az 

- iP + ax 

( 1 3. 73)  

2 2 2 a v  a v  a v  
\l (--x + __ x + __ x

) 
ax 2 ay 2 az 2 

( 13 . 74) 



av av av av 
p (_J_at + V _J_ + V _J_ + V _J_ : - 1.£ + µ 

x ax y ay z az ay 

av 

1 a n + - µ (v• v )  + pg 3 ay Y 

av av av z z 
p <ar 

+ vx ax + z 
V -- + 

Y ay 
z 

V -) = z az 

p C 
V 

- p 

+ 2µ 

1 a + 3 µ az 

aT aT 
(at

+ V 
X ax 

av av 
(-x + _y_ 

ax ay 

2 

+ 

< v •V )  + pgz 

aT + V - + 
Y ay V lI) 

z az 

av _z) az 

2 2 av av av 
[ (-x) + (_J_) + (-z) J ax ay az 

2 
av av 

+ (-z + _x ) J 
ax az 

= k 

+ µ 

1£ 
az + 

2 

( .LI + 
ax2 

av 
[ (_J_ + ax 

2 

13/ 1 7  

2 2 a v a v 

+ .:__J_ + .:__J_) 
ai az2 

( 13.75) 

2 2 
a v a v a v 

µ 
z z z (-- + -- + --) 2 2 2 

a2T 

ax ay az 

( 13. 76 ) 

a2T -- + 
a/ 

-) 
az2 

2 
av 
-2.) + 
ay 

av av 
(-z + _y_) ay az 

2 

( 13.77)  

Thus , we have five equations and five unknowns (vx ' vy' vz , p and 

T) . The density p might also be considered as an unknown . Then the 

equation of state p=p (p , T) is necessary as the sixth equation . 

For s teady, i ncompressi ble (p: const, C =C ) ,  t wo-dimensi onal 
p V 

boundary layer flow, we may apply the order of magnitude approximations 

of Chapter 9 to reduce the equations to 

av 
X -- + 

ax 
av 
_J_ = 0 ay 

av av 
p ( v  __ x + v -2.) = x ax y ay lE. + µ 

ax 

a V 
X -- + 

ai 

(13 .78 ) 

(13 .79 )  
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a2T 
2 

aT l!) 
av 

C ( V p + V = k -- + µ <ay) ( 13. 80) p X ax  y ay ax2 

Mor e details on the above approx i mat i on may be found i n  

Schlichti ng '  s standard reference [ 1 J, as well as i n  tex tbooks on heat 

transfer [ 2-5 ]. It should be noted, however, that the viscous dissipa

tion term reduces to just the one term involving the main velocity 

grad ient squared ( µ ( av / ay/),  for many types of two- dimensional flow X 

problems. 

Temperature gradients may be large enough to cause significant 

density d i fferences which induce fluid flow due to buoyancy forces 

(natural or free convection). For such problems the incompressible 

continuity equation is usually a valid approx imation even though the 

density is not constant. The gravity term pg must now include the X 

buoyancy forces caused by the temperature d i fference and is thus 

s is the volume expansion coefficient of the 

fluid ( $ :1/T for a perfect gas) and T a reference temperature usually 
0 

taken at the edge of the boundary layer. Thus, we have 

p (v 
X 

C p 

av av 
_x + _x = O (13. 81) ax ay 

av av 
X _x) + V = ax y ay 

aT 
.a!) ( v  - +  V = 

X a x Y aY 

lE a2v 
X + µ --

2
- + ax ay 

/T av 
k + µ (-x) 2 aY ay 

pg $ ( T-T ) 
X 0 

2 

( 1 3 .8 2) 

(1 3. 8 3 )  

Example 13. 1 

D etermine the temperature d istribution due to viscous dissipation in a 

highly viscous l iquid occupying the gap between two flat plates one of 
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which is stationary while the other moves at a constant velocity as 

shown in Fig. E 1 3. 1(a). 

Solution 

The isothermal drag flow problem was exa�ined in Section 7 . 5. The 

continuity and momentum equations (13.78) and ( 1 3.79 )  red uce to 

= 0 

which gives the linear velocity profile ( see Fig. E 13. 1(a ) ) .  

The equ ation of energy (13.80 ) can be easily simplified to the form 

a2T av 
= k -2 + µ (-x) ay 

ay 

2 

If the temperature does not vary in the direction of flow, we have 

2 av 
o = k .LI + µ c-2.) 

ay2 ay 

2 

From the velocity profile we get the velocity gradient 

and 

a2T 0 = k -- + µ cY) 
al b 

The temperature boundary conditions are 
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(a )  

To 

To 

( b) 

Fig. E 1 3 . 1  Drag flow between two flat plates (a) velocity 

profile and (b) temperature profiles . 

V 



B . C .  1 

B . C . 2  

y:O 

y:b 

1 3/21 

After integrating twice and determining the integration constants we get 

2 
__l!. (y) y + 2k b y (  b-y) 

Some typical temperature profiles are sketched in Fig .  1 3 . 2 ( b) .  For the 

case T0 = T 1 the max imum temperature occurs at y = b/2 

T = T0 
+ ...-1!. v2 

max 8k 

Assuming that the liquid is a molten plastic with µ = 2500 Pa • s ,  

k = 0 . 1 8  W/m • K ,  and V = 1 0  cm/ s ,  we calcul ate the maximum temperature 

r i se due to viscous dissipation as 

t.T - T T = J V2 

max - max - 0 8k 

1 3 . 6  THE DIMENSIONLESS GROUPS OF HEAT TRANSFER 

Many noni sothermal l ami n ar flow problems can  be analyzed by 

starting from equations ( 1 3 . 8 1 ) ,  ( 1 3 . 82) and ( 1 3 . 83) which are rewritten 

here for convenience 

p ( V 
X 

av X -- + 
ax 

av 
..J = 0 ay 

av x 
-- + 
ax 

av x 
V -) : 

Y ay 

a
2v 

-ap X 
+ µ -- + 

ax al 

2 avx = k .LI + µ <-ay ) 
a/ 

( 1 3 . 84) 

( 1 3 . 85) 

2 

( 1 3 .  86) 
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We introduce the following dimensionless variables 
* 

* 
T 

x = x/L 
* 

y = y/L 
* 

v = v/V 
* 2 p = p/ pV 

T - T 
0 

T - T 
0 = ---

T - T 
W 0 

= ---
t:.T 

where L, V ,  T
0 

and Tw are characteristic flow parameters . 

where 

The dimensionless equations are 

* 
av 

* 
av X 

--* + 
ax 

__y_ = 0 * 
ay 

* 
* av 

X 

* 
* av x 

vx --* + 
ax 

V - : 

Y a/ 

* * * aT * aT 
V -* + V * : x ax Y ay 

Re = P VL 
µ 

µ C 
Pr = _£ 

k 

Ee = v2 

C t:.T 
p 

* 
ap -* 
ax 

2 * 
1 a V X + - -- + 

Re  · *2 ay 

a
2T* -- -- + 

Pr Re *2 ay c Re 

( REYNOLDS NUMBER )  

( PRANDTL NUMBER ) 

(GRASHOF NUMBER )  

( ECKERT NUMBER ) 

Gr 

Re2 

* 2 av 
(-x

) * 
ay 

( 13.87 )  

( 13.88) 

( 1 3  .89 ) 

( 13.90)  

( 1 3. 9 1) 

( 13 .92) 

( 1 3.93 )  

( 13. 94)  



Pr Re = Pe = 
p C VL 

p 
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( PECLET NUMBER)  ( 1 3 .  95 ) 

In Section 6. 8 we showed that the Reynolds number represents the 

ratio of inertia over viscous for ces. With similar arguments it is easy 

to show that 

Gr 

Re2 

Pe = Pr Re = 

Pr Ee = 

= BUOYANCY FORCES 
INERTIA FORCES 

HEAT TRANSFERRED BY CONVECTION 
HEAT TRANSFERRED BY CONDUCTION 

HEAT PRODUCTION BY VISCOUS DISSIPATION 
HEAT TRANSFERRED BY CONDUCTION 

This last grouping is called the BRINKMAN NUMBER [ 6] 

Br = Pr Ee = µV2 

gk(  tiT) 

( 1 3 . 96 )  

( 1 3 .  97 ) 

( 1 3 . 98 )  

( 1 3 . 99 )  

The Prandtl number is often written as the ratio of kinemati c viscosity 

( v  = µ/p )  over thermal diffusivity ( a = k/pC
P

) 

C µ 
Pr = _e_ = v k a ( 1 3 .  1 0 0 )  

In  heat transfer calculations between fluids and solids a heat 

transfer coeffi cient h is used, whi ch is defined by the equation 

htiT ( 1 3 . 1 0 1 ) 

where ( aT/ ay) y:O is the temperatu re gradient in the flu id evaluated at 

the flu id-solid interface. The heat transferred to (or from) the flu id 

is calculated from 

Q = hA( tiT ) ( 1 3 . 1 0 2 )  
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where A is the area of  contact and �T a suitable temperature d ifference 

between solid and fluid . The heat transfer coefficient is often 

ex pr essed in d imensionless form as 

Nu hL (NUSSELT NUMBER ) = 
k 

( 1 3 . 103 ) 

or combined with the Reynolds and Pr andtl numbers as 

St Nu h 
(STANTON NUMBER ) = Re Pr = 

Vp p 
( 1 3. 1 04) 

Without actually solving equations ( 1 3 . 88 ) , ( 1 3 . 89 )  and ( 1 3.90)  we would 

anticipate that 

V = f 1 ( x, Y ,  Re , Pr , Gr , Ee ) 

T - T 0 
�T = f2 ( x, y, Re, Pr, Gr, Ee ) 

Nu = f3( x, Re, Pr , Gr, Ee) 

( 1 3. 105)  

( 1 3 .  1 06 )  

( 1 3 .  1 07 )  

Then the Nussel t number averaged over the length L should be expressed 

as 

hL Nu = k = 

- I Ldx 

= F ( Re, Pr, Gr, Ee ) ( 1 3. 1 08 )  

Such d imensionless ex pressions are very common in heat transfer . For 

laminar flows these relations can be obtained by solving the appropri ate 

form of the conservation equations . For turbulent flows similar 

ex press ions are determined , usually ,  by correlating experimental d ata . 

Here are two examples : 

For laminar flow inside l ong tubes 



Nu = 1 .86 ( Re- Pr) 1 13 (Q) 1 13 (L) 0 • 1 4  
L µW 
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( 1 3. 1 09 )  

where D is the tube diameter , L the tube length , µ is the fluid viscos

ity and µW the fluid viscosity evaluated at the temperature of the wall . 

For turbulent flow inside long smooth tubes ( Re > 6000 , Pr > 0 .7 ) 

Nu = 0 .023 Re0 •8 Pr 1 13 ( 13 . 1 1 0 ) 

More correlations can be found in textbooks on heat transfer (see 

references [ 2-5 ] ) .  

With the help of the dimensionless equations ( 1 3 . 88) , ( 1 3 .  89 ) and 

( 1 3 .9 0 ) ,  we may determine the conditions un der whi ch certain 

dimensionless groups are important . 

equation of conservation of momentum 

For example ,  let us examine the 

* 
* av 

X 
V -- : 
Y a/ 

* 
- * 

ax 

2 * 
1 a 

V 
X + - -- +  

Re  *2 ay 

Gr 

Re2 
( 1 3 . 1 1 1 )  

In  Se ction 9 . 1 ,  it was shown that both the fluid i n ertia term 

* * * * * * 2 * *2 v ( av / ax ) + v ( av l ay ) and the viscous term ( 1 /Re) ( a  v l ay ) are of 
X X y X X 

order of magnitude 1 for boundary layer flow. Thus , in order for the 

buoyancy effe cts to be of importance we should have 

Gr 

Re2 
"' 1 ( 1 3 . 1 12 )  

Consequently, whenever the above condition is satisfied , the Nusselt 

number correlations must also involve the Grashof number Gr . With 

similar arguments we can determine the relative magnitude of other terms 

appearing in the general conservation equations and thus assess the 

importance of the physi cal mechanisms that they represent . 
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CHAPTER 14 

THE BERNOULLI EQUATION 

FOR DUCT FLOWS 

1 4. 1  INTRODUCTION 

The Ber n o u l l i  equation was named after Daniel Bernoul l i  

( 1700-1782 ) . who presented a form of the energy equation for steady 

one-dimensional . incompressible . frictionless flow without heat transfer 

or shear work.  in his book on hydrodynamics published in 1738. This 

equation in its present forms is a very valuable tool ( as we shall see) 

in solving many problems involving flow in ducts. In these problems it 

will often be reasonable to assume that the flow is "one-dimensional" 

( see Section 3. 7 ) , i . e .  that the velocity profile is flat and has a 

magnitude equal to the average velocity over any given cross-section , 

We have shown that the Bernoulli equation is  valid along a streamline 

( see Section 1 2. 2 ) . However , with the above assumption there will not 

be any d ifference between the various streamlines in a conduit , so that 
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the Bernoulli equation written for one such streamline will automati

cally apply to the entire flow (i.e. along a streamtube). Obviously, 

this type of analysis will not provide any information on the velocity 

profiles or other details on the flow pattern. Even without this 

information, the resul ts obtained by using the Bernoulli equation are 

often of great engineering value. 

1 4 , 2  DE RIVATION OF THE BE RNOULLI EQUATION 

Various forms of the Bernoulli equation were derived in Sections 

1 1  • 2 , 1 2 .  2 and 1 3 .  2 . Here, we present yet another , more general, 

derivation by starting from the equation of conservation of momentum 

( 6 . 57) , which is 

av p o t + p V • V V = V • cr + p g (14 , 1 )  

We will now integrate this equation by making use of the following 

assumptions : 

( 1 )  The fluid is frictionless ( i. e. µ = 0 and o . . = -p o  . . ) 
1J  1J  

( 2) The fluid is barotropic , which means that the density is a function 

of pressure only, p = p ( p) 

( 3 )  The body forces are derivable from a potential, i.e. g = - vn· 

( 4 )  The flow field is irrotational , which means V x V = 0 

The first assumption reduces equation ( 1 4. 1 )  to the Euler equation 

( 6 .95), which is written here as 

a V + -v • n-v V n -at V : - -;- + g  

From Appendix A ,  we note the identity 

V C A• B) = A•V B + B• V A + A X (V X B) + B X (V X A) 

( 1 4 , 2 ) 

(14 . 3 )  



Letting A =  B = V and V x V = 0, we have 

V cv2 ) = V • V V + V • V V 

or 

Thu s equation ( 1 4. 2 )  becomes 

a v  v2 v 
at + V (2 ) = - � + g 

1 4 /3 

( 1 4. 4 )  

( 1 4 . 5 )  

( 14 . 6 )  

Since the flow field is  irrotational the velocity is  derivable from a 

potential ,  say � ( see Section 11. 1). Let 

V = V� ( 14. 7 )  

therefore 

( 1 4.8) 

W e  may also write 

( 1 4. 9 )  

-
With the help of equations ( 14. 8) and ( 14. 9 )  and with g = - VQ (where Q 

is  the body force potential), we may rewrite equation ( 14. 6 )  as 

o <� + v2 
+ r, + J .£i.l?._) o 

V O t 2 �· 
p ( P) : 

where � ( t) ind i cates a function of time only. 

more assumptions 

( 5 ) a� Steady state, i . e .  a t = 0 ,  � ( t )  = const 

( 6 )  The fluid is incompressible, p = const 

Thu s J .9.£ = l J dp = .2 
p p p 

( 14 . 10 ) 

We  now introdu ce three 
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( 7 )  The body force potential is just the gravitational potential , which 

may be ex pressed as the elevation z above some datum plane 

mul tipl ied by the gravitational constant 

n = gz 

Consequentl y ,  equation ( 1 4 . 1 0 )  becomes 

v
2 

2 
+ � + gz = const 

which is the wel l-known Bernoulli equation .  

1 4 , 3  FRICTIONAL LOSSES IN TUBES 

By divid ing equation ( 1 4 .  1 2 )  by g ,  we get 

v
2 

- + .£_ + z = const 2g p g  

( 1 4 . 1 2 )  

( 1 4 . 1 3 )  

It i s  easy to show that each term in the above equation has d imensions 

of l ength . These lengths are , at l east conceptuall y ,  convertible into 

elev at ions above some datum plane . The elevations are commonly referred 

to as "heads" . Thus , the Bernoulli  equation states that 

VELOCITY HEAD + PRESSURE HEAD + GRAVITY HEAD = CONST 

All  the terms of the original equation of conservation of momentum 

( Nav ier-Stokes )  are accounted for , one by one , in the pr esent "head " 

form of the Bernoulli equation , except for the v i scous term . The 

velocity head represents the inertia  forces , the pr essure head stands 

for the pressure forces and the gr av ity head for the gravi tational 

forces . The v iscous term is not amenable to any general form of 

integration ( si nce the irrotat ionality assum ption does not hold for 
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v i sc ous fluid s ) . · However . just like the other terms . it should be 

ex pressible in the form of a " he ad " . This i s  c alled the friction head 

and is usually denoted by h .  Thus . if the fr iction head loss between 

two points in a flow field i s  h 1 _2 • we may wr i te the Bernoulli equation 

as 

V 2 
1 

2g + - + ( 14 . 14 )  
p g 

where point 1 i s  upstream and point 2 downstream . In thi s  form the 

Bernoulli equation can be appl i ed to the solution of problems involv ing 

v iscous flow in ducts . For a typical case . like the one shown in Fig .  

14 . 1 ,  equation ( 14 . 14 )  can be appl ied d irectly. However . since a tube 

rather than just a streamline is involved the velocities v1 and v2 

represent the average velocities over the cross-sectional areas at 

po i n t s  a n d  2 r e s p e c t i v e l y .  a n d  the corr espond i n g  

elevations . h1 _2 i s  the fr iction head loss between the two points . p1 

and p2 ar e the pressures at points 1 and 2 respectively.  

Let us now apply equation ( 1 4. 1 4 )  for a hori zontal tube of constant 

d iameter D=2R and length L through which a fluid is  flowing under 

influence of a pressure difference p1 - p2 = Po - PL = li p .  Since the 

tube has a constant d iameter
) 

v1 = v
2

. There is  no difference in 

elevation . i . e .  z1 = z2. Thus , equation ( 1 4 . 14 )  r educes to 

P1 P2 + h1-2 = 
p g p g ( 1 4 . 15 )  

and the fr iction head loss is 

hf h1 -2 
P1 - P2 Po 

-
PL � = = = = 

p g p g p g 
( 1 4 . 16 )  
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z =O 

Fig, 14 . 1  Pipeline section. 
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We can now get an expr ession for hf in terms of the average velocity in 

the tube V avg 
For laminar flow inside a tube (Section 7. 3)  we had 

Thu s ,  

V avg = 
p O - PL R 2 _ � R 2 

&.i L - &i L 

- �  hf - p g  = 
8µ L  V 

avg 
2 

p gR 

( 1 4. 1 7 )  

( 14. 18) 

The head form hf = h 1_2 of the pressure drop is  pictorially explained in 

Fig . 14. 2. 

The frictional losses are usually expressed in the form of the 

Darcy-Weisbach friction factor ( after Henry Darcy and Julius  Wei sbach, 

both 19th centur y  engineers)  which is  defined as 

f = 

L 
D 

v
2 

� 
2g 

(Dimenionless) ( 1 4. 1 9 )  

Introducing in the above expression hf from equ ation ( 14. 18) , we get 

f 3 2µ = 64µ = V R V D p avg p avg 
( 1 4. 20)  

or 

f 64 ( for laminar flow) = Re0 
( 14. 21 )  

It was explained in Chapter 1 0  that turbulent flow problems are not 

amenable to rigorou s mathematical treatment. Most results are obtained 

by direct experimentation. By correlating experimental data for very 

smooth tubes , Blasiu s  [ 1 ]  obtained a formu la , which is  valid u p  to Re0 = 

1 05 ( see also Section 10. 6 )  

f = 0 . 3 1 6  

R 1 /4 eD 

( 1 4. 22) 
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Generally ,  the fr iction factor for turbulent flow i s  a function of the 

sur face roughness as well as the Reynolds number 

f = f ( Re0 , surface roughness)  ( 1 4 . 23 )  

The surface roughness o f  var ious types o f  commercial pi pes i s  expressed 

in  term s of a relative roughness factor £ ID ( see also Section 1 0 .  7 ) ,  

where £ is the equivalent sand roughness and D the pipe d i ameter . Table 

1 4 .  1 gives the equiv alent resistances in high-speed flow to those of 

sand-roughened pipes . 

The fr iction factors ar e given in  the form of a plot known as the 

Moody chart [2 ] , as shown in F i g .  1 4 . 3 . In this  char t ,  the variation i n  

f for smooth pi pes i s  probably around ± 5 per cent . A v ar iation in f of 

about ± 1 0  per cent is usually expected for commercial steel pipe . 

Pipelines which have been in operation for ex tended periods of time 

exhibit large v ari ation in  f d ue to corrosion and fouling i . e .  the 

formation of a solid  substrate on the inside pipe sur fac e .  It should be 

always remembered that the results given in the Moody d iagram are valid 

for new , corrosion-free pi pes .  

1 4 . 4  PROBLEM SOLVING WITH THE HELP OF THE MOODY FRICTION CHART 

Problems dealing with uni form flow through a single pipe are 

usual ly  of three different type s .  These ar e :  

Type 1 .  Determ ination of the pr essure drop, given the flow rate , the 

diameter , the kind of pipe and the fluid properties . 

Type I I .  Determination of the flow rate , given the pressure drop , the 

diameter , the ki nd of pipe and the fluid properti e s .  

Type I I I .  Determination o f  the pipe diameter , given the kind o f  pipe , 

pressure dro p ,  flow rate and fluid properties . 



Table 14. 1 

Equivalent Sand Roughness of Commercial P ipes 

Material ( new) 

Glass 

Drawn tubing 

Commercial steel or wrought iron 

Asphalted cast iron 

Galvani zed iron 

Cast iron 

Wood stove 

Concrete 

Riveted steel 

e: ( mm) 

smooth 

0. 0015 

0. 046 

o .  12 

o. 1 5  

0 . 26 

0. 18-0. 9 

0 . 3  to 3. 0 

0. 9-9 , 0  

1 4 /9 
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Type I problems are straightforward ,  because from the information 

given the Reynolds number can be calculated d irectly and the fri ction 

factor can be determined from the Moody chart ( Fig. 1 4 . 3 ) .  The pressure 

drop is then determined by using the definitions of Section 1 4. 3 ,  i.e. 

hf = � p g ( 1 4 . 24 ) 

f 
hf 

v
2 

h �  
( 1 4. 25 )  

D 2g 

Type II problems are usually tackled by first making a guess for f, 

whi ch allows the calcu lation of an average velocity from equations 

( 1 4. 24 ) and ( 1 4 . 25 )  and hence the flowrate . The Reynolds number Re0 is 

theri determined and the accuracy of the initial guess is checked by 

determining a new f value from the Moody chart . The trial and error 

procedure can be continued until two consecutive values of f do not 

d iffer signifi cantly. 

Type III problems are again tackled by first making a guess for f 

which allows the determination of a pipe d iameter from equations ( 14. 24 ) 

and ( 14.25 ). If Q is the volume rate of flow and A the cross-sectional 

area, we have 

v2 

f h Q
2

/A
2 

Q
2 

hf = f b. 2Y_g f b. = = 
2 D 2g D 2g D 

D4 
2g (�) 4 

( 14 . 26 )  

Thus 

D5 fLQ
2 fLQ

2 

= 
2 

= 

(�) 2 (�) <4) 2ghf 4 g p g 

( 1 4 .  27 )  

From the above expression we can obtain a value of D whi ch allows the 
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d etermination o f  Re0 and with the hel p  o f  the Moody chart a new v alue of 

f .  Again , this tr i al-and-error proced ure can be continued till two 

c onsecutive  values of f do not differ si gnific antl y .  

The Moody charts and the related definitions and formulae can be 

used for calculations involv ing non-circular condui t s .  

n umber i s  

where D
H 

i s  the so-cal led hydraulic  diameter defined as 

4 x ( cross sectional area ) DH
= wetted perimeter 

Here are some ex amples : 

( a ) P ipe of c i rcular cross-section 

2 
4 x � 

4 D = ----
H n D = D 

( b) annulus ( inside  diameter D
1

, outside  D
2

) 

n D2 n D� 
4 X [-2 - -] 

4 4 

( c )  rectangular cond uit ( area ab) 

D = 4 x ( ab) _ 2ab 
H 2a + 2b - a+b 

The Reynolds 

( 1 4 . 28 )  

( 1 4 . 29 )  

( 1 4 . 30 )  

( 1 4 . 3 1 )  

( 1 4 . 32 )  

Thus , al l calculations involving non-circular conduits are to b e  made 

with the Reynolds number defined in terms of the appro pri ate hydraul ic 

d i ameter . 

Ex ample 1 4 . 1 

Water (p = 1000 kg/m3 , µ = 10-3 Pa• s)  flows at a rate of  0 , 025 m3 /s 
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through a 1 000 m long , 12 .  5 cm diameter cast iron pipe . Determine the 

pressu re drop . 

Solu tion 

First calculate the Reynolds number . The average velocity is 

Then 

V = V avg -- Q -A --------= 0 . 025 

( n 14) ( 0 • 1 25 / 
= 

Re = pVD _ ( 10) 3 ( 2 .04) ( 0 . 125) = µ - 1 o-3 

2 . 04 mis 

5 2. 55 X 10 

For cast iron pipe € = 0 . 26 mm ( from Table 14 . 1) ,  thus 

€ 

D 
= 0 . 26 mm 

1 25 mm = 0 . 0021 

With the help of the Moody chart ( Fig . 14. 3) for € ID = 0 . 0021 and 

Re = 2. 55 x 1 05 we find 

f "" 0 .  024 

Now, we can determine the pressure drop from equations ( 14 . 24) and 

( 1 4 . 25) 

lip = hf p g = f ho V
2

2 
P - o 024 1000 m ( 2 .04 mls) 2 

( 1000 kglm3) 
- • • 125  m 2 

-2 2 = 399, 5 1 3 kg• m• s Im = 399 . 5 1 kPa 

Example 1 4 . 2  

W ater (p = 1 03 kglm3, µ = 1 0-3 Pa• s) flows through a 150 m long, 20 cm 

diameter , asphalted cast iron pipe . 

pressure drop is  2000 Pa . 

Determine the flow rate if the 
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Solution 

We do not know whether the flow i s  laminar or turbulent .  Let us assume 

the flow is laminar , so that we may use equation ( 1 4 .  17) to calculate 

the average velocity . 

We have 

/). p  2 
V = Vavg = 8 µ L R 

The Reynolds number is  

Re =  p Vd 
µ = 

( 1 000)( 1 6 . 66) (0.20) 

1 0-3 

= 2000 ( 0 . 20)2 

32 ( 1 0-3) 1 50 

= 3 , 332 , 000 

= 1 6 .  66 m/ s 

Thi s is  a Reynolds  number for turbulent flow. Therefore our assumption 

was wrong . 

Since the flow is turbulent we will tackle thi s problem by making a 

guess for f. For asphalted cast-i ron pipe we have E = 0 . 1 2 ( from Table 

14 . 1) ,  thus E /D = 0 . 1 2/200 = 0 . 0006 . In Fig . 1 4 .  3 we note that for 

E /D = 0 . 0006 the value of f remains constant a fter a certain Re .  We 

will use thi s  value , f "' 0.0 175 , as our initial guess . 

Comb in ing equations ( 1 4 . 24) and ( 1 4 . 25) we get 

1 /2 
V = ( � !). p Q.) 

f p L ( 2 X 2000 
X 

0 . 20) 
1 12 

- 0 . 0 1 75 1 000 Tso = 

This  velocity gives a Reynolds number 

Re =  p VD 
µ 

= ( 1 000) (0 .55) ( 0 . 20) 

1 0-3 : 1 1 0  I 000 

0 . 55 m/s 

From Fig . 1 4 .  3 ,  for E ID = 0 .  0006 and Re = 1 1 0 , 000 we get a val ue of  

f "' 0 . 02 1 . We re-calculate the average velocity 



2 A p  D 112 2 2000 0 .20 112 
V = ( f  p I) = ( 0 .021 x 1 000 x TW) = o . 5o m/s 

Thus the new Reynolds number is 

Re = 
p VD = ( 1 000 ) ( 0 .50 ) ( 0 .20 ) = µ 1 0-3 

1 00 , 000 

14 /1 5 

In Fig . 1 4 .3 it is virtually impossible to differentiate f values for 

Re = 1 00 , 000 and Re = 11 0, 000. Thus we will accept f = 0 . 02 1  as our 

final estimate . The flow rate is then calculated as 

( 
n 2 3 

Q = VA = 0 .50 ) (4 0 .20 ) = 0.0 157 m /s 

Example 14 . 3 

Determine the pipe diameter necessary to carry gasoline ( S .G.=0 , 68 

µ = 0 .5  x 10-3 Pa• s)  at a flow rate of 0. 1 5  m3 /s with a pressure drop of 

1 75 kPa per kilometer . The pip·.:: material is cast iron . 

Solution 

We will make use of equation ( 14 .24 ) 

05 = __ fL_Q.;..
2 
__ = __ fL_Q_

2 
__ 

2 
(�) 2 (�p ) 1 , 232 AP 
4 g p g p 

Since we do not know D we cannot calculate €: /D . However from the 

previous two examples a value of f = 0 . 0 1 7  would seem reasonable .  Thus 

: ( 0 • 0 17 X 1000 X O ,  1 5  2) 
115 

: D 
175 x 1000 O · 26 m 

1 • 232 X O • 68 X 1000 

We can now calculate 

£ 0 .26 mm 
D = 260 mm = 0.001 
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Q V = A 
0 .  1 5  = = 

; D
2 ; ( 0 . 260 /  

= 2 . 83 mi s 

p VD Re = -- : ( 0 , 68 X 1 000 ) ( 2 , 83 ) ( 0 , 2 6 )  '.::: 

0 , 5  X 1 0 -3 

A .new val ue of friction factor can be obtained from the Moody chart 

( Fig .  1 4 . 3 )  for e: /D = 0 . 00 1  and Re = 1 06 

f c:: 0 . 02 

With this value of f we can re-calculate 

D = 0 . 269 m 

e: 
0 . 00097 - = 

D 
V = 2 . 64 m/ s 

Re = 9 , 66 X 1 05 

These val ues give again f '.::: 0 . 02 . Therefore , no more iterations are 

needed . Thus , a pipe of about 27 cm in d i ameter i s  capable of cariying 

the vol ume flow rate specified in the statement of problem for the given 

pressure drop . 

Example 1 4 . 4 

Rework ex ample 1 4 .  1 i f  the water flows through a channel of square 

cross-section having the same area as the 1 2 . 5  cm pi pe . 

Solution 

The cross-sectional area is 

2 
a = ( �) ( 0 • 1 25 / = 4 

a = 0 .  1 1 08 m 

From equation ( 1 4 . 32 ) the hydraulic diameter is 
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DH = 2a = a = 0. 1 108 m 

Therefore we may cal culate 

V = 

Re 

E: 

DH 

f "'  

f1 p  

Q = 2. 04 m/s A 

p VDH ( 103) 2.04 X 0 .  1 108 2. 26 105 = = 

0 . 26 mm 
= 110.  8 mm 

0 . 0245 

L v2 

= f - - p = D 2 

10-3 = 

0. 0023 

0. 0 245 
1 000 2•04 (1000 ) = 

0. 1 108 2 

14/17 

460 kPa 

The pressure drop is larger than that of example 14. 1 because . the wetted 

perimeter , and therefore the area of contact between flui d and solid, is 

larger . 

1 4 . 5 FITTING LOSSES 

Most of the problems examined in detail in previous sections of 

this book involved laminar flow through straight tubes and channels . 

Most of the semiempiri cal expressions given in the chapter on turbulent 

flow are also appli cable to straight tubes and channels. The Moody 

chart discussed in Section 1 4 . 4  provides a means for rapid calculations 

in problems i nvolving straight tubes and channels . In many practical 

probl ems , howev er , several  types of flow i rr egul arities may be 

encountered as a result of sudden contractions, sudden expansions, 

elbows , valves e t c .  The streamline pattern exhi bi ts certain 
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• 

( b) .. .. 

� Jo .. 

( c )  

Fig. 14 . 4  Streamline pattern in ( a) contraction , ( b) expansion , 

( c )  elbow. 
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peculiarities as shown schematically in Fig . 1 4 .  4 .  The existense of 

flow recirculation regions is the primary cause of the difficulties in 

dealing with these problems . 

Flow through all these pipe fittings is usually accompanied by 

large pressure drops , because the fluid is forced to go through sharp 

edges and non-streamlined passages. These pressure drops are often 

referred to as "minor" losses ( as opposed to major losses in straight 

pipe sections) .  The word "minor" is unfortunately a misnomer, because 

these losses are not minor at all. 

seems more appropriate.  

The expression " fitting losses" 

The head form of the pressure drop due to flow through a pipe 

fitting is defined by 

( 14.33)  

where KL is  the loss coefficient for the particular fitting. Loss 

coefficients are determined experimentally by measuring directly the 

pressure drop and the average velocity , which is equal to the flow rate 

divided by the cross-sectional area . For the most common types of 

fittings loss coefficients are available in handbooks ( e.g. references 

3-6 ) and in company manuals . Some typical values of KL for sufficiently 

large Re are given in Table 1 4 . 2 . 

In a typical pipeline problem there will  be several fittings 

between 

written 

V 2 
1 

2g 

the reference points 1 

as 

P 1 + - + 
pg z 1 = 

V 2 
2 P2 -- + - +  2g pg 

and 2 .  The Bernoulli equation may be 

22 + h1-2 ( 14. 34) 

where h 1 _2 is  equal to the sum of the head loss due to the straight pipe 
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Table 14 .2 

Loss Coefficients for Various P i pe F i t t i ngs 

Descript ion 

Pipe: 
c:ntrancc:s 

Contractions 
and 
expansions 

90° mitc:r 
bend 

90• smouth 
ben<l 

Threaut:J 
p ipe 
fitting, 

Sketch Additional Data 

Sq uarc:-eJg.:d 0.50 '-... lj'j'"(' " '  
� � ... � 
� (> .. ,., . . .  , . ------------------------- ------ -
'-- t · ··tt" I_ · 

-- d 

� r--' . . . r 

�,,, . .. I 
//.","/// .,,,, . .  _.,,_ 

'-- -'  ___ .. 

