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Lay Abstract 
 

 

 

With the maturity of microelectromechanical systems (MEMS) technology in recent years, 

Magnetic, Angular Rate, and Gravity (MARG) sensors are embedded in most smart devices. 

This research considers the indoor positioning problem and aims to design and develop an 

infrastructure-free self-contained MEMS MARG inertial sensor-based indoor positioning 

and tracking system with high precision. The proposed positioning system uses the 

Pedestrian Dead Reckoning (PDR) approach and includes four main modules at the system 

level with a dual-mode feature. Specifically, the four main modules are mode detection, 

step detection and moving distance estimation, heading and orientation estimation, and 

position estimation. The two modes are static mode and dynamic mode. To address the 

cumulative error issue of using low-cost inertial sensors, signal processing and sensor 

fusion techniques are utilized for algorithm design. The detection and estimation 

algorithms of each module are presented in the system design chapter. Experimental 

evaluations including trajectory results under five scenarios show that the proposed 

position estimation algorithm achieves a higher position accuracy than that of conventional 

estimation methods. 
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Abstract 
 

 

 

Location-based services (LBSs) have become pervasive, and the demand for these systems 

and services is rising. Indoor Positioning Systems (IPSs) are key to extend location-based 

services indoors where the Global Positioning System (GPS) is not reliable due to low 

signal strength and complicated signal propagation environment. Most existing IPSs either 

require the installation of special hardware devices or build a fingerprint map, which is 

expensive, time-consuming, and labor-intensive. Developments in microelectromechanical 

systems (MEMS) have resulted in significant advancements in the low-cost compact 

MARG inertial sensors, making it possible to achieve low-cost and high-accuracy IPSs. 

This research considers the indoor positioning problem and aims to design and 

develop an infrastructure-free self-contained indoor positioning and tracking system based 

on Pedestrian Dead Reckoning (PDR) using MEMS MARG inertial sensors. PDR-based 

systems rely on MARG inertial sensor measurements to estimate the current position of the 

object by using a previously determined position without external references. Many issues 

still exist in developing such systems, such as cumulative errors, high-frequency sensor 

noises, the gyro drift issue, magnetic distortions, etc. As the MARG sensors are inherently 

error-prone, the most significant challenge is how to design sensor fusion models and 

algorithms to accurately extract useful location-based information from individual motion 

and magnetic sensors. The objective of this thesis is to solve these issues and mitigate the 
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challenges. The proposed positioning system is designed with four main modules at the 

system level and a dual-mode feature. Specifically, the four main modules are mode 

detection, step detection and moving distance estimation, heading and orientation 

estimation, and position estimation. To address the cumulative error issue of using low-

cost inertial sensors, signal processing and sensor fusion techniques are utilized for 

algorithm design. Experimental evaluations show that the proposed position estimation 

algorithm is able to achieve high positioning accuracy at low costs for the indoor 

environment. 

 

Keywords: Indoor Positioning System (IPS), Inertial Measurement Unit (IMU), 

Microelectromechanical Systems (MEMS), sensor fusion, Digital Signal Processing (DSP), 

Pedestrian Dead Reckoning (PDR), object tracking and navigation, robotics, quaternions. 
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  Chapter 1 

 

  Introduction 
1. Introduction 

 

1.1. Overview 

As an evolving field, indoor positioning enables determining and tracking the position of 

objects or people in interior spaces where the Global Positioning System (GPS) and other 

satellite technologies lack precision or fail to provide location-based information. Indoor 

positioning and tracking technologies have a broad range of applications and have become 

essential components for deploying services in many industries such as manufacturing, 

logistics, retail, healthcare, emergency services, public safety industry, etc. However, most 

of the existing indoor positioning systems and strategies require complex infrastructure or 

special devices, which can be expensive or difficult to deploy. This research aims to design 

and develop a practical infrastructure-free Indoor Positioning System (IPS) when 

deploying network infrastructure using special devices is not a choice. This chapter 

introduces the research background, motivation, objective, and main contributions. 

The demand of location-based services (LBSs) has increased significantly owing 

to the proliferation of smart devices and Internet of Things (IoT) technologies over the last 

decade. A considerable number of positioning and navigation systems were developed for 

detecting the positions of objects or pedestrians in outdoor and indoor environments. 
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Although GPS is widely used for most of the outdoor navigation systems, it is not reliable 

for indoor positioning applications due to its low signal strength and the complicated 

indoor propagation environment, which result in unacceptable positioning accuracy 

typically ranging from 5 m to 10 m (Nessa et al., 2020). Given the high demand on IPSs, 

tremendous research efforts have been made on developing such systems with higher 

accuracy. Various IPSs adopting different technologies have been developed, such as 

computer-vision-based systems (Fusco and Coughlan, 2018), Wi-Fi-based systems (Wang 

et al., 2021), Bluetooth-based systems (Yang et al., 2020), ultra-wideband (UWB) 

communication-based systems (Schroeer, 2018), radio frequency identification (RFID)-

based systems (Merenda et al., 2021), visible light communication (VLC)-based systems 

(Sayed et al., 2019), Inertial Measurement Unit (IMU)-based systems (Hellmers et al., 

2013), laser-based systems (Hesch et al., 2010), and ultrasonic-based systems (ultra-sonic 

sensors) (Qi and Liu, 2017). Locating an object in an indoor environment is challenging 

because radio signal propagation in the complex unstructured indoor environment is easily 

affected by obstacles and surroundings. As a result, unpredictable signal propagation 

problems such as attenuation, scattering, reflection, and diffraction substantially decrease 

the position accuracy. The disadvantage of using communication technology-based 

strategies is that the system cannot function in the areas where there is unstable or even 

no signal coverage. Furthermore, infrastructure-based approaches such as UWB, RFID, 

and ultra-sonic sensors rely on costly infrastructure and extra devices, which can be 

difficult to deploy. With the development of microelectromechanical systems (MEMS) 

technology, inertial sensors can be embedded into smart devices. Adopting the compact, 
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low cost, and low power consumption inertial sensors in developing IPSs is a natural 

solution that expands the positioning system’s capabilities. This research focuses on 

designing and developing a practical indoor positioning system that solely depends on 

using smartphone-embedded inertial sensors, including the accelerometer, magnetometer, 

and gyroscope, which are also known as MARG sensors. The advantage of using a MEMS 

MARG sensors-based position estimation system is that it is cost-effective, convenient-

to-use, and no additional devices or infrastructure deployment is needed. Another 

advantage of such systems is that computational complexity is relatively low compared to 

some other systems. 

An effective and accurate self-contained IPS is also an indispensable component of 

Internet of Things (IoT) applications, smart grids, and smart building. As IoT intends to 

create end-to-end connectivity of all smart devices, its applications will require seamless 

indoor and outdoor localization services and capabilities. IPSs can also benefit many novel 

systems and technologies such as augmented reality (AR) and digital twin. These demands 

will increase especially in areas like healthcare and logistics. During the year 2020, due to 

the spread of COVID-19, hospitals need to have access to location-based information of 

patients, medical staff, and medical equipment in real time in order to avoid possible fatal 

incidents in case of medical emergencies. 

Existing indoor positioning approaches fall into two broad categories: 

infrastructure-based and infrastructure-free solutions. As one of the infrastructure-free 

solutions, Pedestrian Dead Reckoning (PDR) calculates the current position of a moving 

object by utilizing the previously calculated position information through continuously 
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detecting gait event and updating current estimations of speed, step length, and heading 

direction. PDR is commonly decomposed into step detection and estimation, heading 

estimation, and an integration model (Beauregard and Haas, 2006). Existing PDR-based 

approaches establish different models for processing sensor data. Also, the sensors used 

vary in type and the positions placed on the body, such as foot-mounted (Zhang et al., 

2020), chest-mounted (Lu et al., 2019), head-mounted (Hou and Bergmann, 2020), etc. 

Issues still exist in current PDR-based approaches. For example, estimated positions 

gradually drift away as measurement error accumulates over time. PDR-based methods 

fulfil the task of position estimation by assuming that the sensor data feeding into the 

algorithm is highly accurate. Moreover, if the smartphone is handheld by the pedestrian, 

the position estimation result is affected by the relative position of the smartphone. The 

pedestrian may hold the phone taking a picture, texting, or swing arms with the phone in 

his/her hand. In addition, each of the low-cost inertial sensors has its own deficiency and 

individual raw sensor data are prone to accumulated errors. 

Several potential issues have been mentioned in the literature when adopting 

MEMS inertial sensor-based dead reckoning for indoor positioning and tracking systems 

(Wu et al., 2016) (Nazemzadeh et al., 2017). As velocity is calculated by taking the 

integral of measured acceleration with respect to time, noisy accelerometer measurement 

data leads to linear growth of accumulative errors in velocity estimation. In other words, 

the mathematical integration process magnifies inherent sensor errors and noises. The low-

cost accelerometer is sensitive to all kinds of accelerations and has high frequency noises. 

Unlike accelerometer, gyroscope measurements will gradually drift away from true values 
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due to a low changing and random process, also known as gyroscope drift. Aiming at 

diminishing accumulative errors resulting from the gyro drift, (Zhang et al., 2019) 

proposed a MEMS gyro drift model based on wavelet threshold denoising and improved 

Elman neural network. The modeling method can be considered as an independent data 

preprocessing process. The magnetic fields can penetrate building materials without signal 

propagation errors or multipath effects, which makes magnetometer suitable for indoor 

positioning solutions. Nevertheless, magnetometer measurements can be distorted under 

the influence of various internal and external disturbance sources and inherent sensor 

errors (Soken and Sakai, 2015). 

 

1.2. Motivation and Objective 

As the demand for indoor positioning systems and services is rising, it is of great necessity 

to investigate and develop a compact, cost-effective, energy-efficient, and convenient-to-

use indoor positioning solution. With the development of MEMS for inertial sensing, a 

self-contained MEMS MARG sensor-based indoor positioning system has emerged as a 

natural solution and has a wide range of industrial applications, such as manufacturing, 

healthcare, emergency services, etc. Moreover, as a critical component of the IPS, 

IMU/MARG sensors-based heading and orientation estimation algorithms, also known as 

Attitude Heading Reference Systems (AHRSs), have become an independent but 

important research field. AHRS with high precision can be implemented in wearable 

rehabilitation systems tracking the movement of patients who have joint injuries or stroke 

patients for telehealth. 



 

 

 

      M.A.Sc. Thesis – Y. Miao                                                             McMaster University – ECE 

 6 

This research will contribute to the body of knowledge on MARG sensor-based 

indoor positioning system and algorithm development, especially for the engineering 

research fields of sensor fusion, PDR, and quaternion-based heading and orientation 

estimation. This study will help address several existing problems of adopting the MARG 

sensing package, most importantly to extract valuable location-based information from 

error-prone inertial sensors. In addition, this work designs and implements an IPS that can 

work in an unknown indoor environment without requiring a fingerprint map.  

 

1.3. Contributions 

This research will identify key issues and challenges regarding using inertial sensors, 

design a comprehensive indoor positioning solution, develop algorithms and models for 

extracting position information from inertial sensor measurements, and finally evaluate 

the effectiveness of the proposed solution. 

The main contributions of the thesis are summarized as follows: 

• We propose a complete and practical IPS based on PDR using MEMS MARG 

sensors only.  

 We design the system architecture at both the system level and the module 

level. 

 The proposed IPS includes four main modules: 1) mode detection, 2) step 

detection and moving distance estimation, 3) heading and orientation 

estimation, and 4) position estimation. 
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• Magnetometer calibration is incorporated to ensure the reliability of 

magnetometer data. 

 We adopt a mathematical hard-and-soft-iron model to eliminate potential 

magnetic field distortions and disturbances in magnetometer measurements.  

• We propose a dual-mode feature with mode switch capability. 

 The dual-mode feature includes a static mode and a dynamic mode. 

 We provide the mode detection algorithm. 

 The step detection module is only triggered when the system enters the 

dynamic mode. 

 For the heading and orientation estimation module, both modes share a prior 

orientation estimate and use different methods to correct the prior estimate. 

 The dual-mode design reinforces the robustness and flexibility of the IPS 

algorithm. 

• We design algorithms of step detection, heading and orientation estimation, 

and position estimation. 

 We devise a multi-layer step detection algorithm, which consists of the first 

scenario-based self-adaptive step detection layer with preliminary adjustment, 

the second step detection refinement layer based on signal pattern matching, 

and the third step validation layer. 

 We build upon the reference vector idea presented in (Madgwick et al., 2020), 

and devise a quaternion-based heading and orientation estimation sensor 

fusion algorithm with a dual-mode feature. Specifically, both modes share a 
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prior orientation estimate generated by gyro integration. The static mode uses 

reference vectors to correct the prior estimate, while the dynamic mode uses 

a double phase extended Kalman filter to update the prior estimate. 

 A position estimation algorithm is formulated. 

 We evaluate the performance of the proposed IPS and compare it with the 

conventional methods under five scenarios. 

 

1.4. Scope of the Study 

The scope of this research and development project is to design and implement an indoor 

positioning and tracking system using MEMS MARG sensors consisting of accelerometer, 

magnetometer, and gyroscope. Data acquired from all inertial sensors is syncing to a cloud 

database in real time. The algorithms and system models are implemented on a computer. 

After receiving the inertial sensor data stream, the system will convert raw digital signal 

data to insightful results of detected steps, orientation estimation, position estimation, and 

moving trajectories. The details of the analog-to-digital converter (ADC) and the 

conversion process including the method of converting the analog signal to digital data 

are beyond the scope of this work. 

This research focuses on designing and implementing indoor positioning models 

and algorithms. Smartphone built-in inertial sensors are used for collecting raw sensor 

data from the accelerometer, magnetometer, and gyroscope. Design, mechanics, and 

assembly of the sensor integrated circuit (IC) and the printed circuit board (PCB) are out 

of the scope of this study.  
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Past research approaches classify the status and calculate the relative position of 

the smartphone-embedded inertial sensors so that the models and algorithms can be 

adapted to general smartphone use cases. In this research, the smartphone is handheld, and 

the relative position of the inertial sensors is fixed to the pedestrian’s body. Incorporating 

machine learning and deep learning algorithms for smartphone status classification and 

activity recognition is not the emphasis of this research. However, it is considered as future 

work of this research to extend the functionality and models of our system. 

 

1.5. Organization 

The remaining of the thesis is organized as follows. Chapter 2 gives the detailed 

background of IPSs and discusses core technologies and different approaches explored for 

solving the problem. A comprehensive literature review of indoor positioning methods is 

provided as well. Chapter 3 formulates the indoor positioning problem and presents the 

methodology, system architecture, design models, and algorithms of the proposed IPS. 

Experimental evaluation of the proposed system is provided in Chapter 4. Chapter 5 

summarizes the work and discusses several directions of future work.  
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  Chapter 2 

 

  Background and Literature Review 
2. Background and Literature Review 

 

2.1. Introduction 

With the development of communication technology, the advancements in sensing 

technology, and widely adoptions of machine learning and deep learning algorithms in the 

engineering field, location-based systems and services have experienced substantial 

growth over the past decade. Indoor positioning has attracted great research attention in 

recent years. Infrastructure-based and infrastructure-free are the two broad categories of 

indoor positing solutions. Among various infrastructure-free IPSs, PDR is a major 

approach and a self-contained navigation technique in which measurements are used to 

update the orientation and position of the object. Although the position estimation process 

of PDR is straightforward, PDR is subject to cumulative errors. In addition, developments 

in microelectromechanical systems (MEMS) have enabled IPS to be built using 

smartphone-embedded MARG sensors. Moreover, Attitude Heading Reference System 

(AHRS) is a core research sub-field in terms of developing PDR-based IPSs. This chapter 

provides a brief background on IPS, PDR, inertial pedestrian navigation, and AHRS, and 

reviews recent research under these fields. At the end of this chapter, we discuss the main 

challenges and limitations of existing indoor positioning and tracking methods. 
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2.2. Indoor Positioning System 

An Indoor Positioning System (IPS) is a localization system used within a closed space to 

provide users and smart objects with detailed location information continuously and in 

real time through measurements acquired from a network of devices. A wide range of 

technologies has been considered for implementing indoor localization. Existing solutions 

mainly fall into three categories: 1) communication technology-based, 2) sensor-based, 

and 3) computer vision and image-based. A hierarchical classification of the existing IPSs 

is given in Table 2.1 based on adopted technology. 

 

Table 2.1: Hierarchical Classification of the Existing IPSs 

Based on Adopted Technology 

Indoor Positioning Systems 
Communication 

technology-based 
Sensor-based 

Computer vision and 

image-based 

• Mobile 

Telecommunication 

Networks: 4G, 5G 

• GNSS 

• Wireless Local Area 

Networks (WLAN): 

Frequency 

Identification (RFID), 

Wi-Fi, Bluetooth, 

UWB 

• Visible Light 

Communication (VLC) 

• MEMS IMU 

Pedestrian Dead 

Reckoning (PDR): 

Gyroscope, 

Accelerometer, 

Magnetometer 

• Infrared 

• Ultrasound 

• Pressure Sensors 

• Camera - 

Computer Vision 

• Machine Learning 

• Deep Learning 

 

• Hybrid Methods and Integrated Systems 
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Communication Technology-based IPS 

Communication-based approaches for indoor positioning include mobile 

telecommunication networks such as 4G, 5G, Global Navigation Satellite System (GNSS), 

Wi-Fi, ultra-wideband (UWB), Bluetooth, radio-frequency identification (RFID), visible 

light communication (VLC), etc.  

In early radio frequency-based systems (Wann et al., 2006) (Yang et al., 2008), 

received signal strength (RSS), time of arrival (TOA), time difference of arrival (TDOA), 

and angle of arrival (AOA) were used for position estimation. The accuracy of the 

estimated result is satisfactory only when the pedestrian is in line-of-sight (LOS). A 

minimum of three base stations are required to be seen from the moving pedestrian. This 

can be difficult in some manufactory environments. RSS-based positioning methods rely 

on the trilateration technique and simply use the received signal strength indicator (RSSI) 

as the main parameter to determine location (Golestanian et al., 2017). 

In (Diallo et al., 2019), the authors proposed an indoor localization system which 

uses RFID tags to locate a moving object by assuming that the position of the object can 

be derived from the signal strength reflected by RFID tags. The limitation of RFID-based 

approaches is that the accuracy of the algorithms highly depends on how RFID tags are 

deployed, the number of tags, and the level of the signal coverage in the object’s 

surrounding area.  

