Designing a Projectional Editor for Live Coding

DESIGNING A PROJECTIONAL EDITOR FOR L1VE CODING

UsSING DESIGN THINKING TO IMPROVE TEACHING

By

Maryam HOSSEINKORD, M.Sc.

A Thesis
Submitted to the Department of Computing and Software
and School of Graduate Studies
of McMaster University
in the Partial Fulfillment of the Requirements

for the Degree Master of Applied Science

McMaster University © Copyright by Maryam HOSSEINKORD
December 16, 2021

All Rights Reserved

http://www.mcmaster.ca/

McMaster University
Master of Applied Science (2021)

Hamilton, Ontario (Department of Computing and Software)

TITLE: Designing a Projectional Editor for Live Coding

Using Design Thinking to Improve Teaching

AUTHOR: Maryam HOSSEINKORD M.Sc.(Artificial Intelligence), Research and Science
University of Tehran

SUPERVISOR: Dr. Christopher ANAND

NUMBER OF PAGES: xiii, 89

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas

Abstract

How can observation of a legacy system be used for design? To answer this question,
we observed a teacher doing live coding with a conventional code editor and used the
observations to design an editor better suited to this style of teaching. In particular, we
found strong evidence that a projectional editor would better meet this need. Reflecting
on this experience, we describe two types of requirements which can be inferred from
observing a user using a legacy system: hidden requirements, in which users use existing
features in unexpected ways, and novel requirements inferred from pain points observed

in current system use.

iii

Acknowledgements

I would like to extend my sincere thanks to my supervisor Dr. Christopher Anand,
who guided and assisted me during my studies at McMaster University. Thanks to my
family, who gave me love and stood by my side during this period of my life. Thanks to

all my friends, specially Nasim, Azin, and Atifeh, for taking care of me.

iv

Contents

Abstract
Acknowledgements
Acronyms

Declaration of Authorship

1 Introduction
1.1 Purpose e
1.2 Research Questions (RQ)
1.3 Contributions L

1.4 Structure of Thesiso

2 Literature Review
2.1 A Brief Look at the History of Design Thinking
2.2 d.school Design Thinking Model
2.3 Design Thinking and Software Development
2.3.1 Why does software fail? oo
2.3.2 Understanding User’s Hidden Needs
2.3.3 Understanding Users’ Requirements
2.3.4 Other Areas That Design Thinking (DT) Can Help.

2.4 Parser-Based Editors vs Projectional Editors

iii

iv

xiii

2.4.1 From Syntax-Controlled Systems to Projectional Editors
2.5 Projectional Editors and Teaching
2.5.1 Design Principles and Challenges
3 Methods
3.1 Empathy
3.1.1 Ethnography o
3.1.2 Video Ethnography o L.
3.1.3 Ethnography Challenges
3.1.4 Recording Data (What-How-Why)
3.1.5 Personas
3.2 Define e
3.2.1 Sensemaking oo
3.22 Point of Views Lo
3.2.3 How Might We Questions
3.3 Ideate e
3.3.1 Brainstorming L L o o
3.3.2 Brainstorm Selectiono Lo
4 Results
4.1 Observations and Note Taking
4.2 Recording the Data Lo oo
4.3 Personas e
4.4 Defining the problem L oo
4.5 Ideation and Brainstorming oL

5 Discussion And Design
5.1 Projectional Editor or Not?
5.2 General Editing Requirements o0 oL

vi

31
31
31
33
35
36
37
38
38
39
40
40
41
42

43
43
44
47
50
51

5.2.1 Selecting 67

5.2.2 Deleting e 68

5.2.3 Copying and Cutting 69

5.24 Pasting e 69

525 Undoand Redo 70

5.2.6 Find and Replaceo 70

5.27 Commenting e 71

5.2.8 Out of Order Editing Habits, 71

5.3 The User Interface L 73
5.4 Teaching Functionalities 76

6 Conclusion 81
6.1 Research Questions L 81
6.2 Next Steps o e 82
Bibliography 84

vii

List of Figures

2.1

4.1
4.2
4.3

5.1
5.2

d.school’s The Design Thinking Model 9
Student Persona Lo 48
Instructor Personao oo 49
Grouping Observations L 51
Suggested User Interface Lo 73
Suggested Menu Lo e 80

viii

List of Tables

2.1
2.2
2.3
2.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Comparing different Design Thinking Models. 8
Editor Challenges introduced by Volter. 28
Hansen’s Principles of Design applied in EMILY 29
Norman’s Principles of Design 30
Results. o 53
Results-continue L Lo oo 54
Results-continue Lo oo 55
Results-continue L Lo oo 56
Results-continue o 57
Results-continue L oo 58
Results-continue L L Lo 59

ix

Acronyms

ACM Association for Computing Machinery

AST Abstract Syntax Tree

DBLP DataBase systems and Logic Programming

DT Design Thinking

ERP Enterprise Resource Planning

FRS Functional Requirements Specifications

GNOME Gandalf NOvice prograMming Environment

HMW How Might We

IDEO Innovation Design Engineering Organization

IEEE the Institute of Electrical and Electronics Engineers

JavaRDISE Java Rookies Driven Into a Structured Editor

MPS Meta Programming System

POV Point of View

RE Requirement Elicitation

RQ Research Questions

TA Teaching Assistant

Xi

UCD User Centered Design

UI User Interface

xii

Declaration of Authorship

I, Maryam HOSSEINKORD, declare that this thesis titled, "Designing a Projectional Edi-
tor for Live Coding Using Design Thinking to Improve Teaching” and the work presented

in it are my own.

xiii

Chapter 1

Introduction

In recent years, several initiatives have been created to encourage people of all ages
to learn how to code, and many countries have revised their computing curricula to
include coding skills. However, teaching and learning coding are both very challenging
tasks. Research has identified numerous difficulties that students face when learning
to code, for example, the need for a wide range of skills, including problem-solving,
understanding correct syntax, and debugging [52]. Additionally, factors like students’
distractions, lack of a suitable curricula to engage students, and lack of motivation and
effort from students make teaching coding a challenge. Along with all these identified
determinants, we cannot ignore the role of the code editors in students’ and teachers’
classroom experience. Therefore, a need for better tools for coding is felt more than

ever.

User Centered Design (UCD) seems a promising approach for creating solutions with
high usability and hopefully great user acceptance. UCD is an iterative design process in
which designers emphasize the users’ needs as they progress through each phase. Design
Thinking (DT) as a UCD method has gained popularity in designing software solutions
recently. In an attempt to create a more user-friendly code editor, we conducted an

ethnography-based study adopting DT methods to design a coding tool that can assist

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

both teachers and learners.

1.1 Purpose

This study focuses on designing a code editor appropriate for teaching the Elm pro-
gramming language to first-year-university Computer Science students. While there is
extensive literature on designing different code editors, few papers focus specifically on

designing a code editor for teaching or learning purposes, and none focus on live coding.

To find requirements and design a good solution, we decided to use DT as a user-
centered approach. Iterative DT begins with empathy for users, diverges into different
definitions for the problem, converges on a focused problem, then diverges into possible
solutions and converges on the right solution. The user then tests a rapid prototype and

provides feedback. This process continues until enough user satisfaction is achieved.

In terms of adopting DT techniques in different software engineering projects, a large
amount of literature exists. However, most research focuses on how DT combined with
Agile methodologies can be applied in software development projects. We have reviewed
some examples of how DT has improved software development processes in Chapter 2.
However, none of the reviewed papers explicitly outlined the steps they took before their
design decisions. Furthermore, the research rarely mentions a legacy system or how it
affected the design process, although it would seem natural that a legacy system is taken
into account in the first iteration of DT. Thus, this study aims to describe the experience
of designing a code editor using DT, including all steps in detail and reviewing the effects
of the legacy system. The output of this thesis is the design for a prototype which needs
to be implemented and used to gather feedback and better understand our users, starting

the process of DT iterations.

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

1.2 Research Questions (RQ)

« RQ1 Can observation of a legacy system be used to design a novel code editor

specifically used in live coding by an instructor?
¢ RQ2 What features should an editor designed for teaching have?

« RQ3 Is there evidence supporting the usefulness of a Projectional Editor by the

instructor in teaching coding?

¢ RQ4 What kind of requirements can we get from observing a legacy system?

1.3 Contributions

The main contributions of this study include:

1. Documenting a case study observing a legacy system to create an initial prototype

as part of a design cycle, explaining the strengths and weaknesses of this approach.
2. Imagining a code editor specifically designed for teaching via live coding.
3. Discussing our design decisions with respect to Norman’s design principles

4. Creating personas whose points of view should be used in analysis and feature

design.

1.4 Structure of Thesis

The rest of the thesis is structured as follows: In Chapter 2, we review the relevant
literature on DT and Software Development using DT, discussing some of the challenges
that can be tackled using this methodology and providing some examples. Chapter 3

describes the research methodologies employed in this study, explaining that different

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

methods can be utilized to complete each phase of DT. Chapter 4 presents the results of
this study, revealing how the data was gathered, classified, and analyzed. This chapter
reviews the results of the first three steps of the DT process: empathize, define, and
ideate. Chapter 5 demonstrates our proposed design for the first prototype and discusses
our design decisions. Finally, Chapter 6 summarizes the thesis and suggests directions

for future research.

Chapter 2

Literature Review

The word “design” has three different meanings: a field of design, a conceptual proposal,
and an actual product. In addition, it can also be used as a verb to describe an activity.

Here are the three most relevant definitions.

First, we use the term “design” to describe the outcome of a design project, i.e., the

changes brought about by it. A change can be many things:

An improvement to an existing solution, like an airbag or a computer mouse roller.

A change in a product’s physical appearance.

e A change in how the item performs.

The act of creating something completely new, whether it be a physical object, a

service, or a system, is also a change.

Second, this change is usually conceptualized before it is implemented. The design
is a theory or conceptual idea about what may be valuable to people. Finally, a design

refers to a process or activity intended to instigate these changes [55].

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

2.1 A Brief Look at the History of Design Thinking

In 1969, the Nobel Prize-winning computer scientist Herbert A. Simon mentioned design
as a science or way of thinking in his book, “Sciences of the Artificial,” [45] for the first
time. His book argues convincingly for setting up courses in design, concluding with a
blueprint for a curriculum in design alongside natural science in the whole engineering
curriculum [2]. Simon presented one of the first formal models of the Design Thinking
(DT) process in his book. His model had seven major phases, each consisting of compo-
nent stages and activities. His remarks mention rapid prototyping and testing through

observation, which forms the core of today’s many designs and entrepreneurial processes

His model consisted of 7 different stages.

e Define: Decide what issue you are trying to resolve. Agree on who the audience is.
Prioritize this project in terms of urgency. Determine what will make this project

successful and establish a glossary of terms.

¢ Research: Review the history of the issue. Note existing obstacles. Collect exam-
ples of other attempts to solve the issue. Note the project supporters, investors,
and critics. Talk to your end users for fruitful ideas for later design and consider

thought leaders’ opinions.

o Ideate: Identify the needs and motivations of your end users. Generate as many
ideas as possible to serve identified needs. Record your brainstorming sessions. Do

not judge or debate ideas during brainstorming; have one conversation at a time.

e Prototype: Combine, expand, and refine ideas. Create multiple drafts. Get feed-

back from a diverse group. Include end users. Present a selection of ideas to the

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

client. Reserve judgement and maintain neutrality. Create and present actual

working prototype(s).

e Choose: Review the objective. Set aside emotion and ownership of ideas. Avoid

consensus thinking.

e Implement: Make task descriptions. Plan tasks. Determine resources. Assign

tasks. Execute and deliver to client.

e Learn: Gather feedback from the consumer. Determine if the solution met its goals.

Discuss what could be improved. Measure success. Collect data and document.

In 1987, Harvard’s Director of Urban Design Programs, Peter Rowe, published his
book, “Design Thinking,” [54] and discussed how an architect approaches a design task in
detail. He provided case studies on three different designers resulting from long periods

of observation and documentation.

Innovation Design Engineering Organization (IDEO) was founded by Stanford Uni-
versity professor David Kelley and introduced its design process in 1991. As one of the
pioneers of DT, IDEO has developed its terminology, processes, and toolkits over the
years. IDEQO is obviously not the inventor of DT, but they have become known for solv-
ing problems on different scales. IDEO provides a 6-step iterative process for applying
Human-Centered Design. These steps are Observation, Ideation, Rapid Prototyping,

User Feedback, Iteration, and Implementation [25].

Another design process mentioned in their Human-Centered Design Field Guide has
three steps. “Inspiration, Ideation, and Implementation.” This model was proposed by

Tim Brown [42], [36].

The Hasso Plattner Institute of Design at Stanford, commonly known as the d.school,

was founded by Stanford professor David M. Kelley and his colleagues in 2004. Since its

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Model Steps

Simon Define \ Research | Ideate Prototyping Choose \ Input \ Learn
IDEO Observation Ideate | Rapid Prototyping Implementation
Brown Inspiration Ideate Implementation

d.school Empathy‘ Define | Ideate Prototyping ‘ Test

TABLE 2.1: Comparing different Design Thinking Models.

inception, they have made the development, teaching, and implementation of DT their
own central goals. They have proposed a five-stage DT process consisting of “Empathy,

Define, Ideate, Prototype, and Test” [6].

As reviewed above, many varieties of DT are used today, and while they may have a
different number of stages, ranging from three to seven, they are all based on the same
principles as Simon’s model. Table 2.1 shows a comparison of mentioned DT models.
Note that even though “Define” used to take place before “Research” in the Preliminary
Model by Simon, the next models show no clear border between Research and Define, and
finally, d.school’s model clearly states that the Empathy/Research step should happen
before defining the problem to ensure that it is the correct problem. In this study, we

focus on the five-stage DT model proposed by d.school.

2.2 d.school Design Thinking Model

DT is an exploratory approach to problem-solving that includes and balances both an-
alytical and creative thought processes [31]. As explained in section 2.1 DT has been
modeled in several different ways. The model that we use in this study is Stanford’s

d.school Design Thinking Model, as shown in Figure 2.1.

Phase 1: Empathize

Empathy is the first step in DT. By empathizing with users, the researcher should under-

stand the problem and share their feelings within the context of the problem. By the end

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

PROTOTYPE

Fi1GURE 2.1: The Design Thinking Model, image from Stanford’s
d.school.

of this step, the researcher should be able to answer some important questions or report
specific information about the user’s feeling, the problem space, and the environment.
These questions pertain to the user’s emotions and physical needs, their thoughts, their
statements and their actions, as well as the intention behind and meaning of each ac-
tion. In order to gain such wisdom and to collect such information, the researcher should
closely observe users and take careful notes. There are different methods of observing
the user, such as observing them in real-life environments or video recording them [28],

[38].

Phase 2: Define

For the design space to be clearer and more focused, you must use precise, accurate,
meaningful terms to describe the problem. While defining the problem, the researcher
should consider the results from the previous steps, such as the user and context of the
problem. At this point, the researcher should synthesize the gathered information and

gained empathy in order to formulate a meaningful and actionable problem statement.

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

To put it simply, the Define mode is about sense making [28].

Phase 3: Ideate

As soon as you have completed the problem statement and know what problem needs to
be solved, you can begin to brainstorm. Ideation is when you concentrate on generating
a wide range of ideas. In this step, the researcher should brainstorm different solutions
to the problem and create as many as possible. As the ideas developed in this step
fuel prototyping, designers must unleash their creativity and begin imagining solutions.
Sometimes even impossible ideas, which one may consider irrational, may provoke a
perfectly actionable solution. There is no single correct approach to finding a great idea.
However, brainstorming, mind mapping, and sketch notes are a few strategies to consider

[49].

Phase 4: Prototype

The prototype phase involves creating artifacts to solve the design challenge. Design
decisions for the prototype are derived from the ideas found during the ideation phase.
Although generating as many ideas as possible is recommended during the ideation
phase, we only carry a few of them forward to the prototyping phase since we must
create an artifact for each idea. Therefore, it is advised that you select only two to three
ideas, make design decisions based on them, and create artifacts. A prototype allows
designers to gain a deeper understanding of the aspects of the proposed solution and

gain insight for the following iterations.

Considering that DT is an iterative process, the prototypes should be easy to make,
not very expensive, and not time-consuming. The term prototype can refer to anything
that allows users to interact with it—be it a wall of sticky notes, a gadget you have
created, a role-playing exercise, or even a storyboard [28]. It is important to analyze all

the prototyping experiences to learn from our mistakes.

10

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Phase 5: Test

Testing is the process of asking your potential users to test your prototype. During
this mode, the researcher should carefully observe each user’s behavior and collect their
feedback. A valuable form of testing is when the user works with the prototype in a real
environment without the researcher’s involvement. Having gained empathy from step 1,
the designer now understands the user’s behavior better, and, optimistically, their point
of view is closer to the user’s. Testing is not about whether users like your solution or
not; it is about what lessons can be learned from their feedback to improve your solution
in the following iterations. Prototyping allows you to avoid spending money and time

on solutions that are not optimal.

It is important to prototype as if you are certain you are correct and test as if you
are sure you are wrong. Testing is the opportunity to refine your solution and make it

better [28].

2.3 Design Thinking and Software Development

Extensive literature exists when it comes to adopting DT techniques in different software
engineering projects. However, most of the research focuses on the combination of DT

and Agile methodology in software development projects.

Some systematic reviews on the subject identify the effectiveness of the combination
of DT with Agile methodology. For example, a study in 2018 [41] presented a litera-
ture review to evaluate how DT is integrated with Agile methods. They selected 29
studies to answer their research questions. Their results show that integrating DT and
Agile has resulted in more customer satisfaction with the products. The study also re-
ports improvements in usability, supporting the proper management of challenges and

requirements discovery.

