REFERENCE GENE SELECTION IN ASPERGILLUS

INVESTIGATION OF CANDIDATE REFERENCE GENES FOR REVERSE-TRANSCRIPTION QUANTITATIVE POLYMERASE CHAIN REACTION OF *ASPERGILLUS*

By MEAGAN MAY ARCHER, B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science

McMaster University © Copyright by Meagan May Archer, December 2021

McMaster University MASTER OF SCIENCE (2021) Hamilton, Ontario (Biology)

TITLE: Investigation of Candidate Reference Genes for Reverse-transcription Quantitative Polymerase Chain Reaction of *Aspergillus*.

AUTHOR: Meagan May Archer, B.Sc. (McMaster University)

SUPERVISOR: Dr. Jianping Xu

NUMBER OF PAGES: xiii, 132

Lay Abstract

Aspergillus is a globally distributed genus of fungi, with some species threatening opportunistic human infection. To combat infection with the opportunistic species, *Aspergillus fumigatus*, antifungal drugs including: itraconazole, voriconazole and amphotericin B are used. Recent years have seen a rise in antifungal resistance in *A. fumigatus*. To understand this and other mechanisms in *Aspergillus*, changes in gene expression must be examined. My thesis aimed to determine how reference genes are selected for reverse-transcription quantitative polymerase chain reaction, a method applied to measure gene expression changes in *Aspergillus*. It was discovered that very few studies between the years 2001 and 2020 experimentally validated that the reference genes used were stably expressed, with only 17 out of 90 studies providing validation. In part two of my thesis, genes overexpressed in *A. fumigatus* when exposed to antifungal drugs, from formerly published articles, were summarized to better understand the role of gene expression in antifungal drug resistance.

Abstract

The genus Aspergillus possesses broad functionality and occupation of ecological niches.

Underpinning this are changes in the transcriptome of these species. Transcriptional changes are clinically relevant with respect to understanding triazole resistant isolates of *Aspergillus fumigatus*. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a highly specific means of measuring changes in gene expression. The most common method of which requires normalization to experimentally validated, stably expressed reference genes. Ideal reference genes are unaffected by differences in the experimental conditions or strains/isolates and are expressed at levels near the target gene(s). The first study reviewed current practices for reference gene selection and validation for RTaPCR gene expression analysis of the genus, Aspergillus. Information on the species examined, experimental conditions, sample type, normalization strategy, reference gene(s) and their state of validation was obtained from 90 primary studies. Twenty reference genes were used, with the most popular reference genes used encoding beta-tubulin, actin, 18S rRNA and glyceraldehyde-3phosphate dehydrogenase. Seventeen of the 90 studies experimentally validated the expression stability of the reference genes used, out of which eight used more than one reference gene. The results of three studies conflicted with others described in the literature, with no experimental validation of the reference genes available to aid in interpreting the conflicting findings. In the Genome-Wide Association Study, genes noted to increase in expression in response to itraconazole and/or voriconazole treatment of A. fumigatus were extracted from published RNA-sequencing or RTaPCR studies. Ten ATP-binding cassette transporters, four major facilitator superfamily transporters and 16 transcription factors were identified. Collectively, the findings of this thesis show a large disparity in experimentally validated reference genes as well as future targets of gene expression analysis in triazole resistant isolates of A. fumigatus.

Acknowledgements

Thank you to my supervisor, Dr. Jianping Xu, for allowing me to transfer into his lab to work on this project and for supporting me during my M.Sc. work. I would also like to thank him for encouraging me to get involved in paper publications, conference presentations and to apply for scholarships early in my research career. It is with Dr. Xu's guidance that I have been able to accomplish as much as I have during the last year of the Covid-19 pandemic and I am very grateful to him for his help. Thank you as well to my supervisory committee members, Dr. Marie Elliot and Dr. Ben Evans, for providing feedback on my experimental design throughout the course of my project. I would also like to thank the members of the Xu Lab for welcoming me into their group, just before the Covid-19 pandemic hit. Thank you as well to my roommate, Rhys, for their constant support, coffee presents and musical movie night breaks. Finally, I would like to thank my parents, both McMaster University Biology alumni, for being my inspiration for going into Biology at McMaster University. In my B.Sc. thesis, I thanked my father for being my scientific role model and I attribute my interest in learning more about bioinformatics to him and his love of computer science. However, in my M.Sc. thesis I would also like to thank my mother because she has been my number one cheerleader from day one and I would not be the person that I am today without her. I am forever grateful for the support and for my time in the Department of Biology. Thank you to everyone who has made my time at McMaster University special.

Table of Contents

Acknowledgements	7
List of Figures vii	ί
List of Tablesix	-
List of Abbreviationsx	r L
Declaration of Academic Achievement xiii	ί
Impact of Covid-19 on Research Planxiv	7
Chapter 1 General Introduction1	_
1.1. The Genus Aspergillus and it's Diverse Implications	
1.2. Reverse-transcription Quantitative Polymerase Chain Reaction and Selection of Candidate Reference Genes	
1.3. Triazole-Resistance in Aspergillus fumigatus	ŀ
1.4. Objectives and Hypothesis	5
1.5. References	5
Chapter 2 Current Practices for Reference Gene Selection and Validation in RT-qPCR of <i>Aspergillus</i> : Outlook and Recommendations for the Future 10)
2.1. Preface)
2.2. Abstract11	_
2.3. Introduction	2
2.4 Reference Genes for Gene Expression Analyses of Aspergillus15	;
2.4.1. Beta-Tubulin	5
2.4.1.1. Studies That Validated Beta-Tubulin Expression Stability under the Experimental Conditions Tested	3
2.4.1.2. Studies Missing Proper Beta-Tubulin Expression Stability Validation	L
2.4.2. Actin	┟
2.4.2.1. Studies Validating Actin Expression Stability under the Experimental Conditions Tested	5
2.4.2.2. Studies Missing Proper Actin Expression Stability Validation	3

2.4.3. 18S rRNA	40
2.4.3.1. Studies Validating 18S rRNA Expression Stability under the Experimental C Tested.	
2.4.3.2. Studies Missing Proper 18S rRNA Expression Stability Validation	
2.4.4. GAPDH	
2.4.4.1. Studies That Validated GAPDH Expression Stability under the Experimenta Tested.	
2.4.4.2. Studies Missing Proper GAPDH Expression Stability Validation	
2.4.5. Others	47
2.5. Validation of Candidate Reference Genes in Aspergillus	50
2.5.1. Validation of hisH4 and cox5 for Studying Aflatoxin Biosynthesis in A. flavus	50
2.5.2. Validation of actA, sarA and cox5 for Studying glaA Expression in A. niger	
2.5.3. Reference Genes Currently Validated for Use in Aspergillus	53
2.6. Reference Gene-Specific Google Scholar Queries	
2.7. Concluding Remarks and Recommendations	60
2.8. References	62
2.6. Supplementary Material	85
Chapter 3 Genome-wide association analysis for triazole resistance	e in
Aspergillus fumigatus	101
3.1. Preface	101
3.2. Introduction	103
3.3. Results	103
3.3.1. Genes Overexpressed with Triazole Exposure	
3.4. Discussion	107
3.5. References	
3.6. Supplemental Materials	111
Chapter 4	128
General Conclusion	
4.1 Concluding Remarks and Future Directions	
4.2. References	131

List of Figures

Figure 2.1. Distribution of reference gene usage across 90 RT-qPCR studies of Aspergillus.

Figure 2.2. Number of search results for each reference gene based on their corresponding Google

Scholar query.

Figure 2.3. Recommended checkpoints to use when selecting reference genes.

List of Tables

Table 1.1. Summary of reference gene ranking algorithms and their metric for stability ranking.

Table 2.1. Species, the encoded reference gene(s) product(s) and experimental conditions used in 90

RT-qPCR studies of Aspergillus.

Table 2.2. Recommended reference genes for specific species and experimental conditions based on

 experimental validation.

Table 3.1. Overexpressed genes associated with triazole exposure in *A. fumigatus* from previous RT-qPCR and RNA-seq studies.

Table S2.1. Summary of 90 RT-qPCR studies.

Table S3.1. Additional data pertaining to the studies for which overexpressed genes in response to triazole exposure were identified in *Aspergillus fumigatus*.

List of Abbreviations

AMM	Aspergillus minimal medium
ABC	ATP-binding cassette
AmB	Amphotericin B
CAP	Citric acid production
CD	Czapek–Dox
cDNA	Complementary DNA
СМ	Complete medium
Ct or Cq	Cycle threshold
СҮА	Czapek-Dox modified yeast agar
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GMM	Glucose minimal medium
GMPY	Glucose maltose polypeptone yeast extract
GWAS	Genome-wide association study
IA	Invasive aspergillosis
ISP2	International Streptomyces project-2
MEA	Malt extract agar
MEB	Malt extract broth
MEM	Minimal essential medium
MFS	Major facilitator superfamily
MIQE	Minimum Information for Publication of Quantitative Real-Time PCR
	Experiments
MM	Minimal medium

MYA	Malt yeast agar
ОТА	Ochratoxin A
PBS	Phosphate-buffered saline
PDA	Potato dextrose agar
PDB	Potato dextrose broth
PEG	Polyethylene glycol
PVDF	Polyvinylidene fluoride
RPMI	Roswell Park Memorial Institute
RNA-seq	RNA-sequencing
RT-qPCR	Reverse-transcription quantitative Polymerase Chain Reaction
SMKY	Sucrose magnesium sulphate potassium nitrate yeast
SNP	Single-nucleotide polymorphism
YAG	Yeast extract-agar-glucose
YE	Yeast extract
YEM	Yeast extract medium
YEP	Yeast extract peptone
YEPD	Yeast extract-peptone-dextrose
YES	Yeast extract sucrose
YESP	Yeast extract sucrose peptone
YESP-N	YESP medium modified with 1% sodium nitrate
YESP-T	YESP medium modified with 1% tryptophan
YG	Yeast glucose
YPD	Yeast peptone dextrose

YUU YAG supplemented with 5 mM uridine and 10 mM uracil

Declaration of Academic Achievement

I am the first author of the paper included as Chapter 2, "Current Practices for Reference Gene Selection in RT-qPCR of *Aspergillus*: Outlook and Recommendations for the Future". For this paper I conducted the literature search, extracted, summarized, and generated graphics to visualize the information, wrote the manuscript, and assisted in editing the final draft. I am the fourth author of the excerpt from the paper included as Chapter 3, "Genome-Wide Association Analysis for Triazole Resistance in *Aspergillus fumigatus*". As, the fourth author, I have only included my contributions to the "Results" section of the paper in this thesis as section 3.3. "Results". For this section, I extracted and summarized the genes known to be overexpressed during triazole exposure in *Aspergillus fumigatus*, which were later compared to the single-nucleotide polymorphisms in triazole-resistant *A. fumigatus*, by my colleagues and co-first authors of the article: YuYing Fan and Yue Wang. Since my co-author, Greg Kofanty was the author of the "Introduction" for our paper, I have written a separate one for inclusion in my thesis, as section, 3.2. "Introduction", and "References" section written by myself, I believe that it's inclusion as part of my M.Sc. thesis is justified.

Impact of Covid-19 on Research Plan

The first Covid-19 lockdown occurred shortly after my transfer from my previous lab to the Xu lab and this greatly limited my interactions with my peers as well as my ability to familiarize myself with the lab. Fortunately, my supervisor Dr. Xu suggested that I began my M.Sc. work with a literature review examining the way that reference genes were currently selected and validated for reversetranscription quantitative Polymerase Chain Reaction gene expression analysis for the genus of my research organism, *Aspergillus*. This review paper was published on June 24, 2021, and is my biggest contribution to my research project, and proudest achievement as a graduate student. While I was writing this paper, it was very challenging for me to go into the lab, as we had a large lab and we could only go in for three-person shifts, it was difficult to be trained on new protocols. Additionally, due to the mandate from McMaster University and the Government of Ontario, stating that all individuals capable of working from home should work from home, during the time that writing was my primary focus, I did not go to the lab. This impacted my time in the lab significantly. For this reason, my final project includes my work from my review paper and as the fourth author on our Genome-wide Association Study, which was published on June 4, 2021.

Chapter 1

General Introduction

1.1. The Genus Aspergillus and it's Diverse Implications

Aspergillus is a genus of saprophytic, filamentous fungi with more than 300 species capable of living in many different ecological niches around the world (Bennett, 2010). These species possess unique functionality, with some posing a threat to human health as opportunistic human fungal pathogens, including *Aspergillus fumigatus*, *Aspergillus terreus* and *Aspergillus flavus* (Guarro, Xavier, & Severo, 2009), and others aiding the food industry through the production of soy sauce, sake, such as through *Aspergillus oryzae*, and citric acid, such as through *Aspergillus niger* (F. J. Jin, Hu, Wang, & Jin, 2021; Yu, Liu, Wang, Wang, & Zhang, 2021). Interestingly, *A. fumigatus*, the primary causative of invasive aspergillosis (IA) in humans, can also cause infection in dogs, cats, honeybees, horses, birds, and monkeys (Seyedmousavi et al., 2015). In addition, many species of *Aspergillus* are also important to agriculture, with some such as *A. niger*, possessing potential biocontrol properties (N. Jin et al., 2019), and others, including *Aspergillus flavus* and *Aspergillus parasiticus*, posing mycotoxin crop contamination risk (Caceres et al., 2020). An essential component to understanding the mechanisms underlying the diverse capabilities of these species and their capacity to adapt to environmental conditions, is understanding their corresponding gene expression dynamics.

1.2. Reverse-transcription Quantitative Polymerase Chain Reaction and Selection of Candidate Reference Genes

Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a cost-effective and simple way to examine gene expression (Huggett, Dheda, Bustin, & Zumla, 2005), and can be

performed in one or two steps (Adams, 2020). If completed in two steps, the first step is reversetranscription, during which the enzyme, reverse transcriptase, converts the mRNA from the sample into complementary DNA (cDNA) (Adams, 2020). In the second step, the cDNA is amplified through PCR to produce more of the target gene (Adams, 2020). The more cDNA that is amplified, the greater the amount of fluorescence that is produced by the associated fluorescent probe or intercalating dye (Adams, 2020). The point at which the fluorescence crosses the fluorescence threshold (ie. is significantly greater than the background fluorescence at baseline) is called the cycle threshold (Ct) value and this is used as the proxy for gene expression. The more product, the earlier the threshold is crossed and the lower the Ct value, indicating higher the expression (Adams, 2020). Some of the information described below overlaps with the section 2.2. of Chapter 2, "Introduction". The standard method for measuring changes in gene expression using RT-qPCR is the relative quantification method, which requires the use of stably expressed reference genes to normalize the expression of the target gene (Adams, 2020). A stably expressed reference gene is unaffected by the experimental conditions used in the study or by the strains/biological material used. As noted in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE), the traditional method for comparing the expression of the target gene to that of the reference gene between samples, is through using one reference gene for comparison in the $\Delta\Delta$ Ct calculation (Bustin et al., 2009). However, it is recommended that multiple reference genes be used to normalize RTqPCR expression data (Bustin et al., 2009), because it helps mitigate the effects of reference genes being at different abundances (Vandesompele et al., 2002). Therefore, alternative methods for calculating relative changes in gene expression using multiple reference genes, such as the gBase approach (Hellemans, Mortier, De Paepe, Speleman, & Vandesompele, 2007) and BestKeeper (Pfaffl, Tichopad, Prgomet, & Neuvians, 2004), have been developed. To aid in the selection of multiple

stably expressed reference genes, several software tools have been developed (Andersen, Jensen, & Orntoft, 2004; Pfaffl et al., 2004; Vandesompele et al., 2002; Xie, Xiao, Chen, Xu, & Zhang, 2012). Table 1.1 below summarizes the function of four reference gene evaluation algorithms, geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 2004), BestKeeper (Pfaffl et al., 2004) and RefFinder (Xie et al., 2012), and describes their metric for evaluating reference gene stability and indication of greater reference gene stability.

		Algorithm		
	geNorm	NormFinder	BestKeeper	RefFinder
	Ranks the stability of all	Calculates the	Computes the inter-	Combines the output from
Summary	reference genes and provides a	associated stability	gene variation and	the three previous programs
of Algorithm	recommendation for the number	value for all candidate	compares the associated	and the $2^{-\Delta\Delta CT}$ calculates a
Algorithm	of reference genes to use.	reference genes.	to the <i>BestKeeper index</i> .	final stability rank.
		Stability value – the	BestKeeper Index – the	Final Ranking – Assigns a
Metric for	M – the average pairwise	combined estimates of	geometric mean of all	weight to each reference and calculates the final
Stability	variation of the reference gene compared to all other candidate	the intra- and inter-	the highly correlated	ranking based on the
Rank	reference genes.	group variation for each	reference gene's Ct	geometric mean of these
		gene	values	weights.
Indicator			Lower standard	
of	Lower <i>M</i> value	Lower stability value	deviation in the Ct	Lower geometric mean
Greater		Lower submity value	value of the <i>BestKeeper</i>	weights
Stability			index	
Ref.	(Vandesompele et al., 2002)	(Andersen et al., 2004)	(Pfaffl et al., 2004)	(Xie et al., 2012)

Table 1.1. Summary of reference gene ranking algorithms and their metric for stability ranking.

In the past, many studies have used genes that are classically considered to be "housekeeping" genes, named such because they are involved in important metabolic or physiological processes. However, the instability of "housekeeping" gene stability has been documented since the early 2000s (Vandesompele et al., 2002). For instance, Vandesomple et al. demonstrated that the expression of *actB*, encoding beta-actin, varies in expression in human heart compared to fibroblast tissue (Vandesompele et al., 2002). The researchers note that this is likely because the heart is mostly made of muscle, whereas *actB* is a non-muscular cytoskeletal actin (Vandesompele et al., 2002). This further highlights the necessity of experimental validation of reference gene expression stability, at the onset of the study.

1.3. Triazole-Resistance in Aspergillus fumigatus

Please note that some of the information presented below overlaps with section 3.2., "Introduction", of Chapter 3. As mentioned in section 1.1. above, several species of *Aspergillus* can cause infection in humans. In the most severe form of infection, IA (Jenks & Hoenigl, 2020), it is recommended that the patient is treated first with the triazole, voriconazole, followed by the polyene, amphotericin B, should treatment be unsuccessful (Misch & Safdar, 2016). Triazole drugs are recommended first because they have positive patient outcomes and low host toxicity (Misch & Safdar, 2016). These drugs, including voriconazole and itraconazole, inhibit ergosterol biosynthesis through the binding of their fourth nitrogen atom to the ferric iron moiety in the active site of lanosterol 14α -demethylase, also called Cyp51A, an important enzyme in the ergosterol biosynthesis pathway of *Aspergillus* and other molds (Cowen, Sanglard, Howard, Rogers, & Perlin, 2014; Rybak, Fortwendel, & Rogers, 2019). Ergosterol is an integral part of fungal membranes and contributes to membrane fluidity and helps regulate the cell cycle (Alcazar-Fuoli & Mellado, 2012). When the active site of Cyp51A is blocked,

the methyl group of lanosterol can no longer be removed by Cyp51A, which prevents the production of ergosterol precursors and leads to accumulation of toxic methylated 14 α -lanosterol and eventually cell death (Rybak et al., 2019). In contrast, amphotericin B binds directly to ergosterol once it has been integrated into the fungal membrane, and this binding is theorized to disrupt the membrane, either due to the formation of pores, adsorption of ergosterol to the phospholipid membrane, sequestering of ergosterol or oxidative damage (Carolus, Pierson, Lagrou, & Van Dijck, 2020). At the present, there is no consensus as to which of the four models correctly outlines the mode of action for amphotericin B.

In addition to their clinical applications, azole antifungals are also applied extensively in agriculture and are estimated to persist in the environment for months (Chen et al., 2013) to years (Kahle, Buerge, Hauser, Muller, & Poiger, 2008). *A. fumigatus* resistance to itraconazole was first reported in 1997 (Denning et al., 1997). Due to their high combined uses, *A. fumigatus* resistance to triazole drugs is on the rise (Ashu et al., 2018; Chowdhary, Kathuria, Xu, & Meis, 2013). Interestingly, *A. fumigatus* isolates that are resistant to five agriculturally applied azoles also exhibit cross-resistance to the medical azoles, itraconazole and voriconazole (Snelders et al., 2012). Structural similarities between agricultural and medical azoles are likely the reason for the observed cross-resistance (Snelders et al., 2012). Mutations in *cyp51A*, the gene encoding the azole target, Cyp51A, are commonly associated with azole resistance, and may be acquired during patient treatment (Howard et al., 2009) or from the environment (Snelders et al., 2008) . However, there is mounting evidence that alternative mechanisms of non-*cyp51A* mutations contribute to triazole resistance in *A. fumigatus* (Sharma, Nelson-Sathi, Singh, Radhakrishna Pillai, & Chowdhary, 2019). To date, little is known about the mechanism(s) behind amphotericin B resistance in *A. fumigatus*. Altogether, understanding

5

how gene expression is altered in the presence of triazole drugs and how differential expression may influence resistance to triazoles outside of *cyp51A* mutations warrants further study.

1.4. Objectives and Hypothesis

The objectives of this thesis project are to: (1) determine what reference genes are used for RT-qPCR of *Aspergillus* species and how they are selected, (2) determine the frequency of experimental validation of reference gene stability and (3) identify candidate reference genes for RT-qPCR of *A. fumigatus*. The hypothesis is that the expression stability of candidate reference genes is dependent on the experimental conditions used.

1.5. References

- Adams, G. (2020). A beginner's guide to RT-PCR, qPCR and RT-qPCR. *The Biochemist, 42*(3), 48-53.
- Alcazar-Fuoli, L., & Mellado, E. (2012). Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. *Frontiers in Microbiology*, 3, 439. doi:10.3389/fmicb.2012.00439
- Andersen, C. L., Jensen, J. L., & Orntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Research*, 64(15), 5245-5250. doi:10.1158/0008-5472.CAN-04-0496
- Ashu, E. E., Kim, G. Y., Roy-Gayos, P., Dong, K., Forsythe, A., Giglio, V., . . . Xu, J. (2018).
 Limited evidence of fungicide-driven triazole-resistant Aspergillus fumigatus in Hamilton,
 Canada. *Canadian Journal of Microbiology*, 64(2), 119-130. doi:10.1139/cjm-2017-0410

- Bennett, J. W. (2010). An Overview of the Genus Aspergillus. Aspergillus: Molecular Biology and Genomics, 17.
- Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., . . . Wittwer, C. T.
 (2009). The MIQE guidelines: minimum information for publication of quantitative real-time
 PCR experiments. *Clinical Chemistry*, 55(4), 611-622. doi:10.1373/clinchem.2008.112797
- Caceres, I., Khoury, A. A., Khoury, R. E., Lorber, S., Oswald, I. P., Khoury, A. E., ... Bailly, J. D.
 (2020). Aflatoxin Biosynthesis and Genetic Regulation: A Review. *Toxins*, 12(3).
 doi:10.3390/toxins12030150
- Carolus, H., Pierson, S., Lagrou, K., & Van Dijck, P. (2020). Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance. *J Fungi (Basel)*, 6(4). doi:10.3390/jof6040321
- Chen, Z. F., Ying, G. G., Ma, Y. B., Lai, H. J., Chen, F., & Pan, C. G. (2013). Typical azole biocides in biosolid-amended soils and plants following biosolid applications. *Journal of Agricultural* and Food Chemistry, 61(26), 6198-6206. doi:10.1021/jf4013949
- Chowdhary, A., Kathuria, S., Xu, J., & Meis, J. F. (2013). Emergence of azole-resistant aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. *PLoS Pathogens*, 9(10), e1003633. doi:10.1371/journal.ppat.1003633
- Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2014). Mechanisms of
 Antifungal Drug Resistance. *Cold Spring Harbor Perspectives in Medicine*, 5(7), a019752.
 doi:10.1101/cshperspect.a019752
- Denning, D. W., Venkateswarlu, K., Oakley, K. L., Anderson, M. J., Manning, N. J., Stevens, D. A., .
 . . Kelly, S. L. (1997). Itraconazole resistance in Aspergillus fumigatus. *Antimicrobial Agents*& Chemotherapy, 41(6), 1364-1368. doi:10.1128/AAC.41.6.1364

- Guarro, J., Xavier, M. O., & Severo, L. C. (2009). Differences and similarities amongst pathogenic
 Aspergillus species. In Aspergillosis: From Diagnosis to Prevention (C. P. Alessandro Ed.).
 Dordrecht, The Netherlands: Springer.
- Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., & Vandesompele, J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome Biology*, 8(2), R19. doi:10.1186/gb-2007-8-2-r19
- Howard, S. J., Cerar, D., Anderson, M. J., Albarrag, A., Fisher, M. C., Pasqualotto, A. C., . . .
 Denning, D. W. (2009). Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. *Emerging Infectious Diseases*, 15(7), 1068-1076.
 doi:10.3201/eid1507.090043
- Huggett, J., Dheda, K., Bustin, S., & Zumla, A. (2005). Real-time RT-PCR normalisation; strategies and considerations. *Genes and Immunity*, 6(4), 279-284. doi:10.1038/sj.gene.6364190
- Jenks, J. D., & Hoenigl, M. (2020). Point-of-care diagnostics for invasive aspergillosis: nearing the finish line. *Expert Review of Molecular Diagnostics*, 20(10), 1009-1017. doi:10.1080/14737159.2020.1820864
- Jin, F. J., Hu, S., Wang, B. T., & Jin, L. (2021). Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. *Frontiers in Microbiology*, 12, 644404. doi:10.3389/fmicb.2021.644404
- Jin, N., Liu, S. M., Peng, H., Huang, W. K., Kong, L. A., Wu, Y. H., . . . Peng, D. L. (2019). Isolation and characterization of Aspergillus niger NBC001 underlying suppression against Heterodera glycines. *Scientific Reports*, 9(1), 591. doi:10.1038/s41598-018-37827-6

- Kahle, M., Buerge, I. J., Hauser, A., Muller, M. D., & Poiger, T. (2008). Azole fungicides: occurrence and fate in wastewater and surface waters. *Environmental Science & Technology*, 42(19), 7193-7200. doi:10.1021/es8009309
- Misch, E. A., & Safdar, N. (2016). Updated guidelines for the diagnosis and management of aspergillosis. *Journal of Thoracic Disease*, 8(12), E1771-E1776. doi:10.21037/jtd.2016.12.76
- Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. *Biotechnology Letters*, 26(6), 509-515. doi:10.1023/b:bile.0000019559.84305.47
- Rybak, J. M., Fortwendel, J. R., & Rogers, P. D. (2019). Emerging threat of triazole-resistant Aspergillus fumigatus. *Journal of Antimicrobial Chemotherapy*, 74(4), 835-842. doi:10.1093/jac/dky517
- Seyedmousavi, S., Guillot, J., Arne, P., de Hoog, G. S., Mouton, J. W., Melchers, W. J., & Verweij, P. E. (2015). Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease. *Medical Mycology*, *53*(8), 765-797. doi:10.1093/mmy/myv067
- Sharma, C., Nelson-Sathi, S., Singh, A., Radhakrishna Pillai, M., & Chowdhary, A. (2019). Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. *Fungal Genetics and Biology*, *132*, 103265. doi:10.1016/j.fgb.2019.103265
- Snelders, E., Camps, S. M., Karawajczyk, A., Schaftenaar, G., Kema, G. H., van der Lee, H. A., . . . Verweij, P. E. (2012). Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. *PloS One*, 7(3), e31801. doi:10.1371/journal.pone.0031801

- Snelders, E., van der Lee, H. A., Kuijpers, J., Rijs, A. J., Varga, J., Samson, R. A., ... Verweij, P. E.
 (2008). Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. *PLoS Medicine*, 5(11), e219. doi:10.1371/journal.pmed.0050219
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology*, *3*(7), RESEARCH0034. doi:10.1186/gb-2002-3-7-research0034
- Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. *Plant Molecular Biology*. doi:10.1007/s11103-012-9885-2
- Yu, R., Liu, J., Wang, Y., Wang, H., & Zhang, H. (2021). Aspergillus niger as a Secondary Metabolite Factory. *Front Chem*, 9, 701022. doi:10.3389/fchem.2021.701022

Chapter 2

Current Practices for Reference Gene Selection and Validation in RT-qPCR of *Aspergillus*: Outlook and Recommendations for the Future

2.1. Preface

This literature review was published in the journal "Genes" on June 24, 2021. The authors of this paper are Meagan Archer and Dr. Jianping Xu. I am the first author on this publication. I conducted the literature search using PubMed, and manually curated the 575 publications returned by the query to extract 90 primary articles and one reference gene validation study for the literature review. I also

conducted the second complementary literature search through Google Scholar. I wrote the manuscript and prepared all in-text and supplementary tables and figures. Dr. Jianping Xu conceptualized and outlined the review paper, supervised the work, and edited the manuscript. Please note that minor formatting changes to the published work have been made to conform with the thesis submission requirements established by the School of Graduate Studies at McMaster University, and to consider thesis committee member recommendations.

The citation for this review article is provided here: Archer, M., & Xu, J. (2021). Current Practices for Reference Gene Selection in RT-qPCR of Aspergillus: Outlook and Recommendations for the Future. Genes (Basel), 12(7). doi:10.3390/genes12070960.

The journal link to the supplementary files for Chapter 2 can be accessed and downloaded using the following link: "https://www.mdpi.com/2073-4425/12/7/960".

2.2. Abstract

Aspergillus is a genus of filamentous fungi with vast geographic and ecological distributions. Species within this genus are clinically, agriculturally and biotechnologically relevant, leading to increasing interest in elucidating gene expression dynamics of key metabolic and physiological processes. Reverse-transcription quantitative Polymerase Chain Reaction (RT-qPCR) is a sensitive and specific method of quantifying gene expression. A crucial step for comparing RT-qPCR results between strains and experimental conditions is normalisation to experimentally validated reference gene(s). In this review, we provide a critical analysis of current reference gene selection and validation practices for RT-qPCR gene expression analyses of *Aspergillus*. Of 90 primary research articles obtained through our PubMed query, 17 experimentally validated the reference gene(s) used. Twenty reference genes were used across the 90 studies, with those encoding beta-tubulin being the most used reference

gene, followed by actin, 18S rRNA and glyceraldehyde 3-phosphate dehydrogenase encoding genes. Sixteen of the 90 studies used multiple reference genes for normalisation. Failing to experimentally validate the stability of reference genes can lead to conflicting results, as was the case for four studies. Overall, our review highlights the need to experimentally validate reference genes in RT-qPCR studies of *Aspergillus*.

2.3. Introduction

The ascomycete genus *Aspergillus* is among the first described filamentous fungi, dating back to 1729, as recorded by Pier Antonio Micheli, an Italian biologist and priest. Under a microscope, the asexual spore-forming structure of these fungi looks like an aspergillum, a "holy water sprinkler", and Micheli named these fungi in the genus *Aspergillus* [1,2]. Since then, over 300 species have been described and recognised in this genus [3]. These species differ in their morphological, physiological, and phylogenetic characteristics. *Aspergillus* fungi are broadly distributed across the globe and are found in diverse ecological niches such as soil, composts, water, buildings, air, and in or on plants [4]. Species in this genus have significant impacts on many fields, including biotechnology (e.g., antibiotics production) [5], fermented food production [6], food safety (e.g., mycotoxin production and food contamination) [7] and human health [2]. In addition, several *Aspergillus* species have been model organisms for understanding the fundamental biology, including physiology and genetics, of fungi and eukaryotes [8,9].

An emerging theme on the studies of these organisms is the regulations of gene expression and metabolic pathways, and how regulated expression is related to their beneficial and detrimental effects to human welfare. For example, several *Aspergillus* species are employed frequently in the food and beverage industry as fermenters of soy, to make sake, miso and soy sauce [6]. Understanding how the

genes are involved in producing these products could help develop strategies to control their expression for optimal commercial production. On the other hand, several other *Aspergillus* species are opportunistic human fungal pathogens (HFPs), including *Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus* and *Aspergillus nidulans* [10,11]. Globally, each year there are approximately 4.8 million cases of allergic bronchopulmonary aspergillosis (including asthma), 3 million cases of chronic pulmonary aspergillosis and 250,000 cases of IA [12]. The dominant cause of aspergillosis in humans is *A. fumigatus* [10]. Furthermore, *A. flavus* can not only cause human infections, but along with *Aspergillus parasiticus*, can also produce aflatoxins that contaminate foods and severely impact human health, with long-term exposure leading to infertility and endocrine disorders [7].

Among human hosts infected with pathogenic *Aspergillus*, effective treatment often requires antifungal drugs such as itraconazole, voriconazole and amphotericin B [13]. Currently, voriconazole is the recommended first-line of treatment and prophylactic agent against IA [14]. However, drug-resistant strains are increasing in both environmental and clinical populations of *A. fumigatus* and other opportunistic species [2]. Infections by drug-resistant fungal pathogens are associated with elevated length of hospitalisation and higher mortality [15]. Understanding the mechanism(s) of drug resistance in *Aspergillus* pathogens, including *A. fumigatus*, could help with monitoring infection progression and resistance, and improve treatment options. In addition, there is increasing evidence that secreted enzymes in *A. fumigatus* play an important role in pathogen colonisation and host tissue damage. Intriguingly, strain Z5 of *A. fumigatus* has multiple xylanases [16], which can break down xylan into its constituents of xylose, arabinose and glucuronic acid, all of which can then be used in the production of biofuels [17]. Better control of the specific pathways involved in producing these beneficial enzymes could generate significant economic benefits. Over the years, several approaches

and techniques have been developed to monitor and quantify gene expression. These techniques include northern blotting, microarray hybridisation, high throughput transcriptome sequencing and reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RT-qPCR quantifies the amount of mRNA in a biological sample and takes this as a measurement of gene expression [18,19]. RT-qPCR possesses several advantages over other methods: it is quick, capable of high-throughput processing, and is highly sensitive and specific [18,19]. Additionally, RT-qPCR is useful for detecting low-abundance transcripts, as the high annealing temperature used during RT-qPCR allows for highly specific primer binding to the target gene [20]. Indeed, RT-qPCR is often used to confirm the results obtained using other approaches [21–32]. However, to accurately quantify gene expression using RTqPCR, the normalisation of mRNA levels to validated reference genes is required [18]. Through normalisation using appropriate reference genes, the impact of differences in RNA yield (due to variation in extraction), cDNA yield (due to variation in reverse-transcription and RNA template quality) and amplification efficiency on gene expression levels can be minimised [19]. Thus, by controlling for these differences, normalisation allows for the comparison of mRNA levels across different experimental treatments [19].