Wi-Fi-based IPSs may use fingerprinting, proximity algorithm, and triangulation 

algorithms for positioning (Ma et al., 2015). Wi-Fi fingerprinting has gained much 

attention since it does not require line-of-sight measurements from access points (APs) 
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and achieves improved accuracy in complex indoor environment. Wi-Fi fingerprinting 

associates a position with its detected signal patterns. It is a two-phase process, which has 

an initial offline survey phase and an online query phase. In the offline phase, a site-wide 

fingerprints map of all the RSSI vectors of reference points (RPs) is constructed and stored 

in a database. In the online phase, the server uses certain similarity metric in the signal 

space to compare the measured RSSI vector with the stored fingerprints and determine the 

pedestrian’s current position (He and Chan, 2016). Constructing and updating the 

fingerprint map is time-consuming. Recent advances try to introduce autonomous 

elements into the system (Dai et al., 2020). CHISEL, a deep learning-based framework, 

proposed in (Wang et al., 2021) further compressed the deep leaning convolutional 

autoencoder convolutional neural network (CAECNN) model while maintaining highly 

accurate result.  

Bluetooth-based systems (Ji et al., 2015) (Yang et al., 2020) are similar to Wi-Fi-

based systems, and these systems add Bluetooth Low Energy (BLE) beacons as a low 

power consumption alternative of Wi-Fi APs so that signal coverage can be extended to 

the places where Wi-Fi signals cannot reach.  

Given the fact that positioning approaches built on radio frequency signals are 

affected by electromagnetic interference, VLC-based systems calculate the position 

through detecting light emitting diodes (LEDs) illumination installed in the indoor space 

along with TDOA, RSS, AOA, and neural network propagation so that the system can 

achieve optimized results with greater accuracy and no interference (Othman et al., 2021). 
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Due to the high precision, no line-of-sight requirement, and the absence of multi 

path distortion, UWB-based positioning systems have been extensively studied and tested 

in recent positioning-related research. In contrast to RFID technology, UWB uses multiple 

bands of frequencies to transmit its signal simultaneously. The drawback of deploying 

UWB-based systems is that they can cause interference to nearby systems that operate in 

the ultra-wide spectrum and also to aircraft navigation radio equipment. Moreover, the 

infrastructure and set of tags for UWB systems are very costly.  

For communication technology-based IPSs, the positioning accuracy is affected by 

the layout and arrangement of APs, base stations, tags, other wireless equipment, and the 

indoor environment changes. 

 

Sensor-based IPS 

There are two major types of sensor-based positioning system. The first type uses the 

traditional infrastructure-heavy sensors such as infrared, ultrasound, and pressure sensors. 

Although they can achieve high accuracy, these methods tend to lose popularity because 

a wide deployment of heavy infrastructures is needed. On the contrary, embeddable 

microelectromechanical systems (MEMS) IMU sensors are widely used for indoor 

positioning because of the ease of use of these compact sensors. Various sensor fusion 

algorithms have been developed for estimating the position of target objects. Using 

gyroscope, accelerometer, and magnetometer embedded in smartphones is an 

infrastructure-free and cost-efficient approach for indoor positioning applications. The 

process of PDR is often used to calculate current position of a target moving object by 
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using the previously determined positions through built-in inertial sensors. However, dead 

reckoning is subject to cumulative errors. As a result, inertial sensor-based systems need 

recalibration to maintain the accuracy. PDR is described in Section 2.3. A detailed review 

of the state-of-the-art research development and a method comparison of IMU-based 

positioning systems are elaborated in Section 2.4. 

 

Computer Vision and Image-based IPS 

Computer vision and machine learning are becoming crucial components in engineering 

applications. Computer vision and image-based systems extract location information 

through images and videos captured by 3D cameras or built-in cameras in smart devices. 

Latest visual-based indoor positioning methods include image retrieval-based methods, 

visual landmarks-based methods, and learning-based methods (Wang et al., 2019). Visual-

based methods rely on image recognition techniques and similarity search. To improve 

the algorithmic efficiency, image processing algorithms such as Scale Invariant Feature 

Transform (SIFT) have been adopted for points matching in position estimation. To 

overcome the time-consuming and labor-intensive data collecting process, robot 

simultaneous localization and mapping (SLAM) has been introduced to construct a map 

of an unknown environment while tracking the location of an object at the same time. 

Machine learning algorithms such as SVM, LSTM, etc. were integrated into the 

conventional IMU sensor and computer visual hybrid model for human motion detection 

so as to boost the accuracy of estimated location (Herath et al., 2020) (Yan et al., 2017). 
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IPS Comparison 

Selecting the best model and technical solution depends on the indoor environment and 

the specific requirements of the user. Table 2.2 summarizes the cost and accuracy of IPSs 

based on different technologies. Hybrid methods also have been proposed to compensate 

for the weaknesses of independent systems.  

 

Table 2.2: Indoor Positioning Systems Cost and Accuracy Comparison 

Indoor Positioning 

Technology 
Accuracy Cost 

Mobile Telecommunication 

Networks 
1-2 m Low 

RFID 1 m Medium / High 

Wi-Fi 2-5 m Low 

Bluetooth 1 m Low 

VLC 1 m Low / Medium 

UWB 10 cm High 

IMU 1 m Low 

Infrared, Ultrasound, 

Pressure Sensors 
1-5 m High 

Computer Vision 1-2 m Low / Medium 

SLAM 1 m Medium / High 

 

2.3. Pedestrian Dead Reckoning 

Pedestrian Dead Reckoning (PDR) is the process of calculating current position of a 

moving object by utilizing the previously calculated position information through 

continuously detecting gait event and updating current estimations of speed, step length, 

and heading direction. By leveraging the advantages of microelectromechanical systems 

(MEMS), most smart devices and smartphones are now embedded with IMU, which 

includes 3-DoF (Degrees of Freedom) accelerometer, magnetometer, and gyroscope 
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sensors. Inertial sensors are commonly used by unmanned aerial vehicles (UAVs), aircraft, 

spacecraft, and industrial robots to track the position and heading of the moving object. 

PDR methods are generally based on path integration (Giorgi et al., 2017), which consists 

of four major phases: 1) step detection, 2) step length estimation, 3) heading estimation, 

and 4) position calculation. The position of an object at each moment is determined by 

combing the distance travelled and the heading directions, which are calculated and 

estimated by using different sets of sensor measurements. Another PDR method is based 

on the strapdown algorithm, which simply numerically double integrates the tri-axis 

accelerometer data to determine the position. 

The PDR technique has been the key model component of several navigation 

projects for various environments where satellite navigation has poor performance 

(Gartner et al., 2003) (Ott et al., 2005). Recently, the inertial sensor-based Dead 

Reckoning (DR) algorithm has been integrated with Kalman filter and deep neural 

networks and applied to vehicle navigation applications (Brossard et al., 2020) (Mikov et 

al., 2020). For pedestrian indoor positioning, hybrid models incorporating the PDR 

technique into exiting communication technology-based methods such as Wi-Fi, magnetic 

matching, iBeacon, UWB have been extensively studied (Li et al., 2016) (Huang et al., 

2019) (Lee et al., 2021) (Poulose and Han, 2019) (Hu et al., 2014). Moreover, the design 

procedure and accuracy of the systems are dependent on the way inertial sensors are placed 

on the pedestrian’s body. A chest-mounted IMU PDR system (Lu et al., 2019), a 

conventional foot-mounted PDR system (Zhang et al., 2020), a handheld device system 

(Abid et al., 2017) were investigated over the past five years. A neural network-based 
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system RoNIN was proposed in (Herath et al., 2020), where a mathematical model is used 

to detect if the inertial sensor device is handheld, in the pocket or in a bag. 

Compared with positioning approaches based on wireless signals and computer 

vision sensors, PDR algorithms can generate relatively accurate position estimations in a 

short period of time with low power consumption, low computational complexity and fast 

updating and iteration speed. On the contrary, computer vision methods cost much longer 

time training the model and processing high dimensional image data and visual contents. 

However, PDR is subject to cumulative errors of approximation for longer journeys due 

to taking no account of directional drift. To address the cumulative error issue, a multi-

sensor fusion-based method (Qiu et al., 2018) and a robust adaptive Kalman filter (RAKF) 

algorithm combined with complementary filter (Fan et al., 2019) were devised to improve 

the positioning accuracy. Also, (Chen et al., 2017) and (Li et al., 2015) proposed to fuse 

inertial sensor data with UWB or Bluetooth data respectively. For these hybrid methods, 

inertial positioning compensates for the defects of wireless signal obstacles. In return, 

UWB and Bluetooth positioning mitigate the cumulative errors resulting from the PDR 

process. 

 

2.4. Inertial Pedestrian Navigation 

An Inertial Measurement Unit (IMU) is an electronic device that delivers navigation 

parameters, specific forces, and position update information using a combination of 

accelerometers, magnetometers, and gyroscopes. Specifically, velocity, attitude and 

orientation, and position of a moving object can be derived from linear acceleration 
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recorded by accelerometers, magnetic field measured by magnetometers, and angular rate 

of rotational motion reported by gyroscopes.  

The accuracy of the inertial sensors is influenced by a number of errors and biases. 

Short-term measurements of accelerometer fluctuate to a certain degree due to sensor 

noise, constant bias, and vibration ratification error (VRE). The gravity measured by the 

accelerometer also acts as a bias. Since it measures all linear acceleration of the body, 

rotation motion can cause accelerometer estimation errors. Measurement of magnetometer 

can be corrupted by magnetic field disturbances of the surrounding environment. The 

magnetic disturbances mainly come from hard-iron sources such as magnet or electric and 

soft-iron sources such as iron materials. One solution for removing the hard-iron and soft-

iron distortion is to recalibrate the magnetometer by finding the offset and transformation 

matrix. Gyroscope measures the angular rate of the entire system. It produces reliable 

measurement in the presence of linear acceleration. However, gyroscope data smoothly 

drifts away after integrating the measured angular rate over time due to its sensor bias and 

high frequency white noises. 

 

Inertial Pedestrian Navigation Challenges  

In practice, there are considerable challenges in obtaining a highly precise positioning 

solution with MEMS IMU sensors. Double integrating the acceleration to obtain the 

position results in errors that grow quadratically over time. To eliminate the errors, an 

alternative position update needs to be integrated into the system. In (Li et al., 2018), the 

authors proposed a UWB/PDR fusion algorithm. It was shown that the cumulative errors 
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of the heading direction calculation are effectively mitigated in the case of intermittent or 

continuous UWB ranging noise and signal interruption.  

For approaches that solely rely on inertial sensors, various sensor fusion techniques 

have been applied to achieve optimal results in inertial pedestrian navigation (IPN). In 

(Giorgi et al., 2017), the authors examined a magnetic field compensation technique with 

a traditional simple Kalman filter, which detects direction changes by analyzing the KF 

innovation. The proposed low computational complexity algorithm was shown to be more 

effective for short paths than long paths. One drawback of this solution is that the 

estimation of heading direction is based on detecting relative changes of the person with 

respect to a reference system built during the initialization phase. In this design case, 

absolute headings cannot be determined, and the system is not sensitive to small rotations.  

In (Poulose et al., 2019), the authors presented a sensor fusion-based position 

estimation algorithm, which consists of two separate Kalman filters. The first Kalman 

filter combines the accelerometer and gyroscope data to estimate pitch and roll angles, 

whereas the second Kalman filter utilizes the complementary features of magnetometer 

and gyroscope to collectively estimate heading direction, which addresses the cumulative 

error issue in PDR inertial positioning. Although the experimental results demonstrated 

improved accuracy, the effectiveness of the algorithm for more complicated routes has not 

been tested.  

In (Fan et al., 2019), the authors incorporated wavelet decomposition for signal 

processing, investigated a dynamic step length model, and explored a double stage filter 

fusion algorithm for heading estimation. In the first stage, a complementary filter is used 
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to fuse magnetometer, accelerometer, and gyroscope in order to suppress the accumulated 

errors. In the second stage, a robust adaptive Kalman filter (RAKF) is designed to restrain 

outliers by introducing a weighting factor based on Huber function. It was shown that 

combing RAKF with basic complementary filter reduced the influence of outliers on the 

positioning results. There is still room for improvement regarding the accuracy of heading 

estimation. Fan’s work can be extended by concentrating more on body kinematics models 

to further improve the positioning algorithm. 

 

Sensor Fusion  

Sensor fusion can help improve performance in PDR by taking advantage of the fact that 

inertial sensors complement each other. More specifically, gyroscope is more accurate 

over the short term but the gradual accumulation of uncorrected bias instability and 

angular random walk (ARW), a random high frequency noise, causes gyroscope drift over 

long term scale. In contrast, accelerometer measurement is relatively stable over the long 

term because the gravity vector does not change over time, but it is not precise in the short 

term due to high frequency noises and its high sensitivity to all accelerations.  

To tackle the error accumulation and heading drift problem, several techniques 

including Zero Velocity Potential Update (ZUPT) (Yun et al., 2007), Zero Angular Rate 

Update (ZARU) (Jiménez et al., 2010), and Heuristic Drift Reduction (HDR) (Borenstein 

et al., 2009) have been investigated to improve the overall performance of positioning 

algorithms.  
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The Heuristic Drift Reduction (HDR) method proposed in (Borenstein et al., 2009) 

estimates the likelihood that the person is walking along a straight line. Its closed-loop 

control approach tracks the drift and corrects the gyro measurements when the estimated 

azimuth angle matches the nearest dominant direction. Built on the basic HDR algorithm, 

a double low-pass filter and a threshold were applied as enhancements to reduce the impact 

of real motion conditions of swaying and curving. The limitation of the HDR method is 

that it introduces errors of its own when the pedestrian walks in various directions and 

there is always a residual offset. This work was extended in (Ju et al., 2014) where an 

EKF-based Advanced Heuristic Drift Elimination (AHDE) method is introduced to 

remove azimuth drift error in indoor environments. The proposed AHDE algorithm 

follows a two-step model. First, it classifies the motion of the pedestrian into non-straight 

motion, straight motion, and straight motion along the dominant direction. If the 

pedestrian is not walking straight forward, the algorithm adopts the ZUPT method. 

However, if it is determined that the pedestrian is walking straight along the dominant 

direction, the algorithm corrects the estimated azimuth angle to the closest dominant 

direction. If the pedestrian is walking straight but not along the dominant direction, the 

algorithm applies a correction to the gyroscope bias. Both the HDR method and the AHDE 

method are limited to a more structured indoor environment, which in reality is not always 

the case as there could be more open space in the indoor environment.  

By noticing the periodic nature of motions such as walking and running, (Yun et 

al., 2007) describes that there are short periods of zero foot velocity when the foot is in 

full contact with the ground. This pattern is proved to be practical for drift correction when 
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integrating accelerometer data. Zero-velocity detection algorithms have been investigated 

over the years. Most of the ZUPT-based algorithms use threshold values, which is highly 

dependent on the motion pattern of the specific pedestrian. For the purpose of generalizing 

the ZUPT algorithm, (Cho and Park, 2019) explored a threshold-less zero-velocity 

detection algorithm for PDR. Their method is based on signal processing techniques such 

as sliding window averaging (SWA), positive peak detection, and negative peak detection. 

Different from conventional methods, zero velocity is detected by recognizing the shape 

of the processed signal. However, this algorithm is not robust enough for all kinds of signal 

forms.  

Other than the above-mentioned methods, mathematical modelling also has been 

applied to remove the drift. In (Kuxdorf-Alkirata et al., 2019), the authors introduced a 

calibration and training phase and then constructed a linear time-dependent error model 

for drift reduction followed by a post-processing filter. The error model predicts the trend 

of the error by fitting a function based on data obtained during the training phase, and then 

adaptively adjusts the results of the path reconstruction algorithm.  

 

Machine Learning 

As machine learning is extensively used in the engineering field in recent years, it has 

been incorporated into the conventional inertial pedestrian navigation systems. In (Kone 

et al., 2020), the authors presented two machine learning-based zero-velocity detectors: 

histogram-based gradient boosting (HGB) and random forest (RF). The design objective 

is to adapt a single model to different motion types while maintaining a low computational 
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cost. In (Deng et al., 2020), the authors formulated inertial sensor-based position 

estimation as a supervised regression problem with three regressors: random forest 

regressor (RFR), k-nearest neighbor regressor (KNNR), and support vector regressor 

(SVR). The method builds a regression model between IMU sensor data and 2D 

coordinates and then predicts coordinates with real-time measurement data. Simulation 

results showed that the drift of long travels is effectively suppressed. However, as 

supervised learning algorithms, these two Machine Learning-based systems require pre-

collected training data and certain training process. 

 

2.5. Attitude Heading Reference Systems (AHRSs) 

Unlike the strapdown algorithm of PDR, the step-and-direction approach is largely 

determined by how accurately heading can be estimated before combing the step detection 

result and the heading estimation result to obtain the position. The topic of orientation 

tracking and heading estimation, also known as Attitude and Heading Reference System 

(AHRS), has been extensively studied over the past decade and is considered as an 

important branch of inertial navigation system. An AHRS, also referred to as MARG 

(Magnetic, Angular Rate, and Gravity) system, consists of tri-axis sensors and is able to 

provide attitude information and measurement of orientation relative to the direction of 

gravity and the earth’s magnetic field. By leveraging the advantages of sensor fusion, 

reference vectors compensate for the gyroscope drift caused by gyroscope integration.  

Inspired by the non-linear complementary filters approach implemented by 

(Mahony et al., 2008), (Madgwick et al., 2011) formulated the orientation estimation 
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problem as an optimization problem and proposed a mathematical model for orientation 

estimation using the gradient descent algorithm. To overcome the slow convergence issue 

and decouple the calculation of roll angle from the calculation of yaw angle, the authors 

extended their previous work by presenting a new extended complementary filter for full-

body orientation estimation. The algorithmic model is established in a way that the 

orientation in the global reference frame, represented by a quaternion vector, is highly 

dependent on 𝐾 the value of gain, especially during the initial convergence phase when 

the initial orientation is unknown. The 𝐾  gain controls the weight of the orientation 

correction terms calculated from accelerometer and magnetometer data. The algorithm 

can be further improved if the parameters are designed in a self-adaptive way with a 

shortened initial convergence period (Madgwick et al., 2020).  

 

2.6. Main Challenges and Limitations of Existing Indoor Positioning Methods 

The main challenges and limitations of existing indoor positioning methods are 

summarized as follows. 

 

Limitations of Existing Indoor Positioning Methods 

• Most existing IPSs require the installation of special hardware devices, which can be 

time-consuming and expensive. An approach like fingerprinting is labor-intensive and 

requires constant updates once the indoor environment changes. 