11

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Some researchers focused on understanding why software companies have applied
DT in their projects and what techniques they have found more useful. A study [3]
did an empirical experiment by asking 59 Agile teams from Brazilian software organiza-
tions about adapting DT techniques in Agile projects. Their research showed that DT
techniques were mostly used for Requirement Elicitation (RE) purposes, and the most

adopted techniques by the participants were prototyping, brainstorming, and interviews.

Another study [16] surveyed 127 professionals from the Brazilian software industry,
asking about their experience applying different DT models in different scenarios. Their
study revealed that professionals follow more than ten different models (sets of steps).
Among more than 50 techniques used by the participants, brainstorming, personas,
and empathy maps were the most commonly used. Based on this study, 94.49% of
the participants chose “generating ideas and solutions” as a big motivator to use DT,
followed by “explore and understand the problem” and “to create innovative idea” as

the second and third place.

Hugo Martins et al. conducted a [17] systematic literature review in 2019 to answer
their research question about the challenges of eliciting requirements and methods using
DT. Their research consisted of a keyword search in the Digital Library Association
for Computing Machinery (ACM), the Institute of Electrical and Electronics Engineers
(IEEE) Xplore, and DataBase systems and Logic Programming (DBLP) Computer Sci-
ence Bibliography, and a manual search through conferences, newspapers, and maga-
zines. They answered their research questions based on the top 20 selected studies they
listed. In addition, they listed 31 DT methods that were mentioned to be useful in the

selected papers.

12

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

2.3.1 Why does software fail?

According to Harvard Business School professor Clayton Christensen, over 30,000 new
products are introduced every year, and 95 percent fail. Therefore, new products of-
ten fail. Even though many software companies use Agile frameworks, many software
projects still fail [34]. They fail both in the manufacturing and service sectors. Our
definition of failure is when these new products fail to excite customers and do not reach
sales objectives or market-share targets set by the companies that develop them. The
way top companies “listen” to their customers is changing as managers realize that end
users are often unable to articulate their hidden needs [19]. We will discuss hidden needs

in section 2.3.2.

Studies show that new products and services fail primarily due to being too similar to
existing offerings. Products that are difficult to differentiate do not attract the attention
of customers. However, the lack of distinguishing features is just a symptom of the real
problem. The real problem is the lack of understanding of customers’ needs. A fun-
damentally different approach is needed if companies are to be successful at identifying

real customer needs [19].

Mirza et al. [34] suggest that the main reason behind the production of wasteful
software is that the software teams fail to understand the user requirements completely.
Focusing on this idea, they did a study to answer the research question: “How can we
reduce developing wasteful software?” They hypothesized that gaining empathy with the
user can solve this problem by helping the developer understand the user requirements
more deeply, resulting in meaningful products. They used a combined Agile framework
and DT approach to create an application to memorize things more easily. Even though
they did not report any empirical evidence on how effective their method was, they
claimed that this approach could create good customer satisfaction and help in reducing

the production of wasteful applications that the customer does not use.

13

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

De and Vijayakumaran [11] believe most products fail due to an incomplete under-
standing of their prospective end users. The lack of interaction between the development
team and the end users makes it easy to overlook this lack of understanding, resulting in
products that do not meet end-user needs. The framing of prototyping as a process of
learning about the users is DT’s attempt to inoculate designers from this danger. They
also look at the same problem from a software tester’s perspective and focus on how
DT methods can provide a way to reduce and identify the bugs early. For example, the
use of personas (discussed in depth below) in creating test cases is a concrete way of
ensuring that the development process considers different users’ needs at all stages of

development.

In summary, we have found three reasons mentioned in related literature for product

failures:
1. Failing to understand the user’s hidden needs.
2. Failing to understand the user’s requirements.
3. Failing to identify the end user.

Many DT and software studies focus on customers’ hidden (item 1) and known re-

quirements (item 2). In the next section, we review some of them.

2.3.2 Understanding User’s Hidden Needs

Goffin [19] defines hidden needs as “issues and problems that customers face but have
not yet realized.” Identifying hidden needs is a big challenge but a big opportunity to
add value. Addressing hidden needs in a product design will highly increase customer
satisfaction. It has been pointed out that hidden needs are those which “many customers

recognize as important in the final product but do not or are not able to articulate in

14

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

advance.” [19]. One of the promising areas that software engineering can benefit from

DT tools and techniques is “finding hidden needs.”

Even though the term “hidden” was not used directly in reviewed papers, some
research finds evidence of DT methods being used to uncover hidden features in their

software projects.

In one study [38], the team reports that some features were added to the system while
not explicitly asked for but derived from observations and references made during the

empathy phase.

In addition, they state that the team uncovered some features after creating the first
prototype and going through continuous cycles of development and feedback with par-
ticipants. They were asked several questions regarding the suggestions and comments
made by other participants, and this process allowed the team to receive multiple feed-
back points about potential new features and changes that were not perceived in the

previous iterations.

2.3.3 Understanding Users’ Requirements

The success of a software system is primarily determined by its ability to fulfill the
purpose for which it was developed. Requirements engineering (RE) is the process of
discovering that purpose by identifying stakeholders and their needs, and then docu-

menting them in a form that can be analyzed, communicated, and implemented [40].

The importance of understanding end-user needs and incorporating them into the
software development process is widely recognized in software engineering. In modern
software development, the user is included in many ways, but even though user stories
should represent a user’s needs, they frequently communicate the product owner’s or

software development team’s viewpoints [33]. IBM research by Lucena et al. in 2016

15

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

[33] proposes an approach focused on satisfying end-user needs employing DT iterative
software development. Their framework is divided into two main phases. The Visioning
Phase is responsible for developing software requirements using several DT practices,
and The Delivery Wave consists of software development Sprints. They applied their
methodology in five real software development projects at IBM. Their experiment re-
vealed that the up-front analysis and user feedback resulting from the DT framework
offers a better understanding of what problems need to be solved and the best solutions
to satisfy the user needs—as a result of that 80% of the surveyed reported end users had

a very high satisfaction rate on the projects delivered.
A look into User Requirements Classifications:
User’s needs are classified by [19] into three categories:

« Known needs are customer needs that have been identified for some time. Avail-

able products already address this group of needs.

e Unmet needs are needs recognized by customers but not currently satisfied by

existing products.
¢ Hidden needs are needs that users have not yet discovered.
Also Requirements can be classified based on their explainability [3]:

o Explicit: These requirements are clearly expressed, and the system must meet

them.

e Tacit: These requirements are not directly expressed or captured but are essential
to meet System’s goal. They are (1) hard to express, convert, communicate and
share; (2) often related to application domain; (3) described as users’ tacit knowl-

edge; (4) are experiential knowledge which developing team accumulates step by

16

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

step in practice during a long period; (5) are hard to encode and articulate; (6)
can be expressed hazily and crudely"'. These requirements are met in the system

but cannot be explicitly described.

In this study, we preferred to use the first group terminology since it classifies the
requirements from a user’s knowledge perspective and matches better with the user-
centered nature of our methodology. We do not use the concept of unmet requirements
in this study because unmet and hidden requirements are observed almost the same
during observations. Unmet requirements are different from hidden ones only when
you interview users and ask them about their needs. Our case study only included
observation of the legacy system, and since both hidden and unmet requirements are

missing from the system, we can approach them the same.

We decided not to use the concept of tacit and explicit requirements because they
describe the requirements considering legacy system functionalities. Both explicit and
tacit requirements are met in the legacy system, but tacit ones are hard to extract
or describe. We needed terminology that could differ the available and non-available
features in the legacy system. Therefore, we found this concept different from hidden
requirements, which are unknown to the user, missing from the legacy system, and might

only be discovered by identifying new pain points via observation.

2.3.4 Other Areas That DT Can Help

Some papers focus on pointing out how DT techniques can improve the software devel-

opment process in general. In the following pages, we will review some of them.

The Problem Space Definition

One of the challenges of understanding a wicked problem is that no single observer can

claim to have fully analyzed and understood the full scope of the problem [5]. Thus,

17

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

one of the areas where DT can extensively help software engineering is problem space

definition.

While applying the DT method on their case study, Newman et al. [38] stated that
creating a substantial number of physical and digital technology prototypes was very
useful in understanding the problem space; they believed that building each prototype
helped designers explore a different aspect of the problem space. Borrowing an idea
from Burnett and Myers [5], they argued that presenting a technological solution to
a community was not good enough; instead, the designers should explore the problem

space together with the user group.

“It is not good enough to simply present the community with a technological solution
to a complex problem; instead, the problem space needs to be jointly explored with the

community.”

The physical artifacts created in the prototyping stage in DT are used as boundary

objects that help the designers focus on the problem space and provide a technical scope.

On the other hand, Jensen et al. [27] stated that applying DT in the early stages of
product development at SAP was highly effective because DT allowed for rapid iterative
development and resulted in a faster reframing of the actual problem. Furthermore, SAP
projects benefit from DT to gain a holistic overview of a problem. Hence every project
always starts with a discovery phase researching customers, end users, and current tech-

nological solutions.

Unbalanced Knowledge Distribution

Heikkila et al. published a study on requirements engineering in Agile software develop-

ment [24]. They state that “unbalanced knowledge distribution” is a challenge in Agile

18

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

software development. Because Agile practices rely on highly skilled people, most knowl-
edge remains tacit [24]. DT can help in this regard. Since DT supports a team-based
approach to requirements gathering, knowledge is more evenly distributed throughout
the team. According to them, involving interdisciplinary teams in the DT process, the
whole group understands the users’ needs. Furthermore, various perspectives enable
a more comprehensive elicitation that reveals the tacit knowledge of stakeholders and

team members [23].

Feature Prioritization

The study mentioned above [24] also identifies the difficulties in prioritizing requirements
as a challenge in Agile software development. Even though they did not find DT to be
helpful in this area, another study [38] reported that in their case study, the group
discussions among participants in the DT process were particularly useful for system
feature prioritization since the participants could directly encounter each other and talk

about how a feature is important or not.

Neglecting Non-functional Requirements

Husaria and Guerreiro [26] review the practices of RE and suggest how DT could have
a role in mitigating the challenges that RE could have. For example, they report that
“neglecting non-functional requirements” is a challenge in Agile software development,
and DT can help with it. According to them, DT draws considerable attention to non-

functional requirements by emphasizing the importance of usability requirements.

Accessing the User

Customer or user issues are a challenge of Agile RE. Accessing and interacting directly

with customers is difficult, which delays the process of clarifying requirements. As DT is

19

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

a process-oriented method, user interviews can be planned in advance to help overcome

this problem [24].

On the other hand, contrary to the traditional RE that tends to limit the involvement
of users in the development process by rigorous documentation, Agile software develop-
ment tends to have a significant back and forth relationship with stakeholders. DT can

provide many tools for such purposes [20].

User Interface Design:

Many publications report the effectiveness of DT in user interface design in different

software practices. We review the most relevant to our study.

A study by Muraer from the BMW group [35] describes the application of DT for
the user interface design for smart glasses. They involved BMW workers as real end
users and invented a photo prototyping method inspired by paper prototyping. They
report that using this method generated many different solutions in a short period that

surpassed the known solutions in the existing literature.

Another study [7] applies DT in redesigning two legacy systems for the Brazilian
Military by adding the prototyping phase and facilitating a designer’s participation
throughout the development life cycle. Their results reflected the importance of the
role of the designer and the quality of proposed prototypes. In particular, 67% of survey
participants replied that they fully agree that it is the designer’s role to offer an easy-
to-memorize interface. Furthermore, 96% of survey participants agree on the positive

experience of using prototypes to support the development of project features.

Suzianti et al. focused on using the DT method to develop a mobile application for
tsunami disaster management in Indonesia [48]. In addition to empathizing with the

user, they interviewed one of the tsunami victims. Even though they couldn’t continue

20

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

developing their mobile application to the final result, their research predicts a high

chance of acceptance of the application within the community.

Suzianti and Arrafah applied DT to redesign an Enterprise Resource Planning (ERP)
system for a Dental Clinic [47]. The redesign was successful, and the new User Inter-
face (UI) addresses the needs of each user, enabling him to do his work more efficiently.
Validation of the final product was done by clinical personnel as the end users. Addi-
tionally, researchers justified the prototype for its lower time on tasks while preventing
some errors and increased user satisfaction compared to the current UI by including

some survey instruments as measurement instruments during the DT process.

When using DT, researchers found that software engineers’ viewpoints should be
considered during user interface redesign [17]. Therefore, they recommend that they
be included as an additional persona to ensure the feasibility of the redesigned system.
Furthermore, they pointed out that DT solutions still must follow certain rules to be
applicable. Hence, a design system or guidelines (such as Google Material Design and

Design System) need to be used.

2.4 Parser-Based Editors vs Projectional Editors

In parser-based code editors, the users type the code in a text buffer, and then a parser
parses the code to check if it conforms to a grammar. The parser creates an Abstract
Syntax Tree (AST), which contains the program’s structure. However, a projectional
editor does not require a parser. Whenever a user edits a program, the AST is directly
modified. As the user interacts with the AST, the projection engine creates a repre-
sentation that reflects the changes resulting from the interaction. Developers often find
projectional editing to be challenging. Although projectional editors have existed for a
long time, they have not been widely adopted in practice. It may be due to the prob-

lems associated with the editor’s usability and design [53]. We believe that the literature

21

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

that explains the design of user-friendly parser-based code editors may contribute to the

design of better projectional editors since the study of code editors has a long history.

In this section, we provide a brief description of how the related terminology evolved,
and then we summarize two important studies that provide design guidelines for code

editors and projectional editors that inspired us.

2.4.1 From Syntax-Controlled Systems to Projectional Editors

Attempts to help developers to eliminate syntax errors date back to 1971. William
J. Hansen developed the Emily Interactive Syntax-Controlled System for creating and
manipulating program texts. Emily used the syntax of the programming language to

impose a tree structure on programs in the language [21].

Hansen claims [20]: “Many systems for construction and modification of computer
programs exist, but all existing systems require the programmer to enter his text as a
sequence of characters. With Emily, the user constructs his text by selecting choices

from the menu to replace certain symbols in the text.”

In Emily, programs begin as single non-terminal symbols. Then the system presents
all of the syntax rules that define replacements for each non-terminal. These replacement
strings generally contain characters and non-terminals, and the users create programs
by selecting appropriate rules. Because the editor preserves the tree structure of the

text, it is possible to manipulate it according to its structural units.

It is clear from this explanation that the concept he was working on was very similar
to projectional editors, but he did not decide to assign it a specific name. He worked on

Emily until 1984 and published multiple papers and manuals about it.

It was at the end of 1974 that Donzeau-Gouge and her colleagues [14] began working

on the same concept. They aimed to bridge the gap between existing programming tools

22

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

and the vast amount of theoretical research on the semantics of programming languages.
Their system was implemented using Pascal. One of the areas of their investigation was
close to the concept of the projectional editors. Their approach was to debug the code
by source-level program manipulation. Donzeau-Gouge implemented her system named
MENTOR, a processor designed to manipulate ASTs. MENTOR is driven by a tree

manipulation language MENTOL.

Donzeau-Gouge used the phrases “Compiler Assisted Programming” and “Structure
Oriented Editing” in her publication in 1975 [13] , and she called MENTOR a “Syntax-
directed Editor” in 1984 [15]. Later in 1985, Gouge introduced MENTOR-Ada, an
instance of MENTOR which inherits all the qualities of MENTOR. In MENTOR-Ada,
manipulations were based on representing programs as trees, similar to other structure-

oriented systems.

In 1986, Bernard Lang studied MENTOR’s potential in the context of teaching,
software development and maintenance, and language design. According to him, the use
of a syntax-directed environment for trivial tasks is costly. However, it is not clear if
the benefits of using this technology are sufficient to outweigh the costs involved, both
in terms of the complexity of the processors and computing power required, and the
additional difficulty for users in learning more complex tools. There are some benefits
for novice users since syntax-directed environments may be viewed as a helpful learning
tool since it is structured at a beginner level and may help novice users learn new

languages [32].

The first steps in preventing syntax errors involved designing a source code editor that
understood the programming language grammar and used this knowledge to improve
editing and program execution. This ensures that a program is always syntactically
correct. In the early years, there was no strict rule for whether to include a parser

or not, but they generally discussed editing the language tree rather than the text.

23

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Therefore, even though the term “Syntax Directed Editor” is used in some publications,

they refer to a tightly coupled editor and incremental parser.

In May 1978, Teitelbaum started designing and implementing the well-known “Cor-
nell program synthesizer.” Synthesizer’s editor is a combination of a text editor and a
tree editor. In this editor, the user generates templates by commands, and they can type
expressions and assignment statements one character at a time. Templates are prede-
fined, so errors are not possible. The editor detects errors instantly because it invokes the
parser phrase-by-phrase as the user types. They claim that the synthesizer has syntax-
directed program editing features of EMILY and tree editing features of MENTOR and

other existing systems [50].

Although “syntax-directed editing” was the first term to describe projectional editing,

it never gained popularity and was rarely used in publications after 1993.

Eric Sandwell coined the term “structured editor” in his paper. As part of his paper,
he reviewed existing programming methodologies in the Lisp user environment, empha-
sizing methods for interactive program development. Based on the observed behavior of
Lisp users, he believed that top-down programming could be done more effectively not
only by using stepwise refinement but often through what has been called structured

growth, which was a disciplined approach to changing the programs [53].

Later, the term “projectional editor” gained traction following its use by Fowler in
2008. Finally, Voelter’s use of this term in the paper “Embedded software development
with projectional language workbenches” introduced this term to the academic literature,

although “structure editor” is still widely used [4].

24

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

2.5 Projectional Editors and Teaching

When it comes to projectional editors and teaching, we could find only a few studies.
There is evidence that structured editors have been used in several universities for teach-
ing since the late 1970s. However, education has never widely adopted this promising

concept.