A good reference gene is one that is stably expressed under the experimental conditions being tested [19]. The Minimum Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines recommend using two or more validated reference genes to normalise gene expression data [19]. Using the geometric mean of multiple reference genes achieves high accuracy of normalisation, and is recommended over the arithmetic mean, as it better controls for differences in the amount of mRNA and outliers between genes [33]. When using multiple reference genes, it is also important to select genes that are not co-regulated, as co-regulated genes may lead to false positives as they lead to stable expression ratios [33]. Overall, inappropriate and/or insufficient reference genes can lead to the

wrong interpretation of results, and reduce the reliability of experimental data [18,19]. Therefore, careful consideration should go into the selection of reference genes for RT-qPCR analysis. In this review, we describe the reference genes that have been used for normalising gene expression in RT-qPCR analyses for species in the genus *Aspergillus*. We review how the reference genes were selected in these studies, and whether they were validated under the specific experimental conditions. In addition, we briefly summarise how these reference genes were used in RT-qPCR to help understand the important biological processes in these fungi. Towards the end, we discuss the potential areas of improvements for selecting robust reference genes.

2.4 Reference Genes for Gene Expression Analyses of Aspergillus

To assess the state of reference genes in RT-qPCR studies of *Aspergillus*, in this review, we searched PubMed using the search query: "*Aspergillus* qPCR". The loose search criteria were used to ensure that we cast a wide net for any relevant studies available for our review. In total, this query returned 575 results which were manually curated to exclude those used to quantify fungal load, or those that did not specifically examine gene expression in *Aspergillus*, but that mentioned members of the genus in the abstract and with RT-qPCR studies in organisms other than *Aspergillus*. This allowed us to obtain information from 90 primary studies (Table 2.1., Table S2.1.) [16,21,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,5 3,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85, 86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110] and one reference gene validation study [111], from 2001 to 2020. For each of these 90 studies, we manually

extracted information on the species, genes, experimental conditions, purpose of the study and analytical methods used.

Table 2.1. Species, the encoded reference gene(s) product(s) and experimental conditions used in 90 RT-qPCR studies of *Aspergillus*.

	Reference			
Species	Gene- Encoded Product	Validation (Y/N)	Experimental Conditions	Ref.
A. aculeatus	Actin Histone 3	N	Minimal medium (MM) for 3, 5 and 7 days	[34]
	GAPDH	Y	MM with 1% (w/v) polypeptone, 1% (w/v) glucose, 1% (w/v) avicel, 1% (w/v) xylose, or 1% (w/v) arabinose for 3 h or 6 h	[35]
	18S rRNA	N	Czapek-Dox Modified Yeast Agar (CYA) medium in the dark at 30 °C for 2 days	[36]
A. carbonarius	Calmodulin	N	Co-culture with the actinobacterial strain, SN7, on International Streptomyces Project-2 (ISP2) medium at 28 °C for 4 days	[37]
	Ubiquitin- conjugating Enzyme	Y	MM at 25 °C, without shaking (ochratoxin A (OTA)-inducing conditions) for 4, 6 and 8 days in the dark	[32]
A. cristatus	Actin	N	Cellulose membrane on malt yeast agar (MYA) and on 17% NaCl MYA media for 5 days at 28 °C in the dark, after which mycelia were fixed (extraction from 7-day mycelia)	[24]
A. fischeri	Beta-tubulin Histone 3	Y	Growth on a hydrophobic polyvinylidene fluoride (PVDF) membrane on top of oatmeal agar for 3, 6 or 30 days (wildtype only)	[38]
A. flavus	18S rRNA	N	Glucose minimal medium (GMM) containing 1% starch or 24 g/400 mL ground corn seed at 30 °C for 24, 48 and 72 h with shaking at 250 rpm	[39]
	18S rRNA	N	Yeast extract sucrose (YES) medium at 37 °C for 1.5 days and at 28 °C for 3 days, in the dark	[28]

		YES medium supplemented with 0.40 mmol/L of				
18S rRNA	Ν	cinnamaldehyde, 0.56 mmol/L of citral, and 0.80 mmol/L of	[40]			
		eugenol for 7 days				
18S rRNA						
Beta-tubulin	Y	Co-culture with Listeria monocytogenes in malt extract broth				
	1	(MEB) at 25 °C and 30 °C for 7 days	[41]			
Calmodulin						
Actin	N	Co-incubation with soil isolates of Streptomyces on ISP2	[40]			
Beta-tubulin	Ν	medium at 28 °C	[42]			
		(1) Potato dextrose agar (PDA) or GMM supplemented with				
		NH ₄₊ for 48 h				
Actin	Ν	(2) GMM supplemented with 50 mM ammonium or NaNO2 for	[43]			
		30 h				
Actin	N	YES medium containing 1.5 mg/100 mL silver nanoparticles at	[44]			
Beta-tubulin	Ν	28 °C for 14 days	[44]			
	n N	YES or yeast peptone dextrose (YPD) medium for 5 and 7				
Actin		days, respectively, at 37 °C in the dark	[45]			
		Inoculated onto 25 g of wheat and grown at 30 °C in open petri				
Beta-tubulin	Y	dishes with wetted filter paper for 9 days	[46]			
		Peanut samples for 6 weeks at 25 °C in polyethylene sandwich				
Beta-tubulin	Ν	boxes containing glycerol/water solutions to maintain the	[47]			
		equilibrium relative humidity conditions				
Beta-tubulin		YES or yeast extract peptone (YEP) medium at 28 °C for 4				
*	Ν	days	[48]			
		Sucrose magnesium sulphate potassium nitrate yeast (SMKY)				
Beta-tubulin	Ν	liquid medium 25 °C for 7 days	[49]			
		Treatment or no treatment with the subinhibitory				
Beta-tubulin	Ν	concentrations of carvacrol or trans-cinnamaldehyde in potato	[50]			
*		dextrose broth (PDB) at 25 °C for 5 days				
		Liquid culture at 30 °C with constant shaking at 120 rpm for 20				
Beta-tubulin	Ν		[51]			
		to 24 h				

GAPDHYfor 4 days at 27 °C in the dark[52]Beta-tubulin CalmodalinNCoconut agar at 25 °C for 2 or 7 days[53]Beta-tubulinY30 °C for 4 days at a relative humidity of 80% in a Vötsch[54]GAPDHY30 °C for 4 days at a relative humidity of 80% in a Vötsch[54]GAPDHY30 °C for 4 days at a relative humidity of 80% in a Vötsch[55]*YTS medium containing one of four antifungal peptides: PPD1, 66-10, 77-3, or D4E1[55]*PDB containing 30% (v/v) of Eurotium cristatum culture[56]Beta-tubulinNfiltrate for 3 days in the dark at 23 ± 2 °C with shaking at 120[56]1151NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57]1185 rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37 Capek medium with different Carbon dioxide concentrations and on Capek medium with different Carbon dioxide concentrations and on Carbon H[59] with sha		Beta-tubulin		Malt extract agar (MEA) supplemented with 0.5 mM eugenol	
A function N Coconnut agar at 25 °C for 2 or 7 days [53] Beta-tubulin Co-incubation with Streptomyces roseolus on ISP2 medium at chamber 50°C for 4 days at a relative humidity of 80% in a Vötsch [54] GAPDH Y 30 °C for 4 days at a relative humidity of 80% in a Vötsch [54] Beta-tubulin Y 66-10, 77.3, or D4E1 [55] * Y 66-10, 77.3, or D4E1 [56] rmin FDB containing 30% (v/v) of <i>Eurotium cristatum</i> culture [56] Beta-tubulin N filtrate for 3 days in the dark at 28 + 2 °C with shaking at 120 [56] ITS1 N Cultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] ITS4 N Roswell Park Memorial Institute (RPMI) 1640 medium at 37 [27] °C Capek medium with different carbon dioxide concentrations and on Crapek medium with different C: N ratios for 48 h and 5 days [59] I 18S rRNA N Capek medium with different C: N ratios for 48 h and 5 days [59] I 18S rRNA N Capek medium with different C: N ratios for 48 h and 5 days [59] I 18S rRNA		GAPDH	Ŷ	for 4 days at 27 °C in the dark	[52]
Calmodulin Co-incubation with Streptomyces roseolus on ISP2 medium at GAPDH Y 30 °C for 4 days at a relative humidity of 80% in a Vötsch [54] GAPDH Y 30 °C for 4 days at a relative humidity of 80% in a Vötsch [55] Beta-tubulin Y YES medium containing one of four antifungal peptides: PPD1, [55] * YES medium containing one of four antifungal peptides: PPD1, [56] * YES medium containing 30% (v/r) of Eurotium cristatum culture Beta-tubulin N filtrate for 3 days in the dark at 28 ± 2 °C with shaking at 120 [56] ITSJ Cultures of differing water potential were supplemented with [57] [57] ITS4 N Cultures of differing water potential were supplemented with [57] ITS4 N Cultures of differing water potential were supplemented with [57] ITS4 N Cultures of different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] Itss rRNA Y Roswell Park Memorial Institute (RPMI) 1640 medium at 37 [27] °C °C Czapek medium with different C: N ratios for 48 h and 5 days [59] with shaking at 280 rpm A. fumigatus Actin N		Beta-tubulin			
GAPDHY30 °C for 4 days at a relative humidity of 80% in a Vötsch chamber[54] chamberBeta-tubulin *YYES medium containing one of four antifungal peptides: PPD1, 66-10, 77-3, or D4E1[55]*YDB containing 30% (ψ_1) of Eurostum cristatum cultureBeta-tubulinNfiltrate for 3 days in the dark at 28 ± 2 °C with shaking at 120 trimin[56]1751 1754NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57]185 rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37 C 2[27] °C2°C?C185 rRNANPDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days[58]185 rRNANLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 280 rpm[59] with shaking at 280 rpmA. fumigatusActinN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpmActinNsupplemented with 5% w/v fetal calf serum (FCS) or 5% w/v phosphate-buffered saline (PBS) for 24 h and 48 hActinNsupplemented with 5% w/v fetal calf serum (FCS) or 5% w/v phosphate-buffered saline (PBS) for 24 h and 48 h		Calmodulin	N	Coconut agar at 25 °C for 2 or 7 days	[53]
chamber Chamber GAPDH chamber Beta-tubulin Y YES medium containing one of four antifungal peptides: PPD1, 66-10, 77-3, or D4E1 [55] * YDB containing 30% (v/v) of Eurotium cristatum culture [55] [56] Beta-tubulin N filtrate for 3 days in the dark at 28 ± 2 °C with shaking at 120 [56] ITS1 N Cultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] ITS4 N Cultures of differing water potential were supplemented with concentrations at 20 °C and 28 °C for 72 h [57] ITS4 N Cultures of different carbon dioxide concentrations and on Capter Memorial Institute (RPMI) 1640 medium at 37 [27] °C °C °C °C ISS rRNA N PDA with different carbon dioxide concentrations and on Capter medium (AMM) at 37 °C for 18 h [59] with shaking at 200 rpm (1) GMM at 25 °C for 60 days with shaking at 280 rpm [23] A. fumigatus Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] [24 h with shaking at 280 rpm A. furnigatus Actin N supplem		Beta-tubulin		Co-incubation with Streptomyces roseolus on ISP2 medium at	
chamberBeta-tubulin *YYES medium containing one of four antifungal peptides: PPD1, 66-10, 77-3, or D4E1[55]*PDB containing 30% (v/v) of Eurotium cristatum cultureBeta-tubulinNfiltrate for 3 days in the dark at 28 ± 2 °C with shaking at 120 r/min[56]ITS1NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57]ITS4NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57]ISS rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37 °C[27] °CISS rRNANPDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days[58]ISS rRNANLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm[59]A. funigatusActinN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpm[23]ActinNsupplemented with 5% v/v fetal call serum (FCS) or 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h[22]S% v/v phosphate-buffered saline (PBS) for 24 h and 48 h[60][60]			Y	30 °C for 4 days at a relative humidity of 80% in a Vötsch	[54]
* Y 66-10, 77-3, or D4E1 [55] * PDB containing 30% (v/v) of Eurotium cristatum culture Beta-tubulin N filtrate for 3 days in the dark at $28 \pm 2°C$ with shaking at 120 [56] r/min [75] Cultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] ITS4 N Cultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] I88 rRNA Y Roswell Park Memorial Institute (RPMI) 1640 medium at 37 [27] °C °C [58] [59] °C I88 rRNA N Liquid Aspergillus minimal medium (AMM) at 37 °C for 18 h [59] with shaking at 200 rpm (1) GMM at 25 °C for 60 days with shaking at 280 rpm [59] A. fumigatus Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [20] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h Actin N supplemented with 5% v/v fetal calf serum with MICs0 of [40] [40] Actin N supplemented with 5% v/v feta		GAPDH		chamber	
* 66-10, 77-3, or D4E1 PDB containing 30% (v/v) of Eurotium cristatum culture Beta-tubulin N filtrate for 3 days in the dark at $28 \pm 2°C$ with shaking at 120 r/min 1751 N Cultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] 1754 N Cultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h [57] 185 rRNA Y Roswell Park Memorial Institute (RPMI) 1640 medium at 37 [27] °C °C °C °C 185 rRNA Y Roswell Park Memorial Institute (RPMI) 1640 medium at 37 [58] 185 rRNA N Liquid Aspergillus minimal medium (AMM) at 37 °C for 18 h [59] with shaking at 200 rpm (1) GMM at 25 °C for 60 days with shaking at 280 rpm [59] A. fumigatus Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] Actin N supplemented with 5% v/v fetal calf serum (MEM) [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [22] 5% v/v phosphate-buffered saline (PBS) of 24 h and 48 h <td></td> <td>Beta-tubulin</td> <td>V</td> <td>YES medium containing one of four antifungal peptides: PPD1,</td> <td>[66]</td>		Beta-tubulin	V	YES medium containing one of four antifungal peptides: PPD1,	[66]
Beta-tubulinNfiltrate for 3 days in the dark at 28 ± 2 °C with shaking at 120 r/min[56] r/min $ITSI$ NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57] $ITS4$ NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57] $ITS4$ NTreatment with 125 µg/mL artemisinin or solvent for 3 h in reatment with 125 µg/mL artemisinin or solvent for 3 h in Capek medium with different carbon dioxide concentrations and on Capek medium with different C: N ratios for 48 h and 5 days[58] $I8S rRNA$ NLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm[59] $A. fiunigatus$ ActinN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpm[23] $A. funiNsupplemented with 5% v/v fetal calf serum (FCS) or5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h[22]A. ctinN(1) CBS 144.89 and \Delta srbA: Treatment with MICs0 ofGAPDH[60]$		*	Ŷ	66-10, 77-3, or D4E1	[22]
Image: constraint of the state of the				PDB containing 30% (v/v) of <i>Eurotium cristatum</i> culture	
ITS1 ITS4NCultures of differing water potential were supplemented with different antioxidant concentrations at 20 °C and 28 °C for 72 h[57]ITS4NTreatment with 125 µg/mL artemisinin or solvent for 3 h in 18S rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37 °C[27] °CI8S rRNANPDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days[58]I8S rRNANLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm[59]A. fumigatusActinN(2) High iron liquid media or low iron liquid media at 37 °C for 2 th with shaking at 280 rpmA. funNsupplemented with 5% v/v fetal calf serum (FCS) or 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 hActinNsupplemented with 5% v/v fetal calf serum (FCS) or 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h		Beta-tubulin	Ν	filtrate for 3 days in the dark at 28 ± 2 °C with shaking at 120	[56]
NCTT[57] $ITS4$ different antioxidant concentrations at 20 °C and 28 °C for 72 hTreatment with 125 µg/mL artemisinin or solvent for 3 h inTreatment with 125 µg/mL artemisinin or solvent for 3 h in18S rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37[27]°C°C°C°C°C°C°C18S rRNANPDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days[58]18S rRNANLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm[59]A. fumigatusActinN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpm[23]ActinNsupplemented with 5% v/v fetal calf serum (FCS) or 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h[22]ActinNfluconazole or voriconazole in liquid GMM at 37 °C with[60]				r/min	
ITS4different antioxidant concentrations at 20 °C and 28 °C for 72 hTreatment with 125 µg/mL artemisinin or solvent for 3 h in18S rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37[27]°C°C18S rRNANPDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days[58]18S rRNANLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm[59]A. fumigatus(1) GMM at 25 °C for 60 days with shaking at 280 rpm[59]A. funiN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpm[23]ActinNsupplemented with 5% v/v fetal calf serum (FCS) or 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h[22]Actin(1) CBS 144.89 and $\Delta srbA$: Treatment with MIC ₅₀ of fluconazole or voriconazole in liquid GMM at 37 °C with[60]		ITS1	N	Cultures of differing water potential were supplemented with	[57]
18S rRNAYRoswell Park Memorial Institute (RPMI) 1640 medium at 37 °C[27] °C18S rRNANPDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days[58]18S rRNANLiquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm[59]A. fumigatusActinN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpm[23]ActinN(2) High iron liquid media or low iron liquid media at 37 °C for 24 h with shaking at 280 rpm[23]ActinNsupplemented with 5% v/v fetal calf serum (FCS) or 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h[22]Actin(1) CBS 144.89 and ΔsrbA: Treatment with MIC50 of fluconazole or voriconazole in liquid GMM at 37 °C with[60]		ITS4	IN	different antioxidant concentrations at 20 $^{\circ}\text{C}$ and 28 $^{\circ}\text{C}$ for 72 h	[37]
A. funigatus A. f		18S rRNA		Treatment with 125 μ g/mL artemisinin or solvent for 3 h in	
I8S rRNA N PDA with different carbon dioxide concentrations and on Czapek medium with different C: N ratios for 48 h and 5 days [58] 18S rRNA N Liquid Aspergillus minimal medium (AMM) at 37 °C for 18 h with shaking at 200 rpm [59] A. fumigatus Actin N (1) GMM at 25 °C for 60 days with shaking at 280 rpm [23] Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm Biofilm growth at 37 °C in minimal essential medium (MEM) Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [22] Actin (1) CBS 144.89 and $\Delta srbA$: Treatment with MIC ₅₀ of [60]			Y	Roswell Park Memorial Institute (RPMI) 1640 medium at 37	[27]
18S rRNA N Czapek medium with different C: N ratios for 48 h and 5 days [58] 18S rRNA N Liquid Aspergillus minimal medium (AMM) at 37 °C for 18 h [59] N (1) GMM at 25 °C for 60 days with shaking at 200 rpm [59] A. fumigatus Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm 24 h with shaking at 280 rpm [22] [24] [57] Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [22] Actin (1) CBS 144.89 and ΔsrbA: Treatment with MIC ₅₀ of GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]				°C	
$A. fumigatus = Czapek medium with different C: N ratios for 48 h and 5 days = Liquid Aspergillus minimal medium (AMM) at 37 °C for 18 h [59] with shaking at 200 rpm [59] with shaking at 200 rpm (1) GMM at 25 °C for 60 days with shaking at 280 rpm Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm Biofilm growth at 37 °C in minimal essential medium (MEM) Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [59] Actin (1) CBS 144.89 and \Delta srbA: Treatment with MIC50 of [60]$		18S rRNA	N	PDA with different carbon dioxide concentrations and on	[58]
18S rRNA N [59] A. fumigatus (1) GMM at 25 °C for 60 days with shaking at 280 rpm (1) GMM at 25 °C for 60 days with shaking at 280 rpm A. fumigatus Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm 24 h with shaking at 280 rpm [23] Actin N supplemented with 5% v/v fetal calf serum (MEM) Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [22] Actin (1) CBS 144.89 and $\Delta srbA$: Treatment with MIC ₅₀ of GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]		100 11(1)/1		Czapek medium with different C: N ratios for 48 h and 5 days	
A. fumigatus (1) GMM at 25 °C for 60 days with shaking at 280 rpm A. funigatus (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm 24 h with shaking at 280 rpm [23] 24 h with shaking at 280 rpm Eiofilm growth at 37 °C in minimal essential medium (MEM) [22] Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [22] Actin (1) CBS 144.89 and ΔsrbA: Treatment with MIC ₅₀ of [60] GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]		18S rRNA	N	Liquid Aspergillus minimal medium (AMM) at 37 °C for 18 h	[59]
A. fumigatus Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm 24 h with shaking at 280 rpm Eiofilm growth at 37 °C in minimal essential medium (MEM) Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h Eiofilm (1) CBS 144.89 and ΔsrbA: Treatment with MIC ₅₀ of Eiofilm (1) CBS 144.89 and ΔsrbA: Treatment with MIC ₅₀ of GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]				with shaking at 200 rpm	[]
Actin N (2) High iron liquid media or low iron liquid media at 37 °C for [23] 24 h with shaking at 280 rpm 24 h with shaking at 280 rpm Biofilm growth at 37 °C in minimal essential medium (MEM) Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h Actin (1) CBS 144.89 and Δ <i>srbA</i> : Treatment with MIC ₅₀ of [60] GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]	A. fumigatus			(1) GMM at 25 $^{\circ}$ C for 60 days with shaking at 280 rpm	
Actin N supplemented with 5% ν/ν fetal calf serum (FCS) or [22] 5% ν/ν phosphate-buffered saline (PBS) for 24 h and 48 h Actin (1) CBS 144.89 and Δ <i>srbA</i> : Treatment with MIC ₅₀ of GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]		Actin	Ν	(2) High iron liquid media or low iron liquid media at 37 $^{\circ}$ C for	[23]
Actin N supplemented with 5% v/v fetal calf serum (FCS) or [22] 5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h Actin (1) CBS 144.89 and ΔsrbA: Treatment with MIC ₅₀ of GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]				24 h with shaking at 280 rpm	
$5\% v/v$ phosphate-buffered saline (PBS) for 24 h and 48 hActin(1) CBS 144.89 and $\Delta srbA$: Treatment with MIC50 ofGAPDHNfluconazole or voriconazole in liquid GMM at 37 °C with				Biofilm growth at 37 °C in minimal essential medium (MEM)	
Actin(1) CBS 144.89 and $\Delta srbA$: Treatment with MIC50 ofGAPDHNfluconazole or voriconazole in liquid GMM at 37 °C with		Actin	Ν	supplemented with 5% v/v fetal calf serum (FCS) or	[22]
GAPDH N fluconazole or voriconazole in liquid GMM at 37 °C with [60]				5% v/v phosphate-buffered saline (PBS) for 24 h and 48 h	
		Actin		(1) CBS 144.89 and $\Delta srbA$: Treatment with MIC ₅₀ of	
<i>tefA</i> shaking at 300 rpm		GAPDH	Ν	fluconazole or vori conazole in liquid GMM at 37 $^{\circ}\mathrm{C}$ with	[60]
		tefA		shaking at 300 rpm	

		CBS 144.89, $\Delta srbA$ and pniiA-erg11A- Δ srbA: Liquid GMM		
		plus 20 mM NO3 for 12 h and liquid GMM plus 20 mM NH4 at		
		37 °C with shaking at 300 rpm		
Actin		Mandels' salt solution with 1% oat spelts xylan for 0, 2, 4, 6		
Histone H4	Y	and 17 h	[16]	
Actin	N	RPMI medium at 37 °C for 0, 2, 4, 6, and 8 h	[21]	
		Treatment with 24,700, 12,300 and 6170 µg/mL kombucha		
Actin	Ν	during growth in RPMI medium at 35 °C for 48 h	[61]	
		Yeast extract-peptone-dextrose (YEPD) medium with 10		
Beta-tubulin	N	$\mu g/mL$ (H11-20) or 100 $\mu g/mL$ of itraconazole for 8 h at 37 °C	[62]	
Poto tubulin	N	Treatment with 0.5 μg of voriconazole or without voriconazole	[62]	
Beta-tubulin	N	in yeast glucose (YG) medium for 30, 60, 120, and 240 min	[63]	
		AMM containing 0, 1, 10, 100, 1000 µM of FeSO ₄ at 37 °C for		
Beta-tubulin	Ν	24 h with 150 rpm shaking	[64]	
		MEM supplemented with 10% (ν/ν) human serum (male) and		
Beta-tubulin	N	50 μ M FeCl ₃ at 37 °C for 6 h	[65]	
Beta-tubulin	N	Growth in mouse lung alveoli for 4 h or 14 h	[66]	
Beta-tubulin	N	Four formed fungi balls or 2 mL of fungal suspension in NaCl	[67]	
*	IN	incubated for 3 h at 25, 30, 35 and 40 °C	[67]	
Beta-tubulin		Treatment with sub-lethal and lethal amphotericin B (AmB)		
*	Ν	concentrations in Sabouraud medium for 24 h at 37 $^{\circ}\mathrm{C}$ with	[68]	
		shaking		
		Treatment with 4 mg/L itraconazole or dimethyl sulfoxide in		
Beta-tubulin	Ν	Vogel's medium at 37 $^{\rm o}{\rm C}$ with shaking at 250 rpm for 14 to 16	[69]	
		h		
Beta-tubulin		Growth in mouse lungs subcutaneously injected with 40 mg/kg		
<u>.</u>	Ν	Kenalog 1 day, or intraperitoneally with 175 mg/kg of	[70]	
tefA		cyclophosphamide 2 days prior to inoculation		
		Exposure of A. fumigatus to human airway epithelial cells or		
GAPDH	Ν	human bronchial epithelial cells	[31]	

			Treatment with 10 ng/mL of itraconazole (CEA17) or 5 μ g/mL		
	GAPDH	Ν	of itraconazole (mutant strains) in YG medium supplemented	[71]	
			with 1.2 g/L of uracil and uridine for 24 h at 37 $^{\circ}\mathrm{C}$		
	Putative				
	1,3-beta-				
	glucan		Barrat's minimal nitrate medium in the presence or absence of	[70]	
	synthase	Ν	oxidative stress and/or iron-limitation for 33 h and 50 h	[72]	
	catalytic				
	subunit				
			<i>in vitro</i> : (1) YPD medium for 4 h, 8 h and 1 to 7 days at 37 °C,		
			(2) YPD medium for 24 h at 37 °C (3) YPD or RPMI medium		
			for 24 h and 72 h at 37 °C, (4) YPD medium for 5 to 8 days at		
	TEF1	Ν	37 °C	[73]	
			in vivo: (1) Mouse lung incubation for 4 h, 8 h, and 1 to 7 days,		
			(2) mouse lung incubation for 24 h and 72 h, (3) mouse lung		
			incubation for 5 to 8 days		
			Growth in a glucose (3%)-yeast extract (YE; 1%) liquid		
	TEF1	Ν	medium at 37 °C for 16 h	[74]	
	Actin	Ν	Growth on rice as rice koji and sampling at the stages in the	[26]	
A 1 1 ·	Actin		process of shimaishigoto (40 °C, 30 h) and dekoji (40 h)		
A. luchuensis		N	Citric acid production (CAP) medium at 30 °C for 0 h or 12 h		
	Actin	Ν	with shaking at 163 rpm	[75]	
	Actin		Low or high inorganic phosphate yeast extract medium (YEM)	[76]	
A. nidulans	Beta-tubulin	Ν	and MM at 37 $^{\circ}\mathrm{C}$ for 17 h with shaking at 200 rpm		
			Yeast extract-agar-glucose (YAG) supplemented with 15%		
	Actin	Y	polyethylene glycol (PEG) (w/v) compared to YAG without	[77]	
			supplementation for 2 days		
			Complete medium (CM) or MM with inducing or non-inducing		
	Actin	Ν		[78]	

	Actin	N	YAG supplemented with 5 mM uridine and 10 mM uracil	[79]	
			(YUU) at 37 °C for 24 h		
	Actin	Y	MM supplemented with 0.1% fructose and 5 mM urea at 30 $^\circ\mathrm{C}$	[30]	
	GAPDH	I	for 15 h with shaking at 150 rpm	[50]	
			YG medium in the presence or absence of drugs (camptothecin,		
	Beta-tubulin	Ν	imazalil, itraconazole, hygromycin, and 4-nitroquinoline oxide)	[80]	
			for 8 h		
	Beta-tubulin	N	3% lactose MM for 18 h, after which a source of induction	[01]	
	Beta-tubuiin	Ν	and/or repression was added, and cultures incubated for 4 h	[81]	
	Beta-tubulin	N	MM with exposure to light or darkness at 23 $^\circ C$ for 24 h	[92]	
	Histone 2B	Ν	(spores) or 30 °C for 40 h in distilled water (conidia)	[82]	
	Beta-tubulin	N	MM supplemented with 50 mM ethyl methyl ketone or 1%	[92]	
	*	IN	glucose at 37 $^{\circ}\mathrm{C}$ for 16 h to 18 h with shaking at 150 rpm	[83]	
	EEF-3		Glucose-free minimal nitrate medium or minimal nitrate		
	Elongation	Ν	medium at 37 °C for 4 h or 24 h	[84]	
	Factor				
	NAPDH	N	Modified MMPKRUU medium under K sufficient or deficient	[85]	
	NAI DII	1	conditions at 37 $^{\circ}\mathrm{C}$ for 24 h with shaking at 220 rpm	[05]	
	Putative				
	ribosomal		Liquid MM under standard conditions		
	protein L37	Y		[86]	
	Putative	1		[00]	
	ribosomal				
	protein L3				
	18S rRNA	Ν	PDA supplemented with different carbon and nitrogen sources	[87]	
A. niger	18S rRNA *	N	Subculturing of transformants in the presence of 1.25 mg/mL	[88]	
	100 INIVA	11	of 5-fluoroorotic acid with uridine and uracil	[00]	
	Actin	N	Liquid AMM for 0, 3, 6, 12 and 72 h and on AMM plates for 5	[89]	
	Atun	1N	days	[69]	
	Actin	N		[90]	

	GAPDH		Liquefied corn starch medium at 35 °C for 72 h with shaking at	
	GAPDH		330 rpm	
	Actin	N	CM for 25 h	[91]
	GAPDH	N	Glucose maltose polypeptone yeast extract (GMPY) medium at 30 °C and 250 rpm for 2 days	[92]
	Histone	N	MM supplemented with L-rhamnose or L-rhamnonate at 30 °C	[93]
	H2B		with shaking at 250 rpm	[, .
	Histone-		Growth in bioreactors on sorbitol as the carbon source with 1	
	encoding Gene	Y	mM D-xylose or 50 mM D-xylose	[94]
A. nomius	Calmodulin	N	Coconut agar at 25, 30 and 35 °C for 7 days	
	18S rRNA *	N	Subculturing of transformants in the presence of 1.25 mg/mL of 5-fluoroorotic acid with uridine and uracil	
	Actin	N	MM whole culture broth grown on a cellulose nitrate filter for 42 to 48 h until pigmented conidiospores present	
	Actin	N	DPY agar medium for 48 h	[25
	Actin	N	PDA medium at 30 °C for 7 days	[97
	Beta-tubulin	N	Modified Czapek–Dox (CD) minimal agar at 30 °C for 48 h with 200 rpm shaking	[98]
A. oryzae	Beta-tubulin *	N	 (1) α-amylase transcripts: Inducing (1% sorbitol plus 1% starch), non-inducing (1% sorbitol), and repressing (1% sorbitol plus 1% starch plus 2% sucrose) conditions for 48 h (2) glucoamylase A transcripts: Inducing conditions (in 1% starch) or repressing conditions (in 2% sucrose) at 30 °C for 24 h 	[83
	Histone H1	Ν	Growth on 5 g of wheat bran containing 2, 3, 4, 6 or 8 mL of water at 30 °C for 48 h	[99]
	Histone H1	N	MM at 30 °C for 5 days	[100
	Histone H2A	N	DPY liquid medium at 30 °C for 2 days	[10]

	18S rRNA *	Ν	Adye and Mateles (1964) medium for 48 h and 72 h	[102]	
		N	Stationary phase culture growth in PDB 30 °C for 4 days in the		
	18S rRNA		dark		
	Actin	Y	Treatment with 0, 0.25, 0.5 or 1.0 μ g/mL aflastatin A for 1.5 to		
	7 Ioun		3.5 days in PDB at 27 °C		
	Actin	N	RPMI medium containing 25 or 50 mg/mL of vitamin C for 3	[104]	
	7 Ioun	11	days at 28 °C	[101]	
	Actin	Y	Co-incubation with Kluyveromyces lactis at 30 °C for 48 h		
A. parasiticus	Beta-tubulin *	N	YES or YEP medium at 28 °C for 4 days	[48]	
			Yeast extract sucrose peptone (YESP) medium modified with		
	Beta-tubulin	Ν	1% sodium nitrate (YESP-N) or 1% tryptophan (YESP-T) at	[106]	
			10, 15, 25, 30 and 37 $^{\circ}\mathrm{C}$ for 96 h with shaking at 100 rpm		
	Beta-tubulin	N	Treatment or no treatment with the subinhibitory	[50]	
	*		concentrations of carvacrol or trans-cinnamaldehyde in PDB at		
			25 °C for 5 days		
	Beta-tubulin	Y	YES medium containing one of four antifungal peptides: PPD1,	[55]	
	*	1	66-10, 77-3, or D4E1	[55]	
A. sojae	18S rRNA *	N	Adye and Mateles (1964) medium for 48 h and 72 h	[102]	
	Actin	Y	Lovastatin production medium at 27 °C for 10 days with	[107]	
	Adm	1	shaking at 220 rpm		
			MID medium for 10 days after which 0.5, 1.0, 3.0 and 5.0%		
	Actin	Ν	(w/v) of surface sterilised <i>Podocarpus. gracilior</i> leaves were	[108]	
A. terreus			added and incubated together for 20 days		
	Beta-tubulin	N	Four formed fungi balls or 2 mL of fungal suspension in NaCl	[67]	
	*		incubated for 3 h at 25, 30, 35 and 40 °C	[07]	
	Beta-tubulin	N	Treatment with sublethal and lethal concentrations of AmB in	n [68]	
	*	11	Sabouraud medium at 37 °C for 24 h with slight shaking	[00]	
A. westerdijkiae	Beta-tubulin	N	CYA in the presence or absence of Debaryomyces hansenii at	[109]	
	Sem tabuin	.,	28 °C for 3 and 7 days		

GAPDH	Ν	YES medium at 25 °C for 96 h	[110]

Y, validation was provided; *, analysed more than one species of *Aspergillus* and appear twice in the table.