• Hybrid IPSs that combine two or more technologies demonstrate improved accuracy 

at the sacrifice of computational efficiency.  
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• Machine learning-based approaches and computer vision methods cost much time 

training the model and plenty of computational resources processing high dimensional 

image data and visual contents. 

• Most research in the indoor positioning field focuses on either gait analysis or AHRS. 

There is a lack of research regarding developing a complete and practical IPS. 

• Some existing approaches assume the pedestrian is walking at a constant speed. We 

notice that the signal pattern differs significantly when the pedestrian is moving at 

varying speeds.  

• The design of the step detection algorithm is influenced by how the sensors are fixed 

to the pedestrian’s body. Most of the existing step detection models only use 

accelerometer data. 

 

Main Challenges 

• The low-cost MARG inertial sensors are inherently error-prone. The magnetometer 

data is influenced by magnetic distortions and disturbances. The accelerometer data 

can be corrupted by high-frequency sensor noises and disturbances. On the contrary, 

the gyroscope data drifts away over time as a result of the gyro drift issue.  

• The biggest challenge is how to design sensor fusion models and algorithms to extract 

accurate location-based information from individual motion and magnetic sensors. 

The sensor fusion models and algorithms need to be designed in a complementary 

way that cumulative errors of each of the sensors are mitigated to the greatest extent. 
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• In practice, as cumulative errors grow linearly in velocity estimation due to noisy 

accelerometer data, double integration can cause quadratic drift error growth in 

position estimation over time. 

• For step detection, false positive steps are difficult to be detected and removed. Sensor 

data processing using DSP is challenging.  

• For heading and orientation estimation, the tolerable range of the orientation 

estimation error is low because a minor error in orientation estimate results in 

completely deviated trajectory coordinates.  

• In addition, adopting quaternions for orientation estimation is not as intuitive as using 

the conventional Euler angles. 
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  Chapter 3 

 

  MEMS-MARG-Based  

  Indoor Positioning and Tracking 
3. MEMS-MARG-Based Indoor Positioning and Tracking 

 

3.1. Introduction 

This chapter considers the indoor localization problem in sensor fusion and signal 

processing. We explore and implement a complete solution for PDR position estimation 

with self-contained inertial MARG sensors consisting of a set of smart-phone embedded 

gyroscope, accelerometer, and magnetometer. The designed positioning and tracking 

module is the fundamental component of a full-fledged indoor navigation system. 

There are several challenges that need to be addressed when utilizing MEMS 

inertial sensors in smartphones for indoor positioning. Although some low-cost 

commercial inertial sensors are extensively used in robotics and unmanned aerial vehicles 

(UAVs), IMU and MARG are not high precision equipment, and they are subject to 

inherent sensor errors, noises, cross axis and environment sensitivity. Each different type 

of inertial sensor has its own weaknesses specific to each sensor design mechanism. 

Magnetometers are normally affected by disturbances of the surrounding magnetic field, 

which are also known as the hard-iron effect and soft-iron effect. Accelerometer 

measurement is easily corrupted by high frequency disturbances. Main sources of 
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accumulative accelerometer errors include constant bias, velocity random walk (VRW), 

scale factor, and vibration rectification error (VRE). Using double integration to calculate 

positions from acceleration measurement data, the estimation errors tend to increase 

quadratically over time. Gyroscope is prone to accumulate a slow changing but massive 

offset, also known as gyroscope drift, due to a bias instability and a high frequency noise 

named angular random walk (ARW). Sensor fusion algorithms (Poulose et al., 2019) are 

proved to be effective by utilizing the complementary features of each inertial sensor to 

collectively estimate heading and position. However, constructing an optimal sensor 

fusion model and balancing the trade-off between computational complexity and accuracy 

remain a critical challenge. Furthermore, Euler angles suffer from the gimbal lock problem 

(Mansur et al., 2020) when they are used to describe the orientation of a rigid body with 

respect to a fixed coordinate system. 

We propose an inertial sensor-based position estimation system and framework for 

indoor positioning, which solely relies on tri-axis accelerometer, tri-axis magnetometer, 

and tri-axis gyroscope embedded in smartphones. The system does not require additional 

infrastructure support and the inertial sensor data stream is collected using a smartphone 

mobile application. The proposed indoor positioning framework includes four main 

modules: mode detection, step detection and moving distance estimation, heading and 

orientation estimation, and position estimation. To remove the internal errors and external 

disturbances of the magnetometer, magnetometer calibration is included and performed 

during the calibration phase. To overcome the limitations of individual inertial sensors, 

our solution is based on sensor fusion and signal processing techniques. To address the 
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gimble lock issue, we adopt quaternions to represent rotations and the heading and 

orientation of a rigid body at each discrete time instance. Experimental evaluation shows 

that the proposed system is able to achieve high positioning accuracy with comparatively 

low computational cost. 

The main components of the IPS solution include: 

• Comprehensive IPS solution based on MARG sensing package:  

The proposed indoor positioning system includes a mode detection module, a step 

detection and moving distance estimation module, a heading and orientation 

estimation module, and a position estimation module. The architectures at the system 

level and module levels are devised. 

• Dual-mode design:  

The proposed system has two modes: static mode and dynamic mode. The step 

detection module is only triggered in the dynamic mode. For heading and orientation 

estimation, both modes share a prior orientation estimate and then use different 

models to update the prior estimate. The mode detection module uses a sliding time 

window technique for the mode detection algorithm. 

• Multi-layer step detection:  

The proposed step detection module includes a preliminary step adjustment layer, a 

second step refinement layer, and a third step validation layer. Accelerometer data is 

used in the first step detection layer. Gyroscope data and magnetometer data are 

exploited in the step refinement layer to enhance the step detection result. 
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• Quaternion-based heading and orientation estimation:  

To address the gimbal lock issue, a unit quaternion is used as the system state for 

orientation estimation. 

• Magnetic distortion correction-incorporated system model:  

The proposed IPS adopts a hard-and-soft -iron model based on the least square fitting 

of a deviated ellipsoid to correct potential magnetic distortions caused by the 

surrounding indoor environment. 

 

The rest of this chapter is organized as follows. Section 3.2 describes the 

methodology used for developing the MARG sensor-based IPS. This section includes a 

formal statement of the problem, methodology of the solution, and design goals. Section 

3.3 discusses the system structure of conventional IMU-based IPSs and devises the system 

architecture of the proposed indoor positioning system at the system level. Section 3.4 

defines the coordinate system and reference frames used for developing the system. 

Mathematical foundations for orientation representation including special orthogonal 

group, rotation matrix, Euler angles, gimbal lock, and quaternions are provided in Section 

3.5. Section 3.6 focuses on studying magnetic distortion and the influencing factors as 

well as the external and internal causes. Then to eliminate potential magnetic field 

distortions, the hard-and-soft-iron model based on least square fitting of a deviated 

ellipsoid is presented. In Section 3.7, the mode detection algorithm with a sliding time 

window technique is proposed and explained. Section 3.8 proposes the multi-layer step 

detection algorithm and provides the structure of the proposed step detection module at 
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the module level. Sensor fusion techniques and modeling of the dual-mode heading and 

orientation estimation module are elaborated in Section 3.9. Finally, Section 3.10 

formulates the position estimation equations for the position estimation module. 

 

3.2. Statement of the Problem 

We assume the target moving object is equipped with MARG sensors. The proposed 

indoor positioning system aims to generate i) a detected step set 𝑆 = {𝑠𝑗}𝑗=1

𝐽
, ii) the 

moving distance increment 𝐷𝑖 , iii) orientation and heading system states 𝑞𝑤
𝑏 , and iv) 

pedestrian position coordinate values (𝑋𝑃𝑜𝑠𝑒(𝑡(𝑖)) , 𝑌𝑃𝑜𝑠𝑒(𝑡(𝑖)) ), where 𝑠𝑗  denotes 

the 𝑗 th step and 𝐽  is the total detected steps, 𝑞𝑤
𝑏  is a unit quaternion with 𝑏  and 𝑤 , 

respectively, denoting the body frame and the world frame, 𝑡(𝑖), 𝑖 = 1, 2,… ,𝑁, denotes 

the time instance for the 𝑖th measurement, and 𝑁 is the total number of measurements. 

The orientation and heading system state can also be represented by the Euler angles set 

(𝜙, 𝜃, 𝜓) where 𝜙, 𝜃, 𝜓 are defined as the roll angle, the pitch angle, and the yaw angle 

respectively. This thesis focuses on designing the PDR positioning and tracking estimation 

algorithm and optimizing the estimation accuracy. 

This IPS research is guided by inertial navigation, which is a navigation technique 

that uses motion sensors and rotation sensors to continuously determine the current 

velocity, orientation, and position of a target moving object calculated by PDR. To fully 

exploit the information provided by inertial sensors, we collect data from a full set of self-

contained MARG sensors. 
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Specifically, we consider the scenario that the smartphone is handheld and placed 

in front of the waist area with its screen facing up. It is different from the scenario that 

allows the object to handle the IMU-embedded smartphone freely and perform normal 

activities while measuring, which will not be discussed in this thesis. To recognize various 

normal phone activities, machine learning-based models and classifiers are used to first 

identify the position of the phone relative to the pedestrian (Herath et al., 2020). It needs 

to be noted that for the proposed indoor positioning system the relative position of the 

smartphone is fixed to the pedestrian’s body. 

A high-level system block diagram of the methodology is shown in Figure 3.1. The 

system starts with acquiring data from the accelerometer, magnetometer, and gyroscope 

sensors. The data is processed to generate intermediate results, which include detecting 

steps and estimating step length and orientation, and finally the intermediate results are 

combined to produce position estimations. The system runs on a computer in real time or 

offline after the smart device sends the inertial sensor data stream to a cloud database. For 

future work, the system can be executed on the smart device as a mobile application, or 

the algorithmic model can be directly programmed onto some microcontroller. 
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Figure 3.1: System Block Diagram 

 

3.3. System Architecture 

Position and orientation in an indoor environment can be determined using different 

methods and algorithms. The conventional position estimation algorithms filter 

accelerometer data for step detection and use gyroscope data to generate heading 

information. The common system structure of a conventional IMU-based indoor 

positioning system is shown in Figure 3.2. The positioning accuracy is affected by the 

cumulated errors from both accelerometer and gyroscope sensors. Position estimation 

results will deviate from the true position after combining unreliable orientation estimation 

and step count.  
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Figure 3.2: Conventional IMU Indoor Positioning System Structure 

 

Directly taking the integral of raw accelerometer measurement data from the sensor 

stream results in false velocity hence false moving distance estimations. Figure 3.3 shows 

an incorrect and gradually increased velocity calculated by using raw accelerometer data 

with cumulative errors. Gyroscope drift also occurs when orientation is estimated by 

integrating gyroscope measurement data with respect to time. The calculated angle value 

of each axis slowly drifts away as shown in Figure 3.4. 
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Figure 3.3: Velocity Calculated by Using Raw Accelerometer Measurement Data 

 

Figure 3.4: Heading and Orientation Estimation Results 

through Gyroscope Integration Process 
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To address the cumulative error issue that exists in simple conventional IPSs and 

to obtain more accurate position information, we design a more complex IMU MARG-

based indoor positioning system with a mode switch feature and an initialization and 

calibration phase. The overall system architecture of the system is illustrated in Figure 3.5.  

 

 

Figure 3.5: System Architecture of the Proposed Indoor Positioning System 

 

We consider a scenario in which a pedestrian is moving inside an unstructured 

indoor environment while holding a mobile device for motion detection, data collection, 

and self-navigation. The sampling rates of the inertial sensors are set to 10 Hz initially and 

can be adjusted if needed. 
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During the initialization and calibration phase, the reference initial position is also 

defined. Updated and fully calibrated magnetometer measurements are used for further 

heading and position estimation.  

The presented indoor positioning system runs in two different modes: static mode 

and dynamic mode. After the initialization and calibration phase, a dynamic mode 

detection module identifies which mode the pedestrian’s motion falls into. The two modes 

differentiate scenarios in which external accelerations dominate accelerometer 

measurements from scenarios in which the pedestrian is standing still and only performing 

turning motions.  

Heading and orientation estimation algorithms for both static and dynamic modes 

are based on sensor fusion but with different fusing mechanisms. In the static mode, 

reference vectors are used to correct the preliminarily estimated heading calculated by 

gyroscope integration. In the dynamic mode, a double phase extended Kalman filter is 

adopted so that a separate Kalman gain controls the fusing process, which can mitigate the 

influence of using the inaccurate reference gravity vector when the pedestrian is moving 

at a fast speed. One of the advantages of this design is that the heading and orientation 

estimation algorithm for the static mode boosts computational efficiency and saves 

computational resources since the extended Kalman filter is comparatively 

computationally expensive. Another advantage is that the two modes of the heading and 

orientation module share the gyroscope integration process calculations while having their 

own scenario-specific correction elements, which enhances the flexibility of the system 

design.  
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Finally, in the position estimation module a pedestrian moving trajectory in the 

two-dimensional space is generated by combining distance and orientation data obtained 

from the step detection and moving distance estimation module and the heading and 

orientation estimation module. The structure of the step detection module is expanded and 

elaborated in Section 3.8. 

 

3.4. Coordinate System and Reference Frames 

 

Reference Frames 

A reference frame is specified by an ordered set of three mutually orthogonal unit-length 

vectors. A coordinate system specifies a mechanism for determining the position of points 

within a reference frame (NAIF, 2020). When using the quantities measured by inertial 

sensors to build system state (position, velocity, etc.) models and describe orientation data, 

both the reference frame and coordinate system need to be defined. There are two types 

of reference frames: inertial and non-inertial. The difference between them is that the 

inertial frame does not undergo acceleration and has constant velocity while the non-

inertial frame is accelerated with respect to the assumed inertial frame of reference. Low 

of inertia only holds in the inertial frame of reference. To represent the attitude and 

heading of a rigid body in a three-dimensional space using sensor measurements, we 

consider transforming the data in two frames (Titterton and Weston, 2005): 
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The body/sensor frame 𝑏 is the coordinate frame of the IMU. In other words, the body 

frame is the coordinate system that is aligned with the body of the IMU sensor. The center 

of this frame is located in the center of the inertial sensors. As the object’s own coordinate 

frame, it is fixed to the body and rotates with the device. 

 

The navigation frame n is the reference coordinate frame in which we want to navigate. 

In other words, our goal is to express the position and orientation of the body/sensor frame 

𝑏 with respect to the navigation frame 𝑛. In this application, the navigation frame 𝑛 is 

defined to be stationary relative to the world/inertial frame 𝑤, which is fixed in the inertial 

space. The origin is at the center of the earth. A North-East-Down (NED) frame or an 

East-North-Up (ENU) frame is often used as a local reference frame for orientation 

estimation.  

 

Inertial Measurement Unit (IMU) Coordinate System 

Smartphone inertial sensors use a standard three-axis coordinate system to express data 

values. Figure 3.6 shows the coordinate system used in iOS devices. The origin of the 

coordinate system is the center of the IMU sensor. When the device is held facing up, the 

positive 𝑥-axis is horizontal and points to the right, the positive 𝑦-axis is vertical and 

points to the front, and the positive 𝑧-axis is perpendicular to the 𝑥𝑦-plane and points up. 

Inertial sensor values may be positive or negative depending on the direction of the motion. 

 



 

 

 

      M.A.Sc. Thesis – Y. Miao                                                             McMaster University – ECE 

 41 

 

Figure 3.6: iOS Device Three-axis Coordinate System 

 

Position and orientation in space are relative and as described above they are 

expressed using specific coordinate frames. Orientation tracked with IMU models relative 

rotation of the body/sensor frame 𝑏  in the external reference coordinate frame. 

Specifically, to define an orientation, we need to choose the reference frame which the 

orientation is described against and also specify the rotation of the sensor with respect to 

the reference frame. There are three main mathematical constructs to represent a three-

dimensional rotation between two coordinate frames: Euler angles, the quaternion, and the 

Direction Cosine Matrix (DCM) (Premerlani and Bizard, 2009). 

 

3.5. Mathematical Foundations for Orientation Representation 

The special orthogonal group denoted by 𝑆𝑂(3), also known as the three-dimensional 

rotation group (Jacobson, 2009) is the group of all rotations in ℝ3. Rotating a vector in ℝ3 
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only changes the direction of the vector while preserving its magnitude. In this section, 

we introduce how to represent orientation in ℝ3 using rotation matrices, Euler angles, and 

quaternions (Diebel, 2006) (Kim and Chae, 2013) (Kok et al., 2017). In addition, an 

example is provided to demonstrate the gimbal lock problem. 

 

Rotation Matrix 

A rotation matrix 𝑅 as defined in (3.5.1) describes the rotation of an object in three-

dimensional space, 

 

𝑅 = [𝑟1 𝑟2 𝑟3] ∈ 𝑆𝑂(3) (3.5.1) 

 

where 𝑅 ∈ ℝ3×3, ‖𝑟1‖ = ‖𝑟2‖ = ‖𝑟3‖ = 1, and 𝑟1
𝑇𝑟2 = 𝑟1

𝑇𝑟3 = 𝑟2
𝑇𝑟3 = 0. That is, all 

the column vectors have unit size and are orthogonal to each other. 

Multiplying the rotation matrix by a vector rotates the vector along one of the three 

orthogonal axes. When performing coordinate transformations, pre-multiplying the 

rotation matrix 𝑅 by a vector 𝑝 ∈ ℝ3 expressed in the reference coordinate frame yields 

the same vector 𝑝′ ∈ ℝ3 expressed in the body-fixed coordinate frame. The equations of 

coordinate transformations are given by 

 

𝑝′ = 𝑅𝑝 (3.5.2) 

𝑝 = 𝑅𝑇𝑝′ (3.5.3) 
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Euler Angles 

By using Euler angles, any rotations can be represented by three composed elemental 

rotations in sequence, which are the rotations about each of the axes of a coordinate system. 

The three Euler angles are roll angle denoted as 𝜙, pitch angle denoted as 𝜃, and yaw 

angle denoted as 𝜓. As shown in Figure 3.7, the yaw angle represents a rotation about the 

𝑧-axis by an angle 𝜓, the pitch angle represents a rotation about the 𝑦-axis by an angle 𝜃, 

and the roll angle represents a rotation about the 𝑥-axis by an angle 𝜙.  

