
COLLISION AVOIDANCE ASSISTANCE IN UAV

TELEOPERATION



COLLISION AVOIDANCE ASSISTANCE IN UAV

TELEOPERATION

BY

SAHAND GHAFFARI, M.Sc., B.Sc.

a thesis

submitted to the department of Electrical & Computer Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

© Copyright by Sahand Ghaffari, Nov 2021

All Rights Reserved



Doctor of Philosophy (2021) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Collision Avoidance Assistance in UAV Teleoperation

AUTHOR: Sahand Ghaffari

M.Sc. (Mechanical Engineering),

B.Sc. (Mechanical Engineering),

K. N. Toosi University of Technology, Tehran, Iran

SUPERVISOR: Prof. Shahin Sirouspour

NUMBER OF PAGES: xxiii, 169

ii



To my beloved wife Atrin and my dearest parents Nasrin and Touraj

iii



Lay Abstract

Unmanned aerial vehicles (UAVs) are highly maneuverable and agile, and can access

spaces that would normally be inaccessible by other means. Their applications often

involve complex task scenarios performed in unstructured environments with uncer-

tainties and time constraints that make full autonomous operation impractical and/or

ineffective. This thesis presents a novel shared control strategy for human-in-the-loop

teleoperation of UAVs. In this strategy, the operator uses a human-to-machine in-

terface to move the UAV in its task-space while an automated collision avoidance

algorithm helps prevent collisions with obstacles. The proposed collision avoidance

algorithm incorporates UAV operational constraints. Furthermore, by predicting the

future trajectory of the UAV, it would proactively prevent the operator from com-

manding it into a state where collisions with obstacles would become unavoidable.

The collision avoidance assistance algorithm is further extended to guarantee collision

avoidance in the presence of uncertainty. All collision avoidance strategies have been

successfully implemented and evaluated in an indoor laboratory setting.
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Abstract

Unmanned aerial vehicles (UAVs) have found an increasing number of applications

in recent years. However, the complexity of the task environment and operational

requirements in many of these applications render fully autonomous operation rather

impractical. This thesis presents a novel shared control strategy for human-in-the-

loop teleoperation of UAVs. It integrates user direct teleoperation of the UAV with

automatic collision avoidance assistance. In this strategy, the operator utilizes a

human-machine-interface (HMI) to provide linear acceleration commands for the UAV

in order to navigate it in the task environment. Simultaneously, a collision avoidance

assistance algorithm modifies the operator’s commands to help avoid potential col-

lisions with obstacles in the environment. These corrective commands are obtained

by formulating an optimization problem over a rolling control horizon and solving it

in real time, in the so-called model predictive control (MPC) framework. In the op-

timization formulation, obstacles represent restricted space that must be avoided by

the UAV. The obstacle-free space manifests as a set of constraints on the states of the

UAV. These obstacle-related constraints are generally non-convex in their original

form, which can render the entire optimization problem non-convex. The obstacle

free-space may be approximated by a convex region to avoid challenges associated

with solving non-convex optimizations. Many of the contributions of this work relate

v



to obtaining such convex approximations that are not overly conservative to unnec-

essarily inhibit the UAV ability to move in its task environment.

Reachability analysis provides a powerful tool for identifying obstacles with the

chance of collision, and creating approximate safe convex regions that are not too

conservative. In this thesis, two new methods based on reachability analysis are pro-

posed to generate such approximate convex obstacle-free space for the use in collision

avoidance MPC. The first method uses backward reachability analysis to detect a

subset of obstacles with chance of collision with the UAV in the MPC time horizon.

Following the detection of these obstacles, the SVM algorithm is employed to con-

struct a safe polyhedral convex region around the UAV. The second method improves

on the first one by generating the approximate convex obstacle-free region based on

forward reachability analysis. At each time step in the MPC horizon, separating hy-

perplanes between the UAV and obstacles are found that maximize the volume of the

intersection of the UAV reach set and half-space produced by the hyperplanes. The

convex safe region is approximated by the intersection of these half-spaces.

The next contribution of the thesis focuses on accounting for uncertainty in the

system in the development of the collision avoidance assistance algorithm. A novel

ellipsoidal-based robust model predictive control (RMPC) for collision avoidance as-

sistance in UAV teleoperation is presented. The main contribution here is the for-

mation of the collision avoidance assistance in UAV under uncertainties as a convex

optimization problem. Ellipsoidal approximation of reachable regions due to feasible

inputs and uncertainties are derived using reachability analysis. A new convex gen-

eration method is used to approximate the obstacle-free space with a polyhedral. An
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inner polyhedral approximation of tightened constraints guaranteeing collision avoid-

ance is obtained using geometrical relationship between the ellipsoidal reach set and

polyhedral safe region.

The final contribution of this thesis guarantees recursive feasibility of the MPC-

based collision avoidance assistance formulation. A fundamental problem in finite-

time MPC is the lack of guaranteed recursive feasibility. This could place the UAV

into a state where collision with obstacles becomes unavoidable. In this thesis, new

MPC-based collision avoidance assistance algorithms with guaranteed recursive feasi-

bility for the UAV teleoperation with/without disturbances are introduced. Terminal

velocity constraints are added to the MPC formulation to guarantee its recursive

feasibility. A novel ellipsoidal tube-based MPC is introduced that extends collision

avoidance assistance with guaranteed recursive feasibility to UAV under disturbances.

In this method, an ellipsoidal approximation of the robust positively invariant (RPI)

set is derived using a new RPI set approximation based on ellipsoidal techniques.

Polyhedral approximation of the obstacle-free space is derived using the SVM algo-

rithm. Ab inner polyhedral approximation of the tightened constraints is obtained

using geometrical relation between ellipsoidal RPI set and polyhedral safe region.

The methods proposed in this thesis are evaluated experimentally in an indoor

environment using a fully-actuated UAV. The results demonstrate that the MPC-

based collision assistance is highly effective in helping the operator navigate the task

environment and avoid collisions with obstacles. This is in part due to the fact the

methods introduced here generate a realistic convex approximation of the obstacle-

free space. This allows the operator to teleoperate the UAV in the task environment

without unnecessarily being hindered by a conservative approximation of this space.
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Chapter 1

Introduction

1.1 Motivation

Unmanned aerial vehicles (UAVs) are highly maneuverable and agile, and can access

spaces that would normally be inaccessible by other means. These unique capa-

bilities have given rise to their growing applications in agriculture, defense and law

enforcement, inspection and maintenance of infrastructure, mining, search and rescue,

surveillance, fire monitoring, and transportation [50, 68, 74, 98]. These applications

often involve complex task scenarios performed in unstructured environments with

uncertainties and time constraints that make full autonomous operation impractical

and/or ineffective. In such circumstances, a shared control strategy provides an ef-

fective collaborative framework for human-robot co-execution of the task [47]. The

operator can rely on his/her cognitive abilities to assess the task environment, make

high-level decisions, and command the robot to execute the task accordingly, while

being assisted by automatic control algorithms.

In devising shared control strategies, care must be taken not to overburden the
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operator with secondary tasks that could distract from primary objectives. Increased

workload combined with poor situational awareness especially when executing compli-

cated manoeuvres can lead to operator errors [79, 94]. Avoiding collisions in complex

environments can be particularly challenging for a human operator and can lead to

fatigue and poor task performance.

Assigning the collision avoidance task to the UAV while entrusting tasks with

higher-level cognitive process requirements to the human operator offers great ad-

vantages over a fully autonomous system. However, such shared control strategy

would introduce new challenges both in theoretical development and in practical im-

plementation. On the UAV side, the main challenge is to devise a collision avoidance

algorithm to assist the user to operate the UAV in an unstructured and complex

environment in real-time, while incorporating the UAV operational constraints. On

the operator side, a suitable platform must be designed for human-UAV interaction

to allow the operator effectively command the UAV and achieve the task objectives,

while minimizing the operator’s workload.

The subject of collision avoidance in UAVs has found increasing interest in recent

years. However, there are still significant gaps in research on collision avoidance

in unstructured and complex environments with uncertainties in the UAV and its

environment. This thesis focuses on addressing some of the shortcomings in the

existing research. It seeks to design and implement novel collision avoidance assistance

algorithms that would help an operator to safely and and reliably teleoperate a UAV

in its task environment.
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1.2 Problem Statement

In this thesis, a semi-autonomous shared control strategy is introduced to navigate

the UAV in a complex and unstructured environment. In this strategy, the operator

tele-operates the UAV by providing linear motion acceleration commands, while a

collision avoidance algorithm modifies these commands to ensure collision-free op-

eration. There has been a great deal of research in developing automated collision

avoidance algorithms, particularly in the field of mobile robotics. The reader is re-

ferred to a number of reviews on the subject matter in [1, 48, 75]. This thesis proposes

optimization-based collision avoidance strategies, where collision avoidance is formu-

lated as a constrained optimization problem. This approach can easily incorporate

UAV-related operational constraints in collision avoidance. The optimization prob-

lems are formulated over a rolling control horizon, in the so-called model predictive

control (MPC) framework. By predicting the future trajectory of the vehicle, the

collision assistance algorithm would be able to proactively prevent the operator from

commanding the UAV into a state where collisions with obstacles would become un-

avoidable.

One of the main challenges in optimization-based approaches to collision avoidance

is related to the formulation of obstacle-free space as a convex constraint. Convexity

of constraints and objective are highly desirable as they would lead to convex opti-

mization problem formulations that can be effectively solved to their global optimal

solution with standardized routines. However, obstacle-related constraints are gener-

ally non-convex in their original form. A natural idea is to use non-convex program-

ming methods to solve the resulting problem. However, in non-convex optimizations,

finding and certifying the global optimum point is impossible or computationally
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prohibitive [17], making it impractical for real-time applications.

An alternative approach to overcome the non-convexity of obstacle-related con-

straints is to approximate the obstacle-free space with a convex region. However,

existing studies on this approach usually consider all obstacles around the robot in

safe convex region generation rather than only focusing on obstacles with the chance

of collision. This can lead to an over-constrained approximation of the obstacle-free

space, limiting the robot motion space. Furthermore, the obstacle-free space is ap-

proximated by a convex region without considering the reachable regions of the robot.

The intersection among the resulting convex region and the robot reachable region

can be empty or small, significantly inhibiting the robot ability to move in space.

Uncertainties in robot motion and the task environment are unavoidable in real-

world applications. To ensure collision-free teleoperation of the UAV in an obstacle-

rich environment, uncertainties should be considered in designing the collision avoid-

ance system. Reachability analysis can provide a powerful tool to calculate the reach-

able states of the UAV due to uncertainties, which can then be used in formulating

the collision avoidance optimization problem.

The MPC optimization problem must be repeatedly solved solved over a rolling

horizon to find corrective commands that would help avoid collisions. A fundamental

problem in finite-time MPC is the lack of guaranteed recursive feasibility. This means

that the feasibility of the MPC at the initial time does not guarantee its feasibility

at future iterations. This could place the UAV into a state where collision with

obstacles becomes unavoidable. Tube-based MPC [54] provides an effective solution

to guarantee recursive feasibility in UAV under uncertainties. Reachability analysis

can provide a powerful tool to calculate the reachable tube.
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An optimization-based collision avoidance algorithm that incorporates the reach-

ability analysis benefits from the flexibility of optimization-based techniques in UAV

teleoperation. It would address some of the limitations of optimization-based methods

in relation to characterizing the obstacle-free space as a convex region.

1.3 Thesis Contributions

This thesis makes a number of important contributions in the area of human-in-

the-loop control of UAVs. It presents a comprehensive theoretical treatment of the

problem, including teleoperation strategy, dynamic modelling, and collision avoidance

algorithm design. The theoretical developments are evaluated experimentally.

In this work, the operator tele-operates the UAV by providing acceleration com-

mands. A model predictive collision avoidance algorithm modifies these commands

to ensure collision-free operation of the UAV. The collision avoidance problem is

formulated as a convex constrained optimization problem over a rolling control hori-

zon. The objective is to minimize interference with the operator’s commands, while

keeping the UAV in the obstacle-free space. The reachability analysis is utilized to

approximate the obstacle-free space as convex set in the MPC optimization problem.

The reachability analysis of dynamical system can be utilized to generate a convex

region approximation of the obstacle-free space in collision avoidance. This approxi-

mation is needed for use as constraints in the formulation of the collision avoidance

optimization problem. The so-called forward reachability analysis determines the set

of system reachable states during the time of interest. The backward reachability

analysis produces the set of system initial states that can lead to the undesirable

states over the time of interest. Calculating the exact reach set of the system at
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each time of interest can be computationally prohibitive, making it unattractive for

real-time applications, particularly in high-dimensional systems. In linear dynamical

systems, the reachable set can be approximated by predefined geometrical shapes.

Reachability analysis based on ellipsoidal techniques is popular for such systems. El-

lipsoids can effectively approximate geometrical shapes and have simple mathematical

formulation.

This thesis employs the reachability analysis in two new methods for approxi-

mating the obstacle-free space with a convex region. The first method is a novel

backward reachability-based obstacle detection algorithm that identify obstacles that

could potentially collide with the UAV within a rolling control time horizon. The

computations are significantly reduced by using an ellipsoidal technique and finding

analytical solutions to all relevant differential equations. Following the identification

of obstacles with the chance of collision, the SVM algorithm [41] is employed to con-

struct a safe polyhedral convex region around the UAV that would keep it away from

the obstacles with the chance of collision.

The second method is a new convex region generation algorithm based on reacha-

bility analysis. In this algorithm, first an approximate reachable region of the system

at each time instance of interest is obtained. Then, a safe-half space with maximum

reachable region is created by finding the separating hyperplane between the unsafe

undesirable set intersecting with the reachable region and a so-called target point of

the system at each time instance of interest.

Another contribution of this thesis is to account for uncertainties in the UAV

and its environment in creating the safe region and associated collision avoidance

assistance algorithm. To this end, the reachable states of the UAV and obstacles
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subject to uncertainties are computed at each time instance of interest. A polyhedral

safe convex region is created using the algorithm developed earlier. Collisions with

obstacles are avoided by guaranteeing that the UAV would not collide with obstacles

under any feasible realization of the uncertainties.

The final contribution of this thesis is in guaranteeing recursive feasibility in MPC-

based collision avoidance assistance in the UAV with/without uncertainties. Recur-

sive feasibility is guaranteed in UAV by adding terminal velocity constraints. A novel

ellipsoidal tube-based MPC is presented to extend the collision avoidance assistance

with recursive feasibility for UAV under uncertainties. In this method, an ellipsoidal

approximation of the RPI set is calculated. Polyhedral approximation of the obstacle-

free space is derived using the SVM algorithm. The inner polyhedral approximation

of the tightened constraints is obtained using geometrical relation between the ellip-

soidal RPI set and polyhedral safe region.

In summary, the main contributions of this thesis are:

� A shared control strategy for human-in-the-loop teleoperation of UAVs with

automated collision avoidance assistance. The collision avoidance is formulated

as a convex optimization problem that can be solved in real-time to find a

globally optimal solution.

� An obstacle detection algorithm based on backward reachability analysis. The

reachability analysis helps identify obstacles with chance of collision with the

UAV over the control time horizon. These are then considered in generating a

convex approximate obstacle-free space. This approach generally yields a less

conservative approximation of the obstacle-free space compared to a case where

all obstacles are considered.
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� A convex region generation method based on reachability analysis. This algo-

rithm attempts to maximize the intersection of the reachable region of the UAV

and the approximated convex obstacle-free space. This generally yields a less

restrictive approximation of the obstacle-free space allowing the UAV to more

freely move in its environment.

� The proposed convex region generation algorithm is general and not limited

to three dimensional spaces. It can be used to create the convex region for

spaces with arbitrary dimension. Furthermore, the algorithm low computational

complexity makes it suitable for real-time applications.

� Ellipsoidal-based RMPC for collision avoidance in UAV subject to uncertainty.

The proposed algorithm addresses the collision avoidance problem when there

are uncertainties in the UAV and obstacles models.

� New MPC-based collision avoidance assistance algorithms with guaranteed re-

cursive feasibility for UAV teleoperation with/without uncertainties.

� Experimental evaluation of the proposed shared control strategy with different

collision avoidance assistance algorithms.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Pertinent literature in the UAV

teleoperation, collision avoidance, and reachability analysis is reviewed in Chapter 2.

A new optimization-based shared control strategy with automated collision avoidance

is introduced in Chapter 3. A novel backward reachability-based obstacle detection is
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presented and implemented in Chapter 4. A new convex region generation based on

reachability analysis is proposed in Chapter 5. The effectiveness of this algorithm is

demonstrated experimentally. In Chapter 6, collision avoidance assistance is extended

to account for uncertainties in the UAV and its environment. Collision avoidance

assistance with guaranteed recursive feasibility is introduced in Chapter 7. This

thesis is concluded in Chapter 8 where some suggestions for future research are also

provided.

1.5 Publication

� S. Ghaffari and S. Sirouspour, Convex Optimization for Collision Avoidance

Assistance in Teleoperation of Mobile Robots with Linear Dynamics, Submitted

to IEEE/ASME Transactions on Mechatronics, 2021

� S. Ghaffari and S. Sirouspour, Collision Avoidance Assistance in UAV Teleop-

eration using Model Predictive Control and Reachability Analysis, Submitted

to IEEE Transactions on Systems, Man and Cybernetics, 2021 (revised).

� S. Ghaffari and S. Sirouspour, Collision Avoidance Assistance in UAV Tele-

operaiton under Uncertainty using Ellipsoidal Tube based MPC, Submitted to

IEEE International Conference on Robotics and Automation (ICRA), 2021.
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Chapter 2

Literature Review

The literature review in this thesis is organized under the three categories of human

manual control, collision avoidance, and reachability analysis. The first group of

work reviewed concerns modelling of the manual control behaviour of a human op-

erator. These theories behind these modelling methods inform decisions made about

the mapping of the human commands to the UAV motion in order to facilitate its

teleoperation.

Next, some of the most relevant work in the field of mobile robotics as it pertains

to obstacle and collision avoidance are surveyed. In this context, various existing for-

mulations of optimization-based collision avoidance including convex and non-convex

formulations of the problem are explored. Methods that approximate the obstacle-

free space with convex region for use in convex optimization are briefly reviewed and

their advantages and disadvantages are discussed.

The thesis main contributions revolve around the use of reachability analysis for

dynamical systems in producing more realistic and less restrictive safe convex region
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approximation of the obstacle-free space. The review here covers different formu-

lations of the reachability analysis and explores the pros and cons of each of these

formulations for real-time collision avoidance.

2.1 Human Manual Control

Studying the modelling of the human manual control behavior can yield valuable

insight into the design of effective human-machine interaction strategies. A significant

portion of the research in this area comes from studying the human control models

in piloted aircraft systems [95].

The control behavior of the human operator can be categorized into the three

stages of compensatory, pursuit, and precognitive control [49]. In the compensatory

stage, the human controller only acts on the error between the reference and system

output [65]. Most of the work in this area is based on the research of McRuer and

his team [49, 65, 66]. They extensively investigated the human pilot control behavior

and proposed the so-called crossover model. This model states that the operator

controller adapts to the plant dynamics by providing lead and lag equalization such

that the combined operator-plant is rendered to an integrator with time delay.

In the pursuit stage, the human controller uses the combination of at least two of

the following strategies: a) a feedforward response of the target b) a compensatory

feedback response of the error, and c) a feedback response of the system output [70].

In [32–34], the behavior of the feedforward term of the human controller in pursuit

tracking is investigated and modelled by a transfer function. In [91, 92], it is shown

that that previewing future task information to the operator can improve him/her

performance. The work in [93] concludes that increasing the preview look-ahead time
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enhances the human controller performance.

In the precognitive stage, the human operator is assumed to have complete knowl-

edge of the target and may develop a fully open-loop control strategy. A systematic

understanding for this control stage is still lacking [70].

2.2 Collision Avoidance

Due to their agility and maneuverability, UAVs have found increasingly applications

in recent years. Having the ability to reliably avoid collisions is crucial to achieving

autonomy in UAV operations. There has been a great deal of research in developing

automated collision avoidance algorithms particularly in the field of mobile robotics.

The reader is referred to a number of reviews on the subject matter in [1, 48, 97].

In general, collision avoidance algorithms can be divided into reactive or deliberative

planning [97]. In deliberative planning, a map of the environment is generated and

an optimal collision-free path is planned. The need for an accurate and updated

map of the environment makes this approach computationally expensive and rather

unsuitable for use in dynamic environments. In reactive methods, the robot reacts to

the information from local sensors. These approaches are generally computationally

efficient but they can lead to a local minimum and may need another navigation

techniques to resolve the issue.

Existing collision avoidance algorithms can be categorized into one of geometric

methods, potential-field methods, or optimization-based methods [48, 97]. Geometric

methods utilize geometrical attributes and velocity of the UAV and obstacles to ensure

guaranteed separating distance between the UAV and the obstacles. In [85], a collision

avoidance algorithm based on line-of-sight and relative velocity vectors is presented.
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In this algorithm, safe directions for preventing collisions are calculated. A collision

avoidance algorithm based on geometrical relations is introduced in [42]. In this

paper, obstacles with a high risk of collision are identified, boundary spheres/cylinders

are generated for these obstacles, and the fastest direction to avoid the obstacles is

determined. In [57], an algorithm is introduced for collision avoidance algorithm in

fixed-wing UAVs. Collisions are avoided based on obstacle avoidance geometry and

critical avoidance start time.

In potential field methods, attractive and repulsive force fields push the robot

towards its intended target and away from obstacles in the environment. In [89], a

potential field method for obstacle avoidance and path planning of mobile robots in

a static environment is presented. In addition to the repulsive forces of the obstacles,

the method introduces a gravity chain between the starting position and target points,

which would act as a guide for the robot. In [88], an optimized potential field for multi-

UAV operation in 3D space is presented. By considering the interaction between the

UAVs, the classical potential field method is extended for multi-UAV scenarios. The

enhanced curl-free vector field algorithm is proposed in [25]. The curl-free vector field

is used instead of the conventional repulsive potential field to avoid the obstacles. The

direction of the vector field is determined based on the velocity vectors of obstacles.