Overall, 15 species of *Aspergillus* were examined: *A. aculeatus* [34,35]; *A. carbonarius* [32,36,37]; *A. cristatus* [24]; *A. fischeri* [38]; *A. flavus*

[28,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57]; A. fumigatus

[16,21,22,23,27,31,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74]; *A. luchuensis* [26,75]; *A. nidulans* [30,76,77,78,79,80,81,82,83,84,85,86]; *A. niger* [87,88,89,90,91,92,93,94]; *A. nomius* [95]; *A. oryzae* [25,83,88,96,97,98,99,100,101]; *A. parasiticus* [29,48,50,55,102,103,104,105,106]; *A. sojae* [102]; *A. terreus* [67,68,107,108]; and *A. westerdijkiae* [109,110] (Table 2.1., Table S2.1.). The most common reference genes used in these studies were those encoding beta-tubulin, which were used 31 times in the literature

[38,41,42,46,47,48,49,50,51,52,53,54,55,56,62,63,64,65,66,67,68,69,70,76,80,81,82,83,98,106,109], followed by those encoding actin (30 times)

[16,21,22,23,24,25,26,30,34,42,43,44,45,60,61,75,76,77,78,79,89,90,91,96,97,103,104,105,107,108], the 18S ribosomal RNA gene (18S rRNA; 12 times) [27,28,29,36,39,40,41,58,59,87,88,102] and glyceraldehyde-3-phosphate (GAPDH, *gpdA* and *gpdh*; 10 times) [30,31,35,52,54,60,71,90,92,110] (Table 2.1., Figure 2.1., Table S2.1.). Reference genes that were used four or fewer times [16,27,34,37,38,41,53,57,60,70,72,73,74,82,84,85,86,93,94,95,99,100,101] are grouped under Section 2.4.5. of this review. Please note that reference genes are have been grouped together according to the common name for their corresponding end product (either protein or rRNA) and will be referred to by their corresponding end product name throughout the remainder of this Chapter and thesis.

Figure 2.1. Distribution of reference gene usage across 90 RT-qPCR studies of *Aspergillus***.** Note that in the 90 studies examined, reference genes were used a total of 108 times, as some studies used multiple reference genes. Therefore, 108 was used as the denominator when computing the frequency of reference gene usage. The group "other" is composed of reference genes that were used fewer than four times. Beta-tubulin was the most frequently used reference genes, at 31 times in the literature.

In Section 2.4.1., Section 2.4.2., Section 2.4.3., Section 2.4.4., and Section 2.4.5. below, we briefly describe the history of use for each reference gene, as well as the relevant research results of these gene expression studies in *Aspergillus*. We also provide an analysis of the consistency or inconsistency of the studies regarding the validation of reference genes. Validation of specific reference genes for use under the specific experimental conditions tested was provided in only 17 of the 90 studies (Table 2.1., Table S2.1.) [16,27,30,32,35,38,41,46,52,54,55,77,86,94,103,105,107]. Table 2.1. is organised alphabetically first by species and second by reference gene, followed by the date of publication, and includes the species examined, encoded product of the reference gene used, whether the reference gene was validated and the experimental conditions for each of the 90 papers

returned by our PubMed search. A brief explanation of how the reference genes were validated, the associated gene symbol for each reference gene, strains used, type of sample taken, number of biological replicates and normalisation strategy are described in supplementary Table S2.1. Together, our review highlights the need for more frequent reference gene validation and standardising normalisation practices in RT-qPCR gene expression studies of *Aspergillus*.

2.4.1. Beta-Tubulin

Beta-tubulin is a subunit of a universal eukaryotic protein called tubulin, the basic structural unit of microtubule. Tubulin is a heterodimer, consisting of equal numbers of alpha-tubulin and beta-tubulin subunits [112]. Microtubules are part of the cytoskeleton and provide structure and shape to eukaryotic cells. Because of the essential role microtubules play, both the alpha- and beta- tubulin encoding genes are highly conserved; as a result, they are commonly used for evolutionary studies. For example, the beta-tubulin gene is commonly used in phylogenetic [113] and taxonomic [114] studies of fungi. However, the copy number of beta-tubulin-encoding genes in Aspergillus genomes can vary [115]. For example, there are two copies of beta-tubulin-encoding genes in A. nidulans, while there is only one copy in A. niger [115]. In A. nidulans, each beta-tubulin performs a different function. The benA-encoded beta-tubulin is involved in nuclear movement and vegetative growth during mitosis [112,116], while the *tubC*-encoded beta-tubulin is involved in conidiation [112]. Beta-tubulin has been used as reference gene in gene expression studies since 1988 [117], and in RTqPCR studies as early as 2000 [118]. In this review, beta-tubulin was used as a reference gene 31 times in studies examining gene expression in A. nidulans (5) [76,80,81,82,83], A. fumigatus (9) [62,63,64,65,66,67,68,69,70], A. flavus (13) [41,42,46,47,48,49,50,51,52,53,54,55,56], A. parasiticus (4) [48,50,55,106], A. oryzae (2) [83,98], A. terreus (2) [67,68], A. westerdijkiae (1) [109] and A.

fischeri (1) [38] (Table 2.1., Table S2.1.). Of these 31 studies, nine provided a rationale for choosing beta-tubulin as a reference gene [38,41,46,47,52,55,62,98,109], though only six provided proper validated justification [38,41,46,52,54,55]. Many of these studies examined the impact of abiotic factors, such as the wavelength of light [82], nutrient availability [64,76,106], water activity [47], temperature [67,106] and pH [76] on the expression of metabolic and biosynthesis genes. A select few examined the effects of biotic factors, such as the impact of co-incubation with *Streptomyces* spp. [42,54], Eurotium cristatum [56], Debaryomyces hansenii CYC 1244 [109] and Listeria monocytogenes [41] on the expression of genes associated with aflatoxin biosynthesis. Several studies examined the effects of antifungal treatment on the expression of antifungal resistance-associated genes [62,68,80], while others explored alternative treatments for minimising aflatoxin production [42,50,52,54,55,56]. Targeted and spontaneous mutations were also heavily examined in the literature, characterising the function of putative genes [65], through molecular cloning, or the specific effects on metabolic [38,66,81,83] pathways, through comparing expression in mutant to wildtype strains, and antifungal resistance [69] pathways, through comparing expression in antifungal susceptible to resistant strains. The following two sections will discuss the experimental conditions and findings of the studies that validated beta-tubulin as a stable reference gene for use under the specific conditions of the study, and those that did not provide justification for its use, respectively. Studies that specifically aimed to validate reference genes under a specific set of conditions will be discussed below in Section 2.5.

2.4.1.1. Studies That Validated Beta-Tubulin Expression Stability under the Experimental Conditions Tested

Of the 31 studies that used beta-tubulin as a reference gene for RT-qPCR, only six validated the reference gene for use under the specific experimental conditions being studied [38,41,46,52,54,55]. Cacares et al. 2016 and Lappa et al. 2019 followed the "gold standard" for reference gene selection by using NormFinder [119] to evaluate the stability of multiple reference genes (of which beta-tubulin was one of them) in their studies examining the expression of genes related to aflatoxin biosynthesis [41,52]. In their analyses, beta-tubulin was demonstrated to be stably expressed during *A. flavus* growth under specific experimental conditions: at 27 °C on malt extract agar (MEA) supplemented with 0.5 mM eugenol [52]; and during growth in malt extract broth (MEB) at 25 °C and 30 °C in the presence or absence of *L. monocytogenes* [41]. In addition to validating stability, both research groups also used multiple reference genes for normalisation [41,52], thus applying the "gold standard" for RT-qPCR data normalisation [19].

Previous studies have identified that 30 genes are involved in aflatoxin biosynthesis in *A. flavus* [7]. These genes include the specific regulators *aflR* and *aflS*, and several early (*aflA*, *aflB*, and *aflC* or *pksA*) and later (*aflD* or *nor-1*, *aflM* or *ver-1*, *aflN*, *aflO*, *aflP* or *omtA*, and *aflQ*) pathway genes as well as those not shown to be directly associated with the pathway (*aflT*) [7]. Here we will use the naming conventions of the aflatoxin biosynthesis genes as recommended by Yu et al. [120]. Aside from these genes, several global regulatory genes were also identified to be associated with aflatoxin biosynthesis, including *veA* [121], *mtfA* [122] and *msnA* [123]. With this background information, here we briefly review the studies that investigated the potential influences of environmental factors on aflatoxin production through RT-qPCR.

In their 2016 study, Carces et al. found that 26 out of the 27 aflatoxin biosynthesis genes that they examined showed decreased expression following treatment with 0.5 mM eugenol, where the only gene that did not decrease in expression was *aflT* [52]. They also demonstrated that the genes involved in the later steps of the AFB1 biosynthesis pathway, such as *aflQ*, were more affected by eugenol treatment than early pathway genes, such as *aflA* and *aflB* [52]. Moreover, they found that global regulators *veA*, *mtfA* and *msnA* were upregulated [52].

In another study published by the same group two years later, Caceres et al. assessed the efficacy of S. roseolus as a biocontrol agent against AFB1 aflatoxin production in A. flavus [54]. The group used the same method of quantification for RT-qPCR as they did previously, and the same reference genes, including beta-tubulin [54]. They examined the expression of 27 genes in the aflatoxin biosynthesis pathway, as well as the impact of S. roseolus co-incubation on the expression of genes involved in fungal development, response to external stimuli and oxidative stress [54]. As was observed in their study investigating the effects of 0.5 mM eugenol treatment, 26 of the 27 genes in the AFB1 aflatoxin biosynthesis pathway showed significantly decreased expression after four days of co-incubation with S. roseolus, where again, only aflT expression was not significantly reduced [54]. Moreover, the expression of the two AFB1 transcriptional regulators, *aflR* and *aflS*, was significantly reduced 6-fold, and the genes involved in early aflatoxin biosynthesis were less affected than those involved in the intermediate and later stages [54]. This suggests that reduction in the expression of aflatoxin biosynthesis pathway genes may be mediated by a reduction in *alfR* and *aflS*, where the few AFLR-AFLS complexes translated were used up for the expression of the early pathway genes, leading to fewer complexes available for the expression of the late pathway genes, and consequently a greater reduction in their expression [52]. Since *aflT* does not possess the binding site for the AflR transcription factor, and is therefore not regulated by the AFLR-AFLS complex [124], this may

explain why *aflT* expression is unaffected following either treatment with 0.5 mM eugenol [52], in their previous study, or by co-incubation with *S. roseoulus* [54]. Given that the results of the two studies are the same with regards to the expression pattern of the aflatoxin biosynthesis genes, the use of beta-tubulin (and GAPDH discussed below) is reasonable, despite the experimental conditions being different (treatment with 0.5 mM eugenol [52] versus co-incubation with *S. roseoulus*) [54]. Additionally, following co-incubation with *S. roseoulus*, several of the genes involved in fungal development increased in expression [54]. Of those involved in the fungal regulator, exhibiting a significant 3.5-fold increase in expression [54]. Of those involved in the fungal response to external stimuli, *gprA* was the most affected, with its expression significantly increasing 5.5-fold [54]. Of the 10 oxidative stress genes investigated, the two most affected genes were *atfB* and *cat2*, which decreased 149.2-fold and increased 3.7-fold, respectively [54]. Altogether, co-incubation with *S. roseoulus* was effective at reducing AFB1 biosynthesis and protein concentration, making it an attractive alternative to phytopharmaceuticals used in agriculture [54].

Lappa et al. demonstrated that there was a temperature threshold for aflatoxin expression, and that *L. monocytogenes* decreased aflatoxin production at the protein level [41]. Mayer et al. also provided experimental evidence for stable beta-tubulin expression in their study monitoring *aflD* expression in *A. flavus* during growth on wheat in a petri dish for nine days [46]. They found that *aflD* mRNA levels were highest on the fourth day of incubation, and decreased after day six, the day at which AFB1 protein levels first became detectable [46]. These results demonstrated that there was a transient induction of *aflD* expression in *A. flavus* before translation of AFB1 begins [46]. Similarly, Devi and Sashidhar stated that the antimicrobial peptides (AMPs) used in their study did not affect the expression of the reference gene, beta-tubulin, although they found that each of the four AMPs tested (PPD1 (FRLHF); 66-10 (FRLKFH); 77-3 (FRLKFHF); and D4E1- 12 (FKLRAKIKVRLRAKIKL))

significantly reduced the expression of the aflatoxin biosynthesis genes *aflR*, *alfC*, *aflD*, *aflM* and *aflP* in *A*. *flavus* and *A*. *parasiticus* [55]. Moreover, of the four AMPs tested, two (77-3 and D4E1) were the most effective inhibitors of expression [55]. Together, these RT-qPCR studies using beta-tubulin as a reference gene helped reveal the general conditions associated with increases (e.g., two days of incubation with wheat), and decreases (e.g., eugenol and AMP treatments and co-incubation with *L*. *monocytogenes*) in aflatoxin production by *A*. *flavus* and *A*. *parasiticus*.

Aside from being used as a validated reference for monitoring the expression of genes involved in mycotoxin production in *A. flavus*, beta-tubulin has also been used for studying the regulation of gene expression related to other phenotypes. Specifically, in their study examining the role of mannitol in conidia stress resistance and ascospore development, Wyatt and colleagues provided experimental evidence for the stability of beta-tubulin expression during *A. fischeri* growth on oatmeal agar for up to six days [38]. However, they found that the mRNA levels of beta-tubulin were low in 30-day ascospores, and thus chose to normalise beta-tubulin and target gene expression to an additional reference gene, experimentally validated histone 3 (*his-H3*), for 30-day culture data [38]. They measured the expression of *mpdA*, *mtdA*, *mtdB* and *esdC* in wildtype and in three *mpdA* deletion mutants [38]. *mpdA* was maximally expressed in 6-day ascospore-forming wildtype cultures, at which time *mtdA* and *mtdB* were also highly expressed, indicating that these genes may play a role in mannitol metabolism during early ascospore development [38].

2.4.1.2. Studies Missing Proper Beta-Tubulin Expression Stability Validation

Among the studies that used beta-tubulin as a reference gene, 25 did not provide experimental validation for its use under the specific conditions tested

[42,47,48,49,50,51,53,56,62,63,64,65,66,67,68,69,70,76,80,81,82,83,98,106,109]. These studies

included those examining the expression of clinically relevant genes, such as those contributing to antifungal resistance [62,63,68,69,80], mycotoxin production [109], aflatoxin biosynthesis [42,47,48,49,50,53,56,106] and infection in steroid and chemotherapeutic mouse models [70]. They also included studies investigating changes in the expression of genes associated with nutrient-sensing [76], calcium transport [66], iron acquisition [64], germination and conidiation [82], as well as those with potential industrial application [83,98]. Other studies focussed on characterising proteins, such as the heat shock protein, Hsp60 [67] and sialidase enzyme [65]. One study also looked at how targeted mutations to the Spt-Ada-Gcn5-acetyltransferase components of *A. nidulans* affected the expression of an aldehyde dehydrogenase and three alcohol dehydrogenases [81].

When reference gene expression stability is not validated, it can be difficult to interpret conflicting RT-qPCR results. For example, Abdel-Hadi et al. reported that 90W water activity delayed the expression of the aflatoxin biosynthesis activator, *aflR*, and that the structural genes, *aflD*, *aflM* and *aflP*, were expressed prior to the detection of *aflR* mRNA [47]. Here, the water activity of 0.9 (90W) means that the vapour pressure within the food (peanuts) is 90% that of pure water. Moreover, at 85W, only *aflD* and *aflM* were expressed [47]. This indicates that structural gene expression may be independent of *aflR* under these conditions [47], contrary to the findings of Degola et al., who found that expression of the structural genes *aflD*, *aflO* and *aflQ*, was not detectable until 48 h of incubation in yeast extract sucrose (YES) agar, indicating reliance on prior *aflR* expression [125]. Interestingly, both research groups used beta-tubulin as a reference gene [47,125], demonstrating that their experimental conditions might have had a profound effect on gene expression of similar target genes. However, of greater interest and concern are the apparent differences in beta-tubulin expression in Abdel-Hadi et al.'s paper, as indicated by the changes in band intensity in Figure 4 of their study [47]. It seems that the expression of the reference gene changed substantially from week two to three at

85W [47], further suggesting that beta-tubulin expression stability was not validated by the authors, and that its expression was not stable under their experimental conditions. In this study's conditions, beta-tubulin was unlikely to be an appropriate reference gene.

Similarly, using beta-tubulin as a reference for normalisation, Fattahi et al. found that there was a significant increase in cyp51A expression in natural voriconazole-resistant A. flavus isolates, following growth in liquid medium at 30 °C [51]. Their results were consistent with studies examining mutations in *cyp51A*, contributing to voriconazole resistance in *A. fumigatus* [126] and *A. lentulus* [127], as well as those examining laboratory-induced resistance in A. *flavus* [128]. However, Liu et al. found that cyp51A did not contribute to voriconazole resistance in A. flavus BMU29791, a strain isolated from a patient with IA [129]. In their study, Liu et al. treated A. flavus with 0.25 µg/mL of voriconazole in minimal medium, and used actin as a reference gene, though they also did not provide experimental evidence for validation of its stability [129]. Since the reference genes were not experimentally demonstrated to be stable under the tested conditions in either case [51,129], instead of different mutations causing the drug resistances among strains, alternative explanations such as differences in stability of reference genes in the experimental conditions cannot be ruled out. If the beta-tubulin and actin genes were validated under the experimental conditions used in these studies, it would be easier to determine whether the differences observed were caused by genetic differences among the strains and species.

33

2.4.2. Actin

Actin forms microfilaments and is among the most abundant proteins in eukaryotic cells [130]. Actin was first used as a reference gene in gene expression studies as early as 1985 [131], and similar to beta-tubulin, actin was first used as a reference gene in RT-qPCR studies as early as 2000 [132]. In our literature search, we found 17 reported usages of actin

[16,21,23,25,26,34,42,43,60,75,77,78,79,89,91,96,108], 12 usages of beta-actin

[22,24,44,45,61,76,90,97,103,104,105,107] and one reported usage of gamma actin [30] as reference genes. Unlike in the human genome, which contains about 20 copies of actin genes that make up six different isoforms of actin proteins [133], most fungi are known to contain only one actin gene [134,135]. Thus, we were curious as to how similar the actin and beta-actin genes were in Aspergillus fungi. We first checked the specificity of the primers used in these studies using Primer-Blast [136] and found that several of the primer sequences listed for beta-actin matched an actin gene instead, and one study matched both actin and beta-actin genes. We then conducted a BLASTn of the actin gene (Afu6g04740) of A. fumigatus Af293 in FungiDB. The sequence matched the gamma-actin gene (P168DRAFT_280232) in A. campestris with 87% identity, the actin gene (ACLA_095800) in A. clavatus with 94% identity and the actin gene (NFIA 051290) in A. fischeri with 99% identity. The sequence also matched the gamma actin gene, ANID_06542, for A. nidulans with 92% identity. The gamma actin gene in A. nidulans is the only actin gene in the fungus [135], and we will therefore include this reference gene with the counts for the actin reference gene in this review. We further ran a second BLASTn using the beta-actin sequence (accession number: AF276240) that was previously retrieved for A. terreus through Primer-Blast [136] (primers from Sorrentino and colleagues [107]), and compared the results to the BLASTn results for Afu6g04740. Similarly, the beta-actin sequence matched the gamma actin gene (P168DRAFT_280232) in A. campestris with 87% identity, the actin

gene (ACLA 095800) in A. clavatus with 94% identity and the actin gene (NFIA 051290) in A. fischeri with 99% identity. Although the results from the FungiDB BLASTn did not contain an exhaustive list of all Aspergillus species, given that the two sequences BLASTed yield the same results in these three species, this demonstrates that actin and beta-actin are most likely the same gene. Here we follow the naming convention of A. fumigatus Af293 and call the gene actin. We have made this change in Table 2.1., reporting both actin- and beta-actin-encoding genes as actin (Table 2.1.). We have kept the original gene symbols in Table S2.1. for the reader's reference (Table S2.1.). Thus in total, actin was used in 30 studies examining gene expression in A. niger (3) [89,90,91], A. nidulans (4) [30,76,77,78,79], A. fumigatus (6) [16,21,22,23,60,61], A. flavus (4) [42,43,44,45], A. parasiticus (3) [103,104,105], A. cristatus (1) [24], A. oryzae (3) [25,96,97], A. luchuensis (2) [26,75], A. terreus (2) [107,108] and A. aculeatus (1) [34] (Table 2.1.). Of these 30 studies, seven studies provided an explanation for using actin under the conditions tested [16,45,75,78,89,103,105], although only six of these studies provided experimental validation of its expression stability under the specific conditions [16,30,77,103,105,107] (Table 2.1., Table S2.1.). Like those using beta-tubulin as a reference, many studies used RT-qPCR to investigate aflatoxin biosynthesis [42,44,45,103,104,105]. A few studies also focused on characterising putative biosynthesis pathway genes, such as those involved in trehalose synthesis [89], citric acid production [90] and galactofuranosylation [91], as well as the function of homologous genes in different species of Aspergillus [43,75]. Others looked to identify additional pathways contributing to antifungal resistance and potential antifungal drug targets [21,60,78,79], or tested the efficacy of natural antifungals [23,61]. Below in Section 2.4.2.1, we briefly describe the specific studies and experimental conditions that validated actin gene as an appropriate reference gene. Studies that did not provide validations are summarised in Section 2.4.2.2.

2.4.2.1. Studies Validating Actin Expression Stability under the Experimental Conditions Tested

Of the 30 studies using actin as a reference gene, only six studies verified its stability under the experimental conditions tested [16,30,77,103,105,107] (Table 2.1., Table S2.1.). Miao et al. followed the "gold standard" for reference gene selection by verifying the expression stability of two reference genes, actin, and the histone-encoding gene of A. fumigatus Z5 under the experimental conditions used in their study [16]. They used geNorm [33] to validate the two reference genes [16]. As such, actin has been demonstrated to be stably expressed during A. fumigatus Z5 growth in Mandels' salt solution, supplemented with 1% oat spelts xylan, as the xylanase inducer [16]. Using RT-qPCR, Miao and colleagues found that 11 of the 13 xylanase-encoding genes in A. fumigatus Z5 are expressed in response to xylan, in addition to eight xylan-induced secreted proteins [16]. They identified four endoxylanases, two xylosidases, one α -L-arabinofuranosidase and one acetyl xylan esterase as important xylan-degraders, and thus promising agents for future biofuel generation [16]. Gao et al. also followed the "gold standard" for reference gene selection by validating the stability of actin in A. nidulans during its growth in the two media conditions, yeast extract-agar-glucose (YAG) with and without 15% (w/v) polyethylene glycol (PEG), employed in their study [77]. RT-qPCR analysis revealed that the expression of four members of the calcium signalling pathway—*midA*, crzA, pkaA and pmrA—significantly increased under osmotic stress in the presence of 15% PEG in mobB/cotA mutants of A. nidulans [77].

The gold standard was also applied by Deloménie et al., who validated the expression stability of two reference genes, actin and GAPDH [30], using geNorm [33]. They then used these genes to normalise gene expression in their custom Agilent microarray for *A. nidulans* [30]. They used RT-qPCR to verify the accuracy of the microarray data, by checking the expression of five genes: two that were

stably expressed according to microarray analysis, *ANID_08764* and *ANID_05831*; and three that increased in expression, *ANID_00858*, *v00296*, and *ANID_02343* [30]. RT-qPCR analysis confirmed that *ANID_08764* and *ANID_05831* were stably expressed, and that *ANID_00858*, *v00296* and *ANID_02343* increased in expression, although the fold change was greater for RT-qPCR results [30]. As articulated by the researchers [30], this increase in fold change can be explained by the compression effect often observed for microarrays, and more severely in Agilent microarrays, when comparing RT-qPCR data [137]. The compression effect is attributed to technical limitations of microarrays, such as the limited dynamic range of signal intensities and cross-hybridisation among paralogous sequences [137].

Similarly, Sorrentino and colleagues validated the use of actin as a reference gene under the conditions used in their work, examining the addition of linoleic acid to enhance lovastatin production in *A. terreus* [107]. *A. terreus* is the main producer of lovastatin, a drug used to lower cholesterol [138]. Using RT-qPCR, Sorrentino and colleagues found that addition of linoleic acid increased the expression of two lovastatin biosynthetic genes, *lovB* and *lovF* [139], when compared to control cultures, while noting that the expression of actin remained consistent [107]. However, the group did not provide the data demonstrating stable actin expression [107]. Thus, fatty acids such as linoleic acid enhance lovastatin production, and this knowledge can be applied to industrial fungal fermentation as a cost-effective method for increasing lovastatin yield [107].

Ghanbari et al. also validated the stability of actin expression in their study, examining the efficacy of *Kluyveromyces lactis* as a biocontrol agent against aflatoxin production and *aflR* expression in *A*. *parasiticus* [105]. Consequently, actin expression has been shown to be stable during co-incubation with 1.5×105 CFU/mL of *K. lactis* at 30 °C for 48 h [105]. They found that there was a significant decrease in *aflR* expression in cells treated with *K. lactis* compared to untreated cells, and that this corresponded with a decrease in aflatoxin production [105]. This indicates that *K. lactis* may decrease aflatoxin production through the downregulation of *aflR* [105].

Finally, Kondo et al. used actin as a reference gene to examine the effects of aflastatin A on aflatoxin expression in *A. parasiticus* [103]. The authors cite their previous work with the same species during exposure to blasticidin and its derivatives as justification for using actin as a reference gene [140]. Since the structures of aflastatin A and blasticidin are similar [141], hypothesising that actin expression would exhibit the same stability when exposed to alfastatin A is reasonable, and therefore the authors provide good justification for its use in their study. The group found that the expression of the aflatoxin biosynthesis genes *aflC*, *aflM*, *aflP* and *aflR* was significantly diminished following treatment with aflastatin A [103]. Moreover, they found that aflastatin A also decreased the expression of *aldA* and *facA* [103], which encode aldehyde dehydrogenase [142] and acetyl-CoA synthetase [143], respectively.

2.4.2.2. Studies Missing Proper Actin Expression Stability Validation

Twenty-four of the 30 studies did not include proper expression stability validation of actin as a reference gene [21,22,23,24,25,26,34,42,43,44,45,60,61,75,76,78,79,89,90,91,96,97,104,108]. Trevisan et al. and Verheecke et al., who used RT-qPCR to examine the expression of genes involved in nutrient-sensing [76] and aflatoxin biosynthesis [42] (as discussed above), respectively, also used actin as an unvalidated reference gene. As with beta-tubulin, several studies investigated the expression of genes facilitating antifungal resistance [60,61,79] and aflatoxin biosynthesis [42,44,104]. Additionally, two studies used RT-qPCR to confirm RNA-sequencing (RNA-seq) data, including the expression of the growth phase-associated [21] and amylolytic enzyme [26] genes. Similarly, several studies used RT-qPCR to confirm microarray expression data, including the expression of members of the gliotoxin gene cluster [22], non-ribosomal peptide synthetases [23],

sporulation-related genes [24] and highly expressed mating-type associated genes [25]. Others studied the expression of genes associated with Galf biosynthesis [78], nitrogen regulation and catabolism [43], citric acid production [75,90], spore color development [96] and conidiation [43,97], as well as putative trehalose synthesis genes [89] and one gene encoding alpha-glucan synthase [91]. Additionally, one study used RT-qPCR to verify increased transcription of genes associated with the industrially relevant product, taxol [108], while another study used RT-qPCR to characterise the acr biosynthetic cluster of a novel secondary metabolite, Acurin A, in A. aculeatus [34]. As mentioned previously, failure to properly validate reference genes can have negative consequences on the interpretation of results. Bruns et al. used actin as a reference gene in their RT-qPCR experiment, aimed at verifying the expression of four gliotoxin cluster genes obtained using microarray [22]. However, the group did not experimentally validate the expression of actin prior to conducting RT-qPCR [22]. Bruns et al. noted that there was a discrepancy in the expression levels of gliN, gliP, gliG and gliT when comparing the data obtained using microarray to that obtained using RT-qPCR [22]. They noted that the limited dynamic range of detection for microarrays and differences in probe design might have contributed to the differences observed in gene expression between methods [22]. However, as RT-qPCR was used by the research group to verify the results obtained using microarray [22], it would have been prudent for the researchers to ensure that the reference gene used for RT-qPCR exhibited stable expression under the conditions being tested. Similarly, Perrin et al. used RT-qPCR to confirm the microarray expression data for seven nonribosomal peptide synthetases (not associated with siderophore biosynthesis) and an additional four ribosomal peptide synthetases associated with siderophore biosynthesis, specifically [23]. They also used actin as a reference gene, but did not validate its expression stability under the conditions tested [23]. They report that the siderophore gene, *sidE*, reaches maximum expression during growth under

low iron availability [23], conflicting with Reiber et al.'s finding that *sidE* is insensitive to changes in iron concentrations and is constitutively expressed, except under iron replete conditions (300 μ M) at 24 h of growth [144]. Interestingly, Reiber et al. used calmodulin as the reference gene in their study, and demonstrated that calmodulin is constantly expressed in A. fumigatus under the conditions tested (mineral salt medium (pH 6.8), supplemented with 0, 20 and 300 µM) [144]. Curiously, Perrin et al. note that the differences in expression patterns observed between their study and Reiber's group are likely due to subtle differences in the growth conditions, yet the media composition and iron concentrations used were the same in both studies. The only difference between the two studies was the shaking speed used, which was 230 rpm for Perrin et al. [23] and 280 rpm for Reiber et al. [144]. Therefore, the differences in observed *sidE* expression may be due to differences in reference gene expression, where actin expression differed under the experimental conditions used by Perrin et al. [23]. In fact, Perrin et al. note that actin expression decreased in the *laeA* mutant examined during growth under low iron availability, indicating that actin was likely not an appropriate reference gene for their study [23]. To ascertain the cause for the observed differential expression, the actin reference gene must be validated under the experimental conditions used by Perrin's group. This case clearly illustrates the importance of reference gene validation in RT-qPCR analyses under the specific conditions being studied, and the consequences associated with improper reference gene use.

2.4.3. 18S rRNA

The 18S rRNA gene encodes the small ribosomal RNA subunit of the translation apparatus in all eukaryotes. The rDNA copy number of the 18S rRNA gene in *A. fumigatus* is strain-dependent, ranging from 38 copies in the Af293 strain to up to 91 copies in select strains [145]. Unlike single-copy genes, this variable nature in copy number among strains represents a potential drawback of

using 18S rRNA as a reference in comparative analyses among strains. However, 18S rRNA is a highly conserved gene at the DNA sequence level, and has been used as a reference gene in gene expression analyses as early as 1990 [146]. Similar to the two previously discussed reference genes, beta-tubulin and actin, the 18S rRNA gene was first used in RT-qPCR analyses as early as 2000 [147]. Additionally, the product of the 18S rRNA gene is commonly used to confirm the overall integrity of the isolated RNA used in RT-qPCR [63,66].

In this review, we found that the 18S rRNA gene was used as a reference gene 12 times in studies examining gene expression in A. niger (2) [87,88], A. fumigatus (3) [27,58,59], A. flavus (4) [28,39,40,41], A. parasiticus (2) [29,102], A. sojae (1) [102], A. oryzae (1) [88] and A. carbonarius (1) [36] (Table 2.1., Table S2.1.). Only two of the twelve studies validated the use of the 18S rRNA gene under the conditions being tested [27,41], with the remaining ten studies offering no explanation for its use as a reference gene [28,29,36,39,40,58,59,87,88,102] (Table 2.1., Table S2.1.). As discussed above, several of these studies examined the efficacy of potential antifungals [27] and aflatoxin biosynthesis antagonists [40,41], as well as the influence of abiotic factors, such as temperature and water activity [28], on gene expression. Genetic alterations were also examined, including deletion mutants, to assess the importance of genes involved in aflatoxin biosynthesis [29], conidiation [29] and production of extracellular proteins [39], as well as overexpression strains, to assess the role of cofilin during oxidative stress and pathogenesis [59]. Two groups also examined the influence of carbon and nitrogen sources on the expression of genes in two relevant, yet different pathways: those involved in production of industrially useful xylanases [87]; and harmful allergenencoding genes [58].

41

2.4.3.1. Studies Validating 18S rRNA Expression Stability under the Experimental Conditions Tested

The 18S rRNA gene was only validated in two of the 12 studies examined in this review [27,41]. As mentioned in Section 2.4.1.1, Lappa et al. employed the "gold standard" for reference gene selection by validating the use of the three reference genes (beta-tubulin, 18S rRNA and calmodulin) under the experimental conditions used in their study examining aflatoxin biosynthesis [41]. Gautam et al. also used the "gold standard" for reference gene selection, by testing the stability of three candidate reference genes (actin, GAPDH and 18S rRNA) in preliminary experiments for their study investigating the efficacy of the antimalarial drug artemisinin against A. fumigatus [27]. Of the three candidate reference genes tested, the 18S rRNA gene exhibited the greatest stability [27]. Using RTqPCR, seven of 745 genes displaying an altered expression following exposure to 125 µg/mL artemisinin, including the oxidative phosphorylation pathway-specific 64 kDa mitochondrial NADH dehydrogenase, were confirmed to exhibit a similar change in expression [27]. Interestingly, while the 64 kDa mitochondrial NADH dehydrogenase was downregulated upon artemisinin exposure, other oxidative phosphorylation genes were upregulated [27]. One explanation for this is that the 64 kDa mitochondrial NADH dehydrogenase is a specific target of artemisinin, and due to its downregulation, A. *fumigatus* overexpresses additional oxidative phosphorylation genes to equilibrate the membrane potential of the fungus [27]. Additionally, co-incubation with artemisinin and itraconazole produced a synergistic effect, suggesting that artemisinin may be useful in combination infection treatments with other azole antifungals [27].

2.4.3.2. Studies Missing Proper 18S rRNA Expression Stability Validation

Ten of the twelve studies that used the 18S rRNA reference gene did not validate its stability under the experimental conditions of their study [28,29,36,39,40,58,59,87,88,102]. Like studies described above in Section 2.4.2., Chang et al. used RT-qPCR to confirm microarray expression data for genes associated with oxidative stress [29]. Similarly, the expression of aflatoxin biosynthesis genes was also examined in studies using the 18S rRNA gene as a reference [40,102]. These studies also included those investigating the expression of miRNA-like genes [28] and xylanases [87], as well as the expression of genes associated with allergies [58], oxidative stress and cell wall polysaccharide biosynthesis [59]. Other studies looked at the expression of differentially secreted proteins, such as alpha amylase, in response to the deletion of VeA [39] and putative ochratoxin A (OTA) biosynthesis genes [36]. In addition, one study evaluated the expression of single-guide RNA for use in CRISPR-Cas9 editing of *A. niger* [88].

2.4.4. GAPDH

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, also called *gpdA* and *gpdh*) plays a vital role in glycolysis by catalysing the conversion of glyceraldehyde-3-phosphate (G3P) to 1,3biphosphoglycerate in the presence of NAD+ and inorganic phosphate [148]. The role of GAPDH extends to additional cellular processes, acting as a potential transcription factor (as demonstrated by binding to RNA polymerase II in *Schizosaccharomyces pombe*) [149], glucose availability sensor and corresponding regulator of cell growth [150], as well as apoptosis inducer [151].