 

 

Figure 3.7: Roll 𝜙, Pitch 𝜃, and Yaw 𝜓 Angles 

 

A coordinate rotation, also referred to as elemental rotation, is a rotation about a 

single coordinate axis. The measurement data is transformed between the body/sensor 

frame and world/inertial frame by multiplying a sequence of coordinate rotation matrices. 
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The complete rotation matrix (Murray et al., 1994) from the world/inertial frame to the 

body/sensor frame is given by 

 

𝑅𝑤
𝑏 (𝜙, 𝜃, 𝜓) = 𝑅𝑛2

𝑏 (𝜙)𝑅𝑛1
𝑛2(𝜃)𝑅𝑤

𝑛1(𝜓) 

 

(3.5.4) 

 

where 𝑏, 𝑤 denote the body frame and the world frame respectively, and 𝑛1, 𝑛2 denote 

the transitional frames. 

Similarly, the complete rotation matrix (Murray et al., 1994) from the body/sensor 

frame to the world/inertial frame is given by 

 

𝑅𝑏
𝑤(𝜙, 𝜃, 𝜓) = 𝑅𝑤

𝑛1(−𝜓)𝑅𝑛1
𝑛2(−𝜃)𝑅𝑛2

𝑏 (−𝜙) 

 

(3.5.5) 

 

With Euler angles, the individual coordinate rotations about each of the column unit 

vectors are defined as follows. 𝑅𝑥(𝜙) is the rotation purely about the 𝑥-axis, 𝑅𝑦(𝜃) is the 

rotation purely about the 𝑦-axis, and 𝑅𝑧(𝜓) is the rotation purely about the 𝑧-axis. These 

coordinate rotations are all represented by rotation matrices, therefore 𝑅𝑥(𝜙), 𝑅𝑦(𝜃) , 

𝑅𝑧(𝜓) ∈ 𝑆𝑂(3). The row and column vectors associated with the rotating primary axis 

stay unchanged. 𝑅𝑥(𝜙), 𝑅𝑦(𝜃), and 𝑅𝑧(𝜓) can be written as (Murray et al., 1994) 

 

𝑅𝑥(𝜙) = [

1 0 0
0 cos (𝜙) sin (𝜙)

0 −sin (𝜙) cos (𝜙)
] 

(3.5.6) 
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𝑅𝑦(𝜃) = [
cos (𝜃) 0 −sin (𝜃)

0 1 0
sin (𝜃) 0 cos (𝜃)

] 

 

(3.5.7) 

 

𝑅𝑧(𝜓) = [
cos (𝜓) sin (𝜓) 0
−sin (𝜓) cos (𝜓) 0

0 0 1

] 

 

(3.5.8) 

 

Figure 3.8 illustrates the three elementary coordinate rotations defined above. 

 

 

Figure 3.8: Coordinate Rotations 

 

As matrices are not commutative, a different sequence of rotations generates a 

different final orientation. That is, 𝑅𝑥(𝜙)𝑅𝑦(𝜃) 𝑅𝑧(𝜓) ≠ 𝑅𝑧(𝜓)𝑅𝑦(𝜃)𝑅𝑥(𝜙). Since the 

same axis cannot be in succession, there are 12 combinations of elementary rotations in 

total, which are 𝑥𝑦𝑥, 𝑥𝑦𝑧, 𝑥𝑧𝑥, 𝑥𝑧𝑦, 𝑦𝑥𝑦, 𝑦𝑥𝑧, 𝑦𝑧𝑥, 𝑦𝑧𝑦, 𝑧𝑥𝑦, 𝑧𝑥𝑧, 𝑧𝑦𝑥, and 𝑧𝑦𝑧. 
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Formed by multiplying a sequence of elemental rotation matrices, suppose the 

complete rotation matrix 𝑅𝑤
𝑏 (𝜙, 𝜃, 𝜓) ∈ ℝ3×3 is given by 

 

𝑅𝑤
𝑏 (𝜙, 𝜃, 𝜓) = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] 

 

(3.5.9) 

 

then the roll 𝜙, pitch 𝜃, and yaw 𝜓 angles can be calculated using the following equations 

(Diebel, 2006). 

 

𝜙 = 𝑎𝑡𝑎𝑛2(𝑟32, 𝑟33) (3.5.10) 

𝜓 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11) (3.5.11) 

𝜃 = {
𝑎𝑡𝑎𝑛2(−𝑟31,

𝑟21

sin(𝜓)
)     𝑖𝑓 cos (𝜓) = 0

𝑎𝑡𝑎𝑛2(−𝑟31,
𝑟11

cos(𝜓)
)           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5.12) 

 

As influenced by the order of rotation operations, Euler angles can experience the 

phenomenon of gimbal lock in trajectory simulations. 

 

Gimbal Lock 

Gimbal lock (Hanson, 2006) is a phenomenon that occurs when the axes of two of the 

three gimbals become parallel and the system is forced to be locked into rotations in a 

two-dimensional space. In other words, in a three-dimensional space, gimbal lock results 

in the system losing one degree of freedom. When the gimbal lock occurs, there is no 
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unique solution to extract all three angles, roll 𝜙, pitch 𝜃, and yaw 𝜓, from the formed 

rotation matrix. Here we provide an example of the gimbal lock singularity phenomenon. 

We consider the case when we rotate about the 𝑦-axis by 90 degrees. That is, the pitch 

angle 𝜃 is 
𝜋

2
, and the complete rotation matrix is calculated as follows. 

 

𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓) = 𝑅𝑥(𝜙)𝑅𝑦 (
𝜋

2
)𝑅𝑧(𝜓) (3.5.13) 

= [

1 0 0
0 cos (𝜙) sin (𝜙)
0 −sin (𝜙) cos (𝜙)

] [

cos (
𝜋

2
) 0 −sin (

𝜋

2
)

0 1 0

sin (
𝜋

2
) 0 cos (

𝜋

2
)

] [
cos (𝜓) sin (𝜓) 0
−sin (𝜓) cos (𝜓) 0

0 0 1

] 

= [

1 0 0
0 cos(𝜙) sin(𝜙)

0 −sin(𝜙) cos(𝜙)
] [

0 0 −1
0 1 0
1 0 0

] [
cos(𝜓) sin(𝜓) 0

−sin(𝜓) cos(𝜓) 0
0 0 1

] 

= [

0 0 −1
sin(𝜙) cos(𝜓) − cos(𝜙) sin(𝜓) sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) 0

cos(𝜙) cos(𝜓) + sin(𝜙) sin(𝜓) cos(𝜙) sin(𝜓) − sin(𝜙) cos(𝜓) 0
] 

= [

0 0 −1
sin(𝜙 − 𝜓) cos(𝜙 − 𝜓) 0
cos(𝜙 − 𝜓) − sin(𝜙 − 𝜓) 0

] 

 

The result shows that there is no unique pair of solution for the roll angle and the 

yaw angle. Hence the orientation of the system cannot be uniquely represented when the 

pitch angle approaches 90 degrees. To generalize the gimbal lock problem, all Euler angle 

sequences that contain all three individual axes of rotation have singularities when pitch 

angle 𝜃 =
𝜋

2
+ 𝑛𝜋. 
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Quaternions 

Using quaternions (Hanson, 2006) to represent the orientation solves the gimbal lock 

problem. Quaternions are the four-dimensional extensions of complex numbers and are 

used in mathematics, computer graphics, and computer vision applications. In the 

proposed MARG-based indoor positioning system, the quaternion representation of 

orientation (Murray et al., 1994) is adopted as part of the system state. The relative 

orientation obtained by integrating the angular velocity is represented using a quaternion 

vector 𝑞. The column vector notation of quaternion 𝑞 is given by (Graf, 2008) 

 

𝑞 = [𝑞0 𝑞1 𝑞2    𝑞3]𝑇 (3.5.14) 

 

A quaternion is generally represented in the form of a set of four elements, where 

𝑎 , 𝑏 , 𝑐 , and 𝑑  are real numbers, and 𝑖 , 𝑗 , and 𝑘  are imaginary units. The imaginary 

dimensions are perpendicular to the real number line and perpendicular to each other. A 

quaternion 𝑞 may be written as (Graf, 2008) 

 

𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 (3.5.15) 

 

The basic multiplication rules of imaginary units 𝑖, 𝑗, and 𝑘 (Graf, 2008) are 

 

𝑖2 = 𝑗2 = 𝑘2 = −1 (3.5.16) 
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𝑖𝑗 = −𝑗𝑖 = 𝑘 (3.5.17) 

𝑘𝑖 = −𝑖𝑘 = 𝑗 (3.5.18) 

𝑗𝑘 = −𝑘𝑗 = 𝑖 (3.5.19) 

 

As shown in Equation (3.5.20), the quaternion 𝑞 can also be written as a pair of a scalar 

𝑞0 and a vector �⃗� = [𝑞1 𝑞2 𝑞3]𝑇 (Graf, 2008). 

 

𝑞 = (𝑞0,  𝑞⃗⃗ ⃗) (3.5.20) 

 

Quaternion multiplication (Diebel, 2006) is used to perform a rotation operation in 

a three-dimensional space. Suppose an original point, denoted as vector 𝑝 =

[𝑥1 𝑦1 𝑧1]𝑇 ∈ ℝ3, is rotated by the rotation quaternion 𝑞 to a new point denoted as 

vector 𝑝′ ∈ ℝ3, the rotation operation is expressed by 

 

𝑝′ = 𝑞 ∙ 𝑝 ∙ 𝑞−1 (3.5.21) 

= (𝑤0 + 𝑥0𝑖 + 𝑦0𝑗 + 𝑧0𝑘)(𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘)(𝑤0 − 𝑥0𝑖 − 𝑦0𝑗 − 𝑧0𝑘)  

 

where ∙ is quaternion multiplication. 

The rotation quaternion 𝑞  is constructed by the axis of rotation �⃗�  =

[𝑞1 𝑞2 𝑞3]𝑇 ∈ ℝ3 a unit vector and the angle of rotation 𝛼 around the rotation axis �⃗�. 

By this definition, we have 
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𝑞 = cos (
𝛼

2
) + sin (

𝛼

2
) �⃗� (3.5.22) 

 

Unit quaternions (Diebel, 2006) are used in the calculations of rotation and 

orientation. A unit quaternion is a quaternion of norm one. Dividing a quaternion 𝑞 by its 

norm ‖𝑞‖ yields a unit quaternion 𝑈𝑞 . The equations of calculating the quaternion norm 

and unit quaternion are  

 

‖𝑞 ‖ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 (3.5.23) 

𝑈𝑞 =
𝑞

‖𝑞‖
 (3.5.24) 

 

As two different representations of spatial rotations in a three-dimensional space, 

Euler angles and unit quaternions are interchangeable (Diebel, 2006). To convert the 

rotation representation from the quaternion to Euler angles in terms of using the 𝑥𝑦𝑧 

sequence of Euler angles, the roll 𝜙, pitch 𝜃, and yaw 𝜓 angles are given by 

 

𝜙 = 𝑎𝑡𝑎𝑛2(2𝑞0𝑞1 + 2𝑞2𝑞3, 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2) (3.5.25) 

𝜃 = −asin (2𝑞1𝑞3 − 2𝑞0𝑞2) (3.5.26) 

𝜓 = 𝑎𝑡𝑎𝑛2(2𝑞0𝑞3 + 2𝑞1𝑞2, 𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) (3.5.27) 
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The inverse conversion from the unit quaternion to Euler angles can be calculated using 

 

𝑞𝑥𝑦𝑧(𝜙, 𝜃, 𝜓) =

[
 
 
 
 
cos 𝜙

2
cos 𝜃

2
cos 𝜓

2
+ sin 𝜙

2
sin 𝜃

2
sin 𝜓

2

cos 𝜃

2
cos 𝜓

2
sin 𝜙

2
− cos 𝜙

2
sin 𝜃

2
sin 𝜓

2

cos 𝜙

2
cos 𝜓

2
sin 𝜃

2
+ sin 𝜙

2
cos 𝜃

2
sin 𝜓

2

cos 𝜙

2
cos 𝜃

2
sin 𝜓

2
− sin 𝜙

2
cos 𝜓

2
sin 𝜃

2]
 
 
 
 

 (3.5.28) 

 

The pedestrian’s orientation at the current system state described by a unit 

quaternion 𝑞 is obtained by taking the integral of the first derivative of quaternion with 

respect to time, which is given by  

 

𝑞 = ∫ �̇�  𝑑𝑡 (3.5.29) 

 

where the first derivative of the unit quaternion �̇�, also known as quaternion rates, is the 

rate of change of the orientation and can be calculated from the angular velocity and the 

previous estimated unit quaternion �̂� (Graf, 2008). We denote the angular velocity in the 

world/inertial frame as �⃗⃗⃗� ∈ ℝ3, and the angular velocity in the body/sensor frame as 𝑤′⃗⃗ ⃗⃗ ⃗ ∈

ℝ3. The equations to calculate �̇� can therefore be written as 

 

𝑞�̇� =
1

2
[
0
�⃗⃗⃗�

] �̂� (3.5.30) 

𝑞𝑤′̇ =
1

2
�̂� [

0

𝑤′⃗⃗ ⃗⃗ ⃗
] (3.5.31) 
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3.6. Magnetic Distortion and Magnetometer Calibration 

As one of the embedded inertial sensors, the magnetometer is used to detect heading and 

orientation by measuring the Earth’s magnetic field. It is a useful measurement data source 

to compensate the gyro drift because errors do not accumulate in magnetometer data. 

However, the compact tri-axis magnetometer is subject to internal errors and external 

magnetic and electric disturbances. When implementing the system, the magnetic field 

measured is a combination of both Earth’s magnetic field and magnetic fields created by 

nearby magnetic disturbances. Misalignment of the sensor also exists in the integrated 

MEMS magnetometer. Since accurate magnetometer measurements are essential 

components of the sensor fusion algorithm, magnetometer calibration is necessary to be 

performed during the initialization and calibration phase of the proposed indoor 

positioning system. 

All magnetic interferences can be divided into two categories: hard-iron 

interferences and soft-iron interferences (Silhavy et al., 2017). The hard-iron interferences 

are created by objects that generate their own magnetic field, while the soft-iron 

interferences deflect and bend the magnetic field when the magnetic object passes through 

the existing magnetic field. In an ideal environment without hard-iron or soft-iron 

interferences, the magnetometer measurements form a sphere centered at the origin. Hard-

iron interferences create a permanent bias (Fang et al., 2011), which pulls the center of the 

sphere away from the origin to the coordinate that equals the hard-iron offset. Soft-iron 

distortions stretch the magnetometer output to an ellipsoid depending on the relative 
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direction of the interference. Generally, the hard-iron effect has a larger contribution to 

the magnetic distortions than the soft-iron effect. 

The hard-and-soft-iron model using least squares fitting (Ozyagcilar, 2015) is 

adopted to mitigate magnetic interferences. After all the parameters of the fitted 

mathematical model are determined, the contaminated magnetometer measurements from 

the surface of the ellipsoid can be transformed back to the surface of a sphere centered at 

the origin. The hard-and-soft-iron model is established with three parameters: the 

geomagnetic field strength scaler 𝐵, the hard-iron vector 𝑀ℎ𝑎𝑟𝑑, and the soft-iron matrix 

𝑀𝑠𝑜𝑓𝑡 . In the following section, the magnetometer calibration model and its least squares 

solution are elaborated. 

 

The Magnetometer Calibration Model 

According to (Ozyagcilar, 2013), any orientation of the smartphone can be modeled as 

resulting from three elemental rotations in sequence applied to a starting orientation with 

the smartphone facing up. Suppose the magnetometer reading of the starting orientation is 

𝐵0 , the geomagnetic field strength is 𝐵 , and the inclination angle is 𝛼 . Magnetic 

inclination is the angle that the geomagnetic field is tilted with respect to the surface of 

the earth. Then, we have 

 

𝐵0 = 𝐵 [
cos 𝛼

0
sin𝛼

] 

 

(3.6.1) 
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The hard-iron offset is defined as a vector 𝑀ℎ𝑎𝑟𝑑 ∈ ℝ3 , and the soft-iron 

interference is defined as a matrix 𝑀𝑠𝑜𝑓𝑡 ∈ ℝ3×3 . Then, the magnetometer reading 𝐵𝑟 

measured after three arbitrary rotations in yaw 𝜓 , pitch 𝜃  and roll 𝜙  by the rotation 

matrices 𝑅𝑧(𝜓), 𝑅𝑦(𝜃), and 𝑅𝑥(𝜙) can be written as 

 

𝐵𝑟 = 𝑀𝑠𝑜𝑓𝑡𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓)𝐵 [
cos 𝛼

0
sin 𝛼

] + 𝑀ℎ𝑎𝑟𝑑 

 

(3.6.2) 

 

To obtain a unique solution of the hard-iron vector 𝑀ℎ𝑎𝑟𝑑 and the soft-iron matrix 𝑀𝑠𝑜𝑓𝑡 , 

a symmetric constraint needs to be imposed onto the inverse soft-iron matrix 𝑀𝑠𝑜𝑓𝑡
−1. For 

most cases when the hard-iron offset dominates the interference, the soft-iron matrix 

𝑀𝑠𝑜𝑓𝑡  is assumed to be the identity matrix 𝐼 ∈ ℝ3×3. Hence, only the hard-iron vector 

𝑀ℎ𝑎𝑟𝑑 and the geomagnetic field strength 𝐵 need to be determined. If we move 𝑀ℎ𝑎𝑟𝑑 

and 𝑀𝑠𝑜𝑓𝑡  to the left side of the above rotation equation, we have 

 

𝑀𝑠𝑜𝑓𝑡
−1(𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑) =  𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓)𝐵 [

cos 𝛼
0

sin 𝛼
] 

 

(3.6.3) 

 

Then we square both sides of the equation, the rotation matrices and the inclination angle 

are cancelled out after expanding the transpose of the right side of the equation. The 

calculation process is shown as  
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(𝑀𝑠𝑜𝑓𝑡
−1(𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑))

𝑇
𝑀𝑠𝑜𝑓𝑡

−1(𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑) = (𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓)𝐵 [
cos𝛼

0
sin 𝛼

])

𝑇

𝑅𝑥(𝜙)𝑅𝑦(𝜃)𝑅𝑧(𝜓)𝐵 [
cos 𝛼

0
sin 𝛼

] 

 (3.6.4) 

With the soft-iron matrix assumption, the equation can be simplified to 

 

(𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑)𝑇(𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑) = 𝐵2 (3.6.5) 

𝐵𝑟
𝑇𝐵𝑟 − 2𝐵𝑟

𝑇𝑀ℎ𝑎𝑟𝑑 + 𝑀ℎ𝑎𝑟𝑑
𝑇𝑀ℎ𝑎𝑟𝑑 − 𝐵2 = 0 (3.6.6) 

 