1
1 �V2 

Jm,d t 
hL = Kc Vz2 /2g 

RuundeJ: rid > 0. 1 2  

D
2
/ D

1 
for K

c 
or 

D
i
f 02 for K

e: 
0.0 
0. 1 
0.2 
0.4 
0.6 
0.7 
0.8 
0.9 

0. 10 

Kc 
K

t: 

0.50 1.00 
0.49 0.98 
0.48 0.94 
0.44 0.71 . 
0.32 0.4 1 
0.23 0.22 
0. 1 5  0. 1 3  
0.06 0.04 

I 

�1 Vm, _w_it_h_o_u_t _v_a_ne_s 
______ 1_._1 _ 

With vanes 0.2 

- d 

\ 
I 

r/d 

2 
4 
6 
8 

1 0  
- - - - ----

Gk,ht: valvt: - w iut: ,ip..:n 
An,;k valve - w i<lt: • >pen 
Gate valve· -wide up..:n 
G;it.: valvc---half  upen 
R.:turn bcnu 
Tee 
QO ·  dbuw 

0.35 
0. 19 
0 . 16  
0.2 1 
0.28 
0.32 

10 0 
5.0 
0.2 
5.6 
2. 2 
1 . 8  
0.9 

45•  dhow 0.4 
------ --- - - ---------- · · ·--· . ·- --· ---
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( tube ) sections and the fitting losses ( hL ).  We have 

and 

h1_2 = hT + hL ( 14 .35)  

2 
L V2 hT = f D 2g ( 14. 36)  

( 14. 38)  

The Bernoulli equation can thus be written as 

V 2 

z 1 + ( 1 + f t + l KL) 2! ( 1 4. 3 9 )  

14.6 THE BERNOULLI EQUATION FOR A PIPELINE W ITH A PUMP ( O R  TURBINE ) .  

When a pump is  included between the reference points 1 and 2 in a 

pipeline as shown in Fig . 14.5, the Bernoulli equation must be modified 

to include a pump head hp. The pump increases the pressure of the 

fluid, thus the pump head should have a sign opposite of that of the 

frictional loss head h1_2 • Equation ( 14. 14) can therefore be modified 

to the form 

( 14. 40) 

If the hydraulic pump power, which is supplied to the pipeline, is P , 
0 

we will have 

( 1 4. 41) 



14/22 

------- --

Fig. 14.5 Pipeline with a pump. 

® 

Gate Valve; half open 

Iron) 

Discharge Piping 
(D=IO cm Cast Iron) 

Valve, wide open 

Fig. E.14.5 
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where �p is the pressure rise due to the pump, A the cross-sectional 

area and Q the volume rate of flow. The power re qui red to drive the 

pump is always larger than the hydraulic power which is supplied to the 

pipeline. We may thus define a pump efficiency np as follows 

Po (hydraulic) n - �---':-"----,--_;_---------------=-
P - Po (supplied by the motor driving the pump) (14. 42) 

More a bout pump efficiencies ca n be found in Chapter 24, Fluid 

Machinery. 

If between the two reference points 1 a nd 2 a turbine rather than a 

pump is present, the turbine head (loss) hTb should have an opposite 

sign to that of the pump, i.e. 

v,2 p1 
2g + pg + z 1 (14. 43) 

In textbooks on thermodynamic:;; the Bernoulli equation (14. 40 or 

14.43) is usually derived from the energy balance for a control volume, 

which yields (for steady, one-dimensional, isothermal flow) 

1 (V 2 - V 2) + g (z2 - z1) + 2 2 1 (14. 44). 

where Wf (= g hf) is the loss of energy per unit mass due to friction 

between sections 1 and 2 and W (= g h )  is the shaft work per unit mass s s 

done by the fluid (positive for a turbine, negative for a pump). 

Introduction of the incompressibility assumption in equation (14.44) 

leads easily to the forms of the Bernoulli equation presented above. 

Example 14.5 

Determine the hydraulic power which is supplied to the pipeline of Fig. 

E.14.5 by the pump, for a water flow rate of 0.02 m3/s (p = 1000 kg/m3 , 
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µ = 10-3 Pa-s). 

Solution 

We will apply equation (14.40) which is 

Here we have 

P1 

z1 

z2 

v1 

"' P2 
"' 

= 0 

= 25 m 

Q = 

]! 
D2 

4 1 

patm 

0.02 1.76 mis = 
* (0.12/ 

= 

v
2 

= lTQ 
2 

= __ o...,..._0 _2-=- = 2.55 m/s 
D .:!!.

4 
(0.1)2 

4 2 

There are: 3 + 10 = 13 m of D=12 cm piping (suction) 

35 + 22 + 70 = 127 m of D=10 cm piping (discharge) 

Three 90° elbows (A,C,D) 

One globe valve, wide open ( B) 

One gate valve, half open (E) 

Thus 

L1 v2 L2 
( f 1 KLA

) 
1 KLE

) h1-2 = -+ -+ <f2 n + KLB + KLC + KLD + D1 2g 
2 

The Reynold's number in the D = 12 cm pipe is 

v2 

2 
2g 



Re = pVD = (103)(1.76)(0.12) 
2. 11 x1 o

5 = 
10-3 

E: 0.2 6 mn 0.0022 = 120 = 
D 

From Fig. 14.3 , we get 

f 1 ::: 0. 0245 

The Reynolds number in the D = 10 cm pipe is 

Re 

..f 
D 

_ pVD _ - -

0.26 = 120 = 

(103) (2,55)(0.10) 
2.55 x105 

10-3 

0.0025 

From Fig. 14.3, we get 

Thus, 

f
2 

= 0.025 

13 1.762 

= (0.0245 0•12 + 0.90) 
2x9•8 

+ (0.025 � + 
(2.55)2 

0.10 
10 + 0.90 + 0,90 + 5.6) 2x9.81 

= 0.56 + 15.99 = 16.55 m 

and equation (14.40) gives 

(1.76)2 (2.55)2 

2x9.81 + 0 + 0 + h
p

= 2x9,81 + 0 + 25 + 16.55 

h = 25 + 16.55 + 0.33 + 0.16 = 42.04 m 
p 

Thus, the hydraulic power is 

14/25 



14.26 

Po = h eg Q = (42.04)(10 3)(9.81)(0.02) = 8248 W 
p 

14.7 SOME COMMENTS REGARDING THE APPLICATION OF THE BERNOULLI EQUATION 

Although the application of the Bernoulli equation to flow problems 

is fairly straightforward, students occasionally face difficulties. 

Some of the difficulties might be avoided by taking into account the 

following comments. 

1. The choice of the reference points, say 1 and 2 can be made 

arbitrarily. The Bernoulli equation is applicable between any two 

points along a single pipeline. However, the calculations might be 

greatly simplified by a suitable choice of the locations of these 

points. The general rule is that the reference points should be chosen 

at locations where the velocity and/ or pressure are known or can be 

easily calculated. Note, also , that in this textbook we use the 

convention that location 1 is always upstream while location 2 always 

downstream (good practice to follow). 

2. There is often confusion regarding the pressure term ( p/ pg) • 

It must be, however , remembered that when choosing the locations of the 

reference points we select the boundaries of the control volume. 

Consequently, the pressures at these points might be determined by the 

conditions outside the control volume. For example in Fig. 14.6 we have 

= Patm' pgH + Patm' is some pressure 

( probably unknown) inside the pipeline. If the reservoir is large 

enough it might be reasonable to asst.nne v1
: 0, however, in general v

2 

has a finite value which is related to v3 and v4 by the continuity 
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------

Fig. 14.6 A sketch of a pipeline with a pump with arbitrarily chosen 

reference points 1, 2,  3 and 4. 
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14. 8 MULTIPLE-PIPE SYSTEMS 

The methods and techniques developed for single pipes are also 

applica ble to multiple-pipe systems. There are some basic rules, 

however, which can be used in order to simplify the computational 

procedures. 

examples: 

We will describe them by referring to three typical 

(a) pipes in series (b) pipes in parallel and (c) the three-reservoir 

pipe junction. 

Fig. 14. 7(a) shows three pipes in series. Obviously the flow rate 

will be the same, i.e. 

or 2 = VCDC 

(14.45) 

(14. 46) 

The total head loss is equal to the sum of the head losses in each pipe 

(14.47) 

Using equation (14.46), we can express the head loss in terms of one of 

the velocities and treat this problem like those involving a single 

pipe. 

Pipes in parallel are shown in Fig. 14.7(b). The head loss will be 

the same in each pipe because the pressure difference is the same. The 

total flow rate will obviously be equal to the sum of the individual 

flow rates. Thus we have 

h1-2 = hA = hB = he 

Q = QA+ QB+ QC 

(14.48) 

(14.49) 

If the head loss is known we can easily calculate the individual flow 

rates and add them up. If the total flow rate is known, we must use a 
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® 
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C ® 

Fig. 14,7 Multiple pipe systems (a) pipes in series, (b) pipes in 

parallel, (c) three-reservoir pipe junction. 
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trial-and-error solution to determine how the flow is apportioned among 

the pipes. Typically we may guess, say, QA = Q/3, compute the head loss 

and hence QA and QB. If the sum QA+ QB + 
QC is not equal to Q we may 

scale up or down our initial guess, recalculate QA' QB and check the sum 

Further iterations may be needed till the 

calculations converge within a certain tolerance. 

We will now consider the three-reservoir pipe junction of Fig. 

1 4.7 (c). The net flow into the junction will obviously be zero. By 

taking the positive direction towards the pipe junction, we may write 

(14.50) 

This means that one or two of the flow rates must be negative i.e. away 

from the junction. The pressure at the junction must have the same 

value no matter which one of the pipes is used for its calculation. 

Thus we have 

2 
P1 PJ LA VA - + z, = ZJ + -+ f ---
pg pg A DA 2g ( 14.51) 

2 
P1 PJ LB VB -+ z

2 
= ZJ + 

-+ f ---
pg pg B DB 2g (14.52) 

2 
P3 PJ LC VC -+ z3 = ZJ + -+ f ---
pg pg C DC 2g 

(14.53) 

Again a trial-and-error procedure is necessary. Typically we may start 

by guessing the quantity zJ + 
p J 

and then compute, check and recompute 
pg 

the rest of the quantities till a satisfactory approximation is 

achieved [8]. 

We may apply the above basic rules and procedures to highly 

complicated piping networks like those for water-supply of cities. Such 
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problems can be found in textbooks on hydraulics [9,10]. The final step 

is always the iterative solution of a large number of non-linear 

simultaneous algebraic equations [ 11 J. 

methods and programs have been developed. 

14. 9 THE BERNOULLI EQUATION FOR GASES 

Recently, efficient computer 

In deriving the usual form of the Bernoulli equation (14. 12) we 

made the assumption that the fluid is incompressible. This is true for 

nearly all liquid flows. For gases the pressure term must be included 

in its original form i.e. before the integration. We have 

v2 d 
+ J _E + gz = cost 

2 p 
(14.54) 

The value of the integral in equation (14. 54) depends on the equation of 

state and the path of the process. However, the assumption of 

incompressibility is also valid for low velocity gas flows. Thus, the 

Bernoulli equation in the usual form ( equation 14. 12) can be applied. 

To show the upper limits of applicability we use a numerical example. 

The tank shown in Fig. 14. 8 is full of air at 20°c and has a rounded 

nozzle through which the air is flowing to the atmosphere. It is 

assumed that the tank is large enough so that the flow is practically 

steady. We choose point 1 inside the tank where the velocity is 

practically z_ero and point 2 just at the nozzle exit where p = Patm. 

The Bernoulli equation for frictionless incompressible flow is 

V 2 
1 

2g 

2 V2 P2 = -- + -2g pg 

Since v1 = 0 and p2 = Patm' we have 

(14. 55) 
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2 ( ) 
112 

P1 - Patm 
(14.56) 

Using the density of air at Patm and T = 20
°
c (p = 1. 14 kglm3) and 

p -Patm = 3 kPa we get v
2 

= 72. 5 mis, which compares rather well with the 

compressible flow calculation (Chapter 15, Section 15.§ v
2 

=70.2 .m/s. 

However, for p1 - Patm = 30 kPa, we calculate V 
2 

= 229 .4 mis while the 

compressible flow calculation yields V 
2 

= 212. 6 rYl/5. As the velocity V 2 

approaches the speed of sound the incompressibility assumption ceases to 

apply. 

14.10 TORRICELLI'S EQUATION FOR TANK DRAINING 

We now consider a tank full of liquid open at the top. There is a 

little hole near the bottom as shown in Fig. 14.9 through which the 

liquid is being drained. The tank is assumed to be large enough so that 

the velocity of the receding free surface can be taken equal to zero. 

We choose point 1 at the free liquid surface and point 2 just outside 

the hole. The pressure at both points 1 and 2 is equal to the local 

atmospheric pressure. Thus the Bernoulli equation for frictionless flow 

reduces to 

Since z1 - z
2 

= H, we have 

V
2 

= (2gH) 112 

(14.57) 

(14.58) 

This is known as Torricelli's equation (after Evangelista Torricelli 

(1608-1647)) for tank draining. Note that equation (14.58) gives a 

draining velocity equal to the velocity of free fall of an object at a 

distance H from rest. 



T=20° C 

Fig. 14.8 Air tank with a smooth , rounded nozzle. 

G) 

Fig. 14.9 Liquid tank draining. 
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14.11 THE BERNOULLI EQUATION FOR UNSTEADY FLOWS 

One of the assumptions introduced in the derivation of the 

Bernoulli equation was that the flow is steady, This assumption 

permitted the elimination of the unsteady state term av; at from the 

Navier-Stokes equation. It is possible, however, to use the Bernoulli 

equation successfully for certain unsteady flows if the time-change in 

velocity is small enough to be ignored, To demonstrate such an 

application we will determine the time it takes a fluid level in a tank 

to drop from H to H (see Fig. 14.10). 
0 

The Bernoulli equation as applied in the previous section is useful 

in this problem. We have, an exit velocity 

v2 = C2gh) 112 (14.59) 

where h is the height, a function of time . Let A1 be the 

cross-sectional area of the tank and A2 the cross-sectional area of the 

hole. The continuity equation gives 

(14 .60) 

where V 1 is the velocity of fall of the free liquid surface (much 

smaller than v2). Obviously, V 1 is equal to the rate of drop of the 

liquid level i .e .  

Combining equations (14.56), (14.57) and (14.58), we get 

or 

dh 

h
1/2 

(2gh) 
1/2 

A 
= .-£ (2g) 112 dt 

A1 

(14.61) 

(14.62) 

(14.63) 

60

61

59



gas 

G) 

h 

® 

Fig. 14.10 Slow drop of liquid surface in a tank. 

water 

G) 

Fig. 4.11 Liquid flow from a pressurized reservoir through a 

constriction. 
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H dh -
J 

0 

h1/2 H 

H 
[-2h1/2] o = 

H 

and 

t.t = 

A
2 

t 
(2g) 1 /2 

- A1 
J 

0 dt 
t 

[ 
A

2 
t 

� 
(2g)1/2 t]o 

t 

_2 (H 1/2 _ H 1/2) 
0 

A
2 / (2g) 1 2 

� 

Letting H 

we get 

= 10m, H 
0 

= 1/100 

t. t 2 (1
2 

- 101/2) m1/2 

97.6 s = 1/2 
= 

(2 X 9. 81 �) 
100 S2 

We note that in this example v2 
= 100 v

1 

justifies the elimination of the 2 

v
2 

/2g term 

V 2 
1 -- + 2g 

V 2 
2 

z1 
= 

2g 

and 

from 

that leads to Torricelli's equation v2 = (2gh) 112• 

(14. 64) 

(14.65) 

(14. 66) 

V 
2 

104 2 which = V 1 ' 2 

the Bernoulli equation 

(14.67) 

1 4,12 PRESSURES LOWER THAN THE VAPOR PRESSURE OF LIQUIDS 

We now consider liquid flow from a pressurized reservoir through a 

constriction, as shown in Fig. 1 4.11. Let us assume an absolute gas 

pressure of 200 k Pa, and a ratio of cross-sectional areas A/ A3 = 0. 5. 

We can apply the Bernoulli equation between locations 1 and 3. We have 

2 V 1 P1 -
+- = 

2 p 

Inside the reservoir v
1 

� o. Thus 

(14. 68) 



Where p1 = 20 0 kPa (neglecting the hydrostatic pressure at 1), 

P3 
= Patm = 10 1 • 33 

Thus 

v
3 

= 14. 0 5  m/s 

and v2 

A3 28. 1 m/s = A v3 2 

may now write the Bernoulli equation for points 1 a nd 2 

v� P1 v� P2 - + - = + 2 p 2 p 

where v1 "' O  

Thus 

For p1 = 20 0 kPa and v2 = 28. 1  mis, we get 

p2 = - 194. 9 kPa 
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(14. 69) 

(14. 70 ) 

(14. 71) 

Negative pressure is physically meaningless. Our calculations are in 

error because we neglected frictional losses at these high rates of 

flow. It is possible, however, to reach at the constriction pressures 

lower than the vapor pressure pv of liquids (for water at 20 C Pv = 2. 34 

while for gasoline at 20°c pv = 55 kPa). Under such conditions bubbles 

of vapor will be formed. The bubbles will be moved downstream and may 
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collapse as they enter regions of higher pressure. Implosion of bubbles 

near metal surfaces for long periods of time has a damaging effect in 

the form of fatigue failure and reduction of efficiency of fluid 

machinery. This phenomenon is known as cavitation and should be avoided 

by proper design (see Chapter 24) .  

14.13 OPTIMAL PIPE DIAMETER 

The selection of pipe diameter is primarily based on economic 

considerations. Large diameter pipes would have higher capital costs 

but lower pumping power requirements than small-diameter pipes. We will 

take these costs into consideration for the simplest kind of economic 

data. 

It is reasonable to assume that the annual cost of pipe 

(depreciation of pipe cost over a number of years) can be expressed as 

C . = Ke D
n L pipe (14 .72) 

where D is the diameter , L the length and K and n are suitable e 

constants which may vary from one year to another. 

For a horizontal pipe without any pressure differences between 

suction and discharge points, the pumping power will be used to overcome 

friction losses, i.e. 

hp h1-2 

L v 2 

= = f --
D 2g 

or 
2 

Po = hp pg Q = (i) 

= L Q
2/(n/4)

2
D

4 

f 15 
2g 

L d f-D 2 D5 

The annual cost of power can be expressed as 

(14.73) 

(14,74) 

Section 19/5



2 3 

C = K Po = K (!:!.) f .£...9_ L power o o n 
2 D5 
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(14.75) 

where K
0 

will depend on power cost requirements to run the pump at a 

given year. 

Thus, the total annual cost will be 

C = 
2 3 

C + C = Ke DnL + K (.:!.) f .£.JL L pipe power on 
2 D5 

We can calculate the minimum total cost C by setting 

dC 
dD = O 

Solving for D, we get 

(14.76) 

(14.77) 

(14.78) 

(14.79) 

The value of index n is usually between 1 a nd 1.5 (see also De Nevers 

( 15) and Denn ( 16)). Thus, the optimal pipe diameter will not change 

very much with the friction factor f because of the exponent 1/(5+n). 

It is also interesting to determine the velocity when the optimal 

pipe diameter is used. We have 

V Q 
(.!)D2 = 

(1!.) [2 
2 4 

( !:!. ) 4 2 1T 

If we take n= 1 ,  we may write 

V = const 

f1/3 p1/3 

Q
n-1 

1 2 2 Ko 5+n f 5+n 5+n 
nK ] p 

(14.80) 

e 

(14.81) 
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Because of the exponent 1/3 there is very little dependance of the 

velocity on the friction factor f and density p of fluids. Ve loci ties 

will vary within a very narrow range for all liquid flows. It turns out 

that for liquids like oil and water the economic velocity will be in the 

range of 1,5 - 2 m/s. 

14.14 FURTHER COMMENTS ON FRICTION FACTORS AND LOSS COEFFICIENTS 

The definition of the friction factor f varies from one textbook to 

another. In Section 14,3 we defined the Darcy-Weisbach friction factor 

as 

f 
hf 

v2 

L avg 

(14.82) 

2g 

Some authors (especially in the areas of heat transfer and aerodynamics) 

prefer the so-called Fanning friction factor instead, which is 

1 f = 4 
v

2 

!::. avg 
D 2g 

(14.83) 

Thus, there wi 1 1  be a factor-of-four difference in all results. 

Consequently, care must be taken in the use of tables and formulae to 

make sure one has the right friction factor. 

The loss coefficient of pipe fittings was defined in Section 14.5 

as 

(14.84) 

We expect that KL should in general be a function of Re. However, in 
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Table 14. 2 we gave constant values of KL for various fittings making an 

implicit assumption that the Reynolds is sufficiently large (meaning Re 

over 105 ). The Reynolds number dependence can be taken into account by 

expressing KL as an equivalent length of straight pipe, i. e. 

K - f (�) L - D equiv. (14. 85 ) 

For example Sabersky et al [17] give for a fully open globe valve 

<t)equiv = 340 and for a 90° standard elbow <t)equiv = 30. Thus to get 

the KL values given in Table 14. 2 we need an approximate f value of 

0. 03. 
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CHAPTER 15 

COMPRESSIBLE FLOW 

15.1 INTRODUCTION 

In previous chapters we have treated exclusively incompressible 

flows. We have only vaguely mentioned that a flowing fluid is said to 

be compressible when appreciable density changes are brought about by 

the motion. The assumption of incompressibility is well-founded for the 

flow of liquids because very large pressure differences are required for 

only small density variations. For example, for 1 percent change in the 

density of water we need a pressure change of 20,000 kPa. Such high 

pressure variations are very seldom encountered in practice. However, 

gas densities can change appreciably even for relatively small pressure 

variations. 

Up to this point, we needed four scalar equations ( the equation of 
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continuity and three components of the equation of conservation of 

momentum) to describe fully a flow field. For compressible flow, 

however , the density and pressure changes are also accompanied by 

temperature changes. Thus, the energy equation becomes coupled with the 

equations of continuity and momentum, we therefore need all six scalar 

equations that were mentioned in Chapter 5, namely 

Continuity equation 
Momentum equation 
Energy equation 
Equation of state p = p(p,T) 

3 components 
1 

TOTAL 6 

The general theory of compressible flow is very complicated, not 

only because of the large number of the equations involved, but also 

because of the wave propagation phenomena that are predominant at flow 

speeds higher than the s·peed of sound. Fortunately, the above equations 

can be highly simplified for many problems. The most important 

simplification is based on the fact that the velocities are high, thus 

the viscous forces are much smaller than the inertia forces and can be 

neglected. Although viscous effects are always important near surfaces, 

they may influence only a small portion of the total flow region. Thus, 

it is reasonable to assume that the flow is one- dimensional (see 

definition of Section 3. 7) . Nearly all of the topics presented in this 

chapter are based on the one-d imensional, inviscid flow assumptions. 

15.2 SPEED OF SOUND 

The speed of sound is defined as the rate of propagation of an 

infinitesimal pressure disturbance ( wave) through a continuous medium. 

Sound is the propagation of compression and expansion waves of finite 
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but small ampl itude such that the ear can detect them . Frequencies 

range from 20 to 20 , 000 Hertz while the magnitude is typically less than 

1 0  Pa . 

Consider a long tube filled with a motionless fluid and having a 

piston at one end , as shown in Fig , 1 5 . 1 ( a) .  By tapping the pi ston we 

may cause an infinitesimal pressure d isturbance ( wave) which will move 

down the tube at a constant speed . The fluid behind the wave is  slighly 

compressed , while the fluid ahead of the wave remains undisturbed . This 

is an unsteady state problem. However , if we assume an infinitesimal 

control vol ume around the wave ,  travelling with the wave velocity a ,  we 

can apply a steady state anal ysis . The wave is thus stationary while 

the fluid flows with an approach velocity a ,  as shown in Fi g .  1 5 . 1 (b) . 

Friction e ffects can be neglected and thus the velocity profile can be 

assumed flat . The continuity equation may be written as : 

p Aa = const ( 1 5 . 1 )  

or 

p Aa = ( p  + dp ) ( a  - dV )A ( 1 5 . 2 ) 

Neglecting infinitesimal quantities of higher order ( d p )  ( dV)  give s 

ad p - pdV = 0 ( 1 5 .  3) 

Applying the l inear momentum balance ( see Sec . 6 .  1 )  to the control 

vol ume , we get 

0 = a ( p Aa)  - (a - dV ) pAa +pA - (p + dp) A 

which further reduces to 

d p  = p a  dV 

By combining ( 1 5 , 3) and ( 1 5 ,5 )  we get 

a2 = � dp 

( 1 5 . 4 ) 

( 1 5 . 5 ) 

( 1 5 . 6 ) 
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p + dp 
a p+dp dV 

T+dT 
dV 

Moving 
Wave 

p 
I p + dp 

V=a I V= a-dV 
p )Ill, I p + dp )Ill, 

T I T +- dT 

'.% 
Fixed 
Wave 

Fig. 15 . 1  ( a) Moving pressure disturbance ( wave) in a motionless fluid 

( b) Fixed wave in a moving fluid 
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This ex pression gives the velocity of propagation of a compression wave .  

It can easily be shown to be also the velocity of propagation of an 

expansion wave .  Since the propagation of infinitesimal expansion and 

compression waves is called sound , a is then the speed of sound . The 

above equation is equally val id for any continuum , be it a solid , a 

l iquid , or a gas . 

Since the pressure and density changes are assumed infinitesimal 

the process can be regarded as reversible . Because of pressure and 

density changes we would al so expect temperature changes . However , 

because of the high speed of travel of the wave there i s  very little 

time for any significant heat transfer to take place , so the process is  

very nearl y adiabatic . A reversible , adiabatic process is  called 

i sentropi c .  Thus , we may write 

a2 = (�) ap s ( 1 5 . 7 )  

For an isentropi c process o f  perfect gas the relation between p and p is 

known from thermodynamics : 

� = const  
p 

( 1 5 . 8 )  

where k = C I C is the rat io o f  speci fic heat under constant pressure to p V 
that under constant volume . k val ues for some common gases are given in 

Append ix B. 

thus 

Equation ( 1 5 . 8 ) can be differentiated to give 

a = (�) 1 /2 
p 

( 1 5 . 9 )  

( 1 5 . 1 0 )  
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Then , using the equation of state for a perfect gas p =  pRT,  we get the 

speed of sound as 

a = (kRT )  112 (1 5. 1 1) 

It should be noted that the constant R depends on the particular gas and 

i t  is rel ated to the un iversal  gas  constant R b y  the relation  

R = R/molecular weight . Equation (1 5.1 1) agrees very well with 

experimental val ues for common gases at atmospheric pressure and usual 

temperatures . For air at 1 5°c, we have 

a =  [ (1. 4) (2 87) (288)]1 12 = 340 mis 

If a continuum were incompressible equation (1 5.6) would give an 

infinite speed of sound . However , no actual l iquid or solid can be 

perfectly incompressible. All materi als have a finite speed of sound . 

representative values for some common materials are given in Table 15. 1 .  

For l iquids and solids it is customary to define the bulk modulus 

as a parameter relating the volume ( or density) change to the applied 

pressure change : 

� - � - d p E = - 6.V /V - 6.p/p - P dp  (15. 12) 

Water ( at 20°c and atmospheric pressure) has a bulk modulus of about 

2. 2 x 1 06 Pa while steel about 200 x 1 06 Pa . The bulk modulus is  

related to Young ' s  modulus of elasticity K b y  the expression 

E 
K = 3 < 1 - 2er) < 1 5. 1 3) 

where er is Poisson ' s  ratio . For many common metal s such as steel and 

al uminum er :  1 /3 and E :  K .  

By combining equations (15. 6) and (15. 12 ) we get 

a = c!) 
1 12 

p 
(15. 14)  

9

9



TABLE 5 . 1  

The speed of sound of some common material s at 1 5° c and pressure of 

101. 325 kPa . 

Gases --
H2 

H e  

Air 

Ar 

CO2 

CH4 

L iquids 

Glycerin 

Water 

Mercury 

Ethyl Alcohol 

Solids 

Aluminum 

Steel 

Ice 

a[m/s] 

1294 

1 0 0 0  

340 

31 7 

266 

1 85 

1859 

1 490 

1 451 

1201 

51 51 

5 059 

320 0  

15/7 
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1 5. 3 COMPRESSIBILITY AND MACH NUMBER 

The definition of bulk modulus can be used in assessing the 

magnitude of compressibility effects. Here , we rewrite equation (15.12) 

as 

(1 5. 1 5 )  

It was stated earlier that a fluid can be considered incompressible if 

the density changes brought about by the motion remain small , that is , 

t:,p/ p « 1. For an approximate estimate of the relative magnitudes of 

pressure and velocity, we may use the simple (frictionless) form of the 

Bernoulli equation , which is 

P v
2 

- + - = const 
p 2 

This indicates that the pressure change should be of the order of 

Thus equation (1 5.15 ) becomes 

and with the help of equation (15. 1 4) ,  we have 

t:, p - .!. cf/ p - 2 a 

(1 5. 16) 

(15. 1 7) 

(1 5.18 ) 

(15.19) 

The ratio of the flow velocity V to the speed of sound is called the 

Mach number, M, after the Austrian physicist and philosopher Ernst Mach 

(1838-191 6). 

V M = -
a ( 1 5. 20) 
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The incompressibil ity criterion can then be stated as 

� :  ..!_ M2 <<  1 
2 

(1 5.21 )  p 

A commonly accepted limit is �p/p � 0.05 which correspond s to about 

M < 0.3 (1 5.22) 

Air flow at stand ard cond itions can thus be considered incompressible if 

the velocity is less than about 1 0 0 m/s. However, nearly all liquid 

flows can be considered incompressibl e since the flow velocities are 

usually small while the speed of sound very large. 

Further, we may give to the dimensionless ratio called the Mach 

number a physical significance. We note that the numerator in Equation 

(1 5.20 ) represents the fluid inertia, while the denominator is related 

to the pressure and density change according to equation (1 5.6). Since 

the pressure change produces an el astic deformation, the Mach number 

represents the ratio of inertia forces to elastic forces. The critical 

Mach number occurs when the two forces are equal , or M = 1 ,  that is when 

the flow velocity is equal to the elastic wave velocity. 

Compressible flows are characterized by their Mach numbers as 

M < 1 Subsonic 

M = 1 Sonic 

M > 1 Supersonic 

Flows with Mach numbers over 5 are sometimes referred to as a 

"Hypersonic". 



15/10 

1 5 . 4  ONE-DIMENSIONAL FRICTIONLESS FLOW THROUGH A DUCT WITH VARYING 

CROSS-SECTION 

For steady one-dimensional compressible flow through a duct of 

cross-sectional area A(x),  the continuity equation (see Chapter 4) 

reduces the simple form 

p(x ) A(x) V(x) = const 

Differentiating and then dividing by pAV gives ( 1 5 . 23)  

( 1 5 . 24 )  

The general form of the x component of the equation o f  conservation of 

manentum (see Chapter 6) is 

av av av 
X X __ X

) v -- + v -- + v = 
x ax y ay z az  

ap 
- - + az  

a
2
v 

X 
µ (--

ax2 

2 2 
a v a v 

+ __ x + __ x) 
ay2 az2 

+ p g 
X 

( 1 5 .  25 ) 

Assuming steady , one-dimensional ( v x 
= V ) ,  frictionless flow and  

negligible gravitational effects , we may simplify the above equation to 

the form 

or 

V dV 
P dx 

V dv 

dp = - dx 

dp 
+ - = 0 

p 

( 1 5 .  26 ) 

( 1 5 .  27 ) 

It is interesting to note that equation ( 1 5 . 27)  is essentially a form of 

the Bernoulli equation (compare to eq. 1 4 . 6 )  and can be written as 

2 

d (!._) 2 
dp 

+ - = 0 
p 

Equation ( 1 5 .  27 ) can al so be put in the form 

( 1 5 . 28)  



V dV + � � = 0 d p p 
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( 1 5 .  29) 

For isentropic flow, the derivative dp/ d p  is equal to the speed of sound 

squared ( eq .  1 5 . 7 ) , thus 

5!..e. = 
p 

V - 2 dV 
a 

Then , by substituting d p/ p in equation ( 1 5 . 24 ) , we have 

V dV dA -
a2 dV + V + A = 0 

( 1 5 .  30) 

( 1 5 . 31 )  

Introducing the definition of Mach number and rearranging gives 

dA 
r

= ( � _ 1 )  dV 
V . ( 1 5 .  32 ) 

Thi s  equation relates the area variation to the veloc ity along the duct 

and leads  to a very important conclusion : Velocity and area changes are 

of opposite sign for subsonic and supersonic flow because of the factor 

M2- 1 .  There are five possibilities which are summari zed in Fig . 1 5 . 2 . 

In the study of incompressible flow presented in previous chapters 

the velocity increases as the area d ecreases . This i s  also true for 

compressible flow at subsonic speed s .  The opposite i s  true for 

supersonic flow. The v elocity decreases as the cross-sectional area 

decreases and it increases as the cross-sectional area increases . At 

sonic velocity M = 1 ,  since infinite acceleration i s  impossible we 

should have dA = O .  Thus , in order to accelerate a stagnant gas to 

supersonic speeds we need ( a) a converging subsonic section , ( b) a 

" sonic" throat and ( c) a diverging supersonic exit . Such a dev ice is  

c alled a converging-d iverging or  de  Laval nozzle and is  schematically 

shown in Fig .  1 5 . 3 .  I t  should also b e  noted that supersonic flow 
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Subsonic 
M< I 

dA <"o 
A 

7 

� 
V decreases 

� .,, 

Fig. 15 . 2  Velocity 

Sonic 
M =  I 

dA =O 
A 

� 

� 

and pressure 

cross-section. 

... 

Supersonic 
M ) I  

d A <O 
A 

7 

� 
V increases 

' 
variation in d ucts with 

Fig. 15 . 3  Converging-d iverging nozzle. 

varying 
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cond itions cannot be achieved unless there is a large enough pressure 

d i f fe r en t i al between the re servoir o f  the stagnant gas  and the 

env ironment at the nozzle exit . 

15. 5 THE BERNOULLI EQUATION FOR ISENTROPIC GAS FLOW 

Although the term Bernoull i  equation is usually reserved for 

incompressible flows , we will retain the terminology to indicate the 

momentum equation for one-dimensional flow. For fr ictionless flow and 

in the ab sence of gravitational effects we have equation ( 15.27), which 

is written here for convenience as 

v2 

1
dp = 2 + p const 

or 

v2 v2 P 1 dp 1 2 0 + f = 
2 2 p 

P2 

For i sentropic flow 

.E.... p1 p2 const = k = k = 

k 
p P1 P2 

Thus 

and 

( (k-1)/k 
P1 

(k-1)/k) P2 

(15. 33) 

( 15. 34) 

( 15. 35 ) 

( 15. 36) 
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2 2 
V1 k 

p
1 V2 k 

p
2 - + - - = - + - - ( 1 5. 37) 2 k-1 p1 2 k -1 P2 

A particularly useful form is for the case v1 
= 0, that is 

( 1 5. 38) 

Utilizing equation ( 15.1 0), we get 

v2 = 
k

2

-1 
2 [ (�)( k -1)/k - 1J (1 5. 39) 

2 
a

2 p2 

or in terms of the Mach number ( M2 = V/ a2) 

This equation is also derived in somewhat different manner in the next 

section. 