GAPDH has been used in gene expression analyses as early as 1991 [152]. It was first used as a reference gene in RT-qPCR analyses as early as 1992 [153], making it the earliest reference gene used of four reference genes discussed in detail in this review. GAPDH was used as a reference gene in ten

studies examining gene expression in *A. niger* (2) [90,92], *A. nidulans* (1) [30], *A. fumigatus* (3) [31,60,71], *A. flavus* (2) [52,54], *A. westerdijkiae* (1) [110] and *A. aculeatus* (1) [35] (Table 2.1., Table S2.1.). These studies included those that investigated the function of proteins, including the type III polyketide synthase [92] and alternative oxidase [90] genes, using deletion and overexpression mutants. Several studies also used RT-qPCR to confirm the results from other gene expression analyses, including microarrays [30,31] and cDNA RDA [110]. Another study by Blosser and Cramer (also discussed above) examined the mechanism of triazole resistance in *A. fumigatus* mediated by SbrA [60]. Only four of the 10 studies using GAPDH as a reference gene experimentally validated its stability [30,35,52,54] (Table 2.1., Table S2.1.).

2.4.4.1. Studies That Validated GAPDH Expression Stability under the Experimental Conditions Tested

Of the 10 studies that used GAPDH as a reference gene, four studies experimentally validated its expression stability under the conditions being tested [30,35,52,54]. As mentioned above, in Section 2.4.1.1, Caceres et al. employed the "gold standard" for selecting reference genes when selecting beta-tubulin and GAPDH in their 2016 study, examining the effects of 0.5 mM eugenol on expression of aflatoxin biosynthesis genes [52]. These same reference genes were also used in their latter study examining the impact of *S. roseoulus* on aflatoxin biosynthesis gene expression [54]. Similarly, Deloménie et al., also mentioned above in Section 2.4.1.1, employed the "gold standard" for reference gene selection by first validating the expression stability of actin and GAPDH [30]. Tani et al. also validated the expression stability of GAPDH as a reference gene using NormFinder [119], in their study investigating the role of the XlnR signalling pathway in *A. aculeatus* [35]. Through examining the expression of cellulase and hemicellulase genes (*bgl1, cbh1, cmc1, cmc2*,

xynIa, and *xynIb*) in *A. aculeatus* wildtype and $\Delta xlnr$ strains, during growth in the presence of various carbon sources (1% (w/v) polypeptone, 1% (w/v) glucose, 1% (w/v) avicel, 1% (w/v) xylose, or 1% (w/v) arabinose), the researchers demonstrated that there are two different pathways mediating cellulase and hemicellulase expression [35]. Specifically, there is one pathway that mediates the expression of *cbhI*, *cmc2* and *xynIa* in minimal medium containing 1% (w/v) avicel, which is independent of XlnR signalling [35]. Moreover, expression of *cbhI*, *cmc2* and *xynIa* was induced by 30 mM cellobiose in the wildtype strain, whereas *xynIb* and *cmc1* expression was not, suggesting that cellobiose is an exclusive inducer of the XlnR-independent pathway [35]. This study was the first to report diverging routes of gene induction via cellulose, to XlnR-dependent and -independent pathways, and makes a valuable contribution to our understanding of transcriptional inducers in filamentous fungi [35].

2.4.4.2. Studies Missing Proper GAPDH Expression Stability Validation

The remaining six studies using GAPDH as a reference gene did not validate its stability under the conditions tested [31,60,71,90,92,110]. Blosser and Cramer and Hou et al., who investigated the expression of genes involved in antifungal resistance [60] and citric acid production [90] using RTqPCR and actin, as an unvalidated reference gene, respectively, also used GAPDH as a reference gene. Blosser and Cramer also used a third reference gene in their study, *tefA*, although this gene was not experimentally validated either [60]. As with the sections above, the expression of genes contributing to antifungal resistance [60,71] was examined. Again, RT-qPCR was used to verify the results of other methods of gene expression analysis, including the change in expression in eight genes in *A. fumigatus* conidia exposed to human airway epithelial cells [31] and three putative oxidoreductases in *A. westerdijkiae* [110]. Additionally, one study investigated the expression of the type III polyketide synthase-encoding gene, *AnPKSIII* [92].

Oosthuizen et al. investigated dual organism transcriptomics, looking at the transcriptome of A. fumigatus conidia and A. fumigatus-infected human airway epithelial cells (AECs) using microarrays [31]. They used RT-qPCR to examine a representative group of genes for both A. *fumigatus* conidia incubated with AECs or human bronchial epithelial cells (16HBE14o-) and a representative group of genes expressed in AECs and 16HBE14o-[31]. For analysis of A. fumigatus conidia, this representative group of eight genes included those involved in vacuolar acidification and those that possess metallopeptidase activity [31]. Three of the eight A. fumigatus genes encoding-vacuolar ATPase 98 kDA subunit, MAP-1 and SkpA—were significantly upregulated following incubation with either AECs or 16HBE140- [31]. In contrast, the tubulin-specific chaperone C and β -glucosidase significantly increased in expression, but only when incubated with AECs [31]. Similarly, *sidA* and fdh significantly increased in expression when incubated with 16HBE14o- cells [31]. Overall, microarray and RT-qPCR analysis elucidated similar trends in expression [31]. Through looking at the expression of genes in human epithelial cells and A. fumigatus conidia simultaneously, the researchers provided a better representation of the changing expression dynamics as host and pathogen interact [31].

Hou et al. characterised the role of the mitochondrial alternative oxidase gene, aox1, in citric acid production in *A. niger* [90]. Interestingly, the researchers did not validate the expression stability of either of their two reference genes, actin and GAPDH, under the experimental conditions used [90]. They compared the expression of six metabolic genes—aox1, cox, cat, hk, pfk and cs—in an aox1overexpression strain (102) and an $\Delta aox1$ strain (3–4), to each other, as well as the parental strain, CGMCC 10142 [90]. In strain 3–4, cox expression increased compared to the parental strain, with a

coinciding increase in ATP concentration for all sampled time points, except for 36 h and 48 h [90]. In strain 102, the expression of *cox* decreased compared to the parental strain [90]. In the absence of *aox1, cat* expression was more constant and relatively higher during aerobic treatment, in relation to the parental strain [90]. Correspondingly, a negative correlation between *aox1* and *cat* expression was observed in strain 102, compared to the parental strain [90]. The expression of *hk*, *pfk* and *cs* genes was higher in strain 102 compared to strain 3–4 [90]. Citric acid was also produced at higher quantities in strain 102 [90]. This work establishes the linkage between *aox1* expression, genes involved in citric acid production, and the amount of citric acid produced, using methodology that can be applied to other industrially relevant biological mechanisms [90].

2.4.5. Others

Other reference genes that have been used over the last two decades to study gene expression in *Aspergillus* include those that encode: histones [16,34,38,82,93,94,99,100,101]; nicotinamide adenine dinucleotide phosphate+ hydrogenase [85]; translation elongation factors [84] and elongation factor subunits [60,70,73,74]; ribosomal proteins [86]; putative 1,3-beta-glucan synthase catalytic subunit [72]; calmodulin [37,41,53,95]; internal transcribed spacer regions [57]; and ubiquitin-conjugating enzyme [32] (Table 2.1., Table S2.1.).

Of those using the above-mentioned reference genes, four studies used multiple reference genes to normalise their expression data [16,41,60,82]. Six different studies experimentally validated the expression stability of the reference genes used under the conditions tested [16,32,38,41,86,94]. Several of the studies have already been discussed above [16,38,41], and we will therefore focus here on three studies that validated the expression of the reference genes used in their work identifying and characterising the conserved WDR gene (FPWDR) in *A. nidulans* [86], validating RNA-seq data

examining OTA biosynthesis in *A. carbonarius* [32] and modelling the expression dynamics of the XlnR regulon in *A. niger* [94].

Prior to assessing the impact of deleting FPWDR and the surrounding locus, on the expression of cell wall-associated genes in A. nidulans, Guerriero et al. used geNormPlus [33] to rank the expression stability of five candidate reference genes—*rpl37*, *rpl3*, actin, *CRP2* and *TEF1*—during growth in standard minimal medium [86]. As *rpl37* and *rpl3* were the most stable, they were chosen as reference genes for normalisation [86]. Following genomic analysis of FPDWR, Guerriero et al. deleted FPWDR and the surrounding locus (including bf), generating a heterokaryon transformant (hkΔAN1556) [86]. Since hkΔAN1556 possessed deformities in cell wall morphology [86], the group decided to look at the effect of the deletion on the expression of cell wall-associated genes, including members of the chs family, csmA, csmB, celA, fksA, rhoA [154], pkcA [155], wscA, wscB [156], CPS1 and bf. Generally, the expression of cell wall-associated genes decreased in hk Δ AN1556, with a significant reduction in chsED, csmA, csmB, CPS1, fksA and wscB expression [86]. Surprisingly, FPWDR and bf expression was similar in hkAAN1556 compared to the control strain, which suggests that there are nuclei within hk∆AN1556 where FPWDR and the surrounding locus were not deleted, and thus their expression is retained [86]. Taken together with its proximity to the *chsD* gene and the presence of cell wall deformities, the alterations in gene expression observed for hk Δ AN1556 indicate that FPWDR plays a role in the cell wall [86].

Gerin et al. used RT-qPCR to confirm their RNA-seq data, demonstrating differential expression of five polyketide synthases, four non-ribosomal peptide synthetases and one chloroperoxidase in *A*. *carbonarius* during OTA-inducing conditions [32]. To determine the best reference gene for normalisation, the group assessed the expression stability of beta-tubulin, calmodulin, and ubiquitin-conjugating enzyme during *A. carbonarius* growth in minimal medium at 25 °C in the dark without

shaking, using BestKeeper [157]. Of the three candidate reference genes tested, the ubiquitinconjugating enzyme was the most stable, and therefore was used to normalise their RT-qPCR data [32]. The RT-qPCR analysis demonstrated similar patterns of gene expression as observed for RNAseq, after *A. carbonarius* growth in minimal medium in the dark at 25 °C without shaking for four, six and eight days [32]. Overall, their results provide a comprehensive view of the different expression networks that may be connected to OTA production [32].

Omony et al. used the histone-encoding gene, *hist*, in their work building off their previous studies [158,159], and modelling the transcription dynamics of 23 genes in the XlnR regulon using timecourse RT-qPCR expression data of *A. niger* [94]. The group previously experimentally validated the expression of the histone-encoding gene under the same experimental conditions, treatment with 1 mM or 50 mM D-xylose, and in the same strains used in their study, *A. niger* N400 (wildtype) and NW28 (a derepressed CreA mutant) [158]. As in their study four years earlier [158], Omony et al. found that the expression of XlnR regulon was higher for the 1 mM D-xylose treatment in both the wildtype and mutant strains [94]. They also found that the induction of hemicellulose genes was higher for the 1 mM D-xylose concentration [94]. The group also presents an updated kinetic differential equation model for the transcription of the XlnR regulon [94]. As the general results of their two studies were consistent, this is excellent support for the use of the histone-encoding gene for examining XlnR regulon transcription in *A. niger*, using 1 mM and 50 mM D-xylose for transcriptional induction [94,158].

2.5. Validation of Candidate Reference Genes in Aspergillus

The studies highlighted above use RT-qPCR to answer a diversity of research questions about gene expression in various species of *Aspergillus* under specific experimental conditions. In this section, we will highlight the need for studies validating the expression stability of candidate reference genes under standard laboratory conditions by discussing two large-scale validation studies in *A. flavus* and *A. niger*. We will also summarise all reference genes experimentally validated to date with their associated species and experimental conditions and highlight the traditional reference genes that were shown to be less stably expressed than the selected reference gene under the specific tested experimental conditions.

2.5.1. Validation of hisH4 and cox5 for Studying Aflatoxin Biosynthesis in A. flavus

From our PubMed search, only one study was returned that assessed the expression of multiple candidate reference genes under a specific set of conditions [111]. To find reference genes suitable for RT-qPCR analysis of aflatoxin biosynthesis genes in *A. flavus*, Suleman and Somai tested the expression stability of four reference genes (*actA* (actin), *sarA* (secretion associated binding protein), *hisH4* (histone H4) and *cox5* (cytochrome C oxidase subunit V)) under aflatoxin-inducing conditions, growth in sucrose low salts (SLS) or SLS supplemented with 117 mM ammonium sulphate (SLS + NH₄), as well as non-inducing growth in lactose low salts (LLS), conditions at acidic (pH = 4.0) or alkaline (pH = 8.5) pH [111]. They chose actin, *sarA* and *cox5* for testing, as their expression stability was previously demonstrated in *A. niger* [160], and *hisH4*, as it had been previously used to normalise expression in *A. oryzae* [161].

Prior to assessing the stability of the candidate reference genes, Suleman and Somai assessed the primer pairs for each gene [111]. An ideal primer pair should: (1) produce an amplification efficiency

of ~100% (indicating a doubling of product per cycle); (2) produce a standard curve with a slope of -3.32, y-intercept less than 40 and correlation coefficient of >0.990; and (3) amplify one product (as indicated by a single peak in melt-curve analysis) [19,162]. The amplification efficiencies of *cox5* and *hisH4* were ~100%, while the amplification efficiencies of *sarA* and actin were less than 80%, despite attempts to redesign and optimise the primers [111]. Therefore, only *cox5* and *hisH4* were assessed further [111]. As the standard deviations of the Cq values were less than one for both *cox5* and *hisH4* when comparing different treatment conditions, BestKeeper and REST2009 analyses demonstrated that there was no significant change in expression for either gene [111].

As mentioned in the introduction above, using multiple, validated reference genes is the MIQE recommended practice for normalising gene expression data [19]. Thus, to assess whether normalisation with one reference gene (cox5 or hisH4) or both reference genes together yielded more robust results, the researchers normalised the expression of a "dummy" reference gene, with a set Cq value of 15, to the experimentally obtained Cq values of each reference gene, as well as to the sum of their Cq values, using REST2009 [111]. Using this method, the "dummy" gene should not exhibit a change in expression (expression ratio of ~ 1.0 with a p-value > 0.055) [163]. When comparing normalisation with *hisH4* or *cox5* alone, to normalisation with both *cox5* and *hisH4* together, a better overall expression ratio was observed when using both reference genes for normalising the data from acidic and alkaline conditions [111]. When assessing the expression data under specific conditions, they found that normalisation with both reference genes also produced the best expression ratio for $SLS + NH_4$ [111]. However, under three sets of conditions (when normalising expression data following growth on SLS under acidic and alkaline conditions; when comparing expression during growth on SLS + NH₄ to SLS under acidic and alkaline conditions; and when comparing expression during growth on LLS to SLS under acidic conditions), normalisation with hisH4 yielded the best

expression ratio [111]. Normalisation with *cox5* only yielded a better expression ratio for data obtained following growth on LLS, as well as when comparing expression during growth on LLS to SLS under alkaline conditions [111]. Collectively, these results show that the use of multiple reference genes is not always optimal for the conditions being tested [111]. Thus, this study highlights the need to validate the stability and the utility of reference genes under the specific conditions of each experiment.

2.5.2. Validation of actA, sarA and cox5 for Studying glaA Expression in A. niger

Bohle et al. experimentally validated the expression stability of ten candidate reference genes (act, sarA, cox5, apsC (aminopeptidase C), gpd (GAPDH), glkA (glucokinase), g6pdh (glucose-6phosphate dehydrogenase), *icdA* (isocitrate dehydrogenase precursor), *pfkA* (phosphofructokinase) and *pgiA* (phosphoglucose isomerase) in *A. niger* during growth in batch and continuous cultures, with *glaA*-inducing and -non-inducing conditions [160]. They first examined the expression stability of each gene in fedbatch cultures of A. niger, with glucose as the carbon source and continuous glucoamylase (glaA)-induction, for nine time points using geNorm [160]. Interestingly, one of the most used reference genes, GAPDH (used in ten studies highlighted in this review [30,31,35,52,54,60,71,90,92,110], two of which examined expression in A. niger [90,92] specifically) was the least stable under these conditions [160]. This further illustrates the importance of experimentally validating commonly used reference genes for use in study-specific conditions. Since the researchers were interested in examining expression stability for a diverse range of experimental conditions, they decided to examine the six most stably expressed genes, *act/sarA*, g6pdh, cox5, apsC and pgiA (most to least stable), under glaA-inducing (glucose as the carbon source) and -non-inducing (xylose or maltose as the carbon source) conditions in modified Vogel-Medium with varying stir speeds (400-1000 per min) and pHs (3.0 to 5.5) [160]. They found act and sarA to

be the most stably expressed, followed by *cox5* [160]. Since their dataset contained more samples for *glaA*-inducing conditions, they repeated their analysis with an equally represented dataset to ensure that the same three genes were consistently the most stable, irrespective of induction [160]. They found that the order of stability differed following the second analysis, where *act* and *cox5* exhibited the greatest stability, followed by *sarA* again, demonstrating the influence of experimental conditions on reference gene stability [160].

To further investigate the potential advantage of normalisation using three validated reference genes, they compared the correlation coefficients computed following regression with the normalisation factor for *act*, *sarA* and *cox5* ($N_{act,sarA,cox5}$), the unvalidated reference gene, GAPDH (N_{GAPDH}) and total RNA [160]. $N_{act,sarA,cox5}$ resulted in the highest correlation coefficient, demonstrating that the combination of the three validated reference genes was the best approach under the experimental conditions [160].

An important consideration noted by the authors is that these genes are all from different functional classes, and thus co-regulation of these genes is highly unlikely [160]. The absence of co-regulation is critical when using geNorm, as co-regulated genes can lead to high stability ranking and the inclusion of false positives [33]. Therefore, this work presents three experimentally validated reference genes that are suitable for studying *glaA* expression, while continuing to highlight the crucial first step of experimentally validating reference genes.

2.5.3. Reference Genes Currently Validated for Use in Aspergillus

Based on our review of the literature in Section 2.4., Section 2.5.1., and Section 2.5.2. above, the genes shown in Table 2.2. are recommended as reference genes for the specified experimental conditions. In this table, we also provide the species that these genes have been validated for, as well as the primers for each species and each recommended reference gene (Table 2.2.). Table 2.2. is

organised alphabetically by species first and reference gene second, followed by date. The

information in Table 2.2. was extracted from 21 publications

[16, 27, 30, 32, 35, 38, 41, 46, 52, 54, 55, 77, 86, 94, 103, 105, 107, 111, 141, 144, 160].

Table 2.2. Recommended reference genes for specific species and experimental conditions based on

 experimental validation.

	Reference				
a ·	Gene-	Forward Primer	Reverse Primer		Pot
Species	Encoded	(5'-3')	(5'-3')	Experimental Conditions	Ref.
	Product				
				Minimal medium (MM) with 1% (w/v)	
	CADDU	TACCGCTGCCCA	GGAGTGGCTGTC	polypeptone, 1% (w/v) glucose, 1% (w/v)	10.5
A. aculeatus	GAPDH	GAACATCA	ACCGTTCA	avicel, 1% (<i>w</i> / <i>v</i>) xylose, or 1% (<i>w</i> / <i>v</i>)	[35]
				arabinose for 3 h or 6 h	
	Ubiquitin-			MM at 25 °C, without shaking	
A. carbonarius	conjugating	CCGAAGGTCAA	GGCATATTTGCG	(ochratoxin A (OTA)-inducing)	[32]
	Enzyme	CTTCACCAC	AGTCCATT	conditions, for 4, 6 and 8 days in the dark	
		GCTCTTCCGTCC	CCTTGGCCCAGT	Growth on a hydrophobic polyvinylidene	[38]
1 final ani	Beta-tubulin	CGATAACTT	TGTTACCA	fluoride (PVDF) membrane on top of	
A. fischeri		CAAGAAGCCTC	GACTTCTGGTAG	oatmeal agar for 3, 6 or 30 days (wildtype	
	Histone 3	ACCGCTACAAG	CGACGGATTT	only)	
		GCAAATTACCCA	GAATTACCGCG		
A. flavus	18S rRNA	ATCCCGACAC	GCTGCTG		
		CGCATGAACGTC	AGTTGTTACCAG	Co-culture with <i>Listeria</i>	
	Beta-tubulin	TACTTCAACGAG	CAGCGGACT	<i>monocytogenes</i> in malt extract broth (MEB) at 25 °C and 30 °C for 7 days	[41
		CTTCCCCGAATT	TCACGGATCATC	(WIED) at 25 C and 50 C for 7 days	
	Calmodulin	CCTTACC	TCATCGAC		

	Beta-tubulin	CTTGTTGACCAG GTTGTCGAT *	GTCGCAGCCCTC AGCCT*	Inoculated onto 25 g of wheat and grown at 30 °C in open petri dishes with wetted filter paper for 9 days	[46]
	Beta-tubulin	AACGTCTACTTC AACGAGGCCA	GTACCAGGCTCA AGATCAACGAG	Malt extract agar (MEA) supplemented with 0.5 mM eugenol for 4 days at 27 °C	[52]
	GAPDH	CGTGTTGTTGAC CTCATTGCCT	GGTGACCTGATA ATCCGGGAAC	in the dark	
	Beta-tubulin	AACGTCTACTTC AACGAGGCCA	GTACCAGGCTCA AGATCAACGAG	Co-incubation with <i>Streptomyces</i> roseolus on International <i>Streptomyces</i>	
	GAPDH	CGTGTTGTTGAC CTCATTGCCT	GGTGACCTGATA ATCCGGGAAC	Project-2 (ISP2) medium at 30 °C for 4 days at a relative humidity of 80% in a Vötsch chamber	[54]
	Beta-tubulin	TCTCCAAGATCC GTGAGGAG	TTCAGGTCACCG TAAGAGGG	Yeast extract sucrose (YES) medium containing one of four antifungal peptides: PPD1, 66-10, 77-3, or D4E1	[55]
	Cytochrome C oxidase Subunit V	CGTCATTCACTT GTTCGCTAAG	CCTTGGCATACT CGTTGGAAG	Sucrose low salts (SLS), SLS supplemented with 117 mM ammonium sulphate, and lactose low salts, at acidic	[111]
	Histone H4	TCGTCGTGGTGG TGTCAAG	TTGGCGTGCTCA GTGTAGG	or alkaline pH	
A. fumigatus	18S rRNA	TCTTGTTAAACC CTGTCGTGCTGG	GTGTACAAAGG GCAGGGACGTA AT	Treatment with 125 µg/mL artemisinin or solvent for 3 h in Roswell Park Memorial Institute (RPMI) 1640 medium at 37 °C	[27]
	Actin	TGCCCTTGCTCC CTCGTCTA	ACCGCTCTCGTC GTACTCCT	Mandels' salt solution with 1% oat spelts	[16]
	Histone H4	GCTCGTCGTGGT GGTGTCAA	TGGCGTGCTCAG TGTAGGTG	xylan for 0, 2, 4, 6 and 17 h	[-~]
A. nidulans	Actin	TCAATCCCAAGT CCAACC (Tm 57 °C)	TACGACCGGAA GCATACA (Tm 57 °C)	Yeast extract-agar-glucose (YAG) supplemented with 15% polyethylene	[77]

_

		AATGGTTCGGGT	ACGCTTGGACTG	glycol (PEG) (w/v) compared to YAG	
		ATGTGC (Tm 60	TGCCTC (Tm 60	without supplementation for 2 days	
		°C)	°C)		
	Actin-like	GTACGATGAGA	CAGAAAATACG	MM supplemented with 0.1% fructose	
	protein	GCGGTCCTT	CGACAACGA	and 5 mM urea at 30 °C for 15 h with shaking at 150 rpm	[30]
	CADDII	CGACAACGAGT	GGCATCAACCTT		
	GAPDH	GGGGTTACT	GGAGATGT		
			GAATCATCTCGT		
	Calmodulin	CCGAGTACAAG	CGACTTCGTCGT	WB/MM supplemented with high, low or no iron for 24, 48 and 72 h	[144]
		GAAGCTTTCTC	CAGT		
	Putative	TTCCTCGCAAGA	TTGTGGTTGCAA	_ Liquid MM under standard conditions	
	ribosomal	CTCACAAG	GAGGTACG		
	protein L3				[86]
	Putative ribosomal	CGCCACAACAA	TCTCGCTCCAGT		
		AACTCACAC	TGTACTTGC		
	protein L37				
	Actin	GGTCTGGAGAG CGGTGGTAT	cactgcGAAGAAG		
			GAGCAAGAGCA		
			GtG		
	Cytochrome	GACCAAGGAGT	gaactgGGTGGGA	<i>glaA</i> -inducing and -non-inducing conditions in modified Vogel-Medium with stir speeds and pH from 400–1000	
	C oxidase		GGCAGCAGtTC		[160]
	Subunit V	GGCAGGAG	UULAULIU		[100]
A. niger	Secretion			per min and 3.0 to 5.5, respectively	
-	Associated	gaacctACGGGTAA	TCGCAACAATA		
	Binding	GGGCAAGGtTC	AAGTCAACAGC		
	Protein				
	Histone-		CACCCTCAAGG AAGGTCTTG	Growth in bioreactors on sorbitol as the	
	encoding	ATCTTGCGTGAC AACATCCA		carbon source with 1 mM D-xylose or 50 mM D-xylose	[94]
	Gene				

	Actin	CTTGACTTCGAG	TCTGGATACGGT CGGAGATA	Treatment with or without 1.0 μ M of blasticidin A in potato dextrose broth	[140]
		CAUGAGAI	CUUAUATA	(PDB) at 27 °C for 2 days	
		CGCGGATACAC	ACGTAGCAGAG	Treatment with 0, 0.25, 0.5 or 1.0 μ g/mL	
	Actin			aflastatin A for 1.5 to 3.5 days in PDB at	[103]
A. parasiticus		CTTCTCCACTA *	CTTCTCCTTGA *	27 °C	
	Actin	NA	NA	Co-incubation with Kluyveromyces	[105]
		NA	INA	<i>lactis</i> at 30 °C for 48 h	[103]
			TTCACCTCACCC	YES medium containing one of four	
	Beta-tubulin	TCTCCAAGATCC	TTCAGGTCACCG	antifungal peptides: PPD1, 66-10, 77-3,	[55]
		GTGAGGAG	TAAGAGGG	or D4E1	
	Actin	TCGTGACTTGAC	TGATGTCACGGA	Lovastatin production medium at 27 °C	[107]
A. terreus		CGACTACC	CGATTTCA	for 10 days with shaking at 220 rpm	[107]

*, used TaqMan system and therefore these primers have an associated probe, NA, not available. While the reference genes described above are validated for use under the specific conditions described in Table 2.2. above, three papers that tested the expression stability of multiple candidate reference genes demonstrated that several traditionally used reference genes were less stably expressed under the experimental conditions tested than the reference genes that they chose [27,32,86]. In their preliminary experiments, Gautam et al. found that actin and GAPDH were less optimal reference genes than the 18S rRNA gene for RT-qPCR gene expression analysis of *A*. *fumigatus* during exposure to 125 μg/mL artemisinin or solvent control for 3 h at 37 °C [27]. Similarly, Gerin et al. found that beta-tubulin and calmodulin were less suitable reference genes than the ubiquitin-conjugating enzyme for RT-qPCR gene expression analysis of *A*. *carbonarius* during growth in minimal medium under OTA-inducing conditions for four, six and eight days in the dark at 25 °C [32]. Guerriero et al. also demonstrated that actin was less optimal for assessing gene expression in *A. nidulans* during growth in liquid minimal medium under standard conditions, than two putative ribosomal protein-encoding genes, *L37* and *L3* [86]. These two putative ribosomal genes were also found to be more suitable reference genes than *CRP2* and *TEF1* under these experimental conditions [86].

Additionally, as highlighted in the candidate reference gene validation study by Bohle et al. and discussed in Section 2.5.2 above, a traditionally used reference gene, GAPDH, was found to be the least stable candidate reference gene in feed-batch cultures of *A. niger*, with glucose and continuous *glaA*-induction [160]. Additionally, the candidate reference genes, *icdA*, *glkA* and *pfkA* (most to least stable), demonstrated low stability, and are therefore not the most suitable reference genes for use under these conditions [160]. Under *glA*-inducing and non-inducing conditions in modified Vogel-Medium with a pH range of 3.0–5.5 and stir speed of 400–1000 per minute, the candidate reference genes *pgiA*, *apsC* and *g6pdh* (most to least stable) were demonstrated to be less stable than actin, *sarA* and *cox5* [160].

2.6. Reference Gene-Specific Google Scholar Queries

In this study, we focused our analyses on PubMed search results. However, though PubMed is a major database for the biomedical literature, there are other databases. As a broader search for RTqPCR studies of *Aspergillus* fungi, we conducted an additional set of queries using Google Scholar, with the following structure: "*Aspergillus* "reference gene" qPCR", where "reference gene" corresponds to the gene symbol associated with the reference gene of interest. We added quotation marks around the reference gene symbol to specifically search for the reference gene symbol as an entire string and ensure that the substrings comprising the reference gene symbol would not be searched separately. For example, the 18S rRNA gene was queried as "*Aspergillus* "18S rRNA" qPCR" and not "*Aspergillus* 18S rRNA qPCR". The dates of the returned results of the queries ranged

from 1983 to 2021. Figure 2.2. summarises the search results for all reference genes reviewed in our initial PubMed searches. The Google Scholar query that returned the most results corresponded to the 18S rRNA gene, returning 3290 results total (Figure 2.2.). This was followed by the query for GAPDH with 3209 results, ITS1 with 3170 results and ITS4 with 1630 results (Figure 2.2.).

Figure 2.2. Number of search results for each reference gene based on their corresponding Google Scholar query. The 18S rRNA reference gene returned the most results, with 3290 results returned.

It is important to note that the search queries described in this section have several limitations. One limitation is that because qPCR is also used as a diagnostic tool for the detection and quantification of *Aspergillus* species [164], the results of each query likely contain these studies, as well as relevant gene expression studies. Additionally, any papers that contain "*Aspergillus*" in the body of their report, such as the introduction, but do not specifically examine gene expression in *Aspergillus*, may

also be returned by the queries. Therefore, while the total results returned by each query may be used as a proxy for reference gene use frequency in qPCR gene expression analysis, the Google Scholar search results require manual curation as was done during the original PubMed search described in Section 2.4. above, in order to determine the relevance of the Google Scholar search results literature to our current study.

2.7. Concluding Remarks and Recommendations

In a recent 2018 review of reference gene validation practices for RT-qPCR of insects, Shakeel and colleagues discuss the validation of reference genes thus far for select insect species, while emphasising the need for a comprehensive group of studies to be conducted under diverse experimental conditions for all species of insects [165]. They note that several studies of classical housekeeping genes show varying expression under different experimental conditions, and indicate ribosomal genes as a promising new set of genes for further stability analysis in insect-specific studies [165].

In the literature reviewed above, we discussed several methods employed by those who validated the reference genes for normalisation in their studies, including geNorm [33], BestKeeper [157] and NormFinder [119]. Shakeel and colleagues discussed the benefits of these and other methods, RefFinder and Δ Ct, for assessing reference gene stability, and noted how each method may lead to slight differences in reference gene stability rankings [165]. As stated by the group, both geNorm and NormFinder are excellent programs for the initial assessment of candidate reference gene stability, each with their own advantage, with geNorm capable of determining the number of reference genes to use [33], and NormFinder computing the stability of each reference gene separately to avoid the consequences associated with co-regulation [119]. Given that different programs for determining

reference gene stability may yield different stability rankings, we recommend that researchers use more than one program to validate the stability of the reference genes used under the experimental conditions being tested. In agreement with Shakeel and colleagues, because the results of some programs, such as geNorm, may be biased due to co-regulation, care should be taken to select candidate reference genes that are not co-regulated.

Interestingly, Shakeel and colleagues noted nearly the same four reference genes as those most used in RT-qPCR studies in general across organisms: beta-actin, GAPDH, beta-tubulin and 18S rRNA, citing papers as early as 2004 [165]. Our examination of 90 RT-qPCR studies, spanning 2001 to 2020, further demonstrates this to be the case for *Aspergillus*. The authors note that as of 2000, beta-actin and GAPDH were used 90% of the time without proper validation [165]. Out of the 30 usages of actin and 10 usages of GAPDH across the 90 studies we examined, actin was used without validation approximately 83% of the time, and GAPDH 60%. Similarly, of the 31 usages of beta-tubulin and 12 usages of 18S rRNA across the 90 studies we examined, beta-tubulin was used without validation approximately 81% of the time, and 18S rRNA, approximately 83%.

Since its publication in 2018, this article by Shakeel and colleagues on insects has been cited 22 times by articles in PubMed. Fourteen of these citing articles are those evaluating candidate reference genes [166,167,168,169,170,171,172,173,174,175,176,177,178,179]. We hope that our critical review will similarly stimulate future research on experimentally validating reference genes for gene expression studies in *Aspergillus* (and in fungi in general) using RT-qPCR. Without experimental validation of reference genes, it can be difficult to interpret the potential contributors to expression differences among strains, genes and treatments. Figure 2.3. below summarises our recommended practice for reference gene selection.

61

Figure 2.3. Recommended checkpoints to use when selecting reference genes.

2.8. References

- 1. Anonymous. Etymologia: Aspergillus. Emerg. Infect. Dis. 2006, 12, 1.
- 2. Ashu, E.E.; Xu, J. Strengthening the One Health Agenda: The Role of Molecular Epidemiology in

Aspergillus Threat Management. Genes 2018, 9, 359.

3. Bennett, J.W. An Overview of the Genus Aspergillus. In Aspergillus: Molecular Biology and

Genomics; Caister Academic Press: Poole, UK, 2010; p. 17.

4. Warris, A.; Verweij, P.E. Clinical implications of environmental sources for Aspergillus. Med.

Mycol. 2005, 43 (Suppl. 1), S59–S65.]

5. Demain, A.L.; Martens, E. Production of valuable compounds by molds and yeasts. *J. Antibiot*. **2017**, *70*, 347–360.

6. Ashu, E.; Forsythe, A.; Vogan, A.A.; Xu, J. Filamentous Fungi in Fermented Foods. In *Fermented Foods: Biochemistry and Biotechnology*; CRC Press: Boca Raton, FL, USA, 2015.

7. Caceres, I.; Khoury, A.A.; Khoury, R.E.; Lorber, S.; Oswald, I.P.; Khoury, A.E.; Atoui, A.; Puel,

O.; Bailly, J.D. Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins 2020, 12, 150.