We define the components of the hard-iron vector 𝑀ℎ𝑎𝑟𝑑  and the components of the 

magnetometer measurement 𝐵𝑟 as 𝑀ℎ𝑎𝑟𝑑 = [𝑀ℎ𝑎𝑟𝑑−𝑥 𝑀ℎ𝑎𝑟𝑑−𝑦 𝑀ℎ𝑎𝑟𝑑−𝑧]𝑇 , 𝐵𝑟 =

[𝐵𝑟𝑥 𝐵𝑟𝑦 𝐵𝑟𝑧]𝑇  respectively. In practice, there is always a residual 𝑟(𝑖) for the 𝑖 th 

measurement, which can be expressed as 

            𝑟(𝑖) = 𝐵𝑟𝑥(𝑖)
2 + 𝐵𝑟𝑦(𝑖)2 + 𝐵𝑟𝑧(𝑖)

2 

                         −2𝐵𝑟𝑥(𝑖)𝑀ℎ𝑎𝑟𝑑−𝑥 − 2𝐵𝑟𝑦(𝑖)𝑀ℎ𝑎𝑟𝑑−𝑦 − 2𝐵𝑟𝑧(𝑖)𝑀ℎ𝑎𝑟𝑑−𝑧 

                         +𝑀ℎ𝑎𝑟𝑑−𝑥
2 + 𝑀ℎ𝑎𝑟𝑑−𝑦

2 + 𝑀ℎ𝑎𝑟𝑑−𝑧
2 − 𝐵2 

(3.6.7) 

 

The above equation can also be written in its matrix form as 

 

𝑟(𝑖) = (𝐵𝑟𝑥(𝑖)
2 + 𝐵𝑟𝑦(𝑖)2 + 𝐵𝑟𝑧(𝑖)

2) − [

𝐵𝑟𝑥(𝑖)

𝐵𝑟𝑦(𝑖)

𝐵𝑟𝑧(𝑖)
1

]

𝑇

[
 
 
 

2𝑀ℎ𝑎𝑟𝑑−𝑥

2𝑀ℎ𝑎𝑟𝑑−𝑦

2𝑀ℎ𝑎𝑟𝑑−𝑧

𝐵2 − 𝑀ℎ𝑎𝑟𝑑−𝑥
2 − 𝑀ℎ𝑎𝑟𝑑−𝑦

2 − 𝑀ℎ𝑎𝑟𝑑−𝑧
2
]
 
 
 

 

 (3.6.8) 
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Now, we expand the equation with 𝑁 number of measurements used to perform the 

magnetometer calibration. We have 

 

[

𝑟(1)

𝑟(2)
⋯

𝑟(𝑁)

] =

[
 
 
 
𝐵𝑟𝑥(1)2 + 𝐵𝑟𝑦(1)2 + 𝐵𝑟𝑧(1)2

𝐵𝑟𝑥(2)2 + 𝐵𝑟𝑦(2)2 + 𝐵𝑟𝑧(2)2

⋯
𝐵𝑟𝑥(𝑁)2 + 𝐵𝑟𝑦(𝑁)2 + 𝐵𝑟𝑧(𝑁)2

]
 
 
 

 

                   −

[
 
 
 
𝐵𝑟𝑥(1)
𝐵𝑟𝑥(2)

⋯
𝐵𝑟𝑥(𝑁)

   

𝐵𝑟𝑦(1)

𝐵𝑟𝑦(2)
⋯

𝐵𝑟𝑦(𝑁)

   

𝐵𝑟𝑧(1)
𝐵𝑟𝑧(2)

⋯
𝐵𝑟𝑧(𝑁)

   

1
1
1
1]
 
 
 

[
 
 
 

2𝑀ℎ𝑎𝑟𝑑−𝑥

2𝑀ℎ𝑎𝑟𝑑−𝑦

2𝑀ℎ𝑎𝑟𝑑−𝑧

𝐵2 − 𝑀ℎ𝑎𝑟𝑑−𝑥
2 − 𝑀ℎ𝑎𝑟𝑑−𝑦

2 − 𝑀ℎ𝑎𝑟𝑑−𝑧
2
]
 
 
 

 

 (3.6.9) 

We define  

𝑟′ = [

𝑟(1)

𝑟(2)
⋯

𝑟(𝑁)

] ∈ ℝ𝑁×1 

 

(3.6.10) 

 

𝑏′ =

[
 
 
 
𝐵𝑟𝑥(1)2 + 𝐵𝑟𝑦(1)2 + 𝐵𝑟𝑧(1)2

𝐵𝑟𝑥(2)2 + 𝐵𝑟𝑦(2)2 + 𝐵𝑟𝑧(2)2

⋯
𝐵𝑟𝑥(𝑁)2 + 𝐵𝑟𝑦(𝑁)2 + 𝐵𝑟𝑧(𝑁)2

]
 
 
 

∈ ℝ𝑁×1 

 

(3.6.11) 

 

𝐴′ =

[
 
 
 
𝐵𝑟𝑥(1)
𝐵𝑟𝑥(2)

⋯
𝐵𝑟𝑥(𝑁)

   

𝐵𝑟𝑦(1)

𝐵𝑟𝑦(2)
⋯

𝐵𝑟𝑦(𝑁)

   

𝐵𝑟𝑧(1)
𝐵𝑟𝑧(2)

⋯
𝐵𝑟𝑧(𝑁)

   

1
1
1
1]
 
 
 
∈ ℝ𝑁×4 

 

(3.6.12) 
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𝑋 =

[
 
 
 

2𝑀ℎ𝑎𝑟𝑑−𝑥

2𝑀ℎ𝑎𝑟𝑑−𝑦

2𝑀ℎ𝑎𝑟𝑑−𝑧

𝐵2 − 𝑀ℎ𝑎𝑟𝑑−𝑥
2 − 𝑀ℎ𝑎𝑟𝑑−𝑦

2 − 𝑀ℎ𝑎𝑟𝑑−𝑧
2
]
 
 
 

∈ ℝ4×1 

 

(3.6.13) 

 

The equation can be further expressed in a simple form as 

 

𝑟′ = 𝑏′ − 𝐴′𝑋 (3.6.14) 

 

From the above equation, we can conclude that the objective of the magnetometer 

calibration problem is to fit the model parameters 𝑀ℎ𝑎𝑟𝑑  and 𝐵  using 𝑁  number of 

magnetometer measurements so that the residual 𝑟′ is minimized in a least squares sense. 

Thus, the magnetometer calibration problem can be expressed in the form of an 

optimization problem as shown in Equation (3.6.15). 

 

𝑋𝐿𝑆 = argmin 
𝑋

‖𝑏′ − 𝐴′𝑋‖2
2 (3.6.15) 

 

The Least Squares Solution 

The least squares solution of the magnetometer calibration problem based on the hard-

and-soft-iron model is calculated by 

 

𝑋 = (𝐴′𝑇𝐴′)−1𝐴′𝑇𝑏′ (3.6.16) 
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Since both the matrix 𝐴′  and the vector 𝑏′  can be obtained from the magnetometer 

measurements vector 𝐵𝑟 , 𝑋 = [𝑋1   𝑋2   𝑋3   𝑋4]
𝑇  can be determined through the least 

squares equation. Once vector 𝑋 is determined, 𝑀ℎ𝑎𝑟𝑑 and 𝐵 are given by 

 

𝑀ℎ𝑎𝑟𝑑 = [

𝑀ℎ𝑎𝑟𝑑−𝑥

𝑀ℎ𝑎𝑟𝑑−𝑦

𝑀ℎ𝑎𝑟𝑑−𝑧

] =
1

2
[
𝑋1

𝑋2

𝑋3

] 

 

(3.6.17) 

 

𝐵 = √𝑋4 + 𝑀ℎ𝑎𝑟𝑑−𝑥
2 + 𝑀ℎ𝑎𝑟𝑑−𝑦

2 + 𝑀ℎ𝑎𝑟𝑑−𝑧
2 

 

(3.6.18) 

 

Figure 3.9 shows the raw magnetometer data with both hard-iron and soft-iron 

interferences and the corrected data by using the calibration method discussed above. 

Figure 3.10 is the comparison of the results before and after the calibration process for the 

case when hard-iron interference dominates. Possible sources of the hard and soft-iron 

distortions are electromagnetic components on the smartphone Printed Circuit Board 

(PCB). Also, the magnetometer is very sensitive to the surrounding magnetic fields. Any 

local magnetic interferences caused by ferromagnetic materials, magnetic objects, fields 

generated by current flows, motors, batteries will corrupt the output of the smartphone 

electronic magnetometer. 
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Figure 3.9: Magnetometer Calibration for Hard-iron and Soft-iron Distortion 

 

Figure 3.10: Magnetometer Calibration When Hard-iron Distortion Dominates 
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3.7. Mode Detection 

After the calibration and initialization phase, the system enters the mode detection module, 

which identifies if the system is in the static or dynamic mode. In the dynamic mode, the 

system is undergoing dynamic motions and the accelerometer is influenced by both 

continuous linear accelerations and the gravitational acceleration instead of only the 

gravitational acceleration. In the static mode, the pedestrian is perceived as standing still 

and only changing moving directions.  

Whether the system is in the static or dynamic mode affects the corresponding step 

detection and heading and orientation estimation. For the step detection, a valid step 

detection process is activated after the system enters the dynamic mode. If the system is 

considered static, only orientation of the system needs to be updated. For the heading and 

orientation estimation, the static mode allows the system to use reference vectors to correct 

the preliminary estimated heading calculated by angular velocity integration, while in the 

dynamic mode, a double phase extended Kalman filter is adopted so that more reliable 

orientation estimation results are produced when the accelerometer measures both 

gravitational acceleration and other accelerations. This dual-mode design reinforces the 

strength of each heading and orientation estimation algorithm in its corresponding mode 

and improves the overall computational efficiency of the entire system.  

To detect the start of the dynamic mode, we calculate the sample variance 𝑆2of the 

magnitude 𝑎𝑖 of accelerometer readings 𝐴𝑟 over a time window 𝑤(𝑛) of length 𝐿. Given 

𝑁 as the total number of measurements, there are 𝑁 − 𝐿 + 1 continuous time windows. 

The 𝑖th accelerometer measurement is denoted by 
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𝐴𝑟(𝑡(𝑖)) = [𝐴𝑟𝑥(𝑡(𝑖)) 𝐴𝑟𝑦(𝑡(𝑖)) 𝐴𝑟𝑧(𝑡(𝑖))]
𝑇
,    𝑖 = 1, 2,… , 𝑁 (3.7.1) 

 

where 𝑡(𝑖) denotes the time instance for the 𝑖th measurement. The magnitude 𝑎𝑖 of each 

accelerometer reading 𝐴𝑟 is calculated by 

 

𝑎𝑖 = √𝐴𝑟𝑥(𝑡(𝑖))
2
+ 𝐴𝑟𝑦(𝑡(𝑖))

2
+ 𝐴𝑟𝑧(𝑡(𝑖))

2
− 𝑔,     𝑖 = 1, 2, … , 𝑁 (3.7.2) 

 

where 𝑔 is the gravitational acceleration. The mean value 𝜇(𝑤(𝑛)) of the 𝐿 observations 

in a time window 𝑤(𝑛) is given by 

 

𝜇(𝑤(𝑛)) =
1

𝐿
∑ 𝑎𝑖

𝐿−1+𝑛

𝑖=𝑛
,     𝑛 = 1, 2,⋯ , 𝑁 − 𝐿 + 1 (3.7.3) 

 

Hence, each sample variance 𝑆2of the magnitude 𝑎𝑖 of accelerometer readings 𝐴𝑟 over a 

time window 𝑤(𝑛) is calculated by 

 

𝑆2(𝑤(𝑛)) =
1

𝐿 − 1
∑  (𝑎𝑖 − 𝜇(𝑤(𝑛)))

2

,
𝐿−1+𝑛

𝑖=𝑛
𝑛 = 1, 2,⋯ ,𝑁 − 𝐿 + 1 (3.7.4) 

 

Once the sample variance 𝑆2(𝑤(𝑛)) of a certain time window exceeds the threshold value 

𝑆𝑑
2, the system enters the dynamic mode and activates the step detection module.  
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3.8. Step Detection 

As one of the main modules of the proposed indoor positioning system, step detection is 

a crucial task that affects the accuracy of the ultimate positioning results. Research of both 

motion recognition (Jabbar et al., 2020) and gait analysis (Sant’Anna and Wickström, 

2010) offer insights into the design of step detection techniques. The step detection module 

not only analyzes gait event of each individual step but also produces step count for the 

distance travelled. The proposed step detection technique does not require a classifier or 

any pre-defined templates. When the pedestrian’s moving speed is fast, the stance phase 

of a gait may be diminished, in which case the threshold-based detection will fail in step 

detection. For this reason, the step detection module is capable of switching between 

threshold-based detection method and peak/valley-based detection method depending on 

the pedestrian’s real-time moving velocity and acceleration. Accelerometer is the most 

exploited IMU measurements for step detection algorithms. Traditional signal processing 

techniques (Forsman et al., 2009) (Díez et al., 2015) and an innovative threshold-less 

signal pattern matching approach (Cho and Park, 2019) have been explored. To develop a 

more robust step detection module, we also leverage the information extracted from 

gyroscope and magnetometer measurements, which further refines the preliminary step 

detection results. A multi-layer step validation approach is used to prevent false step 

counts. The structure of the proposed step detection module is provided in Figure 3.11 and 

described as follows. 

 

https://ieeexplore-ieee-org.libaccess.lib.mcmaster.ca/author/37396144800
https://ieeexplore-ieee-org.libaccess.lib.mcmaster.ca/author/37085733541
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• Signal processing and filtering is performed on raw accelerometer data to reduce and 

smooth out high frequency noises. 

• A scenario-based self-adaptive step detection serves as the first layer of step detection. 

Real-time velocity and acceleration information is used to decide if the system goes 

into the threshold-based detection branch or the peak/valley-based detection branch. 

Also, preliminary adjustments and false step rejection are included. 

• Gyroscope and magnetometer measurements are incorporated as step detection 

refinement, which serves as the second layer of step detection. 

• A multi-layer step validation process enhances the performance of the step detection 

module. 

 

 

Figure 3.11: Proposed Step Detection Module Structure 
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Digital Signal Filtering 

IMU sensors exhibit a variety of deterministic errors and stochastic high frequency noises. 

Deterministic errors can be eliminated by analyzing the digital signal and building an error 

model. The stochastic high frequency white noise of the accelerometer can be smoothed 

out through digital signal filtering techniques. As a data preprocessing method, a low-pass 

filter is used for removing those high frequency noises shown in the frequency domain of 

the accelerometer signal. This step serves as a preliminary digital signal processing step 

to filter out sensor noises. The cut-off frequency of the filter is actively adjusted based on 

the pedestrian’s moving speed. Using a fixed cut-off frequency for filtering the signal may 

result in over-filtering or under-filtering the signal. 

 

Scenario-based Self-adaptive Step Detection 

We consider that the smartphone is handheld and placed in front of the waist area with its 

screen facing up, mimicking the circumstance of foot-mounted devices. The first 

advantage of this device setup is that change of orientation mainly affects the 𝑧-axis 

instead of all three axes. Another advantage is that the mid stance phase of a human gait 

cycle is detectable although the static period is usually assumed for foot-mounted step 

detection systems. Identifying the mid stance phase of a gait cycle is of importance 

because raw accelerometer data lead to cumulative errors as shown in Figure 3.3. Once a 

stance phase is detected, the corresponding velocity can be corrected as zero for the gait 

cycle. The acceleration norm without gravity compensation is used for detecting the steps. 

Figure 3.12 illustrates the signal pattern of acceleration norm when the moving speed is 
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constant. The mid stance phase can be determined when the acceleration norm is less than 

a threshold 𝛿, which can be written as 

 

‖𝐴𝑟(𝑡(𝑖))‖ < 𝛿,     𝑖 = 1, 2,… , 𝑁 (3.8.1) 

 

However, the acceleration fluctuates greatly in magnitude when moving with varying 

speeds as shown in Figure 3.13, in which case, threshold-based detection may leave out 

the periods under slower speed motion. We use each peak/valley pair to represent a single 

step when the pedestrian is not moving with a constant speed. 

 

 

Figure 3.12: Signal Pattern under Constant Speed Motion 
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Figure 3.13: Signal Pattern under Varying Speeds Motion 

 

For peak-based detection, a step is detected at the time instance 𝑡(𝑖 − 1) when 

‖𝐴𝑟(𝑡(𝑖 − 1))‖ is a local maximum. In addition to this condition, more constraints are 

needed to eliminate the undesired false positive peaks due to noises in the signal. The 

conditions combined with all constraints are summarized as follows. 

 

Algorithm 1a Peak/Valley-based Step Detection: Peak/Valley Detection 

Input: 𝑚th peak time instance 𝑡𝑝(𝑚), 𝑘th valley time instance 𝑡𝑣(𝑘), all peaks time 

instance set 𝑇𝑝, all valleys time instance set 𝑇𝑣, accelerometer data 𝐴𝑟, time instance 

𝑡(𝑖), 𝑖 = 1,2,…. 

1: 𝑚 = 0, 𝑘 = 0 

2: for all 𝑖 = 2, … do  

3:       if ‖𝐴𝑟(𝑡(𝑖 − 1))‖ > ‖𝐴𝑟(𝑡(𝑖 − 2))‖ and ‖𝐴𝑟(𝑡(𝑖 − 1))‖ > ‖𝐴𝑟(𝑡(𝑖))‖ then  

4:           𝑚 = 𝑚 + 1, 𝑡𝑝(𝑚) = 𝑡(𝑖 − 1), append 𝑡𝑝(𝑚) to set 𝑇𝑝 

5:       end if 

6:       if ‖𝐴𝑟(𝑡(𝑖 − 1))‖ < ‖𝐴𝑟(𝑡(𝑖 − 2))‖ and ‖𝐴𝑟(𝑡(𝑖 − 1))‖ < ‖𝐴𝑟(𝑡(𝑖))‖ then 

7:           𝑘 = 𝑘 + 1, 𝑡𝑣(𝑘) = 𝑡(𝑖 − 1), append 𝑡𝑣(𝑘) to set 𝑇𝑣 

8:       end if 

9: end for 
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Algorithm 1b Peak/Valley-based Step Detection: Preliminary Adjustments, 

                        Acceptance Regions, and Sudden Change in Speed and Device Motion 

Input: 𝑚th peak time instance 𝑡𝑝(𝑚), 𝑚th valley time instance 𝑡𝑣(𝑚), all peaks time 

instance set 𝑇𝑝, all valleys time instance set 𝑇𝑣, accelerometer data 𝐴𝑟, minimum time 

interval Δ𝑡𝑝
′,time instance 𝑡(𝑖), 𝑖 = 1,2,…. 