In 1977, MENTOR was used in some universities to teach Pascal. As Lang reported
in [32], younger learners and young engineers from companies collaborating with their
research group adapted very easily to syntax-directed editing regardless of their prior
training. In contrast, some older professionals struggled with the syntax-directed ap-

proach.

Garlen and Miller introduced Gandalf NOvice prograMming Environment (GNOME)
in 1984 [18]. Carnegie-Mellon University was using a family of structure editors designed
by their team to teach programming to undergrads at that time. In their study, the
researchers used their structured editors’ experience in a practical novice programming
environment design. They discussed the lessons learned from adapting structure editors
and the effectiveness of GNOME as a teaching environment. The authors state that
GNOME makes returning to a programming language easier with the syntax leads and
can aid developers in returning to a programming language without having to re-read the
manuals. Moreover, 46 high school teachers participating in the study found GNOME
enabled them to focus more on computer science concepts rather than the details of

“getting it to work.”

Among the most important factors in Garland and Miller’s success with GNOME was
their editor generator tool. The editor generator made it easy to create several editors
and incrementally add more and more features to a basic editor. It also included the

ability to integrate external tools into their environment.

25

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

The Java Rookies Driven Into a Structured Editor (JavaRDISE) projectional editor
was introduced by Santos in 2020 [43]. His main intention behind designing this projec-
tional editor was to remove the syntax barrier faced by beginning programmers. Based
on his design, JavaRDISE covered the syntax requirements of the first programming
course taught at his institution, Instituto Universitario de Lisboa (ISCTE-TIUL). His pa-
per discussed how JavaRDISE could benefit a classroom. He believes exposing novices
to more syntax than necessary to teach fundamental concepts is counterproductive, and
once they acquire a solid understanding of semantics, learning syntax gets easier for
them. Santos believes that the biggest challenge for JavaRDISE, and structured editors
in general, is the lack of usability. It is impossible to achieve the goal of easing intro-
ductory programming without providing a pleasant and productive way of manipulating
the source code. Unfortunately, he did not conduct any controlled experiments, and the

editor was not used in classrooms.

2.5.1 Design Principles and Challenges

In [53] Volter et al. conducted a study to understand why projectional editors have
not seen much adoption in practice. Their hypothesis is that the main reason for this
is the incompatibility of editor usability with infrastructure integration. Among the
drawbacks are the unfamiliar editing experience and integration challenges. In their
paper they investigate the usability of projectional editors. They used JetBrains Meta
Programming System (MPS) as a case study and evaluated the effectiveness of MPS
solutions for these issues by surveying professionals. Their study shows that flexible
language composition and diverse notations can result in serious usability problems,
which can be mitigated by using facilities that emulate the editing experience of parser-

based editors.

The researchers identified 14 usability issues related to entering code efficiently, se-

lecting and modifying code, and integrating with existing infrastructure. The authors

26

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

claim half of these issues are easily resolved using code completions or expression tree
refactorings. Many others require language- or notation-specific implementations or are
not mitigated conceptually. According to the survey, developers perceive projectional
editing as an efficient technique for everyday work, though it requires a considerable
amount of effort to learn. However, the survey also reveals weaknesses, such as weak
support for commenting, which is not adequately addressed in MPS. Table 2.2 is refor-

matted based on the summary table provided in [53].

In [20] Hansen outlines a set of user engineering principles that were applied in the
development of the Emily text editing system. He emphasized “Know the User” as the
first user engineering principle, implying that Emily’s design decisions have been guided

by User Centered Design (UCD) principles. Table 2.3 shows his ideas.

Norman’s Principles

Donald Norman, considered one of the all-time great researchers in human-computer
interaction and UCD, provides six key design principles to keep in mind as you design

any interface. Table 2.4 shows his ideas [39].

27

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

"19)[OA Aq peonpoIjul seSus([ey) I04IpY :g'¢ ATV,

uorjezI[RLIdS(-op)opou
oLUeS ‘syjooy Jested ‘9ised/Adoo

xejuAs renjxo) yrodurt/jrodxo
01 jroddns (00} saxmboy

(spepowr Surysey pue
Surjerauad 10J j10ddns we)sAs prng)

posn aq jouued
S[009 SurydLIos-T[oYs paseq-1xXaT,

son.r woryosfoxd Suisn (009 o310 /HIp
‘IOALID 93I0W ‘}1I9AdI 9POU-LQ-0pOouU

o81owr/gip 10f 310ddns (003 soxmbay

UOI}eISOIU] INJONIISeIFUT

moA®] wojsnd proddns jou 90

(Ippequi UT UOISUD)XD
[epourejawt Aq passaippe A[yred)

9poo SUIUOUWUIOD
I0y 110ddns pajeorpap sexmbeyy

(Ippequi UT UOISUD)XO
[opowrelow Aq possoippe Ajred)

SIUIUITUIOD
guryeoy-ea4y j10ddns 10U S80(T

s1o[puey ajsed

oysed /Adoo sreme-omiona)s sermboyy

SULINIONIISIT 9017 UOISSIdXd

uoIyedYIpout
9914-s5010 wrIojrod 0} pIef]

9INJONIYS
991} 9} UO Pase(q SI UOTPII[OG

9po) SUIAJIPOIN pue SuIjo9[eg

(sy0odse uowmIod oIRYS SI0IPS ()

110ddns
I0}Ipe ogads-uorjejou sormboyy

odA) noA yeym jou ST 99S NOA YUY A\

s1ejTwII[ep Jrews ‘sroddeim ‘So0ousIooI
JIRUWS ‘SUOTIIOR 919[9P ‘SULIOJSURIY SPIS

Surd4} areme-oInjona)s soamboyy

$10810) SUISSTUI 971810 0] SUOIJUIIUL

SOpOU FUIISIXO-UOU
07 S9OUAISJOI USI[qBISe jouue))

opoy) ([enixe],) SuLILIUY JUSIOIUIH

SJUTRIISTOD UOT)eNIIqUIBSIP
1X93U0D ‘sosere ‘uore[duod apod peseq-1esn ‘[enuewr saImbayy
SJIN Aq posn onbruyoe], UOIIeSIHIN anss|

28

ience

McMaster — Computer Sc

)

M.A.Sc. Thesis - Hosseinkord Maryam

ATINA ut pordde uSiso(T jo sejdmurig s,ussuey :¢ g d@14V,],

‘o[qe[leAaR oq SARMI® [[IM UOIJRULIOJUI JOSTI 9} JO UOISIOA SUWIOSO[NOI} dIeMPIRY A3118equr CT
10 we)sAS JO sso[piedal jey) AJLIS0IU] 2INJONI)G BIe(] JUSIIYNS opiaoid P[noys we)sAs y 2INONIYS BIR(]
‘Puo USAIS Aue 0} sureW 9UO URY) 210w sopraoid welshs o) jey) surswr Ajduis siyJ, Aouepunpeoy er
*SUOI10® S[(ISIOARI 9pIAOId IsnuI W9)SAS o1} Iosn o) 309901d OF, o[y SUOI0® SqISIOANY T
oY} WOJJ 9INJONIISANS 93Ie] AIOA © 9AOWDI A[JUS)ISAPRUI URD UOI}S[OP SNOSUOLIS J[3UIS Y : 1at
“usrsep SIOII® UOWIUWIOD DT
. . 10115 I10J IeoulSug]
wo)sAs o) ul weqold e sI 1 ‘Iosn oY) JO JneJ oY) 10U SI 41 ‘A[juenboj sinooo Jolod ue] 91} MO I9UISUY
X073 91 Ut 10419 oY) So3essoW 0119 POOX) 6
JO UOI)eD0] 30eX0 9} pue Iolid Jo odA) oY) Surpedrpul ‘Oyads oq pnoys sefessowl I0LIH
‘SPUBMIWOD-NS 0} Pajesd[al o Urd spurtIUOd juanbaijur ofiym payrduws oq ued
SPURUWIWIOD JUSTUOATUOIU] "POSN WIOP[AS 91t SPURTIUIOD I9Y)0 S[IYm sjuelrem Aouenbeij 1oty mhwaonMMMMWMNEEOQ 8
Se JUSIUSATOD SB JOU dIe SPUBTIUIOD dWOS 1B} MOYS [[IM UOI}OR Ul SIOSN JO UOI}RAIIS(() : o
'99B)S [0IUO0D DISkq SWOS 0} WAISAS
o1} wInjel sAeme 0} PoAISsal 9 P[NOYS UOJING dUO pue sdurueswt juspusdep 21els moj [ES—— .,
® URY) 9IOW 9ARY }0U P[NOYS U0IING Y ‘WDISAS oY) JO 91R)S oY) 0} UoIje[al o[dulls © aAey SN
pInoys suorjoriajul oyads Jo Jutueswr oy} JeY) SI AIowLwW d[osnu Jo uorjestjduwr suQ)
1sombal e Ino A11ed 01 AIessedou se 9[1)1] s o3uryd pnoys Ae[dsIp oY) sueow SIY], erroul Aerdsiq 9 suopered(y szmundo
‘pojurid ST 91 S® OUI[YU} Yoo JO Ioquuinu oul] oy} sAe[dsip A[Twry o[y © suorjerodo uowrurod G . o
Surjurid o[Iym ‘9oURISUI 10, "YORQPODJ I9SN OY} SAIS 1Se9[Je I0 Ise] 9 P[NoYs suoljerod() Jo uornoexe prdeyy
‘Aem 100 Aue Ul AJIpowr ued oY jey) Iejowrered N —
Aue 9[0SUOD 9Y} WO} AJIpOW 09 d[qe 9¢ P[NOYS PUR 9SdY} 0} SS9I0R USAIS 9 P[NOYS oIS %.mao nww o v
Josn oyJ, 'SOI3SIYe)s snoLrea sdooy pue siojoureled snorrea Aq pa[[OIJUOD ST WDISAS AUy ¥ i v
‘we)sAs oY) jo uorpdesiad T01ARYOq O[qEIOIpOL ¢
1197} 9zIue310 ued I9sn 9y} YoIym punodte AKjeuosiad, e aaey 0} YSNO W)SAS YT, HABHRq O1qeIIPOLd
awreu Aq . 4
. qUINU JOU SOUIRN UOI}RZLIOWSA SZIWIUIN
weY) SUowR 109[0s 0} 9[qR 9q P[NOYS 9y ‘SW) JO 1S B WOIJ 109[0S 0} SI I9sn o) USYA\
“ORDOLO8 A1jU9 J0U UOI}I9[9g 1
Aq APomMb o10W UOTJRULIOIUT I9JUS URD 91 ‘SPIdU S,19STL 91} 19400 PaAe[dsIp sed10Ud 9y} I :
u
uoryeue[dxsyy UOoISIO9(J ordourrg

29

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

US1so(] JO So[duLI S,URULION " dTdV],

‘pouLIed] sey|

"POJRIISILI DUI0I9q
1M ToSn oY) ‘SHMNSOI JudISHIp donpoxd

JOSTL 9} JRUM [[JIM JUI)SISUOIUL 9 PINom SSUIY} SUINOO[-IR[IWIS USYAA “SuIoljed Aousy
91 9SNIBII(PASURD 9 JOUURD I ‘UOYIN] 9SO1[) UIRS] PUR 9ZIUS0IDI 0} AOUIISISUOD -SISUO0))
yor(q Oy} S9)RUSISOP MOLIR pIemsdeq ® J| Poou s10s() "AJISEd 910U SFUIY} MOU UIB]
Aoty ‘surojjed ozrudosax ojdood TOY AN
"IOSTL 9} W[OYMIOAO Aeut
"$19999] 9dA) 0} SIOSTL MO[[R JOU S0P JeT) 9oeIIoIUI UR UM suorydo jo oSuer spim SHUTRIISUO))
ULIOJ OUI[UO UR UO Py Joqunu suoyd y ® OSTIRI9([BIIUDSSO ST SIYJ, "UOI}ORISIUI JOSTL
JO SULIOJ UIe}I8D W[SIUTBIISUOD 9IBJISIU]
A d
HATISHOS PUb pooes oﬁﬂc@m o "$109[J0 I197) S[qUIDSDI ATOSOTD
1% UMOp soaowl 98ed oY} pue ‘AJJUSIIND dIe) h surddeyy
PINOYS S[OI)U0D d} ‘UFISOp poo3 e U]
NOA 3I9YM S8)BIIPUL IB([[0IOS [BIILISA ST,
91 ge Suryoo Aq snl uoryeurrojur
WO POY 01 MOT MOWY A[PYEIPOUII TIOK POIISOP 9} SS000' URD SIOSTL e} 0S
USNOUD SAT)INIUL 8 P[NOYS 9ORLIIUL POOS Y | 90URPIOPY
9SN'IS9(2OURPIOPE YSIY 9ARY SSNUW 99JJ0))
‘posn o ued A9} MOY pue JOO[SSUIY} MOY
uoamiaq diysuorje[ar oYy St S0URPIOHY
‘Surpeoy st d5edqom Sem UOIJOR o H%E@w mwMMH ROIPUI YOB(PO, 2R POd
YeT) SOYRIIPUI qv) oY} U0 ooT Furumds v [jo' 91} Iey)ey ﬁ HeoIpul 3ovqpos] | IR(PoS]
OATOD9I PINOYS IOSN d1[} ‘UOIJOR AIOAD 193]y
ordrourad A[IQISIA O} YIIM SIOJIJUL bopipu
oqe Aressodou suor}do oy} A[Uo Jey) 9Insuo
PINOM TOT}RILIOFUL TR 00 SUIPPY 03 [eryuesso ST 31 ‘A[[eTont “90RJI9YUL ATIqIst
os ‘dn 8uru8is puer ur Furs80[noqe ATUO SI HIvh P AREOniPPY FoA HIAIIA
. ue e urjooy Jsnl Aq woyj asn 0} Moy
POPooU UOIJRUWLIOFUT 9} ‘USSIOS UI-USIS € UJ
pue suorjdo IoY) Jo dIeM® 9 P[NOYS SIOS()
ordurexry uordLIosa (] ordourrg

30

Chapter 3

Methods

This chapter describes the different methods we adopted for each step of the Design
Thinking (DT) process.

3.1 Empathy

The problems a design thinker tries to solve are rarely their own. Instead, they be-
long to a particular group of people, the end users. As mentioned previously, gaining
empathy with these people, and understanding their needs and feelings, is an impor-
tant component of DT. The best solutions come out of the deepest insights into human

behaviour.

Learning to recognize those insights is not an easy process because human minds
automatically filter out much information. We need to learn to see things “with a fresh
set of eyes,” rather than just looking, and empathizing is what can help [28].

3.1.1 Ethnography

The most significant point behind the empathy phase in User Centered Design (UCD)

methods is the effort to understand the product or service concerning its contexts and

31

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

evaluate the design based on its impact on users’ lives. The Collins COBIULD dictionary

(1987) defines “context” in the following way:

“The context of something consists of the ideas, situation, events, or information that
relate to it and make it possible to understand it fully. If something is seen in context or
if it is put into context, it is considered with all the factors that are related to it rather

than just being considered on its own, so that it can be properly understood.” [55]

This definition makes clear that designers need to gain wisdom on a product and all
the different ways it relates to its environment in everyday life. Careful observation and
perception of context help the designer to come up with new ideas to feed the next steps

of the process [55].

At the very first stage of a DT process, the designer should be able to collect all this
information from the interviews and observations. Many methods already exist to help
him in this stage. Ethnography originally developed and popularized in social sciences

is one of the main qualitative research methods, that can help in this area [1].

The concept of ethnography (literally, “description of people”) describes a study
conducted by direct observation of users in their natural environment rather than in a lab.
This type of research aims to learn how users interact with their natural environments.
Defined by Van Dijk in his famous paper “Design ethnography: Taking inspiration from

everyday life” [51]:

Design ethnography is qualitative ethnographic research set within a design
context. Design ethnography is aimed at understanding the future users of a
design, such as a certain service. It is a structured process for going into the
depth of the everyday lives and experiences of the end-users. The intention

is to enable the design team to identify with these people, to build up an

32

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

empathic understanding of their practices and routines and what they care

about.

Design ethnography is about original, rather than simulated, understanding of the

users’ practice [55].

A big advantage of ethnography over interviews is the honest and pure picture that
ethnography can provide. In an interview, the users describe their work or leisure.
So, naturally, they may say things they want the design team to hear. Due to this
phenomenon, the ideas become filtered by the users’ verbal expression skills and their

expectations regarding the design team’s intentions [55].

3.1.2 Video Ethnography

Today with a drastic increase in the complexity level of demanded products and services,
it is difficult for a designer to understand the context of a problem. This situation
gets even worse for customized services or specialized products. A designer needs to
understand users’ actions, intentions, values, and needs. They need to learn how users
interact with a system and how the solution fits into practice in the real environment.
The growth of numerous elements that the ethnographer should observe and perceive

raises the need for better tools to support the ethnography process.

The use of videos can help ethnographers achieve their goals. The video ethnography
process involves recording a stream of activity of subjects in their natural environment

to investigate, interpret, and represent culture and society [44].

Video reveals behavior that would otherwise remain hidden due to its ability to
observe for a long period. Researchers can leave the camera recording while they leave the

scene and conduct research unobtrusively. Using this method can be useful in situations

33

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

where participants’ work could be disrupted. Video provides access to some scenes that

would otherwise be impossible to analyze in depth [55].
The use of video can be advantageous to ethnographic research in multiple ways [44]:

e With videos, a wide range of activities can be observed in their natural settings
over an extended period. This coverage can complement written accounts and

provide the context for the limited coverage of other methods.

e Video analysis allows for scientific rigor when performed by trained researchers. In
addition, videos preserve the sequence of observed behavior for later examination,

enhancing the validity and reliability of statements about the activity.

e Videos can be viewed by researchers and participants, allowing the scope of inter-

pretation to grow.