We will now use equation (1 5.39) to calculate the air exit 

velocities for the data given in Section 14. 9. We have 

a2 = (KRT2)1 12 = (1.4 x 2 87 x 2 93)1 12 = 343 m/s 

p
2 

= Patm = 101 . 325 kPa 

P1 = Patm + 3 kPa = 104. 32 5 k Pa 

and 

v2 = 10.2 mis 

while for 

P1 
= Patm + 30 kPa = 131 .32 5 kPa 

we have 

v2 = 21 2.6 mis 

k
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1.5 . 6  MACH NUMBER RELATIONS FOR ISENTROPIC FLOW 

In the study of compressible flow, the concept o f  stagnation 

c o n d i t i o n s  has been fo und to b e  v er y  hel pful . These are  the 

temperature , pressure and density at a point in a flow field where the 

veloc ity is zero . Such a stagnation point may ex ist in fact or it can 

be imag ined to exist . For example , to measure the temperature we may 

insert a thermocouple as shown in Fig .  1 5 .  4 .  The moving fl uid would 

come to rest at the thermocouple sur face and the kinetic energy would be 

converted to heat . Thus , the thermocouple would register a temperature 

higher than the temperature measured by a thermometer mov i ng with the 

fluid . Applying the energy equation ( see Chapter 1 3) for steady 

i sentropic flow between the tip of the thermocouple O and a point 

upstream gives 

v2 h + 2 = ho ( 1 5 . 41 )  

For a perfect gas with constant spec i fic heats , the enthalpies may be 

replaced 

C T p 

and C T  respectively ,  thus p 0 

For a perfect gas , from Cp - Cv = R and k = Cp/ Cv we get 

and therefore 

Using equation ( 1 5 . 1 1 )  

( 1 5 . 42 )  

( 1 5 . 4 3 )  

( 1 5 . 44 )  
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V 

W///////////////////////////////////////////4 

Fig. 1 5.4 Thermocouple for measurement of stagnation temperature. 

1 .0 ! 
1 0 . 

: 

0.8 e 
T T 

To i 
0.6 

I 6 
P !  

p 

\ ·� :  
A 

Po A* 

0.4 

p '  I 
4 

p - '\., 
Po Po 

0.2 
I 2 

--
·o 0 

3 4 

M 

Fig. 15 . 5  Isentropic relations plotted as a function of Mach nt.nnber M 

for K = 1. 4 ( e . g .  Air) . 



To 1 T = k-1 2 + -- M  
2 

15/1 7 

( 1 5 .  45 ) 

Further , b y  combining the equation of state with the isentropic process 

relation for a perfect gas we get 

T p ( k-1 ) /k p k-1 
0 (�) (�) ( 1 5 .  46 ) T = p p 

and 

Po ( 1  + k-1 M2) k/ ( k-1 ) ( 1 5 . 47 )  = p 2 

( 1 5 .  48) 

It should be noted that equation ( 1 5 . 47 )  was al so derived in Section 

1 5 . 5  by starting from the Bernoulli equation . Equations ( 1 5 . 45 ) , 

( 1 5 . 47 )  and ( 1 5 . 48 )  are plotted in Fig . 1 5 . 5  for k =  1 . 4 .  

The stagnation val ue s  ( T0 , p0 , p0) are very useful reference 

conditions in compressible flow calculations .  Another set of useful 

reference v al ues are the temperature , pressure and density for critic al 

flow, M = 1 .  These val ue s  are denoted with an asterisk ( * ) .  We hav e ,  

the critical pressure ratio 

= (�/I C k-1 ) 
k+1 ( 1 5 . 49 )  
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the critical density ratio 

= (-2-) 1 /(k-1) 
k+1 

and the critical tempe rature ratio 

T* 2 
T

0 
= k+1 

For a diatomic gas (e.g. air) , k = 1.4, we have 

and 

p* 
Po 

� 
Po 

T* 
T 

0 

= 0. 5283 

= 0.6399 

= 0. 8333 

Further , it is easy to establish other useful ratios such as 

[ (k+1)/2 J k/(k-1) 
k-1 2 1 + -2- M 

(1 5. 50 ) 

(1 5. 51) 

(1 5. 52) 

(1 5. 53) 

(15.54) 

(1 5. 55) 

We can al so derive an area-Mach number relation for the isentropic 

flow of a perfect gas. 

one-dimensional flow gives 

The continuity equation for the steady 

(1 5. 56 ) 

The densities may be expressed as functions of t he stagnation density p 
0 

and Mach number M from equation (15.48) .  The velocities may be written, 

with t he help of equation 1 5.11, as 

and (1 5. 57) 

The temperature may be expressed as a function of T
0 

and Mach number. 

Thus, equation (1 5. 56 )  gives 



and 

A M ( kRT ) 1 12 
Po 1 1 o 

( 1  + k
;

1 r/, ) 1 / ( k-1 ) + 1 /2 

1 k- 1 _2 + -2- � 
( k- 1 2 1 + � M 1 

) 

k+ 1 
2 ( k-1 ) 

P o A
2 

M
2 

( kRTo ) 1 /2 

= ------------

( 1  + -�
--1 

� ) 1 /( k-1 ) + 1 /2 

Taking M
1 = 1 and denoting A 1 by A* ' g ives in general 

k+1 
A 1 k- 1 ; 2( k-1 ) 

1 + --2 ) A* = M k- 1 1 + --2 
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( 1 5 . 58 )  

( 1 5 .  59 ) 

( 1 5 . 60 )  

This equation is plotted in Fig .  1 5 . 5 .  Note the ex istence o f  a minimum 

for m = 1 .  - This  means that the minimum area can occur in the sonic 

throat section . All other duct sections must have A greater than A* . 

E x ample 1 5 .  1 

A spacecraft during re-entry into the earth ' s  atmosphere trav el s at 

M = 5.  Assuming that air is a perfect gas with y = 1 . 4 ,  determine the 

temperature at the frontal spacecraft sur face . The air temperature is  

-56°
c .  

Solution 

We may assume nea r l y  stagnation cond i t i o n s  at the frontal  

spacecraft surface , thus 
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T : T ( 1 + k- 1 tl )  o 2 = (2 73 - 56) (1  + 1 • 4- 1) 52 ) 2 

= 1302 K = 102 9°C 

Although the calculation is not very accurate because of other phenomena 

being also important in this case ( see Reference [ 1  ] )  , it does however 

explain why meteorites and satellites burn up on entering the earth' s 

atmosphere. 

15. 7  MASS FLOW RATE 

The mass flow rate through any cross-section is given by 

m = p AV ( 15.61) 

By using the perfect gas law to replace p and by introducing the Mach 

number, we have 

or 

� = p AaM = �T AM(kRT) 1 12 
= pAM (�) 1 /2 

RT (15.62 ) 

( 15. 63) 

and with the help of equation ( 15. 46) 

(1 5. 64) 

Further, we may use equation (15.47) to express the Mach number in terms 

of the pressure ratio , thus 

• RT 1 /2 m (---2.) 
p A k 

0 

· (15. 65) 

This equation gives the mass rate of flow in terms of reference 

reservoir conditions p T 
0 > 0 )  

the local pressure p and area A. We may 
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also use equation ( 1 5 . 47 )  to express the mass rate of flow as a function 

of Mach n umber in the form 

• RT 1 /2 m (�) p0A k [ 1 + k- 1 M2] ( k+1  ) /2 ( k-1 ) 
2 

( 1 5 .  66)  

Taking the derivative of � with respect to ( p/ p  ) , in equation 0 

( 1 5 . 65 ) , and setting this  derivative equal to zero for a max imum m ,  

yi elds 

( 1 5 .  67 ) 

This  ex pression gives the local pressure that will produce a maximum 

mass rate of flow. For a diatomic gas ( k  = 1 . 4 )  

.E_ = o .  528 
Po 

( 1 5 .  68 ) 

Using equation ( 1 5 .  47 ) it is easy to show that this  pressure ratio 

corresponds to Mach number M = 1 .  Thus the max imum mass rate of flow 

can be obtained from equation ( 1 5 . 66 )  by setting M = 1 and A = A* ( the 

cross-sectional area at the throat) 

• 1 
k+ 1 mmax = Po A -(-RT_)_1_/_2 

0 k 1 2 ( k-1 ) 
(_:t_) 2 

For k = 1 .  4 we have 

m max = 0 , 685 p
o

A* 
( RT ) 1 /2 

0 

( 1 5 .  69 ) 

( 1 5 . 70 )  

In the converging nozzle of Fig .  1 5 . 6  we can increase the flow rate 

b y  lowering the pressure of the receiver p1 down to p1 /p0 = 0 . 528 ( for 

air) to produce M = 1 at the throat . Further decrease of the receiver 
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Reservoir 

Receiver 

> 

m max 1------------� 

3 Choked Flow 

Ci: a, -
en o 
� 0::: 

-----------t....,-----------� P, 
0 0. 528 {Air) 1 . 0  Po 

Fig. 15.6 Converging nozzle. Mass flow rate as a function of pressure 

ratio. 
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pressure p 1 will have no effect on the upstream flow, the flow rate 

remaining equal to mmax as shown in Fig. 1 4 . 6 ,  

A simple intuitive ex planation of this  behavior can be given by 

noting that since the velocity at the exit is equal to the speed of 

sound there is  no way to send information upstream that the exit 

pressure is  lower than the critical pressure p* = 0 , 528 P
0

• The flow is  

then fixed at the critical condition and is said to be " choked" .  If  p 1 

is  less than the critical pressure p* the gas will continue to expand . 

This ex pans ion , however , occurs outside the nozzle in the form of 

expansion waves and shocks ( see Sections 1 5. 9  and 1 5 . 1 1 )  and dissipates 

the energy by friction . 

one-d imensional . 

Under such conditions the flow is no longer 

1 5 . 8  OPERATION OF A CONVERGING -DIVERGING NOZZLE 

We now consider the flow through a converging-diverging nozzle like 

the one shown in Fig .  1 5 .  7 .  The reservoir is at pressure p0 and the 

receiver at pressure p 1 • We will examine what happens as p 1 is  lowered . 

If the receiver pressure is equal to the reservoir pressure , 

p 1 = p0 , there is  no flow ( Case a ,  in Fig . 1 5 , 7 ) . If we lower the 

pressure by a small amount to Pb , a small mass flow will pass through 

the no zzle . The pressure will have a minimum at the throat as shown in 

Fi g .  1 5 .  7 by curve b ,  By further lowering the receiver pressure to Pc 

we can increase the mass rate of flow to such a value as to reach 

critical cond itions ( M = 1 )  at the throat . The nozzle is passing the 

max imum possible flow rate for the reservoir pressure p
0 

and is said to 

b e  " choked " . The pressure versus a x i al d istance v ar i at ion i s  

represented b y  curve c .  
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Fig. 15 .7 Pressure variation and mass flow rate in a converging 

d iverging nozzle. 
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The flow behav ior shown b y  curves a ,  b and c in Fig .  1 5 . 7  is 

e s s en t i a l l y  l i ke the flow of an i n compre s s i b l e  fluid  through a 

constriction . Toe fluid accelerates in the converging section and 

decelerates in the d iverging section .  This type o f  flow behavior will 

occur for an y p 1 value between p and p . For receiver pressures lower . a C 

than Pc there i s  some portion of the flow at supersonic speeds . In 

order for the flow to remain isentropic the Mach number relations of 

Section 1 5 . 6  must be obeyed . Using the ratio ( Ae/ A*) , which is the area 

at the ex it over the area at the throat , we may calculate the ex it Mach 

n umber from equation ( 1 5 . 60 )  and then the corresponding pressure Pe from 

equation ( 1 5 . 47 ) . If the receiver pressure is  equal to the value so 

calc ulated the flow remains i sentropic throughout . Toe mass rate of 

flow is the same as for case c ( choked flow) • Toe Mach number will be 

increasing smoothly from O at the reservoir to 1 at the throat and 

further to the supersonic val ue calculated at the exit . Toe pressure 

will be decreasing with the ax ial d istance from the reservoir as shown 

by curve e .  

If the receiver pressure is  between pc and Pe the mass flow rate 

remains the same as in case c ( or e) . Toe flow accelerates beyond the 

throat to a supersonic Mach number at which a normal shock compression 

( see next section) occurs as shown in Fig . 1 5 . 8. Across the shock the 

pressure r i s e s  abrupt l y  in a highly  reversible  ( therefore non-

isentropic) process . Downstream of the shock the flow is  isentropic , 

subsonic and decelerating . As the receiver pressure is further lowered 

below Pg the normal shock moves closer to the ex it . For p1 = Ph the 

normal shock stand s right at the ex it . Toe flow is identical to case e 

inside the nozzle , but it leaves the exit plane at subsonic speed . When 
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Case g 

Case i 

Case j 

F ig. 1 5  .8 

M > I . 

Normal 
Shock 
Wave 
M< I 

Obliq�e 

Shock 

Waves 

Expar.sior 

Waves 

Normal shock, obl ique shocks and expansion waves in 

converging-d iverging flow. 
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p 1 is between Ph and Pe the flow remains the same inside the nozzle but 

the normal shock is bent and extends into the flow in the form of two 

intersecting oblique shocks (see Fig. 15. 8 and Section 15. 11 ) .  The flow 

is said to be overexpanded because the exit-plane pressure is lower than 

the receiver pressure . As the receiver pressure is further lowered the 

shocks weaken and finally disappear for p1 = Pe · 

When p1 is less than pe an expansion wave ( see Section 15 . 11) 

exists at the nozzle exit as shown in Fig. 15 . 8 . The exit-plane 

pressure is higher than the receiver pressure and the flow is said to be 

underexpanded. 

Further details on the jet flow leaving the nozzle under 

overexpanded or underexpanded conditions may be found in specialized 

books by Shapiro [ 9 ] ,  Liepman and Roshko [ 3 ] ,  Cambel and Jennings [4] 

and Thomson [5]. 

Example 15.2 

0 Air flows from a reservoir where p = 5 0 0  kPa, T = 100  C through a 

converging-diverging nozzle to the atmosphere (assune p = 1 0 0  kPa) . The 

area at the throat is 10 cm2 • Determine the nozzle exit area required 

for isentropic and shock-free flow, the mass flow rate, the Mach number 

and the temperature at the nozzle ex it. 

Solution 

First we note that the pressure ratio p1/p
0 

= 10 0 /5 0 0  = 0 . 2  is less 

than the critical ratio for air (0. 528 ) . Thus the flow will be 

supersonic at least in some portion of the flow field. 

To calculate the Mach number for isentropic flow we use equation 
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(15. 47). We have 

Po = (1 + k-1 �)k/(k-1 ) 
p 2 

For p
0 

= 500 kPa, p = 1 00 kPa, k = 1. 4 we get 

M = 1. 71 

The exit area can be determined from equation (1 5.60) 

k-1 _:? 
A 1 1 + -2- W 
A* = M (-

-
-k---1-) 

1 + -2-

( k + 1 ) /2 ( k-1 ) 

For k =  1 . 4 and M = 1 . 71 we get 

Thus 

A - = 1 , 347 A* 

A = 1 • 34 7 x 1 0 = 13 • 4 7 e 
2 cm 

Next we determine the exit temperature from equation (1 5. 45)  

T o 1 + k-1 M2 
T = 2 

For k =  1 . 4  and M = 1 , 71 we get 

Thus 

T 
0 

1 
= 1. 585 

T = 1 .�85 (273 + 100) = 235 , 4  K = -37, 6°C 

We note that the expansion occurring in the diverging nozzle section is 

accompanied by a considerable cooling of the air stream. 

The mass flow rate for choked flow is calcul ated from equations of 
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Section 15.7. Since the flow is choked we may use equation (15. 70 ) 

• 1 
�ax = 0.685 poA* -

(R
_

T
_

) 
1-/

-
2 

0 

For R = 287 J/kg•K, p
0 

= 50 0, 000  Pa, T
0 

= 373 K and A* 
. . 

mmax = 1. 047 kg/s 

15.9 NORMAL SHOCK WAVES 

2 = 0.001 m we get 

It was explained in the previous section that under certa in 

conditions an abrupt pressure rise is necessary to accommodate the 

pressure imposed at the exit plane of a converging"'."'diver.ging nozzle. 

This process is irreversible and is called a normal shock wave. Shock 

waves are very thin ( usuall y of the order of 1 0-3 mm) and represent a 

discontinuous cha nge of flow properties. The relations between the flow 

properties ahead and after the wave can be established by using the 

conservation principles for a thin control voltune as shown in Fig. 1 5.9. 

Since the control volume is very thin we may take A1 : A2, thus 

continuity : 

l inear momentum: 

energy : 

v2 v2 

1 2 h1 + 2 = h2 + 2 

equation of state for a perfect gas : 

and for constant Cp : 

(15.71) 

(15.72) 

(1 5. 73) 

(15.74) 
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Fig. 1 5 .9 Normal shock wave .  
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F ig. 1 5  •. 1 0  Flow property ratios across a normal shockwave for k =  1 . 4 . 
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( 1 5. 75) 

The equation of cqnservation of momentum (15. 72) may be rewritten as 

= - 1 )  (1 5. 76 ) 

. and using the continuity equation (15. 71) and the speed of sound (15. 10 ) 

yields 

(15. 77) 

where M1 is  the Mach number (v11 a1) .  

By manipulating the energy equation (15.73) and using (15. 11) and 

(1 5. 43) we get 

(15.78) 

Noting that 

(15.79) 

we may el iminate the enthalpy and velocity ratios from ( 15. 77) and 

(1 5. 78) to get 

( 15. 80 ) 

This equation has a solution for p 1 = p2 , which is  of no interest , 

because it represents the case of continuous flow with no shock wave . 

For p1 i p2 we may d iv ide equation (15.80 ) by 1 - p2/p1 to obtain 
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1 P2 k-1 
1 - -- -- = -- +  

k M2 P 1 k 
1 

and solving for the pressure ratio across the shock wave 

2k M2 k- 1 
k+1 1 - k+1 

( 1 5 .  8-1 )  

( 1 5 .  82 ) 

Introducing this expression into equation ( 1 5 . 77 )  and using ( 1 5 . 7 1 )  

yields 

p 1 v
2 k-1 2 

v," = k+ 1 + 
� "2 ( k+1 ) 

and from ( 1 5 .  79 ) 

T
2 M2 ] 

2k M2 -
[ 2 + ( k-1 ) 1 

T 1 1 ( k+ 1 ) 2 

Further manipulation leads to 

k-1 M2 + 2 1 

.2 k-1 
k M, 2 

( 1 5 . 83 )  

( k-1 ) 

� 

( 1 5 .  84) 

( 1 5 .  85) 

The stagnation properties ahead and after the wake can be obtained from 

the above equations by taking v1 = 0 and v
2 

= O. We have 

( 2k M2 _ k-1 ) 1 / ( 1 -k)  ( 2 k-1 ) k/(1 -k) 
k+ 1 1 k+1 M2 + k+ 1 ( k+1 ) 1 

( 1 5 . 86 )  

The above relations are plotted a s  a function of the Mach number M1 for 

a diatomic gas k = 1 . 4 ,  in Fig .  15 . 1 0 .  We note that across a shock wave 

the pres s ure increases  greatly wh i l e  the d e n s i ty and t emperature 

increase mod eratel y .  The upstream flow is  supersonic while downstream 
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the flow is  subsonic . 

Normal shock waves occur not onl y  in supersonic duct flows but also 

in front of objects travelling at supersonic speeds .  Shock waves are 

generated also in the laboratory in a device called shock tube by 

rup.turing a diaphragm separating a region of high pressure from region 

of low pressure . When such a rupture occurs the shock wave is not 

stationary b ut it  moves from the high to the low pressure region . For 

such a mov ing shock wave we can apply all the equations developed in 

this section by using a control vol ume moving with the wave . Shock 

tubes are used in the study of gas properties and reaction rates at very 

high temperatures ( 6 , 7 , 8 ] .  

Example 1 5 . 3  

A ground level explosion creates a spherical shock wave which 

propagates in still air at 1 0 1 . 325 kPa and 1 5°c .  Th·e max imum registered 

gage pressure inside the wave is 1 000 k Pa .  Assuming that the spherical 

wave can be approx imated as a mov ing normal shock determine the wave 

speed and the air velocity immed iately  behind the wave . 

Solution 

We take a control vol ume moving with the shoe k wave at speed V 
1 

. 

Thus 

where a
1 

is  the velocity of sound in air at 1 5°c 

a
1 

= (kRT) 1 12 = ( 1 . 4  x 287 x 288 ) 1 12 = 340 m/s 

M
1 

can be determined from the pressure ratio across the shock with the 



1 5 /3 4  

help of equation (1 5. 82). For 

we have 

. 1 o .  87 

and 

1000 + 1 0 1 . 325 = 101. 325 1 o. 87 

= 2 x 1. 4 M2 _ 1 . 4-1 
1. 4+1 1 1. 4+ 1 

v1 = 3. 076 x 340 = 1 045. 7 m/s 

From equation ( 1 5. 83) we calculate v
2 

v2 k-1 2 - = -- + ----
v 

1 
k+1 (k+1) M2 

1 

2 
V 2 1 . 4- 1 

v = 1. 4+1 + 
1 ( 1. 4+1)(3.076/ 

v2 = 266. 4 m/s 

= 0. 2548 

Thus the air velocity immedia tel y  behind the wave will be 

v = v
1 

- v2 = 779. 3 mis 

This resul t is in a greement with the ob se rvation that  powe rful 

explosions cause a brief flow of air at very high speeds. 

1 5. 1 0 COMPRESSIBLE PIPE FLOW WITH FRICTION 

We now consider the adiabatic compressible flow of a perfect gas 

with friction , in a long pipe of consta nt cross- se ctiona l a rea 

(A = nD2 /4). 

For one-dimensional flow the continuity equation gives 
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1//////////////////////////////////////////////////////////L////4 
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Fig. 15.11 Control volume for compressible pipe flow with friction. 
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pV = A = const (15. 87) 

or 

(15. 88)  

The· equation of  conservation of  linear momentum may be written as  ( see 

Fig. 1 5.11) 

or 

n02 n02 

P -4- - (p + dp) 4 

4, dx w 
p V dV + dp + --0-

'w nO dx = m (V + dV - V) ( 15. 89) 

= 0 (15. 90) 

and by introducing the Oarcy-Weisbach friction factor (see Sections 10.6 

and 14. 3) 

1 fp v2 
'w = 8 (1 5. 91) 

we have 

pV dV + dp + 
fp V2 dx 

20 = 0 (1 5. 92) 

The equation of conservation of energy is 

v2 
h + 2 

= const (15. 93) 

or 

C T v2 
const + -

p 2 (15. 94) 

C dT· + VdV = 0 (15.95) 

The perfect gas law 

p = pRT (15. 96) 
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can be differentiated (after taking the logarithms) to give 

(15 , 97) 

Thus we have four differential equations (1 5. 88, 15.92, 15 , 95 and 1 5 , 97) 

and four unknowns p, p , T and V. It is impossible to eliminate all 

variables and get closed-form solutions for p(x), p (x) , T(x) and V (x). 

However, it is possible to express all the variables as functions of the 

local Mach number M = M(x) 

where 

or 

V M = -
a 

k 1/2 

a = (-2) 

The momentum equation (1 5 , 92 ) can be rewritten as 

(15.98 ) 

( 15. 99) 

(1 5.100) 

k-� dV  dp  kf M2 d x  (15 , 101 ) t1 V + p + 2D = O 

The energy equation (1 5. 95 )  for Cp = kR/(k-1 ) can be expressed as (see 

Section 15, 6):  

To 
T = -----

1 + 
k-1 M2 

2 

which gives 

dT r = (k-1 ) MdM 

1 k-1 2 
+ -2- M 

(15. 102 ) 

(15 , 103) 
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Using ( 1 5 . 88 )  and ( 1 5 . 1 0 3 )  to replace dp/ p  and dT/T in  equation ( 1 5 . 97 )  

yields 

d p  dV ( k-1 ) MdM 
p = -

V - 1 + k-1 M2 
2 

The. Mach number may be written as 

V M = V = ----
(KRT) 1 12 

By taking the logarithms and then differentiating , we have 

( 1 5 . 1 04 )  

( 1 5 .  1 05 )  

( 1 5 . 1 06 )  

Finall y ,  combining equations ( 1 5 , 1 01 ) ,  ( 1 5 . 1 0 3 ) , ( 1 5 . 104 )  and ( 1 5 . 1 06 )  

gives 

( 1 5 . 107 )  

From thi s  equation we can easily conclude that for subsonic flow 

( M  < 1 ) , dWdx > 0 ,  which means that the Mach number increases with 

distance . For supersonic flow ( M  > 1 )  the opposite is true , dM/dx < 0 ,  

which means that the Mach number decreases with di stance . Thus this 

theory predicts that the effect of friction in a constant area pipe is 

to cause the Mach number al ways to approach unity.  This can occur· only 

at the ex it where for M = 1 ,  dM/dx = O .  

Equation ( 1 5 . 1 07 )  can be integrated from some position in the pipe 

where the Mach number has a given value to a criti cal length where 

M = 1 .  We have 

kf 
20 

Lcrit 
l 

1 
fdx = J 

M 
( 1 5 . 1 08 )  
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By assuming a constant value of the friction factor and integrating , we 

get 

2 2 
L _ D [ 1-M + k+ 1 tn ( k+1 ) M J crit- f kM2 2k 2 + ( k-1 ) M2 ( 1 5 .  1 09 )  

Al though f varies somewhat with the Mach n umber , the above equation is  

reasonably  accurate for subsonic flow with an average f calculated from 

the Moody chart . For supersonic flow of air , measurements [9 ] give 

friction factors up to 50 percent less than the Mood y chart . When the 

exit Mach number is unity the flow is said to be choked . If the actual 

length of a pipe L i s  less than the critical length L · t the flow at cr1 

the exit may be subsonic or supersonic depending on inlet conditions and 

the presence or lack of shocks ( see also Section 1 5 .  8 ) . The question 

may be asked as to what will happen if we increase the actual length 

beyond Lcrit · We may d istinguish two cases . 

( a ) Inlet flow subsonic . 

Let Leri t be the critical length for an inlet Mach number .M
1

• By 

increasing the actual length L > L . t the inlet Mach number will be cr1 
reduced so that at the ex it we will always have M = 1 .  The Mach number 

reduction is accompanied by a reduction in flow rate and the flow is  

said to be choked by  friction . 

( b )  Inlet flow supersonic . 

Friction has an enormous influence on supersonic pipe flow. For 

example  for M = 4 we may calc ulate from equation ( 1 5 . 1 09 ) 

Lcrit = D/f x 0 . 633.  Thus if we take ( see Moody chart , Fig .  1 4 . 3) an 

approximate val ue of f :  0 . 0 1 5  we find that only 42 diameters of pipe 

length are needed to reach sonic velocity at the ex it . If L i s  

increased beyond 42 D ,  the flow will not choke but a normal shock will 
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form so that the subsonic flow immed iately behind the shock reaches the 

sonic point at the exit . By further increasing the length the shock 

will move back toward s  the inlet and eventually will produce choked flow 

conditions , which will be evidenced by a reduction in the mass rate of 

flow. 
* * 

In compressible pipe flow calculations the ratios p/p , p/ P 
* * 

T/T , V /V are very useful . p ,  p ,  T and V represent the upstream 
* * * * 

conditions and p , p , T and V the critical conditions at the pipe 

exit . All these can be expressed as functions of the upstream Mach 

number . By man ipulating the Mach number , relations of  Section 1 5 . 6  and 

the continuity e quation we get 

k+1 
p 1 ___ 2 __ ) 1 /2 * = M < k-1 2 p 1 + -2- M  

* 
P V 1 1 + k-1 M2 1 /2 

( 2 ) * = V 
p 

= M ___ k_+_1 __ 

T k+ 1 

T* = 
2 + ( k-1 ) J 

Example 1 5 . 4  

2 

( 1 5 , 1 1 0 )  

( 1 5 . 1 1 1 )  

( 1 5 . 1 1 2 )  

A 25 cm diameter pipe discharges air at atmospheric pressure 

( p = 1 0 1 .  325 k Pa) at sonic velocity. Determine the upstream length 

where p = 500 kPa if the pipe is made of galvan i zed iron , Al so , 

determine the velocity at this upstream location and the mass rate of 

flow through the pipe . The air stagnation temperature in the pipe is 



Solution 

For a pressure ratio 

* 
p 

500 
= -1

.....;
0

"-1.-:3"7
2
=5 = 4. 9346 from equation ( 15.110), by 

trial error we get approximately 

M = 0.2 42 
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It should be noted that tables of p/p etc. versus M are available in 

many textbooks ( see for example reference 10). The temperature can be 

calculated with the hel p  of equation (15. 45 ) 

To T = ------
1 + k- 1 M2 

2 

T = 2 73 + 80 = 349 K 
1 + 

1 -�-1 ( 0.2 42)2 

The speed of sound for this temperature is 

a = (kRT) 1 12 
= (1.4 x 2 87  x 349) 112 

= 374.5 m/s 

Thus the air velocity is 

V = Ma =  0. 242 x 374.5 = 90.6 mis 

The mass rate of flow is 

m = p AV 

The density can be determined from the perfect gas law 

Thus 

P - L - RT 
500,000 3 

: 2 87  X 349 : 4• 99 kg/m 

0.2 52 

m = 4.99 n 4 90.6 = 22. 18 kg/ s 

The pipe length can be cal culated from equation (15.109), we have 
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L crit = 

crit = 

D 
f 

D 
f 

2 
1-M k+ 1 

[--2 
+ 

2k tn 
k M 

1-0 .242
2 

[ 
2 

1 .  4 X 0.  242 

D 
f 9 .  1 9  

( k+1 ) M2 

2
] 

2 + (k-1 ) M 

1 . 4+ 1 ( 1 • 4+ 1 ) 2 
X O 0 242 ] .tn 

2x 1 . 4  
2 + ( 1 . 4-1 ) 0 . 242

2 
X 

From the Moody chart ( Fig . 1 4 . 3)  for EID = 0 . 15/250 = 0 . 0006 we select a 

val ue ( constant for high Re) f :  0 . 0 1 7 5 .  

Thus , Lcrit = o�o�i5 x 9 . 1 9  = 1 3 1 . 29 m 

1 5 . 1 1  OBLIQUE SHOCKS , EXPANSION WAVES AND THE SONIC BOOM 

In on e-d imen s i onal supersonic flow only  normal shocks , i . e .  

discontinuities normal to the flow, are possible .  We now consider the 

two-dimensional flow over a wall with a change in direction as shown in 

Fig .  1 5 . 1 2 . In subsonic flow the streaml ines wil l  adjust gradually  to 

the change in direction ( Fig . 1 5 . 1 2 ( a) ) .  In supersonic flow no 

i n format i on can propagate upstream to signal  the flow to ad j ust  

grad ually to the change in  d irection . Thus the flow changes direction 

abruptl y by passing through a d iscontinuity called oblique shock ( Fig . 

1 5 . 1 2 ( b) .  

For a change in the flow direc tion l ike the one shown in Fi g .  

1 5 . 1 3 , boundary layer separation and flow reversal will take place in 

subsonic flow ( Fig . 1 5 . 1 3 (a) ) . Abrupt d iscontinuities cannot be formed 

in such an expansion turn , when the flow is supersonic , in contrast to 

the compression turn of Fig .  1 5 . 1 2 (b) . The change in flow d irection is  

accomplished through a " fan" of  waves usually called P randtl-Meyer 

e xpansion waves ( Fig . 1 5 . 1 3 ( b) ) .  



Oblique 
Shock 

( a )  

( b )  

Fig. 15 . 12 Turning flow patterns (a ) incompressible and 

( b) canpressible. 
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Highly Irregular 
Wake Flow 
Region ·· 

( a ) 

Expansion 
Waves 

( b ) 

Fig. 15.13 Expanding flow patterns ( a) incompressible and 

( b) compressible. 
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The fl o w  after an obl ique shock may be e ither sub so n i c  or 

supersonic , dependi ng on the flow deflection angle . The flow in an 

expansion results in an increase of the Mach number because of the flow 

area widens . For more details the reader i s  referred to introductory 

texts l ike White [ 1 0 ]  and Sabersky et al . [ 1 1 ] or the spec ial i zed 

references [ 2-5 ] .  

Let us now examine the shock structure in front of a blunt body 

travelling at supersonic speeds in the atmosphere . There will be a 

normal shoc k ,  a strong oblique shock and a weaker oblique shock further 

out as shown qualitatively in Fig . 1 5 . 1 4 . The weak oblique shock waves 

that reach ground level produce the sonic boom of supersonic aircraft . 

To better ex plain this phenomenon we re fer to Fig . 1 5 .  1 5  where the 

pressure d isturbances ( sound waves) at times At equal to - 1 , -2 , -3,  -4 

are shown . In Figure 1 5 . 1 5 ( a) the object i s  stationary and the 

d istribution of d isturbances is symmetrical about the source . When the 

object moves sub sonicall y ( Fig.  1 5 . 1 5 ( b) )  the d isturbances are no longer 

distributed symmetricall y .  When the object moves at exactly the speed 

of sound the d i sturbances pile up exactly at the position of the object 

to produce a l ine of concentrated action ( i .e .  a shock wave) which i s  

usually called a Mach wave ( Fig . 1 5 . 1 5 ( c) ) .  The di sturbance-free region 

ahead of the object is called the zone of silence . At supersonic speeds 

the di sturbances are confined within the so-called Mach cone ( Fig . 

1 5 . 1 5 ( d) ) .  An ob server on the ground does not hear a plane passing 

overhead until the plane is well past . The pil ing up of di sturbances on 

the Mach cone surface produces the famil iar sonic boom . 

Fig.  1 5 . 1 5 ( d) we have 

aAt a 1 
sinµ = 

VAt 
= 

V 
= 

M 

Refering to 

( 1 5 . 1 1 3) 



15/46  

Strong 
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Normal 
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Fig. 15 .14 Schematic of shock wave formation in front of a blunt body 

travelling at supersonic speeds. 
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Zone 
Of  
Action 

Fig. 1 5.1 5 Pressure d isturbances ( waves) generated by a stationary 

( a) and moving object ( b) ,  ( c) and ( d) .  
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and the Mach angle is 

. -1 1 µ = sin M (15.114) 

More on sonic boom, shock waves etc. can be found in references [12, 13]. 

E xample 15 . 5  

A supersonic aircraft travel s at an al titude of 12, 000 m with a 

Mach number M = 2. Determine the position of the aircraft when an 

observer on the ground hears the sonic boom. Neglect the variation of 

sound speed with altitude . 

Solution 

We refer to Fig. E15.15. We have 

Thus, the horizontal distance will be 

L = 12 ,000 = 
tan30° 

20, 783 m 

1�1 2 EFFECT OF COMPRESSIBILITY ON DRAG 

As it was explained in Chapter 12, the total drag in incompressible 

flow is due to frictional resistance and the phenomena accompanying the 

wake formation. In subsonic flow as the Mach number increases there is 

a slight increase of the drag coefficient due to the compressibility 

effects on pressure distribution. A sharp increase is observed as the 

local Mach number reaches unity at some point on the body (depending on 

contour) because of the generation of shock waves. The drag coefficient 



12,000m 

�------- L= ? --------� 

Fig. E.15 .5  
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2.0 ,------r----.----,----.--,------.----......---.---.---, 

0.5 
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v, Projectile 
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0. 1 

Fig. 15 . 16 

0.2 0.3 0.4 0.50.6 0.8 1.0 
vtrJ Moch Number , M = a 

2.0 3.0 4.0 5.0 6.0 8.0 

2 The drag coefficient (c0 = 1/2 p V A, where A is the frontal 

area) as a function of Mach number at Re = 104 , according 

to Rouse [ 14 ] .  
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continues to increase as the Mach number increases, reaches a maximum 

and then decreases. Figure 15. 1 6  shows the drag coefficient as a 

function of the Mach number M = V /a, for a Reynolds number of 

approximately 1 04, from reference [ 14 J. It can be seen that the drag 

coefficient increase around M = 1 is smaller for the projectile than for 

the sphere or the cylinder. The reason for this is that the projectile 

has a sharp nose and the normal and oblique shock waves are smaller and 

weaker than those generated in front of the other two bodies. 