8. Martinelli, S.D. *Aspergillus nidulans* as an experimental organism. *Prog. Ind. Microbiol.* **1994**, *29*, 33–58.

 Hong, J.S.; Ryu, K.H.; Kwon, S.J.; Kim, J.W.; Kim, K.S.; Park, K.C. Phylogenetics and Gene Structure Dynamics of Polygalacturonase Genes in *Aspergillus* and *Neurospora crassa*. *Plant Pathol. J.* 2013, 29, 234–241.

10. Sugui, J.A.; Kwon-Chung, K.J.; Juvvadi, P.R.; Latge, J.P.; Steinbach, W.J. *Aspergillus fumigatus* and related species. Cold Spring Harb. Perspect. Med. **2014**, *5*, a019786.

Guarro, J.; Xavier, M.O.; Severo, L.C. Differences and similarities amongst pathogenic
 Aspergillus species. In *Aspergillosis: From Diagnosis to Prevention*; Alessandro, C.P., Ed.; Springer:
 Dordrecht, The Netherlands, 2009; p. 25.

12. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. *J. Fungi* **2017**, *3*, 57.

13. Vahedi-Shahandashti, R.; Lass-Florl, C. Novel Antifungal Agents and Their Activity against *Aspergillus* Species. *J. Fungi* **2020**, *6*, 213.

14. Misch, E.A.; Safdar, N. Updated guidelines for the diagnosis and management of aspergillosis. *J. Thorac. Dis.* **2016**, *8*, E1771–E1776.

15. Lestrade, P.P.; Bentvelsen, R.G.; Schauwvlieghe, A.; Schalekamp, S.; van der Velden, W.; Kuiper, E.J.; van Paassen, J.; van der Hoven, B.; van der Lee, H.A.; Melchers, W.J.G.; et al. Voriconazole Resistance and Mortality in Invasive Aspergillosis: A Multicenter Retrospective Cohort Study. *Clin. Infect. Dis.* **2019**, *68*, 1463–1471.

16. Miao, Y.; Li, J.; Xiao, Z.; Shen, Q.; Zhang, R. Characterization and identification of the xylanolytic enzymes from *Aspergillus fumigatus* Z5. *BMC Microbiol.* **2015**, *15*, 126.

17. Dodd, D.; Cann, I.K. Enzymatic deconstruction of xylan for biofuel production. *Glob. Chang.Biol. Bioenergy* 2009, *1*, 2–17.

18. Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real-Time RT-PCR normalisation; strategies and considerations. *Genes Immun.* **2005**, *6*, 279–284.

19. Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. *Clin. Chem.* **2009**, *55*, 611–622.

20. Guenin, S.; Mauriat, M.; Pelloux, J.; van Wuytswinkel, O.; Bellini, C.; Gutierrez, L.

Normalization of qRT-PCR data: The necessity of adopting a systematic, experimental conditionsspecific, validation of references. *J. Exp. Bot.* **2009**, *60*, 487–493.

21. Baltussen, T.J.H.; Coolen, J.P.M.; Zoll, J.; Verweij, P.E.; Melchers, W.J.G. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in *Aspergillus fumigatus* conidia. *Fungal Genet. Biol.* **2018**, *116*, 62–72.

22. Bruns, S.; Seidler, M.; Albrecht, D.; Salvenmoser, S.; Remme, N.; Hertweck, C.; Brakhage, A.A.; Kniemeyer, O.; Muller, F.M. Functional genomic profiling of *Aspergillus fumigatus* biofilm reveals enhanced production of the mycotoxin gliotoxin. *Proteomics* **2010**, *10*, 3097–3107.

23. Perrin, R.M.; Fedorova, N.D.; Bok, J.W.; Cramer, R.A.; Wortman, J.R.; Kim, H.S.; Nierman,

W.C.; Keller, N.P. Transcriptional regulation of chemical diversity in *Aspergillus fumigatus* by LaeA. *PLoS Pathog.* **2007**, *3*, e030050.

24. Ge, Y.; Yu, F.; Tan, Y.; Zhang, X.; Liu, Z. Comparative Transcriptome Sequence Analysis of Sporulation-Related Genes of *Aspergillus cristatus* in Response to Low and High Osmolarity. *Curr. Microbiol.* **2017**, *74*, 806–814.

25. Wada, R.; Maruyama, J.; Yamaguchi, H.; Yamamoto, N.; Wagu, Y.; Paoletti, M.; Archer, D.B.; Dyer, P.S.; Kitamoto, K. Presence and functionality of mating type genes in the supposedly asexual filamentous fungus *Aspergillus oryzae*. *Appl. Environ. Microbiol.* **2012**, *78*, 2819–2829.

26. Kojo, T.; Kadooka, C.; Komohara, M.; Onitsuka, S.; Tanimura, M.; Muroi, Y.; Kurazono, S.;
Shiraishi, Y.; Oda, K.; Iwashita, K.; et al. Characterization of amylolytic enzyme overproducing mutant of *Aspergillus luchuensis* obtained by ion beam mutagenesis. *J. Gen. Appl. Microbiol.* 2018, 63, 339–346.

27. Gautam, P.; Upadhyay, S.K.; Hassan, W.; Madan, T.; Sirdeshmukh, R.; Sundaram, C.S.; Gade,
W.N.; Basir, S.F.; Singh, Y.; Sarma, P.U. Transcriptomic and proteomic profile of *Aspergillus fumigatus* on exposure to artemisinin. *Mycopathologia* 2011, *172*, 331–346.

28. Bai, Y.; Lan, F.; Yang, W.; Zhang, F.; Yang, K.; Li, Z.; Gao, P.; Wang, S. sRNA profiling in *Aspergillus flavus* reveals differentially expressed miRNA-like RNAs response to water activity and temperature. *Fungal Genet. Biol.* **2015**, *81*, 113–119.

29. Chang, P.K.; Scharfenstein, L.L.; Luo, M.; Mahoney, N.; Molyneux, R.J.; Yu, J.; Brown, R.L.;
Campbell, B.C. Loss of msnA, a putative stress regulatory gene, in *Aspergillus parasiticus* and *Aspergillus flavus* increased production of conidia, aflatoxins and kojic acid. *Toxins* 2011, *3*, 82–104.
30. Delomenie, C.; Grentzmann, G.; Oestreicher, N.; Mesnage, R.; Velot, C. Development and
validation of a custom microarray for global transcriptome profiling of the fungus *Aspergillus nidulans*. *Curr. Genet.* 2016, *62*, 897–910.

31. Oosthuizen, J.L.; Gomez, P.; Ruan, J.; Hackett, T.L.; Moore, M.M.; Knight, D.A.; Tebbutt, S.J. Dual organism transcriptomics of airway epithelial cells interacting with conidia of *Aspergillus fumigatus*. *PLoS ONE* **2011**, *6*, e020527.

32. Gerin, D.; de Miccolis Angelini, R.M.; Pollastro, S.; Faretra, F. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in *Aspergillus carbonarius*. *PLoS ONE* **2016**, *11*, e0147089.

33. Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* **2002**, *3*.

34. Wolff, P.B.; Nielsen, M.L.; Slot, J.C.; Andersen, L.N.; Petersen, L.M.; Isbrandt, T.; Holm, D.K.;
Mortensen, U.H.; Nodvig, C.S.; Larsen, T.O.; et al. Acurin A, a novel hybrid compound,
biosynthesized by individually translated PKS- and NRPS-encoding genes in *Aspergillus aculeatus*. *Fungal Genet. Biol.* 2020, *139*, 103378.

35. Tani, S.; Kanamasa, S.; Sumitani, J.; Arai, M.; Kawaguchi, T. XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in *Aspergillus aculeatus*. *Curr. Genet.* **2012**, *58*, 93–104.

Crespo-Sempere, A.; Gil, J.V.; Martinez-Culebras, P.V. Proteome analysis of the fungus
 Aspergillus carbonarius under ochratoxin A producing conditions. *Int. J. Food Microbiol.* 2011, *147*, 162–169.

37. El Khoury, R.; Choque, E.; El Khoury, A.; Snini, S.P.; Cairns, R.; Andriantsiferana, C.; Mathieu,F. OTA Prevention and Detoxification by Actinobacterial Strains and Activated Carbon Fibers:Preliminary Results. *Toxins* 2018, *10*, 137.

38. Wyatt, T.T.; van Leeuwen, M.R.; Wosten, H.A.; Dijksterhuis, J. Mannitol is essential for the development of stress-resistant ascospores in *Neosartorya fischeri* (*Aspergillus fischeri*). *Fungal Genet. Biol.* **2014**, *64*, 11–24.

39. Duran, R.M.; Gregersen, S.; Smith, T.D.; Bhetariya, P.J.; Cary, J.W.; Harris-Coward, P.Y.; Mattison, C.P.; Grimm, C.; Calvo, A.M. The role of *Aspergillus flavus* veA in the production of extracellular proteins during growth on starch substrates. *Appl. Microbiol. Biotechnol.* **2014**, *98*, 5081–5094.

40. Liang, D.; Xing, F.; Selvaraj, J.N.; Liu, X.; Wang, L.; Hua, H.; Zhou, L.; Zhao, Y.; Wang, Y.; Liu,
Y. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene
Expression and Aflatoxin B1 Biosynthesis in *Aspergillus flavus*. J. Food Sci. 2015, 80, M2917–
M2924.

41. Lappa, I.K.; Dionysopoulou, A.M.; Paramithiotis, S.; Georgiadou, M.; Drosinos, E.H. Dual Transcriptional Profile of *Aspergillus flavus* during Co-Culture with *Listeria monocytogenes* and Aflatoxin B1 Production: A Pathogen-Pathogen Interaction. *Pathogens* **2019**, *8*, 198.

42. Verheecke, C.; Liboz, T.; Anson, P.; Zhu, Y.; Mathieu, F. *Streptomyces-Aspergillus flavus* interactions: Impact on aflatoxin B accumulation. *Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess.* **2015**, *32*, 572–576.

43. Han, X.; Qiu, M.; Wang, B.; Yin, W.B.; Nie, X.; Qin, Q.; Ren, S.; Yang, K.; Zhang, F.; Zhuang,
Z.; et al. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in *Aspergillus flavus. Front. Microbiol.* 2016, 7, 1794.

44. Deabes, M.M.; Khalil, W.K.B.; Attallah, A.G.; El-Desouky, T.A.; Naguib, K.M. Impact of Silver Nanoparticles on Gene Expression in *Aspergillus Flavus* Producer Aflatoxin B1. *Open Access Maced. J. Med. Sci.* 2018, *6*, 600–605.

45. Yuan, J.; Chen, Z.; Guo, Z.; Li, D.; Zhang, F.; Shen, J.; Zhang, Y.; Wang, S.; Zhuang, Z. PbsB Regulates Morphogenesis, Aflatoxin B1 Biosynthesis, and Pathogenicity of *Aspergillus flavus*. *Front*. *Cell Infect. Microbiol.* **2018**, *8*, 162.

46. Mayer, Z.; Farber, P.; Geisen, R. Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA. *Appl. Environ. Microbiol.* **2003**, *69*, 1154–1158.

47. Abdel-Hadi, A.; Carter, D.; Magan, N. Temporal monitoring of the nor-1 (aflD) gene of *Aspergillus flavus* in relation to aflatoxin B (1) production during storage of peanuts under different water activity levels. *J. Appl. Microbiol.* **2010**, *109*, 1914–1922.

48. Jamali, M.; Karimipour, M.; Shams-Ghahfarokhi, M.; Amani, A.; Razzaghi-Abyaneh, M. Expression of aflatoxin genes aflO (omtB) and aflQ (ordA) differentiates levels of aflatoxin production by *Aspergillus flavus* strains from soils of pistachio orchards. *Res. Microbiol.* **2013**, *164*, 293–299.

49. Mahmoud, M.A. Detection of *Aspergillus flavus* in stored peanuts using real-time PCR and the expression of aflatoxin genes in toxigenic and atoxigenic *A. flavus* isolates. *Foodborne Pathog. Dis.*2015, *12*, 289–296.

50. Yin, H.B.; Chen, C.H.; Kollanoor-Johny, A.; Darre, M.J.; Venkitanarayanan, K. Controlling *Aspergillus flavus* and *Aspergillus parasiticus* growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. *Poult. Sci.* **2015**, *94*, 2183–2190.

51. Fattahi, A.; Zaini, F.; Kordbacheh, P.; Rezaie, S.; Safara, M.; Fateh, R.; Farahyar, S.; Kanani, A.; Heidari, M. Evaluation of mRNA Expression Levels of cyp51A and mdr1, Candidate Genes for Voriconazole Resistance in *Aspergillus flavus*. *Jundishapur J. Microbiol*. **2015**, *8*, e26990.

52. Caceres, I.; El Khoury, R.; Medina, A.; Lippi, Y.; Naylies, C.; Atoui, A.; El Khoury, A.; Oswald,

I.P.; Bailly, J.D.; Puel, O. Deciphering the Anti-Aflatoxinogenic Properties of Eugenol Using a Large-Scale q-PCR Approach. *Toxins* **2016**, *8*, 123.

53. Baquiao, A.C.; Rodriges, A.G.; Lopes, E.L.; Tralamazza, S.M.; Zorzete, P.; Correa, B. Expression of Genes by Aflatoxigenic and Nonaflatoxigenic Strains of *Aspergillus flavus* Isolated from Brazil Nuts. *Foodborne Pathog. Dis.* **2016**, *13*, 434–440.

54. Caceres, I.; Snini, S.P.; Puel, O.; Mathieu, F. Streptomyces roseolus, A Promising Biocontrol Agent Against *Aspergillus flavus*, the Main Aflatoxin B (1) Producer. *Toxins* **2018**, *10*, 442.

55. Devi, M.S.; Sashidhar, R.B. Antiaflatoxigenic effects of selected antifungal peptides. *Peptides***2019**, *115*, 15–26.

56. Zhao, Q.; Qiu, Y.; Wang, X.; Gu, Y.; Zhao, Y.; Wang, Y.; Yue, T.; Yuan, Y. Inhibitory Effects of *Eurotium cristatum* on Growth and Aflatoxin B1 Biosynthesis in *Aspergillus flavus*. *Front. Microbiol.*2020, *11*, 921.

57. Passone, M.A.; Rosso, L.C.; Etcheverry, M. Influence of sub-lethal antioxidant doses, water potential and temperature on growth, sclerotia, aflatoxins and aflD (=nor-1) expression by *Aspergillus flavus* RCP08108. *Microbiol. Res.* **2012**, *167*, 470–477.

58. Lang-Yona, N.; Levin, Y.; Dannemiller, K.C.; Yarden, O.; Peccia, J.; Rudich, Y. Changes in atmospheric CO2 influence the allergenicity of *Aspergillus fumigatus*. *Glob. Chang. Biol.* **2013**, *19*, 2381–2388.

59. Jia, X.; Zhang, X.; Hu, Y.; Hu, M.; Tian, S.; Han, X.; Sun, Y.; Han, L. Role of actin depolymerizing factor cofilin in *Aspergillus fumigatus* oxidative stress response and pathogenesis. *Curr. Genet.* **2018**, *64*, 619–634.

60. Blosser, S.J.; Cramer, R.A. SREBP-dependent triazole susceptibility in *Aspergillus fumigatus* is mediated through direct transcriptional regulation of erg11A (cyp51A). *Antimicrob. Agents Chemother.* **2012**, *56*, 248–257.

61. Nazemi, L.; Hashemi, S.J.; Daie Ghazvini, R.; Saeedi, M.; Khodavaisy, S.; Barac, A.; Modiri, M.;
Akbari Dana, M.; Zare Shahrabadi, Z.; Rezaie, S. Investigation of cgrA and cyp51A gene alternations in *Aspergillus fumigatus* strains exposed to kombucha fermented tea. *Curr. Med. Mycol.* 2019, *5*, 36–42.

62. Nascimento, A.M.; Goldman, G.H.; Park, S.; Marras, S.A.; Delmas, G.; Oza, U.; Lolans, K.;

Dudley, M.N.; Mann, P.A.; Perlin, D.S. Multiple resistance mechanisms among *Aspergillus fumigatus* mutants with high-level resistance to itraconazole. *Antimicrob. Agents Chemother*. **2003**, *47*, 1719–1726.

63. Da Silva Ferreira, M.E.; Malavazi, I.; Savoldi, M.; Brakhage, A.A.; Goldman, M.H.; Kim, H.S.; Nierman, W.C.; Goldman, G.H. Transcriptome analysis of *Aspergillus fumigatus* exposed to voriconazole. *Curr. Genet.* **2006**, *50*, 32–44.

64. Power, T.; Ortoneda, M.; Morrissey, J.P.; Dobson, A.D. Differential expression of genes involved in iron metabolism in *Aspergillus fumigatus*. *Int. Microbiol.* **2006**, *9*, 281–287.

65. Warwas, M.L.; Yeung, J.H.; Indurugalla, D.; Mooers, A.O.; Bennet, A.J.; Moore, M.M. Cloning and characterization of a sialidase from the filamentous fungus, *Aspergillus fumigatus*. *Glycoconj. J.* **2010**, *27*, 533–548.

66. Dinamarco, T.M.; Freitas, F.Z.; Almeida, R.S.; Brown, N.A.; dos Reis, T.F.; Ramalho, L.N.;
Savoldi, M.; Goldman, M.H.; Bertolini, M.C.; Goldman, G.H. Functional characterization of an *Aspergillus fumigatus* calcium transporter (PmcA) that is essential for fungal infection. *PLoS ONE*2012, 7, e37591.

67. Raggam, R.B.; Salzer, H.J.; Marth, E.; Heiling, B.; Paulitsch, A.H.; Buzina, W. Molecular detection and characterisation of fungal heat shock protein 60. *Mycoses* 2011, *54*, e394–e399.
68. Blum, G.; Kainzner, B.; Grif, K.; Dietrich, H.; Zeiger, B.; Sonnweber, T.; Lass-Florl, C. In vitro and in vivo role of heat shock protein 90 in Amphotericin B resistance of *Aspergillus terreus*. *Clin. Microbiol. Infect.* 2013, *19*, 50–55.

69. Fraczek, M.G.; Bromley, M.; Buied, A.; Moore, C.B.; Rajendran, R.; Rautemaa, R.; Ramage, G.; Denning, D.W.; Bowyer, P. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in *Aspergillus fumigatus*. *J. Antimicrob. Chemother.* **2013**, *68*, 1486–1496.

70. Kale, S.D.; Ayubi, T.; Chung, D.; Tubau-Juni, N.; Leber, A.; Dang, H.X.; Karyala, S.;

Hontecillas, R.; Lawrence, C.B.; Cramer, R.A.; et al. Modulation of Immune Signaling and

Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. *Sci. Rep.* **2017**, *7*, 17096.

71. Da Silva Ferreira, M.E.; Capellaro, J.L.; dos Reis Marques, E.; Malavazi, I.; Perlin, D.; Park, S.; Anderson, J.B.; Colombo, A.L.; Arthington-Skaggs, B.A.; Goldman, M.H.; et al. In vitro evolution of itraconazole resistance in *Aspergillus fumigatus* involves multiple mechanisms of resistance. *Antimicrob. Agents Chemother.* **2004**, *48*, 4405–4413.

72. Kurucz, V.; Kruger, T.; Antal, K.; Dietl, A.M.; Haas, H.; Pocsi, I.; Kniemeyer, O.; Emri, T. Additional oxidative stress reroutes the global response of *Aspergillus fumigatus* to iron depletion. *BMC Genom.* **2018**, *19*, 357.

73. Gravelat, F.N.; Doedt, T.; Chiang, L.Y.; Liu, H.; Filler, S.G.; Patterson, T.F.; Sheppard, D.C. In vivo analysis of *Aspergillus fumigatus* developmental gene expression determined by real-time reverse transcription-PCR. *Infect. Immun.* **2008**, *76*, 3632–3639.

74. Jimenez-Ortigosa, C.; Aimanianda, V.; Muszkieta, L.; Mouyna, I.; Alsteens, D.; Pire, S.; Beau, R.; Krappmann, S.; Beauvais, A.; Dufrene, Y.F.; et al. Chitin synthases with a myosin motor-like domain control the resistance of *Aspergillus fumigatus* to echinocandins. *Antimicrob. Agents Chemother.* **2012**, *56*, 6121–6131.

75. Kadooka, C.; Nakamura, E.; Mori, K.; Okutsu, K.; Yoshizaki, Y.; Takamine, K.; Goto, M.;
Tamaki, H.; Futagami, T. LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in *Aspergillus luchuensis* mut. kawachii. *Appl. Environ. Microbiol.*2020, 86.

76. Trevisan, G.L.; Oliveira, E.H.; Peres, N.T.; Cruz, A.H.; Martinez-Rossi, N.M.; Rossi, A.
Transcription of *Aspergillus nidulans* pacC is modulated by alternative RNA splicing of palB. *FEBS Lett.* 2011, 585, 3442–3445.

77. Gao, L.; Song, Y.; Cao, J.; Wang, S.; Wei, H.; Jiang, H.; Lu, L. Osmotic stabilizer-coupled suppression of NDR defects is dependent on the calcium-calcineurin signaling cascade in *Aspergillus nidulans*. *Cell. Signal.* **2011**, *23*, 1750–1757.

78. Alam, M.K.; El-Ganiny, A.M.; Afroz, S.; Sanders, D.A.; Liu, J.; Kaminskyj, S.G. *Aspergillus nidulans* galactofuranose biosynthesis affects antifungal drug sensitivity. *Fungal Genet. Biol.* 2012, 49, 1033–1043.

79. Liu, F.F.; Pu, L.; Zheng, Q.Q.; Zhang, Y.W.; Gao, R.S.; Xu, X.S.; Zhang, S.Z.; Lu, L. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli. *Fungal Genet. Biol.* **2015**, *81*, 182–190.

80. Semighini, C.P.; Marins, M.; Goldman, M.H.; Goldman, G.H. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in *Aspergillus nidulans* by real-time reverse transcription-PCR assay. *Appl. Environ. Microbiol.* **2002**, *68*, 1351–1357.

81. Georgakopoulos, P.; Lockington, R.A.; Kelly, J.M. SAGA complex components and acetate repression in *Aspergillus nidulans*. *G3* **2012**, *2*, 1357–1367.

82. Rohrig, J.; Kastner, C.; Fischer, R. Light inhibits spore germination through phytochrome in *Aspergillus nidulans. Curr. Genet.* **2013**, *59*, 55–62.

83. Hunter, A.J.; Morris, T.A.; Jin, B.; Saint, C.P.; Kelly, J.M. Deletion of creB in *Aspergillus oryzae* increases secreted hydrolytic enzyme activity. *Appl. Environ. Microbiol.* **2013**, *79*, 5480–5487.

84. Szilagyi, M.; Miskei, M.; Karanyi, Z.; Lenkey, B.; Pocsi, I.; Emri, T. Transcriptome changes initiated by carbon starvation in *Aspergillus nidulans*. *Microbiology* **2013**, *159*, 176–190.

85. Xiao, L.; Sun, Q.; Lian, B. A Global View of Gene Expression of Aspergillus nidulans on

Responding to the Deficiency in Soluble Potassium. Curr. Microbiol. 2016, 72, 410-419.

86. Guerriero, G.; Silvestrini, L.; Obersriebnig, M.; Hausman, J.F.; Strauss, J.; Ezcurra, I. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in

Aspergillus nidulans. Int. J. Mol. Sci. 2016, 17, 1031.

87. Cui, S.; Wang, T.; Hu, H.; Liu, L.; Song, A.; Chen, H. Investigating the expression of F10 and G11 xylanases in *Aspergillus niger* A09 with qPCR. *Can. J. Microbiol.* **2016**, *62*, 744–752.

88. Chutrakul, C.; Panchanawaporn, S.; Jeennor, S.; Anantayanon, J.; Vorapreeda, T.; Vichai, V.;
Laoteng, K. Functional Characterization of Novel U6 RNA Polymerase III Promoters: Their
Implication for CRISPR-Cas9-Mediated Gene Editing in *Aspergillus oryzae. Curr. Microbiol.* 2019, 76, 1443–1451.

89. Svanstrom, A.; van Leeuwen, M.R.; Dijksterhuis, J.; Melin, P. Trehalose synthesis in *Aspergillus niger*: Characterization of six homologous genes, all with conserved orthologs in related species. *BMC Microbiol.* **2014**, *14*, 90.

90. Hou, L.; Liu, L.; Zhang, H.; Zhang, L.; Zhang, L.; Zhang, J.; Gao, Q.; Wang, D. Functional analysis of the mitochondrial alternative oxidase gene (aox1) from *Aspergillus niger* CGMCC 10142 and its effects on citric acid production. *Appl. Microbiol. Biotechnol.* **2018**, *102*, 7981–7995.

91. Arentshorst, M.; de Lange, D.; Park, J.; Lagendijk, E.L.; Alazi, E.; van den Hondel, C.; Ram, A.F.J. Functional analysis of three putative galactofuranosyltransferases with redundant functions in galactofuranosylation in *Aspergillus niger*. *Arch. Microbiol.* **2020**, *202*, 197–203.

92. Lv, Y.; Xiao, J.; Pan, L. Type III polyketide synthase is involved in the biosynthesis of protocatechuic acid in *Aspergillus niger*. *Biotechnol. Lett.* **2014**, *36*, 2303–2310.

93. Khosravi, C.; Kun, R.S.; Visser, J.; Aguilar-Pontes, M.V.; de Vries, R.P.; Battaglia, E. In vivo functional analysis of L-rhamnose metabolic pathway in *Aspergillus niger*: A tool to identify the potential inducer of RhaR. *BMC Microbiol.* **2017**, *17*, 214.

94. Omony, J.; Mach-Aigner, A.R.; van Straten, G.; van Boxtel, A.J. Quantitative modeling and analytic assessment of the transcription dynamics of the XlnR regulon in *Aspergillus niger*. *BMC Syst. Biol.* **2016**, *10*, 13.

95. Yunes, N.B.S.; Oliveira, R.C.; Reis, T.A.; Baquiao, A.C.; Rocha, L.O.; Correa, B. Effect of temperature on growth, gene expression, and aflatoxin production by *Aspergillus nomius* isolated from Brazil nuts. *Mycotoxin Res.* **2019**.

96. Fernandez, E.Q.; Moyer, D.L.; Maiyuran, S.; Labaro, A.; Brody, H. Vector-Initiated transitive
RNA interference in the filamentous fungus *Aspergillus oryzae*. *Fungal Genet. Biol.* 2012, *49*, 294–301.

97. Tsujii, M.; Okuda, S.; Ishi, K.; Madokoro, K.; Takeuchi, M.; Yamagata, Y. A long natural-antisense RNA is accumulated in the conidia of *Aspergillus oryzae*. *Biosci. Biotechnol. Biochem*.
2016, 80, 386–398.

98. Tamano, K.; Bruno, K.S.; Karagiosis, S.A.; Culley, D.E.; Deng, S.; Collett, J.R.; Umemura, M.;

Koike, H.; Baker, S.E.; Machida, M. Increased production of fatty acids and triglycerides in*Aspergillus oryzae* by enhancing expressions of fatty acid synthesis-related genes. *Appl. Microbiol.Biotechnol.* 2013, 97, 269–281.

99. Kobayashi, A.; Sano, M.; Oda, K.; Hisada, H.; Hata, Y.; Ohashi, S. The glucoamylase-encoding gene (glaB) is expressed in solid-state culture with a low water content. *Biosci. Biotechnol. Biochem.*2007, *71*, 1797–1799.

100. Oda, K.; Kobayashi, A.; Ohashi, S.; Sano, M. *Aspergillus oryzae* laeA regulates kojic acid synthesis genes. *Biosci. Biotechnol. Biochem.* **2011**, *75*, 1832–1834.

101. Jin, F.J.; Han, P.; Zhuang, M.; Zhang, Z.M.; Jin, L.; Koyama, Y. Comparative proteomic analysis: ScIR is importantly involved in carbohydrate metabolism in *Aspergillus oryzae*. *Appl. Microbiol. Biotechnol.* **2018**, *102*, 319–332.

102. Chang, P.K. Lack of interaction between AFLR and AFLJ contributes to nonaflatoxigenicity of *Aspergillus sojae*. J. Biotechnol. **2004**, 107, 245–253.

103. Kondo, T.; Sakurada, M.; Okamoto, S.; Ono, M.; Tsukigi, H.; Suzuki, A.; Nagasawa, H.;
Sakuda, S. Effects of aflastatin A, an inhibitor of aflatoxin production, on aflatoxin biosynthetic
pathway and glucose metabolism in *Aspergillus parasiticus*. *J. Antibiot*. 2001, *54*, 650–657.
104. Akbari Dana, M.; Kordbacheh, P.; Daei Ghazvini, R.; Moazeni, M.; Nazemi, L.; Rezaie, S.
Inhibitory effect of vitamin C on *Aspergillus parasiticus* growth and aflatoxin gene expression. *Curr. Med. Mycol.* 2018, *4*, 10–14.

105. Ghanbari, R.; Rezaie, S.; Noorbakhsh, F.; Khaniki, G.J.; Soleimani, M.; Aghaee, E.M.
Biocontrol effect of *Kluyveromyces lactis* on aflatoxin expression and production in *Aspergillus parasiticus*. *FEMS Microbiol. Lett.* **2019**, *366*.

106. Lozano-Ojalvo, D.; Rodriguez, A.; Bernaldez, V.; Cordoba, J.J.; Rodriguez, M. Influence of temperature and substrate conditions on the omt-1 gene expression of *Aspergillus parasiticus* in relation to its aflatoxin production. *Int. J. Food Microbiol.* **2013**, *166*, 263–269.

107. Sorrentino, F.; Roy, I.; Keshavarz, T. Impact of linoleic acid supplementation on lovastatin production in *Aspergillus terreus* cultures. *Appl. Microbiol. Biotechnol.* **2010**, *88*, 65–73.

108. El-Sayed, A.S.A.; Mohamed, N.Z.; Safan, S.; Yassin, M.A.; Shaban, L.; Shindia, A.A.; Shad Ali, G.; Sitohy, M.Z. Restoring the Taxol biosynthetic machinery of *Aspergillus terreus* by Podocarpus gracilior Pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily. *Sci. Rep.* 2019, *9*, 11534.

109. Gil-Serna, J.; Patino, B.; Cortes, L.; Gonzalez-Jaen, M.T.; Vazquez, C. Mechanisms involved in reduction of ochratoxin A produced by *Aspergillus westerdijkiae* using *Debaryomyces hansenii* CYC 1244. *Int. J. Food Microbiol.* **2011**, *151*, 113–118.

110. Sartori, D.; Massi, F.P.; Ferranti, L.S.; Fungaro, M.H. Identification of Genes Differentially
Expressed Between Ochratoxin-Producing and Non-Producing Strains of *Aspergillus westerdijkiae*. *Indian J. Microbiol.* 2014, *54*, 41–45.

111. Suleman, E.; Somai, B.M. Validation of hisH4 and cox5 reference genes for RT-qPCR analysis of gene expression in *Aspergillus flavus* under aflatoxin conducive and non-conducive conditions. *Microbiol. Res.* **2012**, *167*, 487–492.

112. Oakley, B.R. Tubulins in Aspergillus nidulans. Fungal Genet. Biol. 2004, 41, 420-427.

113. Begerow, D.; John, B.; Oberwinkler, F. Evolutionary relationships among beta-tubulin gene sequences of basidiomycetous fungi. *Mycol. Res.* **2004**, *108*, 1257–1263.

114. Msiska, Z.; Morton, J.B. Isolation and sequence analysis of a beta-tubulin gene from arbuscular mycorrhizal fungi. Mycorrhiza **2009**, *19*, 501–513.

115. Zhao, Z.; Liu, H.; Luo, Y.; Zhou, S.; An, L.; Wang, C.; Jin, Q.; Zhou, M.; Xu, J.R. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. *Sci. Rep.* **2014**, *4*, 6746.

116. Oakley, B.R.; Morris, N.R. A beta-tubulin mutation in *Aspergillus nidulans* that blocks microtubule function without blocking assembly. *Cell* **1981**, *24*, 837–845.

117. Lopez de Haro, M.S.; Alvarez, L.; Nieto, A. Testosterone induces the expression of the uteroglobin gene in rabbit epididymis. *Biochem. J.* **1988**, *250*, 647–651.

118. Shigemasa, K.; Tanimoto, H.; Sakata, K.; Nagai, N.; Parmley, T.H.; Ohama, K.; O'Brien, T.J. Induction of matrix metalloprotease-7 is common in mucinous ovarian tumors including early stage disease. *Med. Oncol.* **2000**, *17*, 52–58.

119. Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Res.* 2004, *64*, 5245–5250.
120. Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, J.E.; Woloshuk, C.P.; Bennett, J.W. Clustered pathway genes in aflatoxin biosynthesis. *Appl. Environ. Microbiol.* 2004, *70*, 1253–1262.

121. Duran, R.M.; Cary, J.W.; Calvo, A.M. Production of cyclopiazonic acid, aflatrem, and aflatoxin by *Aspergillus flavus* is regulated by veA, a gene necessary for sclerotial formation. *Appl. Microbiol. Biotechnol.* **2007**, *73*, 1158–1168.

122. Zhuang, Z.; Lohmar, J.M.; Satterlee, T.; Cary, J.W.; Calvo, A.M. The Master Transcription Factor mtfA Governs Aflatoxin Production, Morphological Development and Pathogenicity in the Fungus *Aspergillus flavus*. *Toxins* **2016**, *8*, 29. 123. Baidya, S.; Duran, R.M.; Lohmar, J.M.; Harris-Coward, P.Y.; Cary, J.W.; Hong, S.Y.; Roze,

L.V.; Linz, J.E.; Calvo, A.M. VeA is associated with the response to oxidative stress in the aflatoxin producer *Aspergillus flavus*. *Eukaryot*. *Cell* **2014**, *13*, 1095–1103.

124. Chang, P.K.; Yu, J.; Yu, J.H. AflT, a MFS transporter-encoding gene located in the aflatoxin gene cluster, does not have a significant role in aflatoxin secretion. *Fungal Genet. Biol.* **2004**, *41*, 911–920.

125. Degola, F.; Berni, E.; Dall'Asta, C.; Spotti, E.; Marchelli, R.; Ferrero, I.; Restivo, F.M. A multiplex RT-PCR approach to detect aflatoxigenic strains of *Aspergillus flavus*. J. Appl. Microbiol.
2007, 103, 409–417.

126. Howard, S.J.; Pasqualotto, A.C.; Denning, D.W. Azole resistance in allergic bronchopulmonary aspergillosis and *Aspergillus* bronchitis. *Clin. Microbiol. Infect.* **2010**, *16*, 683–688.

127. Mellado, E.; Alcazar-Fuoli, L.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. Role of *Aspergillus lentulus* 14-alpha sterol demethylase (Cyp51A) in azole drug susceptibility. *Antimicrob. Agents* Chemother. **2011**, *55*, 5459–5468.