¢ Videos can be used to connect abstractions and inferences to the observable activ-

ities that they are based on.

According to Heath and Luff, video has three characteristics that make it ideal for

studying the interactional structure of workplace activities [22]:

e Video enables access to the nuances of the conversation and visual behavior, al-

lowing for extensive investigation of the activities in slow motion if necessary.

e Researchers can exchange results with others via video recordings, allowing for

discussion of the materials used in the investigation.

e Video allows for the public display of the findings. Therefore, it can be observed

and examined by the public too.

34

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

3.1.3 Ethnography Challenges

Just like any other research method, there are challenges to ethnographic research. It’s
important to consider these before choosing the right research method. Here are some

points to keep in mind:

1. Ethnography is very time-consuming and takes a lot of effort from the researcher to
go to the new environment and learn about it. However, video ethnography eases
this challenge by eliminating the need for the physical presence of the researcher

in the environment.

2. Results from ethnographic research only apply to the people being studied. There-
fore, it is not easy to generalize those results to other societies or situations. In our
case, we should consider if our findings only apply to online classes or first-year

students, or to similar courses or teaching styles.

3. Ethnography is subject to interpretation. A researcher’s interpretation of the data

may be biased.

4. There are practical and ethical concerns of ethnographic research. However, getting
the prior consent of the participants, maintaining their confidentiality, and a proper

research design can mitigate these issues.

5. The presence of a video camera affects people’s behavior; therefore, the researcher
might not capture an honest picture. Ethnographers face this challenge regularly.
Using hidden cameras is one solution, but ethical concerns usually require that
the ethnographer get consent from the participants before filming. Therefore, it is

almost impossible to omit the video’s effect on people’s behavior.

35

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

3.1.4 Recording Data (What-How-Why)

What-How-Why is a method for helping researchers explore the observations and derive
deeper understandings of people as they observe them. Using this method, we start
with observation—the What—then move to abstraction—asking How—until finally, we
arrive at the Why, which is the emotional underpinnings of the observed behavior. This
method is recognized to be extremely useful for analyzing images [6], and we found it

useful when analyzing our video recordings

There are straightforward instructions to use this method provided by the d.school
[6]. We have followed the same steps to gather and organize our data. We set up an

Excel sheet with three columns: What? How? and Why?
What: Starting with concrete observations

The instructor recorded the entire lecture for the use of students in the class, including
both live coding and background discussions. We did our best to be objective and avoid

making any assumptions by taking note of all the facts as they were.
How: Move to understand

We took notes on how the instructor was doing each specific action. Noting the
required effort, whether they were rushed or had difficulty completing the action. Did
the activity or situation appear to be impacting the user’s state of being either positively
or negatively? We used descriptive phrases packed with adjectives. This section allowed

us to write about the emotional impact on the user based on the clues we saw.

Why: Time for interpretation

This section is where we tried to note ¢

‘why the user is doing the specific action
and why in that particular way?” This step usually requires that the researchers make

informed guesses regarding motivation and emotions. They will discover assumptions

36

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

to test with users later and will often discover unexpected realities about a particular

situation.

3.1.5 Personas

When designing for a broad audience of users, one temptation is to make the product’s
functionality as broad as possible to accommodate as many people as possible. But this
approach is flawed. Instead, the correct approach is to design for specific types of users

with particular needs [10]. Personas can help us identify types of users.

In 1999, Cooper introduced the concept of personas in his book “Inmates are running
the asylum [9].” Cooper described a persona as “a collection of realistic representative
information that may include fictitious details for a more accurate characterization.” In
simpler words, personas are based on reality, but some imaginary elements with no direct

impact on the real product design are added to make the persona more tangible.

In summary, personas help us focus on the right individuals to design for, whose
needs represent a larger group of key constituents. They also help us prioritize design
elements to address the needs of the most important users without significantly hindering

secondary users [10].
There is a complete process for creating personas in [10] that we followed:
1. Identify persona data sources.

2. Set up user categories: A user category is a group of users that share similar char-

acteristics. In this step, we must find out related user categories for our product.

3. Collect user data: After deciding the categories of users, we can collect user data

from data sources. In this step, we create skeletons.

37

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

4. Prioritize the skeletons: It’s impossible to create personas for every skeleton.

Therefore, we prioritize them according to their importance to our product.

5. Convert skeletons to persona foundation documents: Skeletons represent basic
information about a user. But a persona foundation document 4.1 is a concrete
narration of a specific user in written form. A variety of templates are available

online. We used the template provided by mural.com for our research.

6. Designate persona types: Although there are multiple types of personas, our study
only focuses on primary and secondary types. We need to decide which persona is

the primary one.

3.2 Define

The define stage of the design process focuses on bringing clarity and focus to the design
space. At this stage, designers should identify the challenge they intend to conquer
based on what they have learned about the user and the context. After understanding
the context and gaining invaluable empathy with the user through the previous step,

now the designer can make sense of the vast amount of information gathered [28].

The define mode aims to present a problem statement that is both meaningful and
actionable—this is called a point of view. A point of view is a guiding statement that

focuses on the needs of a specific user and defines the right challenge to address.

3.2.1 Sensemaking

Sensemaking has multiple interesting definitions. In their paper [29], Klein et al. have
gathered many of them while introducing their own definition. “Sensemaking is a moti-
vated, continuous effort to understand connections (which can be among people, places,

and events) to anticipate their trajectories and act effectively.”

38

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Sensemaking refers to people continually and relatively automatically going through
an act-oriented process to integrate experiences into their understanding of their world.
Designers make explicit this automatic process during the design synthesis phase as they

interpret and model data to make sense of it [30].

Even though sensemaking does not follow a rigid formula, several methods can fa-
cilitate this process [6]. Regardless of the technique, here, the design team develops a
shared understanding of the data gathered. In this step, the designers create a series of
artificial constraints that informs but does not completely determine the design space
under study. Using these artificial constraints, designers can frame a problem within a
flexible framework. The design team can reframe the situation with sensemaking and

define the correct design problem.

We used some of the methods suggested by Sandford’s d.school to conduct our re-

search.

3.2.2 Point of Views

Writing Point of View (POV) is a way of reframing a design challenge into an actionable
problem statement. A good POV provides focus, frames the problem, and informs
criteria for evaluating competing ideas. Additionally, it will allow the researcher to
think more directly by creating How Might We (HMW) questions based on the POVs
[28], [6].

The bootleg guide provided by Hasso Plattner offers multiple methods for expressing
POVs [6]. In our research, we have utilized the POV Madlib method. Using the following

Madlib, we captured and harmonized three elements of a POV: user, need, and insight.

[USER] needs to [USER’S NEED] because [SURPRISING INSIGHT]

39

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Using this method, the designer tries out various options, trying out different com-
binations of variables. The insight and need should arise from your unpacking and
synthesis work in empathy. “Needs” should be verbs, and insights should not simply be

reasons for the need but rather a statement that can be used in the design process [6].

3.2.3 How Might We Questions

A HMW question is a short question intended to initiate brainstorming. After having the
POV statement, a HMW can be considered as a seed for the ideation phase. Designers
need to develop a seed that is broad enough to allow for a wide selection of solutions
yet narrow enough to inspire the team to come up with specific, unique solutions. Note

that the scope of the seed will differ depending on the project [6].

HMW questions are created from a point of view. The objective is to generate ac-
tionable questions that retain the unique and specific perspective of the POV. These

)

questions can begin with “How might we...” and explore various enhancement oppor-
tunities within the problem space [6]. Additionally, Marty Neumeier’s book [37] has
suggested a few other question types to inspire the POVs. According to him, “In What
Ways Might We...”, “What’s stopping us from...?” and “What would happen if...?” can

be used to continue the brainstorming process. To generate different HMWs, this study

used d.school’s bootleg guide [6] as well as Neumeier’s suggestions [37].

3.3 Ideate

Ideation is the mode of the design process that focuses on generating ideas. Ideation
helps designers transition from identifying problems to developing solutions for the users.
The ideation mode allows the designers to combine their understanding of the problem
space and users with their imagination to generate solutions. Especially early in a

design project, ideation is about seeking the widest range of possible solutions rather

40

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

than simply settling on one. Testing and feedback from users will determine the best

solution later.

Many techniques are available to generate ideas, such as bodystorming, mind map-
ping, and sketching. In all of them, however, there is a common theme: deferring
judgment—that is, separating idea generation from idea evaluation. Thus, the designer
reinforces their imagination and creativity, knowing that they will get to the evaluation

later. [28]

3.3.1 Brainstorming

During a brainstorming session, team members can generate many ideas that they would
not have thought of if they were working alone. The purpose of brainstorming is to
utilize the group’s collective thinking by interacting with one another, listening to each
other, and building upon previous ideas. As part of an effective brainstorm, the team
should also intentionally turn up the generative part of their brains and turn down the
evaluative part. In other words, we are seeking as many creative solutions as possible
without judging them. Team members are encouraged to speak up about their ideas,

even if they seem costly, time-consuming, or unfeasible.

The design team leader should be deliberate about setting aside a period for the team
to operate in “brainstorm mode.” This time does not need to be very long. If the team
is highly engaged, 15 to 30 minutes should be sufficient. Team members can conduct
this activity on a whiteboard or around a table while standing or sitting upright in an
active posture. Using a HMW question is a great way to frame a brainstorm. All the

ideas generated by the team are collected in this process [6].

41

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

3.3.2 Brainstorm Selection

Brainstorming should generate many diverse ideas. At the selection stage, we assess
these ideas, which is called harvesting. It is fairly straightforward to gather ideas from
brainstorming sessions and select a few, but when designing solutions, we should be
careful about how we select the ideas. It is possible to carry forward a range of these
ideas to preserve the breadth of solutions and to not settle for only the most convenient
solution. We do not narrow our choices too quickly during the selection process. A
design team can use different selection techniques, but in this study, we selected ideas
by discussion within a group of two. If there was more than one interesting solution, we

forwarded multiple ideas into prototyping [6].

42

Chapter 4

Results

4.1 Observations and Note Taking

To conduct this research, we analyzed videos recorded during the lectures of a first-year
undergraduate course (1XD3 - Introduction to Software Design Using Web Program-
ming) in the computer science program at McMaster University in Winter 2021 held
online due to Covid-19 pandemic. Each lecture was approximately 45 minutes long and
was conducted twice a week. During these sessions, the instructor taught concepts along
with coding while he shared his code editor screen with the students. Additionally, the
instructor’s face could be seen in a small window at the bottom right corner of the screen.
The settings for all the videos were identical. Students were able to communicate with
the instructor through Microsoft Teams’ chat box or audio chat. For this study the 7

first sessions were selected to be observed.

During the Covid-19 pandemic, all lectures, labs, and office hours were conducted
via Microsoft Teams. Therefore, all the videos used in this study were filmed in neutral
settings and the users’ natural environments. Additionally, we believe that the video
recording effect on users was minimal, as these videos were intended to be used for future

use by students, and not as a reference to our observations.

43

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Both the students and the instructor were made aware that the sessions was being
recorded and anyone in the MS Team could view the recording. Only the instructor’s
image and voice were recorded in the live coding videos used in this study. Students
answered questions via text chat, but the chat data was not used in note-taking. Since
the purpose of the study is the improvement of course delivery, by TCP2 2018, Article
2.5 [16] it is exempt from ethics review. Note also that the instructor is a collaborator

on this improvement project.

4.2 Recording the Data

To record the data, we used the table format of the what-how-why method and were

interested in any actions and statements in the online class.

When it comes to recording data, it might seem straightforward. We might expect
the researcher to sit and take note of everything. There are two considerable points
associated with this idea. First, is it possible to take note of everything? Is it even good
to end up with a huge list of observations that might be irrelevant? What are the criteria
to distinguish relevant and non-relevant observations? The answer to these questions
can help the researcher to avoid a burst of information. Second, what is everything?
How do you define everything? The human mind filters much information it receives
from the environment. How can we claim that the researcher’s brain did not filter any
valuable information? In sum, the ideal results come from recording as many relevant
ideas as possible. It is desirable to keep irrelevant ideas to the minimum while we don’t

miss relevant and meaningful points.

Facing the challenge, our first session of observation was the most time-consuming
one. It took four hours to watch a 45-minute video. Since we were unaware of what

we might see in the video, what should be noted, and what is relevant, we took notes

44

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

of everything that caught our attention. In that state, we were highly focused on edit-
ing behaviors, and to avoid missing any valuable fact, we recorded every editing move

performed by the instructor even if they seemed irrelevant at that moment.

Being inexperienced resulted in recording too many irrelevant notes. Therefore, many
of the editing facts we recorded in early sessions did not end up contributing anything
meaningful to our study. It is easy to say we should record all observations in the
empathy step and leave the judgments to the future, but recording many irrelevant ideas
is very disruptive for the researcher and will confuse them in the next steps. Therefore,
it is good that the researcher gets more familiar with the problem in each observation
and can take better notes over time. Having this in mind, they should do their best not
to get into the observer’s bias trap. Observer bias is a social-science term to describe the
error introduced into measurement when observers overemphasize behavior they expect
to find and fail to notice behavior they do not expect. Therefore, the observer should
be aware that their mind may trick them into going forward to the solution-finding step

and thereby emphasizing some observations over others.

Although the notes taken from the first observations should not contain many irrel-
evant facts, we believe the researcher should take as many notes as possible in the early

stages of the study because they have no idea what is important and what is not.

For example, in one session, the instructor used the List.map function. This func-
tion takes a list, and a function, and applies the function to each item in the list and
returns a list. As we observed, the instructor used an undefined function as input when
using List.map. He later added the definition in the code. While this action may seem
irrelevant to our design at first, we developed an important point of view resulting from

it.

45

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Additionally, our experience showed that we became more cautious about what fac-
tors to consider in subsequent sessions. Therefore we started to record more environmen-
tal facts compared to previous sessions. The sensory gating concept probably explains
this phenomenon. Sensory gating or filtering is filtering out redundant or irrelevant
stimuli from all the environmental stimuli that reach the brain. This process occurs
automatically in the brain during attention processing when the brain selectively seeks
information relevant to the goal. We believe that after learning about the different ar-
eas to focus on, our sensory gating began to disappear, and we started observing more

environmental facts.

For example, we recorded that the instructor asks the students if the code is readable
to them in the fourth session. We did not record this fact in previous sessions, but the
instructor asked the same question at the beginning of every class. We believe that this
fact was filtered out by our brain in previous sessions, while it was a very important

point and finally led to a valuable, meaningful Point of View (POV).

Our experience has shown that multiple observation sessions are very effective since
the observer becomes more familiar with the subject and can apply that knowledge to

future observations.

The points that we recorded appeared with different frequencies. For example, using
text editing functions such as copy, paste, and find, saving the code, running the code,
and checking the output repeatedly occurred throughout each session as expected. Using
the find function happened at least once in each of the sessions. Some observations
occurred as the classes became more complex and more sophisticated structures were
used. Some other observations occurred rarely or only once as a result of a coincidence
or user error. The more videos we watched, the number of new observations to record

reduced.

46

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Prioritizing the requirements can be achieved by assessing the frequency of use of a
feature or considering how frequently the user encounters a problem. The requirements
we gathered are nearly all high-priority and should be included in the first prototype.
We recorded 96 observations from 5 different sessions. We will discuss the classification

of this data and sense-making in section 4.4.

4.3 Personas

As discussed in the Chapter 3, creating good personas is one of the desired outputs of the
empathy phase. We created two role-based personas for this study and included effec-
tive factors like age, proficiency in Elm programming, level of experience with different
code editors, and minor disabilities within their characters. The personas were created
from observations, an interview with the course Teaching Assistant, and the researcher’s
experience as a Teaching Assistant in similar courses, and we will use them to evaluate
solutions in the ideation phase. We must examine the effectiveness of our solution from

the perspective of our respective personas.

Our first persona is John. He is a CS1 student. He is familiar with Haskell, but this
is his first experience with Elm. He is proficient in using a variety of text editors and

code editors. He has poor vision. Figure 4.1 shows this persona.

Our second persona is Dr. William Smith. He is 45 years old. He holds a Ph.D. in
computer science and has been teaching 1XD3 for the past five years. He is an expert

in Elm and enjoys teaching online courses. Figure 4.2 shows this persona.