When studying the effect of Mach number on the drag coefficient the 

Reynolds number must also be taken into account. Thus three dimensional 

contour plots are required ( 15,1 6 ]  to express the relation Cn=f(Re0, M). 

1 5.13 PRESSURE WA VES IN LIQUIDS - THE WATERHAMER 

We consider the reservoir and pipeline system shown in Fig. 1 5.17. 

Whenever the valve is closed rapidly a pressure wave in the liquid is 

generated that travels upstream with approx imately the speed of sound, 

which is given by equation (15.14) as 

a = cf) 
1 /2 

p 
(15.115 ) 

where E is the bulk modulus of elasticity and p the density of the 

liquid. 

The wave reaches the reservoir and is reflected back towards the 

valve while the fluid begins to flow back from the pipe into the 

reservoir. When this wave reaches the valve it causes an expansion wave 

to move back towards the reservoir. This expansion wave reaches 

eventually the reservoir and results in a liquid flow from the reservoir 

towards the valve again. Thus a full cycle is completed at time 



t = C 
4L 
a 
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( 1 5 . 1 1 6 )  

The whole process repeats itse l f ,  but in a few cycles the available 

energy is reduced to zero by friction and all motions stop . Streeter 

and Wylie [ 1 7 ]  note that " the sequence of events taking place in a pipe 

may be compared with the sudden stopping of a freight train when the 

eng ine  hi ts an immovable object" . 

The setting up to pressure waves in a liquid in a pipe is  known as 

the waterhammer phenomenon . It occurs in pipeline systems when starting 

or stopping pumps or turbines and when closing valves quickl y .  Under 

certain conditions extremely large pressures with destructive effects 

may be developed . 

The max imum pr essure  developed b y  the wav e  formation and 

propagation may be determined by applying the l inear momentum principle 

( Sec . 6 . 1 ) ,  for a thin control volume around the wave ( Fi g .  1 5 . 1 8 ) . For 

a control volume mov i ng with constant velocity ( see also Sec .  1 5 .2 )  by 

neglecting frictional effects , we have 

(V + a) p2Aa - ap2Aa + p 1A - ( p  + �p) A =  0 ( 1 5 . 1 1 7 ) 

Because of the small compressibility of liquids we may take P 1 : P2 = p , 

thus 

�p = paV ( 1 5 . 1 1 8 ) 

Under certain conditions the pressure developed can be very high . High 

peak pressures can be avoided by properly timing the starting and 

stoppi ng of turbomachinery ,  the closing of valves , and by using surge 

tanks [ 1 7 , 1 8 , 1 9 ]  ( see Fig .  1 5 . 1 9 ) . 
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... 

Fig. 1 5 . 1 7  Reservoir and pipeline system with a rapid closing valve.  

v, 

P1 
P, 

a 

Moving 
Wave 

I I 

I I 
I I 
I I 

I I 

F ixed 
Wave 

1/, 

Fig.  1 5  . 1 8  Notation for a moving and a fixed pressure wave in a 

pipelin e .  
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Example 15. 6 

Water flows from a reservoir through a pipeline a.t an average 

velocity of 1.80 mis . The gage pressure in the pipeline is 300 kPa. 

Sudd enly a valve is closed . Determine the maximum pressure developed in 

the pipeline (for water ,  take p = 1000 kg/m3 and E = 2.20 x 106 kPa). 

Solution 

The velocity of sound in water is 

Thus 

a nd 

a = (�) 1 /2 
p 

Ap = p aV = 

= 

the maximum 

Pmax = P + 

9 : (2 .20 X 10 ) : 

10 3 

103 
X 1483 X 1 .  8 

2669 kPa 

pressure is 

AP = 300 + 2669 

15. 14 CONCL UDING REMARKS 

1. 483 m/ s 

= 2969 kPa 

In this chapter we presented an analysis of one-dimensional ,  

inviscid compressible flow. With these simplifications we were able to 

express many important results in the form of algebraic equations. 

These results are in reasonable agreement with experimental measurements 

for many compressible flow problems. The inviscid flow approximation is 

valid for even a larger class of compressible flow problems because of 

the high velocities involved (i.e. inertia forces are much larger than 

viscous forces). However , the one-dimensional flow approximation does 

not hold for flow around bend s ,  corners ,  etc. Under such conditions we 

may write the continuity and momentum equations as 
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Reservoir Surge Tank 

, r._ _____ -v ... L_ ________ __, X 

Fig. 1 5 . 1 9  Surge tank on a pipel ine. 

Fig. 1 5 .2 0  Sketch of a modern super sonic aircraft. 
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By further assuming an irrotational ( v x V = 0) and barotropic fluid 

( p  = f( p) ) and introducing the speed of sound , it is possible to obtain 

a s i ngle equation in terms of a velocity potential ct, ( see for example 
\ 

references [ 2 , 1 1 ] ) .  This equation is non-linear and very d ifficult to 

solve in general . However , for certain flow problems thi s equation can 

be red uced to a linear hyperbolic differential equation which can be 

solved by the method o f  separation of variables or more commonly by the 

method of characteristics . These topics  are beyond the scope of the 

present book and the reader is advi sed to consult references [2-5 , 

1 1 -1 3 ] .  

For supersonic aircraft the designer faces up to three-dimensional 

problems . Because of the exi stence of shocks and expansion waves the 

drag coefficient is much larger than for the subsonic case . To minimi ze 

the drag the wings are given a large "sweepback" angl e ( see Fig . 1 5 . 20 ) . 

Thus the component at the velocity normal to the wings i s  made smaller 

t han the s peed of so und a nd the a i r fo i l s  are thus operating 

sub sonical l y .  The drag due to the fuselage i s  min imi zed b y  tapering the 

nose to a needle point . Wind tunnel tests are performed to determine 

the shape changes required for optimum performance , which are difficul t 

to be obtained frcxn theory alone . 
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CHAPTER 16 

OPEN-CHANNEL FLOW 

1 6. 1  INTRODUCTION 
Open-channel flow i s  the motion o f  a l iquid in a conduit with a 

free sur face . The flow is partially enclosed by a solid boundary and 
i'ts top ( free) surface is ma.intained at a constant pressure ( nearly 

always atmospheric) . Open-channel flows are encountered in nature as 
well as in en�ineer ing .  Natural examples includ e now in river s ,  
streams and estuaries while engineering applications include flow in 
i rr igation channels , canals ,  d rainage d itches and sewers . 

The presence of the free surface both simpl i fies and compl icates 

the analysis . The simpl ification is d ue to the fact that the pressure 
is constant along the free surface and , thus , does not enter directly 
into the analysis .  The complication ar ises from the fact that the shape 

o f  the free surface is not known a priori and thus it must be determined 
in the course of the analysis .  Actual channels encountered in practice 
can be of simple geometrical shape such as aquaducts or extremely 

complex such as tree-lined floodplain s .  

In this chapter we present a highly simplified analysis o f  flow in 
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open-channels. De spi te the simplifications this analysis leads to many 

results of considerable practical importance. Some more details on this 

subject may be found in hydraulics textbooks [ 1, 2] and much more in 

speciali zed books on open channel flows [3-9]. 

16. 2 FLOW CONFIGURATION AND CLASSIFICATION 

Most open-channel flows encountered in practice are turbulent. On 

the solid boundary the no-slip condition is satisfied while the free 

surface exhibits negligi ble resi stance due to the contact wi th air ( see 

Section 7.  17). The velocity profiles are very complex and depend on the 

shape of channel. Velocity measurements show that the maximum velocity 

does not occur on the free surface, as one might anticipate, but at a 

depth a pproxima tely 20 percent below the free surface. This i s  

apparently due to secondary flow occuring in open channels a s  shown 

schematically in Fig. 16. 1. The complexity of velocity profiles 

i ncreases with the complexity of channel geometry. 

Very li ttle work has been done on the theoretical determination of 

velocity profiles in open channels because of the complexity of the 

boundaries and of the physical phenomena involved. The usual approach 

is  to use the one-dimensional flow approximation as the fluid flows in ,  

say, the x-direction with average velocity V ( x) at  cross-sectional area 

A (  x) . However , with the recent developments on finite d ifi ference and 
fini te element methods ( see Chapter 25 ) many complicated problems can be 

solved without the need to resort to the one-dimensional approximation. 

For frictional loss calculations we may use the Moody chart ( see 

Section 14. 4) wi th hydraulic diameter given by the usual definition 

D = 
4 x cross sectional area 

H wetted perimeter 
( 1 6. 1 ) 

Thus for a rectangular channel of wi dth W and depth h as shown in Fi g. 

1 6. 2,  we have 

4 Wh DH = W+2h ( 1 6. 2 )  

The more conventi onal way for open-channel flow, is  to define a 
h ydraulic radius which is  one-fourth of the hydraulic diameter ,  i . e .  



Maxi_mum Velocity Seconda.ry Flow 

Contours of Constant Velocity 

F ig. 1 6 . 1  Typical flow pa_tterns in an open channel . 

,.... w---� 

F ig. 1 6 .2 A rectangul ar open channel . 
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1 6/4 

R = cross-sectional area 
H wetted perimeter 

( 1 6. 3 )  

This  d efinition wi ll be used in the Ch�zy and Manning formulas that are 

d i scussed in the Section 1 6. 4. 

Open-channel flows can be steady or unsteady and can be classi fied 

as uniform or varied flows depend ing on the depth variation . In uni form 

flow the fluid depth z above the channel bed remains constan t .  Varied 

flow is the flow where the de pth changes and c an be further cl assi fied 

as gradually varied or r apidly varied flow . Un i form and gradually 

v ar ied flows c an be analysed with the one-d imen sional flow approximation 

while  rapidly var ied flows require multid imensional flow theory.  

1 6. 3 LAM INAR F L(J.,l OVER AN  INCLINED SURFACE 

Laminar flow o f  a l iquid film over a flat plate was examined in the 

context of  fully d eveloped unid irectional flow in Sec tion 7. 8. It was 

found that the veloc ity pro fi le is g iven by 

V 
X 

�2 . 0 2 
= pgu sin [1  _ (1) ] 2µ o 

and the film thickness by 

( 1 6. 4 )  

( 1 6 .  5 )  

where p is  the density,  µ i s  the viscosity,  W the plate width ,  Q the 

v olume flow rate and 0 the angle with the hori zontal , as shown in Fig . 

1 6. 3 .  

1 6. 4  F R ICTION LOSS IN UNIFORM FLOW : THE CHEZY AND M ANNING F ORMULAS 

De pend ing on the Re ynolds n umber o pen c hannel flow can be 

cl assified as laminar or turbulent .  The definition of  the Reynolds 

number for open channel flows is usually based on the hydraulic diameter 

( see equation ( 1 6. 3 ) )  

( 1 6. 6 )  



6 Laml. nar flow over an incl ined sur face • F ig. 1 . 3 
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z cot e 
I ,..... ,.. 

Fig. 1 6 .4 Geometr i c al cha r ac ter i st i c s  o f  an o pen c hannel o f  
trape zoid al cro ss-sec tion . 
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Tran sition from laminar to turbulent flow occur s over the Reynolds 

number range of 5x 1 o2 and 2 x 1 03• In this section we will assume that 
the flow i s  ful l y  turbulent when the Reynolds number is larger than 
1 00 0 .  

We consider uni form flow i n  a long straight channel o f  constant 
s l o pe , con stant  d e pth and con stant cros s-sec t i on . The Berno u l l i  
e quation with fr iction ( Section 1 4 . 3 ) is  

Since p - p - p and v 1 = V we have 
1 - 2 - atm 2' 

- z 2 

( 1 6. 7 )  

( 1 6 .  8 )  

When the c hannel makes an angle e with the hori zontal we d enote the 
slope as 

Thu s  

s = tane 
0 

h = z - z : S L 
f 1 2 o 

( 1 6. 9 )  

( 1 6. 1 0 )  

For u n i form o p en-c h annel flow w e  may u s e  the Darcy-We i sbach 
d efin ition for the fr iction factor ( Sec . 1 4. 1 4 ) . We have 

v2 

h : f � � ( 1 6. 1 1 )  f DH 2g 

where f is the friction factor , L the length of the channel , V the avg 
average velocity and DH the hydraulic d i ameter which is related to the 
hydraulic rad ius RH by 

Comb ining equation s ( 1 6. 9 ) , ( 1 6. 1 0 ) , ( 1 6. 1 1 )  and ( 1 6. 1 2 ) we get 

V avg = (�)
1 /2 

(R S ) 1 /2 

f H o 

( 1 6. 1 2 )  

( 1 6 .  1 3 ) 
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Fig .19. 7. 



thus we may write for the input shaft (brake) power 

The dimensionless grouping 

C 
p 

is called the power coefficient. 
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(19.18) 

(19.19) 

(19.20) 

It is interesting to note th.e effect of rotational speed (N 3 ) and 

the more dramatic effect of impeller size (D5) on input shaft power. 
The above dimensionless quantities can be actually derived from 

formal dimensionless analysis methods like those described in Chapter 5 
(see also Dixon [2], Daugherty and Franzini [23 ]  and White [24]). The 
proportionality relations are very useful in comparing the performance 
of two pumps of the same geometrical decign. The heads, flow rates and 
powers should obey the following relations 

(19.21) 

(19.22) 

(19.23} 

These similarity rules can be used for scaling-up purposes, i.e. from 
the performance of small pump we can determine the performance of a 
large one of the same geometrical design. Unfortunately these 

similarity relations do not have general applicability. They are valid 
for low viscosity fluids, such as water and thin oils, and pumps of 
reasonably large dimensions and speeds. 
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The performance characteristics shown in Fig. 19. 7 are plotted in 

dimensionless form in Fig. 19. 8. The efficiency has been assuned to be 

always the same, i.e. n 1 = n2• Moody [ 25] has developed a formula for 

turbines which is also valid for pumps in the form 

(19. 24) 

Example 19.4 

A pump is to be designed having similar performance characteristics 

to those of Fig. 19. 7. This punp will have an impeller 3 times larger 

rotating at 600 rpm. Both pumps are assumed to operate near maximum 

efficiency. 

for water. 

Solution 

Determine the head, flow rate and power of this new pump 

We will use the dimensionless form of Fig. 19.7, that is Fig.19.8. 

For m aximum efficiency we have 

C H = 5. 30 

CQ = o. 115 

C 
p = o. 70 

We can now calculate the head, flow rate and power for the pump to be 

designed. 

(h) 
p 

= 66. 9 m 

2 
(600) (3 X 0. 371) 2 

60 5.3 --''-"-----=-----:c
8
,----

9. 1 

3 (600) 3 Q = CQ ND = 0.115 X 60 (3 X 0.371) 

= 1.58 m
3
/s 
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3 
= 0.70 X 1000 X ( 6�g) (3 X 0.371 )5 

= _1195 W 

= 1195 kW 

This would be the power if the two pumps had the same efficiency ( from 

Fig. 19.7 1 ;:: 0. 91). We can al so use Moody's equation ( 19. 24) to 

obtain the efficiency of the new pump 

n2 = o. 928 

Thus, the power re qui red will be 

(PB) = �:i�8 x 1195 = 1218 kW 

19.5 CAVITATION 

When pumps ( or turbines) are used with liquids local velocities can 

be very high and local pressures may drop below the vapor pressure of 

the liquid being pumped. Consequently local boiling occurs resulting in 

the formation of bubbles and regions of vapor. This phenomenon is 

called cav itation. The bubbles are swept downstream to regions of high

er pressure where they collapse producing itermittent pressures which 
can be very high. The pressure waves that are generated continuously 

may cause damage to the blade surface and the surrounding structure. In 

addition, the vapor distorts the flow field and may cause significant 

reduction in pump efficiency. Cavitation also occurs in ship propellers 

and val ve casings in regions of high local velocity liquid flow which, 

from the Bernoulli equation, are expected to have low local pressure 

(Section 14. 12). 

The appropriate dimensionless group to consider is Euler number 

which was defined in Section 6. 8 as the ratio of pressure and inertia 

forces. A special form of the Euler number is the cavitation number 

which is defined as 
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C = 
p - p 

V 

v2 
rel p-2

-

(19.25) 

where p is a reference (free stream) pressure, p the vapor pressure and 
V 

V a  reference velocity (which may be a relative velocity in the case of 
turbomachinery). Acceptable values of Cc are found from experiments 

with different types of fluid machinery (pumps, turbines, propellers, 
etc. ) • 

The head required at the pump inlet to avoid cavitation is called 

the net positive suction head (NPSH), This is given by 

NPSH (19 •. 26) 

where p. and V. are the pressure and velocity at the pump inlet and pv 1 1 
is the vapor pressure of the liquid, 

The Bernoulli equation between the free surface of a reservoir at 

pressure p 
O 

and the pump inlet at elevation zi above the reservoir 
surface is: 

(19.27) 

where hf is the frictional heat loss and V
O 

o. Thus, the expression 

for the net positive suction head may be written as 

NPSH = ( 19.28) 

Pump manufacturers measure the required NPSH for their pumps and report 
it, as in Fig. 19. 9.. When a pump is used to pump a liquid at elevated 
temperatures or near the boil ing point, the vapor pressure is high and 
the NPSH might be negative, This requires that the pump be installed 
below the reservoir level as shown in Fig,19.10 to avoid cavitation. 
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Fig. 19. 10 
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Usually 2 to 6 m 

Volume Flow Rate, 1113/s 

Net positive suction head as a function of flow rate. 

Centrifugal pump 

A pump p l aced below a liqu id container to prevent 
cavitation. 
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E xample 19. 5 
Water is to be pumped at 80° c (pv 50, 66 kPa) from an open 

has NPSH = 6 m at the desired flow rate and the reservoir, The pump 
frictional head loss is hf = 1, 5 m, Determine the elevation of the pump 
inlet to avoid cavitation, 

Solution 
Using equation (19', 28) we have 

NPSH Po - hf - Pv 
< - - zi - pg pg 

6 < 101330 - z - 1, 5 - 50660 
1000 X 9, 81 1 1000 X 9, 81 

6 � 10,33 - z1 - 1, 5 - 5,16 

6 � 3, 67 - z1 

This means that the pump must be placed at least 2, 33 m below the 
reservoir surface to avoid cavitation, 

19, 6 AXIAL-AND MIXED-FLCM PUMPS 
In axial-flow pumps the fluid enters and leaves the machine mainly 

in an axial direction. A schematic diagram of an axial pump is shown in 
Fig, 19.11. The radius of this pump remains unchanged along the 

direction of the flow, The stationary guide vanes on the outlet side 

are designed to remove the whirl component of the velocity which the 

fluid receives from the impeller. Sometimes guide vanes are al so 

provided on the inlet side when appreciable tangential motion exists in 
the inlet pipe, 

The impeller of mixed-flow pumps is designed in such a way that the 
fluid enters axially and leaves with a substantial radial component, 
i ,e, these pum,ps represent an intermediatte design between axial and 
centrifugal pumps, 
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Fig. 1'9.12 (a) maximun pump efficiency as a function of specific 
speed, ( b) typical punp impeller designs. 
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To determine the torque of these pumps we can start again from 
Euler's turbine equation (6.118) 

T = 
0 

For an axial-flow 

T = 
0 

m [ (rv el out 

pump r. = r 1n out 

m R[(ve)out 
-

(rv0\n l (19.29) 

= R, thus 

( v e\nl (19.30) 

Using the same terminology as in the analysis of centrifugal pumps we 
have 

(19.31) 

where \ 1 and vt2 represent the average tangential fluid velocities at 
the inlet and outlet respectively. These velocity components can be 
related to the axial flow velocity by taking into account the 
geometrical orientation of moving and stationary vanes (see, for example 
John and Haberman (26]). 

Axial-flow pumps have high flow rates and low heads while 
centrifugal pumps have high heads and low flow rates. 

19. 7 PUMP SELECTION 
The selection of a pump for a given engineering application is not 

an easy task. There is a wide variety of pump types and pump designs. 
Whole books have been written on this subject (11,12]. The engineer 
must decide what type of equiµnent is appropriate in order to provide 
reliable and efficient service with a minimum of maintenance costs. 

One of the parameters that is used in pump selection is the 
specific speed. This is a dimensionless grouping obtained by combining 
the definition of CH and c

0 
(Section 19.4) in such a manner that the 

diameter D is eliminated: 

C 1/2 
N =_Q __ = 

s C 3/4 H 

NQ1/2 
(19.32) 
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This definition is used for Q 
efficiency, Thus a single number 

and hp corresponding to maximum 
is obtained for an entire group of 

similar type pumps. When the efficiencies of different pumps are 
plotted as a function of specific speed the maximum efficiency will 
occur at different N s for the different designs. As seen from Fig. 
19, 12 ( a) centrifugal pumps have low specific speeds and axial flow 

pumps have high specific speeds, 
shown in Fig, 19.12 ( b). 

The different impeller designs are 

Example 2,6 
Determine the appropriate pump and the power required to move 0, 8 

m3/ s  of water with a head of 4.2 m, The available motor rotates at 9 00 
rµn • 

Solution 
We calculate the specific speed 

N 
s 

N 9
1 12 

= -----
3/4h 3/4 g p 

900 
X O, 8 1 /2 

60 =--------
9, 81 314 4. 2314 

= o. 8262 

From Fig. 19. 12 it is clear that we should use an axial flow pump. An 

approximate value of efficiency is n = 0, 84, 
The required (shaft) input power will be 

PgO\ 
= 1000 X 9 ,81 X 0,8 X 4,2 

0.8 4 

= 39240 W = 39, 24 KW 

19. 8 C (),1 PRESSORS 
Positive displacement compressors have been used as industrial 

tools for more than a century. They are complicated, heavy, expensive 
and low-now rate devices. The develoµnents in aircraft industry 
necessitated the design at 1 ight weight, efficient rotary compressors 
which are now used in many other industrial applications. 
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Both centrifugal and axial-flow compressors have been developed, 

Multistaging is used to achieve high pressure ratios, This can be 

demonstrated by refering to Fig, 19.13. The gas is successively 

accelerated by each row of rotor blades and then slowed by the 

corresponding stator blades. Thus the kinetic energy is converted into 

pressure, which becanes progressively higher at each stage. Because the 

density of air or gases used is much less than liquid densities, the 

canpressor must rotate at very high speeds (e ,g, 20000 rpm) for large 

pressure rise, More details of the mechanical arrangements can be found 

in specialized texts [e.g. Ref. 6,16,22], It is interesting to note 

that many important results can be obtained on compressors by purely 

thermod ynanic considerations [27, 28 J. 

19. 9 TURBINES 

Turbines are devices that extract energy from fluids and for 

analysis purposes they can be thought of as pumps run backwards. The 

basic theory is essentially the same, however, there are some 

differences in physical features as well as in terminology. Turbines 

are usually classified as impulse or reaction, turbines depending on how 

the hydrostatic head in converted to power. In impulse turbines a high 

velocity jet issuing from a nozzle strikes a set of blades attached to a 

wheel (or runner) as they pass by the nozzle exit. In reaction turbines 

the flow completely fills the blade passages and causes the impeller to 

rotate. 

Impulse T urbines 

Impulse turbines are suitable for relatively high heads and low 

power. A schematic diagram of an impulse turbine is shown in Fig. 

19.14. The jet strikes the vanes and produces power as the runner 

rotates. The Pelton water turbine features curved buckets divided in 

half by a splitter edge that diverts the water into two streams. This 

device was patented in 1889 by an American engineer naned L.A. Pelton. 

The force exerted by a jet on a moving blade was calculated by applying 

a linear manentum balance on a moving control volume in Section 6. 2. 3, 

Here, we we will compute the average torque by assuming there is an 



Rotor blades 

Gas flow 
Solid rotor 

Fig. 19. 13 Multi staged rotary compressor. 

(b) 

(a) 

Fig. 19.14 Impulse turbine (Pelton wheel). 
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average steady flow of the jet and that this steady flow corresponds to 
the instantaneous flow of the full jet when it strikes a bucket. This 
means that we consider essentially a stationary control volume. Thus, . 
we will have m =PAV., however, the relative velocity remains V. - Vb as 

J . J 
in Section 6 .  2. 3. With these assumptions equation (6. 22) can be 
modified to the form 

F = ('19.33) 

The minus sign is retained to indicate that F is the force exerted by 
the liquid on the bucket. The power extracted from the liquid is 

( 19. 34) 

The power will be maximum for cos S = 1, i.e. for S = 0. This is 

impractical because of the interference between leaving flow and the 

incoming jet. In practice, S is usually about 150
' 1 or cos S + = 

1.96 59, which gives only 2% less than maximun power. 

To maximize the power with respect to \ we take dP/dVb = 0 or 

which gives 

pAVj (Vj - 2 Vb) [cos S + 1] = 0 (19.35) 

Pel ton wheels are usually employed for high heads, e.g. 200 m to 

more than 1 km. Efficiencies of the canplete hydraulic installation 
from headwater to tail water (see Fig. 19.15) can reach 85%. More 
information on Pelton wheels is given by Daugherty and Franzini [23]. 

Reaction Turbines 
Reaction turbines are suitable 

lat ions. In these devices rotation 
for low-head, high-flow instal
is achieved mainly through the 

reactive force created by the acceleration of water in the runner, or 
rotor, rather than in the nozzle as in the case of the impulse turbine. 
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Fig. 19. 15 fuhematic diagram of a hydroelectric installation with a 
Pel ton wheel. 

Stationary blades 

Flow 

Moving blades 

A 

Fig. 19. 16 Radial flow (Francis) turbine. 
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There are many di f ferent types o f  reaction turbines having radial-., 

axial- or mixed- flow con figurations. The most extensively used turbines 
fo r hydroelectric installations are probably radial or mixed- flow 

machines called F rancis turbines, a fter J.B. Francis an American 
engineer who designed the first-e f ficient inward- flow turbine. A 
schematic diagram o f  such a turbine is shown in Fig. 19. 16. At this 

nominal po sition the stationary guide vanes de flect the incoming water 

onto the rotating vanes. Assuming purely radial flow we can use exactly 
the same equations as those developed in Section 19.3 for centri fugal 

(i .e. radial flow) pumps. Introducing a minus sign to indicate that the 
torque is done by the water on the sha ft we can rewrite equation(l9.8) 

as 

( 19.36) 

and the power 

PH =jm
0

j = ·pQ (U/r2 cot a2 - u1vr1 cot a1) (19.37) 

Further simpli fications can be made in exactly the same manner as in 

Section 19. 3. In  fact the whole analysis could have been presented as 

applicable to radial flow machines, to include both centri fugal pumps 

and radial flow turbines. The reader, however, must be reminded that 

while pumps have backward curved vanes, turbines have forward curved 
vanes (see Fig. 19.6) . 

Francis turbines are used for a wide range o f  heads from the lowest 
econanically useable (about three meters) to about600 meters (see Fig. 

19. 17). At low-head s propeller turbines having purely axial flow, are 

more econanical than Francis turbines. One popular axial- flow design 

with adjustable blades is the Kaplan turbine, named a fter the Austrian 

inventor Viktor Kaplan who patented his design in 1920. 
For the selection o f  turbines for a given application use is o ften 

made o f  the coe f ficients c0, CH and C
P 

which have exactly the same 
de finition for turbines and pumps ( see Section 19. 4). To compare the 

output power to the available head, independently o f  size, we eliminate 
the diameter D from CH and Cp. We de fine the power speci fic speed as 
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Fi g .  19 . 17 Sc hematic dia g ram o f  a hyd roelect ric installation wit h  a 
Francis tu rbine. 

" 92 !! 

� 88 
C .. 
- s4 I w �Francis turblnas -->14-- Propallar turbines --+! 

!.!.!..Pellon wheals 
so_ 

o o.04 o-:oa 0.12 o.s 

NP ½ 
N = B 

sp p'h(ghp,i'/4 

Fi g. 19. 18 Ma x im un tu rbine e f f iciency as a function o f  powe r speci f ic 
speed . 
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N = s p  

C 1 /2 
p 

CH 

= 
N p 1 /2 

B 
( 1 9 . 3 8 )  

Fig . 19.18 g iv e s  the o p t im um effi c i ency o f  the three t urbine t y pes 

d isc ussed as a fun c t ion o f  speci fic speed . Im pul se turb ines  are best 

s u i t ed for very low speci f i c  s peed s , Franc i s  t urbines for intermed iate 

speci f i c  speed s and pr o pe l l er turb ines for h i g h  speci fic speed s .  

For deta i l ed e l ementar y anal yses o f  these machines the reader  i s  

r e ferred t o  r e ferences [ 2 3 ,  26,  2 9 ]  and for more r ig orous analyses to 

r e ferences  [ 2, 3, 6 l .  

Example 19. 7  
A Pel ton wat e r  turb ine i s  used t o  driv e a generator at 600 rµn . 

The wat e r  j et i s  1 2  cm in d i aneter and has a velocity o f  90 m/s . The 

bucket angle i s  1 5° and the runner rotates at the peripheral speed for 

m ax imum p::iwer conversion . 

Solution 

We use equation ( 19 . 34) 

PH 
= -pA V/b (V j - \ ) [ co s  S + 1 ] 

For max imun po we r  { equation ( 19 . 35) ,) 

\ 1 
45 m/s = 

2 vj = 

Thus 

PH = - 1 000 x ;  (o . 1 2 J2 90 x 45 (90 - 4 5 )  [ co s  1 5° + 1 ]  

= 4 .  05 X 1 0 6 W = 4050 k W  
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19. 10 W IND TURBINES 
Windmills have been used for many centuries for grinding and 

pumping water , Wind machines that produce electricity made thei r first 
appearance about a hundred years ago. However, the use of inexpensive 
fossil fuels after World War I resulted in a decline of wind energy 
utilization . Renewed interest in wind energy started in .the early 

seventies as oil prices rose . 
Wind machines are devices that convert the ki netic energy present 

in  the wind into rotati ng shaft motion , These are commonly divided 
into propeller-type converters and cross-wind converters. In propeller
type converters the shaft axis is parallel to the di rection of the wind . 

In cross-wind converters the shaft axis is perpendicular to the wind 
direction . Mo st of wind energy converters are of the propeller-type 
having two or usually three blades, like that shown in Fi g.19.19. ( a ) .  
Cross-wind converters of the type shown in Fig.( 19. 19 ( b )  , known as 

Darrie�s turbines, attracted considerable interest in recent years. The 
advantage of cross-wind machines is that their operation is independent 
of wind direction. For a discussion on these and other types of wind 
converters the reader is referred to the books by Simmons [ 31 ] ,  Sorensen 
[32 ] and for an overview of wind energy possib ilities in a comprehensive 
paper by Sorensen [33 ] .  other books on the subject were published by 
Cheremisinoff [ 34 ]  and De Renzo [ 35 ] .  

The derivation of  expressions for the determination o f  power 
generated by propeller-type wind turbines is  based on propeller theory 
[1, 30 J .  For a simplified presentation we consider a control volume as 
shown by the dotted line in Fig, 19 . 20 .  Applyi ng a linear manentum 
balance in the direction of the flow (see Section 6. 1 ), we have 

m V .  - m V + F = 0 1 e ( 19.39 ) 

where F i s  the force exerted by the blade on the fluid . Considering a 
"th i n" control volume around the blade (V 1 = V 2 = V) we get 

( 19. 40 ) 
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-

"' Blade 

(a) (b) 

Fig ,  19. 19 (a) Propeller-type wind converter, ( b) Darrie1,1s turbine. 

Fig, 19 . 20 

Control 

/ volUine 
�------.,."T- - - ---, 
o 1 1  ____ , ' I ' I I ' 

' 

' ' 
: 1 I I 
' I

I 
I I ' I as-------<M,---- --- -® 

Static 
pressure 

X 

Flow p ast the propeller of a wind converter , 



Combining equ ations (19. 39)and ( 19 . 40), we get 

where m = pAVa 
thu s 

( p1 - p
2

) = pV (V . - V )  a 1 e 
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(19 . 41 )  

Applying the Bernoulli equati on between i and 1 and then between 2 and e 
we get 

Summing u p  

Combining 

v2 

i 
+ 2  

by noting that p .  1 

2 
P 1 - P2 

= _E.(Vi 
z 

= Pe and V 1 = 

-
v2

) 

e 

equ ations ( 19.  42 ) and (19 .  45 ) we 

V a = 

(19 . 43 )  

(19 . 44 )  

v
2 

= Va we get 

{ 19 . 4 5 )  

get 

Now, we apply the Bernoulli  equation between i and e noting that the 

turbine extracts po wer fr om the control volune1 PH = h
Tb

pgQ (see Section 
1 4. 6), We hav e 

or 

v� 

2g -

PH = 

h
Tb 

pQ ( 

v2 

e = 
2g 

v� - v2 

1 e ) 
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v� - v2 

pAV ( 1 e
l = 2 a 

V. + V v� - v2 

pA 1 e 
( 

1 e
l = 2 2 

To obtain the maximum power, we set the derivitive with respect to Ve 
equal to zero. 

= 0 

or 

Therefore, the maximum power which can be extracted from the wind is 

The total power avail able in the wind is simply 

Thus , the maximum wind turbine efficiency is 

P ower extracted 
n = Power available 

_L AV3 
2 7 P i 

= 1 3 
2 PA\ 

= or 5 9 ,  3% 

Actual efficiency will be lower due to frictional losses. There are 

al so several other technical problems that must be sol ved 
before the wide of  use of  wind energy becomes real ity. Among these are 

(1 ) the unpredictable wind speed variations which woul d necessitate some 
form of energy storage for continuous power supply, (2 )  structural 
problems for l arge wind turbines, some of  them having diameters of 100 m 

or more , (3) environmental impact of  arrays of  such turbines . Despite 
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these problem s  Sorensen [ 3 3 ] claims that it is  po ssible to satisfy 
perhaps 10-20% o f  present world consunption o f  electric power . This is 

a very interesting area of eng ineering research which may lead to the 

dawni ng o f  the age o f  wind energy.  

Example 

Calcul ate the electric power that can be generated by a wind 

turbine having d i ameter o f  90 m ,  assuni ng rotor and gearing efficiency 

of 7 1 ,:  and generator efficiency of 80%. The average wind speed is 25 
km/hr . 

Solution 

Electric Po wer = 0.71 x 0 . 80 x PH 

8 3 = 0.71 x 0, 80 x 27 pAVi 

: 0. 7 1 X 0. 80 X 21 
X 1 . 225 X 

= 439 x 103 W = 43 9 kW 

11 902 

4 
( 25ooof 

X 
· 3600 
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CHAPTER 20 

CONSTITUTIVE EQUATIONS 

20 . 1 INTRODUCTION 

While generalizing the linear momentum balance in Section 6 .  3 we 

ended up with the stress form of the d ifferential equation of momentum 

( 6 . 57 ) , which is  

av 
P at + pV • vv = v • u  + pg 

The stress tensor � may be written in terms of its components as 

0 1 1  

0ij =>  021  

0
3 1  

(20  . 1 )  

( 20 . 2 )  

We have ,  thus , introduced nine quantities in addition to the three 

velocity components V 1 , V 2 , V 
3 

and the pressure p ,  Actually, the new 
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unknowns are onl y  six because the stress tensor is symmetric , which 

means that a
32 

= a
23

, a 1 3 
= a

3 1 
and a

23 
= a

32
• These quantities are 

unknown because nothing was said about the fluid properties , that is how 

the fluid responds to an applied stress . In order to reduce the 

unknowns to the usual four (v1 , v2 , v3 and p ) we must somehow relate the 

stress tensor to the fluid motion . 