2.2.1 Optimization-based Collision Avoidance

Optimization-based methods cast the collision avoidance problem as an optimization

with a relvant objective function and the robot operational constraints. The optimal

or near-optimal solution to such optimization problem is then sought. The existing

literature covers a broad range of optimization problem formulations from convex
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optimization to heuristic methods [14]. In [16], a predictive controller for decentral-

ized cooperative control of UAVs is presented. In this work, the best set of future

commands is selected such that there is no intersection between the UAV future

trajectory and obstacles. A stochastic collision avoidance method for a tele-operated

UAV is presented in [11]. In this algorithm, the future trajectory of the UAV based on

the operator’s command is calculated. The operator’s commands are modified based

on the probability of collision with obstacles. A particle swarm optimization-based

path planning method for operation in unknown environments is proposed in [14].

The optimal path is determined based on terrain traversability. Heuristic methods

are computationally expensive making them undesirable for real-time applications.

These algorithms are usually used as deliberative planning in conjunction with rapid

reactive collision avoidance algorithms.

Obstacle-free space in its original form generally translates into non-convex con-

straints for the optimization problem. Naturally, many of the existing formulations of

collision avoidance are non-convex optimizations. In [8, 77, 82], a sequential convex

program is used to solve the collision avoidance optimization problem. This method

sequentially approximates the non-convex problem by local convex problems, which

can then be solved by standardized convex solvers [8]. Finding and certifying the

global optimum point for non-convex optimizations is impossible and/or computa-

tionally prohibitive [17], making them unsuitable for use in real-time applications.

Alternatively, the non-convex obstacle-free space can be approximated by a con-

vex region to be used as constraints in the formulation of convex optimization. A

common approach is based on cell decomposition [15, 20, 39] where the configuration

space is discretized to smaller cells and the obstacle-free space is approximated by a
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combination of free cells. In [20], the obstacle-free space is approximated using the

octree-based environment. Topomap is introduced in [15]. It derives a topological

map of the environment and approximates the obstacle-free space by growing and

merging voxel clusters. In [39], an occupancy grid map is used to discretize the en-

vironment and a polytopic convex region is generated from the cluster of free voxels.

These methods preprocess data to build and discretize the map; modifying the map

is usually time demanding. Therefore, adoption of such algorithms for large spaces

in real-time can be challenging.

When obstacles are modeled as polytopes, keeping the robot outside of these

polytopic obstacles is equivalent keeping the robot at least outside one of the faces of

each obstacle. The collision avoidance problem can be formulated as a mixed integer

programming [45, 67, 81]. An integer variable is needed for each obstacle face making

the problem quickly intractable when more than a few obstacles are present in the

environment [28].

Another approach is to create obstacle-free convex region around selected points

in the environment [27, 46, 58, 99]. The IRIS algorithm is introduced in [27] to

approximate obstacle-free space by polytopic and ellipsoidal regions. Given an initial

point, obstacle-free space is obtained by solving quadratic and semidefinite programs

iteratively. A safe flight corridor (SFC) to approximate the obstacle-free space by

series of polytopes is presented in [58]. Similar to IRIS, the SFC algorithm uses

ellipsoidal and polytopic regions to approximate the obstacle-free space, but it is

computationally less demanding. In [99], the obstacle-free space is approximated

based on modified star convex polytope. In [46], a safe convex region is approximated

by the intersection of half-spaces created by the support vector machine (SVM). In
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these studies, instead of just considering obstacles with the chance of collision, all

obstacles around the robot are considered in safe convex region generation. This can

lead to an over-constrained approximation of obstacle-free space limiting the robot

motion. Furthermore, the obstacle-free space is approximated by a convex region

without considering the reachable regions of the robot. The main drawback of such

approach is the possibility of small or empty intersection region between the generated

convex region and reachable region leading to a significant limitation in robot motion.

While significant progress has been made in convex optimization-based collision

avoidance, most existing work ignores uncertainties in the system. In real-world sce-

narios, uncertainties are unavoidable and can significantly degrade the performance

of collision avoidance algorithm. In the presence of uncertainties, the optimization

problem may become infeasible resulting in collisions. Robust model predictive con-

trollers (RMPC) have been developed to deal with uncertainties predictive control of

dynamical systems. Min-Max MPC is a popular approach in this category [12, 31, 83].

It finds a conservative solution by considering the worst-case scenario for the uncer-

tainties. The method is ill-suited for use with unstable dynamic systems [80] due

to fast-growing uncertainty in the system states, which can lead to infeasibility of

optimization-based collision avoidance.

An alternative method to address uncertainty is tube-based MPC introduced in

[54] for a linear dynamic system under bounded disturbances. By generating control

laws instead of control actions, this method separates the robustness problem from

the MPC problem. In [60], tube-based MPC is used in an autopilot system to han-

dle atmospheric disturbances for fixed-wing UAVs. A tube-based MPC is designed

in [19] for time-varying attitude tracking of a rigid body spacecraft with additive
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disturbances. In [44], tube-based MPC is utilized in an active safety controller to

deal with disturbance and modelling errors. Tube-based MPC involves complex set-

based operations including Minkowski sum and Minkowski difference to obtain the

invariant sets, exact reach sets, and tighten constraints. These operations are com-

putationally prohibitive [80] making them unsuitable for real-time applications. To

overcome this issue, the invariant and reach sets can be approximated by predefined

geometrical shapes which would simplify the set operations by geometrical relations

between these geometrical shapes.

2.3 Reachability Analysis

Reachability analysis computes the reachable states of the system at an arbitrary

time by knowing the set of initial states and feasible inputs. This approach provides

a powerful tool in the safety analysis of dynamical systems. There has been a great

deal of research inreachability analysis of dynamical systems. The reader is referred

to reviews on the subject matter in [4, 21].

Reachability analysis using the Hamilton-Jacobi (HJ) partial differential equa-

tion is one of the well-known methods in this area. In [62, 69], game theory-based

HJ formulations of reachability analysis for the safety-critical situation are inves-

tigated. These formulations incorporate disturbance effects and are applicable to

general non-linear dynamical systems. However, their high computational cost makes

them unattractive for real-time applications, particularly for high-dimensional sys-

tems [21].

An alternative approach is based on set propagation techniques. In this approach,

the reach set is calculated by the propagation of the initial set considering the feasible
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system inputs. This approach can be interpreted as an extension of the differential

equations of the system dynamics to set-value initial condition and input. Although

the set propagation approach can be used in reachability analysis of nonlinear sys-

tems [2, 7, 22, 78, 84], it is more popular for use in linear systems. In such systems,

starting from convex sets of initial states and inputs, the approximated reach set in

future times remain convex [4]. Due to the computational efficiency and geometrical

simplicity of a convex set, the set propagation approach provides a powerful tool in

the reachability analysis of linear dynamical systems. In these systems, the reach set

can be approximated by different geometrical shapes including ellipsoids ([23, 52]),

polytopes ([6, 26]), zonotopes ([3, 40]), and support functions ([38, 56]).

Reachability analysis based on ellipsoidal techniques is one of the well-known

approaches for approximating the reach set in the linear dynamic system due to its

efficiency in approximating more complex geometrical shapes and simplicity of its

equation. In [23, 71], parameters of external ellipsoid covering the reachable region of

the system based on different criteria are derived using a differential equation. In [52,

53], the concept of tight ellipsoids are introduced and the reach set is approximated

via the union of internal tight ellipsoids or intersection of external tight ellipsoids.

In [72, 73], minimum volume ellipsoid covering the reach set is chosen as the design

criterion, and explicit formulas for parameters of the ellipsoid are derived.

2.4 Summary

In this chapter, first, a number of different models of the human manual control be-

haviour were reviewed. These models inform decisions made about the mapping of

human commands to the UAV motion in order to facilitate its teleoperation. Then,
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some of the most relevant work in the field of collision avoidance in mobile robots

was studied. In this context, various formulations of MPC-based collision avoidance

including convex and non-convex formulation were investigated. Moreover, RMPC

methods that account for modelling uncertainty were studied. Finally, the most rele-

vant methods in reachability analysis of the dynamical system with safety assurance

application were briefly.
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Chapter 3

Shared Control Strategy

In this chapter, a new shared control strategy for the human-in-the-loop control of

UAVs is proposed. In this approach, the operator tele-operates the UAV by providing

motion commands. A collision avoidance algorithm modifies these commands to

ensure collision-free operation. The mapping between the operator’s input and the

UAV motion is designed based on the results of numerous studies on human manual

control behaviour [33, 92, 93].

The collision avoidance problem is formulated as a convex constrained optimiza-

tion problem over a rolling control horizon. The objective is to minimize interference

with the operator’s commands while keeping the UAV in an obstacle-free space. This

flexible collision avoidance strategy can easily incorporate the UAV operational con-

straints. Furthermore, by predicting the future trajectory of the vehicle, it would

proactively prevent the operator from commanding it into a state where collisions

with obstacles would become unavoidable.
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Figure 3.1: A schematic view of the shared control strategy.

3.1 Shared Control Architecture

A schematic view of the shared control strategy to navigate the UAV in an obstacle-

rich environment is demonstrated in Fig. 3.1. The operator provides linear accelration

commands to the UAV, ah ∈ R3. The collision avoidance algorithm modifies the op-

erator’s commands and produces the net desired acceleration commands ad ∈ R3. An

attitude planner and controller determines the reference attitudes qd ∈ H (where H

denotes the set of all quaternion) and angular velocities ωd ∈ R3. The desired accel-

erations and angular velocities are sent to the inner loop controllers, which produce

the actuator commands for the UAV. A mapping function is introduced between the

HMI unit and the UAV acceleration commands to help the operator navigate the

UAV effectively and to reduce the workload on him/her. To calculate the mapping

function, first, the dynamic equations governing the translational motion of the UAV

should be determined.

Remark. The proposed shared control strategy (Fig. 3.1) can be implemented for

fully-actuated or under-actuated UAVs. In a fully-actuated UAV, the translational
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motion is independent of angular motion and the attitude planer can be completely

independent of the operator’s commands. In this case, the dotted line can be removed

in Fig. 3.1.

3.2 Translational Dynamic Equations

Using the proposed shared-control strategy not only assists the operator to teleop-

erate the UAV without collision in an obstacle-rich environment but also facilitates

the teleoperation task by simplifying the translational dynamics of the UAV using

the hierarchical control structure. Fast inner-loop linear acceleration with gravity

compensation and angular velocity controllers effectively render the dynamics of the

UAV (A.28)-(A.33) into

ṗcg = vcg (3.1)

mv̇cg = RTfb (3.2)

q̇ =
1

2
W T (q)ω (3.3)

Jω̇ = −ω × Jω + τb (3.4)

In this work, it is assumed that the UAV attitude is controlled within a hierarchi-

cal control architecture to decouple its translational and rotational dynamics. The

attitude controller is tuned such that its closed-loop dynamics are fast enough to be

ignored in the translational dynamics. This is reasonable as the translational dynam-

ics would be subject to the operator teleoperation and automated collision avoidance

commands. Using this assumption in (3.1) and (3.2),the translational motion of the
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UAV is represented by the following linear dynamics:

ṗcg = vcg (3.5)

v̇cg = ad (3.6)

Here ad = RTf b/m represents the commanded acceleration. It should be noted

that in the case of an under-actuated UAV such as a quad-rotor, the attitude needs

to be controlled to align the direction of the body-frame acceleration ab with the

desired input acceleration (ad). The attitude can be independently controlled in a

fully-actuated UAV such as the one used in this thesis.

The linear translational dynamics in (3.5) and (3.6) can be written in a state-space

form.

ẋ = Ax+Bu (3.7)

where x = [pTcg,v
T
cg]

T represents the states of the system and u = ad is the desired

acceleration. The matrices A ∈ R6×6 and B ∈ R6×3 are defined as

A =

03×3 I3

03×3 03×3

 , B =

03×3

I3

 (3.8)

The solution to the dynamic system (3.7) is given by

x(t) = G(t, t0)x0 +

∫ t

t0

G(t, s)Bu(s)ds

where x0 ∈ R6 represents the initial states and G(t, s) ∈ R6×6 is the state transition
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Figure 3.2: A schematic view of the human control model with the mapping
function.

matrix

G(t, s) =

 I3 (t− s)I3

03×3 I3

 (3.9)

Using this hierarchical controller allows the operator to simply control a double-

integrator plant dynamics. This should significantly facilitate the teleoperation task.

3.3 Mapping Function

A mapping function is introduced between the human machine interface (HMI) and

the UAV acceleration commands to help the operator effectively navigate the UAV

and reduce his/her workload. The design of the mapping function is informed by the

existing research on human manual control behavior, the workspace constraints, and

measurement limitations.

Fig. 3.2 shows a schematic view of the control system involving the human opera-

tor. This is built based on the models in [33, 92, 93] and the linear dynamics in (3.1)
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and (3.2). This model represents the pursuit and preview model of the human con-

troller. In this model, the operator acts based on the desired near-viewpoint pd(t+τn)

and far-viewpoint pd(t + τf ). Gm(jω) and Gp(jω) represent the mapping function

and the system dynamics, respectively. Moreover, the disturbance ac(t) represents

the corrective acceleration command produced by the collision avoidance algorithm

and any imperfection in inner-loop controllers. n(t) is a colored noise which models

non-linearities and noise in human control activities. The transfer function Gn(jω)

models the operator’s response to near-viewpoint. The low-pass filter Gf (jω) models

the operator’s response to the far-view-point. Ge(jω) is an equalization term that

models the operator’s response to the tracking errors. This term models the human

controller adaptation to the plant dynamics. Gnms(jω) represents the neuromuscular

dynamics of the human operator. The frequency response model of these transfer

functions are given below [92, 93]

Gn(jω) = knjω, Gf (jω) = kf
1

1 + Tfjω
, (3.10)

Ge(jω) = ke
1 + T1jω

1 + T2jω
Gnms(jω) =

ω2
nms

(jω)2 + 2ζnmsωnmsjω + ω2
nms

(3.11)

where kn is the near-viewpoint gain, kf and Tf are the far-viewpoint gain and lag

time constant; ke is the error response gain, T1 and T2 are lead and lag equalization

time constants, ωnms and ζnms are natural frequency and damping ratio, respectively.

Using the crossover model [66] and considering that the combination of the equal-

ization term, mapping function, and system dynamics behaves approximately as a
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single integrator around the crossover frequency, the mapping function can be se-

lected as

Gm = km
(jω)2 + Tm1jω

jω + Tm2

(3.12)

where km is a gain, Tm1 and Tm2 are time constants, respectively.

Other mapping functions that do not adhere to this structure could force the

operator to provide a second-order lead or lag equalization in order to stabilize the

closed-loop system. This is a rather difficult or impossible task for the human op-

erator [65]. In addition, Gm needs to be selected such that the human operator is

not forced to provide lead compensation in the equalization terms as this could sig-

nificantly increase the workload [66]. Therefore, the mapping function is simplified

as

Gm = km((jω)2 + Tm1jω) (3.13)

The HMI used in this research only measures the user input displacements. Nu-

merical computation of the acceleration from these measurements can generate sig-

nificant noise. To avoid the need for user acceleration measurement, the mapping

function is revised as follows

Gm = km(jω) (3.14)

This maps the user input velocity to acceleration command for the UAV.
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3.4 Control Design

A number of low-level controllers are developed for the UAV as shown in Fig 3.1. The

UAV attitude is independently controlled. PID controllers are used for the angular

velocities and accelerations. A schematic view of the acceleration controller is shown

in Fig. 3.3. The operator’s acceleration commands ad(t) ∈ R3 transform to the desired

body acceleration commands abd(t) ∈ R3) via the rotation matrix R ∈ R3×3 and is

sent to the PID controller. The acceleration dynamics are given by (A.30)

mȧbcg = c1m(abcg −Rg) + c2ua (3.15)

The acceleration controller is designed as

ua(t) = Kp
a(abd(t)− ab(t)) +Kd

a(ȧbd(t)− ȧb(t)) +Ki
a

∫ t

0

(abd(τ)− ab(τ))dτ + ucomp(t)

(3.16)

where ucomp(t) ∈ R3 is the gravity compensation voltage obtained by (A.23) and

(A.24). Ka
p is the proportional gain, Ka

d is the derivative gain, and Ka
i is the integral

gain of the PID controller. Due to decoupling of the acceleration dynamics (3.15),

the gains of the PID controller are selected as diagonal matrices.

Ka
p = diag(kapx , k

a
py , k

a
pz), K

a
d = diag(kadx , k

a
dy , k

a
dz), K

a
i = diag(kaix , k

a
iy , k

a
iz) (3.17)

A schematic view of the cascade-style attitude and angular velocity controllers are

shown in Fig. 3.15. The quaternion controller is designed as an outer-loop controller

where the desired angular velocity ωd ∈ R3 is computed from the quaternion error
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Figure 3.3: A schematic view of the acceleration controller.

qe ∈ H. This desired angular velocity is sent to the inner-loop angular velocity

controller to determine the desired voltage.

The UAV (omnicopter) attitude dynamics are given by (A.31)-(A.33).

q̇ =
1

2
W T (q)ω (3.18)

Jω̈ = c1Jω̇ + c2uα (3.19)

An inner-loop PID controller is used to control the angular velocity of the UAV

uω(t) = Kp
ω(ωd(t)− ω(t)) +Kd

ω(ω̇d(t)− ω̇(t)) +Ki
ω

∫ t

0

(ωd(τ)− ω(τ))dτ (3.20)

where Kp
ω,K

d
ω,K

ipω ∈ R3×3 are diagonal gain matrices. ωd is determined by the

outer-loop proportional controller in [35]

ωd(t) = Kp
q f(qe(t)) (3.21)

where Kp
q ∈ R3×3 is a control gain matrix and f(qe(t)) is a function of the quaternion
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error

f(qe(t)) =
2 arccos q0

e(t)√
1− (q0

e(t))
2
q1:3
e (t) (3.22)

Here qie(t), i = 0, ..., 3 are the elements of the quaternion error qe(t)

qe(t) = q−1(t) ◦ qd(t) (3.23)

where ◦ denotes the Hamilton product and q−1(t) is the quaternion inverse [30]

q−1(t) =
q̃(t)

||q(t)||
(3.24)

Moreover, q̃(t) and ||q(t)|| are calculated as

q̃(t) =

 q0(t)

q1:3(t)

 (3.25)

||q(t)|| =
√
q2

0(t) + q2
1(t) + q2

2(t) + q2
3(t) (3.26)

Figure 3.4: A schematic view of the attitude and angular velocity controllers.
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Figure 3.5: A schematic view of the collision avoidance algorithm.

3.5 Collision Avoidance

A model predictive collision avoidance routine modifies the operator’s commands

to ensure collision-free operation. The collision avoidance problem is formulated as

a convex constrained optimization problem over a rolling control horizon with the

objective of minimizing interference with operator commands while keeping the UAV

in an obstacle-free space.

A schematic view of the collision avoidance algorithm is presented in Fig. 3.5. In

this approach, obstacle-free space is identified and estimated by safe convex region and

formulated as convex constraints in MPC-based collision avoidance algorithm. The

MPC algorithm is formulated to minimize interference with the operator’s commands

while ensuring collision-free operation. Constraints related to the system dynamics,

actuators limitation, and safety considerations are included in the problem formula-

tion.

The collision avoidance algorithm runs at a slower rate than other controllers in

the hierarchical control structure. This allows for a discrete-time formulation of the

MPC-based collision avoidance in this thesis. To this end, the continuous-time system
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dynamics in (3.7) are discretized as follows

x[k + 1] = Adx[k] +Bdu[k] (3.27)

Matrices Ad ∈ R6×6 and Bd ∈ R6×3 are given by

Ad =

 I3 TsI3

03×3 I3

 , Bd =

T 2
s /2I3

TsI3

 (3.28)

where Ts is the sampling time. The discrete-time MPC is formulated as follows

min
N−1∑
k=0

(u[k]− uh[k])TP [k](u[k]− uh[k]) (3.29a)

s. t. : x[k + 1] = Adx[k] +Bdu[k] (3.29b)

Auu[k] � bu (3.29c)

Ax[k]x[k] � bx[k] (3.29d)

where u[·] ∈ R3 and x[·] ∈ R6 are the UAV’s modified inputs and states, and uh[·] ∈

R3 represents the operator’s acceleration commands. P [·] ∈ R3 and N is the number

of samples in the MPC control time horizon. Moreover, (3.29b) are constraints related

to the system dynamics. The input constraints (3.29c) represent actuators limits. The

constraints in (3.29d) define the approximated safe convex region and velocity related

safety constraints imposed by the operator; A[k] ∈ Rmd×6 and bx[k] ∈ Rmd are the

parameters of the safe convex region and md is the number of constraints.

Chapters 4-5 introduce two new methods for generating approximate convex safe
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region based on the reachability analysis. Chapter 6 presents a novel reachability-

based collision avoidance algorithm that accounts for uncertainty in the system model

and dynamics. Chapter 7 introduces a new collision avoidance algorithm with guar-

anteed recursive feasibility.
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Chapter 4

Backward Reachability-based

Collision Avoidance

In this chapter, collision avoidance assistance is formulated as a convex optimization

problem that can be solved in real-time to find a globally optimal solution. The

new collision avoidance method introduced in this chapter employs a novel backward

reachability-based obstacle detection algorithm to identify obstacles with a chance of

collision within a rolling control time horizon. The computational cost of this step is

significantly reduced by using an ellipsoidal technique and finding analytical solutions

to all relevant differential equations.

Following the identification of potentially dangerous obstacles, the SVM algorithm

is employed to construct a safe polyhedral convex region around the UAV that would

keep it away from obstacles with the chance of collision. Finally, collision assistance

is formulated as a convex optimization problem over the rolling control horizon, with

the objective of minimizing interference with the operator acceleration commands
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while ensuring that the UAV remains in the safe collision-free space. The approxima-

tion to the collision-free space is repeatedly updated as the UAV moves through the

environment so only relevant obstacles in the control time horizon are considered.