128. Krishnan-Natesan, S.; Chandrasekar, P.H.; Alangaden, G.J.; Manavathu, E.K. Molecular characterisation of cyp51A and cyp51B genes coding for P450 14alpha-lanosterol demethylases A (CYP51Ap) and B (CYP51Bp) from voriconazole-resistant laboratory isolates of *Aspergillus flavus*. *Int. J. Antimicrob. Agents* **2008**, *32*, 519–524.

129. Liu, W.; Sun, Y.; Chen, W.; Liu, W.; Wan, Z.; Bu, D.; Li, R. The T788G mutation in the cyp51C gene confers voriconazole resistance in *Aspergillus flavus* causing aspergillosis. *Antimicrob. Agents Chemother.* **2012**, *56*, 2598–2603.

130. Dominguez, R.; Holmes, K.C. Actin structure and function. *Annu. Rev. Biophys.* 2011, 40, 169–186.

131. Levi, A.; Eldridge, J.D.; Paterson, B.M. Molecular cloning of a gene sequence regulated by nerve growth factor. *Science* **1985**, *229*, 393–395.

132. Shang, E.S.; Champion, C.I.; Wu, X.Y.; Skare, J.T.; Blanco, D.R.; Miller, J.N.; Lovett, M.A.
Comparison of protection in rabbits against host-adapted and cultivated *Borrelia burgdorferi*following infection-derived immunity or immunization with outer membrane vesicles or outer surface
protein A. *Infect. Immun.* 2000, *68*, 4189–4199.

133. Humphries, S.E.; Whittall, R.; Minty, A.; Buckingham, M.; Williamson, R. There are

approximately 20 actin gene in the human genome. Nucleic Acids Res. 1981, 9, 4895–4908.

134. Cox, G.M.; Rude, T.H.; Dykstra, C.C.; Perfect, J.R. The actin gene from Cryptococcus

neoformans: Structure and phylogenetic analysis. J. Med. Vet. Mycol. 1995, 33, 261-266.

135. Fidel, S.; Doonan, J.H.; Morris, N.R. *Aspergillus nidulans* contains a single actin gene which has unique intron locations and encodes a gamma-actin. *Gene* **1988**, *70*, 283–293.

136. Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. *BMC Bioinform*. 2012, *13*, 134.
137. Wang, Y.; Barbacioru, C.; Hyland, F.; Xiao, W.; Hunkapiller, K.L.; Blake, J.; Chan, F.; Gonzalez, C.; Zhang, L.; Samaha, R.R. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. *BMC Genom*. 2006, *7*, 59.
138. Barrios-Gonzalez, J.; Miranda, R.U. Biotechnological production and applications of statins.

Appl. Microbiol. Biotechnol. 2010, 85, 869–883.

139. Kennedy, J.; Auclair, K.; Kendrew, S.G.; Park, C.; Vederas, J.C.; Hutchinson, C.R. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. *Science* **1999**, 284, 1368–1372.

140. Sakuda, S.; Ikeda, H.; Nakamura, T.; Kawachi, R.; Kondo, T.; Ono, M.; Sakurada, M.; Inagaki,

H.; Ito, R.; Nagasawa, H. Blasticidin A derivatives with highly specific inhibitory activity toward aflatoxin production in *Aspergillus parasiticus*. *J. Antibiot*. **2000**, *53*, 1378–1384.

141. Ono, M.; Sakuda, S.; Suzuki, A.; Isogai, A. Aflastatin A, a novel inhibitor of aflatoxin production by aflatoxigenic fungi. *J. Antibiot.* **1997**, *50*, 111–118.

142. Lockington, R.A.; Sealy-Lewis, H.M.; Scazzocchio, C.; Davies, R.W. Cloning and characterization of the ethanol utilization regulon in *Aspergillus nidulans*. *Gene* 1985, *33*, 137–149.
143. Sandeman, R.A.; Hynes, M.J. Isolation of the facA (acetyl-coenzyme A synthetase) and acuE (malate synthase) genes of *Aspergillus nidulans*. *Mol. Gen. Genet*. 1989, *218*, 87–92.

144. Reiber, K.; Reeves, E.P.; Neville, C.M.; Winkler, R.; Gebhardt, P.; Kavanagh, K.; Doyle, S. The expression of selected non-ribosomal peptide synthetases in *Aspergillus fumigatus* is controlled by the availability of free iron. *FEMS Microbiol. Lett.* **2005**, *248*, 83–91.

145. Herrera, M.L.; Vallor, A.C.; Gelfond, J.A.; Patterson, T.F.; Wickes, B.L. Strain-Dependent variation in 18S ribosomal DNA Copy numbers in *Aspergillus fumigatus*. J. Clin. Microbiol. 2009, 47, 1325–1332.

146. Guoth, M.; Murgia, A.; Smith, R.M.; Prystowsky, M.B.; Cooke, N.E.; Haddad, J.G. Cell surface vitamin D-binding protein (GC-globulin) is acquired from plasma. *Endocrinology* **1990**, *127*, 2313–2321.

147. Gerard, C.J.; Andrejka, L.M.; Macina, R.A. Mitochondrial ATP synthase 6 as an endogenous control in the quantitative RT-PCR analysis of clinical cancer samples. *Mol. Diagn.* 2000, *5*, 39–46.
148. Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. *Clin. Exp. Pharmacol. Physiol.* 2012, *39*, 674–679.

149. Mitsuzawa, H.; Kimura, M.; Kanda, E.; Ishihama, A. Glyceraldehyde-3-phosphate
dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7 subunit. *FEBS Lett.* 2005, *579*, 48–52.

150. Lee, M.N.; Ha, S.H.; Kim, J.; Koh, A.; Lee, C.S.; Kim, J.H.; Jeon, H.; Kim, D.H.; Suh, P.G.; Ryu, S.H. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. *Mol. Cell. Biol.* **2009**, *29*, 3991–4001.

151. Tajima, H.; Tsuchiya, K.; Yamada, M.; Kondo, K.; Katsube, N.; Ishitani, R. Over-Expression of GAPDH induces apoptosis in COS-7 cells transfected with cloned GAPDH cDNAs. *Neuroreport* **1999**, *10*, 2029–2033.

152. Oikarinen, A.; Makela, J.; Vuorio, T.; Vuorio, E. Comparison on collagen gene expression in the developing chick embryo tendon and heart. Tissue and development time-dependent action of dexamethasone. Biochim. Biophys. Acta 1991, 1089, 40–46. [Google Scholar] [CrossRef]
153. Robbins, M.; McKinney, M. Transcriptional regulation of neuromodulin (GAP-43) in mouse neuroblastoma clone N1E-115 as evaluated by the RT/PCR method. *Brain Res. Mol. Brain Res.* 1992, *13*, 83–92.

154. De Groot, P.W.; Brandt, B.W.; Horiuchi, H.; Ram, A.F.; de Koster, C.G.; Klis, F.M.
Comprehensive genomic analysis of cell wall genes in *Aspergillus nidulans*. *Fungal Genet. Biol.*2009, *46* (Suppl. 1), S72–S81.

155. Teepe, A.G.; Loprete, D.M.; He, Z.; Hoggard, T.A.; Hill, T.W. The protein kinase C orthologue PkcA plays a role in cell wall integrity and polarized growth in *Aspergillus nidulans*. *Fungal Genet*. *Biol.* **2007**, *44*, 554–562.

156. Futagami, T.; Nakao, S.; Kido, Y.; Oka, T.; Kajiwara, Y.; Takashita, H.; Omori, T.; Furukawa,

K.; Goto, M. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in *Aspergillus nidulans*. *Eukaryot*. *Cell* **2011**, *10*, 1504–1515.

157. Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-Based tool using pair-wise correlations. *Biotechnol. Lett.* **2004**, *26*, 509–515.

158. Mach-Aigner, A.R.; Omony, J.; Jovanovic, B.; van Boxtel, A.J.; de Graaff, L.H. d-Xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in *Aspergillus niger. Appl. Environ. Microbiol.* **2012**, *78*, 3145–3155.

159. Omony, J.; de Graaff, L.H.; van Straten, G.; van Boxtel, A.J. Modeling and analysis of the dynamic behavior of the XlnR regulon in *Aspergillus niger. BMC Syst. Biol.* 2011, *5* (Suppl. 1), S14.
160. Bohle, K.; Jungebloud, A.; Gocke, Y.; Dalpiaz, A.; Cordes, C.; Horn, H.; Hempel, D.C.
Selection of reference genes for normalisation of specific gene quantification data of *Aspergillus niger. J. Biotechnol.* 2007, *132*, 353–358.

161. Ogasawara, H.; Obata, H.; Hata, Y.; Takahashi, S.; Gomi, K. Crawler, a novel Tc1/mariner-type transposable element in *Aspergillus oryzae* transposes under stress conditions. *Fungal Genet. Biol.*2009, 46, 441–449.

162. Taylor, S.; Wakem, M.; Dijkman, G.; Alsarraj, M.; Nguyen, M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. *Methods* 2010, *50*, S1–S5.
163. Setiawan, A.N.; Lokman, P.M. The use of reference gene selection programs to study the silvering transformation in a freshwater eel Anguilla australis: A cautionary tale. *BMC Mol. Biol.* 2010, *11*, 75.

164. Das, P.; Pandey, P.; Harishankar, A.; Chandy, M.; Bhattacharya, S.; Chakrabarti, A.

Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important *Aspergillus* species. *Indian J. Med. Microbiol.* **2017**, *35*, 381–388. 165. Shakeel, M.; Rodriguez, A.; Tahir, U.B.; Jin, F. Gene expression studies of reference genes for quantitative real-time PCR: An overview in insects. *Biotechnol. Lett.* **2018**, *40*, 227–236. 166. Xie, M.; Zhong, Y.; Lin, L.; Zhang, G.; Su, W.; Ni, W.; Qu, M.; Chen, H. Evaluation of reference genes for quantitative real-time PCR normalization in the scarab beetle *Holotrichia oblita*.

PLoS ONE 2020, 15, e0240972.

167. Deng, Y.; Zhao, H.; Yang, S.; Zhang, L.; Zhang, L.; Hou, C. Screening and Validation ofReference Genes for RT-qPCR Under Different Honey Bee Viral Infections and dsRNA Treatment.*Front. Microbiol.* 2020, *11*, 1715.

168. Wang, Z.; Meng, Q.; Zhu, X.; Sun, S.; Liu, A.; Gao, S.; Gou, Y. Identification and Evaluation of Reference Genes for Normalization of Gene Expression in Developmental Stages, Sexes, and Tissues of *Diaphania caesalis (Lepidoptera, Pyralidae). J. Insect Sci.* **2020**, *20*.

169. Wang, X.; Kong, X.; Liu, S.; Huang, H.; Chen, Z.; Xu, Y. Selection of Reference Genes for Quantitative Real-Time PCR in *Chrysoperla nipponensis (Neuroptera: Chrysopidae)* Under Tissues in Reproduction and Diapause. *J. Insect Sci.* **2020**, *20*.

170. Zhang, Y.; Chen, J.; Chen, G.; Ma, C.; Chen, H.; Gao, X.; Tian, Z.; Cui, S.; Tian, Z.; Guo, J.; et al. Identification and Validation of Reference Genes for Quantitative Gene Expression Analysis in *Ophraella communa. Front. Physiol.* **2020**, *11*, 355.

171. Xu, W.; Dong, Y.; Yu, Y.; Xing, Y.; Li, X.; Zhang, X.; Hou, X.; Sun, X. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plants under differential biotic stresses. *Sci. Rep.* **2020**, *10*, 2429.

172. Gao, P.; Wang, J.; Wen, J. Selection of reference genes for tissue/organ samples of adults of *Eucryptorrhynchus scrobiculatus*. *PLoS ONE* **2020**, *15*, e0228308.

173. Wang, G.; Tian, C.; Wang, Y.; Wan, F.; Hu, L.; Xiong, A.; Tian, J. Selection of reliable reference genes for quantitative RT-PCR in garlic under salt stress. *Peer J.* **2019**, *7*, e7319.

174. Basu, S.; Pereira, A.E.; Pinheiro, D.H.; Wang, H.; Valencia-Jimenez, A.; Siegfried, B.D.; Louis, J.; Zhou, X.; Velez, A.M. Evaluation of reference genes for real-time quantitative PCR analysis in southern corn rootworm, *Diabrotica undecimpunctata* howardi (Barber). *Sci. Rep.* 2019, *9*, 10703.
175. Jin, Y.; Liu, F.; Huang, W.; Sun, Q.; Huang, X. Identification of reliable reference genes for qRT-PCR in the ephemeral plant *Arabidopsis pumila* based on full-length transcriptome data. *Sci. Rep.* 2019, *9*, 8408.

176. Zhao, Z.; Wang, L.; Yue, D.; Ye, B.; Li, P.; Zhang, B.; Fan, Q. Evaluation of Reference Genes for Normalization of RT-qPCR Gene Expression Data for Trichoplusia ni Cells During *Antheraea pernyi* (*Lepidoptera: Saturniidae*) Multicapsid Nucleopolyhedrovirus (AnpeNPV) Infection. *J. Insect Sci.* **2019**, *19*.

177. Ju, W.; Smith, A.O.; Sun, T.; Zhao, P.; Jiang, Y.; Liu, L.; Zhang, T.; Qi, K.; Qiao, J.; Xu, K.; et al. Validation of Housekeeping Genes as Reference for Reverse-Transcription-qPCR Analysis in Busulfan-Injured Microvascular Endothelial Cells. *Biomed. Res. Int.* 2018, *2018*, 4953806.
178. Garcia-Reina, A.; Rodriguez-Garcia, M.J.; Galian, J. Validation of reference genes for quantitative real-time PCR in tiger beetles across sexes, body parts, sexual maturity and immune challenge. *Sci. Rep.* 2018, *8*, 10743.

179. Ariizumi, T.; Murata, S.; Fujisawa, S.; Isezaki, M.; Maekawa, N.; Okagawa, T.; Sato, T.; Oishi,
E.; Taneno, A.; Konnai, S.; et al. Selection of reference genes for quantitative PCR analysis in poultry
red mite (*Dermanyssus gallinae*). J. Vet. Med. Sci. 2021, 83, 558–565.

2.6. Supplementary Material

Table S2.1. Summary of 90 RT-qPCR studies.

Genus	Species	Strain	Sample	Biological Replication	Gene Symbol	Associated Product	Justification /Validation? (Yes/No)	Conditions	Normalization Strategy for Assessing Changes in Gene Expression	Ref
		A09	Mycelia	3	185	18S rRNA	No	Growth in potato dextrose agar (PDA) media supplemented with different carbon sources (derived from xylan, xylose, glucose, maltose, cellobiose, arabinose, or lactose) and nitrogen sources (derived from yeast extract, NH4,NO ₃ , (NH4,)2SO ₄ , peptone, or urea, and NaNO ₃ , besides ammonium oxalate).	2- aact	[87]
		N402	Conidia, germinating spores and mycelia	4	act		Yes- Cite previous use by their research group, one			
		J693 (tppB+)					of which cites Bohle et al. 2007 who validated the	Growth in liquid Aspergillus Minimal Medium	Pfaffl method	
Aspergillus	niger	J685 (Δ <i>tppB</i>)				Actin	use of actin as a reference gene for A. <i>niger</i> [159]. However, the media conditions were not the same.	(AMM) for 0, 3, 6, 12 and 72h as well as on AMM plates for 5 days.		[89]
		MA169.4				Glyceraldeh yde-3-		Growth in glucose maltose		
		MA169.4delAnPKSIII	Mycelia	NA	gpdA	Phosphate Dehydrogen	No	polypeptone yeast extract (GMPY) medium at 30°C,	NA	[92]
		MA169.40eAnPKSIII				ase (GAPDH)		250 rpm for 2 days.		
		CBS 141257						Mycelia transfer from complete medium (CM)		
	∆lraA	Mycelia					with 2% D- fructose to 10 mL of minimal	2 ^{- ΔΔCT}		
	∆lraB		2	H2B	Histone H2B	No	medium (MM) supplemented with 25 mM carbon source L-		[93]	
		∆lraC						rhamnose or L- rhamnonate and grown at 30°C for	1	
		∆rhaR						2 hours with 250 rpm shaking.		

		N400 (CBS120.49)	Mycelia	2	hist	Histone- encoding Gene	Yes-Cite the methods in one of their published papers, Mach- Aigner et al. 2012, which demonstrate d the histone- encoding gene to be stably expressed under the same growth conditions, and with the	Growth in bioreactors on sorbitol as the carbon source with 1 mM D- xylose or 50 mM D-xylose. The wildtype was sampled every 20 minutes over 5 hours. The mutant was sampled hourly over 5 hours.	Pfaffl method	[94]
							and with the same strains used [157].	Growth on PDA	_	
		BCC4603						at 25°C under normal light (WT containing		
		Anig1_1						genomic DNA). The resulting transformants were selected on		
		Anig1_2	NA	NA	185	18S rRNA *	No	and subcultured three times in the presence of 1.25	2 ^{- ΔΔCT}	[88]
		Anig2_1						mg/mL of 5- fluoroorotic acid with uridine and		
		Anig2_2						uracil to ensure the stability of transgene.		
		CGMCC 10142			β-actin	Actin		Growth in liquefied corn		
		3-4	Spores	3	,		No	starch medium at 35°C for 72 h with shaking at 330 rpm (sampling at 10, 16, 24, 36, 48,	2-ΔΔCT	[90]
		102			GADPH	GAPDH		60, 72 h).		
		$\Delta gfsA$								
		$\Delta gfsB$								
		$\Delta gfsC$								
		$\Delta gfsAC$						Growth in		
		∆gfsAB	Mycelia	NA	actA	Actin	No	(CM) for 25h.	$\Delta\Delta Cq$	[91]
		$\Delta gfsBC$								
		$\Delta gfsABC$								
		ΔugmA								
_		wt						C 1 100 I		
	nidulans	TN02A7	Frozen mycelia	3	NAPDH	Nicotinamid e adenine dinucleotide phosphate + hydrogen	No	Growth in 100 mL of modified MMPKRUU medium in K sufficient (supplemented with 0.52 g/L KCl) or deficient (supplemented with 5.2 g K- feldspar powders) at 37°C for 24h with shaking at 220 rpm.	ΔCt	[85]
		FGSCA4	Conidia and spores	3	benA	Beta-tubulin	No	Growth in minimal medium containing 2% glycerol, supplemented with arginine,	NA	[82]

			H2B	Histone 2B		uracil, uridine and vitamins during exposure to white- light or darkness at 23°C for 24h (spores) or 30°C for 40h in distilled		
FGSC26	Lyophilized mycelia	4	eEF-3	EEF-3 Elongation Factor	No	water (conidia). Growth in 100 mL of glucose-free minimal nitrate medium (carbon- starved media) or minimal nitrate medium containing 10 g/L of glucose at 37°C for 4h or 24h.	ΔСР	[84]
A1149								
AAE1								
AAE2					Yes-Cite	Growth in CM		
AAE5					previous literature in	with glucose or threonine or on		
ASA1					which actin was found to	MM with ammonium or		
AAE12	Lyophilized	3	actA	Actin	be a stable reference	nitrate,	$2^{-\Delta\Delta CT}$	[78]
AAE13	mycelia				gene for A. niger.	dependending on the strain.		
ASA4					However, the media	Incubated at 28°C for 16h with		
AKA10					conditions	shaking at 250 rpm.		
AKA11					differ.	-F		
AKA12								
AF293						Growth in low or		
pabaA1	Frozon		β-actin	Actin		high inorganic phosphate yeast extract medium		
pabaA1 palB7	Frozen mycelia	3	β-tubulin	Beta-tubulin	No	(YEM) and MM at 37°C for 17h with shaking at 200 rpm.	ΔΔCt	[76]
biA1; riboB2; niiA4	Mualia	2	l antonin	Beta-tubulin	No	Growth in MM supplemented with 50 mM ethyl methyl ketone (EMK) or 1%	NA	[92]
creB1936	Mycelia	3	β-tubulin	*	NO	(Livik) of 1/0 glucose at 37°C for 16h to 18h with shaking at 150 rpm.	NA	[83]
hk∆AN1556			rpl37	Putative ribosomal protein L37	Yes- Analyzed 5 candidate reference genes and	Growth in liquid		
SAA.111	Hyphae	NA	rp13	Putative ribosomal protein L3	ranked their stability using geNormPLU S [33] and used the two most stable genes.	MM under standard conditions.	qBasePLUS version 2.5	[86]
TN02A7	Mycelia	3	NA	Actin	No	Growth in yeast extract-agar- glucose (YAG) supplemented with 5 mM uridine and 10 mM uracil (YUU) at 37°C for 24h.	2-ааст	[79]
WJA01					Yes - Noted the expression stability of actin under	Growth in YAG supplemented with 15% polyethylene		
cnaA mutant	Mycelia	3	actA	Actin	actin under the conditions being tested in their experiments.	glycol (PEG) (W/V) compared to YAG without	2 ^{-ΔΔCT}	[77]
mobB/cotA	Frozen			Det et la "		supplementation for 2 days. Growth yeast	Standard Curve	1003
R21	mycelia	NA	tubC	Beta-tubulin	No	glucose (YG)	Method (Cycle	[80]

	ima532 ima533 ima534 ima535 ima537						medium in the presence or absence of drugs (25 μM camptothecin, 0.3 μg/mL imazalil, 0.2 μg/mL itraconazole, 100 μg/mL hygromycin, and 2.5 μg/mL 4- nitroquinoline oxide (4-NQO)) for 8h.	threshold (CT) values plotted against a logarithm of the DNA copy number)	
	areA217						Growth in 3% lactose for 18h, after which a source of induction and/or repression was added and the cultures were grown for 4h. For		
	acdXAareA217	Mycelia	3	tubC	Beta-tubulin	No	alcA and aldA expression, EMK was used as the inducer and glucose or acetate was used as the repressor. For alcB expression	Standard Curve Method (CT values plotted against a logarithm of the DNA copy number)	[81]
	sptC∆areA217						and b expression of interest was grown under carbon-limiting conditions. Growth in 400-		
	CV125	Mycelia	4	acnA	Actin	Yes- Tested the stability of the chosen reference	mL MM supplemented with 0.1% fructose (as the carbon source)	Pfaffl method	[30]
	NA1363			gpdA	GAPDH	genes using GeNorm in qBase PLUS tool [33].	and 5 mM urea (as the nitrogen source) at 30°C for 15h with shaking at 150 rpm.		
	GFP-expressing strain derived from ATCC 13073	Conidia	NA	gpdA	GAPDH	No	Exposure of A. fumigatus to human airway epithelial cells (AECs) or human bronchial epithelial cells (16HBE14o-).	2 ^{-ΔΔCT}	[31]
fumigatus	Af293	Lyophylized mycelia	3	fks I	Putative 1,3- beta-glucan Synthase Catalytic Subunit	No	Growth in Barrat's minimal nitrate medium in the presence (H ₂ O ₂ at 3 mM final concentration, sampling at 1 hour) or absence of oxidative stress and/or iron- limitation (30 µM FeCl ₃ for iron replete cultures and 0 µM FeCl ₃ for iron deficient cultures) for 33h and 50h.	ΔΔCP	[72]
	Af293	Frozen fungal culture containing mycelia	2	185	18S rRNA	Yes- Performed preliminary experiments to assess the expression stability of GAPDH, actin and 18S rRNA genes under the conditions described. The 18S gene exhibited the greatest	Growth in 100 mL of Roswell Park Memorial Institute (RPMI) 1640 medium (with L- glutamine and sodium bicarbonate) with treatment with artemisinin (125 µg/ml) or solvent control at 37°C for 3h.	ΔΔCΤ	[27]

					expression stability.			
						T		
CM237						Treatment with 24,700, 12,300		
CM2627 10 azole-susceptible	Mycelia	3	βact	Actin	No	and 6,170 µg/mL kombucha during	REST software (2009) (uses $2^{-\Delta\Delta CT}$)	[61]
5 azole-resistant						growth in RPMI medium at 35°C for 48h.		
AfIR974						Growth on sabouraud agar slants for 5 days at 30° C followed by		
AfIR964	Conidia	4	actin	Actin	No	dilution in RPMI medium and growth at 37°C for 0, 2, 4, 6, and 8h.	∆∆CT-method	[21]
F17727								
F18149								
F19980								
F17999		3						
F18085								
F20140						Growth in Vogel's medium		
F18304			tub			supplemented with 1% glucose		
F20063	Mycelia			Beta-tubulin	No	at 37°C with shaking at 250	$2^{-\Delta\Delta CT}$	[69]
F20451						rpm for 14–16h, with added 4		
F18454						mg/L itraconazole or DMSO.		
F18329								
F15483								
Af293 (CBS 101355)								
Af210								
CEA10 (CBS 144.89)								
Z5	Frozen	NA	NA	Actin	Yes- were determined to be the most stable genes out of five	Growth in Mandels' salt solution with 2% sucrose for 20h at 50°C with shaking at 150 rpm. Following 20h incubation, the mycelia were	Pfaffl method	[14]
25	Frozen mycelia	NA		Histone H4	potential reference genes tested using geNorm [33].	washed with distilled water and added to Mandels' salt solution with 1% oat spelts xylan and incubated for 0, 2, 4, 6 and 17h.	riaili memod	[16]
CEA17⊿ku80						Growth in liquid AMM and		
cofilin OE	Frozen mycelia	3	185	18S rRNA	No	cultured for 18 h at 37°C with shaking at 200 rpm.	$2^{-\Delta\Delta CT}$	[59]

ATCC, #34506	Mycelia	NA	185	18S rRNA	No	Growth on PDA plates in the presence of different carbon dioxide concentrations (280, 325, 360, 392, 450, 560 ppm), and on Czapek media, with different C : N ratios (5:1, 8:1, 10:1.12:1 15:1, reverse for changes to the nitrogen concentrations) for 48h and 5 days.	2 ^{-ΔΔCT}	[58]
Amphotericin B- susceptible - was used as a control for <i>A.</i> <i>terreus</i> expression	Cells	2	BTU	Beta-tubulin *	No	Growth in Sabouraud medium for 24h at 37°C with slight shaking and treatment with sub-lethal (0.25 mg/mL) and lethal Amphotericin B (AmB) (1 mg/mL) concentrations.	Pfaffl method	[68]
ATCC 46645	Biofilm and planktonic mycelia	3	act l	Actin	No	Biofilm growth at 37°C in minimal essential medium (MEM) supplemented with 5% v/v fetal calf serum (FCS) or 5% v/v phosphate buffered saline (PBS). Exposure to 5% CO ₂ for 2h was used to promote fungal adherence to the surface of the flask. Unattached conidia were washed with MEM (supplemented with either FCS or PBS) and the remaining were left to grow for 24 and 48h.	NA	[22]
CBS 144.89			GAPDH- only used for the inducible mutant	GAPDH		For gene expression analysis of CBS 144.89 and AsrbA only: treatment with MIC ₅₀ of fluconazole (CBS 144.89, 128 µg/mL; AsrbA strain, 0.50	iQ5 optical system software package (uses 2 ^{- ASCT})	
<i>AsrbA</i>	Lyophilized mycelia	2-3	actin	Actin	No	μg/mL) or voriconazole (CBS 144.89, 0.0625 μg/mL; <i>AsrbA</i> strain, 0.006 μg/mL) and grown in liquid glucose minimal medium (GMM) at 37°C with		[60]
pniiA-erg11A-AsrbA			tefA	NA		at 37 C with shaking at 300 rpm. For gene expression analysis including <i>pniiA-erg11A-</i> <i>AsrbA</i> : All three strains were grown in liquid GMM plus 20 mM NO3 for 12h and liquid GMM plus 20 mM NH ₄ at 37°C with shaking at 300 rpm.		

ATCC 13073	Mycelia	NA	NA	Beta-tubulin	No	Growth in MEM supplemented with 10% (v/v) human serum (male) and 50 μM FeCl ₃ at 37°C for 6h.	2 ^{-ΔΔCT}	[65]
Af293						<i>in vitro</i> : (1) growth in yeast peptone dextrose (YPD) medium for 4h, 8h, and 1 to 7 days at 37°C, (2) growth in		
complimented <i>stuA</i>	Mycelia	≥2	TEFI	Putative Translation Elongation Factor EF-1 Alpha Subunit	No	NPD medium for 24 h at 37° C, (3) growth in YPD or RPMI medium for 24h and 72h at 37° C, (4) growth in YPD medium for 5 to 8 days at 37° C; <i>in vivo</i> : (1) growth in mice	Pfaffl method	[73]
AstuA						lungs for 4h, 8h, and 1 to 7 days, (2) growth in mice lungs for 24h and 72h, (3) growth in mice lungs 5 to 8 days.		
CEA17∆akuB ^{KU80}	Mycelia	3	TEF1	Putative Translation Elongation Factor EF-1 Alpha Suburit		Growth in a glucose (3%)- yeast extract (YE; 1%) liquid medium for 16 h v279C	2 ^{- ΔΔCT}	
$\Delta csmA$					No			[74]
$\Delta csmB$					INO			[74]
$\Delta csmA/\Delta csmB$				Subunit		at 37ºC.		
ATCC 204305	Homegenised cells	NA	β-tubulin	Beta-tubulin *	No	Four formed fungi balls or 2 mL of fungal suspension in NaCl (corresponding to a McFarland 1 standard) were then incubated for 3h at 25, 30, 35 and 40°C.	The comparative SYBR Green/ACt method	[67]
Af293						und to ci		
∆CalA		5				Crowth in mourse	Standard Curve	
∆crzA	Frozen mycelia		β -tubulin	Beta-tubulin	No	Growth in mouse lung alveoli for 4 or 14h.	Method (CT values plotted against a logarithm of the DNA	[66]
ΔpmcA		4				01 1411.	copy number)	
∆ртсВ								
CEA17 (pyrG), ATCC 46645						Growth in YG medium	Standard Curve	
∆pkaCl	Frozen mycelia	NA	tubC	Beta-tubulin	No	containing or without 0.5 µg of voriconazole for 30, 60, 120, and	Method (CT values plotted against a logarithm of the DNA copy number)	[63]
∆acyA						30, 60, 120, and 240 min	copy number)	
	Lyophilized CEA10 mouse lung tissue		TefA	NA		Growth in mouse lung subcutaneously injected with 40 mg/kg Kenalog		
CEA10		NA	β-tubulin	Beta-tubulin	No	40 mg/kg Kenalog (a steroid) 1 day, or intraperitoneally with 175 mg/kg of cyclophosphamide 2 days prior to inoculation.		[70]

AF293 TW54.2 (AlaeA) TW68.6 (AlaeA + laeA)	Fungal mats	2 or 3	NA	Actin	No	(1) Growth in GMM at 25°C with shaking at 280 rpm for 60 days and (2) Growth in high iron liquid media (25 g/L glucose, 3.5 g/L (NH4) ₂ SO ₄ , 2.0 g/L KH2PO ₄ , 0.5 g/L MgSO ₄ (heptahydrate), and 8 mg/L ZnSO ₄ (heptahydrate) + 300 µM Fe(III)Cl ₃ (pH 6.3)) or low iron media (same as high iron, but without the Fe(III)Cl ₃) at 37°C with shaking at 280 rpm for 24h.	2 ^{-ΔΔCT}	[23]
H11-20 RIT1 RIT2 RIT3 RIT4 RIT5 RIT6 RIT7 RIT8 RIT9 RIT10 RIT11 RIT12 RIT13 RIT14 RIT5 RIT6 RIT7 RIT8 RIT9 RIT10 RIT11 RIT12 RIT13 RIT14 RIT15 RIT16 RIT17 RIT18 RIT17 RIT18 RIT17 RIT18 RIT19 RIT20 RIT21 RIT22 RIT23 RIT24 RIT25 RIT26 CEA17	Mycelia	3 to 5	β-tubulin	Beta-tubulin	Yes- Note that its mRNA levels are constitutivel y expressed at a high level under various environment al conditions. However, did not validate themselves for their specific experimental conditions.	Growth in 15ml of yeast extract- peptone-dextrose (YEPD) medium supplemented with 10 µg/mL (H11-20) or 100 µg/mL of itraconazole for 8h at 37°C.	Standard Curve Method (CT values plotted against a logarithm of the DNA copy number)	[62]
CEA17 G10-1-50A G10-1-50B	NA	NA	GPDH	GAPDH	No	reatment with 10 ng/mL of itraconazole (CEA17) or 5 µg/mL of itraconazole	NA	[71]

	G10-2-50A						(mutant strains) in YG medium		
	G10-3-50A						supplemented with 1.2 g/L of		
	H05-3-10						uracil and uridine for 24h at 37°C.		
	H10-1-50A								
	H10-2-50A								
	H10-3-50A								
	H10-1-50B								
	RIT13								
	Af293	Frozen mycelia	NA	β-tubulin	Beta-tubulin	No	Growth in AMM containing 0, 1, 10, 100, 1000 μM of FeSO ₄ at 37°C for 24h with 150 rpm shaking.	2- ^{ддст}	[64]
				gpdA	GAPDH	Yes - cited their previous work under which the same set of	Growth on solid International Streptomyces Project-2 Medium		
	NRRL 62477	Frozen mycelia	6	β-tub	Beta-tubulin	aflatoxin biosynthesis genes was examined and exhibited the same pattern of expression.	(ISP2) with Streptomyces roseolus at 30°C for 4 days at a relative humidity of 80% in a Vötsch chamber.	2'aact	[54]
	70 pSL82	Mycelia	3	185	18S rRNA	No	Growth in GMM containing 1% starch or 24 g/400 mL ground corn seed at 30°C for	2 ^{-ΔΔCT}	[39]
	CA14 ∆veA						24, 48 and 72h with shaking at 250 rpm		
	CA14 <i>Aku70ApyrG</i>						Growth in yeast extract sucrose		
	∆pbsB	Mycelia	NA	β-actin	Actin	No	(YES) or YPD medium for 5 and 7 days, respectively, at	2' ΔΔCt	[45]
flavus	OE						37°C in the dark.		
	KSU101								
	KSU102								
	KSU103								
	KSU104								
	KSU105								
	KSU106						Growth in sucrose		
	KSU107			A B			magnesium sulphate		5.403
	KSU108 KSU109	Mycelia	NA	β -tuB	Beta-tubulin	No	potassium nitrate yeast (SMKY) liquid medium	NA	[49]
	KSU109 KSU110						25°C for 7 days.		
		1							
	KSU111 KSU112	1							
	KSU113 KSU114								
	KSU115	1							
		1		02		1			