20. 2  RATE OF ROTATION AND RATE OF DEFORMATION 

The instantaneous motion of a fluid is described according to the 

Eulerian point of  view by · its velocity field . Let us consider a typical 

position P and a neighboring one  P ' . If  the d i stance PP ' i s  

infinitesimal we can apply Taylor ' s  expansion formula 

av . 
I ) 2 V .  V '  1 ( x .  X '. ) 0 ( x .  ( 20 . 3) = + -- - + - X ,  

1 a x . J J J J J 

where V .  and V '  are the velocities at points P and P '  respectively .  The 
1 1 

l ast term O ( x j - x j ) 
2 represents infinitesimals of higher order which · 

will be neglected from now on . 

We may write 

av .  
1 V '  = 

i ax j 

aVi/ axj is the velocity gradient tensor 

av 1 av1 av 1 
ax 1 ax2 ax

3 

avi =>  
av2 av2 av2 

axj ax 1 ax2 a x
3 

av
3 

av
3 

av
3 

ax 1 ax2 
a x

3 

( 20 . 4 )  

( 20 . 5 )  
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Thus , the velocity difference can be expressed as the product of the 

velocity gradient tensor and the distance . This d ifference may be d ue 

to translational , rotational or deformational motion ( see Section 3 . 6 ) . 

The velocity gradient tensor can be split up into symmetric and 

asymmetric parts 

av . 

a/) i 

We define the tensors 

ei j = 

"'i j = 

Thus , we have 

a v .  
i 

ax j 

1 
2 

1 
2 

av .  av . 
(-i + .:....J.) 

a x . ax . 
. J i 

av . av . 
(-i - ___,).) 

ax . ax .  
J i 

e . .  + "'i j 1J 

1 
+ 2  ( 20 . 6 )  

( 20 . 7 )  

( 2 0 . 8 )  

( 2 0 . 9 )  

By multiplying both sides of the above equation by  the asymmetric tensor 

1 
2 "mj i  we get a vector equation 

av i 1 
axj 

= 2 "mji  ei j  + 2 "mji "'ij ( 2 0 . 1 0 )  

Since "mj i is  an asymmetric tensor and eij  is  a symmetric one , their 

product is identical to zero .  Therefore we are left with the expression 

for the angular velocity of a rigid body 

1 av . 1 1 
2 "mj i  ,;) 2  

V X V ,;> - e m ji w . •  = a xj 2 1J 
1 
2 "mj i  "'j i = "'m => w ( 20 . 11 ) 

This means that only the asymmetric part 
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"'ij = 

of the velocity 

1 avi 
2 (- -ax j 

gradient 

av .  

�) 
1 

tensor 

( 2 0 . 1 2 )  

av . l ax. is related to rigid body 1 J 
rotation (see Section 3.6 ) . In rigid body rotation there is no 

deformation, while in rigid body translation the velocity gradient is 

identical to zero. Thus, the remaining symmetric part 

( 2 0 . 1 3 )  

of the velocity gradient tensor a v i/ a xj should account for the 

deformational motion and is called the rate of deformation or the rate 

of strain tensor, 

To illustrate the physical meaning of the deformation tensor we 

refer to the shearing motion between two flat plates of Fig. 2 0. 1 The 

fluid is assumed to flow in the x (or 1 )  direction while the velocity 

varies in the y (or 2)  direction. All components of the rate of 

deformation tensor vanish except for two , these are 

1 dV2 = - -- = 2 dx2 

Thus , we may write 

e. · = lJ 

0 

dv 1 X - --
2 dy 

0 

dv 1 X - --
2 dy 

0 

0 

0 

0 

0 

and e
21 = 

= 

0 

1 V 
2 b 

0 

1 dv X = - -- = 
2 dy 

1 V 
2 b 

0 

0 

1 V 
2 b 

0 

( 2 0 . 14 ) 

0 ( 2 0 . 1 5 )  

0 

This type of flow is called simple shear flow . It should be noted that 

some authors define the deformation rate tensor eij without the 1 /2 

factor, 
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Fig. 20.1 Simple shear flow. 
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2 0 .  3 THE NEWTONIAN CONSTITUTIVE EQUATION 

Intuiti vely we expect that the stress at a point in a flow field 

should depend on the rate of deformation. Such a relation between 

dynamic ( stresses) and kinematic ( rates of deformation) quantities is 

called a constituti ve equation. Truesdell and Toupin [ 1 ]  and Serrin [2] 

give excellent presentations on the theory of constitutive equations. 

Si mpl ified and elegant versions of this theory can be found in the 

textbooks of Ari s  [ 3], Scipio [4]  and Whitaker [5 ] .  

To formulate the constitutive equation of Newtonian fluids we 

introduce three postulates . 

Postulate I :  The stress tensor is a function of the rate of deformation 

tensor 

"ij  = Fij  (emn) ( 2 0 . 1 6 )  

This expression represents a tensor function of a tensor. To explain 

what is meant by this, we note that 

( a) a scalar function of a scalar is  expressed as, say 

p = f (T)  

(b) a scalar function of a vector is expressed as, say 

p = f(xi ) = f(x1 , x2 , x} 

(c) a vector function of a vector is  expressed as, say , 

or 

and 

V .  = f . (x .) 
1 1 1 

v ,  = f , c x , ,  x2 ' x3) 

v2 = f2 (x, , x2 , x3) 

v 3 = f3 (x1 , x2 , x3) 

( 2 0 . 1 7 )  

( 2 0 . 1 8 )  

( 2 0 . 1 9 )  

( 2 0 . 2 0 )  

( d) a tensor function of a tensor represents the functional relations 
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of each component of  one tensor with all the components of the 

other . Since the stress tensor and the rate of  deformation tensor 

are symmetric , only six , rather than nine , components of each are 

necessar y ,  i . e .  

oij = Fij ( emn) ( 20 . 2 1 )  

represents the following six functional relations 

0 1 1  = F 1 1 
( e 1 1 ' 

e22 ' 
e
33 ' 

e1 2 ' 
e 1 3 '  

e23 ) 

022 
= F22 

( e 1 1  ' 
e22 ' 

e
33 ' 

e1 2 ' 
e 1 3 '  

e23 ) 

0
33  

= F
33  

( e 1 1 ' 
e22 ' 

e
3 3 '  

e1 2 ' 
e1 3 '  

e23 ) 

F 1 2  
( e 1 1 ' 

e23) 
( 2 0 . 2 2 )  

0 1 2 = e22 ' 
e
33 ' 

e1 2 ' 
e 1 3

' 
0

1 3 
= F 1 3 

( e 1 1  • 
e22 ' 

e
33 ' 

e 1 2 ' 
e 1 3 ' 

e23
) 

0
23 

= F23 
( e 1 1  • 

e22 ' 
e

3 3 '  
e 1 2 ' 

e
1 3 '  

e23 ) 

P ostulate I I :  The stress i s  a linear  function  o f  the r ate  o f  

deformation tensor 

( 20 . 2 3 )  

where Aij and Bijmn are second and fourth order tensors respectively , 

independent of emn but may be functions at the thermodynamic state o f  

the fluid . 

Postulate I I I :  The fluid i s  isotropic , so that there is no preferred 

direction . 

This means that both Aij and Bijmn should be isotropic tensors .  

The i sotropic tensors o f  second order are scalar multiples o f  the 

Kronecker delta 6 . •  ( see Appendix A) . lJ 

Aij = c 1 S ij ( 20 . 24 ) 

The most general i sotropic tensor of fourth order is given by the 
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expression ( see Appendix A) 

( 20 . 25 )  

Following the usual notation in the literature we introduce the symbols 

( 20 . 26 )  

The physical meaning of these parameters is still to be established . 

Therefore ,  we have 

cri j = -p oij + B oin o jm emn + '  oij omn emn + Y oim ojn emn ( 20 . 27 ) 

We note that 

0 . e = e .  Jm mn Jn 

o . e .  = e . .  = e . .  in Jn J 1  1J 
( 20 . 28 )  

0 mn emn = ekk 

0 .  e = e mj Jn mn 

0im e mj = e . .  1 J  

Consequently 

crij = -p oij + A oij ekk + < s  + y )  e . .  1J ( 20 . 29 )  

or by setting B + y = 2 µ 

crij = -p o ij + ,  oij ekk + 2µ eij ( 20 . 30 )  

Introducing the definition for the rate of deformation tensor 

( 20 . 3 1 )  

we get 

( 20 . 32)  

In the absence of fluid motion , we have 

( 20 . 3 3 )  

Since the only stress possible in a fluid at rest is  the pressure ,  this 

should be represented b y  p ,  



and 

For an incompressible fluid 

= - p o . .  + µ l J  

av1 
ax +  1 

20/9 

( 2 0 . 34 )  

av . 
a/l (20 . 35 )  

For the simple shear flow of Fig . 2 O .  1 we have only one velocity 

component v1 
( or vx )  which varies in the 2 ( or y) 

d irection , thus "ij 

reduces to 

dV 1 dvx 
"21 = "yx = µ dx1 

= µ dy ( 20.36 ) 

Consequently, µ is the usual viscosity coefficient of  the fluid ( or more 

precisely the coefficient of shear viscosity of  the fluid) . 

or 

Taking the trace of equation ( 20 . 32 )  we have 

" . .  
11 

avk 
= - 3p + ( 3 X + 2µ) axk 

1 
3 "ii = - p + ( X 

For an incompressible fluid aV/ axk = O .  

equal to minus the mean normal stress 

1 
p = - p = - 3 "ii 

For a compressible fluid , we have 

p - p = ( X  
2 

( X  + - µ )  v•v 
3 

( 20 . 37 ) 

( 2 0 . 3 8 )  

Thus the pressure is 

( 2 0 . 39 )  

(20 . 40 )  
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In Section 3 . 4 ,  it was shown that 

where ¥ is an arbitrary control volum e .  Thus , we have 

p - p 
2 1 ct¥ = ( A + 3 µ) ¥ dt  

2 d ( ln  ¥ ) = ( ). + 3 µ) dt  

( 20 . 4 1 )  

( 2 0 . 4 2 )  

The proportionality constant K = A +  2/3 µ i s  called the coefficient of  

bulk v i scosity ,  b ecause it  r e presents  the  r e s i stance  to  volum e  

d eformation . The constant A i s  often called the second viscosity 

coefficient . Stokes  [ 6 ]  assumed that equation(20 . 39)  is also true for 

a compressible fluid and was led to the conclusion that 

2 K = A + - µ = O  
3 

( 20 . 43 ) 

This result is in agreement with the kinetic theory of gases ( for 

monatomic gases) . For polyatomic gases or liquids this is  generally not 

true . However , ver y  large density changes are necessary for non-zero 

values of K .  Further details on the r elative importance of the 

viscosity coefficients are given in references [7-1 3 ] .  

Equation ( 1 7 . 3 2 )  

a . . 
1 J  

or 

aij 

where 

= -

=> 

is often written as 

p o . .  + T . •  
1J  1 J  

-p + " 1 1  T 1 2  " 1 3 

'21  -p + '22 '23 

'
3 1 '

32 -p + '
33 

( 2 0 . 44 )  

( 20 . 45 ) 
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lJ 

av
k -- + µ a x  
X 

is called the deviatoric or viscous stress tensor. 

2 0/11 

( 2 0 . 4 6 )  

If Stokes relation 

· (  eq . 2 0  · 4 3 )  is valid ,  A = 2 /3 µ (not bad for nearly incompressible 

fluids) , we have 

T . •  
l J  �ij 

T his can be written in vector notation as 

= 
T : 

- - T 2 -)  � 
µ [ ( vV) + < vvl l - 3 µ ( v•v o 

( 2 0 . 4 7 )  

( 20 . 48 )  

T he components of the viscous stress tensor in rectangular , cylindrical 

and spherical coordinates are tabulated in Appendix C. 

T he development of constitutive equations for non-Newtonian fluids 

is much more difficult. T he pressure cannot be defined in the conven

tional sense for fluids possessing elasticity. T he postulate regarding 

the linearity of the functional relation between stress and the rate of 

strain tensor is not applicable. T hese matters are the objective of a 

branch of engineering science called rheolo gy. To  introduce the basic 

ideas involved, we present some very simplified constitutive equations 

for non-Newtonian flui ds in the next chapter. 
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CHAPTER 21 

NON - NEWTONIAN FLOW 

21 . 1  INTRODUCTION 

In Cha pte r 1 we de fine d  Ne wtonia n  fluids a s  those obe ying a l inea r 

rela tionship be twee n shea r stre ss a nd shea r ra te : , = µ(du/dy) . In this cha pte r, 

we foll ow the te rm inol ogy of m ost books on rhe ology [1-16]  a nd we use the 

Gree k le tte r  � instea d of µ, 1: = �(du/dy) , for viscosity. This simple e xpre ssion 

wa s ge ne ral ize d  in Cha pte r 20 to the Ne wtonia n  constitutive e qua tion ( 20 . 35 ) ,  

for three -dime nsional fl ow fiel d s .  

I n  Se ction 1 .  4 we de fine d  a s  non-Ne wtonia n  fl uids those tha t  e xhibit 

non-l inea r stre ss ve rsus shea r ra te rela tionships such a s  Bingham , 

pse udopla stic ( shea r thinning) or dila ta nt fl uids (shea r thicke ning) a s  shown 

in Figure 21 . 1 .  Actuall y the te rm non-Ne wtonia n  is broa de r  a nd the fl ow 

phe nome na e xhibite d  by non-Ne wtonia n  fl uids a re m uch more inte re sting a nd 

com ple x tha n  just the de pa rture from the l inea rity be twee n stre ss a nd shea r 
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rate. Liquids with complex structure, such as polymer solutions, polymer 

melts, suspensions of particles, soap solutions, whole human blood, slurries, 

pastes etc .  behave in unusual ways . The flow behavior of these liquids is the 

object of the science of rheology [1 ,16] . Macromolecular ( polymeric ) solutions 

and melts exhibit many unexpected flow phenomena and are the most interesting 

from the rheological point of view. Some of these are explained pictorially in 

F igs .  21 . 2( a )  to 21 . 2(f) . 

Figure 21 . 2(a)  shows the rod-climbing or Weissenberg effect (after the 

Austrian born physicist Karl Weissenberg 1883-1976) .  While a Newtonian fluid 

would have a parabolic depressed surface near a rotating rod ( see Section 

7 . 11) , polymeric liquids would climb up the rod . Fig . 21 . 2(b)  shows the 

phenomenon of extrudate swell exhibited by polymeric liquids .  The diameter of 

the jet emerging from a tube can increase up to 400% while for Newtonian 

fluids, like water, it remains approximately the same as the diameter of the 

tube (actually 13% larger, see Middleman[4] ) .  Fig . 21 . 2(c)  shows a siphon 

experiment . For Newtonian fluids, the siphon works as long as one end of the 

tube is beneath the surface of the liquid. For polymeric liquids the siphon 

can work even if the tube end is several centimeters above the liquid surface ! 

Fig . 21 . 2(d)  compares the flow pattern for very slow viscous (creeping) flow 

from a large reservoir into a smaller diameter tube . The polymeric liquid 

forms a large vortex. Fluid particles trapped in this vortex will circulate 

continuously and will not move into the small diameter tube . Fig . 21 . 2(e) shows 

the behavior as the fluids are pumped through tubes . We follow the motion by 

inserting a streak of dye. Before the motion starts the streak is flat and 

after starting up the pump, progressively looks like an elongated parabola . 

When the motion stops ( by turning off the pump) the Newtonian fluid comes to 

rest while the polymeric liquid "recoils". Fig. 21.  2 ( f) shows a pressure 

difference between the inner and the outer tube for annular flow of a 



Fig, 21 . 1  

2U3 

Shear stress (c) versus shear rate (du/dy) for Newtonian and non
Newtonian fluids 

Fig. 21. 2(a) Polymeric liquid climbing up a rotating rod (Weissenberg effect) 
(from reference [11 ] )  
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Fig. 21 , 2(b) Extrudate swell of polymeric liquid emerging from a long tube 
(from Reference [1] ) .  

))� 

Fig. 21 . 2(c) Siphon experiment with a polymeric liquid (from Reference [1] ) 
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' 
reservoir 

�capillary 

' 

Fig. 21 . 2(d) Entry from a reservoir into a small diameter (capillary) , 

@Newtonian and ® Polymeric (from reference [ 1 ] )  
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Fig. 21 . 2(e) Recoil of a polymeric liquid and lack thereof of Newtonian liquid 
when pumping is stopped (from Reference [10 ] )  

' 
t>.p 

Fig, 21 . 2(f) Pressure differences during annular flow of Newtonian (left) and 
polymeric ( right) liquids (from Reference [10] ) 
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polymeric liquid, while for the same flow field there is no pressure 

difference for Newtonian flow. For explanations regarding the unusual flow 

behavior of polymeric liquids the reader is directed to Section 21 . 12 

Viscoelasticity . 

To describe mathematically the various effects, we can start from the 

equations of mass, momentum (and energy, if temperature differences are 

present) .  However, it is necessary to introduce complex constitutive equations 

that relate stresses to the rates of strain.  

21 . 2  VISCOSITY OF SUSPENSIONS 

The unexpected non-Newtonian phenomena are due to very complex fluid 

structure . It is important to point out that even the behavior of a dilute 

suspension of solid spheres is imperfectly understood. Einstein (see Batchelor 

[17 ] )  formulated and solved the problem for the determination of resistance to 

shearing caused by the presence of a single sphere of neutral density. By 

extending the applicability of the single sphere calculations to a dilute 

suspension of spheres, Einstein showed that the response remained Newtonian 

and the viscosity of the suspension is given by 

(21.  la) 

where �0 is the viscosity of the suspending fluid and <j> the volume fraction 

occupied by the spheres . This is valid for <j> up to 1% . For larger values of <j>, 

interactions between spheres (or particles in general) become important and 

non-linearities appear. For higher concentrations the particle-particle 

interactions are important and Batchelor' s equation [17] is valid up to 

perhaps <j>=0 . 2  

(21 . lb)  

In very dilute solutions, particles will rotate due to the action of the shear 
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field , As the concentration is increased, hydrodynamic interactions between 

the particles become important . Particles come close to particles on nearby 

streamlines and the fluid is ,.di.sturbed in their v�.ct�ity. As the concentration 

is further increased, colloidal interactions (of attraction or repulsion) 

involve three, four or more particles and the rigorous analyses of Einstein 

and Batchelor no longer apply . 

Since the behavior of dilute suspensions of particles is so complex, it 

can be easily concluded that the description of behavior of concentrated 

suspensions having different size and shape of particles ( e . g .  human blood, 

cement slurries, printing inks) and macromolecular solutions or melts would be 

a very challenging task. 

21 . 3  SHEAR-THINNING BEHAVIOR OF POLYMERS 

In Chapter 1, pseudoplastic fluids were defined those which exhibit 

decrease in viscosity as the shear rate increases . This property is frequently 

called shear- thinning. It should not be confused with the term thixotropy, 

which is the reduction of viscosity with time, due to structural changes . 

Dilatant fluids were defined those which exhibit increase in viscosity as the 

shear rate increases .  This shear thickening effect should not be confused with 

rheopexy, which refers to increase of viscosity with time, due to structural 

changes . Time-dependent fluid effects are beyond the scope of this book . 

In Chapter 1, it was pointed out that polymer chains tend to align in 

the direction of flow and disentangle and they exhibit less resistance to flow 

as the rate of shearing increases ( pseudoplastic or shear-thinning behavior) .  

The apparent viscosity (usually called simply viscosity) was defined as the 

ratio of shear stress to shear rate 

"C 
TJ = �-� (du/dy) 

(21 . 2) 
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For non-Newtonian fluids the Greek letter ri rather than µ is used to designate 

the viscosity. Fig . 21 . 3  shows a typical polymer melt viscosity curve. We note 

a Newtonian region at zero shear rate and it is possible to have another 

Newtonian region at very high shear rates in polymer solutions . The power-law 

expression (also called Ostwald-de Waele model) gives 

"( d u  · n-1 ( )
n-1 

ri
= 

(du/dy)
=:>

ri
= m 

dy 
= m

y 
(21 . 3) 

The shear rate is frequently designated with the Greek letter y , m is a 

measure of the consistency of the fluid, the larger the m the more viscous the 

fluid and n (always n<l for polymer solutions and melts)  indicates the degree 

of non-Newtonian behavior. For n=l the fluid is Newtonian and the viscosity is 

constant . As n becomes smaller than unity the shear-thinning behavior is more 

pronounced . 

The power-law relation gives 

logri = logm +(n-1)  logy (21 .4)  

where y is the shear rate. Note that the consistency index m is the viscosity 

at y=1s·1 and n-1  is the slope on a log-log graph, as shown in Fig . 21 . 3 .  

Typical values of the power-law exponent n for some common polymer 

melts are : Polyethylene 0. 3-0.6,  Polyvinyl chloride 0 . 2-0 , 5 ,  and nylon 0 . 6-

0 . 9 .  The consistency index can be in the range m=l,000-100,000 Pa · s" and it is 

sensitive to changes in temperature . For the range from 150°( to 250°C, usual 

in the processing of most polymers, a common representation is 

(21 . 5 )  

where m0 i s  the consistency index at the reference temperature T0 and b is the 

temperature coefficient . Typically, b is of the order of 0.01-0.04 K-1 for many 

common polymers implying a reduction of viscosity of roughly between 10% and 
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35% for a 10°C rise in temperature. Some polymer melts have more temperature 

sensitive viscosity and b can be as  high as 0 . 1  K-1
• 

The power-law equation is very useful for many engineering problems 

involving non-Newtonian fluids, but it has the drawback that it cannot capture 

the upper or lower Newtonian regions of viscosity. Several other empirical 

equations have been used that bear the names of their inventors, such as 

Ellis : V = A,+ B," 

Powell-Eyring:  

Casson : 

More recently the Carreau-Yasuda model 

and the Cross model 

(21 .6) 

(21 . 7) 

( 21. 8 )  

(21 . 9) 

(21 . 10) 

have become very popular for computer simulations of polymeric fluid flows . 

For a 5% polystyrene solution in Aroclor (see Bird et al [1]), the Carreau

Yasuda model is fitted with 

�o = 101Pa- s  �00 = 0 . 059Pa · s  ;\ = 0 , 84s n=O.  380 a=2 

For a polystyrene melt at 180°C 

�o = 14800Pa · s �00 = 0 ;\ = l .04s n = 0 . 398 a=2 

21 ,4  POWER-LAW FLUID IN THREE-DIMENSIONAL FLOW 

The power-law equation as given above is valid for simple shear flow 

between two flat plates one of which is moving and the other stationary. The 

viscosity is simply function of the shear rate 
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du . n-1 ( )

n-1 

� = m 
dy 

= my (21 . 11) 

For general three-dimensional flow we can expect that the viscosity would be a 

function of the strain rate tensor (see Chapter 20) 

(21 . 12) 

Actually, from the theory of constitutive equations [1 -5 ] , it turns out that 

the viscosity is a function of the so-called second invariant (fn) of the 

rate of strain tensor. 

(21 . 13) 

The function �II is given in Table 21 . 1  in rectangular, cylindrical and 
2 

spherical coordinates . It can be easily shown (by eliminating all terms equal 

to zero) that for the case V,=V,(y) and V,=V,=0 we have � = m\�; 
ln-i 

To solve problems, we must use the equation of conservation of momentum 

in terms of stresses and then eliminate any stress terms that are zero. 

Admittedly, it is harder to work with stresses than with velocity components . 

A good practice is to check whether the simplified equations for the 

corresponding Newtonian problem can be obtained after the necessary 

substitutions and assuming that the viscosity is constant. The solution 

procedure will become more clear by carefully studying the examples that 

follow, for unidirectional flow. 

21 . 5  PRESSURE DRIVEN FLOW OF A POWER-LAW FLUID BETWEEN TWO FLAT PLATES 

The Newtonian problem was studied in section 7 . 2 .  We will solve this 

problem by starting from the general conservation equations . Again the 



Table 21 , 1  

The second invariant of the strain rate tensor (½rr) in rectangular, 

cylindrical and spherical coordinates .  
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simplified continuity equation ( 7 . 32) is valid 

Ollx = O 
ax 

(21 . 14) 

The x component of the stress form of the equation of conservation of momentum 

(See Appendix D) simplifies to 

(21 . 15 )  

Although 'xy='yx ( stress is a symmetric tensor
) 

we write 'yx in  the above 

equation because the usual convention is that the second index indicates the 

direction of the stress component and the first index is the direction 

perpendicular to the plane where the stress component acts .  The y component 

gives again 

and the z component again 

ap 0 = ---pg 
8y 

0 = -ap 
az 

As in Section 7 . 2  the pressure gradient is 

Thus equation 21 . 15 becomes 

Integration gives 

ap llp - = --
ax L 

8i:yx llp - - = --
8y L 

llp 'yx = -
T

y+ c, 

We now introduce the power-law equation in the form 

,: = mJfNx l
n-l

(dVx ) yx ay dy 

(21 . 16)  

(21 . 17) 

(21 . 18) 

(21 . 19)  

(21 . 20) 

(21 . 21) 
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The absolute value is necessary for avoiding problems with negative velocity 

gradient 

m[
avx l

n

-
1

(81/x J = - Lip y +C1 ay ay L 

Since avx = 0 at y=O ( symmetry) 
ay 

C,=0 

and by replacing the partial differentiation by an ordinary one, we get 

ldVx [
n
-l(dVx J - Lip m- - - --y 

dy dy L 

(21 .  22) 

(21 . 23)  

(21 . 24) 

The right hand side is negative and the absolute value of the velocity 

gradient is raised to the power n-1, therefore dVx must be negative and may 
dy 

be written as 

dVx = _ _:J,_ Lip ylfn ( )
1/n 

dy m L 

This is integrated to give 

( )
1/n 

Vx = 
__ n _ _:I,_ Lip y{n+1)/n +c, n+l  m L 

The no-slip condition Vx
=O at y=O gives 

C = __ n_[_:J,_(Llp)]l/n b(n+l}/n 
2 n+l  m L 

Hence the velocity profile is 

The maximum velocity is at y=O 

(21 . 25 )  

(21 . 26) 

(21 . 27) 



21/16 

V. = (-n )[b"'l (llp)]l/a 
max n+l  m L 

and the velocity profile can be expressed as 

Vx = Vmax 1 -(f;)-" 
[ a+l ] 

The average velocity is 

ff f VxdY Vxdzdy -b n + 1 
fJ dzdy 

=> v,vg = 

f dy 
=> V,vg = 

2n+ 1 
Vm,x 

-b 

The volume rate of flow per unit width is 

and the pressure drop 

lip = mL[2n + 1 _g_J" b-(2a,1) 
2n W 

(21 . 28)  

(21.  29) 

(21 . 30) 

(21 . 31) 

(21 . 32) 

where L is the channel length and b the half gap .  By setting n=l we obtain the 

corresponding results for the Newtonian problem which was treated in Section 

7 . 2 .  The velocity profile is exactly parabolic for n=l, more flat for n<l and 

more elongated for n>l, as shown in Fig , 21 . 4 .  

21 . 6  PRESSURE-DRIVEN FLOW O F  A POWER-LAW FLUID IN  A TUBE 

The Newtonian problem was examined in Section 7 . 3 .  Again we will solve 

this problem by starting from the conservation equations which are given in 

Appendix D .  

The continuity equation reduces to 

av, 
= O  

az 
(21 . 33 )  
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- - n=0 . 5  

- n=l( Newtonian)  

• • • • n=l . 5 

0 . 75 1 1 .  5• 1 .  75 2 

Reduced velocity, Vx/va�. 

2 . 25 2 . 5  

Velocity profiles for power-law fluids flowing under a pressure 
gradient between two flat plates with n=0 . 5  ( shear thinning) ,  n=l 
(Newtonian) and n=l . 5  ( shear thickening) . 
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The stress form of the equation of conservation of momentum simplifies to 

r component 

e component 

z component 

1 ap 
0 = --- +pge r ae 

(21 . 34) 

(21 . 35 )  

(21 . 36 )  

The r- and e- components are identical to  those for the Newtonian problem 

(equations 7 . 74 and 7 , 75 ) . The z component contains the shear stress term 

which will be replaced by the power-law equation 

We have 

Integration gives 

and dividing by r we have 

,: - m z z lav \"-1 av 
rz - 8r 8r 

/Ip 2 ri:rz ;:::: --r + cl 2L 

/Ip C1 ' =--r+rz 2L r 

(21 . 37) 

(21 . 38) 

(21 . 39)  

(21 .40)  

C1 must be zero in  order for the shear stress "Cr, to  remain finite at r=O. Thus 

/Ip ' = --r rz 2L 

Introducing the power-law equation (21 . 37)  we have 

I la-

1 
m avz avz = - llpr 

8r Br 2L 

(21 .41) 

(21 .42)  

The right hand side is negative and the absolute value of the velocity 

avz gradient is raised to the power n-1,  therefore must be negative and may 
8r 

be written as  



By integrating we have 

( )
1/n dV, 

= - /Ip rl/n 
dr 2ml 

V = __ n_( /Ip 
)
1/

n 

r(n+1)/n + C 
' n + l  2ml 2 
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( 21. 43) 

(21 . 44) 

With the help of the no-slip boundary condition V,=0 at r=R we determine the 

integration constant 

and the velocity profile is 

Ci = _
n_ llp R(n+l)/n ( )

1/n 

n +l 2ml 

V, = 
n :l [ 

R
�:

1) (II() r "[ l-(�)
(n+l)/n

] 

The maximum velocity is at y=O 

V = -n 
[
R�+l)

(
llp

)]
l/n 

max n + l 2m L 

and the velocity profile can be expressed as 

= [ -(�
)
(n+1)/n

] Vz Vmax 1 
R 

(21 . 45) 

(21 .46) 

(21 .47)  

(21 .48) 

The average velocity is obtained by integrating over the cross-sectional area 

and then dividing by the cross-sectional area 

2nR 

ff V,rdrd8 
V - __,0--"0'------- - V avg - 2nR __,,. avg 

ff rdrd8 
0 0  

The volume rate of flow is 

n 
[
Rn+l 

(llp
)

l/n

] (3n+ 1) � L 

2 n 1 /Ip -+3 
[ ( )]

1/n 1 
Q = VavgllR = n- - - - R" 3n+ l  2m L 

and the pressure drop 

(21 .49) 

(21 . 50) 
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(21 . 51)  

Again, by setting n=l we obtain the corresponding expressions for Newtonian 

fluid (Section 7 .  3) , The velocity profiles are similar to those of Figure 

21 . 4 .  For n=l we get the parabolic (Newtonian) profile, for n<l the profile is 

more blunt and for n>l more pointed. 

21 , 7  CAPILLARY VISCOMETER ANALYSIS 

The most frequently used instrument for the determination of viscosity 

of polymer melts is the capillary viscometer ( schematically shown) in Fig. 

21 . 5 .  The diameter is typically D=l-2 mm and the length to diameter ratio 

L/D=lG-32 . 

For Newtonian fluids the relation between pressure drop llp and flow 

rate Q is used for measurement of viscosity. For non-Newtonian fluids like 

polymer melts the viscosity is not constant but a function of the shear rate 

therefore, in order to use the pressure drop and flow rate measurements, we 

must be able to express the shear stress and the shear rate in terms of these 

quantities and then 

"C � --- -- (du/dy) 

From the previous section we can see that the shear stress at the wall can be 

obtained from 

llp -.: = --R w 2L 
(21 . 52) 

This holds for both Newtonian and non-Newtonian fluids . The shear rate at the 

wall for Newtonian fluids can be obtained by differentiating equation (7 . 58)  

for the velocity profile 

. = (
dV,

) 
= 2_(

11p
)R Yw 

dr w 2µ L 
(21 .53)  



Fig, 21 . 5  
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2 R  

Schematic of a capillary viscometer of diameter D=2R and length 
L .  The polymer is heated and melted in the reservoir and then 
pushed by the piston through the capillary die, swelling at the 
exit (from Reference [9] )  
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By using the Hagen-Poiseuille formula ( 7 . 61 )  we have 

. 4Q 
Yw = 

rcR' 
(21. 54) 

For non-Newtonian fluids we will develop a general expression for the shear 

rate at the wall by starting from the definition of the volume rate of flow 

An integration by parts yields 

Q = 2rcf rvzdr 
0 

Q = rcr2vzl� -f rcr2( �
V
: }r 

0 

Applying the "no-slip" boundary condition at R i.e. V2=0 at r=R we have 

R 
(

dV
) Q = -rcf r2 d: dr 

(21 .  55) 

(21 . 56 )  

(21 . 57) 

Since r/R = T.cz/T.w (r:w is the shear stress at the wall) , we can eliminate r 

from the above expression to get 

r:/Q _ 's• 2(
dV2 )d 3 - "Crz "Crz rcR dr 

0 

(21 . 58 )  

Differentiating both sides with respect to T.w and using the Leibnitz rule we 

obtain 

(dV2 ) 1 ( dQ ) - = - T. -+3Q dr w rcR3 w dT.w 
(21 . 59) 

Or 

(21 . 60) 

This equation is usually referred to as the Rabinowitsch equation . It gives 

the shear rate at the wall of a capillary in terms of Q, R and T.w. The term in 

brackets may be considered as a "correction" to Newtonian expression which is 



21/23 

simply 4Q/nR3
• To obtain Yw 

we must plot Q versus tw on logarithmic 

coordinates to evaluate the derivative dlnQ/dlntw 

For non-Newtonian fluids that obey the power-law equation 

We may write an empirical expression 

t = m
·
(�)" w 

rtR3 

in which n is the slope of the logtw versus log(4Q/nR3
) plot, that is 

dlogtw 

So, Equation (21 . 60) may be written as 

Combining equations (21 . 62)  and (21 . 64) we obtain 

·
( 

4n 
)
" m = m 

3n+1 

(21 . 61 )  

(21 . 62) 

(21 . 63 )  

(21 . 64) 

(21. 65) 

This means that for a typical polymer melt having n=0 .4  the consistency index 

·( 
4x0 .4  

)
0

•
4 

, 
will be m = m - --- = 0 . 88m . 

3 x0 ,4+1  
I n  other words,  the consistency index will 

be 88% of its value obtained by plotting the shear stress tw against the 

apparent shear rate (4Q/nR3
) 

Example 21 . 1  

(a )  What should the load be in kg, in order that a power- law polymer melt with 

m=7909 Pa • s" and n=0 .46 flow out of a Dr=3 mm diameter tube ( see Fig. E . 21 . 1) 

so that the wall shear stress is tw
=0 . 14 MPa? 
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L=25 mm 

Dr= 3 mm;__--+t::::k--

Fig. E .  21 . 1  
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(b )  What is the flow rate (kg/h) and the wall shear rate (s "1) under such 

conditions? The density of the molten polymer is p=766 kg/m3
• 

Solution 

(a)  First, we need to calculate the pressure exerted by the load, using the 

following equation (Eq .  21 . 52) 

lip "'Cw :::::--Rr 2L 

As the sign in the above equation is a matter of convention, we use the 

positive sign which represents stress exerted from the fluid to the wall, so 

solving with respect to /Ip and introducing the numerical values 

, ,.4L (o . 14x106Pa)x 4 x (2sx 1 0-3m) 6 io• up = --= 3 4 . 6  X Pa 
Dr 3 x l 0- m 

By neglecting the pressure in the reservoir (because the diameter is very 

large ) ,  the weight m, of the load can be calculated from 

F m g  llp = -= -'
A, rrD¼ 

/Ip · rrD� 
mL = 4g 

where F is the force the load exerts on the fluid, m, the load weight, g the 

gravitational acceleration (g=9. 8 ml s2
) and A, the load cross-sectional area . 