4.1 Optimization-based Collision Avoidance

In the proposed shared control strategy, a human operator teleoperates the UAV

by providing translational acceleration commands, while an optimization-based algo-

rithm modifies the operator’s commands to prevent potential collisions with obstacles.

The objective is to automate the task of avoiding collisions to reduce the operator’s

workload. The operator can then focus on tasks that benefit most from the human

cognitive and decision-making capabilities.

A schematic view of this shared control strategy is presented in Fig. 4.1. The col-

lision avoidance algorithm consists of three parts. First, the Backward Reachability-

based Obstacle Detection (BROD) algorithm employs a reachability analysis to de-

termine a subset of obstacles that could potentially collide with the UAV within the

control horizon of a model-predictive controller. Then, the safe convex region for-

mation (SCRF) algorithm approximates the obstacle-free space with a convex set.

Finally, an optimization-based model predictive controller (MPC) algorithm uses this

convex set to compute corrective commands that would ensure the UAV would not

collide with the obstacles within its control time horizon.

The translational motion dynamics of the UAV are formulated as

ẋ = Ax+Bu (4.1)
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Figure 4.1: A schematic view of the proposed shared control strategy with
automatic collision avoidance assistance.

The matrices A ∈ R6×6 and B ∈ R6×3 are defined in (3.8)

Obstacles are modelled as convex polytopes

Ai
ox � bio i = 1, 2, .., no (4.2)

where Ai
o ∈ Rmi

p×3 and bio ∈ Rmi
o are the parameters of i-th (out of no) polytopic

shape obstacle, where mi
o is the number of faces of i-th obstacle. Furthermore, feasible

input and velocity sets due to the actuators limitation and safety consideration are

modelled as polytopes,

Auu+ � bu (4.3)

Avv+ � bv (4.4)

where u,v ∈ R3 represent feasible input and velocity vectors, respectively. Au ∈

Rmu×3 and bu ∈ Rmu are the parameters of polytopic input set, where mu is the

number of polytopic input faces. Av ∈ Rmv×3 and bv ∈ Rmv are the parameters
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of polytopic velocity set, where mv represents the number of faces of the polytopic

velocity set. Moreover, the UAV is modelled as a sphere with center pcg and radius

Rd.

4.2 Reachability-based Obstacle Detection

The BROD algorithm detects a subset of obstacles that can potentially collide with

the UAV within the time horizon of the MPC-based controller. By eliminating ob-

stacles with no chance of collision, the algorithm should in principle help create a

less conservative convex approximation of the obstacle-free space for the UAV. To

this end, All the states where the UAV collides with the obstacle are modelled as

an undesirable set. A backward reach tube for each undesirable set corresponding to

each obstacle is calculated within the MPC time horizon. Any obstacle whose reach

tube intersect with the UAV can potentially collide with it within the control time

horizon and is included in convex safe region approximation.

Detecting intersection between geometrical shapes especially in higher dimension

can be challenging or impossible for real-time applications. In this thesis, the UAV

is represented by a point and the obstacles are enlarged to overestimation of the

Minkowski sum of polytope and sphere computed as [100]

Ai
op � bio +Rd‖Ai

o‖• i = 1, 2, .., no (4.5)

where ‖Ai
o‖• = [‖Ai

o1,∗‖2, ‖Ai
o2,∗‖2, ..., ‖Ai

omi,∗
‖2]T and Ai

oj,∗
is the normal vector of

the j-th face of the i-th obstacle and mi is the number of faces of i-th obstacle.

Consequently, each undesirable set is defined as all the states where the UAV collides
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with each enlarged obstacle; then, the backward reach tube corresponding to each

undesirable set is calculated. Finally, detecting intersection between the UAV and

the reach tube is simplified to that of a point (UAV’s current state) and the reach

tube.

The backward reach tube can be approximated by the union of the backward reach

sets computed at each time step of the MPC within its control time horizon (B.10).

In this work, each reach set is approximated by the intersection of the external tight

ellipsoids introduced in Appendix B. Therefore, the UAV can potentially collide with

an obstacle if its current state falls within the intersection of all external ellipsoids

corresponding to the obstacle computed at each time step of the MPC within the

control horizon. A schematic view of the BROD algorithm is depicted in Fig.4.2.

In this figure, the UAV does not intersect with any reach set at time t1. Therefore,

none of the obstacles are reachable for the UAV at the final time starting from t1.

However, as demonstrated in Fig. 4.2(b), the reach set related to obstacle c intersects

with the UAV at time t2. Therefore, the backward reach tube related to obstacle c

intersects with the UAV and this obstacle is identified as an obstacle with the chance

of collision.

To estimate the reach tube corresponding to each obstacle, the parameters of external

ellipsoids need to be calculated. Assuming the ellipsoidal input set with constant

parameters over the control time horizon, i.e., E(qu(t),Qu(t)) = E(qu,Qu)), and by

substituting (B.32) and (B.30) into (B.28), the center of ellipsoids for the k-th time
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Figure 4.2: A schematic view of the collision detection based on the BROD
algorithm at two time instances t1 and t2 whitin the the MPC time horizon. a)

Reach sets do not intersect with the UAV at time t1. b) Reach set corresponding to
obstacle c intersects with the UAV at time t2.

instance of interest is calculated by

qiw(tk) =

1
2
qu(tf − tk)2 − qivf (tf − tk) + qipf

−qu(tf − tk) + qivf

 (4.6)

Here qipf , qvf ∈ R3 are the position and velocity vectors of the center of ellipsoidal

undesirable set corresponding to the i-th obstacle (qif = [qipf
T
, qTvf ]T ), qu(t) ∈ R3 is

the center of ellipsoidal input set, and no is the number of obstacles.

Using (B.33) and (B.31), the shape matrix of each ellipsoid in each direction (l ∈ R6)
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is determined as

Qi
wl

(tk) = G(tk, tf )(
√
lTQi

f l + [h(τ)]
tf−tk
0 )

× (
Qi
f√

lTQi
f l

+ [H(τ)]
tf−tk
0 )G(tk, tf )

T (4.7)

where h(τ) and H(τ) are the solutions of the integral terms in (B.33) (see ap-

pendix C.1).

The parameters of the ellipsoidal input set E(qu,Qu) and ellipsoidal undesirable

set E(qif ,Q
i
f ) must be approximated due to polytopic shape of input and undesirable

sets. These are needed for the computation of the external ellipsoids. The polytopic

input set is approximated by the minimum volume ellipsoid covering it. This so-called

Lowner-John ellipsoid [17] is obtained by solving the following convex optimization

problem.

min log detL−1
u (4.8)

s.t. ||Luvui + cu||2 ≤ 1, i = 1, ..., nu (4.9)

where Lu ∈ R3×3 and cu ∈ R3 are the optimization variables, and vui and nu are the

i-th vertex of polyhedron and the number of polyhedron vertices, respectively. The

ellipsoidal input set is defined as

qu = −L−1
u cu (4.10)

Qu = (LTuLu)
−1 (4.11)

Ellipsoidal undesirable set corresponding to each obstacle must cover the related
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enlarged obstacle (7.12) for an arbitrary reachable velocity (5.16c). Therefore, the

parameters of the ellipsoidal undesirable set are defined as (proof in C.2)

qif =

qipf
qvf

 (4.12)

Qi
f =

 1
1−εQ

i
pf

03×3

03×3
1
ε
Qvf

 i = 1, ..., no (4.13)

where qipf ∈ R3 and Qi
pf
∈ R3×3 are the parameters of minimum volume ellipsoid

covering the i-th enlarged polytopic obstacle, qvf ∈ R3 and Qvf ∈ R3×3 are the

parameters of minimum volume ellipsoid covering the polytopic velocity set. 0 <

ε < 1 is the scaling factor. By choosing ε sufficiently small (ε → 0), the ellipsoidal

undesirable set approaches to minimum volume ellipsoid covering the obstacle for any

arbitrary velocity.

Parameters of the minimum volume ellipsoid covering the i-th enlarged obstacle are

calculated as

qipf = −Lio
−1
cio (4.14)

Qi
pf

= (Lio
T
Lio)

−1 (4.15)

where cio ∈ R3 and Lio ∈ R3×3 are optimization variables.

minimize log det(Lio)
−1 (4.16)

subject to ||Liovioj + cio||2 ≤ 1, j = 1, ..., ni (4.17)
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Here vioj is the j-th vertex of the i-th polytope and ni is the number vertices of the

i-th polytope.

The parameters of the minimum volume ellipsoid covering the velocity set are ob-

tained as

qvf = −Lv−1cv (4.18)

Qvf = (Lv
TLv)

−1 (4.19)

where cv ∈ R3 and Lv ∈ R3×3 are optimization variables.

min log det(Lv)
−1 (4.20)

s.t. ||Lvvvi + cv||2 ≤ 1, i = 1, ..., nv (4.21)

Here vvi and nv are the i-th vertex of polytope and the number of polytope vertices.

4.3 Safe Convex Region Formation Based on SVM

Once obstacles with potential for collision within the MPC time horizon are iden-

tified, a safe obstacle-free convex region is created around the UAV and is added

as constraints to the optimal control problem in MPC. Constraints in the form of

half-spaces defined by linear inequalities are used here to ensure the resulting MPC

optimization problem can be solved in real-time. To this end, the SVM algorithm

[41] is used to create separating planes between the UAV and the obstacles, defining

the half-spaces that form the safe obstacle-free region.

In hard-margin SVM, the goal is to find the separating plane between two disjoint

41



Ph.D. Thesis - Sahand Ghaffari McMaster - Electrical & Computer Engineering

sets Φ and Ψ in which the closest members of each set to the plane create the maximum

distance to it. This goal is achieved by solving the following optimization [41]

maxα, η (minxk∈Φ
|αTxk + η|
‖α‖2

+ minyl∈Ψ
|αTyl + η|
‖α‖2

(4.22)

where α ∈ R3 and η ∈ R are the parameters of separating plane, xk ∈ R3 and yl ∈ R3

are the k-th and l-th members of sets Φ and Ψ, respectively. |.| denotes the absolute

value.

In utilizing SVM algorithm for finding the separating plane between the UAV and

each obstacle, Ψ is a singleton set representing the UAV’s position (Ψ = {pcg}) and

Φi denotes the vertices of the i-th enlarged obstacle (Φi = {vio1 , v
i
o2
, ... , vioni

}). The

separating plane corresponding to each enlarged obstacle intersects with its closest

vertex, i.e.,

minvioj∈Φi
|αTi vioj + ηi| = 0, j = 1, ..., ni (4.23)

Here, αi ∈ R3 and ηi ∈ R are the parameters of i-th separating plane. Without loss

of generality, it is assumed min|αTi pcg + ηi| = 1 [41]. The SVM algorithm for finding

the i-th separating plane can be formulated as the following optimization problem

min αTi αi

s.t. αTi pcg + ηi ≥ 1

αTi v
i
oj

+ ηi ≤ 0 j = 1, ..., ni

(4.24)
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4.4 Collision Avoidance Based on MPC

The MPC-based collision avoidance assistance is formulated in a way to minimize

interference with the operator’s commands while ensuring collision-free operation.

Constraints related to the system dynamics, actuator, and the collision-free safe con-

vex region are considered in the problem formulation. The MPC is formulated in

discrete time as follows

min
N−1∑
k=0

(u[k]− uh[k])TP [k](u[k]− uh[k]) (4.25a)

s.t. : x[k + 1] = Adx[k] +Bdu[k] (4.25b)

Auu[k] � bu (4.25c)

Avvcg[k] � bv (4.25d)

Appcg[k] � bp (4.25e)

where u[·] ∈ R3 and x[·] ∈ R6 are the UAV’s modified inputs and states, and

uh[·] ∈ R3 represents the operator acceleration command. Here P [·] = I3 and N

is the number of samples in the MPC control time horizon. Moreover, (4.25b) are

constraints related to the system dynamics where Ad ∈ R6×6 and Bd ∈ R6×3 are

defined in (3.28). The input and velocity constraints (4.25c) and (4.25d) are identical

to those in (4.3) and (4.4) and represent actuators limits and safety considerations

defined by the operator. The constraint (4.25e) defines the approximated polyhedral

safe convex region created by the SCRF algorithm in the previous section, where

Ap ∈ Rmd×3 and bp ∈ Rmd are the parameters of the safe convex region and md is

the number of obstacles with chance of collision.
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4.5 Experiment

A schematic view of the experimental setup is shown in Fig. 4.3. The operator com-

mands UAV’s desired acceleration via the human-machine interface (HMI). An Opti-

Track Flex 13 motion capture system measures UAV’s position and orientation. The

MPC-based collision assistance algorithm computes the actual UAV’s acceleration

command. The reference commands for the UAV’s angular velocities are obtained

by assuming zero reference attitude and using the attitude controller in [36]. The

UAV’s linear acceleration angular velocity commands are sent to the on-board flight

controller PID loops. The overall update rate for the MPC-based collision avoidance

algorithm is fs = 40 Hz.

A fully-actuated omni-copter [36] is used for the experiments in this work, i.e.,

see Fig. 4.3. This UAV can generate force and torque in all possible directions.

The Phantom Premium 1.5 haptic interface is the human-machine interface in the

experiments.

Several optimization problems need to be solved in implementing the collision

assistance algorithm. The Lowner-John theorem [17] is used to find the minimum

volume ellipsoids covering the polyhedral input, velocity and obstacle sets. This

results in semidefinite programs [13] which are solved off-line by the Mosek solver [5].

The approximated safe convex region around the UAV is obtained in real time by

the SVM algorithm. This problem is a standard quadratic program and is solved

by the OSQP [86]. The real-time MPC optimization is also formulated as standard

quadratic program and solved by the OSQP.

The time horizon for the MPC algorithm in (4.25a) is set to 1.5 seconds. The oper-

ator’s command is assumed constant over the controller prediction horizon. Moreover,
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it is assumed the obstacles positions are known. Two-dimensional representation of

the obstacles are shown in Fig. 4.4 and Fig. 4.7 where the height of each obstacle is

one meter. Finally, the parameters of input and velocity constraints in (4.25c) and

(4.25d) are selected as

Au = Av = [−I3, I3]T (4.26)

bu = [2, 0.3, 2, 2, 0.3, 2]T (4.27)

bv = [1.5, 0.3, 1.5, 1.5, 0.3, 1.5]T (4.28)

The reach set is approximated by intersecting 1120 ellipsoids calculated along

1120 different directions in (4.7). Computing these ellipsoids in real time would

be prohibitive. However, owing to the linear time-invariant model of the UAV and

the fixed shape matrices of ellipsoidal input and undesirable sets, the parameters

of external ellipsoids are time-invariant and can be computed off-line. Finally, the

scaling factor is set to ε = 4× 10−2 in (4.13).

4.5.1 Flight Test

Two experiments are designed to demonstrate the performance of the proposed col-

lision avoidance algorithm. In the first experiment, the importance of reachability

analysis in collision avoidance is investigated. In the second experiment, the pro-

posed collision avoidance algorithm which exploits features of MPC and reachability

analysis is implemented on the UAV.

Two scenarios are considered in the first experiment. The first scenario involves

collision avoidance assistance without reachability analysis (SCRF+MPC). In the
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Figure 4.3: Experimental setup including the Omnicopter, motion capture system,
HMI and Transceiver

second scenario (BROD+SCRF+MPC), the reachability analysis is added to the col-

lision avoidance assistance algorithm. The trajectories of the UAV in the first scenario

are shown in Fig. 4.4(a). In this scenario, both obstacles are considered for convex

region formation in the SCRF algorithm and separating planes are created for each of

them. These planes act as constraints in the MPC algorithm and erroneously block

the path in front of the UAV. This leads the MPC to produce undesired corrective

commands as depicted in Fig. 4.5(a).

The trajectory of the UAV in the second scenario of the first experiment is pre-

sented in Fig. 4.4(b). Due to the use of the reachability analysis, both obstacles are

identified safe as they would not be reachable by the UAV during the MPC time

horizon. The undesirable corrective commands are absent in this scenario, i.e., see

Fig. 4.5(a). The operator’s commands in both scenarios are shown in Fig. 4.5(b) and

Fig. 4.5(c), respectively.

Fig. 4.6 underscores the positive role of reachability analysis in obstacle detection
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and avoidance. Here ∆t = tf − t where tf is the MPC time horizon and t is the time

instance of interest at which the reach tube is calculated. As is evident in this figure,

the UAV is outside the reach tubes corresponding to the obstacles which render them

safe. The estimated reach sets at the beginning and end of the MPC time horizon are

depicted in Fig. 4.6(b) and Fig. 4.6(c), respectively. The UAV is outside of each reach

set. Since the UAV moving in X-direction (the velocity is positive in X-direction),

the center of the reach set shifts in negative X-direction (Fig. 4.6(c)), i.e., given the

positive velocity in X-direction, the possibility of collision increases when the UAV is

in front of the obstacles rather than when it has passed the obstacles.

In the second experiment, three obstacles are placed in the UAV operating en-

vironment. The obstacles are placed on the sides and in the front of the UAV. As

it is evident in Fig. 4.7, no separating planes is generated for the first two obstacles

as they are deemed safe outside the reachable space of the UAV. The third obstacle

in the front of UAV is identified as potentially dangerous and a separating plane is

created for it. This results in the corrective commands shown in Fig. 4.8(a), which

modify the operator’s commands in Fig. 4.8(b) in order to prevent the UAV from

colliding with the obstacle.

Fig. 4.9 demonstrates the utility of the BROD algorithm. It can be seen in

Fig. 4.9(a) that the UAV only intersects with the reach tube associated with the

third obstacle, meaning that this is the only obstacle that could be reached over the

MPC time horizon. Note that estimated reach sets at the beginning and end of the

MPC time horizon are depicted in Fig. 4.9(b) and Fig. 4.9(c).
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Figure 4.4: Two dimensional representation of the UAV trajectory using the collision
avoidance algorithm a) without reachability analysis b) with reachability analysis.
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Figure 4.5: a) Corrective commands created in the first scenario (without
reachability analysis) and in the second scenario (with reachability analysis). b)

Operator’s commands in the first scenario. c) Operator’s commands in the second
scenario.
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Figure 4.6: Intersection of six-dimensional estimated backward reach tubes with
velocities and altitude of the UAV for each obstacle when the UAV reaches to
x = 0.5m a) within the MPC time horizon, b) at the beginning of MPC time

horizon, c) at the end of MPC time horizon.
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Figure 4.8: a) Corrective commands created by the proposed collision avoidance
algorithm. b) Operator’s commands.
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Figure 4.9: Intersection of six-dimensional estimated backward reach tubes with
velocities and altitude of the UAV for each obstacle when the UAV is at x = 0.5m
a) within MPC time horizon, b) at the beginning of MPC time horizon, c) at the

end of MPC time horizon.
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Chapter 5

Forward Reachability-based

Collision Avoidance

In this chapter, a novel method is introduced to generate a convex approximation

of the obstacle-free region in the taskspace of a mobile robot with linear dynamics.

The main contribution of this work is in utilizing the reachability analysis of lin-

ear dynamical systems to produce a less conservative convex approximation of the

obstacle-free space than what otherwise would be possible. First, an approximate

reachable region of the robot is obtained for each time step in the control horizon.

Next, hyperplanes are created to separate the so-called target point of the robot, i.e.,

its predicted state from the undesirable sets characterizing the obstacles that can

potentially collide with the robot. These are obtained by maximizing the intersection

of the reachable set with the halfspace defined by the hyperplane. The intersection

of these halfspaces constitutes the safe obstacle-free space at a given time step in the

control time horizon.

The proposed algorithm is general and can be applied to systems other than those
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in mobile robotic applications. In collision avoidance for mobile robots, this algorithm

should improve the system performance for two principal reasons: (i) Among all the

obstacles in the environment, only those with the chance of collision are considered

in convex region generation. These obstacles are identified through a reachability

analysis, (ii) The reachability analysis is also employed in creating the approximated

safe convex region of the robot.

5.1 Safe Convex Region Generation Based on Reach-

ability Analysis

Forward reach tube, as defined in Appendix B, is the set of all states where the system

can reach during the time interval of interest. Undesirable set is defined as a set of

states which should be avoided during the time interval of interest. If the reach tube

intersects with the undesirable set, the undesirable set is reachable by the system

states; it would be identified as an unsafe undesirable set during this time interval.

A convex region must be constructed to designate the safe space, i.e., the space that

separates the system states from this unsafe undesirable set. Ideally, this convex safe

region should be as close as possible to the intersection of the complement of the

undesirable set and the reach tube.

By approximating the reach tube with the union of a finite number of reach sets at

time instances of interest in (B.6), the unsafe undesirable set can be determined from

the intersection of the undesirable set and reach set at each of these time steps. The

safe region can then be approximated by a convex approximation of the intersection

of the complement of the unsafe undesirable set and the reach set.
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The safe convex region at each time instance is approximated by half-spaces cre-

ated by separating hyperplanes between the unsafe undesirable set and target point.

These hyperplanes are chosen to maximize the intersection of the halfspace with the

reachable set. The undesirable states at each time instance are modeled as polytopic

set represented by its vertices, i.e., Pxu(tk) = convh {v1(tk),v2(tk), ...,vnv(tk)}, where

convh denotes the convex hull. The separating hyperplane is derived by solving the

following optimization problem

max
α(tk),η(tk)

Vc(tk)

s.t. αT (tk)xt + η(tk) ≥ 0

αT (tk)vj(tk) + η(tk) ≤ 0 j = 1, ..., nv

(5.1)

where Vc(tk), k = 1, ..., nf is the inscribed volume between k-th separating hyper-

plane (α(tk) ∈ Rns , η(tk)) and the k-th reach set, nf is the number of time instances

of interest, ns is the number of states of the system. xt ∈ Rns represents target

point of the system and vj(ti) ∈ Rns is the j-th (out of nv) vertex of polytopic unsafe

undesirable set at ti.