47

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

b

He loves
reading
books

He takes
notes in
class

He uses
VScode for
other courses
as the default
code editor

Sometimes he
attends online
classes using
his android
tablet

He likes
working with
text editing
tools

He uses a
dell laptop,
and his OS
is Ubuntu

He learned
Haskell in
another
course

He is new to
Elm
programming
language

John James

o
[¥

NAME & SKETCH

BEHAVIORS & ACTIONS

DEMOGRAPHIC & PSYCHOGRAPHIC DETAILS

NEEDS & PAIN POINTS

A He feels
-— He needs high- He needs to He wants to be A
- N quality Visuals d d able to do his
-) understan ’ he does not
and Audio M= assignment K how t
during an online code while in correctly and on now how to
gclass class tir¥|e work with the
new editor
He has been f sometimes he
He'i csi He is good Sometimes he He needs to e He needs to
eisa exposed to i Py~ Use the course e sl understand
tudent programming of things in material other students theoretical
S bt technology A Ig properly and auestions in background as
r e class i
efore optimally class well as the code
Sometimes he
i He needs to
He thinks looses his code He wants to add
He has . He had d learning the when he forgets comments to his Ie:rn shc;r?t‘cut
weak He is 18 stress attack new language to save or when code for further woerﬁnvé vlvﬁh
i i his editor fi
Y years old one year is challenging e reference the editor
ago
Hz;ef:lf 1 He wants to c’:renm:: :1?5 He needs to
. 9 X P give feedback P L submit his
X He likes work with to th code with his N t
Heis a ; other st friends' to assignen
smart Pl students instructor learn better Gl
attention to
student 5
details ltis hard for He needs to Heneedstoget ~ He wants to
him to ask his receive e s write a
q . feedback from instructor during
questions in the TA and the the class or at the readable
class instructor end of the class code
FIGURE 4.1: Student Persona

48

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Dr. William Smith

@
[¥

NAME & SKETCH

He likes
teaching
virtual
classes

He works
with Visual
Studio as his
default Code
editor

He cares
about
students
feedback

He has a
MacBook Air

He prepares

the material

before each
class

BEHAVIORS & ACTIONS

He likes to use
his tablet
sometimes to
answer students
emails

He uses extra
big screens
when working
from home

He teaches one
other course this
semester and
has 6 graduate
students

DEMOGRAPHIC & PSYCHOGRAPHIC DETAILS

He is 45
years old

He has 25+
years
experience
coding in
different code
editors

He has been
teaching Elm
programming to
CS1 students for
last 5 years

=V
He has a He teaches
Phd in the 1XD3
computer course this
science semester
He ne.eds two e oras
pairs of teaching
glasses for .
short/long virtual
classes

sightedness

NEEDS & PAIN POINTS

O

He wants to
introduce
proper
references to
students

He cares
about voice
and audio
quality in
online classes

FIGURE 4.2: Instructor Persona

49

He wants the code
changes to be
trackable. He likes
to go back and
forth with the
changes to teach
better.

He needs to
share the
code with
students

easily

He writes the
code in class
with good
readability

Sometimes in
virtual classes he
feels like he does

not get enough
feedback from
students

He uses the
feedbacks from
students to
improve the
teaching quality

He needs to test
the code and
show the output
to students in
the class

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

4.4 Defining the problem

To move from Empathy to Define, data collected from observations must be organized
and processed to gain some insight. We will explain how we synthesized and processed

our data in this section.

As explained in section 4.2, we collected all the raw data in the form of What-
How-Why statements. These statements were drawn from several observation sessions
we conducted and were not manipulated in any way. A total of 96 statements were
collected. It is very difficult to make sense of this large number of statements directly,

but the clustering of ideas helps.

To better understand the data, we clustered it. We chose the term cluster over
classify because we did not know the number of classes and their labels. This step aims
to identify the most related observations and group them while keeping the more distinct

ones in separate clusters.

1. We could put our observations into 12 different categories in the first pass. Code
Optimization, Commenting, Copy/Paste/Cut, Debugging, Editing, Deleting, Ex-
plaining, Finding, Highlighting, Readability, and Testing. Then we grouped the
most relevant ones to be able to synthesize observations from resilient categories.
We ended up with five groups. Figure 4.3 shows this grouping and the number of

statements in each group.

2. We analyzed the observations in each group, removed duplicates and irrelevant
information, and merged similar ideas. As a result, we reduced the observations

to 33 meaningful statements that included numerous details.

3. To have the chance of synthesizing points from different groups, once again, we

put all 33 statements together. We synthesized the ideas together and used them

50

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

to write 21 POVs. The first column of the result tables 4.1 shows the POVs.

N A ™
(24)

e N

Testing the

Navigation

(2)

Commenting

(6)

code

(5)

Delete

(7)

Highlight
(7)

(11
[]

Cod Copy cut
optir:Iz:tian Readability Debugging paste
(F) (5) (11) (5)
AN / - AN J

FIGURE 4.3: Grouping Observations

4.5 Ideation and Brainstorming

We needed to write “How Might We” questions for each of the POVs to initiate brain-
storming. Asking the correct question is very important because it will open new doors
to innovation. As an example, our POV 16 says: “The instructor needs to select specific
parts of the code because he wants to attract the student’s attention. The student who is
easily distracted or confused should identify which part of the code is being discussed.”
The first question that pops into one’s mind as a How Might We (HMW) might be:
“How might we help the instructor select the code easily?” but a better question would
be, “How might we help the student to know which part of the code is being explained?”
The first question will lead to various ideas about how to make selection more efficient,
while the second question will open the door to many ideas to help the instructor bring

the students’ focus on a piece of code.

In order to support a broad brainstorming process, we attempted to provide many
questions. We have listed these questions in result tables 4.1-4.7 . Later, we began to
provide solutions. During this step, a designer must avoid making judgments and provide

as many creative solutions as possible for a given point of view. These solutions can

o1

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

be expensive, time-consuming, and even appear impossible. Nevertheless, the designer
should consider all of them since crazy ideas can trigger better ideas in the future. We

did this process by providing the solutions in the third column of our Excel sheet.

The POVs, their corresponding HMW questions, and the brainstorming results are
reported in result tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7. We will discuss our observations,

problem statements and design suggestions in details in Chapter 5.

52

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

SHNSoY 1§ ATAV],

*opod o1} Jo sired o[qelIpe I0] S9[0Y dS[)

(‘ymoy

-JIp 9SnoW YIIm SUT{IOM PUY SUOIIRITWI] AI[IOW [ITm
o[doag) -199se] pIeoqAey oY} YIIM UOIIRSIARU Oy
*9P0d JeI} 0} $908 I0SIND 9} pue ‘pnoy Ino

1e() JO 11ed & pral Ued Ao7) ‘OUl[® 0] O3 07 JUeM SIOSTL
oy} uoym ‘ojdurexe 10 ‘9d10A 3ulsn uoryediaru UIISo(]
y31seko Jursn uoryediaeu uIIso(]

jIo3pmb JuryeSiavu oyew om uRd sAem jeym uj
/T031pd INO JUISN I9Ised 9)eFIARU

09 swarqoad Ajrqouwt yjm siesn djoy em JyIrur MmOy
;T09TPd INO Ul IOISLd UOIJRSIARU OYRW oM JUSII MOH

“Hnogp

uodR SIY) puy ALt SONOLIP

Ayiqowt im o[dosg syeyoriq 10
stsoyjuoIed o7} Uoomloq 9je3IAvU Ao1)

‘ordurexe 10, ‘9p02 oY) JIpo 0} Pasu
A1) 9snedoq pIeoqAey puer osnouwr

3uisn 10sINo 9} dA0W A[IR[NIOI
0] PodU SIOJONIISUI PUR SJUSPNIG

s10110 osred syuassid jer) 103ps [ruorjdsford e usise(q
sseo ut Josred e jo ajdurexs [ews & YoeA]T,

WIS} OA[OS PUR

sio110 as1ed 9)eaId 09 sse[d Jo awry dyads a1y puadg
'SOXT] UOTIUIOD pue Sulueow 10} puer

s10119 9sred UOWTIOD JUTPN[OUT ‘STOTIONIJSUT WD) DAIY)

;ooueladxe Jurures] sjuapn)s

WOoJJ IoLLIReq IO1I9 osied oY) 9jeuIWI[® oM JYSI MOH
;810119 9sred

o[puey 0} ures| sjyuepnjs diay em jyIrur sem jeym uj

"OAT)RSID 9q pu®
s1deouoo 9ouLIds IeINduwod purisSIOPUN
09 ST yorym ‘Surures] jo dogs
1XoU S1[} 0} UO SAOUI PUR SIOLIS XBJUAS
91} Snqep 03 o[qruUnN oq [[IM AdT[)
‘9STMISN}0 9STeDd(SIOLIS 9sied o[puey
0} MO UIRS[O} PIAU SHUSPNIS YT,

s10118 9sred Suixy ul

Iogse] 108 siojonajsul dpoy o) dde Sururer) e Surjeai))
Iojonagsut

ot} sdjoy 9ey} oping Ioilo osred O1)RWISAS e USISO(]
sio11o osred PIOA® O} SIOJONIJSUI OY) UTRL],

's10110 osied oyrW J,UOP ey} S[RUOISSejoId 910U SITH
s10110 osied sjussald jer) 1091pe [euoljoaloid e usisa(g

— e

;s10110 osred Suryeurwirpe wogj sn sdosy YA

/810110 9s1ed 9)eUTWI[D PINOD oM JT JRYA\

;s10110 9sred Surxy

Surureouod auury s Sse[d 9y} aaes dPY am ST MO]
JIoIsed aul|

I0119 91} 0} 9jeSravu 1030NI)sUl o) d[oY am JYSTU MOF]
;. 1070NI13SUT

o1} 10J Aseo s1oi1ro Juisied JUIXY oyew om JYSTW MO

's10110 Jursred
a1} Su130a1100 Jnoym weidord
91} UNLI J0UURD S PUR ‘PaIIWI] SI 9WII)
sse[o asnedaq a[qissod se A[ises pue
Aponb se aul] 10110 9y} 09} 9)elirru
pue uorysej A[owI} € Ul SIOLID
Sursred oY) MOIADI 0} SPIdU ‘SSE[D
o1} Ul 3UIpod uayM ‘I0IDNIISUI 9],

Suruiojsurelrg

9N ST MOH

AOd

93

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

SNUIYUOI-SYNSAY :g'F ATAV],

"09PIA [RUOIIONIISUT TR 9)BIID)
*SoI}I[RUOIIOUN]

91} mouy| A9Y) OS ‘SI9SN oY} 0} SIOYTUSIS [eNSIA SAIY)
(sy19dxo 10 UBISA(]) ‘SI04IPO posn

A[yuenbaiy 09 9500 AIoA oousLIedxe SUIIPo oY) ORI\

;Ased serjyeuory

-ounj SUI)Ipe uIes] 0 Iosn e d[oy om ued sem jeym U]
;Kses

pue xomb opoo SulIpe oyeW om URD sAem jeym UuJ

“SSB[O 9} UI 18R] pur A[ISES 9pPOO SIY

1Ipe pU® 9]1IM O} SPadU SIO}IPS 9POd

Auewr y3im aousLIedxe sey pue Sse[d
9Yj} Ul SOPOd OYM IOJONISUL Y J,

‘093 posu Ao1[)

UL M SOWRU JUIYSIXD JO JSI[© WOIJ 9SO0YD SI9SN 9} 19T
*d13[009 ® ur swreu

IR[IWIS 97} MOUS ‘OP0D oY} Ul S)SIX0 ApraI[R 'Y} SWReU
® 0} owreu o9so[d A[[enred e SurdA} sI 1esn oy} USYA\
‘A13001100U1 podA) ST 91 J1 pal auI[Iopun pue

Surreds o1} {20y ‘Op0d o1} Ul S)SIX0 Apeal[e 1el[) SWeu
e 09 9s0[0 A[[erjred s1 jer) owreu ® sodA) Iosn o) USY A\
‘smopuim

3UIpoO 97} JO OPISUI SI[RIIRA PaIRAID [[® JO 181 © doay]

/9POd |1} UI SIOI

-1 Teorydei8odA} Jo 9douRyD O} SAOWDI oM JYSTW MOH
Jpurat sy ur suorjouny pue sowreu doay

09 I9ST 97} I0J PISU O} SAOUISI oM UBD SABM JeUM U]
;191SeD SoWIRU S[(RIIRA

pue uoOUNJ 97} IoquIowial sresn day om JySIu MO

‘s10110 Sursred

09 pes[1ey) sioars [eorydersodL)
oYW 10 9POD 9} Ul WeY) I0J JOO[
0} aARY Aewl A9} ‘WL IoUISUISI
j0u Op A9y} JI osnedoyq "WYY} 9SNal
A9} 2I10Joq S9[qeLIRA PUR SUOI}OUN]
pouyep oY) JO souIeu oY) 9ZLIOWOUT
07 poaUl SI0JONIISUI PUR SJULSPNIS

‘o

-eJUOPUI 1091100 MO[[0] JBT[} 9POd 10} soje[dura) 91eaI))
'9q PINOYS 1} 2I9YM 0}

11 Seap A[Ises urd I9sn oY) OS 9[eS3eIp X0} oY} ORI
'paxy 108 9pod Jey) Jo

swojqoxd uorjejuepur oy} ‘paysnd sI uolng jey) pue
Pa1097as ST 9p0od Jo 92a1d & WA M ‘USY], "U0}INq © USISOp
OI)BWIOINE UOIRIUSPUL SRIN

Juore)

-uopur Aq pasned sioiio Suisied juassid am ST MOH
JAaqepess

9p0d aaoldWIl 0} UOIJRIUSPUI SOUBYUD oM JPYSTW MO
jJoIsee uoIjRIULpUL Op Josn oY) d[ey em JySiut MO

"SI0119
Sursred sjuasard pue Ay[Iqepesal apod
91[} SOSBAIOUI UOI)RIUSPUI 9SN'BIAQ
AJises pue ApPInb uoryejuspur
Op 0} PadU SIOIONIISUI PUR SJUIPNIS

Suruiojsurerg

9M ST MOoH

AOd

o4

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

SNUIJUOI-SHNSY :¢'F ATAV],

*sosed oYyroads
PpUl 0} UOIJRAISSO 9IOUI PadU I09Ipe [euorjdsfoid e jo
SIOMOWIRI] 97} Ul JUaWINboI SIY} I0J SUOIN[Os :DJ0N
‘UoI10UNJ oYY} 91eId USY) PUR SWRU AWWND © 9SOO0YD
ued 9] 91 SUIUYOP 9I0Joq UOIIOUN] & SN OF SjURM Iosn
o) ueym ‘ojdurexs 10 ‘soureu Awrwnp jroddng(-nuew
® WOIJ PaJIS[es oIk SUOIIOR SISSN 9DUILS dFUS[[RYD ® SI I1
‘s1091po Teuoljoalord ur ng -oSUS[[RYD ® JOU SI)1 puU®
‘A[sea s1091po 9pod Teuwrrou ul uoddey ued WYl SIYT,)

;I9pI0 AIeI)IqIe Ul SSUIY) Op I9ST oY) 39] oM ST MO]
JPATYRaID 9 I9sn oY} d[oy am U sAem jeyMm UJ
JK1a19e010 s19sn o1 Jroddns am JySTI MOF]

o

“S[[1¥s Surajos-werqoad
pue Kj1a1yeard siy jroddns 03 Aem
a1[} ST JeY) 9SNBID(SJURM d1] I9PIO0
o) Ul s3ury} op 0} SpPedU I9sn oY J,

*9pOod Ul uoI)eOO[o>Y10ads ® 0} paugisse A[uo puy
opod Jo juepuedepur ST JRYJ UOIOUN] 9)0U © WIY 9ALS
*97Z1S

ur 10831q 10 p[oq uedIds oy} uo reodde sjuewItIod 9y J,
‘U99I0S 9Y) UO USIS ® YHM sjuewiuiod AJoedg

*10[00

JUSWWIOD 9} 9SO0YD 0} Iosn oYy 0} uordo oY) oAIS

{PPO2 93} 0}

pousSisse uorjewiojul viyxe desy om ued sAem jeym uj
/9poo

91 0] s9j0U RIIXd ppe Iosn oyj day em YIS MOH
[I0Iead 9pOd 9y}

Ul SJUSUITIOD 9ARS] 103oNIIsUl oY) d[ay om JYIIur MOY]

"9p0d BT} 07 UOI}RULIOJUT
eI1)x0 ppe wiy sd[oy 11 9sneddq dpod
91} UI JUSWIWIOD 0) SPIAU IdPOD ST,

‘suoryeuIq
-wod Aoy Aq sejeantoe jey) uorpdo puy e Iosn oY) oAIS
POISBIYSIY 108 sooual

-IN520 I9[)0 ‘OWRU B UO SYDI[I-9[qNOP I9Sn oY) USDYA\
‘yoxess Terjred jroddng

"1031Pd 9y} JO OpIs

dojy a9 uo sAemye st 9y} Uo13do YOIess © I9SN 1) SALY)

4 191SBd 9POD UT UOTIRSIARU 9T} ORI oM JUSTUW MO
;9pod
YY) UMM yoIess Iosn oY) djoy om ued sAem jeym uj

"SUO[ST 9P0d 91} WOYM
JMOIPIP s398 UoIpeSIALU 9SNBIA] SPOD
9} UIYIIM [DIeSS 0 SPIdU IoPOd Y],

Suruiojsurerg

9M ST MOoH

AOd

95

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

ONUIUO0d-S)NSAY :F'§ ATAV],

‘mopuim ndino oY) Jo seSpe oY) sisnlpe resn

(193139 U9aIds

o) T 1OTBIq 100125 yndymo oty 1O SN MMMM@MZ v ndno Yirm yIom Juepngs oy} djoy om ued sAem jeym ul ¢ ‘1ee158 AN BT JO SHBUIPIOOD
spred pelmboel uo W00z 0 [00} IPYIUIRW € WIY m::mm KS 411315 NAINO B} JO SOYLUPI00D pueys pue o[eods a3 ﬂ:wumpww:mvg el
. SoyeUIPI000 MOYS 03 uorydo we PPy ~opun 03 juopnys oy3 jroddns wes om sfem jeqm ul g 99U Os[e Ao ‘A[1es]o ussios ndino
M@ mm: 1000 ws @uﬁ:.aﬁ: ued v%< ¢ sheo " &) \H,w; MB @@_: mﬂmw njs @a '
Feup '3 oyeotpl e wea10s Indino eyy ees resn oY) dpy em JUIIw MOH ‘T 3 motA 03 p FHOPIAS SUL
SI9qUINU 9WIOS YIM Uda10s Jndno 9y} uo pLs ® ppy T :
10105 puosBed o ss00i 1 0w 3 Sy 7 gsop SSID W ou o [Aol 0po>
. 10 p P1oeq 93 9800UD 03 0 .w -N)S 97} 09 S[QISIA SIOUL 9POD O} OeUW oM JYSIW MO ‘¢ o1} 99S JSNU SHUSPNJS I} dSNBIA] 1T
{I0[0D 9pOD 9} 9SO0YD O} ISSN Y} O} NULWL B DAIY) '€ o 3 " . "
. . /9P00 9 JO 9ZIs o) d3URYD om URD SAem JeyMm U] °g Ieo[0 A[[RNSIA 9p0D 9Y7} oyBW 09 INO
Iasn oY} I10J uoljdo Juoj pue 9ZIS ® 9pPIAOI] ‘T ! ad 3 .
. . ;Imo pue ul wooz jroddns em Y3 Moy T pu® Ul WOOZ 0} SPeaU I0JONIJSUI YT,
s1asn 91 10] uorpdo no/ur wooz & opraoid ‘]
jspuooes .
. . . ;mdino ay) uo Isises .
0T A10n0 ‘ojdwrexs 10} ‘Suruund Suruea]y ‘A[9)RIPOUITUL . soTUwYP BTG JO JOOPO O} 008 ST SYs A[OY oM WED MO ¢ opew oARY A9y} soSurYD oY) JO 1090
so8ueyd 9pOd B3 SMOYS Jer[} UsaIds ndno ue ufisep °y JE— o1} 99s PINOYs A7) asnedaq SUIUunI 01
s 1 oot e ko0 SPUEUL €| andino oy 05 sosn oy dporg om B sk e wp g | % 2 U 9D00 9O dne o 90s
'8 up orqeasmip . U OCIN "2 ;10180 INdINO JO UOIYEAISSO oY} e oM JySIWl MO °T P SHOPMS p FnASUL O4.L
"1071P 9y} UTYIM Uea10s ndino ue udso T : : :
#