Introducing the numerical values in the above equation gives 

(4 . 66 x 106Pa)x 3 . 1415 x (30 x 10-3� = 3.36kg 
4x9 .8m/s2 

(b )  The flow rate can be calculated from Eq .  21 . 51 
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or 

Q = (-1t )(
R3n+li;p

)
; 

1/n+ 3 2mL 

Introducing the numerical values in the above equation gives 

1 

Q = (  3 . 1414 
)[

(1 . s x 10-3mf"0
·•••

1
x4 . 66 x l06Pa

]
0•46 

1/0, 46+3  2 x7908Pa · s" x2s x1o·'m 
3 

= 1 .  06 X 10"6 _11:_ 
s 

and the mass flow rate will be: 

The wall shear can be calculated from Eq . 21 . 64 

. 4Q (3 1
) y - - -+ -

w - nR3 4 4n 

Substituting the numerical values, we obtain 

v. 
3 

4 x l . 06xl0·6
.":.. ( 3 1 

) 
3 . 1415 x (1 . s x 1o�'mJ 4

+ 
4x0.46 

= 519. 72 s·1 

21 . 8  PRESSURE DROP FOR FLOW OF A POWER-LAW FLUID THROUGH A TAPERED TUBE 

Truncated conical dies ( i . e .  tapered tubes like that shown in Fig , 21 . 5 )  

are used very often in processing of molten polymers which, as we have said 

earlier, are described by the power-law equation satisfactorily. The 

determination of pressure drop is of primary importance in process equipment 

design . Here, we will use the results of Section 21 . 6 to calculate the 

pressure drop for flow in a slightly tapered tube. 

We start from equation (21 . 51) which is 

(21 . 66) 
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Fig. 21 . 6  Geometry of a tapered tube of radius R and length L .  
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Thus, for an infinitesimal tube of length dz we may write 

(21 . 67) 

For a tapered tube we may neglect the velocity in the r-direction ( small if 

the taper angle is small) and simply integrate between z=O and z=L, noting 

that 

We get 

2mL [Q (l )]"(R -3, _R -3, J 
Llp = po -PL = - - -+3 L o 

3n II n R0 -R, 

Further noting that 

R = (L+S) 
O cote 

and 

we may write 

(21 . 68) 

( 21 . 69)  

(21 . 70)  

( 21 .  71) 

This equation gives good results up to half cone angles of 15
° (see reference 

[ 18] ) .  

21 . 9  PRESSURE DRIVEN FLOW OF A BINGHAM FLUID IN A TUBE 

A Bingham plastic (or more precisely ideal Bingham plastic) which was 

defined in Chapter 1 will not flow unless the shear stress exceeds a certain 

value c0 called yield stress .  This behavior is mathematically expressed by 

dV, = O 
dy 

if ,: > 1:0 (21.  72) 
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as shown in Fig. 21 .  1 .  A Bingham plastic is not a "pure" fluid because it does 

not flow below the yield stress Lo · 

In pressure driven flow in a tube the shear stress is zero along the 

axis and increases linearly with r as shown in Section 7 .  Thus the Bingham 

plastic will behave like a fluid near the tube wall and will move like a solid 

plug in the center region r<r0 where L 5 Lo as shown schematically in Fig . 21 . 7  

The mathematical manipulations of equation 21 .6  up to equation (21 .41)  apply 

here also. We have 

Thus, for the wall region r0<r<R 

Lip L = --r rz 2L 

dV, Lip 
L +µ - = --r 0 0 dr 2L 

(21 .73)  

(21 .74) 

This may be integrated with the no-slip condition at the wall (V,=0 at r=R) ,  

to give the velocity distribution 

V, = ::
L 
R2[1-(fJ]+ ;�[1-(f )] 

At r=r0 this will be equal to the plug velocity 

v. = �R2[1 -(
ro )

2] +  LoR
[l -(�)J plug 4µL R µ0 R 

Also, from equation 21 .73 we have 

at r=ro, L = - Llp r o 2L  o 

Eliminating r0 and (LIP/2L) R, we get 

and at r=R, 

V. = �R[l - Lo ]
2 

plug 
2 µo Lw 

Lip 
L =--R w 2L 

(21 . 75)  

(21 .  76) 

( 21 . 77)  

(21 .  78) 

The total volume rate of flow is equal to the sum of the "plug" and the 

"fluid" regions 

-

-
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Fig. 21 . 7 

I 1---------M 
I , ________ ,... 
I 
I 1--------M 
I 

Shear stress and velocity profile for a Bingham fluid flowing 
between two flat parallel plates under the influence of a 
pressure gradient. In the central portion the fluid moves like a 
solid plug. 
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Q = Qplug + Qfluid = nr/Vplug + 2n f V,rd r (21 . 79) 
r0 

Inserting equation (21 . 75 )  into the integral, integrating and using the 

expressions for T0 , "Cw and Vplug we have 

Q = nR',w [l +i(�J + !(�J
4] 

4µo 3 'w 3 'w 
(21 .  80) 

21 . 10 EXTENSIONAL (or ELONGATIONAL) VISCOSITY 

We consider the uniaxial stretching of a cylinder of fluid as shown in 

Fig . 21 . 8 .  Of course, stretching of a liquid like water is difficult to 

visualize . However, molten polymers have considerable melt strength and can be 

stretched a lot without breaking . In fact, this property enables the 

production of synthetic fibers for fabrics, clothing, ropes, and other 

products .  

As  the cylinder is  elongated in  the x-direction it will contract in the 

y- and z-directions .  If the stretch rate is 

ENx - = E 
ax 

then the contraction in the other two directions will be 

ENy EN, 1 .  - = - = --E 
ay az 2 

So that the equation of continuity will be satisfied ( V · V = O ) 

. 1 .  1 .  E --E --E = O  
2 2 

(21.  81) 

(21 . 82) 

(21 .83)  

(21 . 84) 

The stretch (or elongation or extension) rate for a rod of length L that is 

stretched at a velocity V is 

-

L
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F,...,. --(--)
_l_iq_u_id ____ ....;.(-.1 _____ )---! 

Fig, 21 . 8  

Fig. 21 . 9  

Stretching of a liquid cylinder 

--- Trouton valid here 

Tt, ( extensional viscosity) 

Tl (shear viscosity) _/ 

e or y 

Extensional (elongational) viscosity �, as a function of stretch 
rate and shear viscosity � as a function of shear rate . 
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. fNX V 1 dL E = - = - = --
ilX L L dt 

(21 . 85 ) 

In a manner analogous to the definition of shear viscosity we define the 

extensional (elongational) viscosity as the ratio of the stretching stress to 

the stretch rate i . e .  

011 F/A 
�. = -.- = -.-

E E 
(21 . 86) 

where F is the force and A is the cross-sectional area of the cylinder. As 

explained in Chapter 1, the ordinary (shear) viscosity µ (� in this chapter) 

represents the resistance to shearing. The elongational viscosity represents 

resistance to extension (stretching) . Since both quantities represent 

resistance to flow (shearing in one case and stretching in the other) the 

question might be asked how � and �, are related . 

Starting from the Newtonian constitutive equation (see chapter 20) we 

have for the total stress tensor 

(21 . 87 ) 

where p is the pressure, 61; the Kronecker delta and t,; the viscous stress 

tensor.  Alternatively 

l(oV· [N. 

J where e1i = - -1 +-J , which gives 2 ilxi ilx1 

Summing up we get 

2 fJ,/X 0
11 

= -p+ �ilx 

fNy 022 = -p +2�-
ily 

2 fJ,/z o,, = -p+ �
ilz 

(21 . 88) 

(21 . 89) 

(21 . 90) 

(21 . 91) 
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(avx 8vy av, ) 011 + 022 + o33 = -3p+2� -+- +-ax ay az (21 . 92) 

The quantity in the parenthesis is equal to zero (continuity equation V · v = o 

for incompressible fluids ) .  Thus 

p (21 . 93 )  

For the uniaxial stretching experiment of Fig . 21 .  7 we have 022=0, 033=0 and 

from equations 2 1 . 89 and 21 . 93 

Thus 

p = - 011 
3 

2 avx . -011 = 2�- = 2�E 
3 ax 

o 
�. = __µ. = 3� E 

( 21 . 94) 

( 21 . 95 )  

( 21 . 96) 

Therefore the elongational viscosity is equal to three times the shear 

viscosity for Newtonian fluid s .  This is known as the Trouton relation [2, 7 ] . 

The ( shear) viscosity of polymeric liquids is a function of shear rate 

and usually obeys a power-law relation in the form 

( 21 . 96) 

where usually O. 2<n<O. 8 except a Newtonian plateau at very low-shear rate s .  

The elongational viscosity for very low stretch rates (t < 10-3) obeys the 

Trouton relation, exhibits a maximum and drops as a power-law function as 

shown in Fig . 21 . 9  

(21 . 97)  

Usually n<q<l . 0 which means that stretch "weakening" is  less prominent than 

shear thinning . 

The elongational viscosity of polymeric liquids at high stretch rates 

is many times larger than the corresponding shear viscosity. It is a material 
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property in its own sake and should be measured independently (see for example 

reference [7] ) .  

21 . 11 FLOW IN A SUDDEN CONTRACTION 

Flow from a large reservoir into a small diameter tube is encountered 

in practice very frequently and it is perhaps the most extensively studied 

problem in rheology. We consider the axisymmetric sudden contraction problem 

as shown in Fig . 21 . 10 The Reynolds number is assumed to be very small 

(creeping flow) . Fluid inertia is negligible and the flow is determined by the 

balance of viscous and pressure forces. Under these conditions Newtonian 

fluids exhibit a very small and weak vortex at the corner as shown in 

Fig . 2 1 . 10 .  In fact the corner vortex is weak and the fluid within the vortex 

is so slow that led some people in the past, to believe that it was a region 

of stagnant fluid . On the other hand, polymeric liquids for the same low 

Reynolds number ( e . g .  Re = 10·3 -10-4) as shown in Fig. 21 . 2d exhibit very large 

and strong vortices. The vortex size and strength depends on the elongational 

viscosity of polymeric liquids .  

Another difference between Newtonian and polymeric fluids is  in  the 

pressure drop . Within the reservoir or the small diameter outlet tube of 

Fig . 21 . 11 the pressure drop is linear .  At the tube entry there is an 

additional pressure drop which is small for Newtonian fluids and large for 

polymer solutions or melts .  The vortex, the entrance and the ( relatively 

small) exit pressure at can be determined [2, 12] by solving numerically the 

creeping flow equations 

V · V = O  

0 = -Vp+ V · T  

(21 . 99) 

(21 . 100) 
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small vortex 
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RESERVOIR CAPILLARY 

tw = wall shear 
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\_ LI.Pcap 

Fig. 21 . 10 .  Ne wtoni an e ntrance flow into a capill ary 

�I.____ __ 

-/al EXIT 

ENTRY 

Reservoir Ca Illa 
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z=O z=L t 

aP 

Fig. 21 . 11 Pol yme ric liquid e ntrance vorte x  and pre ssure drops at e ntry and 

e xit 
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The calculated excess pressure drop is equal to the total pressure drop minus 

the ( linear) pressure drop in the reservoir for Poiseuille flow minus the same 

for the small diameter ( capillary) tube i . e .  

llpe = (llp},0t ,  - (llp)ces , - (llplc,p , ( 21 . 101) 

(lip )tot. is determined from the numerical solution of the conservation 

equations (21.99) and (21 . 100) . (llp) ces . and (llp)cap. are determined from the 

Poiseuille flow equations ( see Section 21 .6) . 

The large excess pressure drop at the entrance for polymeric liquids is 

apparently due to large elongational viscosities exhibited by these 

substances . Entry flow is mainly elongational in character. Fluid elements are 

stretched as they enter from a large reservoir into a small diameter tube. 

Obviously, this stretching is resisted by the fluid elongational viscosity, 

which is relatively small for Newtonian fluids (3�) and large for polymers 

(from 3� to more than 100� at very high stretch rates ) .  When the elognational 

viscosity is very large a portion of the fluid is obstructed from entering and 

a flow recirculation region (vortex) is formed . 

The excess pressure drop at the entry, which is also called entrance 

loss, is usually expressed in dimensionless form as 

(21 . 102) 

(where Tw is the shear stress at the wall of the outlet tube) and is known as 

the Bagley correction in capillary viscometry [7, 12] . 

For Newtonian fluids accurate finite element simulations [2] give 

�. = lip. =0 . 587 
2Tw 

(21 . 103) 

For polymer melts measurements range from the Newtonian value at low shear 

rates to about n8=20. Finite element simulations of polymer melt flow in 
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abrupt contraction is a challenging task and the reader is referred to 

specialized textbooks [2 ,12 ]  and publications [19 ] , 

21 . 12 VISCOELASTICITY 

The response of polymeric liquids to an imposed stress may, under 

certain conditions, resemble behavior of a solid, in addition to the non

linear dependence of stress on shear rate. These liquids are composed of very 

long molecular chains of molecular weight usually in the range of 10, 000 to 

10,000,000 with many commercial products being in the range of 50,000 to 

500,000. 

When these liquids are at rest, the molecular chains are randomly 

distributed . When an external stress is applied, the intermolecular bonds are 

stretched, the chains commence to flow past another, to disentangle and to 

align in the direction of the flow. However, for these processes to occur 

certain time is required . On the other hand, the response of small molecular 

weight liquids, like water, can be instantaneous .  From molecular arguments it 

can be estimated that steady shearing can be established in water in about 10· 

12 seconds and, of course mechanical instruments would have a much larger 

response time, so it is impossible to measure directly that constant . With 

polymeric liquids we can measure characteristic response times usually in the 

range of 10·2 to 102 s (the lower values for solutions and the higher for 

melts) .  

It is apparent that time constants are necessary to describe the 

behavior of polymer melts and solutions . Reiner [20] used the biblical 

expression that "mountains flowed in front of the God" to name as the Deborah 

Number the ratio of a characteristic material time (>,) to a characteristic 

experiment or process time (9)  



A material time 
De=-

0 process time 
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(21, 104) 

Let us choose a typical polymer melt with a characteristic time A=ls .  

If  the process time is  very large ( 0--+ oo and De --+ 0 )  the material will behave 

like a fluid . However, when the process time is very short 0 --+ 0  and De --+ oo  

the polymer melt will behave like a solid . Many polymer processing operations 

require times comparable to the characteristic material times . For example, in 

polymer shaping and forming operations, the passage through a die or filling 

of a mold may take place in O . 1  to 10 seconds and De might be in the range of 

1-10. Consequently, the polymer melt behavior will have both fluid (viscous) 

and solid (elastic) characteristics and it is said to be viscoelastic . 

To study the behavior of viscoelastic materials, we must develop 

mathematical models ( called constitutive equations, which are much more 

complicated than the Newtonian version of Chapter 20) that describe such 

behavior .  The simplest of them involves a simple combination of a Newtonian 

fluid and an elastic (Hookean)  solid . 

For the Newtonian fluid we have a linear relation between stress (i:) 

and rate of strain (v,) 

(21 . 105) 

where � is the viscosity . 

For the elastic (Hookean) solid we have a linear relation between stress (i:) 

and the strain (y,) 

(21 . 106) 

where G is the modulus of elasticity. 

We assume that the combined material will have a shear rate equal to the sum 

of the two shear rates 

v=v, +v, (21 . 107) 
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or 

. ,: t 
v =-+

� G 

The ratio �/G has dimensions of time and is usually denoted by A 

This mathematical model is referred to as  a Maxwell fluid. 

(21 . 108) 

(21 . 109) 

(21 . 110) 

Actually, it is easier to understand the behavior of this mathematical 

model by referring to the mechanical analogue of Fig . 21 . 12 .  The spring 

represents the Hookean solid (c = Gy,) and the dashpot the Newtonian liquid 

Let us assume that the mechanical model of Fig . 21 . 11 is suddenly 

extended to a position and held there . This means that we impose a constant 

extension (strain v=const) and therefore y = 0 

Equation (21 . 110) becomes 

or 

Let i:=5 at t=O 

We see that for t=A 

di: i: + A- = 0  
dt 

di: dt - = --
,: A 

,: _t/ 
-=e  l'A 

(21 . 111) 

(21 . 112) 

(21 . 113) 

(21 . 114) 

(21 . 115)  

(21 . 116) 
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Fig. 21 . 12 .  A mechanical contraption representing the Maxwell fluid model . 
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Thus, A represents the time for the stress to decay by a factor l/e=0 . 37 and 

is called the relaxation time . The physical meaning of this quantity can be 

better understood by referring to the mechanical analogue of Fig . 21 . 12 .  If we 

impose a sudden extension and stop the spring will respond instantaneously. 

However, the stress will be relaxed gradually (exponentially) as the dashpot 

will start moving . Given enough time the stress will become zero . 

This model is too crude to represent quantitatively the stress 

relaxation behavior of polymeric liquids, but it gives a good qualitative 

picture. The sudden stop of extension and subsequent relaxation of the 

mechanical model corresponds to the following fluid flow experiment : Assume 

that a polymeric liquid is sheared in a concentric cylinder viscometer, like 

that of Fig . 21 . 13 .  If the rotation is suddenly stopped i . e .  y = O  the measured 

stress will not become instantaneously zero (as for Newtonian fluids) but will 

decay in an exponential-like manner as shown in Fig . 21 . 14 .  

The relaxation behavior is  not the only unusual time response for 

polymeric liquids . If we start suddenly shearing from rest a Newtonian fluid 

will respond instantaneously, while a polymer solution or melt will exhibit an 

overshoot as shown in Fig . 21 . 15 .  

Under shearing the long molecular chains can be thought of a s  acting as 

springs or rubber bands . By shearing, the springs are stretched around a 

rotating shaft in Fig . 2 1 . 2a and exert a contraction force toward the axis of 

the rotation like a "strangulation" [10] which forces the fluid towards the 

axis. This results in the rod climbing, or Weissenberg effect . Similarly, when 

a polymeric liquid exits from a tube ( Fig. 21 . 2b) the "springs" which are 

extended inside the tube, contract and this causes the phenomenon of extrudate 

swell . The contraction of fluid elements which is responsible for the 

characteristic "puff up", can also be thought of as originating from the 

relaxation of the viscoelastic forces at the exit . 



Fig. 21.13. Coaxial cylinder viscometer 
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(a) 

(b) 

(c) 

Fig. 21.14. Stress relaxation after (a) shear flow cessation (b) Newtonian 
and (c) polymeric liquid (viscoelastic). 
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T 

Fig. 21.15. Stress "overshoot" at flow start-up. 

/Newtonian 

"'Polymer 

time 
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The pressure difference between the inner and outer cylinder in steady 

axial flow in an annulus (Fig.21.2f) is due to development of stresses that do 

not exist in Newtonian fluids. These stresses which are developed in 

viscoelastic fluids under shear in directions normal to the direction of flow 

are called normal stresses. They increase with shear rate and disappear when 

the fluid is at rest. The simple molecular picture given earlier, that of 

stretched springs or rubber bands, is too crude to present reality. There is, 

of course, some stretching of the macromolecular chains during shear, but also 

disentaglements and other interactions. There is a great variety of polymer 

types some of them of equal size chains (monodisperse), other of different 

size ( polydisperse), yet others with branches ( short or long) and molecular 

weights ranging from a few thousand to several million. The development of an 

accurate description of the various processes at the molecular level during 

shear or other deformation is an extremely daunting task. We will adopt the 

continuum mechanics approach and will consider only the stresses developed and 

the balance of the corresponding forces. 

Whenever a polymeric liquid is sheared as shown in Fig. 21.16, normal 

stresses are developed because shearing results also in extension in the x

direction and compression in the y- and z-directions. A measuring device would 

record the total normal stresses i.e. there will be contributions from both 

the static pressure in the fluid and the normal stresses developed due to 

shear. Following the convention adopted in Section 6. 3 that pressure forces 

are compressive and therefore negative, we may write the total stresses as 

0u = -p+"Cu (21. 117) 

(21.118) 

(21.119) 



21/46 

SHEAR 

ONLY 

L11-T:22=N1 (first NORMAL stress Diff.) 

r22-r33=N2 ( second NORMAL stress Di ff.) 

Fig. 21.16. Simple shear flow of a polymeric liquid between two flat parallel 

plates. 
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Measurements of 011, 022 and 033 will not be useful in assessing the elasticity 

level of the fluid because the pressure p can be set arbitrarily from 

anexternal source (e.g. pump). To eliminate the contribution of pressure we 

take the differences 

N1 =o11 -022 = (-p+1:11 )-(-p+1:22 )=1:11 -t:22 First normal stress difference (21.120) 

N1 = 022 -033 = (-p+1:22 )-(-p+1:33 )= 1:22 -1:33 Second normal stress difference (21.121) 

The first normal stress difference can be measured directly with a 

cone-and-plate instrument, which is also known as the Weissenberg 

rheogoniometer (see sketch in Fig.21.17). As the cone turns the tendency to 

climb up the rotating shaft is converted in a normal force NF which can be 

measured by a suitable mechanical or electronic device. 

From flow analysis of the cone-and-plate instrument, it turns out that 

the first normal stress difference is 

(21.122) 

The second normal stress difference is much more difficult to measure. 

For different measurement methods the reader is refereed to Tanner [2] and 

Macosko [ 7]. Up to the mid 1960' s it was thought that N2=0. More recent 

measurements showed that N2 is negative and approximately 10-20% of the 

magnitude of N1 • 

The normal stress differences are functions of the shear rate and there 

are sometimes expressed in terms of the so-called normal stress coefficients 

which are defined as follows 

4' (·) = � = l:11 -l:22 
12 y . 2 · 2 

y y 
(21.123) 

(21.124) 
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n 

Cone 

Fluid 

I Sensor 

Fig. 21.17. Cone-and-plate instrument (also known as Weissenberg 
rheogoniometer) 
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These definitions are equivalent to the definition of apparent viscosity 

coefficient 

'( 
11=� (21.125) 

The square of the shear rate in equations (21,123) and (21.124) is due to 

experimental evidence that at very low values of y the normal stress 

differences are proportional to y2 • 

For molten polymers the first normal stress difference obeys 

expressions in the form 

b 

N1 =AT12 (21.126) 

For molten polystyrenes a rough approximation might be [21] A =  Q00347 and b 

1.66. 

Under usual processing conditions for the fabrication of plastic parts 

by extruding a molten polymer through a die the shear stress is likely to be 

T12 = 105 Pa. Using the above equation, we get approximately N1 = 7x105 i.e. 

under customary processing conditions the first normal stress difference is 

much larger than the shear stress. 

To describe the flow behavior of polymer solutions and melts it is 

necessary to develop constitutive equations (see also Chapter 20), capable of 

representing not only the departure of viscosity from linearity (e.g. power

law) but also stress relaxation, stress overshoot, normal stresses and 

elongational viscosity that does not obey the Trouton relation of section 

21.10. This is a very challenging task beyond the scope of this book and the 

reader is referred to specialized books dedicated to the rheology of polymers 

[1-16, 22], 
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21.13 HELE-SHAW FLOW APPROXIMATION 

For slow viscous flow (creeping, Re<<l) spreading in a narrow gap 

between two nearly parallel plates as shown in Fig. 21.18, the pressure is 

expected to have negligible variation in the z-direction and the flow can be 

described (Hele-Shaw approximation) [ 23, 24] by the simplified form of the 

equations of mass and momentum (in x and y directions) 

0 = �(11 
o\/x) - ap 

az az ax 

0 = �(11 
avy )- ap 

az az ay 

(21.127) 

(21.128) 

(21.129) 

where Vx,avg and Vy,avg denote average values across the gap. For a generalized 

Newtonian fluid the viscosity is 

(21.130) 

Applying the no-slip condition at the wall and symmetry at the centerplane, 

Equations (21.131) and (21.132) give 

a H/2 

p f z d vx =-- - z 
ax • 11 z 

(21.131) 

(21. 132) 

and the average values are 

(21.133) 

(21.134) 

where 



Gate 

(a) 

,.,.. L -------1 

.___:EJ ____ --:x �-�� _I I 
j Fully developed I J 

region 

(b) 

Front 
region 

( Fountain effect) 
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Fig. 21.18. Schematic representation of single-gated rectangular cavity: (a) 
top-view (spreading plane), (b) side view (transverse plane) from 
Reference [ 24] . 
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H/2 2 

5 = f .:_dz 
0 11 

(21.135) 

Substituting Equations (21.136) and (21.137) into (21.130) 

(21.136) 

This approximation is used extensively for determining spreading of flow in 

injection molding of molten polymers into "thin" and "wide" cavities, as shown 

on top of Fig. 21.18.0f course, it is easier to solve equation (21.139), get 

the pressure and then Vx and V
y
, than the Stokes equation (see Chapter 8), for 

Non-Newtonian flow. It should be noted that there is a transverse velocity 

component which drives the fluid elements towards the walls. This motion, when 

viewed from a frame of reference moving with the flow front, gives a fountain 

like picture. The implication of fountain flow in injection molding [24] is 

beyond the scope of this book. 
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APPENDIX A 

VECTORS AND TENSORS 

A/ 1 

Vector is an entity that has magnitude and direction. To denote 

vectors we use alphabetic symbols with a bar on top, i.e. I, B, a, r, 
etc. are vectors. If A1

, A2, A
3 are the Cartesian components of vector 

I we have 

A= A1 f + A2} + A3 k 

where f, J, k are the unit vectors in the x,y and z directions 

respectively. Instead of (x, y, z) we often write ( x
1

, x
2

, x
3

) to 

indicate the coordinate axes. The magnitude of vector A is 

A= IAI =IA�+ A�+ A� 

To indicate vector A we may write the three Cartesian components (A
1
, 

A
2
, A

3
) or in the so-called index notation, we may simply write A

i 
where 

i = 1, 2, 3. 

Range Convention: 

Whenever a small subscript appears unrepeated in a term, it is 

understood to take on the values 1, 2, 3 (the number of physical 

dimensions). 

Ai stands for (A
1

, A
2
, A

3
) 

A .. stands for the array of nine quantities lJ 

A11 A12 A13 

A
21 

A22 
A

33 

A
31 

A
32 

A
33 
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when such an array obeys a linear transformation law it is called a 

tensor. 

Mnemonic rule for tensors: A . . 
rows ...,..i,

l J'columns 

Order of Tensor: 

A = tensor of zero order (scalar) 

A. = tensor of first order (vector) 

A. . = tensor of second order ( usually called simply tensor) lJ 

Aijk = tensor of third order 

etc. 

In 3-dimensional space a tensor of order N has 3 N Cartesian 

components. 

Summation (or Einstein) Convention: 

Whenever a small subscript appears repeated in a term, it is 

understood to represent a summation over the range 1, 2, 3, 

Examples: 

i:1 
(a) A .. = E Aii = A 11 

+ A22 
+ A33 11 

i= 1 

(b) aij 
Aj we note j is repeated and i unrepeated 

j=3 
aij A. = E a .. A. 

J j:1 
lJ J 

= ai1 A1 
+ ai2 A2 + ai3 A3 

a 11 A1 
+ a12 A2 

+ a13 A3 

= a21 A1 
+ a22 A2 + a23 A3 

a31 A1 
+ a32 A2 a33 A3 
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This means that a .. AJ. represents an array of three quantities ( each one lJ 

of them is a sum of three terms) and is a vector. 

Kronecker Delta 0 . .  
l.J 

We define 

=t 
if i = 

oij if i i 

or 

0 0 

oij 
+ 

0 1 0 

0 0 

Alternating Tensor eijk 

We define 

8ijk = for even 

8ijk = -1 for odd 

8ijk = 0 for all 

e.g. 

j 

j 

permutations 123123,,, 

permutations 321321 ••• 

other 

= - 1 

Dot Product Between Two Vectors 

i:3 
K•S = A. 

l 
B. 

l 
= E A. 

l 
i:1 

Cross Product Between Two Vectors 

Is a vector C =Ax g 

= 0 
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i j k A2 B3 - A3 B2 

'C = A1 A2 A3 
= A3 a, - A1 B3 

= e:ijk A. 
J 

Bk 

a, B2 B3 A1 B2 - A2 B1 

Mnemonic rule for the cross product: e:ijk AjBk (they ..... .  cross) 

� Dyad is the outer product at two vectors. 

A1 B1 

J( B = A. B. is a tensor + A2 B1 l J 
A3 B1 

A1 B2 A1 B3 

A2 B2 A2 B3 

A3 B2 A3 B3 

Note that if we place a dot between the two vectors J( and B we get the 

dot product: 

J(•B : A. B. 
l l 

which is a scalar. 

TENSOR PRODUCTS 

In general, if we place two tensors side by side we have the o.uter 

product which is a tensor of order equal to the sum of the orders of the 

two tensors. 

Neighboring Index Convention: 

A dot between two tensors is equivalent to identifying two 

neighboring subscripts with the same symbol and then applying the 

summation convention. 

Examples 

(a) A•B means A. B .  = 
l l 

i:3 
E Ai Bi i:1 



(b) 

This, 

( c) 

A•B means A. B .. = l lJ 

i:3 
.E Ai B ..  

i:1 
lJ 

in general, is not equal to --

1s•A means 
j:3 

B ..  A. = .E Bij Aj lJ J j:1 

Ai B .. Jl 

( d) K � is the fourth order tensor Aij Bmn which has 3
4 = 144 

components 

K•B" means A .. B.  lJ Jn  = 

A/5 

Since we have two free subscripts, this quantity is a tensor of order 

two. The quantity 

i:3 j:3 
K:s is the scalar A . .  B .. = .E .E A . .  B .. ( sum of 9 terms) lJ J l  i:1 j:1 lJ J l  

( i) Note that each dot represents a reduction from the sum of the 

orders by two. 

( ii) The subscripts i, j, k etc. are dummy variables standing for 1,  2, 

3. Thus, it does not make any difference whether we identify two 

subscripts with i, j or any other letter, i.e. 

( iii) Remember that each dot means identification of neighboring indices 

with the same symbol i.e. 

A•B means A. B and not A�. 1r rn -- 1 fn 
V 

VECTOR OPERATOR V 

The vector differential operator V ( del) is defined by 
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a T a � a r. 'i/ :-1 +-J+-K 
ax ay az 

in index notation we may simply write 

a . < a a �) < a a _a-) ai or axi 
which is equivalent to ax• ay• az or ax,' ax2' _ax3 

If �(x,y,z) is a scalar field we define the gradient of� as 

(vector) 

or in index notation 

or 

If A is vector field, we define the divergence of A as 

div 'K. 
aA1 aA2 aA 

= v•°K. = -- + -- + --3 (scalar) 
ax aY az 

which is written in index notation as 

a. A. 
l l 

or 

The curl or rotation of Vis written as 

V X V = 

= 

j I< 

a a 
ax ay 

av 3 (- -
av 2 _ -)i ay az 

e:ijk a. 
J vk = 

a 
az 

+ 
av1 

(--az 

avk 
e:ijk ax . 

J 

av3 _ 
-) j  ax + 

av 2 av 1 _ (- - -)k ax ay 



The Laplacian v 2 is defined as 

2 a2 a2 a2 

v = v•v = --
2 

+ --
2 

+ --
2 

ax ay az 

DIFFERENTIATION FORMULAE 

Let A and B be arbitrary vectors and f a  scalar, we have: 

2. v x fA = fv x A + vr x A 

3. v• or x B) = B • v x 'Ii. - 'li,. v x B 

4. 

5. vC'li. 0B) = A•vB + B·v'li. + 'Ii. x Cv x B) +B x Cv x 'Ii.) 

6. v x ( Vf) = curl grad f :: O 

7. v•Cv x 'Ji.) = div curl 'Ji. =  O 

8 • V x ( V x A ) = cur 1 cur 1 A = v ( v • A ) - v • v A 

= grad div A - v 2 'Ji. 

- The quantity VA is a dyad and may be written as 

aA 1 aA
2 

aA3 
ax 1 ax 1 ax 1 

aA . aA1 aA
2 

aA3 v'li. = ai A. = _J + ax. ax
2 

ax
2 

ax2 l 

aA1 aA
2 

aA3 
ax 3 

ax3 ax3 

- The quantity V·T is written as 

A/7 
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i=3 a 
: L. . : 

ax. l J  
l i:1 

a 
ax." '\j-+ l 

and it is a vector. 

- The quantity T! V V represents the scalar 

i:3 j:3 avi 
�:vv = 

't ij a . V. = .E .E 
't ij ax. l i:1 j:1 J 

av1 
av1 

av1 
av2 

av2 
av2 

i-11  ax1 + i-12 ax2 
+ i-1 3 ax

3 
+ i-21 ax1 + i-22 ax

2 + i-23 ax
3 

The quantity V•vV is a vector Vi ai Vj 

INTEGRAL THEOREMS 

1.  Gauss' Divergence Theorem: 

111 Cv•l) ct¥ = J:;j Cl•n) cts 
V. s 

2. Stokes' Theorem: 

f l 0 dr = ff ( v  X A)•n dS 
s 

a : V.-- V. : 
1 axi J 

3. Differentiation of an Integral ( Leibnitz formula) 

( scalar) 

d b ( u) 
( f F (x, u) dx) = du a (u) 

b 
f ¥uax + F (b, u) ( ��) - F (a, u) ( ��) 
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APPENDIX B 

FINITE DIFFERENCE AND FINITE 

ELEMENT METHODS 

B. 1 INTRODUCTION 

We have seen some simple analytical solutions for certain well defined problems in 
previous chapters of this book. It is true that an awful lot of engineering problems can be 
solved using simple equations and formulas. However, for many other problems 
simplifications that render the problems amenable to analytical solutions are not possible. 
We must resort to numerical methods and powerful computers. 

The basic idea is to discretize our problem. Instead of having a continuous problem we 
will solve the differential equations for a discrete one. There are two basic ways to achieve 
this. One way is to choose a finite number of points, and to· replace the derivatives by 
differences. This is the finite difference method (FDM). The other way is to choose functions, 
preferably polynomials, and to approximate the exact solution by a combination of these 
functions over small interconnected regions (elements). This is the basic idea behind the 
finite element method (FEM). Under special circumstances finite differences and finite 
elements may lead to exactly the same sets of algebraic difference equations. 
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In setting up a finite difference scheme a regular grid is necessary over the domain of 

integration. In the finite elment method elements of different sizes can be easily 

interconnected. Either method can be used to solve the partial differential equations (PDEs) 

of fluid mechanics. Finite differences are easier to program. Finite elements are more 

difficult to program but can handle much better irregular geometrical boundaries and 

unusual boundary conditions. The question whether finite differences or finite elements 

should be used for a given problem is difficult to answer. Both methods have advantages and 

disadvantages and the controversy is still going on. At the moment it appears that most 

researchers in the field of turbulence pref er finite difference methods while for creeping flow 

problems they prefer finite element methods. In other areas neither method seems to have 

the edge and the decision to go with FDM or FEM may simply depend on the experience and 

background of the problem solver. 