A new algorithm is proposed here to solve this optimization problem and find

the separating hyperplanes and the corresponding safe convex region, i.e., see Algo-

rithm 1. First, each reach set is approximated by the minimum volume enclosing

ellipsoid by giving the set of admissible inputs within the time interval of interest

(Te = [t0, tk]) and the set of possible initial states (Px0). To reduce computations,

a conservative intersection detection algorithm is used to identify whether the unde-

sirable set would intersect with each ellipsoidal reach set at the corresponding time

instance by using a unique affine transformation. These undesirable sets are denoted
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Algorithm 1 Algorithm for generating approximate safe convex region.

k ← 0
while k ≤ nf do
Px(tk)←MVE

(
Px0,Pu(t)t∈[t0,tk])

)
ID, Py(tk),Pyu(tk)← CID(Px(tk),Pxu(tk)
if ID is True then
α(tk), η(tk)← OSH(Py(tk),Pyu(tk))
return α(tk), η(tk)

end if
k ← k + 1

end while

as potentially unsafe undesirable sets. Py(tk) and Pyu(tk) represent reach set and

undesirable set in transformed coordinates, respectively.

5.2 Reach Set Approximation based on Minimum

Volume Enclosing Ellipsoid

A mathematical expression is required for the volume of the reach set to solve the

optimization problem in (5.1). This volume is approximated by a minimum vol-

ume ellipsoid enclosing the reach set. The formula for calculating the parameters of

minimum volume enclosing ellipsoid for a continuous-time linear system is provided

in [72, 73]. It is assumed that the initial state set (Px0) and input set (Pu(t)) can be

expressed as ellipsoidal sets

Px0 = E(qx0 ,Qx0), Pu(t) = E(qu(t),Qu(t))
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where qx0 ∈ Rns and Qx0 ∈ Rns×ns are the center and shape matrix of ellipsoidal

initial state set, respectively. qu(t) ∈ Rnu and Qu(t) ∈ Rnu×nu are the center and

shape matrix of ellipsoidal input set, correspondingly. Here E(q,Q) represents an

arbitrary ellipsoidal set.

E(q,Q) = {x|(x− q)TQ−1(x− q) ≤ 1)}

The parameters of the reach set (Px(tk) = E(qx(tk),Qx(tk))) at k-th time instance of

interest for dynamic system (B.1) are given by [72, 73]

qx(tk) = Γ(tk) (5.2)

Qx(tk) = P−1(tk) (5.3)

where Γ(tk) is defined as

Γ(tk) = Φ(tk, t0)qx0 +

∫ tk

t0

Φ(tk, τ)B(τ)qu(τ)dτ

P (tk) ∈ Rns×ns is the only solution of recursive equation Pn+1 = Λ(Pn)

Λ(Pn) =

(√
Tr
(
PnQ

T

0

)
+

∫ tk

t0

√
Tr
(
PnQ̄T

u (τ)
)
dτ

Q̄0√
Tr
(
PnQ̄T

0

) +

∫ tk

t0

Qu(τ)√
Tr
(
PnQ̄T

u (τ)
)dτ

)−1

(5.4)
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where Q̄0 ∈ Rns×ns and Q̄u ∈ Rns×ns are defined as

Q̄0 = Φ(tk, t0)Qx0Φ
T (tk, t0)

Q̄u(τ) = Φ(tk, τ)B(τ)Qu(τ) (Φ(tk, τ)B(τ))T

Starting from an initial positive-definite matrix P0, the recursive equation con-

verges to the unique solution [72].

Remark. [73] Considering the initial state set approaches to a point (Qx0 = εIns

with ε→ 0), (5.4) converges to

Λ(Pn) =

(∫ tk

t0

√
Tr
(
PnQ̄T

u (τ)
)
dτ

∫ tk

t0

Q̄u(τ)√
Tr
(
PnQ̄T

u (τ)
)dτ

)−1

(5.5)

The algorithm for calculating the parameters of ellipsoidal reach set is given in

Algorithm 2. In this algorithm, the center of ellipsoidal reach set is calculated using

(5.2). The shape matrix of ellipsoidal reach set is obtained from the recursion in (5.4),

starting from P0 = Ins and using the termination condition

µ (Pn+1,Pn) =
| (detPn+1)−1/2 − (detPn)−1/2 |

(detPn)−1/2

Here det and |.| denote the determinant of matrix and the absolute value of scalar, re-

spectively. The termination condition is satisfied when the normalized rate of change

in the volume of ellipsoid is less than the desired tolerance ε.
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Algorithm 2 Calculating parameters of ellipsoidal reach set

qx(tk)← Γ(tk)
P0 ← Ins

n← 0
repeat
Pn+1 ← Λ(Pn)
n← n+ 1

until µ (Pn+1,Pn) < ε
Qx(tk)← P−1

n+1

return qx(tk),Qx(tk)

5.2.1 Potentially Unsafe Undesirable Set Detection

To find whether the undesirable set is potentially unsafe and can intersect with the

reach set at each time instance of interest, the conservative intersection detection

algorithm is presented, i.e., see Algorithm 3.

Intersection status between geometrical shapes is invariant under an affine trans-

formation [55]. The intersection detection between each ellipsoidal reach set and

polytopic undesirable set is equivalent to intersection detection between unit spher-

ical reach set with center at origin (Py = {y| ‖y‖ ≤ 1}) and transformed polytopic

set (Pyu(tk) = {y|Ayu(tk)y � byu(tk)}). The affine transformation is given by

Ftk(x) = L−1
x (tk)(x− qx(tk)) (5.6)

where Lx(tk) ∈ Rns×ns is the Cholesky factorization of shape matrix of ellipsoid,

qx(tk) is the center of ellipsoid, Ayu(tk) ∈ Rnh×ns , byu(tk) ∈ Rnh are the parameters

of transformed polytopic undesirable set, and nh is the number of polytopic faces.

The over-approximation of the Minkowski sum of sphere and each polytope is
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Algorithm 3 Conservative intersection detection

ID ← False
Py ← {Ftk(x)| x ∈ Px(tk)}
Pyu(tk)← {Ftk(x)| x ∈ Pxu(tk)}
Pys(tk)← Fs (Py + Pyu(tk))
if Pys(tk) ∩ {0ns} 6= ∅ then
ID ← True

end if
return ID,Py,Pyu(tk)

defined as Pys = Fs(Py + Pyu(tk)) [100] with

Fs(Py + Pyu(tk)) = {y|Ayu(tk)y � byu(tk) + ‖Ayu(tk)‖•}

where ‖Ayu(tk)‖• =
[
‖A1,∗

yu (tk)‖2, ..., ‖Anh,∗
yu (tk)‖2

]T
, Aj,∗

yu (tk) is the normal vector of

j-th face of polytopic undesirable set and ‖.‖2 denotes the euclidean norm. Now, the

intersection detection between each spherical reach set and the polytopic undesirable

set can be conservatively approximated by intersection detection between origin and

over-approximation of the Minkowski sum of sphere and each polytope

Pys ∩ 0ns 6= ∅⇔ byu(tk) + ‖Ayu(tk)‖• � 0nh

where 0ns and 0nh
are ns-dimension and nh-dimension zero vectors, respectively. Here

∅ denotes the empty set.
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5.2.2 Finding an Optimal Separating Hyperplane

By approximating each reach set with the ellipsoid defined in (5.2) and (5.3), the

objective in (5.1) is to maximize the inscribed volume between the ellipsoid and sep-

arating hyperplane, Vc(tk). The volume of geometrical shapes transformed by an

affine function is proportional to the original volume [61]. Using this fact and the

affine transformation in (5.6), the goal is to maximize the volume of spherical cap

produced by the intersection of the unit hypersphere centered at the origin and the

transformed separating hyperplane. This volume can be simply maximized by maxi-

mizing the distance of the separating hyperplane from the origin, dy(tk). Therefore,

the optimization problem in (5.1) is re-formulated as

max
αy(tk),ηy(tk)

dy(tk)

s.t. αTy (tk)yt(tk) + ηy(tk) ≥ 0

αTy (tk)v
j
y(tk) + ηy(tk) ≤ 0 j = 1, ..., nv

(5.7)

where dy(tk) = |ηy(tk)|/‖αy(tk)‖ is the distance of the separating hyperplane from

the origin.

Two scenarios can occur given the position of the target point, origin, and unde-

sirable set, as shown in Fig. 5.1. If a hyperplane could be found to separate the origin

and target point form undesirable set (Fig. 5.1(a)), the distance of the separating

hyperplane from the origin should be maximized. The parameters of the hyperplane

are scaled by ηy(tk) > 0, as (αy(tk), 1). The objective function in (5.7) is given by
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dy(tk) = 1/(αy(tk)
Tαy(tk)). An equivalent optimization problem is derived as

min
αy(tk)

αTy (tk)αy(tk)

s.t. αTy (tk)yt(tk) + 1 ≥ 0

αTy (tk)v
j
y(ti) + 1 ≤ 0 j = 1, ..., nv

(5.8)

In this scenario, the inscribed volume is larger than the volume of hemi-sphere (Vc >

Vs/2, where Vs is the volume of unit sphere).

The optimization problem in (5.8) would be infeasible if there is no hyperplane

separating the origin and target point from the undesirable set. Given that the target

point would not be in the undesirable set, either the origin is in the undesirable set, or

the undesirable set is between the origin and target point (Fig. 5.1(b)). In such case,

by assuming η(tk) ≤ 0 in (5.7), the optimization problem is formulated as finding

the closest hyperplane to the origin that separates the target point from the origin

and undesirable set. This optimization problem is non-convex and can have multiple

optimal solutions. One obvious solution is the bounding hyperplane of the polytope

with minimum distance to the origin, which is visible to the target point.

αy(tk), ηy(tk) = arg min(d1, d2, ..., dp) (5.9)

where di is the distance of i-th (out of p) visible bounding hyperplane of the polytopic

undesirable set

di =
|biyu(tk)|
‖Ai,∗

yu (tk)‖
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where Ai,∗
yu (tk) ∈ Rns and biyu(tk) ∈ R are the parameters of the i-th visible bounding

hyperplane of polytope to target point.

Ai,∗
yu (tk)yt(tk) + biyu(tk) ≥ 0

The separating hyperplane calculated using (5.9) would not necessarily yield the

largest volume safe convex region, but it would generate the largest volume safe

convex region around the visible faces of the polytopic set. The maximum inscribed

volume in this scenario is smaller than the volume of hemi-hypersphere, Vc ≤ Vs/2.

Note that (5.9) can have more than one solution any of which could serve as the

separating hyperplane.

The steps for finding the optimal separating hyperplane are outlined in Algo-

rithm 4. First, the functionOSHa attempts to solve the optimization problem in (5.8).

If d∗y(tk) ≤ 1 where d∗y(tk) is the optimal distance, the optimal solution yields the pa-

rameters of the separating hyperplane. When d∗y(tk) > 1, the reach set would not

overlap with the undesirable set and hence there is no need for a separating hyper-

plane. In case the optimization problem is infeasible, then (5.9) is used to determine

the parameters of the separating hyperplane. Finally, the parameters of separating

hyperplane in the original coordinates are computed from the transformation in (5.6).
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Figure 5.1: Generated separating line when a) the target point and origin (center of
reach set) can be separated from undesirable set b) origin is in the undesirable set

or the undesirable set is between origin and target point.

Algorithm 4 Steps for finding optimal separating hyperplane

if OSHa (Py(tk),Pyu(tk)) is feasible then
αy(tk), ηy(tk)← OSHa (Py(tk),Pyu(tk))
if |ηy(tk)| > ‖αy(tk)‖ then
Collision does not occur
αy(tk)← 0ns×1, ηy(tk) = 0

end if
else
αy(tk), ηy(tk)← OSHb (Py(tk),Pyu(tk))

end if
α(tk)← (LTx )−1αy(tk)
η(tk)← ηy(tk)−αy(tk)

TL−1
x qx(tk)

return (α(tk), η(tk))
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Figure 5.2: UAV teleoperation with collision avoidance assistance.

5.3 Safe Convex Region Formation in UAV Colli-

sion Avoidance

The proposed method for generating safe convex regions is employed for formulating

a model-predictive controller for collision avoidance assistance in a UAV teleopera-

tion application. A block diagram overview of this system is shown in Fig. 5.2. Here,

the operator navigates the UAV by providing translational acceleration commands

through a human-machine interface. A model predictive controller (MPC) modifies

the operator’s commands to prevent potential collisions with obstacles in the UAV

task environment. The corrective commands are obtained by solving a convex opti-

mization problem over a receding horizon.

5.3.1 System Dynamics

The dynamics of multi-rotor UAVs were given in Appendix A. Using the hierarchical

control structure in Chapter 3, and assuming the closed-loop dynamics of the atti-

tude and inner-loop controllers are fast so they can be ignored in the translational
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dynamics, the translational dynamics are simplified as (3.5 and 3.6)

pcg = vcg (5.10)

vcg = ad (5.11)

Let x = [pTcg, v
T
cg]

T and u = ad. The translational dynamics of the UAV can be

formulated in state-space form,

ẋ = Ax+Bu, x(t0) = x0 (5.12)

where x0 ∈ R6 represents the vector of initial states, A ∈ R6×6 and B ∈ R6×3 are

derived as

A =

03×3 I3

03×3 03×3

 , B =

03×3

I3

 (5.13)

where I3 is 3× 3 identity matrix and 03×3 is 3× 3 zero matrix.

Assuming constant input within the sampling time (Ts), the discrete-time dynamic

model of continuous- time system is derived as

x[k + 1] = Adx[k] +Bdu[k], x[0] = x0 (5.14)

where Ad ∈ R6×6 and Bd ∈ R6×3 are given by

Ad =

 I3 TsI3

03×3 I3

 , Bd =

T 2
s /2I3

TsI3

 (5.15)
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5.3.2 Collision Avoidance Algorithm

Collision avoidance assistance is provided by formulating and solving an optimization

problem over a rolling horizon in a model-predictive control framework. The goal is to

find a minimally interfering corrective command to modify the operator’s command in

order to avoid potential collisions with obstacles in the task space. The optimization

problem is formulated as follows:

min
N−1∑
k=0

(u[k]− uh[k])TP [k](u[k]− uh[k]) (5.16a)

s. t. : x[k + 1] = Adx[k] +Bdu[k] (5.16b)

Auu[k] � bu (5.16c)

Ap[k]pcg[k] � bp[k] (5.16d)

where uh ∈ R3 contains the actual and predicted operator’s commands over the

control horizon, N is the number of time steps in the control horizon, and P = I3.

Au ∈ Rnu×3 and bu ∈ Rnu are parameters of polytopic input set and nu is the

number of faces of polytope. The obstacle-free space is formulated in (5.16d) where

E[k] ∈ Rnx×6 and h[k] ∈ Rnx are the parameters of the polyhedral safe region and

nx is the number of hyperplanes creating the polyhedron.

5.3.3 Safe Convex Region Generation

The polyhedral safe convex region is obtained by the intersection of safe half-spaces

corresponding to the separating hyperplanes between each undesirable set and the

UAV. To find the separating hyperplanes, the input set should be modelled by an
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ellipsoid. Considering the time-independent polytopic shape of input set (5.16c) over

the MPC time horizon, the parameters of the ellipsoidal input set are independent of

time and can be approximated by minimum volume ellipsoid covering the polytope.

This ellipsoid is called Lowner-John ellipsoid calculated as [17]

min log detD−1
u

s.t. ||Duvui + du||2 ≤ 1, i = 1, ..., nu

(5.17)

where Du ∈ R3×3 and du ∈ R3 are optimization variables, vui is the i-th (out of nu)

vertex of polytope. The parameters of ellipsoidal input set is defined as

qu = −D−1
u du

Qu =
(
DT

uDu

)−1

Assuming the initial state set is represented by a point (qx0 = x0, Qx0 = εI6

with ε→ 0) and considering the ellipsoidal input set is time-independent, the shape

matrix of reach set at each sample can be calculated off-line using (5.3) where P

calculated by (5.5). By defining qx(tk+1) = qx[k+ 1], the center of reach set (5.2) can

be represented by discrete-time dynamic model

qx[k + 1] = Adqx[k] +Bdqu, qx[0] = qx0

In the context of collision avoidance, undesirable sets are 3-dimensional objects.

Reaching these sets with any feasible velocity is undesirable. The 6-dimensional ellip-

soidal reach set must be projected onto the 3-dimensional position coordinates, which

then can be used to generate the approximate convex safe region. This projection is
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also an ellipsoid calculated as (proof in appendix C.3)

qr = qp

Qr =
(
Up −UT

pvU
−1
v Upv

)−1

where qp ∈ R3 is the position subvector of qx andUp, Upv, Uv ∈ R3×3 are submatrices

of Q−1
x .

Up UT
pv

Upv Uv

 = Q−1
x

To calculate potentially unsafe undesirable sets, the intersection of the projected

ellipsoid with undesirable sets at each sample is examined using the CID in Algo-

rithm 3. By considering polytopic obstacles, a safe minimum distance of the UAV to

the obstacle, and modelling the UAV as a sphere with center at pcg and radius Ru,

the undesirable set for each obstacle is obtained as overestimation of Minkowski sum

of the inflated polytope and sphere [100]

Ai
xux � b

i
xu

where Ai
xu ∈ Rni×3 and bixu ∈ Rni are the parameters of i-th undesirable set and ni

is the number of faces of i-th polytopic undesirable set.

Ai
xu = Aoi , b

i
xu = boi + (Ru + ds)‖Aoi‖•

Here ds is the safe minimum distance between the UAV and each obstacle,Aoi ∈ Rni×3
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and boi ∈ Rni are the parameters of the i-th polytopic obstacle

‖Aoi‖• =
[
‖A1,∗

oi
‖2, ..., ‖Ani,∗

oi
‖2

]T
where Aj,∗

oi
is the normal vector of the j-th face of the i-th polytopic obstacle.

Algorithm 4 requires a target point at each sample time to compute the separating

hyperplane. The target point is normally the predicted position of the UAV. If this

predicted position falls inside the undesirable set, the closest point to the predicted

position which is inside the reach set and outside the undesirable set is chosen.

5.4 Experiment

A block diagram of the experimental setup is shown in Fig. 4.3. The overall update

rate for the MPC-based collision avoidance algorithm is fs = 40 Hz and the time

horizon for the MPC algorithm is set to tf = 1.5 sec. The proposed collision avoidance

assistance algorithm must solve several optimization problems. In particular, the

separating hyperplanes are obtained from solving the optimization problem in (5.8).

This optimization is formulated as a quadratic program and is solved in real-time by

using the OSQP solver with its code generation [9, 87]. The real-time MPC collision

avoidance algorithm is formulated as a quadratic program; this is also solved by the

OSQP solver. The minimum volume ellipsoid covering the polytopic input set (5.17)

is formulated as semi-definite program [13] and is solved off-line using the Mosek

solver [5].

The operator’s acceleration command is assumed constant over the MPC time

horizon. A two-dimensional representation of obstacles is shown in Fig. 5.3. Each

70



Ph.D. Thesis - Sahand Ghaffari McMaster - Electrical & Computer Engineering

obstacle is assumed to be one meter high. The safe minimum distance of the UAV

and obstacles is set to d = 10 cm. The parameters of polytopic input set are set to

Au = [−I3, I3]T , bu = [2, 0.5, 2, 2, 0.5, 2]T

5.4.1 Flight Test

Two experiments are carried out to demonstrate the performance of proposed algo-

rithms in this paper. The first experiment investigates the effectiveness of the safe

convex region generation algorithm by comparing two scenarios. In the first scenario,

the SVM algorithm [46] is used to generate the separating hyperplane between the

undesirable sets and the UAV. To this end, the UAV is modelled as a point and the

separating hyperplanes are assumed to touch the boundary of of the undesirable sets,

to create the maximum possible volume. Therefore, the SVM is formulated as

min
αi

s, η
i
s

αis
T
αis

s.t. αis
T
pcg + ηis ≥ 1

αis
T
vij + ηis ≤ 0 j = 1, ..., ni

where αis ∈ R3 and ηis are the parameters of the i-th plane, which separates the i-th

undesirable set from the UAV, vij ∈ R3 is j-th vertex (out of ni) of i-th polytopic

undesirable set.

The trajectory of the UAV in this scenario is displayed in Fig. 5.3. All obsta-

cles (undesirable sets) are considered in generating the safe convex region, with a

corresponding separating hyperplane, i.e., see Fig. 5.3(a-d). These planes serve as
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constraints in the MPC optimization, effectively blocking the UAV path. This in

turn leads to undesirable corrective commands by the collision avoidance assistance

algorithm as seen in Fig. 5.5(a).

The second scenario employs the proposed safe convex region generation algo-

rithm. The trajectory of the UAV in this scenario is depicted in Fig. 5.4. Two-

dimensional representation of the reach sets and the separating planes at different

sample times and UAV positions are presented in Fig. 5.4(a-d). As evident in Fig.