Suruiojsurelrg

90 WSIN MOoH

AOd

56

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

ONUIIUO0D-SHNSAY :G'§ ATAV],

‘uruuna st epoo oY)

ueym mopurm Indino oY) punore o[3uriodl SIiq e mMeI(]
‘apout

Suruunt ur s 8pod |1} sk JUO[Se I0[0D 3} d3URYD puw
poysnd s1 wOjINg OY} USYM IOJ UOIJRWIUR UR 9)edI))
'9pod 9} SUNI

JI0JONIISUL S} Usym Suruunt Surdes 9dI0A © 9)RIDOSSY
'9poo 9} Sund 8y

awII} OBd SUTUUNI ST 9POD o1} AeSs 0} I0JONIISUI Y3} JSY

(1071Pd 91} UI Sapowt

Suruuni pue SUIIpe U9MIdq YSINTUIISIP om ST MO
jSuruuna

9p02 1Y) JO dTRM®E 9q 0 JUAPN)S o) d[oY om JYSTUI MOT]

"POSTIJUOD U029 AR Y] ‘OSIMISYI0
asnedaq 9pod A1) SUNI I0JOTNIJSUT
97} UM MOU3 O} SPIdU SSe[d
QUITUO 91} SPUSI)e OYM JUIPNIS YT,

ST

juni sAes 1esn

97} IOASUSYM 9POD ST} SUNI JBT[} IOSUSS [BI0A © UIISOp
*9pod

97[}) SoARS I9SN 91} UM A[[eITJRUWOINE 9POD) UNY
jspuodes ¢ 10j Suryjfue

28uRYD 10U S9OP IS 9T} JI A[[eIT)RWOINE. 9POD Y[} UNY
*Jse] AIoA ST 31 0S ‘OpOD 91} UNI 03 A9Y INIIIOYS ® 9S[)
UOIJUL))R S)0RI)

-1e ey} 10[00 WSLIq AI0A © Y3Im uojIng 31q e ulsa(

;sse[o Jo qno pue ur 9yerrdordde joq ST Yorym apod oY)
Juruunt 10j 9oURPIOPR UR USISOP om URD sAem jeym U]

"SSB[D JO MO puw Ul
10J 9[qe)INs 9p0d ' UNIL 01 AeM © USISOp oM JYSId MOH

‘pIemio)yysrels oq p[noys pue urpod
Sunmp sinddo A[juenbeij uorjoe
SIY} 9ouls A[Ises pue ApPmb opod o1)
UNI 0] SPOdU SS[O Ul SJUSOPNIS SIY YIIMm
IO 9UO[R SOPOD OYM JOJONIISUT Y T,

i

"I98 oY)
peol PINOYS 11 ‘9pod 9y} Ul Woy) Jo AUe PUNOj WISAS
o1 JI ‘U9Y], "SIOII® DIJURUWIOS UOWITOD JO ISI[B 9)BIID
‘SUTLI 9POD USYM Son[eA [opoul

ay1 moys 01 () @oerjiLu] JIos() ul jred e 91edIpe
(syuem Tosn

a1} [1un Aefdsip jou seop Ing sAempe Jurpgo) nga(
oY) suny) ‘juem Aoy} IOASUSYM U90IdS INdIno oY) uo
sonfea [epowr Ae[dsip 0} siesn oY) 03 uordo ue SAIX)

/SIO1ID
STjuewas Yim 1asn o) jroddns ued om shem jeym Uy
jIo8T

oY} 0} Sson[eA [9POUW 9} MOYS ULD oM sSAem jeym UJ
/senfeA [opow 97} mouy 1osn oy} d[oy em S MO}

‘99108 91} WO snotaqo readde jou op
e[} SIOIIS DIJURWISS S} pue)sISpuUn
wey) sd[ay] 41 esnedeq Suruunt st
9PO02 9]} SIYM SON[eA [9POUI B} MOUY
09 PodU SI0JONIISUI PUR SJUSPNIS

€T

Sururiojsurerg

SM WSIN MO0H

AOd

o7

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

SNUIJUOI-SH NS :9'F ATAV],

"TWOTUD))e MRID URD 9ZIS PUR IO[0D 91} PaIdRIISIP 193
A[isea oym juepnis 9y} I0j PUY "d[CISIA [[I3S ST UOI}eW
-Tue 91} UWOI}09UU0d dIeys 09pla Iood M 0S MO[S oq
prnoys suorjewrtue o) ng ‘Ajdde g7 woiy suornjog

/SSe[o o) ur

sjuapnjys pairedur A[rensia oy} yroddns am jySrur Moy
/SIUepNIs Y1 07 J[QISIA SI0W

109on13sul 9y} Aq ouop Surjurod oxewr em JYSIW MO

"UOTSNJUOD PIOAR pU®
UOSSO[91} PUBISIOPUN 193)9(0} I9PIO
ur syurod I03ONIISUT Y} dIoYM A[}0eXd
99s 09 9[qe oq jsnu JuaurIredurr
[BNSTA JO WLIOJ SUIOS SBY 10 PIJORISIP
s108 A[Ises oym Juapn)s oy J,

8T

*9zIs pue I0[0d ul adeys

JOSIND ST} SZIW0ISND 0F uor3do |} I0}ONIISUI Y} DAIL)
WO} 9S00TD

07 sodeys I0SIND JO UOIID9[4S B IOJONIJSUI S OAIY)

/SIUapNIS 911 0} J[ISIA dIOW
1090nagsut oYy Aq ouop Surjurod oyew om JYSIW MO

JATtses s108lqo
ndino o9 quiod oy 103onIIsur oY) d[oy om S MO

"wea10s 91} Jo jred remorjred jeys oy
UOIIUS})e SJUSPNIS S} MBIP O} SOTSIM
oY asneoaq Surure[dxod SI oY UM
usa10s ndino a1y jo sjred ure)Ied

09 jurod 07 SPdU I0JONIJSUT O],

LT

PSR
opoo o1} Jo 1Ied jel) puy ued oY 05 "Jer) SN[}1 dARd]
pue opoo 9y} jo jred e JySIYSIY I03ONIJSUT O 197

*SUOI)OUNJ

JULIOYIP oARY SunySIYSIY pue SUrjoo[es 0s Sopeys Jud
-IOPIp YyMm [003 SunySiysiy ® I0JONIISUI O OAIK)
"9IMJONIYS O[O M 9} PUNOIR dUIRI] © MRID

‘9IMJONLIYS B S109[9S I0JONIJSUI 9} UM ‘OPOW SIY) UT OS
‘1090nI9sul o) 03 spowr Jurureidxa Jo uorydo ay) o9AIr)
*I0[0D JUSIOPIP

® Ul 9P0D 109[0s 0} I03ONIJsul oY} 0} uolydo oy 9AIN)

£ UOTIOUNJ UOT}DI[AS JUSILIND T} Uy} 193)2q SHIoM et}
I09ONIISUL 87} 03 [00) SunyIIUSIIY B 9AIS om JI JRYA\
;pourerdxa Suraq st apod a1}

3o gred YOIYM JULPNYS O} MOYS om URD sAem jeym uf
{Ppoo oY} Jo 3aed oyads e 03 UONIUS}YE

STUSPNIS MBI I0JONIISUI 81} d[o] oM Ued sAem jeym uf
LAuenyge

aIowW 9p0d 29[S I103onIsul 9y} d[ey om JYSTW MO]

"PassnosIp Suteq SI 9pod 9} JO
gred yoTym AJTIUapr 01 o[qe 9q p[noys
PosSnjuod I0 PajdeIISIP AISed ST Oym
JUOPNIS O], "9POD 9} 0} UOTIUI}}R

S,JUSPNIS JY) JORI}YE 0} SHURM
97 asneoaq 9pod) Jo sired oyroads

109[9S 0} SPadU I03ONISUL YT,

91

Suruiojsurerg

SM WSIN MO0H

AOd

o8

McMaster — Computer Science

)

M.A.Sc. Thesis - Hosseinkord Maryam

ONUIIUO0I-SHNSAY :)'F ATAV],

(eooeds uosoyp jnejep SI0SN 9y} I0 UOISSes dYads
® 10} oordsyIom a9y} 0} opod ay3 Adoo ‘ymejep Aq ‘ued
oA\ seords Sumyiom Auewl sey 9y pur ‘oweUISsn ®

"} 99[dwod 10 ‘31 4P ‘4T YIIm

SRl I9SN AI9AT]) 'I0IIPo o) UIYIIM SI9ST JO ISI[© (1M /9PO02 9} YOral JUSpPNIs Y} Ued sAem jeym U] Surnsjrom 9o110eId 01 poou sjuepnis oyl | g
9p0O 9y} aIeys 03 IOJONISUl oY) 0} uolydo 8y} 9AlY) ‘g /PPOD 8} aIRYS 103oNIISUI oY) d[oY am JYITW MOF] 9sNBOA(SJULPN)S S)M A[ISed 9p0d
‘9pod 97[} 9IRYS 0} SPIOU J0JONIISUI O],
9Y} SULIRYS I0] S[00} I9Y}0 9sN UeD A9} ‘USYJ, '90UO J®
1x07 o[oym oY) Ad0o s1esn oY) 99] pue [[& 109[es 1roddng T
JBUIYOIIMS JNOYIIM SSaD0® "19199q s3deouod
*S9DINOSAI J910 SOATS 9} JUOUIUOIIAUS POJRISOIUI UR dARY M JT JRYA\ o) urerdxe o3 wiry jroddns sooInosox
09 SSed0® SBY JRY) JUSWIUOIIAUS PajRISejul Ue udiso ‘¢ JMomb RI)XS 9STIBIS(SPIINOSAI SUIUO 0%
‘uoryeordde qom e u3soq ‘g puR Aseo SU0oIOs SUIYD)IMS ORI oM URD SAem jeym U] 07 SS900R AR 07 SPOdU SSB[O Ul SUIPOD
'S90IN0sal pasn A[juenbaij 01 Ul ® ap1aold ‘T j19sn ay) a[ym s3deouod 9ouslds tendurod
I0J S9DINOSAI SUI[UO 0} ss9d0r dpraoxd om JUIrwr moy S9TO®BS) OUYM JOJONISUT YT,
'9poo 9y} 1509
9108 oY}) 19910 91} UO J[ISIA SIYOI)SASY OB oM JYSIUW MO 0} SUOOE JurlIOdMWI B JO U0 v
uo I19sn 9y} 0} pessaid Sureq SA9Y JO awRU oY) MOUS ‘g ¢ hS 14 N PLOTSA vw ¥t %I soxoI)sAey 9y} asneoaq spowl Furuunt | G
“possaxd TOFONIISUL O3} Aq SUOD SHO1SA ur st wergoad oY) ueym I090NIISUL
Suteq sAoy Jo owreu oY} SUIARS 9OI0A ® 9)RIDOSSY PUY YA JUOPMIS O ULIOUL oM > sAem eum U] oy Al oy 10 possoxd st Aoy e
g y Rt ! ! Yel vV 1 1} Aq PRY 10 P A9y
Ia19YyMm MOUY O} PaaU SIUSPNIS YT,
#

Suruiojsurelrg

90 WSIN MOoH

AOd

99

Chapter 5

Discussion And Design

When designing software applications using Design Thinking (DT), the design thinker
can empathize by observing the user’s interaction with a legacy system. A legacy system
is software that has been developed over a period using outdated techniques but still
performs critical functions within an organization. This system will likely be difficult to
maintain or modify, and it requires substantial modernization. The system’s modern-
ization involves significant changes, such as implementing new and relevant functional

requirements, changing the software architecture, or migrating to a new platform. [7]
In such a project, we face two types of requirements:

o Known requirements: The features that already exist in the legacy system are the
known requirements, and you can collect them from an Functional Requirements
Specifications (FRS) document. These requirements have already been recognized
and are somehow met within the current design. Approaching known requirements
with DT, we should first understand the need (empathy) and judge if it needs
reframing or not, which means checking if we are solving the correct problem or
need to change the definition of the problem. If the definition is correct, we can
move to the ideation step. Sometimes the solution provided by the legacy system

is efficient and widely accepted; therefore, we might want to keep it the way it is.

60

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

o Hidden requirements: These features are hidden requirements that the customer
cannot recognize and can be revealed using empathy. These requirements can
appear when we do User Centered Design (UCD), and we can start with asking
questions like “What is needed by a specific persona that a general user does not
need?” For example, in this study, we can ask what features in a code editor are

required by an instructor and not an ordinary user.

As expected, our research is conducted on a legacy system. Our legacy system is a
web application designed and implemented by our research team to create an accessible
Elm coding platform for everybody. Currently, we use this application to teach coding to
kids as a part of our outreach program. The instructor uses the same tool to teach Elm
programming to Computer Science students in their first year of university due to its
accessibility for novice users. Even though our legacy system is not written with obsolete
methods, it depends on unmaintained libraries. It originated as an undergraduate course

project and has become difficult to evolve.

To address our second research question, we need to explore whether there is enough
evidence to suggest that projectional editors can be useful in the teaching of coding
to students in CS1. In case enough evidence is found, we add requirements specific to

projectional editors.

5.1 Projectional Editor or Not?

We identified many interesting pain points during our observations. Several of them
support the idea that a projectional editor can facilitate the teaching of coding to first-

year students.

¢ POV1: The instructor, when coding in the class, needs to review the parsing

errors in a timely fashion and navigate to the error line as quickly and easily as

61

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

possible because class time is limited, and they cannot run the program without

correcting the parsing errors.

POV2: The students need to learn how to handle parse errors because otherwise
they will be unable to debug the syntax errors and move on to the next step of

learning, which is to understand computer science concepts and be creative.

POV3: Students and instructors need to regularly move the cursor using mouse
and keyboard because they need to edit the code. For example, they navigate
between the parentheses or brackets. People with mobility difficulties may find

this action difficult.

POV4: Students and instructors need to do indentation quickly and easily because

indentation increases the code readability and prevents parsing errors.

POV5: Students and instructors need to memorize the names of the defined
functions and variables before they reuse them. Because if they do not remember
them, they may have to look for them in the code or make typographical errors

that lead to parsing errors.

Based on our observations, a lot of time in a classroom is spent fixing parse errors.

A good editor offers ways to simplify this task. The legacy system supports easy access

to the error line by providing a link. But what if we were to prevent syntax errors?

Projectional editors are widely acknowledged to be a solution for avoiding syntax errors.

As explained in chapter 2, projectional editing is a technique to manipulate the abstract

syntax tree directly, bypassing the parser. Obviously, taking advantage of such a frame-

work as our base design platform can remove our biggest challenge and create scope for

other mini solutions. So as our main design decision, first, we decided to create a projec-

tional editor, and all of our other discussions are under the influence of our first decision.

Projectional editors help eliminate errors in two ways. First, they provide a template

62

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

for each structure, and the coder can change the code only with respect to the template.
Second, when a hole needs to be filled by the coder, the projectional editor gives hints
for easier navigation. Additionally when the user does not fill a hole, the projectional

editor fills it with appropriate default values to keep it parsable all the time. (POV1)

Using a projectional editor in the classroom, the instructor and students would never
face a parse error again. Therefore, several minutes of every class would be saved to be
spent on deeper computer science subjects. Since students would still at some point need
to use a conventional editor, they would need to understand syntax errors. Therefore,
we can never omit that from their learning experience. But do they need to be exposed

to parse errors in every course?

After discussing this with the instructor, we asked if there are other ways to teach
parsing. Can using a projectional editor save enough time for the students to write a
parser for a mini-language or for regular expressions? Thereby, the students would learn
the concept in better depth. Additionally, leveraging the class’s limited time to teach
more computer science concepts would be of more value to the students than spending

time fixing syntax errors. (POV2)

Students benefit from syntax error-free coding in other ways as well. For example,
students have difficulty fixing syntax errors when learning a new language, and com-
pleting assignments is challenging and time-consuming. In addition, the students feel
exhausted after too much time trying to fix an error and may feel discouraged. If syntax
errors are removed, they may feel more interested in the subject and learn better. CS1
emphasizes teaching computer science concepts and motivating creativity in students,

so removing syntax errors can lead to a better learning experience for students. (POV2)

On the other hand, students are exposed to syntax errors in many other courses

63

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

while doing projects. Therefore, they will learn how to handle them eventually. We con-
clude that the benefits of using a projectional editor outweigh its disadvantages overall.