For an interesting overview of various methods of solution of partial differential 

equations the reader is referred to a textbook by Strang (1). Roache (2) gives an extensive 

review of FD techniques applicable to various kinds of fluid flow problems. The application of 

finite elements to fluid mechanics is described in great detail by Huebner and Thornton (3) 

and Baker ( 4). 

B .  2 FINITE DIFFERENCE APPROXIMATIONS AND SOLUTIONS 

The finite difference method is a very powerful tool for the solution of partial 

differential equations (PDEs). In this method the differential equation is approximated at a 

finite number of locations (nodes) of the domain of integration. The solution can be 

accomplished by following the four-step procedure outlined below: 

1 .  Discretize the domain of the integration using a one- two- or three-dimensional grid 

depending on the problem. 

2. Write the appropriate finite difference approximations of the derivatives. 
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3 .  Approximate the PDE with its finite difference approximation at  each node of the 

discretized domain. 

4 .  Solve the resulting difference equations to obtain approximate values o f  the unknown 

variables at each node. 

Finite difference approximations of the derivatives can be obtained by usmg the 

expansion of a function in Taylor series. 

If f(x) is a continuous differentiable function we may write 

or 

df(xo) (L\x/ d 2f(xo) 
f(x - L\x) = f(x ) - L\x -- + -----

O O dx 2 !  dx  

Thus, the first order derivative can be  approximated by a forward difference 

or a backward difference 

df(xJ 

dx 
+ O(L\x) 

df(x
0
) f(x

0
)- f(x

0 
+ L\x) 

-- - ------ + O(L\x) 
dx L\x 

The error in both cases is of order L\x. 

( B .  1 )  

( B . 2 )  

( B . 3 )  

( B .  4 )  

Subtracting equation ( B .  2 )  from equation (B.  1 )  we obtain a central difference 

approximation 

dx 
The error is oforder (L\x)2. 

f(x0 + llx ) -f(x - L\x) 2 --· ---- + 0 (£\x) 
2t.x 

( B .  5 )  

Adding equations ( B .  1 )  and( B. 2 )we obtain an approximation of the second order 

derivative 

d2f(xJ 

dx 

f(x
0 

+ llx ) - 2f(x
0

) + f(x
0 

- 6..x) 
+ 0(6..x)2 

(llx)
2 

( B . 6 )  
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This procedure can be used for the determination of finite difference approximations 

of derivatives of any order. These expressions are further used to approximate the PDE at 

each node of the finite difference grid as explained in the example below. 

Example 

The equation for pressure driven flow between two flat plates is 

2 a v
x: dp 

µ - = -
a y2 dx 

The boundary conditions are vx = O at y = b  and vx= O at y =-b. Solve this problem using the 

method of finite differences and compare to the analytical solution of Section 7.2. 

Solution 

To simplify the solution procedure we use a one-dimensional grid of only five points as 

shown in Fig . .  B .  ! ( a ) let us define vx: = V and (1/µ) dp/dx = - A  (Minus because the 

pressure gradient is negative in the direction of flow). We have 

d2V 
- = -A 
dy2 

The finite difference approximation is 

d2V V(y + �y) - 2V(y) + V(y - �y) 

The differential equations can be approximated as 

node 2: 

V3-2V2+ V 1 
----- = - A 

(�y)
2 

node 3: 

- A  



Ay 

Ay 

Ay 

+ 

(b) 

(a) 

Fig . . B . 1  
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(c) 
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node 4: 

V5-2V4+ V3 ----- = - A 
(6.y )2 

Noting that V 1 = V5 = 0 and redefining V/A(6.y)2 = V* 

we have 
• • V - 2V = - 1 3 2 

• • • V -2V + V = - l 4 3 2 

• • V5-2V4= - 1 
Solving these algebraic equations we get 

• 
V = 2 3 

• 
V 4= 1 .5 

This velocity profile leaves much to be desired as shown inF i g • · B .  1 ( b )  Obviously if more 

nodes were used the profile could be made virtually identical to a parabola (shown in 
Fig . B . l ( c ) 1: .  

It is interesting to note that the system of algebraic equations is of the tridiagonal 

form 

Cm Fm-1 + Am Fm +  Bm Fm+ l = Dm for m = 2, 3, . . . .  , k-1 

where Fm are the unknown nodal values and Am, Bm and Cm are constants. 

The solution of such a system of linear algebraic equations can be easily carried out in 

a digital computer using well known methods [5]. 



B/7 

Example. 

Use the method of the above example to solve the equation for pressure driven flow in 

a tube 

µ 
� �  

(r 
iN z ) = dp 

r ar ar dz 
with boundary conditions at r= O avz/ar = 0 and at r = R Vz = O 

Solution 

We rewrite the differential equation as 

�� (r 

dV
) = - A  

r dr dr 
and carry out the differentiation 

1 dV d2V -- + - = -A 
r dr dr2 

We will use the following finite difference approximations 

and 

dV V (r+ D.r) - V(r) 
dr 

d 2V V (r+ D.r) - 2 V (r) + V(r- D.r) 

dr2 

For simplicity we choose a four-node grid as shown in Fig. · B .  2. ( a )  .The finite difference 

approximations of the differential equations are: 

node 2: 

node 3: 

1 
26.r 

+ 
V3 - 2 V2 + V1 ------ = - A  

(D.r)2 

V4 - 2 V3 + V2 ------ = - A  
(D.r)2 

The velocity V 1 at the centerline is unknown and thus, we must write another equation for 

node 1 .  We note, however, that at the centerline the differential equation has one indefinite 

term i.e. 
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Using L'Hopital's rule, we get 

or 

Thus, for node 1 ,  we have: 

O d2V - + -- = - A  
0 dr2 

d2V d2V 
+ -- = - A  

dr2 dr2 

d2V 
2 -- = - A  

dr2 

V2 - 2V 1+ V2 
2 ----- = - A  

(�r)2 
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Due to symmetry the velocity at fictitious point (V2') should be equal to velocity V2 i.e 

4V2 -4V 1 . ---- = - A  
(�r)2 

After some minor rearrangements the difference equations become 

node 1 

node 2 

node 3 

2 -4V + 4V = - A(�r) 1 2 

2 2 V  -3V + V = - A(�r) 1 2 3 

3 5 2 -V - - V  + V = - 2 A(�r) 
2 2 2 3 4 

Noting that V 4 = 0  and dividing by A(�r)2 we have 
• • - 4V + 4V = - 1  1 2 

• • • 2V - 3V + V = - 1 1 2 3 
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3 • 5 • 
- V  - - V = - 1 
2 2 2 3 

Again this system of equations is of the tridiagonal form as in Example EB . 1 .  Solving, we 

get 

+ 20 
V = - 5.00 1 4 

V = 2 
19  

4 

• 1 3  

4.75 

V = - = 3.25 3 4 
The velocity profile is sketched in Fig. B .  2 ( b }  .More nodes will yield a profile virtually 

identical to a parabola. 

B .  3 UNSTEADY FLOW ANALYSIS BY THE EXPLICIT METHOD 

We will now use a finite difference method to solve the parabolic differential equation 

that describes the flow field near a plate suddenly set in motion (see Section 7.15). We have 

iJv ,Pv 
X J: - = v--

at iJy2 

Vx = 0 

Vx = V 

at 

at 

t = 0 

y = O 

Vx = 0 at y�oo 

To simplify the notation let Vx = U. We will solve the differential equation 

au a2u 
- = v -

at iJy2 

using the following finite difference approximations 

au 
at 

u� 
+ 1 

- 2 u� + u� 1 l l l -

.M 

( B .  7 )  

( B .  8 )  

( B .  9 )  

( B . 1 0 )  

( B . 1 1 )  



The subscripts denote position and superscripts denote time. 

Substituting equations ( B .  1 0}3.nd ( B .  1 1  )into ( B. 9 )and solving for U � + 1, we get 

uJ_ + = v -- uJ - u� + 1 - 2 v -- u� 
· 1 M ( · · ) ( t:,.t 

) 
. 

l (6_y)2 t + l L - 1  (6._y)2 l 

B/1 1 

( B . 1 2 )  

This equation gives the velocity at time tj + 1 if the velocity at time tj is known. Since the 

unknown velocity is a function of known quantities and can be determined directly, this 

method is called explicit. 

Stability of this numerical scheme (see ref. 5) requires that 

or 

An obvious choice is 

6.t 
1 - 2v -- 2: 0  

(!1y)2 

Lit 1 v -- 2: -
(6.y)2 2 

Lit 1 v -- = -
(t:i.y)2 2 

so that equation :B.12) becomes 

Example .··. · ·  

· + 1 1 . 
u� = - cu� + i + u� i) l 2 l 1 -

( B . 1 3 )  

( B . 1 4 )  

( B . 1 5 )  

( B . 1 6 )  

Use the explicit finite difference method to determine the development of the velocity 

profile near a plate suddenly set in motion with an arbitrary velocity 1 .  

Solution 

At time zero, we have 

U 1 = 0 U2 = 0  U3 = O U4 = 0 Us = O  . . . .  Un = O 
Using equation ( B . 16 )  we get 

First time step 

U1 = 1 U2 = 0.5 U3 = O U4 = O Us = 0 . . . .  Un = 0 
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Second time step 

Third time step 

U1 = 1 U2 = 0.625 Ua = 0.25 U4 = 0 . 125 Us = 0 . . .  Un = 0 

Fourth Time Step 

B/1 3  

A plot of the velocity profile after four time steps is shown in Fig. B.3 • The agreement 

between these numerical results and the analytical solution 

; = I - err( v:vt ) 
is relatively good. However, it should be pointed out that not all problems give such good 

results. Depending on the form of the equation to be solved and the boundary conditions, the 

solution might contain considerable errors. 

B .  4 UNSTEADY FLOW ANALYSIS BY THE IMPLICIT METHOD 

Again we solve the partial differential equation of the previous section 

au a2u 
- = v -at ay2 

with the boundary conditions 

U = 0 

U = 1 

U = O  

at 

at 

at 

t = O  

y = O  

For the time instantj + 1 we approximate the equation by 

u� + 1 - u� u� + 1 - 2 u� + 1 u� + 1 
l l 1 + 1  l 1 - l  

Letting 

and rearranging, we get 

= v  
D.t (D.y)2 

D.t 
r = v --

(D.y)2 

( B . 1 7 )  

( B . 1 8 )  

( B . 19 )  

( B . 20 )  
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- r U�+ l + (2r+ l) U�+ l  _ r U�+ l = U� 1- l 1 1- l 1 
Let us now choose as in the previous section 

Thus we have 

�t 1 
r= v-- = -

(�y)2 2 

- !. u� + 1 + 2 u� + 1 - !. u� + 1 = u� 
2 1 - l  1 2 1 - l  1 

( B . 2 1 ) 

( B . 2 2 )  

( B . 2 3 )  

We now use a 6 node grid and we assume that node 6 is far enough so that always U6 = 0. We 

can write for the first time step: 

node 2 

node 3 

node 4 

node 5 

1 1 
- - U + 2U - - U  = 0 

2 1 2 2 3 

1 1 
- - U + 2U - -U = 0 

2 2 3 2 4 

1 1 
- - U + 2U - -U = 0 

2 3 4 2 4 

1 1 
- - U + 2U - - U  = 0 

2 4 5 2 6 

Since U = 1 and U6 = 0, we get 

1 1 
2 U  - -U = -

2 2 3 2 

1 1 
- - U  + 2U - - U = O 

2 2 3 2 4 

1 1 
- - U  + 2U - - U = 0 

2 3 4 2 5 

- - U  + 2U = O 
2 4 5 

Solving these equations we obtain 

U2 = 0.26794 U3 = 0.07177 U4 = 0.01910 Us = 0.00477 
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Since the nodal velocities are known at the first time step we can move to the second 

time step using equation ( B .  23)and so forth. At each step we must solve a system of 

algebraic equations that is why the method is referred to as an implicit method. 

A very popular implicit method is the so-called Crank-Nicolson method (5,6]. This is a 

numerical scheme in which the second order derivative cJ2ufcJy2 is replaced by the mean of its 

finite-difference approximations on the (j + l)th and jth time steps giving a representation of 

equation ( B .  1 7)in the form 

j+ 1 j j j j . + 1 . + 1 . + 1 u. -u. 1 ( u. + 1 -2 u. + u. 1 u� 1 - 2 u� + u� 1 ) l l __ 
1 ___ 

1 
__ 

1_-
_ + 

l + l l ----- - �1 -
�t - � 2 (�y)2 (�y)2 

While implicit methods are more complicated they exhibit much better stability (and 

convergence) characteristics than the explicit ones. The vast majority of scientific articles on 

finite difference solution of fluid mechanics problems are based on implicit methods. 

By Convergence we mean that the results of the numerical method approach the 

analytical values as �t and �y approach zero. By Stability we mean that errors introduced by 

the numerical method remain bounded. 

B .  5 FINITE DIFFERENCE ANALYSIS OF A LAMINAR FREE JET 

The steady laminar flow of a two-dimensional free jet is described by the boundary 

layer equations which are (see Section 9.4): 

continuity 

momentum 

av av 
y z 

- + - = 0  
rJy az 

av av a2v z z z 
v - + v - = v --Y cly z az cly2 

Note that the left-hand side of the momentum equations is non-linear. 

The boundary conditions are: 

( B . 2 5 )  

( B . 26 )  
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Z = 0 V = V (y) 
Z 0 

y = O 

y -+ 00 

- = O 
i)z 

V = 0 
z To simplify the notation, let Vz = U and Vy = V. 

V = 0 
y 

The finite difference grid is shown in Fig. B.4 . We use the following expressions to 
approximate the derivatives at an arbitrary node (z + Az,y): 

au 
i)z 

U(z+ Az,y)- U(z,y) 
Az 

au U(z+Az,y + Ay)-U(z + Az, y -Ay) 

av 
iJy 

2Ay 
U(z+ Az,y + Ay)-2U(z+ Az,y)+ U(z+ Az,y -Ay) 

(Ay)2 

V(z+Az,y)- V(z+Az,y -Ay) 
Ay 

( B . 27 )  

( B . 28 )  

( B . 29 )  

( B . 30 )  

Now, with the help of the above expressions, we approximate the momentum equation 
at an arbitrary node (z+ Azy). We have , 

U(z+Az,y + Ay)- U(z+Az,y - Ay) V (z+ Az,y) ------------2.1.y 
U(z+Az,y)-U(z,y) + U(z+ Az,y)- -------. Az 

U(z+ Az,y + Ay)-2U(z+ Az,y) + U(z+ Az,y - Ay) 
= v  

(ti.y}
2 

This equation may be written in the form 
A U(z+Az,y -Ay) + B U(z+Az,y) + C U(z+ Az,y +Ay) = D 

where 

( B . 3 1 )  

( B . 32 )  
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Boundary .:::: oo 

Direction of lntergration 

, ., "., , ., ,"'(m+1 , n+1) 
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(m, n)_ (m+1 , n) 
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. Centerlme 

Finite difference grid for a laminar free j e t .  
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A 

B 

C 

D = 

V(z+ t:..z,y) V 

2!::.y (�y)2 

U(z+ t:..z,Y) 2v 
+ --

t:.z (t:..y)2 

V(z+ t:..z,y) V 

2!::.y (�y)2 

U(z,y) 
U(z+ !::.z,y) -

t:..z 

Now, in order to write the finite difference equation for each interior point of the grid at 
Fig. B .4,we start from the axis of symmetry along which the points are labelled with the 
subscript 1 . We have (along any m + 1 line) 

B1 u1 + 2c1 u2 = 0 1 

A U 1 + B U + C U 1 = D1 n n - n n n n+ for n = 2,  3 ,  . . .  , k - 1  
( B . 3 3 )  
( B . 34 )  
( B . 35 )  

This a nonlinear system of algebraic equations which can be linearized iterat ively. At the 
starting line ofFig.B .41all quantites are known and can be used to calculate An, Bn and Cn 
and then the triagonal system of equations above is solved to yield the unknown velocities Un 
at the first vertical line after the starting line. These velocities are then introduced to the 
expression for An, Bn and Cn and the solutions repeated until the results of two successive 
iterations do not change more than a predetermined tolerance. The velocity V is also required 
for these calculations and it is determined explicitly from the continuity equation( B .  2 5 )  
which is written as 

or 
V(z+ t:..z,y)- V(z+ !::.z,Y - !::.y) U(z+ t:..z,y) - U(z,y) 

+ 
t:.y t:.z 

= O  

t:.y V(z+ t:..z,y) = V(z+ t:.z,y -!::.y) - - (U(z+ t:..z,y)- U(z,y)) 
t:.z 

( B . 36 )  

( B . 37 )  
After the calculations are completed for the first line, the solution is carried out to the next 
line (m + 2) and so forth (marching procedure). If the iterative scheme exhibits poor 
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convergence characteristics, it is advisable to use weighted averages between 

consecutive iterations. It is important to note that the speed of convergence 

depends greatly on the relative magnitude of the step sizes tiz and tiy. 

Usually a well-posed and well-behaved numerical scheme should not require 

more than a dozen iterations to converge [7] 

More 

details about finite difference solutions of the boundary layer equations can be 

found in specialized texts [8-10] and literally many thousands of research 

papers. 

B .  6 FINITE ELEMENT FORMULATION 

The finite element method (FEM) evolved gradually from physical arguments for 

problems in structural mechanics. It was later recognized that the approximations can be 

obtained from more general principles which are applicable to all types of problems involving 

partial differential equations. The major advances in the field of structural mechanics were 

done in the 1960's. Serious applications of finite element methods in fluid mechanics started 

in the early 1970's. 

In the finite element method, again, the objective is to obtain difference equations. In 

the finite difference method we started from the strong form of the differential equations and 

approximated the derivatives directly by differences. In the finite element method the proper 

framework is the weak form where instead of asking for an equation that holds at each point 

we need an equation that holds for each function. This is the basis of the Galerkin method 

(named after the Russian engineer and mathematician 

Consider the differential equation 

L(u) - f = O 

B .  Galerkin ( 1 8 7 1 - 1 945 ) . 

( B . 3 8 )  
where L is some differential operator which may include a/ax, a21ax2, a/at etc. and u is the 

unknown variable. The equation is valid in a domain D. 

}

{
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Approximate u by u where 

n. 

u =  I N. u. ( B . 39 )  
i = 1 

Ni are assumed functions and Ui are unknown parameters and n the number of unknowns. 

In general, there will be an approximation error, so that 

L(u) - f = R � 0 
where R is called the residual error. 

{ B . 40 )  

A weighted residual method (1 1) method determines the n unknowns by creating n 

equations which specify that the weighted average residual is zero, over some domain. For 

example, 

f W. [L(u) - fl dD = J W. R dD = 0 
D t D i 

i= 1 ,2,3, . . . ,n ( B. 4 1 )  

There are many choices for the weights Wi. In the Garlerkin method we simply choose Wi = 

Ni, i.e. 

I N. [L(u) - f] dD = 0 
D t 

i= 1 ,2 ,3 ,  . . .  ,n ( B . 42 )  

This relation can be applie.d over a local element and then by summing up the local Galerkin 

integrals we obtain an approximation for the entire domain. This will become more clear by 

applying this method to a simple problem in the next section. 

B .  7 FINITE ELEMENT SOLUTION FOR PRESSURE DRIVEN FLOW BETWEEN 

FLAT PLATES (Courtesy ofH. Mavridis) 

We have dealt with this problem by analytical methods (Sec. 7.2)  and by finite 

differences ( · Fig. B . 1  . ) . Here, we will solve the differential equation 

d2u 
- + 1 = O  
dy2 

subject to the boundary conditions (see Fig. B.5 (a) ) 

du - = O 
dy 

at y = O  

u = O at y = l  
We follow the five step procedure outlined below: 

( B . 43 )  

( B . 44 )  
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elements 

;,, "1 I+, 
··----•¥--.;..._-.... �---,,' ( ,J.1 -----41•�-----· 

{a) 

{b) 

Y1 = 0  Y2 Y3 Yn + 1 = 1 

�\ 
nodes 

i-th element Y1 + 1  

Fig. B.5 Prol.Iem definition and finite element discretization for pressure driven flow 

between flat plates. 

{c) 
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(a) Discretize the solution domain as shown in Fig. B.5(b) • n + 1 nodes define n elements 

(linear in this case). The discretization need not be equidistant (but it is used later on 

for the sake of simplicity). 

(b) Define the approximating function as 

u (yj = "' N.(y) U. L 1 1 
i = l  

( B. 4 5 ) 

where Ui is the u-value at node Yi (nodal variable) and Ni(y) an appropriate 

interpolation function defined over the elements that share the i-th node. In our case 

Ni(y) can be linear, so that at the element level 

y
-

yi+ 1  N. (y) = ---= 1 + 1  y - y  

We note that (see also Fig. B .  3 ( c )  ) 

i i +  1 

N.(y.) = 1 l J 
if i=j 

(c) Insert the approximation 
=O  if i :;t:j 

Q(y) = °" N.(y) u.  L 1 1 
i =  1 

( B . 46 )  

( B . 4 7 )  

into the differential equation. General ly,  there will be a residual i .e .  an 

approximation error, so that 

d2 
- (u(y)) + l :;t: Q  
dy2 

( B . 4 8 )  

The Galerkin method requires this error to vanish in an average sense: the integral of 

residual over the domain weighted by the interpolation function to be zero, i.e. 

R. = f { 
d2 

(u) + 1 }  N. dy = O 
I dy2 I 

( B . 49 )  

and the Ui's are determined as the values that result in a zero average ( = weighted) 

error ( = residual). 

There is a weighted residual Ri for every interior node, thus giving (n- 1) 

equations. Two more equations are provided from the end points by incorporating the 
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boundary conditions. Therefore, we have (n + 1 )  equations for the (n + 1 )  unknowns 

u1, u2, u3, . . .  , Un + l ·  

(d) Simplify the expression for the residual by integrating by parts the highest derivative 

under the integral. The advantage of this approach is lower order differentiability 

requirements for the interpolation functions and most important the boundary terms 

that arise from the partial integration make easier the incorporation of boundary 

conditions. We have 

R. 

= I: h d�2 (ii) + N, l dy 

Integration by parts gives 

Thus 

J b
N.

� ( du
) dy = N. d� ,

b - J b dNi du
dy 

a l dy dy l dy a a dy dy 

I b { dNi du 
} 

du I b 
R . - - - - N dy - N - - 0 

1 - a · dy dy i i dy a -

( B . 50 )  

( B . 51 ) 

( B . 52 )  

(e) Proceed to the solution by assembling the expressions for the residuals at each node 

which are determined from equation ( B .  52 ). The interpolation function should be 

such as to ensure the integrability of the expression under the integral sign. In this 

case we will use the simplest form which is a first order polynomial. Integrability also 

allows the evaluation at the element level. We note, however, that the second term is 

not under an integral and can simply be determined at the two ends of the solution 

domain. Thus, in assembling the contributions at the element level we must only 

evaluate the expressions under the integral sign. 

To illustrate the above five step procedure we choose the four linear elements shown 

in Fig. ( B.6 ) • 
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For every element there are two residuals associated with it. Ri i indicates the 

contribution of the j-th element to the i-th residual. The residual at each interior node will be 

the sum of the residuals from the elements to the left and to the right of it. 

First we note that 

Nj + l = 
yj - Yj+  1 

y - y .  J 

All other Ni's are zero in the interval [yj, Yj + 1 ]  ( see also .Fig . B.6 , ) . We have 

I 
Yj + l 

{
dNj (

dNj d Nj + l  ) } R i_ u. + --- U. + l - N. dy 
J y. dy dy J dy J J 

J 

Since 

dN. 
_J = -

1 
dy 

we get 

d Nj + l 

} 
J 

y j + 1 
dy u. + 1 - N.dy 

dy J y. J 
J 

dN. 1 J+ 1 
dy 

R � = ( - 1 )
2

'"· + 1 - y.) u. - 1 , .. - y ) u  -1 \.YJ J J 2 \.Yj+ l  j j + l  
Yj+ l - yj (yj + 1 - Y} 

Similarly 

u. 
J 

1 
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+ 

we have, 

Element @ 

Element ® 

J Yj + l  { dNj+ l  ( dNj dNj+ l  ) } -- - u. + -- u. - N. d y y. dy dy J dy J + l J + l  

JYj+ l  dNj+ l  dNj J Yj + l ( dNj+ l ) J Yj + l u.dy + u.+ 1d y - N.+ 1dy 
y . dy dy J y. dy J y, J 
J J J 

( 1 ) ( - 1 )(y · + 1 - y.) u. Yj+ l - yj Yj + l  - y. J J J 

R� 4 u1 - 4u2 - 0 . 125  = 0 
R� - 4u1 + 4u2 - 0.125  = 0 

R� -4u2 + 4u3 - 0 . 1 25 = 0 



Element ® 

Element © 

R� - 4u
3 + 4u4 - 0 . 125 = 0 

R: = - 4u4 + 4u5 - 0 .125 = 0 
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We can now assemble the residual for each node noting also that the second term of equation 
( B . 5 2 )  gives 

Ni :; I y=O = N, :; I y=� :; I y=O 
a

lltl N, :; I y=l  = N5:; I y=� :; I y=l  
we have 

or 

® 
I 

R1 = R1 = 4u1 - 4u2 - 0.125 - du/dy y=
O 

= 0 

© du 
I R = R = - 4u + 4u - 0.125 - -5 5 4 5 dy y= l  
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4u1 - 4u2 = 0 . 125 + du/dy I 
y=O 

- 4u4 + 4u5 = 0 . 125 + du I dy y= l and after applying the boundary conditions (du/dyjy =o=O  u5 = 0) and discarding Rs (since we 
know the velocity u5 = 0 we do not need an approximation at this point) we get 

The solution is 

4u1 - 4u2 = 0. 125 

-4u3 + 8u4 = 0.25 

u1 = 0.5 
u2 = 0.46875 
u3 = 0.375 
U4 = 0.21875 
U5 = 0 

Yt == 0 
Y2 = 0.25 
Y3 = 0.5 
Y4 = 0.75 
Y5 = 1.0 

This is actually the exact solution! In Fig. B.7 we interpolate by drawing straight lines 
between the calculated points. Obviously with a few more linear elements the numerical 
solution could be indistinguishable from the analytical (parabolic) velocity profile. 
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Velocity profile as determined by the finite element method . 
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APPENDIX C 

Fluid Property Data 

,... 0.990 
(.) 

c:, �  en -. ., 
� .;  0.980 
> ., .. 
lio 3: 
� .9  g "e o.970 
�l 

0.960 For water at 4 C, p ,.. 1000 kg/ml 

0.950 ,__ _ __._ __ ,..._ _ _,_ __ J__ _ _,_ __ ,..._..l,........J 
-20 0 20 40 60 80 

Temperature, C 
(a) Water 

For water at 4 C, p :: 1000 kg/ml 

lCO 120 

13.30 L..--L--.L...--L--.l-...--1---.L....-;::,j 
-20 0 20 40 60 80 

Temperature, C 
(b) Mercwy 

100 120 

f Specific gravity of water and merCtJry as functions of tem
perature (daia from Ref. 1). 



C/2 

Specific Gravities of Several Common Manometer 
Fluids at 20 C 

Fluid 

E. V. Hil l  blue oil 
Meriam red oil 
Benzene 
Dibutyl phthalate 
Monochloronaphthalene 
Carbon tetrachloride 
Bromoethylbenzene (Meriam blue) 
Tetrabromoethane 
Mercury 

Specific Gravity* 

0.797 
0.827 
0.879 
1 .04 
1 .20 
1 .595 
1 .75 
2.95 

13.55 

Specific gravity, SG = p/pH,o (at 4 C); PH,o (at 4 C) - 1000 kg/m3 (1.94 slug/ft3) 

Physical Properties of Common Liquids 
at 20 C 

lsentropic Bulk Specific 
Modulus* Gravity 

Liquid (GN/m2) ( - )  

Benzene 1 .48 0.879 
Carbon tetrachloride 1 .36 1 .595 
Castor oi l  2.1 1 0.969 
Gasoline 0.72 
G_lycerin 4.59 1 .26 
Heptane 0.886 0.684 
Kerosine 1 .43 0.82 
Lubricating oi l  1 .44 0.88 
Mercury 28.5 13.55 
Octane 0.963 0.702 
Sea water 2.42 1 .025 
Water 2.24 0.998 

• Calculated from speed of sound·; 1 GN/m2 � 109 N/m2 (1 N/m1 � 1.45 x 10-• 
lbf/in.2) 



Surface T.eosion of Common Liquids at 20 C 

Liquid 

(a) In contact w1th air 

Benzene 
Carbon tetrachloride 
Glycerin 
Hexane 
Kerosine 
Lube o i l  
Mercury 
Methanol 
Octane 
Water 

(b) In contact with water 

Benzene 
Carbon tetrachloride 
Hexane 
Mercury 
Methanol 
Octane 

1 mN/m = 10-> N/m 

Surface Tension, i1 
(mN/mr 

28.9 
27.0 
63.0 
18.4 
26.8 

25.:...35 
484 

22.6 
21.8 
72.8 

35.0 
45.0 
51.1 

375 
22.7 
50.8 

Contact Angle, 0 
(degrees) 

Air 
liquid 

140 

- o  

Water 

liquid --:-I 
'-IB , 

140 

C/3 
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Properties of the U.S. Standard Atmosphere 

Geometric 
Altitude Temperature plpo plpo 
(meters) (K) (-) (-) 

- 500 291.4 . 1.061 1 .049 
0 288.2 1 .000· 1 .000t 

500 284.9 0.9421 0.9529 
1,000 281.7 0.8870 0.9075 
1 ,500 278.4 0.8345 0.8638 
2,000 275.2 0.7846 0.8217 
2,500 271.9 0.7372 0.7812 
3,000 268.7 0.6920 0.7423 
3,500 265.4 0.6492 0.7048 
4,000 262.2 0.6085 0.6689 
4,500 258.9 0.5700 0.6343 
5,000 255.7 0.5334 0.6012 
6,000 249.2 0.4660 0.5389 
7,000 242.7 0.4057 0.4817 
8,000 236.2 0.3519 0.4292 
9,000 229.7 0.3040 0.3813 

10,000 223.3 0.2615 0.3376 
1 1,000 216.8 0.2240 0.2978 
12,000 216.7 0.1915 0.2546 
13,000 216.7 0.1636 0.2176 
14,000 216.7 0.1399 0.1860 
15,000 216.7 0.1195 0.1590 
16,000 216.7 0.1022 0.1359 
17,000 216.7 0.08734 0.1162 
18,000 216.7 0.07466 0.09930 
19,000 216.7 0.06383 0.0!3489 
20,000 216.7 0.05457 0.07258 
22,000 218.6 0.03995 0.05266 
24,000 220.6 0.02933 0.03832 
26,000 222.5 0.02160 0.02797 
28,000 224.5 . 0.01595 0.02047 
30,000 226.5 0.01181 0.01503 
40,000 250.4 0.002834 0.003262 
50,000 270.7 0.0007874 0.0008383 
60,000 255.8 0.0002217 0.0002497 
70,000 219.7 0.00005448 0.00007146 
80,000 1 80.7 0.00001023 0.00001632 
90,000 1 80.7 0.000001622 0.000002588 

p0 - 1.01325 x 10' Nim' absolute· (-14.696psla) 
' Po - 1.2250 kgtm• (-0.0023n sluglft1) 



4.0 

2.0 
1 N •sec/m2 = 2.089 x 10-2 lbf•�/ft2 
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1 X 10-3 ;.._,..---+--...-::::"""'o:::----:::;""--=---1-----1----+----1 

6 

4 

2 

1 X 10-4 1----...-----l'-------l-----l-----+----+----1 
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Hydrogen 
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Temperature, C 

Dynamic (absolute} viscosity of common fluids as a function of 
temperature · 
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1 X 10-3 
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1 m2/sec = 10.76 tt2/sec 

Helium 
Hydrogen 

Methane 
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-7 �---�.:....... _____________________ 
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Kinematic viscosity of common fluids (at atmospheric pressure) as a function of 
temperature ' 



-� Allowable Viscosity Ranges for SAE Lubricant Classifications 

Viscosity Range (centistokes)" 

SAE At O F  At 210 F 
Lubricant Viscosity 

Type Number Minimum Maximum Minimum Maximum 

Crankcase S W  1 ,200 3.9 
1 0  W 1 ,200 2,400 3.9 
20 W 2,400 9,600 3.9 
20 5.7 9.6 
30 9.6 12.9 
40 12.9 1 6.8 
50 16.8 22.7 

Transmission 75 15,000 
and axle 80 15,000 100,000 

90 75 120 
140 120 200 
250 200 

Automatic Type A 39t 43t 7 8.5 
transmission 
fluid 

1 centistoke = 1 cSt = 10-• m1/sec ( = 1.08 ,: 10-• tt'lsec) 
At 100 F. 
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Thermodynamic Properties of Common G:tscs at STP* 

Rt . cP c,, 

Chemical Molecular (k/J . (k/ K) (i<gJ· K) Gas Symbol Mass, M,,, 

Air - 28.98 286.9 1 ,004 717.4 
Carbon CO2 44.01 188.9 840.4 651.4 

dioxide 
Carbon co 28.01 296.8 1 ,039 742.1 

monoxide 
Helium He 4.003 2,077 5,225 3,147 
Hydrogen H2 2.016 4,124 14,180 1 0,060 
Methane CH4 1 6.04 518.3 2,190 1 ,672 
Nitrogen N2 28.01 296.8 1 ,039 742.0 
Oxygen 02 32.00 259.8 909.4 649.6 
Steam: H20 18.02 461.4 ...... 2.000 -1,540 

STP = standard temperature and pressure. T � 15 C (59 F) and p = 101.325 kPa absolute (14.696 psla). 
' R = R.JM

M
; R. � 8314.3 J/kgmot · K (1545.3 ft· lbf/lbmol · R); 1 Btu = 778.2 fl· lbf. 

1 Water vapor behaves as an ideal gas when. superheated by 55 C (100 F) or more. 

c ·  
k = ......!!.. Rt 

c., 

(
ft . lbf 

v (-) lbm · R  

1 .40 53.33 
1 .29 35. 1 1  

1 .40 55. 17 

1 .66 386.1 
1 .41 766.5 
1 .31 96.32 
1 .40 55.16 
1 .40 48.29 

-1 .30 85.78 

c
P 

� 
Btu 

J . l bm · R  

0.2399 
0.2007 

0.2481 

1 .248 
3.388 
0.5231 
0.2481 
0.2172 

-0.478 

c
., 

( 
Btu 

J lbm · R  

0.1713 
0.1556 

0.1772 

0.7517 
2.402 
0.3993 
0.1772 
0.1551 

-0.368 

\ 
' /  

� 
00 



APPENDIX D 

THE CONSERVATION EQUATIONS IN 

VARIOUS COORDINATES 

CURVILINEAR COOROINA TES 

z 

(a) 

(:s:,:y,z) or (r, 8,zJ 

I 
I 
I 
lz  
I 

I 

z 

(x,y,z) or (r, 8, r/>) 

/T / I 
/ I 

I I 
"/ I 

8,•./ lz 
; I 

I I 
I I 

I I 

(b) 

. :y 

(a) Cylindrical coordinates. The ranges of the variables are O < r < c:o, 
0 < 8 < 2,r, - 00 < z < 00. (bl Spherical coordinates. The ranges of the variables ore 
O < r <:  oo, 0 < 8 <;,r, and 0<4><2:r. 