5.5(a), the use of the new algorithm in finding unsafe undesirable sets and creating

safe convex region significantly improves the MPC performance, and eliminates some

of the undesirable corrective commands seen in the previous scenario. The opera-

tor’s commands for the first and second scenarios are displayed in Fig. 5.5(b) and

Fig. 5.5(c), respectively. In the second experiment, the path in front of the UAV is

blocked by moving the second pair of the undesirable sets in Y-direction. As seen

in Fig. 5.6, the corrective commands in Fig. 5.7(a) help modify the UAV trajectory

and assist the operator in guiding it through the opening between obstacles. The

corrective commands achieve this while attempting to minimize interference with the

operator’s commands as much as possible, i.e. see Fig. 5.7(b). A minimum safe

distance is maintained between the UAV trajectory and the obstacles; the actual ob-

stacle is denoted by the dashed trapezoid. The reach sets and separating planes at

different sample times and UAV positions are depicted in Fig. 5.6(a-d). Separating

planes with the maximum safe region are created for each reachable undesirable set

at each sample time. This yields a less restrictive convex region approximation, elimi-

nating some of the unnecessary corrective commands that would have otherwise been

generated.
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Figure 5.3: Two-dimensional representation of the UAV trajectory in a scenario
where SVM algorithm is used for generating separating hyperplanes;

two-dimensional representation of separating planes a) at X=0.5 (m), b) at X=1.5
(m), c) at X=2.5 (m), d) at X=3.5 (m).
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Figure 5.4: Two-dimensional representation of the UAV trajectory using the
proposed algorithm for generating safe convex region. Two-dimensional

representation of reach sets, target points and separating planes a) at X=0.5 (m), b)
at X=1.5 (m), c) at X=2.5 (m), d) at X=3.5 (m).
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Figure 5.5: a) Corrective commands in the scenarios using SVM and the new
algorithm for creating safe convex region. b) Operator’s commands in the scenario

using SVM. c) Operator’s commands in the scenario using the new algorithm.
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Figure 5.6: Two-dimensional representation of the UAV trajectory using the new
algorithm for generating safe convex region. Two-dimensional representation of

reach sets, target points and separating planes a) at X=0.5 (m), b) at X=1.5 (m), c)
at X=2.5 (m), d) at X=3.5 (m).
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Figure 5.7: a) Corrective commands generated by the proposed collision avoidance
assistance algorithm. b) Operator’s commands.
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Chapter 6

Collision Avoidance in the

Presence of Uncertainty

In real-world scenarios, uncertainties are unavoidable and can significantly degrade

the performance of collision avoidance algorithms. In the presence of uncertainties,

the optimization problem may become infeasible resulting in collisions. Robust model

predictive control (RMPC) has been developed to deal with uncertainties in the pre-

dictive control of dynamical systems. Worst case MPC is a popular approach in this

category. it ensures constraints satisfaction for all possible uncertainties. However,

the formulation of this approach as a convex optimization problem can be challenging.

In this chapter, a novel ellipsoidal-based RMPC for collision avoidance assistance

in UAV teleoperation is presented. The main contribution of this work is the formula-

tion of the collision avoidance assistance in UAV as a convex optimization problem in

the presence of uncertainties. These uncertainties are in the form of disturbances and

measurement noises affecting the UAV and obstacles. In the proposed approach, the

operator tele-operates the UAV by providing linear acceleration commands while an
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ellipsoidal-based RMPC modifies these commands to ensure collision-free operation in

the presence of uncertainties. Collision avoidance is formulated as a convex optimiza-

tion problem in three steps. First, ellipsoidal approximation of the reachable regions

due to admissible inputs and uncertainties are calculated using reachability analysis.

Afterwards, a polyhedral approximation of the obstacle-free space is derived using

the safe convex region generation method presented in Chapter 7. Finally, an inner

polyhedral approximation of the tightened constraints is obtained using geometrical

relation between the ellipsoidal reach set due to uncertainties and polyhedral safe

region.

6.1 System Dynamics

The dynamic equations of multi-rotor UAVs are expressed in Appendix A. Using

the hierarchical control structure in Chapter 3, it is assumed the attitude and inner-

loop controllers are tuned such that their closed-loop dynamics can be ignored in the

translational dynamics. Therefore, the linear translational dynamics are simplified as

ṗcg = vcg (6.1)

v̇cg = a+ ad (6.2)

where pcg, vcg ∈ R3 denote the position and velocity of the center of gravity of UAV,

respectively. a, ad ∈ R3 are the input acceleration and disturbance, respectively.

Defining x = [pTcg, v
T
cg]

T , u = a, w = ad, the translational dynamics of the UAV
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is formulated in state-space form.

ẋ = Ax+Bu(t) +Dw(t), x(t0) = x0 (6.3)

A ∈ Rnx×nx , B ∈ Rnx×nu , and D ∈ Rnx×nw are defined as

A =

03×3 I3

03×3 03×3

 , B = D =

03×3

I3

 (6.4)

Here nx = 6 and nu = nw = 3. u(t) ∈ U with U = P(Au, bu) is the polytopic

input set containing all admissible inputs, x0 ∈ X0 with X0 = E(qx0 ,Qx0) is the

ellipsoidal initial state set containing all possible initial states due to measurement

noise, andw(t) ∈W with W = E(qw,Qw) is the ellipsoidal disturbance set containing

all possible disturbances. Here P(A, b) and E(q,Q) represent arbitrary polytopic set

and ellipsoidal set, respectively.

P(A, b) = {x|Ax � b}, E(q,Q) = {x|(x− q)TQ−1(x− q) ≤ 1)} (6.5)

The continuous-time dynamics are converted to discrete-time using zero-order-

hold assumption with the sampling time Ts,

x[k + 1] = Adx[k] +Bdu[k] +Ddw[k], x[0] = x0 (6.6)
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6.2 Collision Avoidance Assistance in UAV under

Uncertainty

A schematic view of the collision avoidance assistance is presented in Fig. 6.1. In

this algorithm, the operator navigates the UAV using translational acceleration com-

mands while collision avoidance assistance modifies the operator commands to ensure

collision-free operation in the presence of uncertainties. To address uncertainties in

problem formulation, the worst-case RMPC approach is used. In this method, the

collision-free operation is ensured for all possible uncertainties.

The nominal dynamic equation of the UAV is defined as

x̄[k + 1] = Adx̄[k] +Bdu[k], x̄[0] = x̄0 (6.7)

where x̄0 ∈ Rnx is the initial states of nominal system. Defining state deviation due

to uncertainties as xe[k] = x[k]− x̄[k], the state deviation dynamic is formulated by

xe[k + 1] = Adxe[k] +Ddw[k], xe[0] = xe0 (6.8)

where xe0 ∈ X0	 x̄0 and xe[k] ∈ Xe[k] with Xe[k] ⊂ Rnx is the set of all possible state

deviation due to uncertainties. Here 	 denotes the Pontryagin difference operation.

To ensure collision-free operation, the UAV should be in safe obstacle-free region

for all possible uncertainties, i.e., x[k] ∈ Xs[k] where Xs[k] is the safe region. Given

x[k] ∈ Xe[k] ⊕ x̄[k], the collision-free motion is ensured if nominal states are in the

tightened safe region, i.e, x̄[k] ∈ Xs[k]	 Xe[k].
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To ensure the UAV follows the operator commands as close as possible while avoid-

ing the collision for all possible uncertainties, discrete-time RMPC is formulated as

min
u[0,N−1]

N−1∑
k=0

(u[k]− uh[k])TRu(u[k]− uh[k]) (6.9a)

s. t. : x̄[k + 1] = Ad[k]x̄[k] +Bd[k]u[k] (6.9b)

x̄ ∈ Xs[k]	 Xe[k] (6.9c)

u[k] ∈ U (6.9d)

where u[k],uh[k] ∈ Rnu are the UAV inputs and predicted operator’s commands,

respectively. x[k] ∈ Rnx is UAV states, Ru = Inu , and N is the number of samples

within the MPC time horizon. Constraints related to system dynamics are represented

in (6.9b). Tightened state constraints ensuring collision-free motion for all possible

uncertainties are presented in (6.9c). Input constrains are formulated in (6.9d).

To solve the optimization-based collision avoidance assistance and find the global

optimum solution in real-time, state constraints should be formulated by linear in-

equality constraints. First, reachable states of the system (6.6) and (6.8) at each sam-

ple are approximated by minimum volume enclosing ellipsoid. Next, each obstacle is

inflated due to uncertainties, and obstacle-free region is approximated by polyhedral

using the safe convex approximation region introduced in Chapter 7. Finally, the

inner polytopic approximations of the tightened state constraints are calculated.
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Figure 6.1: UAV teleoperation with automated collision avoidance assistance

6.3 Reach Set Approximation

Consider the continuous-time linear dynamic system

ẋ = Ax+Bu(t), x(t0) = x0 (6.10)

where A ∈ Rnx×nx and B ∈ Rnx×nu . u ∈ E(qu,Qu) with E(qu,Qu) is the ellipsoidal

input set with the center qu ∈ Rnu and the shape matrix Qu ∈ Rnu×nu . x0 ∈

E(qx0 ,Qx0) with E(qx0 ,Qx0) being the ellipsoidal initial state set with the center

qx0 ∈ Rnx and the shape matrix Qx0 ∈ Rnx×nx . The parameters of minimum volume

ellipsoid (E(qx(t),Qx(t))) enclosing the reach set for this system are given in (B.18)

and (B.19).

The continuous-time dynamics are converted to discrete-time using zero-order-

hold assumption with the sampling time Ts,

x[k + 1] = Adx[k] +Bdu[k], x[0] = x0 (6.11)

The parameters of the minimum volume ellipsoid (E(qx(t),Qx(t))) enclosing the

reach set X(t) for continuous-time linear system (6.10) are expressed in (B.18) and
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(B.19). Using zero-order hold assumption in (B.18) and solving (B.19) at each sample

time, the parameters of the minimum volume ellipsoid (E(qx[k],Q)x[k]) enclosing the

reach set for discrete-time linear system (6.11) are derived as

qx[k + 1] = Adqx[k] +Bdqu[k], q[0] = 0nx (6.12)

Qx[k + 1] = P−1[k + 1] (6.13)

where P [k + 1] ∈ Rnx×nx is the only solution of recursive equation Pn+1 = Λ(Pn)

Λ(Pn) =

(√
Tr
(
PnQ̄T

0

)
+

∫ tk+1

t0

√
Tr
(
PnQ̄T

u (τ)
)
dτ

Q̄0√
Tr
(
PnQ̄T

0

) +

∫ tk+1

t0

Q̄u(τ)√
Tr
(
PnQ̄T

u (τ)
)dτ

)−1

(6.14)

where tk+1 is the time instance corresponding to (k+ 1)-th sample. Q̄0 ∈ Rnx×nx and

Q̄u(τ) ∈ Rnx×nx are defined as

Q̄0 = Φ(tk+1, t0)Qx0Φ
T (tk+1, t0) (6.15)

Q̄u(τ) = Φ(tk+1, τ)B(τ)Qu(τ) (Φ(tk+1, τ)B(τ))T (6.16)

where Φ(tk+1, τ) ∈ Rnx×nx is the state-transition matrix of system (6.10).

Starting from an initial positive-definite matrix P0, the recursive equation (6.14)

converges to a unique solution [72]. Here it is assumed P0 = Inx and the termination

condition for (6.14) is defined as

µ(Pn+1,Pn) =
|detPn+1)−1/2 − (detPn)−1/2|

(detPn)−1/2
(6.17)
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Here det and |.| denote the determinant of matrix and the absolute value of scalar, re-

spectively. The termination condition is satisfied when the normalized rate of change

in the volume of ellipsoid is less than the desired tolerance.

Remark. [73] Considering the initial state set approaches to a point (Qx0 = εIns

with ε→ 0), (6.14) converges to

Λ(Pn) =

(∫ tk+1

t0

√
Tr
(
PnQ̄T

u (τ)
)
dτ

∫ tk+1

t0

Q̄u(τ)√
Tr
(
PnQ̄T

u (τ)
)dτ

)−1

(6.18)

To find minimum volume ellipsoid enclosing the reach set of the UAV, the linear

dynamic equations of the UAV in (6.6) are formulated as

x[k + 1] = Adx[k] + ut[k] (6.19)

where ut[k] ∈ Ut[k] is the total input with ut[k] = Bdu[k] + Ddw[k] and Ut[k] =

BdU[k] +DdW[k].

In this thesis, the polytopic input set U = P(Au, bu) in (6.6) is approximated

by minimum volume enclosing ellipsoid. This ellipsoid is the so-called Lowner-Jhon

ellipsoid [17] and is obtained as

qu = −L−1
u cu (6.20)

Qu = (LTuLu)
−1 (6.21)

where Lu ∈ Rnx×nx and cu ∈ Rn
x are calculated by solving the convex optimization
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problem,

min
Lu,cu

log detL−1
u

s.t. ||Luvui + cu||2 ≤ 1, i = 1, ..., nu

(6.22)

where vui and nu are the i-th vertex of polytope and the number of polytope vertices,

respectively.

Given the ellipsoidal input set E(qu,Qu) ⊃ U and ellipsoidal disturbance set (W =

E(qw,Qw)), the total input set Ut is approximated by minimum volume ellipsoid

E(qt,Qt) enclosing the Minkowski sum of two ellipsoids. The parameters of this

ellipsoid are calculated as [43]

qut = Bdqu +Ddqw (6.23)

Qut = (1 +
1

β
)Qub + (1 + β)Qud (6.24)

where Qub ,Qud ∈ Rnx×nx

Qub = BdQuB
T
d (6.25)

Qud = DdQwD
T
d (6.26)

β is derived based on recursive equation

βn+1 =

√
Σns
i=1(1 + βnλi)−1

Σns
i=1λi(1 + βnλi)−1

(6.27)

where λi is the i-th eigenvalue of R = Q−1
ub
Qvb .

If nu < nx or nw < nx, Qub or Quw becomes degenerate and instead of using (6.25)
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and (6.26), they are calculated by

Qub = BdQuB
T
d + ε2Inx (6.28)

Qud = DdQwD
T
d + ε2Inx (6.29)

where ε is a small value making matrices non-degenerate

Given the ellipsoidal total input set E(qut ,Qut) and ellipsoidal initial state set

E(qx0 ,Qx0), and using (6.12) and (6.13), the UAV reach set at each sample is ap-

proximated by minimum volume enclosing ellipsoid E(qx[k],Qx[k]) ⊃ X[k]. Here

qx[k] ∈ Rnx and Qx[k] ∈ Rnx×nx are the center and the shape matrix of the ellip-

soidal reach set, respectively.

Given the ellipsoidal disturbance set E(qw,Qw) and ellipsoidal initial state set

E(qe0 ,Qe0) = X0 − x̄0, and using using (6.12) and (6.13), the state deviation reach

set of the UAV at each sample is approximated by minimum volume enclosing ellipsoid

E(qxe [k],Qxe [k]) ⊃ Xe[k]. Here qxe [k] ∈ Rnx and Qxe [k] ∈ Rnx×nx are the center and

the shape matrix of the ellipsoidal state deviation set, respectively.

6.4 Safe Convex Region Approximation

Obstacle-free space is usually non-convex in its original form and creating non-convex

constraints in the optimization problem. To overcome this problem, the obstacle-free

space can be approximated by a convex region. In this study, each obstacle is modelled

by a polytopic set with uncertainties in its motion

Xi
u[k] = {x|Ai

xu(x− pic[k]) � dixu} (6.30)
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where Ai
xu ∈ Rmi×3 and bixu ∈ Rmi are parameters of i-th polytopic obstacle (out

of no) and mi is the number of faces of i-th polytope. pic[k] ∈ xic[k] is the position

subvector of the center of i-th obstacle and xic[k] ∈ Rnx represents states of i-th

polytopic obstacle derived by

xic[k + 1] = Ai
cx

i
c[k] +Bi

cu
i
c[k], xic[0] = xic0 (6.31)

where Ai
c ∈ Rnx×nx and Bi

c ∈ Rnx×nu . xic0 ∈ Xi
c0

is the initial state of the i-th obstacle

where Xi
c0
⊂ Rnx is the initial state set. uic[k] ∈ Ui

c is the input to the system where

Ui
c ∈ Rnu is the set of possible inputs acting on the i-th obstacle.

To approximate the reach set corresponding to each obstacle (Xi
c[k]) by minimum

volume enclosing ellipsoid, ellipsoidal input set Uc = Euc(qiuc ,Q
i
uc) and ellipsoidal

initial state set Xc0 = E(qic0 ,Q
i
c0

) are considered. Using (6.12) and(6.13), the ellip-

soidal approximation of reach set of each obstacle at each sample (E(qixc [k],Qi
xc [k]))

is obtained. Here qixc [k] ∈ Rnx and Qi
xc [k] ∈ Rnx×nx are the center and shape matrix

of ellipsoidal reach set, respectively. To find the reachable position of each obstacle,

the projection of ellipsoidal reach set in positional coordinates is calculated

E(qipc [k],Qi
pc [k]) = prjp(E(qixc [k],Qi

xc [k]) (6.32)

here qipc [k] ∈ R3 is the position subvector of qixc [k] and Qi
pc [k] ∈ R3×3 is shape matrix

of projected ellipsoid in positional coordinates calculated as (proof in appendix C.3).

Qi
pc [k] = (Up −UT

pvU
−1
v Upv)

−1 (6.33)
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Up,Upv,Uv ∈ R3×3 are submatrices of (Qi
xc [k])−1

Up UT
pv

Upv Uv

 = Qi
xc [k] (6.34)

To find the outer polytopic approximation of each obstacle under uncertainties

defined in (6.30), the following proposition is presented.

Proposition 1. Consider the set X is defined as

X = {x : Aa(x+ y) ≤ ba, y ∈ E(qa,Qa), ba ∈ Rn
≥0} (6.35)

The inner and outer polytopic approximation of set X is derived as P(Ain, bin) ⊆ X ⊆

P(Aout, bout)

Ain = Aout = Aa (6.36)

bin = ba −Aaqa − ||AaLa||• (6.37)

bout = ba −Aaqa + ||AaLa||• (6.38)

where La is the Cholesky factorization of Qa. ||AaLa||• is defined as

||AaLa||• = [||A1,∗
a La||2, ||A2,∗

a La||2, ..., Am,∗
a La||2]T (6.39)

where A1,∗
a is the first row (out of m) of Aa.

Proof. Inserting the ellipsoidal equation y = qa + Law, ||w||2 ≤ 1 in (6.35), the set
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X is expressed as

X = {x : Aax � ba −Aaqa −AaLaw, ||w|| ≤ 1, ba ∈ Rn
≥0} (6.40)

Considering Ai,∗
a Law ≤ ||Ai,∗

a La|| for all ||w|| ≤ 1, it is concluded if

Aax � ba −Aaqa − ||AaLa||•, then Aax � ba −Aay (6.41)

Moreover, it is concluded if

Aax � ba −Aay, then Aax � ba −Aaqa + ||AaLa||• (6.42)

Using Proposition 1, the outer polytopic approximation for each obstacle is derived

as P(Ao, bo) where bio = dixc +Aj
oq

j
pc [k]+||AoL

i
c[k]||2 and Lic[k] ∈ R3×3 is the Cholesky

factorization of Qi
pc [k].

In this thesis, the approximated convex safe region is represented by the poly-

hedron P(Ap[k], bp[k]) where Ap[k] ∈ Rmp×3 and bp[k] ∈ Rmp are the polyhedron

parameters and mp is the number of its faces. This polyhedron is obtained as the in-

tersection of half-spaces created by the convex region generation algorithm introduced

in Chapter 5. In this algorithm, a safe half-space with maximum reachable region is

determined by finding the separating hyperplane between the polyhedral obstacle and

target point of the UAV at each sample time. Polytopic velocity constraints in the

form of P(Av, bv) where Av ∈ Rmv×nv and bv ∈ Rmv are the parameters of polytopic

velocity set and mv is the number of the faces of the polytope, are imposed to ensure
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safe movement of the UAV.

Given the polyhedral safe region and polytopic velocity set, the safe region can be

modelled by polyhedron Xs[k] = P(Ax[k], bx[k]) with

Ax[k] =

Ap[k] 0

0 Av

 , bx[k] =

bp[k]

bv

 (6.43)

6.5 Ellipsoidal-based RMPC

To formulate the ellipsoidal-based RMPC (6.9a-6.9d) as a convex optimization prob-

lem with linear constraints, Xs[k]	Xe[k] should be approximated by a polyhedral set.

In this thesis, the safe region is modelled by polyhedron and the state deviation reach

set is approximated by the ellipsoidal set. Therefore, the constraint in (6.9c) can be

formulated as Pontryagin difference of polyhedron and ellipsoid. To approximate this

constraint by inner polytopic set, the following proposition is presented.

Proposition 2. Consider the polytopic set P(Ax, bx) and ellipsoidal set E(qy,Qy),

the set Z = P(Ax, bx)	E(qy,Qy) can be approximated by inner polytopic set Pz(Az, bz) ⊆

Z where

Az = Ax, bz = bx −Axqy − ||AxLy||• (6.44)

where Ly is the Cholesky factorization of Qy. ||AxLy||• is defined as

||AxLy||• = [||A1,∗
x Ly||2, ||A2,∗

x Ly||2, ..., Am,∗
x Ly||2]T (6.45)

where A1,∗
x is the first row (out of m) of Aa.
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Proof. The set Z is obtained as Minkowski difference of polytopic and ellipsoidal sets

Z = {z : |z ⊕ E(qy,Qy) ⊆ P(Ax, bx)}. Using polytopic equation, the set Z is

formulated as

Z = {z : |Ax(z + y) � bx, y ∈ E(qy,Qy)} (6.46)

Using Proposition 1, the set Z is approximated by inner polytope Pin.

Using Proposition 2, the state constraint (6.9c) is approximated by inner polytopic

set P(Ax̄, bx̄). Therefore, the ellipsoidal based RMPC in (6.9a-6.9d) is formulated as

quadratic program with linear constraints

min
u[0,N−1]

N−1∑
k=0

(u[k]− uh[k])TR(u[k]− uh[k]) (6.47a)

s. t. : x̄[k + 1] = Adx̄[k] +Bdu[k] (6.47b)

Ax̄[k]x[k] � bx̄[k] (6.47c)

Au[k]u � bu (6.47d)

where Ax̄[k] ∈ Rmx×nx and bx̄[k] ∈ Rmx are the parameters of polyhedral safe region.