(POV2)

Based on our POV3, navigation in code is also a challenge. Specifically, it can be a
big challenge for our student persona John. They have mobility limitations and finds
working with a mouse a bit challenging. A projectional editor creates the skeleton of
a language structure when the user triggers it. For example, if the user triggers an “if

statement”! | the whole skeleton will be shaped:

if [conditionHole] then
[expressionHolel]
else

[expressionHole2]

To make navigation easier, we use arrow keys on the keyboard to navigate to a hole.
The right and left arrow keys should move the cursor between the children of the same
parent, and up and down arrows should move the cursor to parent and child of a node,
respectively (POV3). The template created by the projectional editor should also follow
correct indentation to avoid parse errors and follow readability principles. This way, it

eliminates the users’ effort to do correct indentation in the code. (POV4)

Another reason to support the idea of a projectional editor is the challenge with
memorizing variable and function names. According to our POV5, when the code is
big and the coder defines many variables and functions, it gets difficult for them to
remember all the names. Based on our observations, the coder uses the find function
to find a name that they remember partially. This method is useful when the coder

remembers some part of the name and the system’s find function supports partial search

Wi
1

!The user can trigger an If statement by typing for example, This study does not cover the
projectional editor’s detailed behavior of creating language structures because this level of detail could
not be derived from our observations.

64

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

functionality. However, when the user does not remember the name partially, they must
navigate through the whole code to find the required name. Projectional editors can
provide a straightforward solution to this problem. When users navigate to a hole, the
system provides options for them to choose from. When the coder needs to use a name,
whether a function or variable, they can navigate to a hole and choose from the drop-
down menu. The menu only shows suitable names based on their type. Following this
method eliminates the need to remember names and prevents parse errors due to typos

or type errors.

Based on the expected efficiency gains due to the analyzed POVs, we can positively
answer RQ2. Therefore, subsequent design decisions about editing are made with respect

to a projectional editor.

5.2 General Editing Requirements

The second group of POVs offers insight into the required editing features:

e POVG6: The instructor who live codes in class and has experience with many code

editors needs to write and edit their code easily and quickly in class.

e POVT: The coder needs to search within the code because navigation becomes

difficult when the code is long.

¢ POVS8: The coder needs to comment in the code because it helps them add extra

information to the code.

¢ POV9: The user needs to do things in the order they come to mind because
that reduces cognitive load, freeing cognitive resources for creativity and problem-

solving skills.

65

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Editing in a projectional editor is necessarily different from editing in a parser-
based editor. This section discusses the design decisions we made regarding editing

actions in a projectional editor.

The most critical experience in a code editor is editing. The instructor codes most of
the time while the students watch. Although editing is a major activity in the class, it
is a means for the instructor to teach more sophisticated concepts. It should, therefore,

not be a complicated or time-consuming task.

Both instructors and students benefit from simplifying the editing process. With an
easy editing experience, a instructor can edit faster and spend more time explaining
computer science concepts in class. Furthermore, students will not be confused and
distracted by complicated editing processes. If students can do their assignments on the

same platform, they will feel more comfortable editing code.

Obviously, the standard text editing features such as select, copy, cut, paste, delete,

undo, redo, find, and replace should be available in our code editing environment.

Our study participants are familiar with many text and code editors, so one approach
to ease the editing experience would be to make it as similar as possible to their previous
code editing experiences. The users can more easily learn our system if the affordances
are familiar to them. To begin with, we use the common shortcut keys. The system
must behave as closely as possible to expected behaviors but within the paradigm of a
projectional editor. In addition, to conform to Norman’s first principle of design and
Hansen’s redundancy rule that there should be more than one way of doing something,
we provide an editing menu that includes these features. We do not have evidence
to support choosing one option over another in designing such a menu, so we suggest
a simple drop-down menu that displays the functions and their shortcut keys. Based

on feedback from users on prototype 0, we can improve this menu in subsequent DT

66

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

iterations.

5.2.1 Selecting

Observations of the instructor included the following selection behaviors:

1. Holding the mouse over a line, multiple lines, or a word to select it. It happens

from top to bottom and vice versa.
2. Double-clicking on a word to select it.
3. Clicking three times on a line to have the whole line selected.
4. Pressing Ctrl4+A to select all the code.

The selection unit is the most significant factor in selection. Since the code grows
along the Abstract Syntax Tree in a projectional editor, selection can be made on sub-

trees.
In our projectional editor, selection by mouse will work as follows:

o Double clicking selects the smallest subtree containing the click point. (Example:
If users click inside a variable, it will be selected. If they click inside the ‘if” in an

if expression, the whole structure will be selected.)

o Triple clicking goes one level up toward the root. It selects all children having the

same parent as the smallest subtree that can be selected by double-clicking.

o Quadrouple clicking goes two levels up toward the root. (We want to include this
in our prototype to test the user feedback, since it is non-standard, but consistent

with the other actions.)

o ctrl4a selects the program tree.

67

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Our projectional editor allows the user to select by keyboard using arrow keys too.
Wherever the cursor is, right and left arrows move the selection between children of the
same parent, and up and down arrows pass the tree in-depth, meaning moving from a

branch to its parent or its first child.

5.2.2 Deleting

The following deletion patterns were observed:

1. selecting the code, pressing delete on the keyboard.

2. selecting the code, retyping.

3. putting the cursor after what needs to be deleted and pressing delete on the key-

board multiple times.

The above patterns are all composed of selecting and deleting, and they follow the
rules of selection mentioned above. Anything that can be selected can be deleted. When
a unit is deleted, it is replaced by a hole of the same type. If the user wants to run the

code without filling the hole, then one of the following applies:

1. We use our default values that match the hole’s type. For example, with an integer,

we fill it with 0, and with a string, we fill it with an empty string.

2. If the user defines a new data type with multiple constructors, the system will fill

the hole with the first constructor.

A user can select a unit and begin typing, and the system will attempt to match it
with a subtree in the clipboard or a new structure, definition, or constructor. If nothing
matches, the action is ignored. This function needs to be defined in greater detail during

prototyping because the observations did not show evidence to guide the solution.

68

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

5.2.3 Copying and Cutting

Whatever can be selected can also be copied or cut. There is no need for clipboards in
parser-based code editors because the users can paste their code anywhere and comment

on it. Such action, however, has complications in project-based editors.

Copying and cutting in our code editor can be done using the menu or by pressing
Ctrl+C and Ctrl+X, respectively. Copying will not affect the code itself, but cutting
deletes the selected subtree and follows the same rules as deleting. We suggest a clipboard
that keeps recent copied/cut items, including at least the last cut/copied subtree of each

type, and perhaps multiple such most recently cut/copied subtrees.
5.2.4 Pasting
When a user pastes over a selected hole, one of the following applies:

1. If only one item in the clipboard matches by type, it will be pasted.

2. If there is more than one item in the clipboard matching by type, the user can

select one.

3. Otherwise, the system notifies the user that there is no suitable subtree in the

clipboard to paste.
If the user wants to replace a selected unit by pasting, one of the following applies:

4. If one of the actions 1 or 2 is executable, the system removes the existing code and

does as above.

5. Otherwise, it gives a message to the user and ignores the action.

69

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

5.2.5 Undo and Redo

We recommend keeping two linked lists of states for undo and redo. Undoing pushes
the current state to the redo list and fetches the most recent state from the undo list.
And redo fetches the most recent item in the redo list to the current state and pushes
the current state to undo list. The user can activate undo and redo functions using the

common shortcut keys, Ctrl+Z and Ctrl+Y/Ctrl+Shift+Z, respectively.

5.2.6 Find and Replace

When the code grows, navigation becomes harder, so the coder needs an easy way to
navigate through it. The find function helps in this regard. During our observation, we

observed the instructor using the find function in two ways:
1. Pressing Ctrl+F then typing the word then enter.
2. Selecting a piece of code, Ctrl+F, then enter.

The system should activate the find function when the user presses Ctrl4+F on the
keyboard. A small window appears on the left side of the screen with a text box. There
should be two small arrows to help navigate through found options. Our search feature
supports partial searches, so an instructor can use it if they recall only part of the name
or some part in the middle. Additionally, this supports POV5 by saving the programmer

from having to remember names.

We support both ways that the user expects our find function to work. The user can
activate the find function and type in it. Also, if they select a subtree and press Ctrl+F,
the system will search for the subtree. Then all the occurrences of that subtree should

be highlighted through the code and be navigable using the small arrows.

The legacy system does not support the replace feature. However, it has been noted

that instructors may need to insert replacements quickly, so we suggest adding this

70

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

function to the editing tools. A user may replace a subtree with another subtree of the
same type. A user may also rename a variable, and all instances of that variable in the

same scope should be renamed.

5.2.7 Commenting

We observed the following commenting behaviors from the instructor:

1. The instructor comments about something that is not a code explanation, like

FIXME or TODO.

2. The instructor comments a single line or a piece of code (multiple lines) to exclude

it from running temporarily.

3. The instructor adds a comment about the explanation of code for students to refer

to in the future.

4. The instructor takes temporary notes using comments. Like a pre-defined function

name (possibly with signature) that they copied from the Elm package guide.

In a projectional editor, every comment must be attached to a subtree. The user
may create a comment for a specific subtree by selecting it and typing double dashes.
With this action addition, items 1, 3, and 4 can be handled in the projectonal editor. If
the user selects a subtree and types double dash, first the system comments the current

code and then creates a hole following delete rules.

5.2.8 Out of Order Editing Habits

Many developers have a habit of doing things out of order. There are two main reasons

for this based on our observations:

71

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

1. They think they will forget to complete an action later, so they wants to perform it
now—even though it is out of order—to prevent a parse error. Like: Immediately

typing the closing parenthesis after opening it

2. They have to record something immediately because they are thinking ahead of

the code. So, for example, a coder might use a function before defining it.

In the first case, the coder has been left to remember to do an action later. A major
advantage of projectional editors is that they build the skeleton of a language structure
and prevent such errors. For example, when the coder types “(” the system automatically
puts the “)” after it and gives the code a hole between parenthesis to fill. Or, when the

b

coder wants to create a “let --- in --.” structure, the editor gives them the skeleton,
so the coder does not need to create it themselves and have to worry about forgetting

something.

The second group is about how the developer thinks, and we might want to let them
do things in the order they see fit. Therefore, we must consider the developer’s behavior
in the first place. Our observation was limited and only revealed one habit in this
category. For the exact observation related to using a function without defining it, we
can give the user the chance to use a dummy function or variable. Therefore, we will
add a dummy to the list of available options displayed to the coder to meet this need.
Dummy is a hole of the correct type that the users will fill later. Further research and
observation are needed to address more items from this group. We recommend that
the team continues noting related observations to find similar requirements and include

them in future iterations based on priority.

72

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

5.3 The User Interface

[eee T3]

Editing Menu Extra Resources &

Dark
e Background o e m m

Key presses

—- ¥eur shapes go hers!
e model.time to animate things 1)

myShapes model =
‘ Q

O
O

rectangle 192 128
|> £5lled lightBlue

h
scale 0.
|> move (-30 , -30 } @ 4;

20 bubble

+ o |> mave (40 ,20)

w0,

= gt E
2 7

)
40 plants
I> mave (70 , =10) Model Values

FIGURE 5.1: Suggested User Interface

Users and software applications are linked by the User Interface (UI). A software’s Ul
includes all the navigation and feedback components required to navigate the application
and make decisions. It refers to how an application interacts with users and presents
information. Informational elements, navigational controls, and containers are all part
of the User Interface Design. Also, buttons, lists, toggles, icons, tags, and more play a
huge role. We present our design decisions concerning the editor’s user interface in this

section based upon our discovered POVs.

e POV10: The instructor and students need to see the output of the code when it

is running because they should see the effect of the changes they have made.

73

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

e POV11: The instructor needs to zoom in and out to make the code visually clear

because the students must see the code clearly.

¢ POV12: The students need to view the output screen clearly. They also need to

understand the scale and coordinates of the output screen.

« POV13: Students and instructors need to know the model values while the code
is running because they help them understand the semantic errors that do not

appear obvious on the screen.

e POV14: The instructor who codes alone or with their students in class needs to
run the code quickly and easily since this action frequently occurs during coding

and should be straightforward.

¢« POV15: The student who attends an online class needs to know when the in-

structor runs the code because otherwise, they may become confused.

On the editor’s main page, the screen should be divided into two main sections
vertically to accommodate both code and output. The default position of the dividing
edge is in the middle of the screen vertically. Window sizes should be adjusted by a

dragging affordance that lets the users adjust the window size. (POV10)

The left section is where users can enter the code. To improve the visibility of the
code during online courses and assist visually impaired students, accessibility options
should be available. A setting should allow users to adjust the size of the code. There
should be at least two sizes available for changing the size of the code, an option for
making the code bold, and an option for changing to a dark background. The menu

should always appear at the top of the code window. (POV11)

The right side of the screen should be divided into two sections horizontally. At the

top, there should be a larger area to display the output of the code. The user will see the

74

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

results in this section immediately and easily whenever they run their code. Additionally,
this window should have a zoom-in and zoom-out control, including a percentage option.
Finally, There should be an option to add a grid view to the output screen. This helps

the students to navigate better in the output screen. (POV10, POV12)

We designed a section at the bottom right of the screen to display the model values
when the program is in running mode. Using this section will facilitate debugging
semantic errors and allow the coder to be aware of the changes to the model while
simultaneously observing the output. As the legacy system did not support the display
of model values, the instructor had to add code (Debug.toString model) to display the
values on the output screen. It was not only an extra effort for the programmer, but it

also consumed some of the screen space. (POV13)

A blue rectangular three-dimensional run button should appear at the top of the
output window as an affordance to run the code easily (POV14). The run button should
be indicated with a button signifier to show a pushable button and an animation to
demonstrate when it is actually clicked on. The animation is the system’s feedback
(Principle #2) in response to pushing the button. All the surfaces of the button should
be clickable and should allow the code to run. When the button is pressed, its color
should change to gray. The button remains gray as long as the code is running, and no
changes have been made to it. It changes to blue as soon as a change is made to the
code. In this manner, even if the student becomes distracted and misses the moment
the instructor runs the program, they will know that the program is running by looking

at the button. (POV15)

By putting a button on the screen for running the code we adhere to Norman’s
visibility principle (Principle #1). Based on Hansen’s principle #12 (redundancy) we
should have more than one means for an action. Therefore we use the shortcut key F5

to perform the run action too. So that pressing the F5 key is equivalent to pressing the

75

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

run button using the mouse (POV14). It will activate the animation, change the color of
the button, and run the code. We chose F5 to run the code since it is a common way of
running the code in many popular code editors. Since our personas both have experience
with several code editors, it makes sense to use the familiar shortcut keys to do specific

actions. Also, this adheres to Hensen’s 7th principle of design (muscle memory).

5.4 Teaching Functionalities

Several of the POVs emphasize classroom experiences rather than the experience of a
coding practitioner in general. These POVs reveal the hidden needs that emerge when

we consider the special needs of our personas compared to the legacy system users.

¢ POV16: The instructor needs to select specific parts of the code because they
want to attract the student’s attention to the code. The student who is easily
distracted or confused should be able to identify which part of the code is being

discussed.

e POV1T: The instructor needs to point to certain parts of the output screen when
they are explaining because they wish to draw the students’ attention to that

particular part of the screen.

¢ POV18: The student who easily gets distracted or has some form of visual im-
pairment must be able to see exactly where the instructor points in order to better

understand the lesson and avoid confusion.

e POV19: The students need to know whether a key is pressed or held by the
instructor when the program is in running mode because the keystrokes are one of

the important actions to test the code.

76

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

¢ POV20: The instructor who teaches computer science concepts while coding in
class needs to have access to online resources because extra resources support them

to explain the concepts better.

¢ POV21: The instructor needs to share the code easily with the students because

the students need to practice working with it, edit it, or complete it.

To meet the needs grouped as teaching specific ones, we intend to provide a teaching
toolbox within our code editor. This toolbox includes specific tools that the instructor

needs based on our observations.

First of all, the instructor needs to press or hold a key on the keyboard in order
to test the code. Also, sometimes they need to click on a part of the output to test
a functionality. During our observation, we recorded multiple questions from students
regarding the keystrokes or mouse clicks, as the instructor tested the output. Because
the students in an online (or any) class cannot see the instructor’s keyboard, they are not
aware of the instructor’s actions using the mouse and keyboard and since these actions
are essential while testing the code, the students can easily get confused (POV19). We
want to design a mechanism to show keystrokes and mouse clicks on the screen. We
recommend having a small window at the top right next to the run button that indicates

the keystrokes and mouse clicks made by the user when the environment is in run mode.

Secondly, another observation shows that the instructor frequently points to various
objects in the output window when explaining. Pointing assists the instructor in ex-
plaining things clearly. Following the mouse movements is necessary for the student to
avoid confusion. All students, including those with some visual impairments, should be
able to see the mouse movement (POV17). As a result, we recommend that our editor
provide an option for a clearer cursor shape. The suggested cursor shape is an arrow

in dark color and bigger size which make it more clear for the students specifically in

77

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

a screen-sharing situation. Additionally, to adhere to Norman’s feedback principle and
respecting POV19, we want to associate an animation to the cursor for mouse clicks.
When a click happens in running mode on the output screen, a few lines surrounding the
arrow appear. This animation lasts for 2 seconds to compensate any possible connection

lag in an online class or video compression artifacts.