1: for all 𝑚 = 3,4,… do  

2:       if ‖𝐴𝑟 (𝑡𝑝(𝑚))‖ <
1

2
(‖𝐴𝑟 (𝑡𝑝(𝑚 − 1))‖ + ‖𝐴𝑟 (𝑡𝑝(𝑚 − 2))‖) then 

3:           if 𝑡𝑝(𝑚) − 𝑡𝑝(𝑚 − 1) < Δ𝑡𝑝
′ then 

4:               Remove 𝑡𝑝(𝑚) from set 𝑇𝑝 

5:           end if 

6:                   if 𝑡𝑝(𝑚) < 𝑡𝑣(𝑚) + 1

2
(𝑡𝑣(𝑚) − 𝑡𝑝(𝑚 − 1)) then 

7:               Remove 𝑡𝑝(𝑚) from set 𝑇𝑝 

8:           end if 

9:           if 𝑡𝑝(𝑚) > 𝑡𝑣(𝑚) +
4

5
(𝑡𝑣(𝑚) − 𝑡𝑣(𝑚 − 1)) then 

10:               Remove 𝑡𝑝(𝑚) from set 𝑇𝑝 

11:           end if 

12:       end if 

13:       if ‖𝐴𝑟(𝑡𝑣(𝑚))‖ <
1

2
(‖𝐴𝑟(𝑡𝑣(𝑚 − 1))‖ + ‖𝐴𝑟(𝑡𝑣(𝑚 − 2))‖) then 

14:           if 𝑡𝑣(𝑚) < 𝑡𝑝(𝑚 − 1) + 1

2
(𝑡𝑝(𝑚 − 1) − 𝑡𝑣(𝑚 − 1)) then 

15:               Remove 𝑡𝑣(𝑘) from 𝑇𝑣 

16:           end if 

17:                   if 𝑡𝑣(𝑚) > 𝑡𝑝(𝑚 − 1) +
4

5
(𝑡𝑝(𝑚 − 1) − 𝑡𝑝(𝑚 − 2)) then 

18:               Remove 𝑡𝑣(𝑘) from 𝑇𝑣 

19:           end if 

20:       end if 

21: end for 

  

As shown in Algorithm 1a, a peak or valley is detected if the value at the time instance is 

a local maximum or a local minimum. The minimum time difference between two 

consecutive detected peaks is constrained by a threshold Δ𝑡𝑝
′  as shown in line 3 of 

Algorithm 1b. The peak-based detection also makes preliminary adjustments based on 

peak/valley acceptance and rejection regions. Any spikes that fall into the rejection regions 
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are removed. Lines 6-11 of Algorithm 1b define the peak rejection region. Lines 14-19 of 

Algorithm 1b define the valley rejection region. The starting points of the acceptance 

regions are based on the previous detected peak and valley. Specifically, the peak-based 

step detection algorithm will start to search for the next potential peak/valley only after a 

time period that equals half of the time interval between the most recently detected peak 

and valley. Figure 3.14 illustrates the acceptance and rejection regions for peaks and 

valleys. The magnitude difference of the acceleration norm signal represents change in 

moving speed. A peak detected in the rejection region with sufficient magnitude may 

indicate sudden change in speed, so it is converted back to a valid peak value (the outer if 

statements of Algorithm 1b). Figure 3.15 shows the detected peaks based on the conditions 

and constraints of the peak-based step detection method.  

 

 

Figure 3.14: Acceptance and Rejection Regions of Peak-based Approach 
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Figure 3.15: Step Detection Result of Peak-based Approach 

 

Step Detection Refinement 

As the second layer of step detection of the proposed positioning system, step detection 

refinement extracts useful information from both measured angular velocity and magnetic 

field to further optimize the step detection results. These two separate data sources are 

used to not only verify the detected steps generated by the first layer based on acceleration 

norm but also eliminate some undesired peaks. 

The angular velocity measured by the gyroscope sensor demonstrates repetitive 

signal patterns in 𝑧-axis under certain types of motions. As shown in Figure 3.16, through 

calculating the variance of each axis of the signal, the 𝑧-axis is detected as the dominant 

axis influenced by rotational motions. If the pattern with high angular velocity occurs in 

the signal periodically, the gyroscope signal data in the 𝑧-axis will be compared and 

analyzed with the acceleration norm. Figure 3.17 overlies the angular velocity along the  

𝑧-axis on top of the parallel shifted acceleration norm. The high angular velocity moments 

represent a body rotation motion, while the normal stable angular velocity periods are 
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considered as motions of moving in a straight line at a speed determined by the 

acceleration. Any steps that are detected by either the threshold-based method or the peak-

based method and also fall into the momentary body rotation periods are eliminated, 

because of the abnormally high angular rates. 

 

Figure 3.16: Tri-axis Gyroscope Angular Velocity Signal Data 

 

 

Figure 3.17: Signal Pattern Matching between 
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The magnetic field intensity should be fixed if the pedestrian stays in the same 

position with the same orientation in the indoor environment. Any abrupt changes in 

measured magnetic field intensity are the results of either surrounding magnetic 

interferences or change of device orientation. Similar to the gyroscope signals, 

magnetometer signals also demonstrate periodical signal patterns. The difference between 

the two is that the repetitive pattern in the magnetometer signal shows in more than one 

axis. The gyroscope signal is affected by certain rotation motions with respect to one axis, 

while all three orthogonal components of the magnetometer signal are influenced by the 

specific position and orientation of the sensor. As shown in Figure 3.18, the periods 

experiencing significant magnetic intensity changes (the 𝑥-axis and 𝑦-axis magnetic field 

components are plotted) coincide with those high angular velocity moments, which further 

validates the body rotation motions detected by the gyroscope. When there is no active 

magnetic interference, the sudden changes of the magnetic intensity are solely caused by 

changes in the orientation of the sensor frame as expected. Magnetic perturbations are 

detected when a sudden change in magnetic intensity occurs with a stable near zero 

angular velocity. The magnetometer should be recalibrated to remove the magnetic 

distortion if any strong magnetic interference is detected. Moreover, repeating motions 

can be recognized by identifying highly repetitive magnetic field signal patterns. 
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Figure 3.18: Signal Pattern Matching 

between Acceleration Norm and Magnetic Field 

 

Step Validation 

After two layers of step detection, a final layer of step validation is implemented as a 

validity check of the step detection results. The step validation includes a velocity validity 

check and a distance validity check. First, we take the integral of the acceleration signal 

combined with the detected step sequence pattern with respect to time. It is considered 

valid as long as the calculated velocity is under a threshold value 𝑉𝑒𝑙𝑛𝑜𝑟𝑚𝑎𝑙 for walking 
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The proposed step detection module relies on the three layers to detect steps using 

MARG sensor data stream and verify the estimated step sequence pattern. 
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3.9. Dead Reckoning-based Heading and Orientation Estimation 

Position is estimated by combing the detected steps and the heading and orientation 

estimation results. Heading estimation is the process of determining the direction of the 

pedestrian’s movement. As discussed in the step detection section, the smartphone is 

handheld and placed in front of the waist area with its screen facing up and the relative 

position of the smartphone is fixed to the pedestrian’s body, so coordinate transformations 

between the body and the sensor frame are unnecessary. For both the static mode and the 

dynamic mode, the heading and orientation estimation module first generates a 

preliminary estimated gyroscope-based heading calculated by angular velocity integration. 

Adopting the reference vectors idea proposed in (Madgwick et al., 2020), then the system 

uses reference vectors obtained from accelerometer and magnetometer sensors to correct 

the preliminary estimated heading if it is in the static mode. Sensor fusion corrections are 

necessary because gyroscope measurements drift away over time, which leads to errors in 

the calculated heading and orientation results. If the system is in the dynamic mode, a 

double phase extended Kalman filter is adopted to pull back the gyroscope-based heading 

estimation and produce a more accurate orientation estimation, because the accelerometer 

under the dynamic mode measures both the gravitational acceleration and external 

accelerations. Since a gyroscope provides relative heading, the initial orientation is 

calculated using accelerometer and magnetometer measurements. This dual-mode design 

not only reinforces the strength of each heading and orientation estimation algorithm in 

its more suitable mode but also increases the overall computational efficiency. 
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Initial Orientation Calculation 

The initial orientation can be calculated based on accelerometer and magnetometer 

measurements. Any orientation of the smartphone can be modeled as resulting from three 

elemental rotations in sequence applied to a starting orientation with the smartphone 

facing up and not undergoing any linear acceleration. Suppose the accelerometer readings 

in the starting position and measured after three rotations are 𝐴0 and 𝐴𝑟 respectively. We 

have 

 

𝐴0 = [0 0 𝑔]𝑇 (3.9.1) 

𝐴𝑟 = 𝑅𝑥(𝜙0)𝑅𝑦(𝜃0)𝑅𝑧(𝜓0)𝐴0 (3.9.2) 

 

According to (Ozyagcilar, 2015), the initial roll angle 𝜙0 and the initial pitch angle 𝜃0 are 

calculated from the accelerometer measurements by pre-multiplying 𝐴𝑟  by inverse 

rotation matrices, which are expressed as 

 

𝑅𝑦(−𝜃0)𝑅𝑥(−𝜙0)𝐴𝑟 = 𝑅𝑧(𝜓0)𝐴0 = [
cos (𝜓0) sin (𝜓0) 0
−sin (𝜓0) cos (𝜓0) 0

0 0 1

] [
0
0
𝑔
] (3.9.3) 

  𝑅𝑦(−𝜃0)𝑅𝑥(−𝜙0)𝐴𝑟 = 𝑅𝑧(𝜓0)𝐴0 = [
0
0
𝑔
] (3.9.4) 

 

The three components of 𝐴𝑟 are defined as 𝐴𝑟 = [𝐴𝑟𝑥 𝐴𝑟𝑦 𝐴𝑟𝑧]𝑇. By substituting 𝐴𝑟 

with its column vector form, we have 
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𝑅𝑦(−𝜃0)𝑅𝑥(−𝜙0) [

𝐴𝑟𝑥

𝐴𝑟𝑦

𝐴𝑟𝑧

] = [
0
0
𝑔
] (3.9.5) 

 

By substituting Equations (3.5.7) and (3.5.6) into Equation (3.9.5) and rearranging, we 

have 

 

[

𝐴𝑟𝑥 cos(𝜃0) + 𝐴𝑟𝑦 sin(𝜃0) sin(𝜙0) + 𝐴𝑟𝑧 sin(𝜃0) cos(𝜙0)

𝐴𝑟𝑦 cos(𝜙0) − 𝐴𝑟𝑧 sin(𝜙0)

−𝐴𝑟𝑥 sin(𝜃0) + 𝐴𝑟𝑦 cos(𝜃0) sin(𝜙0) + 𝐴𝑟𝑧 cos(𝜃0) cos(𝜙0)

] = [
0
0
𝑔
] (3.9.6) 

 

The initial roll angle 𝜙0 and the initial pitch angle 𝜃0 are given by 

 

𝜙0 = tan−1 (
𝐴𝑟𝑦

𝐴𝑟𝑧
) (3.9.7) 

𝜃0 = tan−1 (
−𝐴𝑟𝑥

𝐴𝑟𝑦 sin(𝜙0) + 𝐴𝑟𝑧 cos(𝜙0)
) (3.9.8) 

 

The initial yaw angle 𝜓0 can be obtained by using the magnetometer measurements. As 

discussed in Section 3.6, the magnetometer reading 𝐵𝑟 measured after three rotations is 

given by 
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𝐵𝑟 = 𝑅𝑥(𝜙0)𝑅𝑦(𝜃0)𝑅𝑧(𝜓0)𝐵 [
cos 𝛼

0
sin 𝛼

] + 𝑀ℎ𝑎𝑟𝑑 

 

(3.9.9) 

 

By rearranging and pre-multiplying the term 𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑  by 𝑅𝑥(−𝜙0) and 𝑅𝑦(−𝜃0), we 

have 

 

𝑅𝑦(−𝜃0)𝑅𝑥(−𝜙0)(𝐵𝑟 − 𝑀ℎ𝑎𝑟𝑑) = 𝑅𝑧(𝜓0)𝐵 [
cos 𝛼

0
sin 𝛼

] 

 

(3.9.10) 

 

After we substitute 𝑀ℎ𝑎𝑟𝑑  and 𝐵𝑟 with their column vector forms, substitute Equations 

(3.5.6), (3.5.7), and (3.5.8) into Equation (3.9.10), and rearrange the equation, we have  

 

[

(𝐵𝑟−𝑥 − 𝑀ℎ𝑎𝑟𝑑−𝑥) cos(𝜃0) + (𝐵𝑟−𝑦 − 𝑀ℎ𝑎𝑟𝑑−𝑦) sin(𝜃0) sin(𝜙0) + (𝐵𝑟−𝑧 − 𝑀ℎ𝑎𝑟𝑑−𝑧) sin(𝜃0) cos(𝜙0)

(𝐵𝑟−𝑦 − 𝑀ℎ𝑎𝑟𝑑−𝑦) cos(𝜙0) − (𝐵𝑟−𝑧 − 𝑀ℎ𝑎𝑟𝑑−𝑧) sin(𝜙0)

−(𝐵𝑟−𝑥 − 𝑀ℎ𝑎𝑟𝑑−𝑥) sin(𝜃0) + (𝐵𝑟−𝑦 − 𝑀ℎ𝑎𝑟𝑑−𝑦) cos(𝜃0) sin(𝜙0) + (𝐵𝑟−𝑧 − 𝑀ℎ𝑎𝑟𝑑−𝑧) cos(𝜃0) cos(𝜙0)

] 

             = [
Bcos(𝜓0) cos𝛼

−Bsin(𝜓0) cos𝛼
𝐵 sin 𝛼

] 

 (3.9.11) 

As Equation (3.9.11) is in the form of matrix equality, we have three equations by 

comparing each element of the two matrices. If we divide the second equation by the first 

equation from both sides, the initial yaw angle 𝜓0 can be calculated as 
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𝜓0

= tan−1 (
(𝐵𝑟−𝑧 − 𝑀ℎ𝑎𝑟𝑑−𝑧) sin(𝜙0) − (𝐵𝑟−𝑦 − 𝑀ℎ𝑎𝑟𝑑−𝑦)cos (𝜙0)

(𝐵𝑟−𝑥 − 𝑀ℎ𝑎𝑟𝑑−𝑥) cos(𝜃0) + (𝐵𝑟−𝑦 − 𝑀ℎ𝑎𝑟𝑑−𝑦) sin(𝜃0) sin(𝜙0) + (𝐵𝑟−𝑧 − 𝑀ℎ𝑎𝑟𝑑−𝑧)sin (𝜃0)cos (𝜙0)
) 

 (3.9.12) 

 

Static Mode Heading and Orientation Estimation 

In the static mode, the indoor positioning system uses a unit quaternion 𝑞𝑤
𝑏  to represent 

the orientation in the world reference frame relative to the sensor/body frame. Since the 

relative position of the IMU sensors is fixed to the pedestrian’s body, the unit quaternion 

𝑞𝑤
𝑏  also represents the pedestrian’s orientation at the current system state and can be 

obtained by taking the integral of the first derivative of the quaternion with respect to time. 

𝑞𝑤
𝑏  is then given by  

 

𝑞𝑤
𝑏 = ∫𝑞𝑤′̇  𝑑𝑡 (3.9.13) 

 

The first derivative of the unit quaternion 𝑞𝑤′̇ , also known as quaternion rates, is the rate 

of change of the orientation. 𝑞𝑤′̇  can be calculated based on gyroscope measurements 

𝐶𝑟 = [𝐶𝑟𝑥 𝐶𝑟𝑦 𝐶𝑟𝑧]𝑇 and the previous orientation. All gyroscope measurements are 

defined as 

 

𝐶𝑟(𝑡(𝑖)) = [𝐶𝑟𝑥(𝑡(𝑖)) 𝐶𝑟𝑦(𝑡(𝑖)) 𝐶𝑟𝑧(𝑡(𝑖))]
𝑇
,    𝑖 = 1, 2, … , 𝑁 (3.9.14) 
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where 𝑡(𝑖) denotes each time instance. Hence, the first derivative of the unit quaternion 

𝑞𝑤′̇  is estimated by 

(𝑞𝑤′)̇ 𝑖 =
1

2
( 𝑞)𝑤

𝑏
𝑖−1 ∙ [0 𝐶𝑟𝑥(𝑡(𝑖)) − 𝑘1𝑒 𝐶𝑟𝑦(𝑡(𝑖)) − 𝑘1𝑒    𝐶𝑟𝑧(𝑡(𝑖)) − 𝑘1𝑒]

𝑇
 

 (3.9.15) 

where ∙ is quaternion multiplication. 

In Equation (3.9.15), a model gain value 𝑘1 and a control variable 𝑒 are introduced 

based on (Madgwick et al., 2020) to prevent the gyroscope measurements from drifting 

away and to correct the preliminarily estimated heading calculated by pure gyroscope 

integration. The model gain value 𝑘1  serves as the weight given to the orientation 

estimation correction term. The normal value of 𝑘1 should be comparatively small when 

the system stays in a stable state without any significant turbulences. The reason of 

applying a small value of 𝑘1 is that the control variable 𝑒 is used to compensate for low 

frequency errors resulting from the gyroscopic drift. However, the value of 𝑘1 could be 

moderately increased during the early stages of the system because the initial calculated 

orientation always deviates significantly from the true orientation. Moreover, when 

erroneous accelerometer and magnetometer measurements are collected, the value of 𝑘1 

should be decreased so that the estimated orientation mainly depends on the result of 

gyroscope integration. The orientation estimation correction control variable 𝑒 is given by  

𝑒 = 𝑒𝑎 + 𝑒𝑚, where 𝑒𝑎 and 𝑒𝑚 are calculated using the measured and reference vectors 

for gravity and magnetic field respectively. That is, the angle difference between the 
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measured vector and the rotated reference vector determines the orientation correction 

values. 

The control variable 𝑒𝑎  at current system state is equal to the cross product of 

�̂�𝑟(𝑡(𝑖)) the normalized accelerometer measurement vector at current time instance and 

𝑝𝑔
′ the reference vector for gravity. So 𝑒𝑎 is given by 

 

𝑒𝑎 = �̂�𝑟(𝑡(𝑖)) × 𝑝𝑔
′ (3.9.16) 

 

For measured accelerometer data, the normalized vector is calculated by  

 

�̂�𝑟 =
𝐴𝑟

‖𝐴𝑟‖
 (3.9.17) 

 

The reference vector 𝑝𝑔
′  is derived from quaternion multiplications of the rotation 

quaternion ( 𝑞)𝑤
𝑏

𝑖, the gravity vector 𝑝𝑔, and the inverse of the rotation quaternion ( 𝑞)𝑤
𝑏

𝑖
−1

. 