6.6 Experiment

A schematic view of the experimental setup is demonstrated in Fig.4.3. The update

rate and time horizon of the MPC-based collision avoidance assistance are Ts = 30 ms

and tf = 1.5 s, respectively. The operator’s acceleration commands are assumed
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constant over the MPC time horizon. The parameters of polytopic input and velocity

constraints in (6.47c) and (6.43) are selected as

Au = Av = [−I3, I3]T (6.48)

bu = [2, 0.5, 2, 2, 0.5, 2]T , bv = [1.5, 0.5, 1.5, 1.5, 0.5, 1.5]T (6.49)

Uncertainty in the form of disturbance is considered for the UAV. This is to model

errors in the inner-loop acceleration controller. The disturbance set is modelled by

the ellipsoid w ∈ E(qw,Qw), where the parameters of the ellipsoid are determined

based on several experiments

qw = 03, Qw = diag(0.75, 0.19, 1.47) (6.50)

Two-dimensional representation of the obstacles are shown in Fig. 6.2 and Fig. 6.2,

where the height of each obstacle is one meter. Uncertainties in the form ellipsoidal

initial state set E(qic0 ,Q
i
c0

) and ellipsoidal input set E(quc ,Quc) are considered for

each obstacle. The following parameters are considered for ellipsoidal sets.

qic0 = [(pic)
T ,0T3 ]T , Qi

c0
= diag(0.052, ε2, ε2, 0.12, ε2, ε2) (6.51)

quc = 03, Quc = diag(0.12, ε2, ε2) (6.52)

where pic ∈ R3 is the center of i-th obstacle and ε is the small value making the

ellipsoids non-degenerate.

Several optimization problem must be solved in the proposed collision avoidance
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algorithm. In (6.22), the minimum volume ellipsoids covering the polytopes are for-

mulated as semidefinite program [13], which is solved off-line using Mosek solver [5].

The convex region generation algorithm presented in Chapter 5 and proposed colli-

sion avoidance algorithm in (6.47a-6.47d) are formulated as quadratic program and

are solved in real-time using QSQP solver with its code generation [86],[10].

6.6.1 Flight Test

Two experiments are carried out to demonstrate the performance of the proposed

collision avoidance assistance in the presence of uncertainties. The first experiment

considers a case where the UAV is subject to disturbance. The second experiment

investigates a scenario where disturbance on the UAV and uncertainty in the obstacle

positions are considered.

In the first experiment, two pairs of obstacles are placed in the environment such

that the path in front of the UAV is blocked by the second pair of obstacles, as

demonstrated in Fig. 6.2. The operator teleoperates the UAV by providing the accel-

eration commands as demonstrated in Fig. 6.3(b). The collision avoidance generates

the corrective commands as shown in Fig. 6.3(b) to modify the UAV trajectory and

assist the operator in guiding it through the opening between the obstacles. To find

obstacles with the chance of collision, the intersection of UAV reach set with each

obstacle at each sample is examined (Fig. 6.2(a,c,e)). If the obstacle is identified as

an unsafe obstacle with the chance of collision, the separating plane is created using

the convex region generation presented in Chapter 7. Collision-free motion for all

possible disturbances is guaranteed by ensuring the state deviation reach sets do not

intersect with the separating planes as shown in Fig. 6.2(b,d,f).
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In the second experiment, uncertainties are considered in both the UAV and ob-

stacles. The trajectory of the UAV is presented in Fig. 6.4. In this experiment,

inflated obstacles due to uncertainties at each sample time are obtained and their

intersection with the UAV reach set is examined, e.g., see Fig. 6.4(a,c,e). As shown

in Fig. 6.4(b,d,f)), obstacles with the chance of collision at each sample time are

identified, and the separating planes are created between the UAV and the inflated

obstacles. Fig. 6.5(a) shows corrective commands that modify the operator’s com-

mands in Fig. 6.5(b). The corrective commands assist the operator in guiding the

UAV to pass through the opening between the obstacles for all possible uncertainties,

i.e, the state deviation sets do not intersect with inflated obstacles as demonstrated

in Fig. 6.4(b,d,f).
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Figure 6.2: Two-dimensional representation of the UAV trajectory. Two
dimensional representation of the UAV reach set at three different samples for a)
X=0.5 (m), c)X=2 (m), e) X=3 (m). Two-dimensional representation of the state
deviation sets and separating planes at three different samples for b) X=0.5 (m),

d)X=2 (m), f) X=3 (m).
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Figure 6.3: a) Corrective commands created by the proposed collision avoidance
assistance. b) Operator commands.
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Figure 6.4: Two-dimensional representation of the UAV trajectory.
Two-dimensional representation of the UAV reach set and inflated obstacles at three

different samples for a) X=0.5 (m), c)X=2 (m), e) X=3 (m). Two-dimensional
representation of the state deviation sets, inflated obstacles, and separating planes

at three different samples for b) X=0.5 (m), d)X=2 (m), f) X=3 (m).
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Figure 6.5: a) Corrective commands created by the proposed collision avoidance
assistance. b) Operator commands.
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Chapter 7

Recursive Feasibility in Collision

Avoidance

MPC-based collision avoidance is a powerful tool to assist the operator safely navi-

gate the UAV in an obstacle-rich environment. The MPC-based collision avoidance

algorithm repeatedly solves an optimization problem to modify the operator’s com-

mand in order to avoid collision. A fundamental problem in finite-time MPC is the

lack of guaranteed recursive feasibility. In particular, the feasibility of MPC at the

initial time does not guarantee its feasibility at all iterations. This could potentially

place the UAV into a state where collision with obstacles would become unavoidable.

In this chapter, new MPC-based collision avoidance assistance algorithms with

guaranteed recursive feasibility for UAV teleoperation with/without uncertainties are

introduced. Recursive feasibility is guaranteed by adding proper terminal constraints

to the MPC-based collision avoidance introduced in Chapter 5. To extend the collision

avoidance assistance with recursive feasibility for the UAV under uncertainties, a
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novel ellipsoidal tube-based MPC is introduced. In this algorithm, the operator tele-

operates the UAV by providing linear acceleration commands while the ellipsoidal

tube-based MPC modifies these commands to ensure collision-free operation in the

presence of disturbances. Collision avoidance is formulated as a convex optimization

problem in three steps. First, an ellipsoidal approximation of the robust positively

invariant (RPI) set is derived using a new RPI set approximation based on ellipsoidal

techniques. Next, a polytopic approximation of the obstacle-free space is derived

using the SVM algorithm. Finally, an inner polytopic approximation of the tightened

constraints is obtained using geometrical relation between the ellipsoidal RPI set and

polytopic safe region.

7.1 Reachability analysis and Set Invariance the-

ory

Consider the discrete-time linear dynamic system

x[k + 1] = Adx[k] +Ddw[k] (7.1)

where w[k] ∈W is disturbance input and x0 ∈ X0 is the initial states of the system.

In this thesis, it is assumed Ad ∈ Rnx×nx is strictly stable and wd[k] ∈ Wd with

Wd ∈ ComC(Rnx). Here wd[k] = Ddw[k] and ComC(Rnx) denotes the collection of

convex and compact sets containing the origin in Rnx .

Definition 1. The reach set X[k] for the system (7.1) is defined as a set of all states
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at k-sample which can be reached from initial states x0 ∈ X0 under all possible dis-

turbance inputs wd[.] ∈Wd.

The reach set at k-th sample is derived as X[k] = Fk(X0) where Fk(X0) is a

mapping function defined as

Fk(X0) = Ak
dX0 ⊕

k−1⊕
i=0

Ai
dWd (7.2)

and ⊕ denotes the Minkowski sum, and
⊕k−1

i=0 A
i
dWd = Wd ⊕AdWd ⊕ ...⊕Ak−1

d Wd.

Definition 2. The set S is called robust positively invariant (RPI) set for the sys-

tem (7.1) if for all x ∈ S and wd ∈Wd, Adx+wd ∈ S, i.e., F1(S) ⊆ S.

Definition 3. The set S̄ is called minimum RPI set for system (7.1) if it is RPI set

and is contained in every RPI set, i.e., F1(S̄) ⊆ S̄ and S̄ ⊆ S for all S satisfying

F1(S) ⊆ S.

7.2 Collision Avoidance in the UAV

A schematic view of the proposed share control strategy is presented in Fig. 7.1.

The operator tele-operates the UAV by providing the acceleration commands while

a model predictive collision avoidance assistance modifies the operator commands to

ensure collision-free operation. The discrete-time MPC is formulated as
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Figure 7.1: UAV teleoperation with automated collision avoidance assistance

min
u[0,N−1]|k

N−1∑
i=0

(u[i|k]− uh[i|k])TRu[i|k](u[i|k]− uh[i|k]) (7.3a)

s.t. : x[i+ 1|k] = Adx[i|k] +Bdu[i|k] (7.3b)

v[N |k] = 03 (7.3c)

u[i|k] ∈ U (7.3d)

x[i|k] ∈ Xs[k] (7.3e)

where u[i|k],uh[i|k] ∈ Rnu are the UAV nominal inputs and predicted operator com-

mands at i-th sample with respect to k-th sample (current inputs), respectively.

x[i|k] ∈ Rnx is the UAV states, Ru[i|k] ∈ Rnu×nu , and N is the number of samples

within the MPC time horizon. Constraints related to system dynamics are represented

in (7.3b). Terminal velocity constraints are presented in (7.3c) where v[N |k] ∈ R3 is

the velocity of the UAV at the terminal sample time. Input constrains are formulated

in (7.3d) where U is the set of admissible inputs. State constraints including obstacle

avoidance constraints and velocity constrains are presented in (7.3e), where Xs[i|k]

represents state constraints.
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7.2.1 Safe Convex Region Generation

Obstacle-free space is usually non-convex in its original form, creating non-convex

constraints in the optimization problem. To overcome this problem, the obstacle-free

space can be approximated by a convex region. In this chapter, each obstacle is

modelled by polytopic set Pjxu = P(Aj
xu , b

j
xu) where

P(Aj
xu , b

j
xu) = {x : Aj

xux � b
j
xu} (7.4)

where Aj
xu ∈ Rmj×3 and bjxu ∈ Rmj are the parameters of j-th (out of no) polytopic

obstacle and mj is the number of faces of j-th polytopic obstacle.

The obstacle-free region is approximated by the intersection of half-spaces gener-

ated by separating planes between the UAV and obstacles. Each separating plane is

obtained using the hard-margin SVM algorithm [41]. This algorithm finds a separat-

ing plane between two disjoint sets σ and ϕ with maximum distance to the two sets,

i.e.,

max
α,η

(min
xi∈σ

|αTxi + η|
||α||2

+ min
yj∈ϕ?

|αTyj + η|
||α||2

) (7.5)

where α ∈ R3 and η ∈ R are the parameters of separating plane and xi, yj ∈ R3 are

the i-th and j-th members of sets σ and ϕ, respectively.

To utilize the SVM algorithm in finding the separating plane between the UAV

and each obstacle, σ is modelled as singleton set representing the UAV position (σ =

{Pcg}) and ϕj denotes the vertices of j polytopic obstacle (ϕj = {vjo1 , v
j
o2
, ..., vjonj

}).

To maximize the safe region, it is assumed the separating plane corresponding to each
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obstacle intersects with the closest vertex, i.e, min
vjoi∈ϕj

|αTj vjoi + ηj| = 0. Without loss

of generality, it is assumed |αTj pcg + ηj| = 1 and the SVM algorithm to find the j-th

separating plane is formulated as

min
αj ,ηj

αTjαj (7.6a)

s.t. : αTj pcg + ηj ≥ 1 (7.6b)

αTj v
j
oi

+ ηj ≤ 0 i = 1, ..., nj (7.6c)

The polytopic approximation of obstacle-free region is determined by the intersec-

tion of half-spaces created by separating planes, i.e., Pp = P(Ap, bp) where Ap[k] =

[α1, α2, ..., αno ]
T and bp[k] = [η1, η2, ..., ηno ]

T . Furthermore, polytopic velocity con-

straints are imposed by the user for safety, i.e., Pv = P(Av, bv) where Av ∈ Rmv×nv

and bv ∈ Rmv are the parameters of polytopic velocity set and mv is the number of the

faces of the polytope. Given the polytopic obstacle-free region and velocity set, the

safe region can be modelled by polytope Xs[k] = Pxs [k] with Pxs [k] = P(Ax[k], bx[k])

Ax[k] =

Ap[k] 0

0 Av

 , bx[k] =

bp[k]

bv

 (7.7)

7.2.2 MPC-based Collision Avoidance

The actuator limits are modelled by a polytopic feasible input set U = P(Au, bu)

where Au ∈ Rmu×nu , bu ∈ Rmu and mu is the number of faces of polytope. Therefore,
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the MPC in (7.3a-7.3e) is formulated as quadratic program with linear constraints

min
u[0,N−1]|k

N−1∑
i=0

(u[i|k]− uh[i|k])TRu[i|k](u[i|k]− uh[i|k]) (7.8a)

s. t. : x[i+ 1|k] = Adx[i|k] +Bdu[i|k] (7.8b)

v[N |k] = 03 (7.8c)

Auu[i|k] � bu (7.8d)

Ax[k]x[i|k] � bx[k] (7.8e)

where Au ∈ Rmu×nu and bu ∈ Rmu are the parameters of polytopic nominal input

set. Ax[k] ∈ Rmx×nx and bx ∈ Rmx are the parameters of polytopic safe region for

nominal system.

7.2.3 Recursive feasibility and stability

Recursive feasibility and stability are highly desirable characteristics that should be

constructed into the MPC-based collision avoidance. Stability of the system is largely

dependent on operator manual behaviour. Despite extensive research in this area, a

full understanding of the human control behaviour remains illusive [70]. However, sim-

ple dynamic systems such as single or double integrators with/without disturbances

are stabilizable by a human operator. They are often used as standard plant model to

investigate the human cognitive and control behaviour in many studies [33, 65, 66, 91].

In this thesis, combination of a low-level inner-loop controller and mapping function

render the UAV dynamics to that of a single integrator dynamic system. The col-

lision avoidance assistance algorithms acts as a bounded disturbance added to the
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operator’s commanded acceleration, i.e., see Fig. 3.5. The problem of UAV teleoper-

ation with automated collision avoidance can be viewed as that of a manual control

of single integrator dynamic system with disturbances by the human operator. The

MPC-based collision avoidance is formulated in such a way that it would minimize

interference with operator’s commands.

In the MPC-based collision avoidance, the optimization problem is repeatedly

solved to find the optimal corrective inputs that would help the operator avoid colli-

sions with obstacles. A fundamental problem in finite-time MPC is the lack of guar-

anteed recursive feasibility, i.e., the feasibility of the MPC at the initial time would

not guarantee its feasibility at all future iterations. This could place the UAV into a

state where collision with obstacles would become unavoidable. Recursive feasibility

can be guaranteed by adding terminal equality constraints to the MPC optimization

problem formulation.

Proposition 1. Adding zero velocity terminal constraints (7.31c) would guarantee re-

cursive feasibility of the MPC-based collision avoidance assistance presented in (7.31a-

7.31e) for time-invariant state constraints (Pxs [k] = Pxs).

Proof. Assume the feasibility of x[0|k] and let u∗[0, N−1]|k = [u∗[0|k],u∗[1|k], ...,u∗[N−

1|k]] be the optimal control sequence at k-th sample. Considering zero velocity

terminal constraints, there exists a feasible control sequence u[0, N − 1]|k + 1 =

[u∗[1|k],u∗[2|k], ...,u∗[N −1|k], 0] that keeps the system at previous states (x[N |k+

1] = x[N |k] ∈ Pxs). Therefore, existence of solution and recursive feasibility is guar-

anteed.

Using the above proposition, recursive feasibility is guaranteed in the MPC-based

collision avoidance with time-invariant state constraints. However, the safe convex
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region generated by the SVM algorithm is updated at each iteration making the state

constraints time-varying. If the MPC becomes infeasible due to time-varying state

constraint at (k+1)-th iteration, state constraints at (k)-iteration can be used instead.

7.3 Collision Avoidance in UAV under Uncertainty

In real-world scenarios, uncertainties are unavoidable and can significantly degrade

the performance of collision avoidance algorithm. In the presence of uncertainties,

the optimization problem may become infeasible resulting in collisions. Robust model

predictive controllers (RMPC) have been developed to deal with uncertainties in the

predictive control of dynamical systems. Worst-case MPC is a popular approach in

this category (Chapter 6). It finds a conservative solution by considering the worst-

case scenario for the uncertainties. The method is ill-suited for use with unstable

dynamic systems [80] due to fast-growing uncertainty in the system states, which

can lead to the infeasibility of optimization-based collision avoidance. Furthermore,

guaranteeing recursive feasibility is challenging using this method.

An alternative method to address uncertainty is tube-based MPC introduced

in [54] for a linear dynamic system under bounded disturbances. By generating

control laws instead of control actions, this method separates the robustness problem

from the MPC problem. A shared control strategy presented in Fig. 7.1 is introduced

to incorporate this method in collision avoidance assistance. Tube-based MPC is

used to account for disturbances in the formulation of collision avoidance assistance

control algorithm. By introducing a feedback controller, the robustness problem is

separated from the MPC problem, i.e, the MPC is solved for nominal system and the

resulting input is modified by the feedback control law.
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The feedback control law is defined as u[k] = ū[k] +K(x[k] − x̄[k]) where K ∈

Rnu×nx is the control feedback gain. x̄[k] ∈ Rnx ū[k] ∈ Rnu are the nominal states

and inputs of the UAV.

x̄[k + 1] = Adx̄[k] +Bdū[k] (7.9)

Defining the controller error as e[k] = x[k]− x̄[k], the controller error dynamics can

be written as

e[k + 1] = Ade[k] +wd[k] (7.10)

where the feedback control gain matrix K is selected such that the eigenvalues of

Ak = Ad +BdK are in unit ball. wd[k] ∈ Wd[k] with wd[k] = Dw[k] and Wd[k] =

DW. Given strictly stable Ad and Wd ∈ ComC(Rnx) existence of minimum RPI set

S̄ ∈ ComC(Rnx) for system (7.10) is guaranteed [76], i.e, if e[0] ∈ S̄, then e[k] ∈ S̄ for

all k ∈ N.

To ensure the UAV follows the operator’s commands as close as possible while

avoiding the collision, a tube-based MPC for the nominal system is formulated as
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min
ū[0,N−1]|k

N−1∑
i=0

(ū[i|k]− uh[i|k])TRu[i|k](ū[i|k]− uh[i|k]) (7.11a)

s. t. : x̄[i+ 1|k] = Adx̄[i|k] +Bdū[i|k] (7.11b)

v[N |k] = 03 (7.11c)

ū[i|k] ∈ U	KS̄ (7.11d)

x̄[i|k] ∈ Xs[i|k]	 S̄ (7.11e)

where ū[i|k],uh[i|k] ∈ Rnu are the UAV nominal inputs and predicted operator com-

mands at i-th sample with respect to k-th sample (current inputs), respectively.

x[i|k] ∈ Rnx is UAV states, Ru[i|k] ∈ Rnu×nu , and N is the number of samples within

the MPC time horizon. Constraints related to system dynamics are represented

in (7.11b). Terminal velocity constraints are presented in (7.11c) where v[N |k] ∈ R3

is the velocity vector of the UAV at the terminal sample. Tightened input constrains

are formulated in (7.11d) where U is the set of admissible inputs. Tightened state con-

straints including obstacle avoidance constraints and velocity constrains are presented

in (7.11e) where Xs[i|k] represents state constraints. Here 	 denotes the Pontryagin

difference operation.

To solve the optimization-based collision avoidance assistance and find the global

optimum solution in real-time, input and state constraints should be formulated by

linear inequality constraints. First, an ellipsoidal approximation of the minimum

RPI set is obtained for the given set of all possible disturbances. The obstacle-free

region is approximated by polytope P(Ax, bx) using the SVM algorithm presented in

Section 9.1.1. Finally, inner polytopic approximations of tightened input and state
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constraints are calculated.

7.3.1 Invariant Set Approximation

To utilize tube-based MPC, the minimum RPI set (S̄) should be determined. RPI

set S[k] for discrete-time linear system (7.1) is given by [76].

S[k] = Fk ⊕ λk(1− λ)−1µL, F0 = {0nx} (7.12)

where L ∈ ComCP (Rnx) with ComCP (Rnx) denotes the collection of convex and

compact set containing the origin in its interior, λ ∈ [0, 1] is a scaler satisfying Ak
dL ⊆

λkL for all k ∈ N. µ is defined as

µ = min
α
{α : ∀k ∈ N, α ≥ 0, Wd ⊆ αL} (7.13)

S[k] in (7.12) converges geometrically to minimum RPI set S̄ = lim
k→∞

Fk. Moreover, it

is guaranteed S̄ ⊆ S[k] ⊆ S̄ + ε where ε calculated as [76]

ε = λk(1− λ)−1µL (7.14)

To find the RPI set at each sample, the corresponding exact reach set of the system

should be calculated. Finding the exact reach set can be computationally prohibitive

especially for a large value of k. To overcome this problem, the reach set can be

approximated by geometrical shapes. In this work, the reach set at each sample time

is approximated by minimum volume enclosing ellipsoid introduced in [72, 73]. In

this method, the ellipsoidal input set W = Ew with Ew = E(qw,Qw) is considered for
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the system

Ew = {x : (x− qw)TQ−1
w (x− qw) ≤ 1} (7.15)

where qw ∈ Rnw and Qw ∈ Rnw×nw are the center and shape matrix of the ellipsoidal

input set, respectively.

The parameters of the ellipsoidal approximation of the reach set (X[k] ⊆ E(qx[k],Qx[k])

with zero initial condition are given by [73]

qx[k + 1] = Adqx[k] +Ddqwd
, q[0] = 0nx (7.16)

Qx[k + 1] = P−1[k + 1] (7.17)

where P [k + 1] ∈ Rnx×nx is the only solution of recursive equation Pn+1 = Λ(Pn)

Λ(Pn[k + 1]) =

(∫ tk+1

t0

√
Tr
(
PnQ̄T

wd
(τ)
)
dτ

∫ tk+1

t0

Q̄wd
(τ)√

Tr
(
PnQ̄T

wd
(τ)
)dτ

)−1

(7.18)

where tk+1 is the time instance corresponding to (k + 1)-th sample, and Q̄wd
(τ) ∈

Rnx×nx is defined as

Q̄wd
(τ) = Φ(tk+1, τ)DdQw(τ)(Φ(tk+1, τ)Dd)

T (7.19)

Starting from an initial positive-definite matrix P0, the recursive equation (7.18)

converges to a unique solution [72]. Here it is assumed P0 = Inx and the termination

112



Ph.D. Thesis - Sahand Ghaffari McMaster - Electrical & Computer Engineering

condition for (7.18) is defined as

µ(Pn+1,Pn) =
(|detPn+1)−1/2 − (detPn)−1/2|

(detPn)−1/2
(7.20)

Here det and |.| denote the determinant of matrix and the absolute value of scalar, re-

spectively. The termination condition is satisfied when the normalized rate of change

in the volume of ellipsoid is less than the desired tolerance.