Cylindrical Coordinates 

l x - rccs(J 
y-= rsinfJ 
z =z 

Spherical Coordinates 

l x = rsin0cos<[> 

y = rsin0sinq; 

z =  rcosfJ 

I 
r= +vx2+y2 

0"" a,rctan ( y / x) 
z =z 

l r= +yx2 +y2+ z1. 

0 = arctan ( yx2 +y2 / z ) 

<1>=-arctan (y / x) 
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n'iE EQUATION OF CONTINUITY IN SEVERAL 
COORDINATE SYSTEMS 

Rectangular coordinates (z, y, z): 

ap a a a 
- + - (pv,J + - (pv )  + -(pv.) = 0 at ax uy 11 az 

Cylindrical coordinates (r, 8, z): 

ap 1 a 1 a a 
- + --(prv ) + - - (pv0) + -(pv ) = 0 
iJt r or r r iJ8 iJz � 

Spherical coordinates (r, 8, tf,): 

(A) 

(B) 



· MOMENTUM EQUATION 
IN RECTANGULAR CARTESIAN (x, y, z) COORDINATES 

x component: 

y component: 

z component: 

STRESS CONSTITUTIVE EQUATION 
FOR A NEWTONIAN FLUID 

IN RECTANGULAR CARTESIAN 
(x, y, z) COORDINATES 

-r,.,. = 11[2t - i(V • T)] 

-r" = 11[ it- i(V • v)] 

'ru = 11[2t - J(V • v)] 

[av" �] 
't,rr = 'r:,z =11 Ty +  dx 

[� av,] 
't:,z = -r,r = 11 iJz + dy 

[av, + av,,] 
-r...,. = ""'' = 11 ax Tz 

(V • 11) = �  + !!!:'z+� IIX iJy . IIZ 

The viscosity is usually denoted by 

the Greek letter µ (for Newtonian fluids) 

or TJ (for Non-Newtonian fluids) 

D/3 
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MOMENTUM EQUATION 
IN CYI.n�"DRICAL (r, 8, z) CooROINATES 

r comnnncnt: p (ilv, + " ilv, + v, ilv, 11,2 + 11 iii•,) 
_ � ,,- Tt r Tr r 1U' - r z Tz - - or 

+ l ii ( -r ) +  1 a-r,, 't',e + il't'u + pg 7 1, r ,, rd0 -r Tz ' 

e component ·. . p (ilv, + t1 av, + tie ilv, + "'"' + · ilv,) _ 1 ii p 
Tt 'Tr r"H -r- "= Tz  - - r ob 

1 a < 2 , 1 il-r,e a1:,, + 
r2Tr r 1:,,, + 77 + Tz 

+ pg, 

•• component·. P(ilv, + ilv, + v,av, + ilv,) _ ilp 
Tt "' Tr  r� tlz Tz - -rz 

+ l a ( " ) + l ilt:e, + 01:zr , pg 7 Tr r ,, 7 78 Tz ' = 

-� 

STRESS CONSTITUTIVE EQUATION FOR A NEWTONIAN 
FLUID IN CYLINDRICAi., (r, 8, z) COORDINATES 

1:,, = 11[1t - �(V • v)] 

t:MJ = 11[2(� � + v;) - 1(V • v)] 

'Cu = 11(2t·- i(V • v)] 

[ 
ii ("') + 1 iii•,] 1:,e = Te, = l7 r iJr r ro8 

[ilv, + ilv,] 'Cr, = 'rrz = '1 Tr Tz 
(V ) 1 ii

( ) l ilve + ilv, • V = -...- rt•, + -"'in "3::-r ur r uu uz 

The viscosity is usually denoted by 

the Greek letter µ (for Newtonian fluids) 

or 11 (for Non-Newtonian fluids) 



MOMENTUM EQUATION 
IN SPHERICAL (r, 6, </>) COORDINATES 

r component: p rav, + 11 av. + �  au, + v� au, - ;;�2 + v�2
) \Tt ' Tr  r � r sin 8 �  r 

=- _ £l'..
a 

+ 1
2 i(r2-r,,) + �!(f,.sin 9) + � � - fH + -ru + pg, r r or r sm o ou r sm u "'I' r 

r; .:omponent: p (aug , 11• crs + vs 011" + 11, 0118 + � _ 11,2 cot 9\ 
Tt T · or r al r sin 8 � r r -J 

1 Op 1 0 • , 1 0 ( . (} 1 uw· ft8 cot (} 
+ · = - - ,,,.,,.  + �-,r-(r--:,., + -. -,,,= f111SIO ) + __,.....,,, + - - -· -fH pg" r ou r • ur r sm u uu r sin u r r 

STRESS CoNSTITUTIVE EQUATION FOR A NEWTONIAN FLUID 
IN SPHERICAL (r, 8, if,) CooRDINATES 

T,, = 11[2 t - ½(V • v)] 

fo, = 11[2e � + ';,') - J(V • v)] 

TH = 11[2(, sfn 8 � + ';' + 11" c;'
t 
� - j(V • v)] 

[ 
a 

(
11'

) 
1 av,

] 'Crs = fir = ,, 'Tr r + r"JB: 
T = -r _, [sin 9 a (-.!L) + 1 0118] •• .- 11 r a7J sin e r sin 8 oefi 

r _  1 ai:, + a 
(
"•

)] -r�, = -r,. = 11Lrsrne �  ' Tr -;-

(
v

) 1 a 2 > 
1 a . 8 1 a

� • V  = -2 =(r Vr + � =(t18 Sln ) + �  ,1. r ur r sm u or, r sin 11 .,, 

The viscosity is usually denoted by 

the Greek letter µ (for Newtonian fluids) 

or Tl (for Non-Newtonian fluids) 

DIS 



x-Dircction 

z-Direction 

,-Direction 

6-Direction 

z-Dircction 

THE EQUATIONS OF MOTION FOR CoNSTANT µ AND p IN 
R£crANGULAR COORDINATES (x, y, z) 

nre EQUATIOSS OF MonoN FOR CoNstANT µ AND p IN 
CnJNORICAL C00ROfNATES (r, ·o, z) 

= - - + n" + µ - - - (rv ) + -- - - - + ·-
ap 

[ 
a 

(
1 a ) 1 a2

11, 2 ot·9 a2v,J 
or ro r a, r a, r r1 002 r' 08 cz1 

D/6 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 



,-Direction 

THE EQUATIONS OF MonON CoNSTANT µ AND p IN 
SPHERICAL CooROlNATES (r, IJ, tf,)t 

( 
a
v, av, b, 

a
v, v., av, v= + v�

) P a7 + v, a;- + 7 a'9 + ;;;o a,p - -;-

ap 
( 

2v, 2 av, 2 v, cot O 2 av.) 
= - a, + pg, + µ VSv, - � - ;i aa· - r -: r• sin O ij'"° (a) 

( a
v,, 

V 
av, � av, � av, V,V9 _ V� COt 0) 

P a, + ' ar + r ao + r sin O otf, + r r 

tf,-Dircction 

l op 
( 

2 OV, Vo 2 COS (J OD,;) 
-· - r ao + pg' + µ VSv, + r1 ofJ . - r' sin1 0 - r sin' O otf, 

(
av., av.; v, av.,, v., av., v.,v, v,v.; o) 

p - + v - + - - + -.- -- + - + - cot a, , or r ao r sm (J otf, r r 

1 op 
( 

v., . 2 av, 2 cos fJ °"") 
= - rsin fJ otf, +. pg,; + µ  VSv., - �  + � &/>  + � a,p 

t For spbcrical c:oordiaatca 1bc Lapiaci&n Is. 

V1 - !_ !.(,2 .!.) + -1- !.(sin 9 .!_ \ + -1 -(� \ 
,s a, a, ,a,1u e ,o aqJ r2sin•8 �J 

(b) 

(c) 
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LEONARD EULER ( 1 707-1 783) 



APPENDIX E 

GEOMETRICAL RELATIONS 

Properties of arecq 
------T--------.,.------,,----....-----

Sketch 

Rectangle 

Triangle 

:ircle 

Area or· Location of 
volume · ---centroid 

bh 

bh. 
2 

4 

h 
Y• • 2 

Y• - 3 

D 
Y• .,. 2 

I or I. 

bh' 
I - 
•, 12 

:rD' 
1. - -

64 

- -------t-------�-------i-�-----1-----
Ser,,icircle 

8 

Ellipse 
4 

Semi ellipse 
4 

S O L IDS 

4r 
Y• "" 3:r 

:rD' 
1 - -

128 

:rbhi 
1 . ... -

64 

:rbh' z ... -
16 

The surface of a sphere of radius r and diameter d(= 2r) 
= 4r.r2 c:: 1td2 = 12.57 ,2. The volume of a sphere 
= f'irr3 = � -::d3 = 4.189�. 
� The curved surface of a right cylinder where r = the radius cf the base and h, the altitude, = 2r.rh. The volume of a cylinder, data as above, = -;;r2k. The curved �urface of a right cone whose altitude is h and radius of base r 

= 'lt r ...; r2 + h2. The volume of a cone, data as above, 
'lt' 

= 3r2h = 1 .047 r2h. 
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KURT H. HOHENEMSER ( 1 906-2001 ), one of my distinguished professors at Washington 
University, St. Louis (WUSTL), student of Ludwig Prandtl, co-worker of Anton Flettner and 

colleague of William Prager 
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APPENDIX E 

Unit Conversion Factors 

The following table was compiled after consulting several books including Progelhof and Throne ( 1) and 
Wildi (2). 

References 

1 .  R. C. Progelhof and J. L. Throne, Polymer Engineering Principles, Hanser Gardner, Cincinnati, Ohio (1993). 
2. T. Wildi, Metric Units and Conversion Charts, 2nd Ed., IEEE Press (1995). 

Length Multiplied by Gives 
m X 3.28 = 

m X 39.37 = 

yd X 3 -
ft X 12 -
µm X 1 X Io--6 -
km X 0.621 = . A X 1 X 10-10 -
A X 0.0001 -
mm X 39.37 -
µm X 0.0394 -
Area 

m2 X 1. 196 -
m2 X 10.76 = 

m2 X 1550. -
cm2 X 0. 155 -
mm2 X 0.00155 -
Volume 

m3 X 264.17 -
- m3 X 35.31 -

m3 X 61024. = 

liter X 1000. = 

cm3 X 0.0338 -
mm3 X 6.102 X 10-5 -

gal X 231. -

ft 

m 

ft 

in 

m 

mile 

m 

µm 

mils (0.001 in) 

mils (0.001 in) 

yd2 

ft2 

in2 

in2 

in2 

gallon (US) 

ft3 

in3 

cm3 

fluid oz (US) 
i_n3 

i_n3 

Multiplied by 

X 0.3048 

X 0.02540 
X 3-1 

X 12-1 

X 1 X 106 

X 1 .609 
X 1 X 1010 

X 1 X 104 

X 0.02540 
X 25.40 

X 0.8361 

X 0.0929 

X 0 .00064516 

X 6.452 

X 645.2 

X 0.003785 

X 0.02832 
X 0.000016387 
X 0.001 

X 29.57 

X 1 .639 X 1()4 

X 0.004329 

Gives 
= 

= 
= 

-
= 

= 

= 

= 

. -
= 

-
-
= 

= 

= 

= 

= 

= 

-
-
= 

= 

m 

m 

yd 

ft 

µm 

km 
0 A 
0 A 

mm 

µm 

m2 

m2 

m2 

cm2 

mm2 

m3 

m3 

m3 

liter 

cm3 

mm3 

gal 
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Mass 
g X 0.0022046 = lbm X 453.6 - g 
kg X 2.2046 - lbm X 0.4536 - kg 
kg X 0.0011 = ton (short) X 907. = kg 
kg X 0.001 = ton (metric) X 1000 = kg 
lbm X 0.0005 - ton (short) X 2000 - lbm 
Density 
g/cm3 X 62.43 = lbnfft3 X 0.01602 = g/cm3 

g/cm3 X 0.03613 = lbnfin3 X 27.68 - g/cm3 

kg/m3 X 0.06243 = lbm/ft3 X 16.02 - kg/m3 

g/cm3 X 0.5780 - ozm!in3 X 1.730 - g/cm3 

kg/m3 X 0.0005780 = ozm!in3 X 1730. - kg/m3 

Force 
N X 0.2248 = lbf X 4.448 - N 
N X 1 .0 X HP - dyne X 1.0 X 10-5 - N 
dyne X 2.248 X l0-6 - lbf X 4.448 X 105 - dyne 
N X 1.0 X 10-6 = meganewton (MN) X 1.0 X 106 - N 
MN X 100.4 - ton-force (UK) X 0.009964 - MN 
MN X 1 12.4 - ton-force X 0.008897 - MN 
Pressure and Stress 
Pa X 1 .450 X 104 - lbrfin2 X 6895. = Pa 
kPa X 0.1450 - lbrfin2 X 6.895 - kl'a 
:MJ>a X 145.0 - lbrfin2 X 0.006895 - :MJ>a 
kgf/cm2 X 14.22 - lbrfin2 X 0.07031 - kgf/cm2 -

N/mm.2 X 1 .0 - MPa X 1.0 - N/mm.2 

Pa X 10 - dyne/cm2 X 0.1 - Pa 
Pa X 0.007501 - mm Hg X 133.3 - Pa 
Pa X 0.004019 - in H20 X 248.8 - Pa 
kPa X 7.501 = torr X 0.1333 - kPa 
torr X 1 .0 = mm Hg X 1.0 = torr 
:MJ>a X 9.869 - atm X 0.1013 = MPa 
MPa X 10 = bar X 0.1 = MPa 
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Fluid Flow Rate 

liter/min X 0.2642 = gal/min (GPM) X 3.785 = liter/min 

liter/min X 2.119 = ft3/h X 0.4719 = liter/min 

m3/h X 4.403 = gal/min (GPM) X 0.2271 - m3/h -

m3/rnin X 264.2 = gal/min (GPM) . x 0.003785 - m3/min 

Mass Flow Rate 

kg/s X 7937. - lbn/h (PPH) X 0.0001260 - kg/s 

kg/h X 2.205 - lbn/h (PPH) X 0.4536 = kg/h -

Viscosity 

Pa·s X 10. = poise X 0.1 - Pa·s 

Pa·s X 1000. = centipoise X 0.001 = Pa·s 

m2/s X 10.76 = ft2/s X 0.0929 
- m2/s -

Pa·s X 0.672 = lbn/s ft X 1.488 - Pa·s 

centipose X 0.000672 = lbn/s ft X 1488. - centipose 

m2/s X 1.0 X 106 = centistokes X 1 .0 X 10-6 - m2/s 

Pa·s X 0.000145 = lbt s/in2 X 6895. = Pa·s 

Pa·s X 0.02088 - lbt s/ft2 X 47.88 - Pa·s 

poise X 1.45 X 10-5 = lbf s/in2 X 6.895 X. 1()4 = poise 

The following table relates length from angstroms to meters. 

# of A = One 

1 A 
10 Nm 

100 

1.000 

10.000 µm 

100.000 

1.000.000 

10.000.000 mm 

100.000.000 cm 

1.000.000.000 

10.000.000.000 m 

J.Vlachopoulos and J.R. Wagner The SPE Guide on Extrusion Technology and Troubleshooting 
The Society of Plastics Engineers (SPE), Brookfield. CT, USA (2001) 



TABLE G.1 SI Units and Prefixesa 

SI Units 

SI base units: 

SI supplementary unit: 
SI derived units: 

SI prefixes 

Quantity 

Length 
Mass 
Time 
Temperature 
Plane angle 
Energy 
Force 
Power 
Pressure 
Work 

Multiplication Factor 

1 000 000  000 000 = 1012 

1 000 000 000 = 109 

1 000 000 = 106 

1 000  = 103 

O.Ql = 10-2 

0.001 = 10-3 

0.000 001 = 10-6 

0.000 000 001 = 10-9 

0.000 000 000 001 = 10-12 

Unit 

meter 
kilogram 
second 
kelvin 
radian 
joule 
newton 
watt 
pascal 
joule 

a Source: AS1M Standard for Metric Practice E 38�97, 1997. 

Constant Symbol 

Natural base e 

Natural log In 10 
Radian unit ,r 

Speed of light in air C1 

Speed of sound in air C 

Ideal gas constant R 

Gravity acceleration g 

Joule's constant a 

Planck's constant h 

Avogadro's number NA 

Boltzmann's constnat k 

Value 

2.7183 
2.3026 
3.1416 

2.998 X 10K m/s 
340m/s 

1.987 cal g 
mol K 

82.05 cm3 atm 
mol K 

N m  J 
8·314 mol K = mol K 

l.544� 
lbmol 0R 

981 cm/s2 

32.17 ft/s2 

788 
ft lbr 

Btu 
4.184 J /cal 

6.62 X 10-27 erg 

6_02 x la23 molec
�

les 
mo 

RINA 

SI Symbol 

Prefix 

tera 
giga 
mega 
kilo 
centi 
milli 
micro 
nano 
pico 

m 
kg 
s 
K 
rad 
J 
N 
w 
Pa 
J 

Application 

Science, mathematics 
Science, mathematics 
Science, mathematics, 

angular kinematics 

Optics, relativity theory 

Formula 

N • m  
kg •m/$2 

J/s 
N/m2 

N • m  

SI Symbol 

T 
G 
M 
k 
C 
m 
µ 
n 
p 

Acoustics, compressible flow 

Ideal gas law 

Thermodynamics 

Gas mechanics 

Heat-work machines 

Mechanics 
Kinematics 

Thermodynamics 

Heat-work machines 

Quantum mechanics 

Chemistry. thermodynamics 

Statistical mechanics 

F/4 

constant



John Vlachopoulos, Fundamentals of Fluid Mechanics 
Chem. Eng., McMaster University, Hamilton, ON, Canada 
(First Edition 1 984, revised internet edition (201 6), www.polydynamics.com) 

A 

Absolute pressure 2/9 
Added mass 1 2/22 
Adiabatic 1 5/5 

SUBJECT INDEX 

Adverse pressure gradient 1 2/5 
Airfoil 1 1  /39 ,  1 2/1 , 1 2/27 
Anemometer 1 8/7, 1 8/9 
Angular momentum 6/28 
Annulus 7/2 1 ,  7/28 
Apparent mass 1 2/20 
Apparent viscosity 1 / 12 ,  2 1 /8 
Axial flow pumps 1 9/20 

B 

Bagley correction 2 1 /37 
Barometer 2/9 
Batchelor 2 1  /7 
Bernoull i  equation 1 1 /9, 1 2/4, 1 3/7, 1 4/1 , 1 4/4, 1 4/2 1 ,  1 4/26 
Bernoul l i  equation for gases 1 4/31 , 1 5/1 3 
Bernoul l i  equation (open-channel) 1 6/6 
Bernoul l i  equation for unsteady flow 1 4/34 
Bingham fluid 1 /12 ,  2 1 /1 , 2 1 /28 
Blake-Kozeny equation 8/32 

INDEX 1 



INDEX 2 

Blasius problem 9/1 0, 9/34 
Body forces 2/1 , 5/1 
Boundary conditions 7/47 
Boundary layer ( laminar) 9/1 , 1 3/ 17 ,  1 7/1 0 
Boundary layer (turbulent) 1 0/6, 1 0/37 
Boundary layer thickness 9/1 2, 1 0/40, 1 0/43 
Brinkman number 1 3/23 
Buckingham's pi theorem 5/9 
Buffer zone 1 0/6 
Bulk modulus 1 /1 7 ,  1 5/6 
Bulk viscosity 20/1 0 
Buoyancy 2/22, 1 3/25 

C 

Capil lary viscometer 2 1 /20 
Carreau-Yasuda model 21/1 1 
Casson model 21 / 1 1 
Cavitation 1 4/38, 1 9/ 17  
Cauchy-Riemann equations 1 1  /6 
Center of pressure 2/1 6 
Centrifugal pumps 1 9/5, 1 9/12  
Centroid 2/23 
Chezy flormula 1 6/4 
Choked flow 1 5/23, 1 5/25, 1 5/39 
Circulation 3/1 3, 1 1 /1 9 
Closure problem 1 0/69 
Compressibi l ity 1 / 16 ,  1 5/8, 1 5/48 
Compressible flow 1 5/1 
Compressible flow with friction 1 5/34 
Compressors 1 9/23 
Conservation equations, Appendix D 
Conservation of charges 1 7  /3 
Conservation of energy 1 3/1 , 1 7/1 5 
Conservation of mass 4/1 , 1 7/2 
Conservation of momentum 6/1 ,  1 7/2 
Constitutive equations 20/1 , 2 1  /49 
Continuity 4/4 
Control volume 3/6 



Converging-diverging nozzle 1 5/ 12 ,  1 5/23 
Converging nozzle 1 5/22 
Conversion factors, Appendix F 
Coriolis acceleration 1 6/28 
Couette flow 7 / 18  
Creeping motion 8/2 
Cross model 2 1 /1 1 
Cross product, Appendix A/3 
Curl , Appendix  A/6 
Cylinder (Potential flow) 1 1  /26, 1 1  /30 

D 

D'Alembert's paradox 1 1  /27 
Darcy's law 8/27 
Darcy-Weisbach friction factor 1 4/7, 1 4/40, 1 6/6 
Darrieus turbines 1 9/31 
Deformation rate 20/2 
Density 1 /2 
Deviatoric stress tensor 6/1 7, 20/1 1 
Di latant flu id 1 /1 2, 2 1 /8 
Dimensional analysis 5/9 
Dimensionless groups 6/33, 1 3/21 
Dissipation function 1 3/9 
Divergence, Appendix A/6 
Doppler 1 8/9 
Dot product, Append ix A/3 
Doublet 1 1  /22 
Drag 1 2/1 
Drag coefficient 1 2/ 12 ,  1 2/1 3, 1 2/1 4 
Drag, effects of compressibi l ity 1 5/48 
Drag flow 7/1 8 ,  7/20 
Duct flow (Bernoull i  equation) 1 4/1 
Dynamic viscosity 1 /5 
Dynamics 5/1 

INDEX 3 



INDEX 4 

E 

Eckert number 1 3/22 
Eddies 1 0/9 
Eddy viscosity 1 0/21 
Einstein 2 1 /7 
El l is model 2 1  /1 1 
Elongational viscosity 2 1  /31 
Energy equation 1 3/5 
Entry flow 9/19 ,  1 0/46 
Ergun equation 8/32 
Eu ler equation 6/24 
Eu ler number 6/34 
Eu ler's turbine equation 6/30, 1 9/6 
Eulerian method 3/3, 6/1 
Expansion waves 1 5/26, 1 5/42 
Explosion 1 5/33 
Extensional viscosity 2 1  /31 
Extrudate swell 2 1 /2 ,  2 1 /4 

F 

Fal l ing sphere viscometer 8/24 
Fanning friction factor 1 4/40 
Fi lm (fal l ing l iquid) 7/23 
Fin ite differences, Appendix B 
F in ite elements, Appendix B 
Fitting losses 1 4/ 17  
Flat plate 9/9, 1 0/37 
Flow-depth relationships 1 6/ 16  
Fluctuations 1 0/9 
Fluid property data, Appendix C 
Fluidization 8/34 
Form drag, 8/1 9, 1 2/6 
Fourier's law 1 3/1 3 
Francis turbine 1 9/27 
Friction coefficient 9/1 6, 1 4/7 
Friction drag 8/1 9  
Friction factors 1 4/7, 1 4/40 



Frictional losses 1 4/4 
Froude number 5/8, 6/34, 1 6/1 1 
Ful ly developed flow 7/1 0, 9/1 9  

G 

Gage pressure 2/9 
Gauss divergence theorem, Appendix A/8 
Geostrophic 1 6/29 
Gradient, Appendix A/6 
Grashof number 1 3/22 
Gravity driven flow 7/35 
Gravity waves 1 6/1 1 

H 

Hagen-Poiseui l le formula 7/1 4  
Hartmann flow 1 7/5 
Hartmann number 1 7/7 
Head 1 4/4 
Heat transfer 1 3/2 1 
Hele-Shaw flow approximation 21 /50 
Hot-fi lm anemometer 1 8/7 
Hot-wire anemometer 1 8/7 
Hydraul ic diameter 1 4/12 ,  1 6/2 
Hydraul ic jump 1 6/1 3 ,  1 6/22 
Hydromagnetic flow 1 7/5, 1 7/1 0 
Hydrostatic forces 2/1 3 
Hydrostatic paradox 2/7 

Ideal fluid 1 1  /2 
I ndex notation, Appendix A/1 
Integral momentum approximation 9/31 
Inviscid flow 1 1  /2 
l rrotational flow 1 1 /2 

INDEX S 



INDEX 6 

lsentropic 1 5/5 

J 

Jet ( l iquid) diameter 7/38 
Jet (force) 6/8 
Jet ( laminar) 9/2 1 , 1 7/1 3 
Jet (turbulent) 1 0/48 
Joukowski transformation 1 1  /39 

K 

Kaplan turbine 1 9/28 
Kinematic viscosity 1 /7 
Kinematics of flow 3/1 
Kolmogoroff's postulates 1 0/68 
Kozeny's model 8/29 
Kronecker delta, Appendix A/3 
Kutta-Joukowski Theorem 1 1  /33 

L 

Lagrangian method 3/1 , 6/1 
Lake currents 1 6/28 
Laminar boundary layers 9/1 
Laminar flow 1 /1 7, 7/1 , 8/1 , 9/1 
Laminar sublayer 1 0/6 
Laplacian, Appendix A/7 
Laser-Doppler Anemometer 1 8/9 
Law of the wall 1 0/32 
Leibnitz formula, Appendix A/8 
Linear momentum balance 6/3, 6/1 4 
Lift 1 2/1 , 1 2/27 
Loss coefficient 1 4/1 9 ,  1 4/20, 1 4/40 
Low Reynolds number flows 8/1 
Lubrication theory 8/4, 8/8 
lubrication equation 8/1 2  



M 

Mach number 1 5/8, 1 5/ 15  
Mach cone 1 5/45, 1 5/4 7 
Mach-Zehnder interferometer 1 8/22 
Macroscopic problems 6/35 
Magnetic influence number 1 7/ 13  
Magnetohydrodynamics 1 7/1 
Magnus effect 1 1 /32 
Manomerers 2/9 
Manning formula 1 6/4 
Material derivative 3/3 
Mapping 1 1 /34 
Maxwell's equations 1 7  /4 
Maxwell fluid 2 1 /40 
Mechanical energy equation 1 3/5 
Measurements 1 8/1 
MHD 1 7/2 
M icroscopic problems 6/35 
M inor losses 1 4/1 9 
Mixed flow pumps 1 9/20 
Mixing zone 1 0/48 
Moody chart 1 4/8, 1 4/1 0 
Moment of momentum 6/28 
Momentum 6/1 , 6/1 4, 6/1 8  
Multiple-pipe systems 1 4/28 

N 

Navier-Stokes equations 6/22, Appendix D 
Newton's fi rst law of motion 6/1 
Newton's law of viscosity 1 /5 
Newtonian fluid 1 /5 ,  20/6 
Nikuradse's data 1 0/32 
Non-circular conduits 14/ 12  
Non-isothermal flow 1 3/1 6 
Non-Newtonian flow 21  /1 

INDEX 7 



INDEX 8 

Non-Newtonian fluid 1 /1 1 
No-sl ip condition 1 / 14 
Normal shock 1 5/25, 1 5/26, 1 5/29 
Normal stress 5/2 
Normal stress difference 2 1 /47 
Nusselt number 1 3/24 

0 

Oblique shock 1 5/26, 1 5/42 
Ocean currents 1 6/28 
Ohm's law 1 7  /4 
One-dimensional flow 3/1 9 ,  1 5/2 
Open-channel flow 1 6/1 
Optimal pipe diameter 1 4/38 
Optimum cross section ( open channel) 1 6/9 
Order of magnitude 9/2, 8/7 
Orifice meter 1 8/14 
Oseen's approximation 8/22 
Over expanded flow 1 5/27 

p 

Parachute 1 2/1 6 
Pascal's principle 2/7 
Path line 3/1 O 
Peclet number 13/23 
Pelton Water turbine (wheel) 1 9/24 
Perfect gas law 1 /4 
Permeabi l ity 8/27 
Pi theorem 5/9 
Pipe flow 7/1 0, 1 0,27, 1 4/4 
Pipel ine 1 4/2 1 
Pitot tube 1 8/4, 1 8/5 
Pitot-static probe 1 8/7 
Pohlhausen's method 9/35 
Poiseui l le flow 7/1 0  
Poisson's ratio 1 5/6 



Positive-displacement pumps 1 9/1 
Potential flow 1 1 /3, 1 1 /5, 1 1 /1 1 ,  1 1 /26 
Potential lines 1 1  /7 
Porosity 8/27 
Porous media 8/26 
Power-law model 2 1 /9, 2 1 /1 0, 21/ 1 1 ,  2 1 / 12 ,  2 1 / 16  
Powell-Eyring model 2 1 /1 1 
Prandtl number 1 3/22 
Prandtl's boundary layer theory 9/2 
Prandtl's mixing length 1 0/24 
Prandtl-Meyer expansion waves 1 5/42 
Pressure 2/1 
Pressure drag 8/1 9  
Pressure wave 1 5/3, 1 5/50 
Pressure-driven flow 711 , 7/1 0, 7/20 
Pseudoplastic fluid 1 /1 2 ,  2 1 /8 
Pump 1 4/2 1 
Pump efficiency 1 4/23, 1 9/6 
Pumps and turbines 1 9/1 

R 

Rad ial flow 7 /33 
Rate of deformation 20/4 
Rate of strain 20/4 
Reaction turbines 1 9/24 
Recoil 2 1 /2, 2 1 /6 
Relaxation time 2 1 /42 
Reynolds number 1 / 18 ,  6/34, 1 3/22 
Reynolds stresses 1 0/21 
Reynolds transport theorem 3/8 
Rheology 1 /1 1 ,  20/1 1 ,  2 1  /1 
Rheopexy 21 /8 
Rocket 6/1 0 
Rod cl imbing effect 2 1  /2 
Rossby number 1 6/29 
Rotation 3/1 3 
Rotameter 1 8/1 6 
Rotation rate 20/2 

INDEX 9 



INDEX 10 

Roughness 1 0/42 , 1 4/9 

s 

Schl ieren 1 8/20 
Second invariant 2 1 /1 3  
Second viscosity 20/1 O 
Secondary flow 1 6/3 
Separation 1 2/6, 1 2/1 0 
Similarity 5/7 
Similarity transformation 7/42, 9/1 0, 9/30 
Simple shear flow 20/4 
Sinks 1 1 / 1 5  
Siphon experiment 2 1 /2 ,  2 1 /4 
Shape drag 1 2/6 
Shape ( l iquid surface) 
Shear rate 1 /1 3 
Shear stress 5/2 
Shear-thickening 2 1 /8 
Shear-th inn ing 2 1  /8 
Shadowgraph 1 8/20 
Shock 1 5/25, 1 5/42 
Shocktube 1 5/33 
Sl ider bearing 8/8 
Slow viscous flows 8/1 3  
Sonic boom 1 5/42 
Sources 1 1 / 1 5  
Specific head 1 6/15 ,  1 6/ 18  
Specific heat 1 /2 
Specific gravity (S .G . )  1 /2 
Speed of sound 1 5/2, 1 5/7 
Sphere (flow around) 8/1 3 ,  1 1  /33 
Squeeze fi lm 8/5 
Stagnation conditions 1 5/ 15  
Stagnation pressure 1 8/2 
Stall 1 2/29 
Stanton number 1 3/24 
Statics 2/1 
Statistical theory of turbulence 1 0/58 



Stefan equation 8/8 
Stokes flow 8/2 
Stokes law 8/2 1 
Stokes theorem ,  Appendix A/8 
Strain 1 7/4 
Streakline 3/1 1 
Streamline 3/1 1 ,  1 1 /7 
Stress (defin ition) 5/2 
Strauhal number 1 2/20 
Subcritical 1 6/1 5 
Subsonic 1 5/9, 1 5/ 12 ,  1 5/39 
Substantial derivative 3/3 
Sudden contraction 2 1  /35 
Supercritical 1 6/1 5 
Supersonic 1 5/9, 1 5/1 2 ,  1 5/39, 1 5/49, 1 8/4 
Surface forces 5/1 
Surface tension 1 / 14  
Suspensions 2 1  /7 
Sweepback angle 1 5/54 
System 3/6 

T 

Tangential flow 7/28 
Tapered tube 2 1 /26 
Tensor, Appendix A 
Terminal velocity 8/2 1 , 1 2/24 
Thermal energy equation 1 3/7 
Thixotropy 2 1 /8 
Three-dimensional flow 3/1 9  
Tip vortex 1 2/30 
Time-averaging 1 0/9 
Tornado 1 1 /44 
Torque 1 /1 1 ,  6/28, 7/29 
Torricell i 's equation 1 4/32 
Total energy equation 1 3/1 
Trouton relation 2 1 /34 
Tube flow 7/1 0 ,  1 0/27, 1 4/4 
Turbine 1 4/2 1 ,  1 9/1 1 9/24 

INDEX 1 1  

Thrust 6/10



INDEX 12 

Turbulence 1 0/1  
Turbulent boundary layer 1 0/37 
Turbulent core 1 0/6 
Turbulence intensity ( or level) 1 0/1 1 
Turbulent flow 1 / 17, 1 0/1 
Turbulent flow in smooth tubes 1 0/35 
Turbulent viscosity 1 0/2 1 
Two-dimensional flow 3/1 9  

u 
Units, Appendix F 
Underexpanded flow 1 5/27 
Undirectional flow 3/1 9 ,  7/1 
Unsteady flow 7/41 , 7/44, 1 4/34 

V 

Vapor pressure 1 / 16 ,  1 4/36 
Vectors, Appendix A 
Virtual mass 1 2/20 
Viscoelasticity 2 1  /38 
Viscosity 1 /4, 1 8/1 , 20/9, 2 1 /7 
Viscous dissipation 1 3/8 
Voidage fraction 8/27 
Von Karman's similarity model 1 0/26 
Von Karman's vortex street 1 2/1 8 
Vortex 1 1  /1 9 
Vortex shedding 1 2/1 8 
vorticity 3/1 3, 1 1 /3 

w 

Wake 1 0/48, 1 2/6 
Waterhamer 1 5/50 
Waves 1 5/2 
Weir 1 8/ 16  



Weissenberg effect 2 1 /2 ,  2 1 /3, 2 1 /42 
Whitehead's paradox 8/22 
Wind turbines 1 9/31 

y 

Yield stress 1 / 1 2 ,  2 1  /28 
Young's modulus 1 5/6 

INDEX 13 
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KARL WEISSENBERG ( 1 893- 1976) 

and 

JOHN VLACHOPOULOS 

at the University of Stuttgart, Germany 

in February 1 97 5 
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