𝑝𝑔
′ can be calculated by 

 

𝑝𝑔
′ = ( 𝑞)𝑤

𝑏
𝑖 ∙ 𝑝𝑔 ∙ ( 𝑞)𝑤

𝑏
𝑖
−1

 (3.9.18) 

 

where ∙ is quaternion multiplication. ( 𝑞)𝑤
𝑏

𝑖  is the current estimation of the pedestrian’s 

orientation, which can be expressed as 
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( 𝑞)𝑤
𝑏

𝑖 = [𝑞𝑖0 𝑞𝑖1 𝑞𝑖2    𝑞𝑖3]𝑇 (3.9.19) 

 

𝑝𝑔 is the gravity vector, which is given by 

 

𝑝𝑔 = [0 0 −1]𝑇 (3.9.20) 

 

Based on the relationship between unit quaternion and rotation matrix described in (Diebel, 

2006), 𝑝𝑔
′ is further calculated as the result of matrix multiplication of rotation matrix 𝑅𝑞 

and the gravity vector 𝑝𝑔. 𝑝𝑔
′ is given by 

 

𝑝𝑔
′ = 𝑅𝑞𝑝𝑔 (3.9.21) 

𝑅𝑞 = [

𝑞𝑖0
2 + 𝑞𝑖1

2 − 𝑞𝑖2
2 − 𝑞𝑖3

2 2𝑞𝑖1𝑞𝑖2 + 2𝑞𝑖0𝑞𝑖3 2𝑞𝑖1𝑞𝑖3 − 2𝑞𝑖0𝑞𝑖2

2𝑞𝑖1𝑞𝑖2 − 2𝑞𝑖0𝑞𝑖3 𝑞𝑖0
2 − 𝑞𝑖1

2 + 𝑞𝑖2
2 − 𝑞𝑖3

2 2𝑞𝑖2𝑞𝑖3 + 2𝑞𝑖0𝑞𝑖1

2𝑞𝑖1𝑞𝑖3 + 2𝑞𝑖0𝑞𝑖2 2𝑞𝑖2𝑞𝑖3 − 2𝑞𝑖0𝑞𝑖1 𝑞𝑖0
2 − 𝑞𝑖1

2 − 𝑞𝑖2
2 + 𝑞𝑖3

2

] 

 (3.9.22) 

 

By simple matrix multiplication, the reference vector 𝑝𝑔
′ at current system state is 

 

𝑝𝑔
′ = [2(𝑞𝑖0𝑞𝑖2 − 𝑞𝑖1𝑞𝑖3) −2(𝑞𝑖2𝑞𝑖3 + 𝑞𝑖0𝑞𝑖1) −𝑞𝑖0

2 + 𝑞𝑖1
2 + 𝑞𝑖2

2 − 𝑞𝑖3
2]𝑇 

 (3.9.23) 

 



 

 

 

      M.A.Sc. Thesis – Y. Miao                                                             McMaster University – ECE 

 81 

Similarly, the control variable 𝑒𝑚  at current system state is equal to the cross 

product of �̂�𝑟
′
(𝑡(𝑖)) the converted and normalized magnetometer measurement vector at 

current time instance and 𝑝𝑚
′ the reference vector for the magnetic field. So 𝑒𝑚 is given 

by 

 

𝑒𝑚 = �̂�𝑟
′
(𝑡(𝑖)) × 𝑝𝑚

′ (3.9.24) 

 

By taking the cross product of the measured gravity vector and the measured magnetic 

vector, the measured magnetic vector �̂�𝑟(𝑡(𝑖)) is converted to magnetic east, which is 

perpendicular to gravity. The �̂�𝑟
′
(𝑡(𝑖)) denotes the converted �̂�𝑟(𝑡(𝑖)) and is given by 

 

�̂�𝑟
′
(𝑡(𝑖)) = �̂�𝑟(𝑡(𝑖)) × �̂�𝑟(𝑡(𝑖)) (3.9.25) 

 

For measured magnetometer data, the normalized vector is calculated by  

 

�̂�𝑟 =
𝐵𝑟

‖𝐵𝑟‖
 (3.9.26) 

 

The reference vector 𝑝𝑚
′  is derived from quaternion multiplications of the rotation 

quaternion ( 𝑞)𝑤
𝑏

𝑖, the magnetic east vector 𝑝𝑚, and the inverse of the rotation quaternion 

( 𝑞)𝑤
𝑏

𝑖
−1

. 𝑝𝑚
′ can be calculated by 
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𝑝𝑚
′ = ( 𝑞)𝑤

𝑏
𝑖 ∙ 𝑝𝑚 ∙ ( 𝑞)𝑤

𝑏
𝑖
−1

 (3.9.27) 

 

where ∙ is quaternion multiplication. 𝑝𝑚 is the original reference vector for the magnetic 

field, which is given by 

 

𝑝𝑚 = [0 −1 0]𝑇 (3.9.28) 

 

Based on the same matrix multiplication method used for calculating 𝑝𝑔
′, the reference 

vector 𝑝𝑚
′ at current system state can be written in the same way as 

 

𝑝𝑚
′ = 𝑅𝑞𝑝𝑚 (3.9.29) 

𝑝𝑚
′ = [−2(𝑞𝑖1𝑞𝑖2 + 𝑞𝑖0𝑞𝑖3) −𝑞𝑖0

2 + 𝑞𝑖1
2 − 𝑞𝑖2

2 + 𝑞𝑖3
2 2(𝑞𝑖0𝑞𝑖1 − 𝑞𝑖2𝑞𝑖3)]

𝑇 

 (3.9.30) 

 

Dynamic Mode Heading and Orientation Estimation 

In the dynamic mode, a double phase extended Kalman filter is adopted so that more 

reliable orientation estimation results are produced when the accelerometer measures both 

the gravitational acceleration and other accelerations. Similar to the Kalman filter (Kalman, 

1960), a typical extended Kalman filter algorithm consists of two stages: prediction and 

update. The proposed indoor positioning system uses the gyroscope data to estimate the 

pedestrian’s orientation in the prediction stage and uses the accelerometer data and 
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magnetometer data to correct the angular velocity-based orientation estimation errors in 

the update stage. 

The prediction stage includes two critical equations: predicted state estimate and 

predicted error covariance. The prediction stage equations are given by  

 

Predicted state estimate:  

�̂�𝑖
− = 𝐹�̂�𝑖−1

+ + 𝐵𝑢𝑖−1 (3.9.31) 

Predicted error covariance:  

𝑃𝑖
− = 𝐹𝑃𝑖−1

+𝐹𝑇 + 𝑄 (3.9.32) 

 

In the extended Kalman filter equations, the hat operator denotes an estimate of the 

variable. The superscripts – and + denote prior and posterior estimates respectively. 

The predicted state estimate is evolved from the previous updated state estimate. 

The predicted state estimate equation defines a discrete time state model that describes the 

evolution of the current system state �̂�𝑖
−

 from the previous updated system state 

estimation �̂�𝑖−1
+

. 𝐹 is the state transition matrix from the previous state to the current state. 

𝐵 is the input control matrix associated with the system input 𝑢𝑖−1. Since any prediction 

has noises and uncertainties, keeping track of the error covariance is necessary. In the 

predicted error covariance equation, the prior state error covariance 𝑃𝑖
− representing the 

error in the state transition and estimation process is calculated using the same state 
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transition matrix 𝐹, the previous updated posterior error covariance matrix 𝑃𝑖−1
+ and the 

process noise covariance matrix 𝑄. 

Similar to the static mode model, a unit quaternion 𝑞𝑤
𝑏 ′representing the orientation 

is used as system state in the predicted state estimate equation for the dynamic mode model. 

Quaternion 𝑞𝑤
𝑏 ′ can be obtained by performing direct gyroscope integration. The 

gyroscope integration process defines the system state transition process, and there is no 

external system input 𝑢𝑖−1 and input control matrix 𝐵 for the dynamic mode model. Given 

gyroscope measurements 𝐶𝑟 = [𝐶𝑟𝑥 𝐶𝑟𝑦 𝐶𝑟𝑧]𝑇, 𝑞𝑤
𝑏 ′ is calculated by 

 

𝑞𝑤
𝑏 ′ = ∫𝑞𝑤′̇ ′  𝑑𝑡 (3.9.33) 

(𝑞𝑤′̇ ′
)𝑖 =

1

2
( 𝑞𝑤

𝑏 ′)𝑖−1 ∙ [0 𝐶𝑟𝑥(𝑡(𝑖)) 𝐶𝑟𝑦(𝑡(𝑖))    𝐶𝑟𝑧(𝑡(𝑖))]
𝑇
 (3.9.34) 

 

where ∙  is quaternion multiplication. 𝑞𝑤
𝑏 ′  is the current prediction of the pedestrian’s 

orientation in the dynamic mode, which is expressed as 

 

( 𝑞𝑤
𝑏 ′)𝑖 = [𝑞𝑖0

′ 𝑞𝑖1
′ 𝑞𝑖2

′    𝑞𝑖3
′]𝑇 (3.9.35) 

 

As described above, the proposed indoor positioning system uses gyroscope data 

only to estimate the pedestrian’s orientation in the prediction stage. In the update stage of 

the extended Kalman filter, the accelerometer data and magnetometer data serve as new 

observations to further correct the prior estimates �̂�𝑖
−

 and 𝑃𝑖
− (Sabatelli et al., 2013). The 
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update stage of the extended Kalman filter algorithm includes three main equations: 

update state estimate, update error covariance, and Kalman gain. 

 

Update state estimate:  

�̂�𝑖
+ = �̂�𝑖

− + 𝐾𝑖(𝑧𝑖 − ℎ(�̂�𝑖
−)) (3.9.36) 

Kalman gain:  

𝐾𝑖 = 𝑃𝑖
−𝐻𝑖

𝑇(𝐻𝑖𝑃𝑖
−𝐻𝑖

𝑇 + 𝑅)−1 (3.9.37) 

Update error covariance:  

𝑃𝑖
+ = (𝐼 − 𝐾𝑖𝐻) 𝑃𝑖

− (3.9.38) 

 

The update state estimate equation generates a new posterior estimate �̂�𝑖
+

 by 

combining the prior estimate �̂�𝑖
−

obtained from the prediction stage with accelerometer 

measurements and magnetometer measurements. The proposed orientation algorithm is 

designed to have two phases in the extended Kalman filter update stage. The first phase 

uses accelerometer data to correct the orientation estimate and the second phase uses 

magnetometer data to further adjust the result. In the update state estimate equation, 𝑧𝑖 is 

the actual accelerometer or magnetometer measurement data. The nonlinear function 

ℎ(�̂�𝑖
−)is the expected measurement calculated from the prediction stage. In this system, 

ℎ(�̂�𝑖
−) is predicted gravity for Phase I and magnetic field for Phase II.  The term 𝑧𝑖 −

ℎ(�̂�𝑖
−), which is the difference between the actual and expected measurements, is known 

as the measurement residual or innovation. Then the measurement residual is weighted 
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with the Kalman gain 𝐾𝑖 to calculate the posterior estimate �̂�𝑖
+

. Adopting the Kalman 

gain is most effective for the system dynamic mode when the accelerometer measures both 

gravity and other accelerations because under this circumstance the measurement residual 

is large.  

The Kalman gain 𝐾𝑖  determines the weight given to the estimation correction 

derived from measurement data. The Kalman gain 𝐾𝑖 is obtained by comparing the prior 

state error covariance 𝑃𝑖
− and the measurement noise covariance matrix 𝑅. Measurement 

noise includes accelerometer and magnetometer measurement noise and other system 

noises. In the Kalman gain equation, 𝐻𝑖 is the Jacobian matrix that collects the partial 

derivatives of the predicted measurement ℎ( 𝑞𝑤
𝑏 ′) obtained using the current orientation 

estimation quaternion with respect to the quaternion. Since the predicted measurement 

ℎ( 𝑞𝑤
𝑏 ′) for Phase I and Phase II are calculated differently, two Kalman gains are used in 

this model. 

In the update stage of the extended Kalman filter algorithm, the posterior error 

covariance matrix 𝑃𝑖
+  is calculated using the prior state error covariance 𝑃𝑖

−  and the 

Kalman gain 𝐾𝑖, as shown in the update error covariance equation. 

Phase I of the extended Kalman filter Update stage uses accelerometer data to 

correct the orientation estimation, which is also the current system state �̂�𝑖
−

. The predicted 

accelerometer measurement vector ℎ𝑎( 𝑞𝑤
𝑏 ′) for Phase I is calculated by multiplying the 

gravity vector with the rotation matrix 𝑅𝑞
′: 
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ℎ𝑎( 𝑞𝑤
𝑏 ′) = 𝑅𝑞

′[0 0 −1]𝑇 (3.9.39) 

ℎ𝑎( 𝑞𝑤
𝑏 ′) = [2(𝑞𝑖0

′𝑞𝑖2
′ − 𝑞𝑖1

′𝑞𝑖3
′) −2(𝑞𝑖2

′𝑞𝑖3
′ + 𝑞𝑖0

′𝑞𝑖1
′) −𝑞𝑖0

′2 + 𝑞𝑖1
′2 + 𝑞𝑖2

′2 − 𝑞𝑖3
′2]

𝑇
 

 (3.9.40) 

where 

 

𝑅𝑞
′ = [

𝑞𝑖0
′2 + 𝑞𝑖1

′2 − 𝑞𝑖2
′2 − 𝑞𝑖3

′2 2𝑞𝑖1
′𝑞𝑖2

′ + 2𝑞𝑖0
′𝑞𝑖3

′ 2𝑞𝑖1
′𝑞𝑖3

′ − 2𝑞𝑖0
′𝑞𝑖2

′

2𝑞𝑖1
′𝑞𝑖2

′ − 2𝑞𝑖0
′𝑞𝑖3

′ 𝑞𝑖0
′2 − 𝑞𝑖1

′2 + 𝑞𝑖2
′2 − 𝑞𝑖3

′2 2𝑞𝑖2
′𝑞𝑖3

′ + 2𝑞𝑖0
′𝑞𝑖1

′

2𝑞𝑖1
′𝑞𝑖3

′ + 2𝑞𝑖0
′𝑞𝑖2

′ 2𝑞𝑖2
′𝑞𝑖3

′ − 2𝑞𝑖0
′𝑞𝑖1

′ 𝑞𝑖0
′2 − 𝑞𝑖1

′2 − 𝑞𝑖2
′2 + 𝑞𝑖3

′2

] 

 (3.9.41) 

The Jacobian matrix (𝐻𝑖)𝑎 for Phase I is then given by 

 

(𝐻𝑖)𝑎 = [
𝜕ℎ𝑎

𝜕𝑞𝑖0
′

𝜕ℎ𝑎

𝜕𝑞𝑖1
′

𝜕ℎ𝑎

𝜕𝑞𝑖2
′
    

𝜕ℎ𝑎

𝜕𝑞𝑖3
′
] (3.9.42) 

 

When updating the posterior estimate �̂�𝑖
+

 using accelerometer data to calculate the 

measurement residual in the update stage, the fourth element of the system state quaternion 

vector will not be updated so that Phase I only corrects the pitch and roll angles.  

Similar to Phase I of the update stage, Phase II of the extended Kalman filter update 

stage uses magnetometer data to further adjust the orientation estimation �̂�𝑖
−

. The 

predicted magnetometer measurement vector ℎ𝑚( 𝑞𝑤
𝑏 ′)  for Phase II is calculated by 

multiplying the magnetic field vector with the rotation matrix 𝑅𝑞
′: 
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ℎ𝑚( 𝑞𝑤
𝑏 ′) = 𝑅𝑞

′[0 −1 0]𝑇 (3.9.43) 

ℎ𝑚( 𝑞𝑤
𝑏 ′) = [−2(𝑞𝑖1

′𝑞𝑖2
′ + 𝑞𝑖0

′𝑞𝑖3
′) −𝑞𝑖0

′2 + 𝑞𝑖1
′2 − 𝑞𝑖2

′2 + 𝑞𝑖3
′2 2(𝑞𝑖0

′𝑞𝑖1
′ − 𝑞𝑖2

′𝑞𝑖3
′)]

𝑇
 

 (3.9.44) 

The Jacobian matrix (𝐻𝑖)𝑚 for Phase II is then given by 

 

(𝐻𝑖)𝑚 = [
𝜕ℎ𝑚

𝜕𝑞𝑖0
′

𝜕ℎ𝑚

𝜕𝑞𝑖1
′

𝜕ℎ𝑚

𝜕𝑞𝑖2
′
    

𝜕ℎ𝑚

𝜕𝑞𝑖3
′
] (3.9.45) 

 

For Phase II corrections that update the posterior estimate �̂�𝑖
+

 using magnetometer 

data to calculate the measurement residual in the update stage, the second and third 

elements of the system state quaternion vector will not be changed. Therefore, Phase II 

corrections only adjust the yaw angle and both pitch and roll angles are not affected. 

 

3.10. Position Estimation 

The last module of the proposed indoor positioning system is the position estimation 

module. Finally, the pedestrian’s position is estimated using the moving distance data 

generated in the step detection module and the orientation/heading data estimated in the 

heading and orientation estimation module. The current pedestrian’s position is calculated 

from the previous position with the addition of the directional moving distance increment 

at the current time instance. The angle used in the position estimation equations is the 

angular difference of the current and the initial yaw angles. The calculation and derivation 
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of the initial yaw angle  𝜓0  are provided in Section 3.9. The pedestrian’s position 

estimation is calculated by 

 

𝑋𝑃𝑜𝑠𝑒(𝑡(𝑖)) = 𝑋𝑃𝑜𝑠𝑒(𝑡(𝑖 − 1)) + 𝐷𝑖 × sin( 𝜓𝑖 −  𝜓0) ,   𝑖 = 1, 2, … , 𝑁 (3.10.1) 

𝑌𝑃𝑜𝑠𝑒(𝑡(𝑖)) = 𝑌𝑃𝑜𝑠𝑒(𝑡(𝑖 − 1)) + 𝐷𝑖 × cos( 𝜓𝑖 −  𝜓0) ,   𝑖 = 1, 2, … , 𝑁 (3.10.2) 

 

In the above position estimation equations, 𝑋𝑃𝑜𝑠𝑒(𝑡(𝑖)) and 𝑌𝑃𝑜𝑠𝑒(𝑡(𝑖)) are the 

current position coordinates and 𝑋𝑃𝑜𝑠𝑒(𝑡(𝑖 − 1)) and 𝑌𝑃𝑜𝑠𝑒(𝑡(𝑖 − 1)) are the previous 

position coordinates. The moving distance increment is denoted as 𝐷𝑖. 𝜓𝑖 and  𝜓0 denote 

the current and the initial yaw angles respectively. 
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  Chapter 4 

 

  Experimental Evaluation 
4. Experimental Evaluation 

 

4.1. Introduction 

In this chapter, we evaluate the performance and accuracy of the proposed indoor 

positioning system in a residential building for an unstructured indoor environment. The 

performance of the proposed positioning system model and algorithms are evaluated 

through carrying out extensive real-world experiments for different scenarios and 

analyzing the results. The experimental evaluation process includes investigating the 

performance of mode detection, step detection, the heading and orientation estimation 

algorithms, and finally the position estimation results. The main points we seek to validate 

are: (i) how effective can the proposed mode detection model separate dynamic mode from 

static mode, (ii) how accurately can the proposed step detection generate a detected step 

set 𝑆 = {𝑠𝑗}𝑗=1

𝐽
, (iii) how well do the proposed heading and orientation estimation 

algorithms work in real-world scenarios, and (iv) what is the overall position estimation 

accuracy and computational efficiency of the proposed indoor positioning system under 

different scenarios. 