Another observation shows that the instructor repeatedly selects certain parts of the
code while explaining because they wish to emphasize the part being explained (POV16).
This observation provides a good example of how DT can reveal hidden requirements by
asking the correct How Might We (HMW) questions. In this example, we discovered the
hidden requirement of highlighting for pointing or highlighting for attracting students’
attention by asking this question. “Why does the instructor need to highlight the text?”
The incorrect question would be, “How can we make it easier for instructors to select
text?” This may lead to various solutions, including providing a selection tool, while the

actual point is the need for drawing students’ attention to some part of the code.

As implemented in the legacy system, selecting the code places a navy-blue highlight
around it, which may attract the student’s attention. Although selecting does the job
in this system, a need for a highlighting tool is not adequately met. The blue highlight
caused by selecting makes the code difficult to read. Moreover, any click or keypress will
remove the highlighting, so the instructor cannot maintain the highlighting and continue
coding. In this regard, we suggest that our editor provide a tool that can meet the needs

of instructors.

We suggest a highlighting tool that lets the users highlight any portion of the code that
they want. These highlights are permanent in our environment and do not disappear
by clicking or key presses. The user can highlight in different colors selected from a
menu, but these colors should have enough contrast with the colors used in Elm syntax

highlighting. The users can remove the highlights by selecting the text and choosing

78

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

“No highlight” from the menu.

Additionally, some observations identified the instructor’s need to access other tools
and teaching resources. Coding is not the only aspect of teaching programming. Instead,
the students should comprehend computer science concepts in-depth (such as state di-
agrams from PALDraw, a visualization/design tool developed in our research group).
Our research group has various learning tools that an instructor can utilize to teach
computer science concepts in more depth. Additionally, a coder cannot recall all the
function names and inputs provided in a language package. They may regularly use the
Elm package website to check for predefined functions, so they require easy access to
these packages to locate what they require (POV20). Therefore, easy access to extra
learning tools and the Elm package manager is a must in a classroom experience. On
the other hand, observing the instructor switching between different tools and resources
allows students to observe how a professional finds their way through different resources.
We design a drop-down list that includes links to resources that a instructor needs 2 .
Using this list, they can find their desired resources easily and use them in class. As our
code editor is a web application and the other tools are also on the web, clicking on the

link opens a new tab.

Finally, our observations suggested that the instructor frequently shares the code with
students. As the legacy system does not support this functionality within the editor,
the instructor must select the whole code and paste it into a communication tool like
an email or a chatbox. It is inefficient to do this as the code can easily be changed
inadvertently and become unparsable. Our suggestion is to provide the instructor with
a publish button to share the code with students internally within the code editor. We
must define roles for users to handle such tasks. Figures 5.1 and 5.2 show our suggested

design for the discussed user interface.

2The links being displayed in this drop-down list are controlled by the system administrator or
instructional designer and will change based on users’ roles.

79

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

eoe (4]
« Editing Manu o « Cursor " -+ Extra Resources =
Run {F5) Meormal Elm Packages
Dark
: |
Copy (ctrl + ¢ Teaching Paldraw

Paste (ctrl + v) Shape Creator

wpan go harel

use model.time to animate things i)

Cut {etrl + x} el =

Unda (ctr +z)
le 192 128
»d LlightBlue
Reda (ctr + y)

. the big fish
Find {ctrl + f) ¥ 0.75

is the multiline commneting

Replace (ctrl +)

FIGURE 5.2: Suggested Menu

80

Chapter 6

Conclusion

Using systematic observation inspired by ethnographers, we provide a detailed design
for a prototype of an enhanced code editor specifically designed for teaching purposes.

Our observations were from screen recordings of classes held virtually due to Covid-19.

6.1 Research Questions

RQ 1: Can observation of a legacy system be used to design a novel code

editor specifically used in live coding by an instructor?

Yes. Chapter 4 reports our observations, insights, problem statements, and proposed

solutions. Chapter 5 reports the final design decisions.
RQ 2: What features should an editor designed for teaching have?

Based on our observations, we built personas to guide the design. For example
we observed frequent use of copying and pasting, undoing and redoing, using common
shortcuts. It is important that editors implement these actions in the expected way.
On the other hand, frequent use of highlighting had multiple purposes, and an editor

designed specifically for teaching can better serve these purposes. Chapter 4 traces 71

81

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

possible design decisions back to the original observations, explaining them in terms of

the personas.

RQ 3: Is there evidence supporting the usefulness of a Projectional Editor

by the instructor in teaching coding?

Yes. Section 5.1 explains how 5 of our Point of View (POV)s reveal pain-points that

can be mitigated by using a projectional editor.

RQ 4: What kind of requirements can we get from observing a legacy
system? There are two kinds of requirements which can be inferred from observing a
legacy system. There are requirements that are not addressed by the current system
which can only be inferred from observations of the users’ difficulties in using the legacy
system for specific tasks. There are also requirements which are met by the current
system by using existing features in creative ways. These requirements are likely not to

be met if the underlying features are implemented differently in a new system.

6.2 Next Steps
The next steps continuing this project should be:
1. Building the prototype
2. Testing it with real users (instructors and teaching assistants)
3. Testing it from the personas’ perspectives
4. Gathering feedback
5. Iterating

Things that the team can consider in future iterations:

82

M.A.Sc. Thesis - Hosseinkord Maryam ; McMaster — Computer Science

Consider more details of existing personas in design. Specifications like the Oper-

ating System or device that a persona uses can affect the design decisions.

Add a Teaching Assistant (TA) persona: We did not consider the TA perspective
because no TA was present in the videos. But TAs play a big role in teaching,
and use the software differently, and hence deserve a persona to ensure that their

needs are considered in the design.

Repeat the observations with in-person classes: Even though we are confident that
our findings can be generalized to in-person classes, we strongly suggest observation

of in-person classes.

Santos remarked that a drawback of using projectional editors is that students will
not learn to correct syntax errors [43]. We hypothesize that using a projectional
editor would save enough time to add a parser assignment to the course giving
students a mental model of where the syntax errors come from, which benefits

them both as programmers and computer scientists.

83

Bibliography

[1] R. Anderson. Work Ethnography and System Design. The Encyclopedia of Micro-
Computers 20, A. Kent and JG Williams. 1997.

[2] M. Arbib. Review of"The Sciences of the Artificial’(Simon, HA; 1969). IEEE Trans-
actions on Information Theory 16(6) (1970), 803-804.

[3] B. Basir and R. Salam. Tacit requirements elicitation framework. ARPN J. Eng.
Appl. Sei 10(2) (2015), 572-578.

[4] B. A. Bottos and C. M. Kintala. Generation of syntax-directed editors with text-

oriented features. The Bell System Technical Journal 62(10) (1983), 3205-3224.

[5] M. M. Burnett and B. A. Myers. Future of end-user software engineering: beyond

the silos. In: Future of Software Engineering Proceedings. 2014, 201-211.
[6] W. Burnett. d. school Design Thinking Bootcamp (2014).

[7] E. D. Canedo and R. P. da Costa. The use of design thinking in agile software
requirements survey: a case study. In: International Conference of Design, User

Ezperience, and Usability. Springer. 2018, 642—657.

[8] E.D. Canedo, A. C. D. S. Pergentino, A. T. S. Calazans, F. V. Almeida, P. H. T.
Costa, and F. Lima. Design Thinking Use in Agile Software Projects: Software
Developers’ Perception. In: ICEIS (2). 2020, 217-224.

[9] A. Cooper. The inmates are running the asylum. In: Software- Ergonomie’99. Springer,

1999, 17-17.

84

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

A. Cooper. About Face 2.0: The Essentials of Interaction Design. Wiley Publishing,
2003. 1SBN: 0764526413.

S. De and V. Vijayakumaran. A Brief Study on Enhancing Quality of Enterprise
Applications using Design Thinking. International Journal of Education and Man-

agement Engineering 9(5) (2019), 26.

Design Thinking: get a quick overview of the history. https://wuw.interaction-
design.org/literature/article/design-thinking-get-a-quick-overview-

of-the-history. Accessed: 2021-11-30.

Donzeau-Gouge. A Structure Oriented Program Editor: a First Step Towards Com-

puter Assisted Programming. In: Computing Symp., Antibes. 1975.

V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming environments
based on structured editors: The MENTOR experience. Tech. rep. INSTITUT NA-
TIONAL DE RECHERCHE D’'INFORMATIQUE ET D’ AUTOMATIQUE ROC-
QUENCOURT ..., 1980.

V. Donzeau-Gouge, B. Lang, and B. Melese. Practical applications of a syntax di-
rected program manipulation environment. In: Proceedings of the 7th international

conference on software engineering. 1984, 346-354.

Ethical Conduct for Research Involving Humans. https://ethics.gc.ca/eng/

documents/tcps2-2018-en-interactive-final.pdf. Accessed: 2021-12-10.

H. Ferreira Martins, A. Carvalho de Oliveira Junior, E. Dias Canedo, R. A. Dias
Kosloski, R. Avila Paldés, and E. Costa Oliveira. Design thinking: Challenges for

software requirements elicitation. Information 10(12) (2019), 371.

D. B. Garlan and P. L. Miller. Gnome: An introductory programming environment

based on a family of structure editors. ACM Sigplan Notices 19(5) (1984), 65-72.

K. Goffin, F. Lemke, and U. Koners. Identifying hidden needs: creating breakthrough

products. Springer, 2010.

85

https://www.interaction-design.org/literature/article/design-thinking-get-a-quick-overview-of-the-history
https://www.interaction-design.org/literature/article/design-thinking-get-a-quick-overview-of-the-history
https://www.interaction-design.org/literature/article/design-thinking-get-a-quick-overview-of-the-history
https://ethics.gc.ca/eng/documents/tcps2-2018-en-interactive-final.pdf
https://ethics.gc.ca/eng/documents/tcps2-2018-en-interactive-final.pdf

Bibliography

[24]

[26]

[27]

W. J. Hansen. User engineering principles for interactive systems. In: Proceedings

of the November 16-18, 1971, fall joint computer conference. 1972, 523-532.

W. Hansen. Graphic editing of structured text. In: Advanced Computer Graphics.
Springer, 1971, 681-700.

C. Heath and P. Luff. Technology in action. Cambridge university press, 2000.

J. Hehn and F. Uebernickel. The use of design thinking for requirements engineer-
ing: an ongoing case study in the field of innovative software-intensive systems. In:
2018 IEEE 26th international requirements engineering conference (RE). IEEE.
2018, 400-405.

V. T. Heikkild, D. Damian, C. Lassenius, and M. Paasivaara. A mapping study on
requirements engineering in agile software development. In: 2015 41st Furomicro
conference on software engineering and advanced applications. IEEE. 2015, 199—

207.

how IDEO Uses Customer Insights to Design Innovative Products Users Love.
https://www.usertesting.com/blog/how-ideo-uses-customer-insights-

to-design-innovative-products-users-love. Accessed: 2021-11-30.

A. Husaria and S. Guerreiro. Requirement Engineering and the Role of Design

Thinking. In: ICEIS (2). 2020, 353-359.

M. B. Jensen, F. Lozano, and M. Steinert. The origins of design thinking and the
relevance in software innovations. In: International Conference on Product-Focused

Software Process Improvement. Springer. 2016, 675-678.

D. Kelley and T. Brown. An introduction to Design Thinking. Institute of Design
at Stanford. doi: hitps://doi. org/10.1027/2151-2604/a000142 (2018).

G. Klein, B. Moon, and R. R. Hoffman. Making sense of sensemaking 1: Alternative

perspectives. IEEE intelligent systems 21(4) (2006), 70-73.

86

https://www.usertesting.com/blog/how-ideo-uses-customer-insights-to-design-innovative-products-users-love
https://www.usertesting.com/blog/how-ideo-uses-customer-insights-to-design-innovative-products-users-love

Bibliography

[30]

[31]

[34]

[36]

[37]

[38]

J. Kolko. Sensemaking and framing: A theoretical reflection on perspective in de-
sign synthesis (2010).

K. Kumar, D. Zindani, and J. P. Davim. Introduction to Design Thinking. In:
Design Thinking to Digital Thinking. Springer, 2020, 3-15.

B. Lang. On the usefulness of syntax directed editors. In: Advanced Programming

Environments. Springer. 1987, 47-51.

P. Lucena, A. Braz, A. Chicoria, and L. Tizzei. IBM design thinking software devel-
opment framework. In: Brazilian Workshop on Agile Methods. Springer. 2016, 98—
109.

M. S. Mirza and S. Datta. Developing Software Using Agile and Design Think-
ing Framework. In: 2020 International Conference on Computational Science and

Computational Intelligence (CSCI). IEEE. 2020, 1819-1823.

N. Murauer. Design thinking: using photo prototyping for a user-centered interface
design for pick-by-vision systems. In: Proceedings of the 11th PErvasive Technolo-

gies Related to Assistive Environments Conference. 2018, 126-132.

A. S. Negi, J. Kumar, S. Lugman, K. Shanker, M. Gupta, and S. Khanuja. Re-
cent advances in plant hepatoprotectives: a chemical and biological profile of some

important leads. Medicinal Research Reviews 28(5) (2008), 746-772.

M. Neumeier. The 46 Rules of Genius: An Innovator’s Guide to Creativity. New
Riders, 2014.

P. Newman, M. A. Ferrario, W. Simm, S. Forshaw, A. Friday, and J. Whittle. The
role of design thinking and physical prototyping in social software engineering. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 2. IEEE. 2015, 487-496.

D. A. Norman. The Design of Everyday Things. 1988.

87

Bibliography

[40]

[41]

[42]

[45]

[46]

[47]

B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In: Pro-

ceedings of the Conference on the Future of Software Engineering. 2000, 35—46.

J. C. Pereira and R. de FSM Russo. Design thinking integrated in agile soft-
ware development: A systematic literature review. Procedia computer science 138

(2018), 775-782.

J. J. Sanders, E. Caponigro, J. D. Ericson, M. Dubey, J.-N. Duane, S. P. Orr, W.
Pirl, J. A. Tulsky, and D. Blanch-Hartigan. Virtual Environments to Study Emo-
tional Responses to Clinical Communication: A scoping review. Patient Education

and Counseling (2021).

A. L. Santos. Javardise: a structured code editor for programming pedagogy in
Java. In: Conference Companion of the 4th International Conference on Art, Sci-

ence, and Engineering of Programming. 2020, 120-125.

J. H. Schaeffer. Videotape: New techniques of observation and analysis in anthro-

pology. De Gruyter Mouton, 2009.

H. A. Simon. The Sciences of the Artificial (3rd Ed.) Cambridge, MA, USA: MIT
Press, 1996. 1sBN: 0262691914.

V. Stray, R. Hoda, M. Paasivaara, and P. Kruchten. Agile Processes in Software
Engineering and Extreme Programming: 21st International Conference on Agile
Software Development, XP 2020, Copenhagen, Denmark, June 812, 2020, Pro-

ceedings. Springer Nature, 2020.

A. Suzianti and G. Arrafah. User Interface Redesign of Dental Clinic ERP System
using Design Thinking: A Case Study. In: Proceedings of the 2019 5th International

Conference on Industrial and Business Engineering. 2019, 193-197.

88

Bibliography

[48]

[53]

A. Suzianti, A. D. Wulandari, A. H. Yusuf, A. Belahakki, and F. Monika. Design
Thinking Approach for Mobile Application Design of Disaster Mitigation Man-
agement. In: Proceedings of the 2020 2nd Asia Pacific Information Technology
Conference. 2020, 29-33.

Teaching Empathy Through Design Thinking. https://wuw.edutopia.org/blog/
teaching - empathy - through - design- thinking - rusul - alrubail. Accessed:

2021-11-30.

T. Teitelbaum and T. Reps. The Cornell program synthesizer: a syntax-directed

programming environment. Communications of the ACM 24(9) (1981), 563-573.

G. Van Dijk. Design ethnography: Taking inspiration from everyday life. Service
Design Thinking (2010).

R. Vivian, K. Falkner, and C. Szabo. Can everybody learn to code? Computer
science community perceptions about learning the fundamentals of programming.

In: Nov. 2014.

M. Voelter, J. Siegmund, T. Berger, and B. Kolb. Towards user-friendly projec-
tional editors. In: International Conference on Software Language Engineering.

Springer. 2014, 41-61.
S. Walker. Design Think. In: Design Realities. Routledge, 2018, 63—64.

S. P. Ylirisku and J. Buur. Designing with Video: Focusing the user-centred design

process. Springer Science & Business Media, 2007.

89

https://www.edutopia.org/blog/teaching-empathy-through-design-thinking-rusul-alrubail
https://www.edutopia.org/blog/teaching-empathy-through-design-thinking-rusul-alrubail

	Abstract
	Acknowledgements
	Acronyms
	Declaration of Authorship
	Introduction
	Purpose
	RQ
	Contributions
	Structure of Thesis

	Literature Review
	A Brief Look at the History of Design Thinking
	d.school Design Thinking Model
	Design Thinking and Software Development
	Why does software fail?
	Understanding User's Hidden Needs
	Understanding Users' Requirements
	Other Areas That DT Can Help

	Parser-Based Editors vs Projectional Editors
	From Syntax-Controlled Systems to Projectional Editors

	Projectional Editors and Teaching
	Design Principles and Challenges

	Methods
	Empathy
	Ethnography
	Video Ethnography
	Ethnography Challenges
	Recording Data (What-How-Why)
	Personas

	Define
	Sensemaking
	Point of Views
	How Might We Questions

	Ideate
	Brainstorming
	Brainstorm Selection

	Results
	Observations and Note Taking
	Recording the Data
	Personas
	Defining the problem
	Ideation and Brainstorming

	Discussion And Design
	Projectional Editor or Not?
	General Editing Requirements
	Selecting
	Deleting
	Copying and Cutting
	Pasting
	Undo and Redo
	Find and Replace
	Commenting
	Out of Order Editing Habits

	The User Interface
	Teaching Functionalities

	Conclusion
	Research Questions
	Next Steps

	Bibliography