$ \begin{array}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			KSU116								
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $			KSU117								
$ \begin{array}{ c c c c c } \hline KSU(1) \\ \hline KSU(2) \\ \hline KSU(0) \\ \hline KS$			KSU118								
$ \begin{array}{ c c c c c } \hline KSU121 \\ \hline KSU02 \\ \hline KSU03 \\ \hline KSU04 \\ \hline KSU14 \\ \hline KSU14$			KSU119								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			KSU120								
$ \begin{array}{ c c c c c } \hline KSU001 \\ \hline KSU002 \\ \hline KSU03 \\ \hline KSU04 \\ \hline KG1.1 \\ \hline KG2.4 \\ \hline KG1.1 \\ \hline IGB-54 \\ \hline IGB-54 \\ \hline IGB-61 \\ \hline KG1.41 \\ \hline KG2.537 \\ \hline YC-15 \\ \hline Mycelia \\ \hline Mycelia \\ \hline Mycelia \\ \hline MSRL 63477 \\ \hline Protein \\ Protein \\ \hline \hline Protein \\ \hline \hline Protein \\ \hline Protein \\ \hline Protein \\ \hline Protein \\ \hline \hline Protein \\ \hline Protein \\ \hline \hline \hline Protein \\ \hline \hline \hline Protein \\ \hline $			KSU121								
$ \left \begin{array}{c c c c c c } \hline KSU002 \\ \hline KSU003 \\ \hline KSU004 \\ \hline KSU04 \\ \hline KSU14 \\ \hline K$			KSU122								
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			KSU001								
KSU034CalabeliaKSU034KSU034CalabeliaKSU034CalabeliaKSU034CalabeliaCalabeliaKSU034CalabeliaCalabeliaKSU034CalabeliaCalabeliaKSU034CalabeliaKSU034CalabeliaKSU034CalabeliaKSU034CalabeliaKSU034CalabeliaCalabeliaKSU034CalabeliaCalabeliaKSU034CalabeliaCalabeliaCalabeliaCalabeliaKSU034CalabeliaCalabeliaCalabeliaKSU034CalabeliaCala			KSU002								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			KSU003								
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $			KSU004								
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $			ATCC28542	NA	NA	β-actin	Actin	No	medium containing 1.5 mg /100mL silver nanoparticles (AgNps HA1N, AgNps EH, and AgNps HA2) at	2-ΔΔCΤ	[44]
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $			ICB-1								
$\frac{ c }{ c } \frac{ c }{ c } $			ICB-12			β -tubulin	Beta-tubulin				
$\frac{ \mathbf{ICB-141} }{ \mathbf{ICB-161} } \xrightarrow{\mathbf{NA}} \mathbf{S} \xrightarrow{\mathbf{S}} \left(\begin{array}{c} cal \\ cal $			ICB-54								
$\left \begin{array}{c c c c c c } \hline ICB-161 \\ \hline ICB-198 \\ \hline ICB-198$			ICB-141	NA	3			No	25ºC for 2 or 7	Pfaffl method	[53]
YC-15MyceliaNAJ85I8S rRNANoGrowth in YES medium supplemented with 0.40 mmol/L of ciral, and 0.80 mmol/L of eugenol for 7 days.NRRL3357 $\Delta murA$ Mycelia3NAActinNo(1) Growth on PDA or GMM supplemented with NH_r for 48h and (2) growth on Source) for 30h.(1) Growth on PDA or GMM supplemented with S0 mM armonium or NANO; (as the oon ynitogen 			ICB-161			cal	Calmodulin		utys.		
YC-15MyceliaNAJ85I85 rRNANoGrowth in YES medium supplemented with 0.40 mmol/L of ciral, and 0.80 mmol/L of eugenol for 7 days.NRRL3357 $Mycelia$ 3NAActinNo(1) Growth on PDA or GMM supplemented with NH_r for 48h and (2) growth on Supplemented with S0 mM arrmonium or NaNO; (as the oon ynitogen source) for 30h.(1) Growth on PDA or GMM supplemented with S0 mM arrmonium or NaNO; (as the oon ynitogen source) for 30h.2-AACT[1]MRRL 62477Frozen mycelia ≥ 3 β -tubBeta-tubulinEvaluated the subility of several potential reference genes using Normfrider (119) and uset the mot stable reference genes using Normfrider (119) and uset the dark.2-AACT[1]NRRL 62477Frozen mycelia ≥ 3 $gpdA$ $GAPDH$ GaPDHGrowth on malt eugenol for 4 days uset the dark. 2^{-AACT} [1]			ICB-198								
$\left \begin{array}{c c c c c c } \hline NRRL3357 \\ \hline \\ $			YC-15	Mycelia	NA	185	18S rRNA	No	medium supplemented with 0.40 mmol/L of cinnamaldehyde, 0.56 mmol/L of citral, and 0.80 mmol/L of eugenol for 7	2 ^{-ΔΔCT}	[40]
$\frac{\Delta nmrA::nmrA}{NRRL 62477} \begin{array}{ c c c } \hline Frozen \\ mycelia \end{array} \\ \end{array} \\ \begin{array}{ c c } \hline \\ \hline $				Mycelia	3	NA	Actin	No	PDA or GMM supplemented with NH ₄ ⁺ for 48h and (2) growth on GMM supplemented with 50 mM anmonium or	2 ^{-ΔΔCT}	[43]
$ \begin{array}{ c c c c c } \hline NRRL 62477 & Frozen \\ mycelia & extract agar \\ mycelia & mycelia & extract agar \\ gpdA & GAPDH & GAPDH \\ \hline GAPDH & GAPDH \\ \hline GAPDH & GAPDH \\ \hline H & H & H \\ H & H & H \\ H & H & H \\ H & H &$			∆nmrA∷nmrA					Ves-	only nitrogen		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						β-tub	Beta-tubulin	Evalauated the stability of several			
n.					≥3	gpdA	GAPDH	reference genes using NormFinder [119] and used the most stable reference genes for normalizatio	extract agar (MEA) supplemented with 0.5mM eugenol for 4 days at 27°C in the	2 ^{-ΔΔCT}	[52]

	EGP9	Inoculated peanuts	3	benA56	Beta-tubulin	Yes- Stated beta-tubulin was stable and constituitivel y expressed previously, however, they used different experimental conditions.	Growth on peanut samples for 6 weeks (sampling every 7 days) at 25°C in polyethylene sandwich boxes containing glycerol/water solutions to maintain the equilibrium relative humidity conditions.	Pfaff1 method	[47]
	Aflatoxin B1- producing strain	Fungal hyphae (frozen mycelia)	NA	β-tubulin	Beta-tubulin	No	Growth in 50 mL of potato dextrose broth (PDB) containing 30% (v/v) of the <i>Eurotium</i> <i>cristatum</i> culture filtrate for 3 days in the dark at 28 ± 2°C on a rotary shaker at 120 r/min.	2 ^{-ΔΔCT}	[56]
	BFE96	Frozen inoculated wheat	NA	benA56	Beta-tubulin	Yes- State that beta- tubulin expression is less dependent on the growth phase than a gene involved in secondary metabolism. The researchers stated that if the expression of the gene is constant, then it is a good reference gene. The expression of beta- tubulin was shown to be constant under the conditions examined.	Inoculated onto 25 g of wheat and grown at 30°C in open petri dishes with wetted filter paper to maintain moisture content for 9 days. Samples were mixed daily to ensure uniformity of fungal cells throughout the sample.	NA	[46]
	Afl-VCZ1								
	Afl-VCZ2						Growth in liquid medium at 30°C		
	Afl-VCZ3	Frozen mycelia	NA	tub	Beta-tubulin	No	with constant shaking at 120	2 -ΔΔCT	[51]
	Afl-VCZ4						rpm for 20-24h.		
	Afl-VCZ5								
				185	18S rRNA	Yes- used Normfinder	Co-culture with Listeria monocytogenes in molt extract broth		
		Lyophilized mycelia		cal	Calmodulin	stability of the reference	evaluate the at 25°C and 30°C stability of for 7 days (did the	h C Pfaffl method ne	[41]
				tub-β	Beta-tubulin				

$M.Sc.\ Thesis-M.\ Archer;\ McMaster\ University-Biology$

RCP08108	Frozen mycelia	3	ITS1 ITS4	Internal Transcribed Spacer Regions	Yes- Cite previous use in the literature.	First, the fungi were grown on peanut meal extract agar (PMEA) for 5 days at 28 °C to obtain heavily sporulating cultures. The water activity of cultures were modified using nonionic solute glycerol to -2.8, - 7.1, -9.9 and -16.0 MPa to generate water activities of 0.98, 0.95, 0.93 and 0.89, respectively. Next, cultures of differing water activity were supplemented with 1+1 mMM 2(3)-tert-butyl-4 hydroxyanisole- 2,6-di (tert-butyl)- p-cresol (i.e. differing antioxidant concentrations) at 20°C and 28°C for 72 hours.	NA	[57]
PFCC 83								
PFCC 86								
PFCC 101								
PFCC 116								
PFCC 137								
PFCC 147								
PFCC 149								
PFCC 154								
PFCC 165								
PFCC 176								
PFCC 186						YES, aflatoxin-		
PFCC 191	Frozen	NA	tub1	Beta-tubulin	No	inducing, or yeast extract peptone (YEP) medium,	NA	[48]
PFCC 193	myclelia			*		(YEP) medium, non-inducing, at 28℃ for 4 days.		
PFCC 209						20°C 10f 4 days.		
PFCC 213	-							
PFCC 224 PFCC 244	-							
PFCC 244 PFCC 247								
PFCC 267								
PFCC 285	1							
PFCC 288								
PFCC 309	1							
PFCC 313	1							
PFCC 316	1							
CMI 102566								

	CMI 93803								
	NRRL	Frozen mycelia	2	act1	Actin	No	Co-incubation with soil isolates of <i>Streptomyces</i> on ISP2 medium	qbase+ software (biogazelle)	[42]
				βtub	Beta-tubulin		at 28°C.		
	NRRL3357	Fungal tissue	3	18S	18S rRNA	No	Growth on YES medium at 37°C for 1.5 days and 28°C for 3 days (to obtain the same amount of biomass at a lower temperature), in the dark.	ΔΔCt	[28]
	NRRL-6513	Mycelia	3	β-tubulin	Beta-tubulin *	Yes- The researchers note that the peptides created did not have an effect on β- tubulin expression - no data shown.	Growth in 20 mL of YES medium containing one of four antifungal peptides: PPD1 peptide (4 µg/mL), 66-10 peptide (3.5 µg/.mL), 77-3 peptide (3 µg/mL), or D4E1 (12 µg/mL).	2 ^{-AACT}	[55]
	NRRL 3357 NRRL 4123	Cells	6	TUB	Beta-tubulin	No	Treatment or no treatment with the subinhibitory concentrations of carvacrol (0.02%) or trans- cinnamaldehyde (0.002%) in 10 mL of PDB at 2500 c fc here	Comparative Critical Threshold Method	[50]
	ATCC #15517	Frozen mycelia	NA	ACTI	Actin	Yes- State that they demonstrate d beta-actin to be stably expressed in the presence of <i>Kluyveromyc</i> <i>es lactis.</i>	25°C for 5 days. Treated or untreated with 1.5 × 10° CFU/mL of <i>Kluyveromyces</i> <i>lactis</i> and incubated at 30°C for 48h.	REST, 2008 V2.0.2 software (ΔΔCt)	[10 5]
	BN9∆msnA	Frozen mycelia	4	18S	18S rRNA	No	Growth of stationary phase cultures in PDB at 30°C for 4 days in the dark.	Relative Standard Curve Method (CT values plotted against a logarithm of the DNA copy number)	[29]
parasiticus	NRRL-2999	Mycelia	3	β-tubulin	Beta-tubulin *	Yes - the researchers note that the peptides created did not have an effect on β- tubulin expression.	Growth in 20 mL of YES medium containing one of four antifungal peptides: PPD1 peptide (4 µg/mL), 66-10 peptide (3 µg/mL), 77-3 peptide (3 µg/mL), or D4E1 (12 µg/mL).	2-ааст	[55]
	CECT 2688	Frozen mycelia	3	TUB	Beta-tubulin	No	Yeast extract sucrose peptone (YESP) medium modified with 1% sodium nitrate (YESP-N) or 1% tryptophan (YESP-T) at 10, 15, 25, 30 and 37°C for 96h with shaking at 100 rpm.	2 ^{-ΔΔCT}	[10 6]
	NRRL 2999 PFCC 14	Frozen mycelia	NA	tub1	Beta-tubulin *	No	Growth in YES or YEP medium at 28°C for 4 days.	NA	[48]

	NRRL 2999 ATCC 24690	Mycelia	NA	β-actin	Actin	Yes- Used in a previous study with the same species conducted by the same authors.	Treatment with 0, 0.25, 0.5 or 1.0 μg/mL aflastatin A for 1.5 to 3.5 days in PDB at 27°C.	NA	[10 3]
	ATCC15517	Mycelia	NA	β-actin	Actin	No	Growth in RPMI medium containing 25 or 50 mg/mL of vitamin C for 3 days at 28°C.	Statistical Package for the Social Sciences (SPSS) software for Windows, using the t- test and Fisher's exact test, where a p-value less than 0.05 was considered to be statistically significant.	[10 4]
	SRRC 2043								
	299	Spheroplasts	NA	185	18S rRNA	No	Growth in Adye and Mateles	$2^{-\Delta\Delta CT}$	[10
sojae	1123	~					(1964) medium for 48h and 72h.	_	2]
	1126								
cristatus	E4 (CGMCC 7.193)	Mycelia	NA	β-actin	Actin	No	Cellulose membrane on malt yeast agar (MYA) and on 17% NaCl MYA media for 5 days at 28°C in the dark, after which mycelia were fixed (extraction from 7 day mycelia).	2 ^{-ΔΔCT}	[24]
	RIB40 creB∆						Growth conditions depedent on transcipt of interest. (1) α- amylase transcripts: inducing (1% sorbitol plus 1% starch), non- inducing (1% sorbitol), and re- pressing (1%		
	Mycelia DAR3699	3	β-tubulin	Beta-tubulin *	in No	pressing (1% sorbitol plus 1% starch plus 2% sucrose) conditions for 48h. (2) glucoamylase A transcripts: inducing conditions (in 1% starch) or repressing conditions (in 2% sucrose) at 30°C for 24h.	NA	[47]	
oryzae	Aory1_1						Growth on PDA at 25°C under normal light (WT		
	Aory1_2	NA	NA	185	18S rRNA *	No	containing genomic DNA). The resulting transformants were selected on and subcultured	$2^{-\Delta\Delta CT}$	[88]
	Aory2_1	147.1		105	105 11014	110	three times in the presence of 1.25 mg/mL of 5-		[00]
	Aory2_2						fluoroorotic acid with uridine and uracil to ensure the stability of transgene.		
	∆LaeA	NA	NA	HI	Histone 1	No	Growth in MMcontaining 0.6% NaNO ₃ , 0.052% KCl,	$2^{-\Delta\Delta CT}$	[10
	PyrG+		NA	HI	Histone 1	No	0.052% MgSO ₄ , 0.152% KH ₂ PO ₄ and 1% glucose at 30°C for 5 days.	_	0]

	RkuN16ptr1(pyrG) (Δku70::ptrA, ΔpyrG,pyrG +) ΔsclR (Δku70::ptrA, ΔsclR::pyrG)	NA	3	Н2А	Histone H2A	No	Growth in DPY (2% dextrin, 1% polypeptone, 0.5% yeast extract, 0.5% KH2PO4, and 0.05% MgSO4·7H2O, pH 5.8) liquid medium at 30°C for 2 days.	Comparative Cycle Threshold (Ct) Method	[10 1]
	ΔbrlA NS4	Frozen mycelia and conidia	2	β-actin	Actin	No	Growth on PDA medium at 30°C for 7 days.	NA	[97]
	MATI-1						Growth (conidia) in DPY (2% dextrin, 1% polypeptone, 0.5% yeast extract, 0.5%		
	MAT1-2	Mycelia	NA	NA	Actin	No	KH2PO4, and 0.05% MgSO4 · 7H2O) liquid medium supplemented with 0.5% uridine	NA	[25]
	AMAT						and 0.2% uracil. After 24h of growth, 200 mg of mycelia were transferred onto DPY agar medium and grown for an additional 48h.		
	JaL250	_		NA			Growth in MM supplemented		
	DLM2						with 10 mM uridine and 1%	NA	
	DLM3				Actin		maltose at 34°C with gentle		
							shaking for 22 to 24h, after which		
	DLM17	Conidiospores	NA			No	25-75 mL was		[96]
	DLM24 DLM29	-					transferred to a cellulose nitrate filter and grown for 42-48h until pigmented conidiospores were present.		
	NS4DLP and several transformants	Frozen hyphae	NA	A0090038000317	Beta-tubulin	Yes- previously exhibited stability in microarray work.	Growth in Growth in modified Czapek– Dox (CD) medium (CD minimal agar supplemented with 5 mM uridine, 10 mM uracil, 10 mM uracil, 10 mM sodium glutamate, and/or 30 µg/ml methionine and an increased glucose concentration of 10%) at 30°C for 48h with 200 rpm shaking.	NA	[98]
	RIB40	Culture	NA	HI	Histone H1	No	Growth on 5 g of wheat bran containing 2, 3, 4, 6 or 8 mL of water at 30°C for 48 h.	2 ^{-ΔΔCT}	[99]
	RIB2601 U1	Rice	NA	NA	Actin	No	Growth on rice as rice koji and sampling at the stages in the process of shimaishigoto (30h, 40°C) and dekoji (40h).	NA	[26]
luchuensis	SO2	Mycelia	NA	actA	Actin	Yes- Cited the use of actin as a reference	Precultured in M medium for 36h at 30°C with shaking at 180 rpm, then	NA	[75]
	ΔLaeA	Mycelia	NA	actA	Actin	reference gene in the literature. However, the cited	transferred to Citric acid production (CAP) medium and		

	∆LaeA + LaeA					study uses different media conditions.	grown for 0 or 12h at 30°C with shaking at 163 rpm.		
	Clinical isolate, W.B. 016.02	Homegenised cells	NA	β-tubulin	Beta-tubulin *	No	Four formed fungi balls or 2 mL of fungal suspension in NaCl (corresponding to a McFarland 1 standard) incubated for 3h at 25, 30, 35 and 40°C, respectively.	The comparative SYBR Green∕∆Ct method	[67]
	Amphotericin B- resistant	Cells	2	BTU	Beta-tubulin *	No	Treatment with sub-lethal (2 mg/mL for AMR; 0.1 mg/mL AMS) and lethal AmB (5 mg/L AMR; 1 mg/mL AMS) concentrations	Pfaffl method	[68]
terreus	Amphotericin B- susceptible						during growth in Sabouraud medium for 24h at 37°C with slight shaking.		
	MUCL 38669	Homogenised cells	NA	β-actin	Actin	Yes - Note that there was no change in the transcript levels under the conditions tested, however, they did not show their data.	Growth in lovastatin production medium at 27°C for 10 days with shaking at 220 rpm.	Light cycler SDS Software	[10 7]
	EFB108	Mycelia	NA	actaA	Actin	No	Growth on MID medium for 10 days, after which 0.5, 1.0, 3.0 and 5.0% (w/v) of surface sterilized <i>Podocarpus.</i> gracilior leaves were added and incubated together for 20 days.	Standard Curve Method (CT values plotted against a logarithm of the DNA copy number)	[10 8]
	CECT 2948	Frozen	2	βtub	Beta-tubulin	No	Growth on Czapek-Dox Modified Yeast Agar (CYA) in the presence or	$2^{-\Delta\Delta CT}$	[10
westerdijkiae	AOPD16-1	mycelia	_	<i>p</i>			absence of Debaryomyces hansenii at 28°C for 3 and 7 days.	-	9]
	UEL91	Mycelia	NA	GAPDH	GAPDH	No	Growth on YES medium at 25°C	$2^{-\Delta\Delta CT}$	[10
	ITAL163	,					for 96h.	_	4]
	W04-40	Frozen	NA	185	18S rRNA	No	CYA medium in the dark at 30°C	Relative Expression Software Tool	[36]
	W04-46	mycelia					for 2 days.	(REST)	[**]
carbonarius	S402	Frozen mycelia	NA	cal	Calmodulin	No	Co-culture with the actinobacterial strain, SN7, incubated at 28°C for 4 days on solid ISP2 medium.	NA	[37]
	AC49	Frozen mycelia	2	ubc	Ubiquitin- conjugating Enzyme	Yes- Performed preliminary experiments to assess the expression stability of β -tub, cal	Growth in MM in the dark at 25°C, without shaking (ochratoxin A (OTA)-inducing conditions), for 4, 6 and 8 days.	2 ^{-адст}	[32]

		AC67					and ubc genes under the conditions described using BestKeeper [156]. The ubc gene exhibited the greatest expression stability and therefore was used as the reference gene.			
		Aacbh589				Glyceraldeh yde-3- phosphate	Yes- Tested the stability of the reference gene under	Growth in MM containing 1% (w/v) polypeptone, 1% (w/v) glucose, 1%	Standard Curve Method (CT values	
	aculeatus	∆xlnR mutants	Mycelia	3	gpdA	dehydrogena se A (GAPDH)	the tested condition using NormFinder [119].	(w/v) avicel, 1% (w/v) xylose, or 1% (w/v) arabinose for 3h or 6h.	plotted against a logarithm of the DNA copy number)	[35]
		ACU7			actA	Actin		Growth on solid	Fold change = 2x, x = (geneOE-	
		acrR-OE (ACU41)	Cells	NA	hhtA	Histone 3	No	MM for 3, 5 and 7 days.	housekeepingOE)- (generef housekeepingref.)	[34]
	nomius	INCQS 40010	Frozen	NA	CAL	Calmodulin	No	Growth on coconut agar at	ΔΔCT	[95]
	nomuus	Seven strains isolated from Brazil nuts	mycelia		CAL	Califioduliii	NO	25, 30 and 35°C for 7 days.		[95]
		CBS 317.89 CBS- KNAW (wildtype)			his-H3	Histone 3	Yes- Beta- tubulin was used for 3- day and/or 6-day-old, but because beta-tubulin expression			
*, analyzed mor	fischeri	∆mpdA	Frozen ascospores	NA	β-tub	Beta-tubulin	was so low, they evaluated its expression in relation to the histone H3 gene and found that histone H3 was a better reference as it was expressed at a higher copy number.	Growth on a hydrophobic polyvinylidene fluoride (PVDF) membrane on top of oatmeal agar for 3, 6 or 30 days (wildtype only).	2-ласт	[38]

*, analyzed more than one species of Aspergillus and appear twice in the table.

Chapter 3

Genome-wide association analysis for triazole resistance in Aspergillus

fumigatus

3.1. Preface

This publication was done in collaboration with co-first authors, Yuying Fan and Yue Wang, Gregory

Kofanty and Dr. Jianping Xu and was published on June 4, 2021, in the journal "Pathogens". For this paper, I was the fourth author. I have included my contribution to the "Results" section, ie. overexpressed genes that were previously shown to be associated with triazole resistance in A. *fumigatus* through RT-qPCR and/or RNA-sequencing. Here, I researched the overexpressed genes and prepared the written component and corresponding table for the manuscript. I also contributed to the "Discussion" section of this paper, by writing the section discussing the functional validation of noncyp51A single-nucleotide polymorphisms (SNPs) in Hmg1, AFUA_7G01960 and AFUA_2G1060. Finally, I helped to edit the manuscript. Since my contribution to the "Introduction" was through edits to the manuscript, I have not included it as part of my thesis, but I have included all relevant information to Chapter 3 within a separate introduction written as part of this thesis as section 3.2. Please note that the "Results" section is an embedded copy from the original publication and the corresponding references from the reference list follow this section. I have also written a separate "Discussion" section as 3.3. to discuss my contribution to the paper. In addition, Table S3.1. was modified from the supplementary table included in the manuscript to include superscripts to describe the method used to determine fold change, ex. fold change relative to the wildtype. The full reference for the publication is provided here: Fan, Y., Wang, Y., Korfanty, G. A., Archer, M., & Xu, J. (2021). Genome-Wide Association Analysis for Triazole Resistance in Aspergillus fumigatus. Pathogens, 10(6). doi:10.3390/pathogens10060701

The journal link to access the supplementary files for Chapter 3 is provided here: https://www.mdpi.com/2076-0817/10/6/701

102

3.2. Introduction

Due to the rise in triazole resistant isolates of *A. fumigatus*, there is increasing interest from the medical and scientific communities regarding the molecular mechanisms that enable resistance to occur. Many studies have focused on the contributions of mutations in the gene encoding the azole target protein, *cyp51A* [1,2], however, much of the observed *A. fumigatus* azole resistance is not due to mutations in this gene or alteration of its expression [3]. For instance, in a study of 230 isolates, 43% of the observed triazole resistance was unaccounted for by *cyp51A* mutations [3]. In section 3.3. below, from our Genome-wide Association Study (GWAS) of triazole resistance in *A. fumigatus*, we sought to curate a list of genes identified in previous gene expression analyses to be upregulated during exposure to one or both of the following triazoles, itraconazole or voriconazole.

3.3. Results

3.3.1. Genes Overexpressed with Triazole Exposure

Table 3.1. summarizes the genes that were overexpressed upon exposure to each antifungal. The overexpression of these genes under triazole stress were determined using RT-qPCR and RNA-seq information [4,5,6]. Supplementary Table S3.1. describes the details on the experimental conditions and setup associated with each gene listed in Table 3.1. Specifically, previous work demonstrated that 10 ATP-binding cassette (ABC) transporters (*abcA-1*, *abcA-2*, *abcB*, *abcC*, *abcD*, *abcE*, *atrF*, *mdr1*, *mdr4*, and *AFUA_5G02260*), four major facilitator superfamily (MFS) transporters (*AFUA_2G11580*, *mfs56*, *mfsA* and *mfsC*), the 14-alpha sterol demethylase *cyp51A*, and 16 transcription factors (*ace1*, *AFUA_1G02870*, *AFUA_1G04140*, *AFUA_1G16460*, *AFUA_2G01190*, *AFUA_3G09130*, *AFUA_4G06170*, *AFUA_4G13600*, *AFUA_5G02655*, *AFUA_5G06350*, *AFUA_5G07510*, *AFUA_6G01960*, *AFUA_6G03430*, *AFUA_7G03910*, *AFUA_8G07360*, and *fumR*) were

overexpressed following itraconazole exposure [4,5]. Similarly, five ABC transporters (*mdr1*, *abcB*, *abcC*, *abcD* and *abcE*), three MFS multidrug transporters (*mfsA*, *mfsB* and *mfsC*), a F-box domain protein (*fbpA*), an AAA-family ATPase (*aaaA*), a C6 zinc finger domain protein (*finA*), a BZIP transcription factor (*cpcA*), and a putative C2H2 zinc-finger transcription factor (*zfpA*) were overexpressed with voriconazole exposure [5].

Table 3.1. Overexpressed genes associated with triazole exposure in *A. fumigatus* from previous RTqPCR and RNA-seq studies.

Overexpressed Gene	Encoded Protein	Fold Change When Exposed to	Fold Change When Exposed to	Ref.
Name	Encoded Protein	Itraconazole	Voriconazole	Kel.
abcA-1				
(AFUA_1G17440)		7.1	NA	[4]
abcA-2				
(AFUA_2G15130)		~6.50	NA	[4]
abcB		4.50	5.00.12.00	[4,5]
(AFUA_1G10390)		~4.50	~5.00–13.00	
abcC			-	
(AFUA_1G14330)	ABC multidrug	~5.50	~5.00->20.00	[4,5]
abcD	transporter	4.50	2.00 20.00	F 4
(AFUA_6G03470)		~4.50	~2.00->20.00	[4,5]
abcE			• • • • • •	
(AFUA_7G00480)		~1.00	~2.00->20.00	[4,5]
atrF				
(AFUA_6G04360)		31.7	NA	[4]
mdr1		5.00	2.00 5.00	FA #
(AFUA_5G06070)		~5.00	~2.00–5.00	[4,5]

mdr4		~4.70	NA	[4
(AFUA_1G12690)				L
	ABC multidrug			
AFUA_5G02260	transporter,	~4.90	NA	[4
	putative			
AFUA_2G11580	MFS multidrug	14.2	NA	[4
mfs56	transporter,	4.50, 500,00	N7.4	r
(AFUA_1G05010)	putative	~4.50–700.00	NA	[4
mfsA		~4.70	~1.50–11.00	[4
(AFUA_8G05710)		~4.70	~1.50-11.00	[4
mfsB	MFS multidrug	NA	~4.00–18.00	[:
(AFUA_1G15490)	transporter	INA	~4.00–18.00	ŀ
mfsC		~7.90	~2.50–30.00	Γ.4
(AFUA_1G03200)		~7.90	~2.30-30.00	[4
cyp51A	14-alpha sterol	21.00-550.90	NA	[4
(AFUA_4G06890)	demethylase	21.00-550.90	MA	Ľ
fbpA	F-box domain	NA	~>50.00-600.00	[:
(AFUA_1G14050)	protein	1121	30.00 000.00	Ŀ
aaaA	AAA-family	NA	~2.00–90.00	[:
(AFUA_7G06680)	ATPase, putative	MA	~2.00-90.00	Ŀ
finA	C6 zinc finger	NA	~4.00-40.00	[:
(AFUA_8G05800)	domain protein	MA	-4.00-40.00	Ŀ
	Transcription			
	factor involved in			
AFUA_1G02870	oxidative stress	2.48–2.61	NA	[0
	response,			
	putative			
AFUA_1G04140	C6 finger domain	2.04–2.94	NA	[0
AFUA_6G01960	C6 finger domain	2.01-3.02	NA	[(
AFUA_6G03430	protein, putative	2.78–2.93	NA	[(

fumR	C6 zinc finger	4.00–4.70	NA	[6
(AFUA_8G00420)	transcription			
AFUA_5G07510	factor	2.39–3.50	NA	[6
AFUA_3G09130	C6 transcription	1.73–2.22	NA	[6
AFUA_8G07360	factor, putative	1.90–1.92	NA	[6
	BZIP			
cpcA	transcription	NA	>1.50-~5.50	[5
(AFUA_4G12470)	factor			
	BZIP			
AFUA_1G16460	transcription	1.75–2.12	NA	[6
AF UA_1010400	factor (LziP),	1.75-2.12	NA	ĮU
	putative			
AEUA 7C02010	C2H2 zinc finger	250.286	NA	[2
AFUA_7G03910	protein	2.50-2.86	NA	[6
acel				
(AFUA_3G08010)	C2H2 zinc-finger	1.66–2.32	NA	[6
AFUA_4G13600	transcription	2.30–2.71	NA	[6
zfpA	factor, putative			
(AFUA_8G05010)		NA	~1.50–60.00	[5
	Cu-dependent			
AFUA_2G01190	DNA-binding	1.30–2.10	NA	[6
	protein, putative			
AFUA_4G06170	Predicted DNA-	3.79–3.89	NA	[6
	binding			
AFUA_5G02655	transcription	2.75-3.84	NA	[6
	factor			
a d a	DNA repair and			
ada	transcription	1.23–2.05	NA	[6
(AFUA_5G06350)	factor, putative			

3.4. Discussion

As of 2005, it was estimated that A. *fumigatus* encoded 278 ABC and 49 MFS transporter genes [7]. As discussed in section 3.2., previous work identified 10 ABC transporters to be upregulated during exposure to itraconazole [4], five of which are also upregulated during exposure to voriconazole [5] (Table 3.1.). The role of ABC transporters in facilitating azole resistance in A. fumigatus has been documented since at least 1999 [8]. ABC transporters use the energy generated from hydrolyzing ATP to transport molecules, including antifungal drugs, across the cell membrane [8]. Upregulation of ABC transporters is also associated with azole resistance in other human fungal pathogens, including *Candida albicans* [9] and *Candida glabrata* [10], suggesting that their role in azole resistance is conserved. Recently, overexpression of the ABC transporter, *abcC* (also called *abcG1*), was shown to promote azole resistance in an A. fumigatus strain with a cyp51A promoter duplication and L98H amino acid change in the encoded protein [11]. This demonstrates the connectivity of the mechanisms underlying azole resistance in A. *fumigatus* and highlights the need to look for relationships between changes in the transcriptome and known single-nucleotide polymorphisms (SNPs). Four major facilitator superfamily (MFS) transporters were expressed at higher levels during itraconazole exposure [4] and three MFS transporters were expressed at higher levels during voriconazole exposure [5] (Table 3.1.). One of these transporters, *mfsC*, which has been shown to be upregulated during exposure to both triazoles [4,5] (Table 3.1.), was recently shown to increase 5-fold in expression in a resistant environmental (agricultural field) isolate lacking any *cyp51A* mutations, and 3-5-fold in three other resistant isolates of A. *fumigatus*, relative to the standard Af293 strain [12]. Six to eight SNPs were identified in the *mfsC* gene of the four resistant strains, which may contribute to the higher expression and associated resistance [12].

The same study identified SNPs in the transcription factor, *ace1* and the AAA-ATPase family protein, *aaaA* [12], whose expression has been demonstrated to increase during itraconazole [4] and voriconazole [5] exposure, respectively. Interestingly, *ace1* is also upregulated during *A. fumigatus* conidia exposure to human airway epithelial cells [13]. One hypothesis pertaining to the *aaaA*-encoded enzyme is that it mediates the disassembly of protein aggregates/complexes or proteolysis, thereby leading to voriconazole resistance in *A. fumigatus* [5].

Surprisingly, Amarsaikhan and colleagues reported that the BZIP transcriptional regulator of crosspathway control system of amino acid biosynthesis, *cpcA* [14], decreases during *A. fumigatus* exposure to voriconazole [15], which contradicts the findings of da Silva Ferreira *et al.* [5] (Table 3.1.). Moreover, genes involved in the amino acid biosynthesis pathway also follow the same pattern for their respective studies [5,15]. Amarsaikhan et al. also observed an increase in voriconazole resistance when *cpcA* was deleted [15]. Collectively, their results warrant future study into the specific role of CpcA in voriconazole resistance in *A. fumigatus*.

Altogether, the data presented here shows that additional pathways and transporters may contribute to non-*cyp51A*-mediated resistance and that there is still a lack of data regarding their differential gene expression in response to both triazole drugs.

3.5. References

1. Chowdhary, A.; Kathuria, S.; Randhawa, H.S.; Gaur, S.N.; Klaassen, C.H.; Meis, J.F. Isolation of multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR/L98H mutations in the cyp51A gene in India. *J. Antimicrob. Chemother.* **2012**, *67*, 362-366, doi:10.1093/jac/dkr443.