An outer approximation of RPI set in (7.12) is derived by approximating the reach

set with minimum volume ellipsoid enclosing it

S′[k] = Ex[k]⊕ λk(1− λ)−1µL, Ex[0] = {0nx} (7.21)

where µ is defined in (7.13).

The set L in (7.21) can be obtained by ellipsoidal set EL = EL(0nx ,QL) with

center 0nx and shape matrix QL ∈ Rnx×nx satisfying the discrete-time Lyapunov

inequality [76]

AT
dQLAd ≤ λ2QL, λ ∈ [0, 1) (7.22)

Given L = EL, then S′[k] = Ex[k]⊕ λk(1− λ)−1µEL which is the Minkowski sum

of two ellipsoids. Calculating the exact value of S′[k] is computationally prohibitive.

However, this set can be approximated by minimum volume enclosing ellipsoid. Con-

sider two arbitrary ellipsoidal sets E1 = E(q1,Q1) and E2 = E(q2,Q2), the Minkowski

sum of these ellipsoidal sets can be approximated by minimum volume ellipsoid en-

closing it, i.e, E1 ⊕ E2 ⊆ E with E = E(q,Q). The parameters of this ellipsoid are
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given by [43]

q = q1 + q2 (7.23)

Q = (1 + β−1)Q1 + (1 + β)Q2 (7.24)

where β is derived based on the recursive equation

βn+1 =

√ ∑nx

i=1(1 + βnλi)−1∑nx

i=1 λi(1 + βnλi)−1
(7.25)

Here λi is the i-the eigenvalue of (Q1)−1Q2.

Defining E1 = E[k] and E2 = λk(1− λ)−1µEL and using (7.23) and (7.24), S′[k] is

approximated by minimum volume enclosing ellipsoid Es[k]

S′[k] = Ex[k]⊕ λk(1− λ)−1µEL ⊆ Es[k] (7.26)

Proposition 2. The Ellipsoidal set Es[k] is the outer approximation of RPI set S[k]

for all k ∈ N. Moreover, Es[k] approaches to the minimum volume ellipsoid enclosing

the minimum RPI set as k →∞

Proof. Since X[k] = Fk ⊆ E[k] and S[k] = Fk ⊕ λk(1 − λ)−1µL, it is concluded

S[k] ⊆ S′[k] for all k ∈ N. Given L = EL and using (7.26), it is concluded S′[k] ⊆ Es[k]

for all k ∈ N. Therefore, S[k] ⊆ Es[k] for all k ∈ N.

Since lim
k→∞

Es[k] = lim
k→∞

E[k] and lim
k→∞

E[k] is the minimum volume ellipsoid enclosing

the minimum RPI set S̄ = lim
k→∞

Fk, it is concluded lim
k→∞

Es[k] is the minimum volume

ellipsoid enclosing the minimum RPI set.

Using (7.14) and (7.26), the outer ellipsoidal approximation of minimum RPI set
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(Ēs = Es[kε]) for the system (7.10) at arbitrary ε can be determined.

7.3.2 Ellipsoidal Tube-based MPC

To formulate the tube-based MPC (7.11a-7.11e) as convex optimization problem with

linear constraints, U	KS̄ and Xs[i|k]	 S̄ should be approximated by polytopic sets.

The feasible input set is modelled by polytopic set U = P(Au, bu) where Au ∈

Rmu×nu , bu ∈ Rmu and mu is the number of faces of polytope. Using the SVM

algorithm presented in Section 9.1.1, the safe region is modelled by the polytope

Xs[k] = P(Ax, bx) where Ax[k] and bx[k] are defined in (7.7).

Using Proposition 2, the RPI sets S̄ is approximated by outer ellipsoid Ēs. The fol-

lowing proposition is introduced to approximate the constraints in (7.11d) and (7.11e)

by a polytopic set.

Proposition 3. Consider the Pontryagin difference Z = Px	Ey where Px = P(Ax, bx)

and set Ey = E(qy,Qy) are polytopic and ellipsoidal sets, respectively. The inner poly-

topic approximation of set Z ⊇ Pz with Pz = P(Az, bz) is derived

Az = Ax, bz = bx −Axqy − ||AxRy||• (7.27)

where Ry is the Cholesky factorization of Qy and ||AxRy||• is defined as

||AxRy||• = [||A1,∗
x Ry||2, ||A2,∗

x Ry||2, ..., An,∗
x Ry||2]T (7.28)

where A1,∗
x is the first row (out of n) of Ax.

Proof. The set Z is obtained as Pontryagin difference of polytopic and ellipsoidal sets

Z = {z : |z⊕ Ey ⊆ Px}. Defining the parameter of polytope as Px = P(Ax, bx), the
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set Z is obtained as

Z = {z : |Ax(z + y) � bx, y ∈ E(qy,Qy)} (7.29)

Substituting ellipsoidal equation y = qy +Ryw, ||w||2 ≤ 1 in (7.29) and consid-

ering Ai,∗
x Ryw ≤ ||Ai,∗

x Ry||2 for all ||w|| ≤ 1, it is concluded that if

Axz � bx −Axqy − ||AxRy||• then Axz � bx −Axy (7.30)

Using Proposition 3, the constraints in (7.11d) and (7.11e) are approximated by in-

ner polytopic sets Pū and Px̄, respectively. Therefore, the tube-based MPC in (7.11a-

7.11e) is formulated as a quadratic program with linear constraints

min
ū[0,N−1]|k

N−1∑
i=0

(ū[i|k]− uh[i|k])TRu[i|k](ū[i|k]− uh[i|k]) (7.31a)

s. t. : x̄[i+ 1|k] = Adx̄[i|k] +Bdū[i|k] (7.31b)

v[N |k] = 03 (7.31c)

Aūū[i|k] � bū (7.31d)

Ax̄[k]x̄[i|k] � bx̄[k] (7.31e)

where Aū ∈ Rmu×nu and bū ∈ Rmu are the parameters of polytopic nominal input

set. Ax̄[k] ∈ Rmx×nx and bx̄ ∈ Rmx are the parameters of polytopic safe region for

nominal system.
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7.4 Experiment

A schematic view of the experimental setup is presented in Fig. 4.3. The time horizon

of the MPC-based collision avoidance assistance is tf = 1.5 s, respectively. The

operator acceleration commands are assumed constant over the MPC time horizon.

Ru[i|k] = Ru[i] is linearly divided between 1000I3 to I3 in (7.31a).

The proposed collision avoidance assistance algorithms for UAV with/without

uncertainties must solve several optimization problems. The separating plane be-

tween each obstacle and UAV is obtained using SVM derived in (7.6a-7.6c). This

optimization is formulated as a quadratic program. Also, the proposed MPC-based

collision avoidance assistance algorithm in (7.8a-7.8e) and (7.31a-7.31e) are formu-

lated as quadratic program. All of these optimization problems are solved in real-time

using the OSQP solver with its code generation [9, 87].

7.4.1 Collision Avoidance in UAV

Two experiments are designed to demonstrate the performance of the proposed col-

lision avoidance algorithm with guaranteed recursive feasibility. In particular, the

effects of terminal constraints in collision avoidance performance are investigated and

compared with collision avoidance assistance presented in Chapter 4. The overall

update rate of the MPC-based collision avoidance assistance is Ts = 30 ms. the
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parameters of input and velocity constraints in (4.25c) and (4.25d) are selected as

Au = Av = [−I3, I3]T (7.32)

bu = [2, 0.3, 2, 2, 0.3, 2]T (7.33)

bv = [1.5, 0.3, 1.5, 1.5, 0.3, 1.5]T (7.34)

Two-dimensional representations of the obstacles are shown in Fig. 7.2 and Fig. 7.4

where the height of each obstacle is one meter.

In the first experiment, two obstacles are placed on two sides of the UAV as

demonstrated in Fig. 7.2. This is similar to the first experiment in Chapter 4. The

operator teleoperates the UAV to pass the opening between the obstacles. The cor-

rective commands in Fig. 7.3(a) modify the operator’s commands in Fig. 7.3(b) to

ensure collision-free operation and guarantee recursive feasibility. A comparison of

Fig. 7.3(a) with Fig.4.5(a) shows that the proposed collision avoidance acts conserva-

tively to ensure terminal constraints satisfaction and to guarantee a feasible solution

at each MPC iteration.

In the second experiment, an obstacle blocking the robot path as depicted in

Fig. 7.4. This is similar to the second experiment in Chapter 4. The corrective

commands are shown in Fig. 7.5(a). The modify the operator’s commands to ensure

the UAV stops before colliding with the obstacle. In collision avoidance assistance

without guaranteed recursive feasibility, the corrective commands are only generated

when the UAV is close to the obstacle as shown in Fig. 4.7(a). However, by adding

the guaranteed recursive feasibility feature, the corrective commands are generated

throughout the flight time to ensure the UAV satisfies the terminal constraints and
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Figure 7.2: Two dimensional representation of the UAV trajectory using the
proposed collision avoidance assistance.

MPC has a feasible solution at each iteration.

7.4.2 Collision Avoidance in UAV under Uncertainty

Two experiments are carried out to demonstrate the performance of the proposed

collision avoidance algorithm. In particular, the utility of the new features of tube-

based MPC and safe convex region generation are shown. The overall update rate of

the MPC-based collision avoidance assistance is Ts = 33 ms. The feedback control

gain matrix is K = [2.02I3, 2.81I3] and kε = 3000 to ensure ε ' 0 in (7.14).

The feasible input and velocity sets are selected as cubes with origins at zero

and with the edge length of au = 6 N and av = 3 m/s, respectively. Here errors in

the inner loop acceleration controller are considered as the source of uncertainty in

the UAV. This uncertainty is modelled by the ellipsoid w ∈ E(qw,Qw) where the
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Figure 7.3: a) Corrective commands created by the proposed collision avoidance
algorithm. b) Operator commands.
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Figure 7.4: Two dimensional representation of the UAV trajectory using the
proposed collision avoidance algorithm.
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Figure 7.5: a) Corrective commands created by the proposed collision avoidance
algorithm. b) Operator commands.

parameters of the ellipsoid are determined based on several experiments as

qw = 03, Qw = diag(0.75, 0.75, 1.47) (7.35)

where diag(a1, a2, ..., an) is an n×n diagonal matrix. Two-dimensional representation

of the obstacles are shown in Fig. 7.6 and Fig. 7.8 where the height of each obstacle

is one meter.

In the first experiment, two pairs of obstacles are placed in the environment such

that the path in front of the UAV is blocked by the second pair of obstacles, as demon-

strated in Fig. 7.6. The operator’s acceleration commands are shown in Fig. 7.7(b).

The collision avoidance algorithm generates the corrective commands depicted in

Fig. 7.7(a). These corrective commands help modify the UAV trajectory and assist
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Figure 7.6: Two-dimensional representation of the UAV trajectory using the
proposed collision avoidance algorithm. Two-dimensional representation of

separating planes and RPI sets a) at X=0.5 (m), b) at X=1.5 (m), c) at X=2.5 (m),
d) at X=3.5 (m).

the operator in guiding it through the opening between the obstacles. The RPI sets

and separating planes at different sample time and UAV position are depicted in

Fig. 7.6(a-d). Collision-free motion of the UAV for any disturbances is guaranteed

since the ellipsoidal RPI sets are inside the polytopic safe region.

In the second experiment, three obstacles blocking the path in front of the UAV

are placed in the environment. The trajectory of the UAV and the position of these

obstacles are shown in Fig. 7.8. The corrective commands in Fig. 7.9(a) revise the
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Figure 7.7: a) Corrective commands generated by the proposed collision avoidance
assistance algorithm. b) Operator’s commands.

operator’s commands in 7.9(b) and ensure collision-free operation of the UAV for all

possible disturbances. The RPI sets and separating planes at different UAV posi-

tions and sample time are depicted in 7.9(a-d). Updating the separating planes and

tightened constraints in each MPC iteration yields the most suitable polytopic ap-

proximation of the obstacle-free region with respect to current UAV position. This

leads to the opening the path in front of the UAV when it reaches close to the obsta-

cles.
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Figure 7.8: Two-dimensional representation of the UAV trajectory using the
proposed collision avoidance algorithm. Two-dimensional representation of

separating planes and RPI sets a) at X=0.5 (m), b) at X=1.5 (m), c) at X=2.5 (m),
d) at X=3.5 (m).
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Figure 7.9: a) Corrective commands generated by the proposed collision avoidance
assistance algorithm. b) Operators commands.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis was concerned some key challenges of collision avoidance assistance in

UAV teleoperation. A comprehensive treatment of this problem was presented in

this work. This includes system model, shared control strategy, collision avoidance

problem formulation, and system implementation and experimental evaluation. The

shared control strategy design is intended to allow the operator focus on primary task

objectives that benefit from human’s cognitive and decision making capabilities. In

particular, the secondary task of avoiding collisions with obstacles in the environment

is delegated to an automated collision avoidance algorithm to ease operator’s cognitive

burden.

A new shared-control strategy for the human-in-the-loop operation of UAV was

presented in Chapter 3. In this strategy, the operator teleoperates the UAV by pro-

viding acceleration commands while the collision avoidance algorithm modifies these

commands to ensure collision-free operation. A mapping was introduced between the
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user inputs and the UAV acceleration command to facilitate manual control of the

UAV. The mapping design was informed by the literature on human manual control,

as well as workspace considerations for the HMI and UAV used in this research. A

hierarchical control structure was introduced where the acceleration and angular ve-

locities of the UAV are controlled by inner loop controllers, and its attitude angles

are controlled by an attitude controller. This control structure simplifies the tele-

operation task by rendering the closed-loop translational dynamics of the UAV into

that of double-integrator system.

MPC-based collision avoidance algorithms were proposed that incorporated the

UAV operational constraints and proactively prevented the operator from command-

ing it into a state where the collision with obstacles would become unavoidable. One

of the key challenges in the formulation of the MPC optimization is the non-convexity

of the constraints related to the obstacle-free space. A number of new MPC opti-

mization formulations were proposed in this thesis that would approximate this space

with a convex space. In Chapter 4, a collision avoidance algorithm based on the back-

ward reachability analysis was presented. The analysis is used to identify obstacles

with chance of collision with the UAV over the MPC time horizon. A polyhedral safe

convex region was created using the SVM algorithm to separate the UAV from these

obstacles. This approach led to a more realistic approximation of the obstacle-free

space compared to a case where all obstacles would be considered.

Chapter 5 expanded on the work in Chapter 4 by utilizing the reachability anal-

ysis for linear dynamical systems to approximate the obstacle-free space with a safe

convex region. To this end, safe half-spaces with maximum reachable region were

generated for each unsafe obstacle. A polyhedral safe convex region was produced by
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the intersection of these half-spaces and was incorporated in the MPC-based collision

avoidance optimization as linear inequality constraints. This approached yielded a

comparatively less restrictive safe space for the UAV to operate, when compared to

the one produced by the method in Chapter 4.

Chapter 6 presented a novel ellipsoidal RMPC to extend the collision avoidance

assistance to UAV under uncertainties. The uncertainties considered were in the

form of disturbances and measurement noise affecting the UAV and obstacles. This

method calculates an ellipsoidal approximation of the reachable regions due to admis-

sible inputs and uncertainty. It computes inflated polytopic obstacles considering all

possible uncertainties and then generates a polyhedral approximation of the obstacle-

free space using the safe convex region generation method presented in Chapter 5.

It also uses geometrical relation between the ellipsoidal reach set due to uncertain-

ties and polyhedral safe region to calculate an inner polyhedral approximation of the

tightened constraints.

Chapter 7 investigated the problem of recursive feasibility in the MPC formulation

of the collision avoidance algorithm. Normally, MPC formulations lack guaranteed re-

cursive feasibility, i.e., the feasibility of the MPC at the initial time does not guarantee

its feasibility at future iterations. This could potentially place the UAV into a state

where collision with obstacles would become unavoidable. A novel MPC-based col-

lision avoidance assistance algorithms with guaranteed recursive feasibility for UAV

teleoperation with/without uncertainties was introduced. Recursive feasibility was

guaranteed by adding proper terminal constraints to the MPC optimization formula-

tion in Chapter 3. Furthermore, a novel ellipsoidal tube-based MPC was introduced

to deal with uncertainties in the system. A tube-based MPC strategy was used to
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separate the robustness and MPC problems, and ensure collision-free operation for

all possible disturbances on the UAV. To address the robustness problem, a feedback

controller was designed to guarantee the existence of the RPI set; a reachability anal-

ysis was employed to calculate the outer ellipsoidal approximation of the RPI set. A

polytopic safe convex region was created around the UAV using the SVM algorithm.

The MPC optimization was formulated to keep the UAV in the safe region for all

possible disturbances, while minimizing interference with the operator’s commands.

All methods proposed in this thesis were implemented and their effectiveness were

demonstrated in experiments under a number of different scenarios. These scenarios

were designed to highlight various features of the proposed algorithms.

8.2 Future Work

There are a number of interesting avenues for further research based on the work

presented in this thesis. These include but are not limited to the following problems:

� In this thesis, a uni-lateral teleoperation strategy was utilized in the shared

control approach. In uni-lateral teleoperation, the operator only receives visual

feedback from the task environment. Bi-lateral teleoperation brings additional

feedback to the operator through force reflection via the HMI. This additional

feedback channel can be used to more efficiently inform the operator of im-

pending collisions so he/she can react and revise his/her commands accord-

ingly. This is expected to further improve operator’s situational awareness and

enhance his/her overall ability in navigating the UAV in the task environment.

� This thesis focused primarily on the design of collision avoidance algorithms.
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The shared control strategy may be improved by using further insight from the

studies of the human manual control behaviour. This can potentially yield a

more efficient shared control strategy that would decrease unnecessary workload

on the operator. The reader is reffered to numbers of studies on the subject

matter in [37, 90, 93, 95].

� The research in this thesis investigated a scenario where a single operator con-

trols a single UAV in its task environment. The proposed algorithms can extend

to multi-UAV operation in an obstacle-rich environment. The reachability-

based collision avoidance algorithms presented in this study have a great poten-

tial to be generalized to multi-UAV systems, particularly the collision avoidance

algorithm presented in Chapter 6. In the reachability-based collision avoidance

algorithm for UAV with dynamic obstacles, the obstacles can easily be inter-

preted as other UAVs. This would allow for the formulation to be extended to

multi-UAV scenarios.

� A novel ellipsoidal tube-based MPC for collision avoidance assistance in UAV

teleoperation was presented in Chapter 7. In this work, the collision avoidance

assistance in UAV under additive disturbances was formulated as a convex op-

timization problem with guaranteed recursive feasibility. This method can be

extended to consider measurement noise simultaneously. The reader is refereed

to a number of studies on the subject matter in [63, 64, 76]

� In this thesis, it was assumed that the configurations of the obstacles are known

and the UAV position and velocity were measured by a motion tracking system

in an indoor laboratory environment. However, the proposed shared control
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strategy only needs relative UAV positions and velocities with respect to each

obstacle. On-board UAV sensors such as cameras and Lidars can be used to to

obtain the environment and obstacle information in real-world scenarios.

� The operator’s input commands were modelled as constant in the MPC formu-

lations of this thesis. In reality, the operator is expected to react to obstacles in

the environment. Therefore, a more realistic model of the operator behaviour

can be developed and used in the MPC optimization formulation.

� In this thesis, a convex approximation of obstacle-free space is derived and the

MPC-based collision avoidance is formulated as a convex optimization problem.

In this method, the MPC solution is globally optimum in the approximated

region. To find the optimal solution in obstacle-free space, the MPC-based

collision avoidance can be formulated as a non-convex optimization problem.

To reduce the computational time, the solution of the convex MPC introduced

in this thesis can be used as an initial guess in the non-convex MPC.
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Appendix A

System Dynamics

This chapter presents the general dynamic model of multi-rotor UAVs including

under-actuated quadrotors and a fully actuated omnicopter. These include rigid

body dynamics of the airframe and the dynamics of the propellers.

A.1 Rigid-Body Dynamics of the Airframe

The inertial frame (I) and the fixed-body frame mounted on the UAV (omnicopter)

(B) are defined as depicted in Fig. A.1 for the purpose of developing the dynamics.