 

 



 

 

 

      M.A.Sc. Thesis – Y. Miao                                                             McMaster University – ECE 

 91 

4.2. Experimental Setup 

The system model and algorithms are developed and implemented using MathWorks 

MATLAB and tested with real acquired sensor data. The system does not require 

additional infrastructure support and the inertial sensor data sets are collected using a 

smartphone mobile application and then sent to a data cloud. During the data collection 

process, the pedestrian walks in the reference path and the smartphone is handheld by the 

pedestrian and placed in front of the waist area with its screen facing up. The relative 

position of the smartphone is fixed to the pedestrian’s body. As mentioned in Section 3.9, 

coordinate transformations between the body and the sensor frame are unnecessary. The 

system has three types of input data: the accelerometer data measuring acceleration in 

meters per second squared (𝑚 𝑠2⁄ ), the magnetometer data measuring the magnetic field 

in microtesla (𝜇𝑇), and gyroscope data measuring angular velocity in radians per second 

(rad/s). The default sample rate is 10 Hz. All experiments were executed on a machine 

with a 3.3 GHz Dual-Core Intel Core i7 processor and 16 GB 2133 MHz memory, running 

macOS Catalina 10.15.7.  

To evaluate the performance of the proposed positioning model and algorithms, 

five experiment scenarios including 360-degree rotations, straight-line motion, U-turns 

motion, L-shape motion, and rectangular motion are considered. The experiment scenarios 

are illustrated in Figure 4.1. 
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Figure 4.1: Experiment Scenarios 
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Figure 4.2: Mode Detection Result 
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Table 4.1: Accuracy of Proposed Mode Detection Module 

Static Mode Period (second)  

Test No. Actual 
Detected by Proposed 

Mode Detection Module 
Error 

1 5 4.7 6% 

2 10 10.2 2% 

3 15 15.2 1% 

4 20 20.3 2% 

5 25 25.3 1% 

6 30 30.1 0.3% 

Mean Relative Error 2.1% 

Mean Squared Error (MSE) 6% 

 

To evaluate the accuracy of the proposed mode detection module, the path of straight-line 

motion is chosen. Figure 4.2 shows the mode detection result of an actual scenario in 

which a pedestrian starts to walk after performing 15-second-long rotation motions. From 

Figure 4.2 and Table 4.1, it can be seen that the proposed model detection module detected 

the start time of the dynamic mode at 15.2 seconds. The signal shown in Figure 4.2 is the 

sample variance 𝑆2of the magnitude 𝑎𝑖 of accelerometer readings 𝐴𝑟 over a length 𝐿 time 

window 𝑤(𝑛). When 𝑆2 exceeds the threshold, the proposed system enters the dynamic 

mode. Six rounds of experiments with different actual length of the static mode period 

have been performed to evaluate the accuracy of the proposed model detection module. 

Table 4.1 compares the actual moment with the detected moment that the system leaves 

the static mode and enters the dynamic mode. The mean relative error of all six rounds of 

experiments is 2.1% and the MSE is 6%. The step detection module is triggered after the 

system enters the dynamic mode. 
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Performance of Step Detection 

 

Figure 4.3: Step Detection Result 
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Table 4.2: Performance of Step Detection Module 

Test No. True # of Steps 
Threshold-based 

Detection 

Peak/Valley-based 

Detection 

Straight-line Path – Constant Speed 

1-1 63 62 64 

Straight-line Path – Varying Speed 

2-1 62 62 61 

U-turns Path - Constant Speed 

3-1 116 114 115 

U-turns Path - Varying Speed 

4-1 110 112 111 

 

The paths of straight-line motion and repetitive U-turns motion are chosen to evaluate the 

performance of the proposed multi-layer step detection module. Specifically, four sets of 

experiments including straight-line path with constant speed, straight-line path with 

varying speed, U-turns path with constant speed, and U-turns path with varying speed 

have been performed. The U-turns path is chosen to test the step refinement layer. Table 

4.2 shows the experimental results of the proposed step detection module for the four 

scenarios. From Table 4.2, the results show that both threshold-based step detection and 

peak/valley-based step detection demonstrated good performance results with high true 

positive rates, and there is not a significant performance gap between the two step 

detection methods. However, the performance of the threshold-based detection tends to 

degrade when the optimal threshold is not selected.  Compared with the threshold-based 

detection, the peak/valley-based detection is more stable.  

As elaborated in Section 3.8, three layers of step detection techniques are used to 

eliminate undesired false positive steps. In Figure 4.3, the y-axis represents acceleration 

magnitude, and the x-axis represents time. The curve drawn in the blue solid line is the 
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digital signal of acceleration magnitude. The green circle markers indicate the steps 

detected after applying the three layers of step detection. The red cross markers indicate 

the removed steps, which were detected as peaks initially but filtered out during the multi-

layer step detection process. Figure 4.3 shows all the steps that were detected after the 

multi-layer step detection process and also the false positive ones that were removed 

during the adjustment-refinement-validation process. It is observed in the experiments that 

the constraints imposed in the first layer have a dominant impact on rejecting a large 

number of false positive steps. Figure 4.4 illustrates the signals of gyroscope and 

accelerometer raw sensor data with detected steps placed on the same timeline. As shown 

in Figure 4.4, the signal pattern matching technique used in the second step refinement 

layer is effective in eliminating the falsely detected peaks especially for paths that contain 

repetitive motions such as the U-turns path. The third step validation layer cleans up one 

to two false positive steps when any abnormal velocity is detected. 

 

Performance of Heading and Orientation Estimation 
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Figure 4.5: Performance Comparison of Heading and Orientation 

Estimation Algorithms under Static Mode 

 

Figure 4.6: Performance Comparison of Heading and Orientation 

Estimation Algorithms under Static Mode (Individual Axes) 
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Figure 4.7: Performance Comparison of Heading and Orientation 

Estimation Algorithms under Dynamic Mode 

 

Figure 4.8: Performance Comparison of Heading and Orientation 

Estimation Algorithms under Dynamic Mode (Individual Axes) 
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Table 4.3: Volatility/Standard Deviation of Roll Angle & Pitch Angle 

Estimation Results under Dynamic Mode 

                                         Angle 

              Algorithm 
Roll Angle 𝜙 Pitch Angle 𝜃 

Static Mode Orientation Est. 4.09 5.69 

Extended Kalman Filter (Prediction Stage Only) 0.25 1.9 

Extended Kalman Filter (Full Model) 1.68 1.79 

MATLAB Tracking Approach 2.95 3.77 

Gradient Descent Optimization Algorithm 0.10 1.44 

 

To evaluate the performance of the heading and orientation estimation module and 

algorithms, the path of 360-degree rotations is chosen to test the static mode scenario, and 

repetitive U-turns motion is chosen to analyze the dynamic mode scenario. The former 

path rotates around the yaw axis at a constant speed, and the latter U-turns motion consists 

of ten instant direction changes. The proposed heading and orientation estimation module 

uses sensor fusion techniques to estimate the pedestrian’s heading at the current system 

state. Concretely, the system first predicts a preliminary orientation based on gyro 

integration, then the static mode utilizes reference vectors to correct the preliminary 

orientation estimation while the dynamic mode updates the prior estimate by fusing 

accelerometer and magnetometer observations. The static mode orientation estimation 

algorithm and the extended Kalman filter model are compared with gyro integration, 

which is the prediction stage model of the EKF, the MATLAB tracking approach, and a 

gradient descent optimization algorithm (Madgwick et al., 2011). The heading and 

orientation estimation results of all algorithms under the static mode are shown in Figure 

4.5 and Figure 4.6. The heading and orientation estimation results of all approaches under 

the dynamic mode are provided in Figure 4.7 and Figure 4.8. Figure 4.5 and Figure 4.7 
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show the 3-axis results of different algorithms, and Figure 4.6 and Figure 4.8 compare the 

three Euler angles of all five approaches separately.  

From Figure 4.5 and Figure 4.6, it is observed that all five algorithms detected 

neglectable roll angle and pitch angle changes, and the proposed heading and orientation 

algorithms and the MATLAB tracking approach successfully detected ten actual rotations 

shown in the yaw angle signal results. Gyro integration and the gradient descent 

optimization algorithm were unable to detect the rotation motions in the static mode, hence 

produced false heading estimations. It is noticed that there is a short 1-second convergence 

phase for the reference vector-based static mode orientation estimation algorithm. Under 

the dynamic mode, Figure 4.7 and Figure 4.8 show that the proposed extended Kalman 

filter generated more stable signals in the roll angle and pitch angle results and avoided 

obvious high frequency signal fluctuations as produced by the static mode orientation 

estimation algorithm. Table 4.3 summarizes the standard deviation of the roll angle and 

pitch angle of all algorithms under the dynamic mode. From Table 4.3, it can be seen that 

the proposed extended Kalman filter achieved better performance in the roll angle and 

pitch angle than the static mode orientation estimation algorithm and the MATLAB 

tracking approach. The yaw angle results in Figure 4.8 show that the proposed extended 

Kalman filter is more sensitive near the actual turning motions than other algorithms and 

achieves the best performance in orientation estimation under the dynamic mode.  
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Performance of Position Estimation 

 

Figure 4.9: Trajectory Tracking Results for Different Path Scenarios 

 

Table 4.4: Displacement Error 

Path 

Displacement Error 

Static Mode 

Orientation 

Est. 

Extended 

Kalman 

Filter (Full 

Model) 

EKF 

Prediction 

Only 

(Gyro 

Integration) 

MATLAB 

Tracking 

Approach 

Gradient 

Descent 

Optimization 

Algorithm 

(a)  

360-degree 

Rotations 

0.1439 m n/a 3.332 m 0.7378 m 3.541 m 

(c)  

U-turn 

Motion 

n/a 2.3524 m 12.062 m 2.7197 m 12.0658 m 

(e) 

Rectangular 

Motion 

n/a 0.5346 m 4.5946 m 1.304 m 4.5971 m 
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Figure 4.10: Position Estimation Performance Comparison for Different Paths 

 

As shown in Figure 4.1, five motion paths are selected as different experiment scenarios 

to evaluate the performance and accuracy of the proposed position estimation algorithm 

and indoor positioning system model. The five motion paths are (a) 360-degree rotations, 

(b) straight-line motion, (c) U-turns motion, (d) L-shape motion, and (e) rectangular 

motion. Path (a) is a typical scenario of the static mode, and the other four paths (b), (c), 

(d), and (e) are considered as scenarios under which the system triggers the dynamic mode 

algorithms. The pedestrian returns to the starting point for path (a), (c), and (e), so we 

calculated the average displacement error of these scenarios only. During the evaluation 

process, four different solutions have been compared. Figure 4.9 depicts the trajectories 

of the ground truth, the proposed position estimation algorithm, the gyro integration 



 

 

 

      M.A.Sc. Thesis – Y. Miao                                                             McMaster University – ECE 

 103 

method, the MATLAB tracking approach, and a classical Gradient Descent optimization 

algorithm for all five experiment scenarios. The reference path in each experimental 

scenario is shown as the red solid line. The MATLAB tracking approach is considered as 

a state-of-the-art baseline PDR method. The gyro integration method and the Gradient 

Descent optimization algorithm serve to evaluate the contribution of sensor fusion 

techniques of the proposed indoor positioning system. To test the performance of the 

proposed position estimation algorithm in the static mode, we performed continuous 360-

degree rotation motions. Figure 4.9(a) shows that both the proposed algorithm and the 

MATLAB tracking approach accurately restored the motion path, whereas the other two 

methods drifted away from the pedestrian’s location over time. The reason of the “drifting 

effect” is that the gyro integration method and Gradient Descent optimization algorithm 

failed at estimating the correct heading and orientation of the pedestrian. To validate the 

proposed position estimation algorithm in the dynamic mode, two groups of experiments 

were carried out with multiple trails. The first group includes the straight-line motion and 

U-turn motion. In these experimental cases, the pedestrian walked in the corridor in long 

distance paths. The second group includes the L-shape motion and rectangular motion. 

These experiments represent the performance of the system for comparatively short 

distance paths. The experimental results in Figure 4.9 show that the proposed position 

estimation algorithm and the MATLAB tracking approach demonstrated better 

performance than the gyro integration method. The only exception is path (d). The 

proposed algorithm estimated a larger angle than the actual 90-degree turn in the middle 

of the path, leading to a result that departs from the actual path. 
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To assess the accuracy of the proposed position estimation algorithm, the 

displacement errors of paths (a), (c), and (e) are calculated. Concretely, the difference 

between the actual finishing location and the estimated finishing location is calculated as 

the displacement error. The displacement errors of different position estimation algorithms 

under the three experimental scenarios are provided in Table 4.4. For paths (a) and (e), the 

displacement errors of the proposed algorithm are 0.1439 m and 0.5346 m respectively. 

The displacement error of the proposed algorithm for path (c) is 2.3524 m. From the table, 

it can be seen that the proposed algorithm has the lowest displacement error for each of 

the three paths and achieved a high position estimation accuracy compared to the other 

methods. Figure 4.10 shows the average displacement errors for different paths. We find 

that the location errors of the proposed algorithm are significantly less than that of the 

other conventional methods.  
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  Chapter 5 

 

  Conclusions 
5. Conclusions 

 

5.1. Summary 

We conclude this thesis by briefly summarizing the research and development project in 

Section 5.1 and discussing a few directions of future work in Section 5.2 for MEMS-

MARG-based dead reckoning for indoor positioning and tracking system. In this thesis, 

we consider the problem of designing and developing a low-cost and practical indoor 

positioning system. To avoid complicated infrastructure and extra devices, we proposed a 

complete indoor positioning solution based solely on self-contained MEMS MARG 

inertial sensors including accelerometer, magnetometer, and gyroscope embedded in 

smartphones. PDR, signal processing, and sensor fusion techniques were investigated in 

this work.  

The proposed indoor positioning system includes four main modules, mode 

detection, step detection and moving distance estimation, heading and orientation 

estimation, and position estimation, with a mode switch feature and an initialization and 

calibration phase. A detailed system architecture was presented in Section 3.3. It is robust 

yet flexible as opposed to conventional indoor positioning algorithms which generate 
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cumulative errors over time. Experimental evaluation has shown that it can achieve high 

position accuracy compared to the other approaches. 

The proposed system has two modes: static mode and dynamic mode. Both modes 

share a preliminary orientation estimate and then use different ways to correct the 

preliminary estimate. The dual-mode design reinforces the strength of each heading and 

orientation estimation algorithm in its corresponding mode and increases the overall 

computational efficiency of the entire system. The mode detection algorithm with the 

sliding time window technique was described in Section 3.7. Experimental results 

demonstrated that the system was able to effectively detect the correct mode with a 2.1% 

mean relative error. To ensure the reliability of magnetic field measurements, 

magnetometer calibration was performed in the initialization and calibration phase. The 

hard-and-soft-iron model based on least square fitting of a deviated ellipsoid is used to 

eliminate potential magnetic field distortions.   

For the step detection module, a multi-layer step detection algorithm was presented 

and illustrated in Section 3.8. Constraints were imposed as preliminary adjustments of the 

first-round step detection result. The second layer of step detection utilized gyroscope and 

magnetometer measurements as step refinement to eliminate false positive steps. 

Eventually, the third step validation layer further guaranteed all true steps. Experimental 

results have shown that the proposed step detection module and algorithms can achieve a 

significant reduction in the number of falsely detected steps. 

The heading and orientation estimation module and algorithms were presented in 

Section 3.9. For both the static mode and dynamic mode, the proposed algorithm first 
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generated a preliminary gyro integration-based orientation estimate. Then if the system 

was in the static mode, it used reference vectors obtained from accelerometer and 

magnetometer measurements to correct the preliminary orientation estimate. If the system 

was in the dynamic mode, a double phase extended Kalman filter was adopted. To address 

the gimbal lock issue, quaternion was used to represent the system state in the 

mathematical models. Experimental results demonstrated that the proposed orientation 

estimation algorithms achieved better performance than the rest of the approaches.  

The position estimation module was presented in Section 3.10. Experimental 

evaluation of five scenarios demonstrated the effectiveness and efficiency of the proposed 

system. Trajectory results of five sets of experiments have shown that the proposed indoor 

positioning system and algorithms can track the target pedestrian with high accuracy. For 

the 360-degree rotations path, the displacement error of the proposed system is 0.1439 m. 

The displacement errors of the proposed system for U-turn motions and rectangular 

motions are 2.3524 m and 0.5346 m respectively.  

 

5.2. Future Work 

We will continue to improve the performance of the proposed indoor positioning 

algorithms and develop a full-fledged cross-platform indoor navigation system. One major 

direction we will focus on is to extend the current system so it can track pedestrians over 

multiple floors. Moreover, as deep learning algorithms have shown tremendous success 

in various engineering fields, activity recognition based on Long Short-Term Memory 

(LSTM) can be incorporated into our model to further improve the positioning accuracy. 
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We will also extend experimental evaluations to scenarios under which the pedestrian is 

tracked over a very long period of time such as hours. Last but not least, as estimating 

heading and orientation is critical in the indoor positioning problem, we are interested in 

enhancing the current system model by applying convex optimization techniques on 

orientation estimation, which we believe would mitigate magnetic disturbances in a more 

effective way.  
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