2. Macedo, D.; Brito Devoto, T.; Pola, S.; Finquelievich, J.L.; Cuestas, M.L.; Garcia-Effron, G. A Novel Combination of CYP51A Mutations Confers Pan-Azole Resistance in Aspergillus fumigatus. *Antimicrob. Agents Chemother.* **2020**, *64*, doi:10.1128/AAC.02501-19.

Bueid, A.; Howard, S.J.; Moore, C.B.; Richardson, M.D.; Harrison, E.; Bowyer, P.; Denning, D.W.
 Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J. Antimicrob. Chemother.
 2010, 65, 2116-2118, doi:10.1093/jac/dkq279.

 Fraczek, M.G.; Bromley, M.; Buied, A.; Moore, C.B.; Rajendran, R.; Rautemaa, R.; Ramage, G.; Denning, D.W.; Bowyer, P. The Cdr1B Efflux Transporter Is Associated with Non-Cyp51a-Mediated Itraconazole Resistance in Aspergillus Fumigatus. *J. Antimicrob. Chemother.* 2013, *68*, 1486–1496.
 Da Silva Ferreira, M.E.; Malavazi, I.; Savoldi, M.; Brakhage, A.A.; Goldman, M.H.S.; Kim, H.S.;

Nierman, W.C.; Goldman, G.H. Transcriptome Analysis of Aspergillus Fumigatus Exposed to Voriconazole. *Curr. Genet.* **2006**, *50*, 32–44.

6. Du, W.; Zhai, P.; Wang, T.; Bromley, M.J.; Zhang, Y.; Lu, L. The C₂ H₂ Transcription Factor SltA Contributes to Azole Resistance by Coregulating the Expression of the Drug Target Erg11A and the Drug Efflux Pump Mdr1 in *Aspergillus Fumigatus*. *Antimicrob. Agents Chemother.* **2021**, *65*, e01839-20.

Ferreira, M.E.; Colombo, A.L.; Paulsen, I.; Ren, Q.; Wortman, J.; Huang, J.; Goldman, M.H.;
 Goldman, G.H. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in
 Aspergillus fumigatus. *Med. Mycol.* 2005, *43 Suppl 1*, S313-319, doi:10.1080/13693780400029114.
 Del Sorbo, G.; Schoonbeek, H.; De Waard, M.A. Fungal transporters involved in efflux of natural toxic compounds and fungicides. *Fungal Genet. Biol.* 2000, *30*, 1-15, doi:10.1006/fgbi.2000.1206.

9. Sanglard, D.; Kuchler, K.; Ischer, F.; Pagani, J.L.; Monod, M.; Bille, J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. *Antimicrob. Agents Chemother.* **1995**, *39*, 2378-2386, doi:10.1128/AAC.39.11.2378.

10. Vermitsky, J.P.; Edlind, T.D. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. *Antimicrob. Agents Chemother.* **2004**, *48*, 3773-3781, doi:10.1128/AAC.48.10.3773-3781.2004.

11. Paul, S.; Diekema, D.; Moye-Rowley, W.S. Contributions of both ATP-Binding Cassette Transporter and Cyp51A Proteins Are Essential for Azole Resistance in Aspergillus fumigatus. *Antimicrob. Agents Chemother.* **2017**, *61*, doi:10.1128/AAC.02748-16.

12. Sharma, C.; Nelson-Sathi, S.; Singh, A.; Radhakrishna Pillai, M.; Chowdhary, A. Genomic perspective of triazole resistance in clinical and environmental Aspergillus fumigatus isolates without cyp51A mutations. *Fungal Genet. Biol.* **2019**, *132*, 103265, doi:10.1016/j.fgb.2019.103265.

13. Oosthuizen, J.L.; Gomez, P.; Ruan, J.; Hackett, T.L.; Moore, M.M.; Knight, D.A.; Tebbutt, S.J. Dual organism transcriptomics of airway epithelial cells interacting with conidia of Aspergillus fumigatus. *PLoS One* **2011**, *6*, e20527, doi:10.1371/journal.pone.0020527.

14. Krappmann, S.; Bignell, E.M.; Reichard, U.; Rogers, T.; Haynes, K.; Braus, G.H. The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Mol. Microbiol. 2004, 52, 785-799, doi:10.1111/j.1365-2958.2004.04015.x.

15. Amarsaikhan, N.; Albrecht-Eckardt, D.; Sasse, C.; Braus, G.H.; Ogel, Z.B.; Kniemeyer, O.
Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. *Int. J. Med. Microbiol.* 2017, *307*, 398-408, doi:10.1016/j.ijmm.2017.07.011.

3.6. Supplemental Materials

Table S3.1. Additional data pertaining to the studies for which overexpressed genes in response to

triazole exposure were identified in Aspergillus fumigatus.

Strain	Overexpressed Gene(s)	Encoded Protein(s)	Function and/or Associated Pathway	Fold Change	Experimental Conditions	Reference
	AFUA_2G11580	MFS Multidrug Transporter, putative	Membrane transport activity	14.20 ^A		
	abcA-1 (AFUA_1G17440)	ABC Multidrug Transporter	Membrane transport activity	7.10 ^A		
	mdr1 (AFUA_5G06070)	ABC Multidrug Transporter	Membrane transport activity	~5.00 ^A	-	
	abcB (AFUA_1G10390)	ABC Multidrug Transporter	Membrane transport activity	~4.50 ^A	Exposure to 1 mg/L	
Af293	abcC (AFUA_1G14330)	ABC Multidrug Transporter	Membrane transport activity	~5.50 ^A	itraconazole in Vogel's 1% glucose minimal medium for 4 hours.	
(wildtype)	abcD (AFUA_6G03470)	ABC Multidrug Transporter	Membrane transport activity	~4.50 ^A		[4]
	abcE (AFUA_7G00480)	ABC Multidrug Transporter	Membrane transport activity	~1.00 ^A		
	mdr4 (AFUA_1G12690)	ABC Multidrug Transporter	Membrane transport activity	~4.70 ^A		
	mfsA (AFUA_8G05710)	MFS Multidrug Transporter	Membrane transport activity	~4.70 ^A		
	mfsC (AFUA_1G03200)	MFS Multidrug Transporter	Membrane transport activity	~7.90 ^A		

	AFUA_5G02260 abcA-2 (AFUA_2G15130)	ABC multidrug transporter, putative ABC Multidrug Transporter	Membrane transport activity Membrane transport activity	~4.90 ^A	
	mfs56 (AFUA_1G05010)	MFS Multidrug Transporter, putative	Membrane transport activity	~4.50 ^A	
F20140 (non- cyp51A mutant and itraconazole- resistant) F18304 (non-				>25.00 ^A	
<i>cyp51A</i> mutant and itraconazole- resistant)				>70.00 ^A	Growth in Vogel's 1% glucose
F17727 (non- cyp51A mutant and posoconazole, voriconazole and itraconazole- resistant)	abcC (AFUA_1G14330)	ABC Multidrug Transporter	Membrane transport activity	>25.00 ^A	minimal medium with DMSO added in place of itraconzaole.
F19980 (non- <i>cyp51A</i> mutant and voriconazole				7.20 ^A	

and						
itraconazole-						
resistant)						
F20063 (non-						
cyp51A						
mutant and				6.50 ^A		
itraconazole-						
resistant)						
F20451 (non-						
cyp51A						
mutant and				3.60 ^A		
itraconazole-						
resistant)						
F18454 (non-						
cyp51A						
mutant and				5.10 ^A		
voriconazole-						
resistant only)						
F15483						
(azole-				2.10 ^A		
susceptible)						
F15483					Exposure to 1	
(azole-				~7.00 ^B	mg/L	
susceptible)					itraconazole in	
F18329 (non-		MFS Multidrug	Membrane		Vogel's 1%	
cyp51A	mfs56 (AFUA_1G05010)	Transporter,	transport activity		glucose	
mutant and		putative		~7.00 ^B	minimal	
voriconazole-					medium for 4	
resistant)					hours.	
resistant)					110415.	

cyp5/A -5.0 ^p mutan and -5.0 ^p irraconazole- -5.0 ^p resistant) - F18149 (non- - cyp5/A - mutan and - posconazole, - voriconazole - resistant) - E20063 (non- - cyp5/A - mutan and - irraconazole- - resistant) - F18085 - (cyp5/A - mutani and - irraconazole- - resistant) - F18085 - (cyp5/A - mutation - A248T and - irraconazole- - resistant) - F17999 - (cyp5/A - mutations - G448S and - H147Y and - </th <th>F18304 (non-</th> <th>] </th> <th></th> <th></th> <th></th>	F18304 (non-]			
itraconazole- resistan) F18149 (пол- oyp51A mutant and posoconazole, voriconazole and itraconazole- resistant) F18085 (cyp51A mutation A2487 and itraconazole- resistant) F19999 (cyp51A mutations A2487 and itraconazole- resistant) F17999 (cyp51A mutations A2487 and itraconazole- resistant) F17999 (cyp51A mutations A2487 and itraconazole- resistant) F17999 (cyp51A mutations A2487 and itraconazole- resistant) F17999 (cyp51A mutations A2487 and itraconazole- resistant)	cyp51A				
resistant) Image: I	mutant and			~5.00 ^B	
F18149 (non-	itraconazole-				
cyp51A mutant and poseconazole, voriconazole and -110.0% iraconazole- -110.0% -110.0% resistant) - -110.0% F20063 (non- - - cyp51A - - mutant and - - itraconazole- - - resistant) - - F18085 - - (cyp51A - - mutation - - A248T and - - itraconazole- - - resistant) - - F17999 - - - (cyp51A - - - mutations - - - - f17999 - - - - - (cyp51A - </td <td>resistant)</td> <td></td> <td></td> <td></td> <td></td>	resistant)				
mutant and posoconazole, voriconazole and itraconazole- resistant) -110.00 ⁸ -110.00 ⁸ F20063 (non- cyp51A mutant and itraconazole- resistant) -550.00 ⁸ -550.00 ⁸ F18085 -550.00 ⁸ -550.00 ⁸ (cyp51A mutation -550.00 ⁸ -550.00 ⁸ f17090 -500.00 ⁸ -500.00 ⁸ f17090 -700.00 ⁸ -500.00 ⁸ f17097 -700.00 ⁸ -1000 ⁸ f17097 -700.00 ⁸ -100 ⁸	F18149 (non-				
розосопаzоle, voriconazole and ifraconazole- resistant) F20063 (non- <i>cyp51A</i> mutan and ifraconazole- resistant) F18085 (<i>cyp51A</i> mutation A248T and ifraconazole- resistant) F17999 (<i>cyp51A</i> mutations A248T and ifraconazole- resistant) F17999 (<i>cyp51A</i> mutations A248T and ifraconazole- resistant) F17999 (<i>cyp51A</i> mutations A248T and ifraconazole- resistant) F17999 (<i>cyp51A</i> mutations A248T and ifraconazole- resistant) F17999 (<i>cyp51A</i> mutations	cyp51A				
voriconazole ~110.00 ⁸ and ~10.00 ⁸ itraconazole-	mutant and				
voriconazole	posoconazole,			110.00B	
itraconazole- resistant) F20063 (non- cyp5IA mutant and itraconazole- resistant) F18085 (cyp5IA mutation A248T and itraconazole- resistant) F17999 (cyp5IA mutations G448S and H147Y and	voriconazole			~110.00 ^b	
resistant)	and				
F20063 (non- cyp51A mutant and itraconazole- resistant) F18085 (cyp51A mutation A248T and itraconazole- resistant) F17999 (cyp51A mutations G448S and H147Y and	itraconazole-				
cyp51A -550.00 ^B mutant and -550.00 ^B itraconazole- - resistant) - F18085 - (cyp51A - mutation - A248T and - itraconazole- - resistant) - F17999 - (cyp51A - mutations - G448S and - H147Y and -	resistant)				
тицапа ааа аа	F20063 (non-				
itraconazole- resistant) F18085 (cyp51A mutation A248T and itraconazole- resistant) F17999 (cyp51A mutations G448S and H147Y and	cyp51A				
resistant)	mutant and			~550.00 ^B	
F18085 (cyp51A mutation A248T and itraconazole- resistant) F17999 (cyp51A mutations G448S and H147Y and	itraconazole-				
(cyp51A	resistant)				
mutation	F18085				
A248T and itraconazole- resistant) F17999 (cyp51A mutations G448S and H147Y and	(<i>cyp51A</i>				
A248T and itraconazole- resistant) F17999 (cyp51A mutations G448S and H147Y and	mutation			500.00B	
resistant) Image: mail of the second secon	A248T and			~500.002	
F17999 (cyp51A mutations G448S and H147Y and	itraconazole-				
(cyp51A mutations G448S and H147Y and	resistant)				
mutations G448S and H147Y and	F17999				
G448S and H147Y and	(<i>cyp51A</i>				
G448S and H147Y and	mutations			700 00B	
	G448S and			~/00.00	
voriconazole	H147Y and				
	voriconazole				

and					
itraconazole-					
resistant)					
F19980 (non-					
cyp51A					
voriconazole					
and				27.80 ^B	
itraconazole-					
resistant)					
F20140 (non-					
cyp51A				9 5 5 0 D	
itraconazole-				35.60 ^B	
resistant)					
F20451 (non-					
cyp51A				17.70 ^в	
itraconazole-				17.70-	
resistant)					
F17999					
(cyp51A					
mutations					
G448S and		ABC Multidrug	Membrane		
H147Y and	atrF (AFUA_6G04360)	Transporter	transport activity	31.70 ^B	
voriconazole		Transporter	aunsport activity		
and					
itraconazole-					
resistant)					

F18304 (non- <i>cyp51A</i> mutant and itraconazole- resistant)				550.90 ^B		
F19980 (non- cyp51A mutant and voriconazole and itraconazole- resistant)	cyp51A (AFUA_4G06890)	Sterol 14-alpha demethylase	Ergosterol Biosynthesis	21.00 ^B		
	mdr1 (AFUA_5G06070)	ABC Multidrug	Membrane	~2.00 ^A	Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C.	
ATCC 46645 (wildtype)		Transporter	transport activity	~5.00 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.	[5]
	abcB (AFUA_1G10390)	ABC Multidrug Transporter	Membrane transport activity	~7.00 ^A	Exposure to 0.5 µg/mL voriconazole for 30 minutes during growth at 37°C.	

$abcC (AFUA_1G14330)$ $ABC Multidrug ABC Multidrug \\ABC Multidrug ABC Multidrug \\ABC Multidru$		1		I	Exposure to
$abcC(AFUA_1G14330)$ $abcC(AFUA_1G1430)$ $abcC(AFUA_1G1430)$ $abcC(AFUA_1G1430)$ $abcC(AFUA_1G1430)$ $abcC(AFUA_1G1430)$ $abcC(AFUA_1G1430)$ $abcC(AFUA_1G1$					
$abc C (AFUA_1GI4330) \\ bbc C (AFUA_1GI4330)$					
$a \ a \ 37^\circ C.$ $= 13.00^{h} \left[\begin{array}{c} a \ 37^\circ C. \\ -13.00^{h} \ 120 \ minutes \\ 0.5 \ g/mL \\ voriconazole \\ for 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 0.5 \ g/mL \\ voriconazole \\ for 240 \ minutes \\ during growth \\ at 37^\circ C. \\ 0.5 \ g/mL \\ voriconazole \\ for 240 \ minutes \\ during growth \\ at 37^\circ C. \\ 0.5 \ g/mL \\ voriconazole \\ for 60 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ voriconazole \\ for 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ during growth \\ at 37^\circ C. \\ 10.00^{h} \ 120 \ minutes \\ 10.00^{h} \ 120 \ minutes \\ 10.00^{h} \ 100^{h} \ 120 \ minutes \\ 10.00^{h} \ 100^{h} \ 100$				~7.00 ^A	for 60 minutes
$abcC(AFUA_1G14330) \left. Abc Multidrug Transporter Transport activity \left. Abc Multidrug Transport activity \left. Abc Multidrug Transport Activity (1000) 1000 1000 1000 1000 1000 1000 10$					during growth
$ \left. \begin{array}{c} \\ \\ \\ $					at 37°C.
abcC (AFUA_1G14330) ABC Multidrug Membrane -13.00 ^A voriconazole for 120 minutes abcC (AFUA_1G14330) ABC Multidrug Membrane 0.5 µg/mL voriconazole for 60 minutes 0.5 µg/mL voriconazole 0.5 µg/mL voriconazole contact -5.00 ^A Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C. 0.5 µg/mL voriconazole for 60 minutes 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. 10.00 ^A 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C. 10.00 ^A 0.5 µg/mL voriconazole					Exposure to
abcC (AFUA_1G14330) ABC Multidrug Membrane -13.00 ^A for 120 minutes ABC Multidrug Membrane -5.00 ^A Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. Transporter transport activity Exposure to -10.00 ^A 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C.					0.5 μg/mL
abcC (AFUA_1G14330) ABC Multidrug ABC Multidrug ABC Multidrug тransporter ABC Multidrug нанинания АВС Миltidrug таляротен АВС Миltidrug таляротен					voriconazole
at 37°C.Exposure to0.5 µg/mL-5.004-5.0				~13.00 ^A	for 120 minutes
$ \begin{array}{ c c c c } \hline $					during growth
ABC Multidrug rasporterMembrane transportactivity0.5 μg/mL voriconazole for 240 minutes during growh at 37°C.ABC Multidrug ransporterMembrane transportactivityExposure to 0.5 μg/mL voriconazole for 60 minutes during growth at 37°C.ABC Multidrug transporterMembrane transport activityExposure to 0.5 μg/mL voriconazole for 60 minutes during growth at 37°C.					at 37°C.
abcC (AFUA_1G14330) ABC Multidrug Membrane -5.00 ^A voriconazole for 240 minutes ABC Multidrug Membrane -5.00 ^A Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. 2 Image: Character of the provincing state					Exposure to
abcC (AFUA_1G14330) ABC Multidrug Membrane -5.00 ^A for 240 minutes ABC Multidrug Membrane 0.5 µg/mL Transporter transport activity Exposure to 0.5 µg/mL 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. 2000 ^A Transporter transport activity Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth					0.5 μg/mL
abcC (AFUA_1G14330) ABC Multidrug Membrane Exposure to Transporter Membrane 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. BC Multidrug Membrane Transporter transport activity -10.00 ^A Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth				5 004	voriconazole
at 37°C. ABC Multidrug Nembrane ABC Multidrug Membrane Transporter transport activity -10.00 ^A 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. transporter transport activity -10.00 ^A for 120 minutes during growth				~5.00*	for 240 minutes
$ \begin{array}{ c c c c } \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $					during growth
abcC (AFUA_IG14330) ABC Multidrug Transporter HABC Multidrug Transporter Habchine transport activity					at 37°C.
abcC (AFUA_1G14330) ABC Multidrug Transporter HABC Multidrug Transporter Harasport activity + -5.00 ^A voriconazole for 60 minutes during growth at 37°С. Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth					Exposure to
abcC (AFUA_1G14330) ABC Multidrug Membrane -5.00 ^A for 60 minutes ABC Multidrug Membrane at 37°C. Transporter transport activity Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth					0.5 μg/mL
abcC (AFUA_1G14330) ABC Multidrug Membrane during growth Transporter transport activity Exposure to 0.5 μg/mL voriconazole for 120 minutes during growth					voriconazole
ABC MultidrugMembraneat 37°C.abcC (AFUA_1G14330)Transportertransport activityExposure toTransporterLL0.5 μg/mLVoriconazolero10.00 ^A for 120 minutesduring growthLLL				~5.00	for 60 minutes
abcC (AFUA_1G14330) Transporter transport activity Exposure to 0.5 μg/mL voriconazole for 120 minutes during growth during growth					during growth
Transporter transport activity Exposure to 0.5 μg/mL voriconazole r10.00 ^A for 120 minutes during growth	abcC(AEUA 1G14330)	ABC Multidrug	Membrane		at 37°C.
~10.00 ^A voriconazole for 120 minutes during growth	<i>ubce</i> (AF 0A_1014550)	Transporter	transport activity		Exposure to
~10.00 ^A for 120 minutes during growth					0.5 μg/mL
for 120 minutes during growth				- 10 00A	voriconazole
				~10.00*	for 120 minutes
at 37°C.					during growth
					at 37°C.

			>20.00 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.
			~2.00 ^A	Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C.
abcD (AFUA_6G03470)	ABC Multidrug Transporter	Membrane transport activity	>2.00 ^A	Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C.
			>20.00 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.
abcE (AFUA_7G00480)	ABC Multidrug Transporter	Membrane transport activity	~2.00 ^A	Exposure to 0.5 µg/mL voriconazole for 30 minutes during growth at 37°C.

	I		I	Exposure to	
				0.5 μg/mL	
				voriconazole	
			~7.5 ^A	for 60 minutes	
				during growth	
				at 37°C.	
				Exposure to	
				0.5 μg/mL	
				voriconazole	
			>10.00 ^A	for 120 minutes	
				during growth	
				at 37°C.	
				Exposure to	
				0.5 μg/mL	
			>20.00 ^A	voriconazole	
				for 240 minutes	
				during growth	
				at 37°C.	
				Exposure to	
				0.5 μg/mL	
				voriconazole	
			~11.00 ^A	for 30 minutes	
				during growth	
	MFS Multidrug	Membrane		at 37°C.	
mfsA (AFUA_8G05710)	Transporter	transport activity		Exposure to	
				0.5 μg/mL	
			5.004	voriconazole	
			~5.00 ^A	for 60 minutes	
				during growth	
				at 37°C.	

					Exposure to	
					0.5 μg/mL	
				~1.50 ^A	voriconazole	
				~1.50	for 120 minutes	
					during growth	
					at 37°C.	
					Exposure to	
					0.5 μg/mL	
				a 00Å	voriconazole	
				~2.00 ^A	for 240 minutes	
					during growth	
					at 37°C.	
					Exposure to	
					0.5 μg/mL	
				~4.00 ^A	voriconazole	
					for 60 minutes	
					during growth	
					at 37°C.	
					Exposure to	
					0.5 μg/mL	
		MFS Multidrug	Membrane	10.004	voriconazole	
	mfsB (AFUA_1G15490)	Transporter	transport activity	~10.00 ^A	for 120 minutes	
					during growth	
					at 37°C.	
					Exposure to	
					0.5 µg/mL	
				10.004	voriconazole	
				~18.00 ^A	for 240 minutes	
				during growth		
					at 37°C.	

			~2.50 ^A	Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. Exposure to
mfsC (AFUA_1G03200)	MFS Multidrug Transporter	Membrane transport activity	>15.00 ^A	0.5 μg/mL voriconazole for 120 minutes during growth at 37°C.
			~30.00 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.
fbpA (AFUA_1G14050)	F-box domain	NA	>50.00 ^A	Exposure to 0.5 μg/mL voriconazole for 120 minutes during growth at 37°C.
	protein		~600.00 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.

aaaA (AFUA_7G06680)	AAA-family ATPase, putative	NA	~5.00 ^A ~2.00 ^A	Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth
finA (AFUA_8G05800)	C6 zinc finger domain protein	NA	~4.00 ^A	Exposure to 0.5 µg/mL voriconazole for 30 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C.

				>5.00 ^A	Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C.
				~40.00 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.
				>1.50 ^A	Exposure to 0.5 µg/mL voriconazole for 30 minutes during growth at 37°C.
cp	pcA (AFUA_4G12470)	BZIP transcription factor	NA	~3.00 ^A	Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C.
				~5.50 ^A	Exposure to 0.5 µg/mL voriconazole for 240 minutes during growth at 37°C.

	zfpA (AFUA_8G05010)	C2H2 zinc-finger transcription factor, putative	NA	~2.00 ^A	Exposure to 0.5 µg/mL voriconazole for 30 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 60 minutes during growth at 37°C. Exposure to 0.5 µg/mL voriconazole for 120 minutes during growth at 37°C.	
				~60.00 ^A	0.5 μg/mL voriconazole for 240 minutes during growth at 37°C.	
A1160C' (wildtype)	<i>fumR (AFUB_086150)</i> (Systematic name in other strains: <i>AFUA_8G00420</i>)	C6 zinc finger transcription factor	NA	4.70 with RNA- seq ^C 4.00 with qRT- PCR ^C	Exposure to 0.5 µg/mL itraconazole for 120 minutes during growth at 37°C.	[6]

<i>AFUB_063290</i> (Systematic name in other strains: <i>AFUA_4G06170</i>)	Predicted DNA- binding transcription factor	NA	3.89 with RNA- seq ^C 3.79 with qRT- PCR ^C	
<i>AFUB_051190</i> (Systematic name in other strains: <i>AFUA_5G02655</i>)	Predicted DNA- binding transcription factor	NA	3.84 with RNA- seq ^C 2.75 with qRT- PCR ^C	
<i>AFUB_055060</i> (Systematic name in other strains: <i>AFUA_5G07510</i>)	C6 transcription factor	NA	3.50 with RNA- seq ^C 2.39 with qRT- PCR ^C	
<i>AFUB_004490</i> (Systematic name in other strains: <i>AFUA_1G04140</i>)	C6 finger domain protein, putative	NA	2.94 with RNA- seq ^C 2.04 with qRT- PCR ^C	
<i>AFUB_089440</i> (Systematic name in other strains: <i>AFUA_7G03910</i>)	C2H2 zinc finger protein	NA	2.86 with RNA- seq ^C 2.50 with qRT- PCR	

AFUB_094860 (Systematic name in other strains: AFUA_6G03430)	C6 finger domain protein, putative	NA	2.78 with RNA- seq ^C 2.93 with qRT- PCR	
AFUB_003250 (Systematic name in other strains: AFUA_1G02870)	Transcription factor involved in oxidative stress response, putative	NA	2.48 with RNA- seq ^C 2.61 with qRT- PCR ^C	
AFUB_070520 (Systematic name in other strains: AFUA_4G13600)	C2H2 finger domain protein, putative	NA	2.30 with RNA- seq ^C 2.71 with qRT- PCR ^C	
AFUB_018270 (Systematic name in other strains: AFUA_2G01190)	Cu-dependent DNA-binding protein, putative	NA	2.10 with RNA- seq ^C 1.30 with qRT- PCR ^C	
ada (AFUB_053880) (Systematic name in other strains: AFUA_5G06350)	DNA repair and transcription factor, putative	NA	2.05 with RNA- seq ^C 1.23 with qRT- PCR ^C	

<i>AFUB_096380</i> (Systematic name in other strains: <i>AFUA_6G01960</i>)	C6 finger domain protein, putative	NA	2.01 with RNA- seq ^C 3.02 with qRT- PCR ^C	
AFUB_080380 (Systematic name in other strains: AFUA_8G07360)	C6 transcription factor, putative	NA	1.90 with RNA- seq ^C 1.92 with qRT- PCR ^C	
AFUB_015800 (Systematic name in other strains: AFUA_1G16460)	BZIP transcription factor (LziP), putative	NA	1.75 with RNA- seq ^C 2.12 with qRT- PCR ^C	
AFUB_040000 (Systematic name in other strains: AFUA_3G09130)	C6 transcription factor, putative	NA	1.73 with RNA- seq ^C 2.22 with qRT- PCR ^C	
ace1 (AFUB_041100) (Systematic name in other strains: AFUA_3G08010)	C2H2 transcription factor, putative	NA	1.66 with RNA- seq ^C 2.32 with qRT- PCR ^C	

^AFold change relative to the wildype (Af293) without itraconazole treatment; ^BFold change relative to the wildtype (Af293) treated with 1 mg/mL itraconazole for four hours; ^CFold change relative to the wildtype A1160C') without itraconazole treatment

Chapter 4

General Conclusion

4.1 Concluding Remarks and Future Directions

In conclusion, this thesis work investigated gene expression in Aspergillus, with the major focus on understanding the reference gene selection practices for RT-qPCR analysis of this globally distributed genus and on the expression dynamics of triazole resistance genes in A. fumigatus. In Chapter 2, the literature was extensively reviewed to determine the status of the reference gene selection and validation processes in RT-qPCR of the genus Aspergillus. Information regarding the species of Aspergillus examined, sample type, experimental conditions, method of normalization, reference gene(s) used and whether they were experimentally validated was extracted from 90 primary articles from 2001 to 2021 (Archer & Xu, 2021). The key results of each article were also summarized (Archer & Xu, 2021). Of these studies, 17 experimentally validated the expression stability of the reference genes used and eight of these studies used more than one reference gene (Archer & Xu, 2021). In total 16 studies used more than one reference gene (Archer & Xu, 2021). Reference genes encoding beta-tubulin was the most used references gene out of a total of 20 unique reference geneencoded products (Archer & Xu, 2021). Three of the 90 studies reported conflicting experimental results with other published studies, however, due to the missing experimental validation of reference gene stability, whether these differences are caused by differences in the experimental conditions, or the strains/isolates used is inconclusive (Archer & Xu, 2021) Twenty-three of the 90 studies focused

specifically on expression in A. *fumigatus*, of which only two experimentally validated the expression stability of the genes used (Archer & Xu, 2021). The expression of the 18S rRNA gene was experimentally demonstrated to be stable during exposure to 125 µg/mL of artemisinin in RPMI-1640 medium, and the expression of actin and histone H4-encoding genes were shown to be stable during growth in Mandels' salt solution with 1% oat spelts xylan (Archer & Xu, 2021). Due to the disparity in reference gene validation for this species, it is evident that further validation of candidate reference genes is required. Overall, the work presented in this review paper support the hypothesis that the expression stability of reference genes is unique to the experimental conditions employed in the study. The review paper outlined in this Chapter also allowed for the identification of seven candidate reference genes previously used in RT-qPCR analysis of gene expression in A. fumigatus for future research. These include the top four most frequently used reference genes for all species of Aspergillus examined in this review, those encoding beta-tubulin, actin, 18S rRNA and GAPDH, as well as those encoding putative 1,3-beta-glucan synthase catalytic subunit, translation elongation factor 1-alpha, and histone 4 (Archer & Xu, 2021). Of note, the 18S rRNA gene may be problematic for use as a reference gene for several reasons. The first is that the 18S rRNA gene may be expressed at higher levels, as observed for other organisms, leading to lower Ct values (Kohsler, Leitsch, Muller, & Walochnik, 2020) which is a problem because ideally reference genes are expressed at approximately the same level as target genes for normalization (Vandesompele et al., 2002). One way to circumvent this is to dilute the sample, however, this introduces the risk of dilution errors (Vandesompele et al., 2002). Additionally, 18S rRNA transcription is mediated by RNA polymerase I (Azouzi et al., 2021), while mRNA transcription is mediated by RNA polymerase II (Muniz, Nicolas, & Trouche, 2021). This is problematic because the different pathways for RNA synthesis may result in differences in RNA levels of expression, which would not allow for direct, accurate comparisons

between the two (Chapman & Waldenstrom, 2015). Therefore, careful experimental validation of 18S rRNA is critical to ensure that it is an appropriate reference gene for RT-qPCR analysis of *A*. *fumigatus*.

In Chapter 3, previously identified triazole treatment-associated overexpressed genes were extracted from previous RNA-seq and RT-qPCR studies and summarized (Fan, Wang, Korfanty, Archer, & Xu, 2021). In summary, 10 ABC transporters, four MFS transporters and 16 transcription factors were identified as upregulated during triazole exposure (Fan, Wang, Korfanty, Archer, & Xu, 2021). As discussed in section 3.4, "Discussion", Amarsaikhan, et al. reported an opposite transcriptional response to voriconazole exposure for *cpcA* to da Silva Ferreira et al., where Amarsaikhan, et al. reported a decrease in *cpcA* expression (Amarsaikhan et al., 2017) and da Silva Ferreira et al. reported an increase (da Silva Ferreira et al., 2006). As Amarsaikhan et al. noted, the differences in expression may be attributable to the use of different media (AMM compared to YG medium) and different strains/isolates in the different group's experiments (Amarsaikhan et al., 2017). Both research groups used the same voriconazole treatment concentration of $0.5 \,\mu g/mL$ and included drug exposure times of two and four hours (Amarsaikhan et al., 2017; da Silva Ferreira et al., 2006). Although the two research teams used different methods to quantify gene expression, northern blotting (Amarsaikhan et al., 2017) versus RT-qPCR (da Silva Ferreira et al., 2006), it highlights the potential differences that changes to experimental conditions may have on the transcriptional outcome, as was reviewed in Chapter 2.

Future research should focus on the experimental validation of the expression stability of the seven candidate reference genes under clinically relevant experimental conditions. These conditions include oxidative, nitrosative, temperature and antifungal stress. Moreover, as the expression profiles of many transporters and transcription regulator genes has not been established for both itraconazole and

voriconazole yet, another extension of this work would be to use the validated reference genes from the antifungal exposure conditions to examine whether the expression of these genes' changes during exposure to the missing antifungal. Overall, this work serves as a steppingstone to improving the availability of experimentally validated, stable reference gene for future study of *Aspergillus* species.

4.2. References

Amarsaikhan, N., Albrecht-Eckardt, D., Sasse, C., Braus, G. H., Ogel, Z. B., & Kniemeyer, O. (2017).
Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole.
International Journal of Medical Microbiology, 307(7), 398-408. doi:10.1016/j.ijmm.2017.07.011
Archer, M., & Xu, J. (2021). Current Practices for Reference Gene Selection in RT-qPCR of
Aspergillus: Outlook and Recommendations for the Future. Genes (Basel), 12(7).
doi:10.3390/genes12070960

Azouzi, C., Jaafar, M., Dez, C., Abou Merhi, R., Lesne, A., Henras, A. K., & Gadal, O. (2021). Coupling Between Production of Ribosomal RNA and Maturation: Just at the Beginning. Front Mol Biosci, 8, 778778. doi:10.3389/fmolb.2021.778778

Fan, Y., Wang, Y., Korfanty, G. A., Archer, M., & Xu, J. (2021). Genome-Wide Association Analysis for Triazole Resistance in Aspergillus fumigatus. Pathogens, 10(6). doi:10.3390/pathogens10060701
Gibbons, J. G., Salichos, L., Slot, J. C., Rinker, D. C., McGary, K. L., King, J. G., . . . Rokas, A. (2012). The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Current Biology, 22(15), 1403-1409. doi:10.1016/j.cub.2012.05.033

Kohsler, M., Leitsch, D., Muller, N., & Walochnik, J. (2020). Validation of reference genes for the normalization of RT-qPCR gene expression in Acanthamoeba spp. Scientific Reports, 10(1), 10362. doi:10.1038/s41598-020-67035-0

Muniz, L., Nicolas, E., & Trouche, D. (2021). RNA polymerase II speed: a key player in controlling and adapting transcriptome composition. EMBO Journal, 40(15), e105740.

doi:10.15252/embj.2020105740

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), RESEARCH0034. doi:10.1186/gb-2002-3-7-research0034