In general, the airframe dynamics for under-actuated quadrotor [59] or fully actuated
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Figure A.1: The schematic view of the omnicopter with applied thrusts and torques

omnicopter [18]) can be expressed as

ṗcg = vcg (A.1a)

mv̇cg = RTfb −mg (A.1b)

q̇ =
1

2
W T (q)ω (A.1c)

Jω̇ = −ω × Jω + τb (A.1d)

where pcg ∈ R3 and vcg ∈ R3 denote the position and velocity of center of gravity of

UAV, respectively. ω ∈ R3 is the vector of angular velocity and q = [q1, q2, q3, q4]T is

a unit quaternion representing the attitude of the body. g ∈ R3 is the gravity vector,

m is the mass of the system, J ∈ R3×3 is the moment of inertia, fb ∈ R3 and τb ∈ R3
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are the force and torque in the body frame, respectively. R = [r1, r2, r3] is 3 × 3

rotation matrix defined by quaternions [30]

r1 = [q2
0 + q2

1 − q2
2 − q2

3, 2q1q2 − 2q0q3, 2q1q3 + 2q0q2]T (A.2)

r2 = [2q1q2 + 2q0q3, q
2
0 − q2

1 + q2
2 − q2

3, 2q2q3 − 2q0q1]T (A.3)

r3 = [2q1q3 − 2q0q2, 2q2q3 + 2q0q1, q
2
0 − q2

1 − q2
2 + q2

3]T (A.4)

W is the quaternion rate matrix defined by [30]

W =


−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 (A.5)

The force and torque in body frame represent the net propellers force and torque

applied to the UAV and can be generally linked to the propeller thrust forces using

fb
τb

 = Mffprop (A.6)

For the omnicopter employed in this thesis, the mapping Mf ∈ R6×8 is given by [35]

Mf =

 D

P ×D + krD

 (A.7)
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where × denotes the cross product, kr = 0.014014 is the propeller thrust to drag

ratio, P ∈ R3×8 and D ∈ R3×8 represent position and orientation of the rotors

P =
0.213√

3


1 −1 −1 1 1 −1 −1 1

1 1 −1 −1 1 1 −1 −1

1 1 1 1 −1 −1 −1 −1

 (A.8)

D =


−a b a −b a −b −a b

b a −b −a −b −a b a

c −c c −c c −c c −c

 (A.9)

where a = 1/2 + 1/
√

12, b = 1/2− 1/
√

12 and c = 1/
√

3.

Remark. To apply these dynamics to other multi-rotor UAVs, the mapping Mf must

be accordingly modified.

A.2 Propeller Dynamics

In multi-rotor UAVsd, propellers are driven by brushless DC motors, and thrust forces

are created by the interaction of the propellers with airflow. The dynamics of a DC

motor are given by [29, 96]

Vm = Lm
dIm
dt

+RmIm +Keωm (A.10)

τm = τl + τd + Jrω̇m + bωm (A.11)

where Vm and Im are motor input voltage and current, respectively. Lm is inductance,

Rm is resistance, ω is motor angular velocity, Jr is rotor inertia, b is viscous damping
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coefficient of the motor and τd is disturbance on the system. τm and τl are motor and

drag torques, respectively.

τm = KmI (A.12)

|τl| = Ktω
2
m (A.13)

where Km and Kt are mechanical and drag torque constants, respectively.

Inductance term is usually small compared to other terms in DC motor and can be

neglected [29]. Therefore, by inserting (A.10) to (A.12), the motor torque is derived

τm = Km
Vm −Keωm

Rm

(A.14)

By substituting (A.13) and (A.14) in (A.11), the dynamic equation is obtained.

Vm =
RmJr
Km

ω̇ +
KtRm

Km

ω2
msgn(ωm) +

(
bRm

Km

+Ke

)
ωm +

Rm

Km

τd (A.15)

Furthermore, thrust force in each propeller calculated by [59]

|fprop| = Kfω
2
m (A.16)

where Kf is the thrust constant.

By substituting ωm from (A.16) to (A.15), the dynamic equation of each propeller is

derived

α1
ḟprop√
|fprop|

+ α2fprop + α3sgn(fprop)
√
|fprop|+ α4sgn(fprop) = Vm (A.17)

135



Ph.D. Thesis - Sahand Ghaffari McMaster - Electrical & Computer Engineering

where

α1 = α2

Jr
√
kf

2kt
, α2 =

ktRm

kfkm
, α3 =

Rmb+ kmke

km
√
kf

, α4 =
Rm

km
τd (A.18)

For the system used in this thesis α1-α4 are identified in [35]

α1 = 1957.54, α2 = 417.57, α3 = 1281.51, α4 = −144.14 (A.19)

Considering the symmetric shape of the omnicopter, the dynamic equation of the

propellers can be linearized around the hovering mode.

ḟprop = c1fprop + c2uprop (A.20)

where fprop ∈ R8 and uprop ∈ R8 represent propeller forces and input voltages of the

motors, respectively. c1 and c2 are defined as

c1 =
α2sgn(fhprop)V

h
m

α1

(
−α3 +

√
α2

3 + sgn(fhprop)4α2V h
m

)
− 3

4α1

(
−α3 +

√
α2

3 + sgn(fhprop)4α2V h
m

)
− a3

a1

(A.21)

c2 =
−α3 +

√
α2

3 + sgn(fhprop)4α2V h
m

2α1α2

(A.22)

where fhprop and V h
m are the propeller force and the voltage of the motor in hovering

mode.
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V h
msgn(fhprop) = |V h

mi
| = α2|fhpropi |+ α3

√
|fhpropi|+ α4 (A.23)

where fhprop = [fhprop1 , f
h
prop2

, ..., fhprop8 ]
T is calculated by using (A.6)

fhprop = M †
f

fhb
τ hb

 (A.24)

where fhb = [0, 0, g]T , τ hb = 03×1 ,and M †
f is the pseudoinverse of the mapping

function.minimizing the norm of the propeller forces.

A.3 UAV Dynamics

In this section, the combined dynamics of the UAV and the propellers dynamics are

determined. Taking the derivative of (A.6) and substituting it into (A.20) yield the

dynamics of the net forces/torques acting on the rigid body as follows

ḟb = c1fb + c2ua (A.25)

τ̇b = c1τb + c2uω (A.26)

where ua ∈ R3 and uα ∈ R3 are mapped input voltages into the net forces/torques

dynamics given by,

ua
uα

 = Mfvm (A.27)
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By inserting (A.25) and (A.26) in (A.1c) and (A.1d), the combined dynamics of

the UAV are derived as

ṗcg = vcg (A.28)

mv̇cg = RTfb −mg (A.29)

ḟb = c1fb + c2ua (A.30)

q̇ =
1

2
W T (q)ω (A.31)

Jω̇ = −ω × Jω + τb (A.32)

τ̇b = c1τb + c2uω (A.33)

It should be noted that the above derivations assume that the propellers are

identical. This model can be easily revised for the more general case in which this is

not the case.
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Appendix B

Reachability Analysis

Reachability analysis provides a powerful tool in identifying obstacles with a chance

of collision, creating a safe convex region, and modelling uncertainties in the robot

and obstacles. In a linear dynamic system, the reachable region can be approximated

by predefined geometrical shapes. Due to the efficiency of ellipsoids in approximating

the geometrical shapes and the simplicity of its equation, reachability analysis based

on the ellipsoidal technique is one of the widely-used approaches in the linear dynamic

system.

In this chapter some fundamental concepts in the reachability analysis of linear

dynamic system are introduced. In particular, reachability analysis based on the

intersection of external tight ellipsoids and minimum volume external ellipsoid are

reviewed.
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B.1 Reachability in Linear Dynamic Systems

This thesis utilizes the reachability analysis for linear dynamical systems with hard-

bound on the control input. Here,

ẋ = A(t)x+B(t)u (B.1)

where A(t) ∈ Rnx×nx , B(t) ∈ Rnx×nu are continuous in t and u(t) ∈ U(t) with

U(t) : Tr → convRnu denotes a closed and convex set in Rnu and Tr is the time

interval of interest.

Reachability analysis can be categorized into forward and backward reachability.

In forward reachability analysis, the reach set X(t) is defined as a set of all states at

time t which can be reached from the initial states x0 ∈ X0 by admissible control

inputs (see Fig. B.1) [51],

X(t) = {x ∈ Rnx|∃ u(.) ∈ U, ∃ x0 ∈ X0, x = x(t, t0,x0)} (B.2)

Here x(t, t0,x0) ∈ Rnx is the solution of (B.1) at time t starting from initial time

t0,

x(t, t0,x0) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ (B.3)

where Φ(t, τ) ∈ Rnx×nx is the state-transition matrix

∂

∂t
Φ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = In (B.4)
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Figure B.1: Forward reach tube and reach set at different time instances with
several sample trajectories

Moreover, forward reach tube X(t) is defined as all the states which can be reached

during the time interval of interest

X(t) = ∪{X(τ) : τ ∈ [t0, t]} (B.5)

The reach tube can be approximated by the union of a finite number of reach sets,

i.e.,

X(t) ≈ ∪{X(τ) : τ ∈ [t0, t1, ..., tk]} (B.6)

In backward reachability analysis (see Fig. B.2), the reach set W(t) is defined as

the set of all states at time t that can be driven into target states xf ∈ Xf with
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Xf ∈ convRnx at final time tf by admissible control inputs.

W(t) = {w : ∃ u(.) ∈ U, ∃ xf ∈ Xf , w = x(t, tf ,xf )} (B.7)

where x(t, tf ,xf ) ∈ Rnx is the solution of (B.1) at time t knowing the final time tf

x(t, tf ,xf ) = Φ(t, tf )xf −
∫ tf

t

Φ(t, τ)B(τ)u(τ)dτ (B.8)

Backward reach tube W (t) is defined as all states which can be lead to target set

during the time interval of interest

W(t) = ∪{W(τ) : τ ∈ [t, tf ]} (B.9)

Backward reach tube can be approximated by the union of a finite number of reach

sets, i.e,

W(t) = ∪{W(τ) : τ ∈ [tk, tk+1, ..., tf ]} (B.10)

In linear dynamic systems, the reachable region can be approximated by predefined

geometrical shapes. Due to the efficiency and simplicity of ellipsoid in approximating

the geometrical shapes, reachability analysis based on the ellipsoidal technique is

used in this thesis. The reach set is approximated based on two methods of minimum

volume external ellipsoid and intersection of external tight ellipsoids.
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Figure B.2: Backward reach tube and reach set at different time instances with
several sample trajectories

B.2 Minimum Volume External Ellipsoid

A number of criteria can be used to approximate the forward reach set by external

ellipsoids. This section reviews a method that finds the minimum-volume external

ellipsoid covering the reach set [23, 24, 71].

This method assumes ellipsoidal hard bounds for admissible input set and initial state

set of the system in (B.1).

X0 = E(q0,Q0), U(t) = E(qu(t),Qu(t)) (B.11)

where q0 ∈ Rnx and Q0 ∈ Rnx×nx are the center and the shape matrix of ellipsoidal

initial state set, respectively. qu(t) ∈ Rnu and Qu(t) ∈ Rnu×nu are the center and

the shape matrix of ellipsoidal input set, correspondingly. Here E(q,Q) represents
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an arbitrary ellipsoidal set.

E(q,Q) =
{
x|(x− q)TQ−1(x− q) ≤ 1

}
(B.12)

The forward reach set for linear dynamic system can be approximated by external

ellipsoid (X(t) ⊆ E(qx(t),Qx(t)) [23, 71]

q̇x(τ) = A(τ)qx(τ) +B(τ)qu(τ), qx(t0) = q0 (B.13)

Q̇x(τ) = A(τ)Qx(τ) +Qx(τ)AT (τ) + γ(τ)Qx(τ) + γ−1(τ)Qub(τ), Qx(t0) = Q0

(B.14)

where τ ∈ [t0, t] and Qub(τ) ∈ Rnx×nx

Qub(τ) = B(τ)Qu(τ)BT (τ) (B.15)

γ(τ) is the design variable obtained as

γ(τ) =

√
tr(P (τ)Qub(τ))

tr(P (τ)Qx(τ))
(B.16)

and P (τ) ∈ Rnx×nx is defined as

Ṗ (τ) = P (τ)A(τ)−AT (τ)P (τ), P (t) =
∂L(Qx)

∂Qx

|τ=t (B.17)

Here L(Qx) is the objective function optimizing the external ellipsoid covering the

reach set. By integrating (B.13) and(B.14), the parameters of external ellipsoid can
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be formulated as [73]

qx(t) = Φ(t, t0)q0 +

∫ t

t0

Φ(t, τ)B(τ)qu(τ)dτ (B.18)

Qx(t) =
(√
〈P0,Q0〉+

∫ t

t0

√
〈P (τ),Qub(τ)〉dτ

)
( Q̄0√
〈P0,Q0〉

+

∫ t

t0

Q̄u(τ)√
〈P (τ),Qub(τ)〉

dτ
) (B.19)

where P0 = P (t0) and Q̄0, Q̄u ∈ Rnx×nx are defined as

Q̄u(τ) = Φ(t, τ)QubΦ
T (t, τ) (B.20)

Q̄0 = Φ(t, t0)Q0Φ
T (t, t0) (B.21)

By defining L(Qx) = cn
√
det Qx where cn is a constant value, the shape matrix

of minimum volume external ellipsoid Qx(t) = P−1(t) is calculated by recursive

equation Pn+1(t) = Λ(Pn(t)) [72].

Λ(Pn(t)) =

((√
〈Pn(t)Q0〉+

∫ t

t0

√
〈Pn(t)Qu(τ)〉dτ

)
( Q0√
〈Pn(t)Q0〉

+

∫ t

t0

Qu(τ)√
〈Pn(t)Qu(τ)〉

dτ
))−1

(B.22)

Starting from an arbitrary initial positive definite matrix P0(t), this iterative equation

eventually coverages to a unique solution [72].
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B.3 Intersection External Tight Ellipsoids

Reach set approximation based on tight ellipsoids [52, 53] is widely used in the reacha-

bility analysis of linear systems. Two variants of this approach approximate the reach

set by the intersection of a finite number of tight internal or external ellipsoids. In

this thesis, the external approximation of the reach set is of interest. Given that each

tight external ellipsoid touches the reach set at an arbitrary direction, the backward

reach set at each time instance of interest is approximated by the intersection of a

finite number of tight ellipsoids [51, 52],

W(t) = ∩{E(qw(t),Ql
w) | ||l(t)||2 = 1} (B.23)

where qw(t) ∈ Rnx and Ql
w(t) ∈ Rnx×nx are the parameters of ellipsoidal backward

reach set at arbitrary direction l(t) ∈ Rnx . Moreover,

q̇w(t) = A(t)qw(t) +B(t)qu(t), qw(tf ) = qf (B.24)

Q̇l
w(t) = A(t)Ql

w(t) +Qf
w(t)AT (t)− γw(t)Ql

w(t)− γ−1
w (t)Qub(t), Qw(tf ) = Qf

(B.25)

where qf ∈ Rnx andQf ∈ Rnx×nx are the center and shape matrix of ellipsoidal target

set, and γw(t) is a design variable given by

γw(t) =

√
〈l(t),Qub(t)l(t)〉
〈l(t),Ql

w(t)l(t)〉
(B.26)
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with

l̇(t) = −AT (t)l(t), l(tf ) = l (B.27)

and l ∈ Rnx is arbitrary direction.

By integrating (B.24) and (B.25), the parameters of the external tight ellipsoid in

each direction can be formulated as

qw(t) = Φ(t, tf )qz(t) (B.28)

Ql
w(t) = Φ(t, tf )Q

l
z(t)Φ

T (t, tf ) (B.29)

Moreover, qz(t) ∈ Rnx andQl
z ∈ Rnx×nx , the parameters of the external tight ellipsoid

in transformed space, are given by

qz(t) = qf −
∫ tf

t

quf (τ)dτ (B.30)

Ql
z(t) =

(√
〈l,Qf l〉+

∫ tf

t

√
〈l,Quf

l〉dτ
)( Qf√

〈l,Qf l〉
+

∫ tf

t0

Quf
(t)√

〈l,Quf
l〉
dτ
)

(B.31)

Here quf (τ) ∈ Rnx and Quf
(τ) ∈ Rnx×nx are computed as

quf (τ) = Φ(tf , τ)B(τ)qu(τ) (B.32)

Quf
(τ) = Φ(tf , τ)Qub(τ)ΦT (tf , τ) (B.33)

Remark. By defining L(Qw) = 〈l,Qwl〉 in (B.17) where l is boundary condition in
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(B.27) and solving (B.19) for τ ∈ [t, tf ] similar result for the shape matrix of external

tight ellipsoid in (B.31) can be derived [23].
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Appendix C

Ellipsoidal Calculus

C.1 Derivation of Shape Matrix of Ellipsoidal Back-

ward Reach Set

To find an analytical solution for the shape matrix of the ellipsoid (Qi
xl

) in (4.7), h(τ)

and H(τ) ∈ R6×6 are derived by using (B.29)

h(τ) =

∫ √
lTQuf

(τ)ldτ (C.1)

H(τ) =

∫
Quf

(τ)√
lTQuf

(τ)l
dτ (C.2)

By substituting (3.8) and (3.9) in (B.33), Quf
(τ) ∈ R6×6 is derived as

Quf
(τ) = F (τ)⊗Qu(τ)
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Here the symbol ⊗ represents Kronecker product and F (τ) ∈ R2×2 is obtained as

F (τ) =

(tf − τ)2 tf − τ

tf − τ 1


By assuming that the shape matrix of the ellipsoidal input set is constant over the

control time horizon (Qu(τ) = Qu, Qu ∈ R3×3), (C.1) and (C.2) are reformulated as

h(τ) =

∫
f(τ)dτ

=

∫ √
c1(tf − τ)2 + c2(tf − τ) + c3dτ

(C.3)

H(τ) =

∫ tf

t

F (s)

f(s)
ds⊗Qu = [J(τ)]

tf
t ⊗Qu (C.4)

where

c1 = [l1, l3, l5]Qu[l1, l3, l5]T

c2 = 2[l1, l3, l5]Qu[l2, l4, l6]T

c3 = [l2, l4, l6]Qu[l2, l4, l6]T

and [l1, l2, l3, l4, l5, l6] are the elements of the direction vector (l ∈ R6) and

J(τ) ∈ R2×2 is a symmetric time varying matrix

J(τ) =

J11(τ) J12(τ)

J21(τ) J22(τ)


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Since Qu is positive definite matrix, c1 ≥ 0 for all [l1, l3, l5] ∈ R3.

Given c1 > 0, integral terms h(τ) and J(τ) in (C.3)-(C.4) are calculated as

h(τ) =

∫
R1dτ

=
2c1(tf − τ) + c2

4c1

R1 +
4c1c3 − c2

2

8c1

∫
dτ

R1

J11(τ) =

∫
(tf − τ)2

R1

dτ

=
2c1(tf − τ)− 3c2

4c2
1

R1 +
3c2

2 − 4c1c3

8c2
1

∫
dτ

R1

J12(τ) = J21(τ) =

∫
tf − τ
R1

dτ

= (
R1

c1

− c2

2c1

∫
dτ

R1

)

J22(τ) =

∫
dτ

R1

=
1
√
c1

ln |2
√
c1R1 + 2c1(tf − τ) + c2|, 4c1c3 − c2

2 6= 0

=
1
√
c1

ln |2c1(tf − τ) + c2|, 4c1c3 − c2
2 = 0

where

R1 =
√
c1(tf − τ)2 + c2(tf − τ) + c3
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If c1 = 0 and c2 6= 0

h(τ) =

∫
R2dτ =

2R3
2

3c2

J11(τ) =

∫
(tf − τ)2

R2

dτ

=
2

5c2

((tf − τ)2R2 − 2c3

∫
tf − τ
R2

dτ)

J12(τ) = J21(τ) =

∫
tf − τ
R2

dτ

=
2

3c2

((tf − τ)R2 − c3
2R2

c2

)

J22(τ) =

∫
dτ

R2

=
2R2

c2

where

R2 =
√
c2(tf − τ) + c3

If c1 = 0 and c2 = 0

h(τ) =

∫ √
c3dτ =

√
c3(tf − τ)

J11(τ) =

∫
(tf − τ)2

√
c3

=
(tf − τ)3

3
√
c3

J12(τ) = J21(τ) =

∫
tf − τ√

c3

=
(tf − τ)2

2
√
c3

J22(τ) =

∫
1
√
c3

dτ =
1
√
c3

(tf − τ)
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C.2 Derivation of Undesirable Ellipsoidal Set

Using the parameters of the i-th undesirable ellipsoidal set in (4.12) and (4.12), the

equation of the ellipsoid can be written as

(p− qipf )TQi
pf

−1
(p− qipf ) =

1− ε(v − qvf )TQi
vf

−1
(v − qvf )

1− ε
(C.5)

Moreover, (v − qvf )TQi
vf

−1
(v − qvf ) ≤ 1 for all reachable velocities, where qvf and

Qvf denote the parameters of minimum volume ellipsoid covering all feasible velocities

in (5.16c). It can be conclude that

α =
1− ε(v − qvf )TQi

vf

−1
(v − qvf )

1− ε
≥ 1, 0 < ε < 1

Dividing (C.5) by α ≥ 1 yields

p− qpf )T (αQi
pf

)
−1

(p− qpf ) = 1 (C.6)

Consequently, αQi
pf
≥ Qi

pf
. By choosing qipf and Qi

pf
as the parameters of minimum

volume ellipsoid covering the i-th enlarged obstacle and by considering αQi
pf
≥ Qi

pf

it is concluded that E(qpf ,Q
i
pf

) ⊆ E(qixf ,Q
i
xf

) for any reachable velocity, i.e., unde-

sirable set covers the enlarged obstacle for any reachable velocity.
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C.3 Ellipsoid Projection

The boundary of an ellipsoid is defined by Ee(q,Q)

E(q,Q) = {x|(x− q)TQ−1(x− q) = 1} (C.7)

where q ∈ Rn and Q ∈ Rn×n are parameters of the ellipsoid.

In order to calculate the projection of n dimensional ellipsoid into m dimensional

space (m < n), Q−1 can be written as a block matrix

Q−1 =

U1 UT
2

U2 U3


where U1 ∈ Rm×m, U2 ∈ R(n−m)×m and U3 ∈ R(n−m)×(n−m). Considering Q−1 is

positive definite matrix, U1 and U3 are also positive definite and invertible matrices.

Projection of n-dimensional ellipsoid into y = [x1, x2, ..., xm]T space is a set of points

where ∇(F ) has no component in z = [xm+1, xm+2, ..., xn]T direction.

U2(y − qyc) +U3(z − qzc) = 0

By substituting the above equation into ellipsoid equation (C.7), the following equa-

tion is obtained

(y − qyc)T (U1 −UT
2 U

−1
3 U2)(y − qyc) = 1 (C.8)
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Because Q−1 is positive define matrix, the Shur complement (U1 − UT
2 U

−1
3 U2 =

Q−1/U3) is positive definite matrix. Therefore, the projection is an ellipsoid calcu-

lated by C.8